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BACKGROUND: Regulatory toxicity values used to assess and manage chemical risks rely on the determination of the point of departure (POD) for a
critical effect, which results from a comprehensive and systematic assessment of available toxicity studies. However, regulatory assessments are only
available for a small fraction of chemicals.

OBJECTIVES: Using in vivo experimental animal data from the U.S. Environmental Protection Agency’s Toxicity Value Database, we developed a
semiautomated approach to determine surrogate oral route PODs, and corresponding toxicity values where regulatory assessments are unavailable.

METHODS:We developed a curated data set restricted to effect levels, exposure routes, study designs, and species relevant for deriving toxicity values.
Effect levels were adjusted to chronic human equivalent benchmark doses (BMDh). We hypothesized that a quantile of the BMDh distribution could
serve as a surrogate POD and determined the appropriate quantile by calibration to regulatory PODs. Finally, we characterized uncertainties around
the surrogate PODs from intra- and interstudy variability and derived probabilistic toxicity values using a standardized workflow.

RESULTS: The BMDh distribution for each chemical was adequately fit by a lognormal distribution, and the 25th percentile best predicted the available
regulatory PODs [R2 ≥ 0:78, residual standard error ðRSEÞ≤ 0:53 log10 units]. We derived surrogate PODs for 10,145 chemicals from the curated
data set, differentiating between general noncancer and reproductive/developmental effects, with typical uncertainties (at 95% confidence) of a factor
of 10 and 12, respectively. From these PODs, probabilistic reference doses (1% incidence at 95% confidence), as well as human population effect
doses (10% incidence), were derived.

DISCUSSION: In providing surrogate PODs calibrated to regulatory values and deriving corresponding toxicity values, we have substantially expanded
the coverage of chemicals from 744 to 8,023 for general noncancer effects, and from 41 to 6,697 for reproductive/developmental effects. These results
can be used across various risk assessment and risk management contexts, from hazardous site and life cycle impact assessments to chemical prioriti-
zation and substitution. https://doi.org/10.1289/EHP11524

Introduction
Chemical management and assessment frameworks, whether for
site cleanup, life cycle impact assessment (LCIA), chemical alter-
natives assessment (CAA), or comparative risk screening, all aim
to evaluate toxicological impacts on human health from chemical
exposures.1,2 These frameworks rely on chemical-specific points
of departure (PODs) for deriving the quantitative toxicity values
necessary for such evaluations. The POD represents the point on
the dose–response curve marking the beginning of a low-dose
extrapolation for risk assessment3 and is derived from effect levels
from in vivo studies, such as the lowest observed adverse effect
level (LOAEL), the no observed adverse effect level (NOAEL),
and the statistically derived benchmark dose lower confidence
limit (BMDL).4 Moreover, these PODs are typically required to be
based on regulatory assessments that review and synthesize the

available toxicity data, such as the U.S. Environmental Protection
Agency’s (EPA’s) Integrated Science Assessments and Integrated
Risk Information System (IRIS) toxicological reviews and
Provisional Peer Reviewed Toxicity Values (PPRTV), among
others. Yet, regulatory data sources are only available for a very
limited share of the several tens of thousands of chemical substan-
ces commonly used worldwide,5–7 mainly because developing
such regulatory assessments is highly data-, time-, and resource-in-
tensive.8 Regulatory assessment being generally based on the most
sensitive end points, the number of chemicals with developmental/
reproductive regulatory PODs is evenmore restricted.

For chemical risk assessment purposes, the World Health
Organization International Programme on Chemical Safety (WHO/
IPCS) developed a unified framework for dose–response assess-
ment able to derive probabilistic reference doses (RfDs) from
PODs.9–12 This framework provides a consistent and transparent
approach for both health-based risk assessment as well as compara-
tive risk.Moreover, in the LCIAcontext its implementationwas rec-
ommended for deriving human dose–response factors for noncancer
end points,1 using human population effect doses with an incidence
response level I =10%. However, the WHO/IPCS framework has
only been applied to n=608 substances with regulatory data to cal-
culate probabilistic RfDs12 and to n=115 organic chemicals to cal-
culate human population effect doses (I =10%).1

With the increasing availability of online experimental animal
databases, it is possible to obtain in vivo toxicity data for tens of
thousands of chemical substances. Examples of such large toxicity
data sources include the U.S. EPA’s Toxicity Value Database
(ToxValDB)13 and the International Uniform Chemical Information
Database (IUCLID; https://iuclid6.echa.europa.eu/) developed
under the European Registration, Evaluation, Authorisation, and
Restriction of Chemicals (REACH) regulation (EC 1907/2006).
We propose that through the application of rigorous curation and
statistical approaches, these data sources can be used to derive
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“surrogate” animal-based PODs in a quantitative high-throughput
approach, systematically evaluating separate PODs for both repro-
ductive/developmental effects and nonreproductive/developmental
effects. Specifically, for substances for which regulatory PODs are
not available, such experimental animal data could be alternatively
used to estimate a POD that closely mimics one that would be
selected in a regulatory assessment context (Figure S1).1

However, such an approach needs to address numerous chal-
lenges presented by these databases.14 For example, a chemical
with multiple studies reported can have multiple effect-level val-
ues (i.e., experimental values of toxicity from individual studies)
associated with it. A repeat dose toxicity data set for a single
chemical may include several effect-level types (e.g., NOAELs,
LOAELs) covering different observed critical effects (e.g., body
weight, reproduction) for various tested species (e.g., rats, dogs),
with orders of magnitude in the variability of the reported effect-
level values.3,12,15 Thus, systematic methods for data selection
and harmonization for human toxicity information, similar to
those proposed for physico-chemical properties16 and freshwater
ecotoxicity information,17 need to be developed.18,19 Given that
regulatory PODs are intended to be protective of all potential
adverse effects, the estimated POD should be at the lower end of
the distribution of available toxicity values,20 following careful
data curation where needed.21

Therefore, our approach to expand the coverage of chemicals
for which toxicity values could be derived consisted of four spe-
cific objectives, namely:

• To create a consistent and curated data set of chronic dose–
response toxicity data for multiple noncancer end points for
oral exposure

• To develop a statistical approach to determine oral PODs by
comparing curated toxicity data against available regulatory
values

• To provide an extended set of oral PODs with quantified
uncertainties for a wide range of chemicals, differentiating
between reproductive/developmental and nonreproductive/
developmental effects

• To determine probabilistic RfDs for health-based or compar-
ative risk assessments and human population effect doses
(I =10%) for LCIA, both calculated from the extended set
of oral PODs using the WHO/IPCS framework
Throughout this paper, we separately consider reproductive/

developmental effects and nonreproductive/developmental effects
(the latter hereafter referred to as “general noncancer effects”)
owing to an average factor of roughly 20 difference in severity to
affect human lifetime loss,1,22 as well as the differences in appli-
cable life stages and exposure durations. The surrogate PODs we
develop along with their corresponding probabilistic RfDs and
human population effect doses are suitable for implementation
into various chemical management and exposure and impact
assessment frameworks for application in high-throughput risk
screening, LCIA, CAA for chemical substitution, and exposure
and risk prioritization.1,23,24

Methods
Figure 1 provides an overview of the overall workflow followed
in this paper. First, we curated and selected experimental animal
toxicity data and split them into two distinct data sets covering
general noncancer effects and reproductive/developmental effects
(Figure 1A). Second, we collected POD values from regulatory
data sources (PODreg) (Figure 1B) and compared these PODreg
with the curated dose–response toxicity data to identify a statisti-
cal approach for deriving surrogate oral PODs (Figure 1C).
Third, we systematically applied this approach to determine a
surrogate POD for each substance in the two curated data sets

(Figure 1D). We then characterized the uncertainty around each
of the surrogate PODs that was due to intrastudy and interstudy
variability through a bootstrapping approach (Figure 1E). Finally,
using the surrogate PODs and their uncertainty, we derived both
probabilistic RfDs and human population effect doses (I =10%)
for use in health-based or comparative risk assessments and
LCIA, respectively (Figure 1F). The following sections detail
each of these main steps.

Description of the in Vivo Input Data Set
The in vivo data were collected in March 2021 from the U.S. EPA’s
ToxValDB (version 9.1), an experimental toxicity database com-
piled from >40 publicly available sources.13 These include—
among others—the Toxicity Reference Database (ToxRefDB; ver-
sion 2.0),25,26 IRIS (https://www.epa.gov/iris), Office of Pesticide
Programs (OPP; https://www.epa.gov/pesticides), PPRTV (https://
www.epa.gov/pprtv), European Chemicals Agency’s eChem Portal
(https://www.echemportal.org/echemportal), and European Food
Safety Authority’s Chemical Hazards Database (https://www.efsa.
europa.eu/en/data/chemical-hazards-data). The current version of
ToxValDB is accessible through the EPA’s CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard).27 The accessed
database contained 427,506 records providing toxicity information
on >30,000 chemicals.

Input Data Curation and Selection
We curated and selected the toxicity data from the ToxValDB
with a semiautomated process based on a set of specific criteria
derived from the WHO/IPCS recommendations in dose–response
modeling (Figure 1A).10–12 The curation aimed first to harmonize
the reported information to facilitate the data processing in our
study; second, to filter out all records not relevant for our analysis
(e.g., exposure route different from oral); and third, to make
reported toxicity animal data directly comparable across different
tested species and study types. We summarize below the steps of
the curation and selection process with a few examples and
actions taken (e.g., filtering, extrapolation), and Tables S1–S3
detail the process, including additional examples and further
explanations of the choices made.

1. Effect-level types: we focused on the three effect-level
types used for deriving PODs (i.e., NOAELs, LOAELs, and
BMDLs) and excluded all the records referring to other
effect-level types. The curation included, for example,
grouping effect levels reported as no effect level (NEL) and
no observed effect level (NOEL) to NOAEL, or lowest
effect level (LEL) and lowest observed effect level (LOEL)
to LOAEL. In addition, we disregarded all records with
NELs (or LELs) as effect-level types in all cases in which
another record from the same study and with effect-level
types equal to NOAEL (or LOAEL) was already available.

2. Exposure route: we focused on oral exposure as the route
of interest in the present study and thus excluded all records
referring to other routes. During the curation, we grouped
exposure routes reported as “food,” “gavage,” “diet, unspe-
cified,” “oral via capsule,” “drinking water,” “stomach intu-
bation,” “oral, intragastric,” “oral, gavage,” “feed,” “diet,”
“drinking water,” and “liquid diet” to oral. In cases of miss-
ing information, we assigned an exposure route as oral for
those with reported units equal to milligrams per kilogram
per day or equivalent.

3. Effect values and units: we converted reported effect val-
ues into a consistent unit of milligrams per kilogram per
day. We excluded all the records with missing effect values
or unconvertible and unclear units (e.g., “mg=mg3,” “ppm
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urine,” or “mg/kg ash femur”). Specifically for records
with REACH as source and “mg/kg diet” as the reported
unit of effect value, we converted the reported effect values
to milligrams per kilogram per day by dividing the
reported effect value by 16 if the tested species was rat and
by 4.5 if the tested species was mouse. Single-dose data
(acute tests, unit typically in “mg/kg”) were also excluded.

4. Study type: we focused on five study types: chronic,
subchronic, subacute, reproductive, and developmental.
Harmonization of reported study types included, for exam-
ple, “fertility” being assigned to reproductive. In addition,
for records with subacute or subchronic as the study type,
we extrapolated their effect values to chronic by applying a
subchronic-to-chronic factor of 2 and a subacute-to-
chronic factor of 5.12,28 For records with reproductive or
developmental as the study type, we did not apply any
extrapolation because we assumed that the study covered
the relevant window of susceptibility. The records with
reported study type being different (and unconvertible) to
one of the five considered were disregarded.

5. Tested species: we focused only on records providing tox-
icity information on mammals, excluding other species.
We harmonized reported species names and grouped them
into commonly tested species. For example, we grouped

records with tested species reported as mice or hamster
into mouse. If no tested species were reported, we flagged
the record and assumed the tested species to be rat (the pre-
dominant tested species across the retrieved data). In addi-
tion, we extrapolated the effect values of all records to
humans. The interspecies body weight scaling was per-
formed by dividing reported effect values by conversion
factors (CFs) to humans estimated as follows:

CF= BW0:25
h

.
BW0:25

a

,

where BWh is the average body weight of humans of
70 kg, and BWa is the body weight of the tested species.
As an example, by assuming an average weight for a
mouse BWa =0:025 kg, a CF=7:3 is estimated, and in
case of an effect value of 10 mg=kg per day, the dose
tested with a mouse is converted to an effect value for
humans of 1:4 mg=kg per day.

6. Qualifiers: in cases of reported effect values accompanied
by numeric qualifiers (e.g., “<,” “>,” “≥”), after analyzing
the original sources for these records and based on expert
judgment, we decided to disregard the presence of the
numeric qualifiers except for NOAELs accompanied by

Figure 1. Overview of the workflow: (A) semiautomated data curation and selection process applied to the collected in vivo data from ToxValDB; (B) collec-
tion and extrapolation of regulatory PODs; (C) analysis of the correlation between ToxValDB and regulatory POD data; (D) systematic derivation of oral
PODs from the curated data sets, differentiating between general noncancer (nonreproductive/developmental) and reproductive/developmental effects; (E) quan-
tification of the substance-specific uncertainty of the derived PODs from intra- and interstudy variability; and (F) derivation of probabilistic RfD and human
population effect doses (I =10%). Note: BMDh, human equivalent benchmark dose; nchem, number of chemicals; ndata, number of data points (records);
NOAEL, no observed adverse effect level; non-rep/dev, nonreproductive or developmental; POD, point of departure; rep/dev, reproductive or developmental;
RfD, probabilistic reference dose; ToxValDB, Toxicity Value Database.
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“<.” The effect-level types of these “NOAEL <x” records
were converted to LOAEL given that actual effects were
observed at the tested dose in the original studies.

7. Critical effects: the reported effects studied were standar-
dized to one of the following categories: bodyweight, clinical
chemistry, clinical signs, development, enzyme activity, food
or water consumption, gross pathology, hematology, mortal-
ity/survival, multiple, neurobehavior, none, nonneoplastic
histopathology, organweight, other, reproduction, or urinaly-
sis. In addition, for all records for which we allocated devel-
opment or reproduction as critical effect category, we cross-
checked this information with the previously harmonized
study type category and overwrote the study type category in
case ofmismatch.

8. Conceptual model: based on the previously assigned
standardized effect categories and study types, we assigned
to each data record one of the following conceptual mod-
els: continuous, quantal-deterministic, quantal-stochastic,
or multiple, following the WHO/IPCS recommendations in
dose–response modeling (Table S2).10–12 For example,
chronic records with body weight as a standardized effect
category were assigned the conceptual model continuous.

9. Extrapolation to benchmark dose: based on the curated
effect-level type, study type, and assigned conceptual
model, we extrapolated the effect value of each record to a
chronic human equivalent benchmark dose (BMDh) based
on the WHO/IPCS framework (Table S3).10,12 In the case
of multiple possible conceptual models assigned to the same
record, we calculated the BMDh value based on the aver-
aged results of the two assigned conceptual models. At each
extrapolation step to convert the in vivo data to BMDh (e.g.,
interspecies body weight scaling), uncertainty distributions
were assigned to BMDh. Assuming lognormal distribution
for each factor, the uncertainties were combined probabilis-
tically by applying the approximation described in the latest
work in dose–response modeling.10–12 The probabilistically
combined uncertainties quantified a total uncertainty around
each extrapolated effect value (i.e., BMDh). In Table S3,
uncertainty factors are provided as the ratio between the
95th percentile and the median of the lognormal distribution
(P95/P50).

After curating and applying the described semiautomated pro-
cess to select the retained toxicity data from ToxValDB, we split
the curated data into two distinct data sets covering general non-
cancer effects and reproductive/developmental effects, respec-
tively. This repartition was performed based on each record’s
derived study type and critical effects (Figure 1A).

Regulatory Data
We gathered regulatory data from a previously published data-
base of publicly available, peer-reviewed human health toxicity
values reported in specific public sources, including—among
others—U.S. EPA (e.g., IRIS, OPP) and California EPA (Office
of Environmental Health Hazard Assessment).8,29 We then cross-
checked these values with the November 2019 release of the U.S.
EPA Regional Screening Levels (RSLs), adding additional chem-
icals not previously identified for which PODs could be identi-
fied.30 In our study, a PODreg is defined as the NOAEL, LOAEL,
or BMDL associated with a reported reference dose. To ensure a
consistent comparison, we extrapolated the gathered PODreg to
chronic human equivalent benchmark dose (PODreg,BMDh ), apply-
ing the same procedure as described previously for the curated
and selected ToxValDB records while also differentiating
between general noncancer and reproductive/developmental
effects (Figure 1B).

Comparison and Approach for Deriving Oral PODs
To systematically determine oral PODs for substances for which
regulatory values were not available, we started by comparing
the curated toxicity data from ToxValDB against the available
PODreg,BMDh (Figure 1C). The comparison was carried out sepa-
rately for general noncancer and reproductive/developmental
effects for chemicals for which both PODreg,BMDh and in vivo data
were available. For each of these substances, we assumed a log-
normal distribution across BMDh and derived a POD from the
x-percentile of the fitted lognormal distribution (PODpxBMDh).
The resulting PODpxBMDh values were then compared against the
respective PODreg,BMDh . Although the curated data from
ToxValDB did not necessarily cover the exact data sets used
by health risk assessors to select PODreg, the comparison
between the resulting values informed us about the importance
of potential differences.

We hypothesized that PODpxBMDh on the lower end of the
effect values distribution was a suitable proxy for PODreg,BMDh

across different chemicals.20 To evaluate this hypothesis and to
identify the most suitable x-percentile, we analyzed the correla-
tion of PODreg,BMDh values against four different PODpxBMDh val-
ues, from the 5th to the 35th percentile (i.e., PODp05BMDh ,
PODp15BMDh , PODp25BMDh , and PODp35BMDh ). In addition, to put
our approach into perspective, we investigated via the Shapiro–
Wilk normality test31 whether the BMDh distribution for each
chemical could be adequately fit by a lognormal distribution.

The two function moments used for fitting the lognormal dis-
tribution were mu (l) and sigma (r), which respectively denoted
the log-scale population median and standard deviation of the
available effect values for a substance.32 For all substances, l
was calculated from the available BMDh. In contrast, r was cal-
culated from the available BMDh only for data-rich chemicals
(≥10 records available), whereas for data-poor chemicals (<10
records available), we applied a fixed standard deviation (rfixed)
derived from the average across r of data-rich chemicals. We
derived two distinct rfixed, one to be applied for general non-
cancer effects (rnon-rep=dev

fixed ) and one for reproductive/developmen-
tal effects (rrep=dev

fixed ). Given that the estimates of r from <10
available records were highly unstable, we used an average
shaped distribution instead of relying on the few available effect
values. The derived x-percentile from the fitted lognormal distri-
bution (PODpxBMDh) were expected to be more representative for
the considered data-poor chemical.

In addition, to investigate the potential influence of remaining
double entries (i.e., duplicate records) in the curated ToxValDB,
we studied how much the surrogate PODs were affected in the
case of keeping only records with unique derived BMDh values,
effect-level types, and tested species.

Deriving PODs per Substance
After identifying the most suitable x-percentile to be used as a sur-
rogate of PODreg,BMDh , we systematically derived PODpxBMDh for
each substance from the available records in the two curated in vivo
data sets (Figure 1D). For a substance for which recordswere avail-
able in both data sets, two distinct PODpxBMDh values were derived
separately, one for general noncancer effects (PODnon-rep=dev

pxBMDh
) and

one for reproductive/developmental effects (PODrep=dev
pxBMDh

).

Quantifying Uncertainty around the Derived PODs
To characterize the uncertainty around the derived PODpxBMDh ,
we took into account both interstudy variability and intrastudy vari-
ability (Figure 1E). These two aspects were quantified separately
and expressed as the squared geometric standard deviation (GSD2

inter
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and GSD2
intra) and then combined (GSD2

total)
33 to provide a 95% con-

fidence interval (CI) for each PODpxBMDh in the twodata sets:

GSD2
total ¼ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog10GSD2

interÞ2 + ðlog10GSD2
intraÞ2

p
,

GSD2
total being a unitless factor equal to P97.5/P50 or to

ðP95=P50Þ2=1:65 and denoting that the distribution of 95% of all
values fall within PODpxBMDh divided by GSD2

total and PODpxBMDh

multiplied by GSD2
total.

We calculated GSD2
inter, which reflects the variability across

available effect values, for each PODpxBMDh in the two distinct
data sets. To estimate GSD2

inter, we started from the lognormal dis-
tribution fitted through the available effect values (extrapolated to
BMDh) for deriving PODpxBMDh . When fitting the lognormal dis-
tribution, one of the two moments used was r (standard deviation
of the available BMDh for a substance). We thus estimated the
95% CI of r via the function fitdistr in the R package MASS,34

and from this 95% CI we derived an upper and lower bound for
PODpxBMD (PODinter,upper

pxBMDh
and PODinter,lower

pxBMDh
)35 by fitting two new

lognormal distributions using instead of r its 95% CI. GSD2
inter

was then calculated as:

GSD2
inter ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PODinter,upper

pxBMDh
=PODinter,lower

pxBMDh

q
:

In contrast, GSD2
intra reflects the variability specific to the effect

values. To estimate GSD2
intra, we started from the record-specific

distribution around the extrapolated effect value. This record-
specific distribution was based on the uncertainty distributions
assigned when converting the in vivo data to human BMDs at the
following extrapolation steps: LOAEL to NOAEL, NOAEL or
BMDL to BMD, subchronic/subacute to chronic, interspecies
body weight scaling and, interspecies toxicokinetics (TKs) and
toxicodynamics (TDs) (Table S3).10–12 The record-specific uncer-
tainty was propagated from the available records (BMDh) to the
derived PODpxBMDh via a bootstrap method. First, for each sub-
stance, 1,000 bootstrap samples were sampled from the estimated
distributions around BMDh of the available records. Second, 1,000
lognormal distributions were fitted to the bootstrap samples using
l as the median of the resampled effect values, andr as the samer
used to derive BMDh, based on the originally available effect val-
ues (in practice only l varied and the same shaped distribution was
always fitted to the resamples). Third, from the 1,000 fits, we
derived an upper and lower bound for PODpxBMDh (POD

intra,upper
pxBMDh

and PODintra,lower
pxBMDh

). GSD2
intra was then calculated as follows:

GSD2
intra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PODintra,upper

pxBMDh
=PODintra,lower

pxBMDh

q
:

When using the derived PODpxBMDh as a surrogate of regula-
tory value, it was necessary to consider the additional uncertainty
associated with the prediction of this regulatory value, which was
obtained from the residual standard error between PODreg,BMDh

and PODpxBMDh . Because this residual standard error already
accounted for the uncertainty on the PODpxBMDh for regulated
chemicals, we took as GSD2

final the maximum between the uncer-
tainty related to the residual standard error (GSD2

px!reg) and the
substance-specific GSD2

total on the derived POD.

Deriving Probabilistic RfDs and Human Effect Doses
Following the automated workflow developed by Chiu et al.,12

probabilistic RfDs were derived for risk assessment purposes as the
lower 95% confidence bound of HDM

1%, that is, the daily human
dose at which 1% of the population shows a level of effect M

corresponding to the effect-level type (e.g., LOAEL, NOAEL, or
BMDL) reported in the database as well as the type of end point
(e.g., continuous, quantal-deterministic, or quantal-stochastic)
(Figure 1F). HDM

1% values were calculated from the provided
PODpxBMDh by dividing it by an extrapolation factor of 9.7 (P50) to
account for variability in sensitivity between the median human and
the first percentile human.10 The 90% CI of HDM

1% was calculated
combining probabilistically GSD2

final and the uncertainty factor (i.e.,
P95=P50=4:3) assigned to the human variability at thefirst percen-
tile to yield the 90% CI of GSD1:65

final ¼ ðGSD2
finalÞ

1:65
2 .10 We directly

implemented the approximate approach by Chiu et al.12 given that
in their study it yielded results within 20–30% of the Monte Carlo
simulation. We then compared the derived lower 95% confidence
bound of HCM

1% against the related regulatory RfD (if available) to
investigate the potential influence of the database uncertainty factor
(UFd). This factor accounts for data gaps and is typically equal to 1,
3, and 10 as a function of the data coverage for different end points.36

UFd was applied when deriving regulatory RfDs but it was not
directly included in the WHO/IPCS framework.12 This helped us
understand whether the derived toxicity values were consistent with
regulatory RfDs and identify potential biases. To put the obtained
results into perspective, the derived probabilistic RfDs were finally
compared against the population median chemical intake rates pro-
vided by the Systematic Empirical Evaluation of Models (SEEM)
meta-model.37

For LCIA purposes, we derived effect doses at which 10% of the
population shows a level of effect M (HDM

10%). HDM
10% was

derived from the provided PODpxBMDh by dividing it by 3.49 (P50)
as an extrapolation factor to account for the human variability
between the 50% and the 10% incidence level.10 HDM

10%-related
uncertainty was calculated by combining probabilistically GSD2

final
of PODpxBMDh and the uncertainty factor assigned to the human vari-
ability at the 10th percentile, that is, P97:5=P50= 2:67,10 HDM

10%

being also defined as ED10 by Fantke et al.1

Data Analysis
The curation and selection process of the toxicity data and all the
analyses were carried out using the open source statistical soft-
ware R (version 3.6.1; R Development Core Team). All figures
were generated by ggplot2 package38 in R. The R code for deriv-
ing PODs from the curated data sets is available in the
Supplemental Material, “R code for deriving points of departure
from the curated datasets.”

Results

Curated Toxicity Test Data Sets
After the application of the semiautomated data curation and selec-
tion process, we obtained two distinct data sets, the first covering
general noncancer effects composed of n=43,528 records and pro-
viding toxicity information for n=8,023 substances, the second cov-
ering reproductive/developmental effects composed of n=46,565
records for n=6,697 substances. The fraction of records excluded at
each step of the curation and selection process is provided in Table
S1. Table S4 presents the summary statistics of the two curated data
sets, and Figure 2A,B visualizes the effect values (all extrapolated to
BMDh) distribution across curated records and the underlying
effect-level types and study types information. Most of the records
had NOAEL as effect-level type in both data sets, 71% (n=31,082)
for the general noncancer effects data set (Figure 2A) and 78%
(n=36,381) for the reproductive/developmental effects data set
(Figure 2B). Only a small share of the available records reported
BMDL as an effect-level type (≤1%, n=581), the rest of the data
being reported as LOAEL. In the general noncancer data set, 33%
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(n=14,605) of the records were reported as chronic, a majority of
58% (n=25,342) as subchronic, and only 8% (n=3,581) as
subacute.

In both data sets, BMDh ranged substantially across records by
>10 orders of magnitude. More specifically, for general noncancer
effects, BMDh ranged from 6× 10−9 to 2:2× 105 mg=kg per day,
with a median value of 31 mg=kg per day, and for reproductive/
developmental effects from 7:3× 10−10 to 2:6× 105 mg=kg per day,
with a median value of 100 mg=kg per day. Figure 2C,D shows the
number of chemicals falling within different bins of reported data
points per chemical, differentiating between the two curated data sets.
We observed that only a limited number of records were available for
the majority of the substances. For example, 47% (n=3,169) of the
chemicals in the reproductive/developmental effects data set had less
than four available records (Figure 2D).

The rat was the most commonly reported tested species in
both data sets, followed by the mouse. Together, these two tested
species represented >80% (n=76,548) of the reported tested spe-
cies across the two data sets. The third most common tested spe-
cies were dog in the general noncancer effects data set and rabbit
in the reproductive/developmental effects data set. The tested spe-
cies was not reported for 5% (n=3,827) of the records across
both data sets; we flagged these records and assumed rats as the
tested species (Figure S2).

Figure 3 presents the effect values (BMDh), related effect-
level types, and PODreg,BMDh (when available) for all the chemicals

covered in the general noncancer effects data set (Figure 3A) and
the reproductive/developmental effects data set (Figure 3B). For a
given chemical, the observed variability in BMDh spanned up to 7
orders of magnitude, and across chemicals, we observed an aver-
age standard deviation of half an order of magnitude. As a general
trend, we observed that PODreg,BMDh fell on the lower half of the
effect values distribution across different chemicals. In addition,
based on the Shapiro–Wilk tests carried out, we found that the
BMDh distribution for each chemical could be adequately fit by a
lognormal distribution, with p>0:05 for themajority of the chemi-
cals in the two data sets.

The n=90,093 curated and selected toxicity records from the
ToxValDB are provided in the Supplemental Material, differenti-
ating between the general noncancer effects data set (Excel Table
S1) and the reproductive/developmental effects data set (Excel
Table S2). PODreg,BMDh extrapolated to chronic human equivalent
benchmark doses are available for n=744 chemicals for general
noncancer effects (Excel Table S3) and for n=41 chemicals for
reproductive/developmental effects (Excel Table S4).

Comparison with Regulatory Toxicity Values
To characterize the distribution of the toxicity values for data-rich
chemicals with at least 10 records available, we directly used the
available effect values (BMDh) to derive a chemical-specific standard
deviation given that the available records were sufficient to represent

Figure 2. Distribution across curated records of (A) the effect values (BMDh) and the underlying effect-level and study types for the general noncancer effects
data set (n=43,528) and for (B) the reproductive/developmental effects data set (n=46,565), and number of available records for each chemical in (C) the gen-
eral noncancer effects data set (n=43,528) and in (D) the reproductive/developmental effects data set (n=46,565). The red dashed lines in (C) and (D) divide
data-poor chemicals (<10 records available) and data-rich chemicals (≥10 records available). Corresponding numeric data for (A) and (C) are available in
Excel Table S1, and for (B) and (D) in Excel Table S2. Note: BMDh, chronic human equivalent benchmark dose; BMDL, benchmark dose lower confidence
limit; LOAEL, lowest observed adverse effect level; NOAEL, no observed adverse effect level.
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and cover different potential effects. We also derived average stand-
ard deviations across data-rich chemicals of log10r

non-rep=dev
fixed = 0:55

for general noncancer effects and log10r
rep=dev
fixed = 0:45 for reproduc-

tive/developmental effects (Figure S3). We then applied these

averages to all data-poor chemicals with <10 records, for which
chemical-specificrwould not be reliable.

Using these standard deviations, we constructed lognormal distri-
butions of BMDh and compared four different PODpxBMDh (i.e., 5th,
15th, 25th, and 35th percentiles) to the curated PODreg,BMDh values.
This analysis identified the 25th percentile (i.e., PODp25BMDh) as the
best approximation of PODreg,BMDh for both effect data sets
(Figure S4). Figure 4 compares the estimated PODp25BMDh and
the respective PODreg,BMDh for general noncancer effects (Figure
4A) and for reproductive/developmental effects (Figure 4B). For
both data sets, the estimated PODp25BMDh correlated well with the
available PODreg,BMDh , with a coefficient of determination
R2 ≥ 0:78 and a residual standard error ðRSEÞ≤ 0:53 of the log-
transformed values. In addition, we investigated the few outliers
present in Figure 4 and did not identify specific trends or clusters.
These outliers covered a large chemical space and included met-
als, insecticides, and phthalate plasticizers. Hence, no chemical
categories appeared to be more problematic than others.

Recommended PODs
After identifying the 25th percentile of the distribution as the best
approximation of PODreg,BMDh , we derived surrogate PODs (i.e.,
PODp25BMDh ) for n=10,145 substances. More specifically, from
the general noncancer effects data set, we derived surrogate
PODs for n=8,023 substances, and from the reproductive/devel-
opmental effects data set, we derived surrogate PODs for
n=6,697 substances. For each of the n=4,575 substances com-
mon to both data sets, two distinct surrogate PODs were thus
derived, one from each data set.

Figure 3 presents the derived surrogate PODs ranked in increas-
ing order (dark gray curve), together with the underlying BMDh, as
well as the related PODreg,BMDh where available. The derived surro-
gate POD values range across chemical substances >8–10 orders of
magnitude, from 3:1× 10−6 to 1:1× 104 mg=kg per day, with a me-
dian value of 22 mg=kg per day for general noncancer effects,
and from 2:8× 10−4 to 1:3× 104 mg=kg per day, with a median
value of 76mg=kg per day for reproductive/developmental effects.
Examples of substanceswith the lowest POD estimates (i.e., highest
potential toxicity) in both data sets include dioxins [e.g., 2,3,7,8-tet-
rachlorodibenzo-p-dioxin, Chemical Abstract Service (CAS):
1746-01-6], polychlorinated dibenzofurans (e.g., 2,3,4,7,8-penta-
chloro-dibenzofuran, CAS: 57117-31-4) and, heavy metals (e.g.,

Figure 4. Comparison between estimated PODp25BMDh and available regulatory POD values (PODreg,BMDh ) for data-rich (dark green rectangle, ≥10 records
available) and data-poor chemicals (light green triangle, <10 records available), differentiating between (A) general noncancer effects and (B) reproductive/de-
velopmental effects. The dashed line represents the 1:1 line, and the solid line represents the best fit. Corresponding numeric data for PODreg,BMDh in (A) and
(B) are available in Excel Table S3 and Excel Table S4, respectively; corresponding numeric data for PODp25BMDh is available in Excel Table S5. Note: POD,
point of departure; PODp25BMDh , point of departure derived from the 25th percentile of the fitted lognormal distribution to the curated effect values extrapolated
to chronic human equivalent benchmark dose; PODreg,BMDh , point of departure associated with a reported reference dose extrapolated to chronic human equiva-
lent benchmark dose; RSE, residual standard error.

Figure 3. Curated effect values (extrapolated to BMDh), their underlying
effect-level types, the corresponding regulatory PODs (PODreg,BMDh ) and
derived PODp25BMDh (gray data points) for each of the chemicals covered by
the in vivo data, differentiating between (A) general noncancer effects and
(B) reproductive/developmental effects. Chemicals are ranked by derived
PODs, the gray curve representing the percentage of chemicals above a cer-
tain POD. Corresponding numeric data for NOAELs, LOAELs, and BMDLs
in (A) and (B) are available in Excel Table S1 and Excel Table S2, respec-
tively; corresponding numeric data for regulatory PODs in (A) and (B) are
available in Excel Table S3 and Excel Table S4, respectively; corresponding
numeric data for derived PODs in (A) and (B) are available in Excel Table
S5. Note: BMDh, chronic human equivalent benchmark dose; BMDL,
benchmark dose lower confidence limit; LOAEL, lowest observed adverse
effect level; NOAEL, no observed adverse effect level; POD, point of depar-
ture; PODp25BMDh , point of departure derived from the 25th percentile of the
fitted lognormal distribution to the curated effect values extrapolated to
chronic human equivalent benchmark dose; PODreg,BMDh , point of departure
associated with a reported reference dose extrapolated to chronic human
equivalent benchmark dose.
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lead, CAS: 7439-92-1). The gaps observed in Figure 3 were linked
to those substances for which only one record was available with
original reported effect values corresponding to standard tested do-
simetry doses (e.g., 10, 100, 1,000 mg=kg per day). Excel Table S5
provides all derived PODs and the number of underlying effect
values.

We compared the derived POD values for the n=4,575 sub-
stances with two distinct surrogate PODs derived from each data
set. As a general trend, we observed that the higher the toxicity
for general noncancer, the higher for reproductive/developmental
effects. However, we also observed outliers. For the same chemi-
cal, PODs covering general noncancer effects were lower (i.e.,
higher toxicity) than the ones covering reproductive/developmen-
tal effects by a median factor of 2. We also observed a high vari-
ability of the ratio of the two POD values across chemicals,
going from a factor of 0.0003 to 4,000 (Figure S5). In addition,
we investigated the potential influence of duplicate records in the
curated data set when deriving POD values. With this analysis,
we found that the difference of POD values was limited for the
majority of the substances, with an average increase of only 7%,
with no greater than a factor 2 increase for 95% (n=4,806) of
substances for both general noncancer and reproductive/develop-
mental effects (Excel Table S6).

Concerning regulatory values, PODreg,BMDh were available for
both general noncancer effects and reproductive/developmental
effects for 23 chemicals, of which 15 were pesticides with exten-
sive testing requirements. The range of derived POD values for
these 23 chemicals spanned almost 5 orders of magnitude (from
2.4 to 1,024 mg=kg per day), but the ratios between the two POD
values across chemicals were all less than 1 order of magnitude,
which corresponded to the uncertainty in the POD from any one
study. The results of this comparison are given in Excel Table S7.

Uncertainty Estimates for PODs
To derive a 95% CI around the derived PODs (PODp25BMDh ), we
first estimated the two types of uncertainty for each POD, namely
GSD2

inter and GSD2
intra, reflecting interstudy and intrastudy vari-

ability (Figure S6).
In the two data sets, GSD2

inter of data-rich chemicals increased
with the corresponding r of the available BMDh while decreasing
with the number of data points, from a maximum value of a factor
GSD2

inter = 3:1, down to a factor <1:2 with >100 data points
(Figure S7A,B). For data-poor chemicals (<10 records available),
we assigned a fixed GSD2

inter = 2:4, calculated as the 97.5th percen-
tile of the estimated GSD2

inter across substances with n=10 records
available, given that GSD2

inter might be unreliable and highly biased
by the limited number of effect values available.

For intrastudy variability, GSD2
intra values were estimated via

the 1,000-bootstrap-samples approach across PODs in the two
data sets and ranged from a factor of 1.1 to a factor of 14.4
(Figure S7C,D). For chemicals with a single record available, we
defined GSD2

intra single as the upper-bound of the estimated GSD2
intra

across substances with two records available, differentiating
between general noncancer effects (GSD2

intra single = 15) and repro-
ductive/developmental effects (GSD2

intra single = 12) (Figure S7C,D).
Finally, we combined these two uncertainties to characterize

an overall substance-specific GSD2
total for each derived POD.

Even though there was variability in GSD2
total across substances

with the same number of records due to differences in the vari-
ability of the underlying data, this variability systematically
decreased with the increase in the number of records available
(Figure S7). When comparing with regulatory values, the uncer-
tainty factor of GSD2

p25!reg = 101:96× 0:46 = 8 for general non-
cancer and GSD2

p25!reg = 102:02× 0:53 = 12 for reproductive/

developmental effects were also considered to reflect the use of
PODp25BMD as a suitable approximation of PODreg. We took as the
final substance-specific GSD2

final the maximum between GSD2
total

and GSD2
p25!reg. Estimated GSD2

final ranged from GSD2
final = 8

up to GSD2
total = 17:2 for general noncancer effects, and up to

GSD2
final = 13:9 for reproductive/developmental effects. The distri-

butions of the resulting surrogate PODs (PODp25BMDh ) with their
characterized 95% CIs are displayed in Figure S8.

In addition, we investigated for which fraction of substances
the available regulatory PODs (PODreg,BMDh) were falling within
the 95% CI of the derived surrogate PODs to put the provided
results in perspective. From this analysis, we observed that for
the majority of the considered chemicals, PODreg,BMDh were well
within the estimated 95% CI, which corresponded to 707 of 744
chemicals for general noncancer effects and 3 of 41 for reproduc-
tive/developmental effects (Figure S9).

Probabilistic RfDs and Human Effect Doses
Starting from the recommended PODs, we first derived probabil-
istic RfDs as the lower 95% confidence bound of HDM

1%, using
the WHO/IPCS framework. Because this framework focuses on
end point–specific uncertainties and RfDs, an additional database
uncertainty factor (UFd) needed to be included when deriving
probabilistic RfDs comparable to and consistent with regulatory
RfDs.

To derive probabilistic RfDs, the following additional UFd
were thus applied: The lower 95% confidence bound of HCM

1%

was divided by UFd =10 for substances with very poor data
availability (n≤ 3 records), by UFd =3 for substances with inter-
mediary data availability (3< n<10 records), and by UFd =1
for data-rich substances (n≥ 10 records). For data-rich chemi-
cals, the probabilistic RfD value was thus equal to the lower 95%
confidence bound of HDM

1%. The derived probabilistic RfDs
showed a good correlation with the regulatory RfDs, with a
R2 = 0:58 and RSE=0:79 evaluated on log-scale for the 1:1 line
(Figure S10B). In contrast, neglecting UFd would lead to a sys-
tematic overestimation of the RfDs (Figure S10A; R2 = 0:54,
RSE=0:82).

Derived probabilistic RfDs were on average lower than surro-
gate PODs by a factor of 800 and ranged across chemicals by 8–10
orders of magnitude, with a median value of 0:04 mg=kg per day
for general noncancer effects (Figure 5A) and 0:1 mg=kg per day
for reproductive/developmental effects (Figure 5B). The derived
probabilistic RfDs could then be used to put exposures into per-
spective by comparing them with the population median chemical
intake rates and their upper 95% confidence bound estimated via
the SEEM meta-model. This analysis highlighted that only for
n=14 chemicals, the best estimate of the median intake rates were
higher than derived probabilistic RfDs. In contrast, when consider-
ing the upper 95% confidence bound, median intake rates were
higher than derived probabilistic RfDs for ∼ 23% (n=1,127) of
the substances for which SEEM intake rates were available (Figure
5), substances that might deserve further scrutiny in priority.

Second, from the surrogate PODs we derived best estimates of
human population effect doses 10% (HDM

10%) following the
WHO/IPCS framework and the latest recommendations for deriv-
ing human dose–response factors for noncancer end points for
LCIA. The derived HDM

10% ranged across chemicals by 8–10
orders of magnitude, with a median value of 6:3 mg=kg per day
for general noncancer effects and 21:8 mg=kg per day for repro-
ductive/developmental effects. In both data sets, the characterized
uncertainties of HDM

10% (i.e., 95% CI) were on average equal to a
factor of 14 and spanned up to a factor of 20.3 (Figure S11). Excel
Table S5 provides the derived probabilistic RfDs and HDM

10%
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with related uncertainties, and Excel Table S8 provides an example
of their calculation from two records for an arbitrary substance.

Discussion

Applicability of the Derived Toxicity Values
By applying the presented semiautomated curation and extrapola-
tion approach, we provided PODs consistent with regulatory
values for >10,000 substances, substantially expanding the
chemicals coverage for which toxicity values could be derived,
from 744 to 8,023 chemicals for general noncancer effects, and in
an even higher proportion, from 41 to 6,697 chemicals for repro-
ductive/developmental effects. The derived probabilistic RfDs
and HDM

10% can be used in a variety of chemical management
and exposure and impact assessment frameworks, including the
evaluation of human toxicity impacts in LCIA,1,23,24 ranking and
prioritization of chemicals for additional study and evaluation,
chemical safety and risk management, as well as alternatives
assessment for chemical substitution. By increasing the coverage
of chemical substances for human toxicity effect modeling, our
results also fill a critical gap in toxicity information availability
highlighted, for example, in recent high-throughput exposure and
risk screening studies.39–41 Indeed, even though exposure esti-
mates were quantified for hundreds of different substances in
such studies, the lack of toxicity data prevented a comprehensive
risk evaluation for all the studied chemicals.

In addition, the derived PODs and related HDM
10% are follow-

ing the globally recommended approach for deriving health effect
factors for noncancer end points by differentiating between general
noncancer effects and reproductive/developmental effects, ena-
bling us to then account for the average ∼ 20-fold highest severity

of reproductive/development effect when evaluating disability
adjusted life years.1,22 At the same time, the proposed approach is
analogous to current practices of environmental risk assessment
and LCIA for ecotoxicity characterization,42 where species sensi-
tivity distributions are derived by fitting a lognormal distribution to
effect values to quantify critical effect levels and related impacts in
ecosystems.32

Finally, by estimating oral doses as surrogates of regulatory
values also for data-poor chemicals (<10 records), our proposed
approach potentially helps in reducing costs and time (as well as
ethical concerns) related to using large numbers of animals to
derive a complete set of toxicity studies covering different effects.
Although our approach cannot substitute for the rigorous health
assessments of chemicals potentially of concern, nevertheless, it
might support the work of health risk assessors at multiple levels
for screening purposes when a chemical of concern has not yet
been thoroughly tested or reviewed.8 Most importantly, our
approach provides a reliable alternative wherever regulatory tox-
icity values are absent but where other subacute, subchronic, or
chronic toxicity data are available.

Limitations of the Proposed Approach
Our proposed approach also comes with limitations. First, we also
derived PODs for many data-poor chemicals (<10 records) and so
potentially missed critical effects not covered by the considered
studies, thus underestimating the actual chemical toxicity. We
addressed this limitation by assigning a fixed value of the standard
deviation derived from the set of chemicals with sufficient reported
data records to substances with <10 available effect values, thus
fitting a lognormal distribution with a predefined average shape.
This higher uncertainty for data-poor chemicals is reflected via the

Figure 5. Derived probabilistic reference doses (RfD= lower 95% confidence bound of HDM
1%) and populationmedian chemical intake rates, differentiating between

(A) general noncancer effects and (B) reproductive/developmental effects. Substances are ranked in increasing order based on the derived probabilistic RfDs. The upper
95% confidence bound of the SEEM Intake rates (error bars) reflects uncertainty around the population median intake rate and does not reflect population variability.
Corresponding numeric data for probabilistic RfDs are available in Excel Table S5. Note: HDM

1%, the daily human dose at which 1% of the population shows a level of
effectM corresponding to the effect-level type reported in the database and the end point type; SEEM, Systematic Empirical Evaluation ofModels.
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high GSD2
total values and related 95% CIs on the reported PODs,

which are highly dependent on the number of effect values avail-
able for fitting the distribution, that is, the lower the number of
records, the higher the GSD2

total (Figure S7). For a given chemical,
the observed average standard deviation of half an order of magni-
tude for BMDh values could arise from different sources, including
different critical effects studied, different species tested in different
environmental conditions (i.e., biological variability), as well as
systematic errors (e.g., measurement errors, different experimental
protocols, measurement tools).3,43,44 However, given that the rat
was the most commonly tested species, the observed variability
was rather associated with the different effects studied in addition
to the intrinsic variability inmeasuring toxicity effects.

Second, specifically for reproductive/developmental effects, the
comparison against PODreg,BMDh was carried out for only n=41
substances. Thus, the choice of selecting the 25th percentile
(PODp25BMDh ) of the fitted lognormal distribution to the available
effect values is less reliable than for general noncancer effects, for
which regulatory data were available for n=744 chemicals. We
made this choice for consistency and, considering that, we still
observed a good correlation compared with the other percentiles
tested. Nevertheless, increasing the pool of regulatory data covering
reproductive/developmental effects is urgently needed to verify that
PODp25BMDh would still be the best approximation of PODreg,BMDh

also for these effects.
Third, there are possible remaining double entries (i.e., dupli-

cate records) in the retrieved ToxValDB. More specifically, these
potential double entries are due to the fact that ToxValDB is col-
lecting experimental toxicity data from >40 publicly available
sources, which in turn are also gathering experimental toxicity
data from different sources, as well as running actual experimen-
tal tests. Therefore, there is the risk that in ToxValDB for the
same substance, various records from different sources might be
available but reporting the same results from a given experimen-
tal test. Based on testing the potential influence of keeping only
records with unique derived BMDh values, effect-level types, and
tested species on our results, we found that the difference in POD
values was substantial only for a small fraction of substances for
both general noncancer and reproductive/developmental effects.
Furthermore, the presence of duplicates is already accounted for
statistically through the choice of the 25th percentile to represent
the surrogate POD given that this percentile was derived using
data sets that may have included duplicates.

Finally, there is a limit on how accurately a toxicity value can
be predicted, and this is an intrinsic limitation of our approach and
of any other approach that uses reported toxicity test data as a start-
ing point. This is because risk estimates can varywidely across reg-
ulatory settings, even for the same chemical, despite the same
underlying toxicity data set and the rigorous scientific judgment
involved in developing toxicity values.8,45 Nevertheless, our
results suggest that using the 25th percentile (PODp25BMDh) of the
fitted lognormal distribution to the available effect values for a sub-
stance is an efficient method for estimating a POD that would be
selected in a regulatory context.

Future Research Needs
To further advance this effort toward using experimental animal
data to derive PODs for human toxicity effects, future research
needs include extending the current approach to cover additional
exposure routes, such as inhalation and dermal exposure, given
that we focused our work on oral toxicity owing to the higher
data availability than for other exposure routes. Covering addi-
tional exposure routes is crucial, especially for exposure and
impact assessment frameworks aiming at comparing chemicals
impacts across exposure routes.39,46 Similarly, in our study, we

differentiate between PODs for reproductive/developmental
effects and general noncancer effects owing to the difference in
severity of these two disease categories to affect human lifetime
loss.1,22 Nevertheless, future work should focus on increasing
this differentiation and providing more critical effect-specific
PODs, such as endocrine disruption effects.47

Conclusions
Given the large number of new and existing substances requiring
assessment, there is a pressing need for cost-effective and rapid
nonanimal alternatives,48 which is in line with the need for a transi-
tion toward more sustainable chemistries49,50 through the use of
novel and innovative digitalization methods.51 Such methods will
facilitate a broader coverage of chemicals that can be considered in
a rapid screening, quantitative assessments of chemical emissions,
along with product life cycles, chemical substitution, and risk pri-
oritization. Our proposed surrogate PODs, probabilistic RfDs, and
HDM

10% constitute a valuable starting point for addressing these
needs for substances lacking regulatory assessments.
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