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Summary
Representation learning systems utilise large amounts of unlabelled data to learn how to
extract useful information, often to facilitate learning in some other task, such as improv-
ing learning on another, smaller supervised data set. One approach to representation
learning is variational autoencoders (VAEs), a type of deep latent variable model. Such
models learn to infer representations by modelling the distributions of data using varia-
tional inference. A simple VAE consists of an inference network producing distributions
over a latent variable given an input datum and a generative network that produces a
probabilistic estimate of the original input. The model is optimised to ensure that the
reconstructed input is as close as possible to the original input or, equivalently, that as
few as possible distortions are introduced in the reconstruction. The model also optimises
the amount, or rate, of information used in producing the reconstructions, measured as a
divergence from a set prior distribution.

This thesis explores how to learn VAE representations that are useful in that they
both generalise well and code for information relevant to a given task wherein one should
desire to use the model. The first two contributions explore, respectively, how learnt
representations can be used to do model-based active learning for efficient measurement
of a person’s hearing loss and how a VAE perspective can improve speaker separation
models. The contributions show that rate-distortions trade-offs affect the learnt repre-
sentation. The first contribution shows how rate-distortion trade-offs affect the learnt
representation’s ability to inform active learning sequential acquisition. Furthermore, the
second contribution shows how the generalisation of a speaker separation representation
is improved by explicitly optimising for low rates, which existing models are not doing
Notably, the probabilistic framework allows the models to quantify uncertainty. The
utility of such quantifications is highlighted based on results showing how they allow for
estimating a model’s performance without knowledge of the ground truth reference.

The final contribution considers an extension of deep hierarchical VAEs that uses differ-
ential equations as expressive modelling components. Instead of using discrete Gaussian
latent variables, the model relies on neural stochastic differential equations to construct a
hierarchy of continuously deep latent processes. Furthermore, it is argued that the model
displays continuity properties—based on experiments that vary the number of numerical
integration steps used in approximating the latent processes—thus allowing, e.g., trading
off computational complexity and performance within a single, trained model.

Based on the combined contributions, a discussion is provided of representation learn-
ing from a VAE perspective, the benefits of rate-distortion analysis in the context of
generalisation, the use of quantified uncertainty in real-world problem settings, and the
ability to incorporate inductive biases in probabilistic frameworks.
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Resumé (Danish)
Systemer til repræsentationslæring gør brug af store mængder ikke-superviseret (en: un-
labelled) data til at lære at ekstrahere brugbar information, ofte for at kunne facilitere
læring i en anden sammenhæng, såsom at forbedre superviseret modellering af et min-
dre datasæt. En tilgang til repræsentationslæring er variationelle autoindkodere (en:
variational autoencoders, VAEs), som er en type af dybe modeller med skjulte (en: la-
tent) variable. Sådanne modeller lærer at inferere repræsentationer ved at modellere
datafordelinger gennem brug af variationel inferens. En simpel VAE består af et infer-
ensnetværk, som producerer fordelinger af en skjult variabel, og et generativt netværk,
som producerer probabilistiske estimater af det oprindelige input. Modellen optimeres
til at sikre, at det rekonstruerede input er så tæt som muligt på det oprindelige input,
eller, tilsvarende, at få forvrængninger (en: distortions) introduceres i rekonstruktionen.
Modellen optimerer også mængden, eller raten, af information som bliver brugt til at lave
rekonstruktionen, målt som en divergens fra en given a priori fordeling.

Denne afhandling undersøger, hvordan man kan lære VAE repræsentationer, som er
brugbare, i den forstand, at de generaliserer godt og koder for information, som er rele-
vant for den sammenhæng, hvori modellen skal bruges. De første to bidrag undersøger,
henholdsvis, hvordan lærte repræsentationer kan bruges i modelbaseret aktiv læring til
effektivt at opsamle en persons høretab, og hvordan et VAE-perspektiv kan forbedre
modeller til taleseparation. Afvejelser af rate-forvrængning (en: rate-distortion trade-
offs) påvirker de lærte repræsentationer. Det første bidrag viser, hvordan afvejningerne
af rate-forvrængning påvirker den lærte repræsentations evne til at informere sekvensiel
opsamling i aktiv læring. Det andet bidrag viser, hvordan generalisation af talesepa-
rationsrepræsentationer forbedres ved at optimere mod lave rater, hvilket eksisterende
modeller ikke gør. Den probabilistiske tilgang muliggører også, at modellerne kan kvan-
tificere usikkerhed. Der argumenteres for nytten af sådanne kvantificeringer baseret på
resulter som viser, at de tillader estimering af en models ydeevne uden viden om det
rigtige output.

Det sidste bidrag undersøger udvidelsen af dybe hierakiske VAEs til at gøre brug af
differentialligninger som ekspressive komponenter til brug i modelleringen. I stedet for
at bruge diskrete Gaussiske skjulte variable, gør modellen brug af neurale, stokastiske
differentialligninger til at konstruere et hieraki af kontinuert dybe skjulte processer. Det
argumenteres at modellen udviser kontinuitet—baseret på eksperimenter som varierer an-
tallet af skridt brugt i den numeriske integrations tilnærmelse af de skjulte processer—og
dermed tillader, for eksempel, at afveje beregningskompleksitet og ydeevne, efter træning,
med kun én model.

Baseret på de samlede bidrag gives der en diskussion af repræsentationslæring fra et
VAE-perspektiv. Særligt diskuteres nytten af analyse af rate-forvrængning i fortolknin-
gen af generalisation, brugen af kvantificeret usikkerhed i virkelige problemstillinger, og
muligheden for indarbejdningen af induktive bias i probabilistiske tilgange.
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CHAPTER1
Introduction



2 1 Introduction

1.1 Representations and usefulness
What is a representation, what makes a representation useful, and how do we

discover useful representations?

We make sense of the world through models, representing complex aspects
with simple ones. With these models in hand, we might gain deeper insights into
our world or make valuable predictions. While, famously, all models are wrong
[Box, 1976], their usefulness stems from whether the models represent relevant
aspects of the world. Representation learning aims to discover which aspects to
represent and how to extract information about them [Goodfellow et al., 2016,
Chap. 15]. The resultant knowledge we might refer to as representations or
models; a loose distinction between the two, if in truth there is any difference,
could be that representations are components of a model, and the synthesis of
many representations alongside their interplay makes up a model. We can learn
representations by analysing large amounts of data, distilling core aspects of the
measured phenomena while doing away with unimportant ones. For instance,
a dataset consisting of many hours of audiobooks would allow a representation
learning system to determine core elements of speech, such as types of harmonic
structures, the presence of silent gaps, and components of speech like phonemes
[Chorowski et al., 2019; van den Oord et al., 2017]. The system’s design, however,
determines what kind of representation we learn. Unsurprisingly, the usefulness
of the representation depends on its intended application. A simple, tangible
representation of spoken language is the corresponding written text. If we wish to
use such a representation to add subtitles to a movie, it is a useful representation.
If we were interested in keeping track of the current speaker in an online meeting,
the written text alone would have done away with much of the information in the
spoken language that easily allows for discerning speakers. While an accurate
corresponding written text is a simple representation of spoken language, it is
not invariably useful.

Feature engineering One way to obtain useful representations is through fea-
ture engineering. Feature-engineered systems extract information from signals
relevant to the “downstream task” . This extraction is guided by knowledge
about the domain of the task, such as knowledge of essential characteristics of
the data or signal as well as the specific signal processing needed for efficient
extraction of said characteristics [Bishop and Nasrabadi, 2006, Chap. 1]. Above
two types of downstream tasks are mentioned, transcription and speaker identifi-
cation. The domain knowledge used in building feature-engineered systems might
be that particular spectral representations of speech, such as mel-frequency cep-
strum coefficients, are useful representations of the raw audio [Morgan et al.,
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2004]. Consider a yellow system that takes as input a black audio signal and
produces a grey representation (i.e., set of features):

If the representation captures the characteristics of a speaker, a simple classifica-
tion model—the orange component—can be trained to analyse the representation
and estimate the speaker’s identity. If we have a good feature extraction system,
we can generally build high-performing systems even with very little data. How-
ever, engineering the appropriate representations can be research intensive and
costly, especially once existing domain knowledge—possibly built over decades
or centuries of research—is already exploited. Additionally, the system might
not extract all the relevant aspects of the signal, and the assumptions that went
into the design of the yellow feature extractor might limit the system’s overall
performance.

Representations in supervised deep learning Representations learnt from
data can often be potent additions to systems that integrate domain knowledge.
Simple deep learning systems that do supervised learning will have the learnt
representation more implicitly instead of a single separate feature extraction com-
ponent feeding into a classification component, as above. The representations of
deep learning systems will have learnt to combine low-level representations into
increasingly abstract, high-level concepts as activations from earlier levels propa-
gate through the network. In simple image classification tasks, low-level features
of early levels are edges or textures. These are combined to produce higher-level
concepts, like various types of animal ears, snouts, and so on. These higher-level
objects are, in turn, further aggregated to produce the model’s representation of
different types of animals [Olah et al., 2018]. In modelling speech, low-level rep-
resentations can be very similar to standard filterbanks that are aggregated into,
for example, phonemes [Ghiasi et al., 2021], words, and so on. These representa-
tions are learnt by training models to map input data to a target output, such as
the type of animal in a picture, a known transcript of some input audio, or the
identity of speaker in a recording. When we have sufficient pairs of such inputs
and outputs, supervised deep learning produces high-performing systems [LeCun
et al., 2015]. In image classification, the output is often a (low-dimensional) class
label. The term “labelled” data is often used in a broader context to refer to data
where a target supervisory output is available. The supervisory signal need not be
low dimensional. For example, in audio processing, this output can be a new time
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series with the same or larger dimensionality. In speaker separation—estimating
the component speakers in a recording of multiple, overlapping speakers—we wish
to map to multiple time series of the same length as the original input. Construct-
ing labelled datasets is costly, just like the feature engineering approach—albeit
in different ways. Constructing labelled data sets can be costly in terms of mon-
etary costs and time, for example due to payments for slow, manual, human
labelling, or slow, computationally intensive simulations, and so on. Even if cost
might not be an issue, some labels, or supervisory signals, are inherently scarce,
simply by virtue of being rare occurences—such as rare weather events or rare
diseases.

Learning without labels In the absence of sufficient amounts of labelled data,
we can instead rely on learning representations from unlabelled datasets. Such
datasets are often larger and more readily available. We might construct a su-
pervisory signal from knowledge of the domain. For instance, we can a construct
tasks by extracting pathces from images and predict their relative position [Doer-
sch et al., 2015], which is a simple, early version of self-supervised learning. The
learnt representation generalises if the constructed supervisory task is suitably
designed, allowing us to “transfer” (parts of) the representations [Goodfellow
et al., 2016, Chap. 15.2]. We might, for instance, replace the final layers that are
specialised for the patch-related task task task and train new final layers on a
small labelled dataset. The pre-trained layers take the place of the yellow feature
extractor in the example above. We train the replaced layers to analyse the trans-
ferred representation in a new context, playing the part of the orange component.
This allows us to solve problems on smaller data sets where we would otherwise
be unable to train a full model—if the representation learnt from the unlabelled
data is useful in this downstream task. While these are important approaches
toward learning representations, we focus on another type of model, generative
models. As we will discuss later, these models aim to learn the data distribution
and, through this generative task, seek to learn a representation of data.

Generalization Modern representation learning systems are incredibly expres-
sive and arguably capable of learning representations more complex than classic
feature-engineered systems. As a consequence, representation learning can signif-
icantly improve how well a given task can be solved. Yet, these capabilities are a
double-edged sword. The flexibility allowing for expressive learnt representation
also allows for learning characteristics that do not generalise if the pattern that
the system has learnt does not apply in new situations. Useful representations
will generalise such that the represented aspects of the data are also present and
informative when various aspects of the environment change. Returning to the
online meeting speaker identification example, a sufficiently flexible system might
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learn to associate a particular speaker in the training data with their office’s back-
ground noise or with characteristics of the recording hardware. The system will
work only as long as the speaker is in the same place with the same microphone.
These example aspects of the recording are relatively high-level, but the issue
of generalisation applies to low-level, less tangible facets, too. One approach to
learning robust representations is to learn under uncertainty with probabilistic
models. In particular, generative models aim to learn a representation of the data
by learning the distribution of data. These models aim to assign a high prob-
ability (probability density or mass) to their training data. Ensuring that the
model assigns a high probability to the training data also ensures that the model
assigns a low probability to things not represented in the data; since probability
distributions are normalised, increasing the probability of something under the
model decreases the probability of others.

Autoencoders and uncertainty We will consider one approach to modelling
with uncertainty, namely variational inference [Bishop and Nasrabadi, 2006, Chap.
10], especially from the perspective of auto-encoding and a type of model called
variational autoencoders (VAEs) [Kingma and Welling, 2014, 2019; Rezende et al.,
2014]. Simplified, key aspects in their construction can be summarised as:

1. compression is comprehension1,

2. construction guides compression2,

3. certainty fools construction.

If we produce something that is a compressed yet adequate representation of a
signal, we have relied on some understanding of the signal—maybe in the sense
that we have realised specific patterns can be expressed efficiently or that certain
aspects are uninformative noise. A green system that takes an audio waveform
and produces a transcript is a compressed version of the input signal:

1Zenil [2019] attributes the phrase to Chaitin; in his “Meta Math!”, Chaitin summaries the
scientific method as “Understanding is compression! To comprehend is to compress!” [Chaitin,
2004, p. 54].

2Hawking [2001, p. 83] shows a picture of R. Feynman’s blackboard at the time of his death
with the phrase “what I cannot create, I do not understand” [Granger, 2017].
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If compression is comprehension, we can now learn representations simply
by learning to do compression instead. One approach is to learn how to invert
the compression process. We might have a learnable version of the green com-
ponent compress—or encode—our input signal and then have a similarly learn-
able blue component reconstruct—or decode—the representation. This concept,
auto-encoding, allows us to learn representations by minimising some notion of
distance between the input and the output (reconstructed input):

A perfect system, solely in terms of the input to output distance, can be arbitrar-
ily achieved by letting both the encoder and the decoder be identity functions,
both simply outputing their input unchanged. As far as “distilling” the input
information into a simpler representation, identity functions do poorly, and the
representation is not any more, or any less, useful than the input signal. We gen-
erally reduce the representation capacity so that the model learns to choose what
aspects of the input it represents by introducing a bottleneck, constraining the
amount of information the system can send to reconstruct its input. The chosen
bottleneck imposes characteristics on the representation. Simply reducing the
amount of “numbers” sent through by some factor compared to the input signal
allows for learning a compressed representation. Other constraints are useful, too,
and, for instance, we might be interested in whether the overall magnitude of the
representation remains low, that as few dimensions as possible activates for any
given input (sparsity), or that dimensions are informative on their own (disen-
tangled) [Goodfellow et al., 2016, Chap. 14]. We might think of these choices as
various types of simple inductive biases.

If we endow the model with the capability to express and characterise uncer-
tainty, the model will be more robust to these learnt variations. Instead of relying
on deterministic values to represent the representation, we allow the model to
describe the distribution of possible values. We might allow the green encoder to
express uncertainty about the encoded words and allow the decoder to express
uncertainty about how to reconstruct the representation back into a waveform
(here darker red indicates higher certainty):
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The model might be entirely certain how to represent all aspects of the input
except for whether the input audio says cat or hat. Considering only the recon-
struction ability, a model without uncertainty might only express one waveform
and outputs the more certain, darker red one. The waveform matches the input
waveform poorly. Conversely, suppose the model now expresses some uncertainty
and is allowed to produce distributions. Then, the model reconstructs better—in
expectation—since the light red waveform that matches the input better is part
of the model’s estimated distribution, even if it has a lower probability. Allowing
the model to express uncertainty also provides a tool for quantifying how sure
the model might be about a prediction, possibly indicating the quality of the pre-
diction. Accurate uncertainty quantification allows us to choose when to trust
the model predictions or, for instance, fall back on a less performant but more
robust system. The fallback could be the feature-engineered simple system we
considered earlier.

Variational inference Inference using probabilistic models allows us to learn
under uncertainty, and we will consider variational inference in particular. Just
like models generally represent complex aspects of the world with simple aspects,
variational inference relies on representing complex distributions with simpler
ones. Generally, we cannot directly infer anything about the complex distribu-
tions that would completely describe our phenomena of interest. However, we
can often characterise useful aspects of these complex distributions if we use sim-
plified distributions instead. In these models, the representation we are trying to
learn might be considered a latent variable, an unobserved factor we are trying
to infer based on the observed data. Depending on various choices in the design
of our system, there will be a “true” distribution of the latent, unobserved rep-
resentation for some input—a true posterior distribution of the representation.
The word posterior indicates the notion that this distribution is the distribution
obtained after observing data. Generally, we cannot feasibly infer the true pos-
terior distributions. We make the problem of learning these models feasible by
introducing simplified, guiding distributions and optimising them such that they
are close to the true posterior distributions. The simplified distributions are, for
this reason, called approximate posterior distributions. Usually, quantifying this
closeness relies on a particular notion of a difference between two distributions
called the Kullback-Leibler divergence; this divergence will increase if the distri-
butions assign different probabilities to the same outcomes. Modelling with these
distributions allows us to impose characteristics on the learnt distributions, for
instance, by choosing a particular family of approximate posterior distributions.
The true and approximate posterior distributions are affected by various design
choices, such as the distribution of the representation before observing data (i.e.,
the prior distribution) and the architecture we use to construct or parameterise
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the distributions.

Rate-distortion trade-offs We can control the expressivity of modern rep-
resentation learning systems with the variational autoencoder framework, by
considering rate-distortion analysis [Shannon et al., 1959]—where, the notion
of controlling the information sent through the VAE bottleneck is achievable by
controlling a “rate” [Alemi et al., 2018]. If the system changes the distribution
a lot when seeing data compared to our choice of prior, we might say that the
system encodes a large amount of information in the distribution. This (infor-
mational) rate is quantifiable as the Kullback-Leibler divergence between the
approximate posterior and the prior. Just like we can quantify the rate, we can
also quantify how the system changes or distorts the input signal. This we do
as the input signal’s probability under the distributions for the reconstructed
data—if a high probability is assigned, the system did not distort a lot. Sending
through large quantities of information helps the system introduce fewer distor-
tions. Conversely, if we wish to limit the amount of information we send, we
might accept a higher level of distortion. In the cat/hat example, the distortion
from the “cat” representation is higher than the “hat”. The encoding of “cat”
(i.e., the approximate posterior) might be closer to the prior, so it incurs a lower
rate—it may be that animals were more often the topic than clothing in the
training data. This trade-off between good reconstruction and divergence from a
prior is called the rate-distortion trade-off. By doing rate-distortion analysis, we
can characterise the system’s behaviour as a function of these trade-offs.
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1.2 Thesis overview
Before delving into a more technical presentation of the above topics in Chapter 2,
we present a brief overview of the contributions presented in this thesis and how
the topics introduced above tie into the contributions, both individually and as a
whole. A summary of the contributions are provided in Chapter 3 and they can
be found in their entirety in the Appendix. We return to the questions of this
section in Chapter 4 based on the findings of the contributions.

At the beginning of this introduction, we asked what is a representation,
what makes a representation useful, and how do we discover useful representa-
tions? Representations are simple representations of complex phenomena, and
using the representations allows us to model the real world. A representation’s
usefulness partly comes from an ability to generalise (i.e., being robust to unim-
portant changes) and partly from its relevance (i.e., whether the represented
information is pertinent to the task at hand). One way to learn representations
is through variational autoencoders, and the usefulness of these representations
can be achieved, for instance, by imposing desired characteristics on the repre-
sentation or making use of the quantified uncertainty of the probabilistic mod-
els. Our focus will be variational autoencoders, and the primary ideas we wish
to explore in this thesis, as depicted in Figure 1, revolve around learning use-
ful representations through variational inference, uncertainty quantification, and
rate-distortion analysis.

In particular, we are interested in addressing two central questions:

Variational Inference and Uncertainty Quantification How can
variational inference and uncertainty quantification in representation
learning be used to improve the usefulness of a learnt representation?

Rate-Distortion Analysis What insights does characterising a rep-
resentation’s usefulness from the perspective of rate-distortion trade-offs
analysis provide?

We will address these questions in three separate, but related, contributions.
The first contribution considers active learning of audiograms with a variational
autoencoder (VAE) representation, or variational autoencoder acquisition (VAEc-
quisition)—we will denote this contribution with VAEcquisition. The sec-
ond contribution considers audio modelling, or more specifically speaker sepa-
ration, using variational inference (VI) for a particular class of models called
encoder-masker-decoder (EMD) models, or variational inference encoder-masker-
decoders (VI-EMDs)—this contribution will be referred to as VI-EMD. The
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Figure 1. An overview of the contributions and topics in this thesis.

final contribution considers an extension of deep hierarchies in variational autoen-
coders using differential equations, and introduces a model called continuously
deep variational autoencoder (CD-VAE)—and this contribution will be referred
to as CD-VAE.

VAEcquisition The first contribution (titled “Rate-Distortion Trade-offs in
Variational Autoencoder Representations for Sequential Acquisition Active Learn-
ing”) considers the problem of actively learning about data. In basic active learn-
ing, we use a model to decide which unlabelled data are the most cost-effective
ones to label. We, instead, consider a sequential acquisition problem of partial
data, i.e. data which has unobserved, or missing, dimensions. The model chooses
which dimension of a partially observed datum should be observed to learn the
most about the datum. We utilise a variational autoencoder that has learnt how
to encode partial data and produce distributions over all observed and unob-
served dimensions. Beyond the general question of Useful representations,
this study specifically investigates:
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VAEcquisition: Audiogram Acquisition How can we utilise a
learnt variational autoencoder representation to efficiently acquire audio-
grams?

Audiograms are characterisations of a person’s hearing ability as a function
of frequency, and they are used in hearing loss diagnosis and treatment. Measur-
ing audiograms can be time-consuming, and making the process more efficient
or accurate improves diagnostics and treatment. The work will, for instance,
analyse how well an audiogram representation trained on an American (United
States) data set generalises to a German population. This study also allows us
to explore the uncertainty quantification capabilities of variational autoencoder
representations; we will use the model’s uncertainty to estimate whether a se-
quential acquisition process can be stopped or should carry on. We will consider
how the learnt representations’ ability to support acquisition and estimate when
to stop is affected by rate-distortion trade-offs.

Improving Speaker Separation Generalisation with Variational Infer-
ence Following this, yet remaining in the realm of hearing-related topics, we
will consider representation learning in audio modelling and, more specifically,
the problem of speaker separation. A series of deep learning-based speaker sep-
aration systems follow an architectural pattern called encoder-masker-decoder
systems. The model makes use of an architectural inductive bias in the form of
separation-by-masking, similar to how earlier speaker separation systems relied
on masking feature-engineered spectrotemporal representations; these systems
encode a mixture of speakers, produce masks for each estimated component and
decode the masked representation to produce a single estimate speaker While
their performance exceeds that of earlier methods, the performance degrades in
new environments. Again, beyond exploring Useful representations, this
study particular investigates variational inference (VI) encoder-masker-decoders
(EMDs):

VI-EMD: Speaker separation How does recasting encoder-masker-
decoder speaker separation models in a variational autoencoder framework
affect generalisation?

The variational version of these models is a simple hierarchical model, produc-
ing distributions of encodings and, subsequently, producing masks based on the
encodings. Additionally, this study will explore inductive biases, such as how dif-
ferent priors affect the learnt representation. Similar to the stopping estimation
in VAEcquisition, we will investigate whether uncertainty quantification
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enables us to determine the quality of separation, so that we can estimate the
quality of the separation without knowledge of ground truth reference signals.

Hierarchical Variational Auto-Encoders using Latent Neural Stochas-
tic Differential Equations Differential equations are a well-studied mathe-
matical object. Incorporating them in representation learning systems allows us
to induce characteristics of systems typically described well by differential equa-
tions, such as dynamical systems with a state that changes over time. Neural dif-
ferential equations are differential equations where neural networks parametrise
the rate of change of the state. In variational autoencoders, we incorporate these
as a modelling component by defining the latent object as solutions to neural dif-
ferential equations. Similar to the simple hierarchy in VI-EMD, the model
considered in this contribution uses hierarchies of latent variables. Deep hier-
archical variational autoencoders are strong generative models, and increasing
the depth of the hierarchical model improves the performance. In some sense,
these deep hierarchical models produce a series of latent states that evolve down
through the hierarchy dependent on previous states and a controlling signal from
an encoder. In this view, they resemble a dynamical system where the hierarchi-
cal latent states are the state of a dynamical system that evolves not over time
but the depth of the hierarchy. Because of this, we ask:

CD-VAE: Hierarchies as Dynamical Systems How can we in-
terpret the latent representations in deep hierarchical variational autoen-
coders as stochastically evolving dynamical systems?

CD-VAE: Continuity What are the benefits, if any, of a continuous-
depth formulation of hierarchical variational auto-encoders using neural
stochastic differential equations?

For dynamical systems, a central characteristic of many systems is continuity—
for instance, whether the state or the rate of change is continuous in time. We
also explore the usefulness of an inductive bias towards a continuous depth (CD)
hierarchical variational autoencoder as a particular aspect of exploring Useful
representations.
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In the following, an introduction to some central background studies is pro-
vided. The presentation focuses on aspects that are at the core of the contri-
butions and on aspects that facilitate an understanding of the contribution sum-
maries provided in Chapter 3. Less central but still relevant background material
is briefly introduced, but for these aspects, the contributions in the appendix pro-
vide further details.

2.1 Deep generative models

Deep generative models use deep learning architectures to construct generative
models of data [Goodfellow et al., 2016, Chap. 20]. Generative models form
representations of data by learning how to model the data distribution. Generally,
such models are trained on large, unstructured (or unsupervised, unlabelled) but
readily available data sets. The resulting representation can then be used as a
starting point for training other models where only smaller supervised data sets
are available, or yet other tasks, such as increasing the resolution of an input,
contructing continuations of the input, producing other views of it, determining
whether the input is out-of-distrubution for the learnt distibution, procucing a
compression scheme, and so on [Bond-Taylor et al., 2021; Townsend et al., 2019].

One type of deep generative models is autoregressive (AR) models, such as
MADE [Germain et al., 2015], PixelCNNs [Salimans et al., 2017; van den Oord
et al., 2016b], and WaveNets [van den Oord et al., 2016a]. Generally, AR models
were until recently the stronger of deep generative models, but models achiev-
ing better performances in terms of (bounds on) the likelihood have now been
introduced. Recent developments include the introduction of (normalising) flows
and their extensions [Dinh et al., 2015, 2017], energy-based-models [Goodfellow
et al., 2016, Chap.16] and extensions [Che et al., 2020], and diffusion models
and their extensions [Ho et al., 2020; Kingma et al., 2021; Rombach et al., 2022;
Sohl-Dickstein et al., 2015; Song et al., 2021]. In this thesis, the contributions
study variational autoencoders. Unifying frameworks exists, such as SurVAE
flows, combining VAEs with flows [Nielsen et al., 2020] and Autoregressive Dif-
fusion Models combining ARs models with diffusion models [Hoogeboom et al.,
2022]. Various connections exists between all the framework, and for example
Child [2021] discusses how deep VAEs generalise AR models, Che et al. [2020]
discuss how generative adversarial networks (GANs) are energy-based models,
Kingma et al. [2021] discuss how variational diffusion models are an infinitely
deep limit of VAEs, and Song et al. [2021] discuss how diffusion models can be
transformed into flows.
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2.2 Variational autoencoders
VAEs are latent variable models, and they learn to model the distribution of data
through amortised approximate inference [Kingma and Welling, 2014; Rezende
et al., 2014]. In particular, VAEs use deep learning models to parametrise the
variational distributions. A VAE optimises an evidence lower bound (ELBO) for
a data point x:

log pθ(x) ≥ L(x;φ, θ)
= Eqφ(z|x) [log pθ (x|z)] −DKL(qφ(z|x)||p(z)) = −(D +R). (2.1)

Here, the parameters for an encoder, or inference network, are denoted by φ,
and parameters for the decoder, or generative network, θ. The approximate
posterior is qφ(z|x) (approximating a true, but generally intractable posterior,
pθ(z|x), over the latent variable z), and p(z) denotes the used prior. The bound
can be expressed as the negation of the summed distortion D—i.e, the negative
log-likelihood (NLL) of the input—and the divergence between the approximate
posterior and the prior, also called the rate, R. The Kullback-Leibler divergence
(KL) divergence, DKL, for some distributions p(x) and q(x) is defined as:

DKL(p(x)||q(x)) =
∫ ∞

−∞
p(x) log p(x)

q(x)
dx = E

x∼p(x)

[
log p(x)

q(x)

]
≥ 0 (2.2)

In simple VAEs, the approximate posterior and prior used are a Gaussian distri-
bution, allowing for an analytical expression in evaluating the KL.

2.3 Rate-distortion analysis
Optimising the unmodified ELBO produces a model that will, generally, attain
the best likelihoods—even if optimisation procedures that, e.g., anneal the rate
term in or introduce some level of freedom with “free bits” might improve learn-
ing. However, optimising a different balance between the rate and distortion by
re-weighting the rate with some factor β allows models to explore other rate-
distortion (RD) trade-offs [Higgins et al., 2017]. For instance, increasing the
weight of the rate-term can produce, in some sense, more disentangled latents
[Burgess et al., 2018]—if an isotropic Gaussian prior is used, this effectively pe-
nalises any co-variance between dimensions more strictly, thus producing more
independent latent dimensions. Such trade-off considerations, and RD analysis
[Alemi et al., 2018, 2017; Poole et al., 2019], provides a framework for analysing
the learnt representations of VAEs. In Alemi et al. [2018], it is shown how models
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reside on an RD plane and that this plane is divided into different regions. One
region is “infeasible” because no models can attain rate-distortion trade-offs that
sum to the values in this region. This region is bounded by a line between the
level corresponding to the entropy of the data on each of the axes (when consider-
ing discrete data), since a model cannot, on average, attain distortions lower than
the entropy of the data. Beyond the infeasible region is a feasible region wherein
the rate-distortion trade-offs could be achieved, in principle. However, the finite
capacity of models results in one last region of “realisable” models, wherein all
models will be for a given capacity. Depending on the specific model’s encoding
and decoding capacities, the model will fall along a particular RD curve within
this realisable region. The model would move along this curve when varying a
weight β on the rate during optimisation.

Kingma and Welling [2019] provide a more general introduction to VAEs
and their various extensions. Such extensions include, for example, using the
unsupervised objective alongside a supervised one in semi-supervised learning
[Kingma et al., 2014], modelling with more expressive priors [Chen et al., 2017;
Kingma et al., 2016; Tomczak and Welling, 2018], optimising a tighter bound on
the likelihood [Burda et al., 2015], and using consistency regularisation [Sinha and
Dieng, 2021]. In particular, the contributions considered in this thesis will build
on three specific VAE constructions: a very deep variational autoencoder (VD-
VAE), partial variational autoencoder (P-VAE) and a latent neural stochastic
differential equations (SDEs).

2.4 Hierarchical variational autoencoders

Various hierarchical VAEs use a hierarchy of latent variables to produce more
expressive models, alongside other improvements [Child, 2021; Hazami et al.,
2022; Maaløe et al., 2019; Salimans, 2016; Sønderby et al., 2016; Vahdat and
Kautz, 2020]. Specifically, in VD-VAEs, a hierarchy of N latent variables is
designed, z = {z0, . . . , zN}. The VD-VAE uses a particular bottom-up and top-
down architecture and residual blocks to parametrise the approximate posterior
and prior distributions. The latent variables are structured such that a top-most
variable, z0, is independent of the other latent variables. All other latent variables
in the hierarchy depend on the latents above them. The prior and approximate
posterior take the following forms, respectively (using z<N to denote latents
higher up in the hierarchy than N):

pθ (z0) pθ (z1) |z0), . . . , pθ (zN |z<N ) (2.3)
qφ (z0|x) qφ (z1|z0,x) . . . qφ (zN |z<N ,x) . (2.4)
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The VD-VAE ELBO, LVD, becomes similar to that in (2.1), but now includes a
sum of KL divergences:

log pθ (x) ≥ LVD (θ, φ; x)

= Eqφ(z|x) [log pθ (x|z)] −
N∑
n=1

DKL (qφ(zn|z<n,x)||pθ(zn|z<n))

−DKL (qφ(z0|x)||pθ(z0)) . (2.5)

2.5 Missingness

Another extension that will be considered in this thesis is VAEs that can handle
missing, or partially observed, data [Ipsen et al., 2021; Ma et al., 2018, 2019; Mat-
tei and Frellsen, 2019; Nazábal et al., 2020]—specifically, the P-VAE introduced
by Ma et al. [2018] and an incorporation of the improved way of embedding an
identity of dimensions (introduced in Ma et al. [2019]). In these models, the
input datum is partially observed, xO. The dimensions are split into a set of
observed, xo, o ∈ O, and unobserved, U dimensions. For such models, a partial
ELBO, Lp, is optimised, which, again, resembles the standard ELBO in (2.1),
but now with the replacement of the “fully observed” distortion with a partial
distortion over only observed dimensions and, similarly, replacing the fully ob-
served approximate posterior with an encoding conditioned only on the partially
observed datum:

log pθ(xO) ≥ Lp (θ, φ; x)

= Eqφ(z|xO)

[∑
o∈O

log pθ (xo|z) −DKL (qφ (z|xO) ||p (z))

]
. (2.6)

The encoding handles partial data by using a summing operation to be in-
variant to the number of observed dimensions and uses an embedding procedure
to learn “identifiers” of the individual data dimensions—this could be one-hot
encodings of the data dimension index, but learning them improves performance.
When trained, this model can encode a partial datum, and the generative network
can produce distribution over all dimensions, including the unobserved ones, U .
The uncertainty in these predictive distributions can be used as an acquisition
function in active learning.
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2.6 Dynamical systems in deep learning

The last type of VAE extension relies on a dynamical systems view of latent ob-
jects. Making use of a dynamic systems perspective in deep learning has proven
valuable. For example, the approach of interpreting existing systems as a discreti-
sation of a dynamical system enables residual networks to be understood as Euler
discretisations of an ordinary differential equation (ODE) [Haber and Ruthotto,
2017; He et al., 2016]. The view can be used to understand existing systems, to
improve upon them, or to create new discrete systems by discretising continuous
systems with desired properties, both in supervised learning approaches [Chang
et al., 2018; Chen et al., 2018; Erichson et al., 2021] and in generative modelling
[Grathwohl et al., 2018; Hodgkinson et al., 2021]. In particular, the view can
also be used to learnt model representations that display continuity, both in a
modelling temporal phenomena [Krishnapriyan et al., 2022] and continuity over
the layers, or “depth”, of a model [Queiruga et al., 2021, 2020; Xu et al., 2022].

Differential equations that have, e.g., their rate of change (and initial val-
ues) defined by learnt neural networks are called neural (ordinary) differential
equations [Kidger, 2021]. Neural differential equations constitute expressive mod-
elling components that also build dynamical systems properties into the learnt
repsentations—for example, enabling that a state can be evolved from any given
point using the learnt dynamics (i.e., the dynamics parametrised by a neural net-
work given the differential equation’s rate of change). Neural ODEs have been
extended to also use SDEs [Øksendal, 2013], thus producing neural SDEs [Jia
and Benson, 2019; Kidger et al., 2021a; Tzen and Raginsky, 2019] [Kidger et al.,
2021b; Look et al., 2022], and even neural stochastic partial differential equations
[Salvi and Lemercier, 2021].

The VAE perspective on neural SDEs comes from using the neural SDEs as la-
tent objects [Li et al., 2020], for instance replacing discrete Gaussian distributions
with stochastic processes defined as solutions to SDEs that, in turn, have their
evolution defined by neural networks. These neural networks parametrise how
the system drifts (a component similar to the rate of change in an ODE) and how
the system is affected by stochasticity from a random Brownian motion, called
a diffusion. The following aligns with the presentation of latent SDEs given by
Li et al. [2020]. Processes are considered over some time horizon, T = [0, T ]. In
order to do variational inference (VI), two processes are defined to learn a neural
latent SDE. The processes share a diffusion term controlled by a k-dimensional
Brownian motion, {Wt}t∈T:

dZ̃t = hξ(Z̃t, t)dt+ σψ(Z̃t, t)dWt, (2.7)
dZt = hζ(Zt, t, c)dt+ σψ(Zt, t)dWt. (2.8)
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The first differential equation defines the prior process, and the second defines the
approximate posterior process. That is, {Z̃t}t∈T is the prior process and {Zt}t∈T
is the approximate posterior process. Here, the processes are of dimensionality k.
The prior drift is parametrised by a function hξ : Rk × R → Rk, which takes as
input the state and the current time and produces the drift (a deterministic rate
of change of the state). The approximate posterior drift hζ : Rk ×R×Rkc → Rk
is similar but takes an extra data-dependent input, c ∈ Rkc . Finally, the two
processes share the same diffusion, σψ : Rk × R → Rk. Because the processes
share the same diffusion (and when some other regularity conditions are met, see
Li et al. [2020] for a derivation of the ELBO relying on Girsanov’s theorem), the
training of latent neural SDEs amounts to optimising a latent neural SDE ELBO,
LSDE:

log pξ,ψ (x) ≥ LSDE (φ, ξ, ζ, ψ; x)

= E

[
log pξ,ψ (x|z) −

∫ T

0

1
2

|u (zt, t) |2dt− KL (qφ(z0|x)||p(z0))

]
. (2.9)

Here, the ELBO retains a “regular” KL term resulting from the parametrisation
of an initial value distribution using φ as parameters for a network parametris-
ing the posterior initial value. The expectation is under the approximate pos-
terior process distribution as well as under the approximate posterior initial
value distribution. The integrand, u, is defined through σψ (zt, t)u (zt, t) =
hζ (zt, t, c)−hξ (zt, t). This component in the loss measures how different the two
processes’ drifts are (under a scale defined by the diffusion term). This integral
is the KL divergence between the approximate posterior process and the prior
process and can be referred to as a path rate. The more information from the
data-dependent signal, c, is used to affect the approximate posterior process, the
more the drifts will differ and thus incur a path rate.

2.7 Applications
In this section, two applications that the contributions will explore are presented,
namely speaker separation and active learning of audiograms.

2.7.1 Speaker separation
In speaker separation, the task is to estimate component speech from a (noisy)
mixture of multiple speakers. Systems solving this task, also referred to as the
cocktail party problem [Cherry, 1953], has seen improvements by deep learning
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approaches [Hershey et al., 2016; Nachmani et al., 2020; Wang and Chen, 2018;
Zeghidour and Grangier, 2021] and by posing the problem of separation as a deep
supervised learning problem.

A series of modern deep learning speaker separation networks build on time-
domain audio separation networks (TasNets) [Luo and Mesgarani, 2018, 2019].
These models follow an encoder-masker-decoder structure: an encoder network
takes as input a mixture and produces an encoding, which is parsed to a masker.
The masker, based on the encodings, produces a set of masks matching the num-
ber of estimated speakers the model is trained to produce. The maskings are then
applied to the original mixture encoding by elementwise multiplication, and the
resulting masked encodings are decoded to produce estimates of the component
speech. The original TasNet introduced in Luo and Mesgarani [2018] has been ex-
tended in various ways [Chen et al., 2020; Luo et al., 2020; Subakan et al., 2021;
Tzinis et al., 2020], notably by a variant replacing a recurrent neural network
in the original model with a convolutional network [Luo and Mesgarani, 2019].
While these models perform well in domains seen during training, poorer gener-
alisation to new, unseen domains remains a barrier to their real-world adoption
[Cosentino et al., 2020; Kadioglu et al., 2020].

These speaker separation models are trained to optimize a scale-invariant
signal distortion ratio (SI-SDR) [Le Roux et al., 2019] (comparing a ground truth
source, s, and an estimated source ŝ):

SI-SDR(s, ŝ) = 10 log10
(
||αs||2/||αs− ŝ||2

)
, α = ŝ⊤s/||s||2. (2.10)

Training with this objective makes the loss invariant to differences in the over-
all power of the estimate time series, and using this loss, as opposed to, e.g.,
a root-mean-square error (RMSE) loss, is central for training the models well
[Heitkaemper et al., 2020]. Other improvements to the training procedures for
these models include, e.g., permutation invariant training (PIT) [Yu et al., 2017],
which matches estimated sources to ground truth references, and mixture invari-
ant training (MixIT) and extensions [Tzinis et al., 2022; Wisdom et al., 2020],
which uses a similar approach to enable learning from mixtures by constructing
mixtures-of-mixtures.

2.7.2 Audiograms and active learning
Audiograms consist of measurements of a person’s audible thresholds (“how well
they hear”) at a given set of frequencies. An audiogram can be used diagnos-
tically since it describes a person’s hearing and shows, for example, the type
and extent of potential hearing loss [Moore, 2012, Chap 2]. Furthermore, using
the measurements of lost audibility, an audiogram can be used prescriptively
in hearing loss treatment with hearing aids to set the levels of needed hearing
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aid compensation (frequency-specific gains) [Kates, 2008]. Improving efficiency
(through partial automation and measurement assistance, or even full automa-
tion) of the acquisition of audiograms would help increase the amount people
with access to hearing-related health care [Mahomed et al., 2013; Margolis and
Morgan, 2008].

A common active learning problem called a pool-based active learning cycle
[Settles, 2009] determines which data from a pool of unlabelled data should be
labelled so as to improve a supervised learning problem the most with the new
labels. A similar problem aims to determine which dimensions of a partially ob-
served datum—in other words: from a “pool of unobserved dimensions”—should
be observed so as to improve some prediction based on the partially observed
datum. In Ma et al. [2019], such variable-wise active learning per data instance
is considered, showing, for example, how a P-VAE can be used to do active learn-
ing in a risk assessment task on medical data. Acquisition of audiograms using
active learning approaches has previously relied on Gaussian processes [Gardner
et al., 2015; Schlittenlacher et al., 2018; Song et al., 2015]. These approaches use
previously acquired dimensions to inform the acquisition of further dimensions.
In these, a Gaussian process regressor, for instance, estimates a function char-
acterising a person’s audibility as a function of frequency. Using this estimated
function, the model then uses its point of maximal entropy to guide acquisition.
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3.1 VAEcquisition

The following is a summary of the first contribution, VAEcquisition, ti-
tled “Rate-Distortion Trade-offs in Variational Autoencoder Representations for
Sequential Acquisition Active Learning”. The contribution, in its full extent, is
provided in Appendix A.

The contribution studies model-based active learning using P-VAEs [Ma et al.,
2019] to reason about partially observed data in sequential acquisition of unob-
served dimensions. For the active learning process, the study investigates how ac-
quisition estimation performance (estimating full data from partial observations)
and uncertainty quantification (early termination of the acquisition process) is
affected by trade-offs in rate-distortion of the used representation. The experi-
ments consider two types of data. The first is synthetic data sets constructed
using archetypal analysis [Cutler and Breiman, 1994] to mimic core aspects of au-
diogram data in a controlled manner. The second type is real audiogram data sets
from both the United States and Germany, the NHANES [CDC, 1999–2022] and
the HÖRSTAT [von Gablenz and Holube, 2015] data sets, respectively. Given
these data sets consisting of fully observed data, missing-at-random missingness
is imposed on the data during training. In this way, a partial representation can
be learnt using the P-VAE. Experimental results presented are for models that
optimise the partial ELBO using an adaptive re-weighting of the rate-term, such
that the trade-off between the rate and the partial distortion achieves a range of
pre-specified target rates.

Given partial observations, the trained models can produce estimates of distri-
bution over the full observations. This is done by estimating an encoding of the
partial datum using a partial encoder, and subsequently using the generative net-
work to produce distribution over a fully observed datum from the encoding. The
model evaluation includes the performance of the acquisition estimation, which
measures how well estimates of full data match a ground truth reference. When
these error metrics are summed over all steps in an acquisition process (i.e., going
from a fully unobserved datum to a fully observed datum in a sequential acqui-
sition process), a single scalar value is produced. This scalar, or “the area under
the information curve”, summarises the acquisition process’s performance.

While the model quantifies its uncertainty in reconstruction with the partial
distortions and the rate of the partial encoding (producing the partial ELBO), the
uncertainty in the predictive distribution of unseen dimensions allows the model
to inform an acquisition process. By acquiring the dimension with the maximal
variance in the predictive distribution, the experimental results show that the
acquisition process outperforms (in attained areas under the information curves)
both a random acquisition and a “single best” greedily optimised ordering.

The study shows how uncertainty quantification enables an estimation of the
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model’s error without access to the ground truth reference. Specifically, the
combined uncertainty quantification of the partial ELBO components (i.e., the
rate and the partial distortion) and an estimate of the predictive distribution
entropy in unseen dimensions form the basis for a linear estimate of the VAEs
error in estimating the full audiogram. Given a predefined error threshold, such
an estimate can be used to terminate the acquisition process. The uncertainty
quantification performance of the linear model is compared to a simple model
that stops at a single best index during acquisition across all sequences. The
experimental results show that a model that uses uncertainty quantifications can
estimate the model’s error better than the baseline model. Since the number
of measurements needed to achieve this set level of accuracy changes with the
specifics of an audiogram, the procedure thus allows for datum-specific adapta-
tion. This procedure is evaluated using both the absolute offset (i.e., the offset
to a model which used a stopping index based on ground truth estimation errors)
and the calibration of the average stopping index error (whether the model, on
average, stops at approximately the desired level of accuracy). In these evalua-
tions, using the datum-specific uncertainty is an improvement over the baseline
single best stopping index.

Finally, the learnt representations’ abilities to inform full audiogram estima-
tion and to inform the stopping procedure are compared to the representations’
rate-distortion trade-off. In synthetic data, small or large corruptions can be
introduced to the archetypal components that define the training data sets un-
derlying generation mechanism. When considering the area under the informa-
tion curve, evaluation on a data set generated from small corruptions resulted in
optimal rates that were around, or slightly higher than, the optimal rate for an
uncorrupted data set. In contrast, large corruptions resulted in optimal rates that
were much lower than the optimal rate in the uncorrupted setting. On the real
data sets, the generalisation from NHANES to HÖRSTAT displayed behaviour
more aligned with the results for the synthetic results with smaller corruptions.
Importantly, the RD analyses showed how the optimal rates were not the same
across evaluation metrics and data sets, thus showing how a choice must be made
in favour of either, e.g., high performance in estimating the full observations or
having high quality stopping estimation. Notably, the optimal rates did not
invariably align with the optimal ELBO.

3.2 VI-EMD

The following is a summary of the second contribution VI-EMD, titled “Im-
proving Speaker Separation Generalization with Variational Inference”. The con-
tribution, in its full extent, is provided in Appendix B.
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The primary contribution of this study is to re-cast these encoder-masker-
decoder networks in a VAE-framework. Learning encodings and masks in the
encoder-masker-decoder networks are formulated as a hierarchical latent variable
model and optimised using VI. The study provides a detailed construction of
speaker separation in the context of VI and introduces an ELBO for modelling
component speech.

The deterministic versions of the models rely on a SI-SDR-based objective.
In order to allow the probabilistic framework to learn under the same scale-
invariance, the work introduces a scale-invariant observation model using Bayesian
linear regression (BLR). In this, the differences in scale between a target speech
time series and an estimated time series is seen as a regression coefficient which
can be analytically inferred and corrected for, thus allowing for efficient training
of VI-EMDs. The study provides a comparison to the standard SI-SDR objec-
tive, showing that the SI-SDR objective and its probabilistic counterpart optimise
comparable quantities.

The experiments show results for both synthetic data sets and for real data
sets. As a controlled setting, the study introduces a Gaussian pulse data set
in which simulated speech utterances are constructed as Gaussian pulses with
“speaker”-specific frequency ranges. Furthermore, two data sets were considered:
LibriMix [Cosentino et al., 2020], which is used as the seen, training domain, and
VCTK [Yamagishi et al., 2019], which is used as the unseen domain. A detailed
discussion of the data foundation is provided, discussing, e.g., the consequences
of realistic speech material and noise models.

The VAE framework enables the analysis of RD trade-offs, where the sep-
aration performance can be interpreted as an auto-encoding distortion of the
component speech in the input mixture. The study presents experiments that
show how optimising the rate alongside the component speech distortion pro-
duces models that generalise better to unseen domains than their deterministic
counterparts. This is seen the original convolutional time-domain audio separa-
tion network (Conv-TasNet) [Luo and Mesgarani, 2019] and its VI counterpart,
and it, similarly, seen in the improved, successor successive downsampling and
resampling of multi-resolution feature (SuDoRMRF) [Tzinis et al., 2020] and its
VI counterpart. The results indicate that the deterministic models, which solely
optimise the speaker separation objective—i.e., without regard to the resultant
rate—generalise poorly. This can be interpreted as a consequence, in part, of a
sub-optimal RD trade-off in the learnt representation.

The study compares training VI-EMDs under various priors, including stan-
dard Gaussian priors, log-normal priors, Gamma priors, and learnt autoregressive
flow priors. Furthermore, a multitasking VI-EMD is presented, which not only
optimises the speaker separation but also optimises an auto-encoder task of the
input mixture in a semi-supervised learning setup. The multitasking framework
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allows for the specification of a prior inducing that mixture encodings resemble
known (during training) component speech encodings. Notably, the multitasking
model is also a generative model of the input mixture, such that an auto-encoding
ELBO can be determined even without access to ground truth component speech
signals. Experiments show how this input mixture density is informative of the
separation performance, thus allowing for knowing when the model is capable of
separating speakers and when the model’s uncertainty about its input is too high
to produce good separation.

3.3 CD-VAE

The following is a summary of the third contribution CD-VAE, titled “Hi-
erarchical Variational Auto-Encoders using Latent Neural Stochastic Differential
Equations”. The contribution, in its full extent, is provided in Appendix C.

Deep hierarchical VAEs are competitive density estimation models [Child,
2021; Sønderby et al., 2016]. In particular, Child [2021] showed how increasing
the stochastic depth improves the performance of VD-VAEs, i.e. using a deeper
hierarchy while otherwise keeping the size of the model constant in terms of
parameter count. This contribution constructs a continuously deep VAE, building
on the VD-VAEs. The model replaces discrete Gaussian variables in the hierarchy
formulation with latent stochastic processes defined by neural SDEs. In so doing,
the model relies on numerical SDE solvers to estimate the solutions to the neural
SDEs that define the latent processes.

Experimental results are provided for training the model on a simple synthetic
Poisson equation-based data set and on binarized MNIST. The experimental
evaluation of the CD-VAE focuses on investigating its continuity properties. For
both data sets, the experiments investigate the ELBO achieved when varying
the integration step sizes after training. Results show that the CD-VAE learns a
depth-continuous representation in that it generalises well to step sizes different
from the constant step size used in the SDE solvers during training. The CD-VAE
is compared to a version of the model that does not optimise how well-behaved
the latent stochastic processes are with respect to a prior process (an “ODE-like”
CD-VAE); such a model does not display the same properties of depth-continuity
and instead displays an optimum in ELBO around the step size used during
training.

This exploration of continuity contributes to an building body of works that
explore how depth-continuity in model representations can be achieved by using
dynamical system components in deep learning [Queiruga et al., 2021, 2020; Xu
et al., 2022] and continuity in representations, in general [Krishnapriyan et al.,
2022]. Furthermore, the model adds to ongoing efforts that can be said to lie
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in the intersection of various modern deep generative frameworks, incorporating
elements (SDEs) that are central to diffusion models [Kingma et al., 2021] and
continuous normalizing flows [Chen et al., 2018].
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Before considering the overarching questions underlying all three contribu-
tions that were presented in Chapter 1, the contribution-specific questions are
addressed based on the summaries in the previous chapter.

Partial VAEs allow efficient audiogram acquisition In the first contribu-
tion, the question of audiogram acquisition was considered, asking:

VAEcquisition: Audiogram Acquisition How can we utilise a
learnt variational autoencoder representation to efficiently acquire audio-
grams?

By using an architecture that can encode partial data, a P-VAE, this contri-
bution shows how a learnt representation of audiograms can be used to acquire
audiograms efficiently by:

1. making use of the predictive distribution uncertainty resulting from partial
encodings to inform acquisition, and

2. utilising the probabilistic framework’s uncertainty quantification in esti-
mating the model’s prediction quality, allowing the model to terminate
acquisition when it is estimated that prediction quality is sufficiently good.

Both of these points allow for a model-based active learning procedure more
efficient than baseline models that do not use datum-specific uncertainty in the
acquisition (such as single best ordering acquisition approaches or single best
stopping indices).

Variational inference improves speaker separation generalisation The
second contribution addressed the generalisation of speaker separation models,
asking:

VI-EMD: Speaker separation How does recasting encoder-masker-
decoder speaker separation models in a variational autoencoder framework
affect generalisation?

In order to answer this question, the contribution constructs VI-EMDs and
introduces the components needed for a VI-based encoder-masker-decoder archi-
tecture similar to the existing models (like TasNets), including introducing a
scale-invariant observation model, a latent hierarchy formulation of the encoding
and masking outputs, and a speaker separation ELBO.
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The contribution discusses how the probabilistic approach learns to charac-
terise, and be robust to, small perturbations in the representation, which pro-
vides a perspective on how the VAE framework improves generalisation. More
importantly, the study shows how optimisation of encoding and mask rates im-
proves generalisation to new domains. The VAE perspective thus provides a rate-
distortion trade-off explanation for—some aspects of—the generalisation gap in
deterministic speaker separation models that do not explicitly consider the infor-
mation rates of the encodings and the applied masks.

Furthermore, the VAE-formulation of the speaker separation problem read-
ily enables a semi-supervised learning approach. The contribution shows how to
train a multitasking system that jointly learns to model input mixtures and target
component speech. This system provides a basis for systems that can harness the
learning signal from generative modelling of arbitrary audio input in improving
speaker separation performance. Even the largest speaker separation data sets
are smaller than unstructured data sets of audio. Notably, speaker separation
datasets often rely on some simulated approach in order to have access to ground
truth component signals (i.e., simulated mixtures from isolated speech recordings
mixed with noise). However, with the multitasking VI-EMD, the model can let
separation in such data sets be informed by learning from realistic audio mixtures
(i.e., real recordings of multiple speakers in noisy environments) that would oth-
erwise not be included given that lack of the component speech recordings. This
aspect of the VI-EMDs addresses a central limitation (only learning from data
sets where component speech is available) of existing frameworks and is thus a
promising avenue for improving generalisation by learning from more realistic
audio.

Hierarchical VAEs as continuous dynamical systems The last contribu-
tion centred around two questions. The first question considered a dynamical
systems formulation of hierarchies, asking:

CD-VAE: Hierarchies as Dynamical Systems How can we in-
terpret the latent representations in deep hierarchical variational autoen-
coders as stochastically evolving dynamical systems?

One way to interpret latent representations in deep hierarchical VAEs as
stochastically evolving dynamical systems is to replace the—usually—discrete
Gaussian distributions with stochastic processes. This can be done by making
use of neural stochastic differential equations to define the latent processes and
using differentiable numerical integration frameworks to produce solutions to the
differential equations and to provide the gradients needed during training. In
this, the contribution builds on existing work on latent neural SDEs. This study,



32 4 Discussion & Conclusion

however, contributes the application of this dynamical systems perspective in
re-interpreting a specific, successful deep hierarchical VAE architecture called
VD-VAEs. To interpret a VD-VAE’s latents as a stochastically evolving dynam-
ical system, the existing neural latent SDE formulation is expanded in two main
ways: (i) by introducing a hierarchy of SDEs that operate on different spatial res-
olutions in the latent processes and (ii) by introducing convolutional architectures
for the drift functions in the latent processes. The latter is needed in order to
match the VD-VAE, but, more importantly, it is also required to efficiently scale
learning of the processes to the pre-requisite high-dimensional latent processes.
The introduced model, CD-VAE, constitutes a deep hierarchical VAE wherein
the latent representations are a stochastically evolving dynamical system.

The second question was concerned with continuity, asking:

CD-VAE: Continuity What are the benefits, if any, of a continuous-
depth formulation of hierarchical variational auto-encoders using neural
stochastic differential equations?

In modelling simple image problems, such as a binarised version of MNIST,
the experimental results in this contribution show how the representation learnt
by a CD-VAE can be evaluated with different granularities of step sizes in the
numerical integration used in determining the latent process evolutions. Specif-
ically, the representation generalises in such a way as to benefit from a smaller
step size than seen during training, thus achieving a lower ELBO when increasing
the computational budget. Furthermore, the contribution discusses how inducing
continuity in a model representation, for instance: (i) allows the use of adaptive
step size solvers during training and post-training application, (ii) enables the
use of the stochastic adjoint method to increase the depth of the hierarchy at
constant memory complexity, and (iii) allows for an efficient parametrisation of
functions by sharing weights across the depth of the model. Ensuring continuity
of the learnt representation might also be a useful inductive bias for improving
generalisation in the same way that more simple forms of regularisation improve
generalisation.

Variational inference and uncertainty quantification in representation
learning Central to all contributions was the use of variational inference, and
each contribution explores quantified uncertainty in some manner. In Chapter 1,
the concept of usefulness in representations was discussed, where it was argued
that a useful representation is characterised by both generalising well and pro-
viding relevant information for a considered task. The question of usefulness in
the context of VI and uncertainty quantification (UQ) was posed as:
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Variational Inference and Uncertainty Quantification How can
variational inference and uncertainty quantification in representation
learning be used to improve the usefulness of a learnt representation?

Jointly, the studies show, in significantly different applications, how VAE rep-
resentations can ensure that more useful representations are learnt. For example,
in VI-EMD, it was shown how generalisation to the unseen dataset VCTK
of the speaker separation performance improved when using a VI-based approach,
thus improving the generalisation aspect of the representations’ usefulness. In
both VI-EMD and VAEcquisition, it was shown how UQ enables es-
timation of a model’s performance on a considered task (speaker separation and
audiogram acquisition, respectively) without access to ground truth references.
That is, the learnt representations had learnt to characterise uncertainty in a
manner relevant to the considered downstream task—in these examples, these as-
pects of UQ thus contribute to the relevance aspect of usefulness. Furthermore,
the uncertainty quantification of the P-VAE’s predictive distributions based on
the partial encodings is the main component allowing for efficient audiogram ac-
quisition in VAEcquisition; similarly, the variational inference is the main
building block that allows the VI-EMD to learn representations that are
more robust than its deterministic counterparts; and, VI is the framework that
directly enables the CD-VAEs to learn well-behaved stochastic processes with
meaningful (non-degenerate) diffusion behaviours in CD-VAE. The UQ ap-
plications estimating the quality of a given model’s downstream task performance
are a vital component in making highly expressive models like deep learning sys-
tems viable for use in real-world settings; even if they “do not fail gracefully”,
the example UQ aspects presented in VI-EMD and VAEcquisition
show the feasibility of knowing when the system cannot be trusted such that a
user might fall back on a more reliable, but less expressive, model (in VI-
EMD) or such that an acquisition process should continue for a longer time (in

VAEcquisition).

Rate-distortion analysis Each contribution trained models that optimised
an ELBO, thus considering some trade-off of rate and distortion. Regarding the
usefulness of a learnt representation, it was asked:

Rate-Distortion Analysis What insights arise by characterising a
representation’s usefulness from the perspective of rate-distortion trade-
offs analysis?

Through rate-distortion analysis of learnt representations, and especially how
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these trade-offs affected downstream tasks, the contributions provide experi-
mental results that showed, firstly, how optimising distortion alone does not
provide useful representations—even if the representation generalises, the infor-
mation coded for is not relevant to the downstream tasks. Examples of this
include the high-rate, low-distortion models with no train-test gap shown in

VAEcquisition’s Figure 9. The information that produces the low distor-
tions generalises to the test set, yet the information is not just irrelevant but
detrimental to the model’s ability to aid acquisition.

Secondly, while optimising an unmodified ELBO, in some sense equally bal-
ancing the rate and distortion of the learnt representation, produces the best
likelihood models, such a trade-off is not necessarily conducive to improving down-
stream task performance. For example, in VI-EMD, models that balanced
the rate and distortion equally could not, to any discernable degree, learn how
to do speaker separation but required much higher rates to achieve competitive
performance. Similarly, the examples in VAEcquisition show how the op-
timal rates for various metrics of downstream performance did not in all cases
align with the optimal ELBO.

Thirdly, the results in VI-EMD on various priors and CD-VAE on
the latent process path rate show how the rate-distortion perspective is intrinsi-
cally linked to the choices made for priors. For example, rate-distortion trade-offs
in a VI-EMD that uses a Gaussian approximate posterior and another that uses a
log-normal, or a Gamma, approximate posterior will behave in drastically differ-
ent ways, despite potentially incurring an equal number of nats in the loss from
the resulting rate-term. Similarly, while an “ODE-like” CD-VAE might in-
cur overall rates similar to a corresponding CD-VAE, their properties in
terms of continuity, and consequent usefulness, are very different. The rate-
distortion trade-offs are not directly comparable between different approximate
posterior and prior distributions (or processes).

The rate-distortion perspective, alongside the probabilistic framework, pro-
vides a principled way to impose characteristics on representations through the
loss during optimisation or through construction/architectural biases, both of
which can be thought of as inductive biases allowing improved learning. For exam-
ple, the loss incurred in a CD-VAE by behaving dissimilar from a simple stochas-
tic process uninformed by data ensures that the model learns a well-behaved
continuous representation through the loss. Similarly, the choice of a log-normal
approximate posterior for the latent masking variable in a VI-EMD is a principled
way to—directly through the model’s construction—ensure that the masks are
non-negative. Another example of an architectural, inductive bias explored in
this work is the separation-by-masking used in VI-EMDs, guiding the models to
learn to separate by encoding the mixture in such a way that simple element-wise
masking is sufficient for separation.
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A view of the models considered in the contributions is that they attempt
to both (i) find optimal rate-distortion trade-offs given some set expressivity of
the model (this is especially the case for VAEcquisition and VI-EMD)
and (ii) increase the expressivity of the model (this is especially the case for

CD-VAE). In the RD analysis view presented in Alemi et al. [2018], the
former amounts to moving along a set given RD curve to improve the usefulness
of the learnt representation and the latter amounts to trying to construct models
that push the encoding and decoding capabilities, thus expanding the region of
“realisable models”.

Underlying the approaches in this work is some notion of efficiency in learn-
ing, such as forcing a model to prioritise what information to code for given some
set model expressivity (and computational budget) within a given informational
rate budget. This approach is a different approach to representation learning
than that of recent large representation learning models, or foundation models
[Bommasani et al., 2021], such as large language models like GPT-3 [Brown et al.,
2020], large audio models like wav2vec and GLSM [Baevski et al., 2020; Lakhotia
et al., 2021], and large language/image-models like DALL-E [Ramesh et al., 2022].
Simplistically, large foundation models increase model expressivity greatly and
with the scaling comes emergent properties allowing the learnt representations
to solve tasks with little to no supervision (for instance, through prompts) [Bom-
masani et al., 2021]. The models considered in this thesis—which are “small”
by comparison—approach the problem of representation learning under a much
more restrictive model capacity, instead relying on inductive biases (like that of
separation-by-masking in VI-EMDs and the use of latent neural SDEs in CD-
VAEs). Note that the foundation models do benefit from such inductive biases,
too, but rely more prominently on large capacity and large amounts of compu-
tational power instead. In the RD perspective, especially relevant since many
of the large models share encoder-decoder structures with VAEs, these models
might be said to rely on large computational power and model capacity to push
the boundary of realisable models; a conjecture is that these models also learn
representations with very high rates and select the information after training
(e.g., with finetuning, prompt engineering) instead of prioritising during training
like the models considered in this work.

As discussed in CD-VAE, modern deep generative models like VAEs,
flows, diffusion models, and autoregressive models all share common ground, es-
pecially when considered from the perspective of deep hierarchies and from an
SDEs perspective. Understanding these commonalities and unifying the frame-
works have been beneficial and will likely continue to be so. In the context of
RD analysis, another central approach within the broader context of representa-
tion learning can be incorporated, namely GANs. In RD analysis, the distortion
can be thought of as a datum-specific distance between an input and an output
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introduced by the composition of an encoding and a decoding function—and the
contributions provided in this thesis extensively discuss trade-offs between this
distortion and the rate. However, the encoder and decoder also induce some over-
all (i.e. not datum-specific) distribution of reconstructed signals, which can be
different from the actual data distribution (the distribution of data on the input
side). Because of this, the rate-distortion trade-offs can be extended to consider
a further component which Blau and Michaeli [2019] call perception, resulting in
rate-distortion-perception trade-offs. The perception measures a divergence be-
tween the input data distribution and the distribution of data from the decoder
(independent of a specific datum) [Blau and Michaeli, 2019; Zhang et al., 2021].
The use of “perception” is based on the fact that a model might produce an overall
distribution of outputs from the decoder that generally matches the distribution
of general types of input, thus having “good perceptual quality”. Notably, a
model might produce a good perception metric even with very poor distortions;
if the model decoder ignores the encoded information yet still produces outputs
that “look” like real data (in some sense ignoring an encoder and just having
a GAN decoder), the model has high distortion but low perception. In GANs,
the divergence between the true data distribution (approximated by an empirical
data distribution) and the learnt model’s distribution is minimised, e.g. by min-
imising a Wasserstein distance [Arjovsky et al., 2017]. Blau and Michaeli [2019]
shows how, at a given rate, a model can only improve distortion in a trade-off
with perception and vice versa. Originally, VAEs produced significantly lower-
quality samples (low-quality, blurry images, for instance) in comparison to early
GANs. The fact that recent VAEs, such as the VD-VAEs, produce higher quality
samples might be seen as a consequence of having increased the models’ capabil-
ities in utilising higher rates—pushing the boundary of realisable models in the
RD planes, or, equivalently, that early model, having had only low rates available
and actively optimised distortions, did so at the expense of poor perceptual qual-
ity. Since the contributions in this thesis have shown various views of the utility
of RD analysis, the extra aspect of perception trade-offs—and thus incorporating
adversarial approaches like GANs into the analysis framework—might prove very
useful in producing models with both high perceptual quality and low distortions.
In audio modelling and speaker separation, poor perceptual quality is a central
aspect of the model evaluations, and improvements might be brought about with
rate-distortion-perceptions perspectives in learning representations of speech.
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On learning useful variational autoencoder
representations

What is a representation, what makes a representation useful, and how
do we discover useful representations?

In this thesis, learning useful representations using variational autoencoders
has been explored. For one, the usefulness of the learnt representations was
demonstrated by their ability to generalise—for instance, by improving audio
modelling speaker separation performance in new, unseen conditions in VI-
EMD and in allowing a single model to generalise to new hierarchical depths
in CD-VAE. For another, the usefulness of the learnt representations was
demonstrated by their ability to provide relevant information facilitating down-
stream tasks—for instance, by providing estimates of the model performance us-
ing the representations’ uncertainty quantification in both VAEcquisition
and VI-EMD and in enabling efficient acquisition of audiograms through
predictive distributions from partial data in VAEcquisition. The presented
studies show how an approach to learning useful representations is variational au-
toencoders, especially when coupled with consideration of rate-distortion trade-
offs, incorporation of inductive biases through the variational inference model con-
struction, and when the representations’ uncertainty quantifications are utilised
in the considered application.
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Overview of appendices
In the appendices, the following contributions are provided:

• Appendix A, VAEcquisition: “Rate-Distortion Trade-offs in Varia-
tional Autoencoder Representations for Sequential Acquisition Active Learn-
ing”

• Appendix B, VI-EMD: “Improving Speaker Separation Generalization
with Variational Inference”

• Appendix C, CD-VAE: “Hierarchical Variational Auto-Encoders using
Latent Neural Stochastic Differential Equations”
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Abstract

In this work, we consider the active learning problem of sequentially acquiring unobserved
dimensions from a partially observed datum. We inform the acquisition process by a varia-
tional autoencoder (VAE) representation learnt on large, readily available data. As in tra-
ditional active learning settings, the aim is to learn while balancing, in an informed manner,
costly measurements (in time, compute, money, etc.) against their utility. In particular, we
consider the application of VAE representations in characterizing a person’s hearing loss as a
function of frequency. We show that a representation can improve the acquisition process by
providing distributions over the full datum given partial observations. VAE representations
balance good reconstruction (low distortion) against divergence from a prior (rate), and we
study rate-distortion trade-offs for the downstream acquisition performance. We show that
the downstream utility of a learnt representation is rate-dependent and that these choices
need not coincide with the rate providing the optimal evidence lower bound (ELBO); em-
phasis on different aspects of the downstream acquisition lead to different choices for the
target rate. Furthermore, we show how the model’s uncertainty in characterizing observed
dimensions (the partial ELBO) and unseen dimensions (the predictive variance) provides
information that can enable early termination of the acquisition process given some desired
accuracy. Our results point to the importance of tuning the VAE rate with respect to down-
stream tasks and highlights the utility of the associated VAE uncertainty quantification for
decision-making.

1 Introduction

Representation learning aims to learn useful, well-behaved representations. The intent is to harness large
amounts of readily available data in learning a representation, such that these learnt representations can,
e.g., be repurposed to facilitate downstream tasks or used concurrently to improve learning from scarce or
costly labelled data (Kingma & Welling, 2019). This work explores how to use a learnt representation to
efficiently learn about partially observed data in an active learning setting.

Variational auto-encoders (VAEs) learn representations by jointly optimizing an encoder and a decoder net-
work (Kingma & Welling, 2014; Rezende et al., 2014). The encoder maps data to a latent space, whereas the
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decoder learns to map from the latent space back to the original data space. A VAE is trained by optimizing
the evidence lower bound (ELBO). One view is that this amounts to minimizing the distortions introduced
by the composition of the encoder and decoder function under a constraint on the rate of information passed
through the latent space. In particular, we are interested in how a variational autoencoder representation is
affected by the trade-off between characterizing the observed data well (quantified as a negative log-likelihood,
or distortion) while keeping the representation well-behaved against some predefined prior—quantified as a
Kullback-Leibler divergence (KL), or rate. There is a tension between a “well-behaved” representation with
a low rate and a model that captures as much as possible about the data with low distortion. The standard
ELBO will strike one balance that directly optimizes the marginal likelihood, but optimizing modified ob-
jectives that penalize the rate to a lesser or greater extent—i.e., other rate-distortion (RD) trade-offs—can
improve the properties of the learnt representation (Higgins et al., 2017; Alemi et al., 2018).

While models can achieve low distortions at a high informational rate, we explore whether such learnt
representations are also useful for acquisition—or whether, conversely, models favouring lower rates at the
expense of increased distortions learn representations better suited for the downstream task. In a standard
active learning problem, a system determines which datum from a pool of unlabelled data should be labelled
next, or a “pool-based active learning cycle” (Settles, 2009). We instead consider the process of sequentially
acquiring dimensions of a datum that is initially partially or wholly unobserved. How to sequentially ac-
quire information, variables, or dimensions about a datum in an efficient, informed manner is a problem of
general relevance, including medical applications. An exampling of this is determining which tests to use
in determining a diagnosis of a patient (Ma et al., 2019). Sequential feature acquisition in this manner has
been studied using, for example, Gaussian processes (Song et al., 2015), reinforcement learning procedures
(Contardo et al., 2016), and variational autoencoders (Ma et al., 2019).

In this work, we focus specifically on the problem of measuring audiograms in a time-efficient manner. An
audiogram is a graphical representation of an individual’s audible thresholds as a function of frequency.
Traditionally, an audiogram is measured at a given set of frequencies, and taken together, these thresholds
jointly characterize the hearing loss, or lack thereof, of a person—see, for instance, Moore (2012, Chap 2,
Sec. 3, Fig. 2.3). Beyond its diagnostic purpose, the audiogram is used prescriptively to treat an individual’s
hearing loss—for instance, by defining frequency-specific gains in a hearing aid to compensate for the loss
of audibility (Kates, 2008). Measuring a complete audiogram is a time-consuming process; with a large and
increasing need for hearing healthcare services, improving the accuracy and efficiency of how we acquire
audiograms becomes an integral part of increasing capacity (Margolis & Morgan, 2008; Mahomed et al.,
2013). In practice, experienced clinicians tend to rely on their domain knowledge to hasten the process to
determine when it is acceptable and appropriate to measure, for example, only a specific subset of frequencies.
We are interested in doing the same in an automated way, such that audiogram acquisition becomes equally
as fast, without cost to accuracy, with less experienced clinicians or in fully automated systems.

We are interested in estimating a complete audiogram from as few frequencies as possible. To do this, we
define a model that determines which frequencies to measure in an informed, sequential manner to arrive
at a sufficiently accurate estimate with as few measurements as possible. We will refer to a model that
achieves this a having good estimation performance. The number of measurements needed for a model with
good estimation performance will, however, be directly dependent on the desired accuracy. Furthermore,
the number of measurements and at which frequencies will vary from individual to individual. Therefore,
we are interested in a model capable of quantifying the uncertainty of its estimate for a specific individual.
As the acquisition is in progress, we can determine at which point the process can be stopped. We will refer
to a model that achieves this as one that has good uncertainty quantification.

The main contribution of this paper is to evaluate acquisition estimation performance and uncertainty
quantification as a function of rate-distortion trade-offs in variational autoencoder representations of au-
diogram data. In particular, we analyze the problem of efficiently acquiring audiograms and explore how
rate-dependant qualities of the representation affect (i) the efficiency and accuracy of estimating complete
audiograms from partially observed audiograms and (ii) the ability to quantify the uncertainty of the estima-
tion accurately. This we do by considering both synthetic data with ground truth and two openly available
audiograms datasets, NHANES (CDC, 1999–2022) and HÖRSTAT (von Gablenz & Holube, 2015).
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2 Related work

We build on the partial VAE (Ma et al., 2018), and specifically the PointNet Plus version presented with
the “Efficient Dynamic Discovery of High-value Information” (EDDI) framework (Ma et al., 2019). The
partial VAE enables learning approximate posteriors for partial data. Additionally, Ma et al. (2019) consider
how to efficiently acquire dimensions sequentially to minimize an “area under the information curve” (the
accumulated error over all measurements) introducing an information reward acquisition function—and how
to estimate this reward efficiently. While Ma et al. (2019) focus on predictions of a target dimension for
tabular data, we focus on autoencoding improvements of partially observed data. Ma et al. (2019) consider
the target variable separate from the set of possible acquisition dimensions, but in this work we consider an
auto-encoding acquisition task, aiming to improve the representation of all unobserved dimensions without
an “unobservable” target dimension. We further focus on the sequential process of acquiring audiograms.
In particular, we extend the analysis to consider rate-distortion trade-offs on the estimation performance
(estimating the full audiogram) and the uncertainty quantification (ability to terminate early accurately).

Extension of the ability of variational autoencoders to handle missing data include the heterogeneous-
incomplete VAE (Nazábal et al., 2020), which introduced a model for handling both missing data and
data of heterogeneous types (continuous, discrete, etc.). Mattei & Frellsen (2019) introduce the missing data
importance weighted bound, and this work was extended to consider more realistic models of the missingness,
beyond a missing-at-random process (Ipsen et al., 2021).

Given a data set of fully observed and labelled data and some partially observed data, active feature-value
acquisition (AFA), see, e.g., Saar-Tsechansky et al. (2009). determines which partially observed data should
be (wholly) acquired given some cost. AFA is related to, but not the same as, the sequential process we
consider. We distinguish between acquiring fully observed data points given a pool of partially observed
data points (i.e., AFA) and the presently considered problem, which Ma et al. (2019) denote “active variable
selection”, that sequentially (one at a time) determines more dimensions of a given datum.

We attempt to quantify the uncertainty of full audiogram estimates given partially observed data. Uncer-
tainty in imputation estimates giving missing data can help guide acquisition, for instance, by improving the
effectiveness of acquiring labels by characterizing the uncertainty of multiple imputations and using this in
an acquisition function (Zheng & Padmanabhan, 2002; Han & Kang, 2021).

Acquiring audiograms efficiently is an active area of study—for a review of automated audiometry, see Ma-
homed et al. (2013). One set of studies has used Bayesian active learning using Gaussian Process (GP)
regression to measure audiograms efficiently (Gardner et al., 2015; Song et al., 2015; Schlittenlacher et al.,
2018). Using a GP to model a specific subject’s hearing threshold as a (continuous) function of frequency,
these approaches use the estimated function’s point of maximal variance to guide the acquisition process
(“which point to acquire next”). Active learning with GPs has also been used to efficiently learn an end
user’s individual preference for the setting of hearing-aid parameters used directly to adjust the hearing aids
automatically (Nielsen et al., 2014). Such models improve acquisition by letting previously acquired dimen-
sions guide the acquisition of further dimensions. In addition to previously acquired dimensions for a given
acquisition, the presently considered approach integrates a learnt representation of real-world audiograms to
inform acquisition and produce estimates of the full audiograms, thus integrating information learnt from
large data sets of audiograms.

3 Methods

3.1 Data

NHANES and HÖRSTAT data We model audiograms from both NHANES (N = 12813) and HÖR-
STAT (N = 2986). The United States’ Centers for Disease Control and Prevention publishes the National
Health and Nutrition Examination Survey (NHANES). NHANES includes pure-tone air-conduction au-
diometry data of participants in the United States (CDC, 1999–2022), and here we use data from 1999-2004,
2011-12, and 2015-16, excluding years that, e.g., considered only specific demographics. The HÖRSTAT
study includes similar measurements for a survey done in Germany (von Gablenz & Holube, 2015). While a
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larger set of frequencies are occasionally measured, we only consider results for 0.5, 1, 2, 3, 4, 6 and 8 kHz (for
both ears) due to consistency across years and data sets. In addition to the measured frequencies, we include
the subject’s age. Datasets like NHANES include a lot of information about other aspects that might inform
the acquisition process (beyond the age, as considered here), including information pertinent to the hearing
thresholds (such as information on recent colds or earaches, audiometric tests like tympanometry), gen-
eral demographics data (level of education, country of birth), and questionnaire data (occupation, physical
activity). The VAE framework readily enables the integration of this knowledge in a scalable manner.

Synthetic data For controlled comparisons, we study a generated data set of synthetic audiograms. These
audiograms are generated by randomly sampling “archetypal” audiograms. We sample five examples from a
15-dimensional (7 ·2+1, seven frequencies for each ear, and the age) multivariate normal distribution defined
by a mean roughly matching a sloping hearing loss on each ear (poorer hearing at higher frequencies). We
construct a covariance matrix which induces relationships between: the age dimension (higher age, higher
hearing loss), neighbouring frequencies (similar hearing loss for, for example, 1 kHz and 2 kHz), across ears
at the same frequency (1 kHz on the right and left ear co-vary), and overall on the ear (all frequencies on one
ear co-vary). Overall this produces archetypal audiograms with statistics roughly matching some essential
characteristics of true audiograms in a controlled manner. The archetypes are the basis for generating a
dataset of N = 212 = 4096 synthetic audiograms using an archetypal analysis generation mechanism (Cutler
& Breiman, 1994) resulting in data points that resides within the convex hull of the generated archetypal
examples. We generate convex combinations of the archetypes by sampling weights of archetypes from a
uniform Dirichlet distribution, Dir (1). Finally, the synthetically generated audiograms from the archetypal
analysis process are corrupted with a zero-mean Gaussian observational noise with a standard deviation of 5.0
dB (or 5.0 years for the age dimension). The examples are split into training, validation and test partitions.
The validation partition is used to, e.g., monitor learning and calibrate the uncertainty quantification model,
whereas the test partition is for the final evaluation.

Missingness Given data sets with fully observed data, we mask data completely at random to impose
missingness/partiality. A percentage of missing dimensions, ρ, is sampled uniformly from [0, 1] for each
datum. Following an initial random draw of ρ, we further randomly change the missingness level for 10% of
data to be completely missing and 10% of data to be fully observed. This process is either done once during
dataset generation (static missingness) or repeatedly at each batch generation (dynamic missingness). The
latter acts as a regularization/augmentation scheme similar to random input dropout. To show the effect of
augmentation, we compare dynamic and static missingness. We note that the mechanism behind dimensions
being missing influences how we should treat the “missingness”. If there is some structure to the missing
dimensions, for instance that they are missing not at random as opposed to missing (completely) at random,
this will influence the learnt representation (Mattei & Frellsen, 2019; Ipsen et al., 2021). We note that the
simple missingness we use presently does not reflect the structure that comes with the acquisition process
and the missingness patterns it induces. Learning the representation under the actual acquisition process’
missingness might prove beneficial but beyond the scope of this paper.

3.2 Model

Partial data representation learning We assume that a partially observed datum has a set of observed
dimensions O and unobserved dimensions U that jointly correspond to a fully observed datum, x ∈ RD.
Given an observed partial datum, xO, the inference network initially embeds each observed dimension, xd,
d ∈ O, producing embedding vectors of fixed sizes (here 16). Then, the embeddings are aggregated across
the observed dimensions. The aggregated embeddings are the input to the network that parametrizes an
approximate posterior distribution over a latent variable, z, conditioned on the partially observed datum,
qϕ (z|xO), where ϕ are the collected parameters of the inference network. We train these partial VAEs using
the PointNet Plus variation introduced in Ma et al. (2019).

The generative network produces distributions of the fully observed data, x, given the latent variable,
pθ (x|z). We assume the observed data dimensions are conditionally independent given the latent variables,
such that pθ (x|z) =

∏
u∈U pθ (xu|z)

∏
o∈O pθ (xo|z), where θ are the parameters of the generative network.

We follow common practice and use Gaussians for the observation distribution.
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We optimize the inference and generative networks jointly by optimizing a lower bound on the marginal
likelihood of the observed data, the partial ELBO, Lp:

log pθ(xO) ≥ Lp = Ez∼qϕ(z|xO)

[∑
o∈O

log pθ (xo|z)−DKL (qϕ (z|xO) ||p (z))
]

= −(Dp +R), (1)

where Dp, the partial distortion, denotes the expectation of the negative log-likelihood of the observed data
given the approximate posterior, and R, the rate, similarly denotes the expected KL-divergence from the
prior, p (z), where we choose a standard isotropic Gaussian.

Rate-distortion trade-offs In addition to optimizing Eq. 1, we explore models that are optimized
towards a modified objective using a re-weighting factor, β (Higgins et al., 2017):

Lp,β = −(Dp + βR), (2)

We can achieve a model more penalized by divergences from the prior by increasing β, resulting in an
approximate posterior distribution more closely resembling the isotropic Gaussian implicitly (enforcing a
decrease in the rate, R). If we decrease β, we can achieve representations that better fit the data due to
a decreased distortion, Dp. By exploring various weights, we can characterize the RD trade-off, which we
can visualize as a curve on an RD-plane. Specifically, we choose to use an adaptive schema that changes
the weight β such that the rate matches a set target rate using a schema matching the formulation used in
Dieleman et al. (2021, Eq. 7).

Predicting full observations from partial data We use a trained partial VAE to acquire an audiogram
sequentially by using the approximate posterior given the partial observation at any given time in the
process to estimate the unobserved dimension. We will denote the number of measurements by m. For
an audiogram of 14 total frequencies, a full sequence of estimated audiograms will be x̂m=1, . . . , x̂m=14,
where we have D = M + 1; the extra dimension is age, which we always observe). Here each x̂m is
the estimate of the full audiogram at the given iteration of acquisition/number of measurements. The
distribution over the unobserved dimensions, xU , given a partial datum, xO, are determined as pθ (xU |xO) =∫
pθ (xU |z) pθ (z|xO) dz ≈

∫
pθ (xU |z) qϕ (z|xO) dz. In producing an estimated x̂, we can combine the known

xO with the mean of this predictive distribution for each unobserved dimension, xu. In order to determine
the next dimension, i ∈ U , to be acquired, we use an acquisition function, R(u,xO), u ∈ U given by
the predictive distribution variance, using the superscript m to denote the current sets of unobserved and
observed dimensions:

im = arg max
u∈Um

R(u,xOm) = Ez∼qϕ(z|xO) [Var (pθ (xu|z))] . (3)

This we approximate using the sample variance of samples from the posterior predictive of the unobserved di-
mensions given multiple samples from the approximate posterior. As a baseline, we compare the performance
of the acquisition process informed by the learnt representation with a random acquisition process.

3.3 Evaluation

Estimation of full audiogram Given ground truth knowledge of the fully observed audiogram, x, we
can evaluate how well the estimate at any given point in the process approximates the full audiogram. We
can consider the root mean square error, emRMSE :

emRMSE =

√√√√ 1
D

D∑
d=1

(xd − x̂md )2
. (4)

Had we modelled with a fixed observation distribution variance of 1.0, evaluating this measure would corre-
spond to evaluating the (negative log-)likelihood under the observation model distribution if we normalized

5



by the number of dimensions. Without such a normalization by the number of dimensions, we get the
negative log-likelihood (NLL) error:

emNLL = Ez∼qϕ(z|xO)

[
−

D∑
d=1

log pθ (xd|z)
]
. (5)

Since we model variance in the observation distribution, the RMSE error and the NLL need not coincide.
Following (Ma et al., 2019), we will refer to the error of the estimate as a function of the number of
measurements, m, as an information curve. The area under the information curve is a single scalar value
that then describes the quality of the acquisition process estimation performance:

ARMSE =
D∑
d=1

emRMSE. (6)

Uncertainty quantification for stopping the acquisition process Given some uncertainty quantifi-
cation metrics from the model, we are interested in evaluating how well these metrics can inform whether or
not we can stop the acquisition process—that is, whether the current estimate is sufficiently good, assuming
some predefined level of accuracy. We train a simple, linear ridge regression model to produce a prediction
of the error, êmRMSE, on a validation set. We estimate the regularization strength on the validation set using
leave-one-out cross-validation across a range of possible values. The linear model input features are the ac-
quisition function, the partial ELBO, and the current number of measurements, m = |Om|. The acquisition
function, R(u,xOm) for all u, informs the error estimation about uncertainty in predictive distribution of
unseen data. The partial ELBO, Lmp , informs the error estimation about uncertainty in seen data. All values
can be evaluated without knowledge of the full audiogram. In this way, we can use it in a scenario where we
do not know the full audiogram and estimate whether the models’ estimates are sufficiently good.

Absolute offset error A simple way of evaluating the acquisition performance would be to consider
each measurement in all sequences as independent points and compare the predicted error with the true
error across all such points. For this, any correlation will be partially driven by the sequential acquisition
process since observing more and more dimensions reduces the error. Instead, we evaluate the uncertainty
quantification by determining an offset between (a) when the model estimated it was done and (b) when
the model was done according to ground truth knowledge. Given some threshold on the error, τe, each
sequence of acquisitions has a specific measurement index, s ∈ [1, . . . ,M ], where the true at first falls below
the criterion, s = arg minm em s.t. em < τe (dropping the subscript RMSE for clarity). During testing, we
apply the same threshold to the linear model’s prediction of the error. That is, we determine the estimated
ŝ = arg minm êm s.t. êm < τe. If not completely correct, the estimated stopping index can then be either
too early or too late, which we define as the absolute offset:

O = |s− ŝ|. (7)

We report the absolute offsets as the average across all considered sequences of acquisitions (all audiograms
in the test set). A similar approach to the evaluation of stopping an active learning process is considered
in Ishibashi & Hino (2020). We compare the stopping performance of the linear model using uncertainty
quantification to a fixed single best stopping index trained on the validation data. This baseline is a threshold
on m without any possibility of datum-specific adaptation and amounts to fitting a linear model of the error
with the measurement number as the only input feature.

4 Results and discussion

In Section 4.1, we analyze a learnt representation of the synthetic audiogram data. On this same repre-
sentation, we study a single acquisition sequence in Section 4.2 and consider the corresponding information
curves in Section 4.3. We show results for the uncertainty quantification for early stopping in Section 4.4 and
results for comparing the use of the acquisition function to baselines in Section 4.5. Finally, in Section 4.6,
we will present an analysis of rate-distortion trade-offs and their downstream effects for both synthetic and
real data.
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(a) Five archetypes (different
colours), each of fifteen dimensions:
age (diamond), and seven frequencies
on each ear, left (crosses, L) and
right (circles, R).

(b) Encoded data and archetypes
in a two-dimensional representation.
Placement of decoded grid points
shown in x-space (c).

(c) Decoded grid of latent points
shown in (b). Age (magenta di-
amond), hearing thresholds for left
(blue, cross) and right (red, circle)
across learnt representation.

Figure 1: Example of simple synthetic audiogram representation.

4.1 Learnt representation

As a simple example, we consider a simple two-dimensional learnt representation for a synthetic dataset
consisting of five archetypal components. Figure 1a shows the archetypes generated through the process
described in Section 3. These form the convex hull of the generated data in the data space, and all data
points are combinations of these archetypes, “forming a continuum between the data archetypes”. Encodings
of the archetypes and all data are shown on Figure 1b. The encodings of the archetypes reside in the extreme
parts of the representation. For all dimensions in the data space, the green component has values similar
to or less extreme than other components. The VAE has learnt to express the green component efficiently
using characteristics of the other components and has placed the component in the highest density region
under the prior. The other components that describe more unique characteristics of the generated data each
occupy a quadrant of latent space. We can decode a grid in the simple two-dimensional latent space and
visualize the learnt representation as a two-dimensional grid of 15-dimensional data points in data space.
We show such a visualization in Figure 1c, and we see how, for example, the first dimension (z1) interpolates
between the red and magenta archetype.

4.2 Acquisition sequence

Given a learnt representation, like the one visualized in Figure 1b and Figure 1c, the problem of estimating a
full audiogram given partial observations reduces to searching in the two-dimensional representation for parts
of the space that correspond well with the observed dimensions. The example sequence in Figure 2 visualizes
the full audiogram alongside the current estimate (1st column), the acquisition function (2nd column), and
the approximate posteriors of the full and partial posteriors (3rd column). Ideally, the estimates (mean in
green and distribution in grey) match the full audiogram (magenta, blue and red) in the 1st column, and
the partial approximate posterior (green) overlaps completely with the full approximate posterior (black)
in the 3rd. The first row in Figure 2 shows the model’s a priori distribution over the data, i.e., with no
observed dimensions. We assume that the age is always known, and the starting point is thus the second
row. Knowing the age shrinks the green partial posterior closer to the black full posterior and improves the
green estimate in the data space.

We observe data with a Gaussian observation noise with a standard deviation of 5 dB. The noise is a simple
approximation of the inherent noise arising from measuring an audiogram, also approximately corresponding
to the standard quantization of the hearing threshold levels into 5 dB steps. We retain this observation noise
in the observation distribution, resulting in the estimated variance always being at 5 dB for the observed
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Figure 2: Example sequence of acquisition (each row down showing more further acquired dimensions). 1st

column: estimated audiogram (green: mean, gray: distribution), ground truth fully observed (magenta star:
age, blue cross: left ear, red circle: right ear), and observed dimensions (star). 2nd column: acquisition
function. 3rd column: latent space distributions (black: ground truth, fully observed data approximate
posterior, green: current partial posterior).
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(a) Single example matching example in Figure 2. (b) Across 128 test data acquisitions, shading corresponds
to the estimated mean ± the estimated standard devia-
tion.

Figure 3: Information curves, and the area under the information curves, for the negative expected log-
likelihood (left, indigo) and the root-mean-square (right, teal) versions.

dimensions in the acquisition function plots. In the second row in Figure 2, we see that the dimension with
the highest variance (here shown as the estimated standard deviation) is the 1 kHz dimension on the right
ear. In the third row in Figure 2, we subsequently see how observing this dimension results in updated
posteriors and estimates for the full audiogram. Note how the general audiogram structure captured in
the learned representation informs the estimates for all dimensions. Observing this dimension not only
improves the estimates for the surrounding frequencies on the right ear but also on the left ear. The last
row in Figure 2 then shows the result of having repeated this procedure three additional times, i.e., by
observing the dimension with the highest variance, which—here—improves the estimates and tightens the
partial posterior around the full approximate posterior.

4.3 Information curves

Information curves summarize the performance of the acquisition sequence. Figure 3a shows the information
curves for the full number of measurements of the sequence shown in Figure 2. As a function of measurements,
we see that the errors tend to decrease. For the sequence considered, the model’s estimate is temporarily,
slightly degraded by the measurements made after five measurements. With no observation noise, the
estimate would be perfect at the final point on the curve. In that scenario, the errors would be either the
density at the mean of a multivariate Gaussian with a scalar standard deviation of 5 dB (for the negative
log-likelihood information curve) or zero for the root-mean-square error information curve. However, since
we have observation noise, the average final estimates are, at best, matching this noise. In expectation,
the root mean square error would, for instance, end up being 5 dB (even if it, here, is lower due to the
specific sample of the observation noise). Note that the learnt VAE also parametrizes the variances of
the observation distribution; if this was not the case and the VAE had instead used a fixed variance of
12 dB2, the two information curves would have been the same. We can summarize the performance of
the acquisition estimate across all stages of the process by determining the area under the information
curves (the coloured areas), which shows that this specific sequence of acquisition attained performance
of ARMSE = 267 measurement · dB (the unit here indicating the metric as being the result of integrating
the error metric measured in dB over the first axis of the information curve which has units of number of
measurements). This scalar is, of course, a simplification of the process. An asymmetric cost might be
associated with observing different dimensions, or early estimation errors might be critical in the interest of
early termination. In such cases, the area under the information curve metric would be too simplistic. We
visualize, in Figure 3b, the general performance of the acquisition process across many sequences (as opposed
to just one, as above) as the mean and standard deviation at each measurement across the sequences. The
shaded area indicates a standard deviation above and below the mean across 128 test acquisitions.
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Figure 4: Root-mean-square error as a function of (from left to right) the measurement number, the mean
acquisition function (mean variance), the partial ELBO, and the linear UQ estimate. Each dot is the estimate
error and predictor at a given point in a sequence for 128 test sequences coloured by the measurement number.

4.4 Uncertainty quantification and stopping criterion

Given an estimate of the root-mean-square error, we can allow the acquisition process to terminate early.
We visualize the evaluation procedure for the same, simple two-dimension latent model as also considered
in Figure 1, Figure 2 and Figure 3. The uncertainty quantification (UQ) relies on a simple linear model of
three predictors: the measurement number (which, when used alone, is our baseline), the mean acquisition
function, and the partial ELBO. Figure 4 shows how the ground truth root-mean-square-error estimate varies
as a function of each predictor (first three plots from left) and as a function of the linear model prediction
(last plot on the right). The Pearson correlation is the highest for the combined model, but the correlation is
driven, in part, by sequentially having acquired more observations. Instead, as described earlier, we evaluate
the model’s ability to estimate a stopping index based on the error estimate of the linear model.

Figure 5 shows a comparison between two approaches and the ground truth. The first row shows our baseline
model, which estimates the current root-mean-square error based on the current number of measurements
alone. The result, here, is a single stopping index at nine measurements across all sequences. The second
row constructs the error estimate by including the acquisition function and the partial evidence lower bound
as features to allow stopping based on sequence-specific uncertainty quantification. Finally, we compare
these models to an oracular model that perfectly knows when to stop (last row). The false negatives (purple
outcomes) are sequences where the estimated stopping index is later than needed, i.e., the true error fell below
the threshold before the model stopped. Similarly, false positives (red) are situations where the estimated
error is too low compared to the true error, resulting in early termination of the acquisition—before the
estimate was sufficiently close to the ground truth.

We see that the sequence-specific uncertainty quantification allows for a reduction in absolute offset errors,
in expectation, of about two measurements for this example. The UQ allows the model to stop two mea-
surements closer to the correct stopping index on average. This improvement is, for this model, primarily a
consequence of reducing the amount of much too late stopping estimations over the baseline at the cost of
an increase in the number of sequences prematurely stopped.

Depending on the use case of the model, the cost of early/late errors might be asymmetric. In this model,
we can account for such asymmetries by calibrating the threshold (τe) used to define stopping; to match a
desired cost-sensitive balance, we could use a threshold that has been shifted either negatively or positively
from τe when applying the threshold to the estimated error. These linear models could likely be improved,
for instance, by including acquisition sequence history and interactions between the features; our purpose
here is to show the benefit of UQ with a simple model, not to produce a highly performant estimator with
a more elaborate model.

4.5 Acquisition functions

In this section, the synthetic data remains unchanged. However, compared to the simpler models in previous
sections, we now train models with an increased capacity in terms of latent dimensions by increasing the
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Figure 5: Visualization of stopping criterion evaluation. 1st column: proportion of outcomes across all test
sequences in a binary classification of whether the process is done or not (true/false negative/positive: T/F
N/P). 2nd column: the 128 test sequences and the same outcomes (same colors, legend in 3rd row). 3rd

column: a histogram of offsets (too early, correct, or too late), and the top right corner shows the mean
absolute offset. 1st row: single best stopping index. 2nd: linear model using uncertainty quantification
features. 3rd: ground truth (dashed histogram bar indicates it has been cut off).

Figure 6: Left: RMSE information curve for three acquisition functions. Right: normalized to the greedy
single best curve.
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Figure 7: Results for NHANES-trained model evaluated on NHANES and HÖRSTAT test data. Left: rate-
distortion curves. Right: Partial (negative) ELBO as a function of rate. Each trained model gives rise to
two dots, on when evaluated on the training domain test set (blue) and one when evaluated on unseen test
data (red). Left: the partial distortion. Right: the partial ELBO. The marker shows the optimal ELBO in
each domain.

number of latents to four, with the same encoder and decoder capacity. The models optimize an unmodified
partial ELBO on the same dataset. We report the standard deviation across ten replicates of the model (ten
different model seeds on the same fixed synthetic data set) for each acquisition function.

We consider the information curve for different acquisition functions. Figure 6 shows the root-mean-square-
error information curves on synthetic data when using three different acquisition strategies. As comparisons
to the adaptive strategy, we in green show a process randomly selecting the next dimension, and, in orange, a
process with one fixed ordering for all sequences. The single best ordering is found by greedily optimizing the
ordering at each step across a validation set to select the dimension that would minimize the expected error.
Finally, in blue, we show the acquisition process that acquires the dimensions based on the max variance
acquisition function. We see that both the single best ordering and max variance acquisition outperform
the random acquisition. The max variance acquisition function process is an improvement over a single best
ordering. Except for the first measurement, the max variance acquisition has a lower error as a function of
the number of measurements and a lower variance over the sequences. The differences between the models
disappear as we observe more dimensions. For this data, the estimations at fully observed audiograms can,
in expectation, be poorer than estimates with fewer measurements because the observation model variance
can be lower than 5 dB for unobserved dimensions but is fixed to 5 dB when a dimension is observed.

4.6 Rate-distortion trade-offs

Figure 7 shows how increased rates allow for increasingly lower distortions and vice versa. The left figure
shows the partial distortion as a function of rate. The right figure shows the same information but as the
partial ELBO as a function of rate. For this figure, and the following similar to it (Figure 8, Figure 9), the
curves are moving averages when sorting the models based on the rate. Each dot is a model trained towards
a given target rate. We train models with target rates from 0.125 to 15.0, with increasingly poorer resolution
for increased target rates—i.e., we train models with target rates from 0.125 to 1.5 in steps of 0.125 (0.125,
0.250, ...), from 1.5 to 8.0 in steps of 0.25 (1.5, 1.75, ...), and from 8.0 to 15.0 in steps of 1.0 (8.0, 9.0, ...). For
all remaining experiments exploring rate-dependant qualities, we use this range of targets rates. For each
target rate, we trained either three models (three different seeds) for the larger real data sets, or ten different
models for the smaller synthetic datasets. The minimal partial ELBO is marked for both considered data
sets, NHANES (blue) and HÖRSTAT) (red). The models shown here were all trained on NHANES, and
the blue curve is unseen test data from NHANES. The red curve, instead, shows the model RD trade-off
on an unseen data set (HÖRSTAT)). We see a general increase in partial distortion across all rates—i.e.,
the information coded for does not result in a higher quality of reconstruction in the unseen dataset. We
anticipated that the optimal rate on the inter-dataset evaluation would be lower—i.e., that the red marker
would be to the left of the blue marker—but the optimal rate is slightly higher in the unseen domain than
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(a) Synthetic data, unseen domain
with small corruption.

(b) Synthetic data, unseen domain
with large corruption.

(c) Real data, training domain is the
NHANES data set (blue), the unseen
domain is the HÖRSTAT data (red).

Figure 8: Area under the curve as a function of rate for test data from training domain (blue) and an
unseen domain (green or red). For the synthetic datasets, the unseen domain are defined by a corruption
of underlying archetypal components in generating the dataset. Large circular markers indicate the optimal
rate within a domain. The smaller transparent dots indicate individual models trained towards different
target rates.

in the training domain. Simply penalizing the KL-term more harshly is not inducing better generalization
based on this evaluation of the NHANES-trained model on HÖRSTAT).

In Figure 8, we show how the area under the information curve is affected by the representation rate and
how this affects generalization. As a simple example, we construct a corrupted version of the synthetic
dataset that the model saw during training. The underlying archetypal components are corrupted with
Gaussian noise with a standard deviation of either 0.5 (large corruption, Figure 8b) or 0.05 (small corruption,
Figure 8a) times the overall standard deviation of the training dataset across all dimensions. In the small
corruption setting (left, green), the performance is only slightly decreased, with worse performance for higher
rates. When the corruption is small, the optimal rate remains about the same or slightly higher. When the
corruption is large, the area under the information curves are much worse (red curve, center plot). In the
large corruption setting, the best generalization is attained with rates lower than the rates that optimized
the performance on the original model dataset. We show a similar analysis for the real data in Figure 8c.
As for the rate-distortion trade-off in Figure 7, the optimal rate for the area under the information curve in
the unseen domain is similar to, or slightly higher than, the optimal rate test data in the seen data set.

Figure 9 shows four metrics for the partial VAE acquisition process as a function of the model rate on synthetic
and real data. The first row shows the results for models trained on a dataset with static missingness—a
scenario where the dataset we learn from is partially observed. The second row shows the result of dynam-
ically inducing missingness in a dataset, reflecting the situation where we attempt to learn representations
of partial data by imposing some missingness pattern on a dataset with fully observed data. The dynamic
missingness works as augmentation, where the missingness pattern changes each time a datum is part of
a batch. We can apply dequantization with new dequantization noise sampled at each batch generation.
Dequantization accounts for the fixed 5 dB intervals in which real audiogram thresholds are, typically, mea-
sured. The second-row synthetic data includes this dequantization as well as the dynamic missingness, too.
The last row shows the results for the models trained on the NHANES dataset using the dynamic missingness
and dequantization.

For all rows, the first column shows the partial distortion as a function of rate for both the training data
(dashed, green) and test data (full, blue). For the first row, the distortion continues to fall as the rate
increases for the training data. In contrast, the test data distortion reaches a minimum at a rate of about
5 nats (indicated by the round, blue marker). Balancing the rate and the distortion equally results in the
partial ELBO (marked by a red triangle) at a lower rate of about 3 nats. At higher rates, the models overfit,
producing poorer generalization to the test set. This gap disappears when considering the models trained
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Figure 9: Partial distortion (1st column), acquisition prediction error (2nd column), acquisition uncertainty
quantification performance as stopping offset (3rd column) and estimated stopping index (4th column) as
a function of rate. 1st row: synthetic data with fixed missingness. 2nd row: synthetic data with dynamic
missingness and dequantization. 3rd row: real data, NHANES. For the synthetic data, the stopping threshold
on estimated error was set at 5 dB RMSE, and for the real, more complicated data, a threshold of 7 dB
RMSE was used. Dp: partial distortion (blue circle, superscript asterisk indicating optimal value). O:
absolute offset (yellow star). Lp: partial ELBO (red right caret/triangle). Ŝ: estimated stopping index
(magenta diamond). ARMSE (green left caret): area under the information curve for root-mean-square error.
The superscript start indicates optimal value)
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(synthetic and real) with dynamic missingness and dequantization on the second and third row. Here, the
lowest test distortions are attained at much higher rates for these models (the blue, circular marker is far to
the right). The second plot shows the area under the information curve (ARMSE, for the RMSE error) as a
function of rate (we only show the test data curve here). The models that produce low partial distortions,
even on the test data, do not produce good estimates of the full audiogram. This is true in the setting
where the model overfits to the training data for the higher rates (first row). However, the same behavior
is seen for the scenario where the models do not display a gap between the RD curves for training and
test data (second and third row). That is, poorer acquisition performance at higher rates is not a result of
overfitting to the training data in a straightforward sense but rather a consequence of too high informational
rates. The extra information produces lower distortions even on the test set, but the information is not
valuable for the downstream acquisition task. The optimal rate for the area under the information curve
metric (marked by a green triangle) is considerably below the optimal distortion (blue circle) and nearer the
optimal ELBO (marked by red triangular marker). The acquisition uncertainty estimation performance, as
quantified using the absolute stopping offset (O), is shown in the third column. Again, the models with the
lowest distortions produce poor uncertainty quantification, but the optimal rate (marked by a yellow star) is
closer to the rate of the partial ELBO. The same is true for the last column, showing the optimal stopping
index (lowest amount of measurements until the model estimates it is done, marked by a magenta diamond).
In the synthetic data with dynamic missingness (second row), both the optimal area under the information
curve, absolute offset and lowest estimated stopping index are at rates lower than the optimal partial ELBO.
For the static missingness, only the area under the information curve appears to have a lower optimal rate
of the considered compared to the optimal rate for the partial ELBO. For the real data, only the absolute
stopping offset appears to have a lower optimal rate than the ELBO.

We compare the stopping evaluation to the baseline stopping (using only the measurement number) in
Figure 10. Figure 10a show the results on the synthetic data with dynamic missingness and dequantization
(the same considered on the second row of Figure 9). We see that the estimated stopping index and error in
this estimation (the absolute stopping offset) are lower for all rates for the uncertainty quantification linear
model compared to the baseline single index stopping method. The difference is the largest for optimal
rate configurations. Another view of how the UQ model with access to the acquisition function and partial
ELBO produces more well-calibrated stopping estimates than a model solely using the measurement number
is shown in the right plot. This shows that the RMSE at the stopping index more closely matches the
specified threshold of 5 dB RMSE in the UQ model compared to the baseline, which stops too late (the
error is too low w.r.t the threshold of 5 dB). The same conclusions apply to the real data, as shown in
Figure 10b—as for the results in Figure 9, the real data uses a less strict threshold (7.0 dB) for stopping to
reflect the more complicated problem. Setting the threshold at 5.0 dB for the real data would result in an
estimated stopping generally coinciding with the maximum number of measurements.

Broader Impact Statement

We provide an in-depth analysis of rate-distortion trade-offs in variational autoencoder representations.
Specifically, we show how downstream performance is affected by these trade-offs. Improving our understand-
ing of generalization in variational autoencoder representation learning frameworks through rate-distortion
analysis is of general applicability; while we consider partial data and sequential acquisition, no particular
aspect of this formulation hinders this type of analysis being generally useful where variational autoencoders
are used.

Mahomed et al. (2013) conclude that there is a need for knowledge on difficult-to-test and different types and
degrees of hearing loss. Applying a representation learning scheme with robust acquisition performance and
uncertainty estimation is especially important when the diversity of the population increases. Automated
audiometry can be used to provide hearing healthcare services to underserved populations and areas (Ma-
homed et al., 2013). When applying learning based models in such scenarios, the learnt representation might
reflect the large, available data sets, whereas lack of data can result in poorer performance of the model on
the underserved populations—and lack of evaluation data might blind us to deficiencies of our models. In
this case, improving and understanding how representations generalize is especially relevant, and our analysis
shows how we might begin to increase robustness by exploring the rate-dependency on downstream tasks.
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(a) Synthetic data.

(b) Real data, NHANES

Figure 10: Stopping criterion comparison to baseline. Both representations trained with dynamic missingness
and dequantization. O is the absolute stopping index, or how far away from ground truth correct stopping
index the model stopped. Ŝ is the estimated stopping index, indicating at which measurement the model
did stop (the estimating stopping index plus the offset would produce the true, oracular stopping index.
The RMSE at the stopping index, eŜ , shows how well the model hits a designated target (of 5.0 dB for
the synthetic data and 7.0 dB for the real data). The UQ-based stopping process stops earlier and more
accurately than the baseline method.
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5 Conclusion

We show how a partial variational autoencoder representation can be use to efficiently, sequentially acquire
partially observed data, and we provide in-depth analysis of the rate-distortion trade-offs that affect the
model. In particular, we explore how to efficiently measure audiograms considering both controlled, synthetic
data generated using an archetypal generation mechanism and on real data from both the United States and
Germany. We show how using an acquisition function based on uncertainty in the variational autoencoder
representation improves acquisition over using a predetermined, globally best ordering. The acquisition
function chooses the dimension of maximal variance given an encoding of the partially observed data. The
same encoding provides an estimate of the full audiogram, and we show how the representation’s uncertainty
quantification allows more accurate early acquisition termination than single best stopping index. We use
the number of measurements, the partial evidence lower bound, and the acquisition function as features in a
linear model to estimate the model’s error in predicting the full audiogram from the partial audiogram. We
show that the uncertainty quantification termination is more accurate than a model that terminates based
on a globally best stopping index alone.

Finally, we show how both the full audiogram estimation and the termination procedure performances are
rate-dependent. Models that produce the lowest distortions at the expense of high rates, even on unseen
test set, provide poor downstream performances. The optimal rates were not in all cases coinciding with the
rate that optimized the evidence lower bound, but lower rates (“stronger regularization”) did not invariably
improve generalization. This points to the importance of accounting for rate-distortion trade-offs when using
VAEs for data completion and uncertainty quantification as presently illustrated in the context of efficient
audiogram acquisition.
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Improving Speaker Separation
Generalization with Variational Inference
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Abstract

Audio processing networks with encoder-masker-decoder architectures are effective
speaker separation systems, but their generalization abilities have deficiencies
that limit their real-world viability. Building on existing deterministic models,
we propose a variational inference approach to learn stochastic encodings as
well as stochastic masks that can be applied to the encodings for separation. To
facilitate this, we introduce a likelihood with scale-invariance properties similar
to a commonly used separation objective. We show that the approach improves
generalization to new datasets while also improving overall test performance. The
probabilistic framework further enables a wide range of modeling possibilities; we
consider three aspects in particular: rate-distortion analysis on speaker separation
generalization, the influence of prior specification on performance, and the relation
between quantified uncertainty and performance.

1 Introduction

Speaker separation has seen great advances with deep learning (DL)-based methods [1]. A series of
models following an encoder-masker-decoder (EMD) architecture perform particularly well. These
models, building upon time-domain audio separation networks (TasNets) [2], are separating in a
learned encoding space by means of a masker (see Figure 1a). A convolutional variant [3] was shown
in certain scenarios to outperform a traditionally strong oracle baseline in both objective distortion
measures and perceived, subjective audio quality. Later work has improved performance by, for
example, introducing improvements to the masking network such as using dual-path recurrent neural
networks [4] or using attention mechanisms [5]. However, TasNet inter-dataset generalization (test
data from unseen datasets) is poorer relative to the intra-dataset generalization (unseen test data from
the same dataset as the training data), and similarly, when presenting mixing procedures different
from the training task [6, 7]. That is, the models learn to separate speech in a manner that does not
generalize well beyond the training dataset and task, limiting their utility in a real-world setting.

In standard supervised learning, a mapping is learned from a high-dimensional input to a low-
dimensional supervision label. DL models with sufficient capacity will generally be able to learn
near-perfect mappings for simple problems on the training data, but if these models are not adequately
constrained, the implicit representation of the input will not generalize. This over-fitting is caused by
the model learning to map uninformative characteristics for training data points to their labels. Models
like TasNets can, for the same reasons, fail to generalize if not properly regularized, even though the
supervisory signal is more high-dimensional. Generative models, on the other hand, aim to learn the
distribution of data. By tasking the model with reconstructing data, representations can be learned
without explicit guidance from a label or supervisory signal. The generative task provides a learning
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signal to infer patterns that are robust (generalize well) such that the learned representations can be
usefully applied in another task of interest. Such models include, for example, directly modelling
the likelihood of the data [8–10] or using variational inference (VI) with variational auto-encoders
(VAEs) [11, 12].

In the particular case of VAEs, the models learn an explicit representation of the input (i.e., an
encoding, or latent representation), through a stochastic mapping (i.e., an inference network) from an
input to a latent space. Learning this encoding is coupled with learning a similar mapping (i.e., a
generative network) from the latent and back to original data. The mappings both produce distributions
over either the latent space or the original data space. In learning these mappings, samples from the
latent distributions are taken, and the parameterization of the distributions are updated to improve
the model. Simplistically, the stochasticity of the sampling can be likened to injecting noise in the
learning procedure, and it enables models to learn both to characterize the variation for a particular
input and to be robust to such variations. VAEs have been successfully applied in modelling data
in a wide variety of domains, such as computer vision, chemistry, natural language, and astronomy
[13]. VAEs have also been applied for time-domain modelling of speech enhancement in particular
[14] and of audio in general; for the latter, a high-capacity encoder-decoder can, for example, learn
representations that enable voice conversion and has learned representations that correlate with high-
level representations such as phonetic content [15]. VAE-based semi-supervised learning enables
learning from large amounts of unlabeled data, such that the representation can be used to efficiently
learn how to solve a specific task using fewer, but labelled, examples [13].

In the following, we explore whether a generative approach can characterize and improve the
generalization of encoder-masker-decoders (EMDs), such as TasNets. We leverage that these networks
have an encoder-decoder structure, similar to (variational) auto-encoders (AEs) (see Figure 1).
Specifically, we consider speaker separation EMDs in a VI/VAE framework by recasting the learning
of the EMDs as VI of latent variable encodings and masks coupled with reconstructing single source
components of an input mixture. To facilitate this, we present a likelihood function with properties
similar to the scale-invariant signal distortion ratio (SI-SDR) with which TasNets are mostly trained.
We focus on TasNets for simplicity and introduce variational inference TasNets (VI-TasNets), but we
stress that the approach can readily be used for any EMD architecture, notably also e.g. improved
succesors to TasNets (of which we consider the SuDoRMRF). We investigate generalization to unseen
datasets from the perspective of rate-distortion (RD) analysis, exploring the implications of jointly
minimizing the separation performance (i.e., the distortion) and divergence from the prior (i.e., the
rate). The prior on the latent variables further facilitate imposing desired properties, and we explore a
model going beyond the standard isotropic Gaussian prior using log-normal mask priors and adaptive,
additive encoding priors. Lastly, we consider a multitasking model’s ability to quantify the uncertainty
of its separation performance in a more realistic setting where the underlying sources are unknown.

2 Background

Speaker separation Speaker separation, and its application towards solving the cocktail party
problem [16], has been studied for many decades, especially from the perspective of classical
(digital) signal processing. Re-framing the problem as a DL supervised learning problem has
enabled many advances in how well speaker separation can be done (see, e.g., Wang and Chen
[1] for an overview). Speaker separation is the task of recovering a set of (clean) single sources,
S = {s0, . . . , sN}, from a (potentially noisy) mixture of the components, x, under some mixture
generating function, Mix. A simple expression with a set of speakers and single noise source of
this could be e.g. x = Mix(s1, . . . , sN , n) = n +

∑N
i=1 si, where x, si, n are time-series (e.g.

x = [x0, . . . , xt, . . . , xT ]) of length T , and n is some interference/noise time-series. In this work, for
Mix, we consider a simple additive mixture process for a mono-channel audio signal.

Deep learning speech separation A wide variety of approaches for DL speaker separation systems
exist, but broadly speaking, an overarching difference between the approaches lie in whether the
models are relying on a spectrogram or frequency-based representation of the audio or are directly
operating on a time-domain representation. Similarly, a distinction can be made between high-
performance, large, complex (in parameter counter, operations per second to process, etc.), high-
latency systems targeted to function offline versus smaller, efficient, and real-time capable models, of
which TasNets are the latter. TasNets (see Figure 1a) utilize an EMD structure directly operating on a
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time-domain representation of the audio [2]. Separation is done by estimating masks that are applied
to the mixture encoding such that decoding the resulting masked encodings provides estimates of
the component sources in isolation. That is, an encoder (fφ(x) = z) provides an encoding (z) for
an input mixture (x). The encoding is fed to a masker (hψ(z) = M) which provides a set of masks
(M = {m0, . . . ,mi}) that will be applied to the encoding. Applying a given mask (mi) to the
encoding provides a masked encoding (ẑi = mi ⊙ z). Finally, the decoder (s̃i = gθ(ẑi)) outputs
estimates of the single sources (s̃i) based on the masked encodings. While the original TasNet relied
on recurrent neural network (RNN) architectures to estimate masks, a variant using dilated temporal
convolutions (Conv-TasNet) was shown to learn a more efficient and better-performing separation
system [3], even outperforming spectral oracular performance methods (ideal ratio masks) in some
scenarios. In training these models, assigning which estimated single source corresponds to a target
source is a permutation problem, and the use of (utterance level) permutation invariant training
(PIT) enables the model to learn by using only the best permutation of the known target sources to
estimated sources (on an utterance level) to determine the loss [17]. A limitation of these models is
their requirement of separation into a fixed number of speakers; this is a central problem addressed in
other work [18, 19].

Scale-invariance TasNets are usually trained towards maximizing the SI-SDR [20], which for a
known source s and estimated source ŝ is defined as:

SI-SDR(s, ŝ) = 10 log10
(
||αs||2/||αs− ŝ||2

)
, α = ŝ⊤s/||s||2, (1)

where || ◦ || designates the 2-norm. The α coefficient rescales the target such that the error in the
denominator between the estimated source and target source is measured in a way that is invariant
to the overall scale (power) of the time-series. While the scale-invariance is a central part of the
formulation of SI-SDR, it notably measures the error in a logarithmically scaled manner. Often
a scale-invariant signal-to-distortion-ratio improvement (SI-SDRi) is reported, giving the SI-SDR
increase in using the processing over using the input mixture as the estimate of the single source.
A similar objective function to SI-SDR that does not re-scale the target but retains the logarithmic
scaling of the errors is the logarithm of the mean-squared error (MSE). A log-MSE has been shown
to enable training of TasNets in a manner similar to the SI-SDR [21], while a standard MSE does
not achieve comparable results. That is, training a TasNet with an MSE loss (as opposed to using a
SI-SDR or log-MSE) does not provide performant speaker separation in TasNets.

Generalization of TasNets TasNets show drops in performance when evaluated on datasets unseen
during training. Kadioglu et al. [6] found significant drops in performance for a model trained on
LibriTTS when evaluating it on test sets from VCTK [22] and WSJ0-2 [18] (about 6 dB poorer
relative to a LibriTTS test set). However, Cosentino et al. [7] argued that these effects are partially
due to differences in SNR-calculation and characteristics of the utterances in the corpora. They show
that training on a different dataset, LibriMix, actually shows higher performance on the WHAM!
test set (a noisy extension of WSJ0-2mix), while less significant drops (on the order of 1-2 dB) are
still found when evaluating on VCTK. Their findings indicate that training on a larger, more diverse
dataset reduces the inter-dataset generalization error, but that a generalization gap persists in going
from e.g. LibriMix to VCTK.

Realistic data We can consider speaker separation in quiet, in simplistic noise (additive Gaussian
noise), and more realistic noise (using realistic recordings of background noise of speech). Realistic
data and problems are key to developing models viable for actual use. Standard benchmarks often
investigated, such as WSJ0-2, often lack diversity in the speakers and recording conditions, have
unrealistic mixing process (e.g., with too high overlaps), have no consideration of reverberation, use
a fixed number speakers, or are based on non-ecological speech material (i.e., speech recorded, for
example, while reading written material aloud as opposed to during a natural conversation) [7]. Later
datasets have since addressed some of these issues, e.g. by extending WSJ with realistic, reverberant
noises in realistic conditions [23, 24], integrating multiple corpora [25], a more diverse set of speakers
[26], sparse speaker overlaps [7], and varying number of speakers and sound types [27]. In this
work, we will rely on LibriMix [7], since it both includes realistic noises (from WHAM!) and a large,
diverse set of speakers based on LibriSpeech [28]. While we focus on mono-channel separation,
multi-channel processing that can utilize spatial information will be more relevant in reverberant
environments.
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Variational autoencoders (VAEs) A VAE is a latent variable model that aims to learn a representa-
tion of high-level features of data at scale through amortized approximate inference of variational
distributions using deep learning [11, 12]. For a given data point, x, a VAE optimizes a lower bound,
L, on the model evidence, or evidence lower bound (ELBO):

ln pθ(x) ≥ L(x;φ, θ) = Eqφ(z|x) [ln pθ (x|z)]−DKL(qφ(z|x)||p(z)), (2)

where θ, φ are the encoder and decoder parameters, respectively, qφ(z|x) is a variational approxima-
tion to a true, but intractable, posterior pθ(z|x), Eqφ(z|x) denotes an expectation w.r.t. the variational
distribution, and DKL is the Kullback-Leibler (KL) divergence. The distributions pθ(x|z) and
qφ(z|x) are parameterized by the decoder/generative network and by the encoder/inference network,
respectively. The encoder maps from a given data point, x, to a latent representation, z, and the
decoder learns to map from the latents back to the data. Often the parameterized distributions are
Gaussians, and an isotropic Gaussian is used for the prior, p(z). By optimizing L, we ensure that
the model in z, learns—in some sense—a well-behaved, compressed representation of x (ensured
by the “KL divergence term”) while still being able to reconstruct the data (ensured by pθ(x|z), the
“reconstruction term”).

Priors, rate-distortion and compression Commonly, an isotropic Gaussian prior imposing less
co-varying, smaller magnitude latents is used. This prior can be prohibitively restrictive, and using
more expressive priors can improve learning [29–31]. Other characteristics can be imposed by
using non-Gaussian priors, such as a directional or non-negative distribution [32, 33]. Balancing
reconstruction (the negative log-likelihood of the data, or distortion, D) and deviations from the prior
(the KL between approximate posterior and the prior, or rate, R), for instance with a re-weighting
(as in β-VAEs [34]) can provide different behaviours of the representation. Targeting lower rates
under isotropic Gaussian priors can provide better disentanglement by some measures [35] and,
notably, affects generalization [36]. We can visualize these trade-offs as RD curves, and Alemi
et al. [37] discuss the RD-trade-off, feasible and realizable models, their relation to the entropy of
the data and the capacity of the model. Notably, the information bottleneck principle shows how
there is an optimum rate when seeking to improve generalization [38, 39]. We discuss these aspects
in greater detail in Appendix E. In particular, we also discuss the representation learning aspects
of RD curves, how these trade-offs relate to compression [40], and how these trade-offs are also
related to further quantities regarding matching the overall data distribution (similar to a standard
generative adversarial learning objective) [41], and how, e.g., over-completeness and sparsity fits into
VAE-based representation learning [42].

3 Variational Inference Encoder-Masker-Decoder Separation

We propose a probabilistic modelling variant of EMDs. We introduce VI-TasNets that closely
resemble a well-studied [7] (deterministic, Conv-)TasNet [3]. Note that we refer to the Conv-TasNet
as the deterministic TasNet, or just TasNet, for brevity. We stress that the VI-EMD framework can
readily be applied to later extensions that are e.g. more performant or more explicitly consider
reverberations. Like TasNets, VI-TasNets use simple, single-layer, convolutional encoders and
decoders. For TasNet, the outputs of the encoder directly provide encodings, and in VI-TasNet, the
same outputs instead parameterize encoding distributions, e.g. the means and variances of Gaussians.
Similarly, while the TasNet masker and decoder directly output masks and the estimated sources, the
VI-TasNet parameterizes distributions over the masks and the estimated sources. An overview of the
model is shown on Figure 1c. Example model outputs are given as visualizations in Appendix C, and
as audio in the supplementary material.

Encoder and masker distributions For the encoder distribution, we consider a large, over-complete
K-dimensional latent space (K = 512), matching the TasNets. For an input time-series x of length T
to the encoder, we obtain a distribution of a latent time-series of length T ′. The sampling frequency
of the two is related through the strides of the encoder-decoder structure; we choose a lower latent
space tick, such that T/T ′ = 8. Note that the input time-series is one-dimensional, x ∈ R1×T , while
the latents have K dimensions per latent time step. We opt for factorized Gaussian approximate
posterior for the encodings parametrized by fφ; similarly, we opt for log-normal masks parametrized
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(a) TasNet
(b) AE

(c) VI-TasNet (d) VAE

Figure 1: EMD models, such as TasNets depicted in (a), share an encoder-decoder structure with
AEs in (b) and their variational inference (VI) counterparts VAEs in (d). VI-EMDs, like VI-TasNets
shown in (c), are robust, variational extensions. VI-EMDs learn distributions—over encodings z
of audio and multiplicative masks m—by reconstructing single sources s from the input mixture
x. Deterministic parametrizing networks blue, green, red: encoder (φ), masker (ψ), decoder (θ).
Variables: explanatory (gray), stochastic (yellow), deterministic (diamond). ⊙: Hadamard product.

by hψ (mimicking non-negative properties of a ReLU activated TasNet mask):

qφ(z|x) =
∏K
k=0

∏T ′

t′=0 N (zk,t′ ;µ
φ
k,t′ , (σ

φ
k,t′)

2), (3)

qψ(M|z) =
∏N
n=0

∏K
k=0

∏T ′

t′=0 LN (mn,k,t′ ;µ
ψ
n,k,t′ , (σ

ψ
n,k,t′)

2), (4)

where e.g. µφk,., σ
φ
k,. are time-series of length T ′ with distribution parameters (location and scale) for

the k’th latent dimension output. For further specifics and prior specifications, we refer to Appendix F
and Appendix L for discussion of other choices of prior.

Decoder distribution In standard VAEs, a typical choice would be to parameterize a per time-step
Gaussian for the generative network: pθ(s̃|z) =

∏T
t=0 N (s̃t;µt, σ

2
t ), where µ., σ2

. are time-series
output of the decoder, gθ. Given a fixed unit variance, this would correspond to an MSE loss, which,
as discussed, does not train performant TasNets. In Appendix I, we discuss a multivariate Cauchy
objective (MVC) since the log-likelihood conceptually enables us to minimize a log-error similar to
the log-MSE [21]. The SI-SDR is not a likelihood, but we are interested in a likelihood that is similarly
invariant to a re-scaling of the time-series. Where the SI-SDR uses α (Eq. 1), we take the view that
a similar factor γ is a regression coefficient. Using Bayesian linear regression (BLR), we wish to
model both γ and a noise-scale parameter, σ2. For the target time-series s with steps st, we consider
a linear regression model in which the approximation s̃ takes the role of predictor: st = s̃tγ + ϵt,
where ϵt ∼ N

(
0, σ2

)
. Conjugate priors for σ2 and γ take the form p

(
γ, σ2

)
= p

(
σ2
)
p
(
γ|σ2

)
,

where p
(
σ2
)

is an inverse-gamma distribution with parameters a0 and b0, Inv-Gamma(a0, b0), and
the conditional prior distribution for the regression coefficient is a normal distribution with a mean µ0,
and variance σ2λ−1

0 , where λ is a scalar prior precision for the regression coefficient. Update rules
for these parameters enable us to determine a likelihood for given time-series given the input s̃ when
integrating over γ and σ2, pθ (s|s̃) =

∫
p
(
s|s̃, γ, σ2

)
p
(
γ, σ2

)
dγdσ2. This provides an analytical

expression for the likelihood which we use in the optimization of VI-TasNets as the distortion measure.
For further details, see Appendix H, where we show a comparison to the SI-SDR and show how they
optimize related quantities.

Evidence lower bound The ELBO optimzed with VI-TasNets takes the form (derivation in Ap-
pendix B): log pθ(S) ≥ L(θ, φ, ψ;S) = −DS −Rz −RM, where, DS is the distortion of the single
sources (how well they are reconstructed), Rz is the divergence of the encodings from their prior (the
encoding rate), and Rm is the divergence of the masks from their prior (the mask rate). Different from
an actually auto-encoding VAE, the VI-TasNet reconstructs single sources instead of the original
input to the encoder. To explore the RD trade-off, we use various modified losses based on the ELBO
during training (by means of free bits, adaptive reweighing of the rate, or a β-coefficient; see details
in Appendix E).
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Flexible priors We can consider priors that are more flexible than the standard, static ones. In
Appendix J, we discuss a learnt auto-regressive flow prior. While such a prior constitute a powerful,
domain-agnostic approach to a more flexible prior, we also introduce a domain-inspired adaptive
prior which promotes that mixture encodings resemble an addition of single source encodings. Such
a prior is in part motivated by the separation task, seeing as the separation-by-masking is assuming a
similar underlying generation mechanism. In itself, the use of a masker in the encoded space with
element-wise masks on the mixture encoding can be thought of as an inductive bias, or architectural
prior, under which the model is learning to separate. The addition of random variables corresponds to
a convolution of their distributions, and, for the encoding distributions we use, we have closed-form
convolutions (see Appendix F). Consider now encodings of single sources for the known true single
sources, si, in Figure 1; using a notational shorthand for the encodings of the single sources, we
define an adaptive prior for the mixture encoding as:

qφ,a = qφ (za|sa) , qφ,b = qφ (zb|sb) , pφ (z|S) = (qφ,a ⊛ qφ,b) (z), (5)

where ⊛ denotes a convolution operation, which amounts to enforcing that the mixture encoding is
a sum of the single source encodings z = za + zb. We add corresponding rate terms to reflect the
single source encodings divergence from a prior. This is needed to use the adaptive prior to ensure
that we actively promote that qφ,a and qφ,b resemble the distributions that we convolve in making the
adaptive prior.

Multitasking VI-TasNet with autoencoding objectives A model that utilizes the described adap-
tive prior already obtain encodings of the single sources. We can utilize the single sources as a
target signal, too, combining the VI-TasNet separation task with a single source AE task, sharing the
encoder and decoder parameters. This amounts to adding a distortion term stemming from decoding
the single source encodings instead of masked mixture encodings. We can further augment such a
multitasking model with a mixture AE task, especially relevant since we do not have the true single
sources in a real-world scenario. We reconstruct the original mixture from the obtained mixture
encodings and add a mixture reconstruction distortion term. An overview of this setup is shown in
Appendix D. Adding mixture AE also provides a quantification of how well the model fits the mixture,
and we investigate whether the mixture AE performance is indicative of separation performance,
which would provide a principled uncertainty quantification for the separation system.

Comparison with later TasNet variant Finally, we can investigate how the variational inference
procedure affects later developments of EMD models. We choose to investigate the “successive
downsampling and resampling of multi-resolution features” (SuDoRMRF) model [43], as this model—
like the original (Conv-)TasNets—seeks to have a minimal footprint. The SuDoRMRF model uses a
more efficient, convolutional separation module relying on an architecture reminiscent of U-net [44].
We isolate the effect of the VI framework and enable a comparison to the (VI-)TasNet results by only
replacing the masking network, and otherwise keeping everything the same. For further details on
this, we refer to Appendix J.

4 Related work

Later EMDs similar to TasNets remain competitive models for speaker separation. Improvements
include improved dilated temporal convolution blocks and multi-scale modelling [45, 43], specialized
RNN architectures [4], and utilizing transformers/attention mechanisms in the masker [46, 5]. Other
separation networks rely on e.g. explicitly modeling speakers and perform separation using on
a learned speaker stack [47], or—in line with Luo et al. [4]—use specialized RNNs [19]. Early
work separated using a clustering approach [18], and recently attractor-based systems have been
proposed [48]. Beyond the currently considered anechoic problems, recent works have more explicitly
considered reverberant environments and spatialized problems e.g. incorporating neural beamformers
[49, 50]. While we use VI to improve generalization, pre-training tasks have been considered; some
show improvements with speech enhancement pre-training [51], and a range of self-supervised
learning approaches [52]. Other improvements to the training procedures include MixIT [53] and
ReMixIT [54].

Spectral speaker separation VAEs Speaker separation in the frequency domain using VAEs has
seen many studies in recent years [55–64] including also multi-channel models [65, 66], and models
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integrating visual information [67]. Girin et al. [68] present more general considerations on modelling
audio spectrograms with VAEs. While these methods employ VAEs towards speaker separation,
they operate in a spectral representation (often using the short-term Fourier transform), where the
presently considered work is concerned with directly modelling the time-domain audio waveform. The
difference in TasNets modelling spectral or temporal representations is considered in Bahmaninezhad
et al. [69]. It can be beneficial to use spectral losses to optimize AEs even if operating in the time
domain [70]. Hybrid TasNets are proposed that use both spectral and temporal representations [71].
Such hybrids provide an avenue for leveraging the extensive study of spectrogram VAEs with the
present work.

Time-domain modelling Deep learning speech separation in the time-domain has been done using
WaveNets, e.g. in a generative modelling framework [72], or in discriminative, non-autoregressive
variants [73]. As audio modelling with generative adversarial networks [74] and flows [75] improves,
similar concepts are applied in speech separation and enhancement including both adversarial [76–78]
or flow-based methods [79]. In all cases, the models produce speech separation with high-quality
outputs but they rely on a high model complexity as compared to TasNets to achieve these results.
Structured State Space sequence (S4) models [80] have improved audio modelling [81], but have
yet to be applied to speaker separation. VAE applied to time-domain audio notably include e.g.
VAEs with WaveNet decoders [15, 82], and more recently NaturalSpeech, used for text to speech
[83]. Time-domain VAEs are less studied for speech separation (speaker separation and/or speech
enhancement). One example is the variance constrained (VC) AE for speech enhancement [14]; the
VC AE focuses on a different task and does not optimizing a VAE objective, and the VC AE model
differs from the present work in that the VI-TasNet relies on the same architecture as the well-studied
EMDs/TasNets (using masking of the encodings for separation).

5 Discussion

Figure 2: RD curves for speaker
separation on synthetic (top) and
real data (bottom). Stars denote op-
timum distortion within a dataset.
LM: LibriMix, V: VCTK, L/M/H:
low/mid/high noise setting.

Synthethetic data We introduce a simple synthetic dataset
for source separation; the dataset constitutes a controlled, sim-
plified speaker separation problem, see Appendix K for further
details on the data. The datasets consist of “2-speaker” mix-
tures, where the sources are generated as a number of overlap-
ping randomly-generated sinusoidal Gauss pulses in a speaker-
specific frequency range with overtones. On this dataset, we
fit a series of VI-TasNets using an adaptive re-weighting of the
total rate (encoding rate and the masking rate) towards a desired
target rate (see Appendix E) for specifics on the procedure. For
the synthetic data, we reduce the capacity of both the encoder-
decoder and the masker to fit the complexity of the problem by
reducing the number of filters/channels, but otherwise we use
the same architecture overall as are used in later experiments.

LibriMix/VCTK data We consider N = 2 talker mix-
tures with a sampling frequency of 8 kHz from the LibriMix
dataset [7]. We use the same processing and splits and con-
sider mixtures of length matching the shortest single source
(the “min” mode). We train models either on the clean or the
noisy 100 hour variant (Libri2Mix train-100). Single replicates
are reported for these models considered, and randomness in
the initialization is not characterized; for further specifics on
training/compute-requirements and model/results limitations,
see Appendix J. We evaluate the performance of these models
in their ability to generalize to both a “familiar” Libri2Mix test
set and to the “unfamiliar” VCTK-2mix test.

RD and generalization In Figure 2 (top) we show test-set RD
curves for models trained on a given level of Gaussian additive
noise (dashed, black, medium noise) on the synthetic data (lines
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are running means of distortion as a function of sorted rates). The curves show the expected trade-off
of poor distortion at low rates. Note that rates are normalized by the number of latent dimensions.
The models with the highest rates (above 1.25 nats/dim) display poorer separation performance than
models with slightly lower rates, indicating that high-rate models learn sub-optimal representations.
We evaluate the same models in lower (full, green) and higher noise settings (dotted, red), and we see
that an optimal rate lower than the highest rates exists in all conditions. Furthermore, the distortion
difference between optimum and high-rate models grows in a low noise setting compared to the
training domain. This is evidence of how expressive models that optimize single source distortion over
rate produce poorer generalization. In particular, these results show that the variational framework
for separation displays trade-offs for rate, distortion and generalization that match the information
bottleneck perspective. This, in turn, provides an avenue for improving the generalization of EMD
models, since we can learn models that jointly optimize rate and distortion in a principled manner.
Further details and conditions are discussed in Appendix M.

We investigate the same concept in the real speaker separation data. We evaluate test-RD curves
for models trained on clean LibriMix. These models were trained using various levels of free-bits,
details in Appendix E. Models with very low rates and higher distortions were trained but omitted
in the visualization for clarity. In Figure 2 (bottom), we see that models with rates that are too low
perform poorly, and we see indications that the model with the lowest distortion in LibriMix does
not achieve the best distortion in VCTK, where instead a lower-rate model performs the best. The
deterministic models will solely optimize a distortion and do not quantify the informational rate, and
so the results for generalization (from a LibriMix-trained model to VCTK) are consistent with the
need for considering models that can quantify and optimize the distortion and rate jointly to achieve
improved generalization.

Table 1: SI-SDRi (and performance drop from LibriMix to
VCTK) for models trained on the 100 hr noisy 2-speaker
LibriMix data. Models are not trained on the clean condi-
tion, it is an unseen test condition, similar to how VCTK
is an unseen dataset/domain. See Appendix N for further
metrics. †using only the SuDoRMRF separation module.
N: noisy, C: clean.

Model LibriMix VCTK Drop

N TasNet 11.6 9.9 1.8 (0.15)
VI-TasNet 12.0 10.4 1.6 (0.13)

C TasNet 13.0 10.4 2.6 (0.20)
VI-TasNet 13.6 11.4 2.1 (0.16)

N SuDoRMRF† 11.1 9.2 2.0 (0.18)
VI-SuDoRMRF† 11.5 9.5 1.9 (0.17)

C SuDoRMRF† 12.5 9.8 2.7 (0.22)
VI-SuDoRMRF† 12.9 10.4 2.5 (0.19)

Improved generalization to unseen
data and conditions We train a VI-
TasNet with Gaussian encodings and log-
normal masks using the BLR likelihood
optimizing an adaptively reweighted
ELBO towards a target total rate. As
the deterministic baseline, we train a
TasNet using the standard SI-SDR ob-
jective. Having trained the models on
the noisy LibriMix, we contrast perfor-
mance seen/unseen conditions (noisy,
clean) and seen/unseen datasets (Lib-
riMix/VCTK). The performance of these
models is shown in Table 1. We see that
the VI-TasNet is a strict improvement
over the deterministic TasNet both in
seen and unseen datasets and conditions.
Specifically, noisy LibriMix/VCTK test-
performance is improved by 0.37 and
0.55 dB respectively, with a 2 %-points
lower relative drop. Similar generaliza-
tion improvements to the unseen clean condition are observed with the VI-TasNet. While this
improvement comes at negligible increases in parameter count and inference time computations, it
does increase the training time. In Appendix L we show results for TasNets trained with both SI-SDR
and BLR on the clean condition, which we compare to VI-TasNet with different priors. Similarly,
when we evaluate the framework on a different masking network, the SuDoRMRF, we see consistent,
but small improvements in generalization.

Uncertainty quantification We train a multitasking VI-TasNet on the clean condition. We
present further results and discussions of the multitasking VI-TasNets, including a discussion
of the adaptive prior in Appendix D. Importantly, besides separation, this model also learns
to do mixture AE. We leverage the mixture AE task to quantify how well the shared encoder-
decoder structure models the input mixture (input density). We investigate whether the mixture
AE ELBO is informative of the separation performance, as measured by the single source dis-
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tortions in the separation task. Figure 3 shows the separation performance measured as BLR
estimated single source distortion as a function of the negative mixture ELBO for each mixture
in the LibriMix and VCTK test sets—each dot is a mixture, and contours are from a kernel
density estimator used solely for visualization. Lower values for both values indicate improved
performance (either better separation for the distortion or higher evidence for the mixture AE).

Figure 3: Separation performance
versus mixture AE for LibriMix
(top) and VCTK (bottom).

Mixture AE is informative of the separation task performance,
and the lowest distortions also model the mixture the best—
conversely, when the mixture is poorly modelled, the sepa-
ration distortion increases. We note that there is a slightly
increased number of mixtures (dots) at lower mixture AE and
higher distortion for VCTK, indicating mixtures for which the
input density is a poorer predictor of separation performance.
The positive correlation effectively provides a model that can
quantify its uncertainty in performing the separation task. The
mixture is available in a real scenario, and so if the AE task
is performing poorly, the results suggest that this would be
indicative of poor separation performance, too. While the two
quantities are not normally distributed or linearly related, we
can quantify the correlation as a Pearson correlation coefficient,
or we can quantify it with a non-parametric Spearman rank
correlation coefficient, instead. Here, we report both and see a
weak to moderate correlation that decreases slightly in the new
domain (Pearson correlation rp, Spearman, rs, and p <1e− 50,
n = 3000 per data set and condition): rp = .37, rs = .45
(LibriMix) and rp = .28, rs = .35 (VCTK).

Broader impact Improved speaker separation systems will
facilitate the improvement of hearing aids and thus improve the
treatment of hearing loss. DL systems in hearing aids, how-
ever, will likely impose increased demands on e.g. internet
connectivity or hardware capabilities, meaning these improve-
ments will likely reach listeners with access to more resources
first. Improved speaker separation improves automatic speech
recognition systems and, for example, transcription automation.
Probabilistic models that more explicitly impose priors enable

interpretability, while also potentially improving learning in the face of more scarce data (e.g. smaller
non-English corpora). Generative modelling enables the production of deep fakes and systems that
can, for example, mimic a given speaker’s voice can be used to conduct fraud and produce fake
media.

6 Conclusions

We have presented variational inference encoder-masker-decoder models, and particular instantiations
in the variational inference time-domain audio separation network, VI-TasNet, and VI-SuDoRMRF.
The VI-EMDs effectively learns to separate audio while learning distributions of latent encodings
and latent masks in a manner that improves tests performances on seen conditions and test data
from seen datasets, but also improves generalization to unseen conditions and new datasets. The
VI-TasNet uses a Bayesian linear regression likelihood, which enables likelihood-based training with
scale-invariance similar to scale-invariance signal-distortion-ratio. The probabilistic formulation of
the model provides the means of imposing priors on the learning, we discuss an adaptive prior and
provide results in the supplementary on how various priors impact the separation performance. We
show how the generalization of VI-TasNet can be characterized using rate distortion trade-offs; we
show indications that, while trading off increased rates sometimes improves performance within the
condition and within the same dataset, this does not necessarily generalize to a new dataset. Lastly,
we show that a multitasking VI-TasNet performing mixture autoencoding can quantify its uncertainty
in a manner informative of the separation performance without requiring access to the single sources.
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B VI-TasNet evidence lower bound

We start by considering the standard VAE evidence lower bound (ELBO), and use this as a starting
point for showing the slightly more notationally involved bound for the VI-TasNet. Conceptually, the
extra latents simply add an extra KL divergence term in the VI-TasNet formulation.

We will write the Kullback-Leibler divergence between distributions a(x) and b(x) as (note that we
are using lower x here to denote a stochastic variable):

DKL(a(x)||b(x)) =
∫ ∞

−∞
a(x) log

a(x)

b(x)
dx = E

x∼a(x)

[
log

a(x)

b(x)

]
≥ 0 (6)

B.1 VAE evidence lower bound

In practice, we consider data from a particular dataset, D, and consider an empirical data distribution
pD(x) =

1
||D||

∑
x′∈D (δ(x− x′)) (where ||D|| denotes the cardinality of the dataset), which we hope

reflects some true data distribution. The derivations below follow for a single sample from pD(x),
and we derive a lower bound on the evidence conditioned on that sample, L(θ, φ;x), dependent on
the generative and inference network parameters. We optimize the bound for such samples, but this
can be also be extended to considering an expectation over the dataset and in a batch setting, too, such
that we can extend this to consider a total bound over the dataset, L(θ, φ) = Ex∼pD(x) [L(θ, φ;x)]
(as discussed in e.g. Zhao et al. [84] and Cemgil et al. [85]).

We consider random variables x and z (adopting lower case notation for this similar to the one used
in Zhao et al. [84]). Note that pθ(x, z) = pθ(z|x)pθ(x) = pθ(x|z)pθ(z), and e.g. pθ(x) =

pθ(x,z)
pθ(z|x)

(assuming here that the denominator is non-zero everywhere), where the subscript θ denotes the
dependency on generative network parameters. An expression for the ELBO can be arrived at by
introducing an expectation over the variational distribution qφ(z|x) (dependent on the inference
network parameters φ) and re-arranging2:

log pθ(x) = E
z∼qφ(z|x)

[log (pθ(x))] (7)

= E
z∼qφ(z|x)

[
log

(
pθ(x)

qφ(z|x)
qφ(z|x)

)]
(8)

= E
z∼qφ(z|x)

[
log

(
pθ(x, z)

pθ(z|x)
qφ(z|x)
qφ(z|x)

)]
(9)

= E
z∼qφ(z|x)

[
log

(
pθ(x, z)

qφ(z|x)

)
+ log

(
qφ(z|x)
pθ(z|x)

)]
(10)

= E
z∼qφ(z|x)

[
log

(
pθ(x, z)

qφ(z|x)

)]
+ E
z∼qφ(z|x)

[
log

(
qφ(z|x)
pθ(z|x)

)]
(11)

= E
z∼qφ(z|x)

[
log

(
pθ(x, z)

qφ(z|x)

)]
+DKL (qφ(z|x)||pθ(z|x)) (12)

≥ E
z∼qφ(z|x)

[
log

(
pθ(x, z)

qφ(z|x)

)]
= LVAE(θ, φ;x) (13)

(14)

Where we used that the KL divergence between the approximate posterior over the latents z and
the true (but intractable) posterior is a non-negative quantity, such that the model evidence is lower
bounded by the expression LVAE. This expression can be rewritten as:

2While this derivation follows e.g. Sec. 2.2 in Kingma and Welling [13], we note that the bound can be
derived using Jensen’s inequality by introducing the variational distributions in a very similar manner.
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LVAE(θ, φ;x) = E
z∼qφ(z|x)

[
log

(
pθ(x|z)p(z)
qφ(z|x)

)]
(15)

= E
z∼qφ(z|x)

[
log (pθ(x|z)) + log

(
p(z)

qφ(z|x)

)]
(16)

= E
z∼qφ(z|x)

[log (pθ(x|z))]−DKL (qφ(z|x)||p(z)) , (17)

where the first term corresponds to the negative distortion (the distortion is the negative log-likelihood),
and the second term corresponds to a rate (the KL-divergence between approximate posterior and
prior).

B.2 VI-TasNet evidence lower bound

We denote a set of single sources of time-series S = {s0, . . . , sN}. Figure 1 shows a two-speaker
scenario, matching the data used for the various experiments (i.e., on the figure we have S = {sa, sb}).
We assume a joint distribution over single sources (S), their mixture (x), corresponding masks
(M = {m0, . . . ,mN}), and the mixture encoding (z) like follows:

pθ(S, x,M, z) = pθ(x|S)pθ(S|z,M)pθ(M|z)pθ(z), (18)

where we assume that pθ(S|z,M) =
∏N
i=0 pθ(si|z,mi) and pθ(M|z) =

∏N
i pθ(mi|z). We also

assume that these distributions factorize over the temporal dimension (latent or original data space),
as e.g. shown for the mask prior later (cf. Eq. 36). With repeated application of the product rule, we
have that:

pθ(S, x,M, z) = pθ(x,M, z|S)pθ(S) (19)

pθ(S) =
pθ(S, x,M, z)

pθ(x,M, z|S)
(20)

pθ(x,M, z|S) = pθ(M|S, x, z)pθ(z|S, x)pθ(x|S). (21)

The assumption for the set of masks might be worth exploring, seeing as e.g. self-consistency in
the deterministic TasNet under the sometimes used softmax/sum-to-one-like constraints enforce a
dependency between masks. The formulation with pθ(x|S) could accommodate some stochastic
mixing process, which is not the case for the data and model we are considering3, and instead
x = Mix(S) is a deterministic mapping from sources to a mixture, or pθ(x|S) = δ(x − Mix (S)).
Realistic mixture generation functions are not noise-free or additive, but should e.g. take into account
a reverberant environment with different spatial locations of speakers and multiple noise sources. In
this setting, multi-channel recordings are of value in enabling resolving different spatial locations,
and deep learning systems in general can benefit from utilizing systems that have traditional been
used to improve performance (see e.g. Jenrungrot et al. [50], which uses a deep learning version of
beam forming).

Following a similar derivation of the ELBO for the VAE, we start by introducing an expectation
over the variational approximation to the latent encodings arising from the inference network with
parameters φ, and an expectation over the variational approximation to the latent masks arising from
the masker network with parameters ψ. We also, for the purpose of illustration, include an expectation
over the mixing process, initially:

3For the LibriMix data considered, the dataset is static, and while the mixing process randomly samples a
SNR in a particular range during the creation of the dataset, this mixing SNR does not change after the dataset is
made.
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log pθ(S) = E
x∼δ(x−Mix(S))

[
E

z∼qφ(z|x)

[
E

M∼qψ(M|z)
[log (pθ(S))]

]]
(22)

= E
x∼δ(x−Mix(S))
z∼qφ(z|x)

M∼qψ(M|z)

[
log

(
pθ(S)

qφ(z|x)
qφ(z|x)

qψ(M|z)
qψ(M|z)

)]
(23)

= E
x∼δ(x−M(S))
z∼qφ(z|x)

M∼qψ(M|z)

[
log

(
pθ(S, x,M, z)

pθ(M|S, x, z)pθ(z|S, x)pθ(x|S)
qφ(z|x)
qφ(z|x)

qψ(M|z)
qψ(M|z)

)]
(24)

Dropping the mixing process expectation and using x instead of Mix(S) to highlight it as the input to
the inference network, the expression can be written as:

log pθ(S) = E
z∼qφ(z|x)

[
E

M∼qψ(M|z)

[
log

(
pθ(S, x,M, z)

pθ(M|S, x, z)pθ(z|S, x)
qφ(z|x)
qφ(z|x)

qψ(M|z)
qψ(M|z)

)]]
(25)

= E
z∼qφ(z|x)

[
E

M∼qψ(M|z)

[
log

(
pθ(S, x,M, z)

qφ(z|x)qψ(M|z)
qφ(z|x)
pθ(z|S, x)

qψ(M|z)
pθ(M|S, x, z)

)]]
(26)

Splitting the factors within the logarithm out as addends, and noting that the expression with encodings
does not depend on the mask latent, we get:

E
z∼qφ(z|x)

M∼qψ(M|z)

[
log

(
pθ(S, x,M, z)

qφ(z|x)qψ(M|z)

)]
+ E
z∼qφ(z|x)

[
qφ(z|x)
pθ(z|S, x)

]
+ E

z∼qφ(z|x)
M∼qψ(M|z)

[
qψ(M|z)

pθ(M|S, x, z)

]
(27)

= L(θ, φ, ψ;S) +DKL (qφ(z|x)||pθ(z|S, x)) + E
z∼qφ(z|x)

[DKL (qψ(M|z)||pθ(M|S, x, z))]

(28)

Since the divergences are non-negative quantities, measuring how close the variational approximation
for the latent encodings and latent masks are to the true posteriors, the last term is a lower bound on
the evidence over the set of speakers, L(θ, φ, ψ;S). We can write this as:

log pθ(S) ≥ L(θ, φ, ψ;S) (29)

= E
z∼qφ(z|x)

M∼qψ(M|z)

[
log

(
pθ(S, x,M, z)

qφ(z|x)qψ(M|z)

)]
(30)

= E
z∼qφ(z|x)

M∼qψ(M|z)

[
log

(
pθ(S|z,M)pθ(M|z)pθ(z)

qφ(z|x)qψ(M|z)

)]
(31)

We can also split the bound in three contributing terms:

log pθ(S) ≥ L(θ, φ, ψ;S) (32)
= E

z∼qφ(z|x)
M∼qψ(M|z)

[log (pθ(S|z,M))]−DKL (qφ(z|x)||pθ(z))−DKL (qψ(M|z)||pθ(M|z))

(33)
= −DS −Rz −RM (34)

Here,DS is the distortion of the single sources (how well they are reconstructed),Rz is the divergence
of the mixture encoding from their prior (the encoding rate), and RM is the divergence of the masks
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from their prior (the mask rate). Note that since we assume the single sources conditioned on their
mask and the mixture encoding factorize, the distortion is the sum of the log-likelihoods for each
individual source. As is common when training VAEs, we estimate the expectation with single
samples from the approximate posteriors for z and M, and have defined priors for these latents,
which enable us to evaluate the objective. For the models we consider, we are also using a prior on
the masks that is independent of z, both for the log-normal masker (used in main paper) and the beta
masker discussed in this supplementary:

pLN
θ (M|z) = pLN

θ (M) =

N∏
i=0

K∏
k=0

T ′∏
t′=0

LN (mi,k,t′ ; 0.9, 1), (35)

pBθ (M|z) = pBθ (M) =

N∏
i=0

K∏
k=0

T ′∏
t′=0

Beta(mi,k,t′ ; 1, 1), (36)

where k indicates a particular latent dimension, and t′ indicates the latent time-step, and i is speaker
index. We hypothesize that e.g. a dependency on the strength of the prior mask based on the “energy”
in the encodings (the distance from zero in the Gaussian case, or the concentration parameter in the
gamma case) might improve learning. In the case of the multi-tasking VI-TasNet, we hypothesize
that using a mask prior that explicitly depend on the relative energies in single source encodings at
particular times and latent dimensions could be useful, too.
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C Visualize model outputs

We visualize the outputs the model with a gamma approximate posterior in Table 3. Figure 4 shows
the example output of a network for approximately 50 ms of input audio. Similarly, Figure 5 shows a
comparison over approximately four seconds of input mixture of the learnt representation (encodings)
compared to a spectrogram.

Figure 4: Example output of a VI-TasNet. From left to right: input mixture, mixture encoding sample,
masks samples, estimates, and ground truth single sources. Based on an audio mixture input, the
inference network provides an encoding of the mixture. These encodings are here visualized as the
log-value of a sample from a gamma approximate posterior. The latent dimensions have been sorted
using an agglomerative clustering over the full sentence input (for visualization purposes solely).
The encodings are processed by the masker, and the masker provides distributions for a fixed set
of speakers, here two. The red and blue masks shown are samples from beta mask approximate
posteriors for two different sources. The generative network sees the multiplication of the encodings
and the masks to parametrize distributions of the estimated separated signals, and we visualize a
sample from this distribution alongside the known ground truth.
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Figure 5: Comparison of encodings and spectrogram representation. Like Figure 4, the latents
were sorted with a clustering. From top to bottom: ground truth spectrograms, estimated signal
spectrograms, latents, estimated time-series, ground truth time-series. From left to right: input
mixture, source A, and source B. The latents shown for the mixture are the output of the encoder
network, while the latents shown for the single sources are the masked mixture encodings. These
results or not for a multitasking VI-TasNet, so not visualizations are present for the mixture in
estimated spectrograms or time-series.
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D Multitasking VI-TasNet and prior adaptivity

Figure 6 shows the multitasking VI-TasNet. The yellow arrows enable the auto-encoding task on the
single sources, whereas the purple arrows enable the mixture autoencoding task, which can be done
without knowledge of the single sources. For the adaptive prior, we note that the visualized za and zb
are added (their distributions convolved) in making the adaptive prior for z.

This, we hypothesized, would improve learning since the model would have a direct path (circum-
venting the masker) for how encodings that would reconstruct a single source should look like. That
is, with the masked encodings ẑa = z ⊙ma we aim to reconstruct the single source, sa, and with the
distortion from the single sources, we add to the objective that it should try to reconstruct it directly
from za, as well.

Figure 6: Multitasking VI-TasNet. The figure uses the same notation as Figure 1, and introduces the
autoencoding tasks. The added single source autoencoding tasks are highlighted with orange arrows,
and the added mixture autoencoding task is highlighted with purple arrows. The use of + operator in
mixing sa and sb is a simplification to the Mix(◦)-mixing process. The encoder and decoder are not,
in parameter counts, larger—the larger size is to visualize that the parameters are shared across tasks.

A8



E Priors, rate-distortion and modified VI-TasNet ELBO

Priors in VAEs A central part of the VI is the prior distributions used for the latent variables. The
most common prior for a simple VAE latent encoding is an isotropic Gaussian distribution (i.e., a
multivariate normal distribution with identity matrix covariance). Conceptually, it can be argued that
this prior forces the VAE to learn latent dimensions with activations that generally tend to zero and
that do not co-vary. The disentanglement is obtained by implicitly penalizing off-diagonal elements
in the approximate posterior covariance. This prior is, in some scenarios, prohibitively restrictive.
The benefits of more flexible priors are underlined by the improvements seen e.g. using a VampPrior
[31] or by learning the prior distributions using normalizing flows [29, 30]. Other choices than
the isotropic Gaussian prior and Gaussian approximate posterior provide tools for enforcing other
characteristics on the learned encoding. For instance, by using von Mises-Fisher distributions [32], a
learned representations reside on a unit hyper-sphere, forcing latents describing directions without
considerations of magnitudes. Similarly, a non-negative encoding (parts based, akin to non-negative
matrix factorization) can be achieved using log-normal, gamma or Weibull distributions [33].

Rate-distortion analysis Optimizing a modified loss different from the ELBO facilitates adjustment
of the trade-off between accurate generation (i.e., reconstruction) and deviation from the prior (i.e.,
more tightly constrained). For instance, for an isotropic Gaussian prior, a lower rate is related to
more disentangled latents [35]). Specifically, we can adjust the prioritization of the KL-term with a
coefficient β (β-VAEs [34]). For β < 1, the model is less restricted by the prior, freeing the model to
produce better reconstructions, and for β > 1 the models are forced to learn representations more
aligned with the prior. This trade-off can be thought of as a trade-off between a distortion D, the
decoded negative log-likelihood, and a rate R, the KL divergence between encoding approximate
posterior and prior, since −L = D +R.

While higher capacity models can generally achieve better model evidences (i.e., higher ELBOs), it
is only up to a limit of the complexity of the data. An unconstrained (β ≪ 1) model with sufficient
capacity could reconstruct the inputs perfectly (D = 0) to the limit of the entropy of data by having a
high R (i.e., the “auto-decoding limit”) [37]. Similarly, a tightly constrained model with sufficient
capacity for encoding can map to something with R = 0 (i.e., the auto-encoding limit) but high D.
There is a gap between models that are feasible (i.e., within auto-encoding and -decoding limits)
and models that are realizable. For realizable models, there exists an optimal trade-off (in terms of
lowest ELBO) between rate and distortion, but the relative capacity of the encoder and decoder alter
the optimal trade-off. The trade-offs can be visualized using RD curves (i.e., phase diagrams in the
RD-plane) by optimizing different trade-offs (e.g., using β). Work in exploring rate-regularization
and the role of the prior (e.g., concerning generalization) shows how an isotropic Gaussian prior
might not be the best inductive bias in general [36].

The information bottleneck principle, as discussed in the context of deep learning by Tishby and
Zaslavsky [38], provides a framework for understanding representation learning and generalization.
In particular, their qualitative representation visualized in their Figure 2, shows how—under a finite
data sample—an optimal rate exists to minimize a generalization gap. This is further investigated
in the work by Alemi et al. [39], where they show how the information bottleneck principle applies
to deep learning-based variational inference, and that an optimal rate exists to improve model test
performance (generalization).

Representation learning and compression The mutual information between a learned latent
representation and the observed data is lower bounded by the difference between the entropy of the
data and distortion and upper bounded by the rate [37]. The RD trade-offs made are comparable to
trade-offs in data compression. From the perspective of lossy compression, the RD trade-off can
be thought of as reducing the complexity of the latents (i.e., more compression) at the expense of
poorer reconstructions (i.e., increased distortion)—or the other way around. Note that, for VAEs,
this analogy is less directly related to dimensionality of the latents, and more so a matter of prior
divergence. In fact, latent variable models can be turned into (lossless) compression models [40],
and for these models, the rate term is indeed related to the achievable compression rate. Lastly,
recent studies of RD analysis have shown how an inherent trade-off exists between not just rate and
distortion, but also a quantity measuring divergence between the encoder-decoder induced distribution
over the data and the true data distribution [41]. This can be linked to e.g. the generative adversarial
network objectives and naturalness—or potentially overall audio quality in the speaker separation
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setting. Mostly, VAEs learn representations that are a compression in terms of e.g. dimensionality
of the learned representation. However, in some settings learning over-complete representations
(i.e., higher dimensionality of representation than input signal), under constraints or regularized, can
be a sensible approach to representation learning, and Bengio et al. [42] discuss various general
approaches to learning representations through over-complete AEs in relation to robustness of the
representations, such as sparse, contractive, or denoising AEs.

E.1 Free bits and reweighting

Attempting to optimize the ELBO without any modifications often yields models effectively stuck
in a local minimum of low rate, without a driving force of distortion sufficient to overcome the
loss incurred of moving away from the prior. This is often true for simple, standard VAEs, but is,
in particular, the case with high-dimensional over-complete representations like the ones for the
VI-TasNet.

One solution to this is to e.g. introduce the rate term gradually, using KL annealing. Instead of
annealing, we can opt for a “free information” approach to enable learning, as described in e.g.
Kingma et al. [29, C.9]. When we measure the rate in bits/shannon, introducing free bits means
that the model is always penalized some value of bits, providing a set “budget” (we measure the
information in nats, here). This causes the model to effectively have the freedom to operate without
being penalized within this budget. This should allow the model to trade off distortion and rate
early on in training—and even go beyond the free budget. Since we have rate terms both for the
encodings and the mask, we can investigate the effect of free bits, λ, for both individually, denoted by
a subscript, and we will denote by rz,k,t′ the rate contribution from encoding dimension k at latent
time step t′, and rmi,k,t′ the rate contribution from the k’th dimension in the mask for speaker i at
latent time step t′.

We also make use of the re-weighting introduced with β-VAEs, and use the same subscript notation
to denote encoding or mask specific re-weightings. We can write the modified ELBO as, using both
β (a multiplicative factor on the rate term) and λ (free bits), with slight notation abuse (letting the
output of maximum(◦, ◦) be the largest of the arguments):

Lβ,λ(θ, φ, ψ;S) = −DS−βz
K∑
k

T ′∑
t′

maximum(λz, rz,k,t′)−βm
N∑
i

K∑
k

T ′∑
t′

maximum(λm, rmi,k,t′)

(37)

E.2 Dynamic adaption towards target

We have also used a form of ELBO modification which uses adaption of the βz and βm terms based
on two fixed, target rates for the sum over all K and T ′ rates of encodings and sum over all N , K and
T ′ rates of the masks. We can combine the two, as well, and consider a total rate (sum of mask and
encoding rates, with one, shared adapted β value). This is inspired by the target rate in Alemi et al.
[37] and automatic penalty weighting used in Dieleman et al. [86]. Alemi et al. [37] showed how an
objective which directly optimizes towards a target rate for a VAE learns a better model in a synthetic
experiment with a known ground truth generative process. We investigated using the same approach
as Alemi et al. [37] which can actively promote increased rates with the gradients (not just penalize),
but for reasons of stability, we opted for using a version that incorporated an adaption similar to the
one presented in Dieleman et al. [86]. We note that, with ways of ensuring stability in losses that
promote increased rates, we might see better performances.

Dieleman et al. [86] showed that adaptively increasing or decreasing a re-weighting of a regularizing
term enables optimizing towards a desired target value for a quantity of interest in an auto-encoder
setting (in their work this is not variational auto-encoders, and not a rate/KL-term). When using
adaptive re-weighting, we can use the same formulation as in their Sec. 3.1.3, Eq. 7, for both adapting
the βz and βm, towards target rates for Rz and RM, or adapting a target total rate (the sum of the
two rates) and sharing the adapted β weight. Compared to the free-bits and the fixed β approach, this
approach has the benefit that we can control the rates towards a very specific point on the RD-curve.
Starting with a low initial value for the adapted weight also provides something similar to annealing
in the beginning of training. We note that this dynamic must be adjusted to the training; if too quick
or too slow adaption happens, the learning can be needlessly slowed down. If e.g. early stopping or
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learning rate annealing is used, a poorly specified adaption rate can cause the model to prematurely
lower the learning rate or stop too early—even if the monitored objective is not the re-weighted
ELBO but e.g. SI-SDR.

E.3 Numerical experimental results for RD-curve in clean condition

We now provide further details on the RD-curve analysis in the main paper for the real (i.e. no
synthetic) results on the clean condition of LibriMix and VCTK. In the main paper, Table 1, we opted
to primarily discuss a model with Gaussian encodings and log-normal masks to align the most with
how a “standard” TasNet operates. In the results presented here, and on Figure 2 (bottom), we used a
qΓφ/pΓ-model with beta-distribution maskers, also shown in Table 3, with the BLR objective. This was
chosen because this formulation of the model, initially, more readily put information in the encodings
(over a Gaussian encoding formulation) when using the free-bits and fixed β setup which we used for
these earlier experiments; that is, with fewer optimization steps, the qΓφ/pΓ-model saw higher rates
than the Gaussians. The VI-TasNet in Table 1 was ultimately trained using the adaptive re-weighting
scheme (instead of a fixed), which lessened this advantage of the gamma distribution formulation
over the Gaussian, causing us to opt for a formulation more closely resembling the linear encoder
outputs from a deterministic TasNet in the later experiments.

In this section, we present results where we modified the VI-TasNet ELBO with varying levels
of free bits and with varying (but static for a given model) weights on both the masker rate and
encoding rate. Figure 7 shows a visualization where the different models fall in the RD-plane, and
how they generalize from the LibriMix test set to the VCTK dataset. The RD-plane plots show how
the VI-TasNet display an expected trade-off between rate and distortion; generally, by increasing
the rate, the distortion is reduced. The generalization from LibriMix to VCTK push the RD-curve
trade-off up (poorer rate) and to the right (poorer reconstruction), for a generally overall poorer
performance. Increases in rate alone is primarily driven by the encoding rates (the masking rates are
largely unchanged between test sets). The increased rates (contributing to increased ELBOs) indicate
that the differences in the datasets mostly affect the encoder and decoder, and less so the masker.
The model with the lowest distortion on the LibriMix also has a higher rate, but this trade-off did
not result in an improved distortion on VCTK, indicating a relation between the overall rate and the
dataset generalization gap.

Table 2: Rate distortions for VI-TasNets with gamma encoding and BLR-likelihood for various levels
of free-bits, λ, and β-values (as introduced in Eq. 37, but since we only use β < 1, we give the
reciprocal in the table).

λz λm 1/βz 1/βm Libri2Mix test VCTK-2mix test
SI-SDRi D Rz Rm SI-SDRi D Rz Rm

0 0 1 1 -32.6 -1.95 4.08 0.00 -29.4 -1.90 4.09 0.00
8 8 1 1 8.09 -2.84 6.28 288 7.78 -2.74 6.49 288
64 64 1 1 12.0 -3.08 133 310 10.7 -2.91 149 310
128 128 1 1 11.6 -3.06 119 295 10.4 -2.89 136 295
128 128 8 8 12.5 -3.11 163 338 11.1 -2.93 182 336
128 128 64 64 12.9 -3.13 195 333 11.3 -2.93 215 332
128 128 128 128 12.7 -3.12 198 344 11.2 -2.93 218 343
128 128 8 128 12.7 -3.12 178 316 11.4 -2.94 197 315
128 128 128 8 12.5 -3.11 170 315 11.3 -2.93 189 315

We show numerical results in Table 2 that are the basis for the visualizations in Figure 7 (which in
turn is the full version of the bottom figure in Figure 2 in main paper). We note that the un-modified
ELBO results in a model stuck at a low masking and encoding rate, with poor distortion/SI-SDRi.
This model corresponds to a point in the far right-hand side and bottom of the RD plane, and for
visualization purposes, it was left out on the RD curves. Note that all values are normalized by T in
the plots and that the rates are normalized by the number of latent dimensions (K), too. The table
gives the average mask rate (over N = 2 speakers as in all problems considered here), and total rate
is Rz +RM = Rz +N ·Rm.
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Figure 7: Rates versus distortion. Rate and distortions values are normalized by T , and the rates are
normalized additionally by K.

The last three rows in Table 2 provide a comparison between a model that has overall low encoding
and masking β-values with one that penalizes each more (≈ 0.1 versus ≈ 0.01). Penalizing both
relatively little (with βm = βz = 1/128) resulted in the highest encoding and mask rates shown in
the table, whereas increasing the penalty on either lowered the rates for both. We show one run for
each model configuration, as also discussed in Appendix J, and so to further resolve the uncertainty
in these estimates multiple runs would be needed.

The improved performance (in terms of SI-SDR) from lower β-values is presumably largely at-
tributable to the learning of an over-complete representation, but might additionally partially be due
to a need to compensate for the differences in overall scale in the distortions and rates considered.
The distortion for a very poor model is at approximately −2 nats, a poor model at approximately
−2.8, and the best models at about −3.1, whereas the same models e.g. have encoding rates ranging
from about 4 to 200 nats. We use a continuous output distribution; there is a difference in differential
entropy/continuous entropy and the (discrete) entropy, and we note that e.g. a discrete output distri-
bution would enable the use of the theoretical results provided in Alemi et al. [37] concerning the
relationships between the entropy of the modelled data to the rate and distortion. We hypothesize
that a discrete output distribution, e.g. a discretized (mixture of) logistic(s), might provide a suitable
alternative to counter this rate-distortion scale difference, but the standard variants lack the scale-
invariance and logarithmically scaled error measurement; for this, the Cauchy distribution (discussed
in the supplementary, too) provides an alternative solution worth considering, although it does not
have scale-invariance.

We provide a view of the RD curves where the negative SI-SDR replaces the BLR distortion on
Figure 8. In Appendix H, we discuss how the BLR objective, while similar to the SI-SDR, reweights
terms of the objective depending on the length of the signals considered. This, in part, causes the
shift to the right on the distortion axis on Figure 7 in going from LibriMix to VCTK, since the overall
average length of sentences in the two datasets is different. The overall conclusions regarding the
shape and trade-offs are, however, still valid, e.g. supported by the Figure 8 with SI-SDR, which does
not have this T -dependency.

Figure 8: Rate versus negative SI-SDRi. Left: normalized encoding rate. Center: normalized masker
rate. Right: normalized total rate.

A12



F Distributions

With N (x;µ, σ2) we denote a (univariate) Gaussian with scalar mean µ and scalar variance σ2. The
gamma distribution density function we write as Gamma(x;α, β) = βα

Γ(α)x
α−1 exp (−βx), where Γ

denotes the gamma function. Note that the α and β here has no connection to the β-VAE, nor the
scaling in the SI-SDR. We refer to the α for the gamma distribution as the concentration, and β as the
gamma rate4.

The encoder distributions are specified as:

qNφ (z|x) =
K∏
k=0

T ′∏
t′=0

N (zk,t′ ;µ
φ
k,t′ , (σ

φ
k,t′)

2), (38)

qLN
φ (z|x) =

K∏
k=0

T ′∏
t′=0

LN (zk,t′ ;µ
φ
k,t′ , (σ

φ
k,t′)

2), (39)

qΓφ(z|x) =
K∏
k=0

T ′∏
t′=0

Gamma(zk,t′ ; c
φ
k,t′ , 1), (40)

where µφk,., σ
φ
k,. are time-series of length T ′ with distribution parameters for the k’th latent dimension

output. Similarly, cφk,. is a concentration parameter time-series output. We also define a Gaussian

prior, pN (z) =
∏K
k=0

∏T ′

t′ N (zk,t′ ; 0, 1
2) (and the equivalent log-normal version), and a gamma

prior pΓ(z) =
∏K
k=0

∏T ′

t′ Gamma(zk,t′ ;
1
2 , 1).

Masker distribution The output of the masker parameterizes stochastic masks for all N speakers,
where we opted for a variational approximation using either a beta distribution or a log-normal
distribution:

qBψ(M|z) =
N∏
n=0

K∏
k=0

T ′∏
t′=0

Beta(mn,k,t′ ;κ
ψ,0
n,k,t′ , κ

ψ,1
n,k,t′), (41)

qLN
ψ (M|z) =

N∏
n=0

K∏
k=0

T ′∏
t′=0

LN (mn,k,t′ ;µ
ψ
k,t′ , (σ

ψ
k,t′)

2), (42)

where κψ,0n,k,., κ
ψ,1
n,k,. are time-series of parameters output from the masking network, hψ, that corre-

spond to the k’th latent dimension for the n’th source. The κψ,0 models increasing the likelihood of
the mask being closer to 0, and κψ,1 the same but for a value of 1. The log-normal parameters are
transformed versions of corresponding Gaussian parameters. We opt for a flat, uniform prior for the
Beta-distributed masks, such that pθ(M) =

∏N
n=0

∏K
k=0

∏T ′

t′=0 Beta(mn,k,t′ ; 1, 1), but note that
the inductive bias of an e.g. Jeffrey’s prior towards either exclusion or inclusion of encoding elements
is worthwhile investigating. For the log-normal masks, we use a standard lognormal distribution:
LN (0, 1) prior.

Convolutions of standard distributions For Gaussians, we have that:
∑
iN (µi, σ

2
i ) ∼

N
(∑

i µi,
∑
i σ

2
i

)
, and for gamma distributions with one fixed gamma rate parameter, we have

that:
∑
i Gamma (ci, r) ∼ Gamma (

∑
i ci, r).

4Following the naming convention of torch.distributions.gamma.Gamma.
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G Scale-invariance

We consider time series of length T , s ∈ R1×T , and we approximate true single source speakers, s,
with the the approximation s̃. In training TasNets, a standard approach is to optimize the SI-SDR (or
minimize the negative SI-SDR). First, we provide a view of this as related to projection of estimates
onto the true sources. Following this, we introduce a likelihood invariant to a scaling.

G.1 Negative scale-invariant signal-distortion-ratio

The negative SI-SDR (NSISDR, for convenience) is5:

NSISDR(s, s̃) = −10 log10
∥αs∥2

∥αs− s̃∥2
= −10 log10

∥ ⟨s,s̃⟩
⟨s,s⟩s∥

2

∥ ⟨s,s̃⟩
⟨s,s⟩s− s̃∥2

, (43)

Since the numerator is:

∥αs∥2 =
∑
i

(αsi)
2
= α2

∑
i

s2i = α2⟨s, s⟩ = ⟨s, s̃⟩2

⟨s, s⟩
, (44)

and the denominator is:

∥αs− s̃∥2 =
∑
i

(
(αsi)

2
+ s̃2i − 2αsis̃i

)
=

⟨s, s̃⟩2

⟨s, s⟩
+
∑
i

s̃2 − 2α
∑
i

sis̃i (45)

=
⟨s, s̃⟩2

⟨s, s⟩
+ ⟨s̃, s̃⟩ − 2

⟨s, s̃⟩
⟨s, s⟩

⟨s, s̃⟩ = ⟨s̃, s̃⟩ − ⟨s, s̃⟩2

⟨s, s⟩
(46)

We can rewrite the NSISDR in Eq. 43, as:

−10 log10

 ⟨s,s̃⟩2
⟨s,s⟩

⟨s̃, s̃⟩ − ⟨s,s̃⟩2
⟨s,s⟩

 = 10 log10

 ⟨s̃, s̃⟩ − ⟨s,s̃⟩2
⟨s,s⟩

⟨s,s̃⟩2
⟨s,s⟩

 = 10 log10

(
⟨s, s⟩⟨s̃, s̃⟩
⟨s̃, s⟩2

− 1

)
(47)

Furthermore, we can consider a version where we rescale s and s̃ to be unit vectors:

NSISDR(s, s̃) = 10 log10
(
⟨ês̃, ês⟩−2 − 1

)
, (48)

where êa = a/
√
⟨a, a⟩. That is, for a given s and its estimate, the NSISDR is related to the squared

projection of ês̃ onto ês

5Here we let ∥◦∥ be the 2-norm and ⟨◦, ◦⟩ is the inner product operator, such that a⊤a = ⟨a, a⟩ = ∥a∥2 =∑
i a

2
i =

∑
i aiai, where ai is the i’th element of the column-vector a and

∑
i implies a sum over all indices.
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H Bayesian linear regression likelihood

Alternatively, we can consider a loss using a Bayesian linear regression likelihood. We are interested
in a likelihood which is invariant to a re-scaling of the whole time-series. The SI-SDR handles this
using the α, and in the following we take the view that a similar factor γ is a regression coefficient,
which we will marginalize out. In classic Bayesian linear regression, we are interested in modelling
an unknown regression coefficient, γ, and an unknown noise-scale parameter, σ2. For the target
time-series s with steps st, we consider a linear regression model, where the approximation s̃ takes
the role of predictor6:

st = s̃tγ + ϵt, (49)

where ϵt ∼ N
(
0, σ2

)
. Here s̃t, β ∈ Rk×1=1×1 are a scalar predictor and a regression coefficient,

not vectors. The entire predictor time-series s̃ of length T corresponds to a design matrix of size
T × 1. The corresponding likelihood is proportional to:

p
(
s|s̃, γ, σ2

)
∝
(
σ2
)−T/2

exp

(
− 1

2σ2
(s− s̃γ)

⊤
(s− s̃γ)

)
(50)

The least-squares estimate of the γ coefficient is given by:

γ̂ =
(
s̃⊤s̃

)−1
s̃⊤s (51)

Conjugate priors for σ2 and γ take the form p
(
γ, σ2

)
= p

(
σ2
)
p
(
γ|σ2

)
, where p

(
σ2
)

is an
inverse-gamma distribution with parameters a0 and b0, Inv-Gamma(a0, b0), and the conditional prior
distribution for the regression coefficient is a normal distribution with a mean µ0, and variance σ2λ−1

0 ,
where λ is a scalar prior precision for the regression coefficient. Updates rules based on this take the
form:

µT =
(
s̃⊤s̃+ λ0

)−1 (
λ0µ0 + s̃⊤s̃γ̂

)
, λT = s̃⊤s̃+ λ0 (52)

aT = a0 + T/2, bT = b0 +
1

2

(
s⊤s+ µ2

0λ0 − µ2
TλT

)
(53)

For this, the model, m, evidence is given by:

p (s|m) =

∫
p
(
s|s̃, γ, σ2

)
p
(
γ, σ2

)
dγdσ2 =

1

(2π)
T/2

√
λ0
λT

ba00
baTT

Γ (aT )

Γ (a0)
, (54)

and the log-likelihood, log p (s|m), becomes:

−T

2
log (2π)+

1

2
log (λ0)−

1

2
log (λT )+a0 log (b0)−aT log (bT )+log (Γ (aT ))−log (Γ (a0))

(55)

Using this log-likelihood as the objective for the generative network (the decoder), we will refer
to as using the Bayesian linear regression (BLR) likelihood. Up to a constant (depending on prior
parameters and for a fixed length T ), the negative of the above is equal to:

LBLR =
1

2
log (λT ) + aT log (bT ) (56)

=
1

2
log
(
s̃⊤s̃+ λ0

)
+ (a0 + T/2) log

(
b0 +

1

2

(
s⊤s+ µ2

0λ0 − µ2
TλT

))
(57)

6The results utilized here are presented in e.g. Sec. 6 of Murphy [87]. Here we will follow the notation
in en.wikipedia.org/wiki/Bayesian_linear_regression (as of January 2022) for convenience, but to
avoid confusion with β-VAEs and the SI-SDR α we will denote the regression coefficient γ. The design matrix
we consider (analogous to X ∈ Rn×k) is s̃ with k = 1 predictor variables. Note that for the scalars considered,
we remove various transpositions, and e.g. replace det (Λ0) with simply the scalar value λ0.
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H.1 Relationship between the BLR objective and SI-SDR

If we make some simplifications by assuming e.g. a weak prior, we can relate the BLR to SI-SDR.
For λ0 ≪ s̃⊤s̃ and λ0 ≪ s⊤s, we have that Eq. 57 is approximately equal to (note that the λ0 plays
much the same role as a constant added to ensure numerical stability of the log operation as e.g. used
in Asteroid):

LBLR ≈ 1

2
log
(
s̃⊤s̃

)
+ (a0 + T/2) log

(
b0 +

1

2

(
s⊤s− µ2

TλT
))

(58)

Under the same assumption on λ0, we have that µT and λT are:

µT =
(
s̃⊤s̃+ λ0

)−1
(
λ0µ0 + s̃⊤s̃β̂

)
=
(
s̃⊤s̃+ λ0

)−1
(
λ0µ0 + s̃⊤s̃

[(
s̃⊤s̃

)−1
s̃⊤s

])
(59)

=
(
s̃⊤s̃+ λ0

)−1 (
λ0µ0 + s̃⊤s

)
≈
(
s̃⊤s̃

)−1 (
s̃⊤s

)
(60)

λT = s̃⊤s̃+ λ0 ≈ s̃⊤s̃ (61)

µ2
TλT ≈

(
s̃⊤s

s̃⊤s̃

)2

s̃⊤s̃ =

(
s̃⊤s

)2
s̃⊤s̃

(62)

And so, inserting this µ2
TλT into the expression for the loss in Eq. 58, we have:

LBLR ≈ 1

2
log
(
s̃⊤s̃

)
+ (a0 + T/2) log

(
b0 +

1

2

(
s⊤s−

(
s̃⊤s

)2
s̃⊤s̃

))
(63)

For small a0 and b0, we have:

LBLR ≈ 1

2
log
(
s̃⊤s̃

)
+
T

2
log

(
1

2

(
s⊤s−

(
s̃⊤s

)2
s̃⊤s̃

))
(64)

Up to a constant arising from the 1
2 factor within the log in the second term, this is equal to:

1

2
log
(
s̃⊤s̃

)
+
T

2
log

(
s⊤s−

(
s̃⊤s

)2
s̃⊤s̃

)
(65)

=
1

2

(
log
(
s̃⊤s̃

)
+ T log

(
s⊤s−

(
s̃⊤s

)2
s̃⊤s̃

))
(66)

When T is large (e.g. as during training T = 3 s ·8 kHz = 24000), the second term dominates, which,
in isolation, looks like:

log

(
s⊤s−

(
s̃⊤s

)2
s̃⊤s̃

)
= log (⟨s, s⟩) + log

(
1− ⟨s̃, s⟩2

⟨s̃, s̃⟩⟨s, s⟩

)
(67)

W.r.t. the model parameters the first term is constant, ignoring this we have:

log

(
1− ⟨s̃, s⟩2

⟨s̃, s̃⟩⟨s, s⟩

)
= log

(
1− ⟨ês̃, ês⟩2

)
(68)

We had that the NSI-SDR was:

NSISDR(s, s̃) = 10 log10

(
⟨s, s⟩⟨s̃, s̃⟩
⟨s̃, s⟩2

− 1

)
= 10 log10

(
⟨ês̃, ês⟩−2 − 1

)
, (69)

and we see that the objectives are based on measuring the square of the inner product between the
directions of the target and the estimate, albeit in slightly different manners.
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This difference stems partly from the difference in the view of re-scaling the target to fit the estimate,
or the other way around (compare α with γ̂). We note, especially, that the BLR objective varies
with T in how the power of the estimated signal is taken into account. This dependency on T stems
from the update rule for the at for the inverse gamma distribution, and thus, in part, from an i.i.d.
assumption on ϵt, and it is worthwhile considering a model that addresses this differently.
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I Multivariate Cauchy objective

Besides using the BLR objective, we also consider a model which can model a per time-step scale
(similar to the per time-step Gaussian with a modelled scale/variance), but which measures the error
in a log-manner. We consider a Cauchy distribution, since the log-likelihood conceptually enables us
to minimize a log-error similar to the log-MSE [21]. A T dimensional Student-t with one degree of
freedom (ν = 1) corresponds to a multivariate (T -dimensional) Cauchy (MVC) distribution, with a
density function:

Student-tν=1(s̃;µ,Σ) = MVC(s̃;µ,Σ, T ) =
Γ
(
1+T
2

)
Γ
(
1
2

)
π
T
2 |Σ| 12 |

[
1 + (s̃− µ)

⊤
Σ−1 (s̃− µ)

] 1+T
2

,

(70)
where we model s̃ using a mean time series, µ, and scale matrix, Σ. The MVC model we consider
will only parametrize a diagonal scale matrix. For an identity scale matrix, the log-likelihood of the
MVC is proportional to the log of one plus the squared difference between s̃ and µ (i.e. similar to a
log-MSE objective).

We present and discuss some early results for using this likelihood in Appendix L.

A18



J Data, model and training specifics

General specifics on data foundation We use the open-source LibriMix, as introduced in Cosentino
et al. [7], which combines speech from LibriSpeech [28] (CC BY 4.0) and noise samples from
WHAM! [23] (CC BY-NC 4.0). Cosentino et al. [7] also introduces a dataset with VCTK speech
[22] (CC BY 4.0) mixed with WHAM! noise, which we also use.

Impacts of improved generative models With increasingly powerful generative models on audio,
as we discuss in Section 5, the problems of misuse of models, and misuse of available data to clone a
voice without consent should be taken into consideration. While the presented VI-TasNet does not
enable e.g. voice conversion, it is a generative model. The use of the VI-TasNet is solely focused
on recreating, as closely as possible, the original speech of the single sources in the mixture. A key
aspect is the level of temporal abstraction on which the generative model works; higher-capacity
models, such as the one considered in e.g. van den Oord et al. [15], operate on a considerably higher
temporal abstraction in the latent variables than a VI-TasNet. Simplistically, a VI-TasNet learns
something akin to an efficient version of the average speech spectrum with the addition of some
knowledge of phase, whereas models with higher temporal abstraction will learn more high-level
components of speech, like phonemes, words, sentences and speaker identity, allowing them to also
reproduce or coherently alter such aspects of audio. We further refer to Dieleman et al. [86, Sec. 6.1]
for a discussion on such considerations concerning e.g. imitating voice identities in the datasets.

Consent and identity It should be noted that only the VCTK dataset was explicitly made with an
aim related to voice synthesis. Yamagishi et al. [22] presents “the Voice Bank corpus, specifically
designed for the creation of personalised synthetic voices for individuals with speech disorders”.
Yamagishi et al. [22] outlines that participants were given “a consent form detailing the conditions of
use of their recordings”, but the details of this consent—to the best of our knowledge—are not given
in the paper, nor at the dataset current web page7. The LibriSpeech data is a curation of speech from
the LibriVox project, which collects free public domain audiobooks. Volunteer audiobook recorders
are instructed that audio enters the public domain, and examples are currently provided to inform
the volunteers of various potential consequences8. The VCTK speakers are given an anonymous
numeric ID, which is available alongside their age, gender, accents, and region of England that they
came from. The LibriVox speakers are identified by the name under which the reader is registered
in LibriVox alongside the sex specified. The LibriSpeech dataset and the VCTK dataset, however,
both contain audio recordings of speech, which can be used to identify a person. For the WHAM!
noise dataset, the data web page9 states that the noise datasets “have been processed to remove any
segments containing intelligible speech”.

Written material foundation The content for the VCTK dataset was curated from relatively
recent newspaper articles (“3000 articles of the Scottish Herald newspapers”, and additionally “The
Rainbow passage”, and “Accent elicitation passage from the Speech Accent Archive”) [22]; while the
creation was based on coverage optimisation, we expect a very limited amount of explicitly offensive
material, although the study does not mention filtering on a such a parameter. LibriMix, which uses
LibriSpeech, is built using LibriVox. For LibriVox, the written content is old books in the public
domain. The content of the LibriVox books, being older books, contain sentiments prevalent at the
time of writing of the original works; this is an especially important consideration if learning e.g.
a generative language model based on the data, but the VI-TasNet under consideration does not
enable that higher level of representation learning of underlying language. It is important to note the
limitations of training on a dataset of predominantly older material mainly from (non-conversational)
English book reciting. The representation learnt of such audio does not reflect well the diversity of
spoken English, and it is very unlikely that a model trained on English performs well on different
languages altogether, and poorer representation fit for “non-standard” English and non-English causes
reduced separation performance. Testing on VCTK enables testing of the algorithm on a dataset
explicitly attempting to include diversity in British dialects, and further efforts in this direction could
include evaluating on larger datasets with e.g. more nationalities (such as the VoxCeleb [88]).

7datashare.ed.ac.uk/handle/10283/2950 (accessed June 2021)
8cf. librivox.org/pages/volunteer-for-librivox (accessed June 2021) under the heading “What

Can Other People Do with LibriVox Recordings”.
9wham.whisper.ai (accessed June 2021)
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Realistic mixtures As discussed in Cosentino et al. [7], speech separation algorithms like TasNet
perform poorly on more sparsely overlapping data. The mixtures in LibriMix are both densely
overlapping and are unrelated sentences from various audiobooks. Towards a better understanding
of the speech separation performance, evaluation on more realistic, conversation-like dataset would
be valuable; the sparsely overlapping version of LibriMix, SparseLibriMix test set [7], represents
one such dataset. This present study focus on simple mixtures (“anechoically mixed”). Future
investigations should address how e.g. reverberant environments affect the learning (using e.g.
WHAMR! as considered for LibriMix in [53], using simulated room impulse responses, or even
actual, reverberant/realistic mixtures).

Various training specifics We aligned with the Asteroid training recipes for the ConvTasNet10.
We used a smaller batch size of 4 (limited by the memory of available hardware) for the LibriMix
experiments in the clean condition (that is, for results in Table 2 and Table 3). Another deviation
from the Asteroid recipes is a reduced learning rate to 3 · 10−4. Training the variational network
parameters with higher learning rates for that particular batch size resulted in training instabilities.
For the results on the noisy condition (in Table 1), we used four GPUs in parallel with the same batch
size of 4 with an effective batch size of 16. We could alleviate this instability for higher learning rates
by increasing the batch size, but this, however, reduces the experimental throughput significantly. For
the noisy condition VI-TasNet model, the total rate per time step (i.e. (Rz +RM) /T ) was adaptively
optimized towards a value of 256 nats. This is a heuristically chosen hyper-parameter, and it is worth
tuning and exploring, e.g. by resolving the RD-curves for the problem. Here, it was chosen through
initial exploratory runs in trying to balance on the one hand being too restrictive while on the other
hand ensuring that the value is imposing the needed regularization. Too low of a target rate would
result in never reaching a performance comparable to the TasNet. Similarly, too high target rates
would result in distributions collapsing onto deterministic distribution, using the freedom to remove
all variance

For the SuDoRMRF results, we use only the separation modules of the SuDoRMRF [43] implementa-
tion in Asteroid [89] (or more specifically, their SuDORMRFImproved). We compare a deterministic
version and a variational inference version (SuDoRMRF and VI-SuDoRMRF). The only changes for
these models (compared to the TasNet and VI-TasNet models) were the networks called in the masker
module (the separation module) that parametrizes the distribution over the masks (or directly outputs
the masks in the deterministic setting). The SuDoRMRF was started with the package’s standard
parameters matching the improved version configuration, and otherwise, the same setup was used as
the VI-TasNet. To not include too many new factors, we did not, for instance, use the sum-to-one
masking activation used in [43] (we have also discussed the implications of this in the original Appx.
L).

We also did a similar experiment with the Sepformer [5] using the SpeechBrain [90] implementation
of the Sepformer for the separation models. With the size of the Sepformer, we needed to reduce
the batch size. We used the reduced learning rate and magnitude of gradient clipping reported in the
original paper and used the same configuration as in the original paper as available on the SpeechBrain
repository for the masking network, and otherwise the same parameters for all other VI-EMD-related
parameters (i.e., the same as the TasNet/VI-TasNet configurations). The VI-Sepformer, notably,
used the same target total rate of 256 nats, which caused the VI-Sepformer to more quickly be
strictly more regularized than the VI-versions of TasNet or SuDoRMRF. Seeing the Sepformer is
a considerably more expressive model (on parameter count it is more than 5–10x larger than the
TasNet and SuDoRMRF) and operating on a different mechanism (convolutional versus attention), it
is unsurprising that the model has significantly different rate-distortion trade-offs than the TasNet
and SuDoRMRF. The VI-Sepformer with the same target total rate was heavily over-regularized (i.e.,
closer to the first rows in Table 2). We concluded that it would be beyond the scope of this paper to
also contrast these additional trade-offs, especially considering the increasing training times of the
larger models, but we consider it a promising future investigation to illuminate how generalization
and RD-trade-offs are related to model architectures.

Learning rate annealing We trained with increased “patience” in the learning rate scheduler (50
epochs/passes over the full training dataset before reducing the learning rate at validation SI-SDR
plateaus). This is, we believe, the cause of improved results on the deterministic TasNet reported

10github.com/asteroid-team/asteroid, MIT License.
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compared to the Asteroid repository reported results11 (13.0 dB SI-SDRi versus the performance
shown in Table 3 of 14.4 dB using Libri2Mix train-100 on the clean separation task). Similarly,
Asteroid reports an SI-SDR improvement of 10.8 dB on the same noisy LibriMix (2 speakers, 8
Khz, min-mode, 100 hr), whereas the increased patience improved the deterministic baseline to
a performance of 11.6 dB) in the noisy condition as reported in the main paper Table 1 (and the
corresponding expanded table here in the supplementary, Table 4). While we otherwise use the same
architecture as provided in Asteroid (time-dilated convolutions architecture) masker, we saw some
stability improvements by normalizing the summed skip connections by the depth of the masking
network.

Computational resources A single experiment with the VI-TasNet doing 200 epochs over the 100
hour Libri2Mix training set with a batch size of 4 on a single GPU took approximately 5-6 days on
an NVIDIA GeForce GTX 1080 Ti (or approximately 120-144 GPU hours). The adaptive model and
flow models took slightly longer with extra encoding/decoding of single sources and mixture for the
adaptive model and more model parameters in the learnt flow. The seven models in Table 3 alongside
the eight models in Figure 7 (numerical results in Table 2) thus required approximately 2000 GPU
hours total, disregarding an equivalent, at least, amount of GPU hours in developing the model before
running the experiments. As we stress in Section 5, the reported results are all performances of
one run of the model (one random seed). Accordingly, we have no basis for comparing the model
performances rigorously, e.g. evaluating whether the flow prior is statistically performing better
than the other variants of the VI-TasNet. While such a characterization is valuable information, we
balanced the available time and compute against the value of resolving various priors. For the noisy
condition results (in Table 1), the TasNet and VI-TasNet were trained on four GPUs for 1000 epochs
(280 and 300 hours, respectively), or about 1.2k GPU hr per model. The TasNet, even with the
increased patience, converged faster and could likely be stopped as early as 75–100 hours, whereas the
VI-TasNet could likely have been stopped at about 200 hours. The best validations loss checkpoints
(used in testing) were in both models, however, from the last 50 epochs of the 1000 epochs. We
stress that the results are, under the compute available, single repetitions of a model training, and the
results are limited in not addressing the uncertainty in final model performance given the stochastic
initialization and optimization. Given the significant compute involved in training a single of these
models, we chose to focus on the more challenging noisy condition for larger models (presented in
Table 1), as we expected differences between deterministic and VI-based models to be bigger in this
condition. Some experiments were done in the clean condition (presented in e.g. Table 2, Table 3,
Figure 2, and Figure 3), and we chose to retain these findings and present them as initially done
instead of repeating the experiments in the noisy condition.

Parameter counts and model size The VI-TasNet has a parameter count (and prediction time
complexity) similar to the base TasNet counterpart we consider which has 5.1 million parameters.
When using the gamma encoding, no extra parameters are added to the encoder. In the results for
Table 3, using a Gaussian encoding or the MVC objective adds an extra dimension to the encoder
or decoder output, respectively, which adds 8192 parameters to model the variances (i.e. a very
negligible about 1–2 ‰ relative increase in parameters). The extra parameters in the masking network
to enable two parameters per time and latent dimension increases the total model parameter count to
5.2 million trainable parameters, for the Gaussian encoding. The presented flow prior model, due
to the large size of the latent space and relatively large size of chosen MADE configurations, has
a (potentially needlessly large) total of 17.8 million trainable parameters. We chose to focus on a
model closely aligned with a (deterministic, Conv-)TasNet to more readily compare to a well-studied
model. Notably, the standard TasNet has a single-layer encoder and decoder—and can benefit from
deeper structures [6]. We saw in initial exploratory investigations that a VI-TasNet will similarly
benefit from deeper encoders and decoders, possibly to a greater extent than a TasNet depending on
how restrictive the utilized prior is. For a Gaussian prior and posterior, we are essentially forcing
a linear mapping from windows of 16 samples of raw audio to closely resemble a Gaussian. Even
slightly deeper, non-linear mappings might be beneficial.

Approximate KL-divergences In evaluating the rate terms, we have analytical expressions for
the KL-divergence between two Gaussians, two betas or two gammas, but this is not the case

11Asteroid results available at https://github.com/asteroid-team/asteroid/tree/master/egs/
librimix/ConvTasNet (accessed May 2022).
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for e.g. the flow prior. In training the models, we initially used an approximation of the KL-
divergence, as is common practice in training VAEs, and this was used in the clean condition results
(Table 2 and Table 3). With the KL-divergence as defined in Eq. 6, a single sample Monto Carlo
estimate corresponds to estimating the divergence using a single sample drawn from the approximate
posteriors of the latent variables to determine the expectation of the log density ratios. While these
approximations are generally close to the analytical expressions, we saw that the model learned better
using the approximation than (when available) when the analytical expression. Investigating this, we
saw that in some cases the estimated KL saturates when the parameters of the variational distribution
are much lower than the prior value (e.g. trying to have very little activation in a gamma latent
dimension), whereas the analytical expression does not. While an unintended consequence of using
the estimated KL-divergence, this behaviour enabled the model to perform better and could indicate
that a prior more flexible in allowing to “turn off” latents is useful for the VI-TasNet specification
considered.

In the synthetic and noisy condition experiments, we used the analytical expressions, facilitated by the
use of using adaptive re-weighting, instead of the free bits and static re-weighting used in the clean
condition results. While the noisy condition results use an adaptive re-weighting, the training also
included a (potentially inconsequential) free encoding nat (1.0 nat) across all encoding dimensions as
well as one free mask nat across all mask dimensions and speaker masks.

Numerical stability: dequantization, initialization, clamping, and margin loss Since the audio
signal is a 16-bit audio discrete-time signal, we used a (potentially inconsequential) uniform dequan-
tization. Traditionally, float representations of audio are scaled to be in the [−1, 1] range. Using a
standard PyTorch initialization for the encoder and decoder resulted in initial estimates that were
much outside this range, so we used a uniform initialization on [−10−2; 10−2] for the encoder and
decoder weights. While values outside the [−1, 1] range is not a problem for the scale-invariance
objective (it simply re-scales the signals), it is inconvenient to have the model operate in this range
needlessly. We employ a margin loss entirely similar to the one used in Donahue et al. [91] and
Dieleman et al. [86]. We saw little to no effect from dequantization, and its use was dropped for
the noisy condition and synthetic experiments (these experiments are later than the clean condition
results). The synthetic experiments also do not use a margin loss. The parameterizations of the
various distributions rely on transforming the direct output of the networks in some manner; for
the gamma concentration parameter and Gaussian scale, we e.g. pass the network output through
a softplus function, and clamp it to a minimum value of 10−6 to have the required strictly positive
parameter. The adaptive KL re-weighting was in the noisy condition started at a factor of 10−9 and
adapted by a factor of 10−4 at each step (otherwise using the same formulation and e.g. minimum
threshold for change as Dieleman et al. [86]). For the synthetic experiments, a higher initial value
and adaption rate of 10−6 and 10−2, respectively, were used, to accommodate the faster training
of simpler models. The data was standardized based on the mean and variance of the waveforms
across time and across all mixtures in the dataset, and the same standardization was used in testing
on both LibriMix and VCTK (i.e. LibriMix train set values of mean and variance were used for
standardization).

Autoregressive flow prior The learnable autoregressive flow (AF) prior introduced with the
variational lossy autoencoder (VLAE, in Chen et al. [30]) is equivalent to the inverse-autoregressive
flow (IAF) introduced in [29]. We investigate how this type of more flexible AF prior can be used
in the VI-TasNet, by learning a mapping, or flow, from a base distribution (“noise source”), u(ϵ),
to the latent encodings, pξ(z). We use a Gaussian base distribution for ϵ, and learn a series of
flows. These flows together make up a mapping z = ωξ(ϵ), and they use a series of invertible
mappings parametrized by autoregressive networks with parameters ξ. While one such possible
mapping is a series of affine transformations, where a scaling and a translation are learnt, we adopt
the approach from the VLAE to use a mean-only flow. Similarly, we also make use of a series
of masked autoencoder density estimations (MADE) networks [92] as the autoregressive networks
parameterizing the flows12.

Sampling frequency We chose to work with the 8 kHz version of the datasets to reduce the
computational requirements. Investigations on whether the findings presented hold for increased

12In particular, we make use of the implementation available at github.com/karpathy/pytorch-made,
MIT license.
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sampling frequencies would be important for real-world use since many use cases require a higher
audio quality than achievable with 8 kHz.

Dataset size Similar to the choice of the 8 kHz variant of the data, we worked with the 100 hr
(smaller) version of LibriMix to reduce computational requirements. Using the larger versions of
the datasets, or more datasets, tends to increase performance; for instance, Asteroid reports 10.8
dB SI-SDRi in the noisy, 2-speaker LibriMix condition when trained on 100 hrs, but a performance
of 12.0 dB SI-SDRi when trained on the larger 360 hrs variant of LibriMix. Within the dataset
(i.e. on LibriMix), this means that the TasNet trained on 360 hrs of data matches the performance
of a VI-TasNet trained on only 100 hrs of data (this, of course, does not say anything about the
generalization to new domains or conditions of VI-TasNet versus TasNets on larger datasets). For
scenarios where examples are scarce, we would propose the investigation of VI-TasNets—and
especially the multitasking version for learning from more abundant audio without available single
sources. Characterizing the performance as a function of dataset sizes/number of examples with
single sources (exploring learning curves) was not the focus of the present study; in such scenarios,
we stress that the baseline would not solely be a deterministic TasNet, but rather a model trained with
methods such as MixIt and methods with similar aims [53].
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K Synthetic experiment

K.1 Gaussian pulse mixtures

We construct a simple source separation problem which makes mixtures of single sources that them-
selves are overlapping sinusoidal Gaussian pulses from a specific frequency region with overtones.
We specify a frequency range for the “fundamental frequency of given speaker”. In the experiments
shown, this was set to 300-400 Hz for “Speaker/Target 0” and 100-200 Hz for “Speaker/Target 1”.
For an example set of targets and input, see Figure 9. To create one of the synthetic single sources, we
create three sinusoidal pulses with a Gaussian envelope and add them to create one single source in
the mixture. For each pulse, we sample a fundamental frequency in the given “speaker’s” range. We
also sample an overall amplitude in a given range (this range is shared between targets), a phase, and
pulse delay within a specified time axis of 3 seconds so at least half of the pulse is within the segment.
Additionally, we add four overtones to the sampled fundamental sine wave and add Gaussian noise.

We create distinct examples/datasets by keying the randomness/sampling procedures to integer base
seed/ranges; for the replicates in the synthetic experiments, the first replicate had indices ranging from
[100000, 102048[ for 2048 training examples, the next 128 indices were validation examples, and
after that came 1024 indices for each test data configuration (e.g. different noise levels). Similarly,
the next replicate had training examples from [200000, 202048[, and so on.

While the frequency region of the fundamental frequencies is not overlapping, the inclusion of the
overtones results in a problem where regions of the spectrogram will share energy between the two
targets.

K.2 Model and optimization

We reduce the number of encoding dimensions with respect to the models we consider on LibriMix
from 512 to 32. With reference to the naming from the temporal convolutional network used in
Conv-TasNet [2] and as available in the Asteroid framework [89], we similarly reduce the masker
bottleneck channels down from 128 to 16, the skip channels from 128 to 8, the hidden channels from
512 to 16. We retain the same number of blocks per repeat but reduce the number of repeats/cycles to
1. We parametrize Gaussian encodings and lognormal masks and we use standard priors for both
(mean/location and standard deviation/scale of 0.0 and 1.0, respectively). We use a BLR likelihood,
and we re-weigh the rate terms to match varying levels of rates to resolve the RD-curve using the
adaptive re-weighting described in Appendix E. We use an initial value for the adaptive factor for
the total rate (sum of both rate and encodings) of 10−6 and adapt with 1 % at each step if needed
(δ = 0.01).

We use a learning rate of 3 · 10−4 (with the same higher patience scheduling as described for larger
models) and optimize the model using a permutation invariance evidence lower bound loss (i.e.
while using PIT, we minimize the negative ELBO). The models are trained for a maximum of 800
epochs (parses over the 2048 data examples), with potential early stopping if no improvement in
validation SI-SDR is seen for 60 consecutive epochs. We do not use the model with the highest
validation SI-SDR for the evaluation but instead use the last model to make the RD curves, since the
adaptation can produce early models that had high rates with better performance than later, more
tightly regularized versions. Monitoring the actual loss (modified ELBO) instead of the SI-SDR
is non-trivial, because the adaptive reweighing continuously changes the values, e.g. potentially
increasing the loss in periods where a rate is being re-weighted towards lower rate values without it
necessarily indicating a plateau and a needed “early stop”.

We expected to find the models could over-fit, which would be evident as a (significant, especially for
higher rates) gap between training and validation/test performances. However, with the specifications
detailed above, the models did not display significant over-fitting to the training data, even for the
highest rates. This, we hypothesize, is a consequence of simultaneously (i) having reduced the
complexity of the model (fewer latents, fewer filters, etc.) and (ii) having employed regularizing
elements (such as early stopping and learning rate annealing). Provided that e.g. a more over-complete
model was trained without learning rate annealing, we hypothesize that the generalization behaviour
and rate-generalization trade-offs would be even more pronounced.
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Figure 9: An example of the synthetic Gaussian pulses dataset. Top row: spectrogram of single
sources targets in isolation. Bottom row: input mixture to the model.
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L Different priors on clean LibriMix

In this section, we present earlier results for TasNets and VI-TasNets trained on the clean version of
LibriMix (min-mode, 2 speakers, 8 kHz, clean, 100 hrs). As the deterministic baseline, we trained a
TasNet using both the standard SI-SDR objective and the BLR. We compare these TasNets to four
variations of the VI-TasNet to investigate the effect of encoding posterior and priors, all using the
BLR objective, and all using a beta masker. Firstly, we train a VI-TasNet with a Gaussian encoder
distribution and prior, and a similar gamma version. In addition to these, we train a model that uses a
Gaussian approximate posterior with a flow prior. We train a VI-TasNet that uses a gamma posterior
in conjunction with adaptive prior, which also uses the multitasking objective. Finally, we train a
VI-TasNet with a more flexible decoder distribution, the MVC, using a gamma encoder and prior.
The performance of these models is shown in Table 3.

Training a deterministic TasNet with the BLR objective (unsurprisingly) reduced the SI-SDR per-
formance compared to directly optimizing SI-SDR, but the BLR does produce reasonable SI-SDRi
scores while additionally providing actual probabilities/normalized densities. The VI-TasNets learn
to perform the separation task well, albeit not—in this earlier version, without e.g. adaptive re-
weighting—to the same performance as the deterministic counterparts. These models are different
from the models outperforming the TasNets in Table 1 in the amount of (target total) rate they achieve
and the masker distribution used. Here, the best performing VI-TasNet uses the flow-based prior, but
both the simple Gauss and gamma models attain performances near the 13 dB SI-SDRi mark.

The multitasking, adaptive model and the MVC model perform the poorest of the VI-TasNet. These
models were not converged within a 200 epoch limit (about 150 GPU hours of training), and they
would likely see improved performances with longer training. While the TasNets here display the
highest difference between the LibriMix and VCTK test sets (generalization gap), this result does
not support this being attributed to differences in variational versus deterministic models, seeing as
the TasNets also display higher overall SI-SDRi. For the models in Table 3, the differences in model
performance are smaller in the VCTK-2mix test, where e.g. the difference between the BLR TasNet
and the flow-based VI-TasNet is 0.38 dB, as opposed to their difference of 0.73 on LibriMix. We
note, in contrast to the findings in this section, that other configurations of the VI-TasNet models
(such as the ones presented in the main paper in Table 1) produce both better overall performance of
the VI-TasNet and notably also better generalization to VCTK.

Table 3: Model SI-SDR improvements in dB for LibriMix and VCTK test sets in noise-free/clean
condition. qNφ /qΓφ: Gaussian/gamma approximate posterior, respectively; similar notation for Gaussian
and gamma prior; pξ: flow prior; pφ,S : adaptive prior. SI-SDR is parenthesized to denote it as an
objective rather than a likelihood.

Model Encoding q/prior Likelihood Libri2Mix test VCTK-2mix test Difference

TasNet - (SI-SDR) 14.36 12.91 1.45
TasNet - BLR 13.86 12.13 1.73
VI-TasNet qNφ /pN BLR 12.75 11.52 1.23
VI-TasNet qΓφ/pΓ BLR 12.68 11.40 1.28
VI-TasNet qNφ /pξ BLR 13.13 11.74 1.38
VI-TasNet qΓφ/pφ,S BLR 10.21 9.11 1.10
VI-TasNet qΓφ/pΓ MVC 11.31 10.19 1.11

In the main paper, we report results for the model with Gaussian encodings and log-normal masks (to
align with the most standard TasNet formulation), but we here show the viability of considering other
distributions. With these results, we show that the VI-TasNets support the incorporation of different
types of structure in the latent encodings and different observation models (decoder distributions,
likelihoods) and that the choice of these affects performance.

The gamma formulation can produce a non-negative encoding, which could potentially draw strengths
from a parts-based representation, and similarly, we show that the BLR and MVC are viable avenues
of exploration for imposing certain characteristics (like scale-invariance) in a manner compatible
with variational inference.
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The flow model is expensive during training, but we do not need to evaluate the prior during a call to
the model if we are using it to do separation after training is completed. In this case, training time
complexity might potentially be traded off for increased performance We would, however, need it if
we wanted to do uncertainty estimation.

The variational inference formulation enables future work to incorporate various other well-known
approaches from probabilistic modelling. Some examples are: we could address problems with an
unknown number of speakers using a stick-breaking/Dirichlet process for the masks distribution; we
could address the permutation problem by modelling target and estimated speakers with a mixture;
or, we could provide a stronger learning signal to the masks by incorporating knowledge of the single
source encodings as masking targets through an adaptive mask prior.

The adaptive model in Table 3 (second to last row) is, importantly, an example of a functioning
multitasking model. We showed how such a model, and its input density estimates, can be useful
from an uncertainty quantification perspective in the main paper with Figure 3. It is worthwhile
stressing, however, that such a multitasking model can also learn directly from mixtures without
reference single target sources in isolation.

The results shown here do not investigate the effect of the masker distribution choice, but we note that
these results consider a beta masker (more similar to a sigmoidally gated TasNet mask), whereas e.g.
Table 1 consider log-normal masks (more similar to a ReLU gated/rectified TasNet mask), showing
how both are viable possibilities even if they have very different ways of masking.
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M Further synthetic rate-distortion results

In this section, we provide further results on the RD-curve analysis of the synthetic problem and mod-
els considered in Figure 2 and Appendix K. We train VI-TasNets with the adaptive rate-regularization
towards a range of rates on the 2-speaker synthetic problem. The target rates log-spaced from 10−3

to 103.

In Figure 10, we show how a model trained on a domain characterized by a particular level of noise
amplitude, “NA” of 0.5—this corresponds to a standard deviation of Gaussian noise added on top of
the single sources after additive mixing. The test performance on this seen/familiar-condition data
is shared across all plots in black. A line is drawn as the running average distortion as a function
of (sorted) rates, and a dot is drawn for each model. Alongside the black line in each plot, we
show a corresponding red line which shows the performance of the model evaluated on different test
conditions.

Figure 10: RD curves for various test conditions performance of models with varying target rates
trained in a particular version of the synthetic Gaussian pulses separation test. Note that the x-axis
and y-axis are shared across all plots. Details in the text. NA: noise amplitude, OS: (number of)
overlapping sines, OT: (number of) over-tones, AMN: amplitude-modulated noise, BPFN: band-pass
filtered noise, GS: Gauss-pulse scale, FR: frequency range.

Firstly, in going from top to bottom and from left to right, we start with the training domain and then
ranging from models with no noise to increasing amounts of noise, all the way to a noise amplitude
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of 1.0 (a factor 2 above the training domain of 0.5). We see that models with too high rates generalize
less well to low noise settings, but the same is not immediately the case for higher noise settings.
Following this, we see how changing the number of over-lapping sines (“OS”)—by either adding or
removing one from the training domain amount of 3 sines—produces either slightly better separation
or slightly poorer separation, but no clear differences for high rates versus other models in their
generalization abilities. A similar conclusion holds for the number of overtones (“OT”); removing
them altogether makes it easier, whereas adding 1 (from five to six) or doubling (five to ten) makes
the problem harder. We see that a slow (2 Hz) amplitude modulation of the noise signal (“AMN”)
or band-pass filtering of the noise (“BPFN”, to have the noise only be in the region of the speaker
Gaussian pulse frequencies) both produce slightly easier problems. We can control the width of the
Gaussian pulses with a scale (“GS”). Evaluating with pulses that can be slightly longer and shorter
([0.01, 0.5] versus [0.05, 0.3] in the training domain), does not significantly change the performance
in expectation. Testing on shorter pulses ([0.01, 0.05]), however, is a harder task, and only longer
([0.3, 0.5]) is an easier one. Lastly, we can change the frequency ranges (“FR”) that define the
speakers, to be either slightly expanded (from 100–200 Hz and 300–400 Hz to 75–225 Hz/275–425
Hz), nearly overlapping, or actually overlapping. In each case, this produces models with poorer
distortion, but no clear difference in optimal versus higher rate models in the generalization abilities.

While the target total rates in some cases were as high as 1000, no model achieve rates over 150 nats.
We hypothesize that the limited capacity coupled with e.g. learning rate annealing, early stopping and
stochastic optimization might produce models that do not over-fit to the same extent and thus do not
produce very high rates, even if the model has the freedom to do it. Generally, we have found that,
when the models can achieve the target rate they do so with a higher consistency across replicates,
whereas the models that cannot achieve the set rate tend to display a larger variance in the final
expected rate over the test set and a similarly large variance in achieved distortion (some might do
well, others do very poorly).
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N All metrics LibriMix/VCTK evaluation

In Table 4 we provide extra numerical results for the Table 1 from the main paper. The full table
shows (in addition to the already reported SI-SDRi), the BLR objectives and the SI-SDR. The table
also highlights what is a familiar (“intra-dataset” or “intra-condition”) evaluation versus an unfamiliar
one (“inter-”). These extra metrics show how the VI-TasNet and VI-SuDoRMRF is an improvement
both in SI-SDR, SI-SDRi and BLR over the deterministic counterpart on both familiar and unfamiliar
datasets and conditions. The only exception is that the BLR better for the deterministic model in the
LibriMix conditions.

Table 4: TasNet and VI-TasNet on noisy separation task. Full version of Table 1 with SI-SDR and
BLR metrics, and indication of whether the performance is an inter- and intra- dataset or condition
evaluation.

Condition Model SI-SDRi SI-SDR BLR
LibriMix/intra VCTK/inter Drop LibriMix/intra VCTK/inter Drop LibriMix/intra VCTK/inter

Noisy/intra TasNet 11.61 9.86 1.75 (0.15) 9.61 7.96 1.66 (0.17) 0.33 0.15
VI-TasNet 11.98 10.41 1.58 (0.13) 9.99 8.50 1.49 (0.15) 0.36 0.20

Clean/inter TasNet 12.96 10.38 2.58 (0.20) 12.96 10.37 2.59 (0.20) 0.67 0.39
VI-TasNet 13.56 11.42 2.14 (0.16) 13.56 11.42 2.14 (0.16) 0.73 0.49

Noisy/intra SuDoRMRF† 11.12 9.15 1.97 (0.18) 9.12 7.24 1.88 (0.21) 0.28 0.08
VI-SuDoRMRF† 11.46 9.53 1.93 (0.17) 9.47 7.62 1.84 (0.19) 0.30 0.11

Clean/inter SuDoRMRF† 12.46 9.75 2.71 (0.22) 12.46 9.75 2.71 (0.22) 0.62 0.33
VI-SuDoRMRF† 12.86 10.37 2.49 (0.19) 12.86 10.36 2.50 (0.19) 0.64 0.37
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Abstract

Variational auto-encoders are competitive likelihood models when constructed with a deep
hierarchy of latent variables. We introduce a variational auto-encoder using a hierarchy
of neural stochastic differential equations as latent objects. Building on the Very Deep
Variational Auto-Encoder (Child, 2021) architecture, the introduced model replaces discrete
top-down blocks with stochastic differential equation blocks. Using the stochastic process
formulation and flexible numerical integration procedures, we present experiments on simple
computer vision tasks and explore continuity in the learned model representation. The
experiments show how the depth of the hierarchy can be continuously varied to produce
different trade-offs between computational complexity and the model performance (number
of numerical integration steps versus achieved evidence lower bound). Depth-continuity of
this type allows a single trained model to be used across a range of computational restrictions
in downstream uses of generative models. Finally, we discuss possible extensions of the
proposed model as well as the potential implications on efficiency and generalization of
using a depth-shared parametrization.

1 Introduction

Deep generative models seek to learn representations of data from large, readily available unlabelled data
sets, often to use the learned representation in other tasks (Bond-Taylor et al., 2021). The representations
can, for instance, be a starting point for training models where only a smaller data set of labeled data is
available, or a generative task can also be used in a setting where a labeled and unlabelled data set is used
concurrently during learning (Kingma et al., 2014). Generative models also enable tasks such as increasing
the resolution of an input (super-resolution), image and audio synthesis, out-of-distribution detection, and
compression (Bond-Taylor et al., 2021; Townsend et al., 2018).

Variational auto-encoders (VAEs) VAEs are a particular type of deep generative model (Rezende
et al., 2014; Kingma & Welling, 2013), falling under a broader category of likelihood-based models, to which
also belongs, e.g., flow-based models (Dinh et al., 2015; 2017), autoregressive models (Germain et al., 2015;
van den Oord et al., 2016a;b) and diffusion models (Sohl-Dickstein et al., 2015; Rombach et al., 2022).
VAEs are latent variable models that learn to model data distribution using variational inference. A VAE
jointly optimizes an inference and a generative network to solve a bottle-necked auto-encoding task—i.e.,
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reconstructing an input after parsing it through a restricted information channel. The inference network
takes a datum and produces distributions over a latent space. These encodings are then decoded using
the generative network, producing distributions over the original data space. The models are optimized
towards ensuring (i) that the distortions introduced by the composition of the encoding and the decoding
are as small as possible (that the input has a high likelihood under the output distribution) and (ii) that the
encoding distributions produced by the inference network diverge as little as possible from a set prior. Many
variations and improvements exist to the standard VAE framework, such as using more expressive priors
(Kingma et al., 2016; Tomczak & Welling, 2018) and employing a hierarchical structure (Ranganath et al.,
2016; Burda et al., 2016; Sønderby et al., 2016; Salimans, 2016; Maaløe et al., 2019; Vahdat & Kautz, 2020).
In particular, increasing the stochastic depth greatly (number of levels in the hierarchy)—producing very
deep variational auto-encoders (VD-VAEs) (Child, 2021)—makes for competitive likelihood models. Child
(2021) showed how model performance increased by increasing the stochastic depth even with an otherwise
fixed parameter count.

Dynamical systems in deep learning Incorporating differential equations in machine learning models
provides expressive modeling components with the added benefit of being able to rely on a long history of
research on dynamical systems, numerical integration, etc. The intersection of differential equations and
deep learning modeling can, e.g., provide avenues of understanding and improving existing models through
the lens of dynamical systems and make more expressive versions of existing models (Haber & Ruthotto,
2017; Chang et al., 2018; Raissi et al., 2019; Erichson et al., 2021; Hodgkinson et al., 2021). In particular,
a dynamical systems view enables modeling with inductive biases towards continuity in modeling temporal
data (Krishnapriyan et al., 2022) or as continuity of model feature representation (Xu et al., 2022; Queiruga
et al., 2020; 2021).

Continuity Haber & Ruthotto (2017) explored the connection between residual neural networks (ResNets)
(He et al., 2016) and an Euler discretization of an ordinary differential equation (ODE). Building on this,
Queiruga et al. (2020) introduce continuous-in-depth networks, relying on the ODE perspective of ResNets
to construct networks that incorporate approximate numerical solvers in deep supervised learning. They
show how higher-order solvers induce representations that generalize to step sizes different from the training
step size (the step size used in the numerical integration). This depth “continuity” allows the model to
train with adaptive step sizes—for instance, coarsely during initial training and finer and finer as training
progresses. It enables using the model at different levels of computational complexity after training, trading
off accuracy for reducing computational requirements (using an increased number of step sizes to produce
better performance or vice versa). Similarly, Krishnapriyan et al. (2022) consider neural physics models
and explore continuity properties. They introduce a convergence test that can verify whether a learned
model reflects the continuity of a modeled systems dynamics, and they show how higher-order solvers induce
continuous representations.

Differential equations in generative modeling The incorporation of differential equations extends
to deep generative modeling. For example, Chen et al. (2018) introduced the neural ODE and showed
how to use a neural ODE to produce a continuous normalizing flow (CNF). This was later extended with
FFJORD (Grathwohl et al., 2018) allowing for more efficient training and fewer restrictions in architecture.
We consider hierarchical variational auto-encoders in a dynamical systems framework. In this context,
commonalities and unifying frameworks for the seemingly distinct likelihood-based deep generative models
like flows, VAEs, autoregressive, and diffusion models are worth noting. To name some: VAEs and flows
have been unified in frameworks like SurVAE flows (Nielsen et al., 2020) and AEF (Silvestri et al., 2022));
variational diffusion models are an infinitely deep limit of a standard VAE (Kingma et al., 2021); Child
(2021) discuss how very deep VAEs generalize autoregressive models; and score-based diffusion models can be
transformed into continuous normalizing flows (Song et al., 2021). Regarding stochastic differential equations
(SDEs) specifically, they have been used to extend CNFs producing stochastic continuous normalizing flows
(Hodgkinson et al., 2021), and a specific SDE formulation is the basis for score-based diffusion models (Song
et al., 2021). Tzen & Raginsky (2019), also using SDEs, consider the diffusion limit of deep latent variable
models that use Gaussian approximate posteriors in a variational inference framework. Continuously, or
“infinitely”, deep models can be constructed using the dynamical systems perspective; Xu et al. (2022)
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present continuous-depth Bayesian neural networks using latent SDE, and they also discuss the diffusion
limit of discrete-time models.

Latent SDEs A latent SDE (Liu et al., 2019; Jia & Benson, 2019; Li et al., 2020) resembles a VAE in which
the usual Gaussian latent object is replaced by a latent process defined as solutions to an SDE under the
stochasticity of a Brownian motion. In this work, we will build, in particular, on the latent SDE formulation
presented by Li et al. (2020). General improvements to how well neural SDEs can be incorporated in deep
learning model systems include, e.g., the stochastic adjoint method allowing for accurate gradients and
constant space complexity in determining gradients (Li et al., 2020), efficient algorithms for simulating the
Brownian motion (Li et al., 2020; Kidger et al., 2021b), improving the calibration of uncertainty estimation
(Look et al., 2022), and improvements to SDE solvers, such as the introduction of the reversible Heun solver
(Kidger et al., 2021b). While Li et al. (2020) consider the incorporation of neural SDEs in a VAE framework,
they can also be part of a generative adversarial network (GAN)-like model (Kidger et al., 2021a;b).

Contributions In the following, we introduce a continuously deep variational auto-encoder (CD-VAE).
The model can be seen as an extension of the VD-VAE (Child, 2021), using a hierarchy of latent SDEs
as latent processes thus replacing the discrete latent variables within levels of VD-VAEs. Utilizing the
dynamical systems perspective, we explore whether the model displays continuity properties by investigating
how performance is affected by changes to the step size used in numerical integration. We start by introducing
VAEs and provide details on the VD-VAE in Section 2. Following this, we introduce the proposed CD-VAE
in Section 3 alongside specifics of the latent SDE as introduced by Li et al. (2020). Finally, we present and
discuss experiments applying the model to two simple computer vision tasks in Section 4.

2 Hierarchical Variational Auto-Encoders

A standard variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014) has an inference network
with parameters φ that takes an input, x, and parameterizes and approximate posterior distribution, qφ (z|x),
over the latent random variable, z. The generative network, with parameters θ, parameterizes distributions,
pθ (x|z), of the reconstructed input, x, and we specify some prior over the latent distribution, pθ (z)—
typically an isotropic Gaussian. VAEs are then trained to optimize a bound on the marginal likelihood, the
evidence lower bound (ELBO) L:

log pθ (x) ≥ L (θ, φ; x) = Eqφ(z|x) [log pθ (x|z)] −DKL (qφ (z|x) ||pθ (z)) = −(D +R), (1)

where we introduce the negative log-likelihood of the datum, the distortion, D, and the Kullback–Leibler
(KL) divergence between the approximate posterior and the prior, the rate, R.

Very Deep Variational Auto-Encoders In hierarchical VAEs, the basic VAE framework is extended
to consider a hierarchy of latent variables (Sønderby et al., 2016; Child, 2021). In VD-VAEs, a hierarchy
of N latents, z0, . . . , zN , is used (collectively referred to as z). Letting the top-most latent variable be
z0, we let each variable be dependent on the latent variables higher in the hierarchy, defining the prior as
pθ (z0) pθ (z1| z0), . . . , pθ (zN |z<N ), where z<N is a shorthand for all latents higher in the hierarchy than N .
Similarly, we define the approximate posterior as qφ (z0|x) qφ (z1|z0,x) . . . qφ (zN |z<N ,x). The architecture
for parameterizing the prior and approximate posteriors in a VD-VAE is visualized in Figure 1 and Figure 2.
Using the hierarchical structure for the VD-VAE, we, more explicitly, get the following ELBO for the VD-
VAE, LVD:

log pθ (x) ≥ LVD (θ, φ; x)

= Eqφ(z|x) [log pθ (x|z)] −
N∑
n=1

DKL (qφ(zn|z<n,x)||pθ(zn|z<n)) −DKL (qφ(z0|x)||pθ(z0)) . (2)

A VD-VAE has a deterministic bottom-up (BU) path (see left side of Figure 1, green box) and a stochastic
top-down (TD) path (middle red box). The hierarchy of latent variables is the yellow blocks in the top-down
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Figure 1: Overview of considered type of hierarchical variational auto-encoders. Data is encoded using a
bottom-up path (left) and reconstructed using a top-down path, which is either the version used in a VD-
VAE (middle) or the one used in this work, the CD-VAE (right). The two models share the same structure
for the bottom-up path (green), and the difference between them is the replacement of top-down blocks
(yellow) in the VD-VAEs with SDE blocks (purple) in the CD-VAE for their respective top-down paths (red
boxes).

path. The paths are organized into levels, where each level operates on a particular spatial resolution. In
the BU path, going from the bottom and up, the levels are separated by averaging pooling layers to reduce
the resolution. In the TD path, going from top to bottom, the levels are separated by nearest neighbor
up-sampling layers to increase the resolution. The BU levels consist of a series of residual blocks, and the
TD levels consist of (discrete) TD blocks, which are residual blocks adapted to parameterize a prior and
approximate posterior.

The TD blocks are visualized in Figure 2 (left). Each TD block takes as input two signals. The first is the BU
path signal from the corresponding level at the same resolution (“from the left”), which can be thought of as
a data conditioning signal used in conditioning the approximate posterior on the input datum. The second
signal is the TD signal from the block above in the hierarchy (“from the top”), which can be considered
conditioning from more spatially abstract parts of the representation. The TD signal is used to parameterize
the prior for the current level with a convolution block, thus conditioning the prior distributions on latents
above in the hierarchy. When we concatenate the TD and BU contexts, we get the input to a convolutional
block that parameterizes the approximate posterior for that specific latent variable. The pathway on the
right side of the block propagates the TD signal all through the TD path. It adds two components for
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Figure 2: Stochastic blocks used in considered hierarchical VAEs; either a set of VD-VAE TD blocks (left,
yellow) or an SDE block (right, purple). Convolutional blocks (“conv blocks”) are four successive two-
dimensional convolutions with square kernels of sizes 1, 3, 3, and 1 with final input and output dimensions
matching the latent variable dimensionality. Dashed lines indicate that only one of the signals is used in
updating the state; during training, the approximate posterior (for the VD-VAE) or the posterior drift (for
the CD-VAE) updates the state, but the prior and prior drift are evaluated such that we can evaluate the
rates. In the CD-VAE, we replace the three discrete levels (indicated by the s = 0/0, . . . , 1/3) with a single
SDE block with a flexible number of steps, n, or equivalently, step size, ∆s. For further details, see the text.

each block: one is a signal depending on the prior block, and another is a linear projection of a sample
from either the prior or the posterior (not both). The sample to be added to the residual TD pathway is
either a sample from the approximate posterior or the prior, depending on whether we want to condition on
data. During training, we do not need to sample the prior. However, we need to measure the KL divergence
between the approximate posteriors and the priors—when training, the sample used is always a sample from
the approximate posterior. Note that the VD-VAE takes an extra signal depending on the same features
that parameterize the prior and adds that to the TD pathway—the signal is not a sample from the prior,
but a deterministic, additive component (extra filters are added to the final convolution in the convolutional
block that also provides the parameterization of the prior). In addition to this particular architecture, Child
(2021) uses various training specifics for stabilization in training, such as gradient skipping. Within a level,
several blocks share the same bottom-up signal. For example, in Figure 1, there are four levels with three
blocks corresponding to twelve latent variables (each a vector of some latent dimensionality).

3 Continuously Deep Variational Auto-Encoder

Latent SDEs The following aligns with the presentation in Li et al. (2020), and we refer to Li et al. (2020,
Sec. 5) for a detailed description of the latent SDEs. We can, loosely, interpret the TD blocks within a level
as a discretization of a (latent, neural) SDE (Li et al., 2020). Figure 2 (right) shows an SDE block. The
central element in the SDE block is an SDE solver which finds a numerical solution given the latent process
defined by a prior and posterior drift and a shared diffusion. The TD signal provides the initial value for
the SDE solve in the block. The solver determines a solution given the initial value and three functions: the
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posterior drift, the prior drift, and the shared diffusion, each defined by neural networks mapping from the
current state and depth to the terms in the differential equation. Just like the prior in the VD-VAE does
not depend on data, the prior drift and diffusion do not depend on the data through BU path—only the
posterior drift depends on data.

Prior and approximate posterior processes We interpret the dimension over which we integrate as
a depth in a (continuously deep) hierarchy, such that we have depth, s, and a “depth horizon”, S = [0, S],
corresponding to the depth of the hierarchy. We have levels, l = 0, 1, . . . , L, each defined by one set of SDEs
(one SDE block). Each level spans a unit length depth horizon Sl = [l, l + 1], such that the total depth
of the hierarchy is S = L + 1. We let each level have independent parameterizations of the drifts and the
diffusion. Thus, the model can viewed as a hierarchy of SDEs in which the terminal state of each level defines
the initial value for the next. Within each level, defined by an SDE block, we have two processes. These
two processes share a diffusion term controlled by a kl-dimensional Brownian motion, {W l

s}s∈Sl
. The two

processes defined by the SDEs are:

dZ̃ls = hlξ(Z̃ls, s)ds+ σlψ(Z̃ls, s)dW l
s, (3)

dZls = hζ(Zls, s)ds+ σlψ(Zls, s)dW l
s, (4)

where {Z̃ls}s∈Sl
and {Zls}s∈Sl

are the prior and approximate posterior stochastic process, respectively, each
having separate drift terms, h, but sharing a diffusion, σ, for the level, l. Here hlξ : Rkl × R → Rkl denotes
a neural network that parameterizes the prior drift based on the current depth, s, and the current latent
prior state, Z̃ls ∈ Rkl , where kl denotes the dimensionality of the state. Similarly, hlζ : Rkl × R → Rkl is
a neural network that takes the depth and state and provides the posterior drift; the parameters ζ depend
on a deterministic, data-dependent context from the BU path. The shared diffusion is parameterized by a
network σlψ : Rkl × R → Rkl in a manner ensuring that the diffusion is weakly diagonal. The above general
description allows for a depth- and state-dependency of all the functions; however, we opted for a constant,
scalar, learned diffusion independent of both depth and state (this simplification also ensures that there is
no difference between Itô and Stratonovich solutions to the SDEs (Kidger, 2021, Sec. 4.1)).

CD-VAE compared to the VD-VAE The stochasticity from sampling (either in the prior or the ap-
proximate posterior) in a VD-VAE corresponds to the stochasticity of the controlling Brownian motion in
the SDEs’ diffusion term. In Figure 2, we compare the two types of stochastic blocks—the right-hand side
shows an SDE block. The SDE block takes as input a BU (data dependent signal) and a TD signal, entirely
like the VD-VAE stochastic block. For the top-most block alone, the top-down signal stems from a (prior,
posterior)-pair like that in a regular VAEs—here, an isotropic Gaussian prior and a Gaussian approximate
posterior dependent on the top-most BU signal. The CD-VAE uses a shared parameterization across the
depth of a given level; the VD-VAE has independent weights for each TD block, but the CD-VAE uses the
same parameterization for all depths within a level.

Comparison to earlier latent SDEs A few central aspects of our proposed latent SDE blocks differ
from that of Li et al. (2020). Li et al. (2020) model temporal sequences and encode them into temporally
evolving latent states. In contrast, we consider images with latent spatial states; using the spatial structure
in the latent state, the CD-VAE vector fields are convolutional neural networks parameterizing the drifts
and diffusions. The model that Li et al. (2020) present has a time series of contexts for the approximate
posterior process, where we use a single, shared bottom-up signal for each level (“shared across depth”
within a level). The CD-VAE has a hierarchy of latent SDEs, multiple SDEs operating at different spatial
resolutions resulting in different dimensionalities of the latent state—and of the Brownian motion—for each
level.

Mock spatial latent process visualization We keep the number of latent dimensions constant per
spatial dimension across levels, but we increase the number of latent spatial channels. Figure 3 shows a
mock example of three levels of a CD-VAE using a simplified set of processes for visualization purposes. The
evolution is governed by prior, posterior, and diffusion functions. At the top level, the spatial resolution of
the latents results in a single latent spatial dimension, i.e., the latents are a 1-by-1 “latent image”, where
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Figure 3: Mock example of a CD-VAE with three levels of different resolution, starting with a 1x1 spatial
configuration and ultimately producing a 4x4 latent state. Grey shows a prior process and purple shows
a similar posterior process affected by a different drift. From left to right, we go through three levels of
different spatial resolution separated by dashed lines; the first dashed line corresponds to a depth s = 0, and
the final dashed line corresponds to a depth s = 3.

each pixel has a process of some dimensionality. Here, this dimensionality is 1, for visualization purposes,
corresponding to one set of lines “per latent pixel”: a grey prior process and a purple posterior process. The
two processes are similar since they share the same diffusion (the same stochastic evolution controlled by a
sampled Brownian motion and σ-functions) but differ since they have different drifts. When training and
evaluating the model, we obtain the values for the latent states by using a numerical integrator within a level,
i.e., to obtain the solution between each pair of dashed lines, we call an SDE solver. Specifically, we make
use of Diffrax (Kidger, 2021) to handle the SDEs and Equinox (Kidger & Garcia, 2021) to construct the
neural networks. At the top level, the processes share the same initial value (at the left-most dashed line).
In lower levels, the initial values are dictated by the higher level’s evolution and the current level’s spatial
configuration. The final state of the previous approximate posterior process is upsampled, and the resulting
latent image is used as the initial value for the next level. For example, when the second level (denoted by
the second dashed line) starts, the spatial 1x1 latents are up-sampled to be a 2x2 configuration, resulting in
a prior and an approximate posterior process with four dimensions that share the same initial value. Each of
the dimensions “within a latent pixel” evolves differently because of the different Brownian motions and—in
the case of the posterior—because of different spatial contexts from the data. The upsampling is, for this
figure, repeated another time, and the lower-most level shows the evolution of a prior and a posterior for a
4x4 spatial configuration of latents. Finally, the final state of the lowermost level is sent to a convolutional
decoder. This decoder uses a set of convolutional blocks to parameterize an observation model/distribution,
which in our case is either a per-pixel Bernoulli or Gaussian distribution.

CD-VAE ELBO The CD-VAE shares the same BU path as the VD-VAE. In both, the top BU level output
is used to parameterize a Gaussian approximate posterior. This distribution’s divergence to a standard
Gaussian prior is the first component in the ELBO, which in the CD-VAE we refer to as the “initial rate”.
In the VD-VAE, all remaining TD blocks function in this manner. However, only the topmost level uses this
structure in the CD-VAE, where this block parameterizes the initial value for the entirety of the hierarchy.
Instead of a KL divergences between discrete Gaussian distributions, we determine a “path rate” when
training CD-VAEs (during the solver call in the SDE blocks). The path rate is the KL between the prior
and posterior processes and takes on a form distinct from the discrete case. For the CD-VAE, the evidence
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lower bound, LCD, is:

log pξ,ψ,θ (x) ≥ LCD (φ, θ, ξ, ζ, ψ; x)

= E

[
log pξ,ψ,θ

(
x|zLS

)
−

L∑
l=0

∫ l+1

l

1
2 |ul

(
zls, s

)
|2ds− KL

(
qφ(z0

0|x)||pθ(z0
0)

)]
, (5)

where the expectation is under the approximate posterior distribution for the initial value and the ap-
proximate posterior processes distributions. The first term corresponds to the distortion or the recon-
struction error. The second term is a a sum over each level tallying the integration of a function
u, which measures the difference in the posterior and prior drift scaled by the diffusion (defined by
σlψ

(
zls, s

)
ul

(
zls, s

)
= hlζ

(
zls, s

)
− hlξ

(
zls, s

)
). During training, we augment the SDE solves with a dimension

that has a diffusion term corresponding to the integrand and with a diffusion term of zero. The SDE solve
thus provide the path rate (i.e., the integral in the second term of the ELBO) alongside the evolution of the
latent processes. The last term corresponds to a more standard VAE KL between the two Gaussians defining
the initial values, the “initial rate”, where the φ, θ are the parameters of the networks parameterizing the
initial values of the approximate posterior and prior, respectively. Compared to the ELBO for the VD-VAE
in Equation (2), the main change is the replacement of the sum over N discrete KL-divergences in the second
term in the VD-VAE ELBO with a sum over path rates in the second term of Equation (5). The derivation
of the ELBO as presented in Li et al. (2020) relies on relating the change of (probability) measure for the
posterior process to the prior process using Girsanov’s Theorem II (Øksendal, 2013, Theorem 8.6.6). For
details on the derivation of the variational bound and prerequisite assumptions of regularity, we refer to Li
et al. (2020, Sec. 9).

ODE-like CD-VAE comparison We compare the CD-VAE to a model constructed like the CD-VAE
but with two changes: (1) the bottom-up signals are all removed (multiplied by zero) except for the signal
that parameterizes the initial value approximate posterior, and (2) the path rate term in the loss is removed
(multiplied by zero during training). This model is free to increase the path rate without penalization.
Consequently, the magnitude differences between the drift term and the diffusion term are much higher,
yielding a high (drift-)signal-to-(diffusion-)noise ratio. This effectively produces an ODE by ignoring the
diffusion, and we will refer to this model as an ODE-like CD-VAE. For this model, the approximate posterior
evolution is only affected by data in its initial value. We introduce this comparison, not as a fair baseline or a
competitive model, but to compare the effect on representation continuity of minimizing the KL divergence
between the approximate posterior process and the prior process in the CD-VAE.

4 Results and discussion

In the following, we present results for a simple Poisson equation data set and a binarized version of MNIST.
We provide details on hyper-parameters and model construction in Appendix A.1.

Synthetic Poisson equation data set We construct a data set consisting of 16-by-16 pixels images
corresponding to noisy observations of two different solutions to simple Poisson equations. We use exact
solutions to −∆h (x, y) = f (x, y), where f (x, y) = sin (aπx) sin (bπy) for (x, y) ∈ [0, 1]2 with Dirichlet
boundary conditions h (x, 0) = h (x, 1) = h (0, y) = h (1, y) = 0. We use either a = b = 1 or a = b = 3 to
construct the ground truths. The data set consists of 1024 observations—each observation is either of the
two ground truths (in equal proportions) with an additive Gaussian noise of scale 5 · 10−3. The data set is
split into partitions of proportions 80 %, 10 %, 10 % used for training, validation, and testing, respectively.
We show the ground truth solutions, their noisy observations, example reconstructions, and samples from
the learned prior in Appendix A.2 in Figure 6. There, we also show a detailed visualization of the processes
and numerical integration in Figure 7 (i.e., corresponding to a detailed non-mocked version of Figure 3).

In Figure 4a, we show results for varying the number of steps used during the call to the numerical solver
for the CD-VAE and the ODE-like CD-VAE. The figure shows how the step size affects the loss components
when evaluating the model on a held-out test set. The CD-VAE improves modestly (see left-most plot) when
increasing the number of steps taken (i.e., decreasing the step size) compared to the step size used during
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(a) CD-VAE

(b) Comparison ODE-like CD-VAE model (the path rate is ignored in the loss, so no curve is shown).

Figure 4: Loss components as a function of integration step size, ∆s, for both the CD-VAE and a simple
example of a model not displaying continuity. From left to right, we show the evidence lower bound, the
distortion, the path rate, and the initial value rate. All are given in nats.

training. The improvement amounts to about 0.3 nats when decreasing the step size by a magnitude. When
increasing the step size, we see modest but slightly more significant decreases in performance; there is a drop
of 1 nat at a step size of 1/3, which is the largest step size considered. The initial value rate is constant
over the range of steps, and the path rate changes slightly, but the changes in achieved ELBO are primarily
driven by changes in distortion.

In Figure 4b, we show the results of running the same experiment on the ODE-like CD-VAE model. The
bound for this model does not consider the path rate, so no curve is shown. The ODE-like CDVAE puts the
information needed for reconstruction into the initial value rate. The model does not achieve a lower bound
as good as the CD-VAE; while the initial value rate of about 5.9 nats is much lower than the CD-VAE’s
combined path and initial values rates of about 14 nats, the distortions are much higher, thus producing
an ELBO of about 74 nats (about 6.4 nats higher than the CD-VAE using the smallest step size). In the
absence of a term in the loss that penalized divergence from a well-behaved prior process, the ODE-like
CD-VAE displays its lowest ELBO around the training step size and, in contrast to the CD-VAE, does not
improve by decreasing the step size.

Binarized MNIST We train a CD-VAE on a binarized MNIST using the code provided with the Efficient
VD-VAE paper (Hazami et al., 2022) to construct the data set. We provide example outputs in the appendix,
Figure 8. We show example reconstructions, samples from the learned prior, and samples conditioned on
only the top level in the hierarchy (showing the variation in produced samples when only the most spatially
abstract level is informed about the datum).

We conduct the same experiment of changing the numerical integration step size after training and show the
results for the ELBO on the test set in Figure 5. While the binarized MNIST is still a simple problem, it
is twice the spatial resolution and more diverse than the simple Poisson data set. We see that the CD-VAE
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improves its ELBO when decreasing the step size. As points of comparison, we show the performance of the
consistency-regularized nouveau VAE (CR-NVAE) (Sinha & Dieng, 2021), the efficient VD-VAE (Hazami
et al., 2022), the PixelCNN (van den Oord et al., 2016b), and MADE (Germain et al., 2015). The CD-
VAE attains a performance between the level of MADE and a PixelCNN. The improvements attained by
decreasing the step size by one or two magnitudes amount to about one nat, or about half the improvement
seen in going from, e.g., a PixelCNN to an Efficient VD-VAE.

Figure 5: Evidence lower bound as a function of numerical integration step size for a CD-VAE trained on
binarized MNIST and comparisons to other deep generative models.

Extensions Hierarchical VAEs have various ties to flows, auto-regressive models and diffusion models,
especially with an SDE perspective. Models like the CD-VAE are possible avenues of drawing on the
strengths of multiple frameworks, such as combining lower dimensionality latent spaces of VAEs and the
expressive power of recent diffusion models (Kingma et al., 2021; Rombach et al., 2022). The CD-VAE share
learned features across the depth of the hierarchy, much like convolutional neural networks share features over
the spatial dimensions of their input. The presented CD-VAE uses a single set of convolutional blocks for a
given level, sharing the parameters across all depths within a level—a level that would otherwise correspond
to multiple distinct blocks in a VD-VAE, each block with each their own set of parameters. Sharing the
parameters in this manner might be an effective parametrization, up to some depth horizon, and extensions
to view the weights as continuous-in-depth functions using basis functions, as presented by Queiruga et al.
(2021), could further the benefits of a continuously deep hierarchy. As seen in Figure 7, the learned dynamics
are simple; allowing more expressive neural networks in the neural SDEs could improve performance. We
use a simple SDE solver with a constant step size during training. The CD-VAE might be improved with
a stronger solver, such as the Reversible Heun solver (Kidger et al., 2021a) or by using an adaptive step
size controller. The current CD-VAE formulation could be viewed as a particular discretization of a neural
stochastic partial differential equation (Salvi & Lemercier, 2021); this view could enable dynamically adapting
the current static resolution changes in the CD-VAE’s bottom-up and top-down paths, thus learning the
inherent relevant scales of the data. In this work, we make use of a discretize-then-optimize approach.
However, the stochastic adjoint method (Li et al., 2020) could allow for deep hierarchies at constant memory
requirements, which—in conjunction with the observation by Child (2021) that greater stochastic depth is
beneficial—might allow the CD-VAEs to be highly expressive models. We use single-sample estimates of the
initial values and processes. Yet, approaches like the importance-weighted auto-encoder (Burda et al., 2016)
show that moving beyond a single-sample estimate of the expectation in the ELBO can be beneficial. We
retain a (discrete) ResNet for the bottom-up path, but the model could be adapted to use a ContinuousNet-
style formulation with an ODE (Queiruga et al., 2020). Similarly, we improved inference in hierarchical VAEs
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using BIVA (Maaløe et al., 2019) could be adapted to the CD-VAE structure, in which case the CD-VAE
bottom-up path would be constructed as another set of neural SDEs.

5 Conclusion

We present a hierarchical variational autoencoder using latent stochastic differential equations. The model
extends the architecture of the very deep variational auto-encoder; using a hierarchy of stochastic processes
as latent objects, we introduce a continuously deep variational auto-encoder. We show results for training the
model on two simple computer vision tasks, and we show how the learned representation displays properties
of continuity in the sense that the model generalizes to step sizes beyond its training step size. Depth-
continuity of this type allows a single trained model to be used across a range of computational restrictions
in downstream uses of generative models. The CD-VAE has a number of possible extensions that have
proven helpful in similar previous models, such as using more expressive parametrizations of the functions
defining the differential equation, adaptive step size controllers, etc. The presented results add to ongoing
explorations of depth-continuity of model representations, extending conclusions on improved performance
with decreased step sizes to generative models.
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A Appendix

A.1 Model details

For the Poisson model, we train the model with a batch size of 128 for a fixed 4000 updates using an Adam
optimizer and a learning rate of 3 · 10−4.

We have four channels per latent dimension in the latent processes and use a total of three levels with a
change in resolution of a factor of two between the levels. The bottom-up encoder uses 128 hidden channels
in the ResBlocks. The final part of the top-down path parametrizing the observation distribution uses three
convolution blocks with 128 hidden channels. For the Poisson data, the final number of parameters matches
the scale and location (mean and standard deviation) of a Gaussian per pixel.

The neural SDEs are trained with a constant step size of 0.1. The drift parametrizing convolutional blocks
use 128 hidden channels each (both prior and posterior), and the drifts are a single, learned scalar per level.
The final activations on the drift terms are linear. The drift terms are both state and depth-dependent. We
use a Euler-Heun solver.

The ELBO uses “free nats”, 1.0 nat across all dimensions for both the initial values and for each level in
the hierarchy. We also use a sigmoidal warm-up over 1000 steps of the initial rate and path rates (slowly
annealing in the KL terms).

For the MNIST models, we reduce the batch size to 32 to allow for a larger model. The MNIST model trains
for 50000 steps and uses 16 latent per spatial dimensions but retains three levels separated by resolution
changes of a factor of two. The bottom-up path channels are increased to 256 filters, and the same was
done for the final part of the top-down path parametrizing the observation distribution. For the binarized
MNIST data, we use a per-pixel Bernoulli distribution. The neural SDEs use the same construction of the
processes as the Poisson data set model, and the loss uses the same free nats and KL-term warmups. The
model starts with a learning rate of 10−3 decayed with a cosine decay throughout training to 10−4.
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A.2 Poisson data set

(a) Ground truth of two types of observa-
tions in the data set.

(b) Example reconstructions of the two types of
data. 1st column is the input data, 2nd column is
the observation distribution mean, and the last
three columns are three samples.

(c) 16 examples from the training data
set. Each observation is a noisy obser-
vation of one of the ground truth im-
ages.

(d) Samples from the prior of the
learned model.

Figure 6: Overview of Poisson equation data set.
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Figure 7: Detailed visualization of the latent processes in a Poisson data example. Each row shows one of
three levels in the hierarchy. The first row shows the initial value distribution (black and blue) and the state
(black) evolving over the depth. The second, third, and fourth rows show the posterior drift (red), prior
drift (green), and diffusion (blue) at the approximate posterior state/depth inputs corresponding to the first
row. The last row shows the path rates (both the instantaneous value, fully drawn, and the integral of the
path rate, dashed).

17



A.3 Binarized MNIST

(a) Example reconstructions. 1st row shows input data,
2nd row shows a sample from the recosntruction, and the
3rd row shows the entropy of the observation distribution.

(b) Samples from the learned prior.

(c) Example reconstructions where only the top level in
the hierarchy sees the data conditioning signal. 1st row
shows the input samples, a different one in each column,
and the remaining rows show different samples.

Figure 8: Overview of the binarized MNIST data set and example model outputs.
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