

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 29, 2024

Approximate Selection with Unreliable Comparisons in Optimal Expected Time

Huang, Shengyu; Liu, Chih Hung; Rutschmann, Daniel

Published in:
Proceedings of the 40th International Symposium on Theoretical Aspects of Computer Science

Link to article, DOI:
10.4230/LIPIcs.STACS.2023.37

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Huang, S., Liu, C. H., & Rutschmann, D. (2023). Approximate Selection with Unreliable Comparisons in Optimal
Expected Time. In Proceedings of the 40th International Symposium on Theoretical Aspects of Computer
Science: STACS 2023 Article 37 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
https://doi.org/10.4230/LIPIcs.STACS.2023.37

https://doi.org/10.4230/LIPIcs.STACS.2023.37
https://orbit.dtu.dk/en/publications/6c0636bd-bc95-44da-9af9-1b1a4dd23102
https://doi.org/10.4230/LIPIcs.STACS.2023.37

Approximate Selection with Unreliable
Comparisons in Optimal Expected Time
Shengyu Huang #

Department of Computer Science, EPFL, Lausanne, Switzerland

Chih-Hung Liu #

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Daniel Rutschmann #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Copenhagen, Denmark

Abstract
Given n elements, an integer k ≤ n

2 and a parameter ε ≥ 1
n

, we study the problem of selecting
an element with rank in (k − nε, k + nε] using unreliable comparisons where the outcome of each
comparison is incorrect independently with a constant error probability, and multiple comparisons
between the same pair of elements are independent. In this fault model, the fundamental problems
of finding the minimum, selecting the k-th smallest element and sorting have been shown to require
Θ
(
n log 1

Q

)
, Θ
(
n log k

Q

)
and Θ

(
n log n

Q

)
comparisons, respectively, to achieve success probability

1 − Q [9]. Considering the increasing complexity of modern computing, it is of great interest to
develop approximation algorithms that enable a trade-off between the solution quality and the
number of comparisons. In particular, approximation algorithms would even be able to attain a
sublinear number of comparisons. Very recently, Leucci and Liu [23] proved that the approximate
minimum selection problem, which covers the case that k ≤ nε, requires expected Θ(ε−1 log 1

Q
)

comparisons, but the general case, i.e., for nε < k ≤ n
2 , is still open.

We develop a randomized algorithm that performs expected O(k
n

ε−2 log 1
Q

) comparisons to
achieve success probability at least 1 − Q. For k = nε, the number of comparisons is O(ε−1 log 1

Q
),

matching Leucci and Liu’s result [23], whereas for k = n/2 (i.e., approximating the median),
the number of comparisons is O(ε−2 log 1

Q
). We also prove that even in the absence of compari-

son faults, any randomized algorithm with success probability at least 1 − Q performs expected
Ω
(

min{n, k
n

ε−2 log 1
Q

}
)

comparisons. As long as n is large enough, i.e., when n = Ω(k
n

ε−2 log 1
Q

),
our lower bound demonstrates the optimality of our algorithm, which covers the possible range of
attaining a sublinear number of comparisons. Surprisingly, for constant Q, our algorithm performs
expected O(k

n
ε−2) comparisons, matching the best possible approximation algorithm in the absence

of computation faults. In contrast, for the exact selection problem, the expected number of compar-
isons is Θ(n log k) with faults versus Θ(n) without faults. Our results also indicate a clear distinction
between approximating the minimum and approximating the k-th smallest element, which holds
even for the high probability guarantee, e.g., if k = n

2 , Q = 1
n

and ε = n−α for α ∈ (0, 1
2), the

asymptotic difference is almost quadratic, i.e., Θ̃(nα) versus Θ̃(n2α).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Approximate Selection, Unreliable Comparisons, Independent Faults

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.37

Related Version Full Version: https://arxiv.org/abs/2205.01448 [17]

Funding Chih-Hung Liu: Yushan Young Fellow Program by Ministry of Education, Taiwan and
Research Project 111-2222-E-002-017-MY2 by National Science and Technology Council, Taiwan.

Acknowledgements The three authors began to investigate this topic when all of them were in ETH
Zürich, Switzerland.

© Shengyu Huang, Chih-Hung Liu, and Daniel Rutschmann;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023).
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté;
Article No. 37; pp. 37:1–37:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shengyu.huang@epfl.ch
mailto:chliu@ntu.edu.tw
https://orcid.org/0000-0001-9683-5982
mailto:daru@dtu.dk
https://doi.org/10.4230/LIPIcs.STACS.2023.37
https://arxiv.org/abs/2205.01448
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

1 Introduction

We study a generalization of the k-th smallest element selection problem in terms of approxi-
mation and fault tolerance. Given a set S of n elements, an integer k and a parameter ε,
the fault-tolerant ε-approximate k-selection problem, FT-APX(k, ε) for short, is to return an
element with rank in (k −nε, k +nε] only using unreliable comparisons whose outcome can be
incorrect. Due to the comparison faults, it is impossible to guarantee a correct solution, so the
number of comparisons performed by an algorithm should depend on the failure probability
Q of the algorithm where Q < 1

2 . We assume that k ≤ n
2 and ε ≥ 1

n ; if k > n
2 , the problem

becomes to approximate the (n − k)-th largest element, which is symmetric, and if ε < 1
n ,

the problem becomes the exact selection problem. The elements with rank in (0, k − nε],
(k − nε, k + nε] and (k + nε, n] of S are called small, relevant and large, respectively.

We consider independent random comparison faults: There is a strict ordering relation
among S, but algorithms can only gather information via unreliable comparisons between two
elements. The outcome of each comparison is wrong with a known constant probability p < 1

2 .
When comparing the same pair of elements multiple times, each outcome is independent of
the previous outcomes; comparisons involving different pairs of elements are also independent.

The above fault model has been widely studied for various fundamental problems such
as finding the minimum, selecting the k-th smallest (resp. largest) element and sorting a
sequence [9, 29, 30]. Feige et al [9] proved that to achieve success probability 1 − Q, the
aforementioned three problems require Θ

(
n log 1

Q

)
, Θ
(
n log k

Q

)
and Θ

(
n log n

Q

)
comparisons,

respectively, both in expectation and in the worst case. In the sequel, their selection algorithm
is denoted by Select(k, Q), and its performance is summarized as follows.

▶ Theorem 1 ([9]). Select(k, Q) performs O
(
n log k

Q

)
comparisons to select the k-th smallest

(resp. largest) element among n elements with success probability at least 1 − Q.

Due to the increasing complexity of modern computing, error detection and error correction
require enormous computing resources. Emerging technologies enable the tolerance of
computation errors for saving computing resources [28, 16, 7, 19, 32]. Meanwhile, many
practical applications do not require an optimal answer, but just a good enough one. These
circumstances motivate the study of fault-tolerant approximation algorithms, especially for
the possibility of attaining a sublinear number of comparisons.

Recently, Leucci and Liu [23] studied the approximate minimum selection problem, which
asks for one element with rank in [1, nε] and thus is equivalent to FT-APX(k, ε) with k = 0
(since FT-APX(k, ε) seeks one element with rank in (k − nε, k + nε] under our formulation).
They developed an algorithm using expected O(ε−1 log 1

Q) comparisons and also proved a
matching lower bound. Moreover, if k ≤ nϵ, a correct answer to FT-APX(0, ε) is also correct
to FT-APX(k, ε), indicating that this case is essentially the approximate minimum selection.
As a result, the challenge is to tackle the case that nϵ < k ≤ n

2 .
A straightforward approach to the FT-APX(k, ε) problem is to first randomly pick

m = Θ(k
n ε−2 log 1

Q) elements so that the underlying ⌈m · k
n ⌉-th smallest element is relevant

with probability at least 1 − Q
2 , and then apply Select(⌈m · k

n ⌉, Q
2) on the m elements. By

Theorem 1, this approach requires Θ
(

k
n ε−2((log 1

Q)(log k
n ε−2) + log2 1

Q

))
comparisons.

▶ Remark 2. Using standard sampling techniques, e.g., similar to Leucci and Liu’s ideas [23],
the number of comparisons in the above straightforward approach can easily be improved
to O

(
k
n ε−2(log 1

Q)(log k
n ε−2) + log2 1

Q

)
. However, for constant Q, this number remains

O
(

k
n ε−2(log k

n ε−2)
)
, and there is no obvious way of improving it to O(k

n ε−2). Remark 8 in
Section 4 will discuss how variants of Quickselect run into a similar issue.

S. Huang, C.-H. Liu, and D. Rutschmann 37:3

Table 1 Summary for the known results and our new results.

Minimum k-th Element

Exact Θ(n log 1
Q

) [9] Θ(n log k
Q

) [9]

Approximate Θ(ε−1 log 1
Q

) [23]
O(k

n
ε−2 log 1

Q
) [ours]

Ω
(

min{n, k
n

ε−2 log 1
Q

}
)

[ours]

Exact
Θ(n) Θ(n)

without faults

Approximate
Θ
(

min{n, ε−1 log 1
Q

}
)

Θ
(

min{n, k
n

ε−2 log 1
Q

}
)

[ours]
without faults

To sum up, it is of great interest to study if the FT-APX(k, ε) problem can be solved
with probability 1 − Q using O(k

n ε−2 log 1
Q) comparisons. Moreover, since comparison faults

increase the number of comparisons required for the exact selection problem, i.e., from
Θ(n) without faults to Θ(n log k

Q) with faults, which shows a clear gap even for constant
Q, one may wonder if the same phenomenon occurs for the approximate selection problem.
Furthermore, although finding the minimum and finding the k-th smallest element require
different numbers of comparisons, namely Θ(n log 1

Q) versus Θ(n log k
Q), to attain a high

success probability, i.e., Q = 1
n , both problems require Θ(n log n) comparisons. Hence, it is

also desirable to investigate if there is a stronger distinction between these two problems in
the approximation scenario, especially for the high success probability.

1.1 Our Contributions
We develop a randomized algorithm that performs expected O(k

n ε−2 log 1
Q) comparisons to

solve the FT-APX(k, ε) problem with probability at least 1 − Q. Also, we prove that even
without considering comparison faults, any randomized algorithm with success probability
1 − Q requires expected Ω

(
min{n, k

n ε−2 log 1
Q }
)

comparisons. As long as n is large enough,
i.e., when n = Ω(k

n ε−2 log 1
Q), our lower bound demonstrates the optimality of our algorithm,

which covers the possible range of attaining a sublinear number of comparisons. Table 1
summarize the known results and our new results.

Furthermore, for any constant Q, e.g., Q = 1/4, our algorithm performs expected O(k
n ε−2)

comparisons, which is optimal even in the absence of comparison faults. This surprising
outcome distinguishes the approximate selection problem from the exact selection problem,
where the exact selection problem requires expected Θ(n) comparisons without faults, but
expected Θ(n log k) comparisons with faults.

Moreover, our results also indicate that there is a distinction between the approximate
minimum selection problem and the general approximate k-th element selection problem in
terms of the expected number of comparisons, i.e., Θ(ε−1 log 1

Q) [24] versus Θ(k
n ε−2 log 1

Q).
This distinction even holds for the high probability guarantee (Q = 1

n) in contradiction to
the fact that the two problems have the same complexity Θ(n log n) in the exact selection
(Theorem 1). For example, if k = n

2 and Q = 1
n , the two approximate selection problems

require expected Θ(ε−1 log n) and Θ(ε−2 log n) comparisons, respectively. If ε = n−α for a
constant α ∈ (0, 1

2), the asymptotic difference is almost quadratic, i.e., Θ̃(nα) versus Θ̃(n2α).

STACS 2023

37:4 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

▶ Remark 3. The k
n ε−2 term in the above complexities is actually max{ε−1, k

n ε−2}. As
discussed before, the case that k ≤ nϵ, by which ε−1 ≥ k

n ε−2, belongs to the approximate
minimum selection problem. Therefore, to simplifying the description, we assume that k > nϵ

throughout the paper if no further specification.

As noted in Remark 2, our technical advance is to improve the k
n ε−2(log 1

Q)(log k
n ε−2) +

log2 1
Q term to k

n ε−2 log 1
Q . To some extent, compared with Leucci and Liu’s algorithms, our

algorithm covers the entire range of k instead of the case when k is trivially small. In addition,
our algorithm owns an elegant feature that it only exploits simple sampling techniques, e.g.,
selecting the median of three samples and selecting the minimum of two samples.

The top-level of our algorithms, inspired by Leucci and Liu [23], reduces the FT-APX(k, ε)
problem on n elements to the FT-APX(m

2 , 3
8) problem on m = Θ(log 1

Q) elements. More
precisely, if a relevant element can be selected with probability 8

9 , we can generate a sequence
of Θ(log 1

Q) elements in which 3
4 of elements around the middle, with probability 1 − Q

2 , are
all relevant. For such a “dense” sequence, we design a delicate trial-and-error method to
select a relevant element with probability 1 − Q

2 using expected Θ(log 1
Q) comparisons.

The main challenge is to obtain a relevant element with probability 8
9 using only O(k

n ε−2)
comparisons. For the approximate minimum (k = 0), Leucci and Liu [23] applied Select(1, 1

10)
on Θ(ε−1) randomly picked elements and attained O(ε−1) comparisons. However, for general
k, this method requires Θ(k

n ε−2 log k
n ε−2) comparisons with an extra logarithmic factor.

We first work on a special case that k = n
2 , i.e., the approximate median selection. Based

on the symmetry property of the median, we observe that the median of three randomly
picked elements is more likely to be relevant than a randomly picked element. We exploit
this observation to iteratively increase the ratio of relevant elements while keeping the
underlying median being relevant. Once the ratio becomes a constant fraction, we will apply
a straightforward method.

For general k, we design a “purifying” process that iteratively increases the ratio of
relevant elements while keeping elements around a “controlled” position being relevant.
Despite no symmetry property, we still observe that under certain conditions, the minimum
of two randomly picked elements is more likely to be relevant than a randomly picked one.
Then, we derive feasible parameters to control the relative position of k, i.e., the middle of
the remaining relevant elements, during the purifying process. Once the relative position
becomes a constant fraction of the remaining elements, we add dummy smallest elements
and apply our approximate median selection.

As a by-product, we also give a randomized algorithm using deterministic O
(

k
n ε−2 log 1

Q +
(log 1

Q)(log log 1
Q)2) comparisons, and it is still open how to attain deterministic

O
(

k
n ε−2 log 1

Q

)
comparisons. Besides, when k

n ε−2 log 1
Q = ω(n), we derive another lower

bound of Ω(max{n, ε−1 log (k+nε)/(2nε)
Q }) (Theorem 21). In this situation, a trivial upper

bound of O(n log k
Q) follows from Theorem 1. It is also not clear how to fill this gap between

the lower and the upper bounds, i.e., Ω(max{n, ε−1 log (k+nε)/(2nε)
Q }) versus O(n log k

Q).
The rest of the paper is organized as follows. Section 1.2 gives a brief literature review.

Section 2 provides a few preliminary remarks. Section 3 presents the top-level algorithm.
Section 4 and Section 5 describe sub-algorithms to approximate the median and the k-th
element with constant probability, respectively. Section 6 sketches the lower bound analysis.
Appendices A–D include several technical details omitted from the main text. For other
technical details not included in this manuscript, interested readers are referred to the current
full version [17].

S. Huang, C.-H. Liu, and D. Rutschmann 37:5

1.2 Brief Literature
Dating back to the 1987, Ravikumar et al. [31] already studied a variant of the problem of
finding the exact minimum using unreliable comparisons when at most f comparison faults
are allowed. They proved that Θ(fn) comparisons are necessary in the worst case. Later,
Aigner [1] considered a prefix-bounded error model: for a fraction parameter γ < 1

2 , at most
an γ-fraction of the past comparisons failed at any point during the execution of an algorithm.
He proved that Θ(1

1−p)n comparisons are necessary to find the minimum in the worst case.
Furthermore, he proved that if p > 1

n−1 , no algorithm can succeed with certainty [1].
When errors occur independently, as already discussed, Feige et al. [9] showed that the

number of comparisons required for selecting the exact k-th smallest element with success
probability at least 1 − Q is Θ(n log k

Q). Recently, Braverman et al. [4] investigated the
round complexity and the number of comparisons by partition and selection algorithms. They
proved that for any constant error probability, Θ(n log n) comparisons are necessary for any
algorithm that selects the minimum with high probability. Also, Chen et al. [6] studied the
problem of computing the smallest k elements using r given independent noisy comparisons
between each pair of elements. In a very general error model called strong stochastic model,
they gave a linear-time algorithm with competitive ratio of Õ(

√
n), and also proved that this

competitive ratio is tight.
The related problem of sorting with faults has also received considerable attention. When

there are at most f comparison faults, Θ(n log n + fn) comparisons are necessary and
sufficient to correctly sort n elements [21, 25, 2]. For the prefix-bounded model, although
Aigner’s result on the minimum selection [1] implies that (1

1−p)O(n log n) are sufficient to
sort n elements, Borgstrom and Kosaraju [3] showed that checking whether the input
elements are sorted already requires Ω

(
(1

1−p)n
)

comparisons. When comparison faults
are permanent, or equivalently, when a pair of elements can only be compared once, the
underlying sorting problem has also been extensively studied especially because it can be
connected to both the minimum feedback arc set problem and the rank aggregation problem
[26, 18, 4, 5, 20, 22, 14, 11, 13, 12]. There are also sorting algorithms for memory faults [10, 24].
For more knowledge about fault-tolerant search algorithms, we refer the interested readers
to a survey by Pelc [30] and a monograph by Cicalese [8].

2 Preliminary

As explained in the beginning of Section 1 and in Remark 3, we assume that nϵ < k ≤ n
2

and ϵ ≥ 1
n throughout the paper if no further specification. For ease of exposition, we use

β to denote k
n

in some analyses, and we sometimes abuse the name x of an element to
denote its rank, e.g., we might write “x ∈ [l, r]” to denote that the rank of x lies in the range
[l, r]. Comparing two elements, x and y, yields an outcome of either x < y or y > x. A
typical subroutine in our algorithms is to draw elements using sampling with replacement, so
multiple copies of an element may appear in a set. When two copies of the same element are
compared, the tie is broken using any arbitrary (but consistent) ordering among the copies.

In our fault model, there is a standard strategy called majority vote for reducing the
“error probability” of comparing two elements. We state this strategy as follows.

▶ Lemma 4 (Majority Vote). For any error probability p ∈ [0, 1
2), there exists a postive

integer cp such that a strategy that compares two elements 2cp · t + 1 times and returns the
majority result succeeds with probability at least 1 − e−t, where cp = ⌈ 4(1−p)

(1−2p)2 ⌉. The exact
failure probability of this strategy is

cp·t∑
i=0

(
2cp · t + 1

i

)
(1 − p)ip2cp·t+1−i.

STACS 2023

37:6 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

Many analyses in this paper will make use of the following Chernoff bound.

▶ Lemma 5 (Chernoff Bound). Let X be the sum of independent Bernoulli random variables.
If A ≤ E[X] ≤ B, then for any δ ∈ (0, 1),

Pr[X ≥ (1 + δ) · B] ≤ e− δ2
3 B and Pr[X ≤ (1 − δ) · A] ≤ e− δ2

2 A.

3 Top Level of Algorithm

The high-level idea is to reduce solving FT-APX(k, ε) on n elements with probability at least
1 − Q to solving FT-APX(m

2 , 3
8) on m = Θ(log 1

Q) elements with probability at least 1 − Q
2 .

Specifically, if a relevant element can be selected with probability at least 8
9 , then m selected

elements, for some m = Θ(log 1
Q), contain at least 7

8 m relevant elements with probability at
least 1 − Q

2 ; see Lemma 23 in Appendix B. In this situation, at least 2 · (7
8 − 1

2) · m = 2 · 3
8 m

elements around the median, i.e., the range (1
8 m, 7

8 m], are relevant. Therefore, solving the
FT-APX(m

2 , 3
8) problem on these m elements with probability at least 1− Q

2 yields a relevant
element with probability at least 1 − 2 · Q

2 = 1 − Q.
Section 5 will present an approach that uses O(k

n ε−2) comparisons to select a relevant
element with probability at least 8

9 , by which the above reduction takes O(k
n ε−2 log 1

Q)
comparisons. In the remaining of this section, we will explain how to solve FT-APX(m

2 , 3
8)

with probability 1 − Q
2 efficiently in both expectation and determination.

We first design a simple trial-and-error method that uses expected O(log 1
Q) comparisons

to select an element from (1
8 m, 7

8 m] with probability at least 1 − Q
2 :

Repeatedly pick an element randomly and verify if its rank lies in (1
8 m, 7

8 m] until one
element passes the verification.

Since (1
8 m, 7

8 m] contains 3
4 m elements, the expected number of repetitions before encountering

a correct element is only O(1). Therefore, the key is to implement the verification step such
that the method returns a correct element with probability at least 1 − Q

2 and the expected
number of comparisons is O(log 1

Q).
We implement the verification step for an element x based on a simple experiment that

randomly picks three elements, and checks if x is neither the smallest nor the largest among
the four elements. To simply the follow-up analysis, we assume that the three elements are
sampled with replacement and picking x again is allowed. Under the above assumptions, the
probability that the if-condition holds is 1 − (rx

m)3 − (1 − rx

m)3 = 3
4 − 3(rx

m − 1
2)2 where rx is

the rank of x among the m elements, (rx

m)3 is the probability that none of the three picked
element is larger than x and (1 − rx

m)3 is the probability that none of the three picked element
is smaller than x. Also, the check can be conducted with success probability at least 17

18
using O(1) comparisons (by plugging in n = 4, k = 1 and Q = 1

36 into Theorem 1 twice for
the smallest and largest versions, respectively). Therefore, if x ∈ (2

8 m, 6
8 m], the experiment

succeeds with probability at least
(3

4 − 3(2
8 − 1

2)2) · 17
18 = 17

32 , where
(3

4 − 3(2
8 − 1

2)2) is the
minimum probability that the if-condition holds and 17

18 is the success probability of the
check, while if x ∈ [1, 1

8 m] or x ∈ (7
8 m, m], the experiment succeeds with probability at most(3

4 − 3(1
8 − 1

2)2)+ 1
18 = 221

576 ≤ 15
32 , where

(3
4 − 3(1

8 − 1
2)2) is the maximum probability that

the if-condition holds and 1
18 is the failure probability of the check.

In the above derivation, we ignore two ranges (1
8 m, 2

8 m] and (6
8 m, 7

8 m] since all elements
in these two ranges are relevant, by which returning any element in these two ranges will not
decrease the success probability, and since the considered range (2

8 m, 6
8 m] contains enough

elements. Based on the above calculated probabilities, we can conceptually treat the above

S. Huang, C.-H. Liu, and D. Rutschmann 37:7

simple experiment as an unreliable comparison with error probability 15
32 . By Lemma 4, if

the verification step conducts this simple experiment 2 · c15/32 ln 2
Q + 1 times and takes the

majority result, its success probability is at least 1 − Q
2 .

Now, we are ready to analyze the expected number of comparisons and the success
probability of our trial-and-error method. Roughly speaking, the process of this trial-
and-error method is similar to flipping a coin until a head appears where the probability
of getting a head is at least 1

4 , which corresponds to a geometric distribution, and each
flip requires O(log 1

Q) comparisons. More precisely, a single round returns an element in
(2

8 m, 6
8 m] with probability at least 1

2 · (1 − Q
2) ≥ 1

4 , and thus the probability to conduct
the i-th round is at most (3

4)i−1. Therefore, the expected number of comparisons is at
most

∑
i≥1(3

4)i−1 · (2 · c15/32 ln 2
Q + 1) = O(log 1

Q). Besides, this method fails only if it
returns an element in [1, 1

8 m] or (7
8 m, m], and such probability of a single round is at most

1
4 · Q

2 = Q
8 . Again, since the probability to conduct the i-th round is at most (3

4)i−1, the
failure probability is at most

∑
i≥1(3

4)i−1 · Q
8 = Q

2 , concluding the following theorem:

▶ Theorem 6. It takes expected O(k
n ε−2 log 1

Q) comparisons to solve the FT-APX(k, ε)
problem with probability at least 1 − Q.

Finally, to derive a deterministic bound, we note that the simple experiment in the
verification step may be viewed as a biased coin toss. From this viewpoint, we are able to
turn the FT-APX(m

2 , 3
8) problem into finding a coin with bias bigger than 15

32 , given that
at least half of the coins have bias at least 17

32 . Grossman and Moshkovitz [15] provided an
algorithm that solves the new problem with probability 1 − Q

2 using O(log 1
Q · (log log 1

Q)2)
coin tosses, leading to the following theorem.

▶ Theorem 7. It takes O(k
n ε−2 log 1

Q + log 1
Q (log log 1

Q)2) comparisons to solve the
FT-APX(k, ε) problem with probability at least 1 − Q.

4 Approximate Median Selection

We attempt to select an element in (n
2 − nε, n

2 + nε], i.e., k = n
2 , with probability at least

1 − 1
18 using only O(ε−2) comparisons. This algorithm will then be applied in Section 5

as a subroutine. A straightforward method, denoted by ST-Median(ε), picks m = Θ(ε−2)
elements randomly to make their median relevant with probability at least 1 − 1

72 and applies
the Select(m

2 , 1
72) algorithm (Theorem 1), resulting in a failure probability of at most 1

36 .
However, the Select(m

2 , 1
72) algorithm takes O(m log m) = O(ε−2 log ε−1) comparisons with

an extra logarithmic factor. To achieve O(ε−2) comparisons, we will “purify” the input
elements in a way that the ratio of relevant elements is increasing while the underlying
median is still relevant. Once the ratio of relevant elements becomes a constant fraction, i.e.,
from 2ε to Ω(1), we can afford to apply the ST-Median algorithm. We assume that ε < 1

6
since if ε ≥ 1

6 , the ST-Median(ε) algorithm takes only O(ε−2 log ε−1) = O(1) comparisons.

▶ Remark 8. A major difficulty to overcome in the purifying process is the following: if we
consider three elements that are each relevant with probability ρ, then their median, even in
the absence of comparison faults, is relevant with probability at most 3

2 ρ + O(ρ2), which is
a lot less than 3ρ. Thus, we risk running out of elements long before the ratio of relevant
elements becomes a constant. This issue remains if we replace three by a larger constant,
and it applies to any algorithm that works in a non-constant number of phases, including
algorithms that more closely resemble Quickselect. Those algorithms would need to start
with Ω(ε−(2+δ)) elements for some δ > 0 and hence cannot achieve the O(ε−2) bound.

STACS 2023

37:8 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

To settle the issue in Remark 8, we maintain a multiset of elements and re-sample from
this multiset at every phase. Our re-sampling method allows us to decrease the number of
elements by less than a factor of 3

2 , so we can avoid running out of elements.
The algorithm is sketched as follows:

1. For 1 ≤ i ≤ L, generate a multiset Mi of ni elements by repeatedly picking three elements
from Mi−1 randomly and selecting the median of the three using a symmetric median
selection algorithm (Lemma 9 below).

2. Apply the ST-Median(εL) algorithm on ML.
Initially, M0 = S, n0 = n, ε0 = ε. Mi is called good if all elements in the range (ni

2 −
niεi,

ni

2 + niεi] are relevant. Moreover, ni is decreasing with i while εi is increasing with i,
and L = min{i | εi ≥ 1

6 }, i.e., the minimum of number of rounds such that at least 2 · 1
6 = 1

3
of the elements around the middle is relevant. The rest of this section illustrates the idea
behind this process and implements these parameters ni and εi.

▶ Lemma 9. For three elements, consider the following median selection algorithm:

1. For each pair of elements, apply the majority vote strategy with 2cp · 4 + 1 comparisons
(Lemma 4), and assign a point to the element that attains the majority result.

2. Return the element with exactly one point. If all three elements get exactly one point,
return one of them uniformly at random.

The above algorithm returns the median with probability at least 1 − 1
13 , and returns the

minimum and the maximum with the same probability, i.e., at most 1
26 .

The purifying process is inspired by a simple observation: a randomly picked element is
relevant with probability 2ε, while the median of three randomly picked elements is relevant
with probability much greater than 2ε. Let ES denote the event that the median of three
randomly picked elements is small. Then,

Pr[ES] = 3
(

1
2 − ε

)2(1
2 + ε

)
+
(

1
2 − ε

)3
= 1

2 − 3
2ε + 2ε3.

If ε < 1
6 , then Pr[ES] ≤ 1

2 − 3
2 ε+2(1

6)2ε = 1− 13
9 ε. By Lemma 9, the median selection returns

the median with probability at least 1 − 1
13 , and returns the minimum (resp. the maximum)

with probability at most 1
26 . A simple calculation, together with the above arguments, gives

the following lemma:

▶ Lemma 10. If Mi−1 is good, then each element in Mi is small (resp. large) with probability
at most 1

2 − 4
3 εi−1.

Proof. We only prove the small case, and it is symmetric to the large case. Let ps denote
the probability that an element randomly picked from Mi−1 is small. Since Mi−1 is good, all
elements in its range (1

2 ni−1 − ni−1εi−1, 1
2 ni−1 + ni−1εi−1] are relevant, and ps ≤ 1

2 − εi−1.
Let p1, p2 and p3 denote the probabilities that the median selection algorithm in Lemma 9
returns the minimum, the median and the maximum of three elements, respectively. By
Lemma 9, p2 ≥ 12

13 , and p1 = p3 ≤ 1
26 . Also recall that εi−1 ≤ 1

6 . Then, the probability that
an element in Mi is small is

S. Huang, C.-H. Liu, and D. Rutschmann 37:9

p3
s︸︷︷︸

three small

+ 3p2
s(1 − ps)︸ ︷︷ ︸

two small & one non-small

·(1 − p3) + 3ps(1 − ps)2︸ ︷︷ ︸
one small & two non-small

·p1

= p3
s + 3p2

s(1 − ps)(1 − p1) + 3ps(1 − ps)2 · p1

=
(
3p2

s − 2p3
s

)
+ p1 ·

(
3ps − 9p2

s + 6p3
s

)︸ ︷︷ ︸
≥0 since 0≤ps≤ 1

2

p1≤ 1
26

≤ 1
26 ·

(
3ps + 69p2

s − 46p3
s

)︸ ︷︷ ︸
f(x):=−46x3+69x2+3x & f ′(x)>0 for 0≤x≤1

ps≤ 1
2 −εi−1

≤ 1
26 ·

(
3
(

1
2 − εi−1

)
+ 69

(
1
2 − εi−1

)2
− 46

(
1
2 − εi−1

)3
)

= 1
2 − 75

52εi−1 + 23
13ε3

i−1

εi−1< 1
6

≤ 1
2 − 75

52εi−1 + 23
468εi−1

= 1
2 − 652

468εi−1

≤ 1
2 − 4

3εi−1 ◀

By Lemma 10, it is feasible to set εi = (5
4)i · ε, i.e., growing slightly slower than 4

3 . Then,
the size ni is set as ⌈2000 · i · (4

5)2i · ε−2⌉ to limit the number of comparisons and the failure
probability. First, ni is linear in ε−2 since the minimum number of elements to be looked at
is Ω(ε−2) (Section 6). Second, to bound the total number of comparisons, ni should shrink
exponentially with i. Third, to bound the failure probability of the algorithm, the failure
probability of the i-th round should also shrink exponentially with i. From the above three
aspects, since the Chernoff bound (Lemma 5) will be applied for the probabilistic analysis,
ni should be linear in i, and the shrink factor of ni should be at least (4

5)2 to cancel out the
square of the growth factor 5

4 of εi.
Because the ST-Median(εL) algorithm (stated at the beginning of this section) fails with

probability at most 1
36 , it is sufficient to prove that Pr[ML is good] ≥ 1 − 1

36 . Let Ei denote
the event that Mi is good. By definition, Pr[E0] = 1. With the Chernoff bound, we can
prove the following lemma:

▶ Lemma 11. For 1 ≤ i ≤ L,

Pr[Mi is NOT good | Mi−1 is good] ≤ 2 · e−5i.

Proof. Assume that Mi−1 is good. Let Xi be the number of small elements in Mi and let
Yi be the number of large elements in Mi. For the statement, it is sufficient to prove that
Pr[Xi ≥ ni

2 − niεi] ≤ e−5i and Pr[Yi ≥ ni

2 − niεi] ≤ e−5i. We will prove the first claim, and
it is symmetric to the second claim. By Lemma 10,

E[Xi] ≤ (1
2 − 4

3εi−1)ni = (1
2 − 4

3 · 4
5εi)ni = (1

2 − 16
15εi)ni = 15 − 32εi

30 ni.

STACS 2023

37:10 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

By Lemma 5 (Chernoff bound), we can get

Pr
[
Xi ≥

(
1
2 − εi

)
ni

]
= Pr

[(
1 +

1
15 εi

1
2 − 16

15 εi

)(
1
2 − 16

15εi

)
ni

]

= Pr


1 + 2εi

15 − 32εi︸ ︷︷ ︸
:=δ

(15 − 32εi

30 ni

)
︸ ︷︷ ︸

≥E[Xi]


≤ exp

(
−1

3

(
2εi

15 − 32εi

)2
·
(

15 − 32εi

30 ni

))
︸ ︷︷ ︸

Lemma 5

= exp
(

− 4
90 · ε2

i

15 − 32εi
· ni

)
≤ exp

(
− 4

90 · ε2
i

15 · ni

)
= exp

(
− 2

675 ·

((
5
4

)2i

ε2

)
·

(
2000 · i ·

(
4
5

)2i

· ε−2

))
≤ e−5i. ◀

By Lemma 11, we can lower bound Pr[EL] as

Pr[EL] = 1 − Pr[
L⋃

i=1
Ei | Ei−1] ≥ 1 −

L∑
i=1

2 · e−5i ≥ 1 − 4 · e−5 ≥ 1 − 1
36 .

By Lemma 9, each median selection takes O(1) comparisons, so the purifying process takes
O(
∑L

i=1 ni) = O
(
ε−2∑L

i=1 i·(4
5)2i

)
= O(ε−2) comparisons. Since εL ≥ 1

6 , the ST-Median(εL)
algorithm takes O(1) comparisons, concluding the following theorem:

▶ Theorem 12. It takes O(ε−2) comparisons to select an element in (n
2 − nε, n

2 + nε] with
probability at least 1 − 1

18 .

5 Approximate k-th Element Selection

We attempt to select an element in (k − nε, k + nε] with probability at least 1 − 1
9 using

only O(k
n ε−2) comparisons. Recall that k > nε as assumed in Remark 3. If nε < k ≤ 2nε,

we halve the value of ε so that k > 2nε, which does not increase the asymptotic complexity.
Therefore, we can safely assume k > 2nε afterwards. In this scenario, the straightforward
approach mentioned in Section 1 requires O

(
k
n ε−2 log(kε−1)

)
comparisons with an extra

log(kε−1) factor. Another approach is to add n − 2k dummy smallest elements (so that the
relevant elements lie in the middle) and to apply the algorithm in Section 4 with ε

2 , leading
to O(ε−2) comparisons. As a result, both approaches are more expensive than O(k

n ε−2).
At a high level, our breakthrough is an iterative “purifying” process that increases both

the ratio of relevant elements and the relative position of k, i.e., the middle position of relevant
elements, while “controlling” the relative position. Once the relative position becomes a
constant fraction of the remaining elements, e.g., 1

8 , we add dummy smallest elements and
apply the approximate median selection algorithm in Section 4. As the ratio of relevant
elements increases at the same time, the resulting number of comparisons will be O(k

n ε−2)
instead of O(ε−2).

The algorithm is sketched as follows:
1. For 1 ≤ i ≤ L, generate a set Si of ni elements by repeatedly picking two elements

from Si−1 randomly and selecting the minimum of the two using 2cp · 3 + 1 comparisons
(Lemma 4).

S. Huang, C.-H. Liu, and D. Rutschmann 37:11

2. Add nL − 2kL dummy smallest elements to ML and apply the approximate median
selection algorithm in Section 4 on ML with respect to εL.

Initially, S0 = S, n0 = n, k0 = k, ε0 = ε. Si is called good if all elements in the range
(ki − niεi, ki + niεi] are relevant. For ease of exposition, let βi denote ki

ni
. Both βi and εi

increase with i while ni decreases with i. We set L = min{i | βi ≥ 1
8 }. Recall that β = k

n .
We assume that β < 1

8 ; otherwise, we conduct the second step directly, i.e., L = 0.
The purifying process is based on a simple observation that the minimum of two randomly

picked element is small with probability

(β − ε)2︸ ︷︷ ︸
two small

+ 2 (β − ε) (1 − (β − ε))︸ ︷︷ ︸
one small & one non-small

= 2 (β − ε) − (β − ε)2
,

while a randomly picked element is small with probability merely β − ε. By a similar
calculation, the minimum of two randomly picked elements is relevant with 4ε − β · 4ε. Since
k is exactly the number of small elements plus half the number of relevant elements, the
above derivation suggests the following formulation of βi:

βi := 2 (βi−1 − εi−1) − (βi−1 − εi−1)2︸ ︷︷ ︸
Pr[small]

+ (2εi−1 − βi−1 · 2ε)︸ ︷︷ ︸
Pr[relevant]÷2

.

These derivations need to adapt to the failure probability q of selecting the minimum
using 2cp · 3 + 1 comparisons. By Lemma 4, q ≤ e−3 < 1

20 and q =
∑3cp

i=1(1 − p)ip6cp+1−i.
Then, a selected element in the first round is relevant with probability

4ε2︸︷︷︸
two relevant

+ q · 2 · (β − ε) 2ε︸ ︷︷ ︸
one small & one relevant

+ (1 − q) · 2 · (1 − (β + ε)) 2ε︸ ︷︷ ︸
one large & one relevant

,

which is equal to 4ε ·
(
(1 − q) − (1 − 2q) · β

)
. Since β < 1

8 and q < 1
20 , the above probability is

larger than 67
40 · 2ε. Therefore, it is feasible to set εi = (3

2)i · ε, i.e., growing slower than 67
20 .

To fit the formulation of βi to the above failure probability q, a similar calculation yields
that each selected element in the first round is small with probability

(β − ε)2 + (1 − q) · 2 (β − ε) (1 − (β − ε)) .

Since the relative position is the number of small elements plus half the number of relevant
elements, it is feasible to set the value of βi as follows (after arrangement):

βi :=
(
2βi−1 − β2

i−1 − ε2
i−1
)

− 2q
(
βi−1 − β2

i−1 − ε2
i−1
)

.

Moreover, we can prove by induction important properties of βi as stated below:

▶ Lemma 13. For 0 ≤ i ≤ L,

βi > 2εi and βi ≤ 2i · β. Thus, ki

ni
≤ 2i · k

n
for 0 ≤ i ≤ L.

Proof. We prove by induction. For i = 0, by assumption in the first paragraph of Section 5,
β > 2ε, i.e., β0 = β > 2ε = 2ε0. Also, β0 = β ≤ 20 · β. Assume that for i = k ≥ 0, βk > 2εk

and βk ≤ 2k · β. Note that k < L; otherwise, the (k + 1)-th round does not exist. By
Section 5,

βk+1 =
(
2βk − β2

k − ε2
k

)
− 2q

(
βk − β2

k − ε2
k

)
.

STACS 2023

37:12 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

We first prove that βk+1 > 2εk+1 as follows:

βk+1 =
(
2βk − β2

k − ε2
k

)
− 2q

(
βk − β2

k − ε2
k

) q< 1
20

>
19
10βk − 9

10(β2
k + ε2

k)

= 9
10

(
−
(

βk − 19
18

)2
+
(

19
18

)2
− ε2

k

)
βk< 1

8 & 2εk<βk

>
9
10

(
−
(

2εk − 19
18

)2
+
(

19
18

)2
− ε2

k

)

= 19
5 εk − 9

2ε2
k

εk< 1
2 βk< 1

16
>

563
160εk > 3εk = 2εk+1.

Then, we prove that βk+1 ≤ 2k+1 · β as follows:

βk+1 =
(
2βk − β2

k − ε2
k

)
− 2q

(
βk − β2

k − ε2
k

) q≥0
≤ 2βk − β2

k − ε2
k

≤ 2βk ≤ 2 · 2k · β = 2k+1 · β. ◀

The size ni of Si is set as ⌈960 · i · (8
9)i · k

n ε−2⌉ to control the number of comparisons
and the failure probability. Similar to Section 4, ni should shrink exponentially with i and
should also be linear in both k

n ε−2 and i. The major difference lies in that the existence of
ki changes the shrink factor of ni. Since ki

ni
≤ 2i · k

n (by Lemma 13) and εi = (3
2)i · ε, the

shrink factor of ni should be at least 8
9 . This is based on the fact that 2−i · (3

2)2i · (8
9)i = 1,

which will be much clearer in the probability analysis.
To sum up, ni = ⌈960 · i · (8

9)i · k
n ε−2⌉, εi = (3

2)i · ε, βi = (2βi−1 − β2
i−1 − ε2

i−1) − 2q ·
(βi−1 − β2

i−1 − ε2
i−1) with q =

∑3cp

i=1(1 − p)ip6·cp+1−i, and L = min{i | βi ≥ 1
8 }.

To attain the success probability 1− 1
9 , since the approximate median selection in Section 4

fails with probability at most 1
18 , it is sufficient to prove that Pr[SL is good] ≥ 1 − 1

18
(Theorem 12). Let Ei denote the event that Si is good. By definition, Pr[E0] = 1. Applying
the Chernoff bound with the above parameters gives the following lemma: (The proof is
rather technical, and interested readers are referred to the current full version [17].)

▶ Lemma 14. For 1 ≤ i ≤ L

Pr[Si is NOT good | Si−1 is good] ≤ 2 · e−4.3·i.

By Lemma 14, we can lower bound Pr[EL] as

Pr[EL] = 1 − Pr[
L⋃

i=1
Ei | Ei−1] ≥ 1 −

L∑
i=1

2 · e−4.3·i ≥ 1 − 4 · e−4.3 ≥ 1 − 1
18 .

For the number of comparisons, since each selection takes 2cP · 3 + 1 = O(1) comparisons,
the purifying process takes

∑L
i=1 O(ni) = k

n ε−2 ·
∑L

i=1 O
(
i·(8

9)i
)

= O(k
n ε−2) comparisons. By

Theorem 12, the approximate median selection takes O(ε−2
L) = O

(
(2

3)2L ·ε−2) = O(2−L ·ε−2)
comparisons. Since kL

nL
≤ 2L · k

n (Lemma 13) and kL

nL
= βL ≥ 1

8 , we have 2−L = O(k
n) and

O(2−L · ε−2) = O(k
n ε−2), implying the following main theorem:

▶ Theorem 15. It takes O(k
n ε−2) comparisons to select an element in (k − nε, k + nε] with

probability at least 1 − 1
9 .

S. Huang, C.-H. Liu, and D. Rutschmann 37:13

6 Lower Bound

We sketch the derivation of an Ω(min{n, k
n ε−2 log 1

Q }) lower bound for the expected number
of comparisons. Our derivation contains two key ingredients. First, we design an auxiliary
decision tree that simulates any corresponding randomized algorithm with success probability
at least 1 − Q, but owns nice properties for the analysis. Second, we derive a sampling lemma
(Corollary 18) that lower bounds the probability of a returned element being relevant.

We assume that 4nε ≤ k. If k ≤ nε, the Ω(ε−1 log 1
Q) lower bound for the approximate

minimum selection problem [23] applies, and if nε < k < 4nε, we multiply the value of ε

by 4 so that k ≤ nε and the former argument still works, which does not change the lower
bound asymptotically. We assume that there are no comparison faults, which does not
increase the lower bound and is easier for analysis.

Let T be the decision tree of any randomized algorithm that solves FT-APX(k, ε) with
probability at least 1 − Q. T is said to look at an element x if T performs at least one
comparison involving x. Let D be the expected number of elements that T looks at. Since D

is not larger than twice the expected number of comparisons, it is sufficient to lower bound
D. If D ≥ n

10 , then D = Ω(n). Below, we deal with the case that D < n
10 .

We construct an auxiliary decision tree T̃ based on T : T̃ first simulates T until reaching a
leaf u of T that returns an element x, and then conducts three additional steps sequentially:
(a) If T does not look at x, then T̃ compares x with another element.
(b) If T̃ has looked at fewer than 2D+

⌈ 8n
k

⌉
elements so far, then T̃ performs more compar-

isons such that T̃ has looked at exactly 2D+
⌈ 8n

k

⌉
elements after this step.

(c) T̃ compares all pairs of elements that it has looked at, and then returns x.

Intuitively, T̃ represents the same algorithm as T , but these additional steps will give
T̃ nice properties for analysis. Roughly speaking, Step (a) ensures that T̃ must look at the
returned element. The term 2D+

⌈ 8n
k

⌉
in Step (b) comes from that by Markov’s inequality,

T looks at more than 2D elements with probability at most 1
2 , and that the

⌈ 8n
k

⌉
term will

cancel out an k
n term later. Step (c) enables T̃ to know the sorted order of the elements that

T̃ looked at. These three steps lead to three nice properties in the following lemma.

▶ Lemma 16. T̃ has the following properties:
(1) T̃ knows the sorted order of the elements that T̃ has looked at.
(2) T̃ has success probability at least 1 − Q.
(3) T̃ looks at exactly 2D+

⌈ 8n
k

⌉
elements with probability at least 1/2. Note that this

includes the elements that T̃ looks at during its simulation of T .

Proof. Property (1) comes from step (c) in which T̃ compares all pairs of elements that T̃

has looked at. Remember that we assume no comparison faults for the lower bound analysis.
For property (2), note that T̃ first simulates T , then does some additional comparison

and then returns the element that T would have returned (independent of the outcome of
the additional comparisons). Hence T̃ has the same success probability as T , which is at
least 1 − Q by assumption.

For property (3), according to the three steps, if T looks at no more than 2D elements,
then T̃ will look exactly 2D+

⌈ 8n
k

⌉
elements. Since the probability that T looks at more than

2D elements is at most 1
2 (by the definition of D and by Markov’s inequality), property (3)

follows. ◀

Let us consider the execution of T̃ on a uniformly shuffled input. Recall that we assume
there are no comparison faults. According to Lemma 16(1), the element returned by a
fixed leaf of T̃ will always have the same rank among the elements that T̃ has looked at,

STACS 2023

37:14 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

independent of the order of the input. Under this circumstance, it is desirable to analyze the
relevance of elements with a certain rank among all sampled elements. Toward this end, we
derive a sampling lemma (Lemma 17) that lower bounds the probability of an element with
a small sample rank being small and the probability of an element with a large sample rank
being large, which further induces a key sampling lemma (Corollary 18) that lower bounds
the probability of an element being relevant.

Corollary 18 roughly states that for a set A of randomly sampled elements (without
replacement), the probability that an element of a certain rank in A is NOT relevant decreases
as e−Ω(n

k ·ε2·|A|). Remark 22 in the end of Section 6 will sketch the ideas of deriving Lemma 17.
For ease of exposition, we also use β to denote k

n in Lemma 17 and Corollary 18.

▶ Lemma 17. Let A consist of m ≤ n
4 elements sampled from S without replacement. Suppose

that mβ ≥ 8 and that 1
2 ≥ β ≥ 4ε. Then, there is an absolute constant η =

√
π

320 · e−24,
coming from Theorem 26, with the following properties:
1. Let u be the r-th smallest element of A. If r ≤ ⌈βm⌉, then u is small with probability at

least

η ·e−12 ε2
β(1−β) m.

2. Let v be the r-th largest element of A. If r ≤ ⌈(1 − β)m⌉, then v is large with probability
at least

η ·e−12 ε2
β(1−β) m.

Since 1 − β ≥ 1/2 and every element of the m elements is either among the ⌈βm⌉ smallest
ones or among the ⌈(1 − β)m⌉ largest ones, Lemma 17 directly implies Corollary 18.

▶ Corollary 18. Let A consist of m ≤ n
4 elements sampled from S without replacement.

Suppose that mβ ≥ 8 and that 1
2 ≥ β ≥ 4ε. Then, an arbitrary element u in A is NOT

relevant with probability at least

η ·e−24· n
k ·ε2·m

for an absolute constant η =
√

π
320 · e−24 coming from Theorem 26.

By Lemma 16(3), with probability at least 1/2, the execution of T̃ reaches a leaf after
looking at exactly 2D+

⌈ 8n
k

⌉
elements. Together with Corollary 18 on each such leaf, we

can lower bound the failure probability of T̃ as shown in the following lemma.

▶ Lemma 19. If k ≥ 200 and 4nε ≤ k, then the failure probability of T̃ on a uniformly
shuffled input is at least

1
2 · η ·e−24ε2 n

k (2 D +⌈ 8n
k ⌉) for an absolute constant η =

√
π

320 · e−24 from Theorem 26.

Proof. Recall that we build T̃ only when D < n
10 . Fix a leaf w of T̃ . Suppose that the

execution of T̃ reaches w. Let x be the element that T̃ returns and let A be the set of
elements that T̃ has looked at when the execution reaches w.

As T̃ is run on a uniformly shuffled input, the distribution of the set A as a random
variable is the same as the distribution of a set of |A| elements sampled from S without
replacement. Note that since T̃ has only compared elements in A, these comparisons do not
affect the distribution of A as a random variable. By Lemma 16.(1), x always has the same
rank in A. If |A| = 2D+

⌈ 8n
k

⌉
, then |A| ≤ n

4 and k
n · |A| ≥ 8. Moreover, we have 4nε ≤ k by

assumption. Therefore, if |A| = 2D+
⌈ 8n

k

⌉
, Corollary 18 implies that T̃ fails with probability

at least

S. Huang, C.-H. Liu, and D. Rutschmann 37:15

η ·e−24· n
k ·ε2·|A| = η ·e−24· n

k ·ε2·(2 D +⌈ 8n
k ⌉).

In summary, if T̃ reaches a leaf after looking at exactly 2D+
⌈ 8n

k

⌉
elements, then T̃ fails

with probability at least η ·e−24· n
k ·ε2·(2 D +⌈ 8n

k ⌉). By Lemma 16.(3), the if-condition holds
with probability at least 1

2 , leading to the statement. ◀

Since T̃ succeeds with probability at least 1 − Q, we have Q ≥ 1
2 η ·e−24ε2 n

k (2 D +⌈ 8n
k ⌉),

implying that D = Ω(k
n ε−2 log 1

Q). We can conclude the following main theorem.

▶ Theorem 20. If Q < 1
2 , then the expected number of comparisons performed by any

randomized algorithm that solves the FT-APX(k, ε) problem with probability at least 1 − Q is
Ω
(

min
{

n, k
n ε−2 log 1

Q

})
.

Proof. As discussed in the beginning of Section 6, if k < 4nε, the lower bound Ω(ε−1 log 1
Q)

for approximate minimum selection [23] applies. Similarly, if k ≤ 200, we can increase ε by
200
n so that nε > n · 200

n = 200 ≥ k, which changes ε by at most a constant factor1, and apply
the lower bound for the approximate minimum selection [23]. Therefore, it is sufficient to
consider the case that 4ε ≤ k

n ≤ 1
2 and k ≥ 200. Recall that T is the decision tree of any

randomized algorithm that solves FT-APX(k, ε) with probability at least 1 − Q and D is
the expected number of elements that T looks at. If D ≥ n

10 , a lower bound Ω(n) follows.
Otherwise, we build the auxiliary decision tree T̃ .

By Lemma 16.(2), the success probability of T̃ is at least 1 − Q, and by Lemma 19, the
failure probability of T̃ is at least 1

2 · η ·e−24ε2 n
k (2 D +⌈ 8n

k ⌉) for a constant η, implying that

Q ≥ 1
2 · η ·e−24ε2 n

k (2 D +⌈ 8n
k ⌉),

or equivalently

D ≥ 1
48 · k

n
ε−2 ln η

2Q
− 1

2

⌈
8n

k

⌉
.

If Q ≤ η
1000 , since ε−1 ≥ 4n

k (from k ≥ 4nϵ), the first term 1
48 · k

n ε−2 ln η
2Q dominates the

second term 1
2
⌈ 8n

k

⌉
, and thus D = Ω(k

n ε−2 ln 1
Q). (η =

√
π

320 · e−24 as stated in Theorem 26.)
It remains to analyze the case that Q > η

1000 , for which we construct an auxiliary algorithm
that solves the FT-APX(k, ε) problem with probability at least 1− η

1000 . We will use A and Ã
to denote the original algorithm and the auxiliary algorithm, respectively. Recall that A solves
the FT-APX(k, ε) problem with probability at least 1 − Q. Select k′ such that A outputs a
small element with probability at most k′

n − 1−Q
2 and a large element with probability at

most 1 − k′

n − 1−Q
2 . Thus, by using A to get sampled elements instead of sampling from the

input, the FT-APX(k, ε) problem is reduced to the FT-APX
(
k′, 1−Q

2
)

problem (with the
restriction that we may only use sampled elements). Motivated by this, let Ã be a modified
(fault-free) version of our algorithms (Section 3–5) for the FT-APX(k′, 1−Q

2) problem with
success probability at least 1 − η

1000 in which each sampling from S is implemented by calling
A on S. The correctness of Ã relies on the fact that our algorithms only sample elements
from S uniformly at random and the corresponding analysis only cares about the probability
of getting a small / relevant / large element.

1 The value of ε should be at least 1
n ; otherwise, the problem becomes the exact selection.

STACS 2023

37:16 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

As applying our algorithm to solve the FT-APX(k′, 1−Q
2) problem with probability

1 − η
1000 would sample O(k′

n (1 − Q)−2 log 1000
η) times from S, Ã invokes A at most O(k′

n (1 −
Q)−2 log 1000

η) times and thus performs expected O(D k′

n (1 − Q)−2 log 1000
η) comparisons.

Since all terms except D are bounded from above by a constant, the above bound is can
be reformulated as O(D). On the other hand, we have already proven that the expected
number of comparison to solve the FT-APX(k, ε) problem with probability at least 1 − 1000

η

is Ω(k
n ε−2 log 1000

η) = Ω(k
n ε−2). Since the first bound O(D) is an upper bound for the second

bound Ω(k
n ε−2), D = Ω(k

n ε−2) = Ω(k
n ε−2 log 1

Q). Recall that log 1
Q is a constant since

Q ≥ η
1000 and η is an absolute constant.

To sum up, when 4ε ≤ k
n ≤ 1

2 and k ≥ 200,the expected number of comparisons required
by any algorithm that solve FT-APX(k, ε) with probability 1 − Q is

Ω
(

min{n,
k

n
ε−2 log 1

Q
}
)

. ◀

If k
n ε−2 log 1

Q = w(n), the lower bound in Theorem 20 becomes just Ω(n). By reducing
the approximate selection problem to the exact selection problem, we can show a stronger
lower bound in this case as the following theorem.

▶ Theorem 21. If Q < 1
2 and k

n ε−2 log 1
Q = w(n), then the expected number of comparisons

performed by any randomized algorithm that solves FT-APX(k, ε) with probability at least
1 − Q is

Ω
(

max
{

n, ε−1 log
k+nε
2nε

Q

})
.

Proof. The first term n directly comes from the first term n of Theorem 20. Recall that we
assume k ≤ n

2 . The second term ε−1 log (k+nε)/(2nε)
Q can be reduced from the lower bound

Ω(n log k
Q) for the exact k-th smallest element selection problem [9] as follows. Note that as

remarked in [9, Section 1], their bound holds both in expectation and in the worst case.
Assume we attempt to select the ℓ-th smallest element among m elements. We can

duplicate each element 2 · nε times and solve the FT-APX
(
k, ε
)

problem where n = m · nε

and k = (2nε) · ℓ − nε. This setting implies that m = ε−1 and ℓ = (k + nε)/(2nε). Since
selecting the ℓ-th smallest element among m elements with probability at least 1 − Q requires
Ω(m log ℓ

Q) comparisons, a lower bound of Ω(ε−1 log (k+nε)/(2nε)
Q) follows. ◀

▶ Remark 22. For the proof of Lemma 17, the main observation is that the number of small
(or large) elements in A has a hypergeometric distribution. The probability density function
of the hypergeometric distribution can be expressed explicitly with binomial coefficients.
By the entropy bound for binomial coefficients and a second order tangent bound based on
the second derivative, a useful tool (Theorem 32 in Appendix E.4 of the full version [17])
follows, and induces a first-tail bound for the hypergeometric distribution (Theorem 26 in
Appendix D.2), from which Lemma 17 follows.

References
1 Martin Aigner. Finding the maximum and minimum. Discrete Applied Mathematics, 74(1):1–12,

1997.
2 Amitava Bagchi. On sorting in the presence of erroneous information. Information Processing

Letters, 43(4):213–215, 1992.

S. Huang, C.-H. Liu, and D. Rutschmann 37:17

3 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of errors.
In Proceedings of the Twenty-fifth Symposium on Theory of Computing (STOC93), pages
130–136, 1993.

4 Mark Braverman, Jieming Mao, and S. Matthew Weinberg. Parallel algorithms for select
and partition with noisy comparisons. In Proceedings of the Forty-eighth48th Symposium on
Theory of Computing (STOC16), pages 851–862, 2016.

5 Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings of
the Nineteenth Symposium on Discrete Algorithms (SODA08), pages 268–276, 2008.

6 Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive analysis of the top-k
ranking problem. In Proceedings of the Twenty-Eighth Symposium on Discrete Algorithms
(SODA17), pages 1245–1264, 2017.

7 Hyungmin Cho, Larkhoon Leem, and Subhasish Mitra. ERSA: error resilient system architec-
ture for probabilistic applications. IEEE Trans. on CAD of Integrated Circuits and Systems,
31(4):546–558, 2012.

8 Ferdinando Cicalese. Fault-Tolerant Search Algorithms - Reliable Computation with Unreliable
Information. Monographs in Theoretical Computer Science. Springer, 2013.

9 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994.

10 Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Optimal resilient sorting and
searching in the presence of memory faults. Theoretical Computer Science, 410(44):4457–4470,
2009.

11 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with recurrent
comparison errors. In Proceedings of the Twenty-Eighth International Symposium on Algorithms
and Computation (ISAAC17), pages 38:1–38:12, 2017.

12 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal sorting with
persistent comparison errors. In Proceedings of the Twenty-seventh European Symposium on
Algorithms (ESA19), pages 49:1–49:14, 2019.

13 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal dislocation
with persistent errors in subquadratic time. Theory Comput. Syst., 64(3):508–521, 2020.

14 Barbara Geissmann, Matús Mihalák, and Peter Widmayer. Recurring comparison faults:
Sorting and finding the minimum. In Proceedings of the Twentieth International Symposium
on Fundamentals of Computation Theory (FCT15), pages 227–239, 2015.

15 Ofer Grossman and Dana Moshkovitz. Amplification and derandomization without slowdown.
SIAM Journal on Computing, 49(5):959–998, 2020.

16 Jie Han and Michael Orshansky. Approximate computing: An emerging paradigm for energy-
efficient design. In 18th IEEE European Test Symposium (ETS), pages 1–6, 2013.

17 Shengyu Huang, Chih-Hung Liu, and Daniel Rutschman. Approximate selection with unreliable
comparisons in optimal expected time. CoRR, abs/2205.01448, 2022. doi:10.48550/arXiv.
2205.01448.

18 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of
the Thirty-nineth Symposium on Theory of Computing (STOC07), pages 95–103, 2007.

19 Christoph M. Kirsch and Hannes Payer. Incorrect systems: it’s not the problem, it’s the
solution. In Proceedings of the 49th Design Automation Conference 2012 (DAC), pages 913–917,
2012.

20 Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant algorithms. In
Proceedings of the Nineteenth European Symposium on Algorithms (ESA11), pages 736—-747,
2011.

21 K. B. Lakshmanan, Bala Ravikumar, and K. Ganesan. Coping with erroneous information
while sorting. IEEE Transactions on Computers, 40(9):1081–1084, 1991.

22 Tom Leighton and Yuan Ma. Tight bounds on the size of fault-tolerant merging and sorting
networks with destructive faults. SIAM Journal on Computing, 29(1):258–273, 1999.

STACS 2023

https://doi.org/10.48550/arXiv.2205.01448
https://doi.org/10.48550/arXiv.2205.01448

37:18 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

23 Stefano Leucci and Chih-Hung Liu. Approximate minimum selection with unreliable compar-
isons in optimal expected time. Algorithmica, 84(1):60–84, 2022.

24 Stefano Leucci, Chih-Hung Liu, and Simon Meierhans. Resilient dictionaries for randomly
unreliable memory. In Proceedings of the 27th Annual European Symposium on Algorithms,
(ESA19), pages 70:1–70:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

25 Philip M. Long. Sorting and searching with a faulty comparison oracle. Technical report,
University of California at Santa Cruz, 1992.

26 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Sorting noisy
data with partial information. In Proceedings of the Fourth Conference on Innovations in
Theoretical Computer Science (ITCS13), pages 515–528, 2013.

27 M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic
Techniques in Algorithms and Data Analysis. Cambridge University Press, 2 edition, 2017.

28 Krishna Palem and Avinash Lingamneni. Ten years of building broken chips: The physics
and engineering of inexact computing. ACM Transactions on Embedded Computing Systems,
12(2s):87:1–87:23, 2013.

29 Andrzej Pelc. Searching with known error probability. Theoretical Computer Science, 63(2):185–
202, 1989.

30 Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theoretical
Computer Science, 270(1-2):71–109, 2002.

31 Bala Ravikumar, K. Ganesan, and K. B. Lakshmanan. On selecting the largest element in
spite of erroneous information. In Proceedings of the fourth Symposium on Theoretical Aspects
of Computer Science (STACs87), pages 88–99, 1987.

32 Joseph Sloan, John Sartori, and Rakesh Kumar. On software design for stochastic processors.
In Proceedings of the 49th Annual Design Automation Conference 2012 (DAC), pages 918–923,
2012.

A Supplementary material for Section 2

▶ Lemma 4 (Majority Vote). For any error probability p ∈ [0, 1
2), there exists a postive

integer cp such that a strategy that compares two elements 2cp · t + 1 times and returns the
majority result succeeds with probability at least 1 − e−t, where cp = ⌈ 4(1−p)

(1−2p)2 ⌉. The exact
failure probability of this strategy is

cp·t∑
i=0

(
2cp · t + 1

i

)
(1 − p)ip2cp·t+1−i.

Proof. Let {Xi | 1 ≤ i ≤ 2cp · t + 1} be 2cp · t + 1 independent Bernoulli random variables
such that Xi = 1 if the i-th comparison succeeds, i.e., Pr[Xi = 1] = 1 − p and Pr[Xi = 0] = p.
Let X =

∑2cp·t+1
i=1 Xi. Then, E[X] = (2cp · t + 1)(1 − p). Since p < 1

2 , we know 2(1 − p) > 1
and we can apply Lemma 5 to prove the first statement as follows:

Pr[X ≤ 2cp · t + 1
2] = Pr[X ≤ 1

2(1 − p)E[X]] = Pr[X ≤
(

1 − 1 − 2p

2 − 2p

)
E[X]]

≤ exp
(

−1
2 · (1 − 2p

2 − 2p
)2 · E[X]

)
︸ ︷︷ ︸

Lemma 5

= exp
(

−1
2 · (1 − 2p

2 − 2p
)2 · (2cp · t + 1)(1 − p)

)
= exp

(
(2cp · t + 1)(1 − 2p)2

8(1 − p)

)
< exp

(
−cpt

(1 − 2p)2

4(1 − p)

)
.

S. Huang, C.-H. Liu, and D. Rutschmann 37:19

which satisfies the statement if we choose cp = ⌈ 4(1−p)
(1−2p)2 ⌉. Since X is a binomial random

variable and cp is an integer, the second statement comes as follows:

Pr[X ≤ 2cp · t + 1
2] = Pr[X ≤ cp · t] =

cp·t∑
i=0

(
2cp · t + 1

i

)
(1 − p)ip2cp·t+1−i. ◀

▶ Lemma 5 (Chernoff Bound). Let X be the sum of independent Bernoulli random variables.
If A ≤ E[X] ≤ B, then for any δ ∈ (0, 1),

Pr[X ≥ (1 + δ) · B] ≤ e− δ2
3 B and Pr[X ≤ (1 − δ) · A] ≤ e− δ2

2 A.

Proof. The two statements can be extended from the proofs of [27, Theorem 4.4(2)] and
[27, Theorem 4.5(2)], respectively. Here, we only state the difference. Since X is the sum of
independent Bernoulli random variables, by [27, Section 4.2.1]

E[etX] ≤ e(et−1)E[X].

For the first claim, using any t > 0,

Pr[X ≥ (1 + δ) · B] = Pr[etX ≥ et(1+δ)·B] ≤ E[etX]
et(1+δ)B

≤ e(et−1)E[X]

et(1+δ)B

E[X]≤B

≤ e(et−1)B

et(1+δ)B
.

The remaining steps are identical to the proof of [27, Theorem 4.4(2)].
For the second claim, using any t < 0,

Pr[X ≤ (1 − δ) · A] = Pr[etX ≥ et(1−δ)·A] ≤ E[etX]
et(1−δ)A

≤ e(et−1)E[X]

et(1−δ)A

A≤E[X]
≤ e(et−1)A

et(1+δ)A
.

The remaining steps are identical to the proof of [27, Theorem 4.5(2)]. ◀

B Supplementary material for Section 3

▶ Lemma 23. Let m = 210 · 32 · ln 2
Q , let X1, X2 . . . , Xm be m identically and independently

distributed Bernoulli random variables with probability p ≥ 8
9 , and let X =

∑m
i=1 Xi.

Pr[X ≥ 7
8m] ≥ 1 − Q

2 .

Proof. It is sufficient to prove that Pr[X ≤ 7
8 m] ≤ Q

2 . Since p ≥ 8
9 , E[X] ≥ 8

9 m. By
Lemma 5,

Pr[X ≤ 7
8m] = Pr[X ≤ (1 − 1

64) · 8
9m]

Lemma 5
≤ exp

(
−1

2 · (1
64)2 · 8

9m

)
= exp

(
− 1

210 · 32 m

)
≤ exp

(
−

210 · 32 · ln 2
Q

210 · 32

)
= e− ln 2

Q = Q

2 . ◀

▶ Theorem 6. It takes expected O(k
n ε−2 log 1

Q) comparisons to solve the FT-APX(k, ε)
problem with probability at least 1 − Q.

STACS 2023

37:20 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

Proof. Let m = 210 · 32 · ln 2
Q as in Lemma 23. The algorithm consists of two stages. The

first stage aims to select m elements in which all elements in the range (1
8 m, 7

8 m] are relevant,
and the second stage aims to select an element from (1

8 m, 7
8 m].

For the number of comparisons, by Theorem 15, it takes O(k
n ε−2) comparisons to select

a relevant element with probability at least 1 − 1
9 , so the first stage takes O(k

n ε−2 · m) =
O(k

n ε−2 · log 1
Q) comparisons. For the second stage, by Section 3, one verification step

performs O(log 1
Q) comparisons. To derive the expected total number of comparisons, we

need to calculate the probability of conducting the i-th round. Since the probability of
picking an element in (2

8 m, 6
8 m] is 1

2 at any round and such an element is verified in (1
8 m, 7

8 m]
with probability at least 1 − Q

2 ≥ 1
2 at any round, any round returns an element with

probability at least 1
2 · 1

2 = 1
4 . Similar to geometric distribution, the probability that the

i-th round is conducted is at most (1 − 1
4)i−1 = (3

4)i−1, so the second stage takes expected∑∞
i=1(3

4)i−1O(log 1
Q) = O

(
log 1

Q ·
∑∞

i=1(3
4)i−1) = O(log 1

Q) comparisons. To sum up, the
algorithm takes expected O(k

n ε−2 · log 1
Q) comparisons.

For the success probability, by Theorem 15 and Lemma 23, the first stage fails with
probability at most Q

2 . The second stage fails only when returning an element in [1, 1
8 m]

or (7
8 m, m]. Since a single round picks an element in [1, 1

8 m] ∪ (7
8 m, m] with probability 1

4
and the verification fails with probability at most Q

2 . a single round returns an element in
[1, 1

8 m] ∪ (7
8 m, m] with probability at most 1

4 · Q
2 = Q

8 , Therefore, the failure probability of
the second stage is at most

∑
i≥1(3

4)i−1 · Q
8 = Q

2 , concluding the statement. ◀

C Supplementary material for Section 4

▶ Lemma 9. For three elements, consider the following median selection algorithm:
1. For each pair of elements, apply the majority vote strategy with 2cp · 4 + 1 comparisons

(Lemma 4), and assign a point to the element that attains the majority result.
2. Return the element with exactly one point. If all three elements get exactly one point,

return one of them uniformly at random.
The above algorithm returns the median with probability at least 1 − 1

13 , and returns the
minimum and the maximum with the same probability, i.e., at most 1

26 .

Proof. Let q be the failure probability of one majority vote. Since one majority vote consists
of 2cp · 4 + 1 comparisons, by Lemma 4, q ≤ e−4. If all three majority votes succeed, then
the algorithm will return the median, implying that the algorithm will return the median
with probability at least (1 − q)3 ≥ 1 − 3q ≥ 1 − 3 · e−4 ≥ 1 − 1

13 .
Now, we will prove that the algorithm returns the minimum and the maximum with the

same probability. Since there are three majority votes, there are 8 possibilities, and these 8
possibilities lead to four different situations: exactly the minimum or exactly the median or
exactly the maximum gets one point, or all the three elements get one point. A tree diagram
for these 8 possibilities can easily calculate the probabilities of the four situations. In detail,
exactly the minimum (resp. exactly the maximum) gets one point with probability q(1 − q),
exactly the median gets one point with probability (1 − q)3 + q3, and all three elements get
one point with probability q(1 − q). Since the algorithm returns an element uniformly at
random when all the three elements get one point, the algorithm returns the minimum and
the maximum with the same probability 4

3 q(1 − q).
Since the algorithm returns the median with probability at least 1 − 1

13 and returns the
minimum and the maximum with the same probability, the probability that the algorithm
returns the minimum (resp. the maximum) is at most 1

26 . ◀

S. Huang, C.-H. Liu, and D. Rutschmann 37:21

D Supplementary material for Section 6

D.1 Sampling Lemma
This subsection aims to build up a sampling bound (Corollary 18) that is the key ingredient
to prove Lemma 19. Corollary 18 roughly states that for a set A of randomly sampled
elements (without replacement), the probability that an element of a certain rank in A is
NOT relevant decreases as e−Ω(ε2

β |A|). To prove Corollary 18, we first derive Lemma 17 that
deals with different positions in A. For ease of exposition, we also use β to denote k

n in the
proofs. As assumed in the whole paper, β ≤ 1

2 , and as stated in Section 6, it is also sufficient
to consider β ≥ 4ε since if β < 4ε, we then can apply the lower bound for the approximate
minimum selection [23].

▶ Lemma 17. Let A consist of m ≤ n
4 elements sampled from S without replacement. Suppose

that mβ ≥ 8 and that 1
2 ≥ β ≥ 4ε. Then, there is an absolute constant η =

√
π

320 · e−24,
coming from Theorem 26, with the following properties:
1. Let u be the r-th smallest element of A. If r ≤ ⌈βm⌉, then u is small with probability at

least

η ·e−12 ε2
β(1−β) m.

2. Let v be the r-th largest element of A. If r ≤ ⌈(1 − β)m⌉, then v is large with probability
at least

η ·e−12 ε2
β(1−β) m.

Proof. We first prove (1). Let X denote the number of small elements in A. Then X ∼
Hypergeom(n, (β−ε)k, m) has a hypergeometric distribution (Definition 24 in Appendix D.2).
Since r ≤ ⌈βm⌉, u is small if and only if A contains at least r small elements, i.e., if and
only if X ≥ r. Put a = β and b =β − ε. Then we have a ≤ 8

5 b and (1 − a) ≤ 8
5 (1 − b) as

β ≥ 4ε. As mβ ≥ 8 and β ≤ 1
2 , we also have ma(1 − a) ≥ 4. Hence by Theorem 26

Pr[X ≥ r] ≥ Pr[X ≥ ⌈βm⌉] = Pr[X ≥ βm] ≥ η ·e−6 ε2
b(1−b)

for some absolute constant η =
√

π
320 · e−24. Since β ≥ 2ε, we have b ≥ β

2 , and since we also
have (1 − b) ≥ (1 − β), we have

ε2

b(1 − b) ≤ 2ε2

β(1 − β) ,

implying that

Pr[X ≥ r] ≥ η ·e−12 ε2
β(1−β) m

The proof of (2) is symmetric with large elements instead of small ones and with (1 − β)
instead of β. ◀

As every element is either among the ⌈βm⌉ smallest or among the ⌈(1 − β)m⌉ largest
ones, the lemma directly implies the following.

STACS 2023

37:22 Approximate Selection with Unreliable Comparisons in Optimal Expected Time

▶ Corollary 18. Let A consist of m ≤ n
4 elements sampled from S without replacement.

Suppose that mβ ≥ 8 and that 1
2 ≥ β ≥ 4ε. Then, an arbitrary element u in A is NOT

relevant with probability at least

η ·e−24· n
k ·ε2·m

for an absolute constant η =
√

π
320 · e−24 coming from Theorem 26.

Proof. Let r be the rank of u in A. If r ≤ ⌈βm⌉, then by part (1) of Lemma 17, u is small
with probability at least

η ·e−12 ε2
β(1−β) m.

Otherwise, r ≥ ⌈βm⌉ + 1 ≥ βm + 1, so m + 1 − r ≤ (1 − β)m ≤ ⌈(1 − β)m⌉. Since u is the
(m + 1 − r)-th largest element of A, by part (2) of Lemma 17, u is large with probability at
least

η ·e−12 ε2
β(1−β) m.

Since 1 − β ≥ 1
2 , we have

η ·e−12 ε2
β(1−β) m ≥ η ·e−24 ε2

β m = η ·e−24· k
n ·ε2·m. ◀

D.2 A lower tail for hypergeometric distribution
▶ Definition 24. Consider M balls, out of which K balls are black and M − K balls are
white. Hypergeom(M, K, m) is the probability distribution for the number of black balls
in m draws from the M balls using sampling without replacement, which is the so-called
hypergeometric distribution. X ∼ Hypergeom(M, K, m) means that X is a random variable
with Hypergeom(M, K, m) distribution.

Due to the page limit, we omit the proof of Corollary 25; please see the full version [17].

▶ Corollary 25. Let X ∼ Hypergeom(M, K, m). Let 0 < ℓ < m be an integer. Put a = ℓ
m ,

b = K
M and x = m

M . If a ≤ 2b, (1 − a) ≤ 2(1 − b) and x ≤ 1
4 , then we have

Pr[X = ℓ] ≥
√

π

64ma(1 − a) · e−3 (a−b)2
b(1−b) m.

▶ Theorem 26. Let X ∼ Hypergeom(M, K, m). Let 0 ≤ ℓ ≤ m be a real number with ℓ < K

and m − ℓ < M − K. Put a = ℓ
m , b = K

M and x = m
M . If a ≤ 8

5 b, (1 − a) ≤ 2(1 − b) , x ≤ 1
4

and ma(1 − a) ≥ 4, then we have

Pr[X ≥ ℓ] ≥
√

π

320 · e−24 · e− 6(a−b)2
b(1−b) m.

Proof. Let 0 ≤ t ≤
√

ma(1 − a) be a real number such that ℓ + t is an integer and put
a′ = ℓ+t

m . As ma(1 − a) ≥ 4, we have t ≤
√

ma(1 − a) ≤ ma(1−a)
4 , so that

a′ = a + t

m
≤ a + a(1 − a)

4 ≤ 5
4a ≤ 2b,

S. Huang, C.-H. Liu, and D. Rutschmann 37:23

and 1 ≤ a′ ≤ 1 − a ≤ 2(1 − b). We may hence apply Corollary 25 and get

Pr[X = ℓ + t] ≥
√

π

64
(
ma′(1 − a′)

) · e−3
(a+ t

m
−b)2

b(1−b) m

≥
√

π

80ma(1 − a) · e
−3(a+ t

m
−b)2

b(1−b) m

where we used that

a′(1 − a′) ≤ 5
4a(1 − a).

Since (a + t
m − b)2 ≤ 2(a − b)2 + 2(t

m)2, we have

3(a + t
m − b)2

b(1 − b) m ≤ 6(a − b)2

b(1 − b) m + 6t2

mb(1 − b)

where

6t2

mb(1 − b) ≤ 6ma(1 − a)
mb(1 − b) = 6a(1 − a)

b(1 − b) ≤ 24.

Hence we have

Pr[X = ℓ + t] ≥
√

π

80
(
ma(1 − a) − t

) · e− 6(a−b)2
b(1−b) m · e−24.

There are at least
√

ma(1 − a) − 1 possible values of t. As ma(1 − a) ≥ 4, we have

√
ma(1 − a) − 1 ≥

√
ma(1 − a)

2 .

Thus summing over all possible possible values of t yields the statement. ◀

STACS 2023

	1 Introduction
	1.1 Our Contributions
	1.2 Brief Literature

	2 Preliminary
	3 Top Level of Algorithm
	4 Approximate Median Selection
	5 Approximate k-th Element Selection
	6 Lower Bound
	A Supplementary material for Section 2
	B Supplementary material for Section 3
	C Supplementary material for Section 4
	D Supplementary material for Section 6
	D.1 Sampling Lemma
	D.2 A lower tail for hypergeometric distribution

