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Abstract (English)

Cavity optomechanics is a hugely popular research field in which the interaction between photons
of light and phonons of mechanical oscillators is studied. It is a promising platform for generating
non-classical quantum states at a macroscopic scale and for making devices suitable for photonic
quantum computers and quantum communication protocols.

A central challenge in optomechanics is the large amount of noise present in mechanical oscil-
lators at room temperature. In order to be able to observe quantum phenonema, this noise must
be eliminated. A well-established method for doing so is feedback cooling, in which a strong
probe field interacting with the cavity optomechanical system is used to measure the mechan-
ical position which is then used to apply a feedback force back onto the mechanical oscillator
in order to stop its motion, thereby reducing the mechanical noise (quantified by its phonon
number) and cooling it down. Such a feedback scheme may also potentially be used to prepare
the mechanical oscillator in a squeezed state. In this dissertation, we theoretically investigate
two types of feedback cooling schemes.

In one scheme, we use conditional estimation of the quantum state of the optomechanical sys-
tem to apply feedback using optimal control. We calculate the minimal phonon number and
maximum squeezing levels that may be obtained using this feedback scheme. We highlight the
inherent difference between the so-called conditional state and unconditional state of the me-
chanics — a difference which it is often falsely assumed can be brought to zero. We also compare
the performance of the scheme under different approximations of the mechanical interaction with
its environment and with an adiabatic approximation of the cavity field. Furthermore, we inves-
tigate how much the phonon numbers and squeezing levels may be improved using a squeezed
probe field.

We also investigate an entirely different feedback scheme, where the output field from the cavity
is not measured, but instead sent through a delay line before it is fed back directly into the
cavity. This feedback scheme is potentially simpler to set up experimentally. We find that this
feedback scheme produces phonon numbers comparable to, but not as low as the previous scheme.

Together, these results pave the way for achieving ground state cooling and squeezing at room
temperature in optomechanical systems, which opens the possibility for more interesting quan-
tum information applications.



ii

Abstract (Dansk)

Kavitets-optomekanik er et enormt populært forskningsfelt hvor interkationen mellem fotoner
af lys og fononer af mekaniske oscillatorer studeres. Det er en lovende platform til at generere
ikke-klassiske kvantetilstande p̊a en makroskopisk skala og for at lave devices til fotoniske kvan-
tecomputere og kvantekommunikationsprotokoller.

En central udfordring inden for optomekanik er den store mængde støj som mekaniske oscil-
latorer er p̊avirket af ved stuetemperatur. Denne støj skal elimineres, for at man er i stand til
at observere kvantefænomener. En veletableret m̊ade at reducere støjen p̊a er feedback-køling:
Her lader man det kavitets-optomekaniske system interagere med et stærkt probelysfelt som
bruges til at m̊ale den mekaniske position, som s̊a bruges til at p̊atrykke en feedback-kraft p̊a
mekanikken s̊aledes at dens bevægelse ophører. Herved reduceres den mekaniske støj (kvantifi-
ceret ved dens fonontal) og mekanikken køles ned. s̊adan et feedbacksystem kan ogs̊a potentielt
bruges til at forberede mekanikken i en s̊akaldt klemt tilstand. I denne afhandling laves en teo-
retisk undersøgles af to typer af feedbacksystemer.

I et af systemerne bruges betinget estimering af det optomekaniske systems kvantetilstand til at
p̊atrykke feedback ved brug af optimal kontrol. vi udregner det minimal fonontal og maksimale
squeezing nivea som kan opn̊as ved brug af dette feedbacksystem. Vi fremhæver de iboende
forskelle mellem de s̊akaldte betingede og ubetingede tilstand af mekanikken – en forskel som
det ofte forkert antages kan bringes til nul. Vi sammenligner ogs̊a virkningsgraden af af feed-
backsystemet under forskellige approksimationer af den mekaniske interaktion med sit termiske
miljø og med en adiabatisk approksimation af kavitetsfeltet. Derudover undersøger vi hvor meget
fonontallet og squeezingniveauet kan forbedres ved at bruge et klemt probefelt.

Vi undersøger ogs̊a et helt anderledes feedbacksystem, hvor udgangsfeltet fra kaviteten ikke
m̊ales, men i stedet sendes gennem en delay line før det sendes tilbage inde i kaviteten. Dette
feedbacksystem er potentielt simplere at opsætte eksperimentelt. Vi lærer at dette feedbacksys-
tem resulterer i fonontal sammenlignelige med, men ikke s̊a lave som under det foreg̊aende system.

Tilsammen baner disse resultater vejen for at opn̊a køling til grundtilstanden og squeezing i
optomekaniske systemer ved stuetemperatur, hvilket l̊aser op for flere mulige interessante anven-
delser i kvanteinformationssammenhæng.
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Chapter 1

Introduction

This dissertation is about cavity quantum optomechanics. This research field has evolved tremen-
dously in the past 20 years and has become an exciting platform for exploring quantum mechan-
ical phenonena at a macroscopic level and developing quantum technology [1, 2, 3].

The word optomechanics, a combination of the words ’optics’ and ’mechanics’, is used to
describe physical interactions between light and mechanical elements, typically mechanical har-
monic oscillators. In this work, we are mainly talking about so-called radiation-pressure inter-
actions, which describes the situation where momentum is exchanged between the mechanical
oscillator and photons. In cavity optomechanics, this interaction takes place between photons
and a mechanical element inside a cavity, for instance as a vibrating end mirror. The advantage
of using a cavity is that each photon will interact with the mechanics multiple times, as the
photons are circulating back and forth between the cavity mirrors, thus increasing the applied
force on the mechanics. As this force is applied, the position of the mechanical element changes
(in an oscillating fashion), which in turn will change the resonance frequency of the light inside
the cavity. This interplay between the cavity light field mode and the mechanical mode allows
for some rich and interesting physics. From the perspective of a quantum physicist, one of the
motivations behind building optomechanical experiments is that both the mechanical oscillator
and the cavity light field are adequately described as quantum harmonic oscillators. That these
two seemingly very different physical entities may be modeled using the same mathematical
framework is not only convenient from a theoretical perspective, but also means that the me-
chanics and the light are able to carry the same type of quantum states. This, for example,
opens the door to mapping or transferring quantum information between the mechanics and the
cavity, using the optomechanical system as a quantum memory for light [4, 5, 6, 7]. This is
particularly relevant as we today are able to generate quite sophisticated quantum states of light
in the laboratory [8], and a number of platforms for building a photonic quantum computer are
starting to show promise [9, 10, 11]. At the same time, our ability to engineer small high qual-
ity mechanical oscillators using nanofabrication is also continually increasing [12, 13, 14]. As a
results, some of the experimental achievements of the fields is observing quantum entanglement
between two mechanical oscillators [15, 16], performing an optomechanical Bell test [17], and
creating single-phonon added and subtracted states [18].

If one wants to observe quantum mechanical effects of the mechanical oscillator, it is neces-
sary to eliminate the noise added to the mechanical vibrations from the external environment.
This noise is quantified by the so-called mechanical phonon number, a dimensionless number n
that counts the number of energy quanta (phonons) carried by the oscillator. If the mechanical

1
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oscillator is left at a temperature T without any other interactions than with its thermal envi-

ronment, its n is equal to the thermal phonon number n̄ =
[
exp

(
ℏΩm

kBT

)
− 1

]−1

, where Ωm is

the oscillator angular resonance frequency, ℏ is the reduced Planck constant and kB is the Boltz-
mann constant. Depending on the details of the optomechanical setup, the resonance frequency
may be as low as Ωm ≈ 3Hz (n̄ ≈ 1013 at room temperature, T = 300K) [19] to as high as
Ωm ≈ 10GHz (n̄ ≈ 104) [20]. We generally want to remove as many thermal phonons from the
oscillator as possible; this is referred to as cooling of the mechanics. If n = 0, we have reached
the quantum ground state of the oscillator. As reaching exactly n = 0 is not possible due to
the laws of thermodynamics, a phonon number of n < 1 is typically considered ’ground state
cooling’ of the oscillator. Achieving ground state cooling of a macroscopic mechanical oscilla-
tor is a research goal in itself, but minimizing the phonon number as much as possible will in
general pave the way for generating more interesting quantum states or quantum interactions,
as this is often a requirement in theoretical proposals thereof [21, 22, 23]. For mechanical os-
cillators with large mechanical frequencies, ground state cooling may be achievable simply by
putting the optomechanical setup into a dilution fridge that can cool the environment down to
around ∼ 10mK. However, for low frequency oscillators that will not be enough. Furthermore,
if the optomechanical system is to be used as a device in a quantum computer or quantum
communication system, storing it in a freezer is impractical.

This is the main motivation behind mechanical cooling via the optomechanical interaction
with the light field. Generally, there are two methods of optomechanical cooling. The first
one is so-called laser cooling, in which a laser drives the optomechanical cavity at a frequency
detuned from from the laser cavity frequency. If the cavity linewidth κ is far below Ωm (the
so-called sideband-resolved regime), this process will exchange phonons and photons between the
mechanics and the light, such that phonons are taken out of the mechanics, thereby resulting
in cooling. This method has been used extensively through the literature, and was recently
used to achieve ground state cooling of a levitated nanoparticle in an optomechanical setup [24].
The second method, which instead works in the so-called bad-cavity regime where κ is much
larger than Ωm, is feedback cooling. With this method, a probe laser field is used to measure the
phase quadrature of the cavity field, which due to the nature of the optomechanical interaction
will be correlated with the mechanical position. This measurement is then used to generate a
feedback force applied to the mechanics such as to stop the mechanical motion, thereby reducing
its motional energy and thus its phonon number. The feedback cooling methods can be further
divided into two categories: The first and so far most popular method is cold damping, in which
the mechanical position signal from the probe field is used as input to a negative-derivative
feedback filter, such that the feedback signal is proportional to the negative momentum. Cold
damping in optomechanics was first proposed in Ref. [25], and the development of the theory has
matured since then [26, 27, 28], and it has since been widely experimentally applied, including to
bring the mechanics to the ground state both at helium-cooled (∼ 4K) temperatures [29] and at
room temperature [30]. A second, less widely-used method is feedback based on conditional state
estimation and optimal control. Here, the mechanical quantum state is continuously estimated
based on the probe field measurement [31, 32], and the estimated conditional quantum state is
used to generate a feedback signal that is optimal with respect to minimizing the phonon number
[33, 34]. This method is in many cases more experimentally challenging to implement than cold
damping due to the computational speed required to do the state estimation in real-time, but
is on the other hand guaranteed to minimize the achievable phonon number using a linear
(homodyne) measurement of the probe field. The method of using conditional state estimation
in an optomechanical system was first used in Ref. [35], and the first example of using both
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state estimation and feedback in Ref. [36]. The method has since been successfully applied to
reach the ground state [37]. Other interesting experiments based on the ideas of conditional
state estimation and feedback control in optomechanics have been carried out [38, 39], and there
exists many interesting theoretical proposals on the subject as well [40, 41, 42, 43, 44, 45]. Most
notably, it has been suggested that conditional state estimation may be used to generate single-
mode squeezing of the mechanical degrees of freedom, an important milestone that is yet to be
achieved in an optomechanics experiment. At this point, the reader might conclude that the field
of optomechanical ground state cooling has reached a sort of conclusion, since this goal has been
experimentally achieved. It should however at this point be noted that the experiments that
have demonstrated room-temperature ground state cooling to this date [24, 30, 37], whether it is
using sideband cooling or any kind of feedback cooling, are all optomechanical platforms based
on levitating nanoparticles. At room temperature, platforms based on other types of mechanical
oscillators with different advantages and trade-offs have only come close to the ground state
[19, 46, 47]. Thus, there is still work to be done.

1.1 Thesis structure

The main purpose of this dissertation is to try and answer some questions regarding how low
a phonon number and how much mechanical squeezing can be achieved using optomechanical
feedback cooling. In this dissertation, some measurement and feedback strategies in an optome-
chanical setup are explored.

In Chapter 2, we review the basic theoretical foundations upon which the work of this PhD
project is built. This includes some fundamentals of quantum mechanics, harmonic oscillators,
quantum optomechanics, open quantum systems, and some Itō calculus.

In Chapter 3, we present theoretical work on a measurement-based feedback scheme for
optomechanical cooling and squeezing, based on continuous conditional dynamics, optimal state
estimation and optimal control.

In Chapter 4, the model presented in chapter 3 is extended to encompass squeezed probe
fields rather than just coherent probe fields.

In Chapter 5, we propose and analyse an optomechanical feedback scheme based on coherent,
direct feedback using the output field from the cavity without an intermediate measurement.

Finally, in Chapter 6, the dissertation is concluded.



Chapter 2

Basics

This chapter contains the basic theoretical concepts upon which the work in this dissertation is
built.

2.1 Basic quantum mechanics

It is assumed that the reader is familiar with basic quantum mechanics. Nevertheless, a brief
review of the central axioms of the theory is presented below for the sake of completeness. We
expect that the reader is familiar with linear algebra in finite and infinite-dimensional Hilbert
spaces.

According to quantum mechanics, a physical system is fully described by a state vector |ψ⟩
which lies in a (separable) Hilbert space H. We use the standard Dirac notation where ⟨ψ| is the
dual vector of |ψ⟩ and ⟨ϕ|ψ⟩ is the inner product between the vectors |ψ⟩ and |ϕ⟩. A requirement
of the state vector |ψ⟩ is that it is normalized, i.e. that ⟨ψ|ψ⟩ = 1.

Physical observables (e.g. position, momentum, energy...) are represented by linear operators
Â acting on vectors lying in H. Note that throughout this dissertation, any symbol with a hat (ˆ)
on top of it denotes am operator. The possible outcomes of measuring the observable Â are given
by the operators eigenvalues {aj}j∈J with associated eigenvectors {|ψj⟩}j∈J , i.e. Â |ψj⟩ = aj |ψj⟩
for all j ∈ J . In order for these outcomes to correspond to values of a physical measurement,
we require that all eigenvalues aj of Â must be real numbers, from which it follows that all

physical observables Â are Hermitian, i.e. Â† = Â, where the superscript † (’dagger’) denotes
the Hermitian conjugate. From this it also follows that the eigenvectors are orthogonal, i.e. that
⟨ψj |ψk⟩ = 0 for j ̸= k. We usually also take the eigenvectors to be normalized, but this is not
always possible.

The probability of measuring the outcome aj of the physical observable Â is given by

Pr(aj) = |⟨ψj |ψ⟩|2 (2.1.1)

The act of performing the measurement with outcome aj changes the system’s state vector (or
simply, its state) from |ψ⟩ to |ψj⟩. This is referred to as a measurement collapse or collapse

of the wave function. Note that some observables Â may have several linearly independent
eigenvectors corresponding to the same eigenvalue, e.g. there may exist j1, j2, ... ∈ J such that
aj1 = aj2 = ... =: a. In this case, we have that

4
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Pr(a) =
∑
i

|⟨ψji |ψ⟩|
2
, (2.1.2)

and the state collapses to

|ψafter⟩ =
∑

i ⟨ψji |ψ⟩ |ψji⟩√
Pr(a)

. (2.1.3)

From these relations, it follows that the expectation value of the observable Â is given by

⟨A⟩ :=
∑
j

aj Pr(aj) = ⟨ψ|Â|ψ⟩ . (2.1.4)

It is far from always the case that one knows the state vector of the system with certainty.
Generally, the system is known to be in some state |ϕ1⟩ with probability p1, |ϕ2⟩ with probability
p2 and so on. In this case, the state of the system is associated with its density matrix (also
called its state operator)

ρ̂ =
∑
i

pi |ϕi⟩ ⟨ϕi| , (2.1.5)

where all pi ≥ 0 and
∑

i pi = 1. From the above definition, one finds that the density matrix
has the following properties:

1. ρ̂ is Hermitian.

2. ρ̂ is positive-semi-definite, i.e. ⟨ϕ|ρ̂|ψ⟩ ≥ 0 for any two vectors |ϕ⟩ , |ψ⟩ ∈ H.

3. Tr(ρ̂) = 1, where Tr is the trace operation, i.e. Tr(...) =
∑

i ⟨ψj |...|ψj⟩ for any complete,
orthonormal set {|ψj⟩}∞j=1 of H.

Conversely, one can show that any operator satisfying the properties 1.-3. is a valid density
matrix, i.e. that it can be written in the of form Eq. (2.1.5). It is often useful to check if a given
density matrix actually fulfills the properties 1.-3. This is done in order to verify calculations,
for example to check numerical results from computer code, or to investigate if a physical model
is a valid description of reality.

It is clear that a density matrix is a more general way of representing a physical system than
a state vector. This is seen by noting that physical states which are adequately described by a
single state vector |ψ⟩ with probability 1 has the associated density matrix ρ̂ = |ψ⟩ ⟨ψ|. This
is referred to as a pure state. A necessary and sufficient condition that a state is pure is that
Tr(ρ̂2) = 1. The number Tr(ρ̂2) is always between 0 and 1 and is therefore also called the purity
of the state. States that are not pure are called mixed states.

When a system is in the state ρ̂, the expectation value of the operator Â is given by

⟨A⟩ =
∑
i

pi ⟨ϕi|Â|ϕi⟩ = Tr[Âρ̂]. (2.1.6)

Measuring the observable Â with outcome aj now has probability

Pr(aj) =

{∑
i pi |⟨ϕi|ψj⟩|2 = ⟨ψj |ρ̂|ψj⟩ , if aj has one eigenvector |ψj⟩ ,∑
i pi

∑
k |⟨ϕi|ψjk⟩|

2
=

∑
k ⟨ψjk |ρ̂|ψjk⟩ if aj has multiple eigenvectors {|ψjk⟩}k.

(2.1.7)
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The measurement probabilities may be reformulated in terms of projection operators: Assume
that the set of eigenvectors associated with the eigenvalue aj of observable Â be {|ψjk⟩}k, which
may or may not contain only a single vector. Let

Π̂j =
∑
k

|ψjk⟩ ⟨ψjk | (2.1.8)

be the projection operator associated with the measurement outcome aj . We can then write the
measurement probability as

Pr(aj) = Tr
[
Π̂j ρ̂

]
= ⟨Πj⟩ , (2.1.9)

which collapses the state into the density matrix

ρ̂after =
Π̂j ρ̂Π̂j

Pr(aj)
. (2.1.10)

An important concept related to the measurement of states in quantum mechanics is com-
patible and incompatible observables. Define the commutator between two operators Â and B̂
as [Â, B̂] := ÂB̂ − B̂Â. if any two observables Â and B̂, have a commutator [Â, B̂] = 0, then
a common set of eigenstates exists between them, which means that any measurement of both
Â and B̂ simultaneously can be carried out to arbitrary precision. In this case, the observables
are called compatible. by contrast if [Â, B̂] ̸= 0, the observables are called incompatible, and a
measurement of both observable is inherently uncertain. Specifically, defining the standard de-

viation of some observable Ô as σO =

√
⟨O2⟩ − ⟨O⟩2, the Heisenberg uncertainty relation holds

for any observables Â and B̂:

σAσB ≥ 1

2

∣∣∣⟨[Â, B̂]⟩
∣∣∣ (2.1.11)

Finally, we discuss the time evolution of the system. For pure states, the time evolution is
governed by the Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (2.1.12)

where i =
√
−1 and ℏ is the reduced Planck constant. Ĥ(t) is the so-called Hamiltonian operator,

which is also the observable for the energy of the system. In many cases, the Hamiltonian is
constant over time, but we keep it explicitly time-dependent here for generality. For mixed
states, we use the von Neumann equation:

iℏ
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)] (2.1.13)

The above equations are used when working in the so-called Schrödinger picture, in which
the state of the system evolves over time, while the observables are constant (Except for explicit
time-dependencies). An alternative to this is the Heisenberg picture, in which the states are
constant, but the observables evolve over time according to the Heisenberg equation:

d

dt
Â(t) =

i

ℏ
[Ĥ(t), Â(t)] +

∂Â(t)

∂t
, (2.1.14)
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where the partial derivative accounts for explicit time-dependencies. The two pictures are phys-
ically equivalent since they produce the same expectation values of any observable Â at time
t:

⟨A(t)⟩ = Tr
[
Âρ̂(t)

]
︸ ︷︷ ︸

Schrödinger picture

= Tr
[
Â(t)ρ̂

]
︸ ︷︷ ︸

Heisenberg Picture

(2.1.15)

The time evolution of the system may equivalently be described by a time evolution operator
Û(t), defined to fulfill the differential equation

iℏ
d

dt
Û(t) = Ĥ(t)Û(t), U(0) = Î , (2.1.16)

where Î is the identity operator. An important property of the time evolution operator is that it
is unitary, meaning that Û†(t)Û(t) = Û(t)Û†(t) = Î. It is, however, not an observable since it is
not Hermitian. In the Schrödinger picture, the time evolution of the states can now be written
as the application of the time evolution operator on the state. Namely, we have that

|ψ(t)⟩ = Û(t) |ψ(0)⟩ , for pure states, (2.1.17)

ρ̂(t) = Û(t)ρ̂(0)Û†(t), for mixed states. (2.1.18)

The time evolution operator can also be used in the Heisenberg picture, where we have that

Â(t) = Û†(t)Â(0)Û(t). (2.1.19)

Thus, the time evolution operator is a convenient way to connect the two pictures.
Finally, we consider the case in which the Hamiltonian is constant and we can write it as

Ĥ(t) = Ĥ. Consider an eigenstate |E⟩ of Ĥ with eigenvalue (also called eigenenergy) E:

Ĥ |E⟩ = E |E⟩ (2.1.20)

The energy eigenstates are hugely important in almost any analysis of a quantum mechanical
problem. For one, if the initial state of the system is |ψ(0)⟩ = |E⟩, then its time evolution is
given simply by

|ψ(t)⟩ = e−iEt/ℏ |E⟩ . (2.1.21)

Also of particular importance is the energy ground state, that is, the energy eigenstate corre-
sponding to the lowest energy of the system.

We finally remark that up until this point it has been implicitly assumed that the operators
and observables in question have a discrete set of eigenvalues. However, it is quite often the case
that the set of eigenvalues are continuous. In these cases, the formulas involving sums in this
section are replaced with formulas involving integrals in a straightforward way. For example, the
position operator q̂ of a free point particle in one dimension has a continuous set of eigenvalues
and eigenstates, q̂ |q⟩ = q |q⟩, where q spans the whole real number line. This is also a case where
the eigenstates can not be normalized: the inner product ⟨q|q⟩ is equal to the peak of a Dirac

delta function. Given a pure state |ψ⟩, p(q) = |⟨q|ψ⟩|2 is now the probability density function of
the position. This means that e.g. the probability that q lies in the interval [a, b] is given by

Pr(q ∈ [a, b]) =

∫ b

a

|⟨q|ψ⟩|2 dq (2.1.22)

The function ψ(q) := ⟨q|ψ⟩ is commonly referred to as the position wavefunction or the
position representation of |ψ⟩.
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2.2 Quantum harmonic oscillators

The vast majority of this dissertation is concerned with two types of physical systems: mechanical
oscillators and optical cavity fields. Both of these systems are adequately modeled as quantum
harmonic oscillators. It is adequate for most types of mechanical oscillators to model them as a
point particle of mass m attached to a spring. The Hamiltonian governing such a system is

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 (2.2.1)

Here, q̂ and p̂ are the canonical observables for position and momentum, respectively, and ω
is the resonance frequency of the mechanical oscillations. This Hamiltonian describes a quantum
harmonic oscillator in its simplest form. Note that q̂ and p̂ satisfies the following fundamental
commutation relation:

[q̂, p̂] = iℏ (2.2.2)

The Hamiltonian in Eq. (2.2.1) can be recast in the form

Ĥ = ℏω(â†â+ 1/2), (2.2.3)

where

a =

√
mω

2ℏ
q̂ +

i√
2ℏmω

p (2.2.4)

The operator â† is called a raising operator or a creation operator, while its Hermitian
conjugate â is called a lowering or annihilation operator. These operators satisfy the following
commutation relation:

[â, â†] = 1 (2.2.5)

We remark that when modeling an optical cavity field of resonance frequency ω using equation
Eq. (2.2.3), the number operator n̂ = â†â describes the number of photons in the cavity field.
When it describes a mechanical oscillator, n̂ instead denotes a similar quantity called phonons,
the quanta of energy carried by the oscillator.

The eigenstates of the harmonic oscillator Hamiltonian Ĥ are the so-called number states or
Fock states {|n⟩}∞n=0. These states are orthonormal, i.e. ⟨n|n′⟩ = δn,n′ . Their corresponding
eigenenergies are En = ℏω(n + 1/2) |n⟩, n = 0, 1, ..., and form a complete basis for the Hilbert
space. The number states and the creation/annihilation operators satisfy the following important
properties:

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , n ≥ 0

â |n⟩ =
√
n |n− 1⟩ , n ≥ 1

â |0⟩ = 0

(2.2.6)

Thus, â† raises a given number state by 1, while â decreases the number by 1. When modeling
an optical cavity field of resonance frequency ω using equation Eq. (2.2.3), the number operator
n̂ = â†â describes the number of photons in the cavity field. if the field is in a number state |n⟩,
it contains a definite amount of photons |n⟩. When we are dealing with a mechanical oscillator
n̂ instead denotes a similar quantity called phonons. In both cases, the observable n̂ counts the
quanta of energy stored in the system.

The number state |0⟩ is the ground state of Ĥ and is customarily called the vacuum state,
as it describes the physics when no photons are contained in the cavity field.
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We end this section by mentioning that it is often convenient to work with a non-dimensionalized
version of the operators q and p, called quadrature operators or phase space operators:

Q̂ =
â+ â†√

2
, P̂ =

â− â†

i
√
2
, (2.2.7)

satisfying the commutation relation [Q̂, P̂ ] = i. When dealing with mechanical oscillators, Q̂ and
P̂ are called the position quadrature and momentum quadrature, respectively. When dealing with
an optical field, they are the amplitude and phase quadrature, respectively. The Hamiltonian
may be rewritten in terms of these quadratures as

Ĥ =
ℏω
2

(
Q̂2 + P̂ 2

)
(2.2.8)

Throughout this dissertation, we will almost exclusively use the symbols Q̂ and P̂ to refer to
the quadratures of a mechanical oscillator, whereas when describing an optical cavity field, we
will replace Q̂ and P̂ with the symbols X̂ and Ŷ , respectively.

2.3 Gaussian quantum states

Consider a harmonic oscillator mode with annihilation operator â and corresponding phase space
operators Q̂ and P̂ given as in Eq. (2.2.7). Furthermore, consider the eigenstates {|Q⟩}Q∈R of

Q̂ normalized such that ⟨Q′|Q⟩ = δ(Q′ −Q), where δ is the Dirac delta function. An important
way of representing states ρ̂ of the harmonic oscillator is by its quantum Wigner function (or
simply Wigner function):

W (Q,P ) =
1

2π

∫ ∞

−∞
⟨Q− y/2| ρ̂ |Q+ y/2⟩ eiPydy (2.3.1)

It can be shown that the quantum Wigner function W (Q,P ) is a one-to-one mapping of
the density matrix ρ̂. It is often called a quasi-probability distribution function, since it shares
many similar qualities to a 2D probability density function. For instance, the Wigner function
is normalized in the sense that

∫∞
−∞

∫∞
−∞W (Q,P )dQdP = 1. Furthermore, the probability

distributions of Q and P are given by the marginal distributions Pr(Q) =
∫∞
−∞W (Q,P )dP and

Pr(P ) =
∫∞
−∞W (Q,P )dQ. However, the most important way in which it is different from a

regular 2D probability distribution is that it may take on negative values.
The Wigner function may be generalized to a system consisting of many harmonic oscilla-

tors [48]: Given a set of n harmonic oscillator modes with annihilation operators â1, â2, ..., ân,

satisfying the commutation relations [âi, â
†
j ] = δi,j , where δi,j is the Kronecker delta. Note that

we will refer to such physical systems as multi-mode systems, while systems described by only
a single harmonic oscillator as single-mode systems. We collect their corresponding quadrature
operators into a column vector of dimension 2n:

X̂ = (Q̂1, P̂1, Q̂2, P̂2, ..., Q̂n, P̂n)
T (2.3.2)

where Q̂i = (âi + â†i )/
√
2 and P̂i = (âi − â†i )/(i

√
2). Furthermore, for any vector v denote by

(v)i the i’th entry in the vector, e.g. (X̂)3 = Q̂2. Define the characteristic function

χ(Y) = Tr[ρ̂ exp(iX̂ΩY)], (2.3.3)
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where Y ∈ R2n and Ω is called the symplectic matrix and is defined as a 2n× 2n block-diagonal

matrix consisting of n copies of the matrix

[
0 1
−1 0

]
along the diagonal and 0 otherwise. The

Wigner function is then defined as:

W (X) =
1

(2π)n

∫
R2n

exp(−XTΩY)χ(Y)d2nY, (2.3.4)

where X ∈ R2n.
A Gaussian quantum state is a harmonic oscillator state whose Wigner function follows a

multivariate Gaussian distribution:

W (X) =W (X;µ,V) =
1

(2π)n
√
detV

exp

[
1

2
(X− µ)TV−1(X− µ)

]
(2.3.5)

The Wigner function above is fully determined by two parameters: the mean

µ = ⟨X⟩ = (⟨Q1⟩ , ⟨P1⟩ , ..., ⟨Qn⟩ , ⟨Pn⟩)T (2.3.6)

and the variance V =: Var [X], a 2n× 2n symmetric matrix where each entry (V)i,j in the i’th
row and j’th column is given by

(V)i,j =
1

2
⟨{(X̂− ⟨X̂⟩)i, (X̂− ⟨X̂⟩)j}⟩ , (2.3.7)

where {Â, B̂} := ÂB̂+ B̂Â is the anticommutator of the operators Â and B̂. Note that (V)i,i =
σ2
(X)i

is the variance of (X)i.
From a theoretical perspective, the main appeal of Gaussian quantum states is that they

are fully characterised by their mean µ and variance V. A harmonic oscillator state |ψ⟩ is an
infinite-dimensional vector and so is determined by infinitely many parameters in the worst case.
On the other hand, a state which you know is Gaussian is characterised by a finite set of real
numbers and therefore simpler to deal with. Gaussian states are also typically stable over time:
For any physical system described by a Hamiltonian that is at most second order in the quadra-
ture operators in X̂, the quantum state will remain Gaussian if the initial state is Gaussian [48].

We will now go through some important examples of Gaussian single-mode quantum states:
The first one is the already encountered vacuum state |ψ⟩ = |0⟩. Its mean and variance are given
by

µ =

[
0
0

]
, V =

[
1
2 0
0 1

2

]
. (vacuum state) (2.3.8)

We note that any state with the above variance is called a minimum uncertainty state. This is
because a variance of σ2

Q = σ2
P = 1

2 saturates the Heisenberg uncertainty relation in Eq. (2.1.11)

for the observables P̂ and Q̂.
The second one is the so-called coherent states, also called displaced vacuum states. These

are given by |ψ⟩ = |α⟩ = D̂(α) |0⟩, where

D̂(α) = exp(αâ† − α∗â) (2.3.9)

is the so-called displacement operator, and α is a complex number. These states are often
described as the ’most classical’ of all pure states, as the expectation value of the electric field
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under these states oscillates sinusoidally [49]. They are also the states that describe laser light
inside a cavity. The mean and variance of such states are given by

µ =

[√
2Re(α)√
2Im(α)

]
, V =

[
1
2 0
0 1

2

]
. (coherent state) (2.3.10)

Thirdly, we have so-called thermal states. These are the thermal-equilibrium states of the
harmonic oscillator with Hamiltonian Ĥ = ℏω(â†â+ 1/2), given by

ρ̂ =
1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n

|n⟩ ⟨n| , (2.3.11)

where n̄ is the average photon (or phonon) number given by n̄ = ⟨n̂⟩. For an external envi-

ronmental temperature of T , we have that n̄ =
[
exp

(
ℏω
kBT

)
− 1

]−1

. Note that contrary to the

previous two states, the thermal state is inherently mixed. Its mean and variance is given by

µ =

[
0
0

]
, V =

[
n̄+ 1

2 0
0 n̄+ 1

2

]
. (thermal state) (2.3.12)

Finally, we have the squeezed state |ψ⟩ = Ŝ(ξ) |0⟩, where

Ŝ(ξ) = exp

{
1

2

[
ξ∗â2 − ξ(â†)2

]}
(2.3.13)

is the squeezing operator. The complex number ξ can be rewritten as reiθ, where r is called the
squeezing parameter and θ the squeezing angle. The mean and variance for θ = 0 is

µ =

[
0
0

]
, V =

[
e−2r

2 0

0 e2r

2

]
. (thermal state) (2.3.14)

and the variance for θ ̸= 0 is obtained by applying a rotation matrix transformation with angle
θ. The fundamental property of squeezed states is that the variance along one of the phase
space quadratures is less than that of a coherent state. For this reason, squeezed states are often
considered as nonclassical states.

2.4 Basics of cavity optomechanics

A cavity optomechanical system (See sketch in Fig. 2.1) consists of a mechanical oscillator
coupled to a mode of the electrical field in a cavity of length L. The mechanical element is
modeled as an end mirror of the cavity attached to a spring. The cavity is driven by a laser
driving field of frequency ωL with annihilation operator âin, decomposed into a mean value αin

and a fluctuation term δâin such that ⟨δain⟩ = 0. Denoting the cavity mode annihilation operator

by â and that of the mechanical oscillator by b̂, the Hamiltonian is of the following form:

Ĥ = ℏΩmb̂
†b̂︸ ︷︷ ︸

Ĥm

+ ℏωcâ
†â︸ ︷︷ ︸

Ĥc

+ Ĥℏg0â†â(b̂+ b̂†)︸ ︷︷ ︸
Ĥint

+ iℏκin(αinâ
† − α∗

inâ)︸ ︷︷ ︸
Ĥdrive

(2.4.1)

where Ωm is the mechanical resonance frequency and ωc is the frequency of the cavity mode.
The first two Ĥm and Ĥc terms represent the Hamiltonians for the individual harmonic oscillator
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b̂, Ωc
̂a, ωc

̂ain = αin + δ ̂ain

κin

̂aout

L
̂q

κlossΓm

Figure 2.1: Sketch of an cavity optomechanical system. Figure created by the author.

systems while the term Ĥint represents the optomechanical interaction Hamiltonian with g0 being
the optomechanical single-photon coupling strength: g0 = ωcxZPF/L. This parameter basically
represents the optical frequency shift that is produced by a displacement of the mechanical
position q by its zero-point motion xZPF =

√
ℏ/(2mΩm), where m is the effective mass of the

oscillator. This interaction Hamiltonian was first derived in Ref. [50], and is called a radiation
pressure interaction. In essence, the interaction term describes a parametric coupling in which
a mechanical displacement of an oscillator controls the frequency of the cavity resonance. The
last term Ĥdrive accounts for the drive of the cavity by a laser through one of the cavity mirrors
with rate κin. Note that light will dissipate from the cavity at a total rate κ, called the cavity
dissipation rate or cavity linewidth. It holds that κ = κin + κloss, where κloss describes the
dissipation rate due to other mechanisms than the mirror dissipation rate κin. We will describe
how to account for these losses in the next section. The system is rather generic and can be
realized in many different physical systems. Just to name a few, the Hamiltonian can be realized
by movable mirrors on a cantilever or suspended mirrors in a cavity, in microtoroidal and photonic
crystal cavities simultaneously hosting optical and phononic modes, by a mechanical membrane
placed in the middle of a cavity and by bulk acoustic modes in crystalline materials.

The Hamiltonian in Eq. (2.4.1) inherently represents a nonlinear interaction between light
and mechanics, but in most experiments on optomechanics performed to date, the coupling
strength has been weak and thus the interaction can be safely described as linear. We therefore
consider a linearized model of the optomechanical system. This can be done by assuming a
strong drive laser, i.e. a large αin. One can then decompose the mode operators into mean
values and fluctuation terms: â = (α+ δâ)eiωLt, and b̂ = β+ δb̂, where the complex exponential
is introduced in order to move into a frame rotating with the laser frequency. By inserting this
into the Hamiltonian in Eq. (2.4.1) and subsequently applying a linearization approximation
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(neglecting terms second order in δâ) we arrive at the following linearized Hamiltonian1:

Ĥlin = ℏ∆â†â+ ℏΩmb̂
†b̂+ ℏg0(α∗â+ αâ†)(b̂+ b̂†) (2.4.2)

Here we have also defined a frame rotating with the laser frequency and introduced the detuning:
∆0 = ωc − ωL and the effective detuning ∆ = ∆0 + (small correction term). Notice that the
driving term has disappeared as a result of the linearization. It is also customary to introduce
the drive-enhanced coupling strength: g = αg0 which represents the coupling strengths (boosted

by the amplitude of the drive field) between a mechanical oscillator, b̂, and a laser-driven cavity
mode, δâ, at frequencies Ωm and ∆. Therefore, in this linearized regime, it is possible to
attain an arbitrarily large coupling strength between light and mechanics by increasing the drive
amplitude. The linearized Hamiltonian in Eq. (2.4.2) captures some rich physics that we will
briefly discuss in the following.

When the system is driven on resonance (∆ = 0), we have that

Ĥlin = ℏΩmb̂
†b̂+ ℏg(â+ â†)(b̂+ b̂†)

= ℏΩmb̂
†b̂+ ℏ2gX̂Q̂,

(2.4.3)

where X̂ = (â + â†)/
√
2 and Q̂ = (â + â†)/

√
2 are the amplitude and position quadrature

of the light and mechanics, respectively. In this case, the interaction Hamiltonian induces a
phase shift of the light depending on the position of the mirror. This is the case that we will
be concerned with for almost all of this dissertation. Two other important cases are when the
laser drive is red-detuned such that ∆ = Ωm and blue-detuned such that ∆ = −Ωm. In the
red-detuned case, the interaction Hamiltonian resembles a beamsplitter-type interaction between
the mechanical mode and the cavity mode. This interaction may be used to cool the mechanics
using a strong driving laser (a procedure called sideband cooling), and to perform a quantum
state transfer between the cavity mode and mechanical mode. In the blue-detuned case, the
interaction Hamiltonian has the approximate form of a two-mode squeezing operation between
the mechanics and the cavity mode. It should be noted, that both the two-mode squeezing
interaction and the beamsplitter interactions are only approximately realized when the system
is in the sideband-resolved regime, that is, when the cavity dissipation rate is much smaller than
the mechanical frequency, i.e. κ ≪ Ωm. In this case, a photon inside the cavity circulates over
multiple mechanical oscillation periods before exiting the cavity. By contrasts, the regime that
we will be concerned with for the most part in this work is the bad cavity regime, when κ≫ Ωm.
In this case, a photon will only interact with the mechanics for a short period of time relative
to the mechanical period. In this case, when the system is driven on resonance, light exiting the
cavity will contain information about the mechanical position encoded in its phase. Therefore,
by measuring the phase quadrature of the output field (denoted in the sketch by annihilation
operator âout), one can get information about the immediate position of the mechanics. This
is the main ingredient for performing feedback cooling experiments, in which the information
about the mechanical position is converted into a feedback signal sent to the mechanics in order
to cool it down, i.e. to decrease its phonon number. There are a number of ways in which this
feedback force may be applied, but in this work we will mainly consider the case in which the
feedback signal is an amplitude-modulated light beam sent into the cavity and interacts with
the mechanics through radiation pressure.

1More detailed descriptions on how to derive Ĥlin are be given in Chapters 3 and 5 under two different sets
of circumstances.
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2.5 Coupling to the environment: Quantum Langevin equa-
tions and master equations

When analysing quantum optomechanical systems, we must account for losses to the environ-
ment. In this dissertation, this is modeled using two approaches: Quantum Langevin equations
and quantum master equations. Both of these approaches are based on a model of an open
quantum system, in which the external environment is modeled as a large ensemble of experi-
mentally inaccessible quantum systems, called a bath, which is coupled to the system in question
(here the optomechanical modes). By virtue of this coupling, the system will thermalize to the
temperature of the bath, and noise will be added.

Note that this section uses some of the same structure and wording from my master’s thesis
[51].

2.5.1 Quantum Langevin equations

The quantum Langevin equations are a form of modifications to the Heisenberg equations of
motion of system operators. We will here merely state these equations without going through
the derivations but we will highlight one of the main assumption they are based on: The first
Markov approximation, that states that the coupling to the bath is independent of frequency.
This assumption implies that the coupling to the environment is memory-less, and that the
autocorrelation function of the bath operators is proportional to a delta function.

For a system operator Ô pertaining to the mechanical mode, we use the so-called independent
oscillator model, originating from Ref. [52]. In this model, the harmonic oscillator is surrounded
by an external bath of infinitely many other harmonic oscillators attached to it by springs. The
quantum Langevin equations are given by [52, 2]:

˙̂
O =

1

iℏ
[Ô, Ĥ] + i

√
2Γm[Ô, Q̂]P̂in +

Γm

2iΩm

{
[Ô, Q̂],

˙̂
Q
}

(2.5.1)

where Γm is the damping rate of the mechanics. For most of this dissertation, we will instead of
Γm work with the mechanical quality factor Qm = Ωm/Γm. We note that this is a non-rotating
wave approximation of the mechanical interaction with the bath.

For the cavity field, we use a model similar to the independent oscillator model developed by
Gardiner and Collett [53], that also relies on the first Markov approximation. In this case, the
quantum Langevin equation is given by:

˙̂
O =

1

iℏ
[Ô, Ĥ]− [Ô, â†]

(κ
2
â−

√
κâin(t)

)
+

(κ
2
â† −

√
κâ†in(t)

)
[Ô, â] (2.5.2)

where κ is the cavity damping rate. The operators âin = âin(t) and the operator P̂in = P̂in(t) =

(b̂in(t)−b̂†in(t))/i
√
2 represents input (noise) operators of the bath. Unlike â and b̂, these operators

are not dimensionless, but have SI units
√
s−1. They fulfil the commutation relations

[âin(t), â
†
in(t

′)] = δ(t− t′) (2.5.3)

[b̂in(t), b̂
†
in(t

′)] = δ(t− t′), (2.5.4)

where δ(t) is the Dirac delta function. Throughout the dissertation, we will assume b̂in(t) to be
in a thermal state, and âin(t) will generally, though not always, be a vacuum state.
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While âin(t) is the incident field on the cavity, the outgoing (or output) field from the me-
chanics âout(t) is given by

âout(t) = âin(t)−
√
κa(t) (2.5.5)

2.5.2 Quantum master equations

Like the quantum Langevin equations in essence are modifications to Heisenberg’s equation of
motion for operators, quantum master equations may be regarded as modifications to the von
Neumann equation for density matrices.

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] + Lmρ̂+ Lcρ̂ (2.5.6)

The superoperators Lm and Lc are describing the interaction between the environment and the
mechanics and cavity field, respectively. For the mechanics, we substitute Lm for one of two
interactions, LRWA or LnonRWA, given by

LRWAρ̂ = Γm(n̄+ 1)D[b̂]ρ̂+ Γmn̄D[b̂†]ρ̂, (2.5.7a)

LnonRWAρ̂ =
iΓm

2Ωm
[Q̂, {Q̇, ρ̂}]− Γm(n̄+ 1/2)[Q, [Q, ρ̂]], (2.5.7b)

where the superoperator D is defined as

D[ĉ]ρ̂ := ĉρ̂ĉ† − 1

2

(
ĉ†ĉρ̂+ ρĉ†ĉ

)
, (2.5.8)

For the cavity field, again assuming that the environment is in a vacuum state,

Lcρ̂ = κD[â]ρ̂ (2.5.9)

A discussion of the superoperators LRWA and LnonRWA is given in Chapter 3.

2.6 Itō stochastic calculus

The subject of Itō stochastic calculus is a mathematical underpinning continuous measurement
theory, upon which a lot of this thesis is based on. We shall therefore present the basics of the
subject below. In the following, E [Z] and Var [Z] denote the expectation value and variance,
respectively, of the stochastic variable Z.

A stochastic process is a function X(t) that takes a time t as input and gives a (typically
real) stochastic variable as output. The outputs are not necessarily independent, but may be
correlated in time.

An important stochastic process is the Wiener process2 W (t), t ≥ 0. It is defined by the
following properties:

1. W (0) = 0

2. For any three times t0 ≤ t1 ≤ t2, W (t0) is independent of the increment W (t2)−W (t1).

2Sometimes also referred to as mathematical Brownian motion and denoted as B(t), t ≥ 0.
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3. For any two times t1 ≤ t2, the increment W (t2) − W (t1) is normally distributed (or
Gaussian) with mean 0 and variance t2 − t1.

4. W (t) is continuous in time t.

A key property of a Wiener process is that while it is continuous in time, it is nowhere
differentiable. This comes from the fact that the increment W (t + ∆t) −W (t) is Gaussian at
every step size ∆t and thus will not approach a definite value as ∆t approaches 0. The difference
quotient (W (t+∆t)−W (t))/∆t therefore has no well-defined limit and thus the derivative does
not exists.

We are now in a position to define the Itō integral. Let X(t) be a stochastic process andW (t)
a Wiener process. Furthermore, let [a, b] be an interval, let T = {t1, t2, ..., tn} be a partition of
the interval such that a = t1 ≤ t2 ≤ ... ≤ tn = b, and let the largest increment in the partition
be |T | := maxi(ti+1 − ti). The Itō integral is defined as:∫ b

a

X(t)dW (t) := lim
|T |→0

n−1∑
i=1

X(ti)[W (ti+1)−W (ti)] (2.6.1)

Intuitively, an Itō integral is similar to an ordinary Riemann integral, but where the integrand
X(ti) is multiplied by stochastic incrementsW (ti+1)−W (ti) instead of time increments ti+1−ti.
The Itō increment satisfies the following important properties:

1. E
[∫ b

a
X(t)dW (t)

]
= 0 (zero expectation value)

2.
(∫ b

a
X(t)dW (t)

)2

=
∫ b

a
X(t)2dt (Itō isometry)

An Itō stochastic differential equation is an equation of the form

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t) (2.6.2)

In the above, t is time and dt is the differential time increment, X(t) is the unknown function
to be solved for and f and g are real functions of two real variables. The above equation is really
a shorthand notation for the Itō integral equation:

X(t) =

∫ t

t0

f(t,X(t))dt+

∫ t

t0

g(t,X(t))dW (t), (2.6.3)

One can, however, work with the differential form Eq. (2.6.2) by introducing some rules
for calculations with the so-called Wiener increment dW (t). It is, heuristically, a stochastic
infinitesimal object: It is normally distributed with mean value 0 and variance dt. It is a
function of t in the sense that, for two times t1 ̸= t2, dW (t1) and dW (t2) are two independent
identically distributed Wiener increments. It also has the unique property dW (t)2 = dt, which is
a different way of expressing the Itō isometry. As an example to illustrate why these relations are
useful, consider the following two stochastic processes X and Y governed by the Itō equations:

dX(t) = f1dt+ g1dW (t)

dY (t) = f2dt+ g2dW (t)
(2.6.4)

We wish to write the Ito equation for the product Z(t) = X(t)Y (t). We have that
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Z(t+ dt) = Z(t) + dZ(t) = (X(t) + dX(t))(Y (t) + dY (t))

⇐⇒ dZ(t) = X(t)dY (t) + dX(t)Y (t) + dX(t)dY (t)

= X(t)(f2dt+ g2dW (t)) + (f1dt+ g1dW (t))Y (t) + (f1dt+ g1dW (t))(f2dt+ g2dW (t))

(2.6.5)

In the final term, we use the heuristics dW (t)2 = dt, dt2 = 0 and dtdW (t) = 0 to simplify
and get

dZ(t) = X(t)(f2dt+ g2dW (t)) + (f1dt+ g1dW (t))Y (t) + g1g2dt (2.6.6)

This example shows how one can manipulate Itō equations. These principles are used exten-
sively to derive optomechanical equations of motions throughout this dissertation.



Chapter 3

Mechanical cooling and squeezing
using optimal control

In this chapter, we present the paper ’Mechanical cooling and squeezing using optimal control’
[54]. This paper was authored by Frederik Werner Isaksen and Ulrik Lund Andersen. It is
available at arxiv.org (arXiv:2207.07785).

A couple of addendums to the paper is listed below:

• By mistake, the momentum quadrature variable P̂ is never explicitly defined in the text.
it is given by P̂ = (b̂− b̂†)/(i

√
2).

• By mistake, some of the parameters used to generate the plots in Figs. 3.4 and 3.5 are left
out in the text. These parameters are Qm = 108, κ = 108 Hz, η = 1, and T = 300K.

3.1 Abstract

A mechanical system can be optimally controlled through continuous measurements of its posi-
tion followed by feedback. We revisit the complete formalism for predicting the performance of
such as system without invoking the standard rotating wave approximations and the adiabatic
approximation. Using this formalism we deduce both the conditional and unconditional state
of a mechanical oscillator using the optimal control and feedback that leads to mechanical cool-
ing and mechanical squeezing. We find large discrepancies between the exact solutions and the
approximate solutions stressing the importance of using the complete model.

3.2 Introduction

Fueled by the dramatic progress in developing high-quality nano- and micromechanical oscilla-
tors, there has recently been a surge of interest in controlling the motion of such oscillators at the
quantum level for testing fundamental physics and for realizing novel quantum technologies[1, 3].
A promising strategy for the optimal quantum control of a mechanical oscillator is by moni-
toring its motional dynamics through optimized measurements and subsequently use this in-
formation to drive the oscillator into a certain target state [33, 40]. Such a strategy has for

18
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example by now been used to prepare a mechanical oscillator near its quantum mechanical
ground state[24, 37, 29, 55, 30]. In addition to these experimental endeavours, there exists
a vast theoretical literature on preparing mechanical oscillators in various quantum states via
measurement-based feedback control including the ground state, the squeezed state [56, 45] and
more exotic states [42, 22].

The formalism of optimal feedback control of continuously measured quantum systems has
been originally developed by Belavkin [57, 58, 59] and later refined by Wiseman & Milburn
[34]. It includes a complete quantum mechanical description of the control system and is often
formulated in terms of a master equation for the density matrix representing the system. The
formalism includes a real-time estimation algorithm that provides the optimal information about
the measured state conditioned on previous measurements, and finally produces a conditional
state which can be subsequently used to drive the mechanical oscillator into the desired state
via feedback[33, 56, 34, 40, 60, 42, 43, 35, 36, 38, 37].

When using the master equation formalism to simulate an optomechanical system, several
different approximations are often invoked. Possibly the two most important approximations
are the rotating wave approximation (RWA) and the adiabatic approximation. The RWA can
be applied when the dynamics of the mechanical system is much faster than all interactions
with the environment and the measurement, while the adiabatic approximation is valid if the
oscillator dynamics can be adiabatically followed by the probing system. While for some systems
these two approximations can be taken, for others, however, they are not valid. As an example,
the complete model predicts the formation of squeezed mechanical states via optimal feedback
control while an approximative model based on the RWA of the interaction with the measurement
apparatus cannot predict its appearance [45].

Moreover, it is important to distinguish the mechanical state that is inferred from the mea-
surement record - known as the conditional state - and the mechanical state that is actually
produced through active feedback control - known as the unconditional state. In much of the
literature, these two states are often taken to be identical assuming that the feedback control
can be done without any noise penalty. This is however a very crude assumption as decoherence
of the mechanics plays an important role during feedback, rendering the unconditional state in
a state that is more noisy than the conditional state.

In this work we revisit the formalism for optimal feedback control using the master equation
framework without using the RWA and the adiabatic approximation, and we apply the formalism
to deduce the conditional and unconditional states of the mechanical oscillator. Our control
parameters will be optimised for driving the mechanical oscillator into either a ground state or a
squeezed state. We find, for example, that if the RWA of the interaction with the environment is
applied, the optimal residual phononic occupancy when preparing the oscillator near its ground
state is overestimated while when applying the adiabatic approximation, the squeezing degree is
underestimated in certain regimes. Moreover, we show that the optimally prepared conditional
and unconditional states are different, even if infinitely strong feedback is available. We discuss
the consequences thereof, including for example how this changes the optimal measurement
quadrature.

The rest of the paper is organized in three sections: In Sec. II we present the model for
optimal feedback control using the master equation framework while in Sec. III we present
and discuss the results of preparing mechanical ground states and squeezed states using our
formalism with a special emphasis on the validity of the RWA and the adiabatic approximation.
The work is shortly summarized and concluded in Sec. IV.
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3.3 The Physical Model

Feedback cooling sketch feedback by light - 
symbols w. Drive, HD fleshed out, loss removed

̂a(t)
̂ain(t)

b̂(t)

̂aout(t)

Feedback
ϵfb(t)

Probe
ϵprobe(t)

eD(ϵfb(t))
LO

-

Figure 3.1: Sketch of the optomechanical setup; a cavity mode â is interacting with a mechanical
mode b̂. The output field is detected with a homodyne detector with a local oscillator (LO)
with a phase corresponding to measurement of the output quadrature X̂θ

out(t) = (âout(t)e
−iθ +

â†out(t)e
iθ)/

√
2. The homodyne detector has detection efficiency η. Based on the homodyne

measurement signal, an optical feedback signal of complex amplitude ϵfb(t) is applied through a

displacement operation D(ϵfb(t)) = exp[ϵfb(t)â
†
in − ϵ∗fb(t)â

†
in] on the input field.

We start by considering a standard model for the state of a mechanical oscillator which
is conditioned on the continuous measurement of its position as illustrated in Figure 3.1: A
cavity mode with annihilation operator â and (angular) frequency ωc is interacting through

radiation-pressure forces with a mechanical oscillator with annihilation operator b̂ and frequency
Ωm. An input field âin of frequency ωL is injected into the cavity with rate κ. This input
coherently drives the cavity field with frequency ωL and time-dependent complex amplitude
ϵ(t) = ϵprobe + ϵfb(t). Here, the constant term ϵprobe is applied to enhance the optomechanical
coupling and measurement strength, while the time-dependent term ϵfb(t) is a feedback induced
control field. It is convenient to divide the latter contribution into real and imaginary parts,
ϵfb(t) = (xfb + iyfb)/

√
2. Working in a displaced frame rotating at the cavity field frequency ωc

and using a linearized approximation of the optomechanical radiation-pressure interaction, the
full Hamiltonian of the system can be written as

Ĥ =ℏ∆â†â+ ℏΩmb̂
†b̂+ 2ℏgQ̂X̂

+ ℏ
√
κ [xfb(t)Y − yfb(t)X]

(3.3.1)

where g is the probe-enhanced optomechanical coupling rate, ℏ is Planck’s reduced constant,
Q̂ = (b̂+ b̂†)/

√
2 is the dimensionless position operator of the mechanics, and X̂ = (â+ â†)/

√
2

and Ŷ = (â − â†)/i
√
2 are the cavity field amplitude and phase quadrature representations,

respectively. Finally, ∆ is the effective detuning, a parameter controlled by the laser frequency
ωL. Throughout this paper, ωL is chosen such that ∆ = 0. The reader is referred to the
supplement Section 3.6 for a detailed derivation of the Hamiltonian in equation (3.3.1) as well as
expressions for g and ∆. Having specified the Hamiltonian of the cavity optomechanical system,
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we are now in a position to discuss the dissipative dynamics of the system. This will be done by
using a stochastic master equation of the density matrix ρ representing the system.

Both the cavity mode and the mechanical mode are inevitably subjected to loss and deco-
herence, and in this paper, we assume all these mechanisms to be Markovian. The cavity mode
decays with rate κ due to coupling to the input field. The mechanical mode is coupled to a
thermal reservoir of average phonon occupation number n̄ with damping rate Γm. As a result
of this coupling, the quality factor or the mechanical oscillator is Qm = Ωm/Γm.

Finally, the output field, represented by the field operator âout, is measured with a homo-
dyne detector which is able to measure an arbitrary quadrature of the field given by X̂θ

out(t) =

(âout(t)e
−iθ+â†out(t)e

iθ)/
√
2 where θ is the phase of the detector’s local oscillator. We will hence-

forth refer to θ as the phase or the measurement angle of the homodyne detector. The output
field is related to the input field as per the usual input-output relations âout = âin −

√
κâ [53].

We assume that the detection efficiency of the homodyne detector is η.
The information obtained by the continuous homodyne measurement produces a conditional

density matrix ρ̂c of the joint system containing the cavity and the mechanical mode. As is
customary in the literature, conditional dynamics will be explicitly indicated by a subscript
c, i.e. ρ̂c is the conditional density matrix and ⟨Â⟩c = Tr[Âρ̂c] is the conditional expectation

value of the operator Â w.r.t. ρ̂c. This conditioning, combined with the Hamiltonian evolution
including loss and decoherence, can be modeled by the following stochastic master equation
[61, 42]:

dρ̂c =− i

ℏ
[Ĥ, ρ̂c]dt+ Lenvρ̂cdt

+ κD[â]ρ̂cdt+
√
ηκH[âe−iθ]ρ̂cdW.

(3.3.2)

The superoperator Lenv describing the mechanical interaction with the environment is either
LRWA or LnonRWA, given by

LRWAρ̂ = Γm(n̄+ 1)D[b̂]ρ̂+ Γmn̄D[b̂†]ρ̂, (3.3.3a)

LnonRWAρ̂ =
iΓm

2Ωm
[Q, {Q̇, ρ̂}]− Γm(n̄+ 1/2)[Q, [Q, ρ̂]], (3.3.3b)

where [·, ·], and {·, ·} denote the commutator and anti-commutator, respectively, and the super-
operators D and H are defined as

D[ĉ]ρ̂ := ĉρ̂ĉ† − 1

2

(
ĉ†ĉρ̂+ ρĉ†ĉ

)
, (3.3.4)

H[ĉ]ρ̂ := (ĉ− Tr[ĉρ̂])ρ̂+ ρ̂(ĉ† − Tr[ĉ†ρ̂]). (3.3.5)

The individual terms in Eqs. (3.3.2) and (3.3.3) deserve some comments: The term LRWAρ̂ is
the Markovian rotating wave approximation to the environmental interaction with the mechanics,
and is the most often used in the literature when modeling optomechanics with a master equation
approach. On the other hand, the term LnonRWAρ̂, first introduced in [62] does not assume the
rotating wave approximation, but also does not in general preserve positivity of the density
matrix since it is not on Lindblad form. We refer the reader to ref. [63] for a discussion of some
of the inadequacies of this system-environment master equation including attempts at amending
it to be on Lindblad form (See also the supplement Section 3.8). The terms in the second line
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of Eq. (3.3.2) account for the effect on the master equation of cavity dissipation and subsequent
homodyne detection of the output field when the measurement angle is θ [42]. dW = dW (t)
is the Wiener increment, a stochastic normally distributed variable satisfying the properties
dW (t′)dt = 0, dW (t)dW (t′) = δt,t′dt, and E [dW (t)] = 0, where E [dW (t)] denotes the (classical)
expectation value. The measured photocurrent corresponding to the above conditional evolution
is [42]

I(t)dt =
√
ηκ⟨ae−iθ + a†eiθ⟩cdt+ dW (t)

=
√
2ηκ⟨X cos(θ) + Y sin(θ)⟩cdt+ dW (t).

(3.3.6)

Using the master equation in Eq. (3.3.2), equations of motion for the system operators X̂ =
(Q̂, P̂ , X̂, Ŷ ) can now be derived. Assuming that the Wigner function of the initial state is
Gaussian (e.g. a thermal state), the system will stay Gaussian. This follows from the fact that
homodyne detection preserves Gaussian states, as does time evolution under a Hamiltonian that
is a second order polynomial of creation and annihilation operators [48]. Under this assumption,

the quantum state ρ̂c = ρ̂c(t) is then fully characterised by the mean vector ⟨X̂⟩c and the

covariance matrix Vc
XX = (V c

Z1Z2
)Ẑ1,Ẑ2∈X̂ = Re(⟨X̂X̂T ⟩c−⟨X̂⟩c ⟨X̂T ⟩c), the equations of motion

of which may be derived using the formula d⟨Ô⟩c = Tr[Ôdρ̂c]. We find (See the supplement
Section 3.7):

d ⟨X̂⟩c =
(
A ⟨X̂⟩c +Bu

)
dt

+ (Vc
XXCT + ΓT )dW

(3.3.7a)

dVc
XX

dt
=AVc

XX +Vc
XXAT +D

− (Vc
XXCT + ΓT )(CVc

XX + Γ)
(3.3.7b)

Here, u = u(t) = [xfb(t) yfb(t)]
T is a time-dependent vector describing the feedback of the

system. The matrices A and D depend on which of the two dissipation models in Eq. 3.3.3 is
used:

ARWA =


−Γm/2 Ωm 0 0
−Ωm −Γm/2 −2g 0
0 0 −κ/2 0

−2g 0 0 −κ/2

 (3.3.8a)

DRWA =


Γm(n̄+ 1/2) 0 0 0

0 Γm(n̄+ 1/2) 0 0
0 0 κ/2 0
0 0 0 κ/2

 (3.3.8b)

AnonRWA =


0 Ωm 0 0

−Ωm −Γm −2g 0
0 0 −κ/2 0

−2g 0 0 −κ/2

 (3.3.9a)

DnonRWA =


0 0 0 0
0 2Γm(n̄+ 1/2) 0 0
0 0 κ/2 0
0 0 0 κ/2

 (3.3.9b)
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On the other hand, B, C and Γ are the same for both models:

B =


0 0
0 0√
κ 0
0

√
κ

 (3.3.10a)

C =
√

2ηκ
[
0 0 cos(θ) sin(θ)

]
(3.3.10b)

Γ =

√
ηκ

2

[
0 0 − cos(θ) − sin(θ)

]
(3.3.10c)

We note that Eqs. (3.3.7) are formally equivalent to a Kalman Filter [34]. For the rest of this
paper, we will mainly be concerned with the steady-state dynamics of Vc

XX, i.e. the solution
when d

dtV
c
XX = 0. Equation (3.3.7b) then reduces to an algebraic equation in Vc

XX known
as the algebraic Riccati equation. Onwards, Vc

XX will therefore almost exclusively refer to the
steady-state solution.

Up to this point, we have considered the conditional state of the system, ρ̂c. However, of
equal importance is the unconditional state ρ̂ := E [ρ̂c]. The difference between the two is as
follows: ρc depends on (i.e. is conditioned on) the outcome of the homodyne measurements up
to time t. As these measurement outcomes are probabilistic in nature, the trajectory of the
state will follow a random path in phase space (customarily called quantum trajectory). On
the other hand, the unconditional state is the average over all possible trajectories from the
beginning of the experiment up to time t, and basically corresponds to state of system in which
the measurement outcomes are ignored. Mathematically, this is equivalent to removing the term
proportional to dW in Eq. (3.3.2), which means that the dW term in Eq. (3.3.7a) and the term
−(Vc

XXCT + ΓT )(CVc
XX + Γ) in Eq.(3.3.7b) will vanish. The result is that the mean vector

is identically zero for all t, but that the covariance is much larger due to large contributions
from both thermal noise and backaction noise. The difference between the conditional and
unconditional states of the mechanical mode (with the cavity mode traced out) is illustrated
in phase space in Figure 3.2a. Note that both ρ̂ and ρ̂c are depicted as having zero mean in
Fig. 3.2 for easier comparison, even though ρ̂c in general will be displaced from the origin by
some amount conditional on the measurement record.

To prepare the unconditional state into a state that resembles the conditional state, we need
to actively control the motion of the mechanical oscillator based on the homodyne measurement
outcomes. As illustrated in Fig. 3.2, the results of the homodyne measurements are fed back
onto the opto-mechanical system, thereby driving it into a low-entropy unconditional state as
described by the Hamiltonian in Eq. (3.3.1). A phase space representation of the unconditional
state with feedback is shown in Fig. 3.2b where it is compared to the conditional state for
a particular representative example. The resulting unconditional state depends critically on
the estimation and feedback strategy which in turn depends on the state one aims to prepare.
In the following we consider the optimal feedback strategies applied for the preparation of an
unconditional state with a minimal phonon number (corresponding to mechanical cooling) as
well as the optimal strategy for minimizing the variance of one of the mechanical quadratures
(corresponding to mechanical squeezing).

3.3.1 Optimal control formalism

In this section we consider the optimal control schemes for mechanical cooling and squeezing.
We use the framework of linear-quadratic-Gaussian (LQG) optimal control which is tailored to
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Figure 3.2: The mechanical covariance matrix in steady-state depicted as an uncertainty ellipsis
(1 standard deviation) in (Q,P ) phase space. Without feedback (Fig. 3.2a), the unconditional
state is much larger compared to when feedback is applied (Fig. 3.2b), but the conditional state
is unchanged. In Fig. 3.2a, the area of the conditional uncertainty ellipse have been artificially
scaled up by a factor of 100 to make it more visible. Plotted for Ωm = 106 Hz, Qm = 104,
g = 105 Hz, κ = 108 Hz, T = 300K, η = 1, q = 10−5, p = 103, using the nonRWA model and
with feedback that minimizes the phonon number.

minimize a quadratic cost function [34]:

j =

∫ t1

t0

⟨h(X̂(t),u(t), t)⟩ dt. (3.3.11)

Here, ⟨...⟩ denotes the expectation value with respect to the unconditional density matrix ρ̂, t0
and t1 denote the start and end time of the run, respectively, and

h(X̂(t),u(t), t) =X̂(t)TPX̂(t) + u(t)TQu(t)

+ 2δ(t− t1)X̂(t)TP1X̂(t),
(3.3.12)

where P , P1 and Q are matrices that are specified according to the problem one wants to solve,
for example minimizing the mechanical phonon occupancy or minimizing a specific quadrature
variance of the mechanical oscillator. The value of P1 is associated with a terminal cost, i.e. a
cost related to X̂(t1). However, since we are only interested in the dynamics at steady state,
the value of P1 is irrelevant. This is commonly referred to as an asymptotic or infinite horizon
LQG problem.

According to standard optimal control theory, the optimal feedback is then given by

u(t) = −Q−1BTY(t)⟨X̂⟩c(t), (3.3.13)

where K(t) = Q−1BTY(t) is the Kalman gain and Y(t) is a symmetric, positive semi-definite
matrix satisfying the differential equation

−dY(t)

dt
= ATY(t) +Y(t)A+P−Y(t)BK(t) (3.3.14)
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with the terminal condition Y(t1) = P1.
For asymptotic LQG-problems, t1 − t0 is very large compared with all other rates of our

system. Within this time period, it can be shown that there exists a steady-state solution Y to
Eq. (3.3.14) (i.e. with − d

dtY = 0) assuming certain stabilization conditions [34]. Given these
conditions and with this choice of feedback, the steady-state unconditional variance VXX =
Re(⟨X̂X̂T ⟩) − ⟨X̂⟩ ⟨X̂T ⟩) of the system is given by the relation VXX = Vc

XX + VE
XX, where

VE
XX is an excess noise contribution stemming from imperfect feedback. This excess noise

variance satisfies the equation

NVE
XX +VE

XXNT + FTF = 0, (3.3.15)

where N = A − BK and F = CVc
XX + Γ. The expressions Eq. (3.3.14) and Eq. (3.3.15),

together with the conditional dynamics in Eq. (3.3.7) gives the complete unconditional steady-
state dynamics of the system, and in particular the steady-state unconditional variances, VXX.

3.3.2 Optimal control for mechanical cooling

Having outlined the overall strategy of optimal control, we will now consider two specific exam-
ples of optimal control associated with mechanical cooling and mechanical squeezing.

A minimization of the phonon number is obtained by setting P = diag(pΩm, pΩm, 0, 0) and
Q = diag(q, q) where p and q are arbitrary dimensionless parameters. Note that Q specifies
the cost associated with the feedback scheme, and that the fraction p/q is a measure of the
feedback power for minimizing the oscillator energy. By using these particular matrices for P
and Q as well as the formalism in Eqs. (3.3.14) and (3.3.15), we find VXX, and subsequently
the minimized phonon number n = (VQQ + VPP − 1) /2.

3.3.3 Optimal control for mechanical squeezing

The above procedure can also be used for minimizing the mechanical variance. Specifically, in
order to minimize VQνQν

, that is, the variance along Q̂ν = cos(ν)Q̂+ sin(ν)P̂ for some angle ν,
it is straightforward to show that the appropriate cost function is given as in Eqs. (3.3.11) and
(3.3.12), but with

P = pΩm


cos2(ν) cos(ν) sin(ν) 0 0

cos(ν) sin(ν) sin2(ν) 0 0
0 0 0 0
0 0 0 0

 , (3.3.16)

whileQ is identical to the case of mechanical cooling. The minimum variance is then minν(VQνQν
) =:

VQϕQϕ
and ϕ, referred to as the squeezing angle, is the optimal choice of ν. Note that we will

also investigate the minimum conditional variance V c
QϕcQϕc , which in general has a different

squeezing angle ϕc.

3.3.4 Asymptotic feedback

In general, analytical solutions to the steady-state equations governing the conditional and un-
conditional covariance matrices do exists, but are unwieldy large and thus too impractical.
However, simple expressions for the excess covariance matrix elements in VXX can be derived
in the important limit where p/q → ∞, i.e. when the feedback cost is negligible. In this section
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we will be presenting such solutions for the two cases discussed in the previous sections. We
will be assuming the generally valid conditions: g, κ,Ωm > 0, Qm > 1/2 and V c

Q,Xθ
̸= 0. This

last condition is naturally obeyed due to the opto-mechanical coupling. Detailed derivations are
found in the supplement Section 3.9.

We first consider the feedback strategy that minimizes the phonon number n. Applying the
RWA, we find the steady-state Kalman gain K = Q−1BTY to leading order in p/q:

KT =



1
2 (Q

−1
m −

√
4 +Q−2

m )
√

p
q +O

[(
p
q

)1/4
]

0
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(3.3.17)

We note that K grows unboundedly with p/q, implying that infinite feedback strength is required
in that particular limit. We also note that the entries of the fourth row and column are all zero,
implying that information about the phase quadrature ⟨Ŷ ⟩ will not be used in the Kalman gain,
and that the feedback will not be applied to the phase input quadrature, i.e. yfb(t) = 0.

Inserting this expression into Eq. (3.3.15), and taking the limit p/q → ∞, we find the excess
covariance matrix elements relevant for the phonon numbers to

V E
QQ → 2√

4 +Q−2
m

ηκ

Ωm
(V c

QXθ
)2 (3.3.18)

V E
PP →

(
2 +Q−2

m −Q−1
m

√
4 +Q−2

m

)
√
4 +Q−2

m

ηκ

Ωm
(V c

QXθ
)2, (3.3.19)

for p/q → ∞.
Without applying the RWA, similar calculations yield

V E
QQ → ηκ

Ωm
(V c

QXθ
)2, (3.3.20)

V E
PP → ηκ

Ωm
(V c

QXθ
)2. (3.3.21)

for p/q → ∞. It is clear from these expressions that both for the RWA and nonRWA, the excess
noise associated with the preparation of an unconditional state is quadratically proportional to
the correlations between the position of the mechanics and the quadrature, Xθ of light.

If we instead choose the feedback strategy that minimizes the minimum variance VQνQν
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(corresponding to the choice of P in Eq. (3.3.16)), we find for the nonRWA case that:

V E
QνQν

→ ηκ

Ωm
(V c

QXθ
)2

{
−2 sin(2ν), ν ∈]− π/2, 0[

0, ν = [0, π/2]
(3.3.22)

V E
PνPν

→ ηκ

Ωm
(V c

QXθ
)2


− cos(4ν)+1

sin(2ν) , ν ∈]− π/2, 0[

∞, ν = 0

2 csc(2ν), ν ∈]0, π/2[
∞, ν = π/2

(3.3.23)

V E
QνPν

→ ηκ

Ωm
(V c

QXθ
)2


−2 cos(2ν), ν ∈]− π/2, 0[

−1, ν = 0,

0, ν ∈]0, π/2[
1, ν = π/2,

(3.3.24)

for p/q → ∞. The above expressions are provided only for ν ∈] − π/2, π/2] since they are
π-periodic.

A number of important observations can be made from these results. The Kalman filter and
optimal control stratedy applied here with p/q → ∞ yields the lowest possible unconditional
phonon number or minimum variance, given that we are able to measure the output field through
homodyne detection and apply feedback by displacing the input field as described. However,
even in this optimal limit the unconditional dynamics do not match the conditional dynamics.
The unconditional phonon number for mechanical cooling as well as the minimized variance
for mechanical squeezing will have an extra contribution quantified by the excess noise term
in Eqs. (3.3.20)-(3.3.21) and Eqs. (3.3.22)-(3.3.24), respectively as also illustrated in Fig. 3.2b.
This is in contrast to what appears to be a common belief in the literature, namely that the
unconditional state may always approach the conditional state under feedback.

3.4 Results and discussion

In this section we will be using the mathematical framework for optimal quantum control derived
in the previous section for estimating the minimum phonon occupancy as well as the maximum
amount of squeezing of the mechanical oscillator. We will both investigate the conditional as
well as the unconditional state, and consider the effects of the rotating wave approximation and
the adiabatic approximation.

3.4.1 Mechanical cooling

In this section we will consider the effect of measurement induced cooling both on the conditional
state where the state of the mechanical system is inferred by the measurements, and the uncon-
ditional state where the measured information is actively fed back onto the oscillator to drive it
into a low entropy state. By using the formalism in the previous section, we plot in Figure 3.3
the minimum mechanical phonon occupancy against the opto-mechanical coupling strength both
in terms of the coupling parameter, g, and the quantum cooperativity, Cq = 4g2/κΓmn̄ where

n̄ = {exp(ℏΩm/kBT )− 1}−1
. The environmental temperature T is set to 300 K throughout the

article. The plots in Fig. 3.3 have been numerically optimized (that is, the phonon number has
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Figure 3.3: Top: Conditional (cond.) and unconditional phonon numbers n vs coupling strength
g for the RWA and nonRWA model for θ = θopt. The minimum values of n as a function of
g are marked with filled-in circles. Parameters used for this plot is Ωm = 106 Hz, κ = 108 Hz,
Qm = 108, η = 1, and T = 300K. Bottom: corresponding values of θopt versus g. The values at
which n is minimal are marked with filled-in circles.

been minimized) over the measurement angle θ of the local oscillator. These optimal phases θopt
are also shown in Fig. 3.3.

It is clear that for low coupling strengths, the optimal measurement angle is π/2 as expected
since in that case all the information about the mechanical oscillator is transferred to the phase
quadrature of the probe field. However, for larger coupling strengths, the radiation pressure
force creates correlations between the amplitude quadrature of light and the mechanical position,
which can be advantageously used for cooling by rotating the phase angle away from π/2. For
very strong coupling, the optimal angle θopt tends to 0 which corresponds to an amplitude
quadrature measurement.

We also clearly see from Fig. 3.3 that by imposing the RWA between the oscillator and
the environment, the phononic occupancy is in general underestimated, in particular in the
strong coupling regime. For weak coupling, the measurement rate will be low, which means
that several mechanical oscillations will be required to resolve its motion. As a result, detailed
information about the position and momentum of the mechanical oscillator is being washed out,
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and thus a potential asymmetry in phase space of the mechanical state due to its coupling to
the environment is not visible. In this regime, the RWA is therefore completely valid. However,
when the measurement rate becomes large (that is, stronger coupling), the two mechanical
quadratures can be better resolved, and thus a potential asymmetry imposed by the coupling to
the environment becomes visible in the measurement. To capture these phase space correlations
imposed by the environment, only the model without the RWA is valid, and as seen by Fig. 3.3
(comparing the RWA with non-RWA curves), the knowledge of these correlation indeed improves
the cooling rate. The deviation between the RWA and nonRWA models naturally depends on
the strength of the coupling of the mechanics to the environment (relative to the mechanical
frequency) which is dictated by the thermalization rate, γth = Γm(n̄+ 1/2).

It is clear from Fig. 3.3 that the phonon occupancy is minimized for a certain value of the
cooperativity (measurement rate). This is attributed to the fact that a large measurement
rate will make the measurement sharp and thus prepare the mechanical state in a squeezed
state which inevitably adds phonons to the state. The difference between the conditional and
unconditional state is also clearly evident from Fig. 3.3, and as expected the conditional state
has a lower entropy than the unconditional state. The feedback required for the generation of
the unconditional state imposes a noise penalty due to decoherence of the mechanics during
feedback. This extra excess noise is however small, and plays only a role for small phonon
occupancy: When the cooperativity is large, the phonon occupancy becomes large and the extra
feedback-induced excess noise is negligible.

In Figure 3.4, top, we show the minimized phonon occupancy against the thermal decoherence
rate in which we have optimized the values of the coupling strength, g (or Cq) (shown in Fig. 3.4,
middle) and the measurement angle, θ (shown in Fig. 3.4, bottom). The phonon occupancy is
again illustrated both for the approximative model applying the RWA as well as the complete
solution without relying on the RWA. As expected, we observe a large deviation between the
two models when the thermal decoherence rate is large (or equivalently when the mechanical
frequency is low). This is caused by the establishment of mechanical quadrature correlation
due to the strong environmental coupling which is neglected by the RWA model. We also
again observe a large difference between the conditional and the unconditional states which is
attributed to decoherence during feedback, and which is negligible for low decoherence rates. It is
also interesting to note the large difference in the optimal measurement phases for the conditional
and unconditional cases which is caused by the complex dynamics that the mechanics undergo
during feedback.

We finally consider the effect that the adiabatic approximation might have on phonon occu-
pancy. To illustrate this, in Figure 3.5 we plot the conditional phonon occupancy as a function
of the frequency and thermalization rate both for the exact solution and for the one applying
the adiabatic approximation. In this plot, we have optimized the coupling strength but set the
measurement angle to π/2. As expected, the adiabatic approximation breaks down when the
mechanical frequency approaches the cavity bandwidth which is set to κ = 108 Hz. The effect
is further illustrated in the inset where we plot the phonon occupancy against the coupling
strength.

3.4.2 Mechanical squeezing

In this section we investigate the potential of generating a squeezed state of the mechanical
oscillator, conditionally and unconditionally, without resorting to the conventional RWA and the
adiabatic approximation. While the analysis of generating squeezed mechanical state without
resorting to the RWA has already been performed by Meng et al [45], here we will extend the
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phonon number n at the optimal coupling
strength g versus mechanical frequency Ωm.
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analysis by considering the effect of optimizing the measurement angle, θ, exploring the validity of
the adiabatic approximation and estimating the unconditional quantum state including feedback.

We start by illustrating the shortcomings of the adiabatic approximation in Figure 3.6. Here
we plot the conditional minimum variance as a function of the coupling strength and the me-
chanical frequency with and without applying the adiabatic approximation. We observe that
the two models completely agree for low frequencies and coupling strengths, but deviate when
either Ωm or g approaches or exceeds κ. In these cases the adiabatic approximation overesti-
mates the achievable minimum variance compared to the full solution. E.g. for g = 107 Hz and
Ωm = 108 Hz, the exact solution does not predict squeezing (V c

QϕcQϕc = 0.61) while the approx-

imate solution does (V c
QϕcQϕc = 0.48). At the breakdown of the adiabatic approximation, we

observe a significant increase in the minimum variance for increasing Ωm. This is caused by the
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Figure 3.6: Contour plot of the conditional minimum variance V c
QϕcQϕc as a function of Ωm and

g, using either the nonRWA model (green) or the adiabatic approximation used in [45] (pink).
marked on the plot are the values of V c

QϕcQϕc that the contours correspond to. The regions

at which each of the two models predict mechanical squeezing (V c
QϕcQϕc < 0.5) are coloured in

with light green or pink, respectively. Parameters used in this plot are θ = π/2, κ = 108 Hz,
Qm = 108, and η = 1.

fact that the measured output field has interacted with the mechanics over multiple mechanical
periods, thereby giving less timely information about the mechanical state. On the other hand,
the minimum variance decreases again at even higher frequencies, where the number of thermal
phonons is small.

Our next step is to analyze the effect of optimizing the measurement angle, θ, for maximizing
the degree of mechanical squeezing. In Figure 3.7. top, the conditional and unconditional
minimum variances V c

QϕcQϕc and VQϕQϕ
, respectively, are plotted against θ ∈ [0, π] for Ωm = 104

Hz and Ωm = 106 Hz. It is clear that squeezing can be produced for a rather large range of
local oscillator phases (for this particular choice of parameters), and that the phase for which
optimum squeezing is achieved is very different for the conditional and unconditional states.
Interestingly, we also see that the squeezing angle ϕ varies continuously with the measurement
angle for the conditional state while it stays constant at ϕ = 0 for the unconditional state. This
means that no matter what light quadrature is being measured, the position variable of the
mechanics will always attain the smallest variance among all mechanical quadratures for the
unconditional state. It is however interesting to note that for other choices of the parameters
(e.g. choosing a larger mechanical frequency), the smallest variance will occur in the momentum
variable (ϕ = π/2) for certain measurement angles. The changeover from ϕ = 0 to ϕ = π/2
happens when the conditional squeezing angle ϕc reaches −π/4, which never happens under the
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adiabatic approximation [45]. This is shown in Fig. 3.7, bottom (for Ωm = 104 Hz and Ωm = 106

Hz), where it is clear that the angle corresponding to the minimized variance is a binary function
of the measurement angle. Furthermore, for this choice of the mechanical frequency, the range
of measurements angles for which squeezing is observed is strongly reduced. The phase space
nature of the unconditional state is thus very different from that of the conditional state.

In Figure 3.8 we plot the minimized mechanical variance as a function of the mechanical fre-
quency for the conditional and unconditional states where the variance has been minimized over
the measurement angle, θ while the quality factor and coupling strengths are kept constant. It is
clear that for mechanical oscillators in the low frequency regime, a significant amount of squeez-
ing can be observed for both the conditional and unconditional case. These squeezing amounts
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are invisible if one applies the rotating wave approximation to the environment as illustrated by
the dashed curve. In the high frequency regime (at the order of the cavity bandwidth or larger),
the cavity dynamics will average out the dynamics of the mechanics, thereby smearing out the
squeezing effect. In this case the variances of the conditional and unconditional states overlap,
and moreover, the rotating wave approximation to the environment becomes valid.

Finally we make a comparison to the conditional solution found in Ref. [45] where the
adiabatic approximation was applied and the measurement angle was set to π/2. This solution is
represented by the dashed pink curves in Fig. 3.8, and it is clear that the adiabatic approximation
breaks down at large frequencies as expected, and that the degree of attainable conditional
squeezing is underestimated.

3.5 Conclusion

In conclusion, we have developed the formalism for optimal control of a mechanical oscillator
without residing to any rotating-wave approximations for the mechanical oscillator. Using this
formalism we discuss the resulting opto-mechanical dynamics with measurement and feedback,
and deduced the minimal phonon occupancy as well as the minimal quadrature variance of the
controlled mechanical oscillator. This was done both for the conditional state (where the mea-
surement record is used to infer the state) and the unconditional state (where the measurement
record is actively used to steer the mechanical oscillator into the desired state). We find that the
rotating wave approximation of the mechanics to the environment is not valid in a rather large
parameter space that is feasibly accessible in current optomechanical systems. Furthermore, we
find that as a result of decoherence of the mechanical oscillator during feedback, the purity of
the unconditional state is degraded compared to the conditional state. However, ground state
cooling and squeezing of the unconditional state is still attainable in a room temperature envi-
ronment. Indeed, ground state cooling of a room-temperature mechanical oscillator has recently
been demonstrated [37].

3.6 S1: Linearisation of the optomechanical Hamiltonian
including feedback

To ensure consistency with the full nonlinear cavity-optomechanical Hamiltonian including dis-
sipation and measurement, we here derive from it the linearized Hamiltonian in Equation (3.3.1)
in the main text. The section is inspired by many similar derivations in the literature, see e.g.
[4].

The full Hamiltonian (disregarding the harmonic oscillator zero-point energies, and in a frame
rotating with the laser frequency ωL relative to the cavity field) is [50]

Ĥ(t) =ℏ∆0â
†â+ ℏΩmb̂

†b̂+ ℏg0â†â(b̂+ b̂†)

+ iℏ
√
κin

[
ϵ(t)â† − ϵ∗(t)â

]
,

(3.6.1)

where ∆0 = ωc − ωL is the detuning of the input field, and g0 is the vacuum optomechanical
coupling rate. In order to make the linearisation approximation, we perform the following time-
dependent transformation of the density matrix:

ρ→ ρ̄ = UρU†, (3.6.2)
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with

U = U(t) = Da(−α(t))Db(−β(t)) (3.6.3)

where Dd(δ) = eδd
†−δ∗d is the standard displacement operator, defined for some annihilation

operator d and complex number δ. This transforms the Schrödinger picture operators a and b
to

ā(t) := U(t)aU†(t) = a+ α(t)

b̄(t) := U(t)bU†(t) = b+ β(t),
(3.6.4)

which can be shown using the Baker-Hausdorff lemma. Note that we will frequently drop the
time argument of the α and β functions in the following. The density matrix evolves according
to the master equation:

dρ̂ =− i

ℏ
[Ĥ, ρ̂]dt+ Lenvρ̂, dt

+ κD[â]ρ̂dt+
√
ηκH[âe−iθ]ρ̂dW

(3.6.5)

where the superoperators D, H and Lenv are defined as in the main text, i.e. Lenv either
equals LRWA or LnonRWA depending on which model is used.

We will now determine a new Hamiltonian H̄ such that the master equation (3.6.5) is fulfilled
under the substitutions ρ→ ρ̄ and H → H̄.

The master equation of ρ̄ is as follows

dρ̄ = ρ̄(t+ dt)− ρ̄(t)

= U(t+ dt)ρ̂(t+ dt)U†(t+ dt)− U(t)ρ̂(t)U†(t)

= dU(t)ρ̂(t)U†(t) + U(t)dρ̂U†(t) + U(t)ρ̂dU†

= Udρ̂U† + [α̇∗a− α̇a† + β̇∗b− β̇b†, ρ̄]dt

(3.6.6)

Where we have used that d
dtDa(−α(t)) = [(α̇∗a − α̇a†) + 1

2 (α̇
∗α − α̇α∗)]Da(−α(t), and

similarly for Db(−β(t)). These derivatives are found e.g. by using the Taylor expansions of the
displacement operator.

The transformation of each of the terms in the expression of Udρ̂U† is:

U(D[a])ρ̂U† = D[a]ρ̄− 1

2
[αa† − α∗a, ρ̄] (3.6.7)

U(LRWAρ̂)U
† = LRWAρ̄−

Γm

2
[βb† − β∗b, ρ̄] (3.6.8)

U(LnonRWAρ̂)U
† = LnonRWAρ̄−

Γm

2
[(β − β∗)(b+ b†), ρ̄] (3.6.9)

U(H[âe−iθ]ρ̂)U† = H[âe−iθ]ρ̄ (3.6.10)

Thus, putting everything together, we obtain:
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d

dt
ρ̄ = − i

ℏ
[UHU†, ρ̄] + Lenvρ̄dt

+ κD[â]ρ̄dt+
√
ηκH[âe−iθ]ρ̄dW

+
[κ
2
(α∗a− αa†) + Fenv

+α̇∗a− α̇a† + β̇∗b− β̇b†, ρ̄
]
dt

(3.6.11)

with Fenv equaling FRWA or FnonRWA defined below:

FRWA =
Γm

2
(β∗b− βb†) (3.6.12)

FnonRWA =
Γm

2
(β∗ − β)(b+ b†) (3.6.13)

This yields an expression for H̄:

H̄ = UHU† + iℏ
{
κ

2
(α∗a− αa†) +

Γm

2
(β∗b− βb†)

+α̇∗a− α̇a† + β̇∗b− β̇b†
} (3.6.14)

Evaluating UHU† is straightforward, if a bit tedious. In the end we find that, when neglegting
terms that are purely complex numbers (and therefore do not add to the dynamics), H̄ can be
written as

H̄ =ℏ∆a†a+ ℏΩmb
†b+ ℏg(a†b+ a†b†) + ℏg∗(ab+ ab†)

+ iℏ
√
κin(ϵfba

† − ϵ∗fba) + ℏg0a†a(b+ b†),
(3.6.15)

with effective detuning ∆ := ∆0 + g0(β + β∗) and effective coupling g := g0α, all as long as
α and β satisfies the following coupled differential equations:

α̇ = −i[∆0 + g0(β + β∗)]α− κ

2
α+

√
κinϵprobe (3.6.16a)

β̇ = −iΩmβ + Genv − ig0|α|2, (3.6.16b)

where Genv equals GRWA = −Γm

2 β or GnonRWA = −Γm

2 (β−β∗), depending on the approxima-
tion. Throughout the calculations in the the main body of the paper, we work in this displaced
picture where α and β are chosen to satisfy these equations. Note that if ϵ is substituted with
ϵprobe, these values of α(t), β(t) are equal to the expectation values ⟨a(t)⟩ , ⟨b(t)⟩ in the undis-
placed picture.

The existence and nature of steady-state solutions to Eqs. (3.6.16) are discussed in e.g. [2].
In the steady state, for constant ϵprobe, ∆ and g are approximately constant. In some cases, g
will be real, such as when ∆ is set to 0 as in this paper. For sufficiently strong driving strengths
ϵprobe and not too strong feedback strengths ϵfb, the nonlinear term ℏg0a†a(b + b†) may be
neglected from the Hamiltonian. Thus, under these conditions, we obtain the Hamiltonian in
Eq. eqrefeq:hamiltonian. It should be noted that we have not given precise requirements or
bounds on the values of ϵprobe and ϵfb. These considerations are left for future studies.
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3.7 S2: Deriving the equations of motion

When deriving the covariance matrix elements in Eq. (3.3.7) of the main text, several smaller
challenges must be dealt with: First of all, denoting the covariance of two arbitrary operators Â
and B̂ by Cov[Â, B̂]= VAB = Re(⟨ÂB̂⟩)− ⟨Â⟩ ⟨B̂⟩), we have that

dVAB =
1

2
(d⟨ÂB̂⟩+ d⟨B̂Â⟩)− d(⟨Â⟩⟨B̂⟩) (3.7.1)

The last term must be evaluated using the Itō Calculus product rule stating that for two
functions f and g evolving according to the stochastic differential equations df = f1dt + f2dW
and dg = g1dt+ g2dW , then:

d(fg) = fdg + gdf + dfdg (3.7.2)

While in normal calculus the term dfdg vanishes, as it is proportional to dt2, here we have
that

dfdg = f1g1dt
2 + (f1g2 + g2f1)dtdW + f2g2dW

2

= f2g2dt
(3.7.3)

since dW 2 = dt.
Secondly, the differential equations for the variances will contain third order moments of

A and B, i.e. ⟨A2B⟩. However, because the quantum state is assumed to be Gaussian, such
products can be expressed in terms of first and second order moments. This property has been
noted before in e.g. [32, 2]. It can be shown by the use of Isserlis’ theorem. A specific instance
of this theorem states that for three (classical) stochastic variables X1, X2, X3 that follows a
multivariate Gaussian distribution, it holds that [64]

E[X1X2X3] =E[X1X2]µ3 + E[X1X3]µ2 + E[X2X3]µ1

− 2µ1µ2µ3

(3.7.4)

where E is the classical expectation value (strictly different from the expectation value E
(non-italicized) used in the main text) defined by

E[f(X)] =

∫
Rn

f(x)p(x)dnx (3.7.5)

and µi = E[Xi], i = 1, 2, 3 is the means of Xi. In the above formula, p(x) is the probabil-
ity density function corresponding to the stochastic vector X of length n. For a multivariate
Gaussian distribution,

p(x) =
1√

(2π)n detV
exp(−1

2
(x− µ)TV−1(x− µ)) (3.7.6)

where µ = E[X] and V = E[(X − µ)(X − µ)T ]. When working with Gaussian states in
quantum information, The above formula exactly equals the form of the Wigner function W (x)
of the state ρ̂ (See [48] for proper definitions). For the Wigner function, however, the ’expectation
value’ E[...] is not equal to the quantum expectation ⟨...⟩. Rather, we have that for any function
f , [65]
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E[f(X)] =

∫
Rn

f(x)W (x)dnx = ⟨F̂ (X̂⟩) (3.7.7)

where, F̂ is an operator function of the operators X̂, that symmetrizes f . Specifically, F̂
satisfies the properties

1. F̂ (x) = f(x)

2. F̂ (P X̂) = F̂ (X̂) For all permutations P.

In the above, P X̂ represents a permutation of the elements in the vector of operators X, e.g.
swapping two elements.

As an example, if f(x) = x2y, then F̂ (X̂) = 1
3 (X̂

2Ŷ + X̂Ŷ X̂+ Ŷ X̂2), i.e. an average over all

the ways the operators (X̂, X̂, Ŷ ) can be ordered in a non-commutative product. This gives us:

1

3
(⟨X̂2Ŷ ⟩+ ⟨X̂Ŷ X̂⟩+ ⟨Ŷ X̂2⟩) = E[X2Y ] (3.7.8)

The above sum of third order moments of X̂ and Ŷ can now be expressed as a sum of products
of first and second order moments by application of Eq. 3.7.4. Applying identities such as the
above leads us to the equations of motion for

3.8 S3: Positivity of the density matrix

A real, symmetric, positive-definite matrix V corresponds to the covariance matrix of a quantum
state density matrix ρ̂ if and only if [66, 48]

V +
i

2
Ω ≥ 0 (3.8.1)

where Ω is the symplectic form defined in [48, Eq. (2)]. Thus, if a given covariance matrix
V satisfies the above inequality, its associated density matrix must be positive, as this is one of
the defining properties of a quantum density matrix.

As mentioned in section 3.3 of the main text, the nonRWAmodel of the mechanical interaction
with its environment as given Eq. (3b) can occasionally produce nonpositive density matrices,
which will of course be an invalid result. Therefore, we haved checked that each individual
numerically calculated covariance matrix all the figures in the main text that behind the phonon
numbers plotted in was verified to fulfil Eq. (3.8.1).

3.9 S4: Asymptotic feedback

In this section we derive the excess covariance matrix elements for p/q → ∞ presented in
section 3.3.4 of the main text. We focus on the nonRWA model with feedback that minimize the
phonon number. The derivations for the RWA model and for feedback that optimize squeezing
are similar and therefore omitted. The following derivations are valid under the conditions
Γm > 0, κ > 0, g > 0, θ ∈ R, p > 0, q > 0, as well as the condition that the mechanical oscillator
is underdamped, i.e. Γm < 2Ωm.

We are given the algebraic Riccati equation for the infinite-horizon optimal control problem
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P+ATY +YA−YBQ−1BTY = 0, (3.9.1)

where A, B, P, Q, and Y are defined as in the main text. We normalize the equation
by writing the rates of the system in units of Ωm, i.e. by dividing through by Ωm and then
performing the substitution x→ xΩm for x ∈ {Ωm,Γm, g, κ}.

We solve for the 4×4 matrix Y by finding eigenvalues and eigenvectors to the following 8×8
Hamiltonian matrix H (not related to the energy operator):

H =

[
A −BQ−1BT

−P −AT

]

=



0 1 0 0 0 0 0 0
−1 −Γm −2g 0 0 0 0 0
0 0 −κ

2 0 0 0 −κ
q 0

−2g 0 0 −κ
2 0 0 0 −κ

q

−p 0 0 0 0 1 0 2g
0 −p 0 0 −1 Γm 0 0
0 0 0 0 0 2g κ

2 0
0 0 0 0 0 0 0 κ

2


(3.9.2)

We find the following characteristic polynomial ch(λ) = det(H− λI):

ch(λ) = − 1

8q

(κ
2
− λ

)
(κ+ 2λ)

[
− 4g

(
4gκp− 4gκλ2p

)
− q

(
−Γ2

mλ
2 + λ4 + 2λ2 + 1

)
(κ− 2λ)(κ+ 2λ)

] (3.9.3)

it is immediately apparent that

λ±1 = ±κ
2

(3.9.4)

Are two roots to ch(λ) and thus eigenvalues to H. to find the rest of the eigenvalues, we divide
out the roots and simplify the characteristic equation ch(λ) = 0 to find:

(
ch(λ) = 0 ∧ λ ̸= λ±1

)
⇐⇒ −16g2κp(1− λ2)− q(λ4 + λ2(2− Γ2

m) + 1)(κ2 − (2λ)2) = 0

⇐⇒ 4g2κ(λ2 − 1) +
q

p
(λ4 + λ2(2− Γ2

m) + 1)

[
λ2 −

(κ
2

)2
]
= 0

(3.9.5)

Note that the above is a cubic equation in the variable σ = λ2, so we can write it as

4g2κ(σ − 1) +
q

p
(σ2 + σ(2− Γ2

m) + 1)

[
σ −

(κ
2

)2
]
= 0 (3.9.6)

In principle, we could solve this using the standard formula for a cubic equation. We can
however simplify the problem slightly, as we are only interested in the limiting case q/p → 0.
Now, the second term on the left hand side of the above equation is directly proportional to q/p
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and therefore goes to zero as q/p goes to zero. This suggests that the cubic equation has a root
σ = σ2 for which σ2 → 1 as q/p → 0. To prove this statement, write the root as σ2 := 1 + r2,
where r2, which we call the remainder of σ2, is a complex number depending on the coefficients
of the equation in (3.9.6), in particular on q/p. if we substitute σ = 1 + r2 into (3.9.6), we get:

4g2κr2 +
q

p

[
(1 + r2)

2 + (1 + r2)(2− Γ2
m) + 1

] [
(1 + r2)−

(κ
2

)2
]
= 0 (3.9.7)

It is clear that if we set q/p = 0 we have that r2 = 0. Note that since the roots of a
polynomial depend continuously on its coefficients, r2 is a continuous function of q/p. Moreover,
continuously increasing q/p from zero will also continuously change r2 (possibly branching into
more than one root). equivalently, there must exist at least one root for which its remainder r2
goes to zero, as desired. We can also show how quickly r2 goes to zero: multiplying by p/q on
both sides of Eq. (3.9.7), we have

4g2κ

(
p

q

)
r2 +

[
(1 + r2)

2 + (1 + r2)(2− Γ2
m) + 1

] [
(1 + r2)−

(κ
2

)2
]
= 0, (3.9.8)

which can be rearranged to show that

lim
q/p→0

(
p

q

)
r2 = −

(4− Γ2
m)

[
1−

(
κ
2

)2]
4g2κ

(3.9.9)

We reduce the characteristic equation further by dividing Eq. (3.9.5) by σ− σ2, which gives:

1

4
Γ2
m

(
κ2 − 4

)
+

4g2κp

q
− 3κ2

4
+ r22 −

1

4
r2

(
4Γ2

m + κ2 − 16
)
+ 4

+σ

(
−Γ2

m − κ2

4
+ r2 + 3

)
+ σ2 = 0

(3.9.10)

We find the roots of the above quadratic using the standard procedure: the discriminant d is

d = −16g2κ
p

q
+ Γ4

m +
κ4

16
−3r22 +

1

2
κ2

(
−Γ2

m + r2 + 3
)

+ 2Γ2
m(r2 − 1)− 10r2 − 7r2.

(3.9.11)

In the expression for d, the term −16g2κp/q is the only term proportional to p/q, while the
other terms are constant or proportional to r2 or r22. Therefore, for sufficiently large values of
p/q, d is negative, or at least has negative real part, as we do not yet know whether or not r2 is
real. Thus, the remaining roots to the characteristic equation are

σ3 =
1

2

(
Γ2
m +

κ2

4
− r2 − 3− i

√
−d

)
(3.9.12)

σ4 =
1

2

(
Γ2
m +

κ2

4
− r2 − 3 + i

√
−d

)
(3.9.13)
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We can now deduce that for sufficiently large values of p/q, the parameter r2 is real. This
is because, when r2 is sufficiently small, σ3 and σ4 are necessarily complex. since the reduced
characteristic equation (3.9.6) has real coefficients, any complex roots must appear in conjugate
pairs. The remaining root σ2 = 1 + r2 therefore has to be real, which proves that d is real and
negative.

We now have that the eigenvalues to H with negative real part is λ1 = −κ
2 , λi = −√

σi, i =
2, 3, 4. corresponding eigenvectors are denoted vi, i = 1, 2, 3, 4.

λ3 = −
√
σ3 =

√
g 4

√
κp

q
(−1 + i) + r3 (3.9.14)

λ4 = −
√
σ4 = λ∗3, (3.9.15)

where r3 is a number that goes to zero as q/p goes to zero.
It is easy to show that an eigenvector corresponding to λ1 is v1 = [0 0 0 1 0 0 0 0]T . Through

Gauss-Jordan elimination of H− λiI, with I being the (8× 8) identity matrix, we find that

v2 =



− 1
p
√
r2+1
1
p

r2+2√
r2+1

−Γm

2gp

− 4g
−κp

√
r2+1+2pr2+2p

−
Γm√
r2+1

+2

Γm

√
r2+1+r2+2
r2√

r2+1(Γm

√
r2+1+r2+2)

q

(
r2+2√
r2+1

−Γm

)
(
√
r2+1−κ

2 )
2gκp

0



(3.9.16)

v3 =



2g

−(1−i)Γm
√
g 4
√

κp
q −2ig

√
κp
q +r3(Γm−(2−2i)

√
g 4
√

κp
q )+r23+1

2g

Γm−(1−i)
√
g 4
√

κp
q + 1

r3−(1−i)
√

g 4
√

κp
q

+r3

−1

− 8g2

(−(2−2i)
√
g 4
√

κp
q +κ+2r3)(−(1−i)Γm

√
g 4
√

κp
q −2ig

√
κp
q +r3(Γm−(2−2i)

√
g 4
√

κp
q )+r23+1)

− 2gp(−Γm−(2−2i)
√
g 4
√

κp
q +2r3)

(−(1−i)Γm
√
g 4
√

κp
q −2ig

√
κp
q +r3(Γm−(2−2i)

√
g 4
√

κp
q )+r23+1)((1−i)Γm

√
g 4
√

κp
q −2ig

√
κp
q −r3(Γm+(2−2i)

√
g 4
√

κp
q )+r23+1)

− 2gp(−2ig
√

κp
q −(2−2i)

√
gr3 4

√
κp
q +r23−1)

(−(1−i)Γm
√
g 4
√

κp
q −2ig

√
κp
q +r3(Γm−(2−2i)

√
g 4
√

κp
q )+r23+1)((1−i)Γm

√
g 4
√

κp
q −2ig

√
κp
q −r3(Γm+(2−2i)

√
g 4
√

κp
q )+r23+1)

q(−(2−2i)
√
g 4
√

κp
q +κ+2r3)

2κ
0


(3.9.17)

v4 = v∗
3 (3.9.18)

These expressions all hold for sufficiently small values of r2 and r3.
The algebraic Ricatti equation (3.9.1) is now solved as follows: Define an 8×4 matrix U and

two 4× 4 matrices U1 and U2 by
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U :=:

[
U1

U2

]
:=

[
v1 v2 v3 v4

]
. (3.9.19)

Then it holds that [67]

Y = U2U
−1
1 (3.9.20)

is the unique stabilizing solution to (3.9.1), i.e. the unique solution that renders the matrix
A−BQ−1BTY asymptotically stable (eigenvalues with all negative real parts) [34].

We find that Y is of the form

Y =


y11 y12 y13 0
y12 y22 y23 0
y13 y23 y33 0
0 0 0 0

 (3.9.21)

The above entries yij are all complicated expressions of the system parameters and r2 and
r3, and won’t be written in full here. We are only interested in their behavior as p/q goes to
infinity. Note that we only care about the terms y13, y23, and y33, as they are the only terms

appearing in the Kalman Gain matrix K = Q−1BTY =
√
κ
q

[
y13 y23 y33 0
0 0 0 0

]
.

we find that

y13 = −q
(√

p

κq
+O

(
4

√
p

q

))
(3.9.22)

y23 = −q
(√

p

κq
+O

(
4

√
p

q

))
(3.9.23)

y33 = 2q

(√
g

κ
4

√
p

κq
+O(1)

)
(3.9.24)

The lower-order terms of K are not important; note however that, from the fact that Y is
the unique stabilizing solution, it follows that Y is real, and thus also K is real.

With the above expression for K, we can now solve the Lyapunov equation for the excess
covariance matrix VE

XX:

NVE
XX +VE

XXNT + FTF = 0, (3.9.25)

with N = A − BQ−1BTY and F = CVc
XX + Γ. Equation (3.9.25) is a linear system of

equations in the entries of VE and are therefore straightforwardly solved. We then take the
limit of the solutions to these equations as (p/q) → ∞ to obtain the expressions in Sec. IID.



Chapter 4

Measurement-based feedback
scheme with squeezed input light

4.1 Introduction

In the previous chapter, we presented and analysed a measurement-based feedback scheme for an
optomechanical system that assumed that the probe and feedback input field was in a coherent
state. In this chapter, we extend the model to account for an input field in a displaced squeezed
state. In contrast to a coherent state, the squeezed state introduces some new correlations
in phase space which must be accounted for in the dynamics of the optomechanical coupling.
Our model must therefore be extended which will be the subject of this chapter. We find that
by using squeezed states in replacement of coherent states, it is possible to feedback cool the
mechanical oscillator to the ground state at a lower input power. This is somewhat expected,
but we also find that by using squeezed states of light as a probe it is possible to feedback control
the mechanical oscillator into a mechanically squeezed state that is significantly more squeezed
than if we were using coherent states of light for probing.

4.2 Derivation of the stochastic master equation

In this section, we will derive the master equation for the system with broadband squeezed input
light. The derivations follow loosely the notation and playbook of Ref. [42], in which similar
master equations are derived.

We start by introducing some notation relevant for squeezed states. For a pure squeezed state
of a single-mode optical field, the covariance matrix of its amplitude and phase quadratures is

V = Rνasq

[
1
2e

2r 0
0 1

2e
−2r,

]
RT

νasq
(4.2.1)

where the real number r is called the squeezing parameter that characterizes the strength of
the squeezing, while Rνasq

is a rotation matrix that rotates by an angle νasq. This is called the
anti-squeezing angle and corresponds to the angle in quadrature phase space along which the
anti-squeezing is largest.

A different way of representing the covariance matrix is the following:

42
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V =

[
1
2 +N +Re[M ] Im[M ]

Im[M ] 1
2 +N − Re[M ]

]
(4.2.2)

where N ≥ 0 is the mean number of photons in the squeezed state. The number M is in general
complex and contains information about the angle and asymmetry of the squeezing. For pure
squeezed states, |M |2 = N(N + 1), while for impure states |M |2 ≤ N(N + 1). We will however
not be considering impure squeezed input fields in this dissertation in order to constrain the
discussion. In this chapter, we will mostly be using the parameters N and M for mathematical
convenience. We remark that the following relations hold between N ,M and r, νasq:

νasq = arg[M ]/2 (4.2.3)

r =
1

2
ln(1 + 2N + 2|M |) (4.2.4)

Having the squeezed state notation at hand, we proceed with the actual derivation of the
master equation. Our optomechanical system interacts with an external Markovian input field
according to the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint, (4.2.5)

Ĥint = iℏ(ŝâ†in(t)− ŝ†âin(t)) (4.2.6)

with ŝ =
√
κâ being a system operator, and âin(t) input field operators that commute with the

system Hamiltonian Ĥ0 and satisfy the commutation relation [âin(t), â
†
in(t

′)] = δ(t − t′). From

this commutation relation, intuitively, one can understand the operator â†in(t)
√
dt as the creation

operator of an infinitesimally narrow temporal mode at time [t, t + dt]. We introduce quantum

Itō increments: dÂin(t) = âin(t)dt which obey the commutation relation [dÂin(t), dÂ
†
in(t)] = dt.

(The rigorous definition of quantum Itō calculus is given in e.g. [61].) Assuming a broadband
squeezed input field, the Itō increments obey the rules:

dÂin(t)dÂin(t) =Mdt, dÂin(t)dÂ
†
in(t) = (N + 1)dt (4.2.7)

dÂ†
in(t)dÂin(t) = Ndt, dÂ†

in(t)dÂ
†
in(t) =M∗dt, (4.2.8)

with M,N being scalars such that N > 0 and |M |2 ≤ N(N + 1), with equality holding for a

pure squeezed state as mentioned above. The operators dÂin(t) and dÂ†
in(t) commute with all

other operators at different times t′ ̸= t.
The time evolution operator Û(t) under the Hamiltonian Ĥ in Eq. (4.2.5) obeys the following

Itō equation:

dÛ(t) = Û(t+ dt)− Û(t)

=

[
exp

(
− i

ℏ
Ĥdt

)
− 1

]
U(t)

=

[
exp

(
− i

ℏ
Ĥ0dt+ ŝdÂ†

in(t)− ŝ†dÂin(t)

)
− 1

]
Û(t)

(4.2.9)
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By Taylor expanding the above exponential to second order around 0 and using the Itō rules
(4.2.7) as well as the rules dÂin(t)dt ∝ dt2 = 0, we obtain

dÛ(t) =

[
− i

ℏ
Ĥeffdt+ ŝdÂ†

in(t)− ŝ†dÂin(t)

]
Û(t), (4.2.10)

where

Ĥeff = Ĥ0 −
iℏ
2

[
ŝŝ†N + ŝ†ŝ(N + 1)− ŝ2M∗ − (ŝ†)2M

]
(4.2.11)

is the effective Hamiltonian. Note that this Hamiltonian is not Hermitian.

4.2.1 Pure squeezed input, x̂-quadrature measurement

We assume that the input field is in a pure broadband squeezed vacuum state |M⟩, satisfying
the eigenvalue equation [34]

[(N +M∗ + 1)âin(t)− (N +M)â†in(t)] |M⟩ = 0 (4.2.12)

for all times t. (The relations (4.2.7) may be derived from this eigenvalue equation, the commu-

tation relations [dÂin(t), dÂ
†
in(t)] = dt, and that |M |2 = N(N + 1) for a pure squeezed state.)

Assuming that the quantum state |ϕ(t)⟩ of the full system starts in the (pure) product state
|ϕ(0)⟩ = |ψ(0)⟩ ⊗ |M⟩, we get that

d |ϕ(t)⟩ =
[
− i

ℏ
Ĥeffdt+ ŝdÂ†

in(t)− ŝ†dÂin(t)

]
|ϕ(t)⟩

=

[
− i

ℏ
Ĥeffdt+ Ô(dÂin(t) + dÂ†

in(t))

]
|ϕ(t)⟩ ,

(4.2.13)

with Ô = [(N +M∗ + 1)ŝ− (N +M)ŝ†]/L, where L = 2N + 2Re(M) + 1. The last line can be

derived from adding multiples of (N +M∗ + 1)dÂin(t)− (N +M)dÂ†
in(t) |ϕ(t)⟩ = 0 to the right

hand side.
A subsequent measurement of the amplitude (x̂) quadrature of the output field projects the

input field state onto one of the eigenstates |Ix(t)⟩ of the operator (âin(t)+â†in(t)) with respective
eigenvalues Ix(t). Performing this measurement continuously over time projects the system into
the conditional state |ψ(t)⟩. Under time evolution and subsequent measurement of |ϕ(t)⟩, we
are left with the unnormalized state |ϕ̃(t+ dt)⟩ at time t+ dt:

|ϕ(t)⟩ → |ϕ̃(t+ dt)⟩ := |Ix(t)⟩ ⟨Ix(t)|ϕ(t+ dt)⟩

= |Ix(t)⟩ ⟨Ix(t)|
[
1− i

ℏ
Ĥeffdt+ Ô(dÂin(t) + dÂ†

in(t))

]
|ϕ(t)⟩

= |Ix(t)⟩ ⟨Ix(t)|M⟩
[
1− i

ℏ
Ĥeffdt+ ÔIx(t)dt

]
|ψ(t)⟩ .

(4.2.14)

We thus have that the unnormalized conditional state |ψ̃(t+ dt)⟩ evolves according to the
differential equation:
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d |ψ̃(t)⟩ = |ψ̃(t+ dt)⟩ − |ψ(t)⟩

=

[
− i

ℏ
Ĥeffdt+ ÔIx(t)dt

]
|ψ(t)⟩

(4.2.15)

Using Eq. (4.2.12), it can be shown that

| ⟨Ix(t)|M⟩ |2 =

√
dt

2πL
exp

(
−I

2
xdt

2L

)
. (4.2.16)

As Ix(t)dt and dÂin(t) + dÂ†
in(t) obey the same statistics, we find that (Ix(t)dt)

2 = Ldt.
From this, we can show that

⟨ψ̃(t+ dt)|ψ̃(t+ dt)⟩ = 1 +
Ix(t)dt

L
⟨ŝ+ ŝ†⟩ , (4.2.17)

where ⟨·⟩ = ⟨ψ(t)| · |ψ(t)⟩. The probability of measuring the photocurrent Ix(t) at time t+ dt is

Pr(Ix(t)dt) = ⟨ϕ̃(t+ dt)|ϕ̃(t+ dt)⟩
= | ⟨Ix(t)|M⟩ |2 ⟨ψ̃(t+ dt)|ψ̃(t+ dt)⟩

=

√
dt

2πL
exp

(
−Ix(t)

2dt

2L

)
(1 +

Ix(t)dt

L
⟨ŝ+ ŝ†⟩)

(4.2.18)

Since the photocurrent Ix(t) comes from an x̂-measurement on a squeezed environment, it
must have a Gaussian probability distribution with mean and variance given by µ and σ2/dt,
respectively. That is,

Pr(Ix(t)dt) =

√
dt

2πσ2
exp

(
− (Ix − µ)2dt

2σ2

)
=

√
dt

2πσ2
exp

(
−I2xdt
2σ2

)
exp

(
−µ

2dt

2σ2
+ µ

Ixdt

σ2

)
=

√
dt

2πσ2
exp

(
−I2xdt
2σ2

)[
1− µ2dt

2σ2
+ µ

Ixdt

σ2
+

1

2

(
µ
Ixdt

σ2

)2
]

=

√
dt

2πσ2
exp

(
−I2xdt
2σ2

)[
1− µ2dt

2σ2
+
Ixdt

σ2
µ+ µ2Ldt

2σ4

]
,

(4.2.19)

where we again used that (Ixdt)
2 = Ldt. Comparing Eqs. (4.2.18) and (4.2.19), we find that

µ = ⟨ŝ+ ŝ†⟩ and σ2 = L. We can now write the incremental photocurrent Ix(t)dt as an Itō
equation:

Ix(t)dt = µdt+ σdW (t)

= ⟨ŝ+ ŝ†⟩ dt+
√
LdW (t),

(4.2.20)

where dW (t) is a Wiener increment.
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We are now in a position to derive an explicit equation for the time evolution normalized,
conditional density matrix ρ̂c(t) = |ψ(t)⟩ ⟨ψ(t)|. We have that

dρ̂c(t) =
ρ̃c(t+ dt)

Tr[ρ̃c(t+ dt)]
− ρ̂c(t), (4.2.21)

where ρ̃c(t+dt) := |ψ̃(t+ dt)⟩ ⟨ψ̃(t+ dt)| is the unnormalized density matrix and Tr[ρ̃c(t+dt)] =

⟨ψ̃(t+ dt)|ψ̃(t+ dt)⟩ = 1 + 1
L ⟨ŝ+ ŝ†⟩2 dt + 1√

L
⟨ŝ+ ŝ†⟩ dW (t), cf. Eqs. (4.2.17) and (4.2.20).

Expanding the above equation and using Itō calculus, we arrive at the following conditional
master equation:

dρ̂(t) =− i

ℏ
(Ĥeffρ̂(t)− ρ̂(t)Ĥ†

eff)dt+ LÔρ̂(t)Ô†dt

+
√
L

[
Ôρ̂(t) + ρ̂(t)Ô† − 1

L
⟨ŝ+ ŝ†⟩ ρ̂(t)

]
dW (t)

=

(
− i

ℏ
[Ĥ0, ρ̂] + (N + 1)D[ŝ]ρ̂+ND[ŝ†]ρ̂

)
dt

−
(
M∗D◦[ŝ]ρ̂+MD◦[ŝ†]ρ̂

)
dt

+
√
L

[
Ôρ̂(t) + ρ̂(t)Ô† − 1

L
⟨ŝ+ ŝ†⟩ ρ̂(t)

]
dW (t),

(4.2.22)

where the superoperators D and D◦ are defined by

D[ĉ]ρ̂dt = ĉρ̂ĉ† − 1

2
(ĉ†ĉρ̂− ρ̂ĉ†ĉ). (4.2.23)

D◦[ĉ]ρ̂dt = ĉρ̂ĉ− 1

2
(ĉĉρ̂− ρ̂ĉĉ). (4.2.24)

The master equation presented in Eq. (4.2.22) is well-known and also derived in e.g. Ref.
[34]. While it is important to note that the master equation is only valid at η = 1 detetion
efficiency of the output field, it is fairly simple to show [32] that a non-unit detection efficiency η
can be accounted for simply by multiplying the terms proportional to dW (t) by

√
eta. However,

as this chapter only considers the case η = 1, we will simply ignore this parameter here.

4.2.2 Pure squeezed input, x̂θ-quadrature measurement

In the previous section, we considered the time evolution under continuous measurement of the
x̂ quadrature of the light field. We here present the results for a general rotated quadrature
xθ(t) = âin(t)e

−iθ + â†in(t)e
iθ.

The Schrödinger time evolution of the full system, Eq. (4.2.13), can be rewritten as follows:

d |ϕ(t)⟩ =
[
− i

ℏ
Ĥeffdt+ Ôθ(dÂin(t)e

−iθ + dÂ†
in(t)e

+iθ)

]
|ϕ(t)⟩ , (4.2.25)

with

Ôθ =
(N +M∗ + 1)ŝ− (N +M)ŝ†

(N +M∗ + 1)eiθ + (N +M)e−iθ
(4.2.26)
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Through measurements of the photocurrent, Iθ(t), projects the state onto |Iθ(t)⟩, where
x̂θ |Iθ(t)⟩ = Iθ(t) |Iθ(t)⟩. We then have that

d |ψ̃(t)⟩ = |ψ̃(t+ dt)⟩ − |ψ(t)⟩

=

[
− i

ℏ
Ĥeffdt+ ÔθIθ(t)dt

]
|ψ(t)⟩ ,

(4.2.27)

and the probability of obtaining a given photocurrent is

| ⟨Iθ(t)|M⟩ |2 =

√
dt

2πLθ
exp

(
−I

2
θdt

2Lθ

)
, (4.2.28)

with Lθ = 2N +2Re{Me−2iθ}+1. Thus, the Itō time evolution of the photocurrent may be
written as

Iθ(t)dt = ⟨ŝθ + ŝ†θ⟩ dt+
√
LθdW (t), (4.2.29)

In the end, this leaves us with the conditional master equation

dρ̂(t) =

(
− i

ℏ
[Ĥ0, ρ̂] + (N + 1)D[ŝ]ρ̂+ND[ŝ†]ρ̂

)
dt

−
(
M∗D◦[ŝ]ρ̂+MD◦[ŝ†]ρ̂

)
dt

+
√
Lθ

[
Ôθρ̂(t) + ρ̂(t)Ô†

θ −
1

Lθ
⟨ŝθ + ŝ†θ⟩ ρ̂(t)

]
dW (t).

(4.2.30)

4.2.3 State space matrices

From Eq. (4.2.30), we may now derive the state space matrices pertaining to the optomechanical
system described in Chapter 3, but with a squeezed input field instead of a coherent input field.
To that end, we set the system Hamiltonian to

Ĥ0 = ℏ
Ωm

2
(Q̂2 + P̂ 2) + 2ℏgQ̂X̂ + ℏ

√
κ
[
xfb(t)Ŷ − yfb(t)X̂

]
, (4.2.31)

as in Eq. (3.3.1) but with ∆ = 0. We remind the reader that Q̂ = (b̂ + b̂†)/
√
2 and P̂ = (b̂ −

b̂†)/(i
√
2) are the mechanical mode position and momentum quadratures, while X̂ = (â+â†)/

√
2

and Ŷ = (â − â†)/(i
√
2) are the cavity field amplitude and phase quadratures; Ωm is the

mechanical resonance frequency, g is the effective optomechanical coupling strength, and κ is
the cavity linewidth, assumed to be equal to the cavity input mirror coupling rate; finally, xfb(t)
and yfb(t) are controllable time-dependent feedback parameters, although in this chapter we will
not consider the effect of adding feedback, but only look at the conditional state.

With this choice of Ĥ0, the optomechanical system can almost directly be modeled by the
master equation in Eq. (4.2.30) with ŝ =

√
κâ. The only missing part is the mechanical interac-

tion with the environment. In this chapter, we will be exclusively consider the nonRWA model,
as the comparison with the RWA model has already been discussed in Chapter 3. We add this
interaction by simply adding to Eq. (4.2.30) the term LnonRWAρ̂(t) as given in Eq. (3.3.3).

We find the state space matrices for the means and variances of the quadratures [Q̂ P̂ X̂ Ŷ ]
using the same procedure as in Chapter 3. We find that AnonRWA and B are unchanged and as
in Eqs. (3.3.9a) and (3.3.10a), while DnonRWA, C, and Γ now take the following form:
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DnonRWA =


0 0 0 0
0 2Γm(n̄+ 1/2) 0 0
0 0 κ(N + 1/2 + Re[M ]) κIm[M ]
0 0 κIm[M ] κ(N + 1/2− Re[M ])

 (4.2.32)

C =

√
2κLθL

cos2(θ) [L+ 2Im[M ] tan(θ)]
2
+ sin2(θ)

[
0 0 cos(θ) sin(θ)

]
(4.2.33)

Γ =

 −
√

κLθ

2 L

cos2(θ) [L+ 2Im[M ] tan(θ)]
2
+ sin2(θ)


×
[
0 0 Re{eiθ(1 + 2N + 2Me−2iθ)} Im{eiθ(1 + 2N + 2Me−2iθ)}

] (4.2.34)

As mentioned we do not present results regarding the unconditional mechanical state when
feedback is applied in this chapter. The main reason for this is that the asymptotic excess
variances that we showed in Chapter 3 become significantly more complicated to when the
squeezed probe and its associated parameters is introduced. These considerations are left for
future studies.

4.3 Numerical results

In this section, we discuss the effect on the conditional phonon number and the conditional
minimum variance (as defined in Chapter 3) on using a squeezed probe field based on numerical
results of applying the state space model.
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Figure 4.1: Conditional phonon number n vs coupling strength g for different squeezing numbers
N . Left: anti-squeezing angle is νasq = 0. Right: anti-squeezing angle is νasq = π/2. .
Using the nonRWA model and optimizing the homodyne measurement angle, θ = θopt. Other
parameters used for this plot is Ωm = 106 Hz, κ = 108 Hz, Qm = 108, η = 1, and T = 300K.

in Fig. 4.1, the conditional phonon number is plotted for a range values of the squeezing
number N , for two choices of the anti-squeezing angle: νasq = 0 and νasq = π/2. Note that in
both cases, the homodyne measurement angle θ is optimized. for νasq = 0 it is clear that for low



CHAPTER 4. MEASUREMENT-BASED FEEDBACK SCHEME WITH SQUEEZED
INPUT LIGHT 49

coupling strengths g, the phonon number decreases when N is increased. However, the minimum
phonon number with respect to g remains the same; the minimum value is simply attained at
a lower value of g. For νasq = π/2, one observes the opposite behaviour, i.e. that the phonon
number increases with N until the optimal phonon number reached, which will be at a higher
optimal value of g than for N = 0. In other words, of these two choices, νasq = 0 is clearly
preferred. The reason is that the mechanical position is imprinted in the phase quadrature of
the output field, which is therefore where one should lower the measurement imprecision noise.
νasq = 0 achieves exactly this, since this means squeezing and thus less noise in the phase
quadrature, while νasq = π/2 achieves the opposite.
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Figure 4.2: The conditional phonon number nC and corresponding optimal measurement angle
θopt vs coupling strength g for different anti-squeezing angles νasq. NonRWA model is used.
Left: νasq in a range between 0 and π/2. Right: νasq in a range between π/2 and π. In both
plots, the color is darker for larger values of νasq as shown on the legends. Parameters used for
this plot is N = 1, Ωm = 106 Hz, κ = 108 Hz, Qm = 108, η = 1, and T = 300K.

One might ask if νasq = 0 is the optimal choice of anti-squeezing angle. This question is
explored in figure Fig. 4.2, where the conditional phonon number vs coupling strength is plotted
a range of νasq in the range 0 to π/2. It is evident from the plot. that νasq = 0 is still the best
choice. It is however interesting to look at the optimal measurement angles θ, which are plotted
as well in Fig. 4.2. For low coupling strengths, the optimal values of θ change completely in
step with νasq; for example, when νasq = 0.211π, we find that θopt = π/2 + 0.211 · π. The only
exception to this is when νasq is near π/2. The explanation here is as follows: When a rotated

quadrature X̂θ = X̂ cos(θ) + Ŷ sin(θ) of the cavity field is measured, the information from the
measurement is proportional to sin(θ)Q̂+ (noise), so it would appear that it is always better to
choose sin(θ) = π/2. On the other hand, the noise term is the lowest whenever θ matches the
squeezing angle, i.e. when θ = νasq + π/2. It turns out that minimizing the noise term is much
more important, at least for this degree of squeezing (N = 1), as any deviation from a matched
measurement angle comes at a penalty of a large amount of anti-squeezing noise. The only thing
that this explanation ignores is the effect of backaction noise. However, the backaction noise is
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negligible until the optimal value of g and the minimal value of the phonon number is reached.
The effect of backaction noise is clear from the figure, as we observe the optimal angles θopt to
all decrease below π/2 at coupling strengths near or above the optimum.

Nevertheless, it is clear that, at least for this parameter space, the optimal choice of anti-
squeezing angle is νasq = 0.
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Figure 4.3: The conditional minimum variance V c
QϕcQϕc vs mechanical frequency Ωm for different

squeezing numbers N . Left: Anti-squeezing angle is νasq = 0. Right: Anti-squeezing angle
is νasq = π/2. . Using the nonRWA model and optimizing the homodyne measurement angle,
θ = θopt. The grey area indicates mechanical squeezing. Other parameters used for this plot is
g = 107 Hz, κ = 108 Hz, Qm = 108, η = 1, and T = 300K.

We now move on to briefly discuss how introducing a squeezed probe field affects the con-
ditional minimum mechanical variance V c

QϕcQϕc . In Fig. 4.3, V c
QϕcQϕc is plotted at a fixed

coupling strength for versus mechanical frequencies Ωm, for a range of squeezing numbers N for
νasq = 0, π/2. Again, we observe that νasq = 0 is the better choice, as the conditional variance
then decreases as a function of N , whereas it increases when νasq = π/2. The explanation is
exactly the same as for the conditional phonon number, and we also here find that νasq = 0 is
the optimal choice.

4.4 Conclusion

In this section, we have extended the model for optomechanical measurement and conditional
cooling and squeezing in Chapter 3 to the case where the probe field is in a pure squeezed state.
We have presented numerical simulations of the conditional phonon number and conditional
minimum variance of the mechanics under this squeezed probe field. In general, we find that
a probe field with an anti-squeezing angle of νasq = 0 (corresponding to phase-squeezed light)
is optimal in both cases, and presents clear improvements over the coherent probe field: For
the conditional phonon number, the overall minimal phonon number remains the same, but is
achievable at a signicantly reduced coupling strength. The conditional minimum mechanical
variance is significantly reduced overall across all mechanical frequencies, thereby making me-
chanical squeezing possible at lower coupling strengths than with a coherent probe. We have
not calculated the effect on the unconditional state including feedback, but we expect similar
conclusions to hold in this case.



Chapter 5

Coherent feedback cooling

5.1 Introduction

In this chapter we turn to a markedly different feedback scheme from the previous chapters.
Instead of measuring the output field from the cavity and then using the measurement outcome
as a basis for a feedback beam, we feed the output field directly back into the cavity. In other
words, we use the output beam as the feedback beam. This setup has the advantage of being
slightly simpler, as it bypasses the need for measurement equipment, and it also eliminates detec-
tion inefficiencies as a source of loss. It may also have an additional advantage of not collapsing
the output field into a single number from the measurement. This means that the full quantum
information is retained in the feedback beam, which is potentially useful.

On the other hand, in order for the feedback scheme to work, some manipulation of the output
beam is still necessary before it will work suitably as a feedback force. While for a measurement-
based feedback scheme, this manipulation can be done using digital FPGA filters, our current
physical tools for a direct feedback scheme are less sophisticated. In this chapter, the manipu-
lation of the output field that we propose is a delay line along with a rotation and displacement
of the field. The delay time is set to a quarter mechanical period, such that the position in-
formation in the output field will be converted to negative momentum information. Through
The rotation and displacement of the output field, this information is converted to a negative
feedback force in the momentum quadrature. The delay line is implemented simply by running
the output through a long line of free space or fiber, and the displacement operation may easily
be carried out by mixing the output with a local oscillator in a highly transmissive beamsplitter,
similarly to what is done in unbalanced homodyne detection. The rotation operation is essen-
tially a phase shift and can in principle be implemented with a second cavity, but we will show
that this operation is not strictly necessary for the scheme to work. The setup is sketched in
Fig. 5.1.

The chapter is structured as follows: In Section 5.2, we establish the quantum Langevin equa-
tions used to analyze the feedback scheme, and we the equations are linearised. In Section 5.3,
we solve the linearised quantum Langevin equations and derive expressions of the mechanical
power spectral density and phonon number. In Section 5.4, we discuss some numerical results
in the form of phonon numbers, including comparisons with the results in the previous chapters
and discussions on which experimental parameter values are the most favourable. The chapter

51
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is concluded in Section 5.5.

5.2 The theoretical model

D̂h(δ)

τ

H

↔

V

ĥin ĥout
̂vin

̂vout

ϕ
ĥ, ̂v

b̂

Figure 5.1: Sketch of the setup: A mechanical element represented by its annihilation operator b̂
is interacting with horizontally and vertically polarized cavity fields with annihilation opeartors
ĥ and v̂, respectively. the cavity is driven by an external horizontally polarized input field ĥin.
The horizontal output field ĥout is sent through a phase shift by an angle ϕ, a displacement
operation D̂h(δ), a delay line of temporal length τ , and finally a half-wave plate converts the
light to vertically polarized light. The resulting field v̂in is then fed back into the cavity. The
vertical output field v̂out is not used in the analysis but is included in the sketch for the sake of
completeness.

5.2.1 Langevin equations: Empty cavity

In order to fully appreciate the theoretical model of the direct feedback scheme, we consider
first the setup in Fig. 5.1 except for an empty cavity without the mechanical element. We are
dealing with horizontally and a vertically polarized cavity fields with annihilation operators ĥ(t),
and v̂(t), respectively. The cavity fields couple in and out of the cavity with rates κh and κv.

ĥin(t) represents the horizontal input field, with commutation relations [ĥin(t), ĥin(t
′)] = 0 and

[ĥin(t), ĥ
†
in(t

′)] = δ(t− t′).

The input-output relations give us ĥout(t) = −ĥin(t) +
√
κhh(t). On this output field, we

apply a fixed rotation in phase space by the angle ϕ, followed by a displacement by the complex
amplitude δ, followed by a delay line with a fixed delay of duration τ . In total, this gives us the
transformation

ĥout(t) → e−iϕĥout(t− τ) + δ. (5.2.1)

For notational convenience, we will introduce the time delay superoperator Tt′ defined by
Tt′Â(t) := Â(t − t′), for any time-dependent operator Â and delay time t′. Using this nota-

tion, the above transformation can be written as ĥout(t) → e−iϕTτ ĥout(t) + δ.
Finally, the output field is converted to a vertical polarization by sending it through a half-

wave plate, and it is then fed into the cavity. This means that the vertical mode inside the cavity
interacts with a vertical input field operator given by v̂in(t) = e−iϕTτ ĥout(t) + δ.

With all of these considerations, the Langevin equations of the two cavity modes are:
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˙̂
h = −κh

2
ĥ+

√
κhĥin (5.2.2)

˙̂v = −κv
2
ĥ+

√
κvδ +

√
κve

−iϕTτ (−ĥin +
√
κhĥ) (5.2.3)

Note that we have dropped the time argument in the above equations, e.g. we write ĥ instead
of ĥ(t). This notation will be used repeatedly throughout this chapter.

It can be shown that the expected commutation relations of h(t) and v(t) are conserved

over time. This is most straightforwardly done by showing that [ĥout(t), ĥout(t
′)] = δ(t − t′).

The model may be extended to include optical loss by performing the substitution
√
κhhin(t) →√

κinh hin(t) +
√
κlossh hloss(t), with κinh + κlossh = κh. Note that this modifies the input-output

relation to ĥout(t) = −ĥin(t) +
√
κhh(t) → −ĥin(t) +

√
κinh ĥ(t) [2].

5.2.2 Langevin equations: Cavity w. optomechanical coupling

We now insert a mechanical element into the cavity described in the previous section, with
annihilation operator b̂. Both the horizontally and the vertically polarized fields couple to the
mechanics with vacuum coupling rates sh and sv, respectively. The system Hamiltonian (with
driving terms absorbed into input operators) is now given by:

Ĥ = ℏΩmb̂
†b̂+ ℏ∆hĥ

†ĥ+ ℏshĥ†ĥ(b̂+ b̂†)

+ ℏ∆v v̂
†v̂ + ℏsv v̂†v̂(b̂+ b̂†),

(5.2.4)

where ∆h and ∆v are the detunings of the cavity fields with respect to the laser fequency. We
model mechanical losses by letting the mechanical oscillator interact with a thermal environment
in a Markovian non-rotating wave approximation with damping rate Γm and thermal phonon
number n̄. The system thus evolves according to the following quantum Langevin equations:

˙̂
Q = ΩmP̂ (5.2.5)

˙̂
P = −ΩmQ̂−

√
2shĥ

†ĥ−
√
2shv̂

†v̂ − ΓmP̂ +
√
2ΓmP̂in (5.2.6)

˙̂
h = −i∆hĥ− i

√
2shQ̂ĥ− κh

2
ĥ+

√
κinh ĥin +

√
κlossh ĥloss (5.2.7)

˙̂v = −i∆v v̂ − i
√
2svQ̂v̂ −

κh
2
v̂ +

√
κinv e

−iϕTτ

(
ĥin −

√
κinh ĥ

)
+

√
κinv δ +

√
κlossh v̂loss (5.2.8)

5.2.3 Linearising the model

Having established the quantum Langevin equations of the full model, we move on to linearise
the equations to simplify the calculations. We will restrict the analysis to steady-state dynamics,
as this is sufficient for the purpose of mechanical cooling.
The first step in the linearisation procedure is to consider the equations for the expectation
values ⟨Q⟩, ⟨P ⟩, ⟨h⟩, ⟨v⟩:
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˙⟨Q⟩ = Ωm ⟨P ⟩ (5.2.9)

˙⟨P ⟩ = −Ωm ⟨Q⟩ −
√
2sh ⟨h†h⟩ −

√
2sv ⟨v†v⟩ − Γm ⟨P ⟩ (5.2.10)

˙⟨h⟩ = −i∆h ⟨h⟩ − i
√
2sh ⟨Qh⟩ −

κh
2

⟨h⟩+
√
κinh ⟨hin⟩ (5.2.11)

˙⟨v⟩ = −i∆v ⟨v⟩ − i
√
2sv ⟨Qv⟩ −

κh
2

⟨v⟩+
√
κinv e

−iϕ

(
⟨Tτhin⟩ −

√
κinh ⟨Tτh⟩

)
+

√
κinv δ (5.2.12)

We have used ⟨Pin⟩ = ⟨hloss⟩ = ⟨vloss⟩ = 0. We linearize the dynamics by reducing second order
moments in the above equation. For the second order moment ⟨Qh⟩, we have that

⟨Qh⟩ = ⟨(⟨Q⟩+ δQ)(⟨h⟩+ δh)⟩
= ⟨Q⟩ ⟨h⟩+ ⟨Q⟩ ⟨δh⟩+ ⟨δQ⟩ ⟨h⟩+ ⟨δQδh⟩
= ⟨Q⟩ ⟨h⟩+ ⟨δQδh⟩ ,

(5.2.13)

where we have introduced the notation δÂ := Â − ⟨A⟩ for any operator Â. In the differential
equations for the first moments, we now perform the approximation

⟨Qh⟩ ≈ ⟨Q⟩ ⟨h⟩ , (5.2.14)

under the assumption that the term ⟨δQδh⟩ will have a negligible effect on the dynamics. This
is known as the linearisation approximation, and is broadly valid when |⟨h⟩| ≫ 1. We perform
similar approximations of the terms ⟨h†h⟩, ⟨v†v⟩, and ⟨Qv⟩.
We assume that constant, steady-state solutions to Eq. (5.2.9) exists. Such solutions will satisfy

the relations ˙⟨Q⟩ = ˙⟨P ⟩ = ˙⟨h⟩ = ˙⟨v⟩ = 0, and also ⟨Tτhin⟩ = ⟨hin⟩ and ⟨Tτh⟩ = ⟨h⟩. This gives
us the steady-state equations

0 = Ωm ⟨P ⟩ (5.2.15)

0 = −Ωm ⟨Q⟩ − Γm ⟨P ⟩ −
√
2sh|⟨h⟩|2 −

√
2sv|⟨v⟩|2 (5.2.16)

0 = −i∆eff
h ⟨h⟩ − κh

2
⟨h⟩+

√
κinh ⟨hin⟩ (5.2.17)

0 = −i∆eff
v ⟨v⟩ − κh

2
⟨v⟩+

√
κinv e

−iϕ

[
⟨hin⟩ −

√
κinh ⟨h⟩

]
+
√
κinv δ, (5.2.18)

where we have introduced the definitions

∆eff
h := ∆h +

√
2sh ⟨Q⟩ (5.2.19)

∆eff
v := ∆v +

√
2sv ⟨Q⟩ . (5.2.20)

(5.2.21)

Furthermore, for this coherent feedback scheme, we wish to drive the two input beams on
resonance, thereby setting ∆eff

h = ∆eff
v = 0. In this case, the steady-state solutions are:
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⟨h⟩ =
2
√
κinh

κh
⟨hin⟩ (5.2.22)

⟨v⟩ =
2
√
κinv
κv

[
δ + e−iϕ

(
1− 2κinh

κh

)
⟨hin⟩

]
(5.2.23)

⟨Q⟩ =
√
2

Ωm

(
sh|⟨h⟩|2 + sv|⟨v⟩|2

)
(5.2.24)

⟨P ⟩ = 0 (5.2.25)

We also introduce the effective coupling strengths:

gh := sh ⟨h⟩ (5.2.26)

gv := sv ⟨v⟩ (5.2.27)

(5.2.28)

We furthermore choose the drive strength ⟨hin⟩ to be a real number, in which case ⟨h⟩ and thus
gh will be real as well. On the other hand, we will allow gv to be complex and write it as

gv = |gv|eix, (5.2.29)

where x = arg(gv). Note that the value of gv is fully controlled by the displacement term δ.
We are now in a position to give equations for the fluctuation terms. In a similar fashion to

earlier, we make linearisation approximations on second order fluctuation terms:

δ(Q̂ĥ) := Q̂ĥ− ⟨Qh⟩

= δQ̂ ⟨h⟩+ ⟨Q⟩ δĥ+ δQ̂δĥ− ⟨δQδh⟩

≈ δQ̂ ⟨h⟩+ ⟨Q⟩ δĥ

(5.2.30)

and similar for δ(Q̂v̂), δ(ĥ†ĥ), and δ(v̂†v̂). This finally gives us the following set of equations:

˙
δQ̂ = ΩmδP̂ (5.2.31)

˙
δP̂ = −ΩmδQ̂− ΓmδP̂ −

√
2gh(δĥ+ δĥ†)−

√
2|gv|(e−ixδv̂ + eixδv̂†) +

√
2ΓmP̂in (5.2.32)

˙
δĥ = −i

√
2ghδQ̂− κh

2
δĥ+

√
κinh δĥin +

√
κlossh δĥloss (5.2.33)

˙δv̂ = −i
√
2gvδQ− κv

2
δv̂ +

√
κlossv δv̂loss +

√
κinv e

−iϕTτ (δĥin −
√
κinh δĥ) (5.2.34)

The linearisation of the model is now complete. The set of equations above are referred to
as the linearised quantum Langevin equations.

5.3 Solving the linearised Langevin equations

We will now solve for the fluctuation terms δQ̂, δP̂ , δĥ, δv̂, which we from here on in this section
will denote simply as Q̂, P̂ , etc. We also work with dimensionless parameters by redefining all



CHAPTER 5. COHERENT FEEDBACK COOLING 56

rates to be given in units of Ωm. For example, we replace Ωm by 1 and Γm by Γ̃m = Γm/Ωm,

and subsequently drop the tilde. Since the input field operators ĥin, ĥloss and vloss have units√
Hz, these are normalized by diving by

√
Ωm. We also introduce quadrature operators of the

optical fields. With a ∈ {h, v} below, we define:

X̂a =
1√
2
(â+ â†), Ŷa =

1

i
√
2
(â− â†) (5.3.1)

X̂ in
a =

1√
2
(âin + â†in), Ŷ in

a =
1

i
√
2
(âin − â†loss) (5.3.2)

X̂ in
a =

1√
2
(âloss + â†loss), Ŷ loss

a =
1

i
√
2
(âloss − â†loss) (5.3.3)

We Fourier transform with the convention f(ω) =
∫∞
−∞ f(t)eiωtdt the equations of the fluc-

tuation terms to get the following:

−iωX̂(ω) = A(ω)X̂(ω) + b̂(ω) (5.3.4)

with

X̂(ω) =



Q̂(ω)

P̂ (ω)

X̂h(ω)

Ŷh(ω)

X̂v(ω)

Ŷv(ω)


, b̂(ω) =



0√
2ΓmP̂in(ω)√

κinh X̂
in
h (ω) +

√
κlossh X̂ loss

h (ω)√
κinh Ŷ

in
h (ω) +

√
κlossh Ŷ loss

h (ω)√
κlossv X̂ loss

v (ω) +
√
κinv e

iτω(X̂ in
h (ω) cos(ϕ)) + Ŷ in

h (ω) sin(ϕ))√
κlossv Ŷ loss

v (ω) +
√
κinv e

iτω(−X̂ in
h (ω) sin(ϕ) + Ŷ in

h (ω) cos(ϕ))


(5.3.5)

A(ω) =



0 1 0 0 0 0
−1 −Γm −2gh 0 −2|gv| cos(x) −2|gv| sin(x)
0 0 −κh

2 0 0 0
−2gh 0 0 −κh

2 0 0

2|gv| sin(x) 0 −
√
κinh κ

in
v cos(ϕ)eiτω −

√
κinh κ

in
v sin(ϕ)eiτω −κv

2 0

−2|gv| cos(x) 0
√
κinh κ

in
v sin(ϕ)eiτω −

√
κinh κ

in
v cos(ϕ)eiτω 0 −κv

2


(5.3.6)

The solution is X̂(ω) = −(A(ω) + iωI)−1b̂(ω), where I denotes the identity matrix. In
particular, we find that
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Q̂(ω) = χ(ω)ξ̂(ω)



−
√
2Γm(κh/2− iω)(κv/2− iω)

gh

√
κinh (κv − 2iω) + |gv|

√
κinv e

iτω(κh − 2κinh − 2iω) cos(x+ ϕ)

|gv|
√
κinv e

iτω(κh − 2κinh − 2iω)) sin(x+ ϕ)

gh

√
κlossh (κv − 2iω)− 2|gv|eiτω

√
κinh κ

loss
h κinv cos(x+ ϕ)

−2|gv|eiτω
√
κinh κ

loss
h κinv sin(x+ ϕ)

|gv|
√
κlossv (κh − 2iω) cos(x)

|gv|
√
κlossv (κh − 2iω) sin(x)


︸ ︷︷ ︸

=:T(ω)

, (5.3.7)

with

ξ̂(ω) :=
[
P̂in(ω) X̂ in

h (ω) Ŷ in
h (ω) X̂ loss

h (ω) Ŷ loss
h (ω) X̂ loss

v (ω) Ŷ loss
v (ω)

]
, (5.3.8)

and

[χ(ω)]−1 :=
(
iΓmω + ω2 − 1

) (κh
2

− iω
)(κv

2
− iω

)
− 4gh|gv|

√
κinh κ

in
v e

iτω sin(x+ ϕ). (5.3.9)

The stability of the system is determined by the poles of the system susceptibility function
χ(ω). Namely, in order for the system to be asymptotically stable, all poles, i.e. all ωp such that
[χ(ωp)]

−1 = 0 must satisfy the criterion Im(ωp) < 0. 1

The elements of the input noise vector ξ̂(ω) are delta-correlated: For a mechanical thermal
environment with average phonon number n̄ and vaccuum or coherent input fields, they satisfy
the following relations [2]:

⟨[ξ(ω)]T ξ(ω′)⟩ =



n̄+ 1/2 0 0 0 0 0 0
0 1/2 i/2 0 0 0 0
0 −i/2 1/2 0 0 0 0
0 0 0 1/2 i/2 0 0
0 0 0 −i/2 1/2 0 0
0 0 0 0 0 1/2 i/2
0 0 0 0 0 −i/2 1/2


︸ ︷︷ ︸

=:Mξ

2πδ(ω + ω′) (5.3.10)

From Eq. (5.3.7), and the above relations, we find the power spectral density

SQQ(ω) =

∫ ∞

−∞
⟨Q(t)Q(0)⟩ eiωtdt =

1

2π

∫ ∞

−∞
⟨Q(ω)Q(ω′)⟩ dω′

= χ(ω)χ(−ω)[T(ω)]TMξT(−ω)
(5.3.11)

1Traditionally, the stability criterion is formulated in terms of the Laplace transform of the transfer function:
A linear, causal, time-invariant input X(t) and output Y (t) =

∫∞
−∞ h(τ)X(t−τ)dτ is defined to be asymptotically

(or BIBO) stable when every bounded input X(t) gives rise to a bounded output Y (t). This is the case if and only
if the Laplace transform Lh(s) =

∫∞
0 h(t)e−stdt of h(t) only has poles sp s.t. Re(sp) < 0 [68]. Note that since h is

causal, i.e. h(t) = 0 for t < 0, the lower bound of the integral can be extended to −∞ instead of 0. We therefore
have that its Fourier transform is related to the Laplace transform by Fh(ω) =

∫∞
−∞ h(t)eiωtdt = Lh(−iω).

Hence the stability condition Im(ωp) < 0 for all poles ωp of Fh.
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The full expression of SQQ(ω) is fairly long and wont be written out in full here; it may instead
be found in the appendix in Section 5.6. It is however important to point out that one observes
that the angles x and ϕ appear only as the sum x+ ϕ in the expression of SQQ(ω). This means
that it is not necessary to do both a displacement and a rotation of the horizontal output field
before it is fed back into the cavity. As we will argue at the end of this section and later show
numerically, it is generally favourable to set x+ ϕ = −π/2, and this is likely most easily accom-
plished experimentally by not doing a rotation, thereby setting ϕ = 0 and then choosing the
displacement δ such that x = −π/2. On the other hand, if ϕ can be varied, it may be favourable
to optimize x and ϕ such as to maximize the vertical coupling strength gv given by eqs. (5.2.23)
and (5.2.27). We will however not explore this further.

Having obtained an expression of SQQ(ω), we are now in a position to find the steady-state
mechanical phonon number. From the equation −iωQ(ω) = P (ω), one finds that the momentum
power spectral density is SPP (ω) = ω2SQQ(ω). From this, we find the steady-state mechanical
phonon number by performing the inverse Fourier transforms of the power spectral densities:

n =
1

2
(⟨Q2⟩+ ⟨P 2⟩)− 1

2

=
1

4π

∫ ∞

−∞
(1 + ω2)SQQ(ω)dω − 1

2

(5.3.12)

For a system with time delays such as in our case, the above integral is difficult if not im-
possible to evaluate analytically. It can however be evaluated numerically.

We conclude this section by giving some intuition for why it is favourable to set x+ϕ = −π/2 in
most cases. The main reason is that it results in the negative feedback force in the momentum
quadrature that we want, which we will argue in the following. We will for simplicity assume
that ϕ = 0 as well as the bad cavity limit κh ≫ 1 (recall that we use normalized units). We then
have that

˙̂
Yh = −2ghQ̂− κh

2
Ŷh +

√
κinh Ŷ

in
h . (5.3.13)

In an adiabatic approximation, we then find that

Ŷh(t) ≃ −4gh
κh

Q(t) +
2
√
κinh

κh
Ŷ in
h (t). (5.3.14)

Consider the evolution of the position quadrature Q̂(t) after the period τ = π/2, a quarter
mechanical period. If we consider only the harmonic oscillations and neglect damping and
optomechanical coupling, we have that Q(t− τ) = Q(t− π/2) ≃ P (t). Thus,

Ŷh(t− τ) ≃ 4gh
κh

P̂ (t) + (noise terms), (5.3.15)

where ’noise terms’ encompasses everything that is not directly proportional to P (t) or Q(t) or
is irrelevant in the short term. We will keep accumulating irrelevant terms into this expression
as this derivation continues. When ϕ = 0, the Ŷv(t) quadrature carries the information about
Ŷh(t− τ), while the X̂v quadrature does not. We have
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˙̂
Yv(t) = −2|gv| cos(x)Q̂(t)−

√
κinh κ

in
v Ŷh(t−τ)−

κv
2
Ŷv(t)+

√
κlossv Ŷ loss

v (t)+
√
κinv Ŷ

in
h (t−τ) (5.3.16)

Again, using an adiabatic approximation and substituting the approximate expression for Yh(t−
τ), we find that

Ŷv(t) ≃ −4|gv| cos(x)
κv

Q̂(t)−
8
√
κinh κ

in
v gh

κhκv
P̂ (t) + (noise terms). (5.3.17)

We are finally in a position to evaluate the feedback force F̂fb(t) on the momentum, namely

F̂fb(t) = −2|gv|
(
cos(x)X̂v(t) + sin(x)Ŷv(t)

)
≃ −2|gv| cos(x)X̂v(t) +

8|gv|2 cos(x) sin(x)
κv

Q̂(t) +
16

√
κinh κ

in
v gh|gv| sin(x)
κhκv

P̂ (t) + (noise terms)

(5.3.18)

In order for Ffb to provide a negative feedback force, the coefficient in front of P (t) must be
negative and preferably as large as possible. It is clear that x = −π/2 achieves this goal, while
also eliminating other unwanted contributions to the feedback force.

5.4 Numerical results

In this section, we discuss the behavior of the phonon number by numerically evaluating the
integral in Eq. (5.3.12). This is done in Mathematica using the built-in function NIntegrate.
Note that as SQQ(ω) is sharply peaked at the points ω/Ωm ∈ {−1, 1}, care must be taken to
make sure that the numerical algorithm’s integration mesh is fine enough around these point in
order to get a trustworthy value. Throughout this section, we will keep the following parameters
constant unless explicitly stated otherwise:

Ωm = 106 Hz, Qm = 108, T = 300 K, n̄ = {exp[ℏΩm/(kBT )]− 1}−1
= 3.93 · 107,

κh = κv = κinh = κinv = 100Ωm, κlossh = κlossv = 0,

gh = 10−2Ωm, |gv| = 10−2Ωm,

x+ ϕ = −π
2
, τ =

π

2Ωm

(5.4.1)

The parameters are chosen so as to compare with the performance of the measurement-based
feedback schemes discussed in earlier chapters. Notice that in this section, we no longer work
with dimensionless parameters (unless explicitly stated so).
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Figure 5.2: Plot of [χ(ω)]−1 in the complex plane. The colors denote the complex phase of
[χ(ω)]−1 according to the scale on the right. Since [χ(ω)]−1 is a holomorphic function, zeros
of [χ(ω)]−1 are identified as points where any circle drawn around them hits all colors on the
scale. The white arrows show the location of some of these points. The white ellipses next to
the arrows indicate that the zeros extends infinitely in both directions. The white horizontal
line indicate Im(ω) = 0, below which all zeros must lie in order for the system to be stable.
Parameters used for this plot are given in Eq. (5.4.1).

Until now, we have not considered for what parameters the system is stable. As previously
stated, the system is stable when all zeros of [χ(ω)]−1 have negative imaginary parts. In Fig. 5.2,
[χ(ω)]−1 is plotted in a section of complex ω-space. The figure shows that for this set of pa-
rameters, all zeros satisfy Im(ω) < 0, indicating that the system is stable. Note that the two
roots close to the origin are numerically found to be at ω±/Ωm = ±1− 8.00 · 10−6i. There are
seemingly infinitely many roots below these two points, as indicated in the figure, which is to be
expected for a time-delay system [68]. While we have not been able to prove that none of these
roots ever cross the Im(ω) = 0 line, we generally observe that the roots decrease downwards as
|Re(ω)| increases. We also have not observed any other roots above the Im(ω) = 0 line for these
parameters. Before we move on, we remark that if x+ ϕ ∈ [0, π], we observe that the two roots
near the origin have positive real part, rendering the system unstable. We also observe that if
either gh or gv is increased, the ’pillars’ and their roots at the bottom of the plot move upwards
near the Im(ω) = 0 line. We generally find that at a certain threshold value of gh or gv, a root
with Re(ω) = 0 will be the first to cross the line, rendering the system unstable. In other words,
the system becomes unstable when the coupling strengths are sufficiently high. This point may
be identified exactly by solving the equation

[χ(0)]−1 = −κhκv
2

− 4gh|gv|
√
κinh κ

in
v sin(x+ ϕ) = 0 (5.4.2)

with respect to gh or |gv|. Note that the parameters are normalized in units of Ωm in the
equation above.
To conclude the stability discussion, we have found that roots that violate the stability condition
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typically appear first near ω = ±Ωm or ω = 0. In other words, looking for roots near these three
values of ω should be a sufficient test of stability in most cases.
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nonRWA , θ = θopt

Figure 5.3: Mechanical phonon number n vs gh for a range of values of |gv|/gh. The dashed
curve is the unconditional phonon number vs g using the measurement-based feedback scheme
described in Chapter 3 using the nonRWA model with θ = θopt. the Each of the solid curves
ends to the right just before their point of instability. Parameters used for this plot are given in
Eq. (5.4.1) except for gh and |gv|.

We now turn our attention towards the dependence of n on the coupling strengths gh and
|gv|. Although |gv| may be controlled somewhat independently of gh by tuning the displacement
term δ (see Eq. (5.2.23)), we still expect these two parameters to be roughly proportional in
an experimental setting. We therefore plot n versus gh for a selection of values of |gv|/gh in
Fig. 5.3. For comparison, Fig. 5.3 also includes the unconditional phonon number vs g using
the measurement-based feedback scheme described in Chapter 3 using the nonRWA model with
θ = θopt. One observes from the plot that, as usual, n decreases versus gh until it reaches
a minimum, after which it increases again until an instability point is reached shortly after.
One also observes from the figure that n decreases with |gv|/gh, but this parameter reaches
an optimal value as well. One may think of the parameter |gv|/gh as the feedback strength,
as it characterizes the strength of the feedback force from the vertically polarized field relative
to the probe of the horizontally polarized field. Thus, in some sense, the observed behavior is
contrasting the measurement-based scheme using optimal control, where one can increase the
feedback strength and/or the coupling strength arbitrarily without reaching instabilities.
From numerical optimization, the minimal value of n with respect to gh and |gv| is n = 1.55 at
gh = |gv| = 1.78Ωm. The fact that gh = |gv| is optimal is not a coincidence, but may be shown
analytically from the expression of SQQ(ω) for the specific choice of parameters κh = κv = κinh =
κinv , and κlossh = κlossv = 0. For comparison, the measurement-based model reaches a minimum
of n = 0.676 at g/Ωm = 6.19, a reduction of the optimal n by a little over 50%.

From Fig. 5.3, it is evident that, although it comes close, the coherent feedback cooling scheme
is not as effective as the measurement-based cooling scheme. On one hand, it is disappointing
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that carrying coherent information about the system in the feedback beam does not provide an
advantage compared to carrying measurement information. On the other hand, in some sense,
it is not surprising that the performance of the coherent scheme is worse since as mentioned
in the introduction to this chapter, the ’filtering’ of the probe beam is not as sophisticated as
with the measurement-based scheme. All this being said, it must be mentioned that we have
not explored the effect of introducing optical losses into the models (e.g. setting κinh < κh and
κlossh > 0). It might be that the coherent feedback scheme outperforms the measurement-based
scheme in this case.

gh=gv=10-2Ωm

gh=gv=1.78Ωm

-π -
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4
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π
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105

108
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Figure 5.4: Mechanical phonon number n vs x+ϕ for the coupling strengths gh = |gv| = 10−2Ωm

and gh = |gv| = 1.78Ωm, the latter of which is the optimal value of the pair (gh, |gv|) for this
set of parameters. The black dots indicate minimal values of n w.r.t x + ϕ, which are located
at (x + ϕ, n) = (−1.57, 2.46 · 104) and (x + ϕ, n) = (−1.53, 1.55) for gh = |gv| = 10−2Ωm and
1.78Ωm, respectively. Parameters used for this plot are given in Eq. (5.4.1) except for gh, gv,
and x+ ϕ.
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Figure 5.5: Mechanical phonon number n vs τ for the coupling strengths gh = |gv| = 10−2Ωm

and gh = |gv| = 1.78Ωm, the latter of which is the optimal value of the pair (gh, |gv|) for this set
of parameters. Each of the solid curves ends to the right just before their point of instability.
The black dots indicate minimal values of n w.r.t τ , which are located at (τ, n) = (1.57, 2.46·104)
and (τ, n) = (1.42, 1.51) for gh = |gv| = 10−2Ωm and 1.78Ωm, respectively. Parameters used for
this plot are given in Eq. (5.4.1) except for gh, gv, and τ .

Finally, we consider whether it is worth optimizing the parameters x, the argument of gv and
τ , the delay time.
Fig. 5.4 shows n versus x + ϕ for a selection of coupling strengths. For gh = |gv| = 10−2Ωm,
x + ϕ = −π/2 is exactly the optimal value for minimizing n, while for gh = |gv| = 1.78Ωm,
x+ϕ = −1.53 is optimal, slightly to the left - although the minimal phonon number is unchanged
at 1.55 within 3 significant digits from x+ ϕ = −π/2. In summary, It is clear from Fig. 5.4 that
n is not very sensitive to x+ ϕ.

Fig. 5.5 shows n vs τ for the same values of gh = |gv|. Here, optimizing τ does yield a
small improvement at gh = |gv| = 1.78Ωm, bringing n down by 2.6% to 1.51 by adjusting τ to
1.42 · Ω−1

m . It is not entirely clear why adjusting τ away from π/(2Ωm) improves the phonon
number, but we ascribe the effect to a modified effective mechanical frequency at strong feedback.
We finally remark that for gh = |gv| = 1.78Ωm, minimizing n w.r.t x+ ϕ and τ simultaneously
yields n = 1.49 at x+ ϕ = −1.33, τ = 1.32/Ωm, a 4% improvement.

In summary, optimizing these parameters only leads to very insignificant improvements.
On the positive side, the results also show that the experiment are not too sensitive to these
parameters.

5.5 Conclusion

We have analysed a model of all-optical coherent feedback cooling in an optomechanical system.
We have derived the appropriate equations of motion in a linearized regime, and provided an-
alytical expressions for the steady-state solution to the system in Fourier space and the power
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spectral density. We have investigated the model’s ability to cool the mechanical phonon num-
ber. Through numerical analysis, we have shown that the model comes close to, but does not
outperform the measurement-based feedback scheme described in earlier chapters, at least when
all optical sources of noise are eliminated (but the quantum noise). We expect that this model
may still be useful, in particular because it may pose a simpler way to perform feedback exper-
imentally.

5.6 Appendix: Analytical expression of SQQ(ω)

In this section, the full analytical expression of the power spectral density SQQ(ω) is written
out. From Eq. (5.3.11), we find that:

SQQ(ω) =χ(ω)χ(−ω)

[
1
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(5.6.1)

where the definition of the susceptibility χ(ω) is given in Eq. (5.3.9), but repeated here for the
sake of convenience:

[χ(ω)]−1 =
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) (κh
2

− iω
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2
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− 4gh|gv|

√
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v e
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Chapter 6

Conclusion

In this chapter, we review the results presented in this dissertation.
In Chapter 3, we investigated an optomechanical measurement-based conditional estimation-

based optimal control strategy for mechanical cooling and squeezing, assuming either a rotating-
wave approximation (RWA) or non-rotating-wave approximation (nonRWA) of the mechanical
interaction with its thermal environment. We showed parameter regimes in which cooling and
squeezing is possible, and where the RWA disagrees with the RWA model. We also compared
the model to the model in [45], in which an adiabatic approximation is assumed, and showed
where this approximation breaks down. We also showed the important difference between the
conditional and the unconditional phonon numbers and squeezing levels, and emphasized why the
conditional and unconditional states cannot in general coincide in an optomechanical experiment
using optimal feedback control. Finally, we discussed the effect of optimizing the homodyne
measurement angle θ.

In Chapter 4, we derived an extension of the model in Chapter 3 to allow for squeezed probe
fields, and used this model to calculate how this changes the conditional phonon number and
conditional squeezing values. We found that improvements in both the phonon numbers and
squeezing values are found when using phase-squeezed light in the probe field and discussed the
reasons why phase squeezing is optimal in this case.

Finally, in Chapter 5, we investigated a model for so-called coherent feedback cooling, in
which the output field from the cavity is run through a delay line before being fed back directly
into the cavity, without any intermediate measurement. We discussed the points at which this
feedback system is stable, and calculated the obtainable phonon numbers for a selection of
parameters. We found that when the optomechanical coupling strengths in the model are tuned
appropriately, the performance of the scheme comes close to, but does not outperform the scheme
in Chapter 3, at least when optical losses are neglected. This is in general promising, as the this
latter experiment will most often be easier to carry out than that in Chapter 3, since one does
not need to worry about optimizing the feedback filter and measurement efficiencies.

In summary, we expect these results to be useful when designing optomechanical feedback
cooling experiments. They show to a certain extent which parameters are important and which
are not, and show which phonon numbers and squeezing levels one can expect under different
physical conditions and design constraints. This work thus helps paving the way for generating
interesting non-classical and non-Gaussian states in optomechanics, where the mechanical noise
needs to be reduced as much as possible.

65
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