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� A family of isotropic hierarchical
microstructures (Iso-HMs) are
designed, which realize isotropic
stiffness by synergistic deformations
of the members in two levels.

� Iso-HMs gain improved buckling
strength, which can reach a hundred
times higher than their single-level
counterparts.

� The designed Iso-HMs are 3D printed
and tested, where the size difference
between the specimens and the
minimal features reaches over 400:1.
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a b s t r a c t

Elastic stiffness is one of the most fundamental properties of materials. Design of the microstructures
with isotropic stiffness has been an attractive area in the field of metamaterials for over three decades.
Despite many classes of isotropic microstructures, exploring novel isotropic microstructures based on
innovative mechanics principles has attracted great and continuing interests. This paper presents a novel
family of isotropic hierarchical microstructures (Iso-HMs). These hierarchical microstructures are mod-
eled by replacing the solid parts of prescribed single-level microstructures with arrayed microstructures
in the second level, where the key task is to identify the correct geometries of the second-level
microstructures by conducting parameter space exploring. These Iso-HMs realize isotropic stiffness based
on synergistic deformations of the members in the two levels, which is essentially different from existing
isotropic microstructures replying on deformations of the members in a single level. Two categories of
Iso-HMs with rectangular holes and Vidergauze-type struts are designed. Considering the large size dif-
ference in the designed Iso-HMs, additive manufacturing becomes a unique technique for manufacturing
the designed Iso-HMs, where the size ratio between the 3D-printed specimens and the minimal features
reaches 400:1. Both numerical and experimental results validate the isotropic stiffness of the designed
Iso-HMs. Furthermore, the results of a microstructural instability analysis show that the designed Iso-
HMs can gain improved buckling strength up to a hundred times higher than their single-level counter-
parts. The hierarchical design provides a new way to identify novel functional microstructures for appli-
cations, and the hierarchical configurations expand the space of the already-known families of isotropic
microstructures.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Microstructured metamaterials gain extraordinary properties
through a rational design of microstructure geometries [1–3].
Besides other physical properties, mechanical metamaterials have
been designed to attain unusual mechanical properties, such as
negative Poisson’s ratios [4,5], superior stiffness/strength-to-
weight [6], penta-modes [7,8], compression-twisting properties
[9,10]. Among all the mechanical properties, the effective stiffness
is regarded as one of the most crucial and fundamental microstruc-
tural properties desired by potential applications, since it not only
determines the overall deformation responses but also affects
structural failure strength and many other properties. Particularly,
the microstructures with isotropic stiffness are much preferred in
engineering, because they have equal stiffness along all directions
and are therefore less sensitive to loading uncertainty than aniso-
tropic microstructures. Design of novel isotropic microstructures
has attracted great and continuing interests from researchers.

To date, many isotropic microstructures have been designed
based on mechanics principles. For instance, Wang and Sigmund
[11] designed a family of quasiperiodic isotropic microstructures,
the geometries of which meet n-fold (n � 5) rotational symmetries.
A rank microstructure was theoretically constructed by layering six
sets of members in a rotationally symmetric manner at six sepa-
rated length scales, but it cannot be practically manufactured
due to limitations from multiscale features [12]. Recently, Berger
et al. [13] designed a 3D microstructure by combining a simple
cubic microstructure and a body-centered cubic microstructure,
which realizes nearly-isotropic elastic stiffness by making full
use of the complementary variations of the orthotropic stiffness
of the two microstructures. Later, Tancogne-Dejean et al. [14]
developed a family of combined isotropic microstructures, which
synthesized two or three elementary cubic microstructures includ-
ing the simple cubic, body-centered cubic, and face-centered cubic
microstructures in right proportions. This design strategy was also
extended to combine shell-like and plate microstructures to
achieve stiffness isotropy [15,16]. Both the combined and rotation-
ally symmetric isotropic microstructures can be used for 3D truss
and plate microstructures, and they are in theory able to attain
the stiffness upper bounds for the Young’s, bulk, and shear moduli
[11,13,14,16].

Isotropic microstructures can also be designed by using numer-
ical methods. One way is to design parameters or shapes of specific
microstructures with fixed configurations. For instance, hollowed
struts were used instead of solid struts in elementary microstruc-
tures, where the interior and exterior radii of the struts were varied
to realize isotropic stiffness [17]. Ma et al. [18] designed isotropic
shell lattices with uniform thicknesses by solving a constrained
shape optimization problem. Soyarslan et al. [19] obtained isotro-
pic stiffness by tuning the parameters in the approximate repre-
sentation of minimal surfaces to vary shell shapes. Alternatively,
the structural topology optimization methodology is used to
design isotropic microstructures with extreme or desired effective
properties [20]. The isotropy is ensured either by imposing a con-
straint or by making use of structural symmetries [21,22]. For now,
topology optimization has been used to successfully design the iso-
tropic microstructures with maximal bulk or shear modulus
[23,24], maximal bulk and minimal shear modulus [25], penta-
mode/bi-mode modulus [8,26], negative Poisson’s ratios [5,27],
and compression-twisting behaviors [28].

It is noted that the above isotropic microstructures comprise
member features in a single level. Differently, hierarchical model-
ing opens another design dimension, where the hierarchical
microstructures (HMs) comprise geometric features in two levels
2

and the hierarchical members in the first level include arrayed
microstructures in the second level. In the HMs, the size of the
second-level members can be several orders lower than that of
the HM unit cell [29]. Moreover, the second-level microstructures
could either have similar geometries as the first-level configura-
tions [30] or include spatially-varying configurations. Compared
to the multiscale microstructures in which the microstructures in
the smaller length scale behave as a homogeneous material for
the members in the larger length scale [12], the hierarchical mem-
bers in HMs perform as structures. Additive manufacturing has
become a powerful tool for manufacturing lattice structures with
high resolutions and qualities [2,3,31–33]. Particularly, as the
HMs are usually intricate and consist of different levels of mem-
bers with a large size difference, their fabrication becomes chal-
lenging for conventional manufacturing technologies. In this
sense, additive manufacturing provides a unique technology for
manufacturing HMs in an integrated manner [34]. Many attempts
have been made for 3D printing HMs, whose feature sizes can span
over four to six length orders from tens of millimeters to several
nanometers [34–36].

HMs are able to gain many excellent properties that can be
hardly found in single-level microstructures (SMs). For instance,
various classes of auxetic HMs have been designed by achieving
the hierarchy either in each level of cells or in the whole
microstructures [37]. The HMs can have either honeycomb-like
geometries [38], re-entrant-type configurations [39] or rotating
units [40]. These auxetic HMs can gain enhanced mechanical char-
acteristics, including the high shear stiffness, fracture toughness
among others [40–43]. Furthermore, many other HMs have been
designed for realizing high resistance to brittle failure [44,45], high
strength [29,34,35], and superior energy absorption capabilities
[46]. These superior properties can be attributed to the collabora-
tive advantages of structures from two levels. The results from
topology optimization also validate that the optimal design with
the target of maximizing the buckling strength yields HM solutions
[47]. Even though many existing HMs, a systematic design of HMs
for pursuing isotropic stiffness has yet to be studied.

In this paper, a new type of isotropic microstructures is
obtained through a hierarchical design methodology, which is
called the isotropic hierarchical microstructures (Iso-HMs). The
key idea is to replace the solid parts of SMs with proper second-
level microstructures, in which the original SMs may be stiffness
anisotropic but the designed HMs have isotropic stiffness. Two
classes of SMs are considered, including the microstructures with
rectangular central holes and the Vidergauze-type microstructures.
A parameter-sweeping design process is performed to determine
the correct parameters of the employed second-level microstruc-
tures. The designed Iso-HMs are also 3D printed, where the size
ratio between the specimens and the minimal feature reaches
400:1. Both numerical and experimental results validate the
(nearly-)isotropic stiffness of the designed Iso-HMs with almost
equal uniaxial stiffness along various directions. Furthermore, a
microstructural instability analysis is carried out to investigate
the buckling characteristics of Iso-HMs. The results show that the
Iso-HMs are able to gain much higher buckling strength than their
counterpart SMs for both uniaxial and bi-axial compressive stress
loadings.

In the following, the modeling and design approaches of
Iso-HMs are illustrated in section 2. The numerical results of the
stiffness and buckling strength are presented and discussed in
section 3, and the testing results in experiments are presented in
section 4. Based on the design method and results, several
discussions are made in section 5. A brief conclusion is given in
the final section.
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2. Design methods

This study aims to design HMs with isotropic elastic stiffness,
and then examine their failure strength when buckling instability
is triggered. The Iso-HMs are designed based on the SMs which
originally have orthotropic stiffness. This section will illustrate
the modeling and design approach of Iso-HMs.

2.1. Modelling of HMs and mechanics principles

The HMs are modeled by replacing the solid parts of prescribed
SMs with arrayed second-level microstructures, as illustrated in
Fig. 1. For a given SM, an arrayed second-level microstructure is
employed for modeling HMs, where the size of the second-level
unit cell is much smaller than that of the SM cell (Fig. 1a). A Boo-
lean intersection is then conducted, where the overlapping
domains between the solid parts of the SM (i.e. the members of
the SM) and the second-level microstructure are reserved and
other parts are removed (Fig. 1b). The obtained microstructure is
regarded as an HM, where hierarchy arises in the sense that the
microstructure comprises hierarchical members which are com-
prised of arrayed struts in the second level, as shown in Fig. 1c.
The reserved domains are denoted by the second-level struts in
the below. Because the considered SMs have plane geometric sym-
metries (as seen from Fig. 3a and 3b), this intersection process is
firstly conducted in the top-right quarter domain of the unit cell
and then the quarter domain is mirrored twice with respect to
the � and y axes to obtain a full HM unit cell (Fig. 1c). Such a build-
ing process ensures a plane symmetry and periodicity of the
obtained HM cell. The relative density is defined as the volume
fraction of the reserved second-level struts in the HM unit cell,
which is denoted by q. Finally, the HM unit cell is repeated along
two periodic directions to generate the full HM material (Fig. 1d).

It is known that the effective stiffness of a microstructure is
determined by its deformations subjected to macroscopic stress/
strain loadings (see Eq. (A2) in Appendix A). Accordingly, the effec-
tive stiffness of the HM is determined by the co-deformations of
the members in two levels, which is essentially different from
SMs whose stiffness is determined by the co-deformations of the
members in a single level. In this way, the HMs can undergo richer
deformation modes than SMs by using various second-level
microstructures. An example is illustrated in Fig. 2. When a bi-
axial compressive stress is applied, the SM can undergo a unique
deformation mode. For comparison, various deformation modes
Fig. 1. Modeling process of an HM material. (a) A prescribed SM and a second-level m
through an intersection operation, with the reserved struts highlighted by color and the
domain, which comprises the hierarchical members that are formed by arrayed second-
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are triggered in the HMs which are highly affected by the orienta-
tions and widths of the second-level struts (Fig. 2a). On this basis,
these HMs provide various types of stiffness variations along dif-
ferent directions (Fig. 2b). In this way, it is possible to obtain
HMs with isotropic stiffness by identifying proper second-level
microstructures and determining correct strut orientations and
widths.
2.2. Considered SMs and second-level microstructures

In this study, two classes of 2D SMs are considered, as their
geometries shown in Fig. 3. The first class of SMs includes a rectan-
gular hole in the center of a square unit cell, where the hole size
along the y-axis is RH times of that along the x-axis (Fig. 3a). Their
effective stiffness are typically orthotropic since they possess plane
symmetries. The polar chart of one such SM is illustrated in Fig. 3a,
where EH(h) indicates the uniaxial stiffness along the direction
with an angle h to the x-axis, with h sweeping from 0� to 360�. Clo-
sely related to the SM geometries, the variation of EH(h) also meets
a plane symmetry, where two local maximal EH(h) are along the x-
and y-axes and one minimal EH(h) is lying in-between. The ratios
between the two maximal EH(h), the ratios between the minimal
and maximal EH(h), and the directions of the minimal EH(h) all rely
on the hole sizes. It has been demonstrated that this family of SMs
is capable of attaining optimal stiffness in theory for any single
stress loadings [48]. In the special case of RH = 1, the SMs include
square central holes and meet 1/8 geometric symmetries, therefore
becoming cubic materials. They have two equal maximal EH(h) and
the minimal EH(h) is lying along body diagonals. They are able to
attain the maximal bulk modulus in theory, but the corresponding
shear modulus is relatively small. It is noted that this class of SMs
cannot obtain isotropic stiffness for any hole size.

The other class of SMs is referred to the Vidergauze-type
microstructures. Therein, one unit cell is comprised of three sets
of equally-sized struts in triangular patterns and the cell meets
at least a plane geometric symmetry (Fig. 3b). The ratio of the cell
length along the x-axis to that along the y-axis is denoted by Rcell,
which can be varied and determines the directions of struts. These
SMs are orthotropic and their stiffness variations meet plane sym-
metries (see the illustrative polar chart in Fig. 3b). Moreover, the
ratio between the maximal and minimal uniaxial stiffness
decreases as Rcell increases. When it reaches Rcell ¼

ffiffiffi
3

p
, the SM

meets a six-fold rotational symmetry, and it becomes an isotropic
icrostructure; (b) a hierarchical microstructure in the quarter part of the unit cell
removed members by light grey; (c) a full HM unit cell after mirroring the quarter
level struts; and (d) a full HM material via a periodic array of the HM unit cell.



Fig. 2. Deformation modes and stiffness characteristics of a SM and HMs. (a) Deformation modes of the SM and HMs for bi-axial stress, where the SM undergoes a unique
mode but the HMs with different second-level strut widths and orientations undergo different modes; and (b) the corresponding polar charts, indicating the variations of
uniaxial stiffness along different directions. In the deformation plots, the color bar indicates the norm of displacement field u, and grey shadows indicate undeformed
configurations. In the polar charts, EH(h) is the uniaxial stiffness along the direction with an angle h to � axis.

Fig. 3. Considered SMs and the selected second-level microstructure. (a) The SM with a rectangular central hole and its illustrative polar chart; (b) the Vidergauze-type SM
and its illustrative polar chart; and (c) the selected second-level microstructure, together with the three design parameters in a unit cell.
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microstructure whose polar chart is a full circle. This isotropic SM
is stiffness optimal in the sense that its bulk, shear, and Young’s
moduli simultaneously reach the stiffness upper bound in theory
(in the low density limit). Except Rcell ¼

ffiffiffi
3

p
, the Vidergauze SMs

with any other length ratios cannot obtain isotropic stiffness.
The microstructure whose single unit cell comprises two cross-

ing struts is employed as the second-level microstructure, as illus-
trated in Fig. 3c. The two struts are layered along the body
diagonals of the unit cell. Three parameters are used to represent
their geometries, including two strut widths tSL1 and tSL2 , and the
inclined angle of one strut with respect to the x-axis, which is
denoted by hSL 2 0 90

�� �
. The unit cell is rectangular, where the

edge length along � is denoted by LSLx and the length along y is

obtained by LSLx tan hSL. In the design process, LSLx is manually pre-
scribed to determine the number of second-level unit cells in the
4

HMs, where a smaller LSLx usually indicates more second-level cells
included. The main reason to select such second-level microstruc-
tures is their simple geometries, which makes them preferable to
other candidates with more struts from a manufacturing perspec-
tive in applications. Moreover, they can provide the hierarchical
members with enhanced local stiffness along different directions
by tuning the orientations and widths parameters, therefore lead-
ing to various deformation modes and effective stiffness
characteristics.
2.3. Numerical analysis

The asymptotic homogenization method is used to estimate the
effective stiffness of the microstructures. This method assumes
that the displacement at a macroscopic point can be expanded in
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an asymptotic form, where the microscopic displacement field is
periodic across unit cells. In 2D, three characterized macroscopic
strains are applied to the unit cell, and periodic displacement
boundary conditions are enforced. The microscopic displacement
field is obtained by solving equilibrium equations (A1), and then
the effective stiffness is obtained by Eq. (A2), denoted by
DH ¼ DH

ijkl. More details about the theory of the asymptotic homog-
enization method are referred to e.g. [49] and the numerical imple-
mentation is referred to [50,51].

A parameter sweeping procedure is conducted to numerically
determine the correct design parameters for realizing isotropic
stiffness. For different SMs, different sets of parameters are swept.
For the SMs with square holes, the orientation of the second-level
struts is fixed along the body diagonals of the HM cell (i.e. hSL = 45�)
and the two second-level struts have equal width. Hence, only one
strut width is swept. For the SMs with rectangular holes, hSL needs
further to be determined since two local maximal EH(h) are not
equal. That is, both hSL and tSL1 ¼ tSL2 are swept in a nested two-
level loop. For the Vidergauze-type SMs, all three parameters hSL,
tSL1 and tSL2 are swept in a nested three-level loop.

Because all the considered SMs and HMs are orthotropic,
the coupling entries in DH that relate normal/shear strains to
shear/normal stresses must be zeros, i.e. DH

1112 ¼ DH
2212 ¼ 0.

An index which is stated in terms of the other entries is
adopted to measure the anisotropic order of the effective stiffness

of the microstructures, which is Z ¼ DH
1111 � DH

2222

� �2
þ

�
DH

1111 � DH
1122 � 2DH

1212

� �2
�= DH

1111

� �2
.This index has been widely

used in the area of structural optimization for ensuring an isotropic
design [21,52], although other indices can be applied, such as the
universal anisotropy index [53]. A fully isotropic microstructure
is identified by Z = 0, while a larger Z > 0 indicates a higher aniso-
tropic order of the effective stiffness. Moreover, the effective mod-
ulus can also be evaluated from DH . The uniaxial stiffness along h is

evaluated by EH hð Þ ¼ 1=CH
1111 hð Þ, where CH hð Þ ¼ DH hð Þ

� ��1
is the

compliance tensor based on the rotated stiffness tensor
DH

ijkl hð Þ ¼ Tijpq hð ÞDH
pqmnTklmn, with Tijkl for the transformation tensor.

For an isotropic microstructure, the uniaxial stiffness is equal along
all directions which is denoted by EH

iso. The bulk modulus and shear

modulus are evaluated by KH ¼ DH
1111 þ DH

2222 þ 2DH
1122

� �
=4 and

GH ¼ 1=CH
1212, respectively. There, K

H is invariant to h and GH is esti-
mated for hSL = 0�.

Because the second-level microstructure is cut off by the inte-
rior boundaries in the unit cell, over-hanged second-level struts
may be created in the HMs (Fig. 4a). They do not contribute to
Fig. 4. Illustration of over-hanged struts and solid frames in HMs. (a) Two HMs with ove
layer of solid frames.

5

the effective stiffness as they are not well connected, but they cost
material usage. The effective stiffness of such HMs does not vary
continuously to relative densities, where the HMs may have almost
the same stiffness under various q and suffer from a sudden
change of stiffness once the struts are connected again (Fig. 4a).
To address this issue, a uniform layer of solid frames is attached
surrounding the interior boundaries of the SMs for modeling
HMs (Fig. 4b). As the second-level struts are always connected to
the solid frames, the HMs gain continuous stiffness for varying q
(as the results shown in section 3.1). Note that the solid frames
are not attached to the exterior edges of the unit cell, because for
periodic unit cells, the struts in the exterior edges can always be
well connected.

Besides stiffness, the buckling characteristics of the designed

Iso-HMs are also analyzed. Subject to macroscopic stress r
�
, a

microstructural instability analysis is executed to identify the crit-
ical buckling mode and the critical buckling load, which is

r̂cr ¼ Pcr r
���� ��� with Pcr for the critical eigenvalue. It is noted that peri-

odic microstructures may be buckled either within a single unit
cell or across multiple unit cells, corresponding to local and non-
local buckling modes, respectively. In order to capture all possible
modes, the Floquent-Bloch boundary conditions are enforced on
the pairs of nodes on the opposite edges of the unit cell (see Eq.
(A5)), and then the eigenvalue equation (A3) is solved by sweeping
the wave vector k over the Brillouin zone. The band diagram indi-
cating the first-order eigenvalue at each k is plotted. The minimal
value in the diagram is taken as Pcr and the real part of the corre-
sponding eigenvector is plotted to represent the critical buckling
mode. The numerical implementation of the microstructural insta-
bility is referred to [47].
2.4. Numerical implementation

The above design and analysis process is conducted by using
COMSOL-with-Matlab. There, the commercial software COMSOL
is adopted for modeling HMs, where the geometry for each set of
parameters is explicitly built and meshed, and the developed in-
house codes in Matlab are used for property analysis. Because all
the concerned microstructures have at least 1/4 symmetries, only
the top-right quarter domain of the unit cell is used for stiffness
analysis, where the symmetric displacement boundary conditions
are imposed on the mirrored edges of the unit cell. In the
microstructural instability analysis, the entire unit cell is used
and k is swept over five boundaries of the first irreducible Brillouin
zone in the order C� X �M � C� K �M, as shown in Fig. A1. To
ensure numerical accuracy, at least 6 layers of three-node triangu-
lar elements are meshed in the width direction of the second-level
struts and the solid frames.
r-hanged struts, where they have the same EH at different q; and (b) the HM with a



X. Yu, F. Wang, Z. Luo et al. Materials & Design 229 (2023) 111895
In the numerical procedure, the best sets of widths and angles
are identified by using an adaptive strategy, where the step sizes
are adaptively refined in three rounds. Firstly, the widths and
angles are uniformly varied with step sizes of 5L/1000 and 0:5

�
,

respectively. There, L indicates the cell length along � axis, and
the minimal and maximal thresholds for the widths and angles
are tSL 2 5 85½ �=1000L and h 2 10

�
45

�� �
. The microstructures

meeting Z < 0.1 are identified, where the ith microstructure has

tSL
	 
1st

i and h1sti . Then, additional sampling points with refined step
sizes are added around these microstructures, which are at

tSL
	 
1st

i 	 2L=1000 and h1sti 	 0:2
�
. In this way, two, eight and

twenty-six refined sampling points are added for each microstruc-
ture for design of Iso-HMs with square holes, Iso-HMs with rectan-
gular holes and Vidergauze Iso-HMs, because one, two and three
parameters are used. The numerical procedure is re-run on the
newly-added sampling points, and the microstructures satisfying
Z < 0.01 are further identified. After that, a third round of refine-
ment is carried out by step sizes L/1000 and 0:1

�
. Finally, the HM

with minimal Z is taken as the Iso-HM. Although smaller steps
may yield finer results with smaller Z, the obtained Iso-HMs may
not be able to be 3D printed because of the printing precision
and resolution by the available 3D printer. Such an adaptive strat-
egy can identify the HMs with minimal Z with high efficiency com-
pared to the strategy by sweeping the variables with minimal step
sizes over the entire parameter space.

The simulation is conducted in the plane stress condition,
where the microstructures have a unit out-of-plane thickness.
The 2D three-node linear triangular elements are used in the sim-
ulation, and at least six layers of elements are meshed in the width
direction of the second-level struts and solid frames, which gener-
ates 200–800 thousand elements. A mesh convergence study is
carried out by using different element types and different element
numbers, and the results show that such a mesh implementation
can guarantee a high computational accuracy (see the results and
discussions in Appendix B).

3. Numerical results

In this section, the isotropic stiffness of the designed Iso-HMs is
first verified, and then the buckling strength and modes are exam-
ined. For the microstructures with rectangular holes, square HM
cells are used, and for the Vidergauze-type microstructures, rect-
angular HM cells are used with Rcell = 0.8, 1, and

ffiffiffi
2

p
. The width

of the solid frame is given by L/100, which also determines the
minimal feature size in the 3D-printed specimens (see section 4).
In the numerical results, the effective stiffness and buckling
strength are both regularized by the Young’s modulus of the base
material E0. The properties of the Iso-HMs are compared with their
SM counterparts, where the SMs with various q are modeled by
proportionally scaling their member sizes.

3.1. Isotropic stiffness of Iso-HMs

Fig. 5a presents the configurations and stiffness characteristics
of the designed Iso-HMs with square holes. In the results, the
length of a second-level unit cell along the x-axis is fixed by
LSLx ¼ L=8, which indicates that the quadrant part of the HM cell
includes four second-level cells in the direction. As seen from the
polar charts in Fig. 5b, although the SMs are cubic materials with
varying EH(h) along different directions, the obtained HMs have
uniformly equal EH(h) along all directions. Also, they have nearly
zero Z values, where the maximal value for all the testing results
is Z = 2.79 � 10-4 (Fig. 5c). Both results validate that these HMs
do attain isotropic elastic stiffness. From the modulus curves in
6

Fig. 5c, it is seen that the Iso-HMs can cover a wide range of relative
densities by varying the sizes of holes and second-level struts, from
about q = 4% to full solid (i.e. q = 100%). In general, the second-level
struts in the Iso-HMs become thicker as the hole sizes decrease,
resulting in larger q. In the low density range q < 4%, possible
Iso-HMs have to be comprised of slender second-level struts with
thin sizes, which may cause great difficulties for both numerical
analysis and practical fabrication. If taking the width of the solid
frames as the minimal feature size in 3D printing, the Iso-HMs with
q > 14% are suggested for high-quality printing since the sizes of
the second-level struts are bigger than that of the solid frames.

The effective Young’s, bulk, and shear moduli of the obtained
Iso-HMs with respect to varying q are presented in Fig. 5c. Therein,
the Iso-HMs with different q are obtained by varying the sizes of
central holes, and for each hole size, the one with minimal Z is
taken as the isotropic design. It is noted that varying the strut
widths with the minimal step size typically causes larger density
variations for the microstructures in low q than those in high q,
because the microstructures in low densities comprise thin-sized
struts. As a result, more dispersed scattered data points could be
obtained in low densities.

It is observed that over the entire density range, EH
iso of the Iso-

HMs are smaller than the maximal EH(h) of the SMs but larger than
the minimal EH(h), which are along axial and body diagonals,
respectively (also see the polar charts in Fig. 5b). Even for the
SMs with a remarkably large difference between the maximal
and minimal EH(h) (such as the case of q = 13.96%), isotropic stiff-
ness can also be attained. The underlying mechanics is that the
second-level struts enhance the local stiffness of the hierarchical
members along body diagonals (i.e. h = 45�), and thus the HMs gain
improved effective stiffness in the directions compared to the SMs.
Conversely, since the HMs are composed of a smaller portion of
base materials in the axial directions (i.e. h = 0� and h = 90�) than
the SMs, they have decreased uniaxial stiffness. In this way, isotro-

pic stiffness is obtained in the condition of E 0
�� �

¼ E 45
�� �

by tun-

ing the sizes of the second-level struts. However, as the decrease of

E 0
�� �

is higher than the increase of E 45
�� �
, the Iso-HMs have

smaller bulk moduli than the SMs (Fig. 5c). In contrast, because
of the inclined second-level struts and enlarged crossing sections
of the hierarchical members, the Iso-HMs have enhanced capabil-
ities to bear shear stress loadings compared to the SMs. Hence,
they possess higher shear moduli than SMs (Fig. 5c).

The designed Iso-HMs with rectangular holes are presented in
Fig. 6, where the SMs with various q are obtained by tuning the
hole sizes with a fixed length ratio RH = 1.5. Because the SMs with
rectangular holes have larger local maximal EH(h) along the y-axis
than that along the x-axis, the second-level struts in HMs are
rotated away from body diagonals with h < 45� for realizing iso-
tropy. In this case, the second-level cells are rectangular, and they
might be cut off by the edges of the HM cell by parts (see configu-
rations in Fig. 6a). The sizes and orientations of the second-level
struts rely on the hole sizes. Both circular polar charts and
nearly-zero Z values (Fig. 6b) verify that the obtained HMs are stiff-
ness isotropic. Again, EH

iso of the Iso-HMs are between the maximal
and minimal EH(h) of the SMs. It is worth noting that the obtained
Iso-HMs are able to reach low densities that the SMs cannot reach
(Fig. 6b). The minimal q for the Iso-HMs is about q = 5.68%, but that
for the SMs is about q = 34% which arises as the hole length along
the y-axis is equal to the cell length.

The designed Iso-HMs based on the Vidergauze-type SMs are
presented in Fig. 7. Three length ratios of SM unit cells are consid-
ered for design, includingRcell = 0.8, 1, and

ffiffiffi
2

p
. In all three cases, the

quadrant domain of an HM cell includes four second-level cells
along the x-axis, where LSLx is varied accordingly. All the single-



Fig. 5. Configurations and stiffness of the Iso-HMs with square holes. (a) Geometries of four Iso-HMs with various q, where from left to right, the hole sizes are 0.70L, 0.56L,
0.42L and 0.28L, and the sizes of second-level struts are 0.011L, 0.029L, 0.046L and 0.06L; (b) the polar charts of the Iso-HMs and the counterpart SMs with the same q, where
the red and blue curves are for Iso-HMs and SMs, respectively; and (c) variations of uniaxial stiffness, bulk and shear modulus to q, and also the Z values for SMs and Iso-HMs.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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scale members in the SMs have identical widths, and the SMs with
various q are obtained by tuning the member widths. The designed
HMs can attain isotropic stiffness for any tested Rcell, although the
counterpart SMs are orthotropic. In these Iso-HMs, the second-
level cells are rectangular with h–45

�
, and the two sets of

second-level struts have different widths. The orientations and
widths of the second-level struts rely on Rcell of the HM cells. In
all the cases, EH

iso of the Iso-HMs are smaller than EH(h) of the

SMs along all directions, and the difference between EH
iso and the

minimal EH(h) of the SMs (the uniaxial stiffness along the x-axis)
becomes larger as Rcell increases. Also, this leads to decreased KH

iso

and GH
iso compared to the SMs. In order to obtain Iso-HMs with

improved stiffness, other candidate second-level microstructures
with more than two sets of struts could be used, such as the ones
comprising triangular-type struts.

In the same q, the HM solutions that can realize isotropic stiff-
ness are non-unique in the sense that the Iso-HMs with different
configurations can be obtained. The non-uniqueness mainly arises
from two aspects. One is that the Iso-HMs may be comprised of a
various number of second-level microstructures by tuning LSLx . An
example is presented in Fig. 8a, in which three Iso-HMs comprised
of 3, 5, and 6 s-level cells along the x-axis in the quadrant part of
7

the HM cell are designed. Although they have the same-sized
square holes and almost the same density around q = 53%, they
show quite different configurations with different sizes and
arrayed patterns of second-level struts. Interestingly, despite dif-
ferent geometries, the three types of Iso-HMs have almost the
same EH

iso over the entire density range and their stiffness curves
almost coincide with each other (see the stiffness curves in
Fig. 8a). The non-uniqueness is also attributed to the length ratios
of central holes. Fig. 8b presents the designed Iso-HMs including
rectangular holes with different RH, which have different orienta-
tions and widths of second-level struts. As seen from the polar
charts, each Iso-HM has a uniform isotropic stiffness along all
directions, but EH

iso of different Iso-HMs could be different in the
same density. It is noted that if the microstructures have fixed
length ratios of the rectangular holes, the distinct one with mini-
mal Z among all feasible solutions with different widths and angles
is taken as the isotropic design.

3.2. Results for buckling strength

The buckling characteristics of the designed Iso-HMs are ana-
lyzed and compared to their counterpart SMs. Only the in-plane
buckling characteristics are examined in the plane stress condition,



Fig. 6. Configurations and stiffness of Iso-HMs with rectangular holes and RH = 1.5. (a) Geometries of two Iso-HMs with various q and their polar charts, where for the left and
right Iso-HMs, their hole sizes along the x-axis are 0.38L and 0.20L, sizes of the second-level struts are 0.034L and 0.057L, and orientations of the second-level struts are
40�and 40.3�; and (b) variations of uniaxial stiffness and Z values with respect to q.

Fig. 7. Configurations and polar charts of Vidergauze Iso-HMs. The geometric parameters are (a) Rcell = 0.8, tSL1 ¼ 1:3, tSL2 ¼ 0:5, hSL ¼ 38:3
�
; (b) Rcell ¼ 1, tSL1 ¼ 1:3, tSL2 ¼ 1:1,

hSL ¼ 28:8
�
; and (c) Rcell ¼

ffiffiffi
2

p
, tSL1 ¼ 1:4, tSL2 ¼ 1:2, hSL ¼ 40:0

�
. In the polar charts, the red and blue curves are for Iso-HMs and SMs. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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while the out-of-plane buckling is omitted. Fig. 9 presents the band
diagrams and critical buckling modes of the Iso-HMs with square
holes when they are subjected to uniaxial compressive stress

r
� ¼ �1 0 0½ �T . It is found that the SMs are buckled in shear
modes with a long wavelength, where the modes span over all
the unit cells and the critical strength are near C (Fig. 9a, 9c, and
9d). Differently, three types of critical buckling modes are observed
in the designed Iso-HMs, which are relevant to the width of solid
frames and second-level struts under various q. In the cases where
the Iso-HMs are comprised of thin-sized second-level struts in low
8

q, the critical modes are dominated by the localized buckling of the
second-level struts (Fig. 9c). In contrast, the critical modes are
switched to the localized buckling of the solid frames in high q,
where the solid frames become the thinnest struts in the cell
(Fig. 9d). In both cases, the critical modes are triggered within sin-
gle unit cells and thus they are periodic across cells. Moreover, the
profiles of buckled struts match well with the critical mode of a
single column constrained by elastic boundary conditions, and
hence the effective failure strength could be estimated simply by
using semi-analytical methods [54,55]. For comparison, when the



Fig. 8. Non-uniqueness of Iso-HMs. (a) Iso-HMs with a different number of second-level microstructures and Young’s modulus of different designs to varying q, where the
second-level struts have widths 0.053L, 0.031L and 0.026L from left to right; and (b) Iso-HMs with various RH and their polar charts.
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widths of the second-level struts are close to those of the solid
frames, the Iso-HMs suffer from non-local anti-modes along the
x-axis. In that case, the buckling modes are repeated every two unit
cells along the x-axis, but are periodic along the y-axis (Fig. 9b). In
this case, the critical strength in the band diagram is at X (Fig. 9b).

A quantitative comparison of the buckling strength between the
Iso-HMs and SMs is made, as shown in the diagrams in Fig. 9. The
buckling strength is given in Table 1. It is observed that the band
curves of the Iso-HMs have minor variations but those of SMs exhi-
bit large variations with single dominated buckling modes. It indi-
cates that the Iso-HMs make use of solid constituents more equally
for various buckling modes than the SMs. For the Iso-HMs with
q = 7.37% and q = 33.21%, each band curve has almost identical P
through all k, which corresponds to the localized modes on the
second-level struts and the solid frames at different positions,
respectively. For the Iso-HM with q = 20.31%, a relatively large
variation is obtained, but it is still much smaller than that of the
SM. By identifying the minima in the band diagrams, the Iso-
HMs provide a significant increase in buckling strength in low den-
sities. For the Iso-HM with q = 7.37% and q = 20.31%, the improve-
ment of their buckling strength compared to the counterpart SMs
reach 171% and 87%, respectively. The superior strength character-
istics are mainly attributed to hierarchical and isotropic-stiffness
design, which provides increased local stiffness along body diago-
nals, and thus the Iso-HMs gain improved capabilities to bear glo-
bal shear buckling failure. In high densities, the Iso-HMs obtain
lower buckling strength than the corresponding SMs, since the
solid frames in Iso-HMs are too thin to be prone to buckle.

The buckling characteristics of the Iso-HMs and the SMs with
square holes are also examined for bi-axial compressive stress

r
� ¼ �1 �1 0½ �T . The buckling modes and strength are pre-
sented in Fig. 10 and Table 1. The same conclusion as above can
be made, where the SMs are buckled in global shear modes while
the Iso-HMs are buckled in either localized modes or non-local
9

anti-modes. For q = 7.37% and q = 20.31%, the buckling strength
of the Iso-HMs are 55% and 71% higher than that of SMs,
respectively.

The buckling performance for the microstructures with rectan-
gular holes are compared in Fig. C1, Fig. C2 and Table 1. Again, the
SMs are buckled in global shear modes and the Iso-HMs are buck-
led mainly in localized modes and non-local anti-modes. However,
as the SMs involve thinner horizontal members than the vertical
members, they become prone to suffer from buckling failure,
resulting in lower buckling strength than the Iso-HMs for all the
tested q. In the extreme case q = 35.99% where the SM includes
slender horizontal members, the buckling strength of the Iso-HM
is a hundred times higher than those of the SMs.

The buckling characteristics of the Vidergauze-type microstruc-
tures with Rcell ¼ 1 are presented in Fig. 11 and Table 1. For both
uniaxial and bi-axial compressive stresses, this class of SMs is
mainly buckled in bending modes on the strut member, which is
attributed to the rigid triangular connections between different
members. The buckling modes of the struts meet a rotational pat-
tern around the member joints. The localized buckling modes can
also be found in the Iso-HMs. There, the inclined hierarchical mem-
bers are buckled for the uniaxial stress, while a local rotational
mode near the joints is observed for the uniaxial and bi-axial stres-
ses, respectively. From the band diagrams, it is seen that the Iso-
HMs have higher buckling strength than the SMs at each k, even
though they have decreased stiffness. For the critical buckling
strength, the Iso-HMs outperform the SMs by over 100%.

4. 3D printing and experimental testing

The designed Iso-HMs with square holes were 3D printed for
experimentally testing isotropic stiffness. Considering the large
size difference between the second-level struts and the HM cells,
the 3D printer microArch S240 was used for manufacturing, allow-



Fig. 9. Buckling characteristics of the Iso-HMs and SMs with square holes subjected to r
� ¼ �1 0 0½ �T , for (a) the SMwith q ¼ 20:31% and (b)-(d) the Iso-HMs with various

q. In each subplot, the left column shows the band diagrams, and the middle and right columns show the buckling modes in unit cells and arrayed cells, respectively. Grey
shadows and colored regions indicate the initial and buckled states, respectively. In (a) and (b), 4-by-4 cells are used to illustrate the non-local buckling modes, while 2-by-2
cells are used to highlight the local buckling modes in (c) and (d).
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ing for rapid photopolymerization of an entire layer of liquid poly-
mer using a flash of UV light based on the technology Projection
Micro Stereolithography. The HTL resin (type of Yellow-20) was
used as the base material for 3D printing Iso-HMs, with Poisson’s
ratio of approximately 0.3. Its compression stiffness was measured
by carrying out compressive testing on the square prism specimens
(as seen in Appendix D), which was obtained as E0 = 2.19 GPa. Dur-
ing 3D printing, the exposure time and light intensity were adap-
tively manipulated from 3 to 1 s and from 74 to 52 mW/cm2,
respectively. Each printing layer was 20 lm. After 3D printing,
the specimens were put into a UV curing chamber for 3.5 min to
cure specimens for enhanced durability and precision.
10
Two specimens were 3D printed, where they included 0� and
45� unit cells for testing the corresponding uniaxial stiffness. The
two high-resolution specimens are presented in Fig. 12a and 12b.
Therein, the minimal features were the solid frames, which had a
size of 50 lm, and the HM cell was 5 mm in length. Correspond-
ingly, the 0� specimen had an edge size of 20 mm and the 45� spec-
imen had an edge size of 20

ffiffiffi
2

p
mm, both including at least 4-by-4

HM unit cells. The size ratio between the specimen and the mini-
mal feature reached over 400:1. In order to prevent out-of-plane
buckling, the 2D Iso-HMs were uniformly extruded by a relatively
large thickness of 3 mm for 3D printing. The surface quality of the
3D-printed specimens was examined by using a 3D digital micro-



Table 1
Comparison of buckling strength for Iso-HMs and counterpart SMs under various q, when they are subjected to uniaxial and biaxial compressive stresses.

Configurations Macroscopic Stress q SM Pcr=E0 Iso-HM Pcr=E0 Improvement

Square holes r
� ¼ �1 0 0½ �T
(Results in Fig. 9)

7.37% 2.61 � 10-5 7.07 � 10-5 171%
20.31% 0.63 � 10-3 1.18 � 10-3 87%
33.21% 3.25 � 10-3 1.52 � 10-3 �53%

r
� ¼ �1 �1 0½ �T
(Results in Fig. 10)

7.37% 2.48 � 10-5 3.86 � 10-5 56%
20.31% 0.59 � 10-3 1.01 � 10-3 71%
33.21% 2.96 � 10-3 1.88 � 10-3 �36%

Rectangular holes (RH ¼ 1:5) r
� ¼ �1 0 0½ �T
(Results in Fig. C1)

35.99% 1.53 � 10-5 3.33 � 10-3 21665%
49.00% 3.19 � 10-3 1.17 � 10-2 267%

r
� ¼ �1 �1 0½ �T
(Results in Fig. C2)

35.99% 1.53 � 10-5 3.33 � 10-3 21665%
49.00% 3.17 � 10-3 1.10 � 10-2 247%

Vidergauze (Rcell ¼ 1) r
� ¼ �1 0 0½ �T
(Results in Fig. 11)

20.34% 4.60 � 10-4 10.40 � 10-4 126%

r
� ¼ �1 �1 0½ �T
(Results in Fig. 11)

20.34% 3.84 � 10-4 7.78 � 10–4 103%

Fig. 10. Buckling characteristics of the Iso-HMs and SMs with square holes subjected to r
� ¼ �1 �1 0½ �T , for (a) the SM with q ¼ 20:31% and (b)-(d) the Iso-HMs with

various q. In each subplot, the left column shows the band diagrams, and the middle and right columns show the buckling modes in unit cells and arrayed cells, respectively.
Grey shadows and colored regions indicate the initial and buckled states, respectively.
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scope (type of Keyence VHX-600E). As shown in Fig. 12a, the spec-
imens had smooth faces and the tiny voids were open from top to
bottom surfaces without residual fluids. The relative densities of
the Iso-HMs were estimated as the density ratios between the
Iso-HM specimens and the square prism specimens, where the
density for each specimen was obtained as its weight divided by
its volume.

The uniaxial compression testing was conducted on an Instron
universal test machine with a 2 kN load cell. The 0� and 45� spec-
imens were both loaded by vertical compressions, which were

used to obtain tested EH 0
�� �

and EH 45
�� �

(Fig. 12c). Both speci-

mens were compressed by the load cell at a speed of 0.12 mm/
min�1, corresponding to a strain rate of 10-4 s�1 for the 0� specimen
and 0.71 � 10-4 for the 45� specimen. This loading speed can
ensure quasi-static loading conditions. To measure the uniaxial
stiffness, each specimen was loaded and unloaded four times and
11
Eh was evaluated as the average of the slopes of the last three
stress–strain unloading curves.

The testing results are presented in Fig. 12d. It is seen that the
two 3D-printed specimens had close relative densities. Moreover,
their unloading curves had almost the same slopes, where the rel-
ative difference between the two uniaxial stiffness was only

EH 0
�� �

� EH 45
�� ���� ���=EH 0

�� �
¼ 2:71%. The result indicates that the

microstructure has almost the same uniaxial stiffness along 0�
and 45�, thus it has nearly-isotropic stiffness. Because the HTL
resin is a brittle material, the Iso-HM specimens were broken by
abrupt collapse (Fig. 12e). For testing the buckling characteristics,
other base materials are required.

The performance of the two 3D-printed specimens is also com-
pared with the numerical results, as seen in Fig. 12d. The speci-
mens had about 5% higher relative densities than the numerical
models, but had 25.56% lower stiffness. The weight and property



Fig. 11. Buckling characteristics of the Vidergauze-type Iso-HMs and SMs subjected to (a) uniaxial compressive stress r
� ¼ �1 0 0½ �T and (b) bi-axial compressive stress

r
� ¼ �1 �1 0½ �T . In each subplot, the left column shows the band diagrams, and the middle and right columns show the buckling modes of arrayed unit cells for the SMs
and Iso-HMs, respectively. The density for all the cases is q ¼ 20:34%. In the buckling modes, grey shadows and colored regions indicate the initial and buckled states,
respectively.
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differences are mainly attributed to two aspects. One is that the
specimens included limited 4-by-4 unit cells, which might be
insufficient for estimating the effective stiffness with high accu-
racy. More than four unit cells are usually required to mimic the
periodic array of unit cells. The other aspect is related to the prop-
erties of the base material. As the HTL resin is viscoelastic, its den-
sity and stiffness are dependent on the loading strain rate, as well
as printing parameters such as the exposure time and light inten-
sity, and the photocuring technology may cause slight overexpo-
sure unavoidably. The properties of the base material in
Appendix D are regarded as an average estimation, which may
cause deviations in the properties of the Iso-HM specimens from
the numerical results.
5. Discussions

Differences from other studies: Several differences from existing
works can be concluded. Firstly, the design method is different.
The proposed method uses a hierarchical design strategy to realize
isotropy but other methods are mostly based on single-level con-
figurations. Even in some existing studies (e.g. [34,45]), the authors
mainly discussed the performance of prescribed hierarchical
microstructures rather than carrying out a design process for pur-
suing isotropic stiffness. Secondly, the underlying mechanics to
realize isotropic stiffness is different. The designed Iso-HMs attain
isotropy through the co-deformations of the hierarchical members
in two levels, but other existing isotropic microstructures rely on
the deformations of single-level members, such as the combined
microstructures [13,14] and the n-fold rotationally symmetric
microstructures [11]. Finally, the designed Iso-HMs explore a
new family of isotropic microstructures with hierarchical member
features, which expand the space of already-known isotropic
microstructures. To the authors’ best knowledge, the hierarchical
configurations have yet to be reported by other studies.

Extensions to other anisotropic SMs: The proposed design strat-
egy can be extended for 3D cases. For instance, analogously to
12
the 2D microstructures with square holes, 3D Iso-HMs could be
designed by replacing the solid parts of simple-cubic SMs with
body-centered-cubic second-level microstructures. For the SMs
with complex geometries, both the configurations of the second-
level microstructures as well as their spatial layouts in the solid
parts of SMs can be taken as the design variables for a wide design
space to search isotropic solutions. For a general case, the struc-
tural topology optimization method can be developed to identify
proper second-level microstructures, where the isotropic stiffness
is ensured by imposing a constraint in the optimization formula-
tions. The optimized results might obtain spatially-varying
second-level microstructure configurations over the solid parts of
SMs. However, it is not clear if the hierarchical design strategy
can be used for any kind of SMs, which deserves future research.

Comparison to maximal stiffness in theory: The designed Iso-HMs
cannot reach the maximal stiffness in theory, which is defined by
the Hashin-Shtrikman bound [11]. An example can be directly
found in Fig. 6c, where the SMs with square holes attain the max-
imal bulk stiffness in theory (in the low density limit) but the Iso-
HMs have decreased bulk modulus. As discussed in [56], the HMs
with the target of maximizing both the stiffness and strength usu-
ally cannot attain the theoretical bound for elastic stiffness. More-
over, isotropy is another restriction for HMs to reach maximal
stiffness. In order to identify the isotropic HMs with maximal stiff-
ness, a structural optimization method can be used [56].

Influence of the solid frame: The width of the solid frame has a
significant effect on the obtained configurations of the Iso-HMs.
Generally, in the same density, the Iso-HMs with wider frames
are comprised of thinner second-level struts. Accordingly, the
Iso-HMs with different frame widths may have different stiffness.
Moreover, the frame width also affects the buckling characteristics
of the Iso-HMs. Because the Iso-HMs with thinner frames have to
include thicker second-level struts, they are prone to be buckled
on the frames, while those with wider frames are prone to be buck-
led on the second-level struts. It is noted that the design process
may not be able to find feasible solutions in low densities if the
HMs include wide frames, since too thin second-level struts are



Fig. 12. 3D-Printed specimens and experimental testing. (a) 3D-printed specimens with magnified images showing the features in fine resolutions; (b) two specimens
including 0

�
and 45

�
unit cells in the left and right subplots, respectively; (c) experiment set up, where two specimens were both loaded vertically; (d) testing results, where

the left subplot shows the loading–unloading curves for each specimen and the right one shows the tested q and uniaxial stiffness, together with the numerical results; and
(e) broken mode of one specimen, where the left subplot shows the loading curve, and the right subplots show the compressed specimens in four stages, and the last
specimen presents abrupt collapse.

X. Yu, F. Wang, Z. Luo et al. Materials & Design 229 (2023) 111895
required. Furthermore, the frame width affects the fabrication
quality, where it has to be bigger than the minimal fabricable fea-
ture size of the available 3D printer, otherwise, manufacturing may
fail.

Other hierarchical modeling methods: An alternative method to
model hierarchical microstructures is to use body-conformal
second-level microstructures, where the second-level struts are
aligned with the interior boundaries of SMs. This method does
not require solid frames surrounding the interior boundaries of
HMs, since it does not create over-hanged second-level struts.
Moreover, this modeling approach is suitable for the microstruc-
tures with complex geometries. As the body-conformal second-
level struts are typically irregular, a large number of strut widths
13
and orientations need to be determined. Also, the designed HMs
are dependent on the connections and resolutions of second-level
struts in the initial design. Other modeling approaches can also
be developed under requirement.
6. Conclusions

In this paper, we propose a new class of isotropic hierarchical
microstructures. Such microstructures are modeled by replacing
the solid parts of SMs with second-level microstructures, resulting
in hierarchical member features in two levels. Different from any
existing isotropic microstructures, these Iso-HMs realize isotropy



Fig. A1. Brillouin zone for the square unit cell. The angles indicate the sweeping
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based on the co-deformations of the members in two levels. In this
way, isotropic stiffness can be obtained even for the SMs which
originally have anisotropic stiffness. Two types of SMs are used
for design of Iso-HMs, including the ones with rectangular holes
and the Vidergauze-type SMs. Moreover, the designed Iso-HMs
are 3D printed and their stiffness performance are experimentally
tested, where the specimens have a length ratio between the unit
cell and the minimal feature over 400:1. Both numerical and exper-
imental results verify the isotropic stiffness of the design Iso-HMs.
Moreover, a structural instability analysis is made for the Iso-HMs.
Compared to single-level microstructures, the hierarchical design
can significantly improve the critical buckling strength, and can
also change the critical buckling modes. The hierarchical design
strategy, the novel mechanics principle for realizing isotropy, and
the new hierarchical configurations could be helpful for exploring
a wider range of functional microstructures in various applications.

In future, other properties besides the effective stiffness and
buckling strength could be designed for Iso-HMs. For instance, neg-
ative Poisson’s ratios can be realized by hierarchical designs, how-
ever the method to design auxetic Iso-HMs is yet to propose.
Moreover, because the HMs comprise of thin-sized second-level
struts, they may also suffer from stress yielding failure. In this
sense, numerical studies by incorporating both material and geo-
metric nonlinearies could be conducted to identify the major fail-
ure modes of the Iso-HMs in different relative densities. In
addition, a structural topology optimization method can be pro-
posed to design Iso-HMs with extreme stiffness and buckling
strength with respect to specific constraints, where both the con-
figurations and spatial layout of the second-level microstructures
can be automatically determined.
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Appendix A. Equations for homogenization analysis and
microstructural instabilities

The effective stiffness of the microstructures is numerically cal-
culated by using the asymptotic homogenization method. There, a

unit cell is loaded by three characterized macroscopic strains ee pqð Þ
ij ,

where ee pqð Þ
ij ¼ 1 for ij ¼ pq and otherwise, ee pqð Þ

ij ¼ 0. The stiffness
tensor of the microstructure is calculated by

DH
pqmn ¼

1
V cell

Z
X

D0ð Þijkl ee pqð Þ
ij � e pqð Þ

ij

� � ee mnð Þ
kl � e mnð Þ

kl

� �
dX;

i; j; k; l; p; q;m;n ¼ 1;2ð Þ
14
where X indicates the domain of the unit cell, Vcell is the cell vol-
ume, D0ð Þijkl is the stiffness tensor for the solid constituent,

e pqð Þ
ij ¼ @u pqð Þ

i =@xj is the obtained microscopic strain tensor, where
xj is the space variable in X (with j = 1, 2 for � and y, respectively),

and the microscopic displacement u pqð Þ
i is calculated by solving the

equilibrium equation,Z
X
Ds

ijkl
ee pqð Þ
ij � e pqð Þ

ij

� � @v pqð Þ
k

@xl
dX ¼ 0; 8v pqð Þ

k 2 U
�

i; j; k; l;p; q ¼ 1;2ð Þ
ðA2Þ

where U
�

is the admissible displacement space. This equation is
solved by enforcing periodic displacement boundary conditions on
the paired nodes on the opposite edges of the unit cell.

A microstructural buckling analysis is performed to examine
the buckling characteristics of microstructures when subjected to
a prescribed macroscopic stress loading erij. The governing equa-
tion isZ
X
Ds

ijkl
@/i

@xj

@wk

@xl
dX� P

Z
X
rij

@/m

@xi

@wm

@xj
dX ¼ 0; 8wi

2 W
�

i; j; k; l;m ¼ 1;2ð Þ ðA3Þ

where W
�

is the admissible displacement space meeting the
Floquet-periodic boundary condition, P represents the eigenvalue
which relates to the ith-order bifurcation buckling loads in terms

of r̂k ¼ Pk r
���� ���, /i is the associated eigen-mode, and rij is the initial

microstructural stress before the buckling arises as

rij ¼ D0ð Þijkl � D0ð Þijkl
@ukl

p

@xq

 !eekl; i; j; k; l;p; q ¼ 1;2ð Þ ðA4Þ

where eekl is the macroscopic strain field, which is obtained byeekl ¼ DH
ijkl

� ��1 erij.

To capture all possible local and non-local buckling modes, the
instability equation (A3) is solved by enforcing the Floquet-Bloch
boundary condition, which is stated by

/m xþ Rj
	 
 ¼ /m xð Þeik
Rj ; j;m ¼ 1;2ð Þ ðA5Þ

where i2 ¼ �1, x ¼ x; yf gT belongs to the cell edges, k ¼ k1; k2ð ÞT is
the wave vector and Rj are the primitive lattice vectors which are

R1 ¼ L;0ð ÞT and R2 ¼ 0; Lð ÞT for the square unit cell, with L for the
edge length of the unit cell. In the analysis, k is swept over the
boundaries of the first Brillouin zone due to symmetries, as shown
in Fig. A1. Totally 99 wave vectors are swept.
order, which starts from C.
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Appendix B. Mesh sensitivity analysis

Mesh convergence study is conducted to examine the numerical
accuracy by using different number of elements in the width direc-
tion of struts and by using different types of elements. The influ-
ence of the element numbers on both the effective stiffness and
buckling strength are presented in Fig. B1a and B1b. The results
show that using at least 6 layers of elements in the width direction
can obtain high accuracy, where putting another layer of elements
can generate marginal improvement of accuracy. The influence of
Fig. B1. Results for mesh sensitivity analysis, including the influence of different eleme
buckling strength; and (c) the influence of various types of elements on the effective stiffn
elements, 4-node linear quadratic elements, and second-order Lagrangian quadratic elem
The results in (a) and (b) are obtained by using linear triangular elements on the Iso-HMs
width direction on the Iso-HMs in Fig. 5 with q = 38.36%.

15
the element types on the effective stiffness is presented in
Fig. B1c. The results show that using 3-node linear triangular ele-
ments yields slightly larger stiffness with minor difference com-
pared to the second-order elements.

Appendix C. Buckling results for biaxial loading

Figs. C1 and C2 present the buckling characteristics for the Iso-
HMs and SMs with rectangular holes, subjected to uniaxial and
biaxial compressive stresses, respectively.
nt numbers in the direction of strut width on (a) the effective stiffness and (b) the
ess, including the 3-node linear triangular elements, 6-node second-order triangular
ents. The results are for both (top) the Iso-HMs and (bottom) corresponding SMs.
in Fig. 9d, and those in (c) are obtained by using at least 6 layers of elements in the



Fig. C1. Buckling characteristics of the Iso-HMs and SMs with rectangular holes of RH ¼ 1:5 subjected to r
� ¼ �1 0 0½ �T , for (a) the SM with q ¼ 42:10% and (b)-(d) Iso-

HMs with various q.

Fig. C2. Buckling characteristics of Iso-HMs and SMs with rectangular holes of RH ¼ 1:5 subjected to r
� ¼ �1 �1 0½ �T , for (a) the SM with q ¼ 42:10% and (b)-(d) Iso-HMs

with various q.
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Appendix D. Material property of the base material

Three square prism specimens were 3D printed, each with a
section size of 3 mm and a height of 30 mm (Fig. D1a). The density
of each specimen was obtained by measuring the weight and then
divided by its volume, and the density of the base material was
16
obtained as the average of the densities from the three specimens.
Each specimen was loaded and unloaded four times (Fig. D1b), and
its compression stiffness was obtained as the average of unloading
slopes of the last three times. To this end, E0 of the base material
was then the average of compression stiffness of the three
specimens.



Fig. D1. Measurement of stiffness of the base material. (a) One 3D-printed square prism specimen; and (b) loading–unloading curves for the three specimens.
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