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Summary (English)

We investigate the dynamics of N coupled oscillators on (adaptive) graphs. To
make progress on the question how synchronization depends on the graph struc-
ture or on how much the graph can adapt, we carry out three studies. Firstly, we
study a symmetric system of two populations of nonidentical inhibitory Theta
neurons in the N → ∞ limit and investigate the dynamics depending on the
inter- and the intra-population coupling. Secondly, we study the stochastic
Kuramoto model on graphops (generalized graphs of ini�nite size), give a crit-
ical coupling strength for the onset of partial coherence, and complement this
analytical result with numerical experiments on di�erent (�nite) graphs. Fi-
nally, we study an adaptive Kuramoto model on (un)directed graphs, mainly
for N = 2 and partly for N = 50 oscillators. Although the most complex dy-
namical behaviour in our studies requires the graph to be directed and adaptive,
complicated behaviour can already occur for perfectly symmetric, nonadaptive
systems. Moreover, strong irregularities or a relatively low number of edges can
weaken the graph's ability to synchronize the oscillators.
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Summary (Danish)

Vi undersøger dynamikken af N koblede oscillatorer på (tilpasselige) grafer.
For at gøre fremskridt med spørgsmålet, hvordan synkronisering afhænger af
grafstrukturen eller af hvor meget grafen kan tilpasses, udfører vi tre under-
søgelser. For det første undersøger vi et symmetrisk system af to populationer
af forskellige hæmmende neuroner i N →∞ grænsen og undersøger dynamikken
i forhold til koblingen indenfor og mellem populationerne. For det andet under-
søger vi den stokastiske Kuramotomodel på grafoperatorer (generaliserede grafer
af uendelig størrelse), giver en kritisk koblingsstyrke for begyndelsen af delvis
kohærens, og supplerer dette analytiske resultat med numeriske experimenter
på forskellige (endelige) grafer. Til sidst undersøger vi en tilpasselig Kuramo-
tomodel på (u)rettede grafer, hovedsageligt for N = 2 og delvist for N = 50
oscillatorer. Selvom det mest komplekse adfærd i vores undersøgelser kræver
at grafen er rettet og tilpasselig, complicert adfærd kan allerede forekomme
for aldeles symmetriske, ikke-tilpasselige systemer. Desuden kan stærke ure-
gelmæssigheder eller et forholdsvis lavt antal kanter svække grafens evne til at
synkronisere oscillatorerne.
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Preface

This PhD thesis is the �nal written deliverable in the PhD of Benjamin Jüttner.
The PhD programme was carried out from the 15th of September 2019 until
the 14th of September 2022 at the Department of Applied Mathematics and
Computer Science (DTU Compute), Section for Dynamical Systems. The PhD
was supervised by Erik A. Martens, Christian Kuehn, Sune Lehmann Jørgensen,
and Poul G. Hjorth.

This PhD thesis is based on the following three articles which result from re-
search carried out during this PhD by Benjamin Jüttner and his collaborators:

Birth and destruction of collective oscillations in a network of two populations of
coupled type 1 neurons [1], published in Chaos, authored by Benjamin Jüttner,
Christian Henriksen, and Erik A. Martens,

Graphop Mean-Field Limits and Synchronization for the Stochastic Kuramoto
Model [2], forthcoming in Chaos, authored by Marios A. Gkogkas, Benjamin
Jüttner, Christian Kuehn, and Erik A. Martens,

Complex dynamics in adaptive phase oscillator networks [3], authored by Ben-
jamin Jüttner and Erik A. Martens.

The articles are attached to the very end of this thesis with permission of Chaos.

This thesis consists of three Chapters. In Chapter 1, we give a (beginner-
friendly) introduction to the �eld of coupled oscillators, explaining the Ku-
ramoto model and its variants, as well as the Theta neuron model, brie�y men-
tioning research conducted on these models by others. Also, we explain how to
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make the transition from �nite systems to systems of in�nite size. Throughout
Chapter 1 we introduce technical terms and mathematical symbols that will be
used in a consistent manner in the entire thesis. In Chapter 2 we summarize
each of the above listed articles. Finally, in Chapter 3, we compare the results
of the three articles and discuss said results, proposing new research questions
to follow up on this work.

The results of this thesis are, to the best of our knowledge, original. All state-
ments, equations and ideas originating from other research are marked with
references.

Lyngby, 14th of September 2022

Benjamin Jüttner
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Notation

Mathematical symbols and technical terms are used consistently throughout
the thesis. We made an e�ort to synchronize the notation of this thesis and the
articles [1�3] as best as possible. The remaining mismatch will be handled by
the neural adaptivity of the reader.



x Notation

Mathematical symbols

T the unit circle, R mod 2π
φ phase on the unit circle
φ̂ phase on the real line

l,m oscillator indices
ω ∼ g(ω) intrinsic freqencies ω are drawn from the

(probability) distribution g(ω)
N number of oscillators = system size

[N ] the index set {1, . . . , N}
t time

u,φ,B vectors (bold face)
c∗ complex conjugate of c
i the imaginary unit, i2 = −1

Ω the vertex set
C coupling strength (Kuramoto), C ∈ R
C\ critical coupling strength for the

onset of partial coherence
κ coupling (graph) matrix (bold face), with

elements κlm ∈ R (the coupling weights)
x, y points in the vertex set Ω = [0, 1] for N →∞
K coupling graphon, K = K(x, y)
A coupling graphop
z order parameter (complex number)
r order parameter (magnitude)
ρ (probability) density of oscillator mass, N →∞

All other mathematical symbols will be explained upon �rst occurrence.

Technical terms

All technical terms used in this thesis are written in italic face upon �rst usage.
To make this thesis as easy to read as possible, we avoid using multiple terms
for the same thing. Yet, we will often hint at alternative terms used in the
literature but not adopted in this thesis. These terms are written in normal
face and marked with "".
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Abbreviations

OA Ott-Antonsen
ER Erdös-Rényi
ODE ordinary di�erential equation
SDE stochastic di�erential equation
PDE partial di�erential equation
SNIC Saddle-Node on an Invariant Cycle
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Chapter 1

Introduction

This thesis is based on the articles [1�3]. The articles will be summarized and
discussed in Chapters 2 and 3, respectively. As a support, we give this Intro-
duction, providing a concise overview and a basic understanding of the mathe-
matical concepts and equations typically encountered in the �eld of (adaptive)
phase oscillator dynamics. At the same time, this Introduction sets up a com-
mon language with which to compare the articles [1�3].

1.1 Synchronization

1.1.1 A brief history of synchronization

Synchronization is the process in which two or more parts of a system start con-
forming to each other's behaviour. Synchronization occurs between the Earth
and the Moon and between photons in a laser beam. Synchronization occurs
between neurons in the reader, between di�erent members of a social group and
between engines and generators in a power grid. Synchronization is the reliable
force behind many a thing that we take for granted in everyday life. Synchro-
nization is an underlying mechanism of the cosmos that operates on a vast range
of time scales and spatial scales. Synchronization is, as S. H. Strogatz puts it,
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"perhaps the most pervasive drive in all of nature". Synchronization can be seen
as a counter-force to the law of entropy. The former causes organization, the
latter disorganization. Etymologically, synchronization comes from the ancient
Greek "syn" (together) and "chronos" (time). In this sense, synchronization
means that di�erent agents time their behaviour such as to occur at the same
time. As terms get used and abused with time, the term synchronization has also
been extended to spatial contexts, here it means that di�erent agents coordinate
their behaviour to occur in the same place.

Synchronization was spotted by pioneers such as C. Huygens (1629 - 1695) who
realized that pendulum clocks are able to synchronize [4]. One of the �rst to
study synchronization mathematically was N. Wiener (1894 � 1964) who tried
an approach with Fourier integrals [5] which has proven to be unfruitful. A.
T. Winfree (1942 � 2002) later formulated synchronization as a large ensemble
of limit cycle oscillators who are coupled to each other and are thus coupled
to the overall rhythm generated by the entire ensemble [6]. His work attracted
the attention of Y. Kuramoto, to whom we owe the elegant Kuramoto model on
which much of the work of this thesis is based. Synchronization being an utterly
universal phenomenon, the Kuramoto model provides a level of abstraction that
makes it applicable to synchronization in a universal context. This viewpoint �
which looks at synchronization in general rather than a speci�c real-world ex-
ample such as e.g. the synchronization in electric circuits � shall be adopted in
this thesis. S. H. Strogatz pushed our understanding of synchronization and the
Kuramoto model further and in entertaining ways communicated the topic to a
more general audience.1 Researchers such as E. Ott, T. Antonsen, S. Watanabe,
S. H. Strogatz, M. A. Gkogkas and C. Kuehn gave us powerful mathematical
techniques that allow us to see the big picture in very large systems of synchro-
nizable oscillators [8�12]. E. A. Martens has furthered our knowledge about
special types of synchronization / non-synchronization patterns called chimera
states, demonstrated not only in theoretical works as [13, 14], but also by an
impressive real-world experiment with metronomes on coupled swings [15].

Synchronization between di�erent parts of a system requires that these parts
in�uence each other. Relations between pairs of parts of a system can be de-
scribed via graphs (also called "networks"). Examples in real life are numerous:
the brain and other nervous systems, electric circuits, the internet, Facebook,
power grids, railroads, etc. The study of synchronization thus involves the study
of dynamics on graphs. Indeed, the structure of the graph plays a crucial role
and many studies have investigated how synchronization depends on the prop-
erties of the underlying graph [16]. In the real world, graphs are often subject to
change as time goes by. New connections between nerve cells form when practic-
ing the piano, members of social networks intensify relations to other members,

1Yet it was G. A. Gottwald who compared the Kuramoto model to a fruit �y [7].
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form new relations or even "unfriend" people on Facebook. A relatively new
angle in the study of synchronization is thus the dynamics of graphs, where the
graph changes over time. We also speak of adaptive graphs (or "networks").

This thesis will address some questions in the directions alluded to earlier. We
are interested in the dynamic behaviour of (abstract) systems of synchronizable
oscillators, and in qualitative changes of this behaviour as parameters vary,
these changes are called bifurcations (or sometimes "phase transitions"). The
systems in question can consist of a small, medium, large or even in�nite number
of oscillators. The graphs can be constant in time or adaptive. If they are
constant, we allow for di�erent types of graphs. The central question is: how
does synchronization depend on the graph structure or on the extent to which
the graph is able to adapt? To be able to pose this question more speci�cally and
to break it down into sub-questions, we will set up a language in the remainder
of this Introduction.

1.1.2 Types of synchronization

In this thesis we consider a system of N phase oscillators with time-dependent
phases φl(t) ∈ T, where T = R mod 2π is the unit circle, and l ∈ [N ] :=
{1, . . . , N} is the index of the oscillator. N is thus called the system size. The
dynamic frequency dφl

dt is the instantaneous speed with which the oscillator's
phase rotates around the unit circle. Note that the di�erence between two
phases is taken mod 2π, like the individual phases. Depending on the relative
position and (angular) velocity of N phase oscillators we can de�ne various types
of synchronization:

De�nition 1 Weak synchronization. A set of N phase oscillators is said to
be weakly synchronized if there is a �xed upper bound smaller than 2π such that
each pairwise phase di�erence stays below this bound at all times.

De�nition 2 Frequency-synchronization. A set of N phase oscillators with
phases φ1, . . . , φN ∈ T is said to be frequency-synchronized if all pairwise phase

di�erences are constant in time, or equivalently, if dφ1(t)
dt = . . . = dφN (t)

dt ∀t.

De�nition 3 Phase-synchronization. A set of N phase oscillators with
phases φ1, . . . , φN ∈ T is said to be phase-synchronized if φ1(t) = . . . = φN (t) ∀t.

Clearly, phase-synchronization implies frequency-synchronization implies weak
synchronization.2

2in the literature, phase-synchronization and frequency-synchronization are often referred
to as "phase-locking" and "frequency-locking", respectively.
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π

φ̂l

−π

weak synchronization frequency-synchronization phase-synchronization

π

φ̂l

−π

anti-phase synchronization incoherence drift

Figure 1.1: Illustration of De�nitions 1 to 6. Black dots indicate phases φ̂l
of oscillators, red arrows indicate constant dynamic frequencies.
Absence of arrows indicates that the dynamic frequencies are not
important for the de�nition. In the weakly synchronized panel,
red lines indicate a range in which all phases stay at all times.
The red lines may move over time, their distance stays constant.

De�nition 4 Anti-phase-synchronization. A pair of phase oscillators with
phases φ1, φ2 ∈ T is said to be anti-phase-synchronized if φ1(t)− φ2(t) = π ∀t.

De�nition 5 Incoherence. A set of N phase oscillators with phases
φ1, . . . , φN ∈ T is said to be incoherent if the phases are spread (relatively)
evenly across the unit circle.

We intentionally kept the de�nition of incoherence a bit lax, so as to include
states where the oscillators are spread only roughly evenly around the unit circle.
This will prove useful when dealing with �nite-size e�ects, see Sec. 1.4.1. A more
strict subclass of incoherence is equidistant phases,3 where φl = 2πl/N, l ∈ [N ].
Moreover, a set of many drifting oscillators (see Def. 6) can be incoherent.

So far we only consider the location of an oscillator on the unit circle, and are
not concerned with how many times the oscillator has rotated around the unit
circle in the past. This viewpoint will su�ce for the most part. However, it is
sometimes necessary to take the past into account, so we de�ne a phase φ̂(t) ∈ R.
If an oscillator starts at the position 0.1π on the unit circle and rotates around
the circle 3 times, then φ̂ = 6.1π, while φ = 0.1π.

De�nition 6 Drift. Two oscillators with phases φ̂1 and φ̂2 are said to drift
(apart from or relative to each other) if |φ̂1 − φ̂2| → ∞ as t → ∞. A set of N
oscillators drifts if at least two of its oscillators drift apart from each other.

3called "splay state" by Berner et al. or "(travelling) waves" by some.
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runners
drift

pendula
phase-synchr.

φ0

0

−π2 π
2

pendula
weak synchr.

φ1
φ2

0

−π2 π
2

pendula
frequency-synchr.

φ1
φ2

0

−π2 π
2

Figure 1.2: Illustration of drift and di�erent types of synchronization. The
runners run at di�erent constant speeds and thus rotate, the pen-
dula librate. In the phase-snychronized scenario, both pendula
have identical period and initial condition and thus identical phase
φ0 := φ1 ≡ φ2 at all times. In the weakly synchronized scenario,
phases stay con�ned to the same (dashed) subset of the unit circle.
Even if the lengths of the pendula and thus the pendulum frequen-
cies were identical, the pendula would still only be weakly and not
frequency-synchronized (assuming nonidentical initial conditions).
In the frequency-synchronized case, both pendula are welded to-
gether with an iron rod (black).

De�nitions 1 to 6 are illustrated in Fig. 1.1. Note that phases (but not the
constant dynamical frequencies) are identical in the drifting panel of the Fig-
ure. This is to emphasize that despite being momentarily of equal phase, the
oscillators are not phase-synchronized.

Imagine two runners on a circular lane. If one runner at all times runs at a
larger speed than the other, they drift. The faster runner will alternate between
"running away from the other" and "approaching the other from behind". Still,
the distance |φ̂1 − φ̂2| between the runners keeps increasing. In contrast, we
will abuse two pendula (Fig. 1.2). The equilibrium position of a pendulum is
identi�ed with φl = 0. The angle formed by the displaced position of a pendu-
lum and the equilibrium position is identi�ed with φl. Assume the pendula do
not in�uence each other and never never cross φl = π or φl = −π, so φl ≡ φ̂l.
Clearly, if the two pendula have the same pendulum frequency (given by their
length) and are started at the same position, they are phase-synchronized. Now
if the two pendula have di�erent pendulum frequencies, their phases φ1, φ2 are
neither frequency-synchronized (because φ1(t) − φ2(t) is not constant in time)
nor drifting (because φ1(t)− φ2(t) is bounded) but weakly synchronized (since
the phases always remain in a �xed neighbourhood of each other). If the pen-
dula have the same pendulum frequency but are started at di�erent positions
we � somewhat stubbornly, ignoring physics intutition, but faithful to our above
de�nitions � insist that the pendula are not frequency-, but only weakly syn-
chronized (because φ1(t)−φ2(t) is not constant in time). As a compensation for
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this narrow-mindedness, we weld the two pendula together with an iron rod and
achieve frequency-synchronization. To complete our de�nitions, we say that a
phase performs a rotation if it travels one entire round around the unit circle;
in contrast, a phase performs a libration if it swings back and forth con�ned
to a mere subset of the unit circle. Thus, in the runners' analogy, the phases
perform a series of rotations while in the pendulum analogy the phases perform
a series of librations.

Finally, a given set of oscillators might contain subsets which exhibit distinct
types of weak / frequency-synchronization. These subsets are called clusters.
For example, two clusters might be internally phase- or frequency-synchronized
but rotate at di�erent speeds, or one cluster is frequency-synchronized while the
other is phase-synchronized etc. In such cases we speak of cluster synchroniza-
tion.

1.1.3 Coherence and the order parameter

Systems of many oscillators are usually di�cult to handle and interpret when
looking at the individual phases, i.e., adopting a microscopic perspective. The
question of coherence of the phases concerns whether oscillators are spread
(roughly evenly) all over the unit circle or whether the phases are (relatively)
close together. Here, a macroscopic perspective � which looks at the entirety of
all oscillators rather than individual oscillators � is helpful. An elegant macro-
scopic quantity is the order parameter

z(t) ≡ r(t)eiψ(t) :=
1

N

∑

l∈[N ]

eiφl(t) (1.1)

which is simply the average of the complex phasors obtained from the individual
phases. Clearly, r ∈ [0, 1]. ψ is a representative or "average" phase of the
oscillators.4 Clearly, ψ is meaningless for r = 0. For simplicity of wording, we
will use the term order parameter to refer to both the complex number z and
its magnitude r, and we will always make clear which one is meant.

The order parameter has certain bene�ts and limitations. First and foremost,
the order parameter r o�ers a convenient way of quantifying how close the phases
are together without calculating their pairwise di�erences. Thus, we can say that
the (level of) coherence of the oscillators manifests itself in r. Incoherence (see
De�nition 5) implies r ≈ 0. Perfect coherence, i.e., equality of all phases, is
equivalent to r = 1. The intermediate regime between incoherence and perfect

4The term "average phase" is widely used in the literature and should not be interpreted
as "arithmetic mean of the phases".
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coherence is callled partial coherence. In this regime, we say the coherence is
low (closer to incoherence) or high (closer to perfect coherence). Thus, partial
coherence implies an intermediate value of r. Note that a value of r close or
equal to zero might also be caused by states other than incoherence. Take four
oscillators with φ1 = φ2 = 0, φ3 = φ4 = π, then r = 0. An uncountable number
of such and similar non-incoherent states with r = 0 or r ≈ 0 can be constructed.
However, in the models studied in this thesis, such special con�gurations of the
phases do not appear out of the blue, they require certain properties of the
model in question. Therefore, when seeing an order parameter r close to zero, it
is reasonable to expect incoherence. Moreover, the closer r gets to 1, the more
it is true that the majority of oscillators have small pairwise phase di�erences.
The order parameter has some relations to the types of synchronization and drift
de�end in the previous Section. Like the phases, the order parameter is dynamic;
the level of coherence, and thus r(t), typically waxes and wanes over time,
unless the oscillators are frequency-synchronized, in which case r(t) =const. The
oscillators are phase-synchronized i�. r(t) =const.= 1 (phase-synchronization
does not restrict ψ(t)). Drifting oscillators cause an order parameter r(t) which
stays close to zero at all times.5 By De�nition 1, weak synchronization implies
partial coherence.

The technical terms learned in this Section by de�nition overlap to some extent
but do not contradict each other, and hopefully make sense to the reader. Such
a system of de�nitions is however not needed in every publication. Thus, the
reader is warned that these technical terms are used in di�erent ways in the
literature.6

1.2 Graph theory

Having established an understanding of synchronization, we may ask how syn-
chronization or a certain level of coherence come about. Oscillators might of
course synchronize by accident, but in the context of this thesis, they move
closer together in their phase or show some kind of synchronization because
they in�uence each other. This in�uence between oscillators is called coupling.
Which oscillator in�uences what other oscillator how strongly is described by a
graph. We will here introduce the terms from the mathematical �eld of graph
theory that are needed for this thesis. The de�nitions can be found in standard

5As N → ∞, z(t), r(t) will stay closer and closer to zero when oscillators drift. This
�nite-size e�ect will become clearer in Secs. 1.4.1 and 1.6.2.

6For example, Berner et al. refer to what we call a frequency-synchronized state as a
"phase-locked" state. (Partial) coherence is often referred to as "(partial) synchrony" or
"(partial) synchronization".
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textbooks, e.g. [17].

De�nition 7 Graph. A graph is a structure with N vertices. Each pair of
vertices l,m are either neighbours, via an edge, or not. Ω ≡ [N ] is called the
vertex set and E ⊆ Ω × Ω is called the edge set of the graph. I�. l and m are
neighbours, (l,m) ∈ E.

In our context, there is a one-to-one correspondence between an oscillator and
a vertex in the graph. The graph determines exactly how the oscillators are
coupled. We will in this thesis only use the term (coupling) graph, while other
authors in the �eld of coupled oscillators often use the terms (coupling) "net-
work" or (coupling) "topology".

De�nition 8 Weighted edge. An edge is called weighted if it has a real num-
ber attached to it, the weight of the edge. An edge with weight 0 is considered
non-existent, an edge with weight 1 is considered unweighted.

De�nition 9 Weighted graph. A graph is called weighted if it contains a
weighted edge, otherwise the graph is called unweighted.

De�nition 10 Directed edge. An edge (l,m) is called directed if is interpreted
to start at vertex l and end at vertex m. If l and m are not interpreted as start-
or end- vertex of the edge (l,m), then (l,m) is called undirected.

Note: For the purposes of this thesis, an undirected edge can be viewed as
bidirectional. In fact, if both (l,m) and (m, l) exist as directed edges in the
same graph (and have the same weight w if the graph is weighted), then they
can be (thought of as) deleted and replaced by an undirected edge (l,m) (with
weight w).

De�nition 11 Directed graph. A graph is called directed if it contains a
directed edge, otherwise the graph is called undirected.

De�nition 12 Self-loop. A self-loop is a (weighted or unweighted) undirected
edge between a vertex and itself.

De�nition 13 (Weighted) adjacency matrix. Every graph with N vertices
can be represented by a (weighted) adjacency matrix κ ∈ RN×N with κlm being
the weight of the edge (m, l) (from m to l), for all l,m ∈ [N ]. A graph is
unweighted i�. all entries of κ are either 0 or 1. In this case κ is simply
called adjacency matrix. A graph is undirected i�. κ is symmetric. (Weighted)
self-loops are represented by the non-zero diagonal elements of κ.
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Note: For simplicity of wording, we will refer to both a graph and its ((weighted)
adjacency) matrix by κ.

De�nition 14 Degree. In an unweighted undirected graph, the degree of a
vertex is the number of its neighbours. A regular graph is a graph in which
every vertex has the same degree.

In an unweighted undirected graph, the neighbourhood of a vertex l is the set of
neighbours of l. For weighted graphs we generalize the notion as follows:

De�nition 15 Neighbourhood. In a weighted undirected graph, the neigh-
bourhood of l is the lth column (or row) of κ.

Note: the notions of degree and neighbourhood can be extended to directed
graphs, but this is not needed in this thesis.

De�nition 16 Connected. In an undirected graph, two vertices are connected
if one can be reached from the other by a path of undirected edges.

Note the di�erence between neighbouring and connected (the former implies the
latter).

De�nition 17 Connected graph. An undirected graph is called connected if
every vertex is connected to every other vertex.

De�nition 18 Complete graph. The undirected, unweighted graph where ev-
ery vertex is a neighbour of every other vertex is called the complete graph.

Note: we (and many other authors) will also refer to the complete graph as
all-to-all coupling.

De�nition 19 Complete bipartite graph. A complete bipartite graph is an
undirected, unweighted graph whose vertex set Ω can be subdivided into two
groups such that for all l,m ∈ Ω we have (l,m) ∈ E i�. l and m belong to
distinct groups.

1.3 Dynamical systems

In this thesis, the models governing how oscillators in�uence each other are
dynamical systems, i.e., systems of ordinary (ODE) or stochastic (SDE) di�er-
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ential equations. We will therefore here give a very brief overview of the �eld
of dynamical systems, simplifying the de�nitions to avoid details not needed in
this thesis. The interested reader is referred to [18�20].

De�nition 20 Dynamical system. A dynamical system is a system of dif-
ferential equations governing the temporal evolution of state variables u. These
systems can be written as du

dt = f(u) (for systems of ODEs) or du = df(u)+dR
(for systems of SDEs) where dR is a noise term.

De�nition 21 Trajectory. A trajectory / solution u(t) to a dynamical system
is the temporal evolution of the state variables that is uniquely de�ned by the
dynamical system itself and an initial condition u(0).

Note: In this thesis, trajectories / solutions are found by numerically solving
(or "integrating") the dynamical system in question.

De�nition 22 (Stable) equilibrium. A state u∗ of a dynamical system is
called an equilibrium if the temporal change of the state variables, du

dt , vanishes
when the system assumes the state u∗. The equilibrium is called stable if each
trajectory u(t) whose initial condition u(0) lies in a certain �xed neighbourhood
of u∗ asymptotically approaches u∗ as t→∞.

De�nition 23 Stable limit cycle. A closed trajectory uLC is called a stable
limit cycle if, for some �xed period T < ∞, any choice of initial condition
u(0) ∈ uLC implies u(T ) = u(0), u(t) ∈ uLC ∀t and each trajectory whose
initial condition u(0) lies in a certain �xed neighbourhood of uLC asymptotically
approaches uLC as t→∞.

De�nition 24 Bifurcation. A bifurcation is a qualitative change in the dy-
namical behaviour of a dynamical system as a parameter passes through a critical
value.

Note: Bifurcations seen in this thesis can bring about the creation and de-
struction of equilibria and oscillatory states (such as limit cycles or chaos).
Bifurcations can also change the stabilities of states.

1.4 The Kuramoto model

Having established what synchronization is and how it is mediated via graphs,
we introduce a widely used dynamical system that enables synchronization via
di�erent graphs, classically the complete graph (Sec. 1.4.1).
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1.4.1 The classical Kuramoto model

The Kuramoto model [21] is an intuitive and generic model to describe synchro-
nization phenomena. It is stated in its classical form as a system of ODEs

dφl
dt

= ωl +
C

N

N∑

m=1

sin(φm − φl), l ∈ [N ]. (1.2)

The ωl are called intrinsic frequencies of the oscillators, C is called coupling
strength. In this context, sin is called the coupling function. Notice the phase-
shift invariance of the system:

(φ1, . . . , φN ) 7→ (φ1, . . . , φN ) + φ0 + ω0t, φ0 ∈ T, ω0 ∈ R (1.3a)

(ω1, . . . , ωN ) 7→ (ω1, . . . , ωN ) + ω0, ω0 ∈ R (1.3b)

where (1.3b) is a direct consequence of (1.3a). In other words, the behaviour of
(1.2) does not change if we add an identical constant φ0 (ω0) to all phases (in-
trinsic frequencies). It means that we can wlog. make one of the oscillators the
reference frame and set this oscillator's phase constantly to zero. For simplicity,
we shall in this thesis always assume that the mean of all ωl's is zero, which can
be achieved using (1.3b). If the ωl's are all equal (i.e., they are all 0 wlog., using
(1.3b)), then we speak of identical oscillators. Unless speci�ed otherwise, we
will in this thesis assume the ωl's to follow an even, unimodal distribution g(ω)
(i.e., g(ω) = g(−ω) and g(ω) having its global maximum at ω = 0). Commonly
used examples for g(ω) are the normal distribution or the Lorentzian/Cauchy
distribution.

The temporal evolution of the phase φl(t) of the lth oscillator is always a com-
promise between two competing forces: the �rst term, ωl, is the speed at which
the oscillator naturally prefers to rotate around the unit circle. The second term,
the coupling term, proportional to the coupling strength C ∈ R, either slows
down or speeds up the oscillator l, depending on where its phase stands relative
to the other oscillators. The relation between C and (the spread / standard
deviation of) the ωl's thus determines which of the competing forces dominates.

For identical oscillators and C > 0, the phases φl always converge to the phase-
synchronized state as t → ∞. For non-identical oscillators, the system's be-
haviour is more involved. We shall here informally introduce a concept vi-
tal to the Kuramoto model, namely the coherence transition, i.e., the transi-
tion from incoherence over partial coherence to perfect coherence and phase-
synchronization, which will be formalized more rigorously in Sec. 1.6.2. The
Kuramoto model has a critical coupling strength C\ such that for C < C\, the
oscillators drift (and are incoherent). That means, in a solution to (1.2), the
order parameter z(t) will �uctuate around 0. These O(N−1/2) �uctuations are
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π
φ
−π

C < C\ C > C\ C > C\ C →∞

Figure 1.3: Qualitative coherence transition of the Kuramoto model (1.2) with
normally distributed intrinsic frequencies. C increases from left to
right. Red dots mark drifting oscillators with nonzero, distinct
dynamical frequencies, blue dots mark frequency-synchronized os-
cillators with zero dynamical frequency.

a �nite-size e�ect. If C > C\, then the oscillators split into two populations.
The oscillators of one population are weakly synchronized to each other. The
oscillators of the other population drift apart from each other and from the
weakly synchronized population. The weakly synchronized population is par-
tially coherent, so its contribution to r is larger than zero. Clearly, the order
parameter r still �uctuates. As C is increased above C\, the �rst oscillators
leave the drifting population in favour of the weakly synchronized population.
Also, the weakly synchronized oscillators draw closer together. This causes the
�uctuations to decrease and the temporal mean of r to increase. For C suf-
�ciently large, the drifting population is empty, i.e. all oscillators are weakly
synchronized. As C →∞, the oscillators move towards the phase-synchronized
state. This transition is illustrated qualitatively in Fig. 1.3. There, weakly syn-
chronized oscillators are even frequency-synchronized. Notice that due to (1.3)
we can substract the frequency-synchronized oscillators' dynamical frequency
dφ∗(t)
dt from all oscillators' dynamical frequencies dφl(t)

dt , so that the frequency-
synchronized oscillators stand still on the unit circle.

As we have just seen, the devil is in the detail already in this simple model.
For example, it is counterintuitive that the model does not start to pull the
oscillators together as soon as C > 0, but instead C > C\ is required to see
partial coherence. Somewhat suprisingly, the analysis of (1.2) can be put on
more solid ground when N → ∞, as we shall see in Sec. 1.6.2. For now, the
following basic intutition will su�ce. In (1.2), we have many "tame" oscillators
with intrinsic frequencies ωl close to 0, and few "wild" oscillators whose ω's are
far from zero. The tame oscillators are the �rst to weakly synchronize when
C > C\. The higher C gets, the more of the oscillators weakly synchronize and
the closer they draw together. The wildest oscillators need the highest value of
C in order the join the synchronized herd.
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1.4.2 The Kuramoto-Sakaguchi model

The Kuramoto-Sakaguchi model [22] is given by

dφl
dt

= ωl +
C

N

N∑

m=1

sin(φm − φl + α), |α| ≤ π

4
, l ∈ [N ]. (1.4)

The coupling function is thus a shifted sine, sometimes this shift is used to model
signaling delays in real-world systems of oscillators. The Sakaguchi phase lag
α complicates the coherence transition too: for certain values of α 6= 0 and in
some intermediate range of C > C\, the stable partially coherent state either
coexists with or disappears in favour of the stable incoherent state [23,24].

1.4.3 The Kuramoto model on general coupling graphs

The models (1.2) and (1.4) are based on the assumption that every oscillator
in�uences every other oscillator with the same coupling strength C. The cou-
pling graph is thus the complete graph.7 However, real-world graphs are often
more complicated and less regular. The Kuramoto model on general coupling
graphs, de�ned via a matrix κ with entries κlm, reads

dφl
dt

= ωl +
C

N

N∑

m=1

κlm sin(φm − φl), l ∈ [N ]. (1.5)

The coupling weight κlm is the weight with which oscillator m couples into
the dynamics of oscillator l. We see that (1.3) still holds. Moreover, possible
self-couplings κll have no e�ect.8 For any kind of synchronization among all
oscillators to happen, the graph needs to be connected.

Some coupling graphs are often considered in the literature. First of all, there is
the regular ring lattice graph. Here, all vertices can be imagined as arranged in a
ring, and each vertex has an edge to its k ≤ N/2 nearest neighbours to the right
and to the left, respectively; this is often called "local coupling". To break this
symmetry where every vertex has the same degree, and to introduce "shortcuts"
in the graph, the small-world graph was invented [25]. Here, every edge of the
regular ring lattice graph is, with a probability pSW, replaced by a random edge
between any two vertices, never allowing duplicate edges. This graph has the
"small-world" property, meaning that the path length between any two vertices

7this is often called "global coupling" (or, more precisely, "global and identical coupling").
8Even if a Sakaguchi phase lag is introduced, the diagonal of κ can be set to zero if the

ωl's are adjusted accordingly.
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is small on average due to the randomly rewired edges that act as shortcuts
even if the two vertices in question are far away on the ring. In the extreme case
pSW = 1, the small-world graph is equivalent to the Erdös-Rényi (ER) graph, a
graph where every edge of the all-to-all graph exists with a probability pER. A
�gure illustrating these three graphs nicely is found in [25](Fig.1).

With such graphs, the behaviour of the model (1.5) deviates from the classical
Kuramoto model (1.2) in interesting ways. Firstly, in the regular ring lattice
graph, for k . 0.34N , the partially coherent state is not the only attractor, it
coexists with stable states called "twisted waves" in [26]. Secondly, the small-
world graph has a lower C\ than the regular ring lattice graph [27](Fig.1).

Another random graph with the small-world property, i.e., small average path
length, is the scale-free graph [28]. Such a graph can be constructed by starting
with a tiny graph and repeatedly adding vertices and random edges from the
new vertices to the existing ones, such that edges are preferably created to
vertices that have many neighbours already. In this procedure, we obtain very
few hubs, i.e., vertices with a huge number of neighbours, while the vast majority
of vertices have very low degree. The probability of any vertex to have degree
k is proportional to k−γ with γ positive. The hubs "keep the graph together"
and provide the short average path length. This graph re�ects many graphs in
the real world (where often 2 < γ < 3), e.g. the internet, with hubs such as
Google. The Kuramoto model on scale-free graphs was studied, e.g., in [29,30].
Importantly, it was found that, in the limit N → ∞, C\ = 0 (C\ > 0) for
2 < γ ≤ 3 (γ > 3) [31].

The Kuramoto model (1.5) has been studied for other graphs too, e.g. the
complete bipartite graph [32] and random graphs with various clustering prop-
erties [33�38]. Even though interesting behaviour is brought about by non-all-
to-all graphs, telling apart the e�ects of the individual properties of a given
graph is no easy task [16](p.22).

Finally, it must be mentioned that the values of the ωl's relative to each other,
or the distribution(s) from which these values are drawn, play an important role
in the behaviour of the system. The Kuramoto models (1.2) and (1.5) are typ-
ically considered for unimodal g(ω) like the normal or the Lorentzian/Cauchy
distribution, or identical oscillators (Dirac delta distribution). Yet, multimodal
distributions are worth studying too. For bimodal g(ω) in the classical Ku-
ramoto model (1.2) the incoherent state can coexist with the partially coherent
state [39](Fig. 1b). In [40�44], the oscillators in the model (1.5) were grouped
into n populations where each coupling weight κlm assumes one of n2 values
depending only on which population(s) the oscillators l and m belong to. In
some of these works, (population-dependent) Sakaguchi phase lags are added.
The oscillators' natural frequencies ωl are then drawn from distributions that
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are individual for each population, e.g. g(ω) has a di�erent mean for each pop-
ulation or ωl is identical within populations but distinct across populations (like
in [41,45]). In [45], less regular graphs were allowed and cluster snychronization
was studied.

1.4.4 The stochastic Kuramoto model

The stochastic Kuramoto model is given by a system of SDEs

dφl = dt

(
ωl +

C

N

N∑

m=1

κlm sin(φm − φl + α)

)
+ dRl, l ∈ [N ] (1.6)

where dRl is the lth oscillator's own realization of some additive noise process
common to all oscillators. In this thesis we will study a system with dRl =
σBdBl where each oscillator l has its own realization of Brownian motion, Bl.
Brownian motion is, roughly speaking, integrated Gaussian white noise with
zero mean and variance σ2

B , see [46, 47] for an introduction to SDEs. An early
work on the stochastic Kuramoto model was done by H. Sakaguchi himself and
resulted in an expression for C\ that depends on the distribution of the intrinsic
frequencies and the variance of the noise [48]. In [49], the in�uence of the
type of noise on the coherence transition in the all-to-all stochastic Kuramoto
model was studied, arguing that real-world noise can often not be assumed
Gaussian. In [50], the coherence transition of the stochastic Kuramoto model
with identical oscillators was studied in the N → ∞ limit and compared with
numerical simulations of �nite N . The article also brie�y discusses how this
could extend to more general graphs than the complete graph. In Sec. 2.2, we
will adress the same question, but with a far more general graph given by a
graphop limit.

1.4.5 The adaptive Kuramoto model

So far we have assumed the coupling graph κ to be constant. However, in real-
world settings, coupling graphs often change over time, edges can be destroyed
or created or change their weight. An adaptive Kuramoto model can be stated
in many ways, we here give a formulation inspired by [51],

dφl
dt

= ωl +
C

N

N∑

m=1

κlm sin(φm − φl + α), l ∈ [N ] (1.7a)

dκlm
dt

= ε[f(φl − φm)− κlm], (1.7b)
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with f bounded and ε > 0. The second term in (1.7b) prevents divergence of the
coupling weights. It is often assumed that 0 < ε � 1, this seperates the time
scales of the phase dynamics vs. the adaptation dynamics, since in real-world
settings the graph often changes more slowly than the states of the vertices.
In [52�55], oscillators are identical and f is a sinusoidal function. A rich variety
of cluster synchronization and other phenomena is reported. [56] provides a
master stability function to determine synchronization in systems of the form
(1.7) and more general systems, assuming that oscillators are identical. The
case of non-identical oscillators is mathematically less tractable, and we shall
address this case in Sec. 2.3, mainly for N = 2 and brie�y for N = 50.

The �eld of adaptively coupled oscillators is an emerging �eld9 and not limited
to Kuramoto oscillators or even systems of ODEs, see [57, 58] for a review.
In [59], the creation and deletion of edges of the unweighted coupling graph
in the Kuramoto model was implemented via a time-discrete update rule that
favours edges between nearly-phase-synchronized pairs of oscillators. It is found
that the strongest amount of rewiring occurs at intermediate values of C. Also,
the stationary graph reached by this model has small-world properties.

1.5 The Theta neuron

The Theta neuron (�rst derived in [60]) is a generic model for a so-called "class-
I excitable oscillator" [61]. Entertaining this neurobiological analogy, a Theta
neuron can be provoked to send a spike when receiving an input current I. The
Theta neuron is governed by the ODE

dφ
dt

= 1− cosφ+ (1 + cosφ)I. (1.8)

It is easy to check that for I < 0 there exist a stable and an unstable equilibrium
on the unit circle, which coalesce at I = 0 and are absent for I > 0, i.e., a Saddle-
Node on an Invariant Cycle (SNIC) bifurcation occurs at I = 0. In the abscence
of equilibria, the neuron's phase rotates around the unit circle repeatedly, and
every time it reaches φ = π we say that the neuron spikes or �res. When the
equilibria exist and thus keep the neuron's phase from rotating forever, we say
that the neuron is quiescent. While this one-dimensional model is already non-
trivial due to its bifurcation (unlike the Kuramoto model, which is meaningless
with N = 1), one can couple N Theta neurons in a system of ODEs:

dφl
dt

= 1− cosφl + (1 + cosφl)[ηl + Il(κ,φ)], l ∈ [N ] (1.9)

9this area of research is also referred to as "adaptive networks", "co-evolutionary networks",
"temporal networks", etc.
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where ηl is an individual bias of the lth neuron towards spiking (ηl > 0) or
quiescence (ηl < 0), and Il is a coupling term (still called input current to
underline the neuronal analogy) depending on the graph and the phases. There
are several possibilities of designing the input current Il such that it models how
the spikes of other neurons in�uence the neuron l in its own spiking activity.
In [62], the pulse function P models the amount of excitatory output that a
neuron generates, depending on how close the neuron's phase φ is to the spiking
state φ = π:

P (φ) =
1

2
(1− cosφ). (1.10)

The input current to the lth neuron is then simply

Il(κ,φ) =
1

N

∑

m∈[N ]

κlmP (φm). (1.11)

Finally, the η's can be drawn from a distribution; in [62] the Lorentzian/Cauchy
distribution is chosen:

g(η) =
∆η

π[(η − η̂)2 + ∆2
η]
. (1.12)

The studies [62�64] take the system to the N → ∞ limit and study it macro-
scopically (see Sec. 1.6.3), and we shall follow them in this approach. In [62],
κ is taken as the complete graph and a comprehensive bifurcation analysis is
carried out. The article reports macroscopic spiral and node equilibria, as well
as macroscopic limit cycles, with di�erent levels of coherence and spiking ac-
tivity. In [63], an external time-dependent forcing is added. In [64], the graph
is subdivided into two populations where one population in�uences the other
unidirectionally. In the latter two articles, more complicated states such as
macroscopic periodic, quasiperiodic and chaotic states are observed.

In Sec. 2.1 we adopt the idea of [64] and again split the neurons into two pop-
ulations (of equal size), which roughly model two brain regions. However, we
assume that populations in�uence each other with the same strength and that
coupling is stronger within a population than across populations, so the matrix
κ simpli�es to

κlm :=

{
κ l,m belong to the same population

aκ l,m belong to di�erent populations
(1.13)

where |κ| ≥ |aκ|. In the jargon of graph theory, the coupling of a population to
itself is given by a complete graph (with weights κ), while the coupling between
populations is given by a complete bipartite graph (with weights aκ).
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1.6 Taking the limit N →∞

Coupled oscillator systems with large N are hard to analyze both analytically
and numerically since the systems of ODEs have O(N) state variables; if the
graph is adaptive, the number of state variables is even O(N2). Yet, most
research questions regarding coupled oscillator systems are only meaningful if
N is large. Thankfully, taking the limit N → ∞ often simpli�es (or enables)
the analytical treatment of the system from a macroscopic viewpoint. In this
viewpoint, all microscopic information (i.e., the dynamical behaviour of the
individual oscillators) is sacri�ced, instead statistical information (e.g. the order
parameter) regarding the behaviour of the entirety of oscillators is accessed.
Letting go of microscopic information naturally makes it much harder to identify
any types of synchronization as of De�nitions 1-4.

1.6.1 Treating ini�nitely many oscillators with probability

densities

If the system at hand employs ini�nitely many oscillators, one can no longer
speak of an individual, labelled oscillator (or vertex). Instead, we deal with
a mass of oscillators that is more dense in some places than in others. The
mass can move around over time, become more dense in some places and thin
out in others, yet the total mass stays constant all the time ("conservation of
oscillators").10 This notion is formalized by a joint probability density function,
or simply (probability) density, describing some distribution. Indeed, ρ(t, φ, ω) is
the joint probability density of oscillators with intrinsic frequency ω that assume
the phase φ at time t. The integral

∫ φb
φa

∫ ωb
ωa
ρ(t, φ, ω)dωdφ quanti�es, at time

t, the probability of an oscillator to have an intrinsic frequency in the range
ωa ≤ ω ≤ ωb and a phase in the range φa ≤ φ ≤ φb [9]. As a consequence,

∫

T

∫

R
ρ(t, φ, ω)dωdφ = 1 ∀t. (1.14)

Moreover, there is g(ω), the prior probability density of the intrinsic frequencies
of the oscillators (e.g., given by the normal or Lorentzian/Cauchy distribution).
g(ω) is time-independent: the intrinsic frequencies of the individual oscillators,
as well as the total amount of oscillators, are constant in time in the N < ∞
setting; intuitively, this continues to be the case in the N → ∞ setting. g(ω)

10The limit N → ∞ is also called "continuum limit" (as the set [N ] is replaced by a
continuum of oscillators), "thermodynamic limit" (imagining the oscillators as molecules in
a gas, moving around due to their temperature being above 0K, so numerous that they can
only be treated with macroscopic equations) or "mean-�eld limit".
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can also be understood as a marginal distribution [8, 9]

g(ω) =

∫

T
ρ(t, φ, ω)dφ ∀t. (1.15)

Like any joint distribution, ρ(t, φ, ω) can be separated into the prior distribution
g(ω) and the conditional distribution11 ρ(t, φ|ω):

ρ(t, φ, ω) ≡ ρ(t, φ|ω)g(ω). (1.16)

Consequently [65], and as is the case for any conditional distribution,

∫

T
ρ(t, φ|ω)dφ = 1 ∀ω, t. (1.17)

At time t, the integral
∫ φb
φa
ρ(t, φ|ω)dφ quanti�es the conditional probability of

an oscillator to have a phase φa ≤ φ ≤ φb given that this oscillator has the
intrinsic frequency ω.

ρ(t, φ, ω) tells us how, at time t, the oscillator mass is spread over the φ, ω
cylinder. Interested in the dynamics of coupled oscillators, we also want to
know how the oscillator mass moves, i.e., how ρ(t, φ, ω) changes with t. The
temporal evolution of the oscillator mass is governed by a continuity/transport
equation [66]

0 =
∂ρ(t, φ, ω)

∂t
+
∂[ρ(t, φ, ω)v(t, φ, ω)]

∂φ
. (1.18)

Note carefully that ρ is the solution to this partial di�erential equation (PDE)
and v is (in this PDE) an independent external forcing. In fact, v(t, φ, ω) de-
scribes how the portion of the oscillator mass that has intrinsic frequency ω
and that at time t has the phase φ is driven by the phase dynamics, v is thus
called a characteristic �eld. Note that the PDE (1.18) does not change ρ(t, φ, ω)
in ω direction, in keeping with the underlying assumption that the oscillators'
intrinsic frequencies (and thus their density g(ω)) are constant in time. Thus,
(1.18) governs the phase evolution of "the oscillators", just as the set of ODEs
dφ
dt = f(φ) does in the N < ∞ case. Intuitively, (1.18) states the conservation
of oscillators: for each ω and each t, the temporal increase of the density ρ at a
certain point φ on the unit circle (�rst term) has to cancel out with the out�ux
ρv of oscillator mass from φ into the neighbouring point φ+ dφ (second term).
The total oscillator mass thus remains constant at all times.

11Most authors do not use the term "conditional distribution" explicitly, even though it is
implied in their equations, and they also do not use the symbol "|", but use a comma instead.
Since we deal with both joint and conditional distributions in this thesis and need to distiguish
between these, we decided to adopt the "|" notation, which is standard in statistics.
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Finally, we can once more de�ne the order parameter z, which is still just an
average of complex numbers eiφ:

z(t) ≡ r(t)eiψ(t) :=

∫

T

∫

R
ρ(t, φ, ω)eiφdωdφ =

∫

T

∫

R
ρ(t, φ|ω)g(ω)eiφdωdφ.

(1.19)

Another advantage of the N → ∞ limit is that �nite-size e�ects vanish, so we
can tighten the de�nition of incoherence. In the N →∞ setting, the oscillators
are incoherent at time t i�. their phases are uniformly distributed around the
unit circle, i.e., ρ(t, φ|ω) = 1/(2π) for all ω. The order parameter is then exactly
zero.

With this, we have established the language that allows us to speak of the
oscillator phase dynamics in the N →∞ setting. We can now go even further.
Firstly, we can describe not only deterministic dynamical systems (as above),
but also stochastic ones. If we add Gaussian white noise with variance σ2

B to
the phase dynamics (like in (1.6)), we have to add a di�usion term to (1.18) so
that the dynamics of the oscillator mass is now governed by the Fokker-Planck
equation

0 =
∂ρ(t, φ, ω)

∂t
+
∂[ρ(t, φ, ω)v(t, φ, ω)]

∂φ
+
σ2
B

2
· ∂

2ρ(t, φ, ω)

∂φ2
. (1.20)

Importantly, v is only the deterministic driving force of the oscillator mass.
The di�usion term describes the stochastic in�uence that the oscillator mass
experiences. As an illustrative example, assume v ≡ 0, then (1.20) is simply the
heat equation [67] and

lim
t→∞

ρ(t, φ, ω) = g(ω), (1.21a)

lim
t→∞

ρ(t, φ|ω) =
1

2π
∀ω, (1.21b)

regardless of the initial condition ρ(0, φ, ω). In other words, the oscillator mass
always spreads out evenly on the unit cicle. This illustrates how, with time, the
stochasticity destroys all phase information, even for special initial conditions
where each oscillator's phase is known exactly in the beginning.12 As can be
expected, if v describes a (su�ciently strong) coupling between oscillators, this
counteracts the stochasticity, causing the system to reach a partially coherent
state rather than the incoherent state (1.21).

Secondly, we can can work with non-all-to-all coupling graphs. We then deal
with joint probability densities ρ(t, φ, x, ω) where x is an element of a vertex set

12this can be achieved by choosing a family of Dirac delta distributions as initial condition,
ρ(0, φ, ω) = g(ω)δ[φ(ω)].
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Ω. Models using this form of ρ are found in [11, 12, 68]13 and Sec. 2.2. Having
ρ depend on ω and x might seem odd. After all, in the N < ∞ setting, each
vertex (= oscillator) has exactly one intrinsic frequency and exactly one phase
at each time. However, phase and intrinsic frequency of "a vertex" are typically
not known exactly in the N → ∞ setting. Here, for each location x in the
vertex set, ρ(t, φ, x, ω) describes the probability density of "this vertex" having
the intrinsic frequency ω and phase φ at time t. Frequency and phase of "a
vertex" x at time t can only be determined exactly if for x and t, ρ(t, φ, x, ω) is
a Dirac delta distribution in some point (φ0, ω0).

1.6.2 Kuramoto's coherence transition for N →∞

In Sec. 1.4.1 we informally introduced the critical coupling strength C\ of the
classical Kuramoto model (1.2). This bifurcation point can be observed nu-
merically for large but �nite N . Y. Kuramoto himself analytically investigated
this bifurcation in the N → ∞ limit, and since this is a central result in the
Kuramoto model, we shall walk through it here, in a manner inspired by [65].

We assume an even distribution g(ω). The �rst step is to translate the model
(1.2) to the N →∞ setting. Applying (1.3a), we can set ψ = 0 in the Kuramoto
model, so z = r, which is in turn given by (1.19). As was explained in the
previous Section, the dynamics of the oscillator mass is governed by the PDE
(1.18), here the characteristic �eld v is simply given by

v(t, φ, ω) = ω − Cr sinφ (1.22)

(a derivation for this expression of v is given in Appendix A). We are now
looking for steady-state solutions where r is constant, i.e., equilibria in the
order parameter. That means the dynamics of the oscillator mass "decouples"
in the sense that at each location φ on the unit circle, v only depends on φ and
depends on the rest of the oscillator mass "only" via the constant r. Solutions
can only be valid if they are still consistent with the assumptions r =const. and
ψ = 0. The key is to treat the frequency-synchronized and the drifting oscillator
mass separately. Frequency-synchronization implies (1.22) = 0, which in turn
requires |ω| ≤ Cr. The drifting part of the oscillator mass is thus the part for
which |ω| > Cr. The existence of drift while at the same time r =const. may
seem paradoxical, but it is possible if the distribution of the drifting oscillator
mass is steady in time. Such a stationary density ρdrift(φ|ω) must be inversely
proportional to the speed v at phase φ so that the density is high (low) where
the �ow on the unit circle is slow (fast). Making sure that the density integrates

13 Note that in [11, 12], their symbol "ρ(t, φ, x, ω)" is meant as a conditional probability
density (conditioned on ω), equal to our ρ(t, φ, x|ω) that we will use in (1.51),(1.54),(1.55).
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to 1 for each ω [65], we get

ρdrift(φ|ω) =

√
ω2 − (Cr)2

2π|ω − Cr sinφ| . (1.23)

We can split up the order parameter r = rfs + rdrift by splitting up the inner
integral in (1.19) at the boundary |ω| = Cr. For the drifting population we get

rdrift =

∫

T

∫

|ω|>Cr
ρdrift(φ|ω)g(ω)eiφdωdφ. (1.24)

Conveniently, due to g(ω) = g(−ω) and the fact that ρdrift(φ|ω) = ρdrift(φ +
π|−ω) (which follows from (1.23)), we get rdrift = 0, so r = rfs. This is what we
would expect intuitively: the drifting oscillator mass is incoherent and makes
a zero contribution to the order parameter. For the frequency-synchronized
oscillator mass we get

r =

∫

|ω|≤Cr
g(ω)eiφdω =

∫

|ω|≤Cr
g(ω) cosφdω, (1.25)

with φ de�ned via (1.22) = 0. The rightmost expression in (1.25) simply fol-
lows from the fact that g(ω) = g(−ω) for which reason the phases are spread
out symmetrically about φ = 0, causing the sine contribution to the complex
exponential to vanish. Remembering that ω = Cr sinφ has to be ful�lled due
to (1.22) = 0, and using a change of variables we get what S. H. Strogatz calls
the "self-consistency condition", i.e., the condition ensuring that the original
assumptions r =const. and ψ = 0 still hold:

r = Cr

∫

|φ|≤π/2
g(Cr sinφ) cos2 φdφ. (1.26)

This always has the trivial incoherent solution r = 0. There is another branch
of solutions, the partially coherent branch with r > 0, given by

1 = C

∫

|φ|≤π/2
g(Cr sinφ) cos2 φdφ, (1.27)

which is created in a pitchfork bifurcation at C = C\ and exists for C ≥ C\.
The value

C\ =
2

πg(0)
(1.28)

is found by letting r → 0+ in (1.27). If we take g to be the Lorentzian/Cauchy
density g(ω) = ∆/[π(ω2 + ∆2)], then (1.27) can be integrated exactly to get

r =
√

1− C\/C, C ≥ C\. (1.29)
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We see that the partially coherent solution becomes phase-synchronized in the
limit C → ∞ with r = 1. S. H. Strogatz and R. E. Mirollo later found that
the incoherent state r = 0 is only neutrally stable for C < C\ and unstable for
C > C\ [69].

1.6.3 The Ott-Antonsen reduction

Y. Kuramoto's ingenious approach to the coherence transition was in 2008 su-
perseded by a more general and more powerful technique. The Ott-Antonsen
(OA) reduction [8, 9] allows to exactly capture the macroscopic behaviour of
a coupled oscillator system in its N → ∞ limit, using only a small number
of ODEs. We thereby reduce a system of ODEs with many variables (due to
1 � N < ∞) to a system with a small number of variables. This and other
reduction techniques are also referred to as "mean-�eld reductions", see [70] for
a review.

A requirement for the OA reduction is that the characteristic �eld v of the
coupled oscillator system in its N →∞ limit can be expressed in the form

v(t, φ, ω) = ω + Im
(
He−iφ

)
(1.30)

where H can be complex and can depend on t, z, ω. For convenience, we restate
the transport equation, which governs the oscillator dynamics, and the order
parameter:

0 =
∂ρ(t, φ, ω)

∂t
+
∂[ρ(t, φ, ω)v(t, φ, ω)]

∂φ
(1.31a)

z(t) =

∫

T

∫

R
ρ(t, φ, ω)eiφdωdφ. (1.31b)

E. Ott and T. Antonsen had the idea to describe ρ(t, φ, ω), which is 2π-periodic
in φ, as a Fourier series

ρ(t, φ, ω) = g(ω)
1

2π

∑

n∈Z
ρn(t, ω)einφ

︸ ︷︷ ︸
ρ(t,φ|ω)

. (1.32)

If the Fourier coe�cients ρn(t, ω) obey the form

ρn(t, ω) =

{
%(t, ω)n n ≥ 0

(%(t, ω)
∗
)n n ≤ −1

(1.33)
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with |%| ≤ 1, and (1.32) is inserted into (1.31), then (1.31) reduces to the φ-
independent system

0 =
∂%

∂t
+ iω%+

H%2 −H∗
2

(1.34a)

z(t) =

∫

R
%(t, ω)g(ω)dω. (1.34b)

For certain choices of the frequency distribution g(ω), the integral (1.34b) can
be resolved and z(t) can be equated with %(t, ω) evaluated at a certain �xed
(complex) value of ω, translating the PDE (1.34a) into an ODE in z. We shall
now exemplify the Ott-Antonsen reduction for the well-known Kuramoto model
and the Theta neuron model used in Sec 2.1.

OA-reduction of the Kuramoto model

For the classical Kuramoto model (1.2), H = Cz (for details see Appendix A,
eqs. (A.1)-(A.7)). Thus, (1.34) becomes [8]

0 =
∂%

∂t
+ iω%+ C

z%2 − z∗
2

(1.35a)

z(t) =

∫

R
%(ω, t)g(ω)dω. (1.35b)

If we take g to be the Lorentzian/Cauchy density g(ω) = [π(ω2 + 1)]−1, we see
that g(0) = 1/π, so C\ = 2 by (1.28). With this choice of g, (1.35) can be closed
by an ODE in the order parameter [8]

dr
dt

=

(
C

C\
− 1

)
r − C

C\
r3 (1.36)

dψ
dt

= 0 (1.37)

which has the stable equilibrium

r =

{
0 C < C\√

1− C\/C C ≥ C\ (1.38)

in agreement with Kuramoto's original analysis, Sec. 1.6.2.

OA-reduction of the coupled Theta neuron model

We here seek to OA-reduce the model given by (1.9)-(1.13), inspired by [63].
Since the model deals with two populations of oscillators, it is convenient to
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de�ne an order parameter for both populations individually. Assuming that
N is even, each population consists of M := N/2 oscillators. We relabel the
oscillator's phases as φ`p, the phase of the `th neuron inside the pth population.
The order parameters are then

zp :=
1

M

∑

`∈[M ]

eiφ`p (1.39)

and we intend to OA-reduce the dynamics of both populations individually as
M → ∞. Consider the model de�ned by (1.9)-(1.13). Using the de�nition
(1.39) and realizing that the real part of the order parameter is simply the sum
of cosines of the phases, we can write (1.9) as

dφ`p
dt

= 1− cosφ`p + (1 + cosφ`p)[η`p + κ(1− Rezp) + aκ(1− Rezq)] (1.40)

where q := 2 if p = 1 and q := 1 if p = 2. The excitability η`p of the `th neuron
in the pth population is drawn from the Lorentzian/Cauchy distribution

gp(η) =
∆ηp

π[(η − η̂p)2 + ∆2
ηp]

(1.41)

where η̂p and ∆ηp are the mode and the spread of the excitabilities in the pth
population.

Interestingly, the terms κ(1− Rezp), aκ(1− Rezq) persist as we take the limit
M → ∞ (see Appendix of [63]), allowing us to easily write the characteristic
�eld for each population:

vp(t, φ, η) = 1− cosφ+ (1 + cosφ)[η + κ(1− Rezp) + aκ(1− Rezq)]. (1.42)

As can easily be checked, (1.42) has the form (1.30) required for the OA reduc-
tion, with

ωp = 1 + η + κ(1− Rezp) + aκ(1− Rezq) (1.43)

Hp = i[η + κ(1− Rezp) + aκ(1− Rezq)− 1]. (1.44)

We can thus de�ne the joint probability density ρp(t, φ, η) � for a neuron of the
pth population having the excitability η and assuming the phase φ at time t �
via a Fourier series:

ρp(t, φ, η) = gp(η)
1

2π

∑

n∈Z
ρpn(t, η)einφ

︸ ︷︷ ︸
ρp(t,φ|η)

(1.45)
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where the Fourier coe�cients ρpn(t, η) obey the form

ρpn(t, η) =

{
%p(t, η)n n ≥ 0

(%p(t, η)
∗
)n n ≤ −1

(1.46)

and |%p(t, η)| ≤ 1 ∀t, such that the continuity equation

0 =
∂ρp(t, φ, η)

∂t
+
∂[ρp(t, φ, η)vp(t, φ, η)]

∂φ
(1.47a)

zp(t) =

∫

T

∫

R
ρp(t, φ, η)eiφdωdφ (1.47b)

reduces to the φ-independent system

0 =
∂%p
∂t

+ iωp%p +
Hp%

2
p −Hp

∗

2
(1.48a)

zp(t) =

∫

R
%p(t, η)gp(η)dη. (1.48b)

Since gp is the Lorentzian/Cauchy distribution, one can resolve the integral in
(1.48) via complex analysis, equate zp(t) to %p(t, η) evaluated at the residue
η = η̂p + i∆ηp and arrive at the OA-reduced system14

dzp
dt

= −1

2

[
(∆ηp − i[η̂p + κ(1− Rezp) + aκ(1− Rezq)])(1 + zp)

2 + i(1− zp)2
]
.

(1.49)

1.6.4 Graph limits

By now the reader has endured numerous mathematical equations insisting that
the N →∞ limit is both necessary and useful. For example, we have illustrated
that in the N →∞ limit the all-to-all coupled Kuramoto model is governed by
the PDE (1.18) with the characteristic �eld

v(t, φ, ω) = ω + C

∫

T

∫

R
sin(φ′ − φ)ρ(t, φ′|ω′)g(ω′)dω′dφ′ (1.50)

(a derivation is given in Appendix A). Even so, we have not ventured much into
the graph aspect of the continuum limit, presenting only models on a complete

14There are three deviations between the equations used in [63] and this thesis, which do not
alter the validity of the mathematical steps nor the result. Firstly, [63] uses only a model of one
population, however, the exact same steps can be performed for two populations individually.
Secondly, instead of our H, [63] uses f , such that f [63] notation = − 1

2
iHour notation and

ωour notation = h [63] notation and then v = h + 2Re(feiφ), which is equal to our v = ω +

Im(Heiφ). Thirdly, %our notation = (% [63] notation)∗.
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graph or on a combination of two complete graphs and a complete bipartite
graph. In order to generalize, e.g., (1.50) to more general graphs, we have to
understand how to describe a graph if the number of vertices goes to in�nity.
We shall here introduce two useful ways of doing so: graphons [71, 72] and
graphops [73]. Note that these techniques are only available for undirected
graphs, as directed graphs would introduce further mathematical complications
that are to date not tractable. We shall thus assume undirected graphs for the
remainder of this Section. Since graphops are linear operators on a certain vector
space, a basic understanding of functional analysis is bene�cial, see e.g. [74,75].

Graphons

For graphs with N < ∞ vertices, the vertex set is simply Ω = [N ]. One could
interpret the weighted adjacency matrix κ as a function on a discrete domain,
[N ] × [N ] → R, i.e., it maps each pair of vertices to a real-valued weight. As
N → ∞, the vertex set of graphs of in�nite size could be identi�ed with the
countable set N, however, we take a di�erent approach and describe the vertex
set in the N → ∞ limit via the uncountable set [0, 1], where the continuum of
in�nitesimally small vertices are lined up in a line of unit length. One can now
think of a function that maps pairs of vertices to an edge weight in the following
way:

De�nition 25 Graphon. Let Ω = [0, 1]. A graphon is a function K(x, y) :
Ω× Ω 7→ [−1, 1] that is measurable15 and symmetric (i.e., K(x, y) = K(y, x)).

This graphon limit K thus describes the "weighted adjacency matrix as a func-
tion", but in the N → ∞ setting. A sequence of graphs {κN}N∈N can thus
converge to a graphon K as N → ∞. Just like the lth row (or column) of the
matrix κ is the neighbourhood of the lth vertex, K(x, y) is the neighbourhood
of the vertex x in the N → ∞ setting. From the de�nition of a graphon it
is evident that we have rescaled the edge weights to �t into the range [−1, 1].
The conditions for the convergence, and the metric in which it occurs, are not
discussed here, the interested reader is referred to [71, 72, 76]. However we give
the intutition behind this convergence [72]: View the matrix κ as a greyscale
square pixel picture with side length 1 such that for each pair l,m we draw a
pixel at the position [(l − 1)/N, l/N)× [(m− 1)/N,m/N) where the value κlm
is encoded by the colour of the pixel. If we increase N , the resolution of the
picture gets �ner, until in the limit N → ∞ the image no longer consists of
pixels, but of in�nitesimally small dots of colour, or "how images looked before

15we will not dive into measure theory in this thesis, here it will su�ce to know that every
piecewise continuous function is measurable [74].
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Figure 1.4: Illustration of convergence of a sequence of graphs {κN}N∈N
to a graphon K(x, y). Here we have chosen (κlm)N =
1
2

(
1 + cos 2π l−mN

)
and K(x, y) = 1

2 (1 + cos 2π(x − y)). White
encodes 0 while black encodes 1.

they became digital". This picture is described by the function K(x, y), see also
Fig. 1.4 (note that a similar �gure is found in [72], Fig.1).

We have thus illustrated how a (coupling) graphon generalizes a coupling matrix
to the N → ∞ setting if the matrix is interpreted as a function (as described
above). The Kuramoto model (1.5) is in the N → ∞ limit governed by (1.18)
with

v(t, φ, x, ω) = ω + C

∫

y∈Ω

∫

T

∫

R
sin(φ′ − φ)K(x, y)ρ(t, φ′, y|ω′)g(ω′)dω′dφ′dy,

(1.51)

and Ω = [0, 1], for details see [12]. Note that we are now dealing with a family
of PDEs, one for each vertex x.

Graphops

One could interpret the weighted adjacency matrix κ as a linear operator on
the �nite-dimensional vector space RN . The matrix is thus simply a mapping
RN → RN , mediated by the matrix-vector product. A graphop generalizes this
notion, since a graphop can act on in�nite-dimensional vector spaces such as
L2, the space of square-integrable functions. If the vertex set is taken as a more
general set than, e.g., [0, 1] like in the graphon case, we can introduce a graphop
in the following way:

De�nition 26 Graphop. Let Ω be a compact set. A graphop is a bounded,
self-adjoint linear operator A : L2(Ω) 7→ L2(Ω) that is positivity-preserving, i.e.,
if the function f ∈ L2(Ω) ful�lls f(x) ≥ 0 almost everywhere on Ω, then the
function Af ∈ L2(Ω) ful�lls (Af)(x) ≥ 0 almost everywhere on Ω.
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Note that, following standard operator notation, Af means "A acting on the
function f" and Af is again a function. (Af)(x) then means "the function
Af evaluated at x". A graphop can thus be seen as a generalized graph of
in�nite size. The property "self-adjoint" [75] of the graphop stems from the
undirectedness of the graph. Certain graphops can be de�ned via a graphon
kernel K, this kind of graphop is called graphon operator in [77]. In this case
again Ω = [0, 1] and we can write

(Af)(x) =

∫

Ω

K(x, y)f(y)dy. (1.52)

Note that also the general graphop, which is not necessarily a graphon operator,
can be written as an integral operator:

(Af)(x) =

∫

y∈Ω

f(y)dνx(y). (1.53)

Here too, the �bre measure νx(y) represents the neighbourhood of the vertex
x.16 We have thus illustrated how a (coupling) graphop generalizes a coupling
matrix to the N → ∞ setting if the matrix is interpreted as an operator (as
described above). We emphasize that a graphop is not a generalization of a
graphon, but of a graphon operator.17

With that we are ready to state the characteristic �eld in the graphop case.
To bridge the gap between the various generalizations of the Kuramoto model
studied, look again at the dynamics of the lth oscillator in (1.2). There the
summation was not weighted with any graph properties since the graph was
complete. Then we had (1.5), where the summation was weighted with the
neighbourhood of the lth vertex. In (1.51) the outer integral was an integral
over the neighbourhood of "the vertex" x. Now we let the graphop A act on
ρ(t, φ, x, ω), so we again integrate this density over the neighbourhood of x (see
(1.53)). The Kuramoto model on a graphop is thus governed by (1.18) with

v(t, φ, x, ω) = ω + C

∫

T

∫

R
sin(φ′ − φ)(Aρ)(t, φ′, x|ω′)g(ω′)dω′dφ′. (1.54)

If A is a graphon operator, (1.54) is equivalent to (1.51), otherwise, writing out
the integration over �bre measures implied by the graphop action in (1.53), we

16The mathematical details of �bre measures are not important in this thesis, as the spherical
graphop used in [2] uses the uniform �bre measure, which is su�ciently easy.

17 Also, a graphop is a generalization of a coupling matrix if the matrix is interpreted as
a linear operator. Indeed, for the choice Ω = [N ], L2(Ω) can be identi�ed with RN . Af is
simply the matrix-vector product. Finally, (Af)(x) is the xth entry of the vector Af with
x ∈ [N ].
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�nd that (1.54) is equivalent to

v(t, φ, x, ω) = ω + C

∫

y∈Ω

∫

T

∫

R
sin(φ′ − φ)ρ(t, φ′, y|ω′)g(ω′)dω′dφ′dνx(y),

(1.55)

for details see [11,12]. Note that we are now dealing with a family of PDEs, one
for each vertex x. We shall use (1.54) with the stochastic Kuramoto model in
Sec. 2.2.

In this Introduction, we have familiarized ourselves with the coupled Theta
neuron model and the Kuramoto model with various properties. We have taken
both models to the N →∞ limit, which even allows for various generalizations
of the all-to-all graph, compare eqns. (1.50), (1.51), (1.54), (1.55). We shall
now present the results of this thesis.



Chapter 2

Results

Having established the basics of (adaptive) oscillator systems and having de�ned
all technical terms, we shall now summarize the three articles which this thesis is
based on. The notation used here is consistent with the Introduction (Chapter 1)
and thus not entirely consistent with the articles themselves, which mutually
di�er in notation.
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2.1 Results of article [1] � Birth and destruction
of collective oscillations in a network of two
populations of coupled type 1 neurons

The article deals with a coupled Theta neuron model introduced in [64], the
derivation of which we repeated in Secs. 1.5 and 1.6.3:

dφ`p
dt

= 1− cosφ`p + (1 + cosφ`p)(η`p + Ip), ` ∈ [M ], p ∈ {1, 2} (2.1a)

η`p ∼ g(η) =
∆η

π[(η − η̂)2 + ∆2
η]

(2.1b)

dzp
dt

= −1

2

[
(∆η − iη̂ − iIp)(1 + zp)

2 + i(1− zp)2
]
, p ∈ {1, 2} (2.1c)

I1 = κ(1− Rez1) + aκ(1− Rez2) (2.1d)

I2 = aκ(1− Rez1) + κ(1− Rez2) (2.1e)

where (2.1a) is a model of N = 2M < ∞ Theta neurons, organized in 2 popu-
lations p ∈ {1, 2}. Coupling occurs via the input currents I1, I2. They capture,
via the quantities 1 − Rezp, how close the oscillators are, on average, to the
spiking threshold φ`p = π, i.e., they capture the macroscopic spiking activity of
the populations 1 and 2. (2.1c) is the OA-reduced, N →∞ version of (2.1a). In
the article, analysis is carried out on (2.1c) since its low number of ODEs allows
for easy treatment of the macroscopic dynamics of (2.1a). We investigate the
bifurcation structure of the OA-reduced system (2.1c), where the parameters are
set to ∆η = 1/100, η̂ = −1, i.e., we assume relatively similar, but not identical,
inhibitory neurons, these two parameters are identical for both populations.

We can de�ne the �ring activity / �ring rate / spiking activity as the amount of
�ux through the point φ = π (where the Theta neuron spikes). The �ring rate
of the pth population is exactly π−1Re[(1 − zp∗)/(1 + zp

∗)] [78]. We �nd that
asymmetric states, i.e. states where both populations have distinct dynamical
behaviour (this always implies distinct levels of �ring activity and distinct levels
of coherence in this article), are possible despite the two populations having
identical properties. To see this we �rst consider two special cases. Clearly,
the choice a = 1 causes both populations to "melt" into one big population
of size 2M , while a = 0 decouples both populations. We show that a single
population with negative η̂ and positive κ can have two coexisting stable states,
one quiescent (low �ring activity) and one spiking (high �ring activity).1 It
thus comes as no surprise that the two-population system with a = 0 exhibits
asymmetric states: since the populations decouple, one population can assume

1the transition between quiescent and spiking is smooth, there is no strict threshold in the
�ring rate that distinguishes the two. They de�ne each other by contrast.
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the stable quiescent state and the other population can assume the stable spiking
state. Moreover, there are two symmetric states where both populations assume
the same state. Interestingly, as a is increased above zero, pitchfork bifurcations
emerge that keep the asymmetric states alive and stable, coexisting with the
stable symmetric states. While for positive a, stable asymmetric states only
persist in a comparably small parameter region, this region is vast for negative a.
Stable asymmetric states can be either equilibria or limit cycles (created in Hopf
bifurcations when a is increased further above zero). Stable symmetric states
are also observed, but they can only be equilibria. All observed stable states,
whether they are symmetric or asymmetric, oscillatory or steady states, underlie
a tradeo� between �ring activity and coherence: each of the two populations
can either have high �ring activity and low coherence2 or vice-versa. This also
implies that the asymmetric states always have both a quiescent (and quite
coherent) and a spiking (and poorly coherent) population.

The bifurcation scenarios of the asymmetric states can become quite involved.
We report three di�erent creation-destruction-patterns of stable asymmetric
limit cycles. The bifurcation landscape in κ, a parameter space is quite complex,
consisting, amongst others, of the following "landmarks" (see Fig. 6 in [1]):

1. A cusp bifurcation (CP) that limits the existence of stable asymmetric
states in the direction of positive a.

2. A Generalized Hopf (GH) bifurcation [79] that separates a Hopf bifurcation
curve into a subcritical and a supercritical segment.

3. A Saddle-node-of-limit-cycles (SNLC) curve that emanates from the GH
point.

4. A cusp of SNLC curves (CPC), where said SNLC curve meets with another
branch of SNLC curves.

5. A point we call SLH, where the other branch of SNLC curves collides with
a homoclinic (HC) curve.

The general picture is the following: if κ is su�ciently low (high), then both
poulations have identical low (high) spiking activity. If κ is intermediate and
a is in a certain intermediate range between 0 and 1, then stable asymmetric
stationary states coexist with the symmetric states. Oscillatory stable asym-
metric states exist too, they get created in Hopf bifurcations and exist in a
much smaller κ, a parameter range. For a < 0 however, i.e., repelling coupling
between both populations, asymmetric states exist in a vast range of κ > 0.

2this is true if κ is not too high, in fact, in the limit κ → ∞, the neurons are phase-
synchronized and have in�nite spiking activity.
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2.2 Results of article [2] � Graphop Mean-Field
Limits and Synchronization for the Stochas-
tic Kuramoto Model

In this article, we deal with the system of SDEs

dφl = dt
C

N

N∑

m=1

κlmD(φm − φl) + σBdBl, l ∈ [N ] (2.2)

modeling the evolution of N <∞ identical Kuramoto oscillators with an addi-
tive N -element white noise vector σBdB = σBd(B1, . . . , BN )> with zero mean
and variance σ2

B . Here, D is an even 2π-periodic function. The result of the
article is analytically obtained for the N →∞ limit of the system (2.2), where
the density ρ(t, φ, x) describes the oscillator mass at the position x in the ver-
tex set with phase φ at time t. The temporal evolution of ρ(t, φ, x) obeys the
Fokker-Planck equation (2.3a):3

0 =
∂ρ(t, φ, x)

∂t
+
∂[ρ(t, φ, x)v(t, φ, x)]

∂φ
+
σ2
B

2
· ∂

2ρ(t, φ, x)

∂φ2
(2.3a)

v(t, φ, x) = C

∫

T
D(φ′ − φ)(Aρ)(t, φ′, x)dφ′. (2.3b)

In (2.3b), coupling is mediated by a graphop A acting on the density ρ(t, φ, x).
If A has a graphon kernel, then the coupling can be thought of as the usual
coupling via an undirected graph but in the N → ∞ limit; if A cannot be
described by a graphon kernel, the coupling, while still undirected, is more
abstract. We Fourier-transform (2.3a) and obtain for each j ∈ N an ODE in the
jth Fourier coe�cient of the solution ρ(t, φ, x) to (2.3a). Linearizing this ODE
around the incoherent state ρ = 1/(2π), we obtain for each j an ODE that is
decoupled, i.e., the dynamics of the jth Fourier coe�cient is only in�uenced by
the jth Fourier coe�cient. We �nd a condition for the linear stability of the
incoherent state (in all Fourier coe�cients), this condition is ful�lled if C < C\

for

C\ = inf
λ,j

j2σ2
B

2iλDj

∣∣∣∣
iDjλ≥0

(2.4)

where Dj is the jth Fourier coe�cient of D and λ is a spectral value of A.4 The
incoherent state is thus linearly, i.e., locally, stable for C < C\ and unstable for

3note that (2.3b) resembles (1.54) but for identical oscillators.
4The spectrum is explained in [2, 75](7.2-1). Note also the simpli�cations of the spectrum

due to the fact that we are dealing with a bounded self-adjoint linear operator that maps
from a Hilbert space to itself: �rstly, the spectrum is real and bounded, secondly, the residual
spectrum is empty [75](9.2-4).
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C > C\. If the incoherent state is unstable, we may expect the system to run
into partially coherent attractors. For the remainder of the article we make the
simpli�cation D = sin and get

C\ =
σ2
B

Λ(A)
(2.5)

where Λ(A) is the supremum of the magnitudes of the spectral values of A. To
complement this theoretical analysis, we numerically tested the result (2.5) for
certain graphops. Numerical testing is restricted to an N < ∞ version of the
governing model (2.3), namely (2.2), and thus we need to approximate each
graphop by a graph matrix. Nevertheless, we compare our numerical results
to the value (2.5) found via the respective graphop spectrum. However, for
graphops whose spectra lack an analytical expession, we need to adjust (2.5) to
the �nite-dimensional case:

C\ =
σ2
B

Λ(κ)
. (2.6)

Here, Λ(κ) is simply the largest magnitude of an eigenvalue of N−1κ, where κ is
a graph approximation to A. Our numerical tests were conducted via numerical
integration of (2.2) for N = 1000, various values of C, various realizations of the
Brownian motion vector B, and various (random realizations of) graphs κ. The
tests revealed that especially regular, dense graphs (i.e., graphs with relatively
many edges) show the behaviour that (2.6) predicts: the level of coherence rises,
and the order parameter r asymptotically approaches 1, as C is increased above
C\. However, the regular ring lattice graph with a small number of edges, which
(at least for σB = 0) has a stable incoherent solution coexisting with the partially
coherent state [26], can fail to exhibit this clear coherence transition. Also,
sparse irregular graphs walk a much longer path to a given level of coherence.
As an example, the "Lorentzian" graph is somewhat "bipartite" in the following
sense: there are two very small populations in the graph between which a few
edges with very strong weights exist. All other coupling weights are very small
(the graph is connected). The matrix κ of the graph is given by

κlm =
µ/π

(
l
N − x0

)2
+
(
m
N − y0

)2
+ µ2

+
µ/π

(
l
N − y0

)2
+
(
m
N − x0

)2
+ µ2

(2.7)

where we used the values x0 = 0.25, y0 = 0.75, µ = 0.01, 0.001, see also Fig. 2.1.
The Lorentzian graph has a very "slow" coherence transition even when com-
pared to its own C\, i.e., it requires a much higher C/C\ to reach the same level
of coherence compared to dense regular graphs. The Lorentzian graph is thus
an example of a graph where the analytical statement (2.4) is less predictive.
Other graphs used in the numerical analysis were the complete graph, the sinu-
soidal graph (see Fig. 1.4), the regular ring lattice graph, the small-world graph
and the ER graph. Finally, we propose a matrix approximation to the spherical
graphop and use this "spherical graph" in our numerical simulations.
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Figure 2.1: Matrix κ of "Lorentzian" graph. White encodes κ = 0 while black
encodes κ ≥ 31.8374 (which is the maximum value of κlm for
µ = 0.01). The colour range of the image of κ for µ = 0.001 was
also truncated at κ ≥ 31.8374 for better visibility. The maximum
κlm for µ = 0.001 is 318.3105.

2.3 Results of article [3] � Complex dynamics in
adaptive phase oscillator networks

In this article we deal with the adaptive Kuramoto-Sakaguchi model

dφl
dt

= ωl +
1

N

∑

m∈[N ]

κlm sin(φm − φl + α) (2.8a)

dκlm
dt

= ε(1 + a cos(φl − φm + β)− κlm) (2.8b)

which is inspired by [52] but employs non-identical oscillators and includes a
constant o�set 1 in the adaptation (2.8b). We mainly study this model for
N = 2, the model becomes three-dimensional after making use of (1.3) and
setting φ := φ1 − φ2 and ω := ω1 − ω2:

dφ
dt

= ω +
1

2
κ12 sin(α− φ)− 1

2
κ21 sin(α+ φ), (2.9a)

dκ12

dt
= ε(1 + a cos(β + φ)− κ12), (2.9b)

dκ21

dt
= ε(1 + a cos(β − φ)− κ21). (2.9c)

ε is �xed at 0.2, and β, the adaptation shift, determines whether the graph is di-
rected (β = 0, π) or undirected (β 6= 0, π). We study dynamics and bifurcations
of (2.9). The stable states seen in this model are either equilibria or oscillatory
states (limit cycles or chaos). Each observed stable oscillatory state is either a
drift or a libration.

The classical, non-adaptive, all-to-all coupled Kuramoto model is recovered for
the choice a = 0. This model exhibits a simple SNIC bifurcation at ω = 1 which
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divides the ω parameter space into 2 simple regions: for |ω| > 1, the only stable
state is a drift, for |ω| < 1 the only stable state is a frequency-synchronized
equilibrium. This basic pattern reappears in the general a 6= 0 model: for
all parameter choices, the model always exhibits a stable drift state when |ω|
is su�ciently large. When |ω| is su�ciently small, 1 or 2 stable frequency-
snychronized equilibria or oscillatory states can (co)exist.

Importantly, if the adaptivity parameter a is in some neighbourhood of 0, the
dynamics is qualitatively identical to the non-adaptive, all-to-all coupled Ku-
ramoto model. a has to be su�ciently di�erent from 0 in order to admit "truly
adaptive" dynamics, i.e., dynamics that is only possible if coupling strengths can
change dynamically in a wide enough range. This "truly adaptive" dynamics
is brought about by bifurcations such as cusp or Bogdanov-Takens. Indeed, for
β = 0 < a < 1, |ω| su�ciently small, the system runs into the stable, frequency-
synchronized state with high κ12 = κ21. This state is qualitatively identical to
the frequency-synchronized state in the classical all-to-all Kuramoto model (1.2)
with N <∞ and C su�ciently larger than C\. In contrast, for β = 0, a > 1, |ω|
su�ciently small, the system � now past a cusp point � o�ers a bistability (be-
tween two frequency-synchronized equilibria) that the classical Kuramoto model
does not.

If the adaptation shift β 6= 0, the system (2.9) is 3-dimensional, which allows for
a much more intriguing bifurcation landscape. For example, a complex chain
of bifurcations gives rise to drift states that are a mixture of librations and
rotations, we call these states mixed oscillations. We observed such mixed oscil-
lations � which are alternatingly either periodic limit cycles or chaotic attractors
as ω is varied in an intermediate range � for α = −π/10, β = π/4. Moreover, the
interplay of bifurcations GH, SNLC, CPC, HC, SLH reported in [1] reappears
for this parameter choice.

To give an outlook towards larger systems, we also conducted some simulations
of system (2.8) for N = 50, α = β = 0 and various a. It turns out that
the basic pattern of the N = 2 system carries over to larger system sizes. In-
deed, if the intrinsic frequencies ωl follow a normal distribution with su�ciently
small standard deviation σω, the system runs into stable stationary frequency-
synchronized states. If σω is su�ciently large, the oscillators drift, and the
couplings κlm oscillate accordingly. For intermediate σω, there is partial co-
herence, where some oscillators drift and some are weakly or almost frequency-
snychronized (such a constellation of oscillator groups requires at least N = 3).
For a su�ciently positive, "antipodal" states are possible (see also Sec. 3.3).
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Chapter 3

Discussion

In the previous Chapter we have summarized the three articles [1�3]. We shall
now discuss and compare the results. To this end, we focus on one aspect at a
time, namely graphs (Sec. 3.1), synchronization and coherence (Sec. 3.2), pop-
ulations (Sec. 3.3), bifurcations (Sec. 3.4), oscillations (Sec. 3.5), and symmetry
(Sec. 3.6). We then suggest directions for future work in Sec. 3.7. Finally, we
conclude this thesis with a brief remark in Sec. 3.8.

3.1 Graphs

In all three articles we set out to learn about dynamics on graphs: we were
interested in the behaviour of phase oscillators as they dynamically in�uence
each other when coupled via a graph. In [3] we additionally ask about dynamics
of graphs. We always ask how the dynamical behaviour of the oscillators de-
pends on the graph and to this end we always perturb away from the complete
graph. In [1] we do so by gradually weakening the inter-population coupling
weight compared to the intra-population coupling weight. In [2] we start with
the complete graph and then investigate more complicated graphs. In [3] we
perturb from the all-to-all coupled, non-adaptive Kuramoto model by gradu-
ally increasing the adaptivity parameter, allowing for an increasingly adaptive
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and increasingly complicated graph. In all three cases, the complexity of the
dynamics increases with the complexity of the graph.

3.2 Synchronization and coherence

In all three articles, the respective model exhibits synchronization and/or dif-
ferent levels of coherence. In [1], the smallest level of coherence, with the order
parameter almost zero, is seen for a certain large coupling. The �ring rate is high
in this state, yet referring to this state as "drift" would not be entirely correct,
as the model is formulated in a macroscopic way and dynamics of the individual
phases is unknown. Drift is seen for su�ciently weak coupling C < C\ [2], and
su�ciently large di�erence in intrinsic frequencies, ω, or σω [3], respectively. In
the limits κ → −∞ or κ → ∞ [1], C → ∞ [2], and ω, σω → 0 [3], the models
exhibit phase-synchronization. The intermediate regime between the extremes
drift and phase-synchronization is more layered. In [1], the macroscopic formula-
tion of the model does not give us insights into speci�c types of synchronization
(as of De�nitions 1 to 4), this would require a view of the individual oscillators,
see Sec. 3.7.1. We observe that coherence is high (low) if coupling is low (high),
with multistability between low and high coherence for intermediate coupling.
In the �nite-N reprentation of the stochastic model in [2], even for C > C\,
frequency-synchronization is ruled out due to the stochasticity of the model.
Strictly speaking, the synchronization is not even weak, since the oscillators'
phases can always through random motion escape any subset of the unit cir-
cle. Still, for C > C\, most of the oscillators stay within a certain distance
of each other most of the time, and this distance shrinks as C is increased,
thus increasing the coherence. In [3], the intermediate regime between drift and
phase-synchronization hosts weak or frequency-synchronization. As mentioned
in Sec. 2.1, the Theta neuron model in [1] features a tradeo� between spik-
ing and coherence. This tradeo� is illustrated for equilibria of the OA-reduced
Theta neuron system (2.1c) in Fig. 3.1. In the Kuramoto model, this tradeo�
occurs rather trivially. Terms like spiking or �ring are not commonly used in
the Kuramoto model, since this is neuroscience jargon, but here we can say that
Kuramoto oscillators with nonzero dynamic frequency are "�ring". But zero
frequency is equivalent to frequency-synchronization due to the frequency-shift
invariance (1.3b). States of high coherence in the Kuramoto model are usually
caused by frequency-synchronized oscillators, hence the trivial either-or-relation
between coherence and spiking.
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Figure 3.1: The coloured lines are the level curves of the �ring rate π−1Re[(1−
zp
∗)/(1+zp

∗)] versus the order parameter zp. Since the �ring rate
goes to in�nity as z → −1, we in this illustration cut o� the level
curves at the arbitrary value 1.2. The �ring rate is zero for r = 1
except at z = −1. It was found that all equilibria of the OA-
reduced Theta neuron system (2.1c) have their zp's lying on the
black curve. For κ→ −∞ (κ→∞), the black curve is travelled in
(counter)clockwise direction. For the κ, a parameter range shown
in [1], Fig. 6, the equilibria have their zp's lying on the lower right
quadrant of black curve. Relatively high coherence is found close
to the rim of the unit circle, where the �ring rate is close to zero.
High �ring rate is found close to zp = 0, where coherence is low.
The Figure is taken from [80], Fig. 4.2.
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3.3 Populations

The notion of populations plays a role in at least [1, 3]. In [1], oscillators are
grouped into populations a priori. In [3], for N = 2, each oscillator is trivially
a population of its own, for N = 50 and a su�ciently positive, we saw two
populations of sizes 48 and 2 that repel each other while internally having a
very high level of coherence.1 In the intermediate regime (between frequency-
synchronization of all oscillators and drifting of all oscillators) for N = 50, one
might view the weakly synchronized oscillators as one population and the drift-
ing oscillators as another. In [2], at least for the complete graph, the N = 1000
oscillators do not form populations: even for C > C\, the partially coherent
regime, all oscillators �uctuate randomly, however, since they are identical, they
do not divide into drifters and non-drifters. Yet, if we wanted to enforce popu-
lations, we could separate the oscillators into populations based on how far they
are from the mean phase, then oscillators would randomly switch between pop-
ulations, with all oscillators being equiprobable to be in the "mean" population.
The situation might be di�erent if the underlying graph suggests populations a
priori, see Sec. 3.7.2. At least the models in [1, 3] allow for asymmetric states
where both populations di�er in their behaviour, e.g., their amount of inter-
nal coherence [1], their size [3] or their coupling weight(s) to the respective
other population [3]. In [2], it is conceivable that the Lorentzian graph provides
asymmetric states, see Sec. 3.7.1. In [1,3] there are also symmetric states where
both populations show identical behaviour. In [3], symmetric states are so far
only seen in systems of two oscillators on an undirected graph. "Antipodal"
symmetric states on undirected graphs for N = 50 with identical sizes of both
populations do not appear to be stable in the numerical experiments.

3.4 Bifurcations

Bifurcations are vital to all three articles and determine the dependence of the
respective model on parameters. In [2], one bifurcation is studied: the change
of stability of the incoherent state in the macroscopic formulation of the model.
This is the fundamental bifurcation in the Kuramoto model and its variants and
plays a role in how the coherence transition unfolds. In [3], the coherence transi-
tion � here organized around a saddle-node bifurcation in the microscopic model

1This state is very close to what [52] calls an antipodal state. Berner et al.'s de�nition
of an antipodal state requires two populations which are internally phase-synchronized while
the populations are anti-phase synchronized to each other. Here, the populations are inter-
nally only frequency-synchronized with the pairwise di�erences between phases of the same
population (distinct populations) being close to zero (π).
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� reappears for all parameter choices: if the di�erence between the intrinsic fre-
quencies is small enough, there is weak synchronization in the form of libration
cycles, or even frequency-synchronization in the form of equilibria. If oscilla-
tors are identical, there is phase-synchronization. If the di�erence between the
intrinsic frequencies is large enough, the oscillators drift. In the Theta neuron
model in [1], the same general pattern is seen, albeit in the opposite direction.
Here, (unlike in [2, 3],) there is a �xed non-zero amount of heterogeneity ∆η in
the distinguishing property of the oscillators, namely their inclination towards
spking. In contrast to [2], a stronger, more positive (weaker, more negative)
coupling decreases (increases) the order parameter rp and increases (decreases)
the �ring rate. The most complicated dynamical behaviour of the model in [1]
occurs when the coupling strength is at a medium value. The Theta neuron is
inherently more complex than the Kuramoto oscillator and thus naturally ex-
hibits more complex synchronization behaviour [81], therefore models employing
di�erent oscillator types are not easily compared. In this regard it is interesting
to note that the models in [1, 3] show similar bifurcation patterns. More in-
teresting still, the model in [3] requires adaptivity as well as broken parameter
symmetries to achieve the same level of complexity in its bifurcations as the
model in [1] with a constant coupling graph and purely symmetric parameters.
Yet, as far as the analyses conducted in this work are concerned, the dynamics
of [3] o�ers more complicated behaviour than those of [1]: for certain parameter
choices, [3] allows for period-doubling bifurcations which pave the way to chaos.
Chaotic dynamics may yet occur in the model of [1] if parameter symmetries are
su�ciently broken. In [3], bifurcation scenarios and dynamical behaviours gen-
erally complicate if the adaptivity parameter is chosen strongly negative, and
choosing non-zero adaptation shift and Sakaguchi phase lag and an intermediate
intrinsic frequency di�erence can further complicate the behaviour.

3.5 Oscillations

Oscillations can either be microscopic or macroscopic. To state the obvious, in
all three models, the individual oscillators oscillate, like the models are designed
to. Macroscopic quantities can also oscillate, a typical example is the �uctuation
in the order parameter of the Kuramoto model due to �nite-size e�ects. This is
also encountered in [2] and in [3] for N = 50, in [2] these �uctuations are also
due to the stochasticity of the model. In [1], a stable limit cycle oscillation in the
macroscopic model implies that the macroscopic behaviours of the populations
periodically swing back and forth between higher spiking activity with lower
coherence and lower spiking activity with higher coherence. In [3], oscillations
for N = 2 have a microscopic meaning: the phase di�erence between the two
oscillators, as well as the coupling weights between the two, oscillate, either
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article [1] "Birth and [2] "Graphop [3] "Complex
destruction..." Mean-Field..." dynamics..."

oscillators Theta neuron Kuramoto Kuramoto
identical oscillators no yes for ω = 0

N ∞ (OA) ∞, 1000 2, 50
# dynam. variables 4 ∞,O(105) 1, 2, 3,O(103)
adaptive graph no no no, yes
directed graph no no no, yes
graph type(s) κ·complete+ complete, complete,

aκ·complete spherical, antipodal,
bipartite sinusoidal, unde�ned

Lorentzian,
reg.ring lat.,
small-world,
Erdös-Rényi

populations yes no for N = 50,
a� 1� σω

bifurcation(s) complex at C\ complex
synchronization n.a. weak weak, freq.,
(see Defs. 1 to 4) (anti-)phase

coherence partial incoh., partial incoh., partial,
perfect (ω = 0)

symmetric states equilibria � equilibria, drift
asymmetric states equilibria, � equilibria, drift,

limit cycles librations
oscillations limit cycles �uctuations in r librations, drift,

(macroscopic) �uctuations in r,
(periodic/chaotic)

drift (Def. 6) n.a. stochastic rotations
(+librations)

symm. parameters κ, a, η̂,∆η κlm for β = 0
asymm. parameters � � for β 6= 0

Table 3.1: comparison of the models used in articles [1], [2], and [3] and the
dynamical behaviours observed.
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periodically or chaotically. This oscillation may or may not involve the two
oscillators drifting apart. Also forN = 50, the drifting phases cause the coupling
weights to oscillate accordingly.

3.6 Symmetry

All three models contain symmetry. [2] features exclusively symmetric cou-
pling, this symmetry cannot be broken with the mathematical tools available to
date. [1,3] contain much symmetry too, but it can be broken. In [1], the param-
eter choices made are purely symmetric between the two populations, but the
model naturally allows for asymmetric parameter choices too. The model ex-
hibits symmetric dynamical behaviour, but also (despite the symmetric choice of
parameters) a lot of interesting asymmetric behaviour, provided that the (pos-
itive or negative) coupling between the populations is weak enough. In [3] the
model comes with many parameter symmetries and parameter-state-variable
symmetries. The coupling graph can be forced directed or undirected via the
adaptation shift β, i.e., the choice β = 0 brings even more symmetry to the
model and quenches much of the complicated dynamics seen for β 6= 0.

A summary of the above comparisons between the articles is found in Table 3.1.

3.7 Directions for future work

Having compared the results of our articles [1�3], we can now o�er ideas for fu-
ture research. Possible research questions can be distinguished into two types:
�rstly, one could analyze the models of [1�3] from new angles (Sec. 3.7.1), sec-
ondly, one might study (parameter) variations or even generalizations of the
models in [1�3] (Sec. 3.7.2).

3.7.1 New viewpoints on the models used

In [1], the comprehensive analysis that we performed on the system from a
macroscopic viewpoint was enabled by the groundbreaking work of E. Ott and
T. Antonsen [8, 9]. A detailed comparison of the analysis in [1] (or extensions
thereof) with simulations of a �nite-size representation of the model in question
is worthwhile as it allows to look at types of synchronization and not just the
level of coherence as in the OA-reduced system. In such an analysis of the
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�nite system, not only macroscopic, but also mesoscopic or even microscopic
viewpoints can be adopted. In the OA-reduced system, we "only" knew the
level of coherence and the �ring rate of a population. In the �nite reprentation,
we may ask whether weak synchronization, frequency-synchronization or drift
are exhibited by the populations or even subpopulations thereof. Note carefully
that each of these three types can a priori produce very di�erent �ring rates and
levels of coherence. Drifting oscillators can produce states of high coherence if
the oscillators slow down in a certain area of the unit circle so that at any given
time, the oscillators are more crowded in this area compared to the rest of the
unit circle. Frequency-synchronized oscillators can contribute any (constant)
value of the order parameter r ∈ [0, 1]. Also, frequency-synchronized oscillators
can have a zero, low or high dynamical frequency2, contributing di�erently
to the �ring rate. This is similarly true of weak synchronization. The phase
dynamics of the Theta neuron model (2.1a) puts certain constraints on how the
di�erent types of synchronization may unfold, and thus it would be interesting
how groups of drifting or weakly/frequency- synchronized oscillators manifest in
the populations, and how this depends on whether the populations are quiescent
or spiking. Finally, one could try to reproduce the macroscopic oscillations seen
in the N →∞ system with large but �nite systems.

In [2], a potent mathematical statement was made regarding the classical macro-
scopic problem in the Kuramoto model, namely the coherence transition, for a
stochastic version of the Kuramoto model with abstract (i.e., generalized) cou-
pling. However, certain graphs fail to make this clear transition at the critical
coupling strength that we o�er an exact formula for. Here it would be interest-
ing to know in what exact form this transition actually does occur, i.e., how the
�rst oscillators clump together and what di�erent graph-theoretical properties
the "early"-synchronizing vertices vs. the "late"-synchronizing vertices have,
"early/late" both time-wise and coupling strength-wise.

In [3], the work was for the most part limited to microscopic questions. Even
though the last section in this article o�ers a mesoscopic viewpoint with N =
50, we have barely touched the surface. Oscillators drift as soon as they are
su�ciently nonidentical, and the coupling weights oscillate accordingly, but what
is the exact nature of these oscillations, are they periodic, quasiperiodic, chaotic?
Our numerical simulations have shown that the order parameter can exhibit
di�erent higher-order periodic waveforms or aperiodic oscillations (not shown
in the article). As a �rst step, one could determine a parameter boundary
between periodic and non-periodic motion, similar to what was done for N = 2
oscillators for some �xed values of the adaptivity parameter, the Sakaguchi
phase lag and the adaptation shift. Certainly, macroscopic questions are di�cult

2keep in mind that the Theta neuron model, unlike the Kuramoto model, does not have a
rotational invariance like (1.3), so one cannot wlog. set the frequency of a group of frequency-
synchronized oscillators to zero.
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and computationally expensive to answer if the adaptive model continues to be
formulated at the individual oscillator level. A reduction technique would be
desirable to treat oscillator dynamics with adaptive coupling with macroscopic
systems of few di�erential equations. Thus, one might hope that the works
of [11,12] can be extended towards adaptive graphop models.

3.7.2 Variations of the models used

For the Theta neuron system, one could in future studies break the symmetry
in the intra- and inter-population coupling and/or increase the number of popu-
lations and study how the dynamical behaviour complicates. One might expect
even richer dynamics than exhibited already by the highly symmetric system.
An important, di�cult question would be how the number of observable spik-
ing/quiescence (or, equivalently, low/high coherence) con�gurations depends on
the number of populations.

For the stochastic Kuramoto model, one could extend our numerical experiments
to graphs with two (or more) populations and measure the (local) order parame-
ter(s) versus the inter-population coupling or the sizes of the populations. In [2],
we alluded to a boundary between graphs that folllow our theoretical value of C\

well and graphs for which this prediction breaks down. Such a boundary is hard
to determine exactly, but where might this boundary lie roughly in the land-
scape of multi-population graphs, where population-speci�c order parameters
might behave di�erently from the global order parameter? As our theoretical
result in [2] pertains to general even 2π-periodic coupling functions (linear com-
binations of sines with frequencies ∈ 2πN), one should study those as well, as
they can add realism to the model [11]. The Kuramoto-Sakaguchi coupling func-
tion (a shifted sine) is however not covered by our result. An extension of our
theoretical analysis to such coupling functions would be necessary to observe
chimera states [82,83]. One would then of course need to study a more compli-
cated bifurcation scenario than the coherence transition we regarded. Finally,
we regarded identical oscillators in [2], but extending our work to nonidentical
oscillators would be bene�cial, as it would provide comparability with [7,49,84].
Moreover, the interplay of the two random e�ects of random intrinsic frequencies
and Brownian motion causes e�ects worth studying [85].

In the adaptive Kuramoto model, one could investigate how many di�erent com-
binations of population sizes exist (in stationary states) for a given N . More-
over, one could ask whether states with more than two populations are possi-
ble. [52,53], using a similar model as we do in [3], report states with more than
two populations with "hierarchical" combinations of population sizes, where
each population rotates with a di�erent frequency. However, they exclusively
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use identical oscillators while we use nonidentical oscillators, we o�set our cou-
pling weights and vary their amount of adaptivity. Do the di�erences in the
intrinsic frequencies prevent states with more than two populations? Can addi-
tional populations be created by choosing non-zero Sakaguchi phase lags and/or
adaptation shifts or do we need to individualize these parameters to pairs of
(prede�ned) populations? And what types of synchronization are found within
the populations?

E. Ott and T. Antonsen hypothesized [8] that macroscopic chaos would be seen
in a system of two populations of Kuramoto oscillators, this was con�rmed
in [86]. In the same article it was demonstrated that chaos can occur in the
Kuramoto-Sakaguchi model with two populations of identical oscillators for N
ranging from 4 (two oscillators per population) to medium to large sizes. They
posed the question whether chaos would be seen for �nitely many nonidentical
oscillators too � we saw chaos in [3] for two nonidentical adaptively coupled
Kuramoto-Sakaguchi oscillators. Future research could further specify the con-
ditions for chaos in systems of nonidentical oscillators, also investigating how
the levels of coherence of populations depend on parameters.

Finally, adaptive graphs in [3] have so far been restricted to either the directed
or the undirected regime. Future studies might investigate adaptive models
where the graph can dynamically change between directed and undirected.

3.8 Concluding remark

In this thesis, we have given a brief overview of the exciting �eld of (adaptively)
coupled oscillators, as well as a summary, comparison and discussion of our own
studies on this topic [1�3]. The goal of this research was to shed light on the
synchronization of oscillators coupled via graphs with various properties, i.e.
sparse and dense, regular and irregular, constant and adaptive, directed and
undirected. We managed to uncover some interesting bifurcation scenarios that
provide nontrivial dynamics along a model's path from incoherence to phase-
synchronization. In our work, the most complex dynamical behaviour occurred
when the graph was directed and adaptive. It can be hypothesized that these two
properties of a graph are crucial to explaining complex dynamical phenomena
in various contexts.
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Characteristic �eld v of the
classical Kuramoto model
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This carries over to the N →∞ limit:

v(t, φ, ω) = ω + Im
(
Ce−iφz(t)

)
. (A.7)
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Applying (1.3a), we can set ψ = 0 in the Kuramoto model, so z = r. Thus,
(A.6) becomes

dφl
dt

= ωl + Im
(
Cre−iφl

)

= ωl − Cr sinφl (A.8)

This carries over to the N →∞ limit too:

v(t, φ, ω) = ω − Cr(t) sinφ (A.9)

To eliminate z(t) from (A.7), we assume the law of large numbers which allows
us to write z in the limit N →∞:

z(t) ≡ r(t)eiψ(t) =

∫

T

∫

R
eiφ
′
ρ(t, φ′, ω)dωdφ′. (A.10)

We now multiply both sides by e−iφ

r(t)eiψ(t)−iφ =

∫

T

∫

R
ei(φ

′−φ)ρ(t, φ′, ω)dωdφ′ (A.11)

and take the imaginary part on both sides:

Im


r(t)eiψ(t)−iφ
︸ ︷︷ ︸

e−iφz(t)


 = Im

[∫

T

∫

R
ei(φ

′−φ)ρ(t, φ′, ω)dωdφ′
]

= r(t) sin(ψ(t)− φ) =

∫

T

∫

R
sin(φ′ − φ)ρ(t, φ′, ω)dωdφ′. (A.12)

Now inserting (A.12) into (A.7), we get the characteristic �eld v in the N →∞
limit:

v(t, φ, ω) = ω + C

∫

T

∫

R
sin(φ′ − φ)ρ(t, φ′, ω′)dω′dφ′. (A.13)

Note that this resembles (A.1), except that the density ρ must be taken into
account as well. Recalling that we can set ψ = 0 in the Kuramoto model, (A.12)
helps to reassure ourselves that the rhs. of (A.9) and (A.13) are actually equal.
Moreover, rememberig that ρ(t, φ, ω) ≡ g(ω)ρ(t, φ|ω), we can write (A.13) as

v(t, φ, ω) = ω + C

∫

T

∫

R
sin(φ′ − φ)ρ(t, φ′|ω′)g(ω′)dω′dφ′. (A.14)
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ABSTRACT

We study the macroscopic dynamics of large networks of excitable type 1 neurons composed of two populations interacting with disparate
but symmetric intra- and inter-population coupling strengths. This nonuniform coupling scheme facilitates symmetric equilibria, where
both populations display identical firing activity, characterized by either quiescent or spiking behavior, or asymmetric equilibria, where the
firing activity of one population exhibits quiescent but the other exhibits spiking behavior. Oscillations in the firing rate are possible if
neurons emit pulses with non-zero width but are otherwise quenched. Here, we explore how collective oscillations emerge for two statistically
identical neuron populations in the limit of an infinite number of neurons. A detailed analysis reveals how collective oscillations are born and
destroyed in various bifurcation scenarios and how they are organized around higher codimension bifurcation points. Since both symmetric
and asymmetric equilibria display bistable behavior, a large configuration space with steady and oscillatory behavior is available. Switching
between configurations of neural activity is relevant in functional processes such as working memory and the onset of collective oscillations
in motor control.
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The theta neuron model1 is the normal form for the saddle-node-
on-invariant cycle bifurcation; i.e., it represents the dynamic
behavior near the excitation threshold of type 1 neurons, and it
is equivalent to the quadratic integrate-and-fire neuron.2–4 These
neuron models have attracted much interest based on recently
developed dimensional reduction techniques,5,6 allowing for an
exact description of neuron ensembles in terms of macroscopic
collective variables;6,7 for reviews, see also Refs. 8 and 9. Such
neuron populations mimic densely connected neural masses in
the brain. Collective oscillations arising in the brain are impor-
tant for generating rhythms in the brain, e.g., for motor control10

and breathing.11 The combination of excitatory and inhibitory
neurons is a known prerequisite for the generation of collective
rhythms such as gamma rhythms.12 In this study, we pursue the
mathematical question of how collective rhythms may arise in an
even simpler model composed of two populations of (statistically)
identical excitatory neurons with nonuniform coupling and what
their bifurcations are.

I. INTRODUCTION

The brain is a complex network of networks with a hierarchical
structure,13,14 thus organizing neurons into neural masses, com-
munities with high connectivity, structures that may interact with
one another14,15 to solve cognitive functions16 by displaying differ-
ent individual collective dynamic behaviors. A prominent collective
behavior observed in the brain occurs when a group of neurons
synchronizes and oscillates in unison.17,18 Synchrony has been asso-
ciated with solving functional tasks including memory,19 computa-
tional functions,20 cognition,21 attention,20,22 processing and routing
of information,23–26 control of gait and motion,10 or breathing.11

Neural masses with densely connected neurons are intercon-
nected and form networks of a modular structure. An impor-
tant functional aspect in such networks is situations under which
each population may assume different collective dynamic behav-
iors, such as low or high synchrony or low and high firing activ-
ity. Thus, a network of oscillator populations may exhibit a large
configuration space with different synchronization patterns, as is
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also exemplified by chimera states in Kuramoto oscillator networks,
where one or several populations are synchronized and the other
desynchronized.26–34 The dynamics of such networks with a multi-
population structure and their configurations has been explored in
the context of neuroscience,7,35,36 including memory recall,37 infor-
mation processing via self-induced stochastic resonance,38 and deep
brain stimulation.39

Many studies concern the modeling of neuronal processes at
the microscopic scale of individual neurons. However, the number
of neurons in the brain is enormous, and, consequently, math-
ematical models of the brain are very high dimensional so that
analyzing the collective dynamic behavior of large neuronal assem-
blies poses a prohibitive challenge; a coarse-grained description
of the dynamics at the macroscopic level is desirable. Recently
developed mathematical methods based on the Ott–Antonsen5 and
Watanabe–Strogatz reductions40,41 allow for an exact dimensional
reduction, which applies to phase oscillator networks with sinu-
soidal coupling, including variants of the Kuramoto model, the
theta neuron model, and the equivalent quadratic integrate-and-
fire neuron model. Unlike heuristic models,42,43 the resulting model
equations exactly describe the collective dynamics for each popula-
tion and—connecting the microscopic to the macroscopic descrip-
tion—accurately capture microscopic properties of the underlying
system.8,9,44

Collective oscillations in neural activity occurs over a broad
range of frequencies and across many brain regions.45 Prominent
are gamma frequency oscillations relevant in connection with cog-
nitive tasks,46 neuronal diseases,18 motor control,10 and breathing.11

Such collective oscillations are known to occur in neuron networks
with excitatory and inhibitory coupling.44,47–49 Network models with
(statistically) identical neurons emitting infinitely “sharp” signal
pulses as represented by Dirac distributions do not permit collective
oscillations;50 conversely, collective oscillatory behavior is possible
when the pulse width is non-zero.7,51

We study a network composed of two populations of inhibitory
type 1 neurons with non-uniform (but symmetric) coupling, inter-
acting through pulses with non-zero width. We consider the dynam-
ics in the continuum limit of infinitely many neurons, allowing us
to use aforementioned dimensional reduction methods.5,8 Rather
than aiming at a high level of biophysical realism, we wish to elu-
cidate how collective oscillations may get born and destroyed in
a simple setup and to explore their related bifurcation scenarios.
Even though the coupling is symmetric and neurons are statistically
identical, the resulting dynamic behavior is surprisingly compli-
cated. The neuronal activity in each population may assume distinct
levels, thus resulting in multistable configurations, in similarity to
synchronization patterns as those observed in chimera states27,34

or (non-oscillatory) neural states reported for models of working
memory.37 In particular, one observes a rich structure of bifurcations
producing collective limit cycle oscillations for which we provide a
detailed bifurcation analysis.

This article is structured as follows. In Sec. II, we introduce
our model of two populations of theta neurons and its equivalent
form of quadratic integrate-and-fire neurons. We outline how an
exact description of the macroscopic dynamics for populations of
infinitely many neurons is obtained via the Ott–Antonsen method,
and how firing rate equations for the equivalent QIF neurons are

derived via a conformal mapping.6 In Sec. III, we summarize the
known dynamical behavior for a single population, which represents
a limiting case for two populations with vanishing inter-population
coupling or uniform coupling. In Sec. IV, we perform a detailed
analysis by using numerical continuation methods via MatCont52

and explain the various bifurcation scenarios that are possible.
Finally, we sum our findings up and conclude with a discussion in
Sec. V.

II. MODEL

A. Network of theta neurons

We consider a model of M = 2 populations of N interact-
ing theta neurons, where the phase θσ ,k ∈ T := R/2πZ of the kth
neuron belonging to population σ = 1, 2 evolves according to

θ̇σ ,k :=
dθσ ,k

dt
= 1 − cos θσ ,k + (1 + cos θσ ,k)(ησ ,k + Iσ ), (1)

with excitability ησ ,k of oscillator k in population σ sampled
from a Lorentzian distribution gσ (η) with mode η̂σ and width
1σ . The theta neuron (1) is the normal form of the saddle-
node-on-invariant-circle (SNIC) (or saddle-node-infinite period)
bifurcation53 and is a canonical type 1 neuron.1 The dynamics are as
follows. For ησ ,k + Iσ < 0, a stable and unstable fixed point occurs
on the phase circle T; for ησ ,k + Iσ = 0, these fixed points coalesce
in a saddle-node bifurcation; for ησ ,k + Iσ > 0, the flow on the circle
results in a cyclic/periodic motion. If ησ ,k + Iσ < 0, the theta neu-
ron is said to be excitable: in the absence of perturbations, the phase
relaxes to the stable fixed point on the phase circleT; however, a per-
turbation may lead to a single spike (at θσ ,k = π) before returning to
the stable fixed point. This could happen in at least two ways: a per-
turbation of the phase across the unstable fixed point (constituting
a threshold) is possible if one considers that the theta model derives
from a higher dimensional model1 so that the circle is embedded in
a higher dimensional space; alternatively, a very short-lived (time
scale of a single cycle) increase in Iσ momentarily pushes the system
across the bifurcation threshold ησ ,k + Iσ = 0. If ησ ,k + Iσ > 0, the
neuron is firing (or excited); i.e., it spikes periodically.

The input current may result from a variety of interactions;
for an overview, see Refs. 8 and 50. Here, we assume that the input
current is given by

Iσ =

M
∑

τ=1

κστ

N

N
∑

l=1

Ps(θτ ,l), (2)

where adjacent neurons interact via pulses, which we choose to be

Ps(θ) = as(1 − cos θ)s, (3)

originally adopted by Ariaratnam and Strogatz,54 with shape param-
eter s ∈ N, see also Fig. 1, and coupling strengths κστ between
populations σ and τ . The normalization constant as = 2s(s!)2/(2s)!
is defined so that

∫ 2π
0 Ps(θ) dθ = 2π .

The case of M = 2 populations results in eight parameters
(excluding the pulse shape parameter s). To reduce the problem
to a manageable number of parameters, we make the following
assumptions: (i) the oscillator properties in populations σ = 1, 2 are
statistically identical so that η̂1 = η̂2 =: η̂ and 11 = 12 =: 1 and
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FIG. 1. Pulse shape for varying pulse shape parameter s. The pulse converges
to Dirac delta as s → ∞.

(ii) the coupling is symmetric with respect to identical intra- and
inter-coupling strengths, i.e., κ11 = κ22 =: κ . and κ12 = κ21 =: aκ .
Unless stated otherwise, we keep (η̂, 1, s) fixed and consider (κ , a)

the main bifurcation parameters.

B. Network of quadratic integrate-and-fire neurons

An equivalent description of the theta neuron is the quadratic
integrate-and-fire (QIF) neuron via the transformation into the
membrane potential V(θ) = tan (θ/2) ∈ (−∞, ∞). The model
equations then become8

d

dt
Vσ ,k := V̇σ ,k = V2

σ ,k + ησ ,k + Iσ , (4)

where Vσ ,k := V(θσ ,k). In this formulation, the neuron fires (emits
a spike) when the voltage reaches Vk(t

−) = ∞ (in finite time). It is
then reset to Vk(t

+) = −∞. QIF neurons have been widely used in
neuroscientific modeling; see Refs. 4 and 55 for a general introduc-
tion and Refs. 3 and 56 for a few examples of applications of QIF
neurons.

C. Exact macroscopic description for the limit of
infinitely many neurons

We consider (1) in the limit N → ∞, which allows us to
express the ensemble dynamics in terms of a continuous neuron
density ρσ (θ , η, t) governed by the continuity equation

∂

∂t
ρσ +

∂

∂θ
(fσ ρσ ) = 0, (5)

where

fσ = 1 − cos θ + (1 + cos θ)

×

(

η +

M
∑

τ=1

κστ

∫ ∞

−∞

∫ 2π

0

Ps(θ
′)ρτ (η

′, θ ′, t) dθ ′ dη′

)

(6)

The Ott–Antonsen method5,7 facilitates an exact reduction of the
microscopic dynamics in (1) to a low-dimensional description of the

macroscopic dynamics in terms of the complex order parameter of
each population,

Zσ (t) = Rσ (t) e−i8σ (t) =

∫ 2π

0

∫ ∞

−∞

eiθρσ (θ , η, t) dη dθ . (7)

The absolute value of the order parameter informs us of the level
of phase synchronization of the neuron population: when |Zσ | ≈ 0,
phases are spread over the circle T, whereas |Zσ | ≈ 1 implies phase
synchronization; i.e., phases are closely spread around the phase
of the order parameter given by 8σ = − arg (Zσ ). The collective
dynamics of population σ = 1, 2 is then given by7,8

Żσ = −
1

2

[

(1σ − iη̂σ − iI(s)σ )(1 + Zσ )2 + i(1 − Zσ )2
]

. (8)

These equations are closed by the input current7,8

I(s)σ =

M
∑

τ=1

κστ P(s)
σ , (9)

with the average output from all other neurons in the network,

P(s)
σ = as



C0 +

s
∑

q=1

Cq(Z
q
σ + Z̄q

σ )



 , (10)

Cq =

s
∑

k=0

k
∑

m=0

s!(−1)kδk−2m,q

2km!(s − k)!(k − m)!
. (11)

For details on this reduction method and theory in general including
applications in neuroscience, see Ref. 8.

Two cases are of particular interest to us: pulse shape parameter
s = 1 and s = ∞ (impulsive coupling) for which we have

P(1)
σ = 1 −

1

2
(Zσ + Z̄σ ) (12)

and

P(∞)
σ =

1 − |Zσ |2

(1 + Zσ )(1 + Z̄σ )
, (13)

respectively.

D. Firing rate equations

The model (8) has an equivalent formulation in terms of aver-
age firing rate rσ and average membrane potential vσ called the
Firing Rate Equations (FREs).6 Indeed, changing variables via the
(anti)conformal mapping

Z = (1 − W̄)/(1 + W̄) or W = (1 − Z̄)/(1 + Z̄), (14)

gives

Ẇσ = 1σ + iη̂σ − iW2
σ + iI(s)σ (15)

and

P(1)
σ = 1 −

1 − |Wσ |2

(1 + Wσ )(1 + W̄σ )
, (16)

P(∞)
σ =

1

2
(Wσ + W̄σ ). (17)

Chaos 31, 023141 (2021); doi: 10.1063/5.0031630 31, 023141-3

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

Writing Wσ = πrσ + ivσ , (16) and (17) take the form

P(1)
σ = 2

π 2r2
σ + πrσ + v2

σ

(πrσ + 1)2 + v2
σ

, P(∞)
σ = πrσ , (18)

for s = 1 and s = ∞, respectively. Taking the real and imaginary
part of (15) yields the firing rate equations

ṙσ =
1σ

π
+ 2rσ vσ , (19)

v̇σ = v2
σ − π 2r2

σ + η̂σ + I(s)σ , (20)

where

I(s)σ =







2
∑M

τ=1 κστ

πr2
τ + πrτ + v2

τ

(πrτ + 1)2 + v2
τ

, s = 1,

π
∑M

τ=1 κστ rτ , s = ∞.
(21)

The microscopic and macroscopic description is related as follows.
A single theta neuron fires when its phase crosses θ = π ; accord-
ingly, the average firing rate rσ (t) of the network at time t is defined
as the flux through θ = π (or equivalently, the flux at vσ = ∞), see,
for instance, Ref. 8.

III. DYNAMIC BEHAVIOR OF ONE POPULATION

The dynamic behavior for the case of M = 1 population has
already been studied previously.7,51 We briefly review the dynam-
ics observed for this case as it is instructive for understanding the
dynamic and oscillatory behavior exhibited by M = 2 populations.
For two-parameter choices, the model equation (1) for M = 2 effec-
tively reduce to the dynamics of a single population, M = 1. Recall
that the intra- and inter-coupling strengths among the two popula-
tions are given via κ11 = κ22 = κ and κ12 = κ21 = κa. Thus, when
a = 1, all neurons experience identical coupling strength so that the
two populations act like a single population consisting of twice the
number of neurons; on the other hand, when a = 0, the two popula-
tions are decoupled so that each of the two populations in separation
effectively corresponds to a M = 1 system. For brevity, we drop σ in
(1) and all related equations.

The bifurcation diagrams in Fig. 2 report minima and maxima
for the firing rate r while varying coupling strength κ with parameter
values s = 1, 1 = 0.01 fixed, and η̂ = −0.5 or η̂ = 0.5 in panels (a)
and (b), respectively. Solution branches sometimes appear very close
to each other for the firing rate r; therefore, it is instructive to also
report the magnitude of the order parameter, |Z|, which is related
to the firing rate r via the (anti)conformal mapping (14). Equilibria
and local bifurcations (saddle-node, Hopf) can be computed analyt-
ically from (19) and (20); limit cycles and other bifurcations were
computed and continued numerically using Matlab and MatCont
software;52 see also Appendix B.

We first consider the case of excitable neurons (η̂ < 0) in
Fig. 2(a). For the parameters considered and κ / 0, we observe
a set of stable equilibria (stable nodes) with |Z| ≈ 1; the related
microscopic states are non-oscillatory; i.e., most of the neurons
are quiescent (Q), and therefore, their spiking activity is negligible,
r ≈ 0. This branch of equilibria may undergo two saddle-node bifur-
cations (SN1 and SN2) that are connected by a branch of saddles.

FIG. 2. Bifurcation diagrams in κ for M = 1 population of theta neurons. We
display solution branches by reporting maxima and minima in the firing rate r

(black) and synchrony level |Z| (gray), respectively. Stable and unstable branches
of equilibria have coinciding minima/maxima and are shown solid and dashed,
respectively; minima/maxima corresponding to limit cycle behavior are highlighted
in blue. Bifurcations that may occur are saddle node (SN1, SN2), Hopf (HB), and
homoclinic (HC). Fixed parameters are 1 = 0.01 and pulse shape parameter
s = 1, while η̂ = −0.5 and η̂ = 0.5 in panels (a) and (b), respectively.

Equilibria to the right of SN1 (larger κ) are stable spirals and cor-
respond to spiking neurons (S) with larger firing rate r > 0. As the
coupling strength κ increases, higher levels of synchrony, eventually
getting close to |Z| = 1, may be achieved.

For the case of spiking (firing) neurons (η̂ > 0), the bifurcation
diagram in Fig. 2(b) reveals a similar bifurcation structure with two
saddle-node bifurcations. However, for certain values of η̂, an even
more complicated bifurcation scenario is possible along the branch
to the right of SN1: a supercritical Hopf bifurcation (HB) gives birth
to limit cycles, which ultimately are destroyed in a homoclinic bifur-
cation (HC). In between the values of η̂ = −0.5 and η̂ = 0.5 shown
in Fig. 2, two distinct bifurcations of codimension 2 occur: (i) SN1

and SN2 merge in a cusp point and (ii) the bifurcation curves SN1,
HB, and HC meet in a Bogdanov–Takens point. The scenario in
which limit cycles occur is characteristic for spiking neurons (η̂ > 0)
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with inhibitory coupling (κ < 0), as can be shown by further bifur-
cation analysis. For further details on these bifurcation structures,
see Refs. 7 and 51.

Importantly, we note that collective oscillations emerging in the
Hopf bifurcation HB cease to exist in the limit of pulses defined
by (3) with zero width obtained in the limit of s → ∞. While this
was already noted in recent studies,50,57 we briefly outline a deriva-
tion of this fact in Appendix A. Further investigations of ours show
that Hopf bifurcations continue to exist for a large range of val-
ues of the pulse shape parameter, s. Our observations suggest that
the Hopf bifurcations giving birth to oscillations only vanish in
the limit of s → ∞, prompting a degeneracy for this limit. The
case of infinitely narrow pulses, s = ∞, provides the advantage
that the fixed point conditions resulting from the corresponding
FRE can be solved in a closed form, enabling a simple mathe-
matical analysis. However, since this case produces a degenerate
bifurcation behavior where limit cycles are absent, we chose to fix
s = 1.

Between the pair of fold bifurcations (SN1 and SN2), a param-
eter region of bistability arises, thus facilitating hysteretic behavior.
This happens for excitable neurons, η̂ < 0, with excitatory coupling,
κ > 0, as well as for parameters corresponding to firing neurons,
η̂ > 0, with inhibitory coupling, κ < 0. This bistable character of
solutions observed for M = 1 population translates to the case of
M = 2 populations, where each population may attain distinct stable
configurations.

In the following, we consider non-zero pulse width (s = 1) and
fix parameter values to η̂ = −1 (excitable neurons) and 1 = 0.01,

FIG. 3. Asymptotic dynamic behaviors for the two population model after tran-
sients. Low and high levels of the firing rate r(t) indicate quiescent (Q) or spiking
(S) behavior. (a) Symmetric (stable) equilibrium where both populations are quies-
cent (QQ). (b) Symmetric (stable) equilibrium where both populations are spiking
(SS). (Transients leading up to the equilibrium are oscillatory.) (c) Asymmetric (sta-
ble) equilibrium where one population is quiescent and the other spiking (QS or
SQ). (Transients leading up to the equilibrium are oscillatory only for the spiking
population.) (d) Asymmetric (stable) limit cycle (QSo or SQo) where both popula-
tions oscillate with the same period (but with different amplitudes). The coupling
parameter is κ = 1.8 for panels (a)–(c) and κ = 2.2 for panel (d); parameters
a = 0.25, η̂ = −1,1 = 0.01, s = 1 are fixed throughout.

while varying the intra-coupling strength, κ , and the inter-coupling
strength, a.

IV. ANALYSIS FOR TWO POPULATIONS

A. Symmetric and asymmetric equilibria

It is instructive to begin the analysis by surveying the possi-
ble asymptotic dynamic behavior for the firing rates r1 and r2 (or
equivalently, Z1 and Z2) in the FRE (19) and (20) for M = 2 popu-
lations. We may distinguish two types of asymptotic states as t →
∞, namely, (i) symmetric states characterized by r1(t) = r2(t) and
v1(t) = v2(t) and (ii) asymmetric states characterized by r1(t) 6= r2(t)
and v1(t) 6= v2(t). Furthermore, each neuron population may be in
a state of quiescence (Q) or spiking (S) depending on whether rσ

reflects low or high firing activity, respectively. In an asymmetric
limit cycle, both populations oscillate around a distinct value corre-
sponding to quiescence or spiking, respectively. Figure 3 illustrates
the possible asymptotic states that may be observed depending on
parameter values and initial conditions chosen.

Solution branches reported in Fig. 2 for M = 1 population
translate to symmetric states in the model with M = 2 populations.
To see this, let us first consider two special parameter choices: a = 0
(decoupled populations) and a = 1 (two populations effectively act
like one large population). In these cases, the system with M = 2
populations displays the same bifurcation behavior as M = 1 pop-
ulation, as shown in Fig. 4(a) for a = 0. The branch with a low
firing rate (QQ) corresponds to quiescent neurons with coherent
stationary phases, whereas the branch with a high firing rate (SS)
corresponds to spiking populations whose synchronization level and
firing rate grow with increasing coupling strength κ . Just as for M =
1 population, the system exhibits bistable regions in which both con-
figurations, (Q)uiescence and (S)piking, are possible. However, note
that in the case of a = 1, both populations may only attain iden-
tical (symmetric) configurations of quiescence or spiking, namely,
SS or QQ; in contrast, the decoupled case with a = 0 additionally
and trivially allows for the two populations to attain distinct (asym-
metric) configurations, namely, SQ or QS. Importantly, symmetric
states persist even when a 6= 0 or a 6= 1 since parameters are sym-
metric across the two populations. Specifically, if r is an equilibrium
of the M = 1 population system, then so is (r, r) an equilibrium of
the M = 2 population system but now with κ replaced by κ/(1 + a).
For this reason, the solution branches of symmetric equilibria seen
for M = 1 translate to the M = 2 system, including the saddle-node
bifurcations SN1 and SN2 seen in Fig. 2, in between which, for a ≥ 0,
two stable symmetric states SS and QQ co-exist. However, for a < 0,
the region of bistability for symmetric states is bounded by the pitch-
fork bifurcations PF1 and PF2 rather than SN1 and SN2 since both
branches emanating from the bifurcation point SN1 (SN2) are unsta-
ble, one of them gaining stability at PF1 (PF2); see Figs. 4(c) and 6(a).
PF1 and PF2 also give rise to asymmetric states, as we explain in the
following.

Asymmetric states, corresponding to QS or SQ configurations
with r1 6= r2, are trivially possible when the two populations are
decoupled (a = 0); however, their range of existence and stability
off the degenerate cases a 6= 0 and a 6= 1 deserves further explo-
ration, and we consider small perturbations for a 6= 0. Considering
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the case of a = 0.18 in Fig. 4(b), we observe that unstable asymmet-
ric states (light red) branch off the unstable symmetric state (gray)
in pitchfork bifurcations PF1 and PF2 (see also the inset). The set of
asymmetric equilibria forms a loop in the (κ , r)-space with two folds;
i.e., the equilibria undergo saddle-node bifurcations in SN3 and SN4

between which asymmetric states are stable. As a result, the QS and
SQ (red) emerge as bistable asymmetric configurations. These sta-
ble asymmetric branches may co-exist with the bistable symmetric
solution branches QQ and SS (black). Note that for a > 0, PF1 and
PF2 lie outside SN3 and SN4, while for a < 0, PF1 and PF2 lie inside
SN3 and SN4; as a consequence, the existence of asymmetric states is
bounded by PF1 and PF2 for a > 0 and SN3 and SN4 for a < 0; see
Figs. 4(b) and 4(c). Moreover, for a > 0, asymmetric states exist only
in a relatively narrow range of intermediate coupling strength κ ; by
contrast, for a ≤ 0, the κ-range of existence of asymmetric equilibria
rapidly expands as the value of a decreases [see Fig. 6(a)].

Note that considering the case of decoupled populations with
a = 0, symmetric and asymmetric branches may appear like they
coincide when inspecting Fig. 4; however, the two types of solu-
tion branches are not identical: While the projections Z1 ∈ C and
Z2 ∈ C indeed share identical values for symmetric and asymmet-
ric equilibria, this cannot hold true in the full phase space for
(Z1, Z2) ∈ C2, where the definitions for symmetric (r1 = r2, v1 = v2)
and asymmetric states (r1 6= r2, v1 6= v2) are obeyed.

B. Birth and destruction of limit cycle oscillations

For larger values of the inter-coupling strength, a, asym-
metric equilibria QS (SQ) may undergo Hopf bifurcations giving
rise to limit cycle oscillations (QSo, SQo), indicated by their min-
ima/maxima (blue) in Figs. 5(a)–5(d). Since these limit cycles branch

off asymmetric equilibria (red), they correspond to asymmetric con-
figurations characterized by firing rates r1(t) 6= r2(t). These limit
cycles are created and destroyed in various bifurcations, as outlined
in the following.

1. Birth of stable limit cycles (HB−)

Stable limit cycles (blue minima/maxima) are born in the
supercritical Hopf bifurcation denoted by HB−, as shown in Fig. 5(a)
for a = 0.204. As κ increases, the amplitude waxes and wanes, as the
bifurcation HB− is intersected twice in the direction of varying κ ;
see also Fig. 6.

2. Birth of stable/unstable limit cycles and
annihilation in saddle-node-of-limit-cycle bifurcation
(HB−, HB+−, SNLC1)

Stable limit cycles (blue) are still born in a supercritical Hopf
bifurcation at HB−, but now an unstable limit cycle (light blue)
of a smaller amplitude emerges for greater κ in the supercritical
Hopf (with repelling center manifold) at HB+−. The continuum of
cycles folds over in a saddle-node of limit cycle bifurcation at SNLC1,
where the stable and unstable limit cycles coalesce and disappear; see
Fig. 5(b) for a = 0.25.

3. Stabilization of an unstable limit cycle in secondary
saddle-node-of-limit-cycle bifurcation (SNLC2)

Stable and unstable limit cycles are created in HB− and HB+−.
While the stable limit cycle is destroyed in the homoclinic bifurca-
tion HC−, the unstable limit cycle is subject to a more complicated

FIG. 4. Bifurcation diagrams for M = 2 populations in κ for the firing rate rσ reveal symmetric equilibria, r1 = r2 (black, gray) and asymmetric equilibria, r1 6= r2, (red, light
red), emerging in bifurcations as follows. (a) a = 0: Both populations are decoupled. Symmetric equilibria are folded in two saddle-node bifurcations (SN1, SN2) where the
lower and upper branches (black) corresponding to (Q)uiescence and (S)piking, respectively, are stable; the middle branch (gray) is unstable. Thus, four states are possible,
(SS, QQ, QS and SQ), facilitating multistability and hysteretic behavior. (b) a = 0.18: Symmetric equilibria with r1 = r2 seen for a = 0 are still present (black, gray). However,
the unstable branch (gray) undergoes a pitchfork bifurcation in PF1 and PF2, giving rise to unstable asymmetric equilibria QS/SQ with r1 6= r2 (light red). These equilibria are
connected in a loop, folded twice in two saddle-node bifurcations (SN3 and SN4), giving rise to the co-existence of two stable asymmetric states (red) where one population is
quiescent while the other is spiking (SQ or QS). (c) a = −0.01: For a < 0, the order of SN3, SN4 and SN1, SN2, PF1, PF2 is reversed along the κ direction when compared
to a > 0. Parameters are 1 = 0.01, η̂ = −1, s = 1 everywhere. Chosen values for a are indicated as dashed horizontal lines in Fig. 6.
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FIG. 5. Birth and destruction of asymmetric limit cycle oscillations (blue) in the firing rate forM = 2 populations while varying κ . Possible bifurcation scenarios are illustrated
for various values of a (also indicated as dashed lines in Fig. 6). (a) a = 0.204: stable limit cycles are born in the supercritical Hopf bifurcation HB− (the bifurcation curve is
intersected twice; see Fig. 6). (b) a = 0.25: stable and unstable limit cycles are born in HB− and HB+−, respectively, and annihilate in a saddle-node of limit cycles bifurcation
(SNLC1). (c) a = 0.297: stable and unstable limit cycles are destroyed in a homoclinic bifurcation HC− and HC+, respectively. Moreover, the unstable cycle is subject to two
saddle-node-of-limit-cycle bifurcations at SNLC1 and SNLC2, in between which it gains stability (see the inset); the unstable limit cycle branch emerging from SNLC2 gets
destroyed in HC+. (d) a = 0.302: the unstable limit cycle born in HB+− is destroyed in the homoclinic HC+ saddle-node-of-limit-cycle bifurcations are now absent. Symmetric
equilibria connecting to PF1 and PF2 are omitted for simplicity. Stable and unstable solution branches are shown as dark and light colored shades, respectively. Parameters
are 1 = 0.01, η̂ = −1, s = 1 everywhere.
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FIG. 6. Stability diagram for M = 2 populations in the (κ , a)-parameter plane
with 1 = 0.01, η̂ = −1, s = 1 fixed. Gray shading indicates a bistable region
of the two stable symmetric equilibria, QQ and SS. Red shading indicates the
bistable region of stable asymmetric equilibria, that is, QS or, equivalently, SQ.
Blue shading indicates the bistable region of stable asymmetric limit cycles (QSo

and SQo). Dashed black lines delineate the choices of parameter a for the
bifurcation diagrams in Figs. 4 and 5.

series of bifurcations: It undergoes not only one, but two saddle-
node of cycle bifurcations, SNLC2 and SNLC1. The unstable limit
cycle emerging from SNLC2 collides with the saddle equilibrium of
the asymmetric branch in the homoclinic bifurcation HC+ and is
destroyed, as shown in Fig. 5(c) for a = 0.297.

4. Simple birth and destruction of stable/unstable
limit cycles (HB−, HC−, HB+−, HC+)

The stable and unstable limit cycles are born in the Hopf
bifurcations HB− and HB+− and are destroyed in the homoclinic
bifurcations HC− and HC+, respectively. The complicated sce-
nario including two saddle-node-of-limit-cycle bifurcations from
Sec. IV B 3 is entirely absent. This simple scenario is shown in
Fig. 5(d) for a = 0.302.

C. Stability diagram

We now explain how the various bifurcation scenarios are
related; i.e., how stability boundaries are connected in the (κ , a)-
parameter plane and how bifurcation curves are structured around
bifurcation points of a higher co-dimension.

Let us first consider the overall bifurcation structure for a larger
parameter range (κ , a) as displayed in Fig. 6(a), mainly focusing on
symmetric (QQ, SS) and asymmetric equilibria QS (or SQ). On the
branches of symmetric equilibria (QQ, SS), two saddle-node bifurca-
tions occur, SN1 and SN2 (black), which coalesce in a codimension 2
cusp point for large a (not shown). The gray shaded region of bista-
bility between QQ and SS is bounded by SN1 and SN2 for a ≥ 0 and
by PF1 and PF2 [dashed black curves in Fig. 6(a)] for a < 0, respec-
tively. Note that the curve PF2 lies very close to SN2 in the shown
parameter range, −0.4 ≤ a ≤ 0.7.

Unstable saddle branches of the symmetric equilibria between
(or outside) SN1 and SN2 undergo pitchfork bifurcations PF1 and
PF2, which give rise to unstable asymmetric branches [see light
red curves in Figs. 4(b) and 4(c) and Figs. 5(a)–5(d)]. These
unstable asymmetric branches gain stability on the saddle-node
bifurcation curves SN3 and SN4 [red curves in Fig. 6(a)], which
meet in the codimension 2 cusp point CP. The resulting asym-
metric stable configurations (QS or SQ) reside inside the red
shaded region bounded by the saddle-node bifurcation curves SN3

and SN4 and the supercritical Hopf bifurcation curves HB− and
HB′.

In HB− and HB′, stable asymmetric equilibria QS and SQ lose
stability, resulting in stable asymmetric limit cycles QSo (or SQo)
within the blue shaded regions; these limit cycles may get destroyed
in the homoclinic bifurcations denoted by HC− and HC′ (violet).
Hopf (HB− and HB′) and homoclinic bifurcation curves associ-
ated with the emergence and destruction of these limit cycles (HC−

and HC′) meet with the (asymmetric) saddle-node bifurcation curve
SN3 in two other bifurcation points of codimension 2, namely, the
Bogdanov–Takens points BT and BT′, respectively, characterized by
double zero eigenvalues.58

The bifurcations pertaining to the asymmetric limit cycles are
structured around further, more complicated bifurcation curves and
bifurcation points of a higher co-dimension; see Figs. 6(b) and 6(c).
Following the Hopf bifurcation curve HB− in panel (b), we arrive
at a Generalized Hopf bifurcation point (GH) of codimension 2.58,59
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Such a point not only has a pair of purely imaginary eigenvalues, but
also the first Lyapunov coefficient for the Hopf bifurcation changes
sign at this point so that subcritical (HB+) and supercritical (HB−)
Hopf bifurcations are separated in GH; in addition, a branch of
saddle-node of limit cycle bifurcations, SNLC1, emerges from GH
where the stable and unstable limit cycles born in HB− and HB+ are
annihilated.

Following the bifurcation curve HB+, the associated subcritical
Hopf bifurcation tangentially intersects the saddle-node bifurca-
tion SN4 in the Zero-Hopf bifurcation ZH (or saddle-node Hopf
bifurcation),58,60 characterized by a zero eigenvalue and a pair of
purely imaginary eigenvalues. At ZH, the first Lyapunov coeffi-
cient vanishes once more and changes sign. Hopf bifurcations HB+−

above the ZH point are supercritical (i.e., having a negative first Lya-
punov coefficient) but continue to produce unstable limit cycles as
the center manifold (of the Hopf bifurcation) is repelling.

Following the saddle-node bifurcation of limit cycle curve
SNLC1, we observe that it terminates in another bifurcation point of
codimension 2, Cusp of Cycles (CPC), where it collides with a sec-
ond saddle-node bifurcation of limit cycles curve SNLC2. This latter
bifurcation curve merges with the homoclinic bifurcation curve
HC+ in a codimension ≥ 2 point SLH; see Fig. 6(c). The point SLH
separates two branches of the homoclinic curves, HC− and HC+,
and tangentially intersects with SNLC2. Homoclinic bifurcations on
HC− (HC+) destroy stable (unstable) limit cycles as κ approaches
the homoclinic bifurcation point from above (below).

We come to the following conclusion. In similarity with the
case of M = 1 population, the cases of very small and very strong
coupling κ result in regimes with quiescent and spiking activity,
respectively; both are characterized by high levels of synchrony. In
the intermediate regime, the dynamic behavior is more complicated.
We thus find the following five stability regions: (i) for small cou-
pling strength κ , both populations are quiescent, corresponding to
the symmetric configuration QQ (white region); (ii) for large cou-
pling strength κ , both populations are spiking, corresponding to
the symmetric configuration SS (white region); (iii) for intermedi-
ate coupling strengths, we find a region of bistability between the
configurations QQ and SS; this region of bistability co-exists with
asymmetric configurations of either (iv) stationary firing rate, SQ
or QS (red region), or (v) oscillatory firing rates, SQo or QSo (blue
region). In addition, there are regions for intermediate coupling
strengths where only QQ co-exists stably with SQ and QS or only
SS with SQ and QS [see Fig. 6(a)].

V. DISCUSSION

Collective oscillations in neural ensembles are responsible for
the rhythm generation required for solving functionally relevant
tasks in the brain.10,18,45 Collective oscillations may be facilitated by
a variety of network setups, including heterogeneous networks with
excitatory and inhibitory coupling leading to gamma rhythms.48,49

Here, we investigated the emergence of collective oscillations in
a simple model consisting of a homogeneous network composed
of two (statistically) identical populations of type 1 neurons with
non-uniform but symmetric coupling; i.e., neurons are coupled
with strength κ and aκ (with a 6= 1) within and between the two
populations, respectively.

In this model, each population may assume states correspond-
ing to quiescent (Q) or spiking (S) firing activity. Thus, we may
distinguish symmetric configurations, where both populations are
either quiescent or spiking (QQ, SS), and asymmetric configura-
tions, where one population is quiescent but the other is spiking
(SQ, QS). We found that stable symmetric configurations may co-
exist for certain parameter choices [see Fig. 4(a)]. We did not
find that symmetric configurations are oscillatory except for uni-
form coupling (a = 1) or for absent inter-coupling (a = 0). As we
deviate from uniform coupling, a 6= 1, unstable asymmetric equi-
libria emerge from symmetric configurations in symmetry-breaking
pitchfork bifurcations. Along these solution branches, asymmet-
ric equilibria may further undergo saddle-node bifurcations and
thus gain stability [see Fig. 4(b)]. Asymmetric oscillatory config-
urations (QSo, SQo) emerge in Hopf bifurcations (Fig. 5) that are
organized around higher codimension bifurcation points. Depend-
ing on parameters, symmetric and asymmetric configurations may
be stable and co-exist, resulting in multistability between either sta-
tionary configurations only (QQ, SS, QS, SQ) or between stationary
and oscillatory configurations (QQ, SS, QSo, SQo). For these regions
of stability, we have determined valid parameter regions and stability
boundaries (Fig. 6).

Oscillator networks with such a modular network structure
are known to exhibit a high degree of multistability; i.e., depend-
ing on initial conditions, a variety of dynamic configurations for
the collective states may be assumed in each population. A promi-
nent example is synchronization patterns known as chimera states
in Kuramoto oscillator networks,27,29,34 which may be employed to
store memory or perform computations61 or direct the flow of infor-
mation between populations.8,26 However, compared to Kuramoto
networks with rigidly rotating oscillators, the excitable nature of
neurons intrinsically leads to more complicated dynamics and syn-
chronization behavior.62 While complicated dynamics may arise
in networks composed of identical Kuramoto oscillators arranged
with at least two populations (as well as for broken parameter
symmetries),28,63 excitable type 1 neurons produce rich bifurcation
behavior and bistability already for a single population, as illus-
trated in Fig. 4 and discussed in Refs. 7 and 8. Such multistability
is of great interest in applications, e.g., in neuroscience. A recent
study modeled networks of type 1 neurons and demonstrated how
the bistability between low and high firing activity—resulting in a
large configuration space that scales with the number of popula-
tions—may be employed to solve cognitive tasks such as memory
storage and recall.37

Several studies considered networks of type 1 neurons in terms
of their macroscopic behavior. The collective dynamics of a sin-
gle population was studied in terms of non-identical theta neurons
with non-zero pulse width,7,51 of the response to an external (rigid)
forcing,36 of quadratic integrate-and-fire neurons,6 and of different
coupling functions, oscillations, and aging transitions,57 and of the
role of distributed delay in the coupling function.64 Luke et al.36

studied a two population model similar to ours; however, they
considered unidirectional coupling. This driver-response system
exhibits some of the bifurcation structures and collective macro-
scopic behaviors that we reported here; i.e., the response population
exhibits multistable equilibrium states and limit cycles. In addition,
their system exhibits chaotic behavior, which was also reported by
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Ceni et al.65 who considered a similar setup but with exponentially
decaying synapses leading to three dimensional dynamics for the
macroscopic firing rate equations. Unlike their study, we did not
observe quasiperiodic and chaotic dynamics. While we restricted
our study to symmetric parameter configurations between the two
populations, future research might address the question if break-
ing parameter symmetries between the populations (such as the
coupling strength) may induce bifurcations, leading to chaos. For
such cases, one may envision torus bifurcations emerging from the
zero-Hopf bifurcations,58 offering a route to chaos via bifurcations
of Shil’nikov homoclinic orbits to saddle foci. Ratas and Pyragas66

studied a network of quadratic integrate-and-fire neurons with two
populations. While their system is similar to ours, it differs in some
important aspects. First, neurons are considered to be strongly het-
erogeneous with an excitability spread around η̂ = 0, thus resulting
in a network including both excitable and spiking neurons; here, the
majority of neurons are excitable. Second, for the coupling function,
they use a threshold modulation coupling function corresponding
to a Heaviside function. This system exhibits steady and oscillatory
states with symmetric and asymmetric character but unlike our sys-
tem, also chaotic behavior and states characterized by anti-phase
configurations.

To study collective oscillations of firing activity in our model, it
is necessary to deviate from the case of instantaneous pulse coupling
(s → ∞) where collective oscillations are absent (see Appendix A
and Refs. 50 and 57). The pulse width given by Eq. (3) with s = 1
was large; other pulse shape models4,6 may be more realistic and con-
sider that incident pulses arrive instantaneously in order to decay
exponentially fast upon arrival over a characteristic time scale τ . It is
then frequently assumed that τ → 0, resulting in time-symmetric
and instantaneous pulses. This strategy certainly simplifies analy-
sis; yet, it appears that this limit biophysically is no more realistic
especially since it results in the same macroscopic equations as
given by (19) and (20) for the limit of s → ∞; this again rules
out the potential to produce any macroscopic oscillations. For a
future study, it might be interesting to examine how the spe-
cific choice of pulse shape in terms of width and time-asymmetry
affects the unfolding of bifurcations. While many studies either
studied small values of s or s → ∞, it would be interesting to see
how the bifurcation scenarios reported in this study translate to
the case of causal synaptic potentials that decay exponentially in
time.67

Many questions remain. For instance, breaking parameter sym-
metry may result in richer dynamics30 including chaos;63 is chaotic
motion feasible if excitability parameters (η̂σ and 1σ ) are non-
identical or if a small delay is introduced in the coupling? Are
bifurcation scenarios for spiking neurons (η̂ > 0) equally compli-
cated as the ones we observed here for excitable neurons (η̂ < 0)?
In terms of switching between configurations and devising a con-
trol method to do this, it may be useful to determine basins of
attraction for the various configurations or responses to directed
perturbations.28,37 Furthermore, networks with larger population
number M > 2 provide a larger set of dynamic configurations;37,68,69

but how large is the set of configurations as a function of the popu-
lation number and which of the configurations are stable and which
ones are oscillatory? Future studies may address such and further
questions.
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APPENDIX A: COLLECTIVE OSCILLATIONS FOR
NON-ZERO PULSE WIDTH (s < ∞)

We briefly discuss the existence of Hopf bifurcations and
resulting limit cycle oscillations in the firing rate r(t) for varying
pulse shape parameter s for the simple case of M = 1 population. To
determine the presence of Hopf instabilities, we examine eigenvalues
of the Jacobian of (19),

J =

(

2v 2r
−2π 2r + ∂

∂r
I 2v + ∂

∂v
I

)

. (A1)

Steady state of (19) implies v∗ = − 1

2π
1
r∗

so that

tr(J) = −
21

π

1

r∗
+

∂

∂v
I|(r,v)=(r∗ ,v∗). (A2)

A necessary condition for a Hopf bifurcation is that tr(J) =
0. For the case of infinitely narrow pulses, s = ∞, Hopf bifurca-
tions are impossible: we have ∂

∂v
I = κ ∂

∂v
P(∞) = 0 thus and tr(J) =

−21/π/r∗ < 0 for all r∗ > 0. Hence, Hopf bifurcations and result-
ing limit cycles regardless of the choice of parameters can be ruled
out for this case.

Conversely, we know that Hopf bifurcations are possible for
s = 1 (see Fig. 2) and s = 2 (see Luke et al.7). Indeed, the trace for
1 < s < ∞ involves more complicated terms, and Hopf bifurcation
cannot easily be ruled out. While an analytical proof remains elusive,
using a numerical analysis based on solving the zero trace condition,
one finds that limit cycle oscillations are feasible for a large range of
pulse shape parameters, including at least 1 ≤ s ≤ 20.

APPENDIX B: METHODOLOGY

The data for the bifurcation diagrams in Figs. 4 and 5 were
obtained via numerical continuation of equilibria and limit cycles
(using MatCont software) in the parameter κ ; thus, we encountered
codimension-1 bifurcation points SN1, SN2, SN3, SN4, HB−, HB+,
HB+−, HB′, HC−, HC+, HC′, SNLC1, SNLC2, PF1, PF2. With the
exception of PF1 and PF2 we continued all these degenerate states
as bifurcation curves in the parameters κ and a using MatCont
(Fig. 6); therefore, we detected the codimension ≥ 2 bifurcation
points reported in Sec. IV C. The direct two-parameter continuation
of the bifurcation curves PF1, PF2 posed technical problems when
using MatCont; alternatively, we, therefore, determined the loci of
PF1 and PF2 by computing bifurcation diagrams in a single param-
eter, κ , for set values of a, resulting in the parameter list (κ , a) in
Table I. The curves shown in Fig. 6 (dashed black curves) are splines
interpolating these data points.
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TABLE I. Bifurcation points numerically detected for PF1 and PF2.

a κ (PF1) κ (PF2)

0.7 1.476 5.546
0.65 1.438 5.728
0.6 1.414 5.915
0.5 1.400 6.320
0.4 1.419 6.777
0.35 1.439 7.029
0.25 1.500 7.594
0.204 1.538 7.884
0.18 1.561 8.045
0.1 1.652 8.630
−0.01 1.824 9.590
−0.05 1.904 9.993
−0.1 2.020 10.548
−0.15 2.160 11.169
−0.2 2.329 11.867
−0.27 2.632 13.004
−0.35 3.117 14.604
−0.4 3.538 15.821
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Models of coupled oscillator networks play an important role in describing collective synchronization dynamics in
biological and technological systems. The Kuramoto model describes oscillator’s phase evolution and explains the
transition from incoherent to coherent oscillations under simplifying assumptions including all-to-all coupling with
uniform strength. Real world networks, however, often display heterogeneous connectivity and coupling weights
that influence the critical threshold for this transition. We formulate a general mean field theory (Vlasov-Focker
Planck equation) for stochastic Kuramoto-type phase oscillator models, valid for coupling graphs/networks with
heterogeneous connectivity and coupling strengths, by using graphop theory in the mean field limit. Considering
symmetric odd valued coupling functions, we mathematically prove an exact formula for the critical threshold for the
incoherence-coherence transition. We numerically test the predicted threshold using large finite-size representations
of the network model. For a large class of graph models we find that the numerical tests agree very well with the
predicted threshold obtained from mean field theory. However, the prediction is more difficult in practice for graph
structures that are sufficiently sparse. Our findings open future research avenues towards a deeper understanding of
mean-field theories for heterogeneous systems.
Keywords: Kuramoto model, phase oscillators, synchronization, heterogeneous graph, mean-field limit, graphop.

Networks of coupled oscillators appear in an impressive
range of systems in nature and technology where they dis-
play collective dynamics such as synchronization 1–3. The
Kuramoto model describes the phase evolution of oscilla-
tors4,5 and explains the transition from incoherent to co-
herent synchronized oscillations for a critical threshold of
the coupling strength under simplifying assumptions such
as all-to-all coupling with uniform strength6,7; however,
real world networks often display strong heterogeneity in
connectivity and coupling strength which affect the criti-
cal threshold8. We derive a mean field theory for stochas-
tic Kuramoto-type models and extend it to a large class of
heterogeneous graph/network structures via graphop de-
scriptions valid for the mean-field limit. We prove a math-
ematically exact formula for the critical threshold, which
we test numerically for large finite-size representations of
the network model.

I. INTRODUCTION

The discovery of synchronization dates back to 1665 with
Christiaan Huygens’ observations of two synchronizing pen-
dulum clocks9, and its mathematical modeling likely began
with Norbert Wiener who was inspired by neuronal oscilla-
tions in the brain10. Wiener’s formulation of the problem,

a)Corresponding author: erik.martens@math.lth.se

however, was too general to allow for any analytical progress;
simplifying assumptions were necessary to render the prob-
lem mathematically tractable11, culminating in Yoshiki Ku-
ramoto’s paradigmatic model4,5. Kuramoto’s original model
describes the time evolution of the oscillator phases θk =
θk(t),

d
dt

θk =: θ̇k = ωk +
C
N

N

∑
j=1

sin(θ j −θk),

where k ∈ {1, . . .N} =: [N], the coupling interaction between
oscillators is first order, the coupling is all-to-all with uni-
form strength C, and the intrinsic frequencies ωk are drawn
unimodally from a distribution g centered in the origin. The
level of synchronization in this transition is aptly captured us-
ing the order parameter, r(t) = 1

N

∣∣∣∑N
j=1 exp(iθ j(t))

∣∣∣, which
tends to 0 when oscillator phases are incoherent (disordered)
for weak coupling; or to 1 when oscillators lock their frequen-
cies and phases clump together (we say the phases are co-
herent / the oscillators synchronize). When frequencies are
identical, ωk = ω j for all k, j ∈ [N], the so-called synchro-
nization manifold defined by θk(t) = θ j(t) for all k, j ∈ [N]
exists and is attractive for C> 0; vice versa, when frequencies
are non-identical (or symmetry is broken due to some other
mechanism, see below), the loss or gain of coherence plays
out in a competition between the strength of the heterogeneity
and coupling strength C. Thus, for a set distribution width of
the intrinsic frequencies, Kuramoto’s model exhibits a transi-
tion from incoherent to coherent oscillations as the coupling
strength C surpasses a certain threshold value C♮.
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Kuramoto’s initial heuristic analysis was based on a self-
consistency equation for the order parameter12, allowing
to predict the critical coupling strength associated with the
incoherence-coherence transition. A more formal mathemat-
ical treatment, facilitating deeper insights would however re-
quire a mean field theory valid in the limit, N → ∞. Such a
theory13 describes the dynamics in terms of a density func-
tion in the oscillator phases, ρ = ρ(φ , t), that evolves accord-
ing to a transport equation (formally, a Vlasov-Fokker-Planck
equation, see Eq. (8)). Such a description was used by Stro-
gatz and Mirollo14 to investigate the stability of the incoher-
ent branch for C <C♮ where ρ = 1/(2π) by studying the as-
sociated eigenvalue spectrum, and to (re-)derive the critical
coupling C♮ = 2/(πg(0)), where g(0) denotes the maximum
value of a unimodal frequency distribution g; this approach
was further developed and applied to variants of the Kuramoto
model15. Other studies focused on the stability analysis for
the partially synchronized branch (C > C♮)16. An exact low
dimensional description in terms of the macroscopic dynam-
ics (order parameter) allowing to express the evolution of the
order parameter in terms of an ordinary differential equation
became available later 17–19.

While Kuramoto’s simplifying assumptions allowed for
making significant progress in the mathematical understand-
ing of the synchronization phenomenon, to understand real
world oscillator dynamics, it is desirable to break these as-
sumptions towards increasing complexity. There is a number
of ways of doing this; here, we are concerned with how the
incoherence-coherence transition is affected by the presence
of (thermal) noise and in particular, network heterogeneities,
which play a major role in real systems20–27. Indeed, the abil-
ity of coupled oscillators to synchronize has been investigated
under the influence of noise12,28, heterogeneous connectiv-
ity29,30 or heterogeneous coupling, such as non-local31,32, k-
nearest-neighbor33, or random coupling strengths34,35); and
also on experiments36–39 where oscillators are subject to real
world influences.

Mean-field descriptions for N → ∞ are well established for
various theoretical frameworks including coupled oscillator
networks13. Our focus thus lies on mean-field limits valid
for complex networks8, i.e., to generalize the Vlasov-Fokker-
Planck (VFPE) equation (see Eq. (8)) so that it is capable
of accurately describing the dynamics in complex networks
characterized by heterogeneities in the connectivity or cou-
pling strength. In particular, this includes cases where the
adjacency matrix defining interactions between finitely many
vertices is neither a full graph or a highly symmetric struc-
ture such as a lattice. In order to incorporate such structures,
it is necessary to extend the description of (weighted) graph
structures to the mean-field limit. This is possible via so-
called graphons, which rely on concepts of the theory of lim-
its of graph sequences40,41, or even more generally utilizing
the theory of graphops42. Intuitively, graph limit theory pro-
vides a way to arrange limits of discrete graphs as continu-
ous objects. Graphons achieve this, mostly within the con-
text of dense graphs, using a coupling kernel function that
describes the connectivity in the limit. Graphops generalize
graphons, also incorporating many intermediate and sparse

density graph limits in addition. Graphops can be represented
as operators or via an associated measure-theoretic representa-
tion, i.e., they are generalizing purely kernel-based operators
to more general operators. Recent studies have used graph
limit theories to pursue the goal of heterogeneous mean-field
limits. Several mathematical approaches have been success-
ful in providing rigorous proofs for VFPEs, where nonlocal
integral terms appear to take into account the heterogeneous
coupling structure43,44. Recently, a general theoretical frame-
work based on graphops has been put forward (by some of
the authors of this paper) that allows us to generalize easily
from particular cases (nonlocal coupling or standard all-to-all)
mean-field limit VFPEs, to describe modern complex network
structures45–48.

In the present paper, we extend previous work45–47 to the
stochastic case and formally derive a mean-field for what we
below denote the classical Kuramoto model, i.e., the Ku-
ramoto model with identical oscillators under the influence
of (thermal) noise, based on graphop theory. We then derive
rigorous results for the critical threshold for the incoherence-
coherence transition (C♮) by deriving a stability formula for
the incoherent solution branch. A difficulty arises as it is un-
clear what demarcates the boundary of validity for mean-field
PDEs valid for complex heterogeneous graphs, i.e., at some
level of graph heterogeneity it may be too difficult to accu-
rately capture details of very sparse graph structures. As we
cannot be sure under what circumstances our results corre-
spond to the dynamics obtained for finite graphs (rigorous
convergence results are still needed), we carry out detailed nu-
merical simulations to test our results for various finite graph
structures.

The article is structured as follows. In the next section, we
introduce a formal derivation of the mean-field equations for
N → ∞. In Sec. III, we derive the critical coupling strength
C♮ for the continuum limit, based on the graphop mean-field
limit equation. In Sec. IV, we carry out numerical simulations
to investigate how the incoherence-coherence transition point
predicted by the mean-field theory carries over to finite graphs
for a range of graph structures, including dense and sparse
topologies. Finally, we discuss our results in Sec. V.

II. FORMAL DERIVATION OF THE MEAN-FIELD
EQUATIONS

As discussed above, we are interested in mean-field models
for stochastic Kuramoto(-type) models on networks49. The in-
dividual dynamics for the coupled identical oscillators is given
by

dθ N
k

dt
=: θ̇ N

k =
C
N

N

∑
j=1

AN
k jD(θ N

j −θ N
k )+

√
2β−1Ẇk, (1)

where k ∈ [N] := {1, ...,N} and θk = θk(t) ∈ T := R/(2πZ)
denotes the phase of the k-th oscillator, (AN

k, j)k, j∈[N] denotes
a weighted and non-negative adjacency matrix of the network
(i.e., a graph G with adjacency matrix AN

k j), D :T→R is a suf-
ficiently regular coupling function (e.g., classically D = sin),
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C > 0 is the coupling strength, β > 0 a diffusion constant
controlling the noise level, and W (t) = (W1(t), . . . ,WN(t))⊤ is
vector of N independent Brownian motions so that Ẇk = Ẇk(t)
is just a white noise forcing for each oscillator. The following
derivation extends45 to the stochastic case. To understand the
formal derivation, let us recall the classical Kuramoto all-to-
all coupled case, i.e., for AN

k, j = 1 for all k, j ∈ [N] and D= sin.
In other words, (1) now reads as

θ̇ N
k =

C
N

N

∑
j=1

sin(θ N
j −θ N

k )+
√

2β−1Ẇk, k ∈ [N]. (2)

Let us introduce the complex order parameter

reiψ :=
1
N

N

∑
j=1

eiθ j . (3)

Multiplying this equation by e−iθk and equating imaginary
parts we have

r sin(ψ −θk) =
1
N

N

∑
j=1

sin(θ N
j −θ N

k ) (4)

which implies that

θ̇ N
k =Cr sin(ψ −θk)+

√
2β−1Ẇk, k ∈ [N]. (5)

From (5) the mean-field character of the problem is visible as
the k-th oscillator just feels the averaged input from all other
oscillators so one can think of a single typical oscillator and
aim to analyze its dynamics. Let ρ(t,θ) dθ denote the fraction
of oscillators with phase between θ and θ +dθ at time t, i.e.,
ρ is a probability density. Assuming a law of large numbers
in the limit N → ∞ we formally get

reiψ =
1
N

N

∑
j=1

eiθ j →
∫ 2π

0
eiφ ρ(t,φ) dφ (6)

Now, using the same trick as above (i.e., multiplying both
sides of last equation by e−iu and taking imaginary parts),
equation (5) becomes in the limit N → ∞

u̇ =C
∫ 2π

0
sin(φ −u)ρ(t,φ) dφ +

√
2β−1Ẇ . (7)

Finally, the continuity equation, also called Vlasov-Fokker-
Planck equation (VFPE), for the probability density ρ , respec-
tively for the law of the limiting process u, reads as

∂tρ =−∂θ

(
ρV (ρ)

)
+

1
β

∂ 2
θ ρ,

V (ρ) :=C
∫ 2π

0
sin(φ −θ)ρ(t,φ) dφ .

(8)

In summary, (8) is a partial differential equation with a first-
order transport/advection-type term with a nonlocal convolu-
tion term involving the sine-nonlinearity mediating the cou-
pling and with a second-order spatial diffusion term arising
directly from the white noise forcing.

Now, let us come back to equation (1). In this case the next
natural generalization step is to assume that the network (i.e.,
a graph G with adjacency matrix AN

k j) is sufficiently connected
and does not have components, which are more connected
than others; see also49. Moreover, we assume that there exists
a local order parameter rkeiψk , which is locally proportional to
a single global order parameter reiψ weighted by the degree
κk for each node, i.e., we have

κkreiψ = rkeiψk :=
N

∑
j=1

Ak jeiθ j . (9)

By multiplying the local order parameter by e−iθk and equat-
ing the imaginary parts in last equation we obtain

θ̇ N
k =C r κk sin(ψ −θk)+

√
2β−1Ẇk, k ∈ [N]. (10)

Now let ρ(t,θ ,κ) dθ denote the probability which gives the
fraction of oscillators with phase between θ and θ + dθ and
degree κ at time t. Note carefully that we have added an ad-
ditional variable κ to the density, which captures the (degree)
heterogeneity of the network. If we assume that the network is
uncorrelated and has degree distribution d(κ), one is tempted
to assume that in the limit N → ∞ we have

reiψ =
1
κk

N

∑
j=1

Ak j eiθ j →
∫ 2π

0

∫ ∞

0
eiφ κ d(κ)

⟨κ⟩ ρ(t,φ ,κ) dκ dφ ,

(11)
where ⟨κ⟩ is the average degree of a vertex in the graph and
κd(κ)
⟨κ⟩ ρ(t,φ ,κ) is the probability density for an edge having its

end at a vertex of phase φ and degree κ at time t. Now using
the same trick as before, equation (10) becomes in the limit
N → ∞

u̇=
C
⟨κ⟩

∫ 2π

0

∫ ∞

0
sin(φ −u) l d(l) ρ(t,φ , l) dφ dl+

√
2β−1Ẇ .

(12)
The continuity equation for the probability density ρ , respec-
tively, the law of the limiting process u, reads as

∂tρ =−∂θ

(
ρV [G](ρ)

)
+

1
β

∂ 2
θ ρ, (13a)

V [G](ρ) :=
C
⟨κ⟩

∫ 2π

0

∫ ∞

0
sin(φ −θ) l d(l) ρ(t,φ , l) dφ dl.

(13b)

Thus, in comparison to the classical all-to-all coupled VFPE
(8) we had to replace

ρ(t,φ) by
∫ ∞

0

ld(l)
⟨l⟩ ρ(t,φ , l) dl. (14)

We can view this step as incorporating the structure of
graph/network G appearing in the Vlasov equation via an op-
erator, which acts in the density ρ . In fact, one can even hope
to completely remove averaging over the variable κ that we
used to capture the heterogeneity and just keep κ as a new
variable in the density, which then yields a whole hierarchy of
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mean-field VFPEs, one for each degree. This set of ideas can
then be thought even further and one can directly replace the
adjacency matrix by a coupling kernel and there are numerous
papers in this direction43,44,46,47. Yet, it seems best to think of
generalizing VFPEs more abstractly45 by viewing the under-
lying network influence as given by some linear operator A
acting on the density so that a more abstract form of VFPEs
would be given by

∂tρ =−∂θ

(
ρV [A](ρ)

)
+

1
β

∂ 2
θ ρ, (15a)

V [A](ρ) =C
∫ 2π

0
D(φ −θ)(Aρ)(t,φ ,x) dφ , (15b)

where x is a suitable variable that tracks the heterogeneity of
the network so that one effectively obtains a family of VF-
PEs, and we have also replaced the sine-coupling again by
a more general coupling function D. A typical choice of x
found in the literature would be to take it as a variable in
the unit interval x ∈ [0,1] = Ω, where points in the interval
represent node labels in the infinite network limit 43,44,46,47.
Probably the most elegant abstract way to think of A is as a
graph operator, or graphop, as introduced in42. A graphop
is a bounded, self-adjoint and positivity-preserving operator
A : L∞(Ω;m) → L1(Ω;m), where m is the reference measure
on Ω, e.g., one can pick the Lebesgue measure. To a given
graphop A always corresponds a family of finite measures
(νx)x∈Ω, called fiber measures, via the formula

(A f )(x) =
∫

Ω
f (y) dνx(y) x ∈ Ω, for f ∈ L∞(Ω;m).

Intuitively we may view a graphop A just as a generalized
adjacency matrix for a symmetric graph and for a given node
x ∈ Ω the fiber measure νx is just the edge distribution for this
node. Indeed, for the finite-dimensional case, we can just pick
Ω = [N] and m as the uniform measure on Ω, so that functions
f ∈ L∞(Ω;m) can be identified with vectors in RN and A f is
just usual matrix-vector multiplication. Yet, we stress that in
the limit N → ∞, we need a space such as Ω = [0,1] with the
Lebesgue measure.

One may wonder, how far such an abstract construction
for VFPEs involving graphops can work? It is clear that it
works in simple cases, e.g., when the graph is all-to-all cou-
pled as one can just drop the dependence on x and let A = 1.
Also, if the graph is very dense and very regular with just
two types of typical nodes, then one could take x as a bi-
nary variable, and so on. Furthermore, it is understood that
it works for dense graphs, where A can be represented by an

integral operator with a sufficiently regular kernel, i.e., in the
framework of so-called graphons. However, one does expect
that there are growing networks as N → ∞ that are so sparse
and/or so heterogeneous that eventually mean-field calcula-
tions may fail. Proving a precise boundary location on the
space of networks to determine, when VFPEs are helpful and
when they fail, seems out of reach at this point. Here we take
a pragmatic approach and start from the formal VFPE (15a),
carry out stability analysis of the main bifurcation/phase tran-
sition to synchronization in the Kuramoto model, and then nu-
merically simulate the dynamics for different discretized (i.e.,
finite-dimensional, large N) classes of graphops A to check,
when the mean-field stability calculation is accurate. This is
going to provide an indirect cross-check, whether a mean-field
limit can work.

III. BIFURCATION/PHASE TRANSITION

In the following, we consider (15a) and we assume for sim-
plicity that

(H0) The coupling is non-trivial, i.e., C > 0.

(H1) D is an odd 2π-periodic function.

(H2) A is a graphop with bounded 2 → 2 norm, i.e., the fol-
lowing quantity exists and is finite

∥ A ∥2→2:= sup
v∈L2(Ω)

∥ Av ∥2

∥ v ∥2
< ∞.

This implies that A can be uniquely extended to the Hilbert
space L2(Ω,m) (see42 (Remark 2.12) for instance). For sim-
plicity we use the same notation for this extension, i.e., we
write A : L2(Ω,m)→ L2(Ω,m). For the solution ρ(t,θ ,x) of
(15a) we define the j-th Fourier coefficient as

z j =
1

2π

∫ 2π

0
e−i jθ ρ(t,θ ,x) dθ , j ∈ Z (16)

where i :=
√
−1. Note that we have effectively defined a fam-

ily of Fourier coefficients that depends upon x, i.e., {(z j)x}x∈Ω
but we shall always write just z j in the calculation below and
later discuss the x-dependence. Applying the Fourier trans-
form to (15a), exchanging integrals and using integration-by-
parts (in the second line) we have
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∂tz j =
1

2π

∫

T
e−i jθ

(
∂θ{ρ(t,θ ,x)V [A](ρ)(t,θ ,x)}+ 1

β
∂ 2

θ ρ(t,θ ,x)
)

dθ

=
1

2π

(
i jC

∫

T
e−i jθ ρ(t,θ ,x)

∫

T
(Aρ)(t,φ ,x)D(φ −θ) dφ dθ − j2

β

∫

T
e−i jφ ρ(t,φ ,x) dφ

︸ ︷︷ ︸
=z j

)

=
1

2π

(
i jC ∑

l∈Z
D̂(l)

∫

T
ei(− j−l)θ ρ(t,θ ,x)

∫

T
(Aρ)(t,φ ,x)eilφ dφ dθ − j2

β
z j

)

=
1

2π

(
i jC ∑

l∈Z\{0}
D̂(l)z− j−lAz−l −

j2

β
z j

)
,

(17)

where D̂ denotes the Fourier transform of D and in the last line
we used that D̂(0) = 0, which follows from the fact that D is
an odd, periodic function. Moreover, z− j = z j holds, which

follows from the fact that ρ is real-valued. We can assume
without loss of generality that j ∈ N to get the following sys-
tem (i.e., the amplitude equation)

∂tz j =
1

2π

{(
iCD̂(− j)A− j2

β

)
z j + i jC ∑

l∈Z,l ̸=0,− j
D̂(l)z− j−lAz−l

}
, j = 1,2, . . . (18)

The completely incoherent state ρ∞ ≡ 1 of the oscillators
corresponds to a uniform probability density over the circle,
which translates into z0 = 1 and z j = 0 for all j ̸= 0 and the
state is also assumed to be independent of x, i.e., we assume
all different types of nodes are uniformly distributed across
the circle for ρ∞. Linearizing (18) around this incoherent state
yields via a straightforward calculation the system

∂tZ j =
1

2π

{(
iCD̂(− j)A− j2

β

)
Z j

}
, j = 1,2, . . . (19a)

where we use Z j to denote the Fourier coefficients of the lin-
earized dynamical system and we observe that the linearized
system nicely decouples. The question then is: how does the
stability of the j-th Fourier mode depend on the eigenvalues
of graphop A? On the Hilbert space H := L2(Ω,m), for any
j ∈ N, let us define the linearized operator T j

C : H → H,

T j
C w :=

1
2π

(
iCD̂(− j)A− j2

β

)
w.

Recall that the resolvent set ρ(A) of the operator A : H → H
is defined to be the set

ρ(A) := {λ ∈ C : Rλ (A) := (A−λ I)−1 :
H → H exists and is bounded}

where Rλ (A) is called the resolvent operator of A and the spec-
trum of A is the complement σ(A) := C\ρ(A). Observe that
for any λ ∈ C, setting λ̃ := 1

2π (iCD̂(− j)λ − j2
β ) we have

Rλ̃ (T
j

C ) =
1

2π
iCD̂(− j)Rλ (A),

From this we see that for all j for which D̂(− j) ̸= 0, the con-
dition that Rλ (A) exists and is bounded is equivalent to the
condition that Rλ̃ (T

j
C ) exists and is bounded. From this we

conclude that for all j ∈ Z for which D̂(− j) ̸= 0 we have

σ(T j
C ) =

1
2π

(
iCD̂(− j)σ(A)− j2

β

)
.

For all other j ∈ Z (that is, for all j for which D̂(− j) = 0) we
see immediately that σ(T j

C ) =− j2
β2π . Since A is bounded and

self-adjoint we have that σ(A) ⊂ R is a bounded set. Further
note that, since D is an odd function, we must have D̂( j) =
i
∫ 2π

0 D(u)sin( ju)du ∈ iR. Finally define

C♮ := inf
{ j2

β iD̂( j)λ
: λ ∈ σ(A), j ∈Z∗, iD̂( j)λ ≥ 0

}
. (20)

where Z∗ := Z+ ∪{0}. The next theorem shows that C♮ is a
uniform parameter bound on the coupling strength indepen-
dent of x, which means that smaller coupling leads to stability
of incoherence, while above C♮, at least some classes of nodes
synchronize at least partially. More precisely we have:

Theorem III.1. (Incoherence-coherence transition)
Consider an odd, 1-periodic, continuous function D : [0,1]→
R and a graphop A : L2(Ω,m) → L2(Ω,m). Then, the inco-
herent state ρ∞ is locally asymptotically stable for 0<C<C♮

and unstable for C >C♮.

Proof. Observe that for any λ ∈ σ(A) and j ∈ Z∗, such that
iD̂(− j)λ < 0, the corresponding element in the spectrum of
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T j
C , λ̃ (C, j) = 1

2π (iCD̂(− j)λ − j2
β ) ∈ σ(T j

C ), is strictly nega-
tive for any C > 0, thus it never crosses the imaginary axis.
Thus, a crossing, for growing C, can occur only among those
λ ∈ σ(A) and j ∈Z∗ for which iD̂(− j)λ > 0. Among all such
λ and j, the crossing occurs always at

C j,λ :=
j2

β iD̂(− j)λ
. (21)

Observing that C♮ is the minimum of all these transition
points, it follows immediately that C♮ is the smallest C> 0 for
which there exists a j ∈ N such that an element in the spec-
trum of T j

C crosses the imaginary axis, namely the element
λ̃ (C♮, j) ∈ σ(T j

C♮
).

As a first step, we want to carry out some specializations to
examples and analytically consider some cases.

Example III.2. (Classical Kuramoto model)
First, we want to specialize the general formula to the classical
Kuramoto model in Eq. (15a) (the continuum limit version of
Eq. (1)). In this context, we have D : [0,2π] → R given by
D(u) := sin(u). Hence,

D̂(1) =
1

2π

∫ 2π

0
sin(u)eiu du =

i
2

D̂(−1) =− i
2

D̂(k) = 0, k ∈ Z\{1,−1}

and iD̂(−1) = 1
2 > 0. Then, by Theorem III.1, the incoherent

state loses stability at

C♮ =
2

βΛ(A)
, Λ(A) := sup

λ∈σ(A)
|λ |. (22)

Example III.3. (Full graph)
In the case of the full graph (i.e., complete graph with uniform
coupling strength) we have

A f (x) =
∫

Ω
f (y) dm(y), x ∈ Ω, f ∈ L2(Ω,m).

Clearly, A is a non-invertible operator and the only eigenvalue
of A is 1 (The eigenvalue equation A f = λ f implies that f
must be a constant, say f0 ̸= 0, satisfying f0 = λ f0. Thus,
λ = 1.) Moreover, in the case that λ ∈C\{0,1}, the operator
A−λ I is invertible, since for any g ∈ L2(Ω,m) the pre-image
f is achieved under the unique choice

f :=
c

1−λ −g

λ
, c :=

∫

Ω
g(y) dm(y).

Thus we have σ(A) = {0,1}. Hence, for the classical Ku-
ramoto model on the full graph we obtain by the previous Ex-
ample III.2 that

C♮ =
2
β
. (23)

Remark III.4. Sakaguchi50 obtained for the critical coupling
of the full graph the formula (in Sakaguchi’s notation)

KC(D) = 2
(∫ ∞

−∞

1
ω2 +1

g(Dω +ω0) dω
)−1

. (24)

In our framework, matching the assumptions and the nota-
tion correctly, we have ω0 = 0, D = 1

β and g = δ0. Note
that in Sakaguchi’s framework the variance of the Brownian
term fi(t) is 2Dt, while in our framework the Brownian term√

2β−1Wk has variance 2
β t for each k, thus we must have

D = 1
β ). Thus Sakaguchi’s formula simplifies to

KC(D) = 2
(∫ ∞

−∞

1
ω2 +1

g(Dω) dω
)−1

= 2
( 1

D

∫ ∞

−∞

1
( x

D

)2
+1

dδ0(x)
)−1

= 2D =
2
β

=C♮,

(25)

which is exactly just the special case of the far more general
formula we calculated in Example III.3.

Although we have now a very nice formula for C♮, it is
not immediately clear for which classes of networks this for-
mula works as N → ∞. After all, Theorem III.1 only makes
claims about stability/instability based upon the assumption
of the validity of the mean-field VFPE. Only if we already
knew that the mean-field limit VFPE would be valid for cer-
tain classes of networks, i.e., if it does approximate — in a
suitable sense — the oscillator system for finite but large N,
then we could be certain applying our result for finite large
networks. Proving such an approximation result in full gener-
ality is difficult although first steps exist for the deterministic
Vlasov case 43,44,46,47. For example, one issue in this context
is that the mean-field only holds in a scaling limit upon re-
normalizing the sums appearing in the Kuramoto-model suit-
ably via the density of the graph. However, empirically testing
the formula for C♮ via various classes of large finite networks
using numerical simulation is certainly possible and we shall
proceed with this approach.

IV. INCOHERENCE-COHERENCE TRANSITION
FOR FINITE AND INFINITE OSCILLATOR
NETWORKS

We want to check the prediction for the incoherence-
coherence transition given in Theorem III.1 for the mean-field
limit by numerical simulations. The challenges we face in do-
ing so stem from the fact that numerical simulations are bound
to a finite-dimensional representation of Eq. (1) and to a finite
simulation time. Thus, while Theorem III.1 can only hold in
an approximative sense for N < ∞, the finite system size and
simulation time also incur uncertainty in the detection of the
incoherence-coherence transition. Several points need to be
taken into account when detecting the transition from inco-
herence to coherence that we outline below.
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FIG. 1. Time evolution of r for numerical solutions of (2), for differ-
ent values of C. Clearly, the time traces of r are subject to (random)
fluctuations. Also, for higher C, the time traces of r settle, after a
transient, at some quasi-stationary state (dashed lines). Other param-
eters are β = 50 and N = 1000.

To see this, it is instructive to observe the dynamics for the
simple case of the classical Kuramoto model, i.e., where os-
cillators interact with D(u) = sin(u) on a complete graph with
uniform coupling. The collective dynamics of all oscillators
is described by the order parameter r(t) defined in (3) and is
shown in Fig. 1 for numerical solutions of (2) for varying cou-
pling strengths C and fixed system size N = 1000 and noise
level β = 50. Initial phases are chosen to correspond to in-
coherent oscillations (see Sec. IV A on numerical methods).
The dynamics of the order parameter r is subject to fluctua-
tions, which stems from two sources: i) the stochastic dynam-
ics inherent to the system; ii) finite size effects induce pseudo-
random fluctuations of order O(N−1/2) that vanish in the limit
N → ∞51. After a transient time, Ttr, we observe that the dy-
namics settle into a quasi-stationary state (on average), i.e.,
the order parameter fluctuates around a constant mean value
and is bounded by minimal and maximal values. If the trajec-
tory after the transient attains a minimal value arbitrarily close
to 0 during the observed time interval, we say that the popu-
lation oscillates incoherently; if the minimal value never ap-
proaches 0, the dynamics are said to be (partially) coherent or
synchronized (perfect synchrony occurs only for r = 1), and
we observe increasing synchrony for larger C. Accordingly,
Fig. 1 allows us to distinguish incoherent oscillations for weak
coupling strengths (C = 0 to C = 0.03), and partially coher-
ent oscillations occur for stronger coupling (C ≥ 0.04), which
agrees well with the prediction of C♮ = 0.04 given by (23) for
the continuum limit. For further details on the incoherence-
coherence transition of the Kuramoto model see also Ref. 6.
The observations described above point towards an implemen-
tation of numerical methods and measurements as outlined be-
low.

A. Numerical methods

We calculate numerical solutions of (1) with a first-order
Euler-Maruyama scheme with a time step ∆t = 0.01. Ini-
tial conditions/phases correspond to low synchrony compli-
ant with incoherence, i.e., either the equidistant state θk(0) :=
2πk/N (Uniform complete graph, Erdös-Rényi graph, Reg-
ular ring lattice with r = 400, Spherical graph) or the ran-
dom state where θk(0) (Regular ring lattice with r = 25,
Sinuisodal graph, Lorentzian graph) is drawn from the uni-
form distribution on the interval [0,2π) (two types of ini-
tial conditions were chosen since other attracting states were
present for the Regular ring lattice with r = 25). To charac-
terize the post-transient dynamics we use the order parame-
ter r(t) =

∣∣∣ 1
N ∑N

j=1 eiθ j(t)
∣∣∣ in Eq. (3) and measure its temporal

minimum and maximum, as well as its time average,

rmin := min
t∈T

(r(t)), (26)

rmax := max
t∈T

(r(t)), (27)

r̄ := |T |−1
∫

T
r(t)dt, (28)

where T := [Ttr,T ] with Ttr being the (estimated) transient
time and T the total length of the simulation.

To average over stochastic effects such as Brownian mo-
tion and random graphs (Erdös-Rényi, Small-World), we aver-
age these measurements over several realizations of solutions
of (2) (i.e., ten realizations to account for Brownian motion
for eight (random) graph realizations) and denote ensemble
averages with angular brackets ⟨·⟩. To numerically test The-
orem III.1, we calculate ⟨rmin⟩, ⟨r̄⟩, and ⟨rmax⟩ for different
values of C and compare the resulting curves with C♮. The
sampling points for the coupling C are non-uniformly spaced
with higher density in regions of interest (indicated as blue
dots in Fig. 2).

A suitable transient time Ttr can be determined based on
the following considerations. The actual transient is maxi-
mal for C = C♮ and decreases for C > C♮, see Fig. 1. One
could estimate Ttr for each value of C individually to op-
timize for computational effort; but for simplicity, we es-
timated the length of Ttr only at C = C♮ and used this Ttr
for all probed values of C, as this choice guarantees a suf-
ficiently long transient time. Due to the fluctuations present
in the signal of r(t) (pseudo-random fluctuations and stochas-
tic noise), the estimation of Ttr is heuristic, i.e., it is done by
visual inspection. This estimate of Ttr improves with increas-
ing N as the amplitude of (pseudo-random) fluctuations de-
creases. Taking these considerations into account we chose
Ttr = 700,T = 1000,∆t = 0.01,N = 1000 for all our numeri-
cal solutions of (2).

B. Graph(on) topologies and their associated
incoherence-coherence transitions

We now define different graph structures for which
we carry out numerical simulations to test for the on-
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FIG. 2. Incoherence-coherence transition for numerical solutions of (2) for different coupling topologies. The dashed black lines show the
respective value of C♮. The red dashed lines show ⟨rmin⟩ and ⟨rmax⟩, while the blue lines show ⟨r̄⟩. a) Uniform complete graph, C♮ = 0.08.
b) Regular ring lattice with r = 25,C♮ = 0.8. c) Regular ring lattice with r = 400,C♮ = 0.05. d) Lorentzian graph with µ = 0.01,C♮,N =
0.0718. e) Lorentzian graph with µ = 0.001,C♮,N = 0.0713. f) Spherical graph with M = 50,C♮,N = 0.8003. g) Small-World graph with
k = 100, p = 0.5,C♮ = 0.2. h) Sinusoidal graph, C♮ = 0.08. i) Erdös-Rényi graph with p = 0.5,C♮ = 0.08. Parameters for all graphs:
N = 1000,∆t = 0.01,Ttr = 700,T = 1000,β = 50, ten realizations of Brownian motion, eight realizations of the graph (if random). C♮,N is
evaluated when C♮ cannot be evaluated.

set of the incoherence-coherence transition. Results for
the incoherence-coherence transitions for the various graph
topologies are summarized in Fig. 2.

1. Incoherence-Coherence threshold for finite and
infinite oscillator systems

We extend our analysis to different coupling topologies
while using the coupling interaction D(u) = sin(u). The the-
oretically predicted threshold for the incoherence-coherence
transition, C♮, valid in the mean-field limit is calculated using
(22). We shall compare the numerical findings to this the-
oretical prediction for coupling topologies where it is pos-

sible, However, for certain graphops A, a characterization
of σ(A) exceeds the scope of this study (Spherical graph in
Sec. IV B 2 d; Lorentzian graph in Sec. IV B 2 f). In such
cases, we instead compute the eigenvalues σN(AN) of a dis-
crete coupling matrix AN that approximates A. We expect that
the finite-dimensional matrices AN can be used to provide an
approximation to (at least the boundary of) the spectrum of the
limiting graphop A as N → ∞, and so C♮ can be approximated
by its discrete corollary

C♮,N =
2

βΛN(AN)
(29)

where ΛN(AN) := maxλ∈σN(N−1AN) |λ | is the maximal eigen-
value associated with AN . Finally, we also mention the pos-
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sibility of “spectral pollution”52 which in principle can occur
when numerically approximating the spectrum of an opera-
tor with finite dimensional matrices. However, as we shall
see, our numerical and analytical results are consistent so we
therefore anticipate that the numerical calculations are suffi-
ciently stable.

2. Coupling topologies

a. Regular ring lattice with r neighbors. Nodes for this
coupling topology may be imagined to be arranged on a ring,
such that every node is linked to a given number of r nearest
neighbors. In the continuum limit N → ∞ , the ring lattice
graphon can be defined as

K(x,y) =

{
1 min{|x− y|,1−|x− y|} ≤ h
0 otherwise,

(30)

where 0 ≤ h ≤ 1/2 is the (continuous) coupling range for os-
cillators located at x and y on Ω. The graphop A defined via
this graphon kernel K has Λ(A) = 2h (this can be shown e.g.
by writing K(x,y) as a Fourier series and the values of σ(A)
are given in Ref. 53.)

For N < ∞ we simply define the regular ring lattice graph
via

Ak j =

{
1 k ̸= j and min{|k− j|,1−|k− j|} ≤ r
0 else

(31)

where the (discrete) coupling range r = r(h) ∈ [N] for oscil-
lators located at k and j in [N] satisfies 0 ≤ r ≤ N/2 with N
even. It is easy to check that ΛN(AN) = 2r/N. In our sim-
ulations we choose r from which the value h for the corre-
sponding graphon kernel follows via h = r/N. We then have
Λ(A) = ΛN(AN) = 2r/N. We note two limiting cases, namely,
we obtain all-to-all coupling for h = 1/2, and zero coupling
for h = 0.

b. Erdös-Rényi graph. The Erdös-Rényi (ER) graph(on)
is constructed in a random process where the presence (or ab-
sence) of every edge (of the complete graph) is chosen with a
probability p ∈ [0,1].

In the continuum limit, N → ∞, the Erdös-Rényi graphop
simply becomes the complete (all-to-all) graphop with con-
stant uniform coupling strength p, i.e., the corresponding
graphon kernel is K(x,y) = p, see Ref. 54. It follows then
that C♮ = 2/(β p).

For finite oscillators N < ∞, a realization of the ER graph
on N nodes may be obtained by drawing N(N −1)/2 random
numbers ak j, 1 ≤ k< j ≤ N, from the uniform distribution on
the interval [0,1]. The adjacency matrix of the graph is then

AN
k j = AN

jk =

{
1 k < j, ak j ≤ p
0 else

(32)

For p = 1 we obtain all-to-all coupling with uniform coupling
strength 1 (complete graph), while p = 0 yields zero coupling.

c. Small-World graph. The small world (SW) graph55

interpolates between a regular ring lattice and a ER graph
structure, thus creating a topology that quite regular but also
entertains random links across the network. This structure re-
sults in short path lengths even when nodes are far away on
the ring.

For finite graphs, N → ∞, the small world graphop A can be
constructed via the graphon kernel56,57 given by

K(x,y) = (1− p)W (x,y)+2ph (33)

where

W (x,y) =

{
1 min{|x− y|,1−|x− y|} ≤ h
0 else

(34)

with (continuous) coupling range 0 ≤ h ≤ 1/2 (note that
W (x,y) is identical to K(x,y) in (30) further above for the reg-
ular ring lattice). It can be shown that Λ(A) = 2h (to see this,
one needs to write K(x,y) in terms of a Fourier series; the
values of σ(A) are given by Gao and Caines53.).

For N < ∞, realizations of the SW graph on N nodes may
be obtained via the procedure introduced by Watts and Stro-
gatz55: One starts with a regular ring lattice on N nodes with
r nearest neighbors (discrete coupling range). One selects a
constant probability p ∈ [0,1]. For each node k and each link
between k and its r nearest neighbors to the right, we draw a
random number X ∈ [0,1] i.i.d. from the uniform distribution.
If X ≤ p, we draw a random integer j from the uniform distri-
bution on [N]. If k ̸= j and the edge (k, j) does not yet exist, it
is created and the old link deleted.

In our numerical setting we simply pick a value r and the
value h for the corresponding graphon kernel follows from
h = r/N. We numerically confirmed that ΛN(AN) ≈ Λ(A) =
2h. We shall thus use the value C♮,N ≈C♮ = 1/(βh).

d. Spherical graph. The action of the spherical graphop
A : L2(S2) 7→ L2(S2) on a function f is defined by

(A f )(x) =
∫

y⊥x
f (y)dνx (35)

where νx is the uniform measure. The spherical graphop thus
integrates f over the circle on the unit sphere that consists
of all the points perpendicular to x. This circle is the equa-
tor of the point x. The spherical graphop does not have a
graphon kernel nor a known spectrum, so we need to calcu-
late C♮ via (29). Moreover, a matrix approximation to the
spherical graphop has to our knowledge not yet been pro-
posed. Here we propose a possible approximation without
claiming any convergence properties as N → ∞. Choosing
N (approximately equidistant) sample points x1, . . . ,xN on the
unit sphere, we may obtain a matrix AN approximating A by
defining AN

k j = AN
jk = 1 if xk and x j are approximately perpen-

dicular, otherwise AN
k j = AN

jk = 0. The discretized version of
(35) then reads

(AN f )k =
1
N

N

∑
j=1

AN
k j f (x j) (36)
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FIG. 3. Matrix approximation for the spherical graphop. Blue dots
indicate the sample points, black circles mark points belonging to the
discretized equator of one of the exemplary points (yellow diamond),
red squares mark points belonging to the discretized equator of the
other exemplary point (green diamond). The two exemplary points
are thus members of each other’s discretized equators. Parameters
are N = 1000 and M = 50.

We refer to AN as spherical graph. Three requirements should
be made on AN . For each point xk, the points x j for which
AN

k j = 1 should (i) lie sufficiently close to the equator of xk,
(ii) be sufficiently equidistant and (iii) be (almost) equally
many for all k. Clearly, if we take an arbitrary point on the
unit sphere, one can place M perfectly equidistant points on
its equator. However, (i) and (ii) must be fulfilled reasonably
well for all N points and their respective equators. So the
points should form a regular grid. While a perfectly regular
grid of N > 6 points on the sphere is impossible, there exist
approximately regular grids58. Here, we place the points in
a spiral of width 0.1+ 1.2N around the sphere, starting and
ending (approximately) on the poles. This method is imple-
mented in the Mathematica Software package59. We denote
the set of points with this spacing on the unit sphere as P. The
task is to determine subsets Ek ⊂ P,1 ≤ k ≤ N, such that each
Ek discretizes the equator of xk. To this end, we first calcu-
late pk j := |⟨xk,x j⟩| for each 1 ≤ k< j ≤ N, to determine how
close the pairs of points are to being perpendicular. Then we
specify M, the desired (approximate) cardinality of all Ek’s.
Now we can, for each k, find the (approximately) M points x j
with the smallest values of pk j and make them members of
Ek, under the constraint that if xk ∈ E j, then x j ∈ Ek, to ensure
that AN is symmetric. We end up with a (symmetric) AN that
fulfills demands (i) and (ii) in an acceptable manner while de-
mand (iii) is fulfilled well: |Ek| is either M or M − 1 for all
1 ≤ k ≤ N (see Fig. 3). We find ΛN(AN) = 0.04998 and thus
C♮,N = 0.8003.

e. Sinusoidal graph. In the sinusoidal coupling topol-
ogy, nodes are coupled most strongly to their nearest neigh-

bors, the coupling then smoothly decreases the farther neigh-
bors are apart, finally the coupling is zero between nodes op-
posite on the ring. We define the graphon kernel as

K(x,y) =
1
2
(1+ cos2π(x− y)). (37)

It can be shown53 that the graphop A induced by K has Λ(A) =
1/2 so that C♮ = 4/β = 0.08.

For N < ∞, we define the matrix AN by

AN
k, j =

1
2

(
1+ cos

(
2π

k− j
N

))
(38)

f. ’Lorentzian’ graph. We also consider graphs for
which a mean-field description is more challenging, and
which therefore could potentially fail to exhibit the behavior
predicted by Theorem III.1. A good candidate would be an
irregular and sparse graph with few very strong links, while
the vast majority of links is very weak. We can define such a
topology based on the Lorentzian (graphon) kernel

K(x,y) =
µ/π

(x− x0)2 +(y− y0)2 +µ2

+
µ/π

(x− y0)2 +(y− x0)2 +µ2

(39)

where x0,y0 ∈ [0,1]. K(x,y) peaks in the points (x0,y0) and
(y0,x0), which converge to Dirac delta distributions as µ → 0.
We approximate this graphon in the finite representation as

AN
k j =

µ/π
( k

N − x0
)2

+
(

j
N − y0

)2
+µ2

+
µ/π

( k
N − y0

)2
+
(

j
N − x0

)2
+µ2

(40)

We use the values x0 = 0.25,y0 = 0.75 with µ = 0.01 or
µ = 0.001. Computing the spectrum σ(A) of the graphop A
defined by K exceeds the scope of this work, and we use the
eigenvalues of AN ,

ΛN(AN)

∣∣∣∣
µ=0.01

= 0.5573, ΛN(AN)

∣∣∣∣
µ=0.001

= 0.5612,

to obtain

C♮,N
∣∣∣∣
µ=0.01

= 0.0718, C♮,N
∣∣∣∣
µ=0.001

= 0.0713.

V. CONCLUSION AND OUTLOOK

We formulated a mean-field theory for stochastic phase os-
cillator models with nontrivial coupling, i.e., heterogenous
graph topologies and coupling weights. Our analysis for
Kuramoto-type models with odd symmetric coupling func-
tions, obtained via linearization around the incoherent so-
lution branch, yields an exact formula for the critical cou-
pling strength C♮ at the incoherence-coherence transition in
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the mean-field limit. Numerically integrating finite represen-
tations (see Eq. (1)) agree very well with the predicted thresh-
old C♮ (Eq. (22)) for a wide range of heterogeneous graph
structures (see Fig. 2)60. We therefore expect our theory to be
applicable to a large range of applications with heterogeneous
oscillator interactions, such as systems with non-uniform cou-
pling associated with chimera states61 or XY -oscillators type
models with random coupling34,62.

For certain graph topologies characterized by strong spar-
sity, large variance in coupling strengths, or other types
of “clusterization” implying coupling fragmentation in the
network, the mean-field description is expected to break
down, in particular also in terms of correctly predicting the
incoherence-coherence transition for finite-size systems. We
found that such a problem occurs at least for one instance,
namely for the Lorentzian graph topology (see Fig. 2 pan-
els (d) and (e)), for which the detection of a sharp transition
point numerically is difficult. The Lorentzian graph is char-
acterized by only a few nodes with very strong edge weights,
while the vast majority of edge weights are very weak: the
graph topology is effectively very sparse. This implies that we
need a much larger C to observe coherent oscillations. As be-
comes apparent from comparing panels (d) and (e), the differ-
ent quality of the incoherence-coherence transition between
the Lorentzian and the other graphs considered is especially
pronounced as the effective sparsity increases (µ → 0). Note
that not merely larger overall coupling strength C is needed to
achieve (partial) coherence, when compared to other topolo-
gies; if that were the case, one would just observe larger C♮

for the Lorentzian graph as compared to the other graphs, and
the coherence onset woudl still set in at C = C♮. Rather, the
onset of coherence appears to be delayed beyond C = C♮, so
that the increase of partial synchrony sets in very slowly as C
increases. This observation becomes especially pronounced
for very small µ so that the coupling kernel becomes effec-
tively very sparse. Thus, the Lorentzian graph represents an
interesting coupling topology that demarcates a possible class
of graphs for which — at least for certain values of µ —
our mean-field description and prediction for the incoherence-
coherence transition for the finite-size representation break
down.

While we extended the mean-field theory for the stochas-
tic Kuramoto model with all-to-all connectivity and uniform
coupling weights to heterogeneous connectivity with non-
uniform coupling strengths, certain constraints apply to our
model. These may limit the validity of our theory and prompt
avenues for future research. For instance, we have assumed
that the coupling function D(u) is odd. This assumption ex-
cludes in particular the Kuramoto-Sakaguchi model which
has a coupling function D(u) = sin(u+α) with a phase-lag
α . This phase-lag allows to tune the coupling interaction to
be a sine function versus cosine, distinguishing gradient-like
and integrable dynamics, respectively (compare with Eqs. (2)
without noise, β−1 = 0) and implies different incoherence-
coherence transitions (Note that a mix of such interaction also
is essential to observe symmetry breaking chimera states with
nonuniform synchronization patterns on the network61,63) —
extending our theory to such interactions would be of interest.

Coupling functions D(u) of higher harmonic order have re-
cently attracted much interest, which imply more complicated
stability regimes and transitions between incoherence and co-
herence64–67. Moreover, interactions with arbitrary (e.g. non-
symmetric) coupling interactions D = D(uk,ul) are possible68

which imply directed graph topologies47. While we studied
the Kuramoto model with identical intrinsic frequencies, the
presence of distributed frequencies is also of interest. Finally,
extensions to other phase oscillator models, such as the Ku-
ramoto model with inertia26,69 or the theta neuron (or QIF
neuron) that only perform rigid rotations corresponding to
spiking above a threshold current, are worth mentioning. It
would be very useful to derive rigorous mean-field descrip-
tions for the above mentioned systems; today, mean-field de-
scriptions are available only for full graph structures70,71. Fi-
nally, one might also consider transitions between — or bifur-
cations of — states other than incoherence or coherence, such
as chimera states, or twisted states. Twisted states arise in
bifurcations due to negative eigenvalues from the graph oper-
ator72. It would be interesting to extend the mean-field theory
developed here to such cases. Some work in these directions
has been done in the context hypergraphs73.

Another important avenue for future research is to clarify
the validity regime for mean-field descriptions for very sparse
and very heterogeneous structures. Note carefully that the ef-
fective dimension of the VFPE mean-field equation (15a) will
grow the more heterogeneous the graph is due to the depen-
dence of the node type encoded by points in Ω. Hence, a
mean-field description can still exist and our results indicate
this mean-field is often still very useful to determine whether
some number of nodes starts to transition from incoherence
to partial synchronization. Yet, for more complex patterns,
involving an interplay between all different mean-field node
types on very sparse structures, we anticipate that the mean-
field description will eventually not be of much use as it is also
high-dimensional. In summary, to fully determine the theo-
retical and practical limitations of heterogeneous mean-field
VFPEs remains a challenging problem for future work.
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Networks of coupled dynamical units give rise to collective dynamics such as the synchronization of oscillators or
neurons in the brain. The ability of the network to adjust coupling weights between units in accordance with their
activity arises naturally in a variety of contexts, including neural plasticity in the brain, and adds an additional layer of
complexity: the dynamics on the nodes influence the dynamics of the network and vice versa. We study a model of
Kuramoto phase oscillators with a general adaptive learning rule with three parameters, including paradigms of (anti-
)Hebbian learning and spike time dependent plasticity (STDP) as special cases. An important feature is the adaptivity
parameter that allows to study the impact of adaptation on the collective dynamics as we move away from the non-
adaptive manifold given by stationary coupling. First, we carry out a detailed bifurcation analysis for N = 2 oscillators
with (un)directed coupling and provide stability diagrams. Adaptation dynamics in terms of nontrivial bifurcations
arises only when the adaptivity parameter exceeds a critical threshold. While (anti-)Hebbian learning and STDP result
in non-trivial multi-stability and bifurcation scenarios, mixed-type learning rules exhibit even more complicated and
rich dynamics including a transition to chaotic dynamics. Second, we numerically investigate a larger system with
N = 50 oscillators and explore dynamic similarities with the case of N = 2 oscillators.

PACS numbers: 05.45.-a, 05.45.Gg, 05.45.Xt, 02.30.Yy
Keywords: adaptive oscillator networks, Kuramoto model, synchronization, bifurcation analysis

Synchronization is a ubiquitous phenomenon manifesting
itself in a range of natural and technological systems1,2.
The presence or absence of synchronization orchestrates
the proper functioning of complex networks, such as in
neural networks in the brain3,4 or power transmission net-
works5. A paradigmatic model to study synchronization is
Kuramoto’s model that describes the dynamics of phase
oscillators. Many variants have been studied in litera-
ture6,7; here, we are concerned with the dynamics that
emerges when coupling weights adapt according to the
oscillator activity8,9. Such ability to adapt the coupling
weight has been receiving much attention lately10–13 and
finds applications for models of synaptic plasticity and
learning in the brain14. We consider the adaptive Ku-
ramoto model with two oscillators in the limit of stationary
coupling and investigate how the strength of adaptivity af-
fects the dynamics of the network and find that generally,
the synchronizability increases with a larger level of adap-
tivity. Nontrivial bifurcations, unknown to the Kuramoto
model with stationary coupling, emerge at a critical adap-
tivity threshold. We analytically and numerically deter-
mine these bifurcations and their stability boundaries for
several types of learning paradigms. Finally, numerical
simulations give a glimpse into how the dynamics observed
for small systems with two oscillators carries over to larger
systems with a larger number of oscillators.

a)Electronic mail: erik.martens@math.lth.se

I. INTRODUCTION

The synchronization of coupled oscillators is a fascinating
manifestation of self-organization — indeed, self-emergent
synchronization is a central process to a spectacular range of
natural and technological systems, including the beating of
the heart15, flashing fireflies16, pedestrians on a bridge lock-
ing their gait17, genetic clocks18, pendulum clocks hanging
on a beam19,superconducting Josephson junctions20, chemi-
cal oscillations21,22, metabolic oscillations in yeast cells23, and
life cycles of phytoplankton24, and networks of neurons in the
brain3,4.

A desirable property in real-world oscillator networks is the
presence of synchronization whenever it ensures the proper
functioning of the network: in the realm of technology, for
instance, the AC current between generators and consumers
in a power grid need to stay synchronized to ensure ideal
power transmission and ultimately avoid power blackouts5;
and wireless networks require synchronized clocks25 to en-
sure safe data transmission; in the realm of biology, the proper
functioning of the heart requires that the rhythmic electric ac-
tivation of cardiac cells stays coordinated15.

While the network interaction between dynamic units may
give rise to intriguing collective behaviors such as synchro-
nization, adding the ability to adapt the (coupling) weights
on a network according to the dynamics on its nodes leads
to co-evolutionary network dynamics 26. Indeed — “Intel-
ligence is the ability to adapt to change” (Stephen Hawk-
ing) — the adaptive dynamics of co-evolutionary networks
may allow to increase their functional robustness. Adap-
tive co-evolutionary networks appear in a wide range of sys-
tems, including the vascular network27–29, the glymphatic net-
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work of the brain30–32, osteocyte network formation33, so-
cial networks34, and, in particular, in neural networks in
the brain where neural plasticity plays an important role for
learning14,35, but also for the progression of certain neuro-
degenerative diseases36. In the current context, this raises the
question if adaptivity in a coupled oscillator network can in-
crease its ability to synchronize.

We devise a special variation of the Kuramoto model with
adaptive coupling weights. While previous studies have con-
sidered such systems from various perspectives, we here in-
troduce a parameterization that allows to systematically devi-
ate from the traditional Kuramoto system with stationary cou-
pling and study the resulting bifurcation behavior in a system-
atic way.

This article is structured as follows. In Sec. II, we explain
our adaptive Kuramoto model and how we parameterize it.
In Sec. III, we consider N = 2 oscillators and carry out
a detailed bifurcation analysis for several important param-
eter cases: III A non-adaptive Kuramoto model; III B (anti-
)Hebbian learning limit α = β = 0, i.e., adaptive network
with undirected coupling; III C general case: adaptive network
with directed coupling. In Sec. IV we briefly investigate via
numerical simulation if larger oscillator systems withN = 50
display a behavior in terms of adaptivity and synchronizabil-
ity that is similar to N = 50. In Sec. V, we summarize and
discuss our results.

II. MODEL

A. General model

We consider a general model of N oscillators l ∈ [N ] :=
{1, . . . , N}with adaptive coupling. The oscillator phase φl =
φl(t) ∈ T = R/2πZ then evolves according to

dφl
dt

= ωl +
1

N

N∑

m=1

κlm g(φm − φl) (1)

with intrinsic frequencies ωl. Oscillators l and m interact
via the interaction function g and are coupled with the time-
dependent coupling weight κlm ∈ R. The coupling weights
evolve according to

dκlm
dt

= ε(A(φl − φm)− κlm) (2)

where the adaptation or learning rule A = A(φ) defines how
the coupling adapts according to the oscillator phases (states);
i.e., the adaptation/learning rule is defined via a local interac-
tion between oscillator’s phases. The second term with κlm
guarantees boundedness of the coupling weights. The time
scale at which adaptation may occur is set by ε: oscillator
phases evolve on time scales ∼ 1 and coupling adapts on a
time scale ∼ 1/ε.

Specifically, we consider the simplest version of such a
model and suppose that g and A are periodic functions in φ.
We may think of them as truncations of Fourier series to first

order, i.e.,

g(φ) = sin (φ+ α), (3)

and

A(φ) = a0 + a1 cos (φ+ β). (4)

Thus, the oscillator dynamics is defined by the Kuramoto-

A(φ)

φ

a0

a0 + a1

a0 − a1
0 π−π

β = π/2

β = 0

β = π/4

Figure 1. The adaptation rulesA(φ) for distinct values of adaptation
shifts β (shown for a1 > 0).

Sakaguchi model with phase-lag α; the adaptation/learning
rule has an adaptation offset, a0 6= 0, and adaptivity a1
(strength of adaptation). The adaptation rule is inspired by
models of synaptic plasticity in neuroscience and can be re-
lated to models of neural spiking activity 9,10,12. In this con-
text, the adaptation shift β tunes the type of interaction: Re-
stricting our attention to positive adaptivity, a1 > 0, the fol-
lowing values of β, as illustrated in Fig. 1, may be interpreted
in specific ways10:

1. Hebbian learning (β = 0): amplifies (or suppresses)
the undirected coupling weight between oscillators that
have phase difference close to 0 (or π).

2. Anti-Hebbian learning (β = π): amplifies (or sup-
presses) the undirected coupling weight between oscil-
lators that have phase difference close to π (or 0).

3. Spike-time-dependent-plasticity (STDP) (β = π/2):
amplifies (or suppresses) coupling weights between os-
cillators with phase difference close to π/2 (or 3π/2).

Note that the ’self-couplings’, κll(t), are decoupled from
the oscillator phases; vice versa, if g(0) = sinα = 0, os-
cillators are independent from the self-coupling. But even if
sinα 6= 0, the post-transient or asymptotic values κll(t →
∞) → a0 + a1 cosβ can be absorbed into the intrinsic fre-
quencies, ωl + κll(∞) 7→ ωl. We may therefore disregard all
coupling terms κll37. Furthermore, we may reduce the number
of parameters involved by appropriately rescaling parameters
and variables,

a0t 7→ t,
ωl
a0
7→ ωl,

κlm
a0
7→ κlm,

ε

a0
7→ ε.

Since ε > 0, we restrict ourselves to a0 > 0. Introducing the
(relative) adaptivity, a := a1/a0, we then obtain the govern-
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ing equations for the model:

dφl
dt

= ωl +
1

N

N∑

m=1

κlm sin (φm − φl + α), (5a)

dκlm
dt

= ε(1 + a cos (φl − φm + β)− κlm), (5b)

where l 6= m.
Since g(φ) and A(φ) only depend on phase differences,

(5) is invariant to shifts in constant phase and frequency, i.e.,
φl(t) 7→ φl(t) + Φ + Ωt with constants Φ,Ω ∈ R.

When a = 0, the model asymptotically strives to κlm = 1
for all l,m ∈ [N ], corresponding to the Kuramoto model with
(rescaled) uniform stationary coupling. The emergent coher-
ence in the model can be characterized by the order parameter

Z(t) =
1

N

N∑

l=1

eiφl(t).

The Kuramoto model exhibits the following asymptotic be-
havior7,38,39. When the coupling is subcritical (κ < κc),
|Z| → 0 corresponding to low coherence; vice versa, for
supercritical coupling (κ > κc), the order parameter ap-
proaches a constant positive value corresponding to partial
coherence. The threshold in the continuum limit N → ∞ is
κc = 2/(πg(0))39, where g(ω) is a unimodal frequency dis-
tribution with maximum g(0) and standard deviation σ. Here
we normalized the coupling κ to 1; thus, the synchronization
threshold, σc, is indirectly determined via 1 = 2/(πg(0)).
Vice versa, if a 6= 0, we allow the network to be adaptive
and we move away from the manifold corresponding to the
Kuramoto model with stationary coupling.

a. Overview. Note that both Hebbian and anti-Hebbian
learning is covered by β = 0 if both positive and negative
values of a are taken into account; since we consider negative
adaptivity, a < 0, we do not need to include the equivalent
case of β = π in our investigation. In addition to these special
cases we are also interested in investigated mixed-type learn-
ing rules such as the case β = π/4, see Sec. III C 3.

B. Two oscillator model

We consider the minimal network with N = 2 oscillators.
Introducing φ := φ1 − φ2 and ω := ω1 − ω2, the governing
equations become

dφ
dt

= ω +
1

2
κ12 sin(α− φ)− 1

2
κ21 sin(α+ φ), (6a)

dκ12
dt

= ε(1 + a cos(β + φ)− κ12), (6b)

dκ21
dt

= ε(1 + a cos(β − φ)− κ21). (6c)

This system of equations has the additional symmetries

(a, β) 7→ (−a, β + π) (7a)
(a, α, φ) 7→ (−a, α+ π, φ+ π) (7b)

(α, β, κ12, κ21) 7→ (−α,−β, κ21, κ12), (7c)

Due to (7a), we may restrict the parameter range to −π/2 <
β ≤ π/2; due to (7b), we may restrict the parameter range
to −π/2 < α ≤ π/2; furthermore, (7c) allows to restrict ei-
ther the range of β or α to positive values, and we chose to
restrict 0 ≤ β ≤ π/2. However, observe that all symme-
try transformations also affect other parameters and variables;
e.g., the symmetry (7b) effectively swaps (near-)phase-locked
states where φ is close to zero, with (near-)antiphase states
where φ is close to π. Thus, if a phase-locked stationary state
is stable for α = 0 with adaptivity a, then an antiphasic sta-
tionary state is also stable for α = π with −a. There are
several other symmetries as listed in Appendix A.

Furthermore, we consider ε > 0. As our analysis will show,
we find interesting nontrivial dynamic behavior for ε = 0.2
and we use this value throughout the analysis unless specified
otherwise.

III. ANALYSIS

Certain parameter choices lead to effectively lower-
dimensional dynamics. It is instructive to first consider these
cases (Secs. III A and III B) before analyzing the more general
case leading to three dimensional dynamics (Sec. III C).

A. Non-adaptive limit with stationary coupling (classical
Kuramoto model)

Non-adaptive dynamics is obtained for two limiting cases:
either ε = 0, so that κ12, κ21 are constants; or the adaptivity is
zero, a = 0, and the coupling weights asymptotically become
identical with κ12(t), κ21(t) → 1 as t → ∞, irrespective of
the value of β. In either cases, the system is effectively one-
dimensional with the dynamics given by (6a), i.e., the system
corresponds to the classical Kuramoto model. Since we are
only interested in ε > 0 we consider the case of a = 0 and
let κ12 = κ21 = 1 to consider the post-transient dynamics.
Eq. (6a) can be cast as

dφ
dt

= ω − cosα sinφ. (8)

Since we restricted α ∈ (−π/2, π/2], we have cosα ≥ 0.
Excluding the effectively decoupled case with cosα 6= 0, we
may rescale time and ω with cosα to obtain

dφ
dt

= ω − sinφ. (9)

When the frequency mismatch exceeds the coupling, |ω| > 1,
there are no fixed points and the distance φ = φ1 − φ2 keeps
increasing, amounting to drifting oscillators. When the fre-
quency mismatch is smaller, |ω| < 1, we have the two equi-
libria

φ− := arcsinω, φ+ := π − arcsinω, (10)

φ− is a stable equilibrium while φ+ is unstable. These equi-
libria correspond to (frequency-)locked states with the two os-
cillators having constant phase difference. When the oscilla-
tors share their intrinsic frequencies, ω = 0 , the oscillators
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are phase-locked . For |ω| = 1, the two equilibria collide in
a saddle-node bifurcation on an invariant cycle (SNIC). These
drift/locked states, as well as the saddle-node bifurcation, re-
main as a basic dynamic structure when the system is adaptive
with a 6= 0.

B. Adaptive network with undirected coupling
((anti-)Hebbian learning limit: β = 0, π)

1. Reduction

The adaptation rules in (6b) and (6c) for β = 0, π attain
identical structure and the three dimensional dynamics of (6)
is asymptotically described by dynamics on a two dimensional
subspace. To see this, we cast Eqs. (6b) and (6c) in terms of
the difference ∆ := κ12 − κ21 and sum Σ := κ12 + κ21,

d∆

dt
= ε(a[cos(β + φ)− cos(β − φ)]−∆) (11a)

dΣ

dt
= ε(2 + a[cos(β + φ) + cos(β − φ)]− Σ) (11b)

Using β = 0 Eqs. (11) simplify to

d∆

dt
= −ε∆ (12a)

dΣ

dt
= ε(2[1 + a cosφ]− Σ) (12b)

Defining κ(t) := κ12(t) = κ21(t) = Σ(t)/2, (6a) and (12b)
become

dφ
dt

= ω − κ cosα sinφ, (13a)

dκ
dt

= ε(1 + a cosφ− κ). (13b)

This system describes the dynamics on a two-dimensional
subspace, i.e. the plane defined by κ12 = κ21 in the full
(φ, κ12, κ21) phase space. As is evident from inspecting (12a),
this plane is globally attracting.

Eqs. (13) admit for two degenerate cases: (i) if ω =
cosα = 0, φ is constant and thus κ(t) → 1 + a cosφ ex-
ponentially fast; (ii) if cosα = 0 with ω 6= 0, we have
φ(t) = φ0 + ωt so that oscillators drift apart and κ(t) for-
ever undergoes an oscillation.

Since we restricted α ∈ (−π/2, π/2], we may assume
cosα ≥ 0. Further restricting cosα 6= 0 we may rescale
time and related parameters with cosα and obtain

dφ
dt

= ω − κ sinφ, (14a)

dκ
dt

= ε(1 + a cosφ− κ). (14b)

2. Stability analysis

Equilibrium conditions are given by Eqs. (14b) and (14a)
with

κ = 1 + a cosφ (15)

and

ω = κ sinφ = (1 + a cosφ) sinφ. (16)

Using Euler’s identity we may eliminate φ to obtain an equi-
librium condition in κ only,

1 =
ω2

κ2
+

(κ− 1)2

a2
. (17)

The equilibria for φ are given as

tanφ =
ω

κ

a

κ− 1
(18)

as a function of κ. Equilibria (and their bifurcations) are
shown in Fig. 2 for varying values of ω and a.

To determine the asymptotic stability of these equilibria, we
consider the Jacobian of (14),

J = −
[
κ cosφ sinφ
εa sinφ ε

]
. (19)

Using equilibrium conditions (15) and (16), we can eliminate
φ to obtain the trace and determinant for equilibria,

det (J∗) = ε(κ(κ− 1)/a− aω2/κ2), (20)
tr(J∗) = κ(1− κ)/a− ε. (21)

We seek to determine bifurcation curves in (ω, a)-
parameter-space. Our system is planar so that saddle-node and
Hopf bifurcations are determined via the conditions det (J) =
0 and tr(J) = 0 with det (J) > 0, respectively. Bogdanov-
Takens bifurcations occur at the intersection of these two con-
ditions, i.e., det (J) = tr(J) = 0. Eliminating φ and κ cor-
responding to equilibria in det (J) or tr(J) appears not to be
feasible since (17) neither can be solved for κ in closed form
nor is there a suitable substitution to achieve the elimination.
Instead, to determine the desired bifurcation curves we seek a
parameterization of ω and a in terms of one of the equilibrium
variables, κ.

a. Saddle-node bifurcation curve. To determine such a
parameterization, instead of using the condition det J = 0 for
saddle-node bifurcations, we pursue another strategy. Solving
the equilibrium condition (17) for

a(κ) = ± κ(κ− 1)√
κ2 − ω2

(22)

and computing

da
dκ

= ±(κ3 + ω2(1− 2κ))(κ2 − ω2)2/3, (23)

we find that da/dκ = 0 corresponds to a saddle-node condi-
tion, resulting in

ωSN(κ) = ± κ3/2√
2κ− 1

. (24)

With (24) and (22) (where (24) is inserted for ω), we have ob-
tained the desired parameterization (ωSN(κ), aSN(κ)) for the
saddle-node bifurcation.
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b. Hopf bifurcation curve. Solving tr(J∗) = 0 for a in
(21) we find that

aH(κ) = κ(1− κ)/ε. (25)

From (17) we obtain the equilibrium value for

ωH(κ) =
κ

a

√
a2 − κ2 + 2κ− 1. (26)

Hopf curves are thus determined via (25) and (26) with κ as
parameter, provided that det (J∗) in (20) is positive. Note that
all Hopf bifurcations in this system are subcritical so the limit
cycles created in the Hopf bifurcations are unstable.

c. Homoclinic and heteroclinic bifurcations. When a
limit cycle collides with a saddle point it gets destroyed in
a homoclinic bifurcation. Homoclinic bifurcations have been
determined numerically as follows. Since limit cycles in this
planar system are unstable, Eqs. (14) have been numerically
integrated backwards in time while continuing ω. The associ-
ated homoclinic bifurcation has been determined for a given
value of a by determining the ω at which the limit cycle is
destroyed in saddle collision. Doing so for several values of
a allowed to construct the associated homoclinic bifurcation
curve shown in Fig. 3. The same applies to heteroclinic bifur-
cations.

d. Bogdanov-Takens points. Curves of saddle-node,
Hopf, and homoclinic bifurcations intersect in a codimen-
sion 2 Bogdanov-Takens bifurcation point (BT). This point is
found by seeking solutions that simultaneously satisfy equi-
librium conditions together with det (J) = tr(J) = 0.

e. Cusp bifurcation points. Another codimension 2 bi-
furcation point is the cusp bifurcation (CP) where two saddle-
node bifurcations meet. Thus, CP points are located at
(ωCP, aCP) = (0,±1).

3. Stability and bifurcation diagrams

We explain the bifurcation scenarios and associated stabil-
ity boundaries based on our previous analysis. We first ob-
serve that the bifurcation and stability diagram (see Figs. 2
and 3, respectively) exhibit certain symmetries regarding the
reflection ω 7→ −ω. It is easy to check that Eqs. (14), (17)
and (18) obey the symmetry

(φ, ω) 7→ (−φ,−ω), (27)

which effectively swaps the labels of the two oscillators and
thus preserves equilibria, their stabilities and bifurcations (as
seen in Figs. 2, 3). A further symmetry that preserves equilib-
ria is

(a, φ) 7→ (−a,−φ+ π), (28)

but stability of the equilibria is not preserved as can be seen by
inspecting the Jacobian in (19) (more specifically, saddle-node
and cusp bifurcations are preserved, while Hopf bifurcations
are not, see Figs. 3 and 2(b),(c), see also Appendix A).

The non-adaptive case (a = 0) represents the limit of the
classical Kuramoto model (see Sec. III A). This case illus-
trates the perhaps most fundamental bifurcation organizing
the structure of the stability diagram on a ’global’ scale. When
intrinsic frequencies are sufficiently similar, ω = ω1−ω2 < 1,
oscillators lock their frequency; vice versa, if intrinsic fre-
quencies are too dissimilar, ω > 1, oscillator phases drift
apart. Close to ω = 0, oscillators are nearly in-phase, i.e.,
φ ≈ 0 (compare with Fig. 2 where a 6= 0); but the phase
difference φ increases with larger |ω| until the locking breaks
apart in a saddle-node bifurcation (black line) and a drifting
state appears. This saddle-node bifurcation separates the sta-
bility regions for frequency-locked (L, light gray shaded re-
gion) and drifting (D, white region) solutions and can be fol-
lowed throughout the stability diagram in Fig. 3. Note that this
drift solution corresponds to a rotation on the cylinder T×R.

For non-zero adaptivity (a 6= 0), the structure of the sta-
bility diagram in Fig. 3 is organized around two bifurcation
points of codimension two, from where additional bifurca-
tion curves emanate: i) cusp points (CP, black dots) located at
(ωCP, aCP) = (0,±1); and ii) Bogdanov-Takens points (BT,
purple dots). Furthermore, several parameter regions of bi-
stability (dark gray shaded regions, yellow regions) appear
near the cusp bifurcation points and the saddle-node bifurca-
tion leading up to the drifting solutions, respectively.

a. Positive adaptivity. We first consider positive adap-
tivity (a > 0). For smaller frequency mismatch (ω . 1)
and intermediate adaptivity (0 < a < 1), frequency-locked
solutions (L, light gray shaded region Fig. 3) with positive
coupling weights exist, stable nodes (black line in Fig. 2 (b))
closer to in-phase and saddles (black dashed line) closer to
anti-phase configurations. For a ≥ 1, two additional saddle-
node bifurcation curves (black lines in Fig. 3 / black dots
in Fig. 2 (a)) emerge in a cusp bifurcation (CP, black dot
in Fig. 3) located at (ωCP, aCP) = (0, 1). Traversing these
saddle-node bifurcation curves gives birth to an additional sta-
ble node and a saddle with negative coupling, see Fig. 2 (a).
Thus, for a > 1, above the cusp point, between the inner SN
bifurcation curves, we have a region of bi-stability (dark gray
shaded region) with two stable locked solutions characterized
by near in- and anti-phase configurations, respectively. For
larger frequency mismatch (ω & 1), as we traverse the saddle-
node bifurcation giving rise to the locked state (L), we first
observe a region of bi-stability (yellow region) between the
locked state (L) and a drift cycle (D). As the frequency mis-
match ω is further diminished, the drift cycle collides with the
saddle version of the locked state emanating from the saddle-
node bifurcation and is thus destroyed in a heteroclinic bifur-
cation.

b. Negative adaptivity. Consider now negative adaptiv-
ity (a < 0). The symmetry (28) swaps near in-phase with
anti-phase configurations and changes stabilities of equilib-
ria. The overall bifurcation structure is thus similar to the one
observed for a > 0; albeit, their structure is more intricate.
We first restrict our attention to smaller frequency mismatch
(ω < 1). For −1 < a < 0, the saddle-node bifurcations
(black line in Fig. 3 / black dot in Fig. 2 (c)) now give birth
to an unstable node, which turns into an unstable spiral and
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Figure 2. Bifurcation diagrams (equilibria only) in (ω, κ) and (ω, φ) for varying values of a (indicated as green lines in Fig.3) with α = β = 0
and ε = 0.2. The diagrams show stable nodes (black lines), saddles, unstable nodes (both black dashed lines) stable spirals (red lines), and
unstable spirals (red dashed lines). Unstable limit cycles (librations) (not shown) emerge from subcritical Hopf bifurcations.

ω

a

1

0

−1

−1 0 1

D D

2L

2L

L

D/L D/L

D/L D/L

CP

CP

BT1 BT1

BT2 BT2

2(a)

2(b)

2(c)

2(d)

Figure 3. Stability diagram in (ω, a) for α = β = 0 with ε = 0.2.
(ω, a) parameter regions are shaded according to which stable states
they contain: Drift (D) and/or locked states (L).

then a stable spiral (red line in Fig. 2 (c)), however now corre-
sponding to a near in-phase state with positive but small cou-
pling. We observe a cusp bifurcation (CP, black dot in Fig. 3)
at (ωCP, aCP) = (0,−1). Below that, for smaller a < −1, a
Bogdanov-Takens point (BT2, purple dot in Fig. 3) appears on
the new saddle-node bifurcation (black line in Fig. 3 / black
dot in Fig. 2 (d)). BT2 gives rise to a subcritical Hopf bifurca-
tion (blue line in Fig. 3 / blue dot in Fig. 2 (d)) that stabilizes
the second locked state, a stable spiral with small negative
coupling and φ ≈ ±π/4 (red line in Fig. 2 (d)). The unstable
(libration) limit cycles emanating from the Hopf get destroyed
in a homoclinic bifurcation (purple line in Fig. 3).

For larger frequency mismatch (ω > 1), we observe a re-

gion of bi-stability (D/L, yellow region in Fig. 3) between
locked (L) and drifting (D) states similar to the one observed
for positive adaptivity, a > 0. However, there are important
differences. First, below the Bogdanov-Takens point BT1, the
frequency-locked solution (L) loses stability in a subcritical
Hopf bifurcation (blue line). More specifically, as shown in
Fig. 2(c),(d), the saddle-node bifurcation (black dot) gives
birth to a saddle (black dashed line) and an unstable node
which first becomes an unstable spiral (red dashed line) and
then becomes a stable spiral (red line) in a Hopf bifurcation
(blue dot).

Second, for adaptivity values well above the BT1 point, the
drift cycle D is destroyed in a heteroclinic bifurcation; this
scenario, however, appears to be quite different for adaptivity
a somewhat below BT1. On the boundary of the D/L (yellow
region) and L regions (light gray shaded region) — before any
heteroclinic bifurcation is possible to occur — the drift (limit)
cycle loses its stability. Thus, trajectories emanating from the
unstable drift end up spiraling into the stable spiral that arises
in the Hopf bifurcation related to BT1.

To summarize the respective differences regarding stabil-
ity changes occurring for a < 0 and a > 0, the presence of
Bogdanov-Takens bifurcation points BT1 and BT2 diminishes
the size of the L locking region and the 2L bi-stability region
(dark gray shaded region in Fig. 3). Furthermore, the size of
the bi-stable D/L region is also effectively diminished.

C. Adaptive network with directed coupling

We now allow for arbitrary values of β; in general, this may
lead to asymmetric coupling weights κlm 6= κml correspond-
ing to a directed network.
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1. Stability analysis

We first investigate equilibria of the full three dimensional
system in Eqs. (6) which gives rise to the following fixed point
conditions:

2ω = κ21 sin(α+ φ)− κ12 sin(α− φ), (29a)
κ12 = 1 + a cos(β + φ) (29b)
κ21 = 1 + a cos(β − φ) (29c)

Eliminating κ12 and κ21, we obtain a condition that only de-
pends on φ and guarantees the existence of an equilibrium,

ω = (cosα+ a cos(α− β) cosφ) sinφ. (30)

Note that Eqs. (29b), (29c) and (30) provide us with a parame-
terization of an equilibrium curve for (ω, κ12, κ21) in variable
φ.

To determine the stability of equilibria, we calculate the Ja-
cobian for (6),

J =




Jφφ
1
2 sin(α− φ) − 1

2 sin(α+ φ)
−εa sin(β + φ) −ε 0
εa sin(β − φ) 0 −ε


 ,

where Jφφ = −(κ12 cos(φ − α) + κ21 cos(φ + α))/2. The
Jacobian has the eigenvalues

λ1,2 = µ±
√
δ, (31a)

λ3 = −ε, (31b)

where

µ = −A
4
− ε

2
, (32a)

δ =
ε

2
(aB −A) +

1

16
(A+ 2ε)2, (32b)

A := κ12 cos(α− φ) + κ21 cos(α+ φ), (32c)
B := cos(α+ β)− cos 2φ cos (α− β). (32d)

Since by definition λ3 < 0, it suffices to only consider λ1,2.
If an equilibrium point satisfies µ2 = δ, one eigenvalue be-

comes zero, and the equilibrium is a saddle-node point. One
could use this condition to determine the associated saddle-
node curves, but we instead use the following consideration.
Since the equilibrium condition (30) only depends on φ, the
conditions for an equilibrium and for a saddle-node bifurca-
tion are reduced to a problem in a single variable, φ. Accord-
ingly, we require in addition to (30) that dω/dφ = 0. Solving
the resulting two conditions for (ω, a) results in a parameteri-
zation of the saddle-node curves in φ,

ωSN = − cosα sec 2φ sin3 φ, (33a)
aSN = − cosα cosφ sec(α− β) sec 2φ. (33b)

Next, we consider equilibria undergoing Hopf bifurcations.
If a given equilibrium satisfies µ = 0, δ < 0, the real part
of a complex conjugated pair of eigenvalues vanishes and the
equilibrium is a Hopf point. We find a parameterization for the

Hopf curves as follows. First, we require that the equilibrium
condition in (30) is satisfied. Second, after substituting (29b)
and (29c) into (32c) we require that µ = 0. Solving the two
resulting conditions for (ω, a) we obtain

ωH =
(ε cosα cosβ cosφ+ (cosα+ ε cosφ) sinα sinβ) sinφ

sinα sinβ sin2 φ− cosα cosβ cos2 φ
,

(34a)

aH =
ε+ cosα cosφ

sinα sinβ sin2 φ− cosα cosβ cos2 φ
. (34b)

Now (ωH, aH) with parameter φ delineates a Hopf curve pro-
vided that δ < 0 in (32b).

Finally, if µ = δ = 0, two eigenvalues are zero and
the equilibrium is a Bogdanov-Takens point. Thus, simulta-
neously solving µ = δ = 0 together with the fixed point
conditions (29), given a value of ε we are able to obtain
(φ, κ12, κ21, a, ω) at a Bogdanov-Takens point.

2. Dynamics for β = π/2

We let β = π/2 and first discuss the simplest case with
α = 0. We consider locked states and assume that the equi-
librium conditions (29b) and (29c) are satisfied. Substituting
these two conditions into (6a) we see that the third equilibrium
condition reduces to ω = sinφ. The resulting equilibria are

φ =

{
π − arcsinω

arcsinω,
(35a)

κ12 = 1− aω, (35b)
κ21 = 1 + aω. (35c)

The third equilibrium condition, ω = sinφ, informs us that a
saddle-node bifurcation occurs for ω = ±1, regardless of the
value of a. The associated bifurcation curve is therefore the
straight black line shown in Fig. 4(a). We are dealing with a
special limiting case: for |ω| < 1, the oscillators are locked;
for |ω| > 1, they are drifting. Thus, contrary to other param-
eter choices considered in this study, the dynamics and bifur-
cations do not increase in complexity as a is varied. We can
rationalize this as follows. The full dynamics in (φ,∆,Σ) are
given by (6a) and (11):

dφ
dt

= ω − 1

2
Σ · sinφ (36a)

d∆

dt
= −ε(2a sinφ+ ∆) (36b)

dΣ

dt
= ε(2− Σ) (36c)

Since Σ(t) → 2 exponentially fast as t → ∞, the asymp-
totic dynamics is attracted to the invariant two-dimensional
subspace whose dynamics is governed by

dφ
dt

= ω − sinφ, (37a)

d∆

dt
= −ε(2a sinφ+ ∆). (37b)
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4

0
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D/L D/L
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Figure 4. Stability diagrams for β = π/2. (ω, a) parameter regions
are shaded according to which stable states they contain: Drift (D)
and/or locked states (L).

While the variable φ drives ∆, its dynamics is independent of
∆. Thus, we effectively observe the one-dimensional dynam-
ics known for the Kuramoto model (9) discussed in Sec. III A.

For β = π/2 and arbitrary α, the dynamics is

dφ
dt

= ω +
1

2
κ12 sin(α− φ)− 1

2
κ21 sin(α+ φ), (38a)

dκ12
dt

= ε(1− a sinφ− κ12), (38b)

dκ21
dt

= ε(1 + a sinφ− κ21). (38c)

As is easily checked, this system has the symmetry (a, α) 7→
(−a,−α). Since we were allowed to limit α ∈ (−π/2, π/2]
in the original governing equations (6), we may restrict α fur-
ther to either [−π/2, 0] or [0, π/2] while observing this sym-
metry.

To keep the analysis manageable, we consider only α =
−π/10. The resulting stability diagram is shown in Fig. 4(b).
Even though this is just a small deviation, the bifurcation land-
scape differs drastically from the case where α = 0. As was

ω

a

3

0

−3

0 2

0 0.02−0.02

1.1

1.2

L

2L

2L

L

2L

D

D/L

D/L

BT2

BT1

BT3 BT3

Figure 5. Stability diagram for α = π/10, β = π/4. (ω, a) parame-
ter regions are shaded according to which stable states they contain:
Drift (D) and/or locked states (L).

the case for α = β = 0 (Fig. 3), the stability diagram is sym-
metric regarding ω 7→ −ω. More precisely, this symmetry
also swaps oscillator indices,

(φ, ω, κ12, κ21) 7→ (−φ,−ω, κ21, κ12), (39)

and preserves equilibria, their stabilities, as well as all bifurca-
tions since we are merely renaming the oscillators. Moreover,
equilibria, and the SN and cusp bifurcations are symmetric
about a 7→ −a (see Appendix A for an explanation), i.e.,

(a, φ, κ12, κ21) 7→ (−a,−φ+ π, κ21, κ12). (40)

Note that these two symmetries are evident in all stability di-
agrams shown in this work, i.e., Figs. 3, 4, 5, and 6(a).

3. Dynamics for β = π/4

Next we consider the case where β = π/4. The stability
diagram for α = 0 (not shown) is qualitatively identical to the
one obtained for α = β = 0 (Fig. 3). Therefore, we instead
consider small deviations from α = 0, i.e., α = ±π/10.

a. Phase-lag α = π/10. First, we consider the stability
diagram for α = π/10, see Fig. 5. There are three distinct
Bogdanov-Takens points (BT1 and BT2 in the main plot of
Fig. 5 and (two) BT3 in the inset) which organize the bifurca-
tion structure. The Hopf curves (blue lines) emanating from
all three Bogdanov-Takens points (BT1, BT2, BT3) are sub-
critical. These Hopf curves are adjacent to SN curves (black
lines) giving birth to saddles and unstable nodes. The unsta-
ble nodes turn into unstable spirals, and, when undergoing the
Hopf bifurcations, into stable spirals. The homoclinic curves
(purple lines) adjacent to the SN curves destroy the unstable
(libration) limit cycles created in the subcritical Hopf bifurca-
tions.
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Figure 6. Dynamics for α = −π/10, β = π/4. (a): stability diagram. (ω, a) parameter regions are shaded according to which stable states
they contain: Drift (D, pure rotation around cylinder) locked states (L), librations (LB, periodic or chaotic), mixed (libration / rotation) drift
oscillations (MO, periodic or chaotic). (b): Bifurcation diagram for α = −π/10, β = π/4, a = −1.9425 (value of a is marked as green
line in (a)). The diagram shows stable nodes (black lines), saddles, unstable nodes (both black dashed lines) stable spirals (red lines), unstable
spirals (red dashed lines), stable oscillations (local extrema marked in blue) and unstable limit cycles (local extrema marked as blue dashed
lines). (c): magnification of (b) (see green rectangle in (b)). The oscillations (LB/MO) alternate between periodic and chaotic as ω increases,
and for ω > 0.78299 the oscillations are exclusively pure rotation drift states (D). (d): magnification of (c) (see green rectangle in (c)). The
first PD bifurcation (left green dashed line) produces an unstable limit cycle (blue dashed line) and a stable, period-2 limit cycle (LB, blue)
which undergoes a second PD bifurcation (right green dashed line) and then a cascade of PD bifurcations (not marked, for readability), leading
to stable chaos. (An MO state co-existing with the limit cycle is marked in magenta for dinstinguishability.) At ω ≈ 0.6955, the stable chaotic
attractor turns into a stable periodic oscillation. The maximum Lyapunov exponent λmax of the stable oscillatory states is shown beneath. For
further explanations see text. For phase portraits of the oscillations see Fig.7.

b. Phase-lag α = −π/10. Second, we consider the sta-
bility diagram for α = −π/10 in Fig. 6. The resulting dy-
namics become far more involved when compared to the pre-
viously considered cases. The Hopf curve (blue line) that em-
anates from the BT1 point (purple dot in Fig. 6(a)) contains a
Generalized Hopf40 (GH) point located at (ωGH,aGH) (blue dot
in Fig. 6(a)), which separates the Hopf curve (blue line) into a
supercritical segment (below GH), and a subcritical segment
(above GH).

Regime of subcritical Hopf bifurcations (a > aGH).
The subcritical Hopf curve (blue line in Fig. 6(a)) produces
unstable (libration) limit cycles, which may undergo a saddle-
node-of limit cycles (SNLC) bifurcation (black dashed line)
before they die in a homoclinic bifurcation (purple line). The
homoclinic bifurcation curve, which originates in the point
BT1 (purple dot), was found via numerical continuation us-
ing MatCont41. Below the GH point (blue dot), there are
two branches of SNLC bifurcations which meet in a cusp of
SNLCs (CPC, green dot). Thus, between the GH and the CPC
points, limit cycles produced in the Hopf bifurcation (blue
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Figure 7. Regime of supercritical Hopf bifurcations (a < aGH): phase portraits of stable oscillations for α = −π/10, β = π/4, a = −1.9425
and varying ω (shown as green lines in Figs. 6(b)-(d)). (a),(b): period-1 (a) or period-2 (b) libration cycle (LB, blue) co-exists with mixed
rotational / librational drift cycle (MO, magenta). (c): chaotic libration (LB, blue). (d): chaotic mixed oscillation (MO), consisting of rotations
and librations. (e): periodic MO with 1 rotation and 4 librations (blue). (f): periodic MO with 2 rotations and 1 libration. (g): periodic MO
with 3 rotations and 1 libration. (h): pure rotation drift cycle (D, blue). See text for further details.

line) undergo two SNLC bifurcations before dying in the ho-
moclinic bifurcation (purple line). One of the SNLC branches
(black dashed line) meets the homoclinic bifurcation curve
(purple line) in a point which we call SLH (red dot).

Regime of supercritical Hopf bifurcations (a < aGH).
The supercritical Hopf bifurcations (blue line in Fig. 6(a)) be-
low the GH (blue dot) produce stable (libration) limit cycles
(LB) which can only exist on the same side of the supercriti-
cal Hopf curve as the unstable spirals, i.e., in the blue region
between the HB curve (blue line) and the HC curve (purple
line) that destroys the limit cycles. However, the stable limit
cycle can be destroyed / destabilized before reaching the HC
bifurcation (purple line) in an intriguing bifurcation scenario,
which we now explain. Thereby, we let a = −1.9425 and
follow the green line in the diagram Fig. 6(a)) while varying
ω, and we also show example trajectories for chosen values of
ω in Fig. 7.

After the supercritical Hopf bifurcation (right blue dot in
Fig. 6(b)), i.e. for increasing ω, the stable (libration, LB) limit
cycle (blue in Figs. 6(b),(d) and 7(a)) undergoes a Period-
Doubling (PD) bifurcation (left green dashed line in Fig. 6(d)).
The resulting stable limit cycle (blue in Figs. 6(d) and 7(b))
has period-2, i.e., it winds around twice per period. The orig-
inal, period-1 cycle has become unstable (blue dashed line in
Fig. 6(d)) in the PD (left green dashed line in Fig. 6(d)) and the
associated branch ultimately is destroyed in the homoclinic
bifurcation (purple dot in Fig. 6(b),(c)). Remarkably, the li-
bration cycle LB co-exists with a (rotational) drift limit cycle
in the region of period-1 and period-2 cycles, see magenta
curves in Fig. 6(d) and magenta trajectories in Fig. 7 (a) and
(b). This drift limit cycles consists of rotations and librations,
we therefore refer to it as a mixed oscillation (MO). While the

precise nature of the bifurcation mechanism giving rise to this
MO on the left for smaller ω remained elusive to our analy-
sis, inspection of trajectories for larger ω on the right strongly
suggests that this MO drift cycle is destroyed in a collision
with the unstable period-1 version of the libration cycle (blue
dashed line in Fig. 6(d)).

As we increase ω further, the stable period-2 cycle under-
goes a period doubling cascade (PDs are not explicitly marked
to improve readability) resulting in a chaotic attractor with φ
bounded, i.e., it can (still) be seen as a libration LB (blue in
Figs. 6(c), (d) and 7(c)). To characterize this chaotic motion
we numerically estimated the maximum Lyapunov exponent
λmax, and we found that λmax > 0 (close to zero) throughout
the (non-)chaotic ranges of ω (Fig. 6(c),(d)). (Fluctuations in
λmax while varying ω are due to the fact that phase points of
the original and the perturbed trajectory can lie anywhere on
the chaotic attractor by the simulation time λmax is computed.)

This chaotic attractor can be seen as a chaotic libration,
since φ does not rotate around the cylinder T× R (Fig. 7(c)).
Remarkably, as ω is further increased, the chaotic attractor
at some point also includes oscillations characterized as rota-
tions, where φ revolves around the cylinder (Fig. 7(d)), in a
fashion that is reminiscent of phase slips. More precisely, the
trajectory librates a number of times, until it escapes and be-
comes a rotation with drift character, while, however, remain-
ing chaotic in nature. Presumably, this behavior is akin to a
mixed mode oscillation seen characteristic of slow-fast sys-
tems, which is a reminiscence from low ε (recall that we use a
fairly large ε = 0.2 here). Eventually, as ω is increased even
further, the cycle ceases to display chaoticity and becomes a
periodic oscillation including both librations (of a certain pe-
riod) and (drift) rotations (Fig. 7(e)), which we therefore refer
to as mixed oscillations (MO; not to be confused with mixed
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mode oscillations). Ultimately, for ω > 0.78299, the libra-
tions disappear and the cycle is a purely rotational drift cycle
(Fig. 7(h)). This is remarkable, since — as already noted fur-
ther above — a stable MO drift cycle was already present for
smaller ω (magenta curves in Figs. 6(c),(d) and 7(a),(b)), de-
stroyed in a bifurcation scenario different from the scenario
seen here. Thus, the (rotational / librational) drift cycles just
described are indeed distinct, as they seem to emerge from the
libration cycles originally born in the supercritical Hopf bifur-
cation. To summarize, stable oscillations encountered are all
either non-drifting libration cycles (LB, periodic or chaotic),
purely rotational drift states (D, periodic), or mixed rotational
/ librational drift oscillations (MO, periodic or chaotic).

Furthermore, note that MO states exist, for a = −1.9425,
in the range ω ∈ [0.69456, 0.78299) (Figs. 6(c) and 7(d)-
(g)), where subintervals hosting periodic cycles alternate with
subintervals hosting (aperiodic) chaotic motion. This was
found via quasi-continuation of the stable oscillatory states
in the interval ω ∈ [0.693, 1.25]. Interestingly, the respective
number of rotations and librations per period of the oscillation
is different for each periodic subinterval (see Figs. 7(e)-(g)).
Finally, based on quasi-continuation of the drift states in the
direction of ω → 0 for several values of a, we find that sta-
ble purely rotational drift states (D) exist only in the white
regions and yellow regions in Fig. 6(a). While the blue region
may contain all aforementioned types of LB and MO cycles,
none of these types emerges everywhere inside of the blue re-
gion; for readability, we do not distinguish existence regions
for each type individually.

IV. SIMULATIONS FOR N = 50 OSCILLATORS

In Sec. III, we have studied in detail the behavior of the sys-
tem (5) for N = 2 oscillators. The question abounds whether
some of the behavior forN = 2 carries over to a larger version
of the system withN = 50 oscillators. In order to address this
question we restrict our attention to the simplest case with pa-
rameters α = β = 0, ε = 0.2 (see Figs. 2, 3 for the results
obtained for N = 2). While we could tune the frequency
mismatch ω between the two oscillators, for the many oscilla-
tor system, we let the intrinsic frequencies ωl follow a normal
distribution with zero mean and standard deviation σ. Fur-
thermore, instead of drawing these frequencies randomly, we
constructed them via a an equidistant set of points mapped
to the interval [−3σ, 3σ] via the inverse error function. This
symmetrization eliminates potential random effects that might
otherwise obscure the dynamic effects we are interested in,
such as to render comparison to the case of N = 2 more im-
mediate.

We study the dynamic asymptotic behavior of this system
on a grid in (σ, a) parameter space, the results of which are
summarized in Fig. 8(a). We may distinguish four states: the
(frequency-)locked state (L), the antipodal state (AP, which is
a special kind of locked state), and two oscillatory states, par-
tial coherence (P) and drift (D). The frequency-locked state
(where all dφl/dt, dκlm/dt tend to zero after some transient)
and the drift state (where all dφl

dt stay non-zero) were already

observed for the N = 2 system (L and D states, respectively).
Note that the partially coherent state can be interpreted as a
mixture of both L and D states, in the sense that theN oscilla-
tors are split into a frequency-locked and a drifting subset —
naturally, this state requires N > 2 in order to be observed.

In the antipodal state (Fig. 8(b)), the phases of oscillators
split into two groups inside which phases differ only very lit-
tle from one another, but in between the groups phases dif-
fer by about π, i.e., the two oscillator groups are antipodal
to one another on the phase circle; dφl/dt, dκlm/dt tend to
zero asymptotically in time. This special configuration of the
phases also impacts the coupling on the network: κlm that rep-
resent couplings between oscillator pairs residing in the same
population (distinct populations) assume values close to the
maximum possible value 1 + a (the minimum possible value
1 − a), see black (white) κlm values in Fig. 8(b). Note that
the antipodal state occurs when the distribution of ωl is suffi-
ciently narrow and the adaptivity a > 0 is sufficiently strong.
This state may be interpreted as a corollary to the 2L co-
existence observed for N = 2, α = β = 0, a � 0, |ω| � 1
(see Fig. 2(a)), where the two oscillators either occupy a phase
configuration with 0 or π difference — here, oscillators form
groups that mutually adhere to either of the two configura-
tions. Note that a similar correspondence applies to the cou-
pling weights both at the upper and the lower end of the ap-
plicable κ range.

For the (frequency-)locked state L (Fig. 8(c)), all phases
are close to one another — thus, also the κlm are close to
1 + a. Topologically, this essentially corresponds to an all-to-
all network. This state is thus interpreted as the corollary of
the locked state L for N = 2, see Fig. 2(b) for small ω.

For the partially coherent state P (in Fig. 8(d)), most os-
cillators are locked (blue dots), while others are drifters (red
dots). Coupling weights κlm where l and/or m can be asso-
ciated with drifting oscillators are thus oscillatory (red curves
in Fig. 8(d)). By contrast, the locked oscillators (blue dots
in Fig. 8(d)) display vanishingly small dynamic frequencies,
thus the κlm for which neither l nor m are drifting oscillate
close to 1 + a and with very small amplitude (blue time traces
in Fig. 8(d)).

Just as for the N = 2 state, the locked state L occurs
for both positive and negative a. For N = 50 and a < 0
with σ small, we observe locked states with oscillatory tran-
sients (corresponding to stable foci forN = 2) whose κlm are
mostly close to the minimal value 1−a, in analogy to the case
of N = 2 oscillators (see Fig. 2(c)).

For the N = 2 system, we found that (co)existence of one
(L) or two (2L) stable locked state(s) is guaranteed for |a| suf-
ficiently large. Interestingly, Fig. 8(a) suggests that there is a
stable locked state for a > 0 sufficiently large; yet, for a < 0
it appears as if the region of stable locked states is diminished
in favor of partially coherent, or, even drift states. It would be
interesting to investigate this aspect further in future research.
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Figure 8. Summary of simulation results for N = 50 oscillators with α = β = 0, ε = 0.2. (a) Stability diagram for varying a and σ
summarizes the four post-transient final states (as observation for one realization only): antipodal (AP, triangle), locked (L, black circles),
partially coherent (P, gray circles), drift (D, empty circles). Panels (b)-(d) display the behavior observed for three distinct parameter values
(highlighted with green rectangles in (a)), i.e., AP for a = 1.7, σ = 0.2 (b), L for a = 1.7, σ = 0.4 (c), and P a = 1.7, σ = 0.6 (d),
respectively. The top row in the panels displays phases (blue/red dots for locked/drifting oscillators) as well as dynamic frequencies (black
dots) at the final simulation time T . The bottom row in panels (b) and (c) features the κ matrices at final time T = 1500, where white and
black pixels correspond to 1− a = −0.7 and 1 + a = 2.7, respectively (both matrices have zero diagonal shown in gray). The bottom row in
panel (d) presents the time evolution of κlm(t) during 0 ≤ t ≤ T = 200 (transients have subsided for t ≤ 50).

V. DISCUSSION

The model in Eqs. (5) is a Kuramoto-Sakaguchi model with
phase-lag α and coupling weights that adapt according to a
learning rule with adaptivity strength a and adaptation shift β.
Our bifurcation analysis concerns the case of N = 2 oscilla-
tors, for which we — chiefly — may distinguish three cases:
(i) the non-adaptive limit with stationary coupling (a = 0);
(ii) the adaptive network with undirected coupling (β = 0 (or
β = π) can be interpreted as a Hebbian (or anti-Hebbian)
learning rule); and (iii) the adaptive network with directed
coupling (arbitrary β). The non-adaptive limit (a = 0) triv-
ially reduces to the classical Kuramoto model, where, for fre-
quency locking to occur, the frequency mismatch must be
smaller than the coupling that is rescaled to 1. Considering
the case of undirected coupling (β = 0), we first observe that
deviating from the non-adaptive limit (a = 0) with non-zero
adaptivity (a 6= 0) leads to an overall larger locking region L,
i.e., larger frequency mismatch is required to break locking. It
is interesting to note that in the context of forced oscillations,
the mode-locking region corresponds to an Arnol’d tongue;
indeed, the strength of adaptivity could be related to a forcing
strength, at least in the limit of slow adaptation (ε→ 0).

Furthermore, smaller frequency mismatch |ω| and suffi-
ciently large adaptivity a allow for bi-stable regions 2L where
two frequency locked modes co-exist, i.e., anti-phase (antipo-
dal) configurations co-exist in addition to in-phase configura-
tions. For larger |ω| and a 6= 0, a further bi-stability region
D/L appears where locked states co-exist with drift cycles (ro-
tations). While this general picture prevails for both positive
and negative adaptivity, the situation is slightly more compli-
cated in the region with a < 0, where additional bifurcations

diminish the width of the various (bi-)stable regions (L, 2L
and D/L). Note that drift cycles correspond to rotations around
the cylindrical phase space, whereas Hopf bifurcations give
rise to libration limit cycles; however, in the case of directed
adaptive networks, these cycles remain always unstable.

We found that similar bifurcations scenarios also occur for
directed adaptive networks with β 6= 0 and a > 0; how-
ever, even more intriguing dynamics is seen when a < 0 and
β = π/4, α = −π/10. Chiefly, the presence of a generalized
Hopf bifurcation (GH) organizes a complex structure of bi-
furcations (including sub-/supercritical Hopf, saddle-node of
limit cycles (SNLC), cusp of cycles (CPC), a homoclinic and
SLH bifurcations, similar to a scenario seen for a system of
Theta neurons, see Ref. 42); in particular, the GH enables a su-
percritical Hopf bifurcation for a < 0 that gives birth to stable
librations. These libration cycles undergo a period-doubling
cascade to chaos. Remarkably, period-1 and period-2 cycles
may co-exist with a rotional drift cycle characterized by a non-
trivial winding number; it appears to be destroyed in a colli-
sion with the unstable period-1 cycle emerging from the first
period-doubling bifurcation before the stable libration cycle
becomes chaotic. However, the period-doubling cascade of
these librations features a surprise. As ω increases, after the
librations become chaotic, they change to a mixed behavior
characterized by features of both libration and rotation. The
winding number of the libration changes, and mixed oscilla-
tions alternate between chaotic and periodic, until for large ω
one finds a regular period-1 rotational drift cycle.

One would expect that the analysis of the N = 2 oscilla-
tor system might capture some of the dynamic behavior seen
in larger systems. Our simulations for undirected networks
(β = 0) with N = 50 revealed that such a correspondence
exists, albeit with certain limitations. On one hand, we find a
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relatively good correspondence for a > 0 between antipodal,
locked, partially coherent and drifting states, with the 2L, L,
and D states that are seen for N = 2. On the other hand, we
found that increasing strength of adaptivity |a| leads to larger
locking regions forN = 2, whereas this effect does not appear
to be present anylonger for N = 50 oscillators when a < 0.

We point out some similarities between the system we stud-
ied here and other systems studied previously in literature.
These systems are retrieved from our model (5), which is most
adequately seen in the original form of the model where adap-
tivity is not rescaled yet: Letting a0 = 0 with α = β = 0, we
recover the model Eqs. (3) and (4) studied by Seliger et al.,
Ref. 8. Similarly, if we set a0 = 0 with ω1 = . . . = ωN =
0, a1 = 1, we recover the model by Berner et al.10. Our adap-
tation rule generalizes the one in Ref. 8 by inclusion of an
adaptation shift β 6= 0, in accordance to Ref. 10 (e.g., in the
Hebbian, STDP, and anti-Hebbian case); however, in contrast
to Ref. 10, we introduced a nontrivial adapation offset a0 and
an adaptation strength a1; this choice enabled us to systemat-
ically deviate from the classical Kuramoto-Sakaguchi model
with stationary coupling, and thereby, to address the question
how variation of the level of adaptivity impacts the dynamics
of the network. Moreover, including non-identical frequen-
cies (ω 6= 0) breaks certain symmetries of the system, which
distinguishes our study from Ref. 10 and enables us to study
the size of the locking region in particular. Finally, note that
the choice a0 = 1 does not allow us to retrieve the model in
Ref. 8 as a0 → 0 constitutes a singular limit.

Nevertheless, some of the basic dynamic behavior, such as
the presence of frequency locking or antipodal or antiphasic
clusters states seen in Ref. 10 naturally carry over to our sys-
tem as long as intrinsic frequencies are kept relatively close to
each other. However, the breaking of the symmetry by forcing
a non-zero frequency mismatch ω 6= 0 opens the possibility
for bifurcations leading to novel states, e.g., the Hopf bifurca-
tions producing small amplitude librations and the associated
period-doubling cascade reported in this study. Furthermore,
we mention a very recent study43 which includes an analysis
of our system with a0 = 0 and a0 = 1 in the slowly adapting
limit where ε → 0. This analysis results in a planar problem
for the coupling dynamics in separation; as such, the result-
ing reduced dynamics cannot display a transition to chaos or
intriguing phenomena concerning mixed oscillations with li-
brations and rotations seen here.

Future research may study adaptive Kuramoto-Sakaguchi
oscillator networks with larger oscillator numbers. To this
end, it would be desirable to carry out further simulations,
for instance to see if complex dynamics such as the period-
doubling cascade reported here for the case of a directed adap-
tive network with N = 2 oscillators and β 6= 0, π (Sec. III C)
prevails for larger networks. Importantly, it would be desir-
able to develop a (finite) mean-field theory as well as a de-
scription for (5) in the continuum limit, e.g., using a formal-
ism based on graphons/graphops44–46, to study the dynamics
for Eqs.(5) for large N . We leave these problems open for
future studies.
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Appendix A: Symmetries

Eqs. (6) exhibit various symmetries that we survey here.
The following symmetries allow us to reduce the α, β param-
eter range:

(a, β) 7→ (−a, β + π) (A1)
(a, α, φ) 7→ (−a, α+ π, φ+ π) (A2)

(α, β, κ12, κ21) 7→ (−α,−β, κ21, κ12) (A3)

Moreover, the following symmetries about the ω, a axes are
visible in all stability diagrams:

(φ, ω, κ12, κ21) 7→ (−φ,−ω, κ21, κ12) (A4)
(a, φ, κ12, κ21) 7→ (−a,−φ+ π, κ21, κ12) (A5)

As mentoned in the text, the ω 7→ −ω symmetry defined by
(A4), (27) or (39) leaves equilibria of Eqs. (6), their types and
their stabilities unchanged. Similarly, the a 7→ −a symmetry
defined by the transformation in (A5), (28) or (40) also pre-
serves equilibria of Eqs. (6), but the stabilities and bifurcations
of these equilibria need to be discussed. For this, we look at
the eigenvalues of the Jacobian specified in (31). Clearly, the
SN condition 0 6= µ2 = δ is equivalent to

0 = aB −A (A6)

if condition (A6) is fulfilled, then it is still fulfilled after ap-
plying the symmetry, since the symmetry leavesB unchanged
and only inverts the sign of a and A. Looking at Hopf bifur-
cations, µ = 0 in (32a) is a necessary condition for a Hopf
point. If µ = 0 is fulfilled, it is clearly not fulfilled after the
symmetry is applied, since the symmetry inverts the sign ofA.
In summary, the symmetry (40) preserves SN, but not Hopf
bifurcations, which agrees with what we see in the stability
diagrams.

Finally, the following symmetries are not exploited in the
text but mentioned here for the sake of completeness:

(α, β, φ) 7→ (α+ π, β + π, φ+ π) (A7)
(α, ω, ε, t) 7→ (α+ π,−ω,−ε,−t) (A8)

(a, ω, ε, φ, t) 7→ (−a,−ω,−ε, φ+ π,−t) (A9)
(α, ω, ε, t) 7→ (α+ π,−ω,−ε,−t) (A10)
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6J. Acebrón, L. Bonilla, C. Pérez Vicente, F. Ritort, and R. Spigler. The
Kuramoto model: A simple paradigm for synchronization phenomena. Re-
views of Modern Physics, 77(1):137–185, apr 2005.

7C. Bick, C. Laing, M. Goodfellow, and E.A. Martens. Understanding the
dynamics of biological and neural oscillator networks through exact mean-
field reductions: a review. Journal of Mathematical Neuroscience, 9(10),
2020.

8Philip Seliger, Stephen C Young, and Lev S Tsimring. Plasticity and
learning in a network of coupled phase oscillators. Physical Review E,
65(4):041906, 2002.

9Yuri L Maistrenko, Borys Lysyansky, Christian Hauptmann, Oleksandr
Burylko, and Peter A Tass. Multistability in the kuramoto model with
synaptic plasticity. Physical Review E, 75(6):066207, 2007.

10Rico Berner, Jan Fialkowski, Dmitry Kasatkin, Vladimir Nekorkin, Serhiy
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