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Abstract

This document describes a mathematical model for energy system infrastructure
planning problems. Its aim is to identify the most socioeconomically desirable
energy system configuration for a given problem described within a MILP op-
timisation framework. The best configuration is identified in a way consistent
with net present value calculations for a set of investments and operational
needs. The energy system is complemented or created from scratch by the in-
vestments, enabling or providing alternative ways for the operational needs to
be met. These are expressed as flow requirements in a set of networks that
partly describe the energy system. Meeting them may require flows in and out
of the system, potentially resulting in expenditures and revenue, in accordance
with the respective tariffs. Internal flow distribution proceeds along pre-existing
paths or those created through new investments, and is otherwise free, though
not necessarily lossless. Losses are path segment-specific, depend on the solution
deployed to allow flow along it, and can have static and flow-proportional com-
ponents. Flows within the system have to be in equilibrium with another and
compensate for losses and operational needs. The latter can also be dynamic if
specified through modular sets of difference equations and constraints that can
also be used to model interactions between networks. These structures are here
termed flow converters and can also be introduced through investments. The
formulation proposed also includes novelties, namely the structures necessary
to use special ordered sets for selecting investments in paths, an alternative way
to model static losses without intermediate nodes, and the possibility to define
investments in groups of arcs rather than only on individual ones. Other key
assumptions include the inexistence of flow delays and the precedence of invest-
ments relative to the planning period. Beyond these assumptions, the model
design prioritised versatility and organisation over more streamlined approaches,
as the model was primarily developed for scientific applications.
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Chapter 1

Introduction

1.1 Motivation

Infrastructure is a term used to describe collective equipments deployed to en-
able certain activities. Examples include bridges for crossing rivers, waterworks
for supplying water, and ports for transshipment. As a decision-making pro-
cess, it is imbued with technical and political dimensions, each with its own
forms of uncertainty. It also tends to involve more resources, larger investments,
longer lifespans, more environmental consequences, more participated processes
and more external scrutiny compared to more personal decisions, whereas the
benefits may be more distributed. As such, anticipating the outcomes of in-
vestments in infrastructure, and planning them, can and perhaps should be
multi-disciplinary enterprises requiring greater care than individual decisions.

Software tools can bring about improved infrastructure planning. One way is
through transparency, since the results and methods might be more easily repro-
duced and reviewed. Another way is by automating cumbersome and repetitive
tasks, the potential benefits of which include time savings, cost reductions, fewer
human errors and higher reliability by using more advanced methods. Among
them one finds optimisation, the process through which more suitable alterna-
tives can be methodically identified, which is the focus of this document.

The purpose here is to describe a mathematical model for the optimisa-
tion of energy system infrastructure. It is intended to help identify the most
promising set of investments out of those under contention for a given energy
system. Though the aim was also to be as inclusive as possible, an early de-
sign decision was to adopt mixed-integer linear programming (MILP) as the
optimisation framework, which entails modelling limitations (e.g., no quadratic
terms). Despite this assumption, the model can address certain classes of invest-
ment problems on energy system infrastructure – i.e., the equipments enabling
the organised provision of energy – as could previous models making the same
assumption. In the literature survey that follows, such efforts are reviewed.
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1.2 Literature review

Model development benefited from and assimilated previous efforts. Those iden-
tified are primarily studies concerning district heating and cooling investment
problems expressed within a MILP framework. As a result, the objectives pur-
sued reflect economic priorities consistent with socio-economic optimisation, as
profit is not necessarily the goal [5, 7, 8]. Instead, cost minimisation for a given
specification is often the aim, e.g., the provision of end-user demand [4,15].

The studies surveyed targeted investments on energy transport, storage, and
conversion infrastructure. By considering the first of these, the problems take on
a spatial dimension reminiscent of network optimisation problems. Söderman
(2007) exemplified this in a study on the design of district cooling networks
with minimal cost in which the equipments and their locations are part of the
decision space [1]. In the study, the equipments included plants, storage units
and pipelines. Manfren (2012) discussed a more general approach for energy
systems, described using graph theory terminology, that also considered trans-
shipment [2]. Subsequently, Dorfner et al. (2014, 2017) proposed MILP formula-
tions for designing district cooling systems using directed (2014) and undirected
(2017) graphs, wherein arcs were defined as having static and flow-dependent
losses [3, 4]. Röder et al. (2021) followed up on these efforts by modelling dis-
tributed storage to study its effect on district heating network layouts [6]. In
turn, Bordin et al. (2016) prioritised hydraulic considerations and pre-existing
conditions in a MILP model for designing district heating networks. The study
also discusses the potential for new features and their trade-offs, namely between
versatility, model accuracy and computational performance [5].

Computational performance concerns surrounding long-term energy plan-
ning abound in the literature. Among studies using MILP, the issue has been
framed around the number of decision variables needed to model such problems,
particularly binary ones [1]. Renaldi and Friedrich (2017) suggested adjusting
equipment models and temporal discretisations as ways to mitigate the issue,
and explored the latter [10]. Gabrielli et al. (2017) proposed using separate
optimisations for the design and operational aspects [12]. Kuriyan and Shah
(2019) explored this aspect further and considered major and minor temporal
scales for investments and operational decisions, respectively [11]. On the data
side, model reduction techniques have been explored to facilitate this [12,13].

Other approaches have also been considered. Manfren (2012) suggested the
use of special ordered sets [2]. Dorfner et al. (2017) proposed using relaxed
flow equilibrium constraints [4]. Others investigated the use of evolutionary
meta-heuristics [13–17]. These were found to outperform MILP solvers in a few
studies [15,17]. The increased modelling freedom was also noted [17].

The potential of flexibility and integration synergies has also received at-
tention. Söderman and Ahtila (2010) proposed a MILP model for exploring
synergies between heating and cooling systems, namely via investments in heat
exchangers [20]. Hilpert et al. (2018) described a model allowing inter-network
synergies to be considered [18]. Dominkovic et al. (2020) proposed incorporat-
ing short-term flexibility in system planning through a feedback loop [9].
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The subject of protection against uncertainty has also been addressed, though
primarily using two-stage stochastic programming. Lambert et al. (2016) con-
sidered it for designing a district heating network under energy price and heat
demand uncertainty [7]. Mavromatidis et al. (2018) complemented that effort
by also considering energy demand and solar radiation uncertainty in designing
a distributed energy system [19], whereas Egberts et al. (2020) only considered
demand uncertainty for planning district heating networks [16]. In contrast,
Akbari et al. (2014, 2016) used robust counterparts to evaluate the impact of
conversativeness on designs for distributed energy systems [21,22].

1.3 Objectives

The literature on energy system planning models suggested an opportunity for
integration, simplification and synthesis. These assertions were prompted by
observations on the overlap between the various models, the unused opportuni-
ties for abstraction (e.g., between various technologies and forms of energy), the
lack of a comprehensive approach for handling synergies and flexibility, and the
general direction of model development (e.g., decoupling investment and oper-
ational decisions). Based on these, a more general model was conceptualised.

The mathematical model proposed has two main objectives. The first is
to generalise energy system infrastructure planning problems within a MILP
framework. Doing so can be beneficial for the following reasons: easier vali-
dation and benchmarking, as results become easier to compare and reproduce;
improved task separation, by making it easier for researchers to focus on what
they do best; extendability, since novelties become easier to recognise and in-
tegrate; greater versatility, as the degrees of freedom are preserved to accom-
modate all cases; and, greater clarity, since by addressing the general case the
problem structure is laid bare, and the development of algorithmic approaches
made easier. The second objective concerns the identification of structures that
can be taken advantage of for enhanced computational performance. In pursu-
ing this aim, more palatable compromises between accuracy and computational
cost may be attained for this class of problems or peculiar instances thereof.

1.4 Approach

The objectives outlined were approached in the following way. First, empha-
sis was put on providing a generic formulation for the elements common to
all problems rather than discriminating the various possibilities (e.g., forms of
energy) and their peculiarities, since those can be accommodated through ex-
tensions. A focus on functionality and modularity was also observed in deriving
the formulation, so as to keep the elements relevant and optional, in addition
to a general preoccupation around the separation between model and data. In
this regard, design choices were avoided whenever possible in order to keep the
model flexible. This means that infeasibility is not precluded and that data
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curation (parameters and sets) should not be neglected. Consistency was also
prioritised over engineering sleights of hand that can have unintended conse-
quences, particularly when problem size renders verification more difficult. A
fourth consideration had to do with the completeness of the description, by ex-
plicitly including alternative ways of modelling certain aspects, since that can
facilitate understanding their repercussions. Its side-effect is a longer model
description, even if previous points can counter that tendency.

1.5 Contributions

The MILP model proposed amounts to a two-stage stochastic program for so-
cioeconomic optimisation. It is suitable for evaluating investments in energy
system infrastructure based on the net present value. The energy system is
partly defined by networks with normal and transshipment nodes and arcs dis-
tinguished by their directionality (directed or undirected), pre-existence (new or
pre-existing) and losses (static and flow-proportional). These distinctions can
already be found in the literature and are integrated into the model.

A few novelties were also introduced in the model. In addition to the general
integration effort, the formulation describes static losses in arcs without relying
on intermediate nodes. Another novelty concerns the possibility of selecting
investments for a multitude of arcs as if it were just one – a generalisation of
investments in individual arcs. A third contribution relates to the identification
of structures compatible with special ordered sets of type one (SOS1), which are
highlighted in the model. The final contribution has to do with the introduction
of structures termed flow converters, which refer to sets of difference equations
and associated constraints that can be utilised to model behaviours ranging
from interactions between different networks to dynamic loads.

A few aspects were also left out of the model, such as transport delays.
Converter controls were also left out though they can be added as an extension.
Investment scheduling was also not modelled explicitly, though it can be con-
sidered in an ad-hoc manner. Another omission is robust programming, since
it requires defining uncertainty sets and can be tackled separately.

1.6 Structure

Considering the extent of this document, some clarification around its structure
might be pertinent. Following this introductory chapter, the model is intro-
duced gradually, first by describing its components via the main sets used in it,
and later through its objective function, variables and constraints (Chapter 2).
Subsequently, a chapter describing a few examples is provided to demonstrate
its options and applications (Chapter 3), which is followed by some concluding
remarks (Chapter 4). Then, the nomenclature is described in detail (Chapter 5),
after which the funding sources and individual contributions are discriminated
(Acknowledgements). The last chapter is dedicated to the bibliography.
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Chapter 2

Mathematical model

2.1 Overview

The model can be briefly described through the sets it uses. These are used to
keep the model organised, modular and scalable. The following sections intro-
duce some of the key parts of the model using the relevant sets and examples.

2.1.1 Nomenclature

The model description follows a set of nomenclature conventions. Sets are identi-
fied via alphabetic capital letters, one per member dimension, with all members
having the same dimensionality: most sets are written as one capital letter (e.g.,
Q), for one-dimensional members (e.g., q ∈ Q), but a few sets use more capital
letters (e.g., GLL) for multi-dimensional members (e.g., (g, l, l∗) ∈ GLL). Set
members are identified via lower case equivalents of the letters identifying the
set that they are tentatively members of (e.g., g ∈ G). When more than one
member needs to be referenced in the same constraint, markers are used to dif-
ferentiate them (e.g., g ∈ G, g∗ ∈ G). The same capital letter(s) can also be
used for different sets if there are subscripts and/or superscripts: the former are
used for indexation (e.g., l ∈ L0), whereas the latter concern fixed categories,
often involving shortened names (e.g., l ∈ Limp

0 ) for ease of understanding.
The aforementioned logic for subscripts and superscripts also applies to vari-

ables and parameters. Variables for quantities with an intended technical mean-
ing within this class of investment problems use acronyms in capital letters:
CAPEX, SDNCF , EFR, IFC, EF , and IF . Variables for general quantities
use lower case alphabetic letters after t: u, v, w, x, and y. Variables concern-
ing differences between the previously-cited variables use a ∆ prefix (e.g., ∆x).
Variables for binary decisions also use greek letters but in lower case: δ, ξ, and
ζ. In turn, parameters use lower case alphabetic letters with one exception
(η). Moreover, the letters used for parameters only overlap with those used for
variables when they concern the same quantity (e.g., initial conditions).
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2.1.2 Problem

The investment problem at the heart of the model considers a given planning
horizon divided into sequential reporting periods. Their number and duration
are defined through data: ∀p ∈ P = {1, 2, ..., |P |}. Evaluating how the energy
systems perform during each is done through operational performance assess-
ments: ∀q ∈ Q. One of these may be used for a specific reporting period or
multiple. The reporting periods covered by a given assessment q are given by
the set Pq, a subset of P , (2.1). In this way, the assessments can cover the
entire planning horizon, possibly more than once, since it is also possible to
consider alternative scenarios with a given probability: cwgt

q ,∀q ∈ Q. Among
other things, this allows for the evaluation of different discount rates.

Pq ⊆ P,∀q ∈ Q (2.1)

Each assessment q is also associated with an independent time scale com-
posed of sequential intervals: ∀k ∈ Kq = {1, 2, ..., |Kq|}. The relative weight
of a given interval k within a given reporting period p is predetermined and
given by a parameter: ctime

q,p,k,∀q ∈ Q,∀k ∈ Kq = {1, 2, ..., |Kq|} ,∀p ∈ Pq. By in-
troducing these parameters, it becomes possible to assign a greater importance
to certain intervals, or sequences thereof, possibly leading to the exclusion of
others to obtain smaller problems that are deemed sufficiently accurate. Some
of the possibilities offered by this formulation are presented in Tables 2.1-2.5 for
problems with three reporting periods (P = {1, 2, 3}).

The examples illustrate different ways to use the model for a yet unknown
energy system. Note also that the time scales and respective discretisations
are defined by data in the form of sets and coefficients to keep the model as
versatile as possible. Accordingly, it is possible to adjust the planning period
time scale without changing the assessment time scale and vice-versa. The
following section discusses how the underlying energy system is modelled using
only the operational performance assessment time scale.

2.1.3 Energy system

Energy systems are modelled as networks that interact with one another through
systems henceforth referred to as converters. The result of these interactions
is present in the objective function through the SDNCF , which translates op-
erational performance considerations. The objective function is also sensitive
to the energy system configuration through the CAPEX, which take into ac-
count which network layouts and converters were selected. In what follows, the
networks and converters used to model energy systems are described.

Networks

An energy system must have at least one network, each with at least one node.
Networks are identified through membership in the set G: ∀g ∈ G. Nodes on a
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Table 2.1: Problem with three reporting periods relying on one assessment with
two intervals: all reporting periods rely on the same assessment.

q ∈ Q p ∈ Pq?
Pq Kq1 2 3

1 X X X {1, 2, 3} {1, 2}

Table 2.2: Problem with three reporting periods relying on two assessments
with two intervals: one assessment for the first period and another for the rest.

q ∈ Q p ∈ Pq?
Pq Kq1 2 3

1 X × × {1} {1, 2}
2 × X X {2, 3} {1, 2}

Table 2.3: Problem with three reporting periods relying on two assessments
with two and three intervals: one assessment for the first two periods with two
intervals; and another for last period with three intervals.

q ∈ Q p ∈ Pq?
Pq Kq1 2 3

1 X X × {1, 2} {1, 2}
2 × × X {3} {1, 2, 3}

Table 2.4: Problem with three reporting periods relying on two assessments
with two intervals: each assessment is used for all three reporting periods.

q ∈ Q p ∈ Pq?
Pq Kq1 2 3

1 X X X {1, 2, 3} {1, 2}
2 X X X {1, 2, 3} {1, 2}

Table 2.5: Problem with three reporting periods relying on six assessments with
two intervals: each reporting period is covered by two assessments.

q ∈ Q p ∈ Pq?
Pq Kq1 2 3

1 X × × {1} {1, 2}
2 X × × {1} {1, 2}
3 × X × {2} {1, 2}
4 × X × {2} {1, 2}
5 × × X {3} {1, 2}
6 × × X {3} {1, 2}
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network g cannot be in other networks and are identified through membership
in the set Lg: ∀l ∈ Lg. Two special types of nodes are worth mentioning:
import and export nodes. These are identified through membership in the sets
Limp
g and Lexp

g , respectively, both of which are subsets of Lg, (2.2)-(2.3). At
the same time, a network cannot consist of only import nodes or only export
nodes, but one that has both is valid (i.e., to evaluate import-export routes),
as are all combinations involving other types of nodes. These other types of
nodes cannot be import or export nodes and are identified solely through data:
waypoint nodes require no incoming or outgoing flows; source nodes require
outgoing flows or local sinks; sink nodes require incoming flows or local sources.
One other point about nodes is that they cannot be optional, unlike arcs, though
they may have no impact on the solution (e.g., waypoint nodes).

Limp
g ⊂ Lg,∀g ∈ G (2.2)

Lexp
g ⊂ Lg,∀g ∈ G (2.3)

Arcs connect two distinct nodes to allow flows between them. If the flows
are one-directional, the arc should be directed. The other option is to use
undirected arcs to consider reversible flows – one flow sense per interval. An arc
cannot be both directed and undirected but these can exist in parallel, (2.4).
Directed arcs allowing flow from node l to node l∗ on network g are identified
via the set Jdir

g,l,l∗ . In turn, undirected arcs between nodes l and l∗ on network

g are identified through membership in the sets Jund
g,l,l∗ or Jund

g,l∗,l, but not both

simultaneously. If j is a member of Jund
g,l,l∗ , then the nominal direction for that

undirected arc is from l to l∗, which is the one that must be used in related sets.

Jdir
g,l,l∗ ∩

(
Jund
g,l,l∗ ∪ Jund

g,l∗,l

)
= ∅,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.4)

Arcs cannot exist between any and all pairs of nodes. Directed arcs can
link any pair of distinct nodes as long as the start node is not an export node,
and the end node is not an import node, (2.5)-(2.7). This is so because self-
loops provide no additional functionality and because import and export nodes
are meant respectively for incoming and outgoing flows only. Consequently,
undirected arcs cannot interact with import and export nodes directly, be it as
start or as end nodes, (2.8)-(2.9). The alternative is to introduce intermediate
nodes and connect these to the import or export nodes via directed arcs.

Jdir
g,l,l ∪

(
Jund
g,l,l ∪ Jund

g,l,l

)
= ∅,∀g ∈ G,
∀l ∈ Lg

(2.5)
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Jdir
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lexp
g ,

∀l∗ ∈ Lg

(2.6)

Jdir
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lg,

∀l∗ ∈ Limp
g

(2.7)

Jund
g,l,l∗ ∪ Jund

g,l∗,l = ∅,∀g ∈ G,
∀l ∈ Limp

g ,

∀l∗ ∈ Lg

(2.8)

Jund
g,l,l∗ ∪ Jund

g,l∗,l = ∅,∀g ∈ G,
∀l ∈ Lg,

∀l∗ ∈ Lexp
g

(2.9)

Arcs can also be pre-existing or new, (2.10). Pre-existing arcs have been
dimensioned and must be part of any and all feasible configurations, though
if and to what extent they are to be utilised is unknown. They are identified
through membership in the set Jpre

g,l,l∗ , whereas new arcs are identified via Jnew
g,l,l∗ .

Jnew
g,l,l∗ ∩ J

pre
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.10)

Since pre-existing arcs have already been dimensioned, their flow limitations
must be known. They can have finite flow limits, if they are directed or undi-
rected, though the former can also be specified as having no flow limit. Directed
arcs without flow limits are identified through the set J inf

g,l,l∗ , (2.11).

J inf
g,l,l∗ ⊆ J

dir
g,l,l∗ ∩ J

pre
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.11)

New arcs have not been dimensioned in advance and can induce capital
costs if they are, but not otherwise. Dimensioning a new arc implies selecting
the nominal flow amplitude and one arc option out of possibly several, each with
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independent flow limits (more below). New arcs can be dimensioned individually
or in groups. In the former case, the act of selecting options is independent for
each arc. In the latter case, the same option is selected for all arcs in the
group, though their operational performance remains independent. A new arc
j between nodes l and l∗ on network g is selected as part of a group if it is a
member of Jcol

g,l,l∗ . Alternatively, it must be a member of Jsgl
g,l,l∗ , (2.12)-(2.14).

Jcol
g,l,l∗ ⊆ Jnew

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.12)

Jsgl
g,l,l∗ ⊆ J

new
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.13)

Jsgl
g,l,l∗ ∩ J

col
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.14)

A group of arcs t can refer to any number of arcs on any network but one
arc cannot appear in more than one group. The set for all groups of arcs is T .
Members of a group t ∈ T are identified via the set GLLJcol

t , all of which must
correspond to new arcs selected as a group, (2.15)-(2.16). For undirected arcs,
only the nominal direction can be used for inclusion in a group.

Jcol
g,l,l∗ =

{
j ∈ Jnew

g,l,l∗ : ∃t ∈ T, (g, l, l∗, j) ∈ GLLJcol
t

}
,

∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.15)

GLLJcol
t ∩GLLJcol

t∗ = ∅,∀t ∈ T, ∀t∗ ∈ T \ {t} (2.16)

Different sets are used depending on whether arcs are dimensioned individ-
ually or in groups. In the former case, the options for arc j ∈ Jsgl

g,l,l∗ are the
members of Hg,l,l∗,j . If j is also undirected, it is identified via the nominal

direction, as described above, which applies to Jnew
g,l,l∗ , Jsgl

g,l,l∗ and Hg,l,l∗,j . For a
group of arcs t, the options common to all arcs in that group are given by Ht.

New arcs are further defined as being either mandatory or optional if one
of the options available has to be selected or not, respectively. A new arc j

12



between nodes l and l∗ on network g is mandatory if it is a member of Jmdt
g,l,l∗ ,

(2.17). The alternative is to be regarded as optional through membership in
Jopt
g,l,l∗ , (2.18)-(2.19). This distinction also applies to groups of arcs: a group of

arcs t is mandatory if it is a member of Tmdt, and optional if it is a member of
T opt, (2.20)-(2.23). Note that the groups have to be defined with this in mind
since it affects all arcs in the group. That is, no group can contain both optional
and mandatory arcs, only optional or mandatory arcs can be in a given group.

Jmdt
g,l,l∗ ⊆ Jnew

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.17)

Jopt
g,l,l∗ ⊆ J

new
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.18)

Jmdt
g,l,l∗ ∩ J

opt
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.19)

GLLJcol
t ⊆

{
g ∈ G, l ∈ Lg \ Lexp

g , l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

j ∈ Jnew
g,l,l∗ : j ∈ Jopt

g,l,l∗

}
,∀t ∈ T opt

(2.20)

GLLJcol
t ⊆

{
g ∈ G, l ∈ Lg \ Lexp

g , l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

j ∈ Jnew
g,l,l∗ : j ∈ Jmdt

g,l,l∗

}
,∀t ∈ Tmdt

(2.21)

T = T opt ∪ Tmdt (2.22)

Tmdt ∩ T opt = ∅ (2.23)

Arcs can also have static losses in addition to the standard flow-proportional
ones. An arc j between nodes l and l∗ on network g with static losses is identified
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through the set Jstt
g,l,l∗ . If the arc is also undirected, it can only be found in the

set for the nominal direction. Static losses are flow-independent and defined per
arc. As a result, they do not vary as a function of the flow sense.

Jstt
g,l,l∗ ⊆ Jdir

g,l,l∗ ∪ Jund
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.24)

Converters

Converters (∀i ∈ I) consist of independent sets of difference equations that can
interact with any number of nodes on any number of networks. Their equations
are consistent with discretised solutions to linear ordinary differential equa-
tions described in state space. Accordingly, they are described using variables
corresponding to the signals conventionally used to describe dynamic systems,
namely inputs (∀m ∈ Mi), states (∀n ∈ Ni) and outputs (∀r ∈ Ri). Among
these, only inputs and outputs impact networks directly, though all can induce
capital costs, should their respective nominal amplitudes be dimensionable.

Dimensioning nominal amplitudes is possible with new (i ∈ Inew) as op-
posed to pre-existing (i ∈ Ipre) converters, (2.26)-(2.25), though the possibili-
ties differ depending on the signal. States and outputs variables are generally
unconstrained and for this reason their limits can be defined using positive
(n ∈ Ndim,pos

i , r ∈ Rdim,pos
i ) and negative (n ∈ Ndim,neg

i , r ∈ Rdim,neg
i ) nominal

amplitudes, independent of one another or made to match (n ∈ Ndim,eq
i , r ∈

Rdim,eq
i ), (2.27)-(2.30). In turn, input amplitude limits are defined using one

nominal amplitude, seeing as the inputs are non-negative, (2.31)-(2.32).

Ipre ⊆ I (2.25)

Inew ⊆ I (2.26)

Ndim,pos
i ∪Ndim,neg

i ⊆ Ni,∀i ∈ I (2.27)

Rdim,pos
i ∪Rdim,neg

i ⊆ Ri,∀i ∈ I (2.28)

Ndim,eq
i ⊆ Ndim,pos

i ∩Ndim,neg
i ,∀i ∈ I (2.29)
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Rdim,eq
i ⊆ Rdim,pos

i ∩Rdim,neg
i ,∀i ∈ I (2.30)

Mnnr
i ⊆Mi,∀i ∈ I (2.31)

Mdim
i ⊆Mnnr

i ,∀i ∈ I (2.32)

Mdim
i = ∅,∀i ∈ Ipre (2.33)

Ndim,pos
i ∪Ndim,neg

i = ∅,∀i ∈ Ipre (2.34)

Rdim,pos
i ∪Rdim,neg

i = ∅,∀i ∈ Ipre (2.35)

Alternatively, non-dimensionable signals can have predetermined fixed bounds
(m ∈Mfix

i , n ∈ Nfix
i , r ∈ Rfix

i ) or they can be binary, though only in the case of
inputs (m ∈M bin

i ), (2.36)-(2.42). Note that these signals exist in all converters
but dimensionable signals can only exist in new converters.

Mfix
i ⊆Mi,∀i ∈ I (2.36)

Nfix
i ⊆ Ni,∀i ∈ I (2.37)

Rfix
i ⊆ Ri,∀i ∈ I (2.38)

M bin
i ⊆Mi,∀i ∈ I (2.39)

Nfix
i ∩

(
Ndim,pos

i ∪Ndim,neg
i

)
= ∅,∀i ∈ I (2.40)

Rfix
i ∩

(
Rdim,pos

i ∪Rdim,neg
i

)
= ∅,∀i ∈ I (2.41)
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Mfix
i ∩Mdim

i ∩M bin
i = ∅,∀i ∈ I (2.42)

For pre-existing converters, no capital costs can be induced (sunk costs), yet
all converters can impact the operating results. This is possible via the inputs
and outputs of each converter for any time interval, period and assessment.
Separately, states can also impact the operational performance in two ways.
One is through violations of high or low state references, indicated via the sets
Nref,hgh

i and Nref,low
i , respectively, (2.43)-(2.44). The other is through positive

or negative state variations during a given reporting period via the sets Npos,var
i

and Nneg,var
i , also respectively, (2.45)-(2.46). The first kind indicates failure

to meet standards and the second represents burden shifting onto subsequent
reporting periods. Both can be used to represent negative externalities, whereas
the aforementioned converter outputs may be used to account for positive or
negative externalities (e.g., CO2 emissions). In turn, the impact of converter
inputs on operating results is mostly meant to account for operating costs.

Nref,hgh
i ⊆ Ni,∀i ∈ I (2.43)

Nref,low
i ⊆ Ni,∀i ∈ I (2.44)

Npos,var
i ⊆Mi,∀i ∈ I (2.45)

Nneg,var
i ⊆ Ni,∀i ∈ I (2.46)

2.1.4 Implementation options

The formulation proposed includes redundant ways to achieve a given outcome.
This is meant to enable and facilitate comparisons. For the moment, this only
concerns different approaches for modelling static losses in arcs and for multiple-
choice decisions using special ordered sets of type 1 (SOS1).

Static losses

Modelling static losses is possible in several mutually-exclusive ways depending
on where those losses appear and on the flow sense*. For directed arcs, static
losses can appear in the start (j ∈ Jstt,dep

g,l,l∗ ) or in the end node (j ∈ Jstt,arr
g,l,l∗ ),

(2.47)-(2.49). For undirected arcs, the same is true but the static losses can ap-
pear in different nodes depending on the flow sense, prompting four alternative

*A different approach is to consider intermediate nodes [6].
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implementations: the losses appear either in the start (j ∈ Jstt,dep
g,l,l∗ ) or in the

end (j ∈ Jstt,arr
g,l,l∗ ) node, defined in relation to the nominal flow sense, and thus

irrespective of the actual flow sense; or, the losses appear upstream (j ∈ Jstt,us
g,l,l∗ )

or downstream (j ∈ Jstt,ds
g,l,l∗ ) in relation to the flow sense, (2.50)-(2.52). In this

last case, and with losses placed upstream, they appear in A when flow is from
A to B and in B when flow is from B to A. If downstream, they appear in B
when flow is from A to B and in A when flow is from B to A.

Some of aforementioned options cannot be used with every arc. Directed arcs
can have static losses except those between import and export nodes, (2.53) �.
Beyond that limitation, directed arcs cannot have static losses placed upstream,
if the source node is an import node, nor downstream if the end node is an export
node, (2.54)-(2.55). In turn, all options are available for undirected arcs since
these cannot involve neither import nor export nodes.

Jstt,dep
g,l,l∗ ⊆ Jstt

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

) (2.47)

Jstt,arr
g,l,l∗ ⊆ Jstt

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

) (2.48)

Jstt,dep
g,l,l∗ ∩ Jstt,arr

g,l,l∗ = ∅,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

) (2.49)

Jstt,us
g,l,l∗ ⊆ J

stt
g,l,l∗ ∩ Jund

g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \
(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g ∪ Lexp
g

) (2.50)

Jstt,ds
g,l,l∗ ⊆ J

stt
g,l,l∗ ∩ Jund

g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \
(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g ∪ Lexp
g

) (2.51)

�A workaround is to use a pre-existing lossless arc between either end and an intermediate
node, where static losses can then be placed to achieve the same result.
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Jstt,ds
g,l,l∗ ∩ J

stt,us
g,l,l∗ ∩ J

stt,dep
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lg \
(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g ∪ Lexp
g

) (2.52)

Jstt
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Limp
g ,

∀l∗ ∈ Lexp
g

(2.53)

Jstt,dep
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Limp
g ,

∀l∗ ∈ Lg \ Limp
g

(2.54)

Jstt,arr
g,l,l∗ = ∅,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lexp
g

(2.55)

Special ordered sets of type 1

Investments in arcs require binary decisions. A natural way to model this is to
declare binary decision variables for each option. The variables for the options
available within an arc or group of arcs can also be declared members of a SOS1,
since at most one is non-zero, (2.56, 2.60). If the arcs under consideration are
also mandatory, then exactly one of variables has to be non-zero. In that case,
the variables do not need to be binary but can instead simply be non-negative
real, (2.57, 2.61). Therefore, there are three options to model investment de-
cisions: using binary variables, with or without being declared members of a
SOS1; using non-negative real variables, if they concern mandatory arcs and are
declared members of a SOS1. The same logic applies to both individual arcs,
(2.56)-(2.59), and groups of arcs, (2.60)-(2.63). Another aspect concerns the
weights with which to declare the SOS1s, for which there are multiple options.
Since it has more to do with the solver, the subject is not addressed here.

Jarc,sos
g,l,l∗ ⊆ Jsgl

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.56)

Jarc,nnr
g,l,l∗ ⊆ Jarc,sos

g,l,l∗ ∩ Jmdt
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.57)
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Jarc,bin
g,l,l∗ ∪ Jarc,nnr

g,l,l∗ = Jsgl
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.58)

Jarc,bin
g,l,l∗ ∩ Jarc,nnr

g,l,l∗ = ∅,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.59)

T arc,sos ⊆ T (2.60)

T arc,nnr ⊆ T arc,sos ∩ Tmdt (2.61)

T arc,bin ∪ T arc,nnr = T (2.62)

T arc,bin ∩ T arc,nnr = ∅ (2.63)

Deciding which way the flow is going on undirected arcs also involves mutually-
exclusive binary decisions. The flow sense can only be from A to B or from B
to A at any given time, which means the decisions can be modelled using two
binary variables per undirected arc and time interval. These variables can also
be declared a member of a SOS1, since at most one can be non-zero, (2.64).
Other than a potential impact on solver performance, there is no difference here
between requiring one or at most one variable to be non-zero. Therefore, if we
assume the former and declare the variables for both senses of a given arc to
be members of a SOS1, the variables can simply be declared to be non-negative
real, (2.65). As such, there are three ways to model which way the flow is go-
ing in undirected arcs, (2.66)-(2.67): using binary variables, with or without
SOS1; or using non-negative real variables, as members of a SOS1. About the
weights, there are only two effective options since there are only two senses per
arc: either favoring the nominal direction or the reverse one. Since this mostly
concerns the solver, the subject is not addressed here in greater detail.

Jsns,sos
g,l,l∗ ⊆ Jund

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.64)
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Jsns,nnr
g,l,l∗ ⊆ Jsns,sos

g,l,l∗ ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.65)

Jsns,bin
g,l,l∗ ∪ Jsns,nnr

g,l,l∗ = Jund
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.66)

Jsns,bin
g,l,l∗ ∩ Jsns,nnr

g,l,l∗ = ∅,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.67)

Special ordered sets may only prove advantageous if its members are not
subject to other discrete conditions. In order to evaluate this possibility, it
is necessary to prevent SOS1 members from being used directly in the same
constraints as members of other SOS1 or other binary variables. Examples
include the constraints requiring that one flow sense be picked if an undirected
arc has been selected (i.e., arc selection and flow sense indicator variables in the
same constraint) or those limiting the number of arcs between two nodes (i.e.,
arc selection variables for different arcs in the same constraint). One approach
to deal with this is to create an interface between SOS1 and these constraints
by introducing one variable per selection process. This only needs to involve
new and optional arcs, or groups of arcs, since the investment decisions for
new and mandatory arcs or groups thereof are predictable, as is the effect of
pre-existing arcs, (2.68). As for the type of variables, they are assumed to be
non-negative real to remain consistent with the rationale for their introduction.
If arc j between nodes l and l∗ is a member of J int

g,l,l∗ , then an interface variable
will be used to hold information about whether or not the arc was selected.
This is valid for both directed and undirected arcs, the latter using the nominal
sense only. If an interface is also required for selecting the group of arcs t, then
t is a member of T int, which is a subset of T opt (2.69).

J int
g,l,l∗ ⊆ J

opt
g,l,l∗ ,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

) (2.68)

T int =
{
t ∈ T opt : ∀(g, l, l∗, j) ∈ GLLJcol

t , j ∈ J int
g,l,l∗

}
(2.69)
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2.1.5 Key assumptions

The model can be characterised as follows:

� Two-stage socioeconomic optimisation within MILP framework

� Investments are decided through a modified net present value

� Capital costs, operational results and externalities are considered

� Capital costs arise due to investments on infrastructure

� Operational costs and revenue are possible through imports and exports

� Piece-wise linear functions for import and export prices

� The planning horizon is divided into several reporting periods

� At least one operational performance assessment is needed per period

� Operational performance assessments are used for technical evaluations

� No investment scheduling (all investments precede the planning period)

� Infrastructure is available throughout the planning horizon

� No flow delays (flows reach their destination within a time interval)

� System boundaries are defined by import and export nodes

� Flow equilibria at each internal node and time interval

� Arcs allow for flows between nodes in the same network

� Nodes can be sinks, sources or waypoints during any time interval

� Arcs can be pre-existing or new, and then optional or mandatory

� Investments in arcs can be decided individually or in groups

� Arcs can be directed (unidirectional) or undirected (bidirectional)

� Arcs can have flow-proportional and flow-independent losses

� Each arc can only have one nominal capacity (same for both flow senses)

� Static losses are isotropic (the same for both flow senses)

� New arcs can be dimensioned individually or as a group

� Flow-proportional losses can differ by flow sense (undirected arcs only)

� Flow converters can impact any internal node on any network

� Flow converters can be dynamic flow sinks, sources or both (e.g., storage)
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2.2 Objective function

The objective function is defined to be consistent with net present value calcu-
lations. This is defined as the sum of the discounted net cash flows (SDNCFq)
for all the assessments (∀q ∈ Q) minus the initial investments (CAPEX).

max

∑
q∈Q

cwgt
q SDNCFq − CAPEX

 (2.70)

CAPEX ≥ 0 (2.71)

Note: all variables are free (real) unless explicitly stated otherwise.

2.2.1 Capital costs

Capital expenditures arise if optional converters and (new) arcs are to be de-
ployed. Note that costs associated with shared import or export infrastructure
are not explicitly modelled, though they can be considered through an additional
(waypoint) node and an arc between it and import or export nodes.

CAPEX ≥
∑

i∈Inew

CAPEXcvt
i +

∑
t∈T

CAPEXarc,col
t +∑

g∈G

∑
l∈Lg\Lexp

g

∑
l∗∈Lg\(Limp

g ∪{l})

∑
j∈Jsgl

g,l,l∗

CAPEXarc,sgl
g,l,l∗,j

(2.72)

CAPEXcvt
i ≥ 0,∀i ∈ Inew (2.73)

CAPEXarc,sgl
g,l,l∗,j ≥ 0,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jsgl
g,l,l∗

(2.74)

CAPEXarc,col
t ≥ 0,∀t ∈ T (2.75)
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Converters

Optional converters induce capital expenditures if they are deployed. Each
converter has a minimum cost and extra costs dependent on the amplitudes of
inputs, outputs and states, but only if these signals are dimensionable.

CAPEXcvt
i ≥ ccvt,min

i δcvt,invi +
∑

m∈Mdim
i

ccvt,ui,m uamp
i,m +

∑
r∈Rdim,pos

i

ccvt,y,posi,r yamp,pos
i,r +

∑
r∈Rdim,neg

i \Rdim,eq
i

ccvt,y,negi,r yamp,neg
i,r +

∑
n∈Ndim,pos

i

ccvt,x,posi,n xamp,pos
i,n +

∑
n∈Ndim,neg

i \Ndim,eq
i

ccvt,x,negi,n xamp,neg
i,n ,∀i ∈ Inew

(2.76)

Arcs

New arcs impose capital costs if they are selected. Each has a minimum cost
plus extra costs dependent on the nominal flow amplitude.

CAPEXarc,sgl
g,l,l∗,j ≥ c

arc,amp
g,l,l∗,j vamp

g,l,l∗,j +
∑

h∈Hg,l,l∗,j

carc,min
g,l,l∗,j,hδ

arc,inv
g,l,l∗,j,h,

∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jsgl
g,l,l∗

(2.77)

CAPEXarc,col
t ≥ carc,amp

t vamp
t +

∑
h∈Ht

carc,min
t,h δarc,invt,h ,∀t ∈ T (2.78)

2.2.2 Operational performance

The operational performance of each energy system configuration is determined
through the sum of discounted net cash flows for each assessment. These reflect
the operating result for each of the reporting periods and the respective dis-
count factors. The operational result itself depends on transshipment flows and
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converter-related costs meant to encompass operating costs and externalities.

SDNCFq =
∑
p∈Pq

cdfq,p

[ ∑
k∈Kq

ctime
q,p,k

(

∑
g∈G

 ∑
l∈Lexp

g

EFRg,l,q,p,k −
∑

l∗∈Limp
g

IFCg,l∗,q,p,k

+

∑
i∈I

( ∑
m∈Mi

copex,ui,m,q,p,kui,m,q,k +
∑
r∈Ri

copex,yi,r,q,p,kyi,r,q,k+

∑
n∈Nref,hgh

i

cref,hghi,n,q,p,k∆xref,hghi,n,q,k +
∑

n∈Nref,low
i

cref,lowi,n,q,p,k∆xref,lowi,n,q,k

))
+

∑
i∈I

( ∑
n∈Npos,var

i

cpos,vari,n,q,p ∆xpos,vari,n,q +

∑
n∈Nneg,var

i

cneg,vari,n,q,p ∆xneg,vari,n,q

)]
,∀q ∈ Q

(2.79)

Export revenue and import costs

The export revenue and import costs are determined for export and import
nodes, respectively, for each performance assessment and time interval. They
are given as the product of prices and flow volumes, be it for imports or ex-
ports. Price functions are defined per volume segment in a piece-wise linear
manner. All such segments must entail finite flow volumes except those which
allow for the highest flow volumes (i.e., the last segment). In those cases, flow
volume limits are optional as long as the functions for imports and exports
are monotonically-increasing (convex: lower prices for low flow volumes) and
monotonically-decreasing (concave: higher prices for low flow volumes), respec-
tively, with regard to volume. This is to ensure the correct usage of the price
segments, which is only possible without finite bounds in those cases.

EFRg,l,q,p,k ≥ 0,∀g ∈ G,∀l ∈ Lexp
g ,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq (2.80)

IFCg,l,q,p,k ≥ 0,∀g ∈ G,∀l ∈ Limp
g ,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq (2.81)
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EFRg,l,q,p,k =
∑

s∈Sg,l,q,p,k

pg,l,q,p,k,sEFg,l,q,p,k,s,∀g ∈ G,

∀l ∈ Lexp
g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq

(2.82)

IFCg,l,q,p,k =
∑

s∈Sg,l,q,p,k

pg,l,q,p,k,sIFg,l,q,p,k,s,∀g ∈ G,

∀l ∈ Limp
g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq

(2.83)

Imports and exports

Imports and exports correspond to the sum of the flows going in and out of
the system. These are given for each import and export node, respectively, by
performance assessment, period, time interval and price segment.

∑
s∈Sg,l,q,p,k

EFg,l,q,p,k,s =
∑

l∗∈Lg\Lexp
g

∑
j∗∈Jdir

g,l∗,l

ηg,l∗,l,j∗,q,kvg,l∗,l,j∗,q,k,

∀g ∈ G,∀l ∈ Lexp
g ,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq (2.84)

∑
s∈Sg,l,q,p,k

IFg,l,q,p,k,s =
∑

l∗∈Lg\Limp
g

∑
j∈Jdir

g,l,l∗

vg,l,l∗,j,q,k,

∀g ∈ G,∀l ∈ Limp
g ,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq (2.85)

EFg,l,q,p,k,s ≥ 0,∀g ∈ G,
∀l ∈ Lexp

g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq,

∀s ∈ Sg,l,q,p,k

(2.86)
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IFg,l,q,p,k,s ≥ 0,∀g ∈ G,
∀l ∈ Limp

g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq,

∀s ∈ Sg,l,q,p,k

(2.87)

EFg,l,q,p,k,s ≤ vmax
g,l,q,p,k,s,∀g ∈ G,

∀l ∈ Lexp
g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq,

∀s ∈ Sfin
g,l,q,p,k

(2.88)

IFg,l,q,p,k,s ≤ vmax
g,l,q,p,k,s,∀g ∈ G,

∀l ∈ Limp
g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq,

∀s ∈ Sfin
g,l,q,p,k

(2.89)

Sfin
g,l,q,p,k ⊆ Sg,l,q,p,k,∀g ∈ G,

∀l ∈ Limp
g ∪ Lexp

g ,

∀q ∈ Q,
∀p ∈ Pq,

∀k ∈ Kq

(2.90)

Note: only directed arcs can reach import and export nodes.

Piece-wise linear price functions

The previous formulation is enough when the piece-wise linear price functions for
imports and exports are monotonically-increasing (convex) and monotonically-
decreasing (concave), respectively, with respect to volume. When these condi-
tions are not met, additional constraints and variables are needed to ensure the
segments are used right: the preceding segments must be used completely first.
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2.3 Directed and undirected flows

2.3.1 Arc investment variables

The decision to invest in a new arc requires one variable per arc and arc option,
if the arc is to be selected individually. If not, one variable per arc option and
group are necessary. These variables can be binary or, if they are associated with
mandatory arcs and members of a special ordered sets of type one, non-negative
real. This applies to both directed and undirected arcs.

δarc,invg,l,l∗,j,h ∈ {0, 1} ,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jarc,bin
g,l,l∗ ,

∀h ∈ Hg,l,l∗,j

(2.91)

δarc,invg,l,l∗,j,h ≥ 0,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jarc,nnr
g,l,l∗ ,

∀h ∈ Hg,l,l∗,j

(2.92)

δarc,invt,h ∈ {0, 1} ,∀t ∈ T arc,bin,∀h ∈ Ht (2.93)

δarc,invt,h ≥ 0,∀t ∈ T arc,nnr,∀h ∈ Ht (2.94)

2.3.2 Arc flow variables

Each arc requires one flow variable per arc direction (1 for directed, 2 for undi-
rected arcs), assessment and time interval. This applies to all arcs, including
pre-existing. Undirected arcs have two flow variables, one for each direction.
Note that if j represents an undirected arc between nodes l and l∗ on network
g, it is a member of Jund

g,l,l∗ or Jund
g,l∗,l but not both simultaneously.

vg,l,l∗,j,q,k ≥ 0,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jdir
g,l,l∗ ∪

(
Jund
g,l,l∗ ∪ Jund

g,l∗,l

)
,

∀q ∈ Q,
∀k ∈ Kq

(2.95)
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2.3.3 Arc flow amplitude variables

New arcs selected individually require one non-negative real flow amplitude
variable. In turn, arcs selected in groups require one variable per group.

vamp
g,l,l∗,j ≥ 0,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jsgl
g,l,l∗

(2.96)

vamp
t ≥ 0,∀t ∈ T (2.97)

2.3.4 Flow sense variables

Two flow sense variables are needed per undirected arc, interval and assessment.
These can be binary or non-negative real if identified as members of an SOS1.

ζsnsg,l,l∗,j,q,k ∈ {0, 1} ,∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jsns,bin
g,l,l∗ ∪ Jsns,bin

g,l∗,l ,

∀q ∈ Q,
∀k ∈ Kq

(2.98)

ζsnsg,l,l∗,j,q,k ≥ 0,∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jsns,nnr
g,l,l∗ ∪ Jsns,nnr

g,l∗,l ,

∀q ∈ Q,
∀k ∈ Kq

(2.99)

2.3.5 Static loss variables for new arcs

Modelling static losses requires one non-negative real variable per new arc, as-
sessment and time interval. For pre-existing arcs, a parameter is used instead.
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wg,l,l∗,j,q,k ≥ 0,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jstt
g,l,l∗ ∩ Jnew

g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.100)

2.3.6 Static loss variables for each flow sense

Modelling static losses also requires one non-negative real variable per undi-
rected arc, flow sense, assessment and time interval.

wsns
g,l,l∗,j,q,k ≥ 0,∀g ∈ G,

∀l ∈ Lg \
(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈
(
Jstt
g,l,l∗ ∩ Jund

g,l,l∗
)
∪
(
Jstt
g,l∗,l ∩ Jund

g,l∗,l

)
,

∀q ∈ Q,
∀k ∈ Kq

(2.101)

2.3.7 Interface variables

One non-negative real variable is used to interface each investment decision, be
it for individual arcs or groups, but the arcs can only be new and optional.

ξarc,invg,l,l∗,j ≥ 0,∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ J int
g,l,l∗ ∩ J

sgl
g,l,l∗

(2.102)

ξarc,invt ≥ 0,∀t ∈ T int (2.103)

2.3.8 Interface equations

ξarc,invg,l,l∗,j =
∑

h∈Hg,l,l∗,j

δarc,invg,l,l∗,j,h,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ J int
g,l,l∗ ∩ J

sgl
g,l,l∗

(2.104)
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ξarc,invt =
∑
h∈Ht

δarc,invt,h ,∀t ∈ T int
(2.105)

2.3.9 New yet optional arcs

New yet optional arcs and groups of arcs may be part of a feasible solution.

∑
h∈Hg,l,l∗,j

δarc,invg,l,l∗,j,h ≤ 1,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jopt
g,l,l∗ ∩ J

sgl
g,l,l∗ \ J

int
g,l,l∗

(2.106)

ξarc,invg,l,l∗,j ≤ 1,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ J int
g,l,l∗ ∩ J

sgl
g,l,l∗

(2.107)

∑
h∈Ht

δarc,invt,h ≤ 1,∀t ∈ T opt \ T int
(2.108)

ξarc,invt ≤ 1,∀t ∈ T int (2.109)

2.3.10 New yet mandatory arcs

New yet mandatory arcs of groups of arcs have to be part of any feasible solution.

∑
h∈Hg,l,l∗,j

δarc,invg,l,l∗,j,h = 1,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jmdt
g,l,l∗ ∩ J

sgl
g,l,l∗

(2.110)

∑
h∈Ht

δarc,invt,h = 1,∀t ∈ Tmdt
(2.111)
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2.3.11 Nominal flow amplitudes depend on arc options

Nominal flow amplitudes for new arcs are determined by arc technologies.

vamp
g,l,l∗,j ≤

∑
h∈Hg,l,l∗,j

vamp,max
g,l,l∗,j,h δ

arc,inv
g,l,l∗,j,h,∀g ∈ G,

∀l ∈ Lg \ Lexp
g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jsgl
g,l,l∗

(2.112)

vamp
t ≤

∑
h∈Ht

vamp,max
t,h δarc,invt,h ,∀t ∈ T (2.113)

2.3.12 Flow senses are mutually-exclusive

Undirected arcs cannot have flows in both directions simultaneously.

ζsnsg,l,l∗,j,q,k + ζsnsg,l∗,l,j,q,k = ξarc,invg,l,l∗,j ,∀g ∈ G,

∀l ∈ Lg \
(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ J int

g,l,l∗ ∩ J
sgl
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.114)

ζsnsg,l,l∗,j∗,q,k + ζsnsg,l∗,l,j∗,q,k = ξarc,invt ,∀t ∈ T int,

∀(g, l, l∗, j) ∈ GLLJcol
t ,

∀j∗ ∈ {j} ∩ Jund
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.115)

ζsnsg,l,l∗,j,q,k + ζsnsg,l∗,l,j,q,k =
∑

h∈Hg,l,l∗,j

δarc,invg,l,l∗,j,h,

∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ J

opt
g,l,l∗ ∩ J

sgl
g,l,l∗ \ J

int
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.116)
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ζsnsg,l,l∗,j∗,q,k + ζsnsg,l∗,l,j∗,q,k =
∑
h∈Ht

δarc,invt,h ,∀t ∈ T opt \ T int,

∀(g, l, l∗, j) ∈ GLLJcol
t ,

∀j∗ ∈ {j} ∩ Jund
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.117)

ζsnsg,l,l∗,j,q,k + ζsnsg,l∗,l,j,q,k = 1,∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩

(
Jpre
g,l,l∗ ∪ J

mdt
g,l,l∗

)
,

∀q ∈ Q,
∀k ∈ Kq

(2.118)

2.3.13 Flows through new undirected arcs have to be con-
sistent with the respective flow sense

Flows through new undirected arcs in a given direction have a positive upper
limit if the flow is along that direction, or are zero if the flow is in the opposite
sense. The positive upper limit should be consistent with the nominal flow
amplitudes possible among the options available. This logic applies if those arcs
are selected individually, (2.119)-(2.120), or as a group, (2.121)-(2.122).

vg,l,l∗,j,q,k ≤

(
max

h∈Hg,l,l∗,j

vamp,max
g,l,l∗,j,h f

amp,v
g,l,l∗,j,q,k

−
∑

j∗∈{j}∩(Jstt,dep
g,l,l∗ ∪J

stt,us
g,l,l∗ )

wnew
g,l,l∗,j∗,h,q,k

)
ζsnsg,l,l∗,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ J

sgl
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.119)
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vg,l,l∗,j,q,k ≤

(
max

h∈Hg,l∗,l,j

vamp,max
g,l∗,l,j,h f

amp,v
g,l∗,l,j,q,k

−
∑

j∗∈{j}∩(Jstt,arr
g,l∗,l

∪Jstt,us
g,l∗,l )

wnew
g,l∗,l,j∗,h,q,k

)
ζsnsg,l,l∗,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l∗,l ∩ J

sgl
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.120)

vg,l,l∗,j∗,q,k ≤

(
max
h∈Ht

vamp,max
t,h famp,v

g,l,l∗,j∗,q,k

−
∑

j�∈{j∗}∩(Jstt,dep
g,l,l∗ ∪J

stt,us
g,l,l∗ )

wnew
g,l,l∗,j�,h,q,k

)
ζsnsg,l,l∗,j∗,q,k,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.121)

vg,l,l∗,j∗,q,k ≤

(
max
h∈Ht

vamp,max
t,h famp,v

g,l∗,l,j∗,q,k

−
∑

j�∈{j∗}∩(Jstt,arr
g,l∗,l

∪Jstt,us
g,l∗,l )

wnew
g,l∗,l,j�,h,q,k

)
ζsnsg,l,l∗,j∗,q,k,

∀t ∈ T,
∀(g, l∗, l, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.122)
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2.3.14 Fixed flow limits for directed arcs

Fixed upper bounds are only needed for directed arcs and if they are finite-
capacity and pre-existing. For new arcs, the same result can be achieved by
using a single option and adjusting the bound through the f parameter.

vg,l,l∗,j,q,k ≤ vg,l,l∗,j,q,k,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jdir
g,l,l∗ ∩ J

pre
g,l,l∗ \ J

inf
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.123)

For consistency, the following should be observed:

vg,l,l∗,j,q,k = famp,v
g,l,l∗,j,q,kv

amp
g,l,l∗,j −

∑
j∗∈{j}∩Jstt,dep

g,l,l∗

wg,l,l∗,j∗,q,k,

∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jdir
g,l,l∗ ∩ J

pre
g,l,l∗ \ J

inf
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.124)

2.3.15 Flows through pre-existing undirected arcs have to
be consistent with the respective flow sense

Flows through pre-existing undirected arcs in a given direction are subject to a
positive upper limit if the flow is in that direction, or zero if it is in the opposite.

vg,l,l∗,j,q,k ≤ vg,l,l∗,j,q,kζsnsg,l,l∗,j,q,k,∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈
(
Jund
g,l,l∗ ∩ J

pre
g,l,l∗

)
∪
(
Jund
g,l∗,l ∩ J

pre
g,l∗,l

)
,

∀q ∈ Q,
∀k ∈ Kq

(2.125)
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For consistency, the following should be observed:

vg,l,l∗,j,q,k = famp,v
g,l,l∗,j,q,kv

amp
g,l,l∗,j −

∑
j∗∈{j}∩(Jstt,dep

g,l,l∗ ∪J
stt,us
g,l,l∗ )

wg,l,l∗,j∗,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ J

pre
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.126)

vg,l,l∗,j,q,k = famp,v
g,l∗,l,j,q,kv

amp
g,l∗,l,j −

∑
j∗∈{j}∩(Jstt,arr

g,l∗,l
∪Jstt,us

g,l∗,l )

wg,l∗,l,j∗,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jund
g,l∗,l ∩ J

pre
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.127)

2.3.16 Flow limits for new arcs

Flows through new arcs have to observe flow limits modulated by the nominal
flow amplitude and adjusted by static losses, if any and depending on the flow
sense, (2.128)-(2.129). For arcs selected as a group, the limits are not group-
specific, though the nominal flow amplitude is, (2.130)-(2.131).

vg,l,l∗,j,q,k ≤ famp,v
g,l,l∗,j,q,kv

amp
g,l,l∗,j −

∑
j∗∈{j}∩(Jstt,dep

g,l,l∗ ∪J
stt,us
g,l,l∗ )

wg,l,l∗,j∗,q,k,

∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jsgl
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.128)

35



vg,l,l∗,j,q,k ≤ famp,v
g,l∗,l,j,q,kv

amp
g,l∗,l,j −

∑
j∗∈{j}∩(Jstt,arr

g,l∗,l
∪Jstt,us

g,l∗,l )

wg,l∗,l,j∗,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀l∗ ∈ Lg \
(
Lexp
g ∪ Limp

g ∪ {l}
)
,

∀j ∈ Jsgl
g,l∗,l ∩ J

und
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.129)

vg,l,l∗,j,q,k ≤ famp,v
g,l,l∗,j,q,kv

amp
t −

∑
j∗∈{j}∩(Jstt,dep

g,l,l∗ ∪J
stt,us
g,l,l∗ )

wg,l,l∗,j∗,q,k,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀q ∈ Q,
∀k ∈ Kq

(2.130)

vg,l,l∗,j∗,q,k ≤ famp,v
g,l∗,l,j∗,q,kv

amp
t −

∑
j�∈{j∗}∩(Jstt,arr

g,l∗,l
∪Jstt,us

g,l∗,l )

wg,l∗,l,j�,q,k,

∀t ∈ T,
∀(g, l∗, l, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.131)
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2.3.17 Static losses only exist if the arc is selected

Static losses for each assessment and time interval are determined by the arc
and option selected. For pre-existing arcs, the static losses are parameters.

wg,l,l∗,j,q,k =
∑

h∈Hg,l,l∗,j

wnew
g,l,l∗,j,h,q,kδ

arc,inv
g,l,l∗,j,h,

∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ {l}

)
,

∀j ∈ Jstt
g,l,l∗ ∩ J

sgl
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.132)

wg,l,l∗,j∗,q,k =
∑
h∈Ht

wnew
g,l,l∗,j∗,h,q,kδ

arc,inv
t,h ,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jstt
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.133)

2.3.18 Downstream losses must be compensated by arc

When static losses are placed downstream in the relation to the flow, the flows
through the arc must be enough to compensate for the losses. For directed arcs,
this amounts to a minimum flow requirement equivalent to the losses, (2.134).
For undirected arcs, the minimum flow limit exists only when the flow sense
makes the losses appear downstream, (2.135)-(2.136). Without enforcing this,
the losses could be compensated by flows from other arcs ending in the same
node and not by flows through the original arc. However, if there are no such
arcs, these constraints become redundant and can be left out. The condition to
make the constraints redundant for an arc j between l and l∗ is:

37



⋃
l◦∈Lg

(
Jdir
g,l◦,l∗ ∪ Jund

g,l◦,l∗ ∪ Jund
g,l∗,l◦

)
\ {j} = ∅

vg,l,l∗,j,q,k ≥ wg,l,l∗,j,q,k,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jdir
g,l,l∗ ∩ J

stt,arr
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.134)

vg,l,l∗,j,q,k ≥ wsns
g,l,l∗,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈
(
Jund
g,l,l∗ ∩ J

stt,ds
g,l,l∗

)
∪
(
Jund
g,l∗,l ∩ J

stt,ds
g,l∗,l

)
,

∀q ∈ Q,
∀k ∈ Kq

(2.135)

vg,l,l∗,j,q,k ≥ wsns
g,l,l∗,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈
(
Jund
g,l,l∗ ∩ J

stt,arr
g,l,l∗

)
∪
(
Jund
g,l∗,l ∩ J

stt,dep
g,l∗,l

)
,

∀q ∈ Q,
∀k ∈ Kq

(2.136)

Note: export nodes are automatically ruled out as end nodes since those
arcs cannot have losses placed downstream; import and export nodes are also
ruled out when considering undirected arcs because these are incompatible.

2.3.19 Static losses for pre-existing undirected arcs

wsns
g,l,l∗,j,q,k = wg,l,l∗,j,q,kζ

sns
g,l,l∗,j,q,k,∀g ∈ G,

∀l ∈ Lg \
(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ Jstt

g,l,l∗ ∩ J
pre
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.137)
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wsns
g,l,l∗,j,q,k = wg,l∗,l,j,q,kζ

sns
g,l,l∗,j,q,k,∀g ∈ G,

∀l ∈ Lg \
(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l∗,l ∩ Jstt

g,l∗,l ∩ J
pre
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.138)

2.3.20 Static losses for new undirected arcs

wsns
g,l,l∗,j,q,k ≤

(
max

h∈Hg,l,l∗,j

wnew
g,l,l∗,j,h,q,k

)
ζsnsg,l,l∗,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ Jstt

g,l,l∗ ∩ J
sgl
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.139)

wsns
g,l,l∗,j,q,k ≤

(
max

h∈Hg,l∗,l,j

wnew
g,l∗,l,j,h,q,k

)
ζsnsg,l,l∗,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l∗,l ∩ Jstt

g,l∗,l ∩ J
sgl
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.140)

wsns
g,l,l∗,j,q,k ≤ wg,l,l∗,j,q,k,∀g ∈ G,

∀l ∈ Lg \
(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ Jstt

g,l,l∗ ∩ Jnew
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.141)
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wsns
g,l,l∗,j,q,k ≤ wg,l∗,l,j,q,k,∀g ∈ G,

∀l ∈ Lg \
(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l∗,l ∩ Jstt

g,l∗,l ∩ Jnew
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.142)

wsns
g,l,l∗,j,q,k ≥ wg,l,l∗,j,q,k −

(
max

h∈Hg,l,l∗,j

wnew
g,l,l∗,j,h,q,k

)
ζsnsg,l∗,l,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l,l∗ ∩ Jstt

g,l,l∗ ∩ J
sgl
g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.143)

wsns
g,l,l∗,j,q,k ≥ wg,l∗,l,j,q,k −

(
max

h∈Hg,l∗,l,j

wnew
g,l∗,l,j,h,q,k

)
ζsnsg,l∗,l,j,q,k,

∀g ∈ G,
∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,

∀l∗ ∈ Lg \
(
Limp
g ∪ Lexp

g ∪ {l}
)
,

∀j ∈ Jund
g,l∗,l ∩ Jstt

g,l∗,l ∩ J
sgl
g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.144)

wsns
g,l,l∗,j∗,q,k ≤

(
max
h∈Ht

wnew
g,l,l∗,j∗,h,q,k

)
ζsnsg,l,l∗,j∗,q,k,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l,l∗ ∩ Jstt

g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.145)
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wsns
g,l,l∗,j∗,q,k ≤

(
max
h∈Ht

wnew
g,l∗,l,j∗,h,q,k

)
ζsnsg,l,l∗,j∗,q,k,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l∗,l ∩ Jstt

g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.146)

wsns
g,l,l∗,j∗,q,k ≥ wg,l,l∗,j∗,q,k −

(
max
h∈Ht

wnew
g,l,l∗,j∗,h,q,k

)
ζsnsg,l∗,l,j∗,q,k,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l,l∗ ∩ Jstt

g,l,l∗ ,

∀q ∈ Q,
∀k ∈ Kq

(2.147)

wsns
g,l,l∗,j∗,q,k ≥ wg,l∗,l,j∗,q,k −

(
max
h∈Ht

wnew
g,l∗,l,j∗,h,q,k

)
ζsnsg,l∗,l,j∗,q,k,

∀t ∈ T,
∀(g, l, l∗, j) ∈ GLLJcol

t ,

∀j∗ ∈ {j} ∩ Jund
g,l∗,l ∩ Jstt

g,l∗,l,

∀q ∈ Q,
∀k ∈ Kq

(2.148)
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2.4 Converters

2.4.1 Inputs

Input variables

A given input m can be modelled as a non-negative real (m ∈Mnnr
i ,∀i ∈ I) or

as a binary variable (m ∈ M bin
i ,∀i ∈ I). Binary inputs cannot be dimensioned

and therefore do not induce capital costs, unlike non-negative real inputs.

ui,m,q,k ≥ 0,∀i ∈ I,
∀m ∈Mnnr

i ,

∀q ∈ Q,
∀k ∈ Kq

(2.149)

ui,m,q,k ∈ {0, 1} ,∀i ∈ I,
∀m ∈M bin

i ,

∀q ∈ Q,
∀k ∈ Kq

(2.150)

Dimensionable nominal input amplitude

Dimensionable inputs (m ∈ Mdim
i ) require a nominal amplitude variable. This

variable is non-negative real and can only be associated with new converters.

uamp
i,m ≥ 0,∀i ∈ Inew,

∀m ∈Mdim
i

(2.151)

Maximum input modulated by the nominal amplitude

For new converters, dimensionable inputs cannot exceed the value stipulated by
a linear function of the nominal amplitude.

ui,m,q,k ≤ famp,u
i,m,q,ku

amp
i,m ,∀i ∈ Inew,

∀m ∈Mdim
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.152)
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Maximum nominal input amplitude

The maximum nominal input amplitude is equal to a given parameter if the
converter is selected, and zero otherwise.

uamp
i,m ≤ uamp,max

i,m δcvt,invi ,∀i ∈ Inew,

∀m ∈Mdim
i

(2.153)

Fixed upper bounds for non-binary non-dimensionable inputs

Inputs in pre-existing converters can have fixed upper bounds, unless they are
dimensionable (redundant) or binary (the bounds are predefined).

ui,m,q,k ≤ ui,m,q,k,∀i ∈ Ipre,

∀m ∈Mfix
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.154)

Maximum input for non-dimensionable inputs in new converters

Non-dimensionable inputs for new converters should be zero if that converter
has not been selected, and otherwise limited to some predefined value.

ui,m,q,k ≤ ui,m,q,kδ
cvt,inv
i ,∀i ∈ Inew,

∀m ∈Mfix
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.155)

ui,m,q,k ≤ δcvt,invi ,∀i ∈ Inew,
∀m ∈M bin

i ,

∀q ∈ Q,
∀k ∈ Kq

(2.156)

Note: binary variables on pre-existing converters require no upper bounds.
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2.4.2 Outputs

Output variables

The outputs for a given converter i a given time interval k and assessment q are
defined using unconstrained (or free) real variables.

yi,r,q,k ∈ R,∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq (2.157)

Output equations

The outputs are defined as linear functions of states and inputs.

yi,r,q,k =
∑
n∈Ni

ceq,yi,r,n,q,kxi,n,q,k +
∑

m∈Mi

deq,yi,r,m,q,kui,m,q,k + eeq,yi,r,q,k,

∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq (2.158)

Positive output amplitude variables

New converters can have outputs whose positive amplitudes are dimensionable.
A non-negative real variable is needed for that per dimensionable output.

yamp,pos
i,r ≥ 0,∀i ∈ Inew,

∀r ∈ Rdim,pos
i

(2.159)

Negative output amplitude variables

New converters can have outputs whose negative amplitudes are dimensionable.
A non-negative real variable per output is needed. If a positive amplitude is also
dimensionable and equal to the negative amplitude, then no variable is needed.

yamp,neg
i,r ≥ 0,∀i ∈ Inew,

∀r ∈ Rdim,neg
i \Rdim,eq

i

(2.160)

Positive output limits if dimensionable

Dimensionable outputs are constrained using the nominal positive amplitude.

yi,r,q,k ≤ famp,y
i,r,q,k y

amp,pos
i,r ,∀i ∈ Inew,

∀r ∈ Rdim,pos
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.161)
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Negative output limits if dimensionable

Dimensionable outputs are constrained using the nominal negative amplitude,
(2.162). If the positive and negative nominal amplitudes are dimensionable and
made to match, the common nominal amplitude is used instead, (2.163).

−yamp,neg
i,r famp,y

i,r,q,k ≤ yi,r,q,k,∀i ∈ I
new,

∀r ∈ Rdim,neg
i \Rdim,eq

i ,

∀q ∈ Q,
∀k ∈ Kq

(2.162)

−yamp,pos
i,r famp,y

i,r,q,k ≤ yi,r,q,k,∀i ∈ I
new,

∀r ∈ Rdim,eq
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.163)

Positive output amplitude limits

Dimensionable positive amplitudes must be zero if the converter is not selected.

yamp,pos
i,r ≤ yamp,pos

i,r δcvt,invi ,∀i ∈ Inew,

∀r ∈ Rdim,pos
i

(2.164)

Negative output amplitude limits

Dimensionable negative amplitudes must be zero if the converter is not selected.
If the positive and negative amplitudes are dimensionable and made to match,
the constraint is not needed, since only the common amplitude is used.

yamp,neg
i,r ≤ yamp,neg

i,r δcvt,invi ,∀i ∈ Inew,

∀r ∈ Rdim,neg
i \Rdim,eq

i

(2.165)

Fixed bounds for output variables

Outputs can be constrained using fixed upper and lower bounds.

yi,r,q,k ≤ yi,r,q,k ≤ yi,r,q,k,∀i ∈ Ipre,

∀r ∈ Rfix
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.166)
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yi,r,q,kδ
cvt,inv
i ≤ yi,r,q,k ≤ yi,r,q,kδcvt,invi ,∀i ∈ Inew,

∀r ∈ Rfix
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.167)
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2.4.3 States

State variables

States are modelled as unconstrained (or free) real variables.

xi,n,q,k ∈ R,∀i ∈ I, ∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq (2.168)

State equations

States are defined as linear functions of states and inputs.

xi,n,q,k =
∑

n∗∈Ni

aeq,xi,n∗,n,q,kxi,n∗,q,k−1 +
∑

m∈Mi

beq,xi,n,m,q,kui,m,q,k + eeq,xi,n,q,k,

∀i ∈ I, ∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

(2.169)

Fixed bounds for state variables

States can be constrained using fixed upper and lower bounds.

xi,n,q,k ≤ xi,n,q,k ≤ xi,n,q,k,∀i ∈ Ipre,

∀n ∈ Nfix
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.170)

xi,n,q,kδ
cvt,inv
i ≤ xi,n,q,k ≤ xi,n,q,kδcvt,invi ,∀i ∈ Inew,

∀n ∈ Nfix
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.171)

Nominal positive state amplitude variables

xamp,pos
i,n ≥ 0,∀i ∈ Inew,

∀n ∈ Ndim,pos
i

(2.172)

Nominal negative state amplitude variables

xamp,neg
i,n ≥ 0,∀i ∈ Inew,

∀n ∈ Ndim,neg
i \Ndim,eq

i

(2.173)
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Positive state limit if dimensionable

xi,n,q,k ≤ famp,x
i,n,q,kx

amp,pos
i,n ,∀i ∈ Inew,

∀n ∈ Ndim,pos
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.174)

Negative state limit if dimensionable

−xamp,neg
i,n famp,x

i,n,q,k ≤ xi,n,q,k,∀i ∈ I
new,

∀n ∈ Ndim,neg
i \Ndim,eq

i ,

∀q ∈ Q,
∀k ∈ Kq

(2.175)

−xamp,pos
i,n famp,x

i,n,q,k ≤ xi,n,q,k,∀i ∈ I
new,

∀n ∈ Ndim,eq
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.176)

Nominal positive state amplitude limits

xamp,pos
i,n ≤ xamp,pos

i,n δcvt,invi ,∀i ∈ Inew,

∀n ∈ Ndim,pos
i

(2.177)

Nominal negative state amplitude limits

xamp,neg
i,n ≤ xamp,neg

i,n δcvt,invi ,∀i ∈ Inew,

∀n ∈ Ndim,neg
i \Ndim,eq

i

(2.178)

Positive state variation variables

∆xposi,n,q ≥ 0,∀i ∈ I,
∀n ∈ Npos,var

i ,

∀q ∈ Q
(2.179)

Negative state variation variables

∆xnegi,n,q ≥ 0,∀i ∈ I,
∀n ∈ Nneg,var

i ,

∀q ∈ Q
(2.180)
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Positive state variation determination

xi,n,q,|K| − xi,n,q,0 ≤ ∆xposi,n,q,∀i ∈ I,
∀n ∈ Npos,var

i ,

∀q ∈ Q
(2.181)

Note: xi,n,0 is the initial condition.

Negative state variation determination

xi,n,q,|K| − xi,n,q,0 ≥ −∆xnegi,n,q,∀i ∈ I,
∀n ∈ Nneg,var

i ,

∀q ∈ Q
(2.182)

Note: xi,n,0 is the initial condition.

Violation of upper references

xi,n,q,k − xref,hghi,n,q,k ≤ ∆xref,hghi,n,q,k ,∀i ∈ I,

∀n ∈ Nref,hgh
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.183)

Violation of lower references

xref,lowi,n,q,k − xi,n,q,k ≤ ∆xref,lowi,n,q,k ,∀i ∈ I,

∀n ∈ Nref,low
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.184)

Upper reference violation variables

∆xref,hghi,n,q,k ≥ 0,∀i ∈ I,

∀n ∈ Nref,hgh
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.185)

Lower reference violation variables

∆xref,lowi,n,q,k ≥ 0,∀i ∈ I,

∀n ∈ Nref,low
i ,

∀q ∈ Q,
∀k ∈ Kq

(2.186)

49



2.5 Network constraints

2.5.1 Flow equilibrium at each internal node

Flow equilibria is required at all times in internal nodes. In practice, this means
that for each node excluding import and export nodes, and for each time interval,
the balance between effective incoming and outgoing flows plus converter effects
must match the base flow. The term effective used in the previous sentence is
meant to account for the effects of static and flow-proportional losses.

vbaseg,l,q,k =
∑

l◦∈Lg\(Lexp
g ∪{l})

∑
j◦∈Jdir

g,l◦,l
∪Jund

g,l,l◦

ηg,l◦,l,j◦,q,kvg,l◦,l,j◦,q,k

−
∑

l•∈Lg\(Limp
g ∪{l})

∑
j•∈Jdir

g,l,l•∪J
und
g,l,l•

vg,l,l•,j•,q,k

−
∑

l?∈Lg\(Lexp
g ∪{l})

∑
j?∈Jstt,arr

g,l?,l
∩Jdir

g,l?,l

ηg,l?,l,j?,q,kwg,l?,l,j?,q,k

−
∑

l�∈Lg\(Limp
g ∪{l})

∑
j�∈Jstt,dep

g,l,l� ∩J
dir
g,l,l�

wg,l,l�,j�,q,k

−
∑

l?∈Lg\(Lexp
g ∪Limp

g ∪{l})

∑
j?∈Jund

g,l,l?
∩Jstt,dep

g,l,l?(
ηg,l?,l,j?,q,kw

sns
g,l?,l,j?,q,k + wsns

g,l,l?,j?,q,k

)
−

∑
l∗∈Lg\(Lexp

g ∪Limp
g ∪{l})

∑
j∗∈Jund

g,l∗,l
∩Jstt,arr

g,l∗,l(
ηg,l∗,l,j∗,q,kw

sns
g,l∗,l,j∗,q,k + wsns

g,l,l∗,j∗,q,k

)
−

∑
l◦∈Lg\(Lexp

g ∪Limp
g ∪{l})

∑
j◦∈Jund

g,l,l◦∩J
stt,ds

g,l,l◦

ηg,l◦,l,j◦,q,kw
sns
g,l◦,l,j◦,q,k

−
∑

l◦∈Lg\(Lexp
g ∪Limp

g ∪{l})

∑
j◦∈Jund

g,l◦,l
∩Jstt,ds

g,l◦,l

ηg,l◦,l,j◦,q,kw
sns
g,l◦,l,j◦,q,k

−
∑

l�∈Lg\(Lexp
g ∪Limp

g ∪{l})

∑
j�∈Jund

g,l,l�
∩Jstt,us

g,l,l�

wsns
g,l,l�,j�,q,k

−
∑

l�∈Lg\(Lexp
g ∪Limp

g ∪{l})

∑
j�∈Jund

g,l�,l
∪Jstt,us

g,l�,l

wsns
g,l,l�,j�,q,k

+
∑
i∈I

(∑
r∈Ri

anode,yg,l,i,r,q,kyi,r,q,k +
∑

m∈Mi

anode,ug,l,i,m,q,kui,m,q,k

)
∀g ∈ G,∀l ∈ Lg \

(
Limp
g ∪ Lexp

g

)
,∀q ∈ Q,∀k ∈ Kq

(2.187)
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2.5.2 Only one incoming directed arc without outgoing
arcs

Internal nodes can be set up to be incompatible with having multiple directed
incoming arcs unless there are outgoing arcs too. This prevents one node from
being an end node for multiple branches. It does not apply in the presence of
undirected arcs. For each node, the constraint can be summarised as follows:
the number of incoming arcs must be lower than or equal to one, if there are no
outgoing arcs; if there are outgoing arcs, the constraint is ignored.

NIDAg,l ≤ 1 + amax,in
g,l NOAg,l,∀g ∈ G,∀l ∈ Lmax,in

g (2.188)

NOAg,l =
∑

l�∈Lg\(Limp
g ∪{l})

(

∑
t∈T int

( ∑
j∈Jcol

g,l,l�

|GLLJcol
t ∩ {(g, l, l�, j)} |+

∑
j∈Jcol

g,l�,l
∩Jund

g,l�,l

|GLLJcol
t ∩ {(g, l�, l, j)} |

)
ξarc,invt +

∑
t∈T opt\T int

( ∑
j∈Jcol

g,l,l�

|GLLJcol
t ∩ {(g, l, l�, j)} |+

∑
j∈Jcol

g,l�,l
∩Jund

g,l�,l

|GLLJcol
t ∩ {(g, l�, l, j)} |

) ∑
h∈Ht

δarc,invt,h +

∑
j�∈Jint

g,l,l�∩J
sgl

g,l,l�

ξarc,invg,l,l�,j�+

∑
j�∈Jund

g,l�,l
∩Jint

g,l�,l
∩Jsgl

g,l�,l

ξarc,invg,l�,l,j�+

∑
j?∈Jopt

g,l,l�∩J
sgl

g,l,l�\J
int
g,l,l�

∑
h?∈Hg,l,l�,j?

δarc,invg,l,l�,j?,h?+

∑
j∗∈Jund

g,l�,l
∩Jopt

g,l�,l
∩Jsgl

g,l�,l
\Jint

g,l�,l

∑
h∗∈Hg,l�,l,j∗

δarc,invg,l�,l,j∗,h∗+

|Jpre
g,l,l� |+ |J

mdt
g,l,l� |+ |J

pre
g,l�,l ∩ J

und
g,l�,l|+ |Jmdt

g,l�,l ∩ Jund
g,l�,l|

)
,

∀g ∈ G,∀l ∈ Lmax,in
g

(2.189)
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NIDAg,l =
∑

l◦∈Lg\(Lexp
g ∪{l})

(

∑
t∈T int

 ∑
j∈Jdir

g,l◦,l
∩Jcol

g,l◦,l

|GLLJcol
t ∩ {(g, l◦, l, j)} |

 ξarc,invt +

∑
t∈T opt\T int

 ∑
j∈Jdir

g,l◦,l
∩Jcol

g,l◦,l

|GLLJcol
t ∩ {(g, l◦, l, j)} |

 ∑
h∈Ht

δarc,invt,h +

|Jdir
g,l◦,l ∩ J

pre
g,l◦,l|+ |J

dir
g,l◦,l ∩ Jmdt

g,l◦,l|+∑
j◦∈Jdir

g,l◦,l
∩Jint

g,l◦,l
∩Jsgl

g,l◦,l

ξarc,invg,l◦,l,j◦+

∑
j•∈Jdir

g,l◦,l
∩Jopt

g,l◦,l
∩Jsgl

g,l◦,l
\Jint

g,l◦,l

∑
h◦∈Hg,l◦,l,j•

δarc,invg,l◦,l,j•,h◦

)
,∀g ∈ G,∀l ∈ Lmax,in

g

(2.190)

Note: the big-M values need to larger than or equal to the number of in-
coming directed arcs minus one.

amax,in
g,l + 1 ≥

∑
l◦∈Lg\(Lexp

g ∪{l})

|Jdir
g,l◦,l|,∀g ∈ G,∀l ∈ Lmax,in

g (2.191)

Note:

Lmax,in
g ⊆ Lg \ Limp

g ,∀g ∈ G (2.192)
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2.5.3 Only one outgoing directed arc without incoming
arcs

Internal nodes can be set up to be incompatible with having multiple directed
outgoing arcs unless there are incoming arcs too. This prevents one node from
being a start node for multiple branches. It does not apply in the presence of
undirected arcs. For each node, the constraint can be summarised as follows:
the sum of outgoing directed arcs must be lower than or equal to one, if there
are no incoming arcs; if there are incoming arcs, the constraint is ignored.

NODAg,l ≤ 1 + amax,out
g,l NIAg,l,∀g ∈ G,∀l ∈ Lmax,out

g (2.193)

NIAg,l =
∑

l�∈Lg\(Lexp
g ∪{l})

(
∑

t∈T int

( ∑
j∈Jcol

g,l�,l

|GLLJcol
t ∩ {(g, l�, l, j)} |+

∑
j∈Jcol

g,l,l�∩J
und
g,l,l�

|GLLJcol
t ∩ {(g, l, l�, j)} |

)
ξarc,invt +

∑
t∈T opt\T int

( ∑
j∈Jcol

g,l�,l

|GLLJcol
t ∩ {(g, l�, l, j)} |+

∑
j∈Jcol

g,l,l�∩J
und
g,l,l�

|GLLJcol
t ∩ {(g, l, l�, j)} |

) ∑
h∈Ht

δarc,invt,h +

∑
j�∈Jint

g,l�,l
∩Jsgl

g,l�,l

ξarc,invg,l�,l,j�+

∑
j�∈Jund

g,l,l�∩J
int
g,l,l�∩J

sgl

g,l,l�

ξarc,invg,l,l�,j�+

∑
j?∈Jopt

g,l�,l
∩Jsgl

g,l�,l
\Jint

g,l�,l

∑
h?∈Hg,l�,l,j?

δarc,invg,l�,l,j?,h?+

∑
j∗∈Jund

g,l,l�∩J
opt

g,l,l�∩J
sgl

g,l,l�\J
int
g,l,l�

∑
h∗∈Hg,l,l�,j∗

δarc,invg,l,l�,j∗,h∗+

|Jpre
g,l�,l|+ |J

mdt
g,l�,l|+ |J

pre
g,l,l� ∩ J

und
g,l,l� |+ |Jmdt

g,l,l� ∩ Jund
g,l,l� |

)
,

∀g ∈ G,∀l ∈ Lmax,out
g

(2.194)
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NODAg,l =
∑

l◦∈Lg\(Limp
g ∪{l})

(

∑
t∈T int

 ∑
j∈Jdir

g,l,l◦∩J
col
g,l,l◦

|GLLJcol
t ∩ {(g, l, l◦, j)} |

 ξarc,invt +

∑
t∈T opt\T int

 ∑
j∈Jdir

g,l,l◦∩J
col
g,l,l◦

|GLLJcol
t ∩ {(g, l, l◦, j)} |

 ∑
h∈Ht

δarc,invt,h +

|Jdir
g,l,l◦ ∩ J

pre
g,l,l◦ |+ |J

dir
g,l,l◦ ∩ Jmdt

g,l,l◦ |+∑
j◦∈Jdir

g,l,l◦∩J
int
g,l,l◦∩J

sgl

g,l,l◦

ξarc,invg,l,l◦,j◦+

∑
j•∈Jdir

g,l,l◦∩J
opt

g,l,l◦∩J
sgl

g,l,l◦\J
int
g,l,l◦

∑
h◦∈Hg,l,l◦,j•

δarc,invg,l,l◦,j•,h◦

)
,∀g ∈ G,∀l ∈ Lmax,out

g

(2.195)

Note: the big-M values need to larger than or equal to the number of out-
going directed arcs minus one.

amax,out
g,l + 1 ≥

∑
l◦∈Lg\(Limp

g ∪{l})

|Jdir
g,l,l◦ |,∀g ∈ G,∀l ∈ Lmax,out

g (2.196)

Note:

Lmax,out
g ⊆ Lg \ Lexp

g ,∀g ∈ G (2.197)
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2.5.4 Limited number of parallel arcs per direction

The number of arcs between two nodes in a given direction and in a given
network can be limited. The limit also applies to undirected arcs, which will
be counted once per direction with limits: if there are limits between nodes A
and B and vice-versa, and an undirected arc exists between them, then that arc
influences the limits from A to B and from B to A. The constraint is defined so as
to take advantage of model structures, (2.198): pre-existing and new mandatory
arcs are accounted for through data, since they have to exist; new optional arcs
rely on the decision variables for their options unless they are interfaced, in
which case interface variables are used; the same is true for groups of arcs.

∑
t∈T int

( ∑
j∈Jcol

g,l,l∗

|GLLJcol
t ∩ {(g, l, l∗, j)} |+

∑
j∈Jcol

g,l∗,l
∩Jund

g,l∗,l

|GLLJcol
t ∩ {(g, l∗, l, j)} |

)
ξarc,invt +

∑
t∈T opt\T int

( ∑
j∈Jcol

g,l,l∗

|GLLJcol
t ∩ {(g, l, l∗, j)} |+

∑
j∈Jcol

g,l∗,l
∩Jund

g,l∗,l

|GLLJcol
t ∩ {(g, l∗, l, j)} |

) ∑
h∈Ht

δarc,invt,h +

∑
j∈Jint

g,l,l∗∩J
sgl
g,l,l∗

ξarc,invg,l,l∗,j +

∑
j∈Jopt

g,l,l∗∩J
sgl
g,l,l∗\J

int
g,l,l∗

∑
h∈Hg,l,l∗,j

δarc,invg,l,l∗,j,h+

∑
j∈Jund

g,l∗,l
∩Jint

g,l∗,l
∩Jsgl

g,l∗,l

ξarc,invg,l∗,l,j +

∑
j∈Jund

g,l∗,l
∩Jopt

g,l∗,l
∩Jsgl

g,l∗,l
\Jint

g,l∗,l

∑
h∈Hg,l∗,l,j

δarc,invg,l∗,l,j,h+

|Jpre
g,l,l∗ |+ |J

und
g,l∗,l ∩ J

pre
g,l∗,l|+ |J

mdt
g,l,l∗ |+ |Jund

g,l∗,l ∩ Jmdt
g,l∗,l| ≤ a

arc,max
g,l,l∗ ,

∀(g, l, l∗) ∈ GLLarc,max,

(2.198)

Note:

GLLarc,max ⊆ GLL (2.199)

GLL =
{

(g, l, l∗) : g ∈ G, l ∈ Lg \ Lexp
g , l∗ ∈ Lg \

(
Limp
g ∪ {l}

)
)
}

(2.200)

55



Chapter 3

Examples

This chapter is dedicated to explaining the model through examples.

3.1 Static losses

3.1.1 Directed arcs

Consider a problem as in Figure 3.1 involving a network g with three nodes: one
import node, IMP ∈ Limp

g ; and two regular nodes, A ∈ Lg and B ∈ Lg. Node

A is a waypoint node (vbaseg,A,q,k = 0) during a given interval k and assessment q,

whereas node B is a sink node requiring an incoming flow of 0.2 (vbaseg,B,q,k = 0.2).

There are directed arcs from IMP to A (IA ∈ Jdir
g,IMP,A) and from A to B

(AB ∈ Jdir
g,A,B). The former has infinite capacity and induces no losses, static

(Jstt
g,IMP,A = ∅) or otherwise (ηg,IMP,A,IA,q,k = 1). The latter has an efficiency

of 80% (ηg,A,B,AB,q,k = 0.8), unit capacity (vamp
g,A,B,AB = 1, fg,A,B,AB,q,k = 1)

and static losses (AB ∈ Jstt
g,A,B) of 0.1 during time interval k and assessment

q (wg,A,B,AB,q,k = 0.1). Assume for now that those static losses are placed

upstream in A (AB ∈ Jstt,dep
g,A,B ). Let us observe what flow equilibrium (2.187)

entails for nodes A and B during time interval k and assessment q:

Node A: 0 = vg,IMP,A,IA,q,k − vg,A,B,AB,q,k − 0.1

IMP A B

Figure 3.1: Network with 3 nodes (IMP, A and B) and 2 directed arcs (IA and
AB)
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IMP A B

Figure 3.2: Network with 3 nodes (IMP, A and B), 1 directed arc (IA) and 1
undirected arc (AB)

Node B: 0.2 = 0.8× vg,A,B,AB,q,k

From the above, it is clear that vg,A,B,AB,q,k must be equal to 0.25 and
that vg,IMP,A,IA,q,k must be 0.35 to account for the static losses in A. The flow
between A and B is also below the maximum allowed, which is lowered relative
to the specified value due to the static losses being modelled upstream, (2.128):
vg,A,B,AB,q,k ≤ 1− 0.1 = 0.9 . This means that maximum useful flow that can
reach B is 0.72 (0 ≤ vbaseg,B,q,k ≤ 0.72), in which case the flow leaving A would be
0.9 and the flow entering A would be exactly 1. Now consider that static losses
are instead placed downstream in B (AB /∈ Jstt,dep

g,A,B , AB ∈ Jstt,arr
g,A,B ):

Node A: 0 = vg,IMP,A,IA,q,k − vg,A,B,AB,q,k

Node B: 0.2 = 0.8× vg,A,B,AB,q,k − 0.8× 0.1

In this case, the flow through IA and AB must both be 0.35, none of which
violate flow limits. The limits themselves do not need to be adjusted since the
static losses are placed downstream in B, making the maximum flow entering
and leaving A exactly 1, and 0.72 the maximum useful flow that could reach
B. These are the same results for useful flow reaching B (via AB) and for flow
reaching A (via IA) as if the static losses (for AB) were placed upstream in A,
even though the actual flow through AB differs. The conclusion is that placing
static losses upstream or downstream has the same outcome, from no flow up
to the maximum permitted. Note also that since there are no alternative ways
to supply flow to B, the constraint (2.134) is redundant, as it would otherwise
impose a minimum flow of 0.1 through the arc to compensate for its static losses.

3.1.2 Undirected arcs

Losses are placed upstream

Consider now that the arc between A and B is instead undirected (AB /∈
Jdir
g,A,B , AB ∈ Jund

g,A,B , AB /∈ Jund
g,B,A), as shown in Figure 3.2, is pre-existing

(AB ∈ Jpre
g,A,B), has the same efficiency in both directions, and its static losses

are placed upstream in relation to the flow sense (AB ∈ Jstt,us
g,A,B ). If all else is the

same as in the examples given in Section 3.1.1, the results are the same since
the flow can only be from A to B (ζsnsg,A,B,AB,q,k = 1, ζsnsg,B,A,AB,q,k = 0):
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Node A:

vbaseg,A,q,k =vg,IMP,A,IA,q,k + ηg,B,A,AB,q,kvg,B,A,AB,q,k − vg,A,B,AB,q,k

− wsns
g,A,B,AB,q,k

Node B:

vbaseg,B,q,k = ηg,A,B,AB,q,kvg,A,B,AB,q,k − vg,B,A,AB,q,k − wsns
g,B,A,AB,q,k

with:

wsns
g,A,B,AB,q,k = wg,A,B,AB,q,kζ

sns
g,A,B,AB,q,k

wsns
g,B,A,AB,q,k = wg,A,B,AB,q,kζ

sns
g,B,A,AB,q,k

The solution requires the flow through AB to be 0.25 and the flow through
IA to be 0.35, the latter to compensate for the static losses in A. The amplitude
allowed is also lower than the nominal one (0.9 instead of 1.0) due to (2.125),
since losses appear before the arc, exactly as in the example for directed arcs.

Consider then another interval, k + 1. During this interval, node B acts
as a source (vbaseg,B,q,k+1 = −0.6), node A as a sink (vbaseg,A,q,k+1 = 0.4), the arc
efficiency from B to A is 50% (ηg,B,A,AB,q,k = 0.5), static losses are placed
upstream (AB ∈ Jstt,us

g,A,B ), and all other parameters remain the same. The
simplified balances for A and B during interval k + 1 and assessment q are:

Node A:

0.4 =vg,IMP,A,IA,q,k+1 + 0.5× vg,B,A,AB,q,k+1 − vg,A,B,AB,q,k+1

− 0.1× ζsnsg,A,B,AB,q,k+1

Node B:

−0.6 = 0.8× vg,A,B,AB,q,k+1 − vg,B,A,AB,q,k+1 − 0.1× ζsnsg,B,A,AB,q,k+1

In this case, the flow has to be from B to A (ζsnsg,B,A,AB,q,k = 1), since there is
no other way to deal with a source in B. Consequently, the static losses appear in
B, as B is upstream relative to the flow sense. Solving the equation shows that
the flow through AB must be equal to 0.5 but only 0.25 makes it to A, due to the
50 % efficiency from B to A, and due to this 0.15 must be imported from node
IMP. Since the losses are upstream, the flow amplitude is also lower than the
nominal one through (2.125), though of no consequence in this example. Next,
the focus is on demonstrating how the three other approaches for modelling
static losses in undirected arcs produce exactly the same results.
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Losses are placed downstream

Consider now that the static losses are instead placed downstream relative to
the flow sense (AB ∈ Jstt,ds

g,A,B). The balances for nodes A and B become:

Node A:

vbaseg,A,q,k =vg,IMP,A,IA,q,k + ηg,B,A,AB,q,kvg,B,A,AB,q,k − vg,A,B,AB,q,k

− ηg,B,A,AB,q,kw
sns
g,B,A,AB,q,k

Node B:

vbaseg,B,q,k =ηg,A,B,AB,q,kvg,A,B,AB,q,k − vg,B,A,AB,q,k

− ηg,A,B,AB,q,kw
sns
g,A,B,AB,q,k

In the situation above, the flow has to be from A to B (ζsnsg,A,B,AB,q,k = 1),
yet the static losses are instead in B. As such, the flow through AB and IA is
0.35, exactly as in the second example with directed arcs in Section 3.1.1. The
constraint (2.135) requiring a minimum flow through the arc is also observed
(vg,A,B,AB,q,k ≥ 0.1), though redundant due to a lack of alternative flow paths
leading to B. Consider now the same case during interval k+1 and assessment q
using the data defined in the previous example except the modelling approach:

Node A:

0.4 =vg,IMP,A,IA,q,k+1 + 0.5× vg,B,A,AB,q,k+1 − vg,A,B,AB,q,k+1

− 0.5× 0.1× ζsnsg,B,A,AB,q,k+1

Node B:

−0.6 = 0.8× vg,A,B,AB,q,k+1 − vg,B,A,AB,q,k+1 − 0.8× 0.1× ζsnsg,A,B,AB,q,k+1

The solution requires the flow to be from B to A, since there is no other
way to deal with a source of flow in B. Consequently, the losses appear in A
(downstream relative to the flow sense). Note that the loss term amounts to
0.05 due to the arc efficiency for flows from B to A. This means that the flow
through AB is 0.6, of which 0.3 reach A, forcing 0.15 to be imported through
IMP, which is the same results obtained with losses placed upstream relative to
the flow sense. It is also the case that (2.135) is observed (vg,B,A,AB,q,k ≥ 0.1),
despite being redundant, as the alternative ways to compensate for the static
losses (namely via IA) would lead to infeasibility (due to the flows from B).
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Losses in the nominal source node

Another alternative is to place static losses in a single node, irrespective of the
flow sense. Consider then the example of Figure 3.2 but assuming that static
losses are placed in the source node for the nominal flow sense (j ∈ Jstt,dep

g,l,l∗ ),
that is, in node A. For interval k and assessment q, that means:

Node A:

vbaseg,A,q,k =vg,IMP,A,IA,q,k + ηg,B,A,AB,q,kvg,B,A,AB,q,k − vg,A,B,AB,q,k

− wsns
g,A,B,AB,q,k − ηg,B,A,AB,q,kw

sns
g,B,A,AB,q,k

Node B:

vbaseg,B,q,k = ηg,A,B,AB,q,kvg,A,B,AB,q,k − vg,B,A,AB,q,k

The solution requires that the flow along AB be from A to B and equal to
0.25, which forces means the losses appear in A without any adjustment. In turn,
this forces 0.35 to be imported through IA, which is the same as in previous
examples. The amplitude limit reduction due to the losses being upstream
(2.126) is also the same as in previous examples (vg,A,B,AB,q,k ≤ 1 − 0.1) and
equally of no consequence. Now let us consider interval k + 1 for assessment q:

Node A:

0.4 =vg,IMP,A,IA,q,k+1 + 0.5× vg,B,A,AB,q,k+1 − vg,A,B,AB,q,k+1

− 0.1× ζsnsg,A,B,AB,q,k+1 − 0.5× 0.1× ζsnsg,B,A,AB,q,k+1

Node B:

−0.6 = 0.8× vg,A,B,AB,q,k+1 − vg,B,A,AB,q,k+1

In this case, the flow is from B to A, as there is no other viable alternative,
and equal to 0.6, of which 0.3 reach node A. Since the flow is from B to A,
and the losses are in A, the loss term is equal to 0.05 due to the arc efficiency
in that direction, which forces 0.15 to be imported through IA. The minimum
flow requirement imposed via (2.136) is also observed (vg,A,B,AB,q,k ≥ 0.1). In
conclusion, these results match those obtained with other modelling approaches.

Losses in the nominal end node

The modelling approach that is left considering relies on placing losses in the
nominal end node, irrespective of the flow sense (j ∈ Jstt,arr

g,l,l∗ ), that is, in node
B. For interval k and assessment q, that translates into:
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Node A:

vbaseg,A,q,k =vg,IMP,A,IA,q,k + ηg,B,A,AB,q,kvg,B,A,AB,q,k − vg,A,B,AB,q,k

Node B:

vbaseg,B,q,k =ηg,A,B,AB,q,kvg,A,B,AB,q,k − vg,B,A,AB,q,k

− ηg,A,B,AB,q,kw
sns
g,A,B,AB,q,k − wsns

g,B,A,AB,q,k

The conditions make clear that the flow must be from A to B. In turn, this
means the losses appear in B adjusted by the respective arc efficiency from A to
B. The result is that losses amount to 0.08 in B, which means the flow through
AB must be 0.35 to provide 0.28 in B. Consequently, the flow through IA must
also be 0.35 (lossless arc). Since the losses are downstream, a minimum flow
requirement in (2.136) is imposed and met ( vg,A,B,AB,q,k ≥ 0.1). These are
effectively the same results as obtained using other approaches.

Consider then the following interval (k + 1) for the same assessment (q):

Node A:

0.4 =vg,IMP,A,IA,q,k + 0.5× vg,B,A,AB,q,k − vg,A,B,AB,q,k

Node B:

−0.6 =0.8× vg,A,B,AB,q,k+1 − vg,B,A,AB,q,k+1

− 0.8× 0.1× ζsnsg,A,B,AB,q,k+1 − 0.1× ζsnsg,B,A,AB,q,k+1

In this case, the flow must be from B to A, for lack of viable alternatives.
The consequence is that the losses appear in B without being affected by the arc
efficiency. The loss term adds up to 0.1, which means the flow through AB must
be 0.5, 50% of which arrive in A, leaving a gap of 0.15 to be provided through
IA. Since the losses appear upstream, the amplitude limit must be reduced via
(2.127), though it produces does not affect the outcome: vg,B,A,AB,q,k ≤ 0.9. As
with previous examples, the results are the same as if using other approaches.

Summary

The previous sections illustrate the use of different ways to model static losses
in undirected arcs. For convenience, Table 3.1 summarises their implications.

3.2 Converters

This section provides examples of problems involving converters.
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Table 3.1: Approaches available to model static losses in an undirected arc
j between nodes A and B on network g : 1) in the nominal source node, A

(j ∈ Jstt,dep
g,A,B ); 2) in the nominal end node, B (j ∈ Jstt,arr

g,A,B ); 3) downstream

relative to the flow sense (j ∈ Jstt,ds
g,A,B); or, 4) upstream (j ∈ Jstt,us

g,A,B ).

Approach
Flow Lossy Minimum Reduced

Restrictions
sense node arc flow? amplitude?

j ∈ Jstt,dep
g,A,B

A → B A × X (2.126), (2.128)
B → A A X × (2.136)

j ∈ Jstt,arr
g,A,B

A → B B X × (2.136)
B → A B × X (2.127),(2.129)

j ∈ Jstt,ds
g,A,B

A → B B X × (2.135)
B → A A X × (2.135)

j ∈ Jstt,us
g,A,B

A → B A × X (2.126), (2.128)
B → A B × X (2.127), (2.129)

3.2.1 Converters as dynamic sinks

Consider a network G1 with one import node IMP , one regular node A and
one pre-existing (directed) lossless infinite capacity arc connecting them (IA ∈
J inf
G1,IMP,A), as illustrated in Figure 3.3. Consider also a pre-existing converter

C, with one binary input (M1 ∈ M bin
C ) and one state (N1 ∈ Nfix

C ) bounded
between 18 and 22, and whose initial condition is 18 (xC,N1,q,0 = 18). The

converter acts as a dynamic sink on node A: anode,uG1,A,M1,C,q,k = −1,∀q ∈ Q,∀k ∈
Kq. The following constraints define this part of the problem:

� State equations

xC,N1,q,k =0.95× xC,N1,q,k−1 + 3× uC,M1,q,k,

∀q ∈ Q,∀k ∈ Kq

� State bounds

18 ≤ xC,N1,q,k ≤ 22,∀q ∈ Q,∀k ∈ Kq

� Node balances:

0 = vG1,IMP,A,IA,q,k − uC,M1,q,k,∀q ∈ Q,∀k ∈ Kq

Considering the initial condition, it is clear that the input needs to be active
during the first time interval if the state is to remain between 18 and 22: if
uC,M1,q,0 = 0, then xC,N1,q,1 = 17.1; if uC,M1,q,0 = 1, then xC,N1,q,1 = 20.1.
This also means that a flow of 1 will be imported through IMP . For the
subsequent interval, the input has to be remain inactive: if uC,M1,q,1 = 0, then
xC,N1,q,2 = 19.095; if uC,M1,q,1 = 1, then xC,N1,q,2 = 22.095, which is above
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IMP A
C

Figure 3.3: Network G1 with 2 nodes (IMP and A), 1 directed arc (IA) and 1
converter (C)

the upper bound. In contrast, the next interval presents two viable paths: if
uC,M1,q,2 = 0, then xC,N1,q,3 = 18.14025; if uC,M1,q,2 = 1, then xC,N1,q,3 =
21.14025. The best decision is dependent on import prices and on whether
or not the state can be kept within its bounds in subsequent intervals. This
logic repeats itself in subsequent intervals, which may reveal several viable state
trajectories. The point here is to demonstrate that converters can be defined to
act as dynamic sinks whose states need to be kept under control.

3.2.2 Converters as dynamic sources

Converters can also be used as dynamic sources. Consider another network G2
with one regular node B, one export node EXP , and one pre-existing (directed)

lossless infinite capacity arc connecting them (BE ∈ J inf
G2,B,EXP ). A converter

C with one bounded state (N1 ∈ Nfix
C ) and one binary input (M1 ∈ M bin

C )

interacts with node B on network G2: anode,uG2,B,M1,C,q,k = 1,∀q ∈ Q,∀k ∈ Kq.
The following constraints materialise this part of the problem:

� State equations

xC,N1,q,k =0.98× xC,N1,q,k−1 − 5× uC,M1,q,k + eeq,xC,N1,q,k,

∀q ∈ Q,∀k ∈ Kq

� State bounds

70 ≤ xC,N1,q,k ≤ 95,∀q ∈ Q,∀k ∈ Kq

� Node balances:

0 = −vG2,B,EXP,BE,q,k + uC,M1,q,k,∀q ∈ Q,∀k ∈ Kq

The constraints above describe a problem similar to the one in Section 3.2.1,
though in this case the converter acts as a source in node B. The flow created
must then be exported through the arc BE and node EXP , possibly generating
revenue. Since state N1 is bounded, the flow is limited. This demonstrates the
use of converters as sources whose performance depends on their internal states.
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B
C

EXP

Figure 3.4: Network G2 with 2 nodes (EXP and B), 1 directed arc (BE) and 1
converter (C)

3.2.3 Sink-to-source converter

Consider now networks G1 and G2 from Sections 3.2.1 and 3.2.2 together with
a newly-defined converter C, as shown in Figure 3.5. The converter C is defined
as having one bounded state (N1 ∈ Nfix

C ) and two binary inputs (M1,M2 ∈
M bin

C ). One of the inputs (M1) interacts with node A and the other (M2)
interacts with node B. The coefficients are such that using the former requires
imports from node IMP (anode,uG1,A,M1,C,q,k = −1,∀q ∈ Q,∀k ∈ Kq), whereas

using the latter leads to exports through node EXP (anode,uG2,B,M2,C,q,k = 1,∀q ∈
Q,∀k ∈ Kq). Note that since the inputs are binary, there is no risk of getting
an unbounded solution should the export prices exceed the import ones. The
following constraints describe this behaviour:

� State equations

xC,N1,q,k =0.99× xC,N1,q,k−1 + 0.05× uC,M1,q,k − 0.05× uC,M2,q,k,

∀q ∈ Q,∀k ∈ Kq

� State bounds

0.2 ≤ xC,N1,q,k ≤ 1.0,∀q ∈ Q,∀k ∈ Kq

� Node A:

0 = vG1,IMP,A,IA,q,k − uC,M1,q,k,∀q ∈ Q,∀k ∈ Kq

� Node B:

0 = −vG2,B,EXP,BE,q,k + uC,M2,q,k,∀q ∈ Q,∀k ∈ Kq

In this example, two otherwise independent networks interact with one an-
other through a converter. It draws flow from one network (G1) to create it in
the other (G2), potentially taking advantage of price differences to improve the
operational result. On a different note, the example has a low dimensionality
but there are no limits to the number of states, inputs and outputs, nor to the
number of nodes with which the converter interacts on any given network.
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IMP A B
C

EXP

Figure 3.5: Two networks (G1 and G2) connected through a converter (C)

IMP A

Figure 3.6: A network (G1) with one import node (IMP ), one regular node (A)
and one directed arc between them (IA)

3.3 Problems

3.3.1 Single network, single arc problem

Consider a problem relying on one assessment (Q = {0}) for two reporting
periods (P = P0 = {1, 2}). Since there is only one assessment, it has prob-
ability 1 (cwgt

0 = 1) and all periods rely on the same number of intervals
(K0 = {1, 2, 3}). The problem itself concerns a network G1 with one import
node IMP , one regular node A and one optional directed arc between them
(IA ∈ Jdir

G1,IMP,A ∩ J
opt
G1,IMP,A), as shown in Figure 3.6. The arc has one op-

tion (HG1,IMP,A,IA = {4}) with an amplitude-dependent cost (carc,amp
G1,IMP,A,IA =

1.0, carc,min
G1,IMP,A,IA,4 = 2.0) and specifications (vamp,max

G1,IMP,A,IA,4 = 3.0; ∀k ∈ K0:

famp,v
G1,IMP,A,IA,0,k = 1.0, ηG1,IMP,A,IA,0,k = 0.5) that allow the flows needs

for node A to be met (vbaseG1,A,0,1 = 0.5, vbaseG1,A,0,2 = 0.0, vbaseG1,A,0,3 = 1.0).
Meeting them requires imports and the prices for node IMP follow a single-
segment no-volume-limit tariff (∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq: SG1,IMP,q,p,k = {5},
Sfin
G1,IMP,q,p,k = ∅), in which prices are positive and constant (pG1,IMP,q,p,k,s =

1.0,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq,∀s ∈ SG1,IMP,q,p,k). Similarly, the weights
for each time interval and period are invariant (∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq:
ctime
q,p,k = 1). In turn, the discount factors are based on a discount rate of 3.5%
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(∀q ∈ Q: cdfq,1 = 0.966, cdfq,2 = 0.934). This problem can be formulated as follows:

max (SDNCF0 − CAPEX)

s.t. CAPEX ≥ CAPEXarc
G1,IMP,A,IA

CAPEXarc
G1,IMP,A,IA ≥ v

amp
G1,IMP,A,IA + 2.0× δarc,invG1,IMP,A,IA,4

SDNCF0 = −0.966 (IFCG1,IMP,0,1,1 + IFCG1,IMP,0,1,2+

IFCG1,IMP,0,1,3)

− 0.934 (IFCG1,IMP,0,2,1 + IFCG1,IMP,0,2,2+

IFCG1,IMP,0,2,3)

0.5 = 0.5× vG1,IMP,A,IA,0,1

0.0 = 0.5× vG1,IMP,A,IA,0,2

1.0 = 0.5× vG1,IMP,A,IA,0,3

IFCG1,IMP,0,p,k = IFG1,IMP,0,p,k,5,∀p ∈ P0,∀k ∈ K0

IFG1,IMP,0,p,k,5 = vG1,IMP,A,IA,0,k,∀p ∈ P0,∀k ∈ K0

vamp
G1,IMP,A,IA ≤ 3.0× δarc,invG1,IMP,A,IA,4

vG1,IMP,A,IA,0,k ≤ vamp
G1,IMP,A,IA,∀k ∈ K0

vamp
G1,IMP,A,IA ≥ 0

CAPEX ≥ 0

CAPEXarc
G1,IMP,A,IA ≥ 0

IFCG1,IMP,0,p,k ≥ 0,∀p ∈ P0,∀k ∈ K0

IFG1,IMP,0,p,k,5 ≥ 0,∀p ∈ P0,∀k ∈ K0

vG1,IMP,A,IA,0,k ≥ 0,∀k ∈ K0

δarc,invG1,IMP,A,IA,4 ∈ {0, 1}

The solution requires that the arc IA be installed and that its amplitude
be at least two (vamp

G1,IMP,A,IA ≥ 2.0). Since there is no benefit of having an
amplitude higher than two, capital expenditures equal four (CAPEX = 4) and
the flows through IA have to be 1.0, 0.0 and 2.0 during the intervals 1, 2 and 3,
respectively. The objective function value is then -9.7 for the optimal solution.

3.3.2 Two-scenario problem

Consider another problem in which the details of the previous one are used
for the first out of two assessments (Q = {0, 6}) associated with different
probabilities (cwgt

0 = 0.7, cwgt
6 = 0.3). The second one covers three periods

(P6 = {1, 2, 3}) and considers only two time intervals (K6 = {1, 2}). Despite
this, the arc cost function and performance are the same (∀q ∈ Q,∀k ∈ Kq:
famp,v
G1,IMP,A,IA,q,k = 1.0, ηG1,IMP,A,IA,q,k = 0.5), as is the tariff for node IMP

(∀q ∈ Q,∀k ∈ Kq: SG1,IMP,q,p,k = {5}, Sfin
G1,IMP,q,p,k = ∅, pG1,IMP,q,p,k,5 =
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1.0). Conversely, the flow needs in node A differ in the second assessment
(vbaseG1,A,6,1 = 1.25, vbaseG1,A,6,2 = 0.3) though the time weights are also invariant

(∀k ∈ K6,∀p ∈ P6: ctime
6,p,k = 1.0). The problem can be represented as:

max
(

0.7× SDNCF0 + 0.3× SDNCF6 − CAPEX
)

s.t. CAPEX ≥ CAPEXarc
G1,IMP,A,IA

CAPEXarc
G1,IMP,A,IA ≥ v

amp
G1,IMP,A,IA + 2.0× δarc,invG1,IMP,A,IA,4

SDNCF0 = −0.966 (IFCG1,IMP,0,1,1 + IFCG1,IMP,0,1,2+

IFCG1,IMP,0,1,3)

− 0.934 (IFCG1,IMP,0,2,1 + IFCG1,IMP,0,2,2+

IFCG1,IMP,0,2,3)

SDNCF6 = −0.966 (IFCG1,IMP,6,1,1 + IFCG1,IMP,6,1,2)

− 0.934 (IFCG1,IMP,6,2,1 + IFCG1,IMP,6,2,2)

− 0.902 (IFCG1,IMP,6,3,1 + IFCG1,IMP,6,3,2)

0.5 = 0.5× vG1,IMP,A,IA,0,1

0.0 = 0.5× vG1,IMP,A,IA,0,2

1.0 = 0.5× vG1,IMP,A,IA,0,3

1.25 = 0.5× vG1,IMP,A,IA,6,1

0.30 = 0.5× vG1,IMP,A,IA,6,2

IFCG1,IMP,q,p,k = IFG1,IMP,q,p,k,5,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq

IFG1,IMP,q,p,k,5 = vG1,IMP,A,IA,q,p,k,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq

vamp
G1,IMP,A,IA ≤ 3.0× δarc,invG1,IMP,A,IA,4

vG1,IMP,A,IA,q,k ≤ vamp
G1,IMP,A,IA,∀q ∈ Q,∀k ∈ Kq

vamp
G1,IMP,A,IA ≥ 0

CAPEX ≥ 0

CAPEXarc
G1,IMP,A,IA ≥ 0

IFCG1,IMP,q,p,k ≥ 0,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq

IFG1,IMP,q,p,k,5 ≥ 0,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq

vg,IMP,A,IA,q,k ≥ 0,∀q ∈ Q,∀k ∈ Kq

δarc,invG1,IMP,A,IA,4 ∈ {0, 1}

The solution to the aforementioned problem also requires the arc IA, though
in this case with an amplitude of at least 2.5 to accommodate the second scenario
(vamp

G1,IMP,A,IA ≥ 2.5). Since amplitudes are penalised, and no advantage can
be obtained from selecting a higher amplitude, 2.5 is the optimal amplitude
(CAPEX = 4.5). The flows through arc IA are the same for assessment 0 and
the following for assessment 6: 2.5 and 0.6 for intervals 1 and 2, respectively.
Consequently, the objective function value is -11.096 for the optimal solution.
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Chapter 4

Concluding remarks

The present document began to be written as a reference for a model that
soon became too long and fastidious for integral publication under the standard
scientific article format. It has since gained more descriptive passages, examples
and an introduction, in a bid to make it easier to understand.

The mathematical model described in these pages has been designed to ad-
dress socio-economic investment problems concerning energy system infrastruc-
ture. Its aim is to determine the most advantageous set of investments out of
those under consideration to create or complement an energy system. The in-
vestments allow for new operational realities within the energy system and their
combined effect determines the socio-economic performance. The energy system
itself is defined using temporal and spatial dimensions and formulated by draw-
ing on graph theory to represent network flows and generic difference equations
for other processes. The general idea was to arrive at a scalable, versatile and
technologically-agnostic model suitable for a wide range of problems.

The model has been validated through a software implementation. The
validation has included minimalist and realistic problems. Some of the former
have been described in Section 3 – the entire set was deemed inadequate for
inclusion here. As for the latter, these will be discussed in a separate publication
focusing on validation and computational performance.

Computational performance can easily become an issue with this model, if it
is applied without a clear understanding of its limitations. The curse of dimen-
sionality and combinatorial explosion are not new phenomena in optimisation
studies and there is no reason not to expect them to affect this model. The impli-
cation is that one should not expect it to perform well with numerous scenarios,
large networks, described with a high temporal resolution and considering an
exhaustive number of technological alternatives everywhere. In practice, com-
promises will likely have to be made and it is to the users to determine where to
make them for each problem – a corollary of the separation between model and
data. The model is being made available despite this possibility, in the hope
that others may find it useful or discover ways to complement or correct it.
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Chapter 5

Nomenclature

5.1 Sets

5.1.1 General

Q set of operational performance assessments relied upon

P set of reporting periods within the planning horizon

Pq set of reporting periods relying on assessment q, ∀q ∈ Q

Kq set of time intervals used in the assessment q, ∀q ∈ Q

5.1.2 Networks

G set of networks under consideration

Lg set of node locations for network g, ∀g ∈ G

Limp
g set of import nodes for network g, ∀g ∈ G

Lexp
g set of export nodes for network g, ∀g ∈ G

Lmax,in
g

set of nodes on network g incompatible with having more than
one incoming arc unless there are outgoing arcs too, ∀g ∈ G

Lmax,out
g

set of nodes on network g incompatible with having more than
one outgoing arc unless there are incoming arcs too, ∀g ∈ G

GLLarc,max set of network and node pair tuples whose members have to
observe a maximum number of arcs in the specified direction
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GLL set of network and node pair tuples

Sg,l,q,p,k
set of segments for node l on network g during period p and interval
k of assessment q, ∀g ∈ G, ∀l ∈ Limp

g ∪ Lexp
g ,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq

Sfin
g,l,q,p,k

subset of Sg,l,q,p,k for segments having finite maximum volumes,
∀g ∈ G, ∀l ∈ Limp

g ∪ Lexp
g ,∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq

Jdir
g,l,l∗

set of directed arcs for flows from node l to node l∗ on network g,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jund
g,l,l∗

set of undirected arcs between nodes l and l∗ on network g which
are identified via the flow sense defined from node l to node l∗,
∀g ∈ G, ∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jpre
g,l,l∗

set of pre-existing arcs allowing flow between nodes l and l∗ on
network g, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
J inf
g,l,l∗

set of pre-existing directed arcs allowing unrestrained flows from
node l to node l∗ on network g,∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg\(
{l} ∪ Limp

g

)
Jnew
g,l,l∗

set of new arcs between nodes l and l∗ on network g,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jsgl
g,l,l∗

set of individually-selected arcs between nodes l and l∗ on network
g, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jcol
g,l,l∗

set of group-selected arcs between nodes l and l∗ on network g,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jstt
g,l,l∗

set of arcs between nodes l and l∗ on network g modelled as having
static losses, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jstt,dep
g,l,l∗

set of arcs between nodes l and l∗ on network g whose static losses
appear in l, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jstt,arr
g,l,l∗

set of arcs between nodes l and l∗ on network g whose static losses
appear in l∗, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jstt,us
g,l,l∗

set of arcs between nodes l and l∗ on network g whose static losses
appear upstream, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jstt,ds
g,l,l∗

set of arcs between nodes l and l∗ on network g whose static losses
appear downstream, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
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Jsns,sos
g,l,l∗

set of undirected arcs between nodes l and l∗ on network g relying
on special ordered sets of type one for flow sense determination,
∀g ∈ G,∀l ∈ Lg \ Lexp

g , ∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jsns,bin
g,l,l∗

set of undirected arcs between nodes l and l∗ on network g using
binary variables to decide the flow senses during each interval,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jsns,nnr
g,l,l∗

set of undirected arcs between nodes l and l∗ on network g using
non-negative real variables to select the respective flow senses,
∀g ∈ G,∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,∀l∗ ∈ Lg \

(
{l} ∪ Limp

g ∪ Lexp
g

)
Jmdt
g,l,l∗

set of new mandatory arcs between nodes l and l∗ on network g,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jopt
g,l,l∗

set of new optional arcs between nodes l and l∗ on network g,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
J int
g,l,l∗

set of arcs between nodes l and l∗ on network g whose selection is
to be interfaced, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jarc,bin
g,l,l∗

set of new arcs between nodes l and l∗ on network g whose options
are to be selected using binary variables, ∀g ∈ G, ∀l ∈ Lg \ Lexp

g ,
∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
Jarc,nnr
g,l,l∗

set of new arcs between nodes l and l∗ on network g whose options
are to be selected using non-negative real variables,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Jarc,sos
g,l,l∗

set of new arcs between nodes l and l∗ on network g whose options
are to be selected using special ordered sets of type one (SOS1),
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
Hg,l,l∗,j

set of options for new arc j between nodes l and l∗ on network g,

∀g ∈ G,∀l ∈ Lg \ Lexp
g ,∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
,∀j ∈ Jsgl

g,l,l∗

T set of arc groups that are to be selected together

Tmdt set of arc groups for mandatory arcs

T opt set of arc groups for optional arcs

T int set of arc groups whose selection is to be interfaced
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T arc,sos set of arc groups whose selection relies on SOS1

T arc,bin set of arc groups whose selection uses binary variables

T arc,nnr set of arc groups whose selection uses non-negative real variables

GLLJcol
t set of network, node pair and arc tuples in group t, ∀t ∈ T

Ht set of arc options for group t, ∀t ∈ T
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5.1.3 Converters

I set of all flow converters

Ipre set of pre-existing flow converters

Inew set of new flow converters

Mi set of inputs for converter i, ∀i ∈ I

Mnnr
i set of non-negative real inputs for converter i, ∀i ∈ I

M bin
i set of binary inputs for converter i, ∀i ∈ I

Mdim
i set of dimensionable inputs for converter i, ∀i ∈ I

Mfix
i set of bounded inputs for converter i, ∀i ∈ I

Ri set of outputs for converter i, ∀i ∈ I

Rdim,pos
i

set of outputs for converter i whose nominal positive amplitudes
are dimensionable, ∀i ∈ I

Rdim,neg
i

set of outputs for converter i whose nominal negative amplitudes
are dimensionable, ∀i ∈ I

Rdim,eq
i

set of outputs for converter i whose dimensionable nominal positive
and negative amplitudes have to match, ∀i ∈ I

Rfix
i set of bounded outputs for converter i, ∀i ∈ I

Ni set of states for converter i, ∀i ∈ I

Nfix
i set of bounded states for converter i, ∀i ∈ I

Ndim,pos
i

set of states for converter i whose nominal positive amplitudes are
dimensionable, ∀i ∈ I

Ndim,neg
i

set of states for converter i whose nominal negative amplitudes are
dimensionable, ∀i ∈ I

Ndim,eq
i

set of states for converter i whose dimensionable nominal positive
and negative amplitudes have to match, ∀i ∈ I
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Npos,var
i

set of states for converter i capable of inducing penalties for state
increases over the span of a reporting period, ∀i ∈ I

Nneg,var
i

set of states for converter i capable of inducing penalties for state
decreases over the span of a reporting period, ∀i ∈ I

Nref,hgh
i

set of states for converter i capable of inducing penalties due to
violations of upper state references, ∀i ∈ I

Nref,low
i

set of states for converter i capable of inducing penalties due to
violations of lower state references, ∀i ∈ I
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5.2 Variables

5.2.1 Objective Function

CAPEX Capital expenditures prior to the planning horizon begins

SDNCFq
Sum of the discounted net cash flows for the reporting periods
covered by assessment q, ∀q ∈ Q

EFRg,l,q,p,k

Revenue for flow exported through node l on network g during
interval k within assessment q and period p, ∀g ∈ G,∀l ∈ Lexp

g ,
∀q ∈ Q, ∀p ∈ Pq, ∀k ∈ Kq

IFCg,l,q,p,k

Cost for flows imported through node l on network g during
interval k within assessment q and period p, ∀g ∈ G,∀l ∈ Limp

g ,
∀q ∈ Q, ∀p ∈ Pq, ∀k ∈ Kq

EFg,l,q,p,k,s

Flow exported through node l on network g during interval
k of assessment q and period p and according to segment s,
∀g ∈ G,∀l ∈ Lexp

g , ∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq,∀s ∈ Sg,l,q,p,k

IFg,l,q,p,k,s

Flow imported through node l on network g during interval
k of assessment q and period p and according to segment s,
∀g ∈ G,∀l ∈ Limp

g , ∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq,∀s ∈ Sg,l,q,p,k

CAPEXcvt
i Capital expenditures due to converter i, ∀i ∈ Inew

CAPEXarc,sgl
g,l,l∗,j

Capital costs due to arc j between nodes l and l∗ on network

g, ∀g ∈ G,∀l ∈ Lg \ Lexp
g ,∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
, ∀j ∈ Jsgl

g,l,l∗

CAPEXarc,col
t Capital costs due to arc group t, ∀t ∈ T
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5.2.2 Networks

δarc,invg,l,l∗,j,h

investment decision for arc j with option h between nodes l and l∗

on network g, ∀g ∈ G, ∀l ∈ Lg \ Lexp
g , ∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
,

∀j ∈ Jsgl
g,l,l∗ ,∀h ∈ Hg,l,l∗,j

vg,l,l∗,j,q,k

flow from node l to l∗ through arc j on network g during interval k
of assessment q,∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \ ({l} ∪ Limp
g ),

∀j ∈ Jdir
g,l,l∗ ∪ Jund

g,l,l∗ ∪ Jund
g,l∗,l,∀q ∈ Q,∀k ∈ Kq

vamp
g,l,l∗,j

nominal flow amplitude for arc j between nodes l and l∗on network

g, ∀g ∈ G,∀l ∈ Lg \ Lexp
g ,∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
, ∀j ∈ Jsgl

g,l,l∗

wg,l,l∗,j,q,k

static losses for new arc j between nodes l and l∗ on network g
during interval k of assessment q, ∀q ∈ Q,∀k ∈ Kq,∀g ∈ G,
∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
,∀j ∈ Jstt

g,l,l∗ ∩ Jnew
g,l,l∗

wsns
g,l,l∗,j,q,k

static losses for undirected arc j when the flow is from node l to l∗ on
network g during interval k of assessment q, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
,∀j ∈

(
Jstt
g,l,l∗ ∩ Jund

g,l,l∗

)
∪
(
Jstt
g,l∗,l ∩ Jund

g,l∗,l

)
,

∀q ∈ Q,∀k ∈ Kq

ξarc,invg,l,l∗,j

interface variable for new arc j between l and l∗ on network g,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
, ∀j ∈ J int

g,l,l∗

ζsnsg,l,l∗,j,q,k

flow sense indicator for flows from node l to node l∗ on network g
via arc j during interval k of assessment q, ∀g ∈ G,∀l ∈ Lg \ Lexp

g ,
∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
,∀j ∈ Jund

g,l,l∗ ∪ Jund
g,l∗,l,∀q ∈ Q,∀k ∈ Kq

δarc,invt,h investment decision for arc group t with option h, ∀t ∈ T, ∀h ∈ Ht

ξarc,invt interface variable for arc group t, ∀t ∈ T int

vamp
t nominal flow amplitude for arc group t, ∀t ∈ T
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5.2.3 Converters

δcvt,invi investment decision for converter i, ∀i ∈ Inew

ui,m,q,k
input m of converter i during time interval k of assessment q,
∀i ∈ I, ∀m ∈Mi,∀q ∈ Q,∀k ∈ Kq

uamp
i,m nominal amplitude for input m of converter i, ∀i ∈ Inew,∀m ∈Mdim

i

yi,r,q,k
output r of converter i during interval k of assessment q, ∀i ∈ I,
∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq

yamp,pos
i,r

nominal (positive) amplitude for output r of converter i, ∀i ∈ Inew,

∀r ∈ Rdim,pos
i

yamp,neg
i,r

nominal negative amplitude for output r of converter i, if not made

to match the positive one, ∀i ∈ Inew, ∀r ∈ Rdim,neg
i \Rdim,eq

i

xi,n,q,k
state n of converter i during interval k of assessment q, ∀i ∈ I,
∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

xamp,pos
i,n

nominal (positive) amplitude for state n of converter i, ∀i ∈ I,

∀n ∈ Ndim,pos
i

xamp,neg
i,n

nominal negative amplitude for state n of converter i, if not made

to match the positive one, ∀i ∈ I, ∀n ∈ Ndim,neg
i \Ndim,eq

i

∆xref,hghi,n,q,k

upper reference violation for state n of converter i during interval k

of assessment q, ∀i ∈ I, ∀n ∈ Nref,hgh
i ,∀q ∈ Q,∀k ∈ Kq

∆xref,lowi,n,q,k

lower reference violation for state n of converter i during interval k

of assessment q, ∀i ∈ I, ∀n ∈ Nref,low
i ,∀q ∈ Q,∀k ∈ Kq

∆xpos,vari,n,q

positive variation of state n on converter i within assessment q,
∀i ∈ I, ∀n ∈ Npos,var

i ,∀q ∈ Q

∆xneg,vari,n,q

negative variation of state n on converter i within assessment q,
∀i ∈ I, ∀n ∈ Nneg,var

i ,∀q ∈ Q
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5.3 Parameters

5.3.1 Objective function

cwgt
q weight of assessment q, ∀q ∈ Q

cdfq,p discount factor for period p and assessment q, ∀q ∈ Q,∀p ∈ Pq

ctime
q,p,k

relative weight of interval k relative to period p within assessment q,
∀q ∈ Q, ∀p ∈ Pq,∀k ∈ Kq

carc,min
g,l,l∗,j,h

minimum cost of new arc j with option h for flows between nodes l
and l∗ on network g,∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
,

∀j ∈ Jnew
g,l,l∗ ,∀h ∈ Hg,l,l∗,j

carc,varg,l,l∗,j

unit flow amplitude cost for arc j between nodes l and l∗ on network
g,∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
,∀j ∈ Jnew

g,l,l∗

copex,ui,m,q,p,k

unit price of using input m on converter i during interval k and period
p of assessment q, ∀i ∈ I, ∀m ∈Mi,∀q ∈ Q, ∀k ∈ Kq,∀p ∈ Pq

copex,yi,r,q,p,k

unit price associated with output r on converter i during interval k and
period p of assessment q, ∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q, ∀k ∈ Kq,∀p ∈ Pq

cpos,vari,n,q,p

unit cost of the positive variation of state n on converter i during
period p of assessment q, ∀i ∈ I, ∀n ∈ Npos,var

i ,∀q ∈ Q,∀p ∈ Pq

cneg,vari,n,q,p

unit cost of the negative variation of state n on converter i during
period p of assessment q, ∀i ∈ I, ∀n ∈ Nneg,var

i ,∀q ∈ Q,∀p ∈ Pq

cref,hghi,n,q,p,k

unit cost of upper state reference violations of state n on converter i

during interval k and period p of assessment q, ∀i ∈ I, ∀n ∈ Nref,hgh
i ,

∀q ∈ Q,∀k ∈ Kq,∀p ∈ Pq

cref,lowi,n,q,p,k

unit cost of lower state reference violations of state n on converter i

during interval k and period p of assessment q, ∀i ∈ I, ∀n ∈ Nref,low
i ,

∀q ∈ Q,∀k ∈ Kq,∀p ∈ Pq

ccvt,min
i minimum cost of installing flow converter i, ∀i ∈ Inew
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pg,l,q,p,k,s

price of resource through node l on network g during interval k
within assessment q and period p, and according to segment s,
∀g ∈ G,∀l ∈ Limp

g ∪ Lexp
g , ∀q ∈ Q,∀p ∈ Pq,∀k ∈ Kq,∀s ∈ Sg,l,q,p,k

vmax
g,l,q,p,k,s

maximum volume permitted through node l on network g during
interval k of assessment q and period p according to segment s,

∀g ∈ G,∀l ∈ Limp
g ∪ Lexp

g ,∀q ∈ Q,∀p ∈ Pq, ∀k ∈ Kq,∀s ∈ Sfin
g,l,q,p,k

ccvt,ui,m

unit cost of the nominal amplitude for input m on flow converter i,
∀i ∈ Inew,∀m ∈Mdim

i

ccvt,x,posi,n

unit cost of the nominal (positive) amplitude for state n on flow

converter i, ∀i ∈ Inew,∀n ∈ Ndim,pos
i

ccvt,x,negi,n

unit cost of the nominal negative amplitude for state n on flow

converter i, ∀i ∈ Inew,∀n ∈ Ndim,neg
i \Ndim,eq

i

ccvt,y,posi,r

unit cost of the nominal (positive) amplitude for output r on flow

converter i, ∀i ∈ Inew,∀r ∈ Rdim,pos
i

ccvt,y,negi,r

unit cost of the nominal negative amplitude for output r on flow

converter i, ∀i ∈ Inew,∀r ∈ Rdim,neg
i \Rdim,eq

i

carc,min
t,h minimum cost of arc group t with option h, ∀t ∈ T, ∀h ∈ Ht

carc,vart unit flow amplitude cost for arc group t, ∀t ∈ T
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5.3.2 Networks

vbaseg,l,q,k

base flow component in node l on network g during interval k and
assessment q, ∀g ∈ G,∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,∀q ∈ Q,∀k ∈ Kq

amax,arc
g,l,l∗

maximum permitted number of arcs allowing flow from node l to
node l∗ on network g, ∀(g, l, l∗) ∈ GLLarc,max

anode,ug,l,i,m,q,k

gain for input m within converter i on node l in network g during
interval k and assessment q, ∀g ∈ G,∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀i ∈ I, ∀m ∈Mi,∀q ∈ Q,∀k ∈ Kq

anode,yg,l,i,r,q,k

gain for output r within converter i on node l in network g during
interval k and assessment q, ∀g ∈ G,∀l ∈ Lg \

(
Lexp
g ∪ Limp

g

)
,

∀i ∈ I, ∀m ∈Mi,∀q ∈ Q,∀k ∈ Kq

amax,in
g,l

big M value for the disjunctive constraint limiting the number of
incoming arcs for node l on network g, ∀g ∈ G,∀l ∈ Lmax,in

g

amax,out
g,l

big M value for the disjunctive constraint limiting the number of
outgoing arcs for node l on network g, ∀g ∈ G,∀l ∈ Lmax,out

g
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5.3.3 Arcs

ηg,l,l∗,j,q,k

efficiency of arc j from node l to node l∗ on network g during
interval k within assessment q, ∀q ∈ Q,∀g ∈ G, ∀l ∈ Lg \ Lexp

g ,
∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
,∀j ∈ Jdir

g,l,l∗ ∪ Jund
g,l,l∗ ∪ Jund

g,l∗,l,∀k ∈ Kq

vamp
g,l,l∗,j

nominal amplitude for pre-existing arc j between nodes l and l∗

on network g, ∀g ∈ G, ∀l ∈ Lg \ Lexp
g , ∀l∗ ∈ Lg \

(
{l} ∪ Limp

g

)
,

∀j ∈ Jpre
g,l,l∗ \ J

inf
g,l,l∗

vamp,max
g,l,l∗,j,h

maximum nominal amplitude for new arc j with option h that
is between nodes l and l∗ on network g, ∀g ∈ G, ∀l ∈ Lg \ Lexp

g ,

∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
, ∀j ∈ Jsgl

g,l,l∗ , ∀h ∈ Hg,l,l∗,j

vg,l,l∗,j,q,k

maximum amplitude for flows through pre-existing arc j between
nodes l and l∗ on network g during interval k and assessment q,
∀q ∈ Q, ∀k ∈ Kq, ∀g ∈ G, ∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
,

∀j ∈
(
Jund
g,l,l∗ ∪ Jund

g,l∗,l

)
∩
(
Jpre
g,l,l∗ ∪ J

pre
g,l∗,l

)
∪
(
Jdir
g,l,l∗ ∩ J

pre
g,l,l∗ \ J

inf
g,l,l∗

)

famp,v
g,l,l∗,j,q,k

amplitude adjustment coefficient for arc j between nodes l and l∗

on network g during interval k of assessment q, ∀q ∈ Q,∀k ∈ Kq,
∀g ∈ G, ∀l ∈ Lg \ Lexp

g , ∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
, ∀j ∈ Jdir

g,l,l∗ ∪ Jund
g,l,l∗

wg,l,l∗,j,q,k

Static losses for pre-existing arc j between nodes l and l∗ on
network g during interval k of assessment q, ∀q ∈ Q,∀k ∈ Kq,
∀g ∈ G,∀l ∈ Lg \ Lexp

g ,∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
, ∀j ∈ Jstt

g,l,l∗∩
Jpre
g,l,l∗

wnew
g,l,l∗,j,h,q,k

Static losses for new arc j with option h between nodes l and l∗

on network g during interval k within assessment q, ∀q ∈ Q,
∀k ∈ Kq, ∀g ∈ G, ∀l ∈ Lg \ Lexp

g , ∀l∗ ∈ Lg \
(
{l} ∪ Limp

g

)
,

∀j ∈ Jstt
g,l,l∗ ∩ Jnew

g,l,l∗ ,∀h ∈ Hg,l,l∗,j

vamp,max
t,h

maximum nominal amplitude of arc group t with option h,
∀t ∈ T, h ∈ Ht
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5.3.4 Converters

ui,m,q,k
upper bound for input m linked to converter i for interval k and

assessment q, ∀i ∈ I, ∀m ∈Mfix
i ,∀q ∈ Q,∀k ∈ Kq

uamp,max
i,m

maximum nominal amplitude for input m on converter i, ∀i ∈ Inew,
∀m ∈Mdim

i

famp,u
i,m,q,k

amplitude correction coefficient of input m and converter i during
interval k and assessment q, ∀i ∈ Inew, ∀m ∈Mdim

i ,∀q ∈ Q,∀k ∈ Kq

aeq,xi,n,n∗,q,k

coefficient for the effect of state n∗ on state n of converter i during
interval k of assessment q, ∀i ∈ I, ∀n ∈ Ni,∀n∗ ∈ Ni,∀q ∈ Q,∀k ∈ Kq

beq,xi,n,m,q,k

coefficient for the effect of input m on state n of converter i during
interval k of assessment q, ∀i ∈ I, ∀n ∈ Ni,∀m ∈Mi,∀q ∈ Q,∀k ∈ Kq

eeq,xi,n,q,k

constant in the equation for state n of converter i during interval k
of assessment q, ∀i ∈ I, ∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

xi,n,q,k
upper bound for state n on converter i during time interval k within
assessment q, ∀i ∈ I, ∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

xi,n,q,k
lower bound for state n on converter i during time interval k within
assessment q, ∀i ∈ I, ∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

xamp,pos
i,n

maximum nominal (positive) amplitude for state n on converter i,

∀i ∈ I, ∀n ∈ Ndim,pos
i ,∀q ∈ Q,∀k ∈ Kq

xamp,neg
i,n

maximum nominal negative amplitude for state n on converter i,

∀i ∈ I, ∀n ∈ Ndim,neg
i \Ndim,eq

i ,∀q ∈ Q,∀k ∈ Kq

famp,x
i,n,q,k

amplitude correction coefficient for state n on converter i during
interval k and assessment q, ∀i ∈ I, ∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

xi,n,q,0
initial condition for state n on converter i for assessment q, ∀i ∈ I,
∀n ∈ Ni,∀q ∈ Q

xref,hghi,n,q,k

upper reference for state n on converter i during interval k within

assessment q, ∀i ∈ I, ∀n ∈ Nref,hgh
i ,∀q ∈ Q,∀k ∈ Kq

xref,lowi,n,q,k

lower reference for state n on converter i during interval k within

assessment q, ∀i ∈ I, ∀n ∈ Nref,low
i ,∀q ∈ Q,∀k ∈ Kq
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ceq,yi,r,n,q,k

coefficient for the effect of state n on output r of converter i during
interval k of assessment q, ∀i ∈ I, ∀r ∈ Ri,∀n ∈ Ni,∀q ∈ Q,∀k ∈ Kq

deq,yi,r,m,q,k

coefficient for the effect of input m on output r of converter i during
interval k of assessment q, ∀i ∈ I, ∀r ∈ Ri,∀m ∈Mi,∀q ∈ Q,∀k ∈ Kq

eeq,yi,r,q,k

constant in the equation for output n of converter i during interval k
of assessment q, ∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq

yi,r,q,k
upper bound for output r on converter i during time interval k of
assessment q, ∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq

yi,r,q,k
lower bound for output r on converter i during time interval k of
assessment q, ∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq

yamp,pos
i,r

maximum nominal (positive) amplitude for output r on converter i,

∀i ∈ I, ∀r ∈ Rdim,pos
i ,∀q ∈ Q,∀k ∈ Kq

yamp,neg
i,r

maximum nominal negative amplitude for output r on converter i,

∀i ∈ I, ∀r ∈ Rdim,neg
i \Rdim,eq

i ,∀q ∈ Q,∀k ∈ Kq

famp,y
i,r,q,k

amplitude correction coefficient for output r on converter i during
interval k and assessment q, ∀i ∈ I, ∀r ∈ Ri,∀q ∈ Q,∀k ∈ Kq
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