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Preface
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Abstract

The immune system is instrumental in recognizing and defending the body
from infections or malfunctioning cells. Although we have improved our un-
derstanding of the immune system substantially in the last decades, many
questions remain to be answered. Computational tools can play a major role
in helping us obtain a better insight into the immune system and be instrumen-
tal in improving therapies and diagnostic routines. Immunotherapy is one of
the novel fields that computational tools have supported. The core concept of
immunotherapy is to exploit the patient’s own immune system to fight cancer
and other diseases by eliciting or suppressing immune responses targeted at
specific molecules. A commonly used strategy in immunotherapy is to iden-
tify cancer-specific peptides - named neoantigens/neoepitopes - that can be
recognized and targeted by the immune system.

In the first part of this thesis, we present a review paper that provides
readers with a general overview of current computational tools for predicting
T cell epitopes and neoepitopes, guiding the reader through their potential
uses, the data needed, and their advantages and disadvantages. The work
also discusses potential future perspectives, uncovering potentially important
directions for people to take going forward.

A key element of immunotherapy is the ability to elicit an effective and
targeted immune response. T cells carry out different roles in the immune
response; some actively find and eliminate infected or pathogenic cells (CD8+
T cells), while others regulate the overall immune response (CD4+ T cells).
However, our understanding of the genesis and action modes of such cell types
is still limited.

In the second paper, we present a model developed to predict the lineage
of a T cell, whether it is a CD8+ or CD4+ T cell, from its T cell receptor. We
also discuss the possibility that not all T cell receptors may be specific for a
certain lineage but exhibit plasticity in their lineage choice.

The T cell receptor expressed on the surface of T cells interacts with pep-
tides presented by the major histocompatibility complex (MHC) found on the
surface of specific cells. Upon recognition of a MHC presented peptide, an
immune response will be elicited. We still do not fully comprehend which com-
plexes a T cell receptor will interact with, and what differentiates a binding
from a non-binding complex.
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In the third project of this thesis, we provide a study showing that energies
calculated from modeled structures carry some predictive power in differenti-
ating binding from non-binding complexes. We also show that it is challenging
to identify generalizing patterns across peptides due to the absence of clear
sequence patterns that can distinguish binders from non-binders.

We hope that the research conducted in this thesis will provide valuable
insights regarding T cell receptors and that this research can be used as a
stepping stone to improve immunotherapy in the future.
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Dansk resumé

Immunsystemet er medvirkende til at genkende og forsvare kroppen mod infek-
tioner eller darligt fungerende celler. Selvom vi har forbedret vores forstaelse
af immunsystemet vaesentligt i de sidste artier, er der stadig mange spgrgsmal,
der mangler at blive besvaret. Beregningsvaerktgjer kan spille en stor rolle i at
hjeelpe os med at opna en bedre indsigt i immunsystemet samt vaere medvir-
kende til at forbedre terapier og diagnostiske rutiner. Immunterapi er et af de
nye omrader, som beregningsveerktgjer har understottet. Kernekonceptet for
immunterapi er at udnytte patientens eget immunsystem til at bekeempe krzeft
og andre sygdomme ved at fremkalde eller undertrykke immunresponser rettet
mod specifikke molekyler. En almindeligt anvendt strategi i immunterapi er at
identificere kreeftspecifikke peptider - kaldet neoantigener/neoepitoper - som
kan genkendes og malrettes af immunsystemet.

I den fgrste del af denne athandling praesenterer vi et gennemgangspapir,
der giver laeserne et generelt overblik over aktuelle beregningsveerktgjer til at
forudsige T-celle epitoper og neoepitoper, som guider laeseren gennem deres
potentielle anvendelser, de ngdvendige data og deres fordele og ulemper. Ar-
bejdet diskuterer ogsa potentielle fremtidsperspektiver og afdsekker potentielt
vigtige retninger som man bgr tage fremadrettet.

Et nggleelement i immunterapi er evnen til at fremkalde et effektivt og
malrettet immunrespons. T-celler udfgrer forskellige roller i immunresponset;
nogle finder og fjerner aktivt inficerede eller patogene celler (CD8+ T-celler),
mens andre regulerer det overordnede immunrespons (CD4+ T-celler). Vores
forstaelse af disse celletypers tilblivelse og handlingsmader er dog stadig be-
graenset.

I den anden artikel praesenterer vi en model udviklet til at forudsige afstam-
ningen af en T-celle, hvad enten det er en CD8+ eller CD4+ T-celle, fra dens
T-cellereceptor. Vi diskuterer ogsa muligheden for, at ikke alle T-cellereceptorer
kan veere specifikke for en bestemt afstamning, men udviser plasticitet i deres
afstamningsvalg.

T-cellereceptoren udtrykt pa overfladen af T-celler interagerer med peptider
praesenteret af histokompatibilitetskompleks (MHC), som findes pa overfladen
af specifikke celler. Ved genkendelse af et MHC praesenteret peptid vil et im-
munrespons blive fremkaldt. Vi forstar stadig kun til dels, hvilke komplekser
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en T-cellereceptor vil interagere med, og hvad der adskiller et bindende fra et
ikke-bindende kompleks.

I det tredje projekt i denne athandling praesenterer vi en undersggelse, der
viser, at energier beregnet ud fra modellerede strukturer har en vis forudsi-
gelsesevne til at differentiere bindende fra ikke-bindende komplekser. Vi viser
ogsé, at det er udfordrende at identificere generaliserende mgnstre pé tveers af
peptider pé grund af manglende klare sekvensmgnstre, der kan skelne bindere
fra ikke-bindere.

Vi haber, at forskningen udfgrt i denne afhandling vil give veerdifuld ind-
sigt vedrgrende T-cellereceptorer, og at denne forskning kan bruges som et
springbreet til at forbedre immunterapi i fremtiden.
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1 CHAPTER 1. INTRODUCTION

1 Introduction

1.1 Scope of thesis

This thesis focuses on applying machine learning models to deepen our under-
standing of immunological bioinformatics by tackling a subset of the current
deficiencies in the research field. The immune system is one of the most com-
plex biological systems to study. Even today, all the cellular functions are
yet to be fully comprehended. One such area is the adaptive immune system,
which is an essential part of the immune system. The primary purpose of the
adaptive immune system is to ensure that the host is healthy by detecting and
eliminating both malfunctioning cells and pathogenic infections (1). One of
the essential elements in the adaptive immune system is the T cell. The T cell
identifies abnormal cells by utilizing T cell receptors expressed on their surface,
which interact with peptides presented by the major histocompatibility com-
plexes (MHCs) found on the surface of specific cells such as antigen presenting
cells.

Two main types of T cells exist, namely CD4+4 and CD8+ T cells. These
T cells have different functions in the adaptive immune system and interact
differently with cells in the body. However, what determines the lineage and
defining characteristics of a T cell from a given lineage is a field under active
research. Appreciation of what distinguishes a T cell in one lineage from a T
cell in another can potentially provide us with information depicting how a T
cell engages with cells and change our perception of what the T cell recognizes.
Therefore, one of the areas this thesis investigates is the lineage of a T cell,
aiming to understand if it can be determined based on the T cell receptor
(TCR).

T cells become activated and proliferate upon recognizing presented pep-
tides. Once activated, the T cells can set processes in motion to eliminate
malfunctioning or pathogen-infected cells (1). Peptides capable of inducing
an immune response are known as T cell epitopes. However, the presentation
of a peptide does not necessarily entail a T cell driven immune response. A
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better understanding of what drives a T cell immune response can help im-
prove T cell-based immunotherapies with the objective of either activating or
suppressing the body’s own immune system to help treat disease (2). T cell
epitopes are mainly discovered through experimental methods; this is both
expensive and time-consuming. Therefore, developing more cost-effective, less
time-consuming, and more reliable tools for predicting T cell epitopes is of
great interest for both the industry and academic research.

This thesis seeks to investigate T cell-based immunotherapy and the central
workings of the current approaches and tools. A range of tools have been made
to predict which peptides will elicit an immune response; however, most of these
methods focus on MHC presentation. Therefore, in one of the projects included
in this thesis, we try to address this area by studying whether it is possible
to improve the prediction capabilities using structural energy calculations and
the TCR sequence information.

The overall aim of this thesis was to study T cells and their receptors.
This was studied to develop methods for deepening our understanding and
improving the prediction of T cell recognition, aiming to improve T cell based
immunotherapy.

1.2 Structure of the Thesis

The thesis is divided into seven chapters subsequent to this. The first four,
chapters 2, 3, 4, and 5 are theoretical explanatory chapters that set the scene
for the published papers and explain the underlying concepts. Chapters 6,
7, and 8 present the research conducted during this Ph.D., and chapter 9
summarizes and provides future perspectives.

Chapter 2 covers the background of the immune system, with a focus on
the adaptive system’s functionality and interactions.

Chapter 3 covers the background of machine learning, expanding on the
different methods utilized throughout the PhD.

Chapter 4 covers different ways of representing data and ways of evaluating
machine learning methods.

Chapter 5 covers T cell based immunotherapy and the current tools within
the field of T cell epitope prediction for T cell-based immunotherapy.
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Chapter 6 introduces the first scientific paper included in this thesis. The
main aim of this publication was to review T cell based immunotherapy and
the tools currently available within this field.

Chapter 7 presents an ongoing project where the abstract has been ac-
cepted. This project investigates the possibility of predicting whether a TCR,
is from the CD4+ or CD8+ T cell lineage based on the TCR. sequence using
convolutional neural networks (CNNs). Furthermore, the manuscript also aims
to create a discussion regarding the potential plasticity of T cells.

Chapter 8 presents the second ongoing project included in the thesis.
This project aims to study whether the prediction of T cell recognition can be
improved by including structure-based energy terms in the prediction method.

Chapter 9 provides a summary of the thesis, reflects on all three projects,
and provides future perspectives.
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2 The immune system

The immune system is the essential component of homeostasis. The primary
role of the immune system is to protect against outside intruders such as viruses,
bacteria, organisms, or other agents causing disease, which can collectively be
referred to as pathogens. The immune system can generally be divided into
two subgroups, the innate and the adaptive immune systems. The innate im-
mune system is considered fast and the first line of defense. It engages in a
nonspecific manner and provides a more general defense against pathogens.
Although the innate immune system is regarded as nonspecific, it is still a
very powerful system, capable of effectively discriminating between host cells
and pathogens. The innate immune system utilizes germline-encoded recep-
tors capable of recognizing features that are common to many pathogens and
can therefore recognize broad classes of pathogens. While the innate immune
system can target a broad class of pathogens, the germline-encoding of the re-
ceptors restricts ther adaptability to recognize more diverse pathogens. Unlike
the innate immune system, the adaptive immune system can target the more
diverse pathogens not covered by the innate immune system, launching a very
precise response against these particular pathogens. However, the response
from the adaptive immune system is slow to develop upon first exposure to
new pathogens and it is very energy consuming (1).

2.1 The adaptive immune system

The adaptive immune system can additionally be divided into two groups re-
sponsible for the humoral immune response and the cell-mediated immune re-
sponse. Whilst there is some overlap between these two groups, such as both of
them being a type of lymphocytic cell interacting with other lymphocytic cells
and originating in the bone marrow, they differ in their function and how they
further develop. The humoral response is primarily driven by what is known
as B cells. This type of cell originates and develops in the bone marrow, thus
the name B cells. The main focus of the humoral response is to target extra-
cellular pathogens. On the other hand, the cell mediated response focuses on
inspecting and identifying aberrant cells as in the case of cancer cells, or cells
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with intracellular pathogens, due to viral or bacterial infections. Cells from
the mediated response, unlike B cells, do not develop in the bone marrow, but
instead migrate from the bone marrow to the thymus for further maturation
(1), thereby naming this type of cells T cells. The main aim of this thesis was
to develop prediction methods to improve our understanding of T cells and
how they interact. The following sections will therefore give an overview of
the important components that play a part in what defines the T cell and its
interaction.

2.2 T cell lineage

The cell-mediated response can be roughly divided into two overall lineages,
determined by whether a T cell expresses a cluster of differentiation (CD) 8
or 4 co-receptor. The expressed CD8 or CD4 co-receptor, together with a
protein complex also present on the surface of a T cell named a T cell receptor
(TCR), interacts with cells to determine which cells are abnormal (3). We
will elaborate further on cell abnormality in the first article of the thesis in
chapter 6. Interestingly, before differentiating into either the CD8 or CD4
lineage, all T cells start out as double-positive T cells, expressing both the
CD8 and CD4 co-receptor on their cell surface (4). One could assume that
there may be a clear distinction between the two lineages. However, as we will
cover in more depth in the manuscript in chapter 7, this distinction may not
be that clear-cut. The key interaction to distinguish abnormal from normal
cells is to be found between the TCR and peptides bound and presented by the
Major Histocompatibility Complex (MHC). It is generally believed that the
TCR together with the CD8 or CD4 co-receptor expressed on the surface of
the T cell determines whether the T cell will interact with MHC class I or class
IT bound peptide complexes, respectively as shown in figure 2.1. MHC proteins
are expressed on the surface of cells and differ in i) which cells present them
dependent on the MHC class, where MHC class I is present on all nucleated
cells, whereas MHC class II molecules are only expressed by antigen-presenting
cells (5) and ii) how the peptides they present are obtained. The MHC class I
molecules display intracellularly derived peptides, whereas peptides presented
by MHC class IT are mainly derived from extracellular proteins. It is commonly
believed that CD8+ T cells interact with peptide-bound MHC class I complexes
and, upon engagement, become activated cytotoxic T cells specialized in killing
the target cells. CD44 T cells instead primarily engage with peptide-bound
MHC class II complexes. Upon contact, the majority of CD4+ T cells either
become activated T helper cells, known for stimulating activated CD8+ T cell
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expansion and B cell development, or T regulatory cells, which induce tolerance
by suppressing the immune response against self (6).

Target cell Antigen presenting cell

pMHC class | PMHC class I

4
TCR o8 b

CD8+T cell CD4+T cell

Figure 2.1. An illustration showing on the left side a CD8+ T
cell binding to a MHC class I presented peptide and on the right
side a CD4+ T cell binding to MHC class II presented peptide.

2.3 T cell receptor structure

The TCR is a heterodimeric protein expressed at the cell membrane. This
heterodimeric complex consists of two transmembrane chains capable of recog-
nizing peptides presented by an MHC complex with the interaction stabilized
by the CD8 or CD4 co-receptor. Two kinds of TCRs can be expressed at the
cell membrane, and these are defined by the component chains, which can be
either a/f or v/d. Most T cells express TCR composed of a/f chains, with
a minority of only about 5% of T cells expressing TCRs with v/d chains (7).
The scope of this thesis is focused on T cells expressing /8 TCRs; therefore,
the following section will be exclusively dedicated to these. The two chains
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in the TCR each contain a constant region and an N-terminal variable region.
There are three complementarity determining regions (CDRs) located within
the variable region, namely CDR1, CDR2, and CDR3. These three regions
have a loop structure and are the part of the TCR mainly responsible for the
recognition of specific peptide-MHC complexes, shown in figure 2.2.

(a)

CDR2 CDR1 CDR3 ~ CDR3 CDR1  CDR2
\ \ / /

~  Variable region

|
1
I
1
I
1
B

-
|
|
|
|
! N
e Constant region
|
I
|
I
_l

(b)

Antigen binding site

CDR3

Figure 2.2. An illustration showing the structure of a T cell re-
ceptor, (a) provides a side view of the T cell receptor, showing the
constant region and variable regions and the highlighted comple-
mentarity determining regions CDRs. (b) gives a top view of the
CDRs, showing the location which impacts antigen specificity the
most. The images were made with PyMOL using the 10GA PDB
structure.
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2.4 T cell diversity

In order to recognize a wide variety of pathogens and abnormal cells, an exten-
sive diverse repertoire of T cell receptors (TCR) is necessary. The main driver
of this diversity found in TCRs is a mechanism known as V(D)J recombination,
which occurs during early T cell development (1). Overall, this process works
by recombining gene segments called variable (V), diversity (D), and joining
(J) segments, forming the variable domain of a TCR chain. The main drivers of
MHC presented peptide recognition are the CDRs, which coincide with being
the most variable part of the TCR. As shown in figure 2.3, the CDR regions
are encoded differently. The CDR1 and CDR2 regions of both the o and the
[ chain are both only encoded by V gene segments, whereas the CDR3 regions
span more gene segments. In detail, CDR3 on the § chain is encoded with
segments from the V, J, and D genes with the addition of nucleotides at the
junction between gene segments. The CDR3 of the « chain also spans V and J
gene segments with the addition of nucleotides, but unlike the § chain, it does
not include a D gene segment. The diversity found in these variable domains is
a product of an almost random combination of the multiple different variations
of the V, D, and J genes, consolidated by the addition of nucleotides added to
the junction between the gene segments (8).

(a) TCR o-chain () TCR p-chain
CDRI  CDR2 CDR3 CDRI CDR2 CDR3
—~~ —~~ —— ~~ ~~ —_—
Va N Ja VB N DB N JB

Figure 2.3. This illustrates V(D)J recombination, which rear-
ranges the Variable (V), Joining (J) and Diversity (D) gene seg-
ments to create variability in TCR receptors. This figure shows
the process for the CDRs which impacts TCR specificity the most.
Figure adapted from Laydon et al. 2015 (8)

2.5 TCR recognition of the peptide-MHC complex

T cells expressing the CD8 co-receptor are often associated with MHC class
I presented peptide recognition. Contrarily to MHC class II bound peptides,
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which are longer and often more variable, peptides presented by the MHC
class T molecule are typically between 8 to 14 amino acid residues long, with
9 residue peptides being one of the most abundant lengths (9). The MHC
class I molecule is heterodimeric and composed of two polypeptide chains:
the B2 microglobulin and the membrane-spanning « chain. Unlike the (52
microglobulin encoded by the B2m gene, the « chain is very polymorphic and
is encoded in humans by the human leukocyte antigen (HLA) locus (10). The
alpha chain folds into three domains, namely al, a2, and a3. The region
between the al and a2 domains is known as the peptide-binding groove, and
it is this binding groove that restricts peptide length, as shown in figure 2.4.
In MHC class T molecules the binding groove has narrow ends, which forces
residues of the peptide up to accommodate the length of the peptide as it
increases. The bulged conformation generally assumed by the peptides can
then be recognized by TCRs (11).

TCRa chain
TCR  — y

MHCclass| —

B2 microglobulin

—

Figure 2.4. A structural representation of a T cell receptor (TCR)
binding to a Major histocompatibility complex (MHC) class I pre-
sented peptide. This image was made with PyMOL using he 10GA
PDB structure.
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The CDR1, CDR2, and CDR3 are the most variable regions of the TCR and
mainly drive the interaction with peptide-MHC complexes, as stated previously.
The CDR3 loops, and especially the CDR3 3 loops, are very diverse, and the
part of the TCR accounting for most of the peptide recognition and specificity.
The CDR1 and CDR2 loops have less variability and are the regions of the
TCR, which primarily interact with the MHC (12) as is shown in figure 2.4.
The impact of the CDR loops regarding TCR peptide-MHC recognition makes
them an important element to include when predicting TCR peptide-MHC
interaction.

The structure of TCR peptide-MHC (TCRpMHC) complexes can provide
an additional level of information to models predicting TCR, peptide-MHC
interaction that can potentially improve the prediction capabilities of these
models. However, the hypervariability of the CDRs makes it challenging to
model TCRs, and methods modeling T'CR structures are scarce. One such tool
is Lymphocyte receptor automated modeling (LYRA), developed by Klausen
et al. in 2015 (13), which uses templates from a TCR database to model
TCRs. A tool developed by Jensen et al. in 2019, named TCRpMHCmodels
(14), models TCRpMHC complexes by combining modeled TCRs generated
using LYRA with modeled peptide-MHC complexes from MODELLER (15),
generated using peptide-MHC templates from a peptide-MHC database.

Naturally, not all peptides trigger a cellular immune response mediated by
T cells. In most cases, it is more common for parts of an antigen known as
an antigenic determinant or epitope to trigger a T cell response. However,
in certain instances, such as with autoimmune disease, peptides categorized
as self-peptides presented by healthy cells can provoke an unwanted T cell
response as well (16). Therefore what defines an epitope and what triggers a T
cell-mediated immune response has shown to be a challenging task to predict.
In addition to being a difficult task to predict, it is also a field where significant
progress has been slowed down by the limited data linking TCR sequences to
their target peptide-MHC complexes.
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3 machine learning

Machine learning is a field of study which develops computational algorithms
capable of learning the patterns in a dataset without following explicit in-
structions. The field of machine learning has seen rapid development in the
complexity of the models over the years. Earlier models such as decision trees
and simple neural networks have developed into more complex models such
as random forests and neural network-based Deep learning models (17). The
development of newer and more complex models is mainly due to i) improved
hardware technologies and ii) the increase in data availability. The new com-
putational hardware is continuously improving and has already reached a state
where it is possible to train networks on millions of data points in just a couple
of hours or days. The exponential increase in data is also a critical factor in the
development of models regarding their applicabilities and the possibilities (18).
The field of machine learning can overall be divided into two main groups; su-
pervised and unsupervised learning. Supervised learning utilizes labeled data,
meaning knowledge of the true target value of given data input. The algorithm
approximates the most optimal function to describe the data by comparing and
optimizing the model towards the true labels. Unsupervised learning instead
learns how to group the data purely based on the data input itself, without
the assistance of labels. One of the more widely used methods within unsuper-
vised learning is clustering, which clusters data based on similarities between
the data points.

3.1 Random forest

Bioinformaticians use machine learning for their predictive power and to better
understand the biology driving the prediction. Models such as neural networks
are often considered a black box since it can be complicated to decipher how
the model arrived at its predictions, where models such as Random Forest
allow for a more straightforward attainable insight into the model’s decisions,
making it an important and often used method within bioinformatics.

The random forest is a supervised learning algorithm, which operates as
an ensemble, consisting of an often large number of individual diverse decision
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trees. Decision Trees work by splitting the data conditioned on one of the input
features. The split generates two or more branches as output; each branch will
continue splitting in an iterative manner until the data is exhausted, generating
a tree-like structure. A visualization showing the decision path and the tree
like structure of a decision tree can be seen in figure 3.1. Decision trees split
the data based on the variables which can most efficiently split the data to
match the true target (19). A split is decided based on an estimated change
of impurity between classes, where the split leading to the lowest reduction in
impurity is chosen using the Gini index (20). This way, the tree can discover
which features are more informative regarding the different classes and thereby
decide which features can most cleanly divide the data into the different classes.
This setup makes decision trees very good at predicting on the training data,
but they often fail to generalize well to new data (21).

tree 1

l

class 1

Figure 3.1. An illustration of a decision tree. The colored circles
indicate the decision path taken to make the final prediction, where
in this case the tree predicts class 1 for the given input.

The random forest, developed in 1995 by Tin Kam Ho (22) and further
optimized in 2001 by Leo Breiman (23), aims to rectify the inability of the in-
dividual tree to generalize by using the concept of - the wisdom of the crowds.
During training of the random forest, subsets of features and samples are ran-
domly selected to build multiple decision trees as can be seen in figure 3.2.
Each decision tree makes a prediction of the class for a given sample, and the
class predicted by a majority of trees, becomes the final random forest predic-
tion for the sample. The random forest is a method that is often used as a
baseline and, in many instances it is able to perform comparably to other more
advanced methods such as neural networks as well as being computationally
fast to train.
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tree 1 tree 2 tree n
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Majority voting

Prediction :

Class 1

Figure 3.2. This illustrates a random forest consisting of n trees.
The colored circles indicate the decision path taken to make the
final prediction. The final class determined by the random forest
is based on majority voting. In this case most trees voted class 1,
making that the prediction for the given input.

3.2 Neural Networks

The idea behind a neural network is to mimic how a human brain utilizes
neurons to process information. In an artificial neural network, these neurons
attempt to discover any underlying relationships present in the data, aiming to
utilize these to gain further understanding or to answer a given question (24).
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Neural networks have received increasing interest and development in re-
cent years. Two elements, in particular, have contributed to the growth of this
field, with the first element being the advancement and availability of greater
computational power and the second element being the development of novel
neural network architectures. The increase in computational power has allowed
the user to expand the parameter space to contain millions of parameters on
substantial datasets within a reasonable time. This enables the user to over-
come a major limitation that can greatly impact the type of questions being
inquired and answers obtained. In addition to allowing for the parameter space
to expand, the greater computational power availability has enabled the devel-
opment of more complex and computationally intensive neural networks. The
evolution and combination of these two elements have helped promote methods
achieving increased predictive performances on previously difficult tasks and
impacted the shape of fields such as language processing, image processing,
bioinformatics, and more (25).

Although deep learning has attracted a lot of attention and development in
recent years and is still developing at rapid speed, it is not a new discovery. In
1943 McCulloch and Pitts (26) created a mathematical model mimicking the
functionality of neurons found in the brain. They designed an artificial neuron,
which fundamentally works by aggregating boolean inputs presented to the
model and basing its decision on whether the aggregated value is below or above
a given threshold. In 1958 Rosenblatt (27) invented the perceptron, which
further evolved the artificial neuron model by adding weights to the inputs, thus
allowing for some inputs to be assigned greater importance and introducing
the possibility of using non-boolean values as well. These and other discoveries
throughout the years have laid the foundation for deep learning and artificial
neural networks in general, and have paved the way for the development of
newer and more complex types of neural networks (25).

Fundamentally, an artificial neural network is created by combining multi-
ple artificial neurons. An artificial neural network can contain few or multiple
layers of artificial neurons. The most basic architecture of an artificial neural
network consists of an input layer, a hidden layer, and an output layer. Each
layer in a network is comprised of neurons connected by weights. An activation
function can be applied to the output of the calculated weighted sum of the
input values and an added bias term of a neuron to perform a non-linear trans-
formation to help the network learn complex patterns in the data as shown in
figure 3.3.
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Figure 3.3. An illustration which shows the function of a single
neuron. The inputs are weighted with their respective weights,
which is then summed together with a bias, and is then fed through
an activation function.

neuron

Some of the more well used activation functions are hyperbolic tangent
(tanh), sigmoid (o) and rectified linear unit (ReLU) which are illustrated in
figure 3.4. The bias value is added to allow for the activation function to be
shifted, which adds flexibility with regards to fitting the data better. Depending
on the number of hidden layers, a network can either be categorized as a shallow
network or a deep network. Often networks with no more than two hidden
layers are classified as a shallow network, whereas networks containing more
hidden layers than two are considered deep networks.

() (b)

(c)

Figure 3.4. This illustrates three common activation functions,
with (a) being the Sigmoid function, (b) the tanh function and (c)
being the RelU function.
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The training of a neural network can be divided into two parts, namely
forward and backward propagation (24). The series of calculations performed
from when the input is fed into the network, passing through the hidden layers
and finally produces a prediction at the output layer is called forward propaga-
tion. Backward propagation on the other hand is fundamentally the chain rule
of calculus. Essentially it is a method to compare the predicted values with
a given label, which is used to calculate gradients for all the weights in the
network, with the objective of minimizing error estimated by a loss function.
Unlike the forward propagation starting from the input layer and going for-
ward in the network, the backward propagation begins from the output layer
and goes backwards in the network. The gradients calculated are used to iter-
atively optimize the weights in the network by adjusting them in a direction
that reduces the error. This process is done by using the gradient descent al-
gorithm, where one of the more well-known methods is the stochastic gradient
descent (SGD). Newer and more advanced optimization techniques have been
developed, with one of the most widespread being the Adaptive Moment Es-
timation (ADAM) optimizer (28). Where SGD uses a single never changing
learning rate for the weights during training of the network, ADAM instead op-
timizes a learning rate individually for the different parameters in the network.
One of the main drivers behind the popularity of ADAM is that it is easy to
use and often leads to fast algorithm convergence. The amount of weight ad-
justment is controlled by multiplying the gradients with a learning rate. This
hyper-parameter determines how big a ”step” the gradient will take towards
the minimum determined by a loss function. Lower learning rates lead to a
slower travel towards the minimum and vice versa. Although a large learning
rate would lead to faster training of a model due to the large step, it will also
lead to divergence of the algorithm as the algorithm is constantly “jumping”
over the minimum of the function and thus not converging. Contrarily, al-
though using a small learning rate, in general should ensure convergence, a too
small learning rate can also take a very long time to converge as well as get
stuck on a plateau region.

3.2.1 Feed Forward Neural Networks

Different types of networks exist, but one of the most well-known and widely
used networks is the feed-forward neural network (FNN), which is a fully con-
nected network (24). In a fully connected network, every neuron in each layer
will be connected to all the neurons in the previous layer as well as all the
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neurons in the following layer. FNNs work in a hierarchical fashion, where
information flows from the input layer through the hidden layer if present and
then ultimately through the output layer. The structure of a simple FNN with

one hidden layer is illustrated in figure 3.5.
Input layer

>

A

Hidden layer

Figure 3.5. A feed forward neural network architecture with an
input layer, one hidden layer, bias terms and an output layer.

FNNs are primarily used for supervised learning tasks and although it is
a widely used model which is fairly straightforward to understand and quick
to train, it has some limitations. FNNs are not designed to retain any spatial
information, and thus loses any contextual information. This can be rather
problematic when working with biological sequences as the residue placement
in the sequence and in regards to each other can have a big impact.

3.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), inspired by the visual cortex (29), are
a widely used and well-performing type of neural network which is especially
ideal for image processing tasks. Unlike FNNs, where each hidden neuron is
connected to all input neurons, the CNN breaks with this full connectivity by
being sparsely connected via each hidden unit connecting to a subset of adja-
cent units instead. This restricted region of connectivity is also known as the
receptive field, filter, or kernel (30). The size of the kernel, also called the ker-
nel size, is determined by the number of adjacent units chosen to be processed
together, thus deciding the number of neighboring spatial information that a
receptive field will cover. What the receptive field processes is also determined



20 CHAPTER 3. MACHINE LEARNING

by what is known as the stride; this number decides how many units at a
time the receptive field is shifted, ultimately deciding how much the receptive
fields should overlap. When sliding the kernel over the positions in the input,
an array of numbers is generated, commonly termed an activation map or a
feature map as illustrated in figure 3.6. It should be mentioned that the set
of weights of a specific kernel remains the same regardless of the position in
the input, functioning as a type of feature identifier. This way, the kernel can
detect the same features or patterns located at different positions in the input
data. Conceptually convolutional filter weights get updated during the CNN
training, making them specific to the input data enabling them to detect useful
patterns for prediction.
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Figure 3.6. An illustration of a BLOSUM encoded CDR3j se-
quence with a convolutional filter/kernel of size 3 and a stride of 1
moving over it producing a feature map.
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Feature maps, however, can have a large spatial dimension, meaning a lot
of parameters, which can be computationally heavy and lead to the model
learning non-generalizable details and noise in the data, causing the model to
overfit. One way to solve this problem and make the feature maps less sensitive
to the location of the features is by using pooling layers after the convolutional
layers. Different pooling operations exist, where max-pooling is one of the more
widely used methods. Max-pooling works by sliding a filter of a specified win-
dow width across the feature map selecting the max element from the region
covered by the filter. This operation should result in a new feature map only
containing the most prominent features from the previous feature map. Ide-
ally, this would produce feature maps with a condensed resolution, eliminating
irrelevant details and extracting only the most important features. In addition
to creating a feature map that should be more robust to any potential changes
in the position of features in an image, they can also enable CNNs to process
inputs of different lengths. For networks such as FNNs and CNNs, using in-
puts with different spatial sizes will output a different number of features after
being processed. Unlike an FNN, a CNN can have a pooling implemented to
reduce the number of features to a specific size when extracting relevant fea-
tures, thereby equalizing the number of features across samples with variable
lengths.

CNNs are also rapid to train and produce feature maps with distilled fea-
tures that ideally contain short-range context-dependent input data represen-
tations. The speed lies in the fact that the computation of each filter across
the input is parallelizable. Although fast to train and capable of identifying
short-range dependencies, one major limitation of CNNs is their inability to
model long-range context. When working with sequencing data, residues at
positions far away from each other can hold important information, but any
signal spanning more positions than what a filter covers will not be detected.
This can be dealt with by using neural networks capable of detecting long-
range dependencies, such as networks implementing recurrent connections. It
can still be of interest to cover short-range dependencies in a sequence, and it
can therefore be an advantage to take the output from the CNNs and feed it
into a neural network with recurrent connections.

3.2.3 Long Short-Term Memory Neural Networks

Long Short-Term Memory neural networks (LSTMs) (31) are a type of network
with recurrent connections, making them better at processing temporal infor-
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mation than CNNs. LSTMs are an advanced version of Recurrent Neural Net-
works (RNNs) (32), and thus an elaboration regarding RNNs is needed in order
to understand the LSTM. RNNs like a FNN also utilize the backward prop-
agation algorithm to calculate the gradients in the network. However, unlike
the backward propagation algorithm implemented in regular FNNs, backward
propagation in RNNs has time dependency in the algorithm. This backward
propagation algorithm is commonly known as backward propagation through
time. Conceptually, the main difference between the two algorithms is the fact
that computing the gradient for a given state requires the computation of all
the previous states as well. This works by “unfolding” the RNN loop in time,
where the three-layer structure in the RNN, the input layer, hidden state, and
output layer exists in an amount equal to the number of positions in a given
sequence. The network can in simple terms be considered as multiple copies
of the same structure, where each passes a message to a successor in the net-
work. Thereby the current output predicted depends on the current state as
well as the previous states. Backward propagation is applied across the un-
folded RNN, where the errors are accumulated for each timestep, and weights
are updated through the network once the network has been “rolled back up”.
An illustration of this can be found in figure 3.7.
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Figure 3.7. The concept of the recurrent neural network when

"rolled up” as can be seen on the left and how it looks "rolled out”,
as can be seen on the right of the figure.
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In a standard RNN, the repeating modules will have a single layer, such as
a tanh layer adding nonlinearity to the input. A single RNN cell is visualized
in figure 3.8, showing the input being multiplied with the previous output and
thereafter being fed through a tanh activation function, which is then passed
on to the next state.
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Figure 3.8. The recurrent neural network cell state, where output
is fed into the next step in the network. Here x is the input, h is
the hidden state and y is the prediction.

The implementation of the chain rule in regular RNNs allows for undesired
events such as vanishing or exploding gradients to occur. The length of a
sequence determines the number of matrix multiplications a gradient must go
through, where the longer a sequence is the more calculations are necessary. In
cases where the gradients have a value smaller than one, the gradient will shrink
exponentially, which will result in the gradients having values nearing zero, also
known as vanishing gradients. Contrarily, in the event where gradients have
a value larger than one, an exponential increase of the number occurs and
increases until it is not possible to compute.This is also known as exploding
gradients. The issues with the gradients indicate that the network’s sensitivity
to past inputs will decay to a certain extent with every new input introduced
until, at some point, the new inputs will have made the network forget about
the initial inputs. This unfortunately means that as the length of the sequence
grows, the ability of the RNN to connect the information decreases. Multiple
approaches have been suggested to address this problem with one of the more
well-known being LSTMs.
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The LSTM, unlike the RNN, has been designed to prevent any problems
arising due to long-term dependencies. Like a typical RNN, the LSTM consists
of a chain of connected repeating modules of neural networks. However, instead
of having only a single operation to process the data, the LSTM has multiple
operations to process the data as can be gathered from figure 3.9. The key
concept of the LSTM is the cell state and the various gates implemented in
the architecture. The cell state works as the “memory” in the network and the
gates decide what information should be added or removed from the cell state.
During training of the LSTM the gates learn what information is relevant to

remember or to forget.
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Figure 3.9. The long-short term memory cell state. The sigmoid
functions denote the gates, where sigmoidl is the forget gate, sig-
moid2 is the input gate and sigmoid3 is the output gate. Here c
indicates the cell state, h is the hidden state, X in the blue green
circle is the input, y is the prediction and the grey circles denote
element-wise addition (+) or multiplication (x).
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The first gate data will go through in a LSTM cell is the forget gate. This
gate determines what information should be kept or eliminated, which is done
by passing information from the current state together with information from
the previous hidden state through a sigmoid function. The sigmoid function
outputs values between 0 and 1, where 1 means to keep and 0 means to forget
the information. The idea of this gate is to decide what information from the
prior steps is relevant to keep.

The next step in the network is the input gate. This gate is used to update
the cell state. This is done by first passing the previous hidden state to-
gether with the current input onto a sigmoid function. In this step the sigmoid
transformed values can instead be understood as deciding which information is
important, where 1 denotes the information as being important and 0 as non
important. To regulate the network, the hidden state and current input is also
passed through a tanh function, which transforms the values to be between -1
and 1. The output from the sigmoid and tanh functions are then multiplied
together, such that the sigmoid function determines what information from
the tanh is important to pass on to the cell state. This step helps the network
determine which information from the current step should be added to the cell
state.

Thereafter, the next action is to calculate the cell step. The first step is
to pointwise multiply the forget vector generated by the forget gate, where a
value in the cell state will be forgotten if multiplied with values near 0 in the
forget vector. Thereafter a pointwise addition is done with the outputs from
the input gate, which updates the cell state to a new cell state, containing
values relevant to the neural network.

The last step is the output gate, which decides the values of the next hidden
state. The hidden state is used to contain information about the previous
inputs as well as for making predictions. This step is carried out by passing
the previous hidden state and current input into a sigmoid function and passing
the new cell state into a tanh function. The output from the sigmoid function
and tanh function are multiplied, which decides what information should be
outputted to the hidden state. If there are more timesteps, the new hidden
state and new cell state will be transferred over to the next timestep.

Although the LSTM in general solves any problems due to long-term de-
pendency it has a major limitation, namely that they cannot be parallelized
since the positions in an input need to be processed in a sequential manner.
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This results in the training process requiring a lot of time which in certain
experimental setups can be problematic.

3.2.4 Regularization

Although improved computational power allows for an expansion of the param-
eter space, which can expand the complexity of a model, thereby increasing the
potential of learning a problem, too many parameters can have the opposite
effect on the prediction capability of a model. A lot of parameters can also
increase the chances of a model learning noise and trivial patterns present in
the data, also known as overfitting, which can make the model incapable of
generalizing well to never before seen data (33).

Early stopping is a regularization method where the training process is
interrupted if a model has not improved or stops improving its performance on
a hold out set, known as a validation set, over an arbitrarily decided number of
training epochs (34). If a model is not trained long enough (too few epochs),
it might not be able to identify the underlying patterns in a dataset. However,
neural networks with enough parameters have the ability to fit training data
perfectly if trained for enough epochs. Early stopping can aid in letting the
network train for enough epochs to learn underlying dataset patterns, while
still avoiding possible increased generalization error due to overfitting of the
training dataset.

Dropout is a very commonly used trick to reduce the ability of a neural
network to overfit (35). It works by masking units from a neural network layer
randomly with a certain probability when training the network. The masking
works by setting the activation value of the randomly selected units to zero,
which ensures no interaction between the “dropped” unit and the previous
or the following layer. This method reduces the risk of overfitting since a
different subset of units is trained at each iteration, thereby decreasing the
possibility that the network becomes dependent on only specific units in a
network assigning large weights to them.

Batch normalization is a technique which helps standardize the inputs
to a layer. This can help stabilize the learning process as well as increase the
speed of training by reducing the number of training epochs required to learn
and predict well (36).
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4 Data representation and evaluation

4.1 Encoding

Computational models can only compute data input represented in a mathe-
matical format. However, when working with biological data such as in the
case of gene sequences or peptide sequences, these sequences are represented
by nucleotides and amino acids respectively. Thus these different biological
alphabets are required to be translated into an alphabet the computer will un-
derstand. There exists multiple ways of translating these sequences, with one
of the most simple and well known approaches being one-hot-encoding.

One-hot-encoding

This method works by representing letters in an alphabet as a binary vector
with the size of the alphabet in question. Each letter is assigned a unique
position in the vector, which for a given letter will be represented with a 1 at
the letters unique position in the vector and 0’s for the remaining letters in
the vector. This way each letter in the alphabet has a unique representation
vector.

BLOSUM encoding

One major caveat regarding one-hot-encoding is that all pairwise distances
are assumed to be identical. However, this is not the case for amino acids. It is
well known that some amino acids can have similar properties, and thus more
easily be interchanged with each other without having any noteworthy impact
on protein function or structure, whereas other amino acids cannot. Substitu-
tion matrices such as the BLOSUM matrix (37) on the other hand takes these
similarities and dissimilarities into account. The BLOSUM matrix represents
each amino acid as a vector with a calculated log-odds score approximating to
the closest integer, indicating how likely a given amino acid is to be substi-
tuted by another given amino acid. This way, similar amino acids with similar
residues will have a higher probability of substitution and vice versa, which
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can be more informative for the network than assuming all amino acids to be
equally different.

Energy encoding

In certain computational experimental setups, such as predicting TCR
recognition of MHC presented peptides, information regarding the structure
of the complex can add valuable information to the prediction capabilities of a
model, such as the potential stability of a protein complex. One way of repre-
senting the structural information is by calculating the potential global energies
of the modeled complex structures. Two widely used methods for calculating
the potential energy of protein structures are FoldX (38; 39) and the Rosetta
Energy Function 2015 (REF15) (40; 41). Both methods use a chemical force
field, which utilizes a defined set of functions and parameters to calculate the
potential energy of a given chemical structure.

The Rosetta energy function is a model which utilizes physical and mathe-
matical assumptions parametrized from small molecule and X-ray crystal struc-
ture data. The Rosetta energy function calculates the potential energy by
approximating the energy of a biomolecule conformation. This is done by per-
forming a weighted sum of individual energy terms. One of the most important
energy term is a so-called statistical pair potential, derived from the underly-
ing statistics of experimentally derived structures of observing different amino
acids at any given distance.

FoldX is an empirically derived force field. This algorithm was calibrated
utilizing experimentally obtained mutational free energy changes from more
than 1000 point mutants. The main functionality of FoldX is to calculate the
free energy of macromolecules, allowing for calculating among other things, the
stability and interaction energy of a protein complex.

4.2 Performance metrics

Measuring the performance of a machine learning model makes it possible to
evaluate the model’s performance and also enables the possibility of compar-
ison. However, selecting the metric for measuring a model’s performance is
often not a trivial task, especially for imbalanced datasets, which is a recur-
ring phenomenon in the field of biology. Imbalanced data typically refers to
a classification problem where the classes in the dataset are not equally dis-
tributed. In the case of a binary classification problem, there may be more
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negative than positive samples in the dataset and thus create bias towards the
negative samples in the model.

The majority of performance measurements are calculated utilizing the
number of true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). One of the most commonly used metrics in machine learn-
ing is accuracy, which based on the before mentioned categories estimates the
number of correct predictions made.

TP +TN
ACC*TP+TN+FP+FN (4.1)

Accuracy, although having a major advantage of easy interpretation, suffers
from the disadvantage of not accounting for class imbalance. A high accuracy
in an imbalanced data setup can therefore simply be due to the model purely
predicting the majority class.

Another commonly used metric for model evaluation is Receiver Operator
Characteristic (ROC) Area Under the ROC Curve (AUC). The ROC curve is
estimated based on the true positive rate (TPR) and the false positive rate
(FPR). Here TPR denotes the proportion of positives correctly predicted as
positives, and FPR as the proportion of negatives incorrectly called as positives.
The different points on the ROC curve correspond to all the possible decision
thresholds to determine whether the results are positive or negative. AUC
based on the ROC curve then summarizes the overall diagnostic accuracy of
the model. However, ROC AUC is not built to reflect the minority class in a
highly imbalanced dataset well, since this metric does not place more emphasis
on one class over the other. Although less sensitive to imbalanced data than
accuracy, a highly imbalanced dataset can still produce misleading results when

using ROC AUC.

TP

TPR =7 T FN (42)
FP

FPR (4.3)

“FP+TN
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A metric more resilient to imbalanced data is Matthews Correlation Coef-
ficient (MCC). This metric takes the number of examples into consideration,
making this metric much more robust to class imbalance compared to the other
metrics mentioned.

MCC — TP x TN — FP x FN (4.4)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

4.3 Homology partitioning

It is not uncommon for datasets to contain similar sequences, a concept known
as data redundancy. However, the presence of data redundancy is sometimes
an overlooked issue, which can cause major problems downstream in regards
to model training and validation, which we will expand on in this section.

Biological homology is a result of a shared evolutionary history. This con-
cept complicates the analysis of DNA, RNA, or protein sequences due to sim-
ilarities, rendering the analysis of samples difficult (42). Whether samples are
homologous or not is typically inferred from the nucleotide or amino acid se-
quence similarity among samples, where significant sequence similarity over a
certain threshold strongly indicates samples being homologous. This sequence
similarity can lead to the occurrence of redundancy in biological datasets,
meaning that multiple very similar data points may be present in the data
at the same time (43). In addition to homology, another cause of data redun-
dancy can be that some types of sequences may be more prevalent than others
in a dataset due to specific research interests, or as in the case when work-
ing with TCRs, where some clones are often more expanded than other clones
(44), which can generate a biased representation of those specific sequences.
The redundancy present in biological data, or overrepresentation of certain se-
quences, complicates the procedure of optimal data partitioning. Currently a
very common practice in machine learning is to randomly separate data into a
train, validation and test set. However, if sequence homology is not accounted
for when building a machine learning model based on a biological sequence
dataset, the model may seemingly predict well, but is in fact just an overesti-
mation of the predictive performance. Hence, instead of reflecting the models
ability to interpolate or extrapolate, the presence of similar sequences in both
the training and test set is rather showcasing the models ability to reproduce
its own input (42). This puts the model at a disadvantage since the model
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would not have learned the general patterns of the overall data in these in-
stances. The inability to capture general patterns makes the model incapable
of generalizing to novel data that has not already been presented to the model
at any given point during the construction of the model.

Solving the issue of redundancy due to sequence similarity can be ap-
proached from different angles. Many methods exist, but the approach used
in this thesis is homology partitioning. Sequences with a similarity equal to or
above a specified threshold are clustered together (45). The clustering helps
identify similar data points, which are then partitioned together, ensuring that
no overlap exists between the train and test set. Furthermore, this also pre-
vents a potentially already scarce dataset from becoming even more scarce by
avoiding size reduction. A potentially major disadvantage of this method is
that certain types of sequences may be overrepresented in the dataset. This
poses a risk of biasing the model due to overrepresented sequences being pre-
sented more frequently to the model. The bias which arises can be dealt with in
different ways, such as giving the data points weights, increasing the possibility
of underrepresented sequences being presented to the model. Another method
could be only to present one sequence per cluster, where the sequence is chosen
randomly in each training iteration, thereby removing any potential overrep-
resentation present in a large cluster. A third method could be to penalize the
model harder for getting an underrepresented sample wrong compared to an
overrepresented sample.

4.4 Cross-validation

Cross-validation is a technique in machine learning that enables the use of
the same dataset both for training and testing a model by cycling partitions
of the data. In the commonly used k-fold cross-validation method, the data
is partitioned into k equal parts, where each fold is used as a test, and the
remaining k-1 partitions are used to train the model repeated k times. This
process is illustrated in figure 4.1, where k is set to 5. It is a technique that
allows robust estimation and evaluation of model performance as well as an
effective procedure to evaluate models trained on limited data. The improved
estimation of model performance lies in the fact that if a random subset of
the data is used as a test set, we might be underestimating or overestimating
model performance since this subset may hold a bias.
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Figure 4.1. 5-fold cross-validation scheme on the left showing
how a different partition will be a test set in each cross-validation
cycle. On the right a nested 5-fold cross-validation scheme of a
single test fold.

If one wants to train a neural network using a training, validation, and test
set, k-fold cross-validation is not applicable. In this instance, the network is
trained using the training set with the validation set as a guide to help select
the best hyper-parameters and stop the model from overfitting by performing
early-stopping with the performance of the trained model being estimated using
the test set. Here, a nested k-fold cross-validation procedure can be a potential
solution to this issue. As in the regular k-fold cross-validation setup, the data
is still divided into k equal folds but are now divided into two levels. In the first
level, a partition is chosen as a test set as done in a regular cross-validation
setup. However, instead of training the model on the remaining k-1 partitions,
these are instead moved to the second level, where one partition will be used as
the validation, and the remaining k-2 partitions will be used as the training set.
In the case of dividing the data into five equal folds, one fold would be used as
the test, one fold as the validation, and the remaining three folds as the training
set as shown in figure 4.1. The first level will be run five times so that each fold
will be used as a test once. The second will be run four times each, ensuring
that each fold in the remaining four partitions will be used as a validation set
at least once. This amounts to a total of 20 independent models trained on the
same dataset to estimate the overall performance of the ensembled models.
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5 Immunotherapy and current tools

The primary purpose of this thesis was to develop deep learning methods for im-
munotherapy. Before expanding on which tools are currently available within
the field, we will first cover what immunotherapy is and how it can be used. Im-
munotherapy is a type of treatment that aims to suppress or activate the body’s
own immune system to treat disease. Different kinds of immunotherapies ex-
ist, such as Adoptive cellular therapy, Immune checkpoint therapy, cytokine
therapy, monoclonal antibodies, and cancer vaccines. Immunotherapy is gen-
erally used to treat cancer and can be used by itself when more traditional
anti-tumor therapies are not effective or in combination to enhance their ef-
fect (46). Genome aberrations are often a typical feature of most cancer types
(47). Although these aberrations often play an important role in cancer devel-
opment, they can be exploited for immune system recognition by recognizing
cancer-specific peptides known as neoepitopes. Having computational tools for
predicting epitopes and neoepitopes has already been recognized as being im-
portant for the successful development of many cancer immunotherapies (48).
Different computational tools exist to help discover potential immunotherapy
targets. These tools can generally be split into two separate groups, which
are sequence based and structural based prediction methods. The majority of
these methods primarily identify epitopes and neoepitopes presented by the
MHC molecule without taking TCR recognition into account; a more in-depth
explanation and overview can be found in the first article, in chapter 6.

Newer tools such as pEptide tcR matchinG predictiOn (ERGO)-I (49),
ERGO-IT (50), interaction map recognition (ImRex) (51), Tcr epITope bi-
modal Attention Networks (TITAN) (52) and NetTCR2 (53) are developed
with TCR recognition as the main focus point. These tools all utilize deep
learning frameworks for predicting peptide recognition. The frameworks used
are CNNs (ImRex and NetTCR2), CNNs with attention (TITAN) and LSTMs
or Autoencoders (ERGO-I, ERGO-II). The majority of these frameworks were
generally chosen due to their ability to catch certain contextual information.
Models such as ERGO-I, ImRex, and TITAN use the CDR3 S region to pre-
dict potential epitopes and neoepitopes, whereas tools such as ERGO-II and
NetTCR2 use paired CDR3 sequences for this task. These tools are all sequence
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based prediction methods; therefore, in the third article, chapter 8, we study
whether global energies from modeled structures can improve T cell peptide
recognition prediction.
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6 T cell Epitope Prediction and Its
Application to Immunotherapy

This chapter presents a review that has been peer-reviews and published in
Frontiers in Immunology. In this review, we present current tools available
for epitope and neoepitope prediction at the time of writing. We create an
overview of the type of data the different tools can use as input, what kind
of analysis they are able to perform, and potential pros and cons with the
different methods. This review also provides a discussion on areas that could
be of potential interest in the future for improving the accuracy of epitope and
neoepitope prediction tools.

The main goal of this project was to create an overview to enable the reader
to make informed choices in which tools may be applicable for them to use.
This review was intended to function as a tool to help those who are in the
midst of or about to design new experiments making the reader aware of what
type of data is necessary for the question they are trying to solve with a specific
tool. This review was also meant as a guide to help the reader understand what
tools they can use with the data they have already collected.
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Application to Immunotherapy
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T cells play a crucial role in controlling and driving the immune response with their ability to
discriminate peptides derived from healthy as well as pathogenic proteins. In this review,
we focus on the currently available computational tools for epitope prediction, with a
particular focus on tools aimed at identifying neoepitopes, i.e. cancer-specific peptides
and their potential for use in immunotherapy for cancer treatment. This review will cover
how these tools work, what kind of data they use, as well as pros and cons in their
respective applications.

Keywords: epitope prediction, neoanti [ pitope pr ion, T cell, TCR, T cell receptor

INTRODUCTION

T cells recognize and survey peptides (epitopes) presented by major histocompatibility complex
(MHC) molecules on the surface of nucleated cells. To be able to perform this task, T cells must be
able to differentiate between native “self” peptides versus peptides deriving from pathogens,
infections or genomic mutations. In order to effectively mount and initiate an immune response,
T cells must undergo activation. The main requirement of T cell activation is the molecular
recognition between the T cell receptor (TCR) expressed on the T cell surface and peptide-MHC
complexes (pMHC) presented on the surface of other cells. This precise recognition process is of
paramount importance for a well-functioning immune system, and is shaped by a mechanism
named central tolerance. In order to ensure that T cells do not react against ubiquitous peptides
found in an individual, T cells undergo the process of negative selection. Early in their development,
T cells are presented with a plethora of self-peptides, where any T cell that recognizes self-peptides is
eliminated, leaving only T cells with little or no specificity for self. Cases in which this mechanism
fails and T cells recognize self-epitopes are typically associated with harmful effects on the organism
and might result in autoimmune disorders.

As mentioned earlier, T cells recognize epitopes only when they are presented by MHC
molecules. Early in the thymic development of T cells, they undergo the process of positive
selection ensuring that they bind to host MHC molecules. There exist two classes of MHC
molecules: class I expressed on surfaces of all nucleated cells and class II found on surfaces of
specialized antigen-presenting cells (APCs). As two classes of MHC molecules occur, two types of T
cells are specially equipped for binding to the MHC I and II, the CD8+ and CD4+ T cells,
respectively. The general focus of this review will be on cytotoxic CD8+ T cell binding to MHC I
presented epitopes.

The immune system in general is very good at identifying “foreign” peptides stemming from
bacterial or viral infections. On the other hand, as initially proposed by Burnet and Thomas through
the idea of immunosurveillance (1, 2), the same process can also protect our organism from cancer,
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by recognizing cancer-specific peptides (neoepitopes) generated
by somatic mutations or genomic aberrations (Figure 1). The
ability of the immune system to target cancer cells has been
exploited by a novel class of therapies, such as adoptive T cell
therapy and cancer vaccines, named immunotherapies. These
approaches, by exploiting the high selectivity of the immune
system, have the advantage to be more specific and less invasive
than traditional cancer therapies, and potentially effective even at
later stages by providing immunological memory.

Broadly, immunotherapy can be divided into two categories:
“active” and “passive”. The “active” works to stimulate T cells of
the individual’s immune system into attacking tumor cells i.e.
effectively training the immune system in vivo. The “passive”,
focuses on in-vitro training and subsequent injection of immune
agents that will help battle the disease in vivo (3). Passive
immunotherapy includes therapies such as adoptive cell
therapy, cytokine injection, monoclonal antibodies and
lymphocytes (4, 5). Active immunotherapies encompass
therapies such as non-specific immunomodulation and
vaccination (6, 7).

Computational tools for epitope prediction have been
recognized as being crucial for successful development of
various cancer immunotherapies (8). This review will therefore
give an overview of both general and cancer specific epitope

Gene fusion

FIGURE 1 | Graphic representation showing genomic aberrations, which can lead to the occurrence of cancer-specific peptides (neoepitopes). The left panel shows
gene fusions, which is the rearrangement of two genes leading to the encoding and translation of a potentially novel immunogenic peptide. The right upper panel
shows single nucleotide variations (SNV) and the right lower panel shows insertions and deletions (indels), that may cause the creation of immunogenic cancer-

specific peptides. For further detail see the main text.

prediction tools and discuss the pros and cons of the different
tools and future perspectives in the field.

EPITOPE PREDICTION METHODS

As mentioned before, a peptide needs to be presented by an
MHC I molecule for it to be able to elicit effector T cell responses.
Contrarily to MHC II molecules, which can bind to peptides that
are longer and more variable, MHC I binding is restricted to
peptides typically 8-14 amino acid long in sequence and that
some of the residues in the peptide, denoted anchor residues, are
important for peptide-MHC binding (9) (Figure 2). In most
human alleles the anchors are the second and the last residues in
the peptide (10), but this depends on the allele and species. The
binding of peptides to MHC molecules is therefore a very
selective step, which has been a major focus in many epitope
prediction models. However, most peptides presented by MHC
molecules will not elicit an immune response as they do not
evoke TCR specific recognition by the T cell. In order to shed
light on this interaction, computational models are being
constructed with the goal of predicting T cell recognition of
the presented peptide and its connection to an overall immune
response. Epitope prediction can thus currently be divided into

SNV

GCCATCTACAAG
GGCATCTACAAG
GECATCTACAAG

GCCATCTACAAG
GCCATCATACAAG (ifisertion
GCCAGCTACAAG  (deletion)
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FIGURE 2 | T-cell interaction with a pMHC complex rendered in PyMOL (PDB code: 6TRO). Here MHC | is shown as colored in beige. The TCR is colored blue
white. The CDR3 variable regions of the T-cell have been colored in different colors, these are as follows: CDR3 a. colored in yellow, CDR3p colored in orange. The

bound peptide is colored in green, with the anchor residues are colored in red.

two main focus areas. The first addresses the presentation of
peptides by MHC molecules. Extensive reviews on this subject
have been published recently, and we single out the in depth
work by Peters et al. (11). In this review, we mainly focus on the
second part of the interaction: predicting T cell recognition of
pMHC complexes.

One of the first attempts at defining the immunogenic
potential of peptides was based on their local and global
physico-chemical characteristics, regardless to the specific T
cell interaction. One of such tools is POPI (12), which is a
support vector machine (SVM) based method. SVMs are
machine learning tools that can identify complex non-linear
relationships between the input data and the predicted variable.
In this case, a feature set of physico-chemical properties derived
from MHC I binding peptides is used to predict the peptide’s
immunogenicity. POPI uses averaged values of the physico-
chemical properties independent of the amino acid positions in
the peptides, therefore being unable to take local information
into consideration in the predictions.

Another model named POPISK (13), by the same group, tries
to improve on this by utilizing a SVM in conjunction with a
weighted degree string kernel. The model is seemingly only
capable of predicting immunogenicity for HLA-A2-binding
peptides. Where predictions reached an overall accuracy
(ACC) of 0.68 and 0.74 for area under the curve (AUC). The
ACC and AUC are calculations based on a confusion matrix,
which in different ways essentially estimates how often an
algorithm predicts correctly. In both cases, a perfect prediction
would have both ACC and AUC equal to 1, and lower values for
worse predictions. A more exhaustive introduction to accuracy
metrics for prediction tools can be found in Peters et al. (11). It

should be mentioned that the dataset was not pre-processed to
remove or reduce the redundancy - i.e. very similar peptides
might be present. This has been observed to have a negative
impact on the methods’ ability to generalize, that is the ability of
an algorithm to achieve good results on data that is different from
the data used to train. A typical strategy to deal with this issue is
to perform some form of homology reduction to reduce
redundancy. In the discussion we will discuss more about the
importance of such procedure when assessing the actual
accuracy of prediction tools. Furthermore, it should be noted
that both POPI and POPISK are not available for general
use anymore.

Calis et al. created the immunogenicity model (14) based on
experimental indications. The authors discovered that T cells
show a preference for binding peptides containing aromatic and
large amino acids. They also showed that positions 4-6 were
important in regards to immunogenicity. Based on this
information, a scoring model was created which scores
peptides based on the ratio of an amino acid between a non-
immunogenic and immunogenic dataset. Furthermore, it
weights the amino acid based on its position in the ligand. The
authors estimated the accuracy of the model on new MHC I
binding peptides, and obtained an AUC of about 0.65, thus the
model is only to some extent predictable. It should be noted, that
where models such as POPISK only is capable of predicting TCR
propensity for HLA-A *02:01, the Calis et al. immunogenicity
model can make predictions for any MHC I molecule.

PAAQD (15) is a model which focuses on predicting T cell
reactivity. It works by encoding nine-mer peptides which are
processed in a random forest algorithm, in order to predict the
immunogenicity of a peptide binding to MHC I. The peptides are
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numerically encoded by combining information regarding
quantum topological molecular similarity (QTMS) descriptors
and amino acid pairwise contact potentials (AAPPs). In the
article it was mentioned that an ACC of 0.72 and a AUC of 0.75
was obtained for immunogenicity prediction. It obtained a
higher AUC and ACC than POPISK and a higher AUC than
the immunogenicity model by Calis et al., however, like POPISK,
no homology reduction was done to reduce redundancy.
Furthermore the model had a focus on HLA-A2 and will have
limited success in predicting immunogenic peptides for other
HLA molecules.

Jorgensen and Ramussen, who developed NetMHCstab (16)
and NetMHCstabpan (17) respectively, theorized that instead of
entirely focusing on the HLA binding affinity one should also take
pMHC stability into account to predict immunogenic MHC 1
ligands. They based this hypothesis on the assumption that a
more stable presentation of an epitope bound to an MHC will
increase the likelihood of a T cell recognizing the epitope.
However, as the authors have also indicated in the papers
themselves, stability alone did not give as good results as
combining a stability predictor with a pMHC I binding predictor.

Experimental investigation of peptide presentation and
binding by Schmidt et al. (18) showed poor correlation with
predictions for the same peptides by NEtMHCstab and
NetMMHCpan in combination with a binding affinity
predictor. These models were outperformed by another epitope
prediction model: NetTepi (19). This model has been built on top
of previous efforts and combines: peptide-MHC stability using
NetMHCstab, T cell propensity predictions using the
immunogenicity model by Calis et al. and peptide-MHC
binding affinity using NetMHCcons (20). The model has been
stated to be capable of predicting T cell epitope for multiple HLA
molecules with a sensitivity of 90% and a false positive rate
of 1.5%.

One of the newer models for predicting which epitopes will be
recognized by T cells is NetTCR (21). NetTCR implements a
convolutional neural network (CNN) model to predict TCR
recognition of a peptide. CNNs are a type of neural network
which are very popular for different tasks (e.g. image recognition)
and capable of identifying local patterns in the input data. The
model takes as input a HLA-A *02:01 binding MHC I peptides
and the CDR3 protein sequence of a T cell receptor. The model
obtained a somewhat high AUC of 0.727. The AUC is lower than
the AUC for POPISK (0.74) and PAAQD (0.75). However, it
should be noted that unlike POPISK and PAAQD, NetTCR
performed homology reduction to reduce any redundancy in
the data.

A major bottleneck in improving the accuracy of models is in
the limited amount of available training data. However, several
databases collecting experimental immunogenicity data are now
available, with one of the first to pioneer this area being
SYFPEITHI from Rammensee et al. in 1999 (22). Newer
databases have since been created such as IEDB (23), VDJdb
(24), McPAS-TCR (25), ATLAS (26) and STCRDab (27). The
steadily increasing amount of experimental data will support the
generation of models with greater prediction power.

STRUCTURAL EPITOPE PREDICTION

The energetic balance of the TCR-pMHC interaction is one of
the main drivers in dictating the initiation of an immune
response. As evident from structural (28) and mutagenesis
studies (29), this balance is very delicate. All circulating T cells
have undergone the so-called positive selection process, meaning
that they must bind with low affinity to MHC molecules,
regardless of the specific epitope. Additionally, TCR interaction
is highly cross-reactive, meaning that a single TCR will
potentially be able to bind to thousands of peptides. This poses
a serious hurdle to develop computational tools to predict
immunogenicity based on structural calculations. In recent
years, it has been shown that, when using fine-grained
molecular dynamics (MD) simulations, one can to some extent
predict TCR-pMHC interactions (30). Unfortunately, this
approach is neither very precise nor feasible. For such
calculations, high quality structures of the interacting
molecules are needed, and the current available amount of
solved structures for TCRs is very limited - less than three
hundred at the time of writing. In contrast, the number of
different TCRs that circulate at any time in humans is 10° to
10® (31), and the theoretical numbers of different TCRs is at least
4x 10" (32). This stark difference greatly reduced the usefulness
of such methods to a tiny minority of the available cases. Even
when solved structures are available, MD simulations are very
demanding in terms of computing time. The dynamics of the
TCR-pMHC interaction, especially regarding their dissociation
rate, have time scales that are currently at the very limit of what
one can achieve with full-grain MD Simulations.

Some works have focused on solving these 2 problems - the lack
of structural information and the need for more efficient structure-
based algorithms. It is now possible to model to a very good
accuracy TCRs, pMHCs, and their complexes. Without delving in
too much detail, most currently available methods (33-35) can
model pMHC complexes to a very good accuracy - often less than
1A Root Mean Square Deviation (RMSD) - from the native
structure, and almost as good as the experimentally resolved
structures. TCRs can also be modeled with good accuracy (in
general less than 2A RMSD), with some minor exception for the
CDR3 regions of both TCR chains. The real culprit of all modeling
tools is in predicting the correct mutual orientation of the TCR
with respect to the pMHC, for which only a decent accuracy can be
achieved: approximately, only 50% of the molecular contacts
between TCRs and pMHC are recovered in the model. Given the
current accuracy of the modeling tools for TCR-pMHC complexes,
together with the computational cost of running detailed atomistic
simulation, underline the need of more coarse-grained models, that
can ease both the aforementioned problems. In recent years,
Lanzarotti and co-workers (36, 37) used TCR-pMHC models to
refine existing computational force fields [Rosetta (38) and FoldX
(39)], and combined such refined energy calculations in a simple
statistical framework to improve the prediction of existing TCR-
PMHC complexes. The authors show that, even in such a simple
approach, it is possible to exploit structural models to identify,
among a pool of TCRs and pMHCs, the actual interacting partners.
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The same results have recently been confirmed using a similar
approach (40). The authors show that, by investigating the energy
and the structural variability in TCR-pMHC models, it is possible
to improve the prediction of TCR-pMHC pairs. At the current
stage, structure-based methods can greatly reduce the number of
false positive predictions obtained by sequence-only methods, at
the cost of reduced sensitivity.

NEOANTIGEN PREDICTION

Genome aberrations are a typical feature of many cancer types (41).
On the one hand such aberrations are linked to the cancer
occurrence and growth, ie. by disrupting normal cell cycle and
apoptosis control. On the other hand, they can be exploited by the
immune system to recognize and eliminate cancer cells. As
mentioned previously, neoepitopes have been a major target of
immunotherapy approaches such as adoptive T cell therapy or
cancer vaccination. Several computational tools have been
developed to assist and improve immunotherapy. The main
rationale of these tools is to first identify aberrations in the
cancer genome, and then, to a different extent and with
individual approaches, to predict the ones that are more likely to
trigger an effective immune response. Besides genomic aberrations,
events such as post-translational modifications (PTMs) (42) and
peptides derived from non-coding regions (43) can also cause
neoepitopes to arise. However, due to the limited availability of data
and of the biological basis of these, there are currently only very few
computational tools for their analysis and prediction (44). Broadly
speaking, the available tools can be categorized by the type of input
data they accept, by the type of variants they can call, and by the
strategy used to filter or prioritize the most immunogenic variants.
Regarding the first point, neoepitopes can arise due to events such

as single nucleotide variations (SNV), insertions and deletions
(indels), intron retention, and chromosomal aberrations (45-48).
While most of the tools can predict neoepitopes from SNVs [Epi-
Seq, TIminer, Neopepsee, DeepAntigen], some also incorporate
indels [pVACseq, MuPeXI, Epidisco, OpenVax, NeoEpiScope,
CloudNeo, pTuneos, antigen.garnish, NeoPredPipe, TSNAD],
and others only focus on indels [ScanNeo], gene fusions
[NeoFuse, INTEGRATE-neo], or they let the users input the
variants as peptides [EDGE, DeepHLApan], for an overview see
Table 1. Another difference between the tools is the types of data
that these models rely on. In most cases the tools use whole genome
sequencing (WGS), whole exome sequencing (WES),
transcriptome sequencing (RNA-seq), peptide sequencing, or a
combination of those. Finally, in order to filter and prioritize
neoepitopes, many tools incorporate predictions from NetMHC
(68) and NetMHCpan (69), alongside some other tools for
predicting MHC binding. In the following, we will briefly present
the available tools based on the characteristic that we have
just discussed.

Single Data-Based Models

Both RNA-seq and DNA-seq data can be exploited to identify
variants in the cancer genome, and several tools make use of
these data to predict neoantigens. It is important to notice that
these two experimental methods provide complementary
information. DNA-seq data is in general more sensitive, i.e. it
can identify more variants. RNA-seq experiments can be used to
generate expression levels at the gene or, as at the transcript level,
thus helping to prioritise variants that are present in highly
abundant genes over those that have low or no expression. It
should be noted that the transcript level is often recommended,
since this can further give information regarding events
important for neoepitope prediction, such as isoform selection

TABLE 1 | Overview of the different neoantigen prediction tools.

Bioinformatic tools for neoantigen prediction

Tool DNA RNA Peptide SNV indels Gene fusion Reference
Epi-seq X X (49)
Timiner X X X (50)
Neopepsee X X X (51)
DeepAntigen X X X (52)
PVACseq X X X X (53)
Mupexi X X X X (54)
Epidisco X X X X (55)
OpenVax X X X X (56)
Neoepiscope X X X X (57)
CloudNeo X X X X (58)
pTuneous X X X X (59)
antigen.garnish X X X X (60)
NeoPredPipee X X X X 61)
TSNAD X X X X (62)
ScanNeo X X (63)
NeoFuse X X (64)
INTEGRATE-neo X X X (65)
EDGE X X X X X (66)
DeepHLApan X X X X 67)
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and alternative splicing (70-72). Peptide sequencing can also be
used for neoantigen prediction. This holds information
regarding whether a gene is actually expressed or not at the
protein level. This is very important information; identified
variants at DNA or RNA level are not always expressed at
protein level. The reader should take this into account when
deciding which tools they want to use.

Epi-Seq (49) is a tool which only uses tumor RNA-seq data.
Epi-Seq works as a wrapper tool, i.e. it combines the output of
other tools to perform an integrated prediction. It only supports
SNV variant calling and neoantigen prediction from those calls.
The Epi-Seq pipeline is very useful when only RNA-seq data is
available. However, since the pipeline only focuses on SNV
variants other potentially important variants are not predicted on.

ScanNeo (63) is a tool capable of predicting neoepitopes from
small to large-sized indels. ScanNeo is a wrapper tool, which
takes as input RNA-seq data. The three major steps in its pipeline
are i) indels discovery, ii) annotation and filtering and iii)
neoantigen prediction. ScanNeo uses NetMHC in its pipeline.
Besides NetMHC, the tool also employs NetMHCpan in its
pipeline to predict peptides that bind to HLA class I with
high affinity.

NeoFuse (64) is a computational pipeline predicting
neoantigens from gene fusions. It is a wrapper tool which uses
raw RNA-seq data from patient tumors as input to do HLA class
1 typing, predict fusion peptides and quantification of gene
expression. MHCflurry (73) to predict pMHC binding and the
gene expression levels are utilized to filter out candidate fusion
neoantigens. Like Epi-seq this is convenient when only tumor
RNA-seq data is available.

DeepHLAPan (67) is a recurrent neural network-based
approach, which takes both peptide-HLA binding and
potential peptide-HLA immunogenicity into account. The tool
predicts neoepitopes utilizing HLA class I typing provided by the
user and peptides. The tool further filters the candidate
neoantigens based on a score generated by an immunogenicity
model based on immunogenicity data from IEDB.

Data Integration-Based Models

Next generation sequencing (NGS) has made it easier to
sequence in parallel the DNA and RNA of a patient. By
integrating the use of both DNA and RNA data, the researcher
can call somatic mutations from the DNA and quantify gene and
transcript expression from the RNA data, which can help in
identifying which variants are more likely to be expressed. Also
in this case, most of the computational tools are in fact wrappers
of multiple different methods which are integrated in multi-step
workflows to perform the neoepitope prediction. Besides
integrating DNA and RNA data, it is also possible to predict
neoepitopes from peptide and RNA sequencing data. The
peptide data enables us to know which genes are actually
expressed at protein level and the RNA data helps with
identifying which of the peptides will be presented by the HLA
alleles, since expression of messenger RNA is strongly correlated
with HLA peptide presentation (74). In general integrating data
can often help in generating more accurate predictions, as many

of the tools which will be mentioned in this section also have
shown in their studies. When choosing tools, the reader should
keep in mind the somatic variations they want to account for and
what kind of data they possess.

pVACseq (53) is a neoantigen prediction tool, which can
work with either WES or WGS data together with RNA data.
This tool can predict neoantigens from small indels and SNVs.
pVACseq utilizes HLAminer (75) to infer the patients HLA class
I typing and NetMHC to predict HLA class I restricted epitopes.
The tool prioritizes neoepitopes based on sequencing depth and
fraction of reads containing the variant allele.

INTEGRATE-neo (65) is another tool which also uses
NetMHC in its pipeline. This tool is based on INTEGRATE
(76), which uses DNA sequencing data to predict peptides
generated by gene fusion events, and thereafter uses HLAminer
to perform in silico HLA typing, and lastly uses NetMHC to
predict neoantigens based on the gene fusions. Where the other
tools can work just with the DNA data, optionally also
integrating RNA data into their pipelines, INTEGRATE-neo
requires the use of both DNA and RNA. A tool suite named
pVACtools which includes pVACseq and INTEGRATE-Neo
among other tools to not only account for SNVs and small
indels but also include support for structural variants.

MuPeXI (54) like pVACseq requires the user to provide HLA
types, somatic variants and optionally gene expression estimates.
The tool predicts neoantigens from SNVs and indels. The tool
can use either WES or WGS data and optionally also RNA data
and have similar features to pVACseq. However, unlike
pVACseq, MuPeXI also offers i. a priority score to rank
peptides ii. a comprehensive search for self-similarity peptides
and lastly iii. besides being a downloadable command-line tool it
is also available as a webserver. Furthermore, this model
incorporates the use of NetMHCpan (69) in its pipeline
instead of NetMHC.

Epidisco (55) takes as input wild type DNA, tumor DNA and
tumor RNA sequencing data. The tool maps the normal and
tumor DNA samples to the human GRCh37 reference genome.
Epidisco, like many of the other tools mentioned works as a
wrapper around other existing tools, and also like many of the
other tools, Epidisco uses NetMHCpan in its pipeline. The tool
supports SNV and indel based neoantigen prediction. Epidisco
focuses on vaccine peptide selection, and generates a ranked list
of peptide candidates.

TIminer (50), like many of the other tools, is a tool which as
input requires a pre-existing set of variants derived from DNA.
The tool also incorporates NetMHCpan in its pipeline and unlike
other tools it is able to process raw RNA-seq data which may
obtain more information relevant for neoantigen prediction.
This tool, however, only supports neoantigen prediction
from SNVs.

OpenVax (56) is another pipeline which integrates the use of
NetMHCpan into its pipeline, however, it is also possible to
choose other MHC binding peptide predictors. The OpenVax
pipeline, unlike many of the other tools takes as input raw DNA
and RNA sequencing files. The OpenVax pipeline has also
included somatic variant calling tools in its pipeline which are
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capable of calling SNVs and indel variants. It has a ranking
function similar to MuPeXI, but with less features, namely MHC
class I affinity scores and RNA-seq read count based
variant expression.

NeoEpiScope (57) is another tool which can use NetMHCpan
in its pipeline. The tool in general uses MHCflurry or
MHCnuggets, however, NetMHCpan can also be used if
installed individually. Like many of the other tools,
NeoEpiScope requires as input a set of somatic variants and
supports SNV and indel based neoantigen prediction. The main
focus of this tools is to prioritize handling phased variants. To use
the phasing function, the user must submit patient haplotypes.

CloudNeo (58) is a tool developed for cloud computing,
created to eliminate the need for local infrastructure
investment in computation, data storage and transfer, while
also providing scalable computational capabilities for
neoantigen identification. CloudNeo is a wrapper like many of
the other tools which also utilizes NetMHCpan in its pipeline.
CloudNeo supports SNVs and indels for neoantigen prediction.
Although CloudNeo uses RNA data in its pipeline, it seemingly
only utilizes the RNA data for HLA typing, however, DNA data
can also be used for this purpose.

Neopepsee (51) is a tool which takes as input a list of somatic
mutations and raw RNA seq data. The tool focuses on non-
synonymous somatic mutations and works as a wrapper tool,
which uses tools such as NetMHCpan to predict MHC binding
affinity. For peptides with the highest binding affinity,
immunogenicity features are then calculated and fed into a
locally weighted naive Bayes classifier. The idea with
Neopepsee is to use a classifier to decrease the amount of false-
positives that using only binding affinity would provide.

pTuneos (59) predicts and prioritizes candidate neoantigens
from SNVs and indels. The tool is a wrapper tool, which takes as
input raw WGS/WES tumor normal matched sequencing data
and optionally also tumor RNA-seq. The tool utilizes HLA class I
typing and NetMHCpan to predict binding affinity of normal
and mutant peptides, which is then run through a random forest
model to predict a T cell recognition probability. Finally they use
a scoring schema to evaluate whether a candidate neoepitope
that can be recognized by a T cell will be naturally processed and
presented. This can be used to prioritize the peptides based on
in vivo immunogenicity.

The package antigen.garnish (60) is an wrapper tool in R,
utilizing NetMHCpan among others for peptide MHC binding
in its pipeline. It predicts neoantigens from SNVs and indels.
Besides MHC binding it also takes hydrophobicity, comparison
of MHC binding affinity between mutated and non-mutated
counterpart, and dissimilarity into account. Furthermore, the
tool also calculates a TCR recognition probability based on
the dissimilarity.

NeoPredPipe (61) is another tool which incorporates
NetMHCpan into its pipeline. Like many of the other tools the
user has to submit files regarding patient haplotypes and SNVs
and indels. NeoPredPipe unlike the other tools provides the
opportunity of neoantigen prediction on multi-region
sequencing data and also asses the intra-tumor heterogeneity,

which is done based on multi-region samples, where the
neoantigen burden is reported for clonal, subclonal and shared
variants. NeoPredPipe furthermore also predicts the likelihood
of TCR recognition. This based on the probability of the mutant
epitopes ability to bind to MHC I molecules and the epitopes
similarity to pathogenic peptides.

TSNAD (62) is a tool which earlier had netmhcpan integrated
in its pipeline, however, in their version 2.0, which was updated
in 2019, they replaced NetMHCpan with the earlier mentioned
DeepHLAPan to predict binding of the mutant epitopes to MHC
I molecules. TSNAD works by, like many of the other tools by
integrating multiple tools into its pipeline. The tool takes as input
raw read of tumor normal DNA pairs. The sequences can either
be mapped to GRCh37 or GRCh38. In the updated version, raw
RNA-seq data can optionally be added to help filter neoantigens.
The tool supports neoantigen prediction from SNVs and indels.

DeepAntigen (52) is a deep sparse neural network model
based on group feature selection (DNN-GEFS). Uniquely this
model bases its predictions on the DNA loci of the neoantigens
in a 3D genome perspective. The authors discovered that the
DNA loci of the immunonegative and immunopositive MHC
class I neoantigens have distinct spatial distributions. The model
uses preprocessed WES and messenger RNA-seq for calling
somatic mutations and estimating gene expression. The model
also takes as input Hi-C (77) data (captures chromosome
conformation) for 3D genome information. However, this
method can only predict neoepitopes from non-synonymous
point mutations and 9 mer peptides.

EDGE (66) is a commercial platform for neoantigen
identification. The EDGE model is a neural network trained on
HLA peptide mass spectrometry data and RNA-seq data from
various human tumors. The model uses HLA class I type and
sequence, RNA and peptide sequencing data or peptides
generated from somatic variant calling data to predict
neoantigens. Although the model does not incorporate TCR
binding, it is still to a certain extent able to capture T cell
recognition with the addition of RNA expression.

DISCUSSION

In recent years, the number of computational tools for epitope and
neoepitope prediction has exploded. In many cases, these tools
combine the results of other methods, using different heuristic
approaches, to perform their predictions. Unfortunately, the
amount and quality of available data make it difficult to decide
which of these approaches are sound, and which are not. As an
example, many of the currently existing epitope and neoepitope
prediction methods are mainly focusing on MHC presentation.
This is because, from a quantitative point of view, MHC binding is
the most selective step. According to Yewdell et al. around 1 in 200
peptides bind to MHC class I with an affinity strong enough (500
nM or lower) to induce a immune response (78). Other studies,
such as Sette et al. (79), also indicated an MHC affinity threshold
of 500 nM to be associated with T cell recognition of HLA class I
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bound peptides. Moreover, MHC binding is considered necessary
but not sufficient for a molecule to be immunogenic: in general
only the minority of epitopes predicted are immunogenic (80-82).
However, this paradigm has been challenged on many occasions.
In particular for neoepitopes, there is not a general consensus
on the fact that a strong MHC binding is connected to
immunogenicity. A recent study by Bjerregaard et al. (83),
supports the theory that strong binders are immunogenic. Their
study indicated that immunogenic neopeptides bind significantly
stronger compared to non-immunogenic peptides and that they in
general bind with a strong affinity. However, Duan et al. (49)
deemed binding affinity scores alone, especially from NetMHC, as
not being an effective predictor of tumor rejection and
immunogenicity. In fact, in their study they noticed that the
epitopes that did elicit tumor protection were in general not
strong MHC class I binders. They therefore created an
algorithm which subtracts the predicted NetMHC scores of
unmutated counterpart peptides from the NetMHC scores of
the mutated peptides. This setup is referred to as the differential
agretopicity index (DAI). The idea is that this can reflect to which
degree the binding of mutated peptides differ from their
unmutated counterparts (49). Even this score, however,
performed poorly for identifying effective neoepitopes (84).
Similar indications have also been made by (85) and (86), where
it was shown that not only peptides predicted as strong binders but
also peptides predicted as weak binders or non-binders are capable
of initiating a T cell response. At the current stage, there’s no clear
consensus on the importance of MHC binding for identifying
dominant epitopes and neoepitopes. Further studies will be
needed to decide if and how the threshold of 500 nM routinely
being used as a threshold for peptide selection should
be reconsidered.

The lack of experimental data is also among the causes of
another potential problem. The datasets that are used to train
these models are often very redundant: they contain many
epitopes that are either identical or very similar. If not
properly managed, redundancy can cause the tools to overfit:
this means that their actual prediction accuracy on new data will
be worse than the one reported in the publications. As a general
suggestion, we encourage the users to check that the tools they
are using take redundancy into account, for example by
performing homology reduction procedures (87), rather than
basing their choice on a purely numerical comparison of the
accuracies reported in the papers.

A potentially very important but much less studied area is
PTMs. Different PTMs exist such as phosphorylation,
ubuiquitinylation, glycosylation, methylation, citrullination, to
name a few. PTMs have been thought to be potential neoepitope
candidates. This is based on the theory that peptides with
aberrant PTMs have not been exposed to the immune system
and thus potentially not subject to central tolerance. It has been
shown that PTM self-antigens are capable of escaping central
tolerance and being recognized by the immune system (88).
Aberrant PTMs have been discovered in multiple cancers.
Increased levels of glycans have for example been observed in

cancers such as breast cancer (89, 90). However, identifying
glycosylation sites as well as other PTM sites is not an easy task.
In general mass spectrometry is often not capable of identifying
less abundant proteins, due to its low sensitivity, thus capturing
PTM information can be difficult due to the general
low abundance.

Another lesser explored avenue are neoantigens derived from
generally considered non-coding regions of the genome. Since
they are less explored and studied, they are less utilized for
analysis. Despite this, Laumont et al. (43) showed in their recent
study that non-coding regions were possibly a considerable
source of neoantigens.

There are still many events which are partially or completely
disregarded by the current prediction models but can affect
peptide binding and T cell recognition. Some examples include
PTMs, local environment, self-similarity, clonality, and non-
coding derived peptides. Moving forward, a tool which covers
as many different neoepitope causing events as possible would be
ideal. Another open question is whether some genomic
aberrations are more effective than others for attacking the
cancer cells. This begs the question of whether this is a
generalized property or inherently specific for individual
cancers, thus impairing the effectiveness of one-fits-all models.

Some of the tools presented in this review have been used in
developing therapies that are being tested in ongoing clinical and
pre-clinical trials. To mention a few, the development of
neoantigen targeted personalized cancer treatments for cancers
such as melanoma (91), glioblastoma (92) and non-small cell
lung cancer (93) have been showing promising results. In
particular, the use of tools that rely heavily on mhc binding
prediction has propelled the discovery of candidates for test and
use in targeted personalized immunotherapy in these studies.
Even though these trials had encouraging results, they have also
met some limitations in regards to the efficiency of the targeted
immunotherapy, indicating that we are still in the early stages of
development for neoepitope prediction tools. We envision that a
growing amount of evidence on neoepitopes and on the ability of
different tools to predict them will have a major impact on the
development of better epitope and neoepitope prediction tools,
and in turn help guide future immunotherapies.
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47 CHAPTER 7. PAPER II

7 Can we predict T cell lineage form
sequence only?

This chapter presents a manuscript in preparation where the abstract has been
accepted in the journal; Frontiers in Immunology. T cells can, in general, be
divided into two groups, which are CD8+ and CD4+ T cells. Both lineages
are important for the adaptive immune system, but determining the lineage
choice is still a topic that is garnering much academic interest. Therefore, in
this work, we analyze if it is possible to predict the lineage of T cell, whether
it is a CD8+ or CD4+ T cell, from its paired o and 8 TCR sequences. We
studied this to investigate whether there are any clear patterns present in the
data that may push the choice of lineage in a specific direction. We show that
there is a small signal in the data that, to a certain extent, can help classify
a lineage. However, in this work, we also show, with the help of logo plots
and two sample logo plots, that TCR sequences overall are very similar across
T cell lineages and that this is the case for multiple different datasets. We
also discovered paired TCR sequences that were present on both CD8+ T cells
and CD4+ T cells. All this information combined leads us to question how
static the T cell lineage choice is and whether it is possible that T cells may
be cross-reactive across MHC classes.
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ABSTRACT

Cross-reactivity is a well-established property of T cells: a single T cell receptor (TCR) can
bind up to one million different peptides presented by MHC molecules. This plasticity has been
described extensively for peptides bound by a single MHC molecule and to a minor extent for
peptides bound to different alleles of the same type. Here, we investigate if the TCR sequence
determines, completely or in part, the type of MHC molecules it interacts with. T cells can be
divided into two major groups, namely CD4+ or CD8+ T cells, with TCRs of the former group
interacting with peptides presented by class || MHCs, while the latter group interacts with peptides
presented by class | MHC. The two T cell groups use the same mechanism and machinery to
produce functional T cell receptors; thus, identifying the T cell lineage from the TCR sequence
alone is not a trivial task. Multiple theories have been formulated to explain lineage choice, and
methods have been developed to try and predict it. In this paper, we present a tool for predicting
lineage choice based on T cell receptor sequence only and explore the possibility of T cell
cross-reactivity across MHC classes and how this may affect lineage choice prediction.

Keywords: Cross reactivity, T cell, TCR, T cell receptor

1 INTRODUCTION

T cells are cross-reactive: it is known that a T cell can interact with up to one million different peptides
(1, 2). In this work, we try to establish if cross-reactivity is also possible for peptides presented by different
major histocompatibility complex (MHC) classes. T cells interact with other cells via a T cell receptor
(TCR) and a co-receptor, the most common being the CD4 and CD8 co-receptors. The majority of T cells
express TCRs with an a- and -chain, and each of these chains has three complementarity determining
regions (CDRs), named CDR1, CDR2, and CDR3, which interacts with the peptide-MHC molecule. The
CDR3 loop is the most variable part of the TCR. It is found in the center of the TCR binding site, where it
interacts with the peptide, thus accounting for majority of the TCR specificity. The CDR1 and CDR2 loops
are less variable and interact mostly with the MHC.

Most mature T cells are characterized by the mutually exclusive expression of either the CD4 or CD8
co-receptor molecule on the surface of the cell. These two T cell populations differ in their function and
which MHC they bind to: CD4+ T cells are in general believed to bind to MHC class II, whereas CD8+ T
cells bind to MHC class I. TCRs are recombined into their complete sequence before lineage choice occurs.
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This raises the question of whether or not the choice of TCR sequence predetermines its intended MHC
class.

Multiple theories have been suggested to solve the question of how the T cell lineage choice transpires
(3). However, how bipotential thymocyte precursors decide whether to differentiate into a CD8+ cytotoxic
T cell or a CD4+ helper T cell is a question that still has to be answered within the field of developmental
immunology. A fundamental understanding of what drives lineage choice and what defines a lineage can
improve comprehension of T cell receptor repertoires and potentially also advance prediction models based
on TCRs and their ligands. A potential way to investigate the connection between a T cell lineage and its
TCR sequence is to try and predict the former from the latter. If possible, this would indicate that TCR
sequences are not randomly distributed among classes and that some form of selection is present.

Previous works have investigated if the lineage could be predicted from the complete TCR sequence or
part of it. As of now, the most well-known models for predicting CD4/CD8 lineage is the support vector
machine (SVM) algorithm from Li et al. (4) and the Extreme Gradient Boosted decision tree classifier
using the XGBoost implementation from Carter et al. (5), which is the current state of the art. Li ef al. used
TCR g CDR3 sequences from CD4+ and CD8+ T cells as input for their SVM model. The CDR3 amino
acid sequences were converted to numerical arrays consisting of Atchley factors (6). They did not introduce
any gaps or pad the sequences; hence they created a SVM model for each length present in the dataset.
Although this allows for potential amino acid preferences to be discovered, the length dependency reduces
the amount of data available to be trained on and can introduce biases that are unaccounted for. Carter
et al. showed that another downside to this setup is that the same 5 CDR3 can be present on both CD4+
and CD8+ T cells, which is not accounted for in the SVM model. Furthermore, Carter et al. showed that
paired o/ TCR sequences hold more information due to, as they suggested, the presence of synergistic
information within the pairing of the « and 3 chain. As mentioned previously, Carter et al. utilized an
XGBoost implementation, which takes as inputs paired « and 5 sequences represented by their V and J
genes categorically encoded, together with the length of the CDR3, the CDR3 charge as well as the amino
acid frequencies found in the CDR3. One downside to this strategy is that this sequence representation
removes any detailed pattern that may be present in the complete « and 3 sequences.

In this paper, we develop a machine learning approach to study whether we can identify the T cell lineage
from its complete TCR sequence only. Interestingly, even though the sequences from CD4+ and CD8+
T cells showed very similar composition and profiles, such model shows a moderate predictive power,
supporting the hypothesis of a non-random selection of T cell lineage. Surprisingly, patterns and data in the
datasets suggest that cross-reactivity may exist across MHC classes.

2 METHODS
2.1 Data collection

This paper uses four different datasets. The first dataset, which the models were trained on, comes
from a single cell sequencing (SCS) experiment by Carter et al. (5). This dataset was downloaded from
the github repository https://github.com/JasonACarter/CD4_CD8-Manuscript. In total
seven samples were collected, consisting of « and 8 paired CD4/CD8 T cells from the peripheral blood of
healthy human individuals.

The second dataset was data collected from the VDJdb database (7, 8), which was downloaded from
VDJdb.cdr3.net on 22/10/2021. The VDIJdb database consists of data from published studies which has
been manually parsed into a VDJdb format following VDJdbs own guidelines.

This is a provisional file, not the final typeset article 2
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The third dataset was obtained from the McPAS-TCR database (9), which was downloaded from
http://friedmanlab.weizmann.ac.il/McPAS—-TCR/ on 28/10/2021. The database consists
of manually curated pathology associated T cell receptor sequences gathered from published experimental
data. The VDJdb and McPAS datasets were combined to increase the dataset size for downstream
experiments.

The fourth and last dataset used in this study originates from samples collected in a previous study
(10). The data consists of CD4+/CD8+ T cells isolated from peripheral blood collected from five healthy
monozygotic human twin pairs. Unlike the other three datasets, the twin dataset does not contain information
about the pairing. However, the large dataset could still deem it useful in regards to analyzing potential
patterns present in the dataset.

2.2 Data processing

The TCR sequences of all the datasets were reconstructed using in-house scripts (11). The TCR sequences
were reconstructed by using the CDR3 and the V and J gene information. Each reconstructed TCR sequence
was then aligned according to the IMGT numbering scheme (12) and saved as an aligned sequence with
gaps, with a final length of 138 amino acids.

The original single cell sequencing dataset consists of a total of 97,504 sequences. After processing,
a total of 89,428 sequences are left, where 64,500 are CD4+ T cells and 24,928 are CD8+ T cells. The
discarded sequences were due to these sequences not complying with the rules set by the in-house scripts,
such as the absence of phenylalanine (F) or tryptophan (W) followed by a glycine (G) at the end of the
CDR3 sequence.

The VDJdb and McPAS-TCR databases host TCR sequences from other species beyond humans. For
consistency with the single cell dataset, we removed all non-human sequences, as well as any unpaired
TCR sequences. We also removed sequences with missing V and J genes and TCR sequences having
characters instead of letters in their amino acid sequences. The in-house scripts were then used to get the
reconstructed o and 5 TCR sequences. After processing the VDJdb and McPAS-TCR dataset with our
in-house scripts, a total of 21,963 sequences remain, where 20,962 of these sequences are from VDJdb and
1,001 from the McPAS dataset. Of the 21,963 sequences, 170 are CD4+ T cell and the remaining 21,793
CD8+ T cell sequences.

The twin dataset originally consisted of 181,285,548 raw sequencing reads. The sequencing data was
cleaned, merged, TCR sequences were reconstructed using the in-house scripts, and any sequences that
had rearranged loci that were not productive were removed. This led to the final twin dataset consisting of
634,024 « chains and 931,076 beta chains. The V-QUEST tool from IMGT was used to find sequences that
were productive.

2.3 Machine learning

To reduce the possible effect of overfitting, we adopted the homology partitioning approach (13). The
single cell sequencing data was clustered using MMSeqs2 (14) at 80% identity. The clusters were partitioned
in a train, validation, and test set, covering 70%, 10%, and 20% of the processed data, respectively, and
contained similar CD4/CD8 ratios. These datasets will be referred to as the internal single cell sequencing
(SCS) train, validation, and test set as they were used to train and test the two different machine learning
models presented in this paper.

The VDJdb-MCcPAS dataset and a subset of the VDJdb-McPAS dataset were used as external test sets to
evaluate the performance of the models. The first test set consisted of the full VDJdb-McPAS combined
dataset. The second test was created by clustering the VDJdb-McPAS sequences with the sequences from
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the single cell sequencing data with an 80% similarity threshold. Any sequences from VDJdb-McPAS
clustering together with sequences used to train the model were discarded. These datasets will be referred
to as the full VDJdb-McPAS dataset and the clustered VDJdb-McPAS dataset.

Using the internal SCS train and validating set we trained a convolutional neural network (CNN) to
classify CD4+ T cell sequences from CD8+ T cell receptor sequences. The network consists of two
1D convolutional layers, with batch normalization before input, ReLLU as the activation function and
max-pooling after each convolution. Batchnormalization is also performed after maxpooling for the second
convolutional layer. Both convolutional layers have a kernel size of 3 and a stride of 2, the first convolutional
layers outputs 50 filters and the second 25 filters. After the batch normalization of the second pooled
convolutional layer, we place a dropout layer. Finally, a feed-forward linear layer with 425 hidden unit is
present after the dropout and before the output layers. We use BCEWithLogitsoss as the loss function and
Adaptive Moment Estimation (Adam) as the optimization algorithm and a batch size of 128. The model
structure is a binary classification problem, where 0 denotes CD4+ T cell inputs and 1 denotes CD8+ T cell
inputs. Input sequences are encoded using a BLOSUMG62 (15) encoding scheme and gaps are encode with
zeroes. We train the CNN for 146 epochs, with early stopping set to stop training if validation loss had not
decreased for 50 epochs. We test the model on the internal SCS test set and the two versions of the external
VDIJdb-McPAS test datasets. An illustration of the CNN model can be seen in figure 1.

| Input |

TCR a and B sequence

1D Convolutional Layer
Kernel size: 3

Activation function ReLU

Max pooling

1D Convolutional Layer
Kernel size: 3
Activation function ReLU

Max pooling

Output
CD4+ or CD8+ T cell

Figure 1. Network architecture of the CNN.

We generated an Extreme Gradient Boosted decision tree classifier using the Python XGBoost
implementation. This XGBoost was trained using the internal SCS train set with default parameters
as descried by Carter et al. in their original model setup. The « and 8 TCR chain sequences were separately
represented by their V and J regions categorically encoded individually, CDR3 length, CDR3 charge,
and amino acid frequencies in the CDR3 in that order. The XGBoost was then trained on the encoded
paired o and 3 TCR sequences. The encoding space contained unique V and J genes found in both the
single cell sequencing and VDJdb-McPAS combined dataset. The model was tested on an internal single
cell sequencing test set and the two versions of the external VDJdb-McPAS test datasets. The train and
validation sets were combined into one dataset when training the XGBoost model, with a similar CD4/CD8
ratio as before combining the two datasets.
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2.4 Performance measures

The predictive performance of the different machine learning models was measured using the area under
the receiver operator characteristic curve (AUC). The receiver operator characteristic (RUC) curve is an
evaluation metric for binary classification problems, and the AUC is a measure of the model’s ability to
distinguish between classes - in this case, TCR sequences belonging to either CD4+ or CD8+ T cells. The
higher the AUC, the better the performance of the model.

2.5 Logo plots

Logo plots were created utilizing the Logomaker software from (16). Logomaker requires the sequences
to be of the same length; Logomaker was therefore used to create logo plots for the reconstructed and
aligned full length sequences of both the o and 3 chain. Logomaker was also used to create logo plots
for CDR3s of length ten and fifteen to ensure that no potential bias had been created after using in-house
scripts to reconstruct and align the sequences.

2.6 Two sample logo plots

Two sample logo plots were produced for both the full o and 3 sequences as well as the CDR3 section of
the « and 3 sequences after being generated using the in-house scripts. The two sample logo plots were
created using the software from (17), where a two sample t-test was used and with everything at default
except for correcting the p-value using the Bonferroni correction. The two sample logo plot software
requires a “positive sample” and “negative sample” in the setup used in this study; CD8 sequences were
regarded as “positive sample” and CD4 sequences as “negative sample”.

3 RESULTS

We first analyze the SCS dataset for the presence of T cells of different lineage expressing identical TCR
sequences. We then proceed to analyze the logo plots of TCR sequences from the different lineages, and
eventually, we train a deep neural network to predict the lineage from the paired TCR sequences and
analyze the results on different datasets.

3.1 Dataset analysis
It is known that T cells can behave in a cross-reactive manner recognizing multiple peptides. In this paper,
we study whether cross-reactivity also can be observed across MHC classes.

In the original SCS dataset, we observe that 632 paired TCR sequences are reported as originating both
from a CD4+ and a CD8+ T cell, leading to a total of 1271 samples in the dataset. These samples shared
identical CDR3 « and $ and the same V and J gene for both o and (. This means that out of a total of
97,504 sequences, 1271 of them had double labels, amounting to around 1,3% of the data having double
labels, and 0.6% of the total data being uniquely double labeled, meaning each of the double labels counted
only once. Although not a substantial amount, this could still potentially be of interest.

We, therefore, analyzed the logo plots derived from single and double labeled CDR3s from the TCRs
(figure 2), we do not observe any significant dissimilarity. This is confirmed by the statistical analysis
performed using the two sample logo webserver: we did not discover any individual position which hosted
a difference of more than 6.3% between the double and single label T cell receptors (results in supplemental
Figure 1). We also analyze if any gene is overrepresented in the setup of the double label vs. single
label setup, however, we did not find any. This indicates that the germline does not seem to harbor any
information regarding double lineage.
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A SCS, CDR3a, doube labels SCS, CDR3b, doube labels
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Position Position
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10
Position Position

Figure 2. Differences between single and double labeled TCRs within the single cell dataset. Double
labeled TCRs have paired TCR sequences that are labeled as both a CD4+ and a CD8+ T cell whereas
single labeled TCRs are denoted as either CD4+ or CD8+ T cells. Logo plots showing the difference in the
CDR3 region of the o (A) and ( chain (B) in the double labeled TCRs and the « (C) and /3 chain (D) in the
single labeled TCRs.

In the logo plots, we see a CAV motif at the beginning positions in the o sequences and a CASS motif in
the 3 sequences, and phenylalanine (F) at the last position for both the «v and /5 sequences shown with tall
letters in the logo plots. This is because these amino acids on these positions are generally very conserved
and therefore occur in the majority of the TCR sequences. Amino acids, which are present but less frequent
at a given position, are shown with a smaller heights to indicate this information.

We then create logo plots to compare CD4+ and CD8+ TCR sequences. Figure 3 illustrates that CD4
CDR3 « and /5 and CD8 CDR3 « and 3 have no major difference at any position in the logo plots. The full
sequence logo plots for this comparison can be found in supplemental Figure 2.

SCS, CDR3a, CD4

SCS, CDR3b, CD4

10
Position

Position

C SCs,

CDR3a, CD8 D SCS, CDR3b, CD8

==

) 0 10 5 )
Position

[] H 10
Position

Figure 3. Differences between CD4+ and CD8+ TCRs in the single cell dataset. Logo plots showing the
difference in the CDR3 region of the CD4+ TCRs « chain (A) and S chain (B) and the CD8+ TCRs «
chain (C) and ( chain (D).

To test whether this is an artifact of the alignment protocol used to process the sequences, we gather
sequences of the same lengths from the raw data and analyze the corresponding logo plots obtained. As
illustrated in figure 4 for CDR3 /5 with sequences of length 15 and 10, the raw single cell sequencing data
prior to processing show the same tendency and no major distinction is present between CD4 CDR3 5 and
CD8 CDR3 g regardless of length. The same tendency was also found for CDR3 « sequences, as seen in
supplemental Figure 3.
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o

, CD4 SCS raw, len 10, CDR3b, CD4

SCS raw, len 15, CDR3

Position Position

Figure 4. Logo plots showing similarities and differences in the CDR3 3 chain of TCR sequences of
length 15 and 10. SCS CDR3 j sequences for CD4 of length 15 (A), SCS CDR3 g sequences for CD4
of length 10 (B), SCS CDR3 j sequences for CD8 of length 15 (C), SCS CDR3 S sequences for CD8 of
length 10 (D).

Similar tendencies may be present in other datasets. To study whether this is the case, we create logo
plots for a twin dataset and VDJdb combined McPAS dataset, namely the VDJdb-McPAS dataset, gathered
from the VDJdb and McPAS databases. As can be gathered from figure 5, the logo plots share the same
characteristic of there being no clear discrepancy between the CD4 5 and CDS [ logo plots. Furthermore,
it is also evident from the different logo plots in figure 5 that the logo plots are very comparable between
datasets. This is also the case for the CDR3 « sequences in supplemental Figure 4 and the TCR«a
(supplemental Figure 5) and TCRS (supplemental Figure 6) sequences.

twin,CDR3b, CD4

SCS, CDR3b, CD4 VDJdb-McPAS,CDR3b, CD4

A T

" position Position

SCS, CDR3b, CD8 VDJdb-McPAS, CDR3b, CD8

Figure 5. Differences and similarities between the CDR3/ chain within different datasets. Comparing
logo plots between the single cell dataset (A), the VDJdb-McPAS dataset (B) and the twin dataset (C).

The similarities between the logo plots of the different datasets are quite intriguing. Therefore, we
investigate this with a two-sample logo plot, which will indicate whether any statistical differences between
CD4 and CD8 per position are present and whether any statistical differences are comparable across the
different datasets. As displayed in figure 6, which showcases the two-sample logo plots for the TCR (8
sequences, there are some statistical differences per position between CD4 and CDS. However, these can
be considered relatively minor. Furthermore, the statistical differences are inconsistent throughout the
different datasets and even somewhat contradict each other in certain instances. Similar tendencies hold
true for the TCRa sequences, present in supplemental Figure 7.
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Figure 6. Two-sample logo plot showing the differences in the TCRf sequences from CD4+ and CD8+ T
cells within the different datasets. Comparing two-sample logo plots between the single cell dataset (A),
the VDJdb-McPAS dataset (B) and the twin dataset (C). Here an enrichment indicates that a given amino
acid at a given position is upregulated in CD8+ T cell TCRf sequences and vice versa.

3.2 Machine Learning analysis of CD4+/CD8+ TCRs

The logo plots and two sample logo plots were not able to detect any clear patterns. However, it is possible
that if the patterns are very complicated, more complex models are needed to discover those patterns.

In the original paper by Carter et al., an Extreme Gradient Boosted decision tree classifier as a model was
utilized, which obtained an AUC of 0.64 as their highest AUC. In their approach, the V and J genes were
represented using a one-hot encoding, whereas the CDR3 were represented by their length, amino acid
composition, and overall charge. We first investigate whether a more complicated model combined with a
more informative encoding scheme and a different splitting setup could improve the predictions. Given its
ability to discover local patterns in sequence data, we train a CNN. For comparison with the original model,
we also train an Extreme Gradient Boosted decision tree classifier. However, as can be seen in figure 7a, we
achieve comparable AUC values between our own model and the newly trained Extreme Gradient Boosted
decision tree classifier at an AUC of 0.66.

We then check the ability of the models to perform on a different dataset, namely the VDJdb-McPAS
dataset, and as can be seen in figure 7b, the CNN outperforms the XGBoost model. The CNN model
achieves an AUC of 0.75 and the XGBoost an AUC of 0.65.

The VDJdb-MCcPAS dataset may contain sequences that have an 80% similarity or higher to the data the
models have been trained on. We, therefore, wanted to further test the model on how well it performs on
data with less than 80% similarity to the data the model is trained on. As can be observed in figure 7c,
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Figure 7. Performance estimation of the CNN and XGBoost models using AUC for the different test sets;
SCS test set (A), VDIdb-McPAS test set (B) and VDJdb-McPAS clustered test set (C).

the CNN model obtains an AUC of 0.86, whereas the XGBoost model had an AUC of 0.60. The results
gathered from testing the model on the VDJdb-McPAS and the VDJdb-McPAS subset with sequences
of less than 80% similarity to the data used to train the models indicate that the CNN model is better at
generalizing compared to the XGBoost model.

It has been mentioned that the frequency of amino acids and charge of a T cell receptor can have an
impact on the lineage a T cell belongs to (5). However, we did not observe this to improve our model when
predicting T cell lineage (results not included).

As mentioned earlier, we do not observe any clearly conserved patterns between the two sample logo
plots constructed from the SCS, twin, and VDJdb-McPAS dataset to uncover any potential statistical
differences between CD4+ and CD8+ T cells using TCRa and TCRS sequences. We also observe that
some positions show contradicting enrichments of amino acids between the different two sample logo plots.
We were unable to discern a considerable difference between logo plots created for CD4+ and CD8+ T cell
sequences, whether looking at a subset of the TCR sequence, the CDR3, or the full TCR sequence, both for
« and (. These observations can, to a certain degree, explain why this is such a difficult task to predict.
However, although we do not notice a clear cut distinction between CD4+ and CD8+ T cell sequences
from the logo plot and two sample logo plots, we still obtain a signal when using more complex methods
to predict this task.
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4 DISCUSSION

In this study, we show that there is a signal - albeit not strong - in regards to predicting T cell lineage from
sequence only. The signal is not clearly identified in the amino acid composition at specific positions, and a
more complex model is needed for better generalization when predicting on new data.

We have created a model which keeps the complete TCR sequence information while still having the
input be independent of the CDR3 length. This was obtained by employing in-house scripts in our pipeline,
which outputs aligned reconstructed sequences using the CDR3 together with the V and J gene, each with a
total length of 138 gapped amino acid sequences. This allows for the inputs to be of constant length while
also retaining the original CDR3 sequences and allowing for the discovery of any particular amino acids or
positions playing an important role in lineage choice. When using different approaches, e.g., training only
on the CDR3 sequence, we would observe a significant drop in performance (data not shown). We show
that a more complex model compared to the current models in the field improves the prediction. We chose
to implement a convolutional neural network (CNN) model due to CNNs being ideal for detecting local
spatial relations.

An Extreme Gradient Boosted decision tree classifier was trained to enable comparison between the
CNN and the results in the SCS paper. The encoding of the data and training of the XGBoost model was
kept as close as possible to the originally stated setup in (5). However, few changes were made to enable
comparison between methods. We expanded the encoding space to enable testing of the trained model on
the VDJdb-McPAS combined dataset. It should be mentioned that although we expanded the encoding
space for the XGBoost, this did not show an effect on the results. The model obtained the same results
when using the original encoding space on the SCS data as when using the expanded encoding scheme
(results not included), and we, therefore, considered it acceptable to use the expanded encoding space going
forward. The way the data was divided also diverged from the original paper. We chose to cluster the data
based on 80% sequence similarity prior to splitting the data, where sequences of 80% or higher similarity
are clustered together. Unlike the original paper, we chose to cluster the data to reduce redundancy that may
be present in the data since this can have a negative impact on the ability of the method to generalize and
thus predict well on new data. The data was split so that sequences from the same 80% or higher similarity
thresholds would be present in the same splits, while each split would contain similar CD4/CDS ratios. The
original paper used StratifiedKFold, where the main idea is to generate datasets, where each set contains as
close as possible the same distribution of classes. However, this method does not account for sequence
similarity. Lastly, we trained the XGBoost model on a bigger dataset compared to the original article; this
due to the authors choosing to only train and test on a unique set of TCR sequences and removed sequences
that could be found as both CD4+ and CD8+ T cells.

In our results, we observed logo plots that were similar between CD4+ and CD8+ T cells. A potential
argument for the seeming absence of a clear distinction between TCRs from CD4+ and CD8+ T cells
in the logo plots and why we did not observe a strong signal could be that lineage choice is not mainly
driven by TCRs having specific patterns that are capable of only interacting with either a MHC I or MHC
II bound peptide, but rather other factors. This idea is further strengthened by experiments performed by
Matechak et al. (18) and Kirberg et al. (19), which both showed that supposedly class II specific TCRs
do not only generate CD4 T cells but also CD8 T cells, albeit in lower amounts. Matechak et al. (18)
furthermore showed that in the absence of CD4, cells with class II specific TCRs would differentiate
into the CD8 lineage, with amounts comparable to the amount of mature CD4 T cells in the presence of
CDA4. Interestingly, in certain patients with human immunodeficiency virus (HIV) infection, known for
eradicating CD4+ T cells, MHC class Il restricted CD8+ T cells have been observed (20). It is known that
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the T cell repertoires consisting of CD4 and CDS8 T cells are generated via thymic selection in newborns,
and that the thymus ceases to function with age (21). We can speculate that plasticity of TCRs in their
ability to bind both class I and class II molecules might be functional to the fitness of the adaptive immune
repertoire: any type of distortion of the immune system occurring after the thymus has concluded its
function cannot be compensated by the production of new T cells, but instead needs to be dealt with by
the T cells already produced. For example, in the case of viral infections depleting portions or subtypes of
certain T cells, conceivably as theorized by Gunzman and Chen (22), an intrinsic plasticity would allow
for the system to employ different strategies to protect the balance and integrity of the adaptive immune
system. The potential requirement for plasticity and flexibility in the adaptive immune system could be a
possible explanation for the almost indistinguishable difference between CD4+ T cell and CD8+ T cell
receptors observed in our explorations.

As mentioned in the results section, curiously, the same TCR sequences were observed as both a CD4+ T
cell and CD8+ T cell. This was not only the case for the SCS, but an instance of the same TCR sequence
being detected as both a CD4+ T cell and CD8+ T cell, was also present in the VDJdb dataset. If the 3D
structure is the same between the CD4+ and CD8+ T cells, this would strengthen the idea that other factors
beyond the T cell receptor are what drives lineage choice. All this viewed together indicates concurrence
with the idea that interaction determines lineage choice. However, instead of being determined by a TCR
which is only capable of interacting with an MHC class I or class II, these lines may be blurred due to
potential plasticity in TCR interaction together with other not yet well understood factors that can influence
lineage choice, and also promotes the idea that TCRs may have the potential to exhibit cross-reactivity
across MHC classes.

The similar logo plots between CD4+ and CD8+ T cells and the small prediction signal indicate that
sequence alone might not be enough to predict whether a cell will differentiate into either a CD4+ or CD8+
T cell. However, since structure plays a big role in how molecules interact with each other, it could be
feasible that prediction capabilities may be improved upon including structural information as well in the
model. Therefore it could be interesting as a future perspective to test whether introducing structure could
improve prediction capabilities of lineage choice. In an article by Yin et al. (23) they showed that a CD8+
T cell underwent conformational changes depending on whether it was bound to a MHC class I or class II
complex. Furthermore, as mentioned earlier, some of the paired TCR sequences were present in the dataset
as both a CD4+ T cell or CD8+ T cell. It could be of potential interest to study whether a clear difference is
observed between the 3D structure of the same T cell receptors observed on both CD4+ and CD8+ T cells.

Models have been proposed to explain the lineage choice of the bipotential double positive (DP)
thymocytes expressing both the CD4 and CDS8 co-receptor into either a CD4+ or CD8+ T cell. Two
models have initially been proposed to elucidate lineage selection, namely the “instructive” (24) and the
“stochastic” (25) model. The “instructive” model is based on the idea that there is a co-engagement of CD4
and CD8 with the TCR, which via distinct intracellular signals directs the development of an immature DP
CD4+CD8+ thymocyte into either the CD4 or CDS8 lineage (24). In the data used, we found TCRs that
had the same sequence but different co-receptor labels. If the 3D structure of the T cell receptors with the
same sequences are the same for both CD4+ and CD8+ T cells, then our results will to a certain extent, go
against the instructive model. If the lineage choice is dictated by the TCR, we would not expect to observe
a significant amount of sequences both labeled as CD4+ and CD8+, thus this observation goes against the
instructional model.

Conversely, the “stochastic” model hypothesizes that the expression of either the CD4 or CDS co-receptor
occurs at random. The stochastic model also postulates that after positive selection a second TCR-dependent
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“rescue” occurs. Here single positive (SP) thymocytes expressing only the CD4 or CDS co-receptor, which
have a TCR matching the expressed co-receptor, differentiate into mature T cells (25). In our study, we
don’t see a strong signal when predicting on the internal SCS dataset; however, a signal is still present,
indicating that the selection is not random and thus, to a certain degree, goes against the theory of random
selection.

As mentioned previously, SCS was performed to obtain the paired TCR sequences. T cells were singularly
encapsulated in droplets, which each had a unique droplet barcode. Typing of the T cells was carried out by
reading CD4 and CD8 amounts for a given droplet barcode. If the number was more than O for one type
only, the type was considered true and kept. For barcodes that had no type assigned to them, due to the
number being 0 and barcodes having more than O for each co-receptor type were discarded. Nevertheless,
although only one co-receptor type could be present per barcode for it to be counted true, it should not be
ignored that some of these cells may be cells transitioning from one state to another. In a newer model
named the kinetic model (26), they propose that lineage choice occurs in sequential steps dictated by TCR
signal duration, where the CD8 co-receptor gets downregulated to “audition” for the CD4 lineage before
differentiating into a lineage. On the other hand, it has also been stated that residual amounts of CD8
surface protein can be found expressed on cells in this intermediate state (26, 27), thus if these residual
amounts are being detected, then these cells would be discarded since both types of co-receptors would be
present on the cell.

Predicting what a T cell recognizes and when and with what the T cell will be cross-reactive with is to
this day still a very complicated task. It is imaginable that the adaptability in what determines the lineage
choice may extend into T cell activation and what a T cell is capable of recognizing.
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8 Global energy terms for improved
TCR-pMHC binding prediction

In this chapter we present a work in progress. Many T cell based immunother-
apies focus on CD8+ T cell interaction to elicit an immune response to help
fight diseases in patients. However, we still do not fully understand what will
provoke a CD8+ T cell response.

The main goal of this project was to investigate whether global energy terms
calculated on modeled TCR-pMHC complexes have any prediction power and
if they can be used to add additional information to a model predicting T cell
recognition of MHC presented peptides.

We show that global energy terms by themselves do carry some predictive
power when used in isolation - however, they have limited impact when used
in conjunction with other sequence-derived features. We also show that it is
a difficult task to predict T cell recognition of peptide-MHC complexes across
peptides, since there is no clear sequence pattern differentiating binders from
non-binders.
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ABSTRACT

Not all peptides presented by the major histocompatibility complex (MHC) will elicit an immune response
from T cells. However, predicting which MHC presented peptides a T cell will recognize remains
challenging. The majority of methods utilize the T cell receptor sequence to predict their interaction,
but this may not contain substantial information to make a clear distinction between complexes. From
the limited data available, it is evident that when looking at the sequences alone, it is difficult to find
overall generalizing patterns that can be used across different peptides, as will also be shown in this
study. Therefore, in this study, we investigate whether structural energy terms calculated for the overall
interacting complex carry information that potentially can add additional predicting power.

Keywords: TCR, MHC, peptide, epitope, neoepitope, TCRpMC, TCR-pMC

INTRODUCTION

T-cells are a part of the adaptive immune response and play a vital role in recognizing infected cells
or abnormal cells arising such as can occur with cancer [1]. It is known that T-cells utilize their T-cell
receptors (TCRs) to survey whether non-self peptides, such as epitopes or in the case of cancer-specific
peptides called neoepitopes, are presented by the major histocompatibility complex (MHC) on the surface
of a cell. If T-cell recognition of a peptide-MHC (pMHC) complex occurs, it can induce an immune
response, thereby helping the body defend against potentially foreign invaders and unhealthy cells.
A deeper understanding of what promotes an immune response from a T-cell could help further the
development of different immunotherapies such as T-cell therapy and T-cell vaccines [2].

TCRs are hetro-dimeric proteins, consisting of two-membrane bound chains, where these can either
be o and 3 chains or y and § chains. The majority of T-cells express TCRs comprising ¢ and 3 chains
[3], and this group of TCRs can further be divided into whether they recognize peptides bound to MHC
class I (MHC I) or MHC class II (MHC II). T-cells interacting with peptides bound to MHC I are called
cytotoxic T-cells, and are known to directly kill infected cells. On the other hand, T-cells interacting
with peptides bound to MHC II are known as T-helper cells, which activates other immune cells to act
against the compromised cells, which is done either directly or indirectly. TCRs mainly interact with
pMHCs through six loops situated in the TCR o and 8 chain. These loops are generally known as
complementarity determining regions (CDRs) and individually denoted as CDR1, CDR2 and CDR3.

The majority of studies published that predict the interaction between TCRs and pMHCs (TCR-
pMHC) have mainly focused on utilizing the amino acid sequences of the complexes. There are currently
only a scarce number of models which introduce structure into their models when predicting TCR peptide
interaction [4]. Complexes, where T cells have been measured to bind to the MHC, presented peptides
may be more stable than non-binders. Therefore, it is possible that calculating structural energy may
provide additional information, which can help differentiate binders from non-binders.

In this paper, we, therefore, introduce structural information by calculating the overall energy from
modeled TCR-pMHC structures to investigate their predictive power in a machine learning setup. We also
study whether the addition of global energy terms to an already existing model available for predicting
T cell peptide recognition, namely NetTCR2, can improve prediction performance, as well as what can
make this a challenging task to predict.



MATERIALS AND METHODS

The dataset

Paired CDR3 and sequences are obtained from the paper by Montemurro et al. [5]. The dataset consists of
positive and negative data in the sense that positive binders entail TCR binding to the pMHC complex and
vice versa. The TCRs in the dataset are restricted to TCRs that bind to HLA-A*02:01-specific peptides of
length 9, where both CDR3 « and CDR3 f are available. Details surrounding the original setup of this
dataset can be found in the paper from where the dataset was obtained. The dataset consists of a total of
1783 paired sequences.

Generation of swapped negatives

To avoid having some TCRs present only as positives (meaning binders), thus creating possible biases in
the training of our network, additional “swapped” negatives (meaning non-binders) are generated. This
is done by adding one swapped negative for each positive by matching the given TCR with a random
peptide extracted from the same partition. The swapped combined with the original dataset results in
12,975 entries in total.

TCR sequence reconstruction

The original dataset contains the CDR3 region of both the TCR « and TCR f§ chain. The dataset only
contains the V and J genes for non-binding TCR sequences. We retrieve the V and J genes for the binding
TCRs by mapping the sequences to the VDJdb database. TCR sequences are constructed using in-house
scripts [6], which takes a CDR3 sequence and its belonging V and J gene as input. After processing the
dataset, a total of 11,708 entries remain. The sequence for the MHC molecule HLA-A*02:01:01 was
retrieved from the IPD-IMGT/HLA database [7].

Molecular modeling

A Fasta file was created for each of the entries. The fasta file contained the TCRa, TCRf3, peptide, and
HLA-A*02:01:01 sequences. For each fasta file, the in-house pipeline TCRpMHCmodels was used to
model the complexes. After modeling the fasta files a total of 10,341 complexes are constructed.

Energy calculations
FoldX [8, 9] and Rosetta [10, 11] are used to calculate global energy terms. After calculating energy
terms, a total of 9,991 complexes remained.

FoldX Each modeled complex is relaxed in FoldX5.0 using the RepairPDB command with the
following flags; ionStrength=0.05, pH=7, water=CRYSTAL,vdwDesign=2, out-pdb=1,
pdbHydrogen=false. Energy terms are calculated using the AnalyseComplex command. For each
of the complexes, we compute the following six interaction energy terms: MHC-peptide, MHC-TCRa,
MHC-TCR, peptide-TCRe, peptide-TCRf, TCRa-TCRf.

Rosetta Models were relaxed in the Rosetta force field energy function 2015, with the following
command, relax.default.linuxgccrelease with default options. The global energy terms
were calculated using the score_jd2.linuxgccrelease command.

Logo plots:

Logo plots were created using the tool Seq2Logo [12]. The tool was used with default options. Seq2Logo
requires the sequences to be of the same length; therefore, the reconstructed sequences were used, which
introduces gaps into the sequences, so they are all of the same lengths. Logo plots were created for
binders, non-binders, and non-binders with swapped added to them.

Two sample logo plots:

Two sample logo plots were produced for the CDR3 section of the & and 3 sequences after being generated
using in-house scripts. The plots were constructed using the software from [13], which performs a t-test.
The two sample logo plot was created with default options, except for correcting the p-value with the
Bonferroni correction. The software requires a “positive” and “negative” input. The binders were set as
the “positive” and the non-binders as the “negative” input.
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Random forest - Energy impact
A random forest using the scikit-learn library (ver. 0.23.2) was implemented to investigate whether energy
has any prediction power. The global energy terms, an array of 75 in length, were used as input.

Baseline model

The original Nettcr2 model was used as a baseline. The data was encoded using the BLOSUMS0 matrix
[14], meaning that each amino acid residue is presented as a vector of length 20 corresponding to the
amino acid row of the BLOSUMS0 matrix. All peptides were of length 9, CDR3 sequences were of
different length and were therefore zero-padded to a maximum length of 30. This model consists of
multiple 1-dimensional CNNs created using pytorch (ver. Anaconda 4.4.0). The peptide and CDR3 were
processed separately, each with five differently sized kernels (1,3,5,7,9), and a filter sze of 16, outputting
80 filters in total per input sequence. Kernel weights were initialized with the Glorot normal initializer.
The convolutional outputs for the peptide, CDR3a and CDR3b, were max-pooled and concatenated,
resulting in a single vector of length 240, which was then fed into a dense layer with 32 hidden neurons.
Finally a second dense layer transforms the output from the previous layer to an output of one with a
sigmoid activation, to give the probability of peptide-CDR3 pair binding.

Nettcr2 - Energy

The baseline model was used with the addition of global energy terms as an extra variable to the dense
layer. The idea is to add extra information to the network at a later point to help guide the network. The
global energy terms were run through a batchnorm to normalize the inputs and thereafter concatenated
with the convoluted peptide, CDR3a, and CDR3b outputs. The concatenated values were then put through
two dense layers as in the original setup.

Nettcr2 - LSTM

The baseline model was used with the addition of an LSTM followed by a dense layer with global energy
terms as an extra variable. The convoluted outputs were transposed and then concatenated to be used as
input for the LSTM. Before inputting to the LSTM a dropout is used (p=0.1). The LSTM consisted of one
layer with 26 hidden units. Outputs from the LSTM were flattened and concatenated together with the
global energy terms. The concatenated values were as in the original setup put through two dense layers.

Model training

Models were trained for 300 epochs with early stopping, implementing a patience of 50 epochs using
a nested 5-fold cross-validation scheme. The Adam optimizer was used to update the weights, and a
learning rate of 0.001 and batch size of 128 was used. Finally binary cross-entropy was used as the loss
function.

Performance evaluation

Models were trained for 300 epochs with early stopping, implementing a patience of 50 epochs using
a nested 5-fold cross-validation scheme. The Adam optimizer was used to update the weights, and a
learning rate of 0.001 and batch size of 128 was used. Finally, binary cross-entropy was used as the loss
function.

RESULTS

The main motivation behind this study and the development of our tool was to test whether sequence-only
based methods capture enough information in regards to distinguishing which TCR-pMHC complexes
will induce an immune response. The global energy terms can provide information regarding how stable a
complex is. It is believed that the more stable a complex is, the more likely it is that there is a binding
interaction occurring.

Dataset analysis
The dataset used in this study consists of 9991 TCR-pMHC complexes, of which 8265 are non-binders,
and 1726 are binders, meaning epitopes inducing an immune response.

An analysis of the dataset shows that it consists of 18 different peptide antigens, which are all 9-mers.
There is a bias in regards to the distribution of the different antigens, as can be seen in figure 1. The most
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frequent antigen is the antigen from the influenza virus “GILGFVFTL”, which constitutes around 60.3%
of the samples. The second and third most frequent antigens are "GLCTLVAML” with 16.1% of the
entries and "NLVPMVATV”, constituting 11.8% of the antigens, both from the Herpes virus. Furthermore,
it can also be gathered from figure 1, that two of the peptides are only present in a non-binding format,
and thus these two peptides will only be used for training and not further downstream analysis.

peptide distribution
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Figure 1. Distribution of the different peptides present in the dataset. The counts are log scaled for
easier visualization. The plots show the number of binders, denoted as positive, non-binders, denoted as
tenX, and swapped denoted as swapped.

To study whether there is any observable difference between TCRs that have been measured to bind
and TCRs that have not been measured to bind, we create a logo plot. As shown in figure 2a and b, there
are minor observable distinctions between CDR3f sequences from binders and CDR3f sequences from
non-binders. As mentioned previously, in order to avoid having TCRs that are only in the datasets as
binders, we created “swapped” non-binders. Figure 2c, shows what the non-binder CDR3 logo plot looks
like after adding the “swapped” to the non-binders.

(a) CDR3a binders (b) CDR3a non- binders (c) CDR3a non-binders with swapped

Figure 2. Logo plots created for the CDR3 sequences for binders, non-binders and swapped. Figures a,b
and c depict logo plots for CDR3 o sequences. Figures d,e and f show logo plots for CDR3 f3 sequences.
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There may be some of the distinctions which are statistically observable, therefore we create two
sample logo plots to study this. As shown in figure 3, there are statistical observable differences between
binders and non-binders. Glycine (G) can be found enriched in binders compared to non-binders at
multiple positions, especially at position 19, in the CDR3 ¢ chain. Glutamine (Q) and asparagine (N) can
be seen enriched at positions 18 and 20 in binders. Valine (V) and lysine (K) at position 20 can be seen
more commonly in non-binders in the & chain, as can be seen in figure 3a. In the CDR3 f chain, figure
3b, serine (S) is seen enriched at multiple positions, particularly at position 21, in binders. Arginine (R) at
position 6 are seen as enriched in binders compared to non-binders. However, as can also be gathered
from figure 3, this statistical difference is only present in a subset of the data. The maximum enrichment
is in less than 40% of the sequences. Thereby no particular position can discriminate between binders and
non-binders.

(a) CDR3a binders vs non-binders
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Figure 3. Two sample logo plots created for the CDR3 sequences for binders and non-binders. Enriched
here denotes which amino acids are more prevalent in binders compared to non-binders and vice versa. a)
shows the two sample logo plot created for the CDR3 « sequences between binders and non binders. b)
shows the two sample logo plot created for the CDR3 3 sequences between binders and non binders.

We create a two-sample logo plot for binders and non-binders for the three most common peptides to
investigate whether there are any statistical similarities between them. Upon observing the two sample
logo plots created from CDR3f sequences for the three most common peptides, shown in figure 4,
position 21 for peptides GILGFVFTL and GLCTLVAML both have a depletion of leucine (L) to a certain
extent in the CDR3f3 sequences binding these peptides, this is not observed for the NLVPMVATV peptide.
For both the NLVPMVATV and GLCTLVAML, there is a depletion of glutamine (Q) in the CDR3f
sequences binding these peptides. However, the opposite holds true for the GILGFVFTL peptide, where
glutamine is enriched in the CDR3f sequences binding this peptide. Furthermore, for position 2, alanine
(A) and serine (S) at position 3 and 4 are enriched for GILGFVFTL but depleted for GLCTLVAM in the
CDR3p sequences binding to these peptides. We also see that Asparagine (N) at position 23 is depleted
in sequences that bind to GILGFVFTL but enriched in sequences binding to GLCTLVAML. We do not
observe one or more amino acids that are being enriched or depleted consistently across all three peptides.
This indicates that there is not a clear distinction between what binds a peptide and what does not, across
peptides when doing a simple two sample logo plot. As can be gathered from the figure, the enrichments
and depletions are only statistically different in a subset of the data, meaning that amino acids showcased
as being depleted in CDR3f sequences that bind are also present in some of the CDR3f3 sequences
registered to bind to the specific peptide.
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Figure 4. Two sample logo plots created from the CDR3f sequences for binders and non-binders for the
three most prevalent peptides in the dataset. Enriched here denotes which amino acids are more prevalent
in binders compared to non-binders and vice versa. The peptides are shown in the following order from
top to bottom; GILGFVFTL, NLVPMVATYV, GLCTLVAML. The plots are made with only the sequences
measured to bind or not bind a given peptide.

Machine Learning analysis of global energy term impact

The representation of the data can have an impact on prediction power; therefore, to study whether the
global energy terms have any prediction power, we perform a random forest. From the random forest, it
was evident that global energy terms have predictive power since an MCC of 0.384 and AUC of 0.791
were obtained with this model.

To investigate whether global energy terms would improve the prediction power for a tool available for
T cell peptide recognition prediction, a recently published new rendition of NetTCR from which the data
was gathered was utilized. A more complex model may further improve the prediction ability; therefore,
we test this by introducing a LSTM layer in the architecture. A benchmark is carried out consisting of the
original setup of NetTCR, NetTCR with global energies added to the dense layer, and lastly, NetTCR
with an LSTM added and with global energies added to the dense layer. The model was trained with a
nested 5-fold cross-validation scheme due to the small dataset and to test the robustness of the models.
As illustrated in figure 5, the global energy terms slightly improved the model’s predictive power. The
original NetTCR2 obtains an AUC of 0.872 and MCC of 0.668, where when energy is added to the dense
layer AUC becomes 0.882, and MCC rises to 0.695. The more complex model where LSTM is added
to the architecture improves slightly better than the original model, with an AUC of 0.878 and MCC
of 0.705. The slightly more complicated model performs slightly worse than the NetTCR2 with global
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energy terms added to the dense layer when looking at the AUC and slightly better when looking at the
MCC. However, overall no significant difference is observed.

(a) (b)
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Figure 5. Model performance was calculated using AUC and MCC. The figure shows the AUC and

MCC for the three models trained; NetTCR2, NetTCR2 with global eneergy terms added to the dense
layer and NetTCR2 with LSTM and global energy terms added to the dense layer. a) shows the AUC

values obtained and b) shows the MCC values.

DISCUSSION

In this study we show that global energy terms calculated on three-dimensional models of TCR-pMHC
complexes have a predictive power in indicating the ability of the complex to interact and, in principle, to
start an immune response. We also show that, to a very minor extent, the energy can improve existing
models that are only based on the molecules’ sequences. This indicates that including the global energy
terms in a model could be of potential interest for future predictive models. In this setup we used
both Rosetta and FoldX since they provide different information due to their individual ways of being
calculated. Rosetta is based on mathematical and physical assumptions to calculate the energy whereas
FoldX is an empirically derived model based on observed energy changes from mutations. The Rosetta
energy function is a model which utilizes physical and mathematical assumptions parameterized from
small molecule and X-ray crystal structure data. The Rosetta energy function calculates the potential
energy by approximating the energy of a biomolecule conformation. This is done by scaling different
summed individual energy terms with a weight.

One of the issues with the existing models is connected to the relatively low variability of antigens
and MHCs. In this study, all the antigens were presented by HLA*02:01, which is due to the limited
availability of data for paired sequences where the HLA is known. This of course limits the general use
of these models, but can still provide an indication of their potential use. Because of this, it is worth
investigating if structure-based predictions are able to generalize more easily to new MHC molecules,
thus increasing the applicability of such tools to Furthermore, not only is there a limited availability of
data, but the setup in this study also resulted in a decrease of the data possible to train on, due to the
generation of the reconstructed sequences, molecular modeling as well as energy calculations.

A major disadvantage regarding energy calculations is that they are very dependent on the modeling.
This means that the same sequence can obtain different energies depending on the modeling of the
structure, which is very dependent on the tool used, making the energies less trustworthy. Furthermore,
the structures were relaxed before calculating energy, this may potentially make structures from TCR
sequences that bind and do not bind more similar, thereby decreasing the information the energy can
provide in regards to prediction power.

The addition of the LSTM to the architecture was done to capture short range dependencies from
the CNN and long range dependencies from the LSTM and combine this to strengthen the model. A
sequence can have contextual information situated close to the position of interest, this should be captured
by the CNN, such as the combination of certain amino acids near each other may be more typical for
sequences that bind compared to sequences that do not bind. However, long range information may also
be present since amino acids not in the nearby vicinity may provide information as well. It was also
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possible that the concatenation of the multiple convoluted outputs for each sequence is more complex that
what a dense layer is able to interpret well, which drove our decision to test out the addition of LSTMs in
the architecture as well. Although the addition did not improve the AUC compared to only using global
energies added to the dense layer with no LSTM, the MCC still increased slightly. The dataset is highly
imbalanced with many more non-binders than binders, therefore this minor increase in MCC could still
indicate that the LSTMs may provide some additional benefits to the model.

As can be gathered from both the logo plots and the two sample logo plots, the sequences are not
distinctive from each other in a clear cut manner. When looking at the two sample logo plot for the
three most common peptides, as mentioned in the results section, we observe that some amino acids are
enriched in sequences binding to one peptide, but the same amino acid at the same position is depleted
in amino acids binding to a different peptide. In the case of the most prevalent peptide in the dataset,
namely GILGFVTL, there is an enrichment of glutamine at position 25 in CDR3f3 sequences binding
to this peptide. However, the opposite is seen for CDR3f sequences binding to the NLVPMVATYV and
GLCTLVAML, where glutamine is depleted at this position. All this taken together shows that this is a
very difficult task and that finding generalizable features across peptides is not straightforward to do. It
should also be mentioned that since sequences binding and not binding to GILGFVTL are present to a
higher degree in the dataset; the model will be biased towards this peptide, making it more difficult to
discover generalizable features across peptides.

The observations in the logo and two sample logo plots could potentially be due to the limited data
availability or how our experiments are conducted. However, it may also be that the inconsistencies
and unclear distinctive patterns may just paint the true picture of how TCRs truly behave. TCR-pMHC
complexes are of great interest in general and are being sequenced and added to databases. Nevertheless,
if the logo plots and two sample logo plots depict the behavior of TCRs in a true manner, then this would
indicate that we need more informative inputs than just the sequence by itself. Interestingly, the global
energy terms did show some predictive power when used by themselves; therefore, it could be interesting
to investigate whether the addition of the global energy terms can help the model generalize on new
peptides. This would require a different training setup, such as training a model on the complexes that do
not contain a specific peptide and using the excluded complexes to test the model’s ability to generalize to
new peptides. However, the limited availability and biased data would still cause complications.

In this study we only tested global energy terms, to investigate whether energy terms can have an
impact, but also to to avoid having too many parameters the model can overfit on. It is possible to calculate
not only global energy terms but also per residue terms when using Rosetta. This can provide more
detailed information regarding individual amino acid interactions, instead of just an overall average of
how the complex is interacting. It could therefore be interesting to create a model implementing per
residue terms as well and study whether this will improve the performance.

Recently the new edition of AlphaFold [15] has shown great improvement in molecular modeling.
It could be interesting to model the sequences with AlphaFold and calculate the energy terms on the
AlphaFold generated structures instead since these structures may model the complex structure better.
Nonetheless, it should be kept in mind that AlphaFold is still not optimal at predicting the structure of
complexes. AlphaFold has also shown limitations regarding predicting very variable loops. However,
TCR-pMHC is a complex, and TCRs contain very variable CDR loops, which have a big impact on the
interaction between TCRs and pMHCs. It would, therefore, still be a difficult task for AlphaFold to model.
Nevertheless, it would still be of interest to test whether predictions can be improved by using a different
way of modeling the complexes.

As previously mentioned, this is not an easy task to predict. However, we still show in this study
that energy calculations may be able to provide additional information that can improve the predictive
capabilities of a model in distinguishing binders from non-binders.
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9 Epilogue

This thesis presents projects exploring T cells, their receptors, and how they
can be utilized in T cell based immunotherapy. The main focus of this thesis
was to study T cell receptors to further our understanding of what may define
a given T cell lineage, how T cell receptors interact, and what they recognize,
all of which are essential parameters for their potential use in immunotherapy.

The first project included in this thesis is a review that introduces the reader
to the adaptive immune system, T cell based immunotherapy, and presents the
current tools available for predicting epitopes and neoepitopes for T cell based
immunotherapy. This review shows that T cell epitope and neoepitope predic-
tion have received a lot of interest over the years due to their potential, and
as a result, a lot of computational tools have been created for that purpose.
The majority of the current tools focus on predicting whether a peptide will
be presented by an MHC. Although this is an important part of MHC pre-
sented peptide recognition, it is only half of the equation. Some tools have
been constructed to predict TCRpMHC interaction based on the CDR3 beta
sequence, and some newer tools use the paired CDR3 alpha and CDR3 beta
sequences. However, only a handful of tools use structural information in their
models. This review aims to guide the reader on the tools currently available,
what type of input data the individual tools require and what kind of output
information the tools are able to produce. In this review, we also present and
discuss the strengths and weaknesses of the individual tools as well as potential
future perspectives that can be of interest within the field.

The second project presented in this thesis investigates if T cell lineage can
be determined based on the T cell receptor sequence alone. It has generally
been believed that the role of CD4+ T cells in anti-tumor response is somewhat
limited, but newer studies indicate that CD4+ T cells have a more significant
impact on anti-tumor immune response than previously thought. This, com-
bined with the fact that it is still unknown if there are any clear differences
in their TCRs and potentially based on what the different cells will interact
with even though both play a vital role in the adaptive immune system, is the
underlying motivation for the second project. In this project, we question how
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static a T cell is in its lineage choice and pose the question of whether T cells
may have the potential to be cross-reactive across MHC classes. The recent
increase of data from single cell sequencing made it possible to study a large
number of paired TCRs from both the CD8+ and CD4+ T cell lineage. We
discovered with this data that, although there was a signal in the data that
could to a certain extent distinguish CD8+ T'CR sequences from CD4+ TCR
sequences, it was not a clear and strong signal. We also observed that some
paired TCR sequences with the exact same V and J genes existed in the data
with either a CD8 or CD4 as their label, which led to the idea that T cells may
have the potential to be cross-reactive across MHC classes.

The review showed that only a very sparse number of tools use structural
information to predict TCRpMHC interaction, which inspired the third project
included in this thesis. The third project in this thesis addresses the potential of
using structural energies to improve the prediction of TCR recognition of MHC
presented peptides. The previous publications do not employ deep learning in
their prediction setup. We, therefore, wanted to investigate how much infor-
mation could be extracted from energy terms using deep learning and to which
extent energy terms can improve TCRpMHC interaction prediction. In this
study, we observed that global energy terms have prediction power when used
by themselves, indicating that energy terms could be of interest in predicting
TCR recognition of MHC presented peptides. We also saw that although there
is some signal that can help distinguish binders from non-binders, it is difficult
to find patterns that are generalizable across different peptides, making it a
very difficult task to predict.

9.1 Limitations

One major limitation for both the CD8+4 CD4+ lineage prediction project
and the CD8+ T cell epitope prediction project is the limited availability of
experimental data. The data used in these projects are all gathered from
publicly available databases, where the data is collected from multiple different
projects and datasets. The use of datasets collected from different experiments
can lead to the type of experiment conducted and the quality of data differing
between the datasets, which means that not all data may be equally reliable,
which can impact the models trained on the data.

Another limitation is that modeling of TCRs and TCRpMHC have proven
challenging to perform, especially due to the hypervariability of the CDR loops;
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this poses a limitation on how precise the structural energies calculated can be
and thereby how well it can represent the data and its potential differences.

Global energy terms were used to add structural information in the CD8+
T cell epitope prediction project. Although the use of global energy terms
creates a smaller model with fewer parameters, thereby reducing the extent of
possible overfitting, the information it provides may not be detailed enough.

9.2 Future perspectives

Rosetta is not only capable of calculating global energy terms but per residue
energy terms as well. The per residue energy terms contain information re-
garding how individual amino acids behave. Individual amino acids can have
signals that can be of interest for the model to pick up on, which may be
lost when only using global energy terms since these terms account for the
total structure. Therefore, it could be of interest to study whether the per
residue terms can improve the predictive capability of a model for predicting
TCRpMHC interaction.

The field of structural modeling of protein sequences has seen advancements
with the newest edition of the AlphaFold model (54). This model has been
shown to model protein structures better than other models. A model which
predicts structures that are more precise could improve how accurate the energy
calculations will be. Furthermore, any differences in energy between binders
and non-binders may become clearer with better modeling. However, one major
limitation of this model is that it is still not optimal at predicting protein
complexes and proteins with highly variable loops. However, it could still be
interesting to test how well this model can represent the structures and whether
this can improve the accuracy of the energy calculations.
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Figure S1. Two sample logo plot created with SCS double labels as “’positive” and single labels as
“negative”. Here double label means that paired TCRs have been found both on a CD4+ and CD8+ T cell.
The single label denotes paired TCRs that have only been found on either a CD4+ or CD8+ T cell.
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Figure S2. Differences between CD4 and CD8 TCRs in the single cell dataset. Logo plots showing the
difference in the TCR of the CD4 and CD8 « chain (A) and CD4 and CDS8 3 chain (B).
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Figure S3. Logo plots showing the similarities and differences in the CDR3 « chain of TCR sequences of
length 15 and 10. SCS CDR3 « sequences for CD4 of length 15 (A), SCS CDR3 «a sequences for CD4
of length 10 (B), SCS CDR3 « sequences for CDS8 of length 15 (C), SCS CDR3 « sequences for CD8 of
length 10 (D).
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Figure S4. Differences and similarities between the CDR3« chain within different datasets. Comparing
logo plots between the single cell dataset (A), the VDJdb-McPAS dataset (B) and the twin dataset (C).
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Figure S5. Differences and similarities between the TCR« chain within different datasets. Comparing
logo plots between the single cell dataset (A), the VDJdb-McPAS dataset (B) and the twin dataset (C).
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Figure S6. Differences and similarities between the TCR/ chain within different datasets. Comparing
logo plots between the single cell dataset (A), the VDJdb-McPAS dataset (B) and the twin dataset (C).
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Figure S7. Two-sample logo plot showing the differences in the TCRa sequences from CD4+ and CD8+
T cells within the different datasets. Comparing two-sample logo plots between the single cell dataset (A),
the VDJdb-MCcPAS dataset (B) and the twin dataset (C). Here an enrichment indicates that a given amino
acid at a given position is upregulated in CD8+ T cell TCR sequences and vice versa.)
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