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Summary
The research presented in this doctoral thesis involves the devel-
opment of data-driven methods for understanding the mechanisms
behind T cell recognition and predicting T cell specificity.

T cells play a crucial role in adaptive immunity as they are able
to detect the presence of pathogens or malignant cell mutations.
T cells engage with the other cells through the T cell receptor
(TCR), and TCRs interact with the peptide-MHC complexes ex-
pressed on the cell surface. Upon detection of foreign antigens
or malfunctioning self-antigens, T cells trigger a cascade of events
that leads to the elimination of the malfunctioning cells. To en-
sure protection against the broadest variety of pathogens possible,
the immune system has evolved to generate a highly diverse TCR
repertoire. This diversity is achieved through a stochastic process
of TCR generation. TCR repertoire diversity is what makes the
immune system very powerful, but it also makes it challenging
to understand the extract some common rules governing TCR-
epitope recognition.

The first part of the thesis gives an overview of the theoretical
aspects of the thesis’s topics, followed by three research projects.
The thesis is concluded with an epilogue, summarizing the main
findings of the research and future perspectives.

In the first published work we proposed NetTCR-2.0, a convolu-
tional network trained on TCR and epitope amino acid sequences.
We successfully built a model able to predict binding between
a TCR and a peptide presented by the MHC I molecule HLA-
A*02:01. We trained the neural network using both α and β -chain
CDR3 loops, showing that this method consistently outperformed
the models trained on single chain inputs. Subsequently, we ex-
panded the proposed model to include the full set of six CDR se-
quences as input, showing that this yields a gain in performance.
Furthermore, as new data was released, NetTCR-2.1 was trained
on a larger dataset covering more HLA molecules. Special atten-
tion was given to data curation during the model development.
We defined a pipeline to pre-process the input data and prevent
performance inflation due to data redundancy. The pipeline also
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included an analysis on how to artificially generate a set of nega-
tive interactions, as these are usually not available.

The final research project reported in this dissertation presents
the results from an ongoing project and proposes an application
of the NetTCR method described in the previous research pa-
pers. Given the potentially large amount of data generated with
single-cell RNA sequencing platforms, filtering pipelines are be-
ing developed to remove artifacts and noisy data points from the
dataset. We presented two data-driven filtering approaches, ICON
and ATRAP, and compared their ability to filter the data. We
concluded that the two pipelines successfully filter out noisy TCR-
peptide annotations, retaining only the most reliable interactions.
We confirmed this by training a neural network on the raw and
the filtered data, showing that the models trained on the cleaned
dataset yield improved performance.

As a whole, the presented work aims to uncover the mechanisms
behind TCR recognition and provides a computational framework
to predict TCR-peptide interaction. Being able to predict T cell
specificity will make it easier to create novel strategies for the
treatment of infections, autoimmune diseases, as well as cancer.
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Resumé
Forskningen som er beskrevet i denne Ph.d.-afhandling, omhan-
dler datadrevne metoder til at forstå mekanismerne bag T celle
genkendelse og til at forudsige T celle specificitet.

T celler spiller en afgørende rolle i det adaptive immunforsvar da
de kan detektere tilstedeværelsen af patogene mikroorganismer
eller ondartede cellemutationer. T celler interagerer med andre
celler ved brug af T celle receptorer (TCR’er), og TCR’er inter-
agerer med peptid-MHC komplekser udtrykt på celleoverfladen.
Ved genkendelse af fremmede antigener eller selv-antigener med
funktionsfejl, igangsætter T celler en kaskade af begivenheder der
resulterer i udryddelse af celler med funktionsfejl. For at sikre
beskyttelse mod så mange forskellige patogene mikroorganismer
som muligt, har immunforsvaret udviklet sig til at producere et
TCR-repertoire med meget høj diversitet. Denne diversitet er
opnået gennem en stokastisk proces af TCR-fremstilling. TCR-
repertoirets diversitet gør immunforsvaret meget kraftfuldt, men
det vanskeliggør også forståelsen af reglerne bag TCR-epitop genk-
endelse.

Den første del af afhandlingen giver et overblik over de teoretiske
aspekter af afhandlingens emner, efterfulgt af tre separate forskn-
ingsprojekter. Afhandlingen afsluttes med en epilog der opsum-
merer hovedresultaterne af forskningen samt fremtidige perspek-
tiver.

I den første publikation præsenterede vi NetTCR-2.0, som er et
convolutional neural network trænet på TCR og epitop aminosyre-
sekvenser. Vi fik med succes udviklet en model der kan forudsige
binding mellem en TCR og peptider præsenteret af MHC I
molekylet HLA-A*02:01. Vi trænede modellen på både �- og �-
kæde CDR3 loops, og viste at denne model konsekvent udkonkur-
rerede modeller trænet på data med kun en enkelt kæde. Efter-
følgende udvidede vi modellen til at inkludere det fulde sæt af
seks CDR-sekvenser som input, og viste at dette gav forbedret
performance. Da nye data blev tilgængelige, fik vi herudover
trænet NetTCR-2.1 på et udvidet datasæt der dækker flere HLA-
molekyler. Særlig opmærksomhed blev rettet mod datakurater-
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ing under modeludviklingen. Vi udarbejdede en pipeline som kan
præprocessere input dataet og forhindre overestimering af perfor-
mance pga. dataredundans. Datasætkurateringen omfattede også
en analyse af hvordan man syntetisk kan generere et sæt af nega-
tive interaktioner, da disse normalt ikke er tilgængelige.

Det sidste forskningsprojekt beskrevet i denne afhandling præsen-
terer resultaterne fra et igangværende projekt, og omhandler en
anvendelse af NetTCR metoden beskrevet i de forrige to forskn-
ingsartikler. På grund af den potentielt store mængde data, der
genereres med scRNA-sekventeringsplatforme, bliver der udviklet
filtreringspipelines til at fjerne artefakter og støjende datapunk-
ter fra datasættet. Vi præsenterede to datadrevne filtreringsme-
toder, ICON og ATRAP, og sammenlignede deres evne til at fil-
trere dataet. Vi konkluderede at de to pipelines med succes kan
bortfiltrere støjfyldte TCR-peptid annoteringer, og dermed bevare
kun de mest pålidelige interaktioner. Dette bekræftede vi ved at
træne et neuralt netværk på henholdsvis de rå og filtrerede data, og
viste at modellerne trænet på de rensede data opnåede forbedret
performance.

Som helhed har den præsenterede forskning som mål at belyse
mekanismerne bag TCR-genkendelse, og giver en beregningsmæs-
sig metode til at forudsige TCR-peptid genkendelse. At kunne
forudsige T celle specificitet vil gøre det nemmere at udvikle nye
strategier til behandling af infektioner, autoimmune sygdomme,
såvel som kræft.
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Introduction

Our immune system is a vast and intricate set of mechanisms
specialized to protect the body from the outer world. The role
of the immune system cells is to circulate in the body, always
screening the surrounding. Specifically, T cells use a receptor on
their surface, the T cell receptor (TCR) to scan the peptide-MHC
complexes expressed on the surface of the cells. When a T cell
encounters a peptide fragment derived from a virus or product of a
mutation, an immune response is triggered and a chain of events it
activated, aiming to kill the malfunctioning cell. Thus, the TCR-
peptide-MHC complex represents the hallmark of T cell-mediated
immunity. As the TCRs are highly specific to a pathogen, the
immune system evolved so that the TCRs are immensely variable,
to ensure the broadest protection possible. This variability is what
makes adaptive immunity so powerful, but at the same time, it
makes it challenging to study its principles. Recently, the volume
of the TCR generated is steadily increasing and bioinformatics
techniques are needed truly benefit from this data.

The aim of this thesis was to advance the current understanding
of peptide-MHC recognition by T cell receptors and build machine
learning models to predict their interaction. The ability to predict
this interaction would make it easier to track the development
of infectious diseases and open the door to immunotherapies for
cancer or T cell-based vaccine design.

The thesis is structured in the following way:

Chapter 1 gives an introduction to the apparatus of the T cell-
mediated immunity. Key concepts, such as T cell development and
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CONTENTS

maturation, antigen presentation by the major histocompatibility
complex and T cell activation are discussed in the chapter.

Chapter 2 focuses on deep learning modeling approaches. Dif-
ferent neural network architectures are defined, and their applica-
tions to different type of data are discussed. The chapter also gives
a description of the model training process, including techniques
to avoid overfitting, and performance evaluation metrics.

Chapter 3 is the bridge between the first two chapters. The first
part of the chapter focuses on how to deal with data redundancy
and how to properly build a data set for deep learning models. The
second part of the chapter describes possible modeling approaches
to predict TCR specificity and gives and overview of the currently
available tools to solve this task.

Chapter 4 presents the first scientific publication about NetTCR-
2.0. The main aim of the project was to build a model capable
of predicting TCR-epitope interaction, showing that both α and β
chains of the TCR are needed as input to the model.

Chapter 5 is based on the second scientific paper, and presents
NetTCR-2.1, an update version of the model presented in Chap-
ter 4. The aim of the project as to address common challenges
involved in the construction of a TCR-peptide binding predictor,
i.e. data redundancy reduction, generation of negative data or
inputs selection.

Chapter 6 introduces a third project, which is on-going. The
contribution of the project was to show that data-driven filter-
ing approaches such as ICON or ATRAP successfully increase the
signal-to-noise ratio in single-cell sequencing data, removing noisy
TCR-peptide pairs from the dataset.

Chapter 7 concludes the thesis with an epilogue, discussing the
key points from the presented work as well as the future perspec-
tive.
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CHAPTER1
T Cell Mediated Immunity

The immune system is a complex network of cells, proteins and
organs that protect the body from external threats. It consists of
various mechanisms dedicated to recognizing and fighting
pathogens. The immune system has two main components: in-
nate and adaptive immunity [1]. The innate immune system serves
as the first line of defense against pathogens that enter the body
through the skin or other external barriers. It comprises various
nonspecific mechanisms, such as fever or inflammation and the im-
mune response is mounted very quickly: for instance, if bacteria
enter the body through a wound, the innate immune system will
make sure to clear the infection within a few hours.

When innate immunity fails to defeat the infection, the adaptive
immune system is activated. Unlike the innate immunity mecha-
nisms, which react toward common broad categories of pathogens,
adaptive immunity is highly specific to a particular pathogen [2].
The two main cell components of the adaptive immune system are
the T and B lymphocytes (or simply T and B cells). These cells
move in the body, always surveying the surrounding for pathogens.
T and B cells detect the presence of foreign substances using a re-
ceptor on their surface, the T Cell Receptor (TCR) and B Cell
Receptor (BCR), respectively. The high adaptability of this type
of immunity is due to the fact that T cells and B cells undergo
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CHAPTER 1. T CELL MEDIATED IMMUNITY

a process of somatic rearrangement of the DNA, producing an
immense variety of clones with different receptors that each are
potentially specific to a particular pathogen [3]. Adaptive im-
munity also creates an immunological memory: after clearing the
infection, a fraction of the effector lymphocytes will develop into
memory cells and will be ready for eventual future re-infections
[4, 5]. This explains why the adaptive immune system might take
from several days to weeks to mount a response upon the first
encounter with the pathogen; however, reinfection at later time
points leads to a rapid response, thanks to the memory cells that
will be quickly recruited to fight the known pathogen.

T cells are responsible for the so-called cell-mediated immunity.
They are produced in the bone marrow and migrate to the thy-
mus, where they will maturate and go to the periphery. Other
than the TCR defining its specificity, mature T cells also express
a co-receptor, called cluster of differentiation (CD) [2]. T cells
express either CD4 or CD8 co-receptor; CD8+ T cells will recog-
nize epitopes presented by the Major Histocompatibility Complex
I (MHC I), whereas CD4+ T cells will be specific to MHC II-
presented peptides. For an introduction to MHC, refer to Section
1.2. The rest of this chapter will focus on T cell-mediated immu-
nity.

1.1 T Cell Development
The T cell life cycle begins in the bone marrow as a double-
negative (DN) hematopoietic progenitor cell, lacking the
CD4/CD8 co-receptor and T Cell Receptor (TCR). The progeni-
tor cells migrate from the bone marrow to the thymus, where they
will undergo a process of maturation and selection. The first step
involves the formation of a TCR, necessary for a mature T cell
to recognize peptides presented by the MHC molecules. Secondly,
two mechanisms, namely positive and negative selection, will en-
sure binding of the TCRs to the MHC molecule and non-binding
to self-peptides.

The T Cell Receptor (TCR) is a hetero-dimeric protein, typically
formed by an α and β chain (and less often by γ and δ). The TCR
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1.1. T CELL DEVELOPMENT

comes in contact with the peptide-MHC complex (pMHC) via a
set of highly variable regions called complementarity determining
regions (CDRs), as they determine the specificity of a TCR. To
detect a vast number of peptide epitopes, the immune system must
generate T cells with a high degree of TCR diversity. This diversity
is achieved by a process called V(D)J recombination (Figure 1.1).

Figure 1.1: Schematic representation of the V(D)J rearrangement. Figure
adapted from De Simone et al. [6]

The DNA rearrangement starts in the thymus; first, Variable (V),
Joining (J), Diverse (D) and Constant (C) genes encoding the β
chain are selected. The human genome contains 52 V, 2 D, 13 J
and 2 C genes for the β chain (and 70 V, 61J and 1C for the α
chain) [1, 7]. The first process that occurs is the D-J recombina-
tion of the selected genes, followed by the V-DJβ rearrangement.
Every time this process takes place, different genes are selected,
giving rise to roughly 5.8·106 possible combinations [1]. When the
different gene segments are merged, the enzymes responsible for
the joining randomly add or subtract some nucleotides at the junc-
tions, leading to a theoretical diversity of 1015 − 1020 unique αβ
TCRs [8]. Specifically, these added or deleted nucleotides at the
junctions are responsible for the increased diversity in the CDR3
region of the TCR. Once the β chain is rearranged, the thymo-
cytes are equipped with both CD4 and CD8 co-receptor, becom-
ing double-positive (DP). At this point, the recombination of the
α locus takes place, following the same rules as the β chain, but
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CHAPTER 1. T CELL MEDIATED IMMUNITY

with the only difference that no D gene is involved in the α chain
rearrangement.

The double-positive lymphocytes, decorated with the newly formed
TCR, undergo a process called positive selection. DP T cells are
presented with self-peptides on thymic antigen-presenting cells.
Based on the affinity shown towards MHC I or MHC II molecules
the T cells differentiate into CD8+ or CD4+ single-positive (SP) T
cells, respectively. Subsequently, negative selection in the thymic
medulla ensures that the SP T cells do not bind too strongly to
self-peptide, promoting self-tolerance. The T cells that do not suc-
cessfully pass positive or negative selection are removed through
an apoptosis mechanism. Only around 5% of the initial double-
positive T lymphocytes will become mature, naive T cells will be
part of the TCR repertoire and will migrate to the peripheral lym-
phoid tissues [1].

1.2 Epitopes and MHC Presentation
As described in Section 1.1, immature T cells are primed for pMHC
recognition in the thymus to ensure that they will interact with
MHC molecules. Furthermore, during their life cycle, the T cells
scan other cells to detect infected or malfunctioning cells. The
interaction between the T lymphocytes and the other cells involves
the TCR on the T cell surface and the peptide-MHC complex,
presented on the surface of the cells. Thus, it is clear that the MHC
presentation mechanism covers a dominant role in cell-mediated
immunity.

MHC is polygenic, denoting the fact that an individual has multi-
ple different MHC genes, and polymorphic, meaning that there ex-
ist many different variations of the genes within a population. Fur-
thermore, because the peptide fragments presented by the MHC
molecules are derived from disrupted larger proteins, also peptides
that are not on the surface of the proteins can be presented by the
MHC on the surface of the cells. These factors make it difficult
for a pathogen to escape the MHC presentation mechanism.

There are two main classes of MHC molecules, namely MHC class
I and MHC class II. MHC I molecules are expressed on the surface
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1.2. EPITOPES AND MHC PRESENTATION

of all the nucleated cells. The peptides presented by MHC I are the
cleavage product of intracellular, degraded proteins. They can ei-
ther be derived from the human proteome, hence be self-peptides,
or come from non-self proteins, produced under infection or muta-
tion. Peptide-MHC I complexes are recognized by CD8+ T cells,
also called cytotoxic T cells. CD8+ T cells become activated af-
ter they encounter an antigen specific to their TCR. Figure 1.2a
shows the MHC I presentation pathway. Upon recognition, CD8+
T cells differentiate into memory and effector cells. Effector cy-
totoxic T cells will bind the peptide-MHC complex and kill the
infected or malfunctioning cell. As described earlier, the negative
selection process during T cell development ensures that, under
normal conditions, the effector T cells will not be reactive towards
normally functioning cells of the body that express self-peptides.

MHC class II molecules are present on the surface of specialized
antigen-presenting cells (APC), such as dendritic cells, B cells or
macrophages. The antigens bound to the MHC II molecules are
not cytosolic, as in MHC I, but derived from extracellular pro-
teins. The pathogen enters the cell by phagocytosis, in the case of
macrophages and dendritic cells, or endocytosis, in the case of B
cells; the exogenous proteins are processed by endolysosomal en-
zymes and the resulting peptide fragments are ready to be loaded
on an MHC II molecule. The complex will migrate to the cell
surface, where it will be presented to CD4+ T cells, also called
helper T cells. The MHC II presentation pathway is visualized in
Figure 1.2b. Once a CD4+ T cell becomes activated, it prolifer-
ates and differentiates into memory or effector T cells. Effector
helper T cells trigger an immune response by releasing cytokines
that attract other immune cells. Moreover, a helper T cell is usu-
ally needed to activate B cells: when the B cell finds its target
antigen, it requires a CD4+ T cell to start the clonal expansion.

Human MHCs are called human leukocyte antigens (HLA) and are
encoded on chromosome 6. There are 3 main human molecules
for MHC I: HLA-A, HLA-B, and HLA-C. Each individual has
two copies of the same genes, one inherited from the mother and
one copy the father; hence, up to six different HLAs are ex-
pressed. For MHC II, humans have HLA-DP, HLA-DQ, and HLA-
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CHAPTER 1. T CELL MEDIATED IMMUNITY

DR molecules. Differently from MHC I, it is possible to express
more than six class II MHCs: MHC II molecules are formed by two
polypeptide chains, hence combinations between different genes
produce a higher number of possibilities.

The structure of the two classes of MHC molecules is shown in
Figure 1.3a-b. MHC I molecules are formed by a polymorphic
α chain and a non-polymorphic β2-microglobulin. MHC II also
consists of two polypeptide chains, α and β , that are both poly-
morphic (except HLA-DR, which has a monomorphic α chain).
The α and β chains can pair in different combinations, producing
different MHC II molecules.

In MHC I, the α1 and α2 domains form the binding cleft, whereas
in MHC II the peptide binds within the α1 and β1 subunits. For
both molecules, the binding cleft can accommodate peptides of
length 9, or close. The major difference between MHC I and MHC
II binding sites is that the MHC I binding grove is closed at the
ends, while in MHC II the ends are open. Therefore, MHC I
peptides are restricted to have a length of around 9; nonetheless,
8-mers can be also stretched and 10 and 11-mers can be squeezed
to fit the binding cleft. On the contrary, MHC II peptides have
no limits on sequence length, often being at least 15 amino acids
long [10, 11]. Also here, the binding core is 9 amino acids long,
but the open ends of the cleft make it possible to have flanking
regions on the sides of the binding pocket. The binding clefts of
the MHC molecules are shown in Figure 1.3c-d.

1.3 T Cell Activation
T cells interact with the pMHC complex expressed on the cell
surface utilizing their T cell receptor (TCR). One mature T cell
has more than 105 copies of the same TCR on its surface [1].
The TCR is a heterodimeric protein with two polypeptide chains,
connected by a disulfide bond. In most cases, the TCRs have an
α and a β chain. A subpopulation of around 5% T cells expresses
a γδ TCR [12, 13]. Since these TCRs follow different mechanisms
and are not fully characterized, they will not be further considered
in this thesis.
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Figure 1.2: MHC class I and MHC class II presentation pathways. (a) The
immunoproteasome cleaves intracellular proteins into peptide fragments. The
Transporter associated with antigen processing (TAP) protein translocates
the peptides over the membrane of the endoplasmic reticulum (ER). Here, the
peptides are loaded into the binding groove of the MHC I molecule. Peptide-
MHC I complex migrates to the cell surface and the antigen is presented
to CD8+ T cells. (b) Extracellular proteins are processed into peptides by
endolysosomal enzymes. The peptides bind to the MHC II pocket by displacing
a class II-associated invariant chain (CLIP), which comes from the class II-
associated invariant chain (Ii). The antigen loading process is regulated by
another MHC-like molecule, the HLA-DM in humans. Upon migration to the
cell surface, MHC II will present the peptides to CD4+ T cells. Figure adapted
from Kobayashi et al. [9]

The structure of a TCR is shown in Figure1.4a. Each TCR chain
consists of a constant and a variable region. The constant region
is proximal to the cell membrane, while the variable region is re-
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Figure 1.3: Structure of MHC molecules. (a) and (c) show MHC I molecule
HLA-A2, PDB structure 6G3J. (b) and (d) show MHC II molecule HLA-DR1,
PDB structure 1AQD. (a)-(c) shows the structure of the MHC molecules with
the peptide binding site in the upper part of the image. (c)-(d) shows the
MHC molecules’ surface, viewed from above, including the bound peptides,
colored in yellow and purple, respectively.

sponsible for the interaction with the pMHCs. Specifically, the
variable region contains the complementarity determining regions
(CDR). There are three CDR loops for each chain of the TCRs.
The CDR1 and CDR2 are germline-encoded by the V gene, while
the CDR3 loops are encoded by the flanking regions of the V/J
gene segments; only for the β chain, the CDR3 is encoded also by
a D gene segment.

The available crystal structures have revealed that the TCR po-
sitions itself diagonally above the peptide-MHC complex. This
characteristic seems to be conserved across several X-ray crystal-
lographic studies [14]. The CDR1 and 2 are closer to the MHC
molecule, while the CDR3 loops are in closer contact with the
peptide [15, 16]. This is also visualized in Figure 1.4b. Hence, the
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CDR3 regions from both chains account for most of the specificity
of the TCR towards a specific peptide. Based on the available
resolved structures of the TCR-peptide-MHC complexes, and the
limited diversity of TCRα , the general consensus has been, for a
long time, that it is mostly the CDR3β to drive the interaction with
the pMHC, while the CDR3α would participate without playing a
determinant role. Lately, the research community is re-evaluating
this assumption. Especially with computational methods, it has
been shown that both α and β chains are needed to achieve a better
performance in modeling peptide-TCR interactions; in some cases,
the results suggest that the CDR3α chain is even more informative
than the β CDR3 loop [17, 18].

Figure 1.4: Structure of a TCR. (a) Ribbon representation of an αβTCR.
The colored regions are the CDR loops. (b) Projection of the six CDR loops
onto a pMHC (peptide represented by the red stick model, MHC molecule
colored in gray). Specifically, the peptide is GLCTLVAML, presented by the
molecule HLA-A*02:01. This projection shows that, for this pMHC, the TCR
interacts with the peptide through the CDR3 loops, while CDR1 and 2 are in
contact with the MHC molecule. Figure adapted from Sewell et al. [19]

Given the scarcity of crystal structures for TCR-pMHC complexes,
this interaction still has to be fully characterized. One first chal-
lenge is represented by the TCR-pMHC binding mode and the
plasticity of the CDR loops. Even though the diagonal orienta-
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tion of the TCR over the MHC seems conserved, some studies
suggest that the binding mode of a TCR changes when interact-
ing with different peptides presented by the same MHC molecule
[20]. Furthermore, the TCR-pMHC interaction is dynamic over
time and the conformation of the CDR loops seems to adapt to
the pMHC complex [21, 22].

Another aspect of the TCR recognition that is still unknown is to
what extent TCRs are cross-reactive, i.e. be specific to more pep-
tides. Some studies suggest that a certain level of cross-reactivity
is necessary for the TCR to be able to recognize a border variety
of pathogens [19].

1.4 TCR Databases
Several databases have been curated with the aim to collect TCR
specificity data from different sources and aid the research com-
munity to push the field forward. Among these publicly available
data sources, there are Immune Epitope Database (IEDB) [23],
VDJdb [24], McPAS-TCR [25] or TBAdb [26]. These databases
consist of TCR α and/or β sequences, V/J genes together with
the target peptide and the relative MHC molecule. These curated
datasets represent a precious resource as they allow the develop-
ment of data-driven approaches to investigate TCR-pMHC inter-
actions. However, some limitations arise due to the quantity and
quality of TCR data. Most of the epitopes are characterized by
one or a few TCRs, while only a few have a considerable amount
of reported binding TCRs. Furthermore, the available data is
biased toward few antigens. The most commonly described epi-
topes in the datasets are derived from common viruses such as
human cytomegalovirus (CMV), influenza virus or Epstein-Barr
virus (EBV). Since these infections are common in humans, these
viruses are extensively studied, resulting in a large portion of avail-
able TCRs being specific to these epitopes. Table 1.1 shows the
count of unique TCR sequences along with the target epitope in
the IEDB, for peptides with at least 100 TCRs associated. Only
17 epitopes have a substantial amount of reported binding TCRs.
Moreover, the coverage in terms of HLA molecules is also low.
Among the most frequent peptides, only 6 HLA molecules are
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characterized and the majority of data refers to HLA-A*02:01,
which is one of the most common HLA allele in humans [27]. This
bias in the data and the limited amount of sequences make the
investigation of TCR-pMHC interactions challenging, as the cur-
rent data is representative of only a small subset of the immense
space of TCRs.

Peptide MHC Allele Organism # CDR3β # CDR3αβ
YVLDHLIVV HLA-A*02:01 Human herpesvirus 4 (EBV) 8488 115
GLCTLVAML HLA-A*02:01 Human herpesvirus 4 (EBV) 7032 128
NLVPMVATV HLA-A*02:01 Human herpesvirus 5 (CMV) 4886 210
GILGFVFTL HLA-A*02:01 Influenza A virus (CEF) 4539 438
TPRVTGGGAM HLA-B*07:02 Human herpesvirus 5 (CMV) 2292 1
LLWNGPMAV HLA-A*02:01 Yellow fever virus 2173 410
LPRRSGAAGA HLA-B*07:02 Influenza A virus (CEF) 2142 -
LVVDFSQFSR HLA-A*11:01 Hepatitis B virus 1875 -
STLPETAVVRR HLA-A*11:01 Hepatitis B virus 925 -
ELAGIGILTV HLA-A*02:01 Homo sapiens 558 79
KTAYSHLSTSK HLA-A*11:01 Hepatitis B virus 476
VTEHDTLLY HLA-A*01:01 Human herpesvirus 5 (CMV) 274 1
EAAGIGILTV HLA-A*02:01 Homo sapiens 214 16
RAKFKQLL HLA-B*08:01 Human herpesvirus 4 (EBV) 187 1
ATDALMTGY HLA-A*01:01 Hepatitis C virus 131 -
NEGVKAAW HLA-B*44:03 Human herpesvirus 5 (CMV) 117 -
CINGVCWTV HLA-A*02:01 Hepatitis C virus 114 28

Table 1.1: Counts of unique CDR3β and CDR3αβ for each peptide in the
IEDB [23]. The table describes the epitopes with at least 100 CDR3β sequences
associated. For each epitope, the MHC allele and the origin organism are
reported, along with the counts of unique CDR3β and CDR3αβ in the dataset.

The TCR datasets described above collect data from previous
studies and publications. Typically, TCR data is generated by
multimer sorting or re-exposure assays, followed by bulk sequenc-
ing. The vast majority of these datasets contain information about
CDR3β only. The reason for this is that the α and the β chain
genes are not located on the same chromosome, therefore it is not
possible to sequence them together. Since the CDR3β loop was
thought to be the driver of the TCR-peptide interaction, given its
increased diversity compared to the α chain, researchers focused
their investigation on the β loop over the α.

With the advent of single-cell sequencing technologies, specifically
single-cell RNA sequencing (scRNA-seq), it is now possible to have
a more clear picture of the TCR-pMHC interaction. scRNA-seq
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enables high-throughput screening of thousands of T cells against
large libraries of pMHC complexes, linking the T cell specificity
directly to the amino acid sequences of paired TCR α and β se-
quences.

In 2019, the commercial scRNA sequencing platform 10x Genomics
released the first large single-cell database of TCR-peptide inter-
actions [28]. This dataset contains T cell specificities from four
healthy donors screened against a panel of 50 pMHCs. The as-
say resulted in 55,221 unique pairs of CDR3 α and β chains, to-
gether with information about their specificity. However, this data
presents new challenges and single-cell platforms are generally as-
sociated with a poor signal-to-noise ratio, making specificity data
more prone to artifacts and mis-annotations. Different approaches
have been proposed to denoise single-cell data to truly benefit from
scRNA-seq [17, 29]. A benchmark of these approaches on the 10x
dataset will be the focus of Chapter 6 of this thesis.

14



CHAPTER2
Deep Learning and Neural Networks

Deep Learning refers to a subset of the broader family of
machine learning methods and comprises neural network-based
algorithms. Neural Networks (NN), or Artificial Neural Networks
(ANNs) are inspired by the human brain, simulating the way a
signal is passed from one neuron to another [30, 31].

The power of ANNs is that they introduce high non-linearity in
the model, allowing a more flexible and accurate mapping of the
input onto the output. A central result in deep learning theory
is the universal approximation theorem [32]. The main claim of
the theorem is that a neural network, even a single-layer network,
is able to approximate any function, provided that the number
of neurons is high enough. Hence, given an adequate number of
neurons and an appropriate level of non-linearity, there exists a set
of weights that can approximate any function, even non-analytical
ones.

Formally, an ANN is an approximation of the function f , that
maps an input x to the output y: y = f(x; θ), where θ is a set
of parameters. The parameters θ are learned from the data, to
ensure the best possible approximation of the function f [30]. The
building block of a neural network is called an artificial neuron.
A neuron takes a data point as input and produces a real-valued
output by multiplying the input with a set of weights. The non-
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linearity in a neural network is achieved by applying a nonlinear
function to the linear combination of inputs and weights. Artificial
neurons can be combined to form layers, and multiple layers can
be stacked, defining the depth of the network.

At the beginning, all the weights of the network are randomly
initialized. During a process called model training, the network is
shown the observational data and tries to adjust the weights in a
way that the error between the original and the predicted outputs
is minimized. At the end of the training, the learned vector of
weights defines the approximation of f . To assess the predictive
performance of a trained model, the weights are then applied to
a test set, to understand how the model is able to generalize to a
novel data set.

Different types of neural network architectures have been devel-
oped, to adapt the algorithms to a broader variety of input data
and tasks. The simplest form of network architecture is the feed-
forward neural network (FNN). In this type of network, the in-
formation moves in only one direction (forward) from the input
nodes, through the hidden neurons (if any) and to the output.
FNNs form the basis of every other neural network architecture.
More specialized networks, e.g. Convolutional neural networks
(CNN) [33] or Recurrent Neural Networks (RNN) [34], can be
used to extract relevant features from the inputs; these features
will be subsequently fed into one or more fully-connected layers
to be combined into the output of the network. CNNs were first
developed for image analysis, but then they have been successfully
applied to different types of data, such as sequences or time se-
ries. Rather than looking at each single neuron, CNNs focus on
sub-portions of the inputs, scanning it and trying to extract some
context-dependent features. When working with sequential data,
RNNs are best suited for this task. In this network architecture,
the output is fed back into the network as input, forming a cycle.
RNNs better model the sequentiality in the data, as each input
at a specific time step t is connected to the input at the previ-
ous and next t. A popular choice of recurrent architecture is the
Long Short Term Memory (LSTM) network [35]. In LSTMs, the
information passes across the sequence through a variable called
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cell states. In this way, LSTMs can selectively remember or forget
information at each time step, allowing the flow of only the salient
information in the sequence.

2.1 Feed-Forward Neural Networks
Generally, a FNN is a directed acyclic graph consisting of an input
layer, one or more hidden layers and an output. The term feed-
forward refers to the fact that the information flows from the input
to the hidden layers, to the output in only one direction. Thus,
there are no cycles where the output is fed into the network again
[30]. Moreover, FNNs are fully-connected, meaning that each neu-
ron in a specific layer is connected by an edge to all the neurons
on the next layer, with an associated weight. The core component
of a FNN is the artificial neuron, also called perceptron [31]. The
mathematical formulation of a neuron is given by the equation

y = g

(
n∑

i=1

wi xi + b

)
,

where y is the output to predict, x is the input of size n, wi are
the weights, b is the bias term and g is a nonlinear function [36].
A FNN is a combination of multiple neurons to form a layer, and
a stack of multiple layers.

Figure 2.1a shows a schematic representation of a FNN with one
hidden layer. The input data access the network through the in-
put layer, where each input neuron is connected to every hidden
neuron through an edge with an associated weight. In addition to
the layers’ neurons, there is a special unit called bias. Adding the
bias to a neuron in the next layer introduces an intercept term,
allowing an adjustment of a neuron’s activation [30]. The content
of a hidden neuron is calculated as a weighted linear combination
of the input neurons (and bias), transformed via a nonlinear func-
tion (Figure 2.1b). The function g is called activation function
and it plays an important role in neural networks. In fact, it is
the activation function that allows the mapping f from the input
to the output to be highly nonlinear [30]. Different choices of ac-
tivation functions exist, depending on the nature of the problem.

17



CHAPTER 2. DEEP LEARNING AND NEURAL NETWORKS

One of the most frequently used functions in classification is the
sigmoid activation function, g(z) = 1

1+e−z . This function maps a
real-valued number into a number in the interval (0, 1). When
working with binary classification, it is particularly important to
apply the sigmoid function on the output neuron, as the output
of the network is squeezed into the interval (0, 1) and can be con-
sidered a class probability. Other common choices of activation
functions are the hyperbolic tangent (tanh) or the rectified linear
unit (ReLU).

Figure 2.1: (a) Schematic example of a feed-forward neural network with
two input neurons xi, one hidden layer with three neurons hj and one output
neuron y. All the input neurons are connected to the hidden neurons, and
all the hidden units are connected to the output. (b) Visualization of the
mathematical operation within each neuron: the inputs xi and the bias are
summed with weights wi; this linear combination is passed through a non-
linear activation function g to give the output of the neuron.

Fully-connected networks have been successfully applied to a num-
ber of different fields of bioinformatics, including protein research
[37–39]. However, some limitations arise in relation to FNNs ap-
plied to protein prediction tasks. The first limit of FNN is that
the input should have a fixed length. This represents an important
limitation, as proteins can go from a few amino acids to thousands
[40]. In this case, the sequences should be truncated or expand-
ed/padded to a common length, leading to loss of information.
Another factor that makes FNNs not the best applicable model
to sequences is that the spatial correlation and the sequentiality
in the input are lost. The input neurons of a feed-forward neural
network are independent from each other, and there is no such
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concept as neighboring neurons. Ideally, a modeling approach
should be able to look at sub-sequences at once, to capture motifs
and extract some rules about the order of the amino acids in the
sequences. Another class of network architectures, named convo-
lutional neural networks, are specially designed to deal with the
above-mentioned limitations. These will be discussed in the next
Section.

2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) were first described by Le-
cun and Bengio [33] and were developed for image and text anal-
ysis. Inspired by the visual cortex cells, convolutional neural net-
works introduce the concept of receptive field, i.e. a sub-portion of
the visual field that solicits these cells. Following this idea, CNNs
split the input into sub-regions and apply an operation, namely
convolution, to the entire area at once. CNNs can be applied to
inputs of any dimension: in the case of image analysis, the CNN
used are 2D, as an image is represented by a 2D matrix (3D for
color images). When the input is sequential, such as time series,
text or protein sequences, the CNNs are 1D, as they are used to
process a one-dimensional signal.

Among other applications, CNNs have been successfully applied
in the field of protein research [41–43]. A protein sequence is a 1D
input that can be processed by 1-dimensional CNN. As mentioned
in Section 2.1, convolutional neural networks are specifically de-
signed to address some of the limitations introduced by FNN when
working with protein sequences. One of the most beneficial proper-
ties of CNNs is that they can handle inputs with different lengths:
even if the input sequences have different sizes, these are scanned
by multiple filters and mapped to a vector of features of equal
sizes. This aspect of CNNs differentiates them from FNNs, and
makes them very suitable to be applied to proteins, where the
sequence length is highly variable.

One of the main differences between CNNs and FNNs is the sparse
connectivity of CNNs. In FNNs, each hidden neuron is connected
to all the input neurons. In CNNs, a hidden unit is connected
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only to a subset of the input units; this subset is referred to as the
receptive field, or convolutional filter and its width is called filter
size.

Figure 2.2 depicts a 1D convolutional filter and illustrates how a
CNN layer works. The filter is slid across the input, scanning the
sequences. At each step, the convolution operation between the
filter and the input generates an output neuron and the filter is
moved by one or more positions. This process is repeated until
the entire input has been covered by the filter. This defines the
output of a convolutional layer.

Figure 2.2: (a) A filter of size 3 is overlapped to the first three elements
in the sequence and a convolution operation is applied to get a convolutional
output. The filter is then slid across the sequence one position to the right and
convolution is applied. This process terminates when the filter has scanned
the entire sequence. (b) Numerical example of the convolutional operation:
element-wise multiplication and sum of the input and the filter weights.

Formally, a convolution on k consecutive positions of an input
sequence X starting at position i can be defined as

ht = g(Wf ·Xi:i+k−1 + bf ),

where g is an activation function, bf is the bias term and Wf is
a convolutional filter of size k [44]. The filter Wf replaces the
common weights of an FNN and represents a set of learnable pa-
rameters of the network. At the beginning of the training, the filter
weights are randomly initialized. During the backpropagation, the
weights are updated following the same principle described earlier,
i.e. in such a way that the loss is minimized.
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Instead of applying many sequential convolutional layers, it is
common practice to apply parallel convolutions on the input with
multiple filters and different filter sizes. Having filters with multi-
ple sizes scanning the input means that the network is analyzing
the input using different resolutions. This procedure results in
having many context-dependent representations of each position
in the input, where each representation was influenced by a dif-
ferent number of neighboring neurons of the considered input. In
this light, a CNN can be seen as a feature extractor. The output
of each convolutional filter is a feature extracted by the network.
The learned features might be abstract and hard to interpret, but
they represent a set of optimal attributes, as the filter weights were
learned during training while minimizing the error function.

As described up to here, a convolutional layer consists of two steps:
first, many convolutions are run in parallel on the input; then, a
non-linear activation function is applied to the output. Typically,
these two steps are followed by a third one, that is, a pooling op-
eration is subsequently applied. Pooling condenses the outputs on
the convolutions and reduces its output dimension. Global max
pooling refers to the strategy of taking the maximum activation
of a given filter over the entire input. Hence, global max pooling
summarizes the filters’ learned features by reducing each filter to
a single neuron. This vector of features can be then fed into an-
other CNN layer or in a fully-connected layer, where these features
are combined and an output is produced. As mentioned before,
CNNs are not limited to sequences with the same length. It is
indeed thanks to the global pooling layer that the sequence length
dimension of the input is removed: an equal number of filters scans
the inputs (eventually with different length) to produce a convo-
lutional output; the outputs of the filters undergo global pooling
and are reduced to a scalar value. Because each input is processed
by the same number of filters, the global pooling output will have
the same dimension for each input, independently of the sequence
length.
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2.3 Model Training and Backpropagation
At the beginning of the training process, all the weights of the net-
work are randomly initialized. The aim of the learning algorithm
is to iteratively update these parameters so that the error (or loss)
between the prediction and the actual target is minimized. De-
pending on the prediction task, different loss functions can be used
to quantify the error. When the target variable is continuous, i.e.
in the case of a regression, the mean squared error loss is one of the
most frequently used, E = 1

n

∑n
i=1(yi − ŷi)

2, where y is the target
and ŷ is the prediction. In classification, it is common practice to
use the cross-entropy loss function, E = −

∑n
i=1(yi log(ŷi)).

Each training iteration, also named an epoch, consists of two
phases. In the first phase, called forward pass, the input data
x is fed into the network, passes through the hidden layers of the
network and an output ŷ is obtained. The prediction ŷ is com-
pared to the actual target y and an error between the prediction
and the target is computed, using a suitable loss function. The
next step is called backward pass, or backpropagation. Here, the
loss function is minimized with respect to the model weights until
the convergence to the minimum is reached. This optimization
is achieved using the gradient descent algorithm. The intuition
behind this method is that the loss function is minimized by itera-
tively taking steps in the opposite direction of the gradient of the
function in a point, as the direction given by the gradient is the
steepest. Formally, the updating rule with the gradient descent at
a time step t is given by the following equation:

wt+1 = wt − η
∂E

∂wt
.

The parameter η is called learning rate and represents the size of
the step to take in the steepest direction. The learning rate is a
hyper-parameter of the model and its tuning is crucial to ensure
the convergence of the algorithm. If the chosen η is too small, the
convergence will be slow and the algorithm might be stuck in a
local minimum of the function; on the contrary, too big values of
η will lead to divergence, as the algorithm will keep jumping over
the local minimum, without reaching it. Another way of reduc-
ing the chances of being stuck in local minima is using stochastic

22



2.4. CROSS-VALIDATION

(or online) gradient descent (SGD). In regular gradient descent,
the weights are updated only once, after the entire dataset has
been shown to the network; because the gradient is accumulated
over many data points, it could become very large and lead to
divergence of the algorithm. In stochastic gradient descent, the
weights are updated more frequently, after the network has seen a
single (randomly sampled) data point, instead of the entire data
set. However, a drawback of SDG is that it might produce noisy
jumps, as the updates are influenced by every single sample. A
solution to this problem is using mini-batch gradient descent. A
random subset of the data is shown to the network and a prediction
for each sample is obtained. During the backward pass, the gradi-
ents for each data point are calculated and the error is optimized
using an average of these gradients. The size of the data batches
is arbitrary. To avoid non-convergence, it is common practice to
use small batches with size 32 or smaller [45, 46].

Different optimization schemes have been proposed to optimize the
SGD algorithm. One of the most commonly used is the Adam op-
timization scheme [47]. Rather than having a single learning rate
for all the parameters of the network, the Adam method adapts
a learning rate for each weight by using estimates of the first and
second momentums of the gradient. This results in faster conver-
gence of the algorithm.

2.4 Cross-Validation
Neural network architectures allow flexibility in terms of number
of layers and number of neurons, to ensure the best possible ap-
proximation of the function f ; this also means that the number of
parameters becomes very large. A model with a large number of
parameters can be trained almost to perfection, performing very
well on the training data. However, it can happen that, when the
model is evaluated on new, never-seen data, the performance drops
as the model has a high fitness to the training data but will not fit
the test set. The problem of having a perfect model on the training
data, but that is not able to generalize on an independent dataset
is known as overfitting. Overfitting arises in numerous cases and
its causes are different. When designing a neural network-based
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model, it is of paramount importance to avoid overfitting, since
the ultimate aim of the model is to learn from labeled data and
have reliable predictions on a novel, unlabelled data set.

Cross-validation (CV) is a technique used during model training,
to avoid overfitting. The idea behind cross-validation is to use the
entire data set split into training and test sets. In k-fold CV, the
data set is split into k partitions. In a rotational manner, k-1 par-
titions will be used as training and one as test set. This generates
one trained model. In the next step, the test partition is changed
(also the training splits, accordingly), and a new model is trained.
This procedure results in k trained models, one for each train-test
combination. Figure 2.3a illustrates how the partitions are cho-
sen in cross-validation. Once the k models have been trained, the
predictions for an independent data set are given by an ensemble
of the k models, i.e. an average of the predictions of the single
models. The power of cross-validation resides in the fact that the
model increases in robustness since an ensemble of models is used
to make predictions [48, 49].

One of the most common causes of overfitting is over-training of
the model. The longer the network is trained, the more the model
is fitted to the training data. This will most likely lead to a sit-
uation where the training loss approaches 0 while the test loss
increases. To balance this effect, early stopping can be used. The
idea is to stop the training when the performance on the evalua-
tion set starts dropping. The dataset is split into three parts: a
training set, used to fit the model, a validation set, used to moni-
tor the loss, and a test set used to evaluate the performance. Early
stopping is applied by monitoring the training and validation loss.
At the end of each epoch, early stopping makes sure that both the
training and validation loss decrease. When the validation loss
starts increasing or reaches a plateau phase, then the training is
stopped and the best model is selected as the one achieving the
minimum validation loss. This selected model will then be used
to make predictions over the test set. Early stopping can be inte-
grated into the k-fold cross-validation scheme, by adding an extra
layer that loops over the partitions once more. Hence, according to
the nested CV scheme, the model is trained on the training set and
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the validation set, independent from the training, is used to select
the early stopping epoch or to perform any other hyperparame-
ter optimization to select the best performing. The test partition
serves as an independent set to assess the model performance, as
no training or optimization is performed on this set. Figure 2.3b
shows the nested cross-validation on one test set. Also here, the
data set is split into 5 partitions. For each iteration, one parti-
tion is selected as test set; the four remaining splits are used for
training and validation, in all possible combinations. Hence, for
each test partition, there are four train-validation combinations,
producing 4 different trained models and the prediction over the
selected test set is calculated by averaging the predictions of the
four models. After looping over all the test sets, a total of 20
models are trained. An ensemble of all the 20 models is used to
get predictions over an independent dataset.

Figure 2.3: (a) Representation of 5-fold cross-validation scheme. The entire
dataset is split into 5 partitions. Iteratively, one partition is used as a test
set and the remaining 4 as training set. The overall performance is given
by the test performances. (b) Nested 5-fold cross-validation on a single test
fold. For each train/test split, the training set is further split into training
and validation set; the validation data is used to perform model selection,
including hyperparameter tuning and early stopping.

We have seen that cross-validation is widely used to reduce over-
fitting and it is based on the concept of splitting the data into
independent training and test sets. The key point is to partition
the data set making sure that the partitions are independent. An
example of non-independent partitions is when some data points
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are present both in the training and in the test set. When making
predictions over the test set, the model will simply replicate the
training predictions, leading to inflated test performance. Thus, it
is very important to take care of data redundancy and partitioning
to have a fair performance evaluation. In the context of biological
sequences, it is not trivial to define independence between data
points, as requiring only that the same sequences are not shared
between partitions might not be enough. This aspect of redun-
dancy reduction and data partitioning for protein sequences will
be discussed in detail in Section 3.2.

2.5 Performance Evaluation
Several performance measures exist to evaluate the
predictive power of an algorithm and to compare different mod-
els. Usually, the neural network outputs a real-valued prediction
for each data point. When dealing with a classification task, e.g.
binary classification, a threshold has to be set to classify the data
points in predicted positives and predicted negatives. This is vi-
sualized in Figure 2.4. The positive points that are correctly clas-
sified as positives constitute the true positives (TP); similarly, the
true negatives (TN) are the correctly classified negative points.
When a labeled positive point is classified as negative, this is re-
garded as a false negative (FN); on the contrary, when a negative
point is predicted to be positive, this is considered as false positive
(FP).

An intuitive way of assessing the ability of a model that classifies
data points into positives and negatives is using accuracy, defined
as the fraction of correctly predicted examples. Accuracy has the
advantage of being easily interpretable. However, a big disadvan-
tage is that this metric does not take into account if the dataset
is balanced, in terms of the number of positives and negatives.
This means that high accuracy can be achieved simply because
the data distribution is highly skewed towards one class and the
model predicts all the data to belong to that class. Furthermore,
it might not be trivial to decide on a specific threshold to build
the confusion matrix.

26



2.5. PERFORMANCE EVALUATION

Figure 2.4: Visualization of the TP, TN, FP and FN after setting a threshold
on the prediction values (the dashed line on 0.5 in the plot). All the predictions
higher than the threshold are classified as positives and all the lower scores
are considered negative predictions.

A non-parametric measure used in machine learning is the re-
ceiver operating characteristics (ROC) curve [50]. Rather than
setting a fixed threshold, the confusion matrix for many values of
the threshold is calculated. For a threshold t̄, we can define the
true positive rate, TPR=TP/(TP+FN), and false positive rate
FPR=TP/(TP+FN). The ROC curve is defined as the TPR as a
function of the FPR; thus, the ROC curve gives an indication on
the model performance as the threshold t̄ changes. The perfor-
mance of a model can then be estimated using the area under the
ROC curve (ROC-AUC, or simply AUC). The AUC value repre-
sents the probability of a positive data point scoring higher than
a negative one [51]. Higher the AUC value the better the model
is in separating positives and negatives. A perfect classifier will
have an AUC of 1 while the AUC of a random classifier will be
0.5. Figure2.5 shows the process of generating a ROC curve, as
t̄ is changed. Another useful metric derived from the AUC is the
AUC0.1, defined as the normalized area under the ROC curve,
integrating the FPR up to 0.1. Thus, AUC0.1 focuses on the data
points to which the model assigned a very high prediction score.
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Figure 2.5: Generation of a ROC curve from the predictions, by varying
the classification threshold. Once a threshold is set (shown by the red line in
the table), the pair (FPR, TPR) for the specific threshold corresponds to the
black point in the left plot. The entire ROC curve is generated by selecting
multiple threshold values and computing the FPRs and TPRs.
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CHAPTER3
T Cell Immunoinformatics

The main focus of immunoinformatics is the development of data-
driven algorithms to extract information and patterns from com-
plex immunological data. One of the problems where immunoin-
formatics has made a massive contribution is the MHC I and
MHC II binding prediction [52, 53]. These tasks are to a large ex-
tent solved and the developed models are able to generate nearly-
perfect predictions. However, the peptide-MHC binding consti-
tutes only one side of the T cell-mediated immune response. Es-
pecially in the last years, the attention has shifted towards under-
standing how the T cell interacts with the pMHC complex. Being
able to understand how this interaction takes place, and poten-
tially predict it, would pave the way to the development of novel
T cell-based immunotherapies and rational design of vaccines [54–
56].

The focus of this chapter is to provide a description of how im-
munoinformatic methods can be applied to T cells. First, the
most commonly used TCR similarity measures will be defined,
and their application to data cleaning and partitioning will be
discussed. The last part of the chapter gives an overview of the
state-of-the-art published models to predict TCR-pMHC interac-
tions and what are the challenges involved.
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3.1 TCR Similarity Measures
Defining a measure of similarity between TCR sequences plays a
key role in different applications, from data partitioning to TCR
specificity prediction. These applications will be discussed in the
following Sections.

Different sequence similarity measures exist that can be applied
to TCRs. Naively, the similarity between two sequences could
be measured with the Hamming distance [57], i.e. the number of
substitutions required to transform one string into another. The
use of this metric is very limited as it requires the two sequences
to have the same length, white TCR sequences are very diverse
in terms of sequence length. An extension of the Hamming dis-
tance is the Levenshtein measure [58]. According to this metric,
the distance between two strings is given by the total number of
moves (insertion, deletion, substitution) needed to transform one
sequence into the other, normalized by the length of the longest
sequence.

Hamming and Levenshtein distance, however, are not biologically
informed. They apply a uniform edit penalty to the sequences, no
matter what is the position and what substitution is made. This
scheme is sub-optimal when applied to protein sequences, as we
know that some substitutions are more likely to happen in na-
ture than others [59]. A suitable distance should take this aspect
into account. One solution to this is using a substitution ma-
trix, such as the BLOSUM matrix [60]. For each of the 20 amino
acids, the BLOSUM matrix gives the observed probability for the
amino acid of being substituted with any of the other 19. The
BLOSUM scheme weights the alignment between two sequences
based on the substitution probabilities. The BLOSUM score can
be considered a similarity measure since it reflects how likely the
protein folding will be conserved after the substitution, and hence
its function. However, BLOSUM scoring might not be the opti-
mal choice to assess TCR similarity. The substitution scores are
based on the evolutionary likelihood of conservation or mutation,
but CDRs (and in particular CDR3 loops) are stochastically gen-
erated through the V(D)J rearrangement and do not share any
evolutionary relationship.
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Another similarity measure capable of handling sequences with
different lengths and that doesn’t use sequence alignment is the
kernel similarity measure [61]. The algorithm takes two sequences
s1 and s2 as input. For each of the two sequences, a list of all
the possible k-mers is generated, with k ranging from 1 to the
length of the shortest sequences. Iteratively, for each value of
k, all the k-mers of s1 are aligned to the k-mers in s2 and the
BLOSUM62 score between these is computed; for each k-mer, all
the BLOSUM scores are then multiplied. Lastly, all the k-mers
products are summed and normalized, so that the k-mer scoring
ranges from 0 to 1, where 1 means a perfect match between the two
sequences. Kernel similarity is not influenced by varying sequence
lengths, as all the possible k-mers of equal length are compared.
Further, this metric places more emphasis on the central part of
the sequences, as the central residues fall into more k-mers and
are involved in the similarity calculation more often compared to
the terminal parts. This aligns with the biological understanding
of CDRs-peptide interaction; especially for the CDR3 loops, the
termini are conserved while the central part of the loops is more
variable and is in closer contact with the peptide [14].

3.2 Similarity Reduction and Data Partitioning
The aim of any machine learning model is to learn from the train-
ing data and to be able to generalize over unseen data, giving a
reliable prediction over a test data set. It is of crucial importance
that the training and the test data are disjoint and independent.
If a subset of the data is shared between the two sets, the model
will make good predictions over these data points simply because
it remembered these from the training set. Hence, the overall test
performance will be inflated.

When dealing with biological sequences, it is not trivial to define
the meaning of independence between sequences. For example,
let us consider the problem of predicting TCR specificity. One
could define a similarity metric between two TCR sequences as
the sequence identity. When partitioning the data into training
and test, a simple approach to ensure having independent parti-
tions would be to place sequences with 100% sequence identity in
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the same partition, to avoid data leakage between training and
test set. However, this criterion might not be enough. In fact, if
two TCRs have one single mutation (hence not being 100% iden-
tical), they most likely recognize the same epitope because they
have a high sequence similarity. If we partition based solely on
sequence identity, these two TCRs might fall into different parti-
tions and the performance of the classifier will be overestimated
since the model didn’t learn the signal but only remembered the
specificity of the TCR seen in the training set. This example
shows that a suitable partitioning scheme should be implemented
with protein sequences. The scenario described above is usual in
the TCR sequence space, where many sequences with the same
specificity differ from each other for one or two mutations. A
good data pipeline should take into account this aspect, and avoid
data leakage between train and test splits to prevent performance
overestimation.

A widely used method for reducing the redundancy in sequence
data is the Hobohm 1 algorithm [62]. This method sorts the data
into a redundant and non-redundant list. The algorithm starts
by sorting the sequences according to a criterion of interest, for
instance, TCR length in descending order. The TCR on top of
the list is placed in the non-redundant list; iteratively, all the can-
didate TCRs will be compared to the non-redundant ones, using
a suitable similarity measure: if the new TCR has a similarity
higher than a certain threshold to any of the TCRs in the non-
redundant list, then it is discarded and placed in the redundant
stack. On the contrary, if a new TCR doesn’t share high similar-
ity with any of the non-redundant TCRs, this is considered unique
and placed in the non-redundant list. The algorithm terminates
when all the TCRs have been scored against the non-redundant
TCRs. The output of the Hobohm 1 algorithm is a list of TCRs
where any possible pair of sequences have a similarity that is equal
to the similarity threshold, at most. Because some of the TCRs
are redundant, the set of unique TCRs is reduced in size. The
non-unique TCRs are either discarded from the data set or rein-
troduced, making sure that they will be placed in the same parti-
tion as their most similar TCR in the unique list. Depending on
the problem to be analyzed and the nature of the data, different
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similarity measures can be adopted here; some examples of such
measures were presented in Section 3.1. Regarding the choice of
the threshold, this is also arbitrary and depends on how strict the
redundancy criterion should be, i.e. how different and separated
we require the resulting partitions to be.

Once the highly similar TCRs are removed from the set and the
redundancy is reduced, it is possible to partition the dataset and
get k clusters to be used for k-fold cross-validation. The Hobohm
1 algorithm ensures that, regardless of the way the data is par-
titioned at this point, there will not exist any pair of redundant
TCRs across partitions. Different approaches can be used to split
the data. The simplest one is to randomly assign the TCRs to the
k clusters. Another more sophisticated approach uses similarity-
based graphs to cluster the data. A random TCR is selected from
the redundancy-reduced set. This TCR is then connected to all the
TCRs that have a similarity higher than a new threshold, referred
to as the partitioning threshold. After, all the sequences that were
connected to the initial TCRs are, in their turn, connected to the
similar TCRs. This process continues until no other TCRs can
be merged into clusters. This construction of the similarity graph
continues until all the TCRs have been touched by a graph, or only
singlets with no similarity to other TCRs are left. This procedure
results in many components that can be now merged into k parti-
tions. One of the problems that might arise with this approach is
that most of the data could fall into the same, big cluster, leading
to partitions with very unbalanced sizes.

3.3 Protein Sequence Encoding
The input of the neural networks should be numerical. A critical
step in designing a deep learning algorithm is to choose an appro-
priate way of representing protein sequences into numerical values.
This step is referred to as sequence encoding. A first simple ap-
proach is to use the so-called one-hot encoding. In this scheme,
each amino acid is represented as a vector of length m, where m
is the length of the amino acid alphabet. For a given amino acid,
the vector contains 1 in a position that is unique for the specific
letter and 0 elsewhere. One-hot encoding produces a sparse rep-
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resentation of the sequences, where the vector representing each
amino acid is orthogonal to all the other amino acids. While this
approach might work well when there is no clear dependence be-
tween the inputs, it is too simplistic in the context of protein
sequences because amino acids at different positions are not inde-
pendent. One drawback of representing the amino acid with a set
of orthogonal vectors is that the pairwise distances between the
vectors are the same. However, we know that some amino acids
share some similarities in terms of physico-chemical properties and
that exchanging similar amino acids will result in no change in the
structure or function of the protein [63].

A more specialized amino acid encoding uses substitution matri-
ces, such as BLOSUM50 [60]. These substitution matrices contain
the observed probabilities of an amino acid remaining unchanged
or being exchanged with the other 19. Hence, also according to
this scheme, each letter of the alphabet is represented as a vector
with 20 columns. This vector representation contains more infor-
mation compared to one-hot encoding, as similar residues in the
protein sequence will have a similar representation [64].

A more recent approach in amino acid encoding consists in let-
ting a neural network learn the representation. In this case, the
amino acids representation is a set of parameters that have to be
learned during the training process, together with all the other
network weights. This approach is heavily data-driven and it is
task-specific. In fact, the encoding is updated at each iteration
of the backpropagation algorithm, with the aim of minimizing the
error. Learning the encoding from the data is typically used in
recurrent neural networks, such as LSTM, or in transformers ar-
chitectures [65].

3.4 Predicting TCR Specificity
Peptide-MHC recognition by T cell receptors represents the cor-
nerstone of T cell mediated immunity. Developing computational
models to predict TCR interaction with the pMHC is highly de-
sirable. It would deepen our current understanding of how T cells
interact and would pave the way to personalized immune treat-
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ments and targeted vaccine development. However, this task is
highly challenging and the available prediction models work un-
der specific circumstances and are not fully able to generalize to
never-seen epitopes.

This Section describes a fairly simple but efficient way of predict-
ing TCR specificity using TCR similarity. The second part gives
an overview of the current state-of-the-art prediction models.

3.4.1 Similarity-based Modeling
A first attempt to predicting TCR specificity consists of using se-
quence similarity to assess what is the likelihood of a TCR binding
to a specific epitope. The main hypothesis behind these models is
that, even though the TCRs are very diverse, TCRs binding to the
same pMHC complex have a higher sequence similarity compared
to TCRs with a different specificity [66]. Among the unsupervised,
similarity-based algorithms that attempt to predict TCRs speci-
ficity, there are TCRdist [67], GLIPH [68, 69], TCRMatch [66],
and TCRbase [70].

TCRdist deploys the BLOSUM scoring scheme to compute dis-
tances between TCRs. The TCRdist measure is defined as a
weighted distance between αβ-pairs of CDR2, CDR2.5 and CDR3
sequences. The distance between the loops is calculated as an
alignment score but weighted by the BLOSUM62 matrix. The
TCRdist measure is used to compute an all-against-all similarity
matrix that is used for clustering the TCRs using the k-Nearest
Neighbors (kNN) algorithm.

GLIPH is an unsupervised clustering algorithm that attempts to
cluster TCRs with the same specificity using conserved motifs and
similarities between CDR3 loops. The distance between two se-
quences is calculated as the motif frequency of k-mer frequencies
(k=2,..,5), compared to a background distribution of expected fre-
quencies.

In the TCRMatch publication, the authors benchmarked a set of
seven different similarity measures to predict TCR specificity. In
the proposed models, TCR similarity is calculated using the ker-
nel similarity measures on the CDR3β sequences. The algorithm
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works as follows: define a query as a set of CDR3β for which a
prediction is needed. Each of the query TCRs is scored against a
database, formed by the peptide-TCR pairs present in the IEDB.
The prediction for a given peptide-TCRs is then given by the sim-
ilarity of the evaluation TCR to its nearest neighbor in the IEDB.
Figure 3.1 shows a schematic representation of how this method
works.

We have developed TCRbase [70], an extension of the TCRMatch
algorithm. The main extension present in TCRbase is that input
space is not restricted only to the CDR3β loop, but the users can
choose to use also the paired CDR3αβ sequences, or also the entire
set of the six CDRs. In the case multiple sequences are used, for
instance in the case of CDR3αβ sequences, the kernel similarity
score is given by a weighted average of the kernel similarities of
the single loops. If all six CDRs are input to TCRbase, the CDR3
loops should be weighted four times higher than the CDR1 and
2, in the linear combination of similarities [71]. Lastly, differently
from TCRMatch, the user can choose a custom database in TCR-
base, not being limited to only IEDB. The algorithm described in
Figure 3.1 also applies to TCRbase, as TCRMatch and TCRbase
conceptually work in a very similar way.

3.4.2 Available Tools
With the advent of novel machine learning models and increasingly
powerful computational infrastructures, a vast variety of models
were recently developed to predict TCR specificity. The published
works try to tackle the problem of predicting TCR-peptide inter-
action from different perspectives; the supervised modeling ap-
proaches range from classical machine learning algorithms, such
as random forests, to neural network-based models, such as CNN
or LSTM, to the recently developed transformers architectures.

Among the different deep learning frameworks, convolutional neu-
ral networks seem to be the most widely applied architectures
across many publications. TCRAI [17] is a CNN-based model that
runs convolutions on CDR3αβ sequences and combines the hidden
representation with the V and J genes information to predict bind-
ing between a TCR and an epitope. In the DeepTCR publication
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Figure 3.1: Schematic representation of a similarity-based modeling ap-
proach, such as TCRMatch or TCRbase. The database, or training set,
contains positive peptide-specific TCRs, while the query, or evaluation set,
contains the TCRs relative to that specific peptide, both positive and nega-
tive, the model has to make predictions on. Each TCR in the query is scored
against all the TCRs in the database; the prediction for an evaluation TCR is
given by the similarity to its nearest neighbor in the training set.

[72] the authors also make use of convolutions but applied them
to a variational autoencoder (VAE) [73] : in VAEs, the inputs are
mapped into a latent space and reconstructed back, while mini-
mizing the reconstruction loss. The latent space representation is
a high dimensional Gaussian distribution of the input data and
represents a compressed version of the input, but with no loss of
information. This latent representation can be used to perform
downstream tasks. In DeepTCR, the CDR3 loops and the epitope
are mapped to a hidden space by convolutional layers and they are
deconvoluted to reconstruct the input. The resulting compressed
representation is used to perform the TCR-epitope binding pre-
diction task. In TITAN [74], a one-dimensional CNN is combined
with a context attention map to predict the binding probability:
during the training of the model, a set of attention weights is
learned, assigning an importance factor to each residue in the se-
quences. Lastly, also ImRex [75] uses convolutional layers but on a
novel representation of the CDR3 loops and epitope, which is built
using physicochemical properties of the amino acid sequences. In
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the context of CNNs, we have developed two methods based on
1D CNN, NetTCR-2.0 [18], and the updated NetTCR-2.1 [70]. We
investigated the impact of using only CDR3β chains or paired αβ
data; we also examined if the model would benefit from having
the entire set of all six CDRs as input.

ERGO [76] and ERGO-II [77] also use deep learning architectures,
but focus on language models and natural language processing
(NLP). In their first publication, the authors proposed a method to
predict TCR-epitope interaction using only CDR3β information as
input to an LSTM network or a VAE. Subsequently, they expanded
their model to accept also CDR3α chain, HLA allele, T-cell Type
and V/J genes.

Recently, deep learning research has focused on deploying trans-
former models [65] in many different fields, given their ability to
work very well across different domains. One of the transformer
architectures that has attracted attention, especially in protein
research, is BERT [78], designed to pre-train deep bidirectional
representations from an unlabeled text by jointly conditioning on
both the left and right contexts. In TCR-BERT [79], a BERT-like
architecture is used to train a self-supervised algorithm on a large
corpus of unlabeled CDR3 α and β sequences. This generates a
position-specific, context-dependent representation of the amino
acids; the learned embedding is then applied to the labeled TCRs
to perform different downstream tasks, including CDRαβ-peptide
binding prediction.

More classical machine learning approaches to model TCR inter-
actions include TCRex [80], TCRGP [81], and SETE [82]. These
techniques approach the problems differently. TCRex is a random
forest-based method to identify epitope-binding TCRs. TCRGP
is a method based on Gaussian processes to predict if TCRs recog-
nize specified epitopes. Lastly in SETE, the authors use a k-mer
feature representation of adjacent amino acids in combination with
principal component analysis and decision trees.

3.4.3 Current Challenges
A big effort is being put in by the research community to in-
vestigate TCR-pMHC interactions and develop models to predict
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TCR specificity. However, the task is challenging and remains
largely unsolved. One of the main challenges that the field is
facing is related to the data. The data available at the moment
is scarce and represents only a small subspace of the very vast
and diverse space of TCRs. Furthermore, the coverage on differ-
ent epitopes and HLA molecules is low: the available data cov-
ers few peptides and only the most common HLAs. In order
to build a general predictor, the model should be exposed to a
broad range of peptides and HLAs, to be able to detect differ-
ences across the different molecules. Moreover, most of the avail-
able data only contains information about CDR3β chains, as bulk
sequencing as described earlier does not allow the generation of
paired αβ TCR data. Single-cell sequencing, instead, is promising
since it allows sequencing of both al and β chains of the TCRs,
in a high-throughput way. However, single-cell technologies for
TCR-peptide sequencing are still being developed and are gener-
ally characterized by a low signal-to-noise ratio.

Another problem lies in the fact that most public data sets only
contain positive examples of binding pMHC-TCR pairs. A model
capable of separating interacting and non-interacting pairs should
be exposed to both positive and negative interactions. However, it
is not trivial to define negative data starting from positive pMHC-
TCR pairs. One proposed solution is to generate negative data by
pairing a TCR with a peptide that is different from its target
cognate. This, however, might introduce false negatives in the
data, making it challenging for the model to learn to separate
positives and negatives. Another approach would be to use TCRs
from healthy control data and pair them with the non-self pep-
tides, assuming that the donors had never been exposed to the
corresponding virus or pathogen. This however often might also
be sub-optimal since healthy control TCRs are likely positive to
dominant peptides derived, for instance, from influenza virus, cy-
tomegalovirus (CMV) or Epstein-Barr virus (EBV). Hence, pair-
ing healthy control TCRs with these peptides might again intro-
duce falsely labeled negative TCRs in the dataset.

Lastly, there is no consensus on how to model the peptide-TCR
interaction. For a long time, CDR3β was considered the only part
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of the TCR that played a role in the TCR-peptide interaction.
The reason for this is that the CDR3β in most crystal structures
is found to lie closer to the peptide compared to CDR3α ; further-
more, the CDR3β is the more diverse chain, as also the D gene is
involved in the DNA rearrangement of the β chain. However, it
is becoming more and more clear that the CDR3β is only one of
the components involved in the peptide-TCR interaction. Most of
the publications regarding computational models to predict TCR
binding are showing that also the α chain contributes, and that
including this chain in the modeling results in better performance.
On the same line, it is still up for discussion if the integration of
all the CDR loops, or the full TCRαβ sequences, would have an
impact.

The work presented in this thesis aims to analyze each aspect in-
volved in building a pMHC-TCR interaction classifier. Paper I
presents a CNN-based approach to model peptide-TCR interac-
tion, showing the contribution of both α and β CDR3 loops. Spe-
cial attention was given to curating a training data set, in terms
of data redundancy and data partitioning. Paper II is the natu-
ral extension of the previous work; it aims to enlarge the set of
peptides and HLA molecules and it shows the contribution of the
CDR1 and CDR2 loops. Lastly, Paper III presents a data-driven
approach to filter the data set that aims to remove inaccurate
peptide-TCR pairs, increasing the signal-to-noise ratio.
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CHAPTER4
Prediction of TCR-peptide binding by
using paired TCRα and β sequences

This chapter presents the work on NetTCR-2.0, a deep learning
model used to predict TCR specificity. NetTCR-2.0 uses convo-
lutional neural networks to predict whether a given TCR binds
a specific peptide. NetTCR-2.0 was trained on publicly available
data coming from IEDB and 10x Genomics datasets, and validated
on a novel dataset, generated in-house.
Historically, the research about predicting TCR specificity focused
on using CDR3β data, as most of the available data lacked infor-
mation about paired αβ chains. With the advent of single-cell se-
quencing, datasets containing paired chains were made available.
The main contribution of the project was to show that both α and
β chains of the TCR are needed to achieve better performance.
The models trained on αβ paired data consistently outperformed
the ones trained on single chain data, and in some cases, the α
chain was found to be even more informative than the β .
Even though NetTCR-2.0 is a pan-specific model, meaning that
it can make predictions on any epitope, the model can make re-
liable prediction only for three HLA-A*02:01 presented peptides.
We estimated that approximately 150 positive TCRs for a given
peptide are needed to train a model that is able to successfully
generalize on unseen TCRs.
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CHAPTER 4. PREDICTION OF TCR-PEPTIDE BINDING BY USING PAIRED
TCRα AND β SEQUENCES

The NetTCR framework is flexible and can be easily expanded to
integrate more inputs, such as the MHC molecule, V/J genes or
the full sequence of the TCR.
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Prediction of T-cell receptor (TCR) interactions with MHC-peptide complexes remains highly

challenging. This challenge is primarily due to three dominant factors: data accuracy, data

scarceness, and problem complexity. Here, we showcase that “shallow” convolutional neural

network (CNN) architectures are adequate to deal with the problem complexity imposed by

the length variations of TCRs. We demonstrate that current public bulk CDR3β-pMHC

binding data overall is of low quality and that the development of accurate prediction models

is contingent on paired α/β TCR sequence data corresponding to at least 150 distinct pairs for

each investigated pMHC. In comparison, models trained on CDR3α or CDR3β data alone

demonstrated a variable and pMHC specific relative performance drop. Together these

findings support that T-cell specificity is predictable given the availability of accurate and

sufficient paired TCR sequence data. NetTCR-2.0 is publicly available at https://

services.healthtech.dtu.dk/service.php?NetTCR-2.0.
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T cells survey the health status of cells by scrutinizing their
surface for the presence of foreign peptides presented in
complex with major histocompatibility complex (MHC)

molecules. This recognition by the T cell is facilitated by the
T-cell Receptor (TCR). This crucial interaction between TCRs
and peptide-MHC (pMHC) molecules thus forms a molecular
switch defining a bottleneck for immune activation. Under-
standing the rules governing this interaction hence represents a
paramount step in both personalized immune treatment and
development of targeted vaccines.

The TCR is a heterodimeric protein, consisting of an α- and β-
chain. The subpart of the TCR interacting with the pMHC
complex is defined by six loops, three for each α- and β-chain.
These loops determine the specificity of the TCR and are denoted
complementarity determining regions (CDRs) 1–2–3. The cur-
rent consensus is that the CDR3 loops primarily interact with the
peptide, while the CDR1 and CDR2 loops interact with the
MHC1–3. The peptide specificity is thus predominantly defined by
the CDR3 loops. The diversity of the CDR3s is defined by the
genomic recombination of the variable, diversity, and joining
(VDJ) TCR-genes. However, while the α-chain is the result of a
V- and J recombination, the β-chain contains the V-, D- and J
genes creating a broader diversity. The result of this is that most
data-generating studies have focused on the β-chain alone.

The majority of the publicly available TCR-pMHC-specificity
data resides in the Immune Epitope Database (IEDB)4, VDJdb5,
and McPAS-TCR6, all of which primarily contain CDR3β-data.
Several recent works have demonstrated the important short-
coming of this limited view on the TCR and demonstrated how
the information on the specificity of the TCR toward its cognate
pMHC target is carried by CDR3 of both α- and β-chains7,8. To
investigate the pMHC specificity on paired α-/β-chains, single-
cell (SC) technology is required. SC is considerably more costly,
and thus much less paired-specificity data are publicly available.
This is a critical shortcoming of current databases and highlights
the urgent need for further development of cost-efficient SC
technologies capable of accurate high-throughput paired-data
generation9.

While cost-efficient and accurate state-of-the-art high-
throughput technologies for experimentally and computation-
ally assessing the binding of a peptide to an MHC are
available10–12, for reasons explained above, the TCR component
of the triad remains highly cost-intensive and low throughput and
sparsely explored. This represents a major challenge in moving
the field forward.

A number of studies have been published related to the pre-
diction of TCR-pMHC interactions7,13–21. They present a wide
range of data and modeling techniques. Most are constructed
based on data from the IEDB, VDJdb, and/or McPAS-TCR and,
in addition to the epitope information, make use of either CDR3β
sequences alone13–15, a mixture of CDR3α and CDR3β
sequences16, or smaller data sets entailing all 6 CDR3 sequences
and potentially additional cellular information17,18. Methodolo-
gically, the different studies range from simple CDR3β alignment-
based methods19,22, over CDR similarity-weighted distances such
as TCRdist7, k-mer feature spaces in combination with PCA and
decision trees (SETE13), random forests20,21 such as TCRex23,
CNN-based (ImRex)16, and Gaussian process classification
methods (TCRGP17), to more complex approaches integrating
natural language processing (NLP) methods (ERGO14). The
overall conclusion from these earlier works is that while the
prediction of TCR specificity is feasible, the volume and accuracy
of current data limit the performance of the developed models.
Moreover, these earlier works only to a limited extent address the
high degree of redundancy present in TCR-interaction data sets,

making it difficult to assess the generalizability of the developed
models.

We have earlier proposed a simple 1D CNN-based model,
NetTCR-1.015, integrating peptide and CDR3β sequence infor-
mation into a model for the prediction of TCR peptide specificity.
Using a similar modeling framework, we here present an in-depth
analysis of publicly available TCR-pMHC interaction data, with
an emphasis on investigating the impact of data limitations and
quality on model performance. Furthermore, the performance of
the developed model is compared with simpler sequence-based
models as well as more complex deep learning approaches and
the impact of training on paired versus single-chain TCR-
sequence data is investigated.

Results
We set out to develop and benchmark models for the prediction
of TCR-pMHC binding with a particular focus on investigating
the quality of different data types, and the effect of using paired
CDR3α/β versus CDR3β information only.

We started with data obtained from the IEDB, consisting of
9204 unique CDR3β sequences, each labeled to bind a single
pMHC complex, and 387,598 negative data points derived from
10X single-cell sequencing (for details see “Materials and meth-
ods”). This data set is referred to as the β-chain data. Another, but
smaller set of positive data points, was derived from combining
IEDB and VDJdb data providing both CDR3α- and CDR3β-
chain, leading to a paired chain set of 2744 unique TCR-peptide
data points. The available data were highly heterogeneous in
terms of studied peptides and HLA alleles with a majority (62%)
of the IEDB data being restricted to HLA-A*02:01. Likewise, the
vast majority of the HLA-A*02:01 restricted peptides were of
length 9. Given this, for the further part of this work, we limited
the analysis to HLA-A*02:01 and 9-mer peptides. Supplementary
Fig. 1 presents TCR counts in the positive data sets for the three
most abundant peptides NLVPMVATV (NLV) from human
herpesvirus 5 (cytomegalovirus), GILGFVFTL (GIL) from influ-
enza A virus, and GLCTLVAML (GLC) from human herpesvirus
4 (Epstein–Barr virus) in the two data sets. These three represent
99% and 92% of the β-chain and paired-chain data, respectively.

Model performance: CDR3β data. In a first attempt to evaluate
the possibility of predicting TCR-peptide interactions, prediction
models were constructed from the TCRβ data set. A critical part
of the model development and evaluation relates to the procedure
implemented for data preparation in the context of data redun-
dancy and partitioning. Models were therefore trained and eval-
uated using cross-validation on different CDR3β data sets,
characterized by different degrees of interpartitional redundan-
cies. The performance was further evaluated on an external data
set. For details on the data set preparation and interpartitional
redundancies, refer to “Materials and methods”. Here, two
models were investigated, a sequence-similarity and a 1D CNN-
based (NetTCR) model. The sequence-similarity-based model
(baseline) serves here as a benchmark to investigate the added
benefit of modeling the data using the more complex CNN fra-
mework. Performance of deeper and different neural network
architectures was investigated subsequently. Cross-validation
performance results as a function of the partitioning thresholds
are shown in Fig. 1a. Here, the baseline model demonstrated the
expected strong association between internal data redundancy
and model performance, with a substantial and highly significant
(p < 0.0001, bootstrap test with 10,000 replications) drop in per-
formance as the partitioning threshold is decreased (from an
AUC value of 0.67 at 99% to 0.63 at 90%)—resulting in a lower
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similarity between the training and test data sets. This depen-
dency on the partitioning threshold is diminished for the NetTCR
neural network method. The performance of the NetTCR method
was low even at the highest partitioning threshold with a max-
imum AUC of 0.69.

We next evaluated the performance of the models trained on
the 94% partitioned data on the independent MIRA data set
(Fig. 1b) using an ensemble of the 20 models obtained from cross-
validation. Five different MIRA datasets were obtained by
imposing a separation from the training set of 90, 92, 94, 99,
and 100% similarity. That is, MIRA 94% TCRs do not share more
than 94% Levenshtein similarity to any of the TCRs in the
training set. Overall, this benchmark revealed a higher perfor-
mance of all models compared to that observed in the cross-
validation with a performance value of up to 0.79 in AUC. This
performance is higher than the best-performance values observed
during cross-validation and suggests that the MIRA data share an
overall higher quality compared with the IEDB data used for
training (for further discussion of this see later). Also here, the
NetTCR method outperformed the baseline model, and we
likewise observed a continued drop in performance of the models
as the similarity between the evaluation and training data sets was
diminished. This drop was particularly large for the 90%
similarity threshold where all models achieved a comparable
performance of AUC 0.635. Similar results were obtained for the

models trained using other partitioning thresholds (see Supple-
mentary Fig. 2).

Figure 1c displays the peptide-specific AUCs in cross-
validation and the external evaluation (defined using a 94%
similarity threshold) of the models trained on the 94% partitioned
training data set for the three dominant peptide sequences in the
training data set. These peptide-specific AUCs strongly suggest
that the model performance does not correlate with the amount
of training data. That is, the performance of the NLV peptide
characterized by the largest amount of training data displayed the
lowest performance value in both the cross-validation and MIRA
evaluation. Additionally, the neural network method did not in
this evaluation perform overall better than the baseline model.

In conclusion, the observed relatively low predictive perfor-
mance—even at high interpartitional redundancies—and the
lacking correlation between data set size and predictive
performance, suggest that TCR-peptide interactions can only to
a very limited extent be characterized using current CDR3β-
peptide data.

To further elaborate on this conclusion, and to ensure that it
was not a result of the data set and/or modeling framework
investigated here, we extended the benchmark to include the
recently published ERGO method14. ERGO predicts peptide-TCR
binding using long-short term memory (LSTM) networks or
autoencoders (AE). Both network architectures were trained on

Fig. 1 Performance of models trained on CDR3β data alone. a Overall AUCs evaluated via cross-validation of different training data-partitioning
thresholds for the baseline model and NetTCR. Partitioning thresholds are indicated in percent on the x-axis. b Overall AUCs evaluated on the MIRA sets at
different thresholds (shown on the x-axis) using the model trained on the 94% similarity-partitioned data. The MIRA threshold represents the degree of
separation between the training set and the MIRA set. c Peptide-specific AUCs for 94% partitioned cross-validation (CV) and external evaluation with a
similarity threshold of 94%, colored by model.
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data sets derived from VDJdb and/or McPAS. Training NetTCR
and the LSTM-based ERGO on four out of the five partitions of
the IEDB+ 10X data set and evaluating both models on the left-
out partition, we observed that NetTCR and ERGO shared
comparable performance in terms of peptide-specific AUC (see
Fig. 2a) and both models have an overall AUC of 0.66. We further
tested the performance of NetTCR trained on the complete
IEDB+ 10X data set and all the variants of ERGO on the MIRA
data. In this case, NetTCR achieved an overall AUC of 0.77 and
outperformed the best ERGO model (LSTM trained on VDJdb),
which achieved an AUC of 0.74 (see Fig. 2b). These results show
that NetTCR has a comparable performance to that of ERGO,
hence demonstrating that the relatively low performance for
TCR-peptide interactions observed here for NetTCR and
the baseline is not imposed by the limited complexity of these
models, compared with ERGO. Further, the results suggest that
simple shallow models like the CNNs used here, rather than more
sophisticated architectures, are sufficient to achieve optimal
performance for the prediction of TCR-peptide specificity (at
least given the current data).

Model performance: paired CDR data. Given the low perfor-
mance of the CDR3β models, we next moved toward data sets
consisting of both CDR3α and CDR3β. Figure 3a shows the
overall and peptide-specific cross-validation AUC performance
value of the baseline and NetTCR models trained on different
TCR chain components for data sets created at 90% and 95%
partitioning threshold. Here, data sets including both α- and β-
chains, were partitioned by the average similarity of CDR3α and
CDR3β. These partitions were maintained when training and
evaluating models on α- or β-chains alone. The results from
a chain-specific partitioning approach are included in Supple-
mentary Fig. 3. These results in Fig. 3a demonstrate a comparable
performance for models based on the CDR3α or CDR3β infor-
mation and superior performance when including both the α-
and β-CDR3 information for both the NetTCR and baseline
models. With an overall AUC performance of 0.89, NetTCR
significantly (p < 0.0001, bootstrap test with 10,000 replications)
outperformed the baseline model. Further, the performance of the
NetTCR model was found to be maintained when trained on the
90% compared with the 95% partitioned data. This was in con-
trast to the baseline model that suffered a significant drop in
performance (p= 0.006, bootstrap test with 10,000 replications)
when lowering the partition threshold. These observations are
confirmed in Figs. 3b and 3c by the peptide-specific AUCs
derived from the 90% and 95% partitioned data, respectively. Also
here, and for both partitioning thresholds, the NetTCR model,

including both the α- and β-chain information, outperformed all
other models, and both single-chain models achieved a lower but
comparable performance. Investigating in more detail the effect of
the size of the training data on the predictive performance of the
two models, Fig. 3d displays the peptide-specific cross-validation
AUC for the set of peptides included in the training data. Overall,
this figure shows a decrease in AUC as the number of positive
data points present in the training data drops, with an average
AUC of NetTCR for peptides characterized by 200 or more TCRs
of 0.88, and an average of peptides characterized by 20 or fewer
TCRs of 0.38. One clear exception from this was the FLYALALLL
peptide with only 37 binding TCRs and an AUC of 0.94. This
potential outlier can however be explained by comparing the
sequence similarities between positive and negative data points.
Estimating a difference in similarity per positive TCR as the
maximum similarity to all other positives for the given peptide in
other partitions minus the maximum similarity to all negatives
for the same peptide in other partitions, the expectation is that a
higher dissimilarity between positives and negatives for a given
peptide would ease the discrimination task, resulting in a higher
peptide-specific performance value. This was confirmed by the
result shown in Supplementary Fig. 4, where the AUC displays a
clear tendency to increase as a function of the similarity difference
(a Spearman correlation between AUC and median difference in
similarity of 0.63). This result thus supports that FLYALALLL is
an outlier and its high performance is imposed by the high dif-
ference in similarity score between its positive and negative TCRs.

Overall, these results suggest that consistent and high-
performing models for TCR-pMHC interaction predicting can
be developed from paired TCR data and that the low quality of
current models is imposed by the low quality of bulk-sequenced
CDR3β data. To further quantify this, we went back to the model
trained on the bulk CDR3β data and evaluated using cross-
validation the performance of a subset of 500 positive CDR3β
shared with the paired TCR data sets, and an equal-size data set
of positive CDR3β not sharing an overlap with the paired TCR
data set. Both sets of positive TCRs were evaluated in the context
of the complex negative dataset. The results of this experiment
confirmed the high quality of the shared CDR3 data with an AUC
of 0.80, and the likewise lower performance (AUC= 0.68) of the
CDRs not shared with the single-cell data. Further, we evaluated
the model trained on the 95% partitioned CDR3β data from the
paired TCR data set on the CDR3β MIRA data (excluding
identical overlap to the training data). This resulted in an overall
AUC of 0.81. This performance is lower than the cross-validated
performance but slightly higher than the performance of 0.79
demonstrated in Fig. 3b for the CDR3β-alone model. These
results demonstrate that the MIRA data have a quality

Fig. 2 Comparison between NetTCR and ERGO. a Test AUCs per peptide for NetTCR and ERGO trained on four out of five partitions of the IEDB+ 10X
data set and evaluated on the left-out partition. b Peptide-specific AUCs for NetTCR and all the four variants of ERGO evaluated on the MIRA data.
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comparable to that of CDR3β from the paired TCR data, and
thus, in line with the observation earlier, suggest a higher
accuracy of these data compared with the overall accuracy of the
bulk CDR3β alone data.

To further validate the high performance of the NetTCR-2.0
model, a performance comparison against TCRdist is included in
Fig. 4 (for details on the implementation of the TCRdist method,
refer to “Materials and methods”). This analysis aligns with the
results from Fig. 3 demonstrating a consistent and highly
significant (p < 0.001 for the α- and α+ β-chain models,
p= 0.03 for β-chain, bootstrap test with 1000 repetitions)
superior performance of NetTCR-2.0 over TCRdist, and likewise
showing that also for TCRdist is the signal in the CDR3β

sequence lower compared with CDR3α when it comes to
predicting the specificity toward the NLV peptide.

Next, we investigated the power of the developed model to
identify the correct peptide target of a given TCR. Here, binding
to the three peptides GIL, NLV, and GLC was predicted (using
cross-validation) for each TCR positive to any of these three
peptides. To deal with peptide-specific scoring biases, the raw
prediction values were transformed into the percentile rank
values as described in “Materials and methods” and the predicted
target for each TCR was identified from the peptide with the
lowest rank value. This analysis was performed for the three
models trained on the CDR3α and CDR3β, CDR3α alone and
CDR3β alone, and the performance for each peptide was reported

Fig. 3 Performance of models trained on paired-chain data. a Overall AUCs evaluated via cross-validation. b, c Peptide-specific AUCs from the 90% and
95% partitioned data for the three most frequent peptides. d Peptide-specific AUCs colored by model and plotted against the number of positive data
points.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02610-3 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1060 | https://doi.org/10.1038/s42003-021-02610-3 | www.nature.com/commsbio 5



as the proportion of correctly identified targets (see Fig. 5). Here,
all models performed better than random with the proportion of
correct targets >33%. Further, the model trained on both CDR3α
and CDR3β significantly outperformed both other models for all
three peptides (p-value < 0.05 in all the cases, bootstrap test with
1000 repetitions); meanwhile, the choice of the best single-chain
model was peptide dependent, with NetTCR_α outperforming
NetTCR_β for the NLV peptide, in line with the result of Fig. 3.
To further quantify to what extent the peptide sequence
contributes to the model performance, models were trained on
a data set where the TCR sequences were paired with a wrong
peptide. Repeating the peptide-ranking analysis with these models
demonstrated a highly reduced performance, exemplified with,
for instance, the TCR_αβ for all TCRs predicting the optimal
target as the GIL peptide (see Supplementary Fig. 5).

We propose that the improved predictive power of NetTCR
over the sequence-based baseline model is driven by the
representation of the TCRs in the max-pooled CNN layer of
NetTCR. To elucidate this, the 160-dimensional representation
max-pooled output (80 for each of the CDR3α and CDRb TCR
sequences, respectively) from the NetTCR CNN layer of the
CDR3α and CDR3β input was extracted for all TCRs specific to

the GIL peptide. Likewise, a raw input representation of the TCR
was constructed using a simple encoding scheme where each
amino acid was represented by five features (normalized Van der
Waals volume, hydrophobicity, number of hydrogen bond
donors, number of hydrogen bond acceptors, and net charge).
Next, the t-distributed stochastic neighbor embedding (t-SNE24)
algorithm was used to visualize the relationship between these
vectors in a 2-dimensional space (see Fig. 6). In contrast to the
raw sequence representation (Fig. 6b), Fig. 6a shows the
separation of the positive from the negative GIL TCRs with a
clear positive TCR-enriched region in the upper-left part.

To further illustrate how the max-pooled feature space allows for
separation of the positive from the negative GIL TCRs, Fig. 7 shows
a hierarchically clustered heatmap of a random set of 50 positive and
50 negative GIL TCRs. This figure clearly illustrates the increased
power for separation of the positive from the negative TCR when
information from both CDR3α and CDR3β is included. Further
comparing the results obtained using the paired-chain max-pooled
representation (Fig. 7a) to the raw input space (Supplementary
Fig. 6), confirmed the improved clustering potential of the max-
pooled sequence representation. To further quantify the increased
ability of classification in the CNN space, the positive and negative

Fig. 4 Comparison between NetTCR and TCRdist. Performance is evaluated via cross-validation on the 95% partitioned data for the three most frequent
peptides.

Fig. 5 Peptide-ranking analysis. Each TCR positive to GIL, GLC, or NLV peptide was paired to the other two peptides and a binding prediction was
obtained. The percentages show, for each peptide and for each model, the proportion of TCRs for which the predicted lowest-ranking peptide matched with
the “true” target peptide.
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Fig. 6 t-SNE plot for the TCRs of the GIL peptide. a The output from the max-pooled CNN layer of NetTCR trained on the 90% partitioned data set was
extracted for each TCR specific to the GIL peptide using cross-validation, resulting in a set of vectors, each of dimension 160. T-SNE was used to visualize
this data set in two dimensions. b In the input space, the TCRs were encoded using a 5-feature physicochemical encoding and then flattened into a vector.
The perplexity hyperparameter of the t-SNE algorithm was chosen to be 40 and the number of iterations was set to 1000. In the plot, positive TCRs are
shown in green, and negative TCRs in pink.

Fig. 7 Hierarchical-clustered heatmaps of 50 positive GIL TCRs and 50 negatives. The clustering was performed using both α- and β-sequences (a) or
using single chains (α chain in b, β chain in c). Each row in the heatmap represents a TCR sequence in the max-pooled feature-space representation; the
color bar on the side of each plot delineates whether the TCR is positive or negative. Cosine distance was used as a metric for clustering.
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TCRs were clustered into two groups using the K-medoids
algorithm. The two clusters were labeled as positive and negative
by the majority vote of the TCRs falling in the cluster, and the
clustering accuracy was evaluated using the Matthews correlation
coefficient (MCC). The clustering was performed using both the
max-pooled and the raw input representation of the TCRs, resulting
in MCC values of 0.64+ /−0.09 and 0.21+ /−0.14 (standard-
deviation values obtained using 1000 resamplings of TCR),
confirming that the separation between positives and negatives is
significantly more pronounced in the CNN space.

The NetTCR server. The presented NetTCR method is available
as a web server at https://services.healthtech.dtu.dk/service.php?
NetTCR-2.0. The server offers the possibility of predicting
binding of the input TCRs with one or more peptides; predictions
are made using the models trained on the 95% partitioned
training data. Supplementary Fig. 7a, b serves as a guide to select
thresholds for interpretation of prediction scores that the server
outputs, and displays sensitivity–specificity curves of the method
for the three individual peptides and the pooled data set with
prediction values obtained as percentile rank scores using cross-
validation. These figures demonstrate the very high specificity of
the method with sensitivity values greater than 50% (and in most
cases greater than 75%) and false-positive rates less than 2% in all
cases using a percentile rank score threshold of 2%.

Real-life validation. As a real-life validation of the NetTCR-2.0
method, a performance comparison of the different models was
conducted on a novel independent paired TCR data set generated
specifically for this study. In short, the data were defined from
T cells from four HLA-A*02:01-positive donors with pre-
established responses to GILGFVFTL, NLVPMVATV, and
GLCTLVAML sorted into a positive subset, containing TCRs
responsive to one or more of the three peptides and a negative
subset, containing TCRs negative to the three peptides. Here, the
performance was estimated by predicting for each TCR binding
to the three peptides and assigning a score corresponding to the
lowest-predicted rank value. Next, performance values were cal-
culated in terms of AUC, AUC0.1 (defined as the area under the
ROC curve in the interval [0, 0.1]), and positive predictive value
(PPV), calculated as the proportion of positive hits within the top
89 (the total number of positive TCR) predicted TCR. Here, the
performance measures were used to quantify how this prediction
score could be used to separate the positive and negative TCRs
(see Fig. 8). Also in this benchmark, NetTCR_αβ significantly
outperform all other methods (p < 0.05, bootstrap test with 10000
repetitions), with a performance gain of more than 10% in terms
of PPV. Here the method demonstrate a very high specificity,
identifying 79% of the positive TCR at a false-positive rate of 2%
using a percentile rank threshold of 2% (Supplementary Fig. 7c).

Discussion
Identification of cognate targets of TCRs is a critical bottleneck of
the development of T-cell therapeutics. Here, we have presented a
study aiming to resolve this bottleneck, developing models cap-
able of predicting TCR-pMHC interactions based on the amino
acid sequences of the peptide and CDR3 region of the TCR
chains. Several model architectures were investigated spanning
from simple sequence-similarity models to more complex con-
volutional neural networks (CNN). The models were trained
using cross-validation and validated using independent evalua-
tion data carefully constructed using strict data-redundancy
reduction rules. The overall best-performing model was found to
be a 1D CNN. This model is a variant of the model proposed
earlier by us for pan-specific prediction of kinase-specific

phosphorylation25. This model significantly outperformed sim-
pler sequence-based models implemented using the TCRMatch22

and TCRdist7 frameworks.
Two important issues related to the understanding of the TCR-

binding characterization and prediction were addressed during
the model development, namely the quality of the current data,
and the impact of including paired CDRα and CDRβ informa-
tion. First, models were developed using data available from the
IEDB (similar results were obtained using CDR3β data from
VDJdb) with CDR3β information available only. This data set
was substantially larger compared with data with paired TCR-
sequence information, and one would expect that models trained
on such larger data sets should achieve overall higher perfor-
mance values compared with models trained on the more reduced
paired TCRα and TCRβ data sets. This was however not the case.
Models constructed from data with CDR3β information from
paired TCR data demonstrated significantly higher performance
to similar models trained on the data with CDR3β information
only. This result strongly suggests that the quality of the data with
only CDR3β information is lower than that of the data with
paired CDRs. Further, and in line with earlier work7,8, the con-
clusions from the current study clearly supported the notion that
both TCR chains contribute to the TCR specificity (and impor-
tantly, that their relative importance is pMHC specific), and that
only by including this combined information can one achieve
accurate TCR-specificity prediction.

In contrast to the models trained on the data with only CDR3β
information, the model trained on the data with paired TCR
information demonstrated a clear and statistically significant
correlation of the peptide-specific performance to the number of
different positive TCR available for a given peptide and suggested
that ~150 unique TCRs are required to achieve an AUC > 0.75 for
a given peptide. Currently, this criterion is only met for a very
small set of MHC-peptide combinations placing great limitations
on the applicability of the developed model, since it can only,
given the current data, provide reliable predictions for three
peptides. This limitation underlines the urgent need for the
development and refinement of technologies for high-throughput
paired sequencing of TCRs with known pMHC targets. The
developed framework is trivially extendable and retrainable, as
more data become available.

Investigating the TCR-specific performance of the model
revealed a likewise high predictive power, with ~75% of predicted
peptide targets (from the pool of three) being correct. Taken with
some reservations, given the small peptide space covered, this
high performance suggests that the model has the potential to
resolve not only which TCRs are specific to a given peptide, but
also which peptide is specific for a given TCR, pointing to
important biomedical applications within T-cell therapy26,27.

The power of the CNN model compared with the simpler
sequence-based approaches lies in its ability to translate the
variable length of the TCR sequences into an abstract feature
space suitable for specificity classification. To illustrate this, a
similarity analysis between TCRs specific to the GIL peptide was
conducted in the CNN feature space compared with the original
sequence space. This analysis confirmed the improved ability to
perform classification in the CNN feature space and suggests that
this representation potentially could be used as an alternative to
the conventional autoencoding approaches for feature extraction
and compression of biological data28,29.

The current model only includes information from the two
CDR3 regions of the TCR. Earlier work has demonstrated that
also CDR1 and CDR2 carry information of potential impor-
tance for prediction of TCR specificity7,8. The modeling fra-
mework proposed here can readily be extended to include such
information (as well as information related to HLA and V- and
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J- germline usage), and future work will tell if integrating this
information can lead to an improved predictive power of the
model proposed here. Also, the neural network architecture
proposed here is relatively simple, consisting of one single max-
pooled CNN layer. In this work, we did not perform an
exhaustive performance comparison to other more complex
models; however, our comparison to the ERGO model on the
CDR3β-only data demonstrated comparable performance
between the two modeling architectures, strongly suggesting
that, at least for the current data and data volumes, a simple
network architecture, like the one we have proposed here, is
sufficient.

A critical issue for the development of machine learning
models is the availability of accurate negative data. Often, not
simply more but rather more accurate data are needed. Earlier
works have proposed to resolve this issue by either mispairing the
positive data, or by including data from healthy controls as
negatives14,15. Both approaches share potential pitfalls in that the
proposed negatives either share a compositional bias (imposed by
the fact that they are positive to one or more of the other peptides
in the data) or that the TCRs are falsely labeled as negative
(imposed by the fact that TCRs in healthy controls are likely
positive to the dominant peptides in the positive data set). Here,
we have therefore taken a different approach, benefitting from the
study published by 10X Genomics, and complemented the mis-
paired artificial negative data with TCRs explicitly found not to be
positive to any of the peptides in the training data. While this
proved a highly useful approach, the 10X Genomics MHC-feature
barcode platform is still in development, and the negative data
defined here are hence likely not fully accurate. Given this, we
suggest that substantial further work is needed to assess how to
best define a proper TCR-negative data set.

The high performance of the developed NetTCR-2.0 model was
validated on an in-house data set of paired TCR data with
qualitative-interaction measurements to a set of 3 HLA-A*02:01
peptides. Here, a predictive positive value of ~75% was observed,
greatly surpassing the performance of both the baseline and
ERGO models. This result confirmed that the development of
accurate prediction models for TCR specificity is contingent on
the availability of paired (and accurate) α- and β-sequence data
and suggests that a predictive power can be achieved to a degree
where the tool can have actual biomedical applications.

Finally, in this work, we have used a rather simple definition of
TCR similarity based on the relative Levenshtein distance when
defining data redundancy. This distance has obvious short-
comings when comparing the similarity between pairs of TCR of
very different lengths—i.e., a similarity score of 0.9 corresponds
to both one mutation/edit when comparing two TCRs of length
10 and to 4 mutations/edits if the TCRs are of length 36. Given
the relatively limited length variation of the CDR3 sequences
included in the current work (90% of the paired CDR3α and
CDR3β sequences from the paired data set have a length in the
range of 9–13 amino acids), this shortcoming does not have large
impacts for the current work. However, it will be essential to
consider alternative and less length-biased approaches, such as,
for instance, the kernel similarity method underlying
TCRmatch22, if the work is extended to cover full-length TCRs
and/or include the complete set of CDR sequences.

In conclusion, we have successfully trained a model to predict
interactions between TCRs and their cognate, HLA-A*02:01-
restricted peptide target. Our results indicate that accurate pre-
diction is feasible only by training on data of paired TCRα- and β-
chains. Due to the small number of training peptides, the model
can at present only be applied to the limited set of peptides
included in the training data. However, as more data become
available, we expect the predictive power of the model to increase
and allow for accurate predictions also for uncharacterized pep-
tides, as has been observed earlier for the pan-specific prediction
models of peptide-MHC interactions30. Finally, the presented
model framework is highly flexible and allows for the straight-
forward integration of the MHC molecule or TCRα chain in the
future when data become available, to train a truly global pre-
diction method.

Materials and methods
Training data
CDRβ data. The initial set of CDR3β sequences binding to epitopes presented by
HLA-A*02:01 with corresponding epitopes was collected from the Immune Epi-
tope Database (IEDB) on January 29th, 2020. The original IEDB data set consisted
of 25,300 data points with 21,855 unique CDR3β sequences and 675 unique
peptides, covering both class-I and -II binders. Cross-reactive TCRs were excluded.
Quality assessment and uniform CDR3β-sequence frame were ensured by applying
a k-mer-based scoring method using a profile hidden Markov model (pHMM) to
the data (see Supplementary Note 1 details). Following quality assurance, the IEDB
data set specific for HLA-A*02:01 and peptides of length 9 consisted of 10,987
unique CDR3β sequences and 168 peptides.

Fig. 8 Benchmark performance on in-house TCR data set.Methods included are NetTCR and baseline trained on paired CDR3α–CDR3β data (ab), CDR3α
(a), CDR3β (b), and the LSTM-based ERGO trained on the VDJdb. Performance measures are (left) AUC, center (AUC 0.1), and right (PPV).
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Nonbinding peptide-CDR3β pairs were derived from 10X Genomics
Chromium Single Cell Immune Profiling of four donors. All T cells in this assay
had been exposed to all tested pMHC multimers31. Each entry of the data set
includes a unique molecular identifier (UMI) and counts of a given TCR to all
peptides in the assay. From this data set, an initial negative data set was constructed
from the HLA-A*02:01-restricted peptides filtered to only include TCR-peptide
pairs with UMI counts <= 10. This data set comprised 1,325,949 distinct peptide-
CDR3β pairs with 69,847 unique CDR3β sequences and 19 different peptides of
which seven were shared with the IEDB peptides.

Positive and negative training data points were reduced to peptide-TCR pairs
with CDR3β lengths within the range of 8–18 amino acids, and peptides of length
equal to nine amino acids shared between the two data sets (7 peptides). The final
data set representing seven epitopes characterized with both positive and negative
TCR data consists of a positive set of 9204 unique CDR3β-peptide pairs and a
negative data pool of 387,598 data points.

Paired CDR data. Positive data points were taken from IEDB and VDJdb. The
databases were downloaded on August 26th, 2020 and August 5th, 2020, respec-
tively. Restricting to data with both CDR3α and CDR3β chains available, a length
range of 8–18 and reported to bind peptides of length 9, 3859 unique binding pairs
were identified from IEDB and 2843 from VDJdb. These provided 4598 unique
CDR3α-/β-peptide interactions with 276 different peptides specific to allele HLA-
A*02:01.

Negatives were derived from 10X. Using the same restrictions as for the
positives (CDR3 length between 8 and 18 AAs, peptide length 9, and peptides
specific for HLA-A*02:01), 627,323 unique data points with 0 UMI counts to all
the tested peptides were identified. These contained 33,017 unique TCRs tested
against a set of 19 different peptides. In total, 17 of these overlapped with the
peptides in the positive data set.

External evaluation data
MIRA. Positive data points for external evaluation were derived from the MIRA
set32. It entailed 376 CDR3β-peptide pairs associated with HLA-A*02:01. Negative
samples were taken from an excluded subset of the 10X negative set (see above).

Validation data. Healthy donor material was collected under approval by the local
Scientific Ethics Committee and written informed consent was obtained according
to the Declaration of Helsinki. Peripheral blood mononuclear cells (PBMCs) from
healthy donors were isolated from whole blood by density centrifugation on
Lymphoprep (Axis-Shield PoC) and cryopreserved at −150 °C in FCS (FCS; Gibco)
+10% DMSO.

The three peptides, GILGFVFTL, NLVPMVATV, and GLCTLVAML, were
purchased from Pepscan (Pepscan Presto) and dissolved to 10 mM in DMSO. UV-
sensitive ligands were synthesized as previously described33. In brief, recombinant
HLA-A*02:01 heavy chains and human β2 microglobulin light chain were
produced in Escherichia coli. HLA heavy and light chains were refolded with UV-
sensitive ligands. Specific peptide-MHC complexes were generated by UV-
mediated peptide exchange33 and MHC tetramers were assembled on PE-
conjugated streptavidin (BioLegend, Nordic Biosite, Denmark) as previously
described34.

Cryopreserved PBMCs from four HLA-A*02:01-positive donors were thawed
and washed in RPMI+ 10% FCS. The presence of T cells binding to GILGFVFTL,
NLVPMVATV, and GLCTLVAML was preestablished using DNA barcode-labeled
MHC multimers as described in Bentzen et al.9. In total, 3 × 106 – 6 × 106 cells from
each donor were washed in cytometry buffer (PBS+ 2% FCS) and incubated,
15 min, 37 °C, with a pool containing all three MHC multimers in a total volume of
80 µL (final concentration of each distinct pMHC, 23 nM). Next, a 5x antibody mix
composed of CD8-BV480 (clone RPA-T8, BD 566121) (final dilution 1/50), dump-
channel antibodies: CD4-FITC (BD 345768) (final dilution 1/80), CD14-FITC (BD
345784) (final dilution 1/32), CD19-FITC (BD 345776) (final dilution 1/16), CD40-
FITC (Serotech MCA1590F) (final dilution 1/40), CD16-FITC (BD 335035) (final
dilution 1/64), and a dead-cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen
L10119) (final dilution 1/1000) was added and incubated for 30 min at 4 °C. Cells
were washed twice in cytometry buffer before proceeding directly to sorting.

Cells were sorted on a FACSMelody Cell Sorter (Becton Dickinson) into tubes
containing 150 μl of PBS+ 0.5% BSA (tubes were presaturated with PBS+ 2%
BSA). Using BD FACSChorus Software, we gated on single, live CD8-positive and
“dump” (CD4, 14, 16, 19, and 40) negative lymphocytes. Within this population,
we sorted all multimer-(PE) positive cells from all donors into one tube and a
proportion of multimer negative/CD8 positive from all donors into another tube.
The sorted cells were centrifuged for 10 min at 390 g and the buffer was removed.
An overview of samples and gating strategy is included in Supplementary Table 1
and Supplementary Fig. 8.

VDJ sequences from the CD8 T cells were obtained through the 10x Genomics
pipeline using Chromium Next GEM Single Cell 5′ Reagent Kits v2 (Dual Index)
according to the manufacturer’s instructions (10x Genomics, USA). Up to 17,000
cells of the multimer-positive or the multimer-negative CD8 T cells were loaded
onto each of their separate lane, to yield a maximum of 10,000 cells with an
intermediate/high doublet rate. TCRs were sequenced on a MiSeq as recommended
by Illumina.

The single-cell data were processed via the 10x Genomics software Cell Ranger
v5.0.1, using cellranger mkfastq and cellranger vdj, to extract V(D)J gene
annotations and CDR3 sequences for each T cell. The GRCh38/Ensembl reference
genome v4.0.0 for mapping V(D)J genes was downloaded from 10x Genomics. The
pool of all multimer-positive cells and the pool of multimer-negative cells yielded
1091 and 12,801 mapped and annotated T cells. Of these sets, 520 and 3074 cells,
respectively, met the criteria of having both an α- and β-chain with unambiguous
annotations, meaning that each T cell should only have one α-chain and one β-
chain annotation. Reducing the sets to contain only unique pairs of CDR3 α/β and
removing the TCRs already present in the training set, resulted in 89 multimer-
positive pairs and 1694 multimer-negative pairs.

Data preparation. Figure 9 gives a schematic overview of how the data-redundancy
and data partitioning procedure was implemented in the current work. The sec-
tions below describe the details of each of the outlined steps.

Similarity scoring. A critical component of data redundancy is related to the metric
chosen to define the similarity between two points. Here, the Levenshtein similarity
was used as a measure of the similarity between CDR3 sequences. The Levenshtein
similarity is based on the Levenshtein distance. The Levenshtein distance is a
similarity measure between words. Given two strings, the distance describes the
number of modifications needed to transform one word into another. The possible
changes are insertion, deletion, and replacement. Each of these three operations
adds one to the distance. The Levenshtein similarity score is given by the relation

SimLev ¼
maxðjuj; jvjÞ � DistanceLevðu; vÞ

maxðjuj; jvjÞ ; ð1Þ

where u and v represent two CDR3 sequences, and |·| defines their length.

Redundancy reduction. Peptide-specific redundancies regarding CDR3 sequences
were removed using the Hobohm 1 algorithm35. The positive and negative data
specific for each peptide were each first sorted by CDR3 length in descending order.
Next, the sorted negative data were appended to the sorted positive data. Sequences
were then iteratively sorted into non-redundant and redundant stacks based on a
given similarity threshold, hereafter referred to as redundancy threshold. The
algorithm starts by assigning the first sequence to the nonredundant list. It then
iterates through the peptide-specific CDR3 sequences and assesses whether a
sequence’s similarity to the list of nonredundant sequences is above the redun-
dancy threshold or not. Similarities above the threshold lead to the examined
sequence being assigned to the redundant list.

Data partitioning. Partitioning was performed using single-linkage clustering of the
redundancy-reduced positive training data. First, the Levenshtein similarity scores
between all CDR3 sequences are binarized based on a given threshold, referred to
as the data-partitioning threshold. In the case of paired-chain data, TCR similarity
is defined as the average α and β Levenshtein similarity. Next, single-linkage
clustering was performed on this binary matrix, and the connected components of
this graph were sorted by size into a list and iteratively assigned partitions 1–5. The
selected similarity threshold thus presents an upper limit of similarities between
different partitions.

Next, negative CDR3 data were added to each partition. For each peptide in
each partition, 5 times the number of positive CDR3 were added from the negative
data. Negatives were gradually added under the condition that their similarity to all
TCRs in the other partitions was lower than the given partitioning threshold. In
addition, negative examples were generated by mismatching the positive data, i.e.,
combining a TCR sequence with a peptide different from its cognate target. Each
positive TCR was paired with 5 peptides, randomly sampled from the list of unique
peptides in the dataset. These added negatives were used during the training but
were not included when evaluating the model performance.

Separating external Evaluation Data from the Training Data. The evaluation data
sets for the CDR3β model were separated from the training data by a given
Levenshtein similarity threshold, meaning that the data points with similarities to
the training data above this threshold were removed. Negatives reserved for
external evaluation were reduced to CDR3β sequences with similarities below the
given threshold to the training data. Subsequently, five times the number of
positives per peptide were randomly selected from the remaining negatives.

Paired chain data preparation pipeline. Positive and negative data from IEDB,
VDJdb, and 10X were prepared and cleaned as described in the training data
section. Positives and negatives were then reduced to data points containing their
shared set of peptides. This is represented by 18 different peptides and resulted in
2886 unique positive interactions and 594,306 unique negative data points. Positive
data were subsequently partitioned into 5 partitions with a similarity threshold
based on their average chain similarities. Negatives were then added to the parti-
tioned positives as 5 times the number of positives per peptide and partition,
upholding the similarity restraint of the partitioning. Further were mismatched
negatives added as described above.
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Baseline model. A baseline model was designed to establish the predictive power of
simple similarity-based methods. The similarity-scoring approach used in the
baseline model was the kernel-scoring method introduced by Shen et al.36 with
default parameters, as described earlier in the MAIT Match19 and TCRMatch22

methods. In the model, the prediction score for a given TCR is calculated as the
highest score obtained when scoring the CDR3β against a database of positive
CDR3βs. In 5-fold cross-validation, each of the 5 partitions, in turn, represents a
test set, and the positive elements in the remaining 4 partitions define the database.
For external evaluation, all positive elements in the training data set define the
database. For analysis of paired α and β TCR sequences, the similarity score was
calculated as the highest average of the individual α and β CDR3-sequence scores
for each TCR.

TCRdist model. The TCRdist model was implemented identically to the baseline
model only using the distance metric proposed in the TCRdist publication7. That
is, the prediction score for a given TCR is calculated as 1—the closest distance
obtained when scoring the TCR against a database of positive TCRs for the given
peptide (defined in a cross-validated manner).

Neural networks
The NetTCR model. A 1-dimensional CNN model, similar to the one proposed by
Jurtz et al.15, was implemented to predict whether or not a given TCR can bind to a
specific peptide. The neural network takes the peptide, the CDR3α, and/or CDR3β
regions of the TCR amino acid sequences as inputs. The CDR sequences were zero-
padded to a maximum length of 30. The amino acids were encoded using the
BLOSUM50 matrix37. That is, each amino acid is represented as the score for
substituting the amino acid with all the 20 amino acids. Hence, the BLOSUM
encoding scheme maps a sequence of length l into an array of dimension l x 20. The
peptide and the CDR3 sequences are processed separately by a 1D convolutional
layer with channels corresponding to the given sequence encoding. On each
sequence (peptide, CDR3(s)), 16 convolutional filters with kernel size {1, 3, 5, 7, 9}
process the input (80 filters per sequence). The kernel weights were initialized with
the Glorot normal initializer38. For each kernel size, the convolutional output was
max-pooled and the resulting feature vectors concatenated in a single vector with
240 entries (80 for each input sequence) representing the convoluted peptide and
CDR3 sequences. This vector was then fed into a dense layer of 32 hidden neurons;
the output consists of one single neuron, giving the probability of a peptide-TCR
pair to bind. The activation function used through the network was the sigmoid
function. A schematic representation of the CNN model is given in Fig. 10.

Model training. Models were trained using nested 5-fold cross-validation (CV) for
300 epochs with early stopping and patience of 50 epochs. The weights were
updated using the Adam optimizer with a learning rate of 0.001. The batch size was
128 and the loss function was binary cross-entropy.

Fig. 9 Data-partitioning pipeline schematics. a Data-preparation pipeline for the β-chain data; b pipeline for the paired-chain data. The positive and
negative data sets were each redundancy-reduced with the Hobohm 1 algorithm, according to a Levenshtein similarity threshold. The redundancy-reduced
set of positives was partitioned into five groups using a single-linkage clustering algorithm. Negative data were subsequently added to each partition: for
each peptide, 5 times the number of positives was randomly selected from the pool of nonredundant negative data. In a, to ensure that the MIRA external
evaluation data did not share similarity with the training set, positive points from the MIRA set with a Levenshtein similarity above a certain threshold were
removed. Each step of the pipeline is described in detail in the text.

Fig. 10 Setup of NetTCR model. The CDR3 and peptide sequences are
encoded using the BLOSUM50 matrix. The encoded sequences are passed
independently through a 1D convolutional layer and a max-pooling layer.
The convolutional filter size is set to {1, 3, 5, 7, 9}, and for each filter size, 16
filters are used. The extracted features are then concatenated and fed into a
dense layer with 32 hidden units. The output of the network consists of a
single neuron, giving the binding probability.
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Performance evaluation. In cross-validation, the performance was evaluated from
the concatenated test sets either globally over the entire data set, or in a per-peptide
manner. Likewise was the performance on the independent evaluation reported
either globally over the entire data set, or in a per-peptide manner. To normalize
the prediction scores across peptides, the raw prediction values were transformed
into the percentile rank values. Percentile rank scores were estimated from a set of
10,000 natural TCRs, extracted from the 10X data set with no overlap with the
training set. The percentile rank score of a given peptide-TCR pair was then
calculated by comparing the prediction score with the distribution of prediction
scores for the particular peptide.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data and data partitions used for NetTCR-2.0 training and evaluation are available at
https://github.com/mnielLab/NetTCR-2.0.

Code availability
The NetTCR-2.0 code is available at https://github.com/mnielLab/NetTCR-2.0. The
NetTCR-2.0 prediction model is available as a web-server tool at https://
services.healthtech.dtu.dk/service.php?NetTCR-2.0.
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CHAPTER5
Tips and Tricks to Build a TCR Speci-
ficity Prediction Model

This chapter presents the work on NetTCR-2.1, the natural ex-
tension of the models proposed in Chapter 4, NetTCR-2.0.

Rather than benchmarking other publicly available methods, the
work aimed to set some standard rules that would guide researchers
in developing new TCR-peptide interaction prediction models.

With the work on NetTCR-2.0, we demonstrated that the inclu-
sion of both α and β CDR3 loops led to improved performance
compared to single-chain models. We set this as a starting point
for NetTCR-2.1 and expanded the model to also include CDR1
and CDR2 sequences. Further, we investigated if a pan-specific
or a peptide-specific approach would better model the interaction,
given the currently available data.

Lastly, we focused on defining guidelines for building an optimal
training dataset. Two main aspects were taken into consideration,
namely data redundancy, and negative data generation. First, we
showed that it is of paramount importance to properly handle se-
quence redundancy in the data, to avoid performance overestima-
tion due to data leakage between training and test set. Secondly,
we analyzed different approaches for generating artificial negative
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CHAPTER 5. TIPS AND TRICKS TO BUILD A TCR SPECIFICITY
PREDICTION MODEL

data, as most of the publicly available datasets only report positive
binding events.

Together with NetTCR-2.1, we proposed TCRbase, a similarity-
based model to predict TCR-peptide binding. We showed that
this model achieves satisfying performance, despite being simple
and less complex than a neural network-based model.
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Abstract  16 

T cell receptors (TCR) define the specificity of T cells and are responsible for their interaction 17 

with peptide antigen targets presented in complex with major histocompatibility complex (MHC) 18 

molecules. Understanding the rules underlying this interaction hence forms the foundation for 19 

our understanding of basic adaptive immunology. Over the last decade, efforts have been 20 

dedicated to developing assays for high throughput identification of peptide-specific TCRs. 21 

Based on such data, several computational methods have been proposed for predicting the 22 

TCR-pMHC interaction. The general conclusion from these studies is that the prediction of TCR 23 

interactions with MHC-peptide complexes remains highly challenging. Several reasons form the 24 

basis for this including scarcity and quality of data, and ill-defined modeling objectives imposed 25 

by the high redundancy of the available data.  26 

In this work, we propose a framework for dealing with this redundancy, allowing us to address 27 

essential questions related to the modeling of TCR specificity including the use of peptide- 28 

versus pan-specific models, how to best define negative data, and the performance impact of 29 

integrating of CDR1 and 2 loops. Further, we illustrate how and why it is strongly recommended 30 

to include simple similarity-based modeling approaches when validating an improved predictive 31 

power of machine learning models, and that such validation should include a performance 32 

evaluation as a function of “distance” to the training data, to quantify the potential for 33 

generalization of the proposed model.  The conclusion of the work is that, given current data, 34 

TCR specificity is best modeled using peptide-specific approaches, integrating information from 35 

all 6 CDR loops, and with negative data constructed from a combination of true and mislabeled 36 

negatives. Comparing such machine learning models to similarity-based approaches 37 

demonstrated an increased performance gain of the former as the “distance” to the training data 38 

was increased; thus demonstrating an improved generalization ability of the machine learning-39 

based approaches.  40 

We believe these results demonstrate that the outlined modeling framework and proposed 41 

evaluation strategy form a solid basis for investigating the modeling of TCR specificities and that 42 

adhering to such a framework will allow for faster progress within the field. 43 

 44 

The final devolved model, NetTCR-2.1, is available at 45 

https://services.healthtech.dtu.dk/service.php?NetTCR-2.1. 46 

 47 

  48 



 

Introduction 49 

 50 

T cells form the cornerstone of the adaptive immune system orchestrating and executing attacks 51 

on pathogens and pathogen-infected/malfunctioning cells (1,2). T cell interacts with pathogen or 52 

self-aberrant derived peptides (p) presented on the cell surface by MHC (Major 53 

Histocompatibility Complex) molecules. This interaction is mediated via the trans-membrane T 54 

cell receptor (TCR). Not all MHC-presented peptides are able to form an interaction with TCR, 55 

and vice versa individual TCRs form a highly specific interaction only with a limited repertoire of 56 

pMHC complexes. Understanding the rules underlying this interaction thus holds promise for 57 

furthering our understanding of T cell immunogenicity, T cell tolerization, and T cell cross-58 

reactivity.  59 

 60 

The TCR is a heterodimeric protein, most often formed by an α- and β-chain. The interaction of 61 

TCRs with the cognate pMHC target is primarily defined by 6 loops, 3 on each chain denoted 62 

CDR1-3 (complementarity determining regions 1-3). Of these loops, CDR3 interacts primarily 63 

with the peptide, and CDR1 and CDR2 primarily with the α loops of the MHC complex (1,2). The 64 

diversity of TCRs is focused mainly on the CDR3s, a region defined by the genomic 65 

recombination of the variable, diversity (for CDR3β only), and joining (VDJ) TCR genes. 66 

 67 

Large efforts have been dedicated over the years to develop assays for high throughput 68 

identification of peptide-specific TCRs. Most of these techniques and assays have focused on 69 

sequencing the CDR3β segment, applying cell sorting followed by bulk repertoire sequencing 70 

(3,4). While such approaches are highly cost-effective, they suffer from a relatively high 71 

proportion of wrongly identified TCR (present due to carryover in the sorting step). However and 72 

more importantly, they suffer from limited information capture and they only describe the CDR3β 73 

part of the TCR interaction. We and others have demonstrated the important shortcoming of this 74 

limited view on the TCR-pMHC interaction and demonstrated how the information on the 75 

specificity of the TCR toward its cognate pMHC target is carried by CDR3 of both α- and β-76 

chains (5,6). A solution to this is to apply single=cell sequences enabling the identification of 77 

paired α- and β-chains.  78 

 79 

A large plethora of methods has been published within the field of prediction of TCR-pMHC 80 

interactions. Given this limited amount of paired TCR α- and β data available, the majority of 81 



 

these have focused on CDR3β information only (7,8,9). Recently however, models have merged 82 

benefitting from the growing volume of paired TCR data allowing for boosting performance by 83 

integrating information from both chains (10,11,6). 84 

 85 

Data on TCR specificity is available in several public databases including VDJdb (12), IEDB 86 

(13), McPAS-TCR (14), and TBAdb (15). These databases are highly biased towards data on 87 

positive TCR-pMHC interactions. Furthermore, TCR data sets are often highly redundant and 88 

composed of many highly similar sequences. Both of these properties pose a challenge when it 89 

comes to developing and performance evaluating machine learning (ML) models. In terms of 90 

negative data, different approaches have been suggested including mispaired negatives and/or 91 

data from healthy controls (7,16). Most works within TCR specificity have paid very limited 92 

attention to data redundancy and sequence similarity, meaning that often the issue has been 93 

accessed by only removing identical data points (17,18). This is clearly an oversimplification, 94 

and we have earlier proposed an approach based on the Levenshtein similarities, Hobohm-95 

based redundancy reduction, and single-linkage clustering, and have demonstrated how such 96 

careful redundancy considerations can aid the development of models with improved power for 97 

generalization (11).   98 

 99 

Another critical aspect of TCR-pMHC interaction prediction is the choice between peptide- and 100 

pan-specific models. Peptide-specific models are, as the name indicates, models trained 101 

specifically for individual peptides, whereas pan-specific models are models encompassing all 102 

peptides in the given training data into a single model. Ideally one would seek to develop pan-103 

specific models since these in principle would allow for ab-initio predictions for novel peptides 104 

not included in the training data by extrapolation from information and patterns learned across 105 

the different peptides. However such extrapolations might only be possible when the coverage 106 

of the peptide space in the training data reaches a certain limit. Anecdotally, this is in line with 107 

what was observed for the modeling of HLA-peptide binding. Here, HLA-specific models were 108 

found to outperform the early pan-specific models and only when the HLA coverage was 109 

increased did the pan-specific models perform the best (19). For TCR specificity, modeling the 110 

coverage of the peptide space is highly limited, and it hence remains an open question as to 111 

whether or not pan-specific models can demonstrate boosted performance. 112 

 113 

TCR specificity is as described above defined by the combined signal contained within all 6 114 

CDR loops. Most prediction models have however focused only on the CDR3 loops (and many 115 



 

as stated above only on CDR3β). We have earlier demonstrated how a simple similarity-based 116 

model could benefit from the incorporation of information from CDR1 and CDR2 (5), but the 117 

overall importance of expanding the CDR information in the context of ML models remains to be 118 

settled.  119 

 120 

Finally, the development of ML methods within TCR specificity prediction is challenged by the 121 

lack of a well-defined baseline model for assessment of ML model performance increase and 122 

justify the application of more complex model architectures. Given the very short length of 123 

CDRs, usually consisting of 5-25 residues, and the stochastic nature of the generation of in 124 

particular CDR3, commonly used evolutionary-based alignment methods cannot be applied 125 

here.   126 

 127 

Here, we set out to investigate these fundamental questions for the optimal development of 128 

TCR specificity prediction models. It is essential to underline that we are not seeking to 129 

benchmark different published methods, but that we are solely seeking to address and answer 130 

questions related to best practices for developing and evaluating TCR-pMHC models. This with 131 

the purpose of aiding the field as a whole, by establishing a foundation and best practice for 132 

future work allowing researchers to avoid repeatedly addressing these fundamental issues, and 133 

rather focus on developing novel ideas enabling faster progress.   134 



 

Materials and Methods 135 

Data Preparation 136 

The initial datasets were collected from IEDB, VDJdb, McPAS and 10X Genomics Single Cell 137 

Immune Profiling of four donors (20).  The original dataset consisted of 21,121 unique paired 138 

TCRs relative to 499 peptides and 14 different HLA molecules. Non-binding peptide-TCR pairs 139 

were obtained from the 10X dataset. In the 10X assay, T cells were exposed to a panel of 50 140 

peptide-MHC multimers. A negative TCR is defined as a TCR that does not bind any of the 141 

tested peptides and that has a Unique Molecular Identifier (UMI) count of 0.  142 

 143 

Only data points with both CDR3 α- and β-chains and V/J gene annotations were kept. Further, 144 

any cross-reactive TCRs were removed, and the data was restricted to TCRs with CDR3α/β 145 

lengths in a range from 6 to 20 amino acids. Finally, only peptides with at least 100 positive 146 

TCRs were considered (11). After these initial cleaning steps, the dataset contained 4,111 147 

positive peptide-TCR instances, spanning 10 different peptides and 4 HLA molecules. The 148 

negative pool of TCRs counted 40,949 TCRs negative to 6 out of the 10 peptides present in the 149 

positive set. The positive TCRs specific to the four non-overlapping peptides were discarded.  150 

 151 

The set of positive TCRs was redundancy-reduced with the Hobohm 1 algorithm (21) applied to 152 

the CDR3 α- and β-sequences. The TCRs were first sorted in descending order according to the 153 

sum of the CDR3α  CDR3β sequence lengths. Briefly, the Hobohm 1 algorithm starts by placing 154 

the first TCR into the non-redundant list. Iteratively, all the TCRs are similarity scored against 155 

the list of non-redundant TCRs: if the similarity to all the non-redundant TCRs is less than a 156 

specified threshold, then the new TCR is assigned to the non-redundant list, otherwise it is 157 

discarded. The similarity between sequences was calculated using the kernel similarity measure 158 

as defined in (22) and was calculated as the average of the CDR3α- and β-similarity scores. For 159 

the positive set, a threshold of 0.95 was chosen to ensure that only highly similar entries were 160 

removed. A similar approach was used to reduce the set of negatives, but with a similarity 161 

threshold of 0.9. After running the Hobohm 1 algorithm, 3,400 positive and 36,366 negative 162 

TCRs were left in the two data sets.   163 

 164 

Once the redundancy in the positive set was reduced with the Hobohm 1 algorithm,  the data 165 

points were randomly split into 6 partitions, 5 for cross-validation and one for external 166 



 

evaluation. For each partition, for each positive peptide-TCR combination, 5 TCRs were 167 

sampled from the pool of negative TCRs and added to the partition of the peptide-TCR. These 168 

negatives are referred to as true negatives or 10X negatives. Each partition was further 169 

augmented with swapped negatives. Here, each positive TCR was paired with 5 peptides 170 

(different from the target peptide) and labeled as swapped negative.  171 

 172 

The last step in the data curation was to reconstruct the full TCR sequences and annotate gene 173 

usage in the CDR loops. First, the full TCR sequences were constructed from V/J genes + 174 

CDR3: the CDR3 sequence was merged on the C-terminus of the V gene by looking for a 175 

cysteine (C) in the last six residues of the V gene sequence and on the N-terminus by matching 176 

a phenylalanine (F) or a tryptophan (W) followed by a glycine (G) within the first 11 amino acids 177 

of the J gene sequence. Lastly, Lyra (23) was used to annotate the CDR  and 2 loops. A total of 178 

473 positive TCR sequences were removed in this step, due to a failure in the TCR 179 

reconstruction or CDR annotation.  180 

 181 

The final dataset consists of 2,541 unique positive peptide-TCR pairs, 12,848 negatives from 182 

10X and 12,705 swapped negatives. A summary of the peptides included in the training set is 183 

shown in Table 1. 184 

 185 

Peptide 
Sequence 

Organism HLA # positive 
TCRs 

GILGFVFTL Influenza A virus HLA-A*02:01 969 

RAKFKQLL Epstein Barr virus HLA-B*08:01 659 

ELAGIGILTV Melanoma HLA-A*02:01 316 

IVTDFSVIK Epstein Barr virus HLA-A*11:01 275 

GLCTLVAML Epstein Barr virus HLA-A*02:01 173 

NLVPMVATV Human CMV HLA-A*02:01 149 

Table 1: Description of the peptides included in the training set. 186 



 

Baseline Model 187 

A baseline model was used to benchmark the performance of the NetTCR model. The baseline 188 

used here was inspired by (9) and is solely based on TCR similarities. As for TCRmatch, the 189 

kernel similarity (22) measure was used. Briefly, this measure assigns a similarity score 190 

between two sequences by comparing all the k-mers, with k ranging from 1 to the length of the 191 

shortest sequence. For a fixed value of k, the BLOSUM62 score of all the k-mers from the first 192 

sequence against the k-mers from the second sequence is computed. The similarity score is 193 

then given by the self-similarity normalized sum of all the BLOSUM scores, for all the values of 194 

k. 195 

For each peptide, a database of positive TCRs to the peptide from the training set was 196 

constructed and a query with positive and negative (both 10X and swapped negatives) TCRs 197 

from the evaluation set. Each TCR in the query is scored against the database using the kernel 198 

similarity score. The prediction for a given TCR in the test set is then given by the similarity 199 

score to the nearest neighbor in the training set. For the CDR3 model, the similarity score is 200 

calculated as the average of the similarities of α- and β-chains. When adding CDR1 and 2 to the 201 

model, the overall similarity is calculated as a weighted average of the similarities of each of the 202 

6 CDR loops (3 for the α- and 3 for the β-chain) using weights [1,1,4] and [1,1,4] as suggested 203 

earlier (5). It should be noted that the baseline model is inherently peptide-specific as databases 204 

and queries are constructed for each peptide separately. TCRbase-1.0, a web server version of 205 

the baseline model, is available at https://services.healthtech.dtu.dk/service.php?TCRbase. 206 

NetTCR Model 207 

NetTCR is a sequence-based 1D-convolutional neural network, similar to the one proposed by 208 

(11). The inputs to the network are the amino acid sequences of the six CDR loops; for the pan-209 

specific model, also the peptide sequence is used as input to the network. The inputs are zero-210 

padded to the left, to ensure the same lengths across input: 10 for CDR 1 and 2, 20 for CDR3, 211 

and 13 for the peptides. The sequences are encoded using the BLOSUM50 (24) encoding 212 

scheme, mapping each amino acid into a vector with 20 entries. The encoded sequences are 213 

processed independently by different convolutional blocks. Each block applies 1D convolutions 214 

with 16 filters and kernel sizes {1, 2, 5, 7, 9} (80 filters for each sequence in total). The outputs 215 

of the convolutional layers are max-pooled across the sequence length dimension and 216 

concatenated. The final part of the network consists of a hidden layer with 32 neurons and an 217 



 

output layer with a single neuron, giving the binding score of the input peptide and TCR. The 218 

sigmoid activation function was used in all the layers of the network.  219 

Model training 220 

All models were trained using nested 5-fold cross-validation for 200 epochs with early stopping, 221 

monitoring the validation loss. Adam optimizer was used, with a learning rate of 0.001. The code 222 

was developed in Python 3.7; the neural networks were designed using Pytorch 1.11 and the 223 

models were trained on an NVIDIA® GeForce GTX TITAN X GPU. 224 

Performance Evaluation 225 

The predictive power of the models was measured using the area under the receiver operating 226 

characteristic curve (AUC) and AUC 0.1, defined as the normalized area under the ROC curve 227 

with a maximum false positive rate of 0.1. The performance was assessed also with Positive 228 

Predictive Value (PPV), defined as the proportion of positive labeled TCRs within the top n 229 

predictions, where n is the number of positive data points in the set. 230 

 231 

Each proposed model was trained using nested 5-fold cross-validation resulting in 20 individual 232 

networks. The performance was assessed on the left-out evaluation set. Here, the ensemble of 233 

the 20 trained models was used and the evaluation predictions were calculated by the average 234 

of the predictions from each of the 20 models.  235 

 236 

The performance of the models was evaluated in a per-peptide manner (i.e from the subset of 237 

TCRs with target values towards a given peptide). For each model, an overall performance was 238 

also given by the average AUCs across peptides. We reported the average AUCs both as a 239 

mean value of the AUCs from each peptide and as a weighted average of the peptide AUCs, 240 

weighted by the number of positive TCRs for that specific peptide in the evaluation set.  Each 241 

model's performance was reported by analyzing two tasks: i) positives versus 10X negatives 242 

prediction; ii) positives versus swapped negatives prediction.  243 

 244 

To overcome the problem of having peptide-specific prediction biases, we performed calibration 245 

by transforming the raw prediction scores into percentile rank scores. The rank scores were 246 

estimated using a set of 13,847 COVID-specific TCRs (25), not sharing any overlap with the 247 



 

training set.  Percentile rank scores for a query TCR was next estimated as the proportion of 248 

COVID TCRs that scored higher than the considered TCR, in terms of raw prediction score.  249 

  250 

To assess whether the differences in performance were significant, a bootstrap test was 251 

performed on the AUC values. Given two prediction vectors from two different models to 252 

compare, these were sampled n times with replacement, with the same size as the original 253 

vectors. Given the null hypothesis that the two models performed equally, a p-value was 254 

calculated as the number of times the AUC of the first model, calculated on the resampled 255 

vector, was smaller than the one from the second model, normalized by n. 256 

Results 257 

Here, we set out to investigate three essential questions related to the modeling of TCR 258 

specificity namely i) the use of peptide- versus pan-specific models, ii) how to best define 259 

negative data, and iii) the impact of model-integration of CDR1 and 2 loops. The three questions 260 

were addressed by developing and comparing the performance of simple ML models inspired 261 

by the earlier NetTCR architecture trained and tested using cross-validation of data extracted 262 

from the public domain. 263 

Baseline Model 264 

 265 

As a baseline model to compare the performance of the more complex ML models, we designed 266 

a simple similarity-based model for predicting TCR specificity, TCRbase-1.0, under the 267 

assumption that the TCRs that bind the same epitope share a high degree of sequence 268 

similarity. Here, for each peptide, a prediction for both positive and negative TCRs from the 269 

evaluation set was obtained by comparing these TCRs to all the positive TCRs for that specific 270 

peptide in the training set. The similarity score of two TCRs was given by the weighted sum of 271 

the similarities of the single CDR loops (see methods). We experimented with different sets of 272 

weights for the CDRs, as shown in Figure 1 and Supplementary Figure 1. These results suggest 273 

that including CDR1 and CD2 results in an improved predictive power of the baseline model (p-274 

value<0.001 for all the peptides except IVT and NLV, based on a bootstrap test on the AUC 275 

values, with 1000 repetitions). Given the overall improved prediction of the model with CDR3s 276 

weighted four times higher than CDR1 and 2, we set these weights to be the default 277 

configuration of the baseline model.  278 



 

 279 

 280 

Figure 1: Baseline model performance for weighted and unweighted CDRs. Performance is 281 

reported as the AUC for each individual peptide, as well as the average and weighted (by 282 

number of positive TCRs) average AUC over the 6 peptides. The performances of three version 283 

of the baseline are shown: weighted, where the similarity is given by the weighted sum of the 284 

similarities of the three CDRs using the weights [1, 1, 4]; unweighted where all the CDRs are 285 

given equal weights; CDR3 only baseline, where CDR1 and 2 are given a weight of 0. 286 

 287 

Peptide- vs pan-specific model  288 

Next, we wanted to investigate whether peptide or pan-specific models would yield better 289 

performance. Ideally, one would like to train pan-specific models pooling all peptide-TCRs in the 290 

training data. Thereby, potentially allowing the model to leverage and transfer information 291 

between different TCR-pMHC combinations. Such data leverage is however only expected to be 292 

beneficial in situations where binding mode information is shared between peptides. 293 

 294 

To compare the predictive power of peptide versus pan-specific models, two sets of models 295 

were trained using cross-validation and next evaluated using the left-out evaluation data set (for 296 

details see methods). Peptide-specific models were trained for each of the 6 peptides in the 297 

training data. The pan-specific model was trained on all data combined. All models were trained 298 

using an identical architecture, including the CDR3α and β sequence information from the 299 

TCRs, and the peptide sequence as inputs (the peptide information was fully conserved for the 300 



 

peptide-specific models). The result of this experiment is shown in Figure 2 and demonstrated 301 

both for the individual peptides and the combined average performance values that for the data 302 

included in this study, the peptide-specific models in the majority of cases achieved superior 303 

performance. Particularly for the positives vs swapped negatives prediction task, all the 304 

differences are significant, except for the GIL peptide (p-value<=0.01, bootstrap with 1000 305 

repetitions). Supplementary Figure 2 provides AUC01 and PPV values for the same experiment. 306 

Given this, the subsequent work focused only on peptide-specific models. 307 

 308 
Figure 2: The predictive performance for each peptide measured in terms of AUC of the 309 

NetTCR architecture based models trained on α- and β-chains and stratified on negative usage 310 

and peptide- versus pan-specific approach.  Average and w_aveage denotes the average and 311 

weighted (by the number of positive TCRs) average AUC over the 6 peptides. 312 

 313 

On the different sources of negatives 314 

 315 

Nextly, we aimed to investigate the impact of the different sources of negative data points on 316 

model performance: 10X negatives and swapped negatives. Briefly, the former set of negatives 317 

was derived from the 10X dataset and it is formed byTCRs that were found to not bind any of 318 

the 50 tested pMHC multimers. The swapped negatives are artificially generated by pairing TCR 319 

sequences with peptides aside from the one to which they were originally annotated to bind. 320 



 

To investigate the performance impact of the different types of negative data, three models were 321 

trained. The first model was trained on the full data, i.e., positives, 10X and swapped negatives. 322 

Two more models were trained including either the 10X or swapped negatives. All models were 323 

trained using 5 fold cross-validation and evaluated on the 6th independent data set. The results 324 

of this experiment are shown in Figure 3 and Suppl. Figure 3, and demonstrated that the models 325 

trained on the complete set of negative data overall performed superior compared to the other 326 

models. That is, the model trained on the mixed type of negatives outperformed the model 327 

trained only on swapped negatives when asked to differentiate between positive and 10X 328 

negatives (upper panel). Likewise, it outperformed the model trained on 10X negatives when 329 

asked to differentiate between positive and swapped negative (lower panel). Further, the model 330 

trained on mixed negatives only suffered a limited decrease in performance when evaluated on 331 

the type of negative used to train the two other models. Given these results, we focused on the 332 

model trained using mixed negative data moving forward.  333 

 334 

 335 

 336 
 337 

Figure 3: The predictive performance of the three models trained using negatives either from the 338 

10X dataset, the swapped or both combined. The performance is evaluated in terms of AUC on 339 

two evaluation sets, each sharing positive observations, but with negatives defined by either 340 

true negatives from the 10X dataset or swapped negatives. Average and w_aveage denotes the 341 

average and weighted (by number of positive TCRs) average AUC over the 6 peptides 342 

 343 



 

Adding CDR1 and CDR2 344 

We next expanded the NetTCR architecture to also include CDR1 and -2 sequences as input, 345 

hereby representing the TCR as 6 sequences, the three CDRs from the α chain and the three 346 

from the β. Figure 4 shows the AUCs on the evaluation set of the model with all the CDR and 347 

the model with only CDR3s. Figure 4 demonstrates an overall improved performance when 348 

adding the CDR1 and 2. This gain is larger when looking at the AUC calculated on the positive 349 

vs swapped negative prediction task (Figure 4, lower panel) compared to positives versus true 350 

negatives (Figure 4, upper panel). Except for the GLC peptides, the model trained on all the 351 

CDRs significantly outperforms the one trained on CDR3 only (p-value<0.001, based on a 352 

bootstrap test with 1000 resampling with replacement) across all the peptides, when looking at 353 

the positives versus swapped negatives prediction. AUC01 and PPV comparisons are shown in 354 

Suppl. Figure 4. 355 

 356 

Figure 4: Performance comparison in terms of AUC for the NetTCR model using all CDR loops 357 

versus using only CDR3 loops from both α- and β chains. 358 

 359 

Lastly, we compared NetTCR to the baseline model (TCRbase) with weighted CDRs 360 

contributions, as shown in Figure 5 and Supplementary Figure 5. The two models achieved 361 

comparable performance with a minor advantage of NetTCR when tested on the task of 362 

predicting the positive vs 10X negatives (Fig. 5, upper panel). However, NetTCR significantly 363 

outperformed the baseline (p-value<0.001, bootstrap test with 1000 repetitions) for all 364 



 

evaluations when separating between positives and swapped negatives (Fig. 5, bottom panel).  365 

 366 

Figure 5: Predictive performance measured in terms of AUC for the peptide-specific NetTCR 367 

CDR123 model and the baseline.  368 

 369 

Predicting peptide targets 370 

So far, the performance evaluations performed have focused on evaluating to what degree 371 

models can differentiate between TCRs being positive or negative towards a given peptide. 372 

Equally interesting is whether a model is capable of identifying the true target peptide from a 373 

pool of possible peptides. To evaluate this, we compiled a data set where all the positive TCRs 374 

were paired to all the six peptides in the training set. Next, we used the peptide-specific models 375 

to get predictions for these peptide-TCR combinations and the scores were sorted in 376 

descending order. Ideally, the TCR paired to its target peptide should get a rank of 1, meaning 377 

that the prediction score for this true positive combination was the highest among all possible 378 

combinations resulting in 0 false positive predictions. The results of this experiment are shown 379 

in Figure 6. Here, the rank distribution for the positive TCRs for each peptide is shown. Most of 380 

the TCRs are observed to get a rank of 1, meaning that they were assigned to the correct 381 

peptide and thus received the highest score by the model corresponding to the correct target 382 

peptide. In all cases, the rank distributions are improved compared to the uniform distribution of 383 

a random model. However, the proportion of top-ranked predictions varied between the different 384 

peptides with values above 80% for the three most covered peptides and a drop to around 55% 385 



 

for the three least covered. The number of top 1 positive TCRs for each peptide are GIL 386 

114/136, RAK 77/96, ELA45.53, IVT 22/38, GLC 16/27, NLV 10/19.  387 

 388 

 389 

Figure 6: Peptide ranking analysis. Each positive TCR in the evaluation set was paired with all 6 390 

peptides and predictions were obtained using the peptide-specific models. For each TCR, the 391 

six prediction scores were sorted in descending order and a rank was obtained. A rank of 1 392 

means that the model correctly predicted the true TCR-peptide pair, assigning the highest 393 

score. The bars in the plot show the proportion of TCRs for each rank value.  394 

 395 

To further investigate the source of these performance variations, Figure 7 shows box-plots of 396 

the prediction scores for different subsets of TCRs. Here the "top_TP" and "second_TN" refer to 397 

scores of the top and second scoring peptide for a given TCR, in the situation where the true 398 

peptide is ranked top-one. The other two distributions refer to the case where the model was not 399 

able to top-rank the correct peptide for the TCR. Here "top_false FP" displays the distribution of 400 

the prediction scores for the wrongly predicted top-one peptides, and "FN" is the score 401 

distribution for the correct peptide. Comparing the first two box-plots thus informs about the gap 402 

in the scores between top one and two in the situation of a correct prediction, and the last two 403 

plots about both the overall score distribution for TCRs with wrong predictions and the score of 404 

the best peptide in these situations. Several important conclusions can be drawn from these 405 

plots. First and foremost are the score distributions for "top_TP" and "second_TN" in all cases 406 

very well separated, suggesting that in these cases, the model has high certainty in predicting 407 

the correct peptide target. Secondly, variations in score distribution for the "top_TP" between 408 

the different peptides - the median score values decrease as one moves from the highest 409 

covered (GIL) towards the least covered (NLV) peptides, suggest that a score calibration would 410 



 

potentially benefit the peptide ranking evaluation. Lastly, the scores for the FN TCR are in all 411 

cases very low and distinctively different from the "top_TP" score distributions. This strongly 412 

suggests that these FN TCRs at least in part are TCRs, which have been incorrectly annotated. 413 

We can pursue this further by investigating the source of the TCRs in the two classes “top_TP” 414 

and “FN”. Doing this, we find that one publication (26) in particular is enriched in “FN” TCR. This 415 

publication contributes ~19% of the TCRs in the FN category while only contributing ~10% to 416 

the overall positive data set and ~5% to the top_TP category. The underlying source of this FN 417 

enrichment is unclear.  418 

 419 

 420 

Figure 7: Box-plots of the prediction scores from the peptide ranking analysis. "top_TP" refers to 421 

the predictions for the positive peptide-TCRs that obtained the highest prediction score with the 422 

model trained on that specific peptide; "second_TN" shows the predictions for the second 423 

highest scoring TCR. "top_false_FP" and "FN" refer to a scenario where a TCRs gets the 424 

highest prediction score when paired to a peptide that is different from its target. "top_false_FN" 425 

shows the score distribution of these wrong combinations of peptide and TCR; "FN" represents 426 

the prediction score of the correct peptide-TCR pairs that did not score top 1.  427 

 428 



 

 429 

Figure 8: Motivation for using percentile ranks. Box-plots of the prediction scores (a) and 430 

percentile rank values (b) for the set of positive TCRs in the test CV sets. 431 

 432 

As illustrated in Figure 7, the prediction scores for the top1 TCRs have very different median 433 

values, depending on the peptide. In general, this happens for all the positive TCRs, as shown 434 

in Figure 8a. This represents a limitation when comparing predictions from different models, 435 

thereby indicating that a score calibration is needed. To address this, we applied a percentile 436 

rank transformation to the raw prediction scores to avoid these peptide-specific scoring biases, 437 

as described in Materials and Methods. Here, a set of 13,847 COVID-specific TCRs (25) were 438 

used to estimate the background distributions of the peptide-specific models. The percentile 439 

rank score for a peptide-TCR pair in the evaluation set was then estimated as the proportion of 440 

the background COVID TCRs with a higher prediction score than the pair in consideration. 441 

Figure 8b shows the percentile rank scores for the positive TCRs. Except for the NLV peptide, 442 

the median values of the percentile rank scores are now comparable across peptides. This 443 

suggests that using the percentile rank scores is more appropriate than using the raw prediction 444 

scores, making the different models more directly comparable. 445 

 446 

Performance as a function of distance to training data 447 

Next, we wanted to investigate how the similarity between the training and evaluation set drove 448 

the performance of both NetTCR and the baseline models. In these experiments, we exclude 449 

positive TCRs with a percentile rank score above 0.3 (to exclude potential noise imposed by the 450 

FN TCRs described above). For each TCR, we defined its similarity to the training set as the 451 

kernel similarity score to its nearest neighbor TCR, either positive or negative, in the training set. 452 



 

Next, we excluded  TCRs with a similarity to train above a given threshold and calculated the 453 

AUC value based on the predictions of the remaining data points. Figure 9 shows the results of 454 

this experiment, using different 10 similarity threshold values between 0.89 and 0.98 (results 455 

shown for the three most frequent peptides). These results show that when the TCRs in the 456 

evaluation set are allowed to share a similarity to the training set up to 0.98, the baseline and 457 

NetTCR models perform similarly. However as the maximum similarity between the train and 458 

evaluation set is reduced, the gap in performance between the two models increases (in 459 

particular for the GIL and RAK peptides), with a substantial drop in baseline AUC for the 460 

baseline model, while NetTCR to a high degree maintains performance.  461 

 462 

 463 
Figure 9: AUC values as a function of the similarity between training and evaluation set. 464 

Percentile rank transformation was applied to the TCRs and only positive TCRs with a rank 465 

score less than 0.3 were kept in this analysis. For each TCR in the evaluation set, we calculated 466 

the similarity to the training set using the kernel similarity score. We then removed the TCRs 467 

with a similarity above a threshold and calculated the AUC. The curves in the plots show the 468 

AUC varies when different similarity thresholds were used to filter the evaluation set; 10 469 

similarity values between 0.89 and 0.98 were chosen. The dashed line shows the number of 470 

positive TCRs left in the evaluation set at each step of filtering by similarity to the training set. 471 

 472 

The NetTCR-2.1 method 473 

The presented model is available as a web-server implementation at 474 

https://services.healthtech.dtu.dk/service.php?NetTCR-2.1. The server allows users to make 475 

TCR-binding predictions to one or more peptides, using the peptide-specific models. It is 476 

possible to use either the models trained on CDR3α- and β-sequences or trained using all the 477 

six CDR loops. 478 

The output of NetTCR-2.1 is a list of CDR-peptide pairs along with the binding prediction. For 479 

each prediction, the method outputs also the percentile rank score, estimated from a 480 



 

background set of 13,847 COVID-specific TCRs. The percentile rank is a normalized score 481 

across the different peptide-specific models, ranging from 0 to 1, where 0 is the best possible 482 

percentile rank. The rank score should serve as a guideline to select a peptide invariant 483 

threshold on the binding probability prediction. For each peptide, the threshold could be defined 484 

as the 75th percentile of the background prediction score distributions (boxplots shown in Figure 485 

8b).  486 

 487 

Discussion 488 

Here, we present NetTCR-2.1, which is an extension of our earlier NetTCR-2.0 method for 489 

prediction of pMHC-TCR interactions. The main augmentation is an extended peptide coverage 490 

and the ability to include all CDRs in the binding prediction.  491 

 492 

In our work, we investigated several important aspects of model development when aiming at 493 

predicting TCR specificity and have presented our results of this, aiming at supplying the TCR-494 

specificity prediction field with a set of suggested best practices. These, include 495 

recommendations on strategies for data partitioning and redundancy reduction, the use of 496 

peptide versus pan-specific modeling, the source of negatives, inclusion of CDR1 and CDR2 497 

information, the importance of benchmark comparison of simple sequence similarity-based 498 

baseline models, and model performance comparison in the context of distance to training data. 499 

In the following, we will briefly summarize our findings and associated conclusions on each of 500 

these topics.  501 

 502 

Strategies for data partitioning and redundancy reduction 503 

Traditionally, TCR-pMHC specificity data has been focused on CDR3β for reasons previously 504 

described. However, the advent of high throughput single cell technologies has resulted in a 505 

substantial increase in publicly available data on paired TCR α- and β-chain to cognate pMHC-506 

target data. However, it is evident that these data reflect ongoing research into model organisms 507 

or diseases like Influenza A virus, Epstein Barr virus, Melanoma and Human CMV. Furthermore, 508 

often only positive observations of TCR-pMHC interaction are reported, biasing the databases. 509 

As a reflection of this, the TCR sequences currently available share a high degree of 510 

redundancy. Therefore, in order to achieve, to the degree possible, non-biased training and 511 

evaluation of the developed models, it is important to address redundancy. This is true 512 

particularly for modern modeling frameworks, where parameter space is very large and they are 513 



 

prone to overfitting. The below described guidelines aim to minimize this risk as much as 514 

possible. 515 

Due to the genetic mechanisms underlying TCR generation, classical alignment-based similarity 516 

approaches using for instance Blosum matrices and affine gap penalties are nonsensical. 517 

Therefore, we propose using alignment-free methods such as the kernel method described by 518 

Shen et al. (22) to estimate sequence similarity and then subsequently perform redundancy 519 

reduction using e.g. the Hobohm-1 algorithm. Lastly, we recommend performing pre-clustering 520 

prior to partitioning the data using e.g. single linkage to ensure the least possible overlap 521 

between partitions.    522 

 523 

Peptide versus pan-specific modeling 524 

We trained two versions of the NetTCR model; a pan- and a peptide-specific, both trained only 525 

including the CDR3 for simplicity Ideally, a pan-specific approach should be more generalizable 526 

and rely less on the individual peptides in the training set, aiming at capturing the global signal. 527 

The clear advantage is that such a model would be able to make predictions for TCRs specific 528 

to any peptide, even for those peptides that are represented by only a small sample in the 529 

training data or even absent. Given the data currently available, the peptide-specific models 530 

were however found to outperform the pan-specific ones. Using the experiences gained from 531 

modeling pMHC-interaction where the early pan-specific model also performed at par or slightly 532 

worse than allele-specific (27), this is likely due to the limited volume and coverage of the data 533 

volume currently available. We observe that TCRs specific to different peptides do share many 534 

features, rendering cross-learning across peptides not achievable at the moment. As more data 535 

becomes available, we expect that it will be possible to train pan-specific models. 536 

 537 

The source of negatives 538 

A critical point when developing an ML model for binary classification is the definition of 539 

negative data. Insufficient consideration of this can lead to biasing (28). The publicly available 540 

datasets of TCR-pMHC sequences almost exclusively contain examples of positive binding 541 

pairs. Only the recently published 10X Genomics dataset contains both positive and negative 542 

data points. Another common approach for generating artificial negatives is to mispair positive 543 

peptide-TCR pairs. Here, we have compiled a training data set with both 10X negatives and 544 

internal mispairing of peptides and TCRs, referred to as swapped negatives. We investigated 545 

the impact of both sources of negatives by training the same neural network on different 546 

datasets, including either both sources or negatives or only one of the two. In all these 547 



 

experiments, the NetTCR CDR3 peptide-specific model was adopted. To better understand how 548 

the two negative sets affected the performance, the AUC values were calculated for the positive 549 

vs swapped negatives prediction task and for the positives vs 10X negatives. The model trained 550 

with only swapped negatives showed a high predictive power when evaluating the positives vs 551 

swapped negatives predictive power, as that was specifically the task the model was trained for. 552 

However, the performance dropped when evaluating how this model could distinguish between 553 

positives and 10X negatives. Vice versa, the model trained on 10X negatives was able to make 554 

good predictions for the positives vs 10X negatives task but suffered a major drop in 555 

performance when making predictions on the swapped negatives. The model trained on the 556 

entire dataset, i.e. positive TCRs, 10X and swapped negatives, showed the ability to make 557 

satisfying predictions on both tasks of predicting 10X and swapped negatives. These results 558 

suggest that both types of negatives are needed to accomplish more tasks with one unique 559 

trained model. Furthermore, given the large drop in performance of the network trained on the 560 

10X negatives on the swapped data, the swapped negatives play a more important role in 561 

learning how to differentiate between positive and negative TCRs. This aspect could be a 562 

consequence of the fact that, with the mismatched negatives, the network is shown the same 563 

TCR sequences that are positive in some cases and negative in others; on the contrary, positive 564 

and 10X negative TCR are two disjoint sets. Hence, the network might capture a signal to 565 

distinguish positives and negatives that are different in sequences, but not learn the rules that 566 

make a TCR positive to one peptide and negative towards others. 567 

 568 

Inclusion of CDR1 and CDR2 information 569 

Most of the available models to predict peptide-TCR interaction are focused on CDR3β or 570 

paired CDR3αβ sequences, and only a few recently published works have added V/J genes 571 

information in the model as one-hot encoded features (6,10). Here, we have developed a neural 572 

network that takes as input the full set of the 6 CDR sequences. The full-length TCR was 573 

reconstructed from the V/J genes and CDR3 sequence, and the CDRs were annotated using 574 

Lyra (see Material and Methods for details). We compared the model trained on the full set of 575 

CDRs to the one trained on CDR3αβ data. On average, the model trained on the 6 CDR 576 

sequences showed higher AUC values compared to the CDR3αβ model, across the peptide set. 577 

For some of the peptides, the inclusion of CDR1 and 2 resulted in a substantial increase in 578 

AUC. This is the case, for instance, for the ELAGIGILTV peptide. However, this gain in 579 

performance might be driven by a bias in the V gene data. In our data set, 85% of the positive 580 

ELA CDR1α and 2α are encoded by the TRAV12-2*01 gene; this gene is present only in a 581 



 

minor proportion (5%) in the negative set. It is not clear if this bias is due to the data collection 582 

or if it is a biological signal.  583 

 584 

Benchmark comparison of simple sequence similarity-based baseline models and models 585 

comparison in the context of distance to training data 586 

Together with NetTCR-2.1, we have here proposed TCRbase, a similarity-based approach to 587 

predict TCR-peptide interaction, under the assumption that TCRs with similar sequences 588 

recognize the same epitope. We showed that this model achieved comparable performance to 589 

the one of NetTCR, while being very simple. Our results align with previous findings (17,29,26). 590 

A closer analysis of our results revealed that TCRbase performed at par with NetTCR when 591 

separating positive versus 10X negative TCRs; however, the gap in performance between the 592 

two models was enlarged on the positives versus swapped negatives prediction task, where 593 

NetTCR significantly outperformed TCRbase. This behavior suggests that the 10X negatives 594 

are very different from the positive TCRs, and this dissimilarity makes it trivial for a similarity-595 

based model to distinguish between positives and negatives. This is not the case for the 596 

swapped negatives, as they are positive to some other peptide. Here, TCRbase to a higher 597 

degree fails in separating the positive and negative set, while NetTCR maintains performance, 598 

indicating that the neural network has learned some features beyond sequence similarity. The 599 

generalizability of NetTCR is furtherly confirmed when comparing the model's performances in 600 

the context of distance to training data. When the evaluation set is allowed to be highly similar to 601 

the training data, NetTCR and TCRbase have comparable performance in terms of AUC. As the 602 

TCRs similar to the training data are removed, TCRbase suffers a drop in performance, 603 

whereas NetTCR is able to maintain the predictive power. We believe this result is essential as 604 

a validation of the greater potential for generalization of the NetTCR machine learning-based 605 

method over the more simple similarity-based approach, and strongly suggest that such 606 

similarity-based models and performance evaluations as a function of distance to training data 607 

are included as baselines in future works developing TCR specificity prediction models.  608 
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CHAPTER6
Benchmark of data-driven filtering ap-
proaches for single-cell screening of T
cell specificity

In the last years, multiple models have been developed to predict
TCR-pMHC binding events [18, 74, 83–89]. However, one of the
limitations that emerged across different studies was the quantity
and quality of the available data, typically generated by multimer
sorting or re-exposure assay, followed by bulk sequencing. Single-
cell (SC) technology promises the generation of large amounts of
data, in a high-throughput manner. Furthermore, in the context
of TCR sequencing, SC allows the generation of paired α and β
TCR chains and both binding and non-binding events. However,
this technology is not error-free and proper methods to handle the
output are needed. De-noising single-cell data composed of T cell
specificities is a new and inexperienced field. Here, immunoinfor-
matics methods are crucial to increase the signal-to-noise ratio in
the data, so that the community can truly benefit from single-
cell assays. Currently, only two frameworks have been proposed
that aim to de-noise single-cell data. The two methods are both
data-driven but address the filtering in different ways. This chap-
ter presents a benchmark of the two methods, ATRAP and ICON,
and highlights the advantages and disadvantages of each approach.
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The improved quality of the filtered data is assessed by train-
ing NetTCR-2.1, a deep learning model, on both raw and filtered
data, showing that the predictive performance is increased when
the data is de-noised. This suggests that the filtering frameworks
remove artifacts and wrong annotations from the data, leading to
a more reliable set of TCR-pMHC examples.

The results presented in the chapter come from an ongoing project
in collaboration with Helle Rus Povlsen, Leon Eyrich Jessen and
Morten Nielsen. My primary contribution to the project was to
design a machine learning-based validation for the increased ac-
curacy of de-noised data. The NetTCR-2.1 CDR3αβ model was
trained both on the raw 10x data and on the ICON and ATRAP-
filtered datasets, showing improved predictive power of the filtered
data both when training the model and on an external, indepen-
dent dataset.
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Abstract
Pairing of T cell receptor (TCR) with its cognate peptide-MHC
(pMHC) is a cornerstone in T cell-mediated immunity. Recently,
single-cell sequencing coupled with DNA-barcoded multimer staining
has made the high-throughput study of T cell specificity available.
However, the immense variability of the TCR-pMHC interaction com-
bined with the technology’s low ratio of signal-to-noise in the gener-
ated data is complicating the study. Several approaches have been
proposed for de-noising single-cell TCR-pMHC specificity data. Here,
we present a benchmark evaluation of two such computational frame-
works, ICON and ATRAP. The methods were applied and evaluated
on the publicly available immune profiling data provided by 10x Ge-
nomics in terms of both internal metrics developed for the purpose,
and by performance on independent data of machine learning meth-
ods trained on the raw and denoised 10x data. The conclusion from
these benchmarks demonstrates both an increased signal-to-noise ra-
tio in the denoised compared to the raw data, and overall superior
performance of the ATRAP method over ICON when it comes to data
consistency and performance when training and evaluating predictive
models.
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Introduction
The specificity of T cells forms the hallmark of cellular immunity.
T cell specificity is determined by a triad of interactions between
the T cell receptor (TCR), a peptide (p), and its restricting major
histocompatibility complex (MHC). The TCR is a heterodimeric
protein, typically composed of an α- and β-chain, which are formed
during T cell development as a result of stochastic V(D)J gene re-
combination [90–94]. As a result of the somatic recombination,
highly variable joining segments are introduced, facilitating a di-
verse TCR repertoire that ensures protection from a broad and
ever-changing range of pathogens or cancerous mutations [95–97].
The joining segments are contained in a region known as the com-
plementarity determining region 3 (CDR3). CDR1 and CDR2 re-
side in highly polymorphic regions of the V gene. The three CDRs
form flexible loops of the TCR which engage with the peptide-
MHC (pMHC) complex and thereby determine the specificity of
the T cell [98–101].

Recent studies have elucidated common TCR sequence features
of T cells that share specificity, and for selected pMHCs, it has
been possible to predict the binding probability to TCRs novel to
the trained model [18, 74, 83–89]. The current primary limitation
is the lack of both quantity and diversity of training data gen-
erated by traditional specificity assays such as multimer sorting
and re-exposure assays, followed by bulk sequencing of typically
the TCRβ-chain. However, the advent of single-cell sequencing
platforms promises high-throughput data which in addition in-
trinsically provides information of false binding pairs, as well as
true pairs [102]. This type of data is expected to accelerate the
understanding of TCR specificity.

10x Genomics has specifically developed an immune profiling plat-
form that couples TCR sequencing of both α- and β-chains with
DNA barcoded peptide-MHC (pMHC) multimers, DNA barcoded
surface marker antibodies, and DNA barcoded cell hashing anti-
bodies. The platform is designed to capture a single cell together
with a gel-bead in emulsion (GEM) [103, 104]. Each GEM contains
GEM-specific barcoded primers which ensure the back-tracing of
transcripts to the cell-of-origin. As the platform promises single-
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cell capture, the contents of a GEM should reflect a single cell and
its associated barcoded analytes, hence GEM and cell may be used
interchangeably. The GEM primers also contain a unique molec-
ular identifier (UMI) which ensures quantification of transcripts
unbiased by PCR amplification [105]. Thus, single-cell screening
of TCR-pMHC interactions yields the TCRαβ sequence and the
expression level of both chains as well as the count of each unique
pMHC binding which might be interpreted as T cell avidity [102].

In 2019, 10x Genomics released a large, state-of-the-art data set
[102] which spurred activity within the TCR-pMHCmodeling com-
munity [18, 74, 86–88, 106]. The 10x Genomics data contain T
cell specificities from four healthy donors screened against a panel
of 50 pMHCs which includes 44 pMHCs for positive selection and
six negative control pMHCs [102]. However, this data presented
new challenges. The single-cell platform is generally associated
with a poor signal-to-noise ratio, which also affects this specificity
data. The challenge was handled in various ways. In NetTCR-2.0,
the data was utilized solely to define negative TCR-pMHC pairs,
i.e. pairs that were not detected to bind any of the investigated
pMHC complexes and thereby avoided handling the noise within
the detected binders [18]. Since the true TCR-pMHC pairs are
a point of contention, the authors of ImRex purposefully omitted
the 10x data [87], while the authors of TcellMatch and DeepTCR
relied on the network to extract the salient pMHC specific fea-
tures of the TCRs [88, 106]. The authors of TCRAI were the
first to develop a computational method, named ICON (Integra-
tive COntext-specific Normalization), to discriminate true TCR-
pMHC binding signal from nonspecific background noise [86]. Re-
cently, we have proposed an alternative framework for this task
called ATRAP (Accurate T cell and Antigen Pairing) [29]. ICON
was developed based on 10x Genomics data, utilizing the nega-
tive controls to empirically estimate the background binding noise
per donor. The UMI counts of pMHCs were then corrected by
subtracting the donor-specific estimated background noise. UMI
counts were further corrected by penalizing pMHCs multiplets i.e.,
GEMs containing multiple DNA barcodes corresponding to two or
more different pMHCs. The final step of ICON is the normaliza-
tion of UMI counts across pMHCs and GEMs to make them di-
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rectly comparable. As a result, ICON identified a total of 53,062
T cells belonging to 5,722 unique clonotypes.

ATRAP takes a different approach. The framework was developed
and tested on in-house single-cell data generated using the 10x
Genomics platform similar to the public 10x Genomics data. The
ATRAP framework consists of a series of filtering approaches to
obtain increasingly accurate TCR-pMHC pairing. The first filter-
ing step was based on identifying expected targets by comparing
the UMI distributions of all pMHCs detected within a clonotype
consisting of 10 or more GEMs. The key is to study GEMs in an
ensemble rather than individually because deviations are averaged
out. If a pMHC was distributed with a significantly higher mean
UMI in the ensemble, we expected this pMHC to reflect the true
target of the clonotype, collectively providing a golden standard.
Based on the labeling of true and false targets, we could com-
pute an accuracy score. Thresholds were set on UMI counts to
maximize the accuracy. By globally applying the optimal thresh-
old, the remaining clonotypes should ideally represent the same
level of accuracy in their pMHC annotations. Another key step of
ATRAP filtering is ensuring HLA correspondence between pMHC
and the HLA haplotype of the T cell donor. In immune profil-
ing assays, the option to hash cells by donor-of-origin enables the
assignment of HLA haplotype restriction to each cell. Correspon-
dence between the allele of pMHC and donor haplotype can be
used to verify the assignment of the pMHC, assuming that a T
cell is absolutely restricted to the allele for which it was selected
during the thymocyte maturation process. In the public 10x data,
the cells are not hashed, however, the experiment was run in par-
allel for each donor, enabling in silico hashing of the individual
single-cell runs.

In this study, we report a benchmark of the two frameworks to
recommend future applications of single-cell specificity data. Both
methods are applied to the 10x Genomics data since this is the only
data set containing negative controls as is required by ICON. As
no external golden standard exists, the performance of the two
methods is evaluated on internal performance metrics presented
by Povlsen et al. [29]: GEM retention, accuracy, average binding
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concordance, and AUC of similarity scores, as well as in terms of
predictive performance of machine learning methods trained on
the raw and denoised 10x data on independent data.

Materials and Methods
Data retrieval
The 10x Genomics data set used for this study was downloaded
from https://support.10xgenomics.com/single-cell-vdj/datasets.

The benchmark data was curated by Zhang et al. employing their
method, ICON (Integrative COntext-specific Normalization), for
identifying reliable TCR-pMHC interactions. Data was down-
loaded from http://advances.sciencemag.org/cgi/content/full/7/20/
eabf5835/DC1. This set contains 53,062 cells (here referred to
as GEMs) that passed the ICON filtering with ICON-corrected
pMHC and TCR annotations. The ICON output provided with
the publication contains a fifth donor, donor V, which was removed
from the set (14,052 GEMs).

Data curation
The data consists of four sets of single-cell RNA sequencing and
immune profiling from four healthy donors. The HLA haplotype
of each donor was manually added to each set. The sets were
concatenated for one combined analysis. Few GEM-specific 10x
barcodes (GEM barcodes) were duplicates across the donor sets,
therefore the barcodes were additionally suffixed by donor, i.e.
AAACCTGTCTAACTTC-6-s2. Cells (referred to as GEMs) were
removed if the annotated CDR3αβ sequences were not produc-
tive, full length, or contained non-IUPAC characters, resulting
in 181,913 GEMs. Differently annotated clonotypes sharing VJ-
CDR3αβ annotations were aggregated, as described in [29]. For
the GEMs with only one chain annotated, the other chain was im-
puted from other clonotypes (sharing the same chain) only if one
single, non ambiguous match was found (for the missing chain). If
no match was found, the clonotype was defined by only the α- or
the β-chain available. Finally, some clonotypes contain multiplets
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of α- or the β-chain. In this case, only the most abundant chain
was selected to represent the clonotype.

Data filtering
The raw 10x dataset was filtered using ATRAP [29] to remove
noisy observations. ATRAP consists of different types of filters
that can be applied to single-cell immune profiling data to re-
liably identify TCR-pMHC interactions. The method handles
multi-omics single-cell sequencing data generated from a multi-
plexed multimer binding platform such as 10x Genomics immune
profiling. The accepted inputs include single-cell RNA sequencing,
targeted T cell receptor sequencing, dCODE-Dextramer sequenc-
ing for DNA barcoded pMHC multimers, as well as CITE-seq se-
quencing of DNA barcoded cell hashing antibodies. The method
includes the following major steps as described in [29]:

Step 1: Correction of 10x annotated clonotypes. Instead of limit-
ing clonotypes to groups of GEMs with exact nucleotide sequence
identity, clonotypes were defined based on VJαβ-gene annotation
and the CDR3αβ amino acid sequences. Clonotypes for GEMs con-
taining only one TCR chain were imputed if the chain matched
only one pre-established clonotype. GEMs containing multiple
chains were annotated by the most abundant chain by UMI count.

Step 2: Filtering based on data-driven thresholds. For clonotypes
consisting of more than 10 GEMs, the expected target is identified
if a pMHC has significantly higher UMI distribution than other
pMHCs also captured in GEMs of the given clonotype. Signifi-
cance is tested by Wilcoxon, α = 0.05. The pMHCs not declared
as target are considered background noise. An accuracy score was
obtained based on the fraction of target pMHCs over background
pMHCs. The optimal UMI threshold was selected as the UMI
value that maximized the accuracy score.

Step 3: Match pMHC HLA allele with donor haplotype. The HLA-
A, -B, and -C haplotypes were provided by an application note fol-
lowing the release of the single-cell sequencing of the four healthy
individuals. Since the samples were sequenced individually the
haplotypes were easily added to the data sets. GEMs consisting
of mismatch between donor haplotype and pMHC were discarded.
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Step 4: Selecting GEMs with paired αβ chains. GEMs with only
a single chain were removed. For GEMs with multiple α- and/or
β-chains, the ones with the highest UMI counts were assigned to
each GEM.

Step 5: Filtering specificity singlets. If a TCR-pMHC pair was only
observed once, it was discarded to increase confidence in matches.

Step 6: Selecting 10x annotated cells. Application of the 10x pro-
vided filter ”is_cell” [28].

Benchmark
The impact of above-mentioned filters was compared to the ICON
framework. ICON was applied on the public 10x data sets and
the result thereof was provided by the authors via the publication
[86]. The annotation for each GEM between the two approaches
was traced per donor via the 10x barcode, omitting the well suffix
of the barcode. The two approaches were compared based on the
number of retained GEMS, accuracy, average binding concordance
across clonotypes, and AUC of kernel similarity scores.

The fraction of retained GEMs quantifies how many observations
were removed by a filter. Accuracy measures the proportion of
GEMs where highest abundance pMHC annotation corresponded
to the expected target of large clonotypes (>10 GEMs).

Binding concordance is defined per clonotype as the distribution
of GEMs annotated with varying pMHCs, as described in [29]. In
a clonotype, the more GEMs annotated with the same pMHC,
the larger the concordance for that specificity. The average con-
cordance is a single measure of how much cross-binding the full
data contains. The last metric used to compare the two filtering
approaches is the AUC on kernel similarity scores, as described
in [29]. Kernel similarity scores [107] were computed for sets of
TCRs binding the same pMHC (intra-specificity) and sets of TCRs
binding different pMHCs (inter-specificity). Under the assumption
that TCRs with same specificity have higher intra-similarity than
inter-similarity, an AUC value was obtained considering intra-
specificities as true positive observations and inter-specificities as
true negatives [29]. This AUC metric quantifies how well TCRs
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sharing the same specificity can be separated by TCRs with bind-
ing different epitopes.

TCR Specificity Prediction
In order to quantify the benefit of removing noisy observations
from the original 10x dataset, we trained the NetTCR-2.1 CDR3αβ
model [70] on i) the unfiltered 10x data, ii) the ATRAP-filtered
data using optimal UMI threshold and donor HLA matching, iii)
ICON-filtered data, with the setup recommended by the authors
[86]. A set of positive training TCR-peptide pairs was built from
the raw and filtered datasets. For each clonotype, the most fre-
quent pMHC across GEMs (for that clonotype) was selected to
be the target pMHC. To validate the trained models, an external
evaluation set was retrieved from VDJdb [24]. This dataset con-
sisted of 927 TCR sequences relative to 4 epitopes (GILGFVFTL,
GLCTLVAML, ELAGIGILTV, IVTDFSVIK). Also, the training
set was restricted to the set of 4 peptides, to ensure overlap be-
tween the training and evaluation set. For both data sets, negative
peptide-TCR pairs were artificially generated by pairing the pos-
itive TCRs with the other 3 peptides different from their target
cognate. To investigate performance inflation due to a similar-
ity overlap between training and evaluation sets, TCRs from the
evaluation data that had a kernel similarity value above 0.9 to the
training TCRs were removed. The training set was randomly split
into 5 partitions and the models were trained using 5-fold nested
cross-validation. The resulting trained models were used in an
ensemble to get predictions over the TCRs in the evaluation set.

Results
Summary of the public 10x data
In the public data set made available by 10x Genomics, a total of
181,913 GEMs were detected containing at least one TCR-pMHC
pair. The data set is the result of screening CD8+ T cells from
four healthy donors against a panel of 50 pMHC DNA barcode-
labeled multimers. Donors were selected by HLA haplotype to
ensure overlap with the HLA alleles of the pMHC panel. 44
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of the multimers contain antigenic peptides derived from CMV,
EBV, influenza, HTLV, HPV, HIV and known cancer antigens.
It should be noted that the donors were all seronegative for HIV,
HBV, and HBC. The remaining six multimers contained negative
control peptides restricted by five HLAs, selected without further
elaboration or reasoning. The specificities from each of the four
donors were screened in parallel i.e., of four different experimen-
tal runs. Therefore, unique GEM-specific 10x barcodes (GEM
barcodes) were in some cases observed in replicas across runs. In
order to distinguish these evidently distinct GEMs, an extra suffix
was added denoting the donor (sample ID). The unfiltered output
is portrayed in Figure 6.1, which clearly demonstrates the issue
of noise, as every GEM contains multiple pMHCs. Most GEMs
contain TCRs annotated with a unique α- and β-chain, however,
10% are annotated with multiple α- or β-chains, which further
challenges the investigation of specificity.

Alignment of ICON- and 10x-assigned GEMs reveals inconsistent
annotations
In order to compare the ICON and ATRAP filtering frameworks,
the outputs from each method were aligned based on the GEM
barcode, consisting of 16 nucleotides, a suffix pertaining to the
sequencing well, and a sample ID suffix. ICON reported reten-
tion of 53,062 GEMs out of the total set of 181,913 GEMs. How-
ever, ICON only contains 5031 GEMs that match the original data
based on the full GEM barcode, due to inconsistencies in the suf-
fix annotation. When stripping the barcode down to only the 16
nucleotides, we were able to align 39,806 GEM barcodes, as exem-
plified in Figure 6.2a. We also observed inconsistencies of TCRαβ
annotations in 3391 GEMs, as illustrated in Figure 6.2b+c. 1854
GEMs were missing either an α- or a β-chain in the 10x data,
but not in the ICON set, while 1537 GEMs were fully annotated,
but had inconsistent TCR annotations between ICON and the 10x
data. The inconsistencies in TCRαβ annotations may have arisen
from imputations based on the 10x-provided clonotype summary.
However, imputation is risky because the same CDR3 may form
part of several different clonotypes. The example given in 6.2b
represents an imputation likely based on the CDR3β sequence. In
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Figure 6.1: Scatterplot of all detected pMHC barcodes (y-axis) within each
of the 181,913 GEMs (x-axis). In each GEM the most abundant pMHC is
marked by a color, while the remaining pMHCs in the GEM are gray. The
marker size reports the UMI count of the given pMHC and the shape recounts
whether the HLA allele of the pMHC matches the HLA haplotype of the donor,
which is provided in the experimental report [28]. The first color bar indicates
the type of TCR chain annotation; whether the TCR has a unique αβ-pair,
is missing a chain, or consists of multiple chains. The second color bar is a
specificity check against the specificity databases IEDB [23] and VDJdb [24].
Colors highlight the GEMs where the CDR3αβ sequences are contained in the
databases. The green color represents a match between the database pMHC
and the detected pMHC, while red indicates a mismatch.
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this example the CDR3β sequence is part of 42 distinct 10x clono-
types, all carrying the same CDR3β sequence, but paired with
different CDR3α sequences. The same case is made for 6.2c and
all the other inconsistent GEMs. Imputation by 10x clonotypes
is further made difficult as their clonotype definition actually al-
lows multiple α- or β-chains in one clonotype, perhaps a reflection
of incomplete allelic exclusion. Thus, 116 of the fully annotated
GEMs with mismatching TCRαβ annotations between ICON and
10x can be explained by a switch from one chain to the other, still
within the same clonotype definition. This non-conformity has
challenged the benchmark, however, we have proceeded assuming
that there is a reasonable, however undocumented, explanation
for their GEM assignments.

ATRAP - Revisiting clonotype assignment
Of the complete data provided by 10x Genomics, we initially re-
duced the set to only include IUPAC encoded amino acids within
CDR3 sequences and further only considered GEMs which con-
tained both TCR and pMHC annotations, resulting in 181,913
GEMs. Redefining 10x clonotypes resulted in 76,627 unique com-
binations of V, J genes and CDR3 sequences from α and β chains.
Of these clonotypes, 1151 were represented by 10 or more GEMs,
and for 1107 of them we were able to annotate an expected binder.
The derived optimized UMI thresholds set a cutoff at a minimum
UMI of 5 for any pMHC. For pMHC multiplets, the most abun-
dant pMHC must be 1.2 times greater in UMI counts than the
second most abundant pMHC. A minimum of 1 UMI is required
for TCR α- and β-chains. By this filter, the data set is reduced
to 91,652 GEMs and 27,925 unique clonotypes. Additionally, fil-
tering on matching HLA serves as the recommended minimum of
filters for ATRAP.

The optimized ATRAP threshold on UMI counts
Of the complete data provided by 10x Genomics, we initially re-
duced the set to only include IUPAC encoded amino acids within
CDR3 sequences and further only considered GEMs which con-
tained both TCR and pMHC annotations, resulting in 181,913
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Figure 6.2: Illustrations of annotation inconsistencies. The figure shows ex-
amples of GEMs and their TCR annotations from 10x and ICON, respectively.
The observed inconsistencies are grouped into three major groups. The incon-
sistencies are highlighted with a red star in each group. (a) 33,342 GEMs were
mapped from the ICON set with inconsistent GEM barcode suffixes. Mapping
was based on the GEM barcode nucleotide sequence and TCR annotations.
(b) 1854 GEMs were missing either an α- or a β-chain in the 10x data, but not
in the ICON set. (c) 1537 GEMs were fully annotated, but the TCR annota-
tions were inconsistent between ICON and the 10x data.
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GEMs. Redefining 10x clonotypes resulted in 76,627 unique Vαβ,
Jαβ and CDR3αβ combinations. Of those clonotypes, 1151 were
represented with 10 or more GEMs, and for 1107 of them we were
able to annotate an expected binder. The derived optimized UMI
thresholds set a cutoff at minimum 5 UMI for any pMHC. For
pMHC multiplets, the most abundant pMHC has to be at least
1.2 times greater in UMI counts than the second most abundant
pMHC. A minimum of 1 UMI is required for TCR α- and β-chains.
By this filter, the data set is reduced to 91,652 GEMs and 27,925
unique clonotypes. Additionally, filtering on matching HLA serves
as the recommended minimum of filters for ATRAP.

Benchmark of ICON and ATRAP
The two filtering frameworks were benchmarked on four metrics,
as described by Povlsen et al. [29]: fraction of retained GEMs, ac-
curacy of specificity, average binding concordance across all clono-
types, and AUC based on CDR3αβ similarities. Accuracy is com-
puted as the fraction of GEMs where the most abundant pMHC
(by UMI counts) corresponds to the expected binder of a clono-
type. An expected binder is defined for each clonotype as the
pMHC which is distributed with a mean UMI count significantly
higher (Wilcoxon, α = 0.05) than the other pMHCs detected as
binders for the given clonotype. Binding concordance is computed
as the fraction of GEMs within a clonotype that binds a given
pMHC and describes the dispersion of pMHC annotations within
the clonotype. In a data set where no cross-reactivity is expected,
the average binding concordance should be 100%. Finally, the
similarity between two TCRs is defined as the summed score of
the pairwise CDR3α and CDR3β similarities each calculated using
the kernel similarity method described in Shen et al. [107]. The
AUC metric is computed based on the hypothesis that different
TCRs binding the same pMHC (intra-specificity) are more similar
to each other than to TCRs of other specificities (inter-specificity).
The performance metrics are presented in Figure 6.3.

The metrics presented in Figure 6.3 reveal good performance from
both frameworks. Figure 6.3a+b show the distribution of sim-
ilarity scores between intra- and inter-specificity TCRs for each
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Figure 6.3: Performance metrics for evaluating the filtering steps of ATRAP
with ICON. The ATRAP filtering steps consist of total (raw, unfiltered data),
optimal threshold obtained from grid search, matching HLA, complete TCRs
with a unique set of α- and β-chain, specificity multiplets i.e., TCR-pMHC
pairs observed in two or more GEMs, and ”is_cell” defined by 10x Genomics
Cellranger. ICON yields a single output, however, an addendum has been
made to also filter ICON output on HLA match between pMHC and HLA
haplotype of the donor. (a) The boxplots show kernel similarity scores be-
tween CDR3β sequences of intra- (white) and inter- (dark) specificity for each
of the filtering steps. A significant difference (Wilcoxon, α = 0.05) of mean
between inter- and intra-specificity is marked with an asterisk to the right (b)
Here the boxplots show the cumulative effect of ATRAP filters on similarity
scores. (c) Performance is measured and summarized by a number of metrics:
ratio of retained GEMs (GEMs), accuracy defined by the proportion of GEMs
where most abundant pMHC matches the expected binder (accuracy), average
binding concordance (avg. conc.) and AUC of similarity scores (AUC). The
ATRAP filters are also here cumulatively added to show increasing improve-
ment in performance.

filtering step. Figure 6.3a shows the individual effects of each fil-
ter, revealing that filtering specificity singlets away to only retain
specificity multiplets yields the greatest separation between intra-
and inter-specificity distributions of all filtering steps. We define a
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specificity singlet as a TCR-pMHC pair only detected with a single
GEM, which makes the pairing more susceptible to artifacts. The
combined effect of each filter is visualized in Figure 6.3b, which
clearly shows how the separation of inter- and inter-specificity im-
proves as more filters are applied. To quantify the separation of
distributions, we compute an AUC score from the principles that
perfect intra-specificity scores are close to a maximum value of
2, while inter-specificity resembles completely different TCRs of
similarity close to 0. The exact numerical values of the individual
specificities are not of interest and they do not affect the AUC.
Note that AUC here does not translate into a predictive perfor-
mance, but rather reflects the extent to which intra-similarity can
be distinguished from inter-similarity values.

The summary of both filtering frameworks across our selected per-
formance metrics is presented in Figure 6.3c. Both ICON and
the combined ATRAP filters discard a large number of GEMs.
The recommended filtering steps for ATRAP consist of filtering on
UMI thresholds and matching HLA between annotated pMHC and
HLA haplotype of the donor, which yields 40,584 GEMs, which is
slightly more than ICON (39,806). Filtering away specificity sin-
glets only removes 5624 GEMs extra, but yields a gain in AUC,
as we also saw in 6.3a+b. However, many of those GEMs repre-
sent unique clonotypes, so this filter also vastly reduces the total
number of clonotypes.

As mentioned, ICON does not discard GEMs based on HLA match
between pMHC and donor haplotype. However, we have tested the
impact of adding that filter to ICON, which reduces the yield to
33,531 GEMs. The performance measured by accuracy and aver-
age concordance is generally very high. ICON scores almost per-
fect binding concordance at every clonotype, as this was the task
it was essentially designed for. Hence, we assume that the correc-
tions of pMHC UMI counts and imputations of CDR3 sequences
play a major role in this result. However, the slightly lower AUC
of similarity scores of ICON suggest that some imputations might
have been incorrect. Based on the AUC of similarity scores, the
ATRAP-filters yield a slightly better performance, however, ICON
yields specificity annotations of very little ambiguity, where each
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clonotype is assigned to only one pMHC.

Visual inspection of ICON and ATRAP outputs
The differences in binding concordance between ATRAP and ICON
are clearly visualized in Figure 6.4 and Figure 6.5. Figure 6.4
presents the ATRAP-filters of UMI threshold, HLA matching, and
complete TCRs i.e., unique pairing of α- and β-chain.

With an average binding concordance of 98.7, we observe 407
GEMs with a binding concordance <50%, which we will refer to
as outliers. A substantial proportion of these cross-binding events
are across different HLA alleles. This contradicts the prevailing
belief that T cells are restricted to the HLA for which they were
positively selected during maturation. We thus suspect that some
of these events are a result of random capture of ambient multimer
barcode.

In 65 GEMs of the 407 outliers, an expected pMHC target had
not been identified, due to the small sizes of the clones. Of the
remaining 320 outliers, 76 GEMs exhibit a pattern that aligns with
potential cross-reactivity.

Typically a TCR will have a single, preferred target while allow-
ing binding of other pMHCs to a lesser extent, i.e. clones of a
clonotype may display a single dominant pMHC response of high
binding concordance with few smaller responses of low binding
concordance. For the clonotypes of these 76 GEMs, the domi-
nant high-concordance pMHC coincides with the expected target
of the individual clonotypes. In 18 of these GEMs, the correspond-
ing clonotypes showed divergent HLA restriction between the an-
notated low-concordance pMHC and the expected target for the
given clonotype. In all of the 76 GEMs, the expected target was
detected albeit at a lower UMI count than the annotated pMHC.

The remaining set of 266 GEMs consists of 80 clonotypes exhibit-
ing highly dispersed binding to many different pMHCs, all with
low binding concordance. All of these GEMs also contain multi-
plets of pMHCs. Based on these observations, we conclude that
the majority of the 407 outliers are likely artifacts that have es-
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caped the ATRAP filtering steps and thus not true cross-binding
events.

Figure 6.4: ATRAP derived specificity per clonotype. ATRAP-filters consist
of UMI threshold, HLA matching, and complete TCRs i.e., a unique pairing
of α- and β-chain. The library peptides are listed on the y-axis and each
clonotype is represented on the x-axis. Below the x-axis is annotated the
total number of clonotypes and GEMs in the presented data. The marker size
shows the number of GEMs supporting a given specificity. The color indicates
the binding concordance which is calculated as the fraction of GEMs within
a clonotype that supports a given pMHC. The higher the concordance, the
larger the fraction of supporting GEMs.

Figure 6.5 presents the ICON retrieved specificities. With an av-
erage binding concordance of 99.9%, most clonotypes are paired
with a single specificity, and only 24 GEMs are categorized as
outliers. 13 of the outliers are annotated with a pMHC that does
not match the allele of the donor. 4 of the outliers contain CDR3
sequences that differ from the 10x annotation and may be a result
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of imputation.

Finally, a key difference between the two methods is that ATRAP
retains 45 pMHCs from the staining whereas ICON retains 34
pMHCs. The 11 peptides retained by ATRAP and not ICON elicit
small and few responses, but are primarily not involved in cross-
binding events. With both filtering frameworks, the largest re-
sponses are toward KLG HLA*A-03:01, RKA HLA*B-08:01, and
GIL HLA*A-02:01. ICON retains more GEMs and more clono-
types within these peptides, at the expense of other specificities,
than ATRAP does.

Figure 6.5: ICON derived specificity per clonotype. The library peptides are
listed on the y-axis and each clonotype is represented on the x-axis. Below
the x-axis is annotated the total number of clonotypes and GEMs in the pre-
sented data. The marker size shows the number of GEMs supporting a given
specificity. The color indicates the binding concordance which is calculated as
the fraction of GEMs within a clonotype that supports a given pMHC. The
higher the concordance, the larger the fraction of supporting GEMs.

Predicting TCR specificity with ATRAP- and ICON-filtered data
To quantify the potential predictive performance gain derived from
filtering the raw TCR data, we trained NetTCR-2.1 [70] on the
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raw 10x data and on the ICON and ATRAP-filtered datasets.
Note that the data split for training was done randomly for the
three data sets, likely inflating the reported cross-validation per-
formance. We evaluated the performance of the three models on
an independent dataset derived from VDJdb [24]. The evalua-
tion set consisted of 927 positive TCRs relative to the 4 peptides
in consideration. The number of positive TCRs for each peptide
was distributed as follows: 649 for GILGFVFTL, 213 for GLCTL-
VAML, 57 for ELAGIGILTV 57 and 8 for IVTDFSVIK. To en-
sure the least possible overlap between training and evaluation set,
TCRs from the evaluation set with more than 0.9 kernel similarity
to training TCRs were removed. After this filtering, the number
of positives was reduced to 219, 122, 46, and 6, respectively.

The results of the experiment are shown in Figure 6.6. The cross-
validation performance refers to the performance on the concate-
nated test sets while the predictions on the evaluation set were
calculated as an ensemble of the predictions of the 20 trained mod-
els. For the evaluation predictions, we reported the AUCs on the
full evaluation set (middle panel) and on the similarity reduced
set (lower panel). For each trained model, the AUC was reported
on a peptide level. An overall performance value was also given by
averaging AUCs across peptides. We reported the average AUCs
both as a mean value of the AUCs from each peptide and as a
weighted average of the peptide AUCs, weighted by the number
of positive TCRs for that specific peptide in the dataset. Both in
cross-validation and on the external data, the models trained on
ICON and ATRAP datasets outperformed the models trained on
unfiltered data. Interestingly, the ICON outperformed ATRAP
on almost all the peptides in cross-validation. This can be ex-
plained by looking at the similarity between the test and training
partitions in cross-validation. Figure 6.7 shows, for each peptide,
the distribution of kernel similarities between the positive TCRs
in the test set and their nearest neighboring positive TCR in the
training. For the GIL and IVT peptides, ICON has a higher me-
dian similarity between training and test set, leading to a higher
AUC value in cross-validation for these two peptides.

In the external evaluation, the models trained with ICON and
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Figure 6.6: Performance of NetTCR-2.1 in terms of AUC on the raw 10x data
and on the filtered datasets. The AUC is given on the concatenated test sets
from cross-validation and on the external evaluation set from VDJdb (before
and after removing evaluation TCRs similar to sequences in the training set).
”average” refers to the mean of the AUC values across peptides; ”w_average”
is a weighted average of AUCs across peptides, weighted by the number of
positive TCRs for the peptides in the dataset in consideration.

ATRAP datasets showed better performance (except for the ELA
peptide) compared to the one trained on the raw data. Further-
more, the models trained on ATRAP-filtered data generalize bet-
ter on the external dataset, outperforming ICON across all pep-
tides. For the similarity-reduced evaluation set, all the differences
in AUC between ICON and ATRAP are significantly different for
all peptides except IVT (p − value < 0.05, bootstrap test on the
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AUC with 100 repetitions). This is also confirmed by the improved
average and weighted average performance of the model trained
on ATRAP data. Furthermore, the gap in performance between
the two methods increases when the overlap between the training
and evaluation set is reduced.

Figure 6.7: Kernel similarity values between positive TCRs in the test set
and their nearest neighbor in the positive set of training TCRs. For each
test TCR, the similarity to training is calculated as the minimum similarity
between the test TCRs and all the TCRs in the training set. The similarity
distributions for ATRAP- and ICON-filtered dataset are shown.

Discussion
Single-cell screening assays may pave the way for a better under-
standing of T cell specificity. The technology enables the study
of binders, decisive non-binders and even cross-binding. How-
ever, de-noising single-cell specificity data is a critical bottleneck
in studying T cell specificity. Here, we evaluate two methods,
ATRAP and ICON, both aiming to resolve this bottleneck, filter-
ing noise and putative artifacts from true binding events. Since
no golden standard exists, the methods are evaluated via metrics
designed for the purpose.

The two filtering frameworks both show very good performance,
but with substantially different advantages and disadvantages.
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ICON excels at reducing ambiguous specificity annotations, such
that the majority of clonotypes are annotated with exactly one
pMHC target. The efficient reduction of outliers may, however,
also become a hindrance to detecting cross-reactivity. The ATRAP
method includes more GEMs across more pMHCs. A larger pro-
portion of GEMs represent binding events that resemble cross-
reactivity, although, after careful scrutiny, the majority of these
are noisy observations having escaped filtering.

The filtering frameworks were evaluated on four metrics: reten-
tion of GEMs, binding accuracy guided by expected targets, av-
erage binding concordance, and AUC of kernel similarity scores.
ATRAP achieves the highest accuracy score. However, binding
accuracy may be a biased metric in this context as ATRAP was
specifically designed to maximize this score. Similarly, we see
ICON showing superior average binding concordance, favoring low
dispersion of specificity within a clonotype, which ICON was pur-
posefully designed to reduce. The AUC of kernel similarity scores
is the only method-independent metric, which however does not
account for outliers, in favor of ATRAP.

Each framework has a set of requirements for the method to work
optimally. ATRAP heavily relies on cell hashing, where HLA typ-
ing of donors is known, to validate specificities. In contrast, ICON
relies on gene expression data to remove duplicates and nega-
tive control pMHC multimers to correct binding signals of pos-
itive pMHCs. The impact of gene expression data was previously
tested for ATRAP, which showed only minute added performance
[29]. Due to the low impact and the high expense of running gene
expression sequencing, this filtering step was deprioritized. Cell
hashing, of course, also confers an additional cost; however, it fur-
ther enables the study of immunodominant epitopes and individ-
ual T cell repertoires. The use of negative control pMHCs allows
ICON to set a cutoff for pMHC UMI counts, similar to the accu-
racy optimizing threshold in ATRAP. The weakness of negative
control pMHCs is that no one can yet define true negative targets.
To circumvent this, utilizing empty multimer scaffolds containing
only the DNA barcode as negative controls would reveal the level
of ambient barcodes polluting the assay without risking rare but
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true binding.

Both frameworks assume that the pMHC UMI count reflects the
likelihood of a TCR-pMHC pair, and use the count either di-
rectly (ATRAP) or corrected and normalized (ICON) to filter
away GEMs. However, it is important to note that the UMI count
actually refers to the number of pMHC multimers captured to-
gether with a T cell in a GEM. The count may be affected by the
extent of ambient multimers, T cell expression of TCRs, and bind-
ing affinity. Thus to improve the filtering strategies of ATRAP or
ICON future methods may implement adjusted TCR-pMHC pair-
ing scores.

Pairing of TCR and pMHC is further made difficult in the cases
where a presumed single cell expresses two different α- or β-chains.
The dual expression cannot simply be written off as capture of
multiple cells, as multiple GEMs exhibit the same dual TCR pro-
file, and is a known phenomenon [108–110]. Neither ICON nor
ATRAP seeks to investigate the impact on specificities, but sim-
ply annotate the most abundantly expressed chain. To improve
specificity detection, this aspect should be investigated further.
Moreover, CDR3 α and beta β are not unique, but exist in vari-
ous combinations, despite the stochastic process under which they
are produced. Therefore, imputing CDR3 chains for GEMs with
either multiple chains or GEMs missing a chain, will often not re-
sult in a unique pairing. We speculate that ICON has attempted
this since we have observed discrepancies in CDR3 annotations
between 10x and ICON. The comparison was further complicated
by inconsistent GEM barcodes between ICON and the 10x data.
The alteration of barcodes is unaccounted for by the authors of
ICON.

To quantify how the two filtering approaches increase the signal-to-
noise ratio, we trained NetTCR-2.1 on i) the raw 10x dataset, ii)
the ATRAP-filtered data (using UMI threshold and HLA match-
ing criteria), and iii) ICON-filtered data. The results showed that
both ICON and ATRAP-filtered data sets lead to improved per-
formance, compared to the raw 10x data. This further confirms
that both methods filter out artifacts from the datasets, increasing
the signal-to-noise ratio. The two models performed comparably
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in cross-validation, However, ATRAP demonstrated better gener-
alizability compared to ICON on a novel set of TCRs, independent
from the training data.

In conclusion, both ICON and ATRAP successfully remove poten-
tial artifacts from the 10x dataset. Overall, the two frameworks
perform on par. ICON provides high specificity at the expense
of sensitivity, whereas ATRAP provides high sensitivity to allow
detection of cross-binding events, but at the expense of specificity.
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CHAPTER7
Epilogue

The research projects presented in this thesis were centered around
the investigation of TCR-pMHC recognition. The main scope was
to build deep learning models capable of learning patterns from the
input sequences and predict whether a given TCR would recognize
a specific pMHC complex, triggering an immune response.

In the first project, we developed NetTCR-2.0, a neural network-
based model to predict interactions between TCRs and pMHC
complexes. NetTCR uses convolutional neural networks to scan
the input TCR and peptide and extract latent features from the
sequences. This learned representation is subsequently used to
predict whether the TCR would recognize the epitope in consider-
ation. We focused our study mainly on two aspects, namely input
selection and data curation. The TCR is a heterodimer, consisting
of a α and β chains. Traditionally, β chain was thought to be the
main driver of the interaction between the TCR and the pMHC.
For this reason, the majority of the available models were trained
on CDR3β only data. We investigated the impact of adding the
CDR3α as input to the model and showed that the inclusion of
the α chain leads to improved performance over the model trained
only on the β data, across all the analyzed peptides. These results
were validated on a set of TCRs generated in-house. Additionally,
we demonstrated that a considerable amount of TCRs for each
peptide is needed to build a reliable classifier; we quantified this
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number to be approximately 150 positive TCRs. If the dataset
contains very few observations regarding the TCRs binding to a
specific epitope, a model trained on such data will be exposed to
very few examples of binding for this epitope and will not be able
to extract some rules for generalization. The second key point of
the study was to show that a proper dataset curation in terms of
data redundancy is needed before training any models. We ap-
proached this problem by removing from the dataset TCRs with
high sequence similarity, and splitting the data in training, valida-
tion and test making sure that these partitions did not have any
overlap of TCRs in terms of similarity. Such overlap would pro-
duce an inflated performance due to data leakage between training
and test sets.

The second research project naturally followed the first. In this
study, we investigated some fundamental aspects involved in the
development of a TCR-pMHC predictor. Rather than comparing
our model to other existing tools, we trained NetTCR-2.1 to ad-
dress these questions and define a set of suggested rules that could
help the research community. We investigate whether a peptide-
or a pan-specific approach serves best to model the data and we
quantify the impact of integrating the CDR1 and 2 loops in the
model. In our study, we also address some of the challenges in-
volved in building a suitable dataset, namely data redundancy
and negative data generation. Based on the currently available
data, our study concludes that TCR specificity is best modeled
using peptide-specific approaches, integrating information from all
6 CDR loops, and with negative data constructed from a combi-
nation of true and mislabeled negatives.

Lastly, we proposed TCRbase, a straightforward similarity-based
model to predict TCR specificity, showing that such a modeling
approach achieves good performance while being very simple. It
is highly advisable to include such a baseline model in the evalua-
tion of machine learning-based models to appreciate the improved
generalizability of the more complex neural network models. We
demonstrated this by showing the performance of both NetTCR
and TCRbase as a function of the ”distance” to training data. If
the training and test data are allowed to be similar in sequences,
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then the two models’ performances are comparable; as the simi-
larity is reduced, TCRbase suffers a drop in performance, while
NetTCR is able to maintain its predictive power. This is an in-
dication that the neural network has learned some features from
the inputs beyond sequence similarity.

The first two projects proposed different models aiming to predict
TCR-peptide interactions. These machine learning models were
trained on publicly available datasets. One of the main challenges
involved in the development of these models was related to the
data, specifically data scarcity and data quality. The first major
limitation was that the vast majority of the data referred to one
MHC molecule, the HLA-A*02:01, as it is one of the most fre-
quent in humans. Moreover, only for a few epitopes the amount
of data was sufficient to train a model. Secondly, the quality of the
data is uncertain, as bulk-sequencing of TCRs paired with their
target epitope is prone to wrong annotations. Furthermore, bulk
techniques allow sequencing of only one of the two chains of the
TCRs.

Single-cell sequencing technologies hold the promise of addressing
the above-mentioned data-related problems, enabling the gener-
ation of large amounts of paired TCR data, while ensuring high
data quality. However, T cell characterization through scRNA-
seq is a relatively new field and new methods for processing the
resulting data are needed.

In the third project, we applied two tools, ICON and ATRAP,
on the single-cell 10x dataset aiming to remove potential artifacts
and wrongly annotated TCRs, to increase the signal-to-noise ratio.
To validate our finding, we trained NetTCR-2.1 on the raw 10x
data and on the filtered versions. The model trained on the filtered
data outperformed consistently the one trained on the full dataset,
confirming that ATRAP and ICON successfully denoised the 10x
data. As large single-cell databases will be generated, these data-
driven filtering approaches will be a fundamental step in processing
future data.

In conclusion, we have shown that it is, to some extent, possible to
predict TCR-pMHC interaction. At the moment, however, the ca-
pabilities of the existing models are heavily limited by the current
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state of the data. In our work, we have proposed fairly simple
neural network architectures to accomplish this prediction task.
Novel and more complex deep learning models are constantly being
developed, enabling the characterization of complex relationships
in complex data. However, even these sophisticated models can-
not show their true potential without high-quality training data.
Given the development of new data generation techniques and the
advancement of deep learning modeling frameworks, the future
perspectives on T cell epitope prediction are encouraging.
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Supplementary Note 1

pHMM based k-mer method for CDR3β loop sequence excision
As the IEDB is based on collecting published sequence data, the raw CDR3β data downloaded

from the IEDB contained not only the CDR3 segment of the VDJ-recombination, but also in

some cases included flanking parts of various lengths spanning into the V- and J-segments. To

remove these potential excess flanking residues, a profile Hidden Markov Model (pHMM) k-mer

based scoring method was developed to extract the correct CDR3β-sequence. Here, the

sequenced CDR3β repertoire from 20 healthy donors included in Savola et al.S1 was used. This

data set consists of a total of 487,787 CDR3 sequences of which 405,588 are non-NA, 398,139

of these contain only the 20 standard proteogenic amino acids. A further 352,116 of these are

unique and of these 348,249 matched the canonical CDR3 motif “Cxxx...xxx[FW]”. Removing

the c-terminal “C” and the N-terminal “[FW]”, resulted in an average length of 12.7 with a

standard deviation of 1.8. The final data set was then created by randomly selecting 100,000

sequences to be used for training, leaving the remaining 248,249 for evaluation. Using this

setup, a profile Hidden Markov Model was trained using the Baum–Welch algorithm

implemented in the Aphid packageS2. The resulting pHMM model was then used to score each

of the 248,249 evaluation sequences using the Viterbi algorithm, resulting in a k-dependent

score distribution (Supplementary Figure 9a) reflecting the underlying CDR3β length distribution

(Supplementary Figure 9b). Next, the raw IEDB data containing a total of 25,300 CDR3β-pMHC

data points of which 13,274 were specific for HLA-A*02:01, further subsetting to 9-mer peptides,

yielded 12,353 data points. Removing CDR3β-sequences containing non-standard 1-letter

amino acid symbols resulted in 12,223 data points and finally non-trimmed CDR3β-sequences

were required to have a length of at least 5, yielding a final data set of 12,222 data points. As a

first step, 3,400 CDR3β-sequences with a N-terminus “C” and a C-terminus “F” or “W” were

stripped of said flanks. The remaining 8,822 sequences were digested into all possible nested

k-mers (5 <= k <= CDR3β-length) and Viterbi-scored using the trained pHMM. The best scoring

k-mer was recorded. Finally, in case the k-mer had a higher Viterbi-score than that of the

original full length CDR3β, the trimming was accepted replacing the original CDR3β-sequence.

This procedure resulted in trimming 911 sequences corresponding to ~7.5% of the 12,222

sequences in the IEDB CDR3β data set. Selecting the unique CDR3β-peptide pairs from this

trimmed data resulted in 11,845 data points and removing promiscuous TCRs yielded 11,122

unique CDR3β-sequences and 163 unique peptides. Finally, requiring CDR3β-sequences to

have a length of at least 8 amino acids 18 at most (corresponding to 99% of TCRs in the Savola

2



et al. data set (Supplementary Figure 9b)), resulted in 10,987 CDR3β-sequences covering 163

peptides.
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Supplementary Figures

Supplementary Figure 1. Counts of unique data points per peptide. Count for the data sets

consisting of only CDR3 β chains (a) and both CDR3 α and β chains (b). The percentages above bars

indicate the representation of peptides in the data.
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Supplementary Figure 2. Overall AUCs of the CDR3 beta models on the external evaluation MIRA data

at different redundancy thresholds of the models trained on the (a) 90%, (b) 92% and (c) 99% partitioned

training set.
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Supplementary Figure 3. Performance of models trained on single-chain data. Overall AUCs

evaluated via cross-validation for the different partitioning thresholds. The single-chain data sets were

partitioned using a chain-specific partitioning approach.
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Supplementary Figure 4. Correlation between the performance of the paired chain NetTCR model
and the difference between positive and negative data points. The x-axis presents peptides sorted by

AUC of the paired chain NetTCR model from 95% partitioning (AUC values indicated next to the peptide).

The boxplot shows differences in similarity per peptide between different partitions (see text).
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Supplementary Figure 5. Peptide ranking analysis for the paired-chains model trained with a
wrong TCR-peptide combination. The TCRs in the training set were paired with a wrong peptide and a

model was trained on the mismatched dataset. After, each TCR positive to GIL, GLC, or NLV peptide was

paired to the other two peptides and a binding prediction was obtained. The percentages show the

proportion of TCRs for which the predicted lowest-ranking peptide matched with the "true" target peptide.

7



Supplementary Figure 6. Hierarchically-clustered heatmap of a random set of 50 positive and 50

negative TCRs GIL TCRs encoded using the physico-chemical features.
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Supplementary Figure 7. Sensitivity and specificity curves as a function of the decision
thresholds for NetTCR_αβ. The curves were plotted using peptide-specific percentile rank scores (a),

all the percentile scores from cross-validation (b), and the scores from the external evaluation predictions

(c).
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Supplementary Figure 8. Gating strategy and sorted populations used for generating the novel
independent paired TCR dataset. (a) Shows an example of the initial gating of CD8+ T cells (BC341).

(b) Shows the sorted positive and negative populations of total CD8+ T cells from all four samples

included.
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Supplementary Figure 9. (a) K-dependent distribution of pHMM derived Viterbi scores. (b) The length

distribution of CDR3β-sequences. All stratified on the pHMM-test/training partition.
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Predetermined responses # of sorted cells

GILGFVFTL GLCTLVAML NLVPMVATV Positive subset Negative subset

BC130 2.1% 4698 75000

BC300 0.7% 0.9% 0.1% 2469 75000

BC309 0.3% 839 75000

BC341 1.3% 3744 75000

Supplementary Table 1. Information on samples used for generating novel independent paired
TCR dataset. All sorted cells in the positive subset were loaded in one lane and 17,000 cells from the

negative subset were loaded in another lane. Both were processed using the 10x Chromium pipeline.

Percentages are % of total CD8 T cells
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Supplementary Materials 731 

 732 

Supplementary Figure 1: Baseline model performance comparison in terms of AUC01 and PPV. 733 

The baseline model was used i) with weights [1, 1, 4] on the CDRs; ii) with equal weights on the 734 

CDrs; iii) using only CDR3s. The values are given for each peptide, and on the positives vs 10X 735 

negatives and positives vs swapped negatives prediction tasks. average and w_average refer to 736 

the average and weighted average of the AUC01 (and PPV) across the six peptides. 737 



 

 738 
Supplementary Figure 2: AUC01 and PPV values comparison of the NetTCR model trained in a 739 

peptide-specific or a pan-specific manner. Performance reported for each peptide, and for 740 

positives vs. 10X negatives and positives vs swapped negatives task. Average and weighted 741 

average (weighted by the number of positive TCRs for each peptide) performances are also 742 

reported.  743 



 

 744 

Supplementary Figure 3: Analysis of the different sources of negatives. AUC01 and PPV values 745 

for the NetTCR-CDR3 model trained on i) the full dataset, including positives, 10x negative and 746 

swapped negatives; ii) positives and 10x negatives only, iii) positives and swapped negatives 747 

only. AUC01 and PPV are reported in a peptide-specific manner; the values are also 748 

differentiated based on positives versus 10X/swapped negatives predictions.  "average" refers 749 

to the mean values of AUC01 (and PPV) from each peptide; "w_average" is a weighted average 750 

(weighted by the number of positive TCRs) of the values. 751 



 

 752 

753 
Supplementary Figure 4: Peptide-specific AUC01 and PPV values comparison of the NetTCR 754 
models trained using the set of all CDRs or CDR3 only. The predictive power is evaluated for 755 
each peptide (average and w_average refer to an average and weighted average, respectively, 756 
of the peptide-specific scores). The performance is also differentiated based on the positives vs. 757 
10X/swap negatives predictions. 758 



 

 759 

Supplementary Figure 5: NetTCR versus TCRbase. Performance comparison in terms of 760 
AUC01 and PPV. The values are reported for each peptide, and differentiated according to the 761 
two prediction tasks, positives vs 10x negatives and positives vs swapped negatives. "average" 762 
is calculated as an average of the AUC01 (and PPV) of the peptide-specific scores; 763 
"w_average" is a weighted average (weighted by the number of positive TCRs) of the peptide-764 
specific scores. 765 
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