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Abstract

We present a method to approximate Gaussian
process regression models for large datasets by
considering only a subset of the data. Our ap-
proach is novel in that the size of the subset is
selected on the fly during exact inference with
little computational overhead. From an empirical
observation that the log-marginal likelihood often
exhibits a linear trend once a sufficient subset of a
dataset has been observed, we conclude that many
large datasets contain redundant information that
only slightly affects the posterior. Based on this,
we provide probabilistic bounds on the full model
evidence that can identify such subsets. Remark-
ably, these bounds are largely composed of terms
that appear in intermediate steps of the standard
Cholesky decomposition, allowing us to modify
the algorithm to adaptively stop the decomposi-
tion once enough data have been observed.

1 INTRODUCTION

The key computational challenge in Gaussian process re-
gression is to evaluate the log-marginal likelihood of the N
observed data points, which is known to have cubic complex-
ity (Rasmussen and Williams 2006). It has been observed
(Chalupka et al. 2013) that the random-subset-of-data ap-
proximation can be a hard-to-beat baseline for approximate
Gaussian process inference. However, the question of how
to choose the size of the subset is non-trivial to answer. Here
we make an attempt.

We first make an empirical observation when studying the
behavior of the log-marginal likelihood with increasing num-
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Figure 1: The figure shows the log-marginal likelihood as
a function of the size of the training set for five random
permutations of the pm25 dataset. The different colors cor-
respond to different Gaussian process models, using the
squared exponential kernel with length scale `. Depend-
ing on the model (but little on the permutation), the log-
likelihood starts to exhibit a linear trend after processing a
certain amount of inputs. More examples can be found in
Appendix A.

ber of observations. Figure 1 show this progression for a
variety of models. We elaborate on this figure in Section 3.1,
but for now note that after a certain number of observa-
tions, determined by model and dataset, the log-marginal
likelihood starts to progress with a linear trend. This sug-
gest that we may leverage this near-linearity to estimate the
log-marginal likelihood of the full dataset after having seen
only a subset of the data. However, as the point of linearity
differs between models and datasets, this point cannot be
set in advance but must be estimated on-the-fly.

In this paper, we investigate three main questions, namely
1) how to detect the near linear trend when processing dat-
apoints sequentially, 2) when it is safe to assume that this
trend will continue, and 3) how to implement an efficient
stopping strategy, that is, without too much overhead to the
exact computation. We approach these questions from a (fre-
quentist) probabilistic numerics perspective (Hennig et al.
2015). By treating the dataset as a collection of independent
and identically distributed random variables, we provide
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Adaptive Cholesky Gaussian Processes

expected upper and lower bounds on the log-marginal likeli-
hood, which become tight when the above-mentioned linear
trend arises. These bounds can be evaluated with little
computational overhead by leveraging intermediate compu-
tations performed by the Cholesky decomposition that is
commonly used for evaluating the log-marginal likelihood.
We refer to our method as Adaptive Cholesky Gaussian Pro-
cess (ACGP). Our approach has a complexity of O(M3),
where M is the processed subset-size, inducing an over-
head of O(M) to the Cholesky decomposition. The main
difference to previous work is that our algorithm does not
necessarily look at the whole dataset, which makes it par-
ticularly useful in settings where the dataset is so large that
even linear-time approximations are not tractable. When a
dataset contains a large amount of redundant data, ACGP
allows the inference procedure to stop early, saving precious
compute—especially when the kernel function is expensive
to evaluate.

2 BACKGROUND

We use a PYTHON-inspired index notation, abbreviating for
example [y1, . . . , yn−1]> as y:n; observe that the indexing
starts at 1. With Diag we define the operator that sets all
off-diagonal entries of a matrix to 0.

2.1 Gaussian Process Regression

We start by briefly reviewing Gaussian process (GP) re-
gression models and how they are trained (see Rasmussen
and Williams (2006, Chapter 2 and 5.4)). We consider
the training dataset D = {xn, yn}Nn=1 with inputs xn ∈
RD and outputs yn ∈ R. The inputs are collected in
the matrix X = [x1,x2, . . . ,xN ]> ∈ RN×D. A GP
f ∼ GP(m(x), k(x,x′)) is a collection of random vari-
ables defined in terms of a mean function, m(x), and a co-
variance function or kernel, k(x,x′) = cov(f(x), f(x′)),
such that any finite amount of random variables has a Gaus-
sian distribution. Hence, the prior over f := f(X) is
N (f ;m(X),Kff), where we have used the shorthand nota-
tionKff = k(X,X). Without loss of generality, we assume
a zero-mean prior, m(·) := 0. We will consider the obser-
vations y as being noise-corrupted versions of the function
values f , and we shall parameterize this corruption through
the likelihood function p(y |f), which for regression tasks
is typically assumed to be Gaussian, p(y |f) = N (f , σ2I).
For such a model, the posterior over test inputsX∗ can be
computed in closed-form: p(f∗ |y) = N (m∗,S∗), where

m∗ = k(X∗,X)K−1y and

S∗ = k(X∗,X∗)− k(X∗,X)K−1k(X,X∗)

withK := Kff + σ2I . By marginalizing over the function
values of the likelihood distribution, we obtain the marginal
likelihood, p(y) =

∫
p(y |f)p(f)df , the de facto metric

for comparing the performance of models in the Bayesian
framework. While this integral is not tractable in general,
it does have a closed-form solution for Gaussian process
regression. Given the GP prior, p(f) = N (0,Kff), and the
Gaussian likelihood, the log-marginal likelihood distribution
can be found to be

log p(y) = −1

2

(
log det [2πK] + y>K−1y

)
. (1)

Evaluating this expressions costs O(N3) operations.

2.2 Background on the Cholesky decomposition

Inverting covariance matrices such asK is a slow and nu-
merically unstable procedure. Therefore, in practice, one
typically leverages the Cholesky decomposition of the co-
variance matrices to compute the inverses. The Cholesky
decomposition of a symmetric and positive definite ma-
trix K is the unique, lower1 triangular matrix L such that
K = LL> (Golub and Van Loan 2013, Theorem 4.2.7).
The advantage of having such a decomposition is that inver-
sion with triangular matrices amounts to Gaussian elimina-
tion. There are different ways to compute L. The Cholesky
of a 1× 1 matrix is the square root of the scalar. For larger
matrices,

chol[K] =

[
chol[K:s,:s] 0

T chol
[
Ks:,s: − TT>

]] , (2)

where T := Ks:,:schol[K:s,:s]
−> and s is any integer

between 1 and the size of K. Hence, extending a given
Cholesky to a larger matrix requires three steps:

1. solve the linear equation system T ,

2. apply the downdateKs:,s: − TT> and

3. compute the Cholesky of the down-dated matrix.

An important observation is thatKs:,s: − TT> is the pos-
terior covariance matrix S∗ + σ2I when considering Xs:

as test points. We will make use of this observation in Sec-
tion 3.5. The log-determinant of K can be obtained from
the Cholesky using log det [K] = 2

∑N
n=1 logLnn. A sim-

ilar recursive relationship exists between the quadratic form
y>K−1y and L−1y (see appendix, Equation (33)).

2.3 Related work

Much work has gone into tractable approximations to the
log-marginal likelihood. Arguably, the most popular ap-
proximation methods for GPs are inducing point methods
(Quiñonero-Candela and Rasmussen 2005; Snelson and
Ghahramani 2006; Titsias 2009; Hensman et al. 2013; Hens-
man et al. 2017; Shi et al. 2020; Artemev et al. 2021), where

1Equivalently, one can define L to be upper triangular such
that K = L>L.
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the dataset is approximated through a set of pseudo-data
points (inducing points), summarizing information from
nearby data. Other approaches involve building approxima-
tions to K (Fine and Scheinberg 2001; Rahimi and Recht
2008; Lázaro-Gredilla et al. 2010; Harbrecht et al. 2012;
Wilson and Nickisch 2015; Rudi et al. 2017; Wang et al.
2019) or aggregating of distributed local approximations
(Gal et al. 2014; Deisenroth and Ng 2015). One may also
consider separately the approximation of the quadratic form
via linear solvers such as conjugate gradients (Hestenes and
Stiefel 1952; Cutajar et al. 2016) and the approximation of
the log-determinant (Fitzsimons et al. 2017a; Fitzsimons
et al. 2017b; Dong et al. 2017). Another line of research is
scaling the hardware (Nguyen et al. 2019).

All above referenced approaches have computational com-
plexity at least O(N) (with the exception of Hensman et al.
(2013) since it uses mini-batching). However, the size of
a dataset is seldom a particularly chosen value but rather
the ad-hoc end of the sampling procedure. The dependence
on the dataset size implies that more data requires more
computational budget even though more data might not be
helpful. This is the main motivation for our work: to derive
an approximation algorithm where computational complex-
ity does not depend on redundant data.

The work closest in spirit to the present paper is by Artemev
et al. (2021), who also propose lower and upper bounds on
quadratic form and log-determinant. There are a number
of differences, however. Their bound relies on the method
of conjugate gradients where we work directly with the
Cholesky decomposition. Furthermore, while their bounds
are deterministic, ours are probabilistic, which can make
them tighter in certain cases, as they do not need to hold for
all worst-case scenarios. This is also the main difference to
the work of Hensman et al. (2013). Their bounds allow for
mini-batching, but these are inherently deterministic when
applied with full batch size.

3 METHODOLOGY

In the following, we will sketch our method. Our main goal
is to convey the idea and intuition. To this end, we use
suggestive notation. We refer the reader to the appendix for
a more thorough and formal treatment.

3.1 Intuition on the linear extrapolation

The marginal likelihood is typically presented as a joint
distribution, but, using Bayes rule, one can also view it from
a cumulative perspective as the sum of log-conditionals:

log p(y) =

N∑
n=1

log p(yn |y:n) . (3)

With this equation in hand, the phenomena in Figure 1 be-
comes much clearer. The figure shows the value of Equa-

tion (3) for an increasing number of observations n. When
the plot exhibits a linear trend, it is because the summands
log p(yn |y:n) become approximately constant, implying
that the model is not gaining additional knowledge. In other
words, new outputs are conditionally independent given the
output observations seen so far.

The key problem addressed in this paper is how to estimate
the full marginal likelihood, p(y), from only a subset of
M observations. The cumulative view of the log-marginal
likelihood in Equation (3) is our starting point. In particular,
we will provide probabilistic bounds, which are functions
of seen observations, on the estimate of the full marginal
likelihood. These bounds will allow us to decide, on the
fly, when we have seen enough observations to accurately
estimate the full marginal likelihood.

3.2 Stopping strategy

Suppose that we have processed M data points with N −
M data points yet to be seen. We can then decompose
Equation (3) into a sum of terms, which have already been
computed, and a remaining sum

log p(y) =

M∑
n=1

log p(yn | y:n)︸ ︷︷ ︸
p(yA): processed

+

N∑
n=M+1

log p(yn | y:n)︸ ︷︷ ︸
p(yB |yA): remaining

.

Recall that we consider the xi, yi as independent and iden-
tically distributed random variables. Hence, we could esti-
mate p(yB |yA) as (N−M)p(yA)/M . Yet this is estimator
is biased, since (xM+1, yM+1), . . . , (xN , yN ) interact non-
linearly through the kernel function. Instead, we will derive
unbiased lower and upper bounds, L and U . To obtain unbi-
ased estimates, we use the last-m processed points, such that
conditioned on the points up to s := M −m, the expected
value of log p(y) can be bounded from above and below:

E[L |X:s,y:s] ≤ E[p(y) |X:s,y:s] ≤ E[U |X:s,y:s],

and the observations from s to M can be used to estimate
L and U . Figure 2 shows a sketch of our approach. We can
then detect when the upper and lower bounds are sufficiently
near each other, and stop computations early when the ap-
proximation is sufficiently good. More precisely, given a
desired relative error r, we stop when

U − L
2 min(|U|, |L|) < r and sign(U) = sign(L) . (4)

If the bounds hold, then the estimator (L+ U)/2 achieves
the desired relative error (Lemma 21 in appendix). This is
in contrast to other approximations, where one specifies a
computational budget, rather than a desired accuracy.

3.3 Bounds on the log-marginal likelihood

From Equation (1), we see that the log-marginal likelihood
requires computing a log-determinant of the kernel matrix
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Figure 2: Illustration of how ACGP proceeds during esti-
mation of the full log p(y). The Cholesky decomposition
works by processing data in blocks of size m (see Equa-
tion (2)), so ACGP computes the log-marginal likelihood
in blocks of size m as well. In the illustration, s data-
points have been fully processed, meaning we have the
exact log p(y:s) for those. As the next m data are being pro-
cessed, we can compute the bounds on the full log p(y) (i.e.,
including the unprocessed data) after step 2 of the Cholesky
decomposition. If the stopping conditions in Equation (4)
are met, we return the linear extrapolation as estimate of
log p(y). Theorems 2 and 3 describe the conditions under
which this estimate achieves the desired error with high
probability.

and a quadratic term. In the following we present upper
and lower bounds for both the log-determinant (UD and
LD, respectively) and the quadratic term (UQ and LQ). We
will need the posterior equations for the observations, i.e.,
p(yn |y:n), and we will need them as functions of test inputs
x∗ and x′∗. To this end, define

m
(n)
∗ (x∗) := k(x∗,X:n)K−1:n,:ny:n

and

Σ
(n)
∗ (x∗,x

′
∗) := k(x∗,x

′
∗) + σ2δx∗,x′∗

− k(x∗,X:n)K−1:n,:nk(X:n,x
′
∗),

such that p(yn |y:n) = N (yn;m
(n)
∗ (xn),Σ

(n)
∗ (xn,xn)),

which allows us to rewrite Equation (3) as

log p(y) ∝
N∑
n=1

log Σ
(n−1)
∗ (xn,xn)

+

N∑
n=1

(yn −m(n−1)
∗ (xn))2

Σ
(n−1)
∗ (xn,xn)

.

(5)

This reveals that the log-determinant can be written as a sum
of posterior variances and the quadratic form has an expres-
sion as normalized square errors. Other key ingredients for
our bounds are estimates for average posterior variance and
average covariance. Therefore define the shorthands

V := Diag
[
Σ

(s)
∗ (Xs:M ,Xs:M )

]

and

C :=

M
2∑
i=1

Σ
(s)
∗ (xs+2i,xs+2i−1)e2ie

>
2i ,

where ej ∈ Rm is the j-th standard basis vector. The matrix
V is simply the diagonal of the posterior covariance matrix
Σ∗. The matrix C consists of every second entry of the
first off-diagonal of Σ∗. These elements are placed on the
diagonal with every second element being 0. The reason
for taking every second element is of theoretical nature, see
Remark 5 in the appendix.

3.3.1 Bounds on the log-determinant

Both bounds, lower and upper, use that log det [K] =

log det [K:s,:s] + log det
[
Σ

(s)
∗ (Xs:,Xs:)

]
which follows

from the matrix-determinant lemma. The first term is avail-
able from the already processed datapoints. It is the second
addend that needs to be estimated, which we approach from
the perspective of Equation (5). It is well-established that,
for a fixed input, more observations decrease the poste-
rior variance, and this decrease cannot cross the threshold
σ2 (Rasmussen and Williams 2006, Question 2.9.4). This
remains true when taking the expectation over the input.
Hence, the average of the posterior variances for inputs
Xs:M is with high probability an overestimate of the aver-
age posterior variance for inputs with higher index. This
motivates our upper bound on the log-determinant:

UD = log det [K:s,:s] + (N − s)µD, (6)

µD :=
1

m

m∑
i=1

log (Vii) . � average log posterior variance

To arrive at the lower bound on the log-determinant, we
need an expression for how fast the average posterior vari-
ance could decrease which is governed by the covariance
between inputs. The variable ρD measures the average co-
variance, and we show in Theorem 10 in the appendix that
this overestimates the decrease per step with high probabil-
ity. Since the decrease cannot exceed σ2, we introduce ψD
to denote the step which would cross this threshold.

LD = log det [K:s,:s] + (N − ψD) log σ2

+ (ψD − s)
(
µD −

ψD − s− 1

2
ρD

)
(7)

ρD :=
2

mσ4

m∑
i=1

C2
2i,2i � average square covariance

ψD := max

(
N, s+

⌊
µ̃D − log σ2

ρ̃D
+

1

2

⌋)
(8)

� steps µD can decrease by ρ

where variables with a tilde refer to a preceding estimate,
that is, exchanging the indices M for M − m and s for
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s − m. Both bounds collapse to the exact solution when
s = N . The bounds are close when the average covariance
between inputs, ρD, is small. This occurs for example when
the average variance is close to σ2 since the variance is an
upper bound to the covariance. Another case where ρD is
small is when points are not correlated to begin with.

3.3.2 Bounds on the quadratic term

Denote with r∗ := ys: − m(s)
∗ (Xs:) the prediction er-

rors (the residuals), when considering the first s points as
training set and the remaining inputs as test set. Anal-
ogous to the bounds on the log-determinant, one can
show with the matrix inversion lemma that y>K−1y =

y>:sK
−1
:s,:sy:s + r>∗ (Σ

(s)
∗ (Xs:))

−1r∗. Again, the first term
will turn out to be already computed. With a slight
abuse of notation let r∗ := ys:M −m(s)

∗ (Xs:M ), that is,
we consider only the first m entries. Our lower bound
arises from another well-known lower bound: a>A−1a ≥
2a>b − b>Ab for all b (see for example Kim and Teh
(2018) and Artemev et al. (2021)). We write a>A−1a as
a>Diag[a] (Diag[a]ADiag[a])

−1
Diag[a]a and choose

b := Diag[A]−11. The result, after some cancellations,
is the following probabilistic lower bound on the quadratic
term:

LQ = y>:sK
−1
:s,:sy:s + (N − s) (µQ −max(0, ρQ)) (9)

µQ :=
1

m
r>∗ V

−1r∗ � average calibrated square error

ρQ :=
N − s− 1

2m

·
M
2∑

j= s+2
2

r∗,2jr∗,2j−1Σ
(s)
∗ (x2j ,x2j−1)

Σ
(s)
∗ (x2j ,x2j)Σ

(s)
∗ (x2j−1,x2j−1)

� calibrated error correlation

Our upper bound arises from the element-wise perspective
of Equation (5). We assume that the expected mean square
error (yn −m(n−1)

∗ (xn))2 decreases with more observa-
tions. However, though mean square error and variance
decrease, their expected ratio may increase or decrease de-
pending on the choice of kernel, dataset and number of
processed points. Using the average error calibration with
a correction for the decreasing variance, we arrive at our
upper bound on the quadratic term:

UQ = y>:sK
−1
:s,:sy:s + (N − s)

(
µQ + ρ′Q

)
(10)

ρ′Q :=
N − s− 1

m

1

σ4
r>∗ CV

−1Cr∗

� square error correlation

In the appendix (Theorem 14), we present a tighter bound
which uses a similar construction as for the lower bound on
the log-determinant, switching the form at a step ψ. Again,
the bounds collapse to the true quantity when s = N . The

bounds will give good estimates when the average covari-
ance between inputs is low or when the model can predict
new data well, that is, when r∗ is close to 0.

3.4 Validity of bounds and stopping condition

For the upper bound on the quadratic form, we need to make
a (technical) assumption. It expresses the intuition that the
(expected) mean square error should not increase with more
data—a model should not become worse as its training set
increases. It is possible to construct counter-examples where
this assumption is violated: for example when y ∼ N (0, I)
and p(f) = N (0,K), the posterior mean is with high
probability no longer zero-mean. However, our experiments
in Section 4 indicate that this assumption is not problematic
in practice.

Assumption 1. Assume that

E
[
f(x,x′)(yj −m(j−1)

∗ (x))2 |X:s,y:s

]
≤ E

[
f(x,x′)(yj −m(s)

∗ (x))2 |X:s,y:s

]
for all s ∈ {1, . . . , N} and for all s < j ≤ N , where

f(x,x′) is either 1

Σ
(s)
∗ (x,x)

or Σ(s)
∗ (x,x′)2

σ4Σ
(s)
∗ (x,x)

.

Theorem 2. Assume that (x1, y1), . . . , (xN , yN ) are inde-
pendent and identically distributed and that Assumption 1
holds. For any s ∈ {1, . . . , N}, the bounds defined in Equa-
tions (6), (7), (9) and (10) hold in expectation:

E[LD |X:s,y:s] ≤ E[log det [K] |X:s,y:s]

≤ E[UD |X:s,y:s]

and

E[LQ |X:s,y:s] ≤ E[y>K−1y |X:s,y:s]

≤ E[UQ |X:s,y:s] .

The proof can be found in Appendix G, and a sketch in
Appendix E.

Theorem 3. Let r > 0 be a desired relative error
and set U := − 1

2 (LD + LQ +N log 2π) and L :=
− 1

2 (UD + UQ +N log 2π). If the stopping conditions hold,
that is, sign(U) = sign(L) and Equation (4) is true, then
log p(y) can be estimated from (U + L)/2 such that, un-
der the condition LD ≤ log(det [K]) ≤ UD and LQ ≤
y>K−1y ≤ UQ, the relative error is smaller than r, for-
mally:

|log p(y)− (U + L)/2| ≤ r|log p(y)|. (11)

The proof follows from Lemma 21 in the appendix.

Theorem 2 is a first step to obtain a probabilistic state-
ment for Equation (11), that is, a statement of the form
P
(∣∣∣ log p(y)− 1

2 (U+εU,δ+L−εL,δ)
log p(y)

∣∣∣ > r
)
≤ δ. In earlier work
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(Bartels et al. 2023), we have shown that such a statement
can be obtained for the log-determinant. Theoretically, we
can obtain such a statement using standard concentration
inequalities and a union bound over s. In practice, the er-
ror guarding constants ε would render the result trivial. A
union bound can be avoided using Hoeffding’s inequality
for martingales (Fan et al. 2012). However, this requires to
replace s := M −m by a stopping time independent of M ,
which we regard as future work.

3.5 Practical implementation

The proposed bounds turn out to be surprisingly cheap to
compute. If we set the block-size of the Cholesky decom-
position to be m, the matrix Σ

(s)
∗ is exactly the downdated

matrix in Step 2 of the algorithm outlined in Section 2.2.
Similarly, the expressions for the bounds on the quadratic
form appear while solving the linear equation system L−1y.
A slight modification to the Cholesky algorithm is enough to
compute these bounds on the fly during the decomposition
with little overhead.

The stopping conditions can be checked before or after
Step 3 of the Cholesky decomposition (Section 2.2). Here,
we explore the former option since Step 3 is the bottleneck
due to being less parallelizable than the other steps.

Note that the definition of the bounds does not involve vari-
ables x, y which have not been processed. This allows an
on-the-fly construction of the kernel matrix, avoiding poten-
tially expensive kernel function evaluations. Furthermore, it
is not necessary to allocate O(N2) memory in advance; a
user can specify a maximal amount of processed datapoints,
hoping that stopping occurs before hitting that limit. We
provide the pseudo-code for this modified algorithm, our
key algorithmic contribution, in Appendix E (Algorithms 1
and 2). For technical reasons, the bounds we use in practice,
deviate in some places from the ones presented. We describe
the details fully in Appendix E.5. Additionally, we provide
a PYTHON implementation of our modified Cholesky de-
composition and scripts to replicate the experiments of this
paper.2

4 EXPERIMENTS

We now examine the bounds and stopping strategy for
ACGP. When running experiments without GPU support,
all linear algebra operations are substituted for direct calls
to the OPENBLAS library (Wang et al. 2013), for efficient
realization of in-place operations. To still benefit from au-
tomatic differentiation, we used PYTORCH (Paszke et al.
2019) with a custom backward function for log p(y) which
wraps OPENBLAS. The details of our experimental setup
can be found in Appendix B.

2The code is available at the following repository: https:
//github.com/SimonBartels/acgp
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Figure 3: The figure shows one of the sampled functions
from the synthetic experiment in Section 4.1 as well as
the posterior predictive distribution recovered by ACGP.
Since the entire dataset of 1012 observations is too large
to visualize, we show only the data that were selected by
ACGP before stopping; in this case just 4000. The relative
error on log p(y) for 104 observations was 0.054. Notice
how, despite the larger relative error, the posterior process
mean closely follows the actual underlying function.

4.1 Performance on synthetic data

ACGP will stop the computation when the posterior co-
variance matrix of the remaining points conditioned on the
processed points is essentially diagonal.This scenario occurs
for example when using a squared exponential kernel with
long lengthscale and small observational noise on densely
sampled dataset.

To test ACGP in this scenario, we sample a function from a
GP prior with zero mean and a squared exponential ker-
nel with length scale log ` = −2. From this function,
we uniformly sample 1012 observations (x, y) in the in-
terval [0, 1] using an observation noise of σ2 := 0.1, that
is, y = f(x) + N (0, 0.1), see Figure 3. This is a sce-
nario where ACGP excels, since it does not need to load the
dataset into memory in advance, whereas methods with at
least linear complexity cannot even start computation.

The task is to estimate the true log p(y) of the full dataset,
and we run ACGP with a relative error of r = 0.01 and a
blocksize of 1000 to obtain this estimate. Since we cannot
evaluate the actual log p(y) for all 1012 observations, we
use the predicted and actual log p(y) for 104 observations
as proxy for assessing the performance of ACGP. We re-
peat the experiment for 10 different random seeds. Recall
that ACGP estimates E[log p(y) |X:s,y:s] as opposed to
log p(y), directly. Hence, there are two sources of error for
ACGP: the deviation of log p(y) from its expected value and
the deviation of the empirical estimates from their expecta-
tions.3 The average log p(y:104) is −2699.67± 70.81, and

3This shows the benefit of developing our theory further, to

https://github.com/SimonBartels/acgp
https://github.com/SimonBartels/acgp


Bartels, Stensbo-Smidt, Moreno-Muñoz, Boomsma, Frellsen, Hauberg

thus, due to the relative variance, a relative error of r = 0.01
will be hard to achieve. When run on all 1012 observations,
ACGP stops after processing just 4600± 1562 on average,
obtaining an actual relative error on the estimate of log p(y)
of 0.047 ± 0.034. To decrease this error, one can either
decrease the specified relative error of ACGP or increase the
blocksize, which will lead to more stable predictions. For
the experiments in the remainder of this paper, we choose
the latter strategy and set the blocksize to 104, which is also
better suited for parallel computations.

4.2 Bound quality

The purpose of this section is to demonstrate that with a
large enough blocksize m, our estimates are often correct
on large datasets. We examine our bounds presented in
Section 3 and compare them to those proposed by Artemev
et al. (2021, Lemma 2 and Lemma 3) (CGLB). Specifically,
for the determinant we compare to their O(N) upper bound
(Artemev et al. 2021, Eq. 11) and their log(det [Q]) as
lower bound. We set the number of inducing inputs M for
CGLB to 512, 1024, 2048, and 4096. For ACGP, we define
m := 40 · 256 = 10 240 which is the number of cores times
the default OPENBLAS blocksize for our machines. We
compare both methods using squared exponential kernel
(SE) and the Ornstein-Uhlenbeck kernel (OU),

kSE(x, z) := θ exp

(
−‖x− z‖

2

2`2

)
, (12)

kOU(x, z) := θ exp

(
−‖x− z‖

`

)
, (13)

where we fix σ2 := 10−3 and θ := 1, and we vary ` as
log ` ∈ {−1, 0, 1, 2}. As benchmarking datasets we use
the two datasets consisting of more than 20 000 instances
used by Artemev et al. (2021): kin40k and protein.
We further consider two additional datasets from the UCI
repository (Dua and Graff 2019): metro and pm25 (Liang
et al. 2015). We chose these datasets in addition as they
are of similar size, they are marked as regression tasks
and without missing values. We note here that shuffling
the datasets does not exactly establish the i.i.d. assump-
tion of Theorem 2. In practice, the results of this section
demonstrate that ACGP performs satisfactorily also in the
sampling-without-replacement case.

Empirically, CGLB seems to better estimate the quadratic
term, whereas ACGP is faster to identify the log-
determinant. Figure 4 shows a typical example. Note that,
for the quadratic form, the upper bounds tend to be less
tight than the lower bounds. Generally, there is no clear
winner; sometimes ACGP estimates both quantities faster
and sometimes CGLB. See Appendix C for figures on all
results.

obtain probably-approximately-correct bounds. Such bounds in-
troduce error-guarding constants to protect against fluctuations.
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Figure 4: Comparison of the upper and lower bounds for
ACGP and CGLB on the metro dataset using the OU ker-
nel with a length scale of log ` = 0 and the time it takes to
compute them. The black line indicates the result obtained
using exact GP regression with points above and below it
marking the upper and lower bounds, respectively. The
experiment was repeated five times with different seeds to
illustrate the variability in the computation time, shown here
as multiple points of the same color. For ACGP the number
near the points shows M , the size of the used subset; for
CGLB it is the number of inducing inputs.

The reason why CGLB has more difficulties to approximate
the log-determinant is that the bound involves trace[K−Q]
whereQ is a low rank approximation toK. IfKff is of high
rank, the gap in the trace can be large. For CGLB the time to
compute the bounds is dominated by the pivoted Cholesky
decomposition to select the inducing inputs. This overhead
becomes irrelevant for the following hyper-parameter tuning
experiments, since the selection is computed only once in
the beginning. One conclusion from these experiments is to
keep in mind that when high precision is required, simply
computing the exact solution can be a hard-to-beat baseline.

4.3 Application in hyper-parameter tuning

We repeat the hyper-parameter tuning experiments per-
formed by Artemev et al. (2021) using the same set-up,
see Appendix B for details. We use the same kernel func-
tion, a Matérn 3

2 , and the same optimizer, L-BFGS-B (Liu
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and Nocedal 1989), with SCIPY (Virtanen et al. 2020) de-
fault parameters. Artemev et al. (2021) report their best
results using M = 2048 inducing inputs. For reference, we
also compare against Sparse Variational Gaussian process
regression (SGPR) by Titsias (2009) initialized with the
same 512, 1024 and 2048 inducing inputs as CGLB. We
use root mean square error (RMSE), negative log predictive
density (NLPD) and exact, marginal log-likelihood on the
training set, log p(y), as performance metrics. The results
for all experiments discussed in this section can be found in
Appendix C.1. Here, we will focus on the behavior of each
method during training.

A possible application of ACGP is that an optimizer can
decide how precise function evaluations need to be. To ex-
plore this possibility, we successively decrease the “relative
change in function value” (ftol) convergence criterion of
L-BFGS-B as (2/3)restart+1 and set this as value for r. With
this choice, ACGP does not have any more free parameters
than a standard optimizer. The blocksize is a problem in-
dependent parameter and it is set to the same value as in
Section 4.2.

We explore two different computing environments. For
datasets smaller than 20 000 data points, we ran our ex-
periments on a single GPU. The results can be summa-
rized in one paragraph: all methods converge the latest after
two minutes. The time difference between methods is less
than twenty seconds. Exact Gaussian process regression is
fastest, more often than not. The results can be found in
Appendix C.1. We conclude that in an environment with
significantly more processing resources than memory, ap-
proximation may just cause overhead.

For datasets larger than 20 000 datapoints, our setup differs
from Artemev et al. (2021) in that we use only CPUs on
machines where the kernel matrix still fits fully into memory.
On all datasets, ACGP is essentially exhibiting the same
optimization behavior as the exact Gaussian process regres-
sor, just stretched out. ACGP can provide results faster than
exact optimization but may be slower in convergence as Fig-
ure 5a shows for the protein dataset. This observation is
as expected. However, approximation can also hinder fast
convergence as Figure 5b reveals on for the metro dataset.
CGLB benefits from caching the chosen inducing inputs
and reusing the solution from the last solved linear equation
system. The algorithm is faster, though it often plateaus at
worse objective function values. The results for kin40k
are similar to protein and the results for pm25 are simi-
lar to metro. These and additional results can be found in
Appendix C.2. Again, when the available memory permits,
the exact computation is a hard-to-beat baseline. However,
the Cholesky as a standard numerical routine has been en-
gineered over decades, whereas for the implementations of
CGLB and ACGP there is opportunity for improvement.
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(a) protein dataset. The iteratively increasing precision may
allow ACGP to reach better solutions faster than exact inference
at the price of later convergence.
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(b) metro dataset. Function evaluations with CGLB are gen-
erally the fastest at the cost of plateauing at higher objective
function values.

Figure 5: Typical examples of the evolution of the ex-
act log marginal likelihood p(y) while optimizing hyper-
parameters. See Appendix C.1 for additional plots for all
datasets, as well as for SVGP runs.

5 CONCLUSIONS

The Cholesky decomposition is the de facto way to invert
matrices when training Gaussian processes, yet it tends to
be considered a black box. However, if one opens this black
box, it turns out that the Cholesky decomposition computes
the marginal log-likelihood of the full dataset, and, crucially,
in intermediate steps, the posteriors of unprocessed training
data conditioned on the processed. Making the community
aware of this remarkable insight is one of our main contri-
butions of our paper. Our main novelty is to use this insight
to bound the (expected) marginal log-likelihood of the full
dataset from only a subset. With only small modifications
to this classic matrix decomposition, we can use these up-
per and lower bounds to stop the decomposition before all
observations have been processed. This has the practical
benefit that the kernel matrixK does not have to computed
prior to performing the decomposition, but can rather be
computed on-the-fly.

Empirical results indicate that the approach carries signifi-
cant promise. In general, we find that exact GP inference
leads to better behaved optimization than approximations
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such as CGLB and inducing point methods, and that a well-
optimized Cholesky implementation is surprisingly competi-
tive in terms of performance. An advantage of our approach
is that it is essentially parameter-free. The user has to spec-
ify a requested numerical accuracy and the computational
demands will be scaled accordingly. Finally, we note that
ACGP is complementary to much existing work, and should
be seen as an addition to the GP toolbox, rather than a
substitute for existing tools.
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A EVOLUTION OF THE LOG-MARGINAL LIKELIHOOD

This section contains figures for the progression of the log-marginal likelihood for five different permutations of the same
datasets as used in Section 4.2 of the main paper. Figure 6 shows the results for the squared exponential kernel (Equation (14))
with θ := 1 and σ2 := 10−3, and Figure 7 shows the results for the Ornstein-Uhlenbeck kernel (Equation (15)) using the
same parameters.
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(a) Log-marginal likelihood evolution for pm25.
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(b) Log-marginal likelihood evolution for metro.
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(c) Log-marginal likelihood evolution for protein.
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(d) Log-marginal likelihood evolution for kin40k.

Figure 6: The figure shows the log-marginal likelihood as a function of the size of the training set for the large datasets
described in Table 1 using the squared exponential kernel. See Appendix A for a description of the experimental setup.



Adaptive Cholesky Gaussian Processes

0 1000 2000 3000
Subset size

−1.0

−0.5

0.0

lo
g

p(
yy y)

×104

0 20000 40000
Subset size

−3

−2

−1

0
×105

log`=−1
log`= 0
log`= 1
log`= 2

(a) Log-marginal likelihood evolution for pm25.
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(c) Log-marginal likelihood evolution for protein.
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Figure 7: The figure shows the log-marginal likelihood as a function of the size of the training set for the large datasets
described in Table 1 using the Ornstein-Uhlenbeck kernel. See Appendix A for a description of the experimental setup.

B EXPERIMENTAL DETAILS

Table 1: Overview over all datasets used for the experiments in Section 4. The total dataset size (training and testing) is
denoted N and D denotes the dimensionality.

Key N D Source

bike 17 379 17 Fanaee-T and Gama (2013). Available at this UCI page.
elevators 16 599 18 Camachol (1998).
kin40k 40 000 8 Schwaighofer and Tresp (2002).
metro 48 204 66 No citation request. Available at this UCI page.
pm25 43 824 79 Liang2015pmDataset. Available at this UCI page.
poletelecomm 15 000 26 Weiss and Indurkhya (1995).
protein 45 730 9 No citation request. Available at this UCI page.
pumadyn 8192 32 No citation request. Available at this website.

For an overview of the datasets we use, see Table 1. The datasets are all normalized to have zero mean and unit variance for
each feature. We explore two different computing environments. For datasets smaller than 20 000 data points, we ran our
experiments on a single GPU. This is the same setup as in Artemev et al. (2021) with the difference that we use a TITAN
RTX whereas they have used a TESLA V100. For datasets larger than 20 000 datapoints, our setup differs from Artemev
et al. (2021). We use only CPUs on machines where the kernel matrix still fits fully into memory. Specifically, we used
machines running Ubuntu 18.04 with 50 Gigabytes of RAM and two INTEL XEON E5-2670 V2 CPUs.

B.1 Bound quality experiments

For CGLB, we compute the bounds with varying number of inducing inputs M := {512, 1024, 2048, 4096} and measure
the time it takes to compute the bounds. For ACGP, we define the blocksize m := 256 · 40 = 10 192 which is the default
OPENBLAS block size on our machines times the number of cores. This ensures that the sample size for our bounds is
sufficiently large for accurate estimation, and at the same time the number of page-faults should be comparable to the default

http://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
http://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume
http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
http://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
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Cholesky implementation. We measure the elapsed time every time a block of data points is added to the processed dataset
and the bounds are recomputed.

We compare both methods using squared exponential kernel (SE) and the Ornstein-Uhlenbeck kernel (OU).

kSE(x, z) := θ exp

(
−‖x− z‖

2

2`2

)
(14)

kOU(x, z) := θ exp

(
−‖x− z‖

`

)
. (15)

where we fix θ := 1 and we vary ` as log ` ∈ {−1, 0, 1, 2}. We use a Gaussian likelihood and fix the noise to σ2 := 10−3.

B.2 Hyper-parameter tuning

In this section, we describe our experimental setup for the hyper-parameter optimization experiments, which closely follows
that of Artemev et al. (2021). We randomly split each dataset into a training set consisting of 2/3 of examples, and a test set
consisting of the remaining third. We use a Matérn 3

2 kernel function and L-BFGS-B as the optimizer with SCIPY (Virtanen
et al. 2020) default parameters if not specified otherwise. All algorithms are stopped the latest after 2000 optimization steps,
after 12 hours of compute time, or when optimization has failed three times. We repeat each experiment five times with a
different shuffle of the dataset and report the results in Tables 2 and 3.

For CGLB, it is necessary to decide on a number of inducing inputs. From the results reported by Artemev et al. (2021), it
appears that using M = 2048 inducing inputs yields the best trade-off in terms of speed and performance, hence we use
this value in our experiments. For the exact Cholesky and CGLB, the L-BFGS-B convergence criterion “relative change in
function value” (ftol) is set to 0.

For ACGP, we need to decide on both the desired relative error, r, as well as the block size m. We successively decrease the
optimizer’s tolerance ftol as (2/3)restart+1 and we set the same value for r. That is, regardless of whether the optimization
of ACGP stopped successfully or for abnormal reasons, the optimization restarts aiming for higher precision. The effect
of this is that, early in the hyper-parameter optimization, ACGP will stop early, thus providing only an approximation
to the optimal hyper-parameter values, but also saving computations. With each restart, ACGP increases the precision,
ensuring that we get closer and closer to the optimal hyper-parameter values at the expense of approaching the computational
demand of an exact GP. The block size m is set to the same value as for the bound quality experiments, Section 4.2,
40 · 256 = 10 192, which is the number of cores times the OPENBLAS block size. This ensures that the sample size for our
bounds is sufficiently large for accurate estimation, and at the same time the number of page-faults should be comparable
to the default Cholesky implementation. Note that m is a global parameter, independent of the dataset. Hence, natural
choices for both r and m are determined by parameters of standard software, which have sensible, machine-dependent
default values. ACGP can therefore be considered parameter-free.

Differing from the previous section, we use for ACGP the biased estimator (N −M) log p(y:M )/M instead of U/2 + L/2
to approximate log p(y) when stopping. Since stopping occurs when log-determinant and quadratic form evolve roughly
linearly, the two estimators are not far off each other. The main reason for using the biased estimator is of technical
nature: for auto-differentiation, it is easier and faster to implement a custom backward function which can handle the
in-place operations of our Cholesky implementation. This custom backward function needs roughly a factor two of the
computation of log p(y) whereas the TORCH-default needs a factor six. This shows that when comparing to exact inference,
auto-differentiation can be disadvantageous and make the Cholesky appear slower than it is. Regarding CGLB, computation
time is not dominated by the gradient but only the function evaluation itself.

C ADDITIONAL RESULTS

In this section, we report additional results for both the hyper-parameter tuning experiments (section C.1) as well as plots to
show the quality of the bounds on both the log-determinant term, the quadratic term, and the log-marginal likelihood (see
Appendix C.3).
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C.1 Additional results for hyper-parameter tuning

Denote with N∗ the number of test instances, and with µ and σ2 the mean and variance approximations of a method. As
performance metrics we use root mean square error (RMSE)√√√√ 1

N∗

N∗∑
n=1

(y∗n − µ(x∗n))2 ,

negative log predictive density (NLPD)

1

2N∗

N∗∑
n=1

(y∗n − µ(x∗n))2

σ2(x∗n)
+ log

(
2πσ2(x∗n)

)
,

and the negative marginal log likelihood − log p(y). Tables 2 and 3 summarize the results reported for each dataset,
averaging over the outcomes of the final optimization step of each repetition. For each metric, we indicate whether a higher
(↑) or lower (↓) value indicates a better result.

The results for the exact GP regression are marked in italics to emphasize that these are results we are trying to approach,
not to beat. As the other methods are all approximations to the exact GP, there is little hope of achieving better performance.
The best result among the approximation methods for each dataset is highlighted in bold.
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Table 2: Summary of the CPU hyper-parameter tuning results from Section 4.3. For each metric, we report its final value
over the course of optimization. For SVGP, we did not compute the exact marginal log-likelihoods, to save cluster time.

Dataset Model RMSE / 10−2 (↓) NLPD / 10−1 (↓) log p(y) / 104 (↑)

metro

Exact 24.01 ± 0.26 −12.90 ± 0.17 0.6193 ± 0.0243
ACGP 24.11 ± 0.27 −12.83 ± 0.23 0.6078 ± 0.0250
CGLB (1024) 46.45 ± 6.80 8.18 ± 0.85 −2.4526 ± 0.1995
CGLB (2048) 40.57 ± 7.94 7.45 ± 1.02 −2.5217 ± 0.1745
CGLB (4096) 35.83 ± 1.04 6.80 ± 0.24 −2.5193 ± 0.0533
SVGP (1024) 93.28 ± 0.35 13.50 ± 0.04 −4.3892 ± 0.0052
SVGP (2048) 92.32 ± 0.37 13.40 ± 0.04 −4.3701 ± 0.0053
SVGP (4096) 88.98 ± 1.56 13.04 ± 0.17 −4.2950 ± 0.0326

pm25

Exact 45.99 ± 2.68 3.63 ± 0.64 −2.0216 ± 0.0739
ACGP 44.45 ± 1.34 3.25 ± 0.40 −1.9438 ± 0.0130
CGLB (1024) 34.63 ± 2.91 5.60 ± 0.42 −1.9259 ± 0.0909
CGLB (2048) 44.30 ± 1.94 7.11 ± 0.50 −2.3956 ± 0.0867
CGLB (4096) 53.06 ± 0.89 7.89 ± 0.13 −2.5681 ± 0.0322
SVGP (1024) 72.08 ± 7.32 10.97 ± 0.99 −3.1405 ± 0.2014
SVGP (2048) 56.55 ± 0.96 8.70 ± 0.11 −2.6308 ± 0.0206
SVGP (4096) 59.30 ± 11.22 8.95 ± 1.66 −2.6904 ± 0.4079

kin40k

Exact 7.42 ± 0.07 −12.38 ± 0.05 2.0835 ± 0.0041
ACGP 7.42 ± 0.07 −12.38 ± 0.05 2.0835 ± 0.0041
CGLB (1024) 9.17 ± 0.06 −7.13 ± 0.02 1.4726 ± 0.0058
CGLB (2048) 8.68 ± 0.06 −8.27 ± 0.02 1.6181 ± 0.0048
CGLB (4096) 8.46 ± 0.06 −9.18 ± 0.02 1.6905 ± 0.0051
SVGP (1024) 13.94 ± 0.09 −4.20 ± 0.02 0.6124 ± 0.0046
SVGP (2048) 12.05 ± 0.08 −5.68 ± 0.02 0.8858 ± 0.0047
SVGP (4096) 10.68 ± 0.07 −7.02 ± 0.02 1.1290 ± 0.0043

protein

Exact 55.85 ± 0.62 6.52 ± 0.46 −2.3686 ± 0.0331
ACGP 55.55 ± 0.17 6.29 ± 0.04 −2.3847 ± 0.0092
CGLB (1024) 57.58 ± 0.41 8.51 ± 0.05 −2.8194 ± 0.0093
CGLB (2048) 56.85 ± 0.46 8.31 ± 0.06 −2.7689 ± 0.0107
CGLB (4096) 56.06 ± 0.44 8.06 ± 0.06 −2.7070 ± 0.0108
SVGP (1024) 62.21 ± 0.35 9.41 ± 0.04 −2.9994 ± 0.0110
SVGP (2048) 60.04 ± 0.38 9.00 ± 0.05 −2.9049 ± 0.0105
SVGP (4096) 58.11 ± 0.43 8.60 ± 0.06 −2.8133 ± 0.0106
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Table 3: Summary of the GPU hyper-parameter tuning results from Section 4.3. For each metric, we report its final value
over the course of optimization. We did not compute the exact marginal log-likelihoods, to save cluster time.

Dataset Model RMSE / 10−2 (↓) NLPD / 10−1 (↓) log p(y) / 104 (↑)

bike

Exact 0.09 ± 0.04 −50.32 ± 0.08 4.9424 ± 0.0073
ACGP 0.21 ± 0.10 −50.31 ± 0.03 4.9321 ± 0.0019
CGLB (1024) 0.53 ± 0.06 −33.24 ± 0.82 3.4946 ± 0.0503
CGLB (2048) 0.32 ± 0.04 −37.81 ± 0.51 3.8572 ± 0.0487
CGLB (4096) 0.38 ± 0.15 −41.23 ± 1.08 4.1049 ± 0.1105
SVGP (1024) 1.27 ± 0.07 −26.63 ± 0.38 2.7446 ± 0.0447
SVGP (2048) 0.93 ± 0.12 −30.48 ± 0.59 3.0752 ± 0.0516
SVGP (4096) 0.90 ± 0.23 −32.40 ± 1.51 3.1980 ± 0.1411

poletelecomm

Exact 8.13 ± 0.41 −7.81 ± 2.66 0.8423 ± 0.0874
ACGP 7.30 ± 0.23 −12.32 ± 0.16 1.0149 ± 0.0086
CGLB (1024) 7.90 ± 0.15 −10.73 ± 0.04 0.8705 ± 0.0052
CGLB (2048) 7.65 ± 0.17 −11.46 ± 0.06 0.9238 ± 0.0051
CGLB (4096) 7.39 ± 0.18 −12.12 ± 0.09 0.9822 ± 0.0060
SVGP (1024) 9.20 ± 0.11 −9.09 ± 0.03 0.7378 ± 0.0054
SVGP (2048) 8.24 ± 0.15 −10.48 ± 0.05 0.8450 ± 0.0047
SVGP (4096) 7.53 ± 0.17 −11.81 ± 0.07 0.9543 ± 0.0055

elevators

Exact 35.12 ± 0.36 3.78 ± 0.09 −0.4690 ± 0.0048
ACGP 34.79 ± 0.24 3.70 ± 0.07 −0.4653 ± 0.0030
CGLB (1024) 35.42 ± 0.40 3.86 ± 0.10 −0.4714 ± 0.0045
CGLB (2048) 35.26 ± 0.37 3.81 ± 0.10 −0.4699 ± 0.0046
CGLB (4096) 35.41 ± 0.47 3.86 ± 0.13 −0.4703 ± 0.0051
SVGP (1024) 35.62 ± 0.37 3.91 ± 0.09 −0.4746 ± 0.0042
SVGP (2048) 35.42 ± 0.36 3.86 ± 0.09 −0.4715 ± 0.0049
SVGP (4096) 35.23 ± 0.35 3.81 ± 0.09 −0.4697 ± 0.0048

pumadyn

Exact 22.55 ± 1.03 −0.63 ± 0.51 0.0088 ± 0.0261
ACGP 22.85 ± 0.08 −0.45 ± 0.01 −0.0016 ± 0.0017
CGLB (1024) 20.55 ± 0.05 −1.63 ± 0.03 0.0559 ± 0.0030
CGLB (2048) 21.97 ± 2.87 −1.04 ± 1.20 0.0259 ± 0.0620
CGLB (4096) 20.55 ± 0.06 −1.63 ± 0.03 0.0555 ± 0.0046
SVGP (1024) 98.65 ± 1.22 14.06 ± 0.12 −0.7749 ± 0.0000
SVGP (2048) 98.65 ± 1.22 14.06 ± 0.12 −0.7749 ± 0.0000
SVGP (4096) 98.65 ± 1.22 14.06 ± 0.12 −0.7749 ± 0.0000
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C.2 Additional plots for hyper-parameter tuning

The plots for the hyper-parameter optimization are shown in figures 8–31. Each point in the plots corresponds to one
accepted optimization step for the given methods. Each point thus corresponds to a particular set of hyper-parameters during
the optimization. In figures 16–23, we show the root-mean-square error, RMSE, that each methods obtains on the test set at
each optimisation step, and figures 24–31 show the same for NLPD. In figures 8–15, we show the log-marginal likelihood,
log p(y), that an exact GP would have achieved with the specific set of hyper-parameters at each optimization step for each
method.
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Figure 8: log p(y) for the metro dataset.
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Figure 9: log p(y) for the pm25 dataset.
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Figure 10: log p(y) for the protein dataset.
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Figure 11: log p(y) for the kin40k dataset.

101 102 103

time in seconds

−4

−2

0

−
lo

g
p(

yy y)

×104

ACGP
CGLB
SVGP
Exact

Figure 12: log p(y) for the bike dataset.
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Figure 13: log p(y) for the elevators dataset.
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Figure 14: log p(y) for the pole dataset.
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Figure 15: log p(y) for the pumadyn32nm dataset.
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Figure 16: RMSE for the metro dataset.
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Figure 17: RMSE for the pm25 dataset.
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Figure 18: RMSE for the protein dataset.
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Figure 19: RMSE for the kin40k dataset.
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Figure 20: RMSE for the bike dataset.
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Figure 21: RMSE for the elevators dataset.
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Figure 22: RMSE for the pole dataset.
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Figure 23: RMSE for the pumadyn32nm dataset.
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Figure 24: NLPD for the metro dataset.
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Figure 25: NLPD for the pm25 dataset.
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Figure 26: NLPD for the protein dataset.
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Figure 27: NLPD for the kin40k dataset.
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Figure 28: NLPD for the bike dataset.
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Figure 29: NLPD for the elevators dataset.
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Figure 30: NLPD for the pole dataset.
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Figure 31: NLPD for the pumadyn32nm dataset.
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C.3 Additional plots for the bound quality experiments

C.3.1 Bounds for experiments on metro
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Figure 32: Upper and lower bounds for the metro dataset when using a squared exponential (SE) kernel.
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Figure 33: Upper and lower bounds for the metro dataset when using a Ornstein-Uhlenbeck (OU) kernel.
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C.3.2 Bounds for experiments on pm25
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Figure 34: Upper and lower bounds for the pm25 dataset when using a squared exponential (SE) kernel.
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Figure 35: Upper and lower bounds for the pm25 dataset when using a Ornstein-Uhlenbeck (OU) kernel.
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C.3.3 Bounds for experiments on protein
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Figure 36: Upper and lower bounds for the protein dataset when using a squared exponential (SE) kernel.
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Figure 37: Upper and lower bounds for the protein dataset when using a Ornstein-Uhlenbeck (OU) kernel.
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C.3.4 Bounds for experiments on kin40k

0

1

2

yy y>
KK K
−

1 yy y

×107

Exact
ACGP
CGLB

−2

−1

0

lo
g

de
t[

KK K
]

×105

25 50 75 100 125 150 175
time in seconds

−1.0

−0.5

0.0

lo
g

p(
yy y)

×107

(a) SE kernel, log ` = −1.

0

2

4

6

8

yy y>
KK K
−

1 yy y

×105

Exact
ACGP
CGLB

−2

−1

0

lo
g

de
t[

KK K
]

×105

25 50 75 100 125 150 175 200
time in seconds

−4

−2

0

lo
g

p(
yy y)

×105

(b) SE kernel, log ` = 0.

0.25

0.50

0.75

1.00

1.25

yy y>
KK K
−

1 yy y

×106

Exact
ACGP
CGLB

−2.75

−2.50

−2.25

−2.00

−1.75

lo
g

de
t[

KK K
]

×105

20 40 60 80 100 120 140 160 180
time in seconds

−4

−2

lo
g

p(
yy y)

×105

(c) SE kernel, log ` = 1.

0.4

0.6

0.8

1.0

yy y>
KK K
−

1 yy y

×107

Exact
ACGP
CGLB

−2.752

−2.750

−2.748

lo
g

de
t[

KK K
]

×105

25 50 75 100 125 150 175
time in seconds

−5

−4

−3

−2

lo
g

p(
yy y)

×106

(d) SE kernel, log ` = 2.

Figure 38: Upper and lower bounds for the kin40k dataset when using a squared exponential (SE) kernel.
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Figure 39: Upper and lower bounds for the kin40k dataset when using a Ornstein-Uhlenbeck (OU) kernel.
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D NOTATION

We use a PYTHON-inspired index notation, abbreviating for example [y1, . . . , yn]> as y:n—observe that the indexing starts
at 1. Indexing binds before any other operation such thatK−1:s,:s is the inverse ofK:s,:s and not all elements up to s ofK−1.
For s ∈ {1, . . . , N} define Fs := σ(x1, y1, . . . ,xs, ys) to be the σ-algebra generated by x1, y1, . . . ,xs, ys. With respect
to the main article, we change the letter M to t. The motivation for the former notation is to highlight the role of the variable
as a subset size, whereas in this part, the focus is on M as a stopping time.

E PROOF SKETCH

In this section of the appendix, we provide additional intuition on the theorems and proofs for the theory behind ACGP.

E.1 The cumulative perspective

Using Bayes rule, we can write log p(y) equivalently as

log p(y) = −1

2

(
log det [KN ] + y>K−1N y +N log(2π)

)
=

N∑
n=1

log p(yn | y:n−1). (16)

For each potential stopping point t we can decompose Equation (16) into a sum of three terms:

log p(y) =

s∑
n=1

log p(yn | y:n−1)︸ ︷︷ ︸
A: fully processed

+

t∑
n=s+1

log p(yn | y:n−1)︸ ︷︷ ︸
B: partially processed

+

N∑
n=t+1

log p(yn | y:n−1)︸ ︷︷ ︸
C: remaining

,

where s < t. We will use the partially processed points between s and t, to obtain unbiased upper and lower bounds on the
expected value of log p(ys+1: |y:s):

E[Lt | x1, y1, . . .xs, ys] ≤ A+ E[B + C | x1, y1, . . .xs, ys] ≤ E[Ut| x1, y1, . . .xs, ys]. (17)

E.2 General bounds

The posterior of the nth observation conditioned on the previous is Gaussian with

p(yn | y:n−1) =N (mn−1(xn), kn−1(xn,xn) + σ2)

mn−1(xn) :=k(xn,X:n−1)K−1n−1y:n−1

kn−1(xn,xn) :=k(xn,xn)− k(xn,X:n−1)K−1n−1k(X:n−1,xn),

where we assumed (w.l.o.g) that µ0(x) := 0. Inspecting these expressions one finds that

log det [KN ] =

N∑
n=1

log
(
kn−1(xn,xn) + σ2

)
, (18)

y>K−1N y =

N∑
n=1

(yn −mn−1(xn))
2

kn−1(xn,xn) + σ2
. (19)

Our strategy is to find function families u (and l) which upper (and lower) bound the expectation

ldn,t ≤E log kn−1(xn,xn) ≤E udn,t

lqn,t ≤E
(yn −mn−1(xn))

2

kn−1(xn,xn) + σ2
≤E uqn,t,

where ≤E denotes that the inequality holds in expectation. We will choose the function families such that the unseen
variables interact only in a controlled manner. More specifically,

fxn,t(xn, yn, . . . ,x1, y1) =

n∑
j=s+1

gf,xt (zn, zj ; z1, . . . zs),
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with f ∈ {u, l} and x ∈ {d, q}. The effect of this restriction becomes apparent when taking the expectation. The sum over
the bounds becomes the sum of only two terms: variance and covariance, formally:

E

[
N∑

n=s+1

fxn,t(zn, . . . ,z1) | σ(z1, . . . ,zs)

]
(20)

= (N − s)E [g(zs+1, zs+1, z1 . . . , zn) | σ(z1, . . . ,zs)]

+ (N − s) N − s+ 1

2
E [g(zs+1, zs+2, z1 . . . , zn) | σ(z1, . . . ,zs)] . (21)

We can estimate this expectation from the observations we obtained between s and t.

≈ N − t
t− s

t∑
n=s+1

g(zn, zn, z1 . . . , zs) (22)

+
2(N − t)
t− s

N − s+ 1

2

t−s
2∑
i=1

g(zs+2i, zs+2i−1, z1 . . . , zs).

E.3 Bounds on the log-determinant

Since the posterior variance of a Gaussian process can never increase with more data, the average of the (log) posterior
variances is an estimator for an upper bound on the log-determinant. Hence in this case, we simply ignore the interaction
between the remaining variables. We set g(xn,xi) := δni log

(
ks(xn,xn) + σ2

)
where δni denotes Kronecker’s δ.

To obtain a lower bound we use that for c > 0 and a ≥ b ≥ 0, one can show that log (c+ a− b) ≥
log (c+ a) − b

c where the smaller b the better the bound. In our case c = σ2, a = ks(xn,xn) and
b = ks(xn,Xs+1:n−1)

(
ks(Xs+1:n−1,Xs+1:n−1) + σ2

)−1
ks(Xs+1:n−1,xn). Underestimating the eigenvalues of

ks(Xs+1:n−1,Xs+1:n−1) by 0 we obtain a lower bound, where each quantity can be estimated. Formally, for any s ≤ t,

log
(
kn−1(xn,xn) + σ2

)
≥
(

log
(
ks(xn,xn) + σ2

)
−

n−1∑
i=s+1

ks(xn,xi)
2

σ2σ2

)
. (23)

This bound can be worse than the deterministic lower bound log σ2. It depends on how large n is, how large the average
correlation is and how small log σ2 is. Denote with µ the estimator for the left addend and with ρ the estimator for the
second addend. We can determine the number of steps n − s that this bound is better by solving for the maxima of a
quadratic equation:

p

(
µ− p− 1

2
ρ

)
≥ p log σ2 (24)

The tipping point ψ is

ψ := max

(
N, s+

⌊
µ− log σ2

ρ
+

1

2

⌋)
. (25)

Hence, for n > ψ we set udn := log σ2.

Observe that, the smaller ks(xj ,xj+1)2 the closer the bounds. This term represents the correlation of datapoints conditioned
on the s datapoints observed before. Thus, our bounds come together, when incoming observations become independent
conditioned on what was already observed. Essentially, that ks(xj ,xj+1)2 = 0 is the basic assumption of inducing input
approximations (Quiñonero-Candela and Rasmussen 2005).

E.4 Bounds on the quadratic form

For an upper bound on the quadratic form we apply a similar trick:

x

c+ a− b ≤
x(c+ b)

c(c+ a)
, (26)
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where x ≥ 0. Further we assume that in expectation the mean square error improves with more data. Formally,

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
≤E

(yj −ms(xj))
2

σ2 (ks(xj ,xj) + σ2)

(
σ2 +

j−1∑
i=s+1

(ks(xj ,xi))
2

σ2

)
(27)

For a lower bound observe that

y>K−1y = y>:sK
−1
s y:s + (ys+1:N −ms(Xt+1:N ))

>
Q−1s+1:N (ys+1:N −ms(Xt+1:N )) (28)

where Qs+1:j := ks(Xs+1:j ,Xs+1:j) + σ2I with j ≥ s + 1 for the posterior covariance matrix of Xs+1:j conditioned
onX1:s. We use a trick we first encountered in Kim and Teh (2018): y>A−1y ≥ 2y>b− b>Ab, for any b. For brevity
introduce e := ys+1:N −ms(Xt+1:N ). After applying the inequality with b := Diag[Qs+1:N ]−1e, we obtain

2

N∑
n=s+1

(yn −ms(xn))
2

ks(xn,xn) + σ2
−

N∑
n,n′=s+1

(yn −ms(xn))

ks(xn,xn) + σ2
[Qs+1:N ]nn′

(yn′ −ms(xn′))

ks(xn′ ,xn′) + σ2
(29)

which is now in the form of Equation (20).

Observe that, the smaller the square error (yj −ms(xj))
2, the closer the bounds. That is, if the model fit is good, the

quadratic form can be easily identified.

E.5 Using the Bounds for Stopping the Cholesky

We will use the following stopping strategy: when the difference between bounds becomes sufficiently small and their
absolute value is far away from zero. More precisely, when having deterministic bounds L ≤ x ≤ U on a number x, with

U − L
2 min(|U| , |L|) ≤ r and (30)

signU = signL, (31)

then the relative error of the estimate 1
2 (U + L) is less than r, that is |

1
2 (U+L)−x

x | ≤ r.

Remark 4. In our experiments, we do not use 1
2 (U + L) as estimator, and instead use the biased estimator (N −

τ) 1
τ log p(y:τ ). Since stopping occurs when log-determinant and quadratic form evolve roughly linearly, the two estimators

are not far off each other. The main reason for using the biased estimator is of a technical nature; it is easier and faster to
implement a custom backward function which can handle the in-place operations of our Cholesky implementation.

Remark 5. To estimate the average correlation between elements of the kernel matrix, we use all elements of the off-diagonal
instead of only every second. This has no effect on our main result, but it becomes important when developing PAC bounds.

Remark 6. The lower bound on the log-determinant, and the upper bound on the quadratic form switch their form at a step
ψ (Theorems 10 and 14). Currently, to prove our results, this requires ψ to be Fs-measurable, and for that reason we use
estimators using inputs only up to index s, to define ψ. However, a PAC bound proof would allow to condition on the event
that the estimators (plus some ε) overestimate their expected values with high probability. Under that condition, we could
use the true expected value (which is Fs-measurable) to define ψ. Hence, in our practical implementation we use estimators
based on inputs with indices up to M to define ψ.

The question remains how to use the bounds and stopping strategy to derive an approximation algorithm. We transform
the exact Cholesky decomposition for that purpose. For brevity denote Ls := chol[k(X:s,X:s) + σ2] and Ts :=
k(Xs+1:,X)Ls

−>. For any s ∈ {1, . . . N}:

LN =

[
Ls 0
T chol

[
k(Xs+1:,s+1:)− TT>

]] (32)

One can verify that LN is indeed the Cholesky of KN by evaluating LNL>N . Observe that k(Xs+1:,s+1:) − TT> is
the posterior covariance matrix of the ys+1: conditioned on y:s. Hence, in the step before the Cholesky of the posterior
covariance matrix is computed, we can estimate our log-determinant bounds.
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Similar reasoning applies for solving the linear equation system. We can write

αN =

[
αs

chol
[
k(Xs+1:,s+1:)− TT>

]−1
(ys+1: − Tsαs)

]
(33)

Now observe that Tsαs = ms(Xs+1:). Hence, before the solving the lower equation system (and before computing the
posterior Cholesky), we can compute our bounds for the quadratic form. There are different options to implement the
Cholesky decomposition. We use a blocked, row-wise implementation (George et al. 1986). For a practical implementation
see Algorithm 1 and Algorithm 2.

Algorithm 1 blocked and recursive formulation of Cholesky decomposition and Gaussian elimination, augmented with our
stopping conditions marked in gray.

1 procedure ACGP(k(·, ·), µ(·), σ2,X , y, m, Nmax)
2 A← 0Nmax×Nmax ,α← 0Nmax � allocate memory

3 A1:m,1:m ← k(X1:m) + σ2 � initialize kernel matrix

4 α1:m ← y1:m − µ(X1:m) � evaluate mean function for the same datapoints

5 A1:m,1:m ← chol(A1:m,1:m) � call to low-level Cholesky

6 α1:m ← A−11:m,1:mα1:m � second back-substitution step

7 i← m+ 1, j ← min(i+m,N)
8 while i < Nmax do
9 Ai:j,1:i ← k(Xi:j ,X1:i) � evaluate required block-off-diagonal part of the kernel matrix

10 Ai:j,1:i ← Ai:j,1:iA
−>
1:i,1:i � solve triangular linear equation system

11 Ai:j,i:j ← k(Xi:j) + σ2 � evaluate required block-diagonal part of the kernel matrix

12 αi:j ← yi:j − µ(Xi:j) � evaluate mean function for the same datapoints

13 Ai:j,i:j ← Ai:j,i:j −Ai:j,1:iA
>
i:j,1:i � down-date

14 � nowAi:j,i:j = Qs+1:j

15 αi:j ← αi:j −Ai:j,1:iα1:i � nowαi:j contains yi:j −mi(Xi:j)

16 L,U ←EvaluateBounds(i, j) � costsO(j − i)

17 if Equations (30) and (31) fulfilled then
18 return estimator
19 end if
20 Ai:j,i:j ← chol(Ai:j,i:j) � finish computing Cholesky for data-points up to index j

21 αi:j ← A−1i:j,i:jαi:j � finish solving linear equation system for index up to j

22 i← i+m, j ← min(i+m,Nmax)
23 end while � nowA = L andα = L−1(y − µ(X))

24 return estimator
25 end procedure

F ASSUMPTIONS

Assumption 7. Let (Ω,F ,P) be a probability space and let (xj , yj)
N
j=1 be a sequence of independent and identically

distributed random vectors with x : Ω→ RD and y : Ω→ R.
Assumption 8. For all s, i, j, t with s < i ≤ j ≤ N and functions f(xj ,xi;x1, . . .xs) ≥ 0

E
[
f(xj ,xi) (yj −mj−1(xj))

2 | Fs
]
≤ E

[
f(xj ,xi) (yj −ms(xj))

2 | Fs
]

(34)

where f(xj ,xi) ∈
{

1
ks(xj ,xj)+σ2 ,

ks(xj ,xi)
2

(ks(xj ,xj)+σ2)σ2σ2

}
.

That is, we assume that in expectation the estimator improves with more data. Note that, f can not depend on any entries of
y.

G MAIN THEOREM

This section restates Theorem 2 and connects the different proofs in the sections to follow.
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Algorithm 2 bound algorithm as used in our experiments. The algorithm deviates slightly from our theory. We use
Equation (54) for the upper bound in the quadratic form, and we use all off-diagonal entries (instead of only every second).

1 procedure EVALUATEBOUNDS(s, t)
2 D ←∑s

j=1 logAjj � in practice we reuse the sum from the last iteration

3 Q←∑s
j=1α

2
j

4 µ← 1
t−s

∑t
j=s+1 logAjj � average variance of the new points conditioned on all points processed until s

5 UD ← D + (N − s)µ
6 ρ← 1

t−s−1
∑t−1
j=s+1

A2
j,j+1

σ2σ2 � average square correlation (deviating from theory!)

7 ψ ← min(N, s+ bµ−log σ2

ρ + 1
2c � number of steps the probabilistic bound is better than the deterministic

8 LD ← D + (ψ − s)
(
µ− ψ−s−1

2 ρ
)

+ (N − ψ) log σ2

9 µ← 1
t−s

∑t
j=s+1

α2
j

Aj,j
� average error calibration

10 ρ← max
(

0, 1
t−s−1

∑t−1
j=s+1

αjαj+1Aj,j+1

Aj,jAj+1,j+1

)
� calibrated error correlation

11 LQ ← Q+ max(0, (N − s)(2µ− ρ(N − s− 1)))

12 ρ← 1
t−s−1

∑t−1
j=s+1

α2
jA

2
j,j+1

Aj,jσ2σ2 � square error correlation

13 µ̂← 1
t−s

∑t
j=s+1

α2
j

σ2 � worst-case estimate for the quadratic

14 ψ ← min(N, s+ bµ−µ̂ρ + 1
2c) � number of steps the bound is better than the worst-case estimate

15 UQ ← Q+ (ψ − s)(µ− ψ−s−1
2 ρ) + (N − ψ)µ̂

16 return LD + LQ,UD + UQ
17 end procedure

Theorem 9. Assume that Assumption 7 and Assumption 8 hold. For any even m ∈ {2, 4, . . . , N − 2} and any s ∈
{1, . . . , N −m}, the bounds defined in Equation (6) and Theorems 10, 14 and 19 hold in expectation:

E[LD | Fs] ≤ E[log(det [K]) | Fs] ≤ E[UD | Fs] and

E[LQ | Fs] ≤ E[y>K−1y | Fs] ≤ E[UQ | Fs] .

Proof. Follows from Theorems 10, 14 and 19 and Lemma 23.

H PROOF FOR THE LOWER BOUND ON THE DETERMINANT

Theorem 10. Assume that Assumption 7 holds, and that m ∈ {2, 4, . . . , N} is an even number. Set t := s+m, then, for
all s ∈ {1, . . . , N −m}

E [LD| Fs] ≤ E [DN | Fs] .

LD := log det [K:s,:s] + (ψs − s)
(

logµt −
ψs − s− 1

2
ρt

)
+ (N − ψs) log σ2 (35)

� the lower bound

logµt :=
1

m

t∑
j=s+1

log
(
σ2 + ks(xj ,xj)

)
(36)

� (under-)estimate of the posterior variance conditioned on s points

ρt :=
2

m

t−1
2∑

j= s+1
2

ks(x2j+1,x2j)
2

σ2σ2
(37)

� (over-)estimate of the correlation conditioned on s points

ψs := s+ max p where p ∈ N is such that (38)

p

(
logµt−m −

p− 1

2
ρt−m

)
≥ p log σ2 (39)
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� number of steps that we suspect the decrease in variance to be controllable

= min

(
N, s+

⌊
logµt−m − log σ2

ρt−m
+

1

2

⌋)
(40)

where, if s−m < 1, we set logµt−m := log σ2 and ρt−m := 1.

Remark 11. For our proof we require ψs to be Fs-measurable. We conjecture that for a PAC bound proof this requirement
can be relaxed. Therefore, in our implementation, we use logµt−m := logµt and ρt−m := ρt.

Proof.

E [LD| Fs]− E [ log det [K]| Fs] = E [LD − log det [K]| Fs]

= E

 (ψs − s)
(

logµt −
ψs − s− 1

2
ρt

)
+ (N − ψs) log σ2 −

N∑
j=s+1

log
(
ks(xj ,xj) + σ2

)∣∣∣∣∣∣Fs


� using the definition of Lt and slightly simplifying using Lemma 22

≤ E

 (ψs − s)
(

logµt −
ψs − s− 1

2
ρt

)
−

ψs∑
j=s+1

log
(
ks(xj ,xj) + σ2

)∣∣∣∣∣∣Fs


� using that log σ2 ≤ log
(
ks(xj ,xj) + σ2) for all j

= (ψs − s)
(
E
[
log
(
σ2 + ks(xt+1,xt+1)

∣∣Fs)]− ψs − s− 1

2
E
[
ks(xt+1,xt+2)2

σ2σ2

∣∣∣∣Fs])

− E

 ψs∑
j=s+1

log
(
ks(xj ,xj) + σ2

)∣∣∣∣∣∣Fs


� using Assumption 7

≤ 0

� Lemma 13

Lemma 12. For c > 0 and b ≥ a ≥ 0 :

log(c+ b− a) ≥ log(c+ b)− a

c

Proof. For a = 0, the statement is true with equality. We rewrite the inequality as

a

c
≥ log

(
c+ b

c+ b− a

)
= log

(
1 +

a

c+ b− a

)
.

For the case a = b, apply the exponential function on both sides, and the statement follows from ex ≥ x+ 1 for all x. For
a ∈ (0, b), consider f(a) := log(c+ b− a) + a

c − log(c+ b). The first derivative of this function is f ′(a) = − 1
c+b−a + 1

c ,
which is always positive for a ∈ (0, b). Since f(0) = 0, we must have f(a) ≥ 0 for all a ∈ (a, b).

Lemma 13. For all n ≥ t ≥ s ∈ N:

E

 n∑
j=t+1

log
(
ks(xj ,xj) + σ2

)∣∣∣∣∣∣Fs
 ≥ (n− t)

(
E
[
log
(
σ2 + ks(xt+1,xt+1)

)∣∣Fs]
− n− t− 1

2σ4
E
[
ks(xt+1,xt+2)2

∣∣Fs])
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Proof. IntroduceXj := [xs+1, . . . ,xj−1] with the convention ks(xs+1,Xs+1) := 0.

E

 n∑
j=t+1

log kj−1(xj ,xj) + σ2

∣∣∣∣∣∣Fs
 (41)

= E

 n∑
j=t+1

log
(
σ2 + ks(xj ,xj)− ks(xj ,Xj)

(
ks(Xj ,Xj) + σ2

)−1
ks(Xj ,xj)

)∣∣∣∣∣∣Fs
 (42)

� Lemma 25

≥ E

 n∑
j=t+1

(
log
(
σ2 + ks(xj ,xj)

)
− 1

σ2
ks(xj ,Xj)

(
ks(Xj ,Xj) + σ2

)−1
ks(Xj ,xj)

)∣∣∣∣∣∣Fs
 (43)

� Lemma 12

≥ E

 n∑
j=t+1

(
log
(
σ2 + ks(xj ,xj)

)
− 1

σ2
ks(xj ,Xj)

(
σ2
)−1

ks(Xj ,xj)

)∣∣∣∣∣∣Fs
 (44)

� underestimating ks(Xj ,Xj) by 0

≥ E

 n∑
j=t+1

(
log
(
σ2 + ks(xj ,xj)

)
− 1

σ2

j−1∑
i=t+1

ks(xj ,xj)
2

σ2

)∣∣∣∣∣∣Fs
 (45)

� writing the vector multiplication as sum

= (n− t)E
[
log
(
σ2 + ks(xt+1,xt+1)

)∣∣Fs]− (n− t)(n− t− 1)

2
E
[
ks(xt+1,xt+2)2

σ2σ2

∣∣∣∣Fs]
� using Assumption 7 and then applying Lemma 26

I PROOF FOR THE UPPER BOUND ON THE QUADRATIC FORM

Theorem 14. Assume that Assumption 7 and Assumption 8 hold. Let m ∈ N be even, then for all s ∈ {1, . . . , N −m}

E[y>K−1y | Fs] ≤ E[UQ | Fs] ,

where

UQ := y>:sK
−1
:s,:sy:s + (ψs − s)

(
µt +

ψs − s− 1

2
ρt

)
+ (N − ψs)µt (46)

� the upper bound

µt :=
1

t− s
t∑

j=s+1

(yj −ms(xj))
2

ks(xj ,xj) + σ2
(47)

ρt :=
2

t− s

t
2∑

j= s+2
2

(y2j −ms(x2j))
2ks(x2j ,x2j−1)2

(ks(x2j ,x2j) + σ2)σ2σ2
(48)

µt :=
1

t− s
t∑

j=s+1

(yj −ms(xj))
2

σ2
(49)

ψs := min

(
N, s+

⌊
µt−m − µt−m

ρt−m
+

1

2

⌋)
. (50)

where, if s−m < 1, we set µt−m = µt−m := 0 and ρt−m := 1.
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Proof.

E
[
y>K−1y | Fs

]
− E [UQ | Fs]

= E

 N∑
j=s+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
− (ψs − s)

(
µt +

ψs − s− 1

2
ρt

)
+ (N − ψs)µt | Fs


� using the definition of UQ and slightly simplifying with Lemma 24

= E

 N∑
j=s+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs

− (ψs − s)E
[

(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2
| Fs

]

− (ψs − s)
ψs − s− 1

2
E
[

(ys+1 −ms(xs+1))2ks(xs+1,xs+2)2

(ks(xs+1,xs+1) + σ2)σ2
| Fs

]
− (N − ψs)E

[
(ys+1 −ms(xs+1))2

σ2
| Fs

]
� using Assumption 7

≤ 0

� Lemma 17 with n = ψs and t = s, and Lemma 15 with n = N

Lemma 15. For all ψ, n, s ∈ N with s ≤ ψ ≤ n:

E

 n∑
j=ψ+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs

 ≤ (n− ψ)E
[

(ys+1 −ms(xs+1))2

σ2
| Fs

]

Proof.

E

 n∑
j=ψ+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs

 ≤ E

 n∑
j=ψ+1

(yj −mj−1(xj))
2

σ2
| Fs

 (51)

� the posterior variance cannot fall below σ2

≤ E

 n∑
j=ψ+1

(yj −ms(xj))
2

σ2
| Fs

 (52)

� by Assumption 8

= (n− ψ)E

[
(ys+1 −ms(xs+1))

2

σ2
| Fs

]
(53)

� using Assumption 7

Lemma 16. For c > 0, b, x ≥ 0 and a ≥ b:

x

c+ a− b ≤
x

c

(
1− a− b

c+ a

)
=
x(c+ b)

c(c+ a)

Proof.

x

c+ a− b =
x

c

(
c

c+ a− b

)
=
x

c

(
1− a− b

c+ a− b

)
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≤ x

c

(
1− c+ a− b

c+ a

a− b
c+ a− b

)
� since

c+ a− b
c+ a

≤ 1

=
x

c

(
1− a− b

c+ a

)
� cancelling terms

Lemma 17. For all s, t, n ∈ N with n ≥ t ≥ s:

E

 n∑
j=t+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs


≤ (n− t)

(
E
[

(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2
| Fs

])
+ (n− t)

((
n+ t+ 1

2
− s
)
E
[

(ys+1 −ms(xs+1))2ks(xs+1,xs+2)2

(ks(xs+1,xs+1) + σ2)σ2σ2
| Fs

])

Proof. IntroduceXj := [xs+1, . . . ,xj−1] with the convention ks(xs+1,Xs+1) := 0.

E

 n∑
j=t+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs


= E

 n∑
j=t+1

(yj −mj−1(xj))
2

σ2 + ks(xj ,xj)− ks(xj ,Xj)
(
ks(Xj ,Xj) + σ2

)−1
ks(Xj ,xj)

| Fs


� Lemma 25

≤ E

 n∑
j=t+1

(yj −mj−1(xj))
2
(
σ2 + ks(xj ,Xj)

(
ks(Xj ,Xj) + σ2

)−1
ks(Xj ,xj)

)
σ2 (σ2 + ks(xj ,xj))

| Fs


� Lemma 16

≤ E

 n∑
j=t+1

(yj −mj−1(xj))
2
(
σ2 + ks(xj ,Xj)

(
σ2
)−1

ks(Xj ,xj)
)

σ2 (σ2 + ks(xj ,xj))
| Fs


� underestimating the eigenvalues of ks(X,X) by 0

= E

 n∑
j=t+1

(yj −mj−1(xj))
2
(
σ2 +

∑j−1
i=s+1

ks(xj ,xi)
2

σ2

)
σ2 (σ2 + ks(xj ,xj))

| Fs


� writing the vector-product explicitly as a sum

=

n∑
j=t+1

(
E
[

(yj −mj−1(xj))
2

σ2 + ks(xj ,xj)
| Fs

]
+

j−1∑
i=s+1

E
[

(yj −mj−1(xj))
2ks(xj ,xi)

2

(ks(xj ,xj) + σ2)σ2σ2
| Fs

])
� linearity of expectation

=

n∑
j=t+1

(
E
[

(yj −ms(xj))
2

σ2 + ks(xj ,xj)
| Fs

]
+

j−1∑
i=s+1

E
[

(yj −ms(xj))
2ks(xj ,xi)

2

(ks(xj ,xj) + σ2)σ2σ2
| Fs

])
� by assumption Equation (34)

=

n∑
j=t+1

(
E
[

(ys+1 −ms(xs+1))2

σ2 + ks(xs+1,xs+1)
| Fs

]
+

j−1∑
i=s+1

E
[

(ys+1 −ms(xs+1))2ks(xs+1,xs+2)2

(ks(xs+1,xs+1) + σ2)σ2σ2
| Fs

])
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� using Assumption 7

= (n− t)
(
E
[

(ys+1 −ms(xs+1))2

σ2 + ks(xs+1,xs+1)
| Fs

])
+ (n− t)

((
n+ t− 1

2
− s
)
E
[

(ys+1 −ms(xs+1))2ks(xs+1,xs+2)2

(ks(xs+1,xs+1) + σ2)σ2σ2
| Fs

])
� by Lemma 26

Remark 18. Similar to the proof of Theorem 10, we can improve the bound by monitoring how many steps the sum of
average correlations is below the average variance. More precisely, we solve for the largest p ∈ [0, N − s] such that

µs +
p− 1

2
ρs ≤

1

m

s∑
j=s−m+1

(yj −ms(xxj ))
2

σ2
,

and replace the upper bound by

Ut := y>:sK
−1
:s,:sy:s + p

(
µt +

p− 1

2
ρt

)
+
N − p− s
t− s

t∑
j=s+1

(yj −ms(xxj ))
2

σ2
. (54)

J PROOF FOR THE LOWER BOUND ON THE QUADRATIC FORM

Theorem 19. Assume that Assumption 7 holds. Let m ∈ {2, . . . , N − 2} be an even number less than N . For s ∈
{1, . . . , N −m},

E [LQ| Fs] ≤ E
[
y>K−1y

∣∣Fs]
where

LQ := y>:sK
−1
:s,:sy:s + (N − s) (µt − (N − s− 1) max(0, ρt)) (55)

µt :=
1

t− s
t∑

j=s+1

(yj −ms(xj))
2

ks(xj ,xj) + σ2
(56)

ρt :=
2

t− s

t
2∑

j= s+2
2

(y2j −ms(x2j))(y2j−1 −ms(x2j−1))ks(x2j ,x2j−1)

(ks(x2j ,x2j) + σ2)(ks(x2j−1,x2j−1) + σ2)
(57)

Proof.

E [LQ | Fs]− E
[
y>K−1y | Fs

]
= E

(N − s) (µt − (N − s− 1) max(0, ρt))−
N∑

j=s+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs


� using the definition of LQ and slightly simplifying

≤ E

(N − s) (µt − (N − s− 1)ρt)−
N∑

j=s+1

(yj −mj−1(xj))
2

kj−1(xj ,xj) + σ2
| Fs


� allowing ρ to be negative increases the lower bound

= (N − s)E
[

(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2

∣∣∣∣Fs]
− (N − s)(N − s− 1)E

[
(ys+1 −ms(xs+1))(ys+2 −ms(xs+2))ks(xs+1,xs+2)

(ks(xs+1,xs+1) + σ2)(ks(xs+2,xs+2) + σ2)

∣∣∣∣Fs]
� using Assumption 7

≤ 0

� using Lemma 20
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Lemma 20. For all Fs-measurable α ∈ R :

E
[
y>K−1y | Fs

]
≥ y>:sK−1:s,:sy:s + α(2− α)(N − s)E

[
(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2

∣∣∣∣Fs]
− α2(N − s)(N − s− 1)E

[
(ys+1 −ms(xs+1))(ys+2 −ms(xs+2))ks(xs+1,xs+2)

(ks(xs+1,xs+1) + σ2)(ks(xs+2,xs+2) + σ2)

∣∣∣∣Fs] (58)

Proof. Using Lemma 24, we can write the quadratic form as a sum of two quadratic forms:

y>K−1y = y>:sK
−1
:s,:sy:s + (ys+1: −ms(Xs+1:))

> (ks(Xs+1:,Xs+1:) + σ2I
)−1

(ys+1: −ms(Xs+1:)). (59)

For the right-hand addend, we use a trick we first encountered in Kim and Teh (2018): a>A−1a ≥ 2a>b− b>Ab, for any
b givenA is symmetric and positive definite. Define e := (ys+1: −ms(Xs+1:)),D := Diag[

(
ks(Xs+1:,Xs+1:) + σ2I

)
]

and choose b := αD−1e.

E
[
y>K−1y | Fs

]
(60)

= y>:sK
−1
:s,:sy:s + E

[
(ys+1: −ms(Xs+1:))

> (ks(Xs+1:,Xs+1:) + σ2I
)−1

(ys+1: −ms(Xs+1:)) | Fs
]

(61)

� since y>:sK
−1
:s,:sy:s is Fs-measurable

≥ y>:sK−1:s,:sy:s + 2αE
[
e>D−1e | Fs

]
− α2E

[
e>D−1

(
ks(Xs+1:,Xs+1:) + σ2I

)
D−1e | Fs

]
(62)

� applying the inequality for quadratic forms and using the Fs-measurabilituy of α

= y>:sK
−1
:s,:sy:s + 2α

N∑
j=s+1

E
[

(yj −ms(xj))
2

ks(xj ,xj) + σ2

∣∣∣∣Fs]

− α2
N∑

j=s+1

N∑
i=s+1

E
[

(yj −ms(xj))(yi −ms(xi))ks(xj ,xi) + δijσ
2

(ks(xj ,xj) + σ2)(ks(xi,xi) + σ2)

∣∣∣∣Fs] (63)

� writing the vector products as sums

= y>:sK
−1
:s,:sy:s + 2α(N − s)E

[
(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2

∣∣∣∣Fs]
− α2(N − s)E

[
(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2

∣∣∣∣Fs]
− α2

(
(N − s)2 − (N − s)

)
E
[

(ys+1 −ms(xs+1))(ys+2 −ms(xs+2))ks(xs+1,xs+2)

(ks(xs+1,xs+1) + σ2)(ks(xs+2,xs+2) + σ2)

∣∣∣∣Fs] (64)

� using Assumption 7, grouping variance and covariance terms separately

= y>:sK
−1
:s,:sy:s + α(2− α)(N − s)E

[
(ys+1 −ms(xs+1))2

ks(xs+1,xs+1) + σ2

∣∣∣∣Fs] (65)

− α2(N − s)(N − s− 1)E
[

(ys+1 −ms(xs+1))(ys+2 −ms(xs+2))ks(xs+1,xs+2)

(ks(xs+1,xs+1) + σ2)(ks(xs+2,xs+2) + σ2)

∣∣∣∣Fs] (66)

� simplifying

K UTILITY PROOFS

Lemma 21 (Bounding the relative error (Lemma 15 in [ANONYMIZED FOR PEER REVIEW])). Let D, D̂ ∈ [L,U ], and
assume sign(L) = sign(U) 6= 0. Then the relative error of the estimator D̂ can be bounded as

|D − D̂|
|D| ≤ max(U − D̂, D̂ − L)

min(|L|, |U|) .



Adaptive Cholesky Gaussian Processes

Proof. First observe that ifDN > D̂ then |DN−D̂| = DN−D̂ ≤ U−D̂. IfDN ≤ D̂, then |DN−D̂| = D̂−DN ≤ D̂−L.
Hence,

|DN − D̂| ≤ max(U − D̂, D̂ − L).

Case L > 0: In this case |DN | = DN ≥ L = |L|, and we obtain for the relative error:

max(U − D̂, D̂ − L)

|DN |
≤ max(U − D̂, D̂ − L)

|L| .

Case U < 0: In that case |L| ≥ |DN | ≥ |U|, and the relative error can be bounded as follows.

max(U − D̂, D̂ − L)

|DN |
≤ max(U − D̂, D̂ − L)

|U|
Since we assumed sign(L) = sign(U) these were all cases that required consideration. Combining all observations yields

|DN − D̂|
|DN |

≤ max(U − D̂, D̂ − L) max

(
1

|U| ,
1

|L|

)
=

max(U − D̂, D̂ − L)

min(|U|, |L|)

Lemma 22. The log-determinant of a kernel matrix can be written as a sum of conditional variances.

log det [K] =

N∑
j=1

log(kj−1(xj ,xj) + σ2) (67)

Proof. Denote with L the Cholesky decomposition ofK. Then we obtain

log det [K] = log det
[
LL>

]
(68)

� using A = LL>

= log
(
det [L] det

[
L>
])

(69)
� for square matrices B,C: det [BC] = det [B] det [C]

= log

 N∏
j=1

L2
jj

 (70)

� for triangular matrices the determinant is the product of the diagonal elements

=

N∑
j=1

2 logLjj (71)

� property of log

With Lemma 27 the result follows.

Lemma 23 (The fjs are decreasing in expectation (Lemma 7 in [ANONYMIZED FOR PEER REVIEW])). Assume
x1, . . . ,xN ∈ X are independent and identically distributed. Denote with P the law of the x1, . . . ,xN and with
L the Cholesky decomposition of K. Define the probability space (X, σ(x1, . . . ,xN ),P) and the canonical filtration
Fj := σ(x1, . . . ,xj) for j = 1, . . . , N . Then the vj decrease in conditional expectation, that is,

E[log vj+1 | σ(x1, . . . ,xj)] ≤ E[log vj | σ(x1, . . . ,xj−1)] ,

where

kn(x) := [k(x,x1), . . . , k(x,xn)]> ∈ Rn , (72)
kn+1 := kn(xn+1) ∈ Rn and (73)

vn := k(xn,xn) + σ2 − k>n (Kn−1 + σ2In−1)−1kn . (74)
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Proof. Denote with Qj( dx) := P ( dx | x1, . . . ,xj), the regular conditional probability. Define the shorthand qj(x) :=
kj(x)>(Kj + σ2I)−1kj(x). We will show later in the proof, in Eq. (93), that qj(x) = qj−1(x) + rj(x) where rj(x) ≥ 0.
Taking Eq. (93) as granted for now, we can show the claim as follows.

E[log vj+1 | σ(x1, . . . ,xj)] = E[logL2
j+1,j+1 | σ(x1, . . . ,xj)] (75)

� definition of fj

=

∫
log
(
k(x,x) + σ2 − kj(x)>(Kj + σ2I)−1kj(x)

)
Qj( dx) (76)

� property of conditional expectation

=

∫
log
(
k(x,x) + σ2 − qj(x)

)
Qj( dx) (77)

� definition of qj(x)

=

∫
log
(
k(x,x) + σ2 − qj−1(x)− rj(x)

)
Qj( dx) (78)

� using Eq. (92)

≤
∫

log
(
k(x,x) + σ2 − qj−1(x)

)
Qj( dx) (79)

� using Eq. (93) and monotonicity of the logarithm

=

∫
log
(
k(x,x) + σ2 − qj−1(x)

)
Qj−1( dx) (80)

� with Fubini’s theorem

= E[log vj | σ(x1, . . . ,xj−1)] (81)
� property of conditional expectation

It remains to show qj(x) = qj−1(x) + rj(x) where rj(x) ≥ 0. For readability, we define vx := (Kj−1 + σ2I)−1kj−1(x)
and c := v−1j . First note, that using block-matrix inversion we can write

(Kj + σ2Ij)
−1 =

[
(Kj−1 + σ2Ij−1)−1 + vxjcv

>
xj −vxjc

−v>xjc c

]
. (82)

Using above observation, we can transform qj(x).

qj(x) =
[
kj−1(x)> k(xj ,x)

]
(83)

·
[
(Kj−1 + σ2I)−1 + vxjcv

>
xj −vxjc

−v>xjc c

]
(84)

·
[
kj−1(x)
k(xj ,x)

]
(85)

� definition of qj(x) and using above observation

=
[
kj−1(x)> k(x,xj)

]
(86)

·
[
vx + vxjcv

>
xjkj−1(x)− vxjck(x,xj)

−v>xjkj−1(x)c+ ck(x,xj)

]
(87)

� evaluating the RHS matrix-vector multiplication

= kj−1(x)>vx + c(v>xjkj−1(x))2 (88)

− 2v>xjkj−1(x)ck(x,xj) + ck(x,xj)
2 (89)

� evaluating the vector product

= kj−1(x)>vx + c(k(x,xj)− v>xjkj−1(x))2 (90)
� rearranging terms into a quadratic

= qj−1(x) + c(k(x,xj)− v>xjkj−1(x))2 (91)
� definition of qj−1(x)
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This shows that

qj(x) = qj−1(x) + rj(x) , where (92)

rj(x) := c(k(x,xj)− v>xjkj−1(x))2 ≥ 0. (93)

Lemma 24. The term y>K−1y can be written as

y>K−1y =

N∑
n=1

(yn −mn−1(xn))

kn−1(xn,xn) + σ2
. (94)

Proof. Define

kj(x) := [k(x,x1), ..., k(x,xj)]
> ∈ Rj

kj+1 := kj(xj+1) ∈ Rj

pj := k(xj ,xj) + σ2 − k>j (Kj−1 + σ2I)−1kj

α := (Kn + σ2I)−1kn+1

First note, that using block-matrix inversion we can write

(Kn+1 + σ2I)−1 =

[
(Kn + σ2I)−1 +αp−1n+1α

> −αp−1n+1

−α>p−1n+1 p−1n+1

]
.

This allows to write

y>n+1(Kn+1 + σ2I)−1yn+1

=
[
y>n yn+1

] [(Kn + σ2I)−1 +αp−1n+1α
> −αp−1n+1

−α>p−1n+1 p−1n+1

] [
yn
yn+1

]
� using above observation

=
[
y>n yn+1

] [(Kn + σ2I)−1yn +αp−1n+1α
>yn −αp−1n+1yn+1

−α>p−1n+1yn + p−1n+1yn+1

]
� simplifying from the right

= y>n (Kn + σ2I)−1yn + y>nαp
−1
n+1α

>yn − y>nαp−1n+1yn+1 − yn+1α
>p−1n+1yn + yn+1p

−1
n+1yn+1

� simplifying from the left

= y>n (Kn + σ2I)−1yn + p−1n+1(y>nαα
>yn − y>nαyn+1 − yn+1α

>yn + yn+1yn+1)

� pulling out p−1
n+1

= y>n (Kn + σ2I)−1yn + p−1n+1((y>nα)2 − 2y>nαyn+1 + y2n+1)

� simplifying

= y>n (Kn + σ2I)−1yn + p−1n+1(y>nα− yn+1)2

� simplifying

Now observe that the last addend is indeed the mean square error divided by the posterior variance. By induction the result
follows.

Lemma 25. For all t,m ∈ N with 1 ≤ t+m ≤ N

kt+m(xa,xb) = kt(xa,xb)− kt(xa,X)
(
kt(X) + σ2Im

)−1
kt(X,xb)

where kt(xa,xb) := k(xa,xb)− k(xa,Xt)
(
k(X:t,X:t) + σ2I

)−1
k(Xt,xb) andX := Xt:t+m.
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Proof.

kt+m(xa,xb)

= k(xa,xb)− k(xa,Xt+m)A−1t+mk(Xt+m,xb)

� by definition

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

] [k(Xt) + σ2It k(Xt,X)
k(X,Xt) k(X) + σ2It

]−1 [
k(Xt,xb)
k(X,xb)

]
� in block notation

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

] [ At k(Xt,X)
k(X,Xt) k(X) + σ2It

]−1 [
k(Xt,xb)
k(X,xb)

]
� using the definition of At

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

]
·[

A−1t +A−1t k(Xt,X)
(
k(X) + σ2It − k(X,Xt)A

−1
t k(Xt,X)

)−1
k(X,Xt)A

−1
t −A−1t k(Xt,X)

(
k(X) + σ2It − k(X,Xt)A

−1
t k(Xt,X)

)−1
−

(
k(X) + σ2It − k(X,Xt)A

−1
t k(Xt,X)

)−1
k(X,Xt)A

−1
t

(
k(X) + σ2It − k(X,Xt)A

−1
t k(Xt,X)

)−1
]
·[

k(Xt,xb)
k(X,xb)

]
� applying block-matrix inversion

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

]
·[

A−1t +A−1t k(Xt,X)
(
kt(X) + σ2It

)−1
k(X,Xt)A

−1
t −A−1t k(Xt,X)

(
kt(X) + σ2It

)−1
−
(
kt(X) + σ2It

)−1
k(X,Xt)A

−1
t

(
kt(X) + σ2It

)−1
]
·[

k(Xt,xb)
k(X,xb)

]
� applying the definition of kt

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

]
·[

A−1t k(Xt,xb) +A−1t k(Xt,X)
(
kt(X) + σ2It

)−1
k(X,Xt)A

−1
t k(Xt,xb)−A−1t k(Xt,X)

(
kt(X) + σ2It

)−1
k(X,xb)

−
(
kt(X) + σ2It

)−1
k(X,Xt)A

−1
t k(Xt,xb) +

(
kt(X) + σ2It

)−1
k(X,xb)

]
� evaluating multiplication with right-most vector

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

]
·[

A−1t k(Xt,xb)−A−1t k(Xt,X)
(
kt(X) + σ2It

)−1 (
k(X,xb)− k(X,Xt)A

−1
t k(Xt,xb)

)(
kt(X) + σ2It

)−1 (
k(X,xb)− k(X,Xt)A

−1
t k(Xt,xb)

) ]
� rearranging

= k(xa,xb)−
[
k(xa,Xt) k(xa,X)

]
·[

A−1t k(Xt,xb)−A−1t k(Xt,X)
(
kt(X) + σ2It

)−1
kt(X,xb)(

kt(X) + σ2It
)−1

kt(X,xb)

]
� applying the definition of kt

= k(xa,xb)− k(xa,Xt)A
−1
t k(Xt,xb)

+ k(xa,Xt)A
−1
t k(Xt,X)

(
kt(X) + σ2It

)−1
kt(X,xb)− k(xa,X)

(
kt(X) + σ2It

)−1
kt(X,xb)

� evaluating the vector product

= k(xa,xb)− k(xa,Xt)A
−1
t k(Xt,xb)−

(
k(xa,X)− k(xa,Xt)A

−1
t k(Xt,X)

) (
kt(X) + σ2It

)−1
kt(X,xb)

� rearranging

= kt(xa,xb)− kt(xa,X)
(
kt(X) + σ2It

)−1
kt(X,xb)

� applying the definition of kt
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Lemma 26.
n∑

j=t+1

j−1∑
i=t0+1

1 = (n− t)
(
n+ t− 1

2
− t0

)
(95)

Proof.

n∑
j=t+1

j−1∑
i=t0+1

1 =

n∑
j=t+1

(j − 1− t0) (96)

=

n−t−1∑
j=0

(j − 1− t0 + t+ 1) (97)

=

n−t−1∑
j=0

(j + t− t0) (98)

= (t− t0)(n− t) +
n−t−1∑
j=0

j (99)

= (t− t0)(n− t) +
(n− t− 1)(n− t)

2
(100)

= (n− t)
(
n− t− 1

2
+ t− t0

)
(101)

= (n− t)
(
n+ t− 1

2
− t0

)
(102)

Lemma 27 (Link between the Cholesky and Gaussian process regression). Denote with CN the Cholesky decomposition of
K, so that CNC>N = K. The n-th diagonal element of CN , squared, is equivalent to kn−1(xn,xn) + σ2:

[CN ]2nn = kn−1(xn,xn) + σ2 .

Proof. With abuse of notation, define C1 :=
√
k(x1,x1) and

CN :=

[
CN−1 0

k>NC
−>
N−1

√
k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN

]
.

We will show that the lower triangular matrix CN satisfies CNC>N = KN + σ2IN . Since the Cholesky decomposition
is unique (Golub and Van Loan 2013, Theorem 4.2.7), CN must be the Cholesky decomposition ofK. Furthermore, by
definition of CN , [CN ]2NN = k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN . The statement then follows by induction.

To remain within the text margins, define

x := k>NC
−>
N−1C

−1
N−1kN + k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN .

We want to show that CNC>N = KN + σ2IN .

CNC
>
N =

[
CN−1 0

k>NC
−>
N−1

√
k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN

]

·
[
C>N−1 C−1N−1kN

0>
√
k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN

]

=

[
CN−1C

>
N−1 CN−1C

−1
N−1kN

k>NC
−>
N−1C

>
N−1 x

]
=

[
KN−1 + σ2IN−1 kN

k>N x

]
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Also x can be simplified further.

x = k>NC
−>
N−1C

−1
N−1kN + k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN

= k>N (Kn−1 + σ2In−1)−1kN + k(xN ,xN ) + σ2 − k>N (Kn−1 + σ2In−1)−1kN

= k(xN ,xN ) + σ2.
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