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Abstract

Background: Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse
during sleep and affects up to one billion people worldwide. OSA is associated with increased risk of
cardiovascular diseases, stroke, and all-cause mortality. Diagnosis and treatment of OSA are crucial
for long term health and a reduced economic burden. However, the gold-standard polysomnography
(PSG) is time-consuming, expensive, and requires a great amount of manual labor.

Objective: The objective of this PhD project was to invent fast, cheap, and data-driven screening
and scoring systems for OSA based on imaging data. Imaging data can be captured much faster
than overnight data collection for detection and characterization of OSA using computer vision.

Methods: Two systems were proposed: 1) an automatic screening system which utilizes 3D cran-
iofacial scans to estimate apnea-hypopnea index (AHI), which measures OSA severity, and 2) an
automatic scoring system which utilizes drug-induced sleep endoscopy (DISE) videos to estimate
sites of upper airway collapse and obstruction degrees in OSA patients. The main components in
both systems were convolutional neural networks, which were trained and evaluated using two dif-
ferent datasets consisting of 1) 1366 3D craniofacial scans collected across 11 different sleep clinics,
and 2) 281 DISE videos collected across two sleep clinics and scored by three different surgeons.

Results: For AHI estimation based on 3D craniofacial scans, a mean absolute error of 11.38
events/hour and a Pearson correlation of 0.4 were obtained. Subjects were classified as normal
or with OSA with an accuracy of 67%, which was higher than using screening questionnaires.
The model’s performance was comparable to three sleep specialists, and its performance increased
further by adding demographics and questionnaires as features. For automatic scoring of DISE in
OSA, a mean F1 score of 70% was obtained across four upper airway sites (velum: 85%, oropharynx:
72%, tongue base: 57%, epiglottis: 65%) with respect to obstruction degrees (0, 1, or 2).

Conclusion: The proposed automatic screening system for detection of OSA based on 3D cran-
iofacial scans has the potential to fulfill the need for a fast and cheap screening method for OSA
in clinical practice. The proposed automatic scoring system for DISE videos has the potential to
provide consistent scoring without bias, which can aid surgeons in interpretation of DISE and result
in improved treatment outcomes for OSA patients.
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Resumé

Baggrund: Obstruktiv søvnapnø (OSA) er karakteriseret ved gentagende kollaps i den øvre luftvej
under søvn og påvirker op til en milliard mennesker globalt. OSA er forbundet med øget risiko for
kardiovaskulære sygdomme, blodpropper og dødelighed af alle årsager. Diagnose og behandling af
OSA er afgørende for langtidshelbreddet og en reduceret økonomisk byrde. Guldstandarden, som
er polysomnography (PSG), er tidskrævende, dyr og kræver en stor mængde manuelt arbejde.

Formål: Formålet med dette PhD projekt var at opfinde hurtige, billige og datadrevne screenings-
og scoringssystemer til OSA baseret på billeddata. Billeddata kan opsamles meget hurtigere end
dataopsamling under søvn til detektion og karakterisering af OSA ved hjælp af computer vision.

Metoder: To systemer blev udviklet: 1) et automatisk screeningssystem, der bruger 3D kraniofa-
ciale skanninger til at estimere apnø-hypopnø-indekset (AHI), som måler graden af OSA, og 2) et
automatisk scoringssystem, der bruger søvnendoskopi (DISE) videoer til at estimere lokationer af
øvre luftvejskollaps og obstruktionsgrader i OSA patienter. Hovedkomponenterne i begge systemer
var convolutional neural networks, som blev trænet og evalueret ved at bruge to forskellige datasæt
bestående af 1) 1366 3D kraniofaciale skanninger samlet på tværs af 11 forskellige søvnklinikker,
og 2) 281 DISE videoer samlet på tværs af to søvnklinikker og scoret af tre forskellige kirurger.

Resultater: AHI estimering baseret på 3D kraniofaciale skanninger gav en mean absolute error på
11.38 events/time og en Pearson korrelation på 0.4. Subjekter blev klassificeret som normale eller
OSA med en accuracy på 67%, hvilket var højere end at bruge screeningsspørgeskemaer. Modellens
performance var sammenlignelig med tre søvnspecialister og dens performance blev bedre ved at
tilføje demografiske data og spørgeskemaer som features. Auomatisk scoring af DISE i OSA gav
en gennemsnitlig F1 score på 70% opnået på tværs af de fire øvre luftvejslokationer (velum: 85%,
oropharynx: 72%, tunge: 57%, epiglottis: 65%) med hensyn til obstruktionsgrader (0, 1 eller 2).

Konklusion: Det udviklede automatiske screeningssystem til detektion af OSA baseret på 3D
kraniofacialle skanninger har potentialet til at opfylde behovet om en hurtig og billig screeningsme-
tode til OSA i klinisk praksis. Det udviklede automatiske scoringssystem til DISE videoer har
potentialet til at levere konsistente scoringer uden bias, som kan hjælpe kirurgerne med fortolknin-
gen af DISE og medvirke i forbedrede behandlingsresultater for OSA patienter.
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Preface

This PhD dissertation was prepared at the Section for Digital Health, Department of Health Tech-
nology at the Technical University of Denmark (DTU) in fulfilment of the requirements for acquiring
a degree of Doctor of Philosophy. The research and results conveyed in this dissertation have been
accomplished equally at the Department of Health Technology at DTU, the Stanford Center for
Sleep Sciences and Medicine at Stanford University, and the Danish Center for Sleep Medicine at
Copenhagen University Hospital. The entire work was conducted within the period March 1st, 2019
until May 31st, 2022 during which four research papers have been prepared.

The dissertation deals with advanced image analysis and deep learning techniques to meet the
objectives of the research questions. Although it is not a requirement, a reader with a background
similar to the author in signal processing and machine learning will be able to fully comprehend and
appreciate the content of this dissertation. Furthermore, a person with a technical background will
be able to quickly acquire any missing knowledge about sleep by consulting the clinical background
chapter. As a general rule, I always strive to prepare a thesis that is as short and concise as possible,
and while this is still a priority, a more detailed dissertation has been developed this time around,
allowing for a more pleasant and comprehensive reading experience.

Above all else, the emphasis has been on presenting clear and reproducible research. Consequently,
every applied method in this project is described in great detail using text, figures, and tables
that support and facilitate the apprehension of each methodology. Furthermore, all the software
which has been implemented in Python has been commented properly, which should allow another
researcher to grasp and reproduce/continue the work if they desire to do so and the code will be
readily available if they request it.

On a personal note, ever since I was in elementary school, I thoroughly enjoyed the art of writing.
This passion has continued to grow as I made my way through high school and university. I realized
with a heavy heart that this could be my last big report, and I decided to go out with a bang. With
this dissertation, I have striven to produce my greatest, most well-written and thorough report to
date. I sincerely hope that this is the impression I leave the reader with as well.
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Chapter 1

Introduction

1.1 Research Background

Obstructive sleep apnea (OSA) is characterized by recurrent upper airway narrowing or collapse
during sleep, causing reduced airflow or cessation of breathing and frequently displaying symptoms
such as heavy snoring, sudden awakenings, and gasping/choking sounds [1]. OSA patients suffer
from daytime sleepiness and have increased risk of cardiovascular diseases, hypertension, stroke,
type 2 diabetes, and all-cause mortality [2–9]. A recent study estimated that almost half a billion
people aged 30-69 have moderate to severe OSA globally [10] and evidence suggests that OSA is a
severely underdiagnosed disorder [11–13]. Furthermore, the American Academy of Sleep Medicine
(AASM) estimated in 2015 that the economic burden of undiagnosed OSA was $150 billion in the
United States, while cost of diagnosis and treatment amounted to only a third of that, emphasizing
that diagnosis and treatment of OSA can lead to significant reductions in health care costs [14].

OSA is diagnosed by undergoing a diagnostic sleep test called a polysomnography (PSG) or an
at-home sleep apnea test (HST) during which several physiological signals are recorded from the
patient to monitor their breathing pattern during sleep [15]. Subsequently, the signals are analyzed
manually by a sleep technician, who annotates apneas (cessation of breathing) and hypopneas (re-
duced airflow) observed in the recording according to criteria defined by the AASM [16]. Diagnosis
of OSA is based on the apnea-hypopnea index (AHI), which summarizes the number of apneas and
hypopneas per hour of sleep [17, 18]. An AHI of 15 events/hour or greater is the clinical crite-
rion used for defining the presence of OSA (moderate-severe versus no or mild OSA) [17]. PSGs
are comprehensive tests, which contain extensive amounts of information about sleep patterns and
sleep disorders [15]. However, PSGs are also costly and cumbersome procedures that require a lot
of time and resources before, during, and after the procedure [19]. Furthermore, the large number
of signals and long recording times put a strenuous workload on sleep technicians who analyze the
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data, which may explain part of the reason for low inter-rater reliability between technicians who
score respiratory events [20–24]. HSTs reduce user burden and resource requirements by allowing
overnight monitoring at home using fewer modalities but have been shown to be less accurate than
PSGs [25–27]. OSA-related questionnaires, such as the Berlin and STOP-Bang questionnaires,
can be used as fast and cheap screening options, but diagnostic accuracy varies a lot and can be
extremely poor for some categories of OSA severity [28, 29]. The main disadvantage of using ques-
tionnaires in clinical practice is that the screening is based almost solely on subjective information
provided by the patient and no objective data as obtained from physiological sensors.

Since PSGs require a lot of resources and are extremely time-consuming, commercial efforts go into
developing wearable technology that can detect OSA based on fewer sensors [30, 31], while many
research efforts go into developing state-of-the-art machine learning-based algorithms for automatic
detection of apneas and hypopneas from PSG signals [32–36]. Such efforts generally compromise
on the diagnostic accuracy but lead to faster results by eliminating the need for in-lab visits and/or
manual scoring [30, 37]. Although wearables are unable to provide rich and detailed information
about sleep behavior in the way PSGs do, they can capture basic sleep metrics for the consumer on
a nightly basis without causing any discomfort. Additionally, event detection algorithms eliminate
the need for manual analysis of signals by technicians, saving both time and money but at the
expense of diagnostic accuracy compared to PSGs and HSTs. The combination of sleep wearables
with automatic apnea detection algorithms provide an enormous potential for fast and efficient
screening of OSA, which could significantly reduce the current number of undiagnosed subjects
suffering from the disorder. However, wearables and apnea detection algorithms still require a
subject to sleep an entire night, perhaps even several nights, to continuously collect sufficient and
reliable data before analyses can be performed. This consideration highlights the need for a fast
and cheap screening system for OSA without the need for overnight data collection but with higher
accuracy than screening questionnaires.

In that context, it has been demonstrated that craniofacial features related to the midface, jaw,
and neck are indicative of the presence of OSA [38]. Therefore, craniofacial imaging has massive
potential as a screening option for OSA. However, research is still at a premature stage and previous
studies have only been conducted on a small scale [39–46]. Two major limitations of applications
using craniofacial imaging for screening of OSA are the dependence on 1) manually derived mea-
surements from the face and neck, which introduces a burden on clinicians/staff and increases time
to diagnosis, and 2) hand-crafted features used to train machine learning models, which introduce
human biases. Figure 1.1 shows a trade-off plot between diagnostic accuracy of OSA versus time
and cost of using the methods discussed above, while also emphasizing that one of the disserta-
tion objectives is to reduce time and cost of using craniofacial imaging for OSA screening while
increasing accuracy in a data-driven manner.
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Figure 1.1: Trade-off between diagnostic accuracy of obstructive sleep apnea (OSA) versus time and cost
of using different methods. Polysomnography (PSG) is the gold-standard for diagnosis of OSA. It is the most
accurate while also being the most time-consuming and costly procedure as it is performed throughout an entire
night and requires setting up equipment before the procedure, presence of staff during the procedure, and manual
analysis of data after the procedure [15]. At-home sleep apnea test (HST) is less accurate than PSG in diagnosing
OSA [25] but it is also less costly because it is performed at home and does not require presence of staff during
the procedure [26]. However, HST is time-consuming as it requires data collection during an entire night and
manual analysis of data subsequently [27]. Wearables generally yield medium level of diagnostic accuracy [30, 37]
while still requiring a full night of sleep from the user. However, they are cheap because they only present a
one-time cost and do not require anyone to be present during data collection or to analyze the data due to in-built
algorithms capable of detecting events automatically [47, 48]. OSA-related questionnaires, which are used for
screening, provide the lowest diagnostic accuracy [28, 29] but they are also the least time-consuming and costly
because they can be completed in a few minutes and do not require presence of a specialist [49]. Craniofacial
imaging is less accurate for OSA diagnosis than PSG, HST, and wearables [40, 45, 46] because it does not provide
nocturnal respiratory information, but it is cheap and much less time-consuming because it does not require the
subject to sleep. However, craniofacial imaging for OSA detection typically involves deriving measurements from
the face and neck manually [39–43], which increases the time it takes to obtain a diagnosis. The dissertation
objective is to move the role of imaging in OSA diagnosis left and upwards in the graph while eliminating the
associated manual labor by using a data-driven and unbiased approach.

Why and how frequently the upper airway collapses is due to multiple factors, such as narrow upper
airway anatomy, a low arousal threshold, inability to recruit dilator muscles during inspiration, and
poor central control of breathing [50]. A strong contributing factor to passive anatomy is obesity,
which causes fat deposits around the upper airway that narrow the airway during sleep [51]. Other
factors include swollen tonsils or the tongue falling backwards [52]. Continuous positive airway
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pressure (CPAP) is the gold-standard treatment for OSA and works by providing a constant level
of pressure sufficient to keep the upper airway open [53]. Although CPAP is extremely effective,
studies show that up to 50% of users give up the device within the first year of therapy for various
reasons [54].

For some patients, surgical procedures such as removing excess tissue or advancing the jaw are
viable options to prevent collapse or increase upper airway space [55–57]. Prior to surgery, drug-
induced sleep endoscopy (DISE) is performed to examine the pattern of upper airway collapse using
a fiberoptic endoscope under sedation, which is designed to simulate natural sleep [58]. During a
DISE examination, an otolaryngology - head and neck surgeon evaluates where and how the upper
airway collapses by determining the upper airway sites of collapse and the degrees of obstruction
[59]. According to the VOTE classification system, which is the most used system for scoring
DISE, the sites of upper airway collapse are the velum (V), oropharynx (O), tongue base (T), and
epiglottis (E), while the obstruction degree for each site is classified as either 0 (no obstruction), 1
(partial obstruction), or 2 (complete obstruction) [59].

The analysis of such examinations is not straightforward due to 1) anatomical variation across
subjects, 2) distortion in video quality caused by e.g. mucus or saliva on the camera lens, and 3)
several upper airway sites collapsing simultaneously, making it difficult to keep the camera sta-
tionary and determine which sites are causing the collapse. Surgeons display poor to moderate
inter-rater reliability when scoring DISE videos [60–65], which is clinically important because scor-
ing of DISE determines the treatment strategy for OSA patients and a wrong conclusion may lead
to wrong treatment. Requiring a second opinion from a fellow otolaryngology surgeon equals more
time and cost until a treatment plan is determined. This consideration highlights the need for a
fast and cheap scoring system capable of automatically identifying sites of upper airway collapse
and obstruction degrees in OSA patients in an objective and data-driven manner.

1.2 Problem Statement

OSA is a severely underdiagnosed sleep disorder which places an enormous economic burden on
society and poses serious long-term health risks for people suffering from the disorder. Diagnosis
of OSA is expensive and time-consuming and sleep clinics have a critical need for a fast and cheap
screening method that is more accurate than using questionnaires. After OSA diagnosis, the upper
airway is examined using DISE if surgery is considered as treatment. These examinations can be
very challenging to analyze and inter-rater reliability is low between surgeons scoring DISE. The
analysis of DISE can be very subjective despite a well-established classification system and sleep
clinics have a critical need for an automatic scoring system capable of identifying sites of upper
airway collapse and obstruction degrees to aid surgeons with consistent scoring without bias.
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1.3 Dissertation Objective

This PhD project takes a step away from the collection of physiological signals during sleep and
focuses on inventing methods that rely on imaging data which can be captured much faster than
overnight sleep data collection. The analysis of such imaging data will be conducted in an automatic
and data-driven manner by training and evaluating computer vision models based on deep learning
architectures. The overall objective of this dissertation is stated as follows:

Dissertation Objective

To invent automatic screening and scoring systems, based on dedicated computer vision
models, that rely on imaging data to detect the presence of obstructive sleep apnea and
characterize the upper airway collapse pattern in a fast, cheap, and data-driven manner.

1.4 Dissertation Hypotheses

The dissertation objective will be investigated through two main research hypotheses that explore
the diagnostic potential of computer vision techniques applied on imaging data. There are two
imaging modalities that will be explored in relation to detection and characterization of OSA in
this dissertation: 3D craniofacial scans and DISE examination videos. For each imaging modality,
a research hypothesis is formulated and stated below:

Dissertation Hypotheses

Hypothesis 1: An automatic screening system can be invented, based on dedicated
computer vision models, which utilizes 3D craniofacial scans to estimate presence and
severity of obstructive sleep apnea more accurately than current screening questionnaires in
a fast, cheap, and data-driven manner.

Hypothesis 2: An automatic scoring system can be invented, based on dedicated computer
vision models, which utilizes drug-induced sleep endoscopy examination videos to estimate
sites of upper airway collapse and obstruction degrees in obstructive sleep apnea patients
with a similar accuracy as otolaryngology - head and neck surgeons.
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1.5 Dissertation Outline

The dissertation is composed of two separate research parts concerned with: (1) the estimation of
AHI and classification of OSA based on 3D craniofacial scans, and (2) the estimation of upper airway
collapse sites and obstruction degrees based on DISE videos. Additional chapters are dedicated
to introduce the project, provide the necessary clinical background, and conclude the project,
respectively. The dissertation is composed of five chapters and appendix, and each chapter’s content
is outlined below.

• Chapter 1 - Contains an introduction to the research background, problem statement, overall
objective, and hypotheses of this dissertation. The chapter also provides an outline of the
dissertation’s content and the papers published during the project period.

• Chapter 2 - Contains the necessary clinical background to comprehend the purpose and
clinical significance of this dissertation for the reader who is not familiar with basic concepts
in sleep science and medicine. This includes the importance of sleep and more detailed
descriptions of PSG and OSA.

• Chapter 3 - Contains a research background, a description of the data and methods, and
a presentation of results, discussion, and conclusion related to Hypothesis 1 from Section
1.4, which is concerned with inventing an automatic screening system for OSA based on 3D
craniofacial scans and computer vision.

• Chapter 4 - Contains a research background, a description of the data and methods, and a
presentation of results, discussion, and conclusion related to Hypothesis 2 from Section 1.4,
which is concerned with inventing an automatic scoring system for DISE videos based on
computer vision.

• Chapter 5 - Contains a conclusion of the dissertation as a whole. This includes relating
the research findings from Chapters 3 and 4 to Hypotheses 1 and 2 from Section 1.4 and a
discussion on limitations associated with the PhD project and future perspectives that could
improve it.

• Appendix - Contains preprints and published versions of first-author journal papers and
conference papers that have been published throughout the PhD project period. These papers
are listed in the following section.
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1.6 Research Contributions

The papers, which have been published, accepted, submitted, or prepared during the PhD project
period are summarized below. They are split into four categories: first-author journal papers, first-
author conference papers, co-authored papers, and popular science articles. The scientific content
of this dissertation is centered around the first author journal papers and conference papers, and
preprints or published versions of these papers are attached in the appendix.

1.6.1 First-Author Journal Papers

• Umaer Hanif, Eileen B. Leary, Logan D. Schneider, Rasmus R. Paulsen, Anne Marie Morse,
Adam Blackman, Paula K. Schweitzer, Clete A. Kushida, Stanley Y. Liu, Poul Jennum, Helge
B. D. Sorensen, and Emmanuel J. M. Mignot, "Estimation of Apnea-Hypopnea Index using
Deep Learning on 3D Craniofacial Scans", IEEE Journal of Biomedical and Health Informat-
ics, vol. 25, no. 11, pp. 4185-4194, 2021. DOI: 10.1109/JBHI.2021.3078127. (Published)

• Umaer Hanif, Eva K. Kiær, Robson Capasso, Stanley Y. Liu, Emmanuel J. M. Mignot,
Helge B. D. Sorensen, and Poul Jennum, "Automatic Scoring of Drug-Induced Sleep En-
doscopy in Obstructive Sleep Apnea Using Deep Learning", JAMA Otolaryngology - Head
and Neck Surgery, 2022. (Under Review)

1.6.2 First-Author Conference Papers

• Umaer Hanif, Rasmus R. Paulsen, Eileen B. Leary, Emmanuel Mignot, Poul Jennum, and
Helge B. D. Sorensen, "Prediction of Patient Demographics using 3D Craniofacial Scans and
Multi-view CNNs", 2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 1950-1953, 2020.
DOI: 10.1109/EMBC44109.2020.9176333. (Published)

• Umaer Hanif, Eric Kezirian, Eva Kirkegaard Kiær, Emmanuel Mignot, Helge B. D. Sorensen,
and Poul Jennum, "Upper Airway Classification in Sleep Endoscopy Examinations using Con-
volutional Recurrent Neural Networks", 2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3957-3960, 2021.
DOI: 10.1109/EMBC46164.2021.9630098. (Published)



8

1.6.3 Co-Authored Papers

• Villads Hulgaard Joergensen, Umaer Hanif, Poul Jennum, Emmanuel Mignot, Asbjoern W.
Helge, and Helge B. D. Sorensen, "Automatic Segmentation to Cluster Patterns of Breathing
in Sleep Apnea", 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 164-168, 2021.
DOI: 10.1109/EMBC46164.2021.9629624. (Published)

• Magnus Ruud Kjær, Andreas Brink-Kjær, Umaer Hanif, Emmanuel Mignot, Poul Jennum,
and Helge B. D. Sørensen, "Polysomnographic Plethysmography Excursions are Reduced in
Obese Elderly Men", 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 2396-2399, 2021.
DOI: 10.1109/EMBC46164.2021.9630145. (Published)

• Asbjørn Wulff Helge, Umaer Hanif, Villads Hulgaard Jørgensen, Poul Jennum, Emmanuel
Mignot, and Helge B. D. Sorensen, "Detection of Cheyne-Stokes Breathing Using a Transformer-
based Neural Network", 2022 44th Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC), 2022. (Accepted)

• Magnus Ruud Kjær,Umaer Hanif, Andreas Brink-Kjær, Poul Jennum, Helge B. D. Sorensen,
and Emmanuel Mignot, "ABED: Automatic Apneic Breathing Event Detector", 2022.
(In Preparation)

• Alexander R. Johansen, Umaer Hanif, Anupama Sridhar, Kyu Hur, Helge B. D. Sorensen,
Poul Jennum, Emmanuel Mignot, and Michael Snyder, "Wearipedia: A Database for Wear-
ables Measuring Physical Activity, Sleep, and Continuous Glucose", 2022. (In Preparation)

1.6.4 Popular Science Articles

• Umaer Hanif, "Noninvasiv måling hjælper patienter med søvnapnø", Medicoteknik, no. 4,
vol. 6, August 2019. (Published)

• Majken Lerche Møller, "Artificial intelligence can diagnose sleep apnoea",
www.healthtech.dtu.dk/english/news/nyhed?id=58226F9F-3F5C-4645-AEC3-0AC00075B128
(Published)



Chapter 2

Clinical Background

This chapter contains the necessary clinical background to comprehend the purpose and clinical
significance of this dissertation for the reader who is not familiar with basic concepts in sleep
science and medicine. Section 2.1 highlights the importance of sleep and what the consequences
of inadequate sleep are. Section 2.2 provides a description of polysomnography and examples of
its use. Section 2.3 describes obstructive sleep apnea, including characteristics, implications, and
treatment.

2.1 Importance of Sleep

Sleep is an essential biological process for maintaining normal human function, health, and well-
being, and it plays a critical part in restoring energy, removing toxins and waste products from the
body, and consolidating memories [66–69]. The National Sleep Foundation recommends 7-9 hours
of sleep per night for healthy adults while infants and teenagers require even greater amounts of
sleep to grow and develop [70]. The American Academy of Sleep Medicine (AASM) recommends 7
hours or more of sleep to avoid health risks associated with inadequate sleep [71]. These are general
guidelines, but an individual’s need for sleep depends on factors such as their activity levels and
overall health.

Results from the National Health Interview Survey for U.S. non-institutionalized adults aged 18-84
from 2004-2017 (N = 398,382) show that 33% of the U.S. population sleeps less than 6 hours and
are thus sleep deprived [72]. Chronic lack of sleep has been linked to altered or decreased cognitive
performance [73, 74], cardiovascular diseases [75–77], hypertension [78, 79], stroke [77, 80], altered
metabolism [81, 82], and increased inflammation [83, 84], essentially affecting every vital function
of the human body. A study examining the economic burden across five different countries (US,
Canada, UK, Germany, and Japan) estimated a total annual loss of up to $680 billion due to
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insufficient sleep (< 6 hours) [85], while another study estimated an economic cost of $45.21 billion
for the 2016-2017 financial year in Australia [86]. The huge global impact that sleep deprivation
has, both in terms of financial burden and its role in the development of major diseases, underlines
the significance of individuals getting adequate sleep on a daily basis.

2.2 Polysomnography

Polysomnography (PSG) is a nocturnal, multi-parametric, diagnostic sleep test which can be used
to derive information about sleep patterns and sleep disorders [15].

2.2.1 Sensors and Signals

During a PSG, multiple sensors, as depicted in Fig. 2.1, are utilized to monitor physiologically
meaningful signals, all of which are outlined below and illustrated in Fig. 2.2. The sensors and
their placement are described in more detail in the AASM manual [16].

• Brain activity measured by electroencephalography (EEG) according to the International
10-20 system [87]

• Eye movements measured by electrooculography (EOG) using two electrodes for each eye
placed at the inner and outer canthus [88]

• Airflow measured by a nasal cannula in combination with an oral thermistor [89, 90]

• Submental muscle activity measured by electromyography (EMG) using three electrodes on
the chin [91, 92]

• Snoring measured by a microphone, cannula, or piezoelectric sensor [93]

• Blood oxygen saturation measured by a finger pulse oximeter [94]

• Heart activity measured by electrocardiography (ECG) using a single modified Lead II torso
electrode placement [95]

• Respiratory effort measured by respiratory inductance plethysmography (RIP) belts on the
chest and abdomen [96]

• Leg movements measured by EMG using two electrodes on each leg [91]

2.2.2 Scoring of Events

After the procedure, a sleep technician analyzes the signals manually and annotates sleep-related
events such as sleep stages, arousals, sleep-disordered breathing events, blood oxygen desaturations,
and periodic limb movements according to rules defined in the AASM manual [16].
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Figure 2.1: An illustration of a patient undergoing a diagnostic polysomnography. Sensors are attached to the
patient, which measure physiological signals while he is sleeping to provide insight into sleep behavior and the
presence of events related to sleep disorders, such as apneas and periodic limb movements. Source: [97]

2.2.2.1 Sleep Stages and Arousals

Sleep stages are scored in epochs of 30 seconds based on changes in the EEG, EOG, and chin EMG
signals [16]. Sleep is categorized into rapid-eye movement (REM) sleep, also known as dream sleep,
and non-REM (NREM) sleep, which is further divided into NREM1 (or just N1), NREM2 (N2),
and NREM3 (N3) sleep stages, amounting to a total of four distinct sleep stages. NREM sleep
and REM sleep alternates cyclically throughout the night and the amount of REM sleep increases
per cycle as the night progresses [98]. Healthy subjects typically transition from wakefulness to N1
when they start falling asleep, followed by N2 and N3, and concluding the sleep cycle with REM
sleep [99]. A typical sleep cycle is between 90-120 minutes, and it is common to have four to six
sleep cycles during a night, where the distribution of sleep stages varies from cycle to cycle [98].
The graphical representation of sleep stages as a function of time is called a hypnogram and is
depicted in Fig. 2.3.

An arousal is characterized by a transition from a deeper to a lighter sleep stage (e.g., N3 to N2)
or from sleep to wakefulness and is scored using the same signals as for sleep stages (EEG, EOG,
and chin EMG) [16]. Arousals can either be spontaneous or occur in association with events such
as periodic limb movements or sleep disordered breathing events [100].
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Figure 2.2: 30 seconds of a polysomnography recording. Four EEG channels and one ECG channel have been
omitted to save space. F3, C3, and O1 are channels from the frontal, central, and occipital regions of the brain,
respectively. L and R are abbreviations for left and right. N Pres - Nasal Pressure, Tho Eff - Thoracic Effort, Abd
Eff - Abdominal Effort, Ox Sat - Oxygen Saturation.
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Figure 2.3: An example of a hypnogram, which is a graphical representation of sleep stages as a function of
time. Five stages are included in the hypnogram: wake, non-rapid eye movement (NREM) stage 1 (N1), NREM
stage 2 (N2), NREM stage 3 (N3), and rapid-eye movement (REM) sleep.

2.2.2.2 Sleep-Disordered Breathing

For sleep disordered breathing conditions, such as sleep apnea, technicians rely on the respiratory
signals (airflow, respiratory effort, blood oxygen saturation, and snoring) for detection of respiratory
events [16]. Sleep apnea is divided into three types based on the underlying pathology: obstructive
sleep apnea (OSA), central sleep apnea (CSA), and mixed or complex sleep apnea. OSA is by far the
most common phenotype and is the focus of this dissertation. OSA is characterized by upper airway
obstruction, which causes breathing cessation and increased respiratory effort [1]. CSA is much less
common and is characterized by the lack of proper signalling between the brain and respiratory
muscles, which causes recurrent episodes of breathing cessation [101]. Complex sleep apnea is
characterized by having both obstructive and central components [102]. OSA and CSA events are
distinguished based on the presence of respiratory effort (OSA) or lack of respiratory effort (CSA)
during the event which can be observed in the thoracoabdominal belt signals as presence or lack of
excursions [16]. A detailed description of OSA is provided in the following section.

2.3 Obstructive Sleep Apnea

OSA is a sleep disorder characterized by recurrent collapse of the upper airway during sleep, result-
ing in decreased airflow (hypopnea) or total cessation of breathing (apnea), lasting until the upper
airway reopens [1]. Figure 2.4 shows an example of a collapsed soft palate in a person during sleep.
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Figure 2.4: An example of a person breathing normally during sleep due to an unobstructed upper airway (left),
and a person with a collapsed soft palate during sleep, which causes breathing cessation (right). Source: [103]

2.3.1 Causes of Obstructive Sleep Apnea

Why and how frequently the upper airway collapses is due to multiple factors, such as narrow upper
airway anatomy, poor recruitment of dilator muscles during inspiration, central control of breathing
(loop gain), and inability/ability to arouse (arousal threshold) [50]. A strong contributing factor
to passive anatomy is obesity, which causes fat deposits around the upper airway that narrow the
airway during sleep [51]. Other reasons include nasal congestion, enlargement of the tonsils, or
the tongue falling backwards into the throat [52]. Supine position is also associated with increased
events, and in some cases OSA is positional. A loss of muscle tone in the upper airway, either
constitutional, or as the result of age or usage of various sedatives, is also contributing [52]. Finally,
research shows that several craniofacial features, mainly related to the midface, jaw, and neck are
indicative of the presence of OSA [38]. The relationship between OSA and craniofacial anatomy
will be explored thoroughly in Chapter 3.

2.3.2 Implications of Obstructive Sleep Apnea

OSA patients suffer from daytime sleepiness and have increased risk of cardiovascular diseases [2–5],
hypertension [6], stroke [7, 8], type 2 diabetes [9], and all-cause mortality [4, 5]. Furthermore, OSA
patients have increased risk of being in a motor vehicle crash compared to individuals without the
disorder [104]. A recent study estimated that almost half a billion people aged 30-69 have moderate
to severe OSA globally [10] and evidence suggests that OSA is a severely underdiagnosed disorder
[11–13]. The AASM estimated in 2015 that the economic burden of undiagnosed OSA was $150
billion in the US, while cost of diagnosis and treatment amounted to $50 billion [14], emphasizing
that diagnosis and treatment of OSA can lead to significant reductions in health care costs.
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2.3.3 Scoring of Obstructive Sleep Apnea Events

OSA is diagnosed by undergoing a PSG or an at-home sleep apnea test (HST) [19]. Subsequently,
the signals are annotated manually by a sleep technician with respect to apneas and hypopneas
observed in the recording. According to the AASM guidelines, an apnea is defined as a minimum
decrease of 90% in airflow amplitude compared to the baseline for a minimum of 10 seconds [16]. A
hypopnea is defined as a minimum decrease of 30% in airflow amplitude with either an associated
arousal or an oxygen desaturation of at least 3% for a minimum of 10 seconds [16]. Figure 2.5
shows an example of two apneas and one hypopnea as observed in the respiratory PSG signals (oral
airflow, nasal pressure, thoracoabdominal effort, oxygen saturation, and snoring). The absence
of airflow is most notable in the nasal pressure signal, where the signal flattens out completely
during an apnea while the signal amplitude reduces significantly during a hypopnea. Although
less apparent than for the nasal pressure signal, the amplitude also reduces in the oral airflow and
thoracoabdominal effort signals during these events, while the signal intensity in the snoring signal
increases. In the oxygen saturation signal, desaturations are observed after each event, but there
is a notable time delay between the decrease in airflow and the associated oxygen desaturations.

2.3.4 Apnea-Hypopnea Index

OSA severity is measured by the apnea-hypopnea index (AHI), representing the number of apneas
and hypopneas per hour of sleep [17]. The classification of OSA severity based on AHI is outlined
below:

• Normal: AHI < 5 events/hour

• Mild OSA: 5 ≤ AHI < 15 events/hour

• Moderate OSA: 15 ≤ AHI < 30 events/hour

• Severe OSA: AHI ≥ 30 events/hour

2.3.5 Screening Questionnaires for Obstructive Sleep Apnea

Questionnaires containing OSA-related questions can be used to screen subjects and determine
eligibility for PSG in a simple and cost-effective way [29]. Questionnaires for OSA include the Berlin
Questionnaire [105], STOP Questionnaire [106], STOP-Bang Questionnaire [107], and Epworth
Sleepiness Scale (ESS) [108]. The first three questionnaires pose questions about snoring, daytime
sleepiness, observed episodes of breathing cessation, hypertension, and anthropometic measures
such as having a large BMI or neck circumference [29]. If the subject answers yes to more than a
certain number of questions (which varies depending on the questionnaire), the subject is classified
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Figure 2.5: Example of two apneas (red) and one hypopnea (orange) in a polysomnography recording segment.
Apnea and hypopnea events are immediately reflected in the airflow, nasal pressure (N Pres), thoracic effort (Tho
Eff), abdominal effort (Abd Eff), and snoring signals. The events are most apparent in the nasal pressure signal,
where the signal flattens out completely during apneas and the signal amplitude reduces dramatically during
hypopneas. After the event, an associated oxygen desaturation is observed in the oxygen saturation signal (Ox
Sat) with a variable time delay relative to the decreased airflow.

as having high risk of OSA. The ESS is used to assess daytime sleepiness and ranges from 0-
24, where a higher score indicates increased daytime sleepiness and OSA risk [108]. The score is
obtained by asking the subject to rate, on a scale from 0-3, how likely they are to doze off or fall
asleep while engaging in eight different activities and summing the scores for all eight questions.
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2.3.6 Continuous Positive Airway Pressure

Continuous positive airway pressure (CPAP) is the gold-standard treatment for OSA and works
by providing a constant level of pressure sufficient to keep the upper airway open [53]. Examples
of different CPAP masks are provided in Fig. 2.6, showing that some masks only apply pressure
intra-nasally, while others (full face masks) provide pressure through nose and mouth e.g., for those
who breathe through their mouth during sleep. Although CPAP is extremely effective, studies
show that up to 50% of users give up on the device within a year of therapy because of intolerance,
noise, discomfort, or a negative impact on intimacy [54]. Oral appliances may reduce upper airway
obstructions by advancing the mandible or refraining the tongue and epiglottis from falling back,
but, as they are generally less effective than CPAP they are considered the second line of treatment
after CPAP [109]. For some OSA patients, surgical procedures such as removing excess tissue or
advancing the upper and lower jaw can be viable options to prevent collapse or increase upper
airway space [57, 110]. Surgery as a treatment option for OSA and the associated upper airway
examination will be explored thoroughly in Chapter 4.

Figure 2.6: Examples of different continuous positive airway pressure masks used to prevent upper airway
collapse in obstructive sleep apnea patients. The two masks to the left only apply intra-nasal pressure, while the
two masks to the right are full face masks that apply pressure through nose and mouth. Full face masks are
required for patients who breathe through their mouth during sleep or patients who tend to get nasal congestion.



Chapter 3

Detection of Obstructive Sleep Apnea
From 3D Craniofacial Scans

This chapter explores the diagnostic potential of 3D craniofacial scans in relation to obstructive
sleep apnea (OSA), which can be used to develop a clinical screening system for faster and cheaper
detection of OSA. The chapter consists of two parts, each based on a published paper:

1) Prediction of Patient Demographics Using 3D Craniofacial Scans and Multi-View CNNs [111]

2) Estimation of Apnea-Hypopnea Index Using Deep Learning on 3D Craniofacial Scans [112]

Part 1) was published as a conference paper (Paper I) and served as a proof of concept for the
entire methodology utilized for part 2). The polysomnography (PSG) recordings, which the apnea-
hypopnea index (AHI) values are derived from, were not readily available in the initial stages of the
PhD project, but the 3D craniofacial scans and corresponding patient demographics were available.
Thus, a decision was made to initially attempt estimating sex, age, and body mass index (BMI)
from the 3D scans and publish the results in a conference paper. Intuitively, patient demographics
should be easier to predict than AHI values from a 3D craniofacial scan, so results from part 1)
also served as a baseline for what the maximum expected performance could be for part 2). Part
2) was published as a journal paper (Paper II) and explored how 3D craniofacial imaging can be
used to estimate the presence and severity of OSA measured by the AHI. The main content of this
chapter is based on that journal paper.

Section 3.1 provides the research background and motivation for this chapter. Section 3.2 states
the research questions and objectives of this chapter. Section 3.3 contains a data and methods
description, and a presentation of results and discussion for part 1) which is based on Paper I.

18
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Similarly, Section 3.4 contains a data and methods description, and a presentation of results and
discussion for part 2) which is based on Paper II. Finally, Section 3.5 concludes the chapter by
answering the research questions posed in Section 3.2 and relating the findings to Hypothesis 1,
which is stated in Section 1.4 and restated in Section 3.2.

3.1 Research Background

Obesity and craniofacial features strongly contribute to OSA risk; thus, technology and clinical
examination tools have been developed to assess these features. In clinical exams, it is frequent
for the clinician to examine the size of the jaw, top of the mouth, and position and size of the
tongue [113]. Imaging techniques have been proposed, including cephalometry [114–116], computed
tomography [116, 117], and magnetic resonance imaging [118–120], showing that typical anatomical
features of OSA patients are maxillary deficiency, mandibular retrusion, an abnormal cranial base,
and an inferiorly positioned hyoid bone. Furthermore, dynamic collapsibility can be identified with
drug-induced sleep endoscopy (DISE) [58]. These methods are, however, rarely used in routine
practice, except in case of surgery for OSA.

Since imaging modalities are cumbersome and expensive, recent research has investigated the pre-
dictive value of facial imaging [39]. Lee et al. [40] analyzed frontal and profile images of 180
subjects, manually deriving measurements on the face and neck to classify subjects with or without
OSA using logistic regression. Others [41–43] used Support Vector Regression (SVR) [121] on sim-
ilar landmarks to predict the AHI, a procedure subsequently improved by Balaei et al. [44, 45] who
used automatic instead of manual placement of landmarks. Islam et al. [46] used 3D scans from
69 subjects, which they converted to 2D depth maps of the frontal face, applied transfer learning
on a VGG-16 [122] deep convolutional neural network (CNN), and modified the network to classify
subjects into OSA and normal.

Although these studies had some success, all used small sample sizes, and, with the exception of
Islam et al. [46], all first derive possibly discriminative facial features from annotated landmarks as
detected on 2D frontal and profile images, a process followed by statistical feature selection [123].
Interestingly, these studies typically report different discriminative features and varying number of
optimal features using feature selection methods. As attempted by Islam et al. [46] using a small
sample size, we believe that feature selection should be unbiased by avoiding manual extraction
of features and applying CNNs instead for automatic feature extraction. Facial imaging for OSA
diagnosis can be performed in one minute and presents a clear advantage; it does not require an
overnight stay at a sleep clinic with several sensors connected to the body and a subsequent manual
analysis by sleep technicians, thereby saving both time and resources, while being more comfortable
for the patient.
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3.2 Research Questions and Objectives

Based on the research background above, Hypothesis 1 from Section 1.4 is restated, followed by
research questions derived from Hypothesis 1 that this chapter aims to answer.

Hypothesis 1

An automatic screening system can be invented, based on dedicated computer vision models,
which utilizes 3D craniofacial scans to estimate presence and severity of obstructive sleep
apnea more accurately than current screening questionnaires in a fast, cheap, and data-driven
manner.

Research Questions

Research Question 1: Can a dedicated computer vision model be trained to accurately
estimate the sex, age, and BMI of subjects based on their 3D craniofacial scans?

Research Question 2: Can a dedicated computer vision model be trained to accurately
estimate the AHI of subjects based on their 3D craniofacial scans?

Research Question 3: Can predicted AHI values from the proposed model be used to
accurately detect presence of OSA by classifying subjects as being normal or having OSA?

Research Question 4: Can adding clinically relevant information like demographics and
questionnaires increase performance of the proposed model?

Research Question 5: Can the proposed model perform better than current screening
questionnaires for OSA?

Research Question 6: Can the proposed model perform at a level similar to that of sleep
medicine specialists with years of experience?

Research Question 7: Can regions of the face and neck be identified, which the proposed
model focuses on when predicting AHI?
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From the research questions posed above, research objectives are formulated below, each one de-
signed to answer a specific research question:

(i) Pre-process 3D craniofacial scans to make them suitable as input for CNNs and extract sex, age,
and BMI values for each subject. Then utilize these input and output pairs to train and evaluate
dedicated computer vision models to predict the sex, age, and BMI of subjects.

(ii) Pre-process 3D craniofacial scans to make them suitable as input for CNNs and derive AHI
values from the corresponding PSGs. Then utilize these input and output pairs to train and eval-
uate a dedicated computer vision model to predict the AHI of subjects.

(iii) Use the clinically meaningful cut-off of 15 events/hour for the predicted AHI values to de-
tect presence of OSA by classifying subjects as being normal (AHI < 15) or having OSA (AHI ≥ 15).

(iv) Investigate whether adding demographics and questionnaire variables to the proposed model
improves performance compared to using only 3D scans.

(v) Compare performance of the proposed model to performance obtained using current screening
methods, i.e., screening questionnaires for OSA.

(vi) Recruit three experienced sleep medicine specialists to estimate the AHI values of subjects
based on their 3D craniofacial scans and compare the proposed model’s performance to the sleep
medicine specialists’ performance.

(vii) Investigate craniofacial features that the model focuses on when predicting AHI and create a
topographic display of these features/regions.

These research objectives will be fulfilled in the following sections.
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3.3 Paper I: Prediction of Patient Demographics Using 3D Cran-
iofacial Scans and Multi-View CNNs

Abstract

Purpose: 3D data is becoming increasingly popular and accessible for computer vision
tasks. A popular format for 3D data is the mesh format, which can depict a 3D surface
accurately and cost-effectively by connecting points in the (x,y,z) plane, known as vertices,
into triangles that can be combined to approximate geometrical surfaces. However, mesh
objects are not suitable for standard deep learning techniques due to their non-euclidean
structure. We present an algorithm which predicts the sex, age, and body mass index of a
subject based on a 3D scan of their face and neck.

Methods: This algorithm relies on an automatic pre-processing technique, which renders
and captures the 3D scan from eight different angles around the x-axis in the form of
2D images and depth maps. Subsequently, the generated data is used to train three
convolutional neural networks, each with a ResNet18 architecture, to learn a mapping
between the set of 16 images per subject (eight 2D images and eight depth maps from
different angles) and their demographics.

Results: For age and body mass index, we achieved a mean absolute error of 7.77 years
and 4.04 kg/m2 on the respective test sets, while Pearson correlation coefficients of 0.76 and
0.80 were obtained, respectively. The prediction of sex yielded an accuracy of 93%.

Conclusion: The developed framework serves as a proof of concept for prediction of more
clinically relevant variables based on 3D craniofacial scans stored in mesh objects.

3.3.1 Methods

This section describes the data collection of 3D craniofacial scans and the subsequent pre-processing
and use of these scans to predict patient demographics using multi-view CNNs.

3.3.1.1 Data Collection

Data was collected at 11 different sleep clinic sites as part of the Stanford Technology Analytics
and Genomics in Sleep (STAGES) study, which was initiated in 2018 and prematurely terminated
in 2020. STAGES was designed to better understand and characterize sleep disorder phenotypes
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on a large scale by collecting sleep data from 30,000 subjects, but at the end of the study approxi-
mately 1800 subjects had participated. For each subject participating in the study, a detailed sleep
questionnaire, actigraphy, psychometric testing, a PSG, a 3D craniofacial scan, and blood samples
were collected.

The 3D craniofacial scans were performed using a Structure Sensor from Occipital Inc. [124, 125]
attached to an iPad Pro from Apple as shown in Fig 3.1. The scanning procedure is as follows:
The subject being scanned is seated on a chair and the person capturing the scan walks around
the subject, capturing their face and neck from several angles to obtain a complete 3D craniofacial
surface scan. This procedure is demonstrated in Fig. 3.2. The reconstruction of the complete
surface scan is performed in the app software automatically and the final result as displayed on the
iPad is shown in Fig. 3.3. Each scan took approximately one minute to complete and was captured
either at night before the PSG or in the morning after the PSG. uGo3D Inc. developed an app for
STAGES which was responsible for transferring the scans to the server after they were captured.

Figure 3.1: A Structure Sensor from Occipital Inc attached to an Ipad Pro from Apple used to capture 3D
craniofacial surface scans. Although newer and more expensive versions of the sensor are now available, the cost
of the original Structure Sensor used for this study was $379. The Structure Sensor utilizes an infrared sensor to
capture objects in 3D and has a depth resolution of 640x480, recommended range of 0.4-3.5 meters, and a field
of view of 58x45.
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Figure 3.2: The procedure of capturing a 3D craniofacial scan of a subject. The person performing the procedure
captures the subject from several angles using an iPad Pro from Apple with a Structure Sensor from Occipital Inc
attached to the back. The reconstruction of the surface scan is performed automatically in the app software.
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Figure 3.3: A completed surface scan displayed on the iPad which has been used to capture the scan using
a Structure Sensor from Occipital Inc attached to the back of the iPad. The surface scan is displayed without
associated textures, but a texture file is created with the scan, which can be used to render the scan with textures
subsequently on e.g. a computer.

The sleep questionnaire included in this study was a modified STOP-Bang questionnaire [107],
where the neck circumference of the subject was excluded. The complete STOP-Bang questionnaire
is included in Appendix A of this dissertation. The modified STOP-Bang questionnaire was used as
a screening method for OSA, without the need for a specialist, by asking the subject about snoring,
tiredness, observed apnea, high blood pressure, sex (is the person male), age (is the person older
than 65 years), and BMI (is the BMI greater than 35 kg/m2).

Each variable gets a value of 1 if the person answers yes, so the total score from the questionnaire
ranges from 0 to 7. A score of 0-2 indicates low risk of OSA, 3-4 indicates intermediate risk, and 5-7
indicates high risk. In this study, a score greater than or equal to 3 was used to indicate presence of
OSA. The STOP-Bang questionnaire was selected over other OSA screening questionnaires (such
as the Berlin Questionnaire or Epworth Sleepiness Scale) due to its superior diagnostic accuracy
[28, 29].

Each institution’s Ethical Review Board approved all procedures involving human subjects. All
participants provided written informed consent to participate in the study. The 3D scans from
STAGES are not publicly available, since they count as personal identifiable data, which the In-
stitutional Review Board would not allow to be made public. All other data from STAGES, apart
from blood samples, have been made available as part of the National Sleep Research Resource
(NSRR) [126].



Chapter 3. Detection of Obstructive Sleep Apnea From 3D Craniofacial Scans 26

3.3.1.2 Data Description

Each 3D craniofacial scan was stored as a mesh object in an OBJ format, defined by its set of
vertices V = {v1, v2, ..., vn}, V ∈ IR3, its texture coordinates Vt = {vt1, vt2 , ..., vtm}, Vt ∈ IR3, and
its triangles, also known as faces, F = {(v1, vt1), (v2, vt2), ..., (vk, vtk)}, F ∈ IR3. A vertex is a point
in 3D space defined by its (x, y, z) coordinates, a texture is defined by its (u, v) coordinates, and a
triangle consists of three vertex and texture pairs.

Three interconnected vertices form a triangle and several of these triangles are combined to approx-
imate a surface in three dimensions. Textures are bitmap images, that can be laid over the surface
scan to make it look more realistic. Figure 3.4 provides a simple example of the basic components
of a mesh, i.e., vertices, edges, and triangles. Edges are used to connect two vertices as seen in the
illustration. Figure 3.5 shows an example of a craniofacial scan from three different angles, where
the triangles that are combined to make the scan are depicted as well.

During data collection for STAGES, a total of 1756 3D scans were captured from enrolled partic-
ipants. However, subjects were discarded if they had missing sex, age, or BMI, so 1605 subjects
were included in this study. Of the 1605 subjects, 855 were female and 750 were male. Mean age
± standard deviation was 45.8± 15 years and the BMI was 31.3± 8.9 kg/m2. The distribution of
sex for the included subjects is shown in Fig. 3.6 (a), distribution of age is shown in Fig. 3.6 (b),
and distribution of BMI is shown in Fig. 3.6 (c).

In the following sections, the pre-processing of 3D scans and their subsequent use to train and
evaluate multi-view CNNs for estimation of sex, age, and BMI of subjects is described.

Figure 3.4: An illustration of the basic building blocks of a 3D mesh surface scan. A mesh consists of
interconnected vertices, which are points in 3D space (shown in 2D in the illustration for simplicity) characterized
by their (x, y, z) coordinates. Vertices are connected using edges and three interconnected vertices form a triangle.
A mesh scan is composed of such triangles, which are used to approximate a given surface in 3D. In this example,
four vertices have been connected to form two triangles.
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Figure 3.5: Example of a 3D mesh scan rendered from three different angles (left) and the triangles that are used
to approximate the surface scan from the same three angles (right). The triangles consist of three interconnected
vertices each, where a vertex is a point in 3D space specified by its (x, y, z) coordinates.
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Figure 3.6: Distribution of (a) sex, (b) age, and (c) BMI for 1605 subjects in the dataset used for estimating
patient demographics from 3D craniofacial scans based on a proposed computer vision model.
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3.3.1.3 Pre-Processing

Since 3D mesh scans are non-Euclidean, meaning not defined in a flat 2D plane, they cannot be
used directly as inputs to CNNs. Thus, to make our 3D craniofacial scans suitable for CNNs, the
multi-view consensus CNN for 3D facial landmark placement (Deep-MVLM) algorithm [127] was
applied to transform each scan into a set of 2D images and depth maps captured from angles around
the scan. Deep-MVLM was chosen as it outperforms state of the art algorithms [128, 129] and does
not rely on pre-alignment of scans, such that they have the same orientation in 3D space. The
choice of metric in Deep-MVLM also makes it more suitable for 3D surfaces than similar methods.
Deep-MVLM was only used for alignment of scans and generation of 2D images and depth maps,
and not for the subsequent prediction of AHI.

Deep-MVLM works by first applying a pre-trained neural network to automatically detect and place
73 pre-specified landmarks on each mesh object. Figure 3.7 shows an example of these landmarks
detected and placed on a subject rendered from three different angles. The landmarks are utilized
to align all scans in 3D space, thereby removing the influence of translation and rotation. The
alignment of scans is obtained by using a least squares solution based on the detected landmarks
and therefore the individual landmark errors are less important for the overall performance [127].

After alignment of 3D scans, each scan is displayed multiple times as flat 2-D images taken from
different angles; this is done by rotating the scans 45 degrees consecutively and capturing a 2D
image and a depth map at each angle, yielding eight pairs of 2D images and depth maps for each
scan. Each 2D image and depth map was normalized to the range [0,1] by dividing each pixel value
by 255. This was done to ensure faster convergence during training. The resulting images were
stacked in a matrix, representing different views of a subject along the 3rd dimension of the matrix.

Figure 3.7: Examples of 73 detected landmarks on a 3D mesh scan displayed from three different angles. The
landmarks are detected automatically by using the multi-view consensus convolutional neural network for 3D facial
landmark placement (Deep-MVLM) algorithm [127].
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For this study, all eight pairs of 2D scans and depth maps were included as shown in Fig. 3.8, to
retain as much information as possible from the 3D scans. Textures were not utilized as observed
in the figure because computational cost was a concern at this time in the PhD project and this
study only served as a proof of concept for the next, much larger study. The 2D images and depth
maps had one channel each (grayscale) and since there were eight 2D images and eight depth maps,
the final stacked matrix per subject contained 8 x 1 + 8 x 1 = 16 channels in total and 224x224
pixels per channel or image.

3.3.1.4 Multi-View Convolutional Neural Networks

The purpose of applying machine learning was to reveal data-driven mapping differences within
the multi-view inputs across patient demographics. For this purpose, we implemented multi-view
CNNs with a ResNet18 architecture [130]. CNNs were implemented for their ability to automatically
extract meaningful features from the input images in relation to the desired outputs. They do so by
applying layers of convolutions and non-linear activation functions to the input images, where the
weights of the convolution filters are learned during training based on the training data [131]. A
ResNet18 architecture was selected because it is state-of-the-art for image recognition compared to
other CNN architectures such as AlexNet [132] or VGG-16 [122]. ResNets utilize skip connections
between layers to allow deeper architectures (i.e., more layers) without hurting performance while
being computationally cost-efficient to train [130]. Figure 3.9 shows the network architecture with
all details provided (including skip connections) for estimation of patient demographics using multi-
view inputs derived from 3D craniofacial scans.

A separate network was implemented for each demographic (sex, age, and BMI) because the target
values were different. The implemented multi-view CNN took 16 channels as input per subject
and the input was processed by the standard blocks of a ResNet18 network. One additional fully

Figure 3.8: Example of eight pairs of 2D images (top row) and depth maps (bottom row) captured at different
angles using the multi-view consensus convolutional neural network for 3D facial landmark placement (Deep-
MVLM) algorithm [127]. These eight pairs of 2D images and depth maps are used as input for each subject in
the proposed multi-view convolutional neural network for predicting patient demographics.
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connected layer was added at the end, which was used to reduce 512 features to 256, followed by
a ReLU activation function and dropout (probability of 0.4). Dropout was used as a regularizing
component to reduce overfitting during training. The dropout probability and number of fully
connected layers and neurons were selected based on hyperparameter tuning, which was performed
in a grid search-like manner where the hyperparameters were varied and different combinations of
these were investigated. The optimal hyperparameters were the ones which yielded the lowest error
on the validation set, which is defined in the next section.

The final output layer consisted of one neuron for prediction of age and BMI or two neurons for
prediction of sex followed by a sigmoid activation function. For age and BMI, the desired output
was a single continuous value, which is why only one output neuron was required. For sex, the
desired outputs were two predicted probabilities, one for male and one for female, which is why two
output neurons were required. In this case, a sigmoid activation function was used to transform
the outputs into probabilities in the range [0,1].

3.3.1.5 Training, Validation, and Testing

Training, validation, and testing was carried out by using a training, validation, and test set split
(65% training, 25% validation, and 10% test set). The split was prioritized such that sufficient
data was utilized for training and validation of the model to learn an accurate mapping from
craniofacial images to patient demographics and hyperparameter optimization, while keeping a
sufficient amount of data in the test set for statistical analyses.

For age and BMI estimation, the mean absolute error (MAE) was used as loss function given by:

L = 1
N

N∑
i=1
|yi − ŷi|, (3.1)

where yi is the true age or BMI value, ŷi is the predicted age or BMI value, and N is the number
of samples in the training set. MAE was chosen because it is robust towards outliers, such as the
extreme BMI values observed in Fig. 3.6, where values of 60-70 kg/m2 are observed.

For estimation of sex, binary cross entropy was used as loss function given by:

L = − 1
N

N∑
i=1

yi · log pi + (1− yi) · log(1− pi), (3.2)

where log pi represents the predicted log probabilities of being male and log(1− pi) represents the
predicted log probabilities of being female. Binary cross entropy was chosen as it is the natural
choice of loss function for binary classification problems.
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 Layer Type Dimension Activation Out dim 
0 Input 16x224x224 - - 

Layer Type Convolution Activation Out dim 
1 Conv 7x7, 64, /2 ReLU 64x112x112 
2 MP 3x3, -, /2 - 64x56x56 

Block 1 
3 Conv 3x3, 64 ReLU 64x56x56 
4 Conv 3x3, 64 - 64x56x56 
5 Conv 3x3, 64 ReLU 64x56x56 
6 Conv 3x3, 64 - 64x56x56 

Block 2 
7 Conv 3x3, 128, /2 ReLU 128x28x28 
8 Conv 3x3, 128 - 128x28x28 
9 Conv 3x3, 128 ReLU 128x28x28 
10 Conv 3x3, 128 - 128x28x28 

Block 3 
11 Conv 3x3, 256, /2 ReLU 256x14x14 
12 Conv 3x3, 256 - 256x14x14 
13 Conv 3x3, 256 ReLU 256x14x14 
14 Conv 3x3, 256 - 256x14x14 

Block 4 
15 Conv 3x3, 512, /2 ReLU 512x7x7 
16 Conv 3x3. 512 - 512x7x7 
17 Conv 3x3, 512 ReLU 512x7x7 
18 Conv 3x3, 512 - 512x7x7 

Layer Type Neurons Activation Out dim 
19 AP 512 - 512x1x1 
22 FC 256 ReLU 256x1 
23 Dropout - - 256x1 
24 FC 1 (2) (sigmoid) 1x1 (1x2) 

Figure 3.9: The applied multi-view convolutional neural network architecture for predicting sex, age, and BMI
of a subject based on 16-dimensional input craniofacial images derived from a 3D scan. The input dimensions
are given by number of channels x height x width. The convolution layers are specified by filter size (e.g., 3x3),
number of channels (e.g., 64), and a stride (e.g., /2). The same applies for the max pooling (MP) layer. The
output dimensions of the feature maps are given by number of channels x height x width. The convolution
layers are always followed by batch normalization. The dropout layer has a keep probability of 0.4. If the skip
connections (arrows) are applied, the feature maps are down sampled instead by applying 1x1 filters with a stride
of 2x2. The final output layer consists of 1 neuron for prediction of age and BMI and 2 neurons for prediction of
sex followed by a sigmoid layer (indicated by a parentheses). AP - Average pooling, FC - Fully connected.

The learning rate was set to 1 · 10−5 with a weight decay of 5 · 10−4 and was chosen using hyper-
parameter tuning. The optimal choice was a learning rate that is not too high, which can cause
the parameter update via gradient descent to diverge from the minima, and not too low, which
would slow down training significantly. The weight decay is used to add a penalty term to the loss
function during optimization, which shrinks the weights and helps to prevent overfitting.
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The batch size was set to 64 for all three networks and was limited by computational resources.
The Adam optimizer [133] was used for optimization of the network due to its superior performance
compared to other optimization algorithms. Early stopping was applied as a stopping criterion for
training when the validation error did not decrease for 5 consecutive epochs (patience of 5) to avoid
any overfitting.

Python 3.7.4 and Pytorch 1.3.1 were used for pre-processing and deep learning purposes. Training
was carried out on a GeForce GTX 1080 and networks estimating age and BMI took approximately
two hours to train, while the network estimating sex took less than an hour.

3.3.1.6 Performance Measures

To evaluate model performance for estimation of age and BMI for subjects in the test set, MAE and
Pearson Correlation Coefficient (PCC) were used as performance measures. Calculation of MAE is
given by Eq. 3.1, but applied to the test set predictions instead of the training set. The PCC was
calculated as:

r =
∑M

i=1(yi − ȳ)(ŷi − ¯̂y)√∑M
i=1(yi − ȳ)2

√∑M
i=1(ŷi − ¯̂y)2

, (3.3)

where ȳ is the mean of the true age or BMI values, ¯̂y is the mean of the predicted age or BMI values,
and M is the number of samples in the test set. The PCC expresses the linear correlation between
true and predicted age or BMI values and ranges between -1 and 1, where -1 is the maximum
negative correlation and 1 is the maximum positive correlation between the two variables.

For estimation of sex, accuracy was used to evaluate model performance, which is calculated by:

Accuracy = TP + TN

TP + TN + FP + FN
, (3.4)

where TP are the true positives, TN are the true negatives, FP are the false positives, and FN
are the false negatives. A positive was defined as being male, so TP denoted the number of males
correctly classified as males and TN denoted the number of females correctly classified as females.
FP represented the number of females incorrectly classified as males, and FN was the number of
males incorrectly classified as females.

Bland-Altman plots [134] were generated to illustrate the patterns of disagreement between true
and predicted age and true and predicted BMI values, respectively, while confusion matrices were
displayed for the classification of sex and BMI categories to show the fraction of misclassified
subjects in each category as well as the sensitivity of the model in classifying each category.
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3.3.2 Results and Discussion

The performance metrics reported on the estimation of sex, age, and BMI were all evaluated on
the test set consisting of 160 subjects.

3.3.2.1 Estimation of Sex

For estimation of sex, the network was trained for 13 epochs before early stopping occurred. A
mean accuracy of 93% was achieved in classifying the sex of all subjects in the test set. To put this
in context, if the network simply predicted all subjects in the test set to be women, an accuracy
of 52% would be achieved. Figure 3.10 shows the normalized confusion matrix for the predictions.
Approximately 8% of males, corresponding to 6 out of 77 males, were misclassified as females, and
6% of females, corresponding to 5 out of 83 females, were misclassified as males. The estimation
of sex from 3D craniofacial scans is a trivial task and the few misclassified subjects are due to
the model confusing the sex of subjects based on e.g., short hair for females and slightly feminine
features in males.

3.3.2.2 Estimation of Age

For estimation of age, the network was trained for 190 epochs before early stopping occurred. A
MAE of 7.77 years and a PCC of 0.76 was obtained between the true and predicted ages in the
test set. If the network predicted the age for all subjects in the test set to be the mean value of the
distribution, a MAE of 12.9 years would be obtained. Figure 3.11 shows a Bland-Altman plot of
the true and predicted ages, i.e. the difference between the true and predicted ages as a function
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Figure 3.10: A normalized confusion matrix displaying the fraction of correctly and incorrectly classified subjects
with respect to their sex for 160 subjects. The classification is performed based on sex of subjects that is predicted
using a trained multi-view convolutional neural network, which takes as input eight pairs of 2D images and depth
maps derived from 3D craniofacial scans and outputs predicted sex.
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Figure 3.11: Bland-Altman plot for the true and predicted age in the test set consisting of 160 subjects. The
predictions are performed using a trained multi-view convolutional neural network, which takes as input eight
pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted age. The dashed
horizontal lines above and below 0 indicate the limits of the 95% confidence interval.

of the mean of the true and predicted ages. There is a slight trend showing that lower ages are
overpredicted and higher ages are underpredicted, and the greatest over and underpredictions are
of a similar magnitude (approximately -30 and 30 years).

3.3.2.3 Estimation of BMI

For estimation of BMI, the network was trained for 196 epochs and achieved a MAE of 4.04 kg/m2

and a PCC of 0.8 with respect to true and predicted BMIs in the test set. If the network predicted
the BMI for all subjects in the test set to be the mean value of the distribution, a MAE of 6.9
kg/m2 would be obtained. Figure 3.12 shows a Bland-Altman plot of the true and predicted BMI
values. Small errors around the mean BMI of around 31 kg/m2 are noted, while the larger BMI
values are underpredicted.

The MAE of the age predictor being almost twice that of the BMI predictor makes sense, as in
many cases it would be easier to derive someone’s BMI based off of their face and neck as compared
to age, particularly based on a 3D scan with limited facial details. The main uncertainty associated
with prediction of BMI is that the height of the person is unknown, which is used for calculation of
BMI, and which cannot be derived from a 3D craniofacial scan alone. Another drawback is that the
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Figure 3.12: Bland-Altman plot for the true and predicted BMI in the test set consisting of 160 subjects. The
predictions are performed using a trained multi-view convolutional neural network, which takes as input eight
pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted age. The dashed
horizontal lines above and below 0 indicate the limits of the 95% confidence interval.

BMI values in the dataset are heavily centered around the mean value of about 31 kg/m2. Thus,
the more extreme cases of either very low or high BMI values are underrepresented in the dataset.

Based on predicted BMI values, subjects were classified into BMI categories of normal, overweight,
and obese [135], and Fig. 3.13 shows the resulting confusion matrix. In many cases, the BMI values
have been overestimated. Several of the normal subjects are classified as overweight and many of
the overweight subjects are classified as obese. However, even a small overestimation could lead
to a misclassification, since there are hard cut-offs between each class, and most of the subjects
have BMI values centered around the cut-off between overweight and obese. However, the highest
sensitivity is obtained for the obese subjects and one could argue that they are the most important
to capture, since they are the ones who are medically most at risk. Furthermore, accurate estimation
of BMI from 3D craniofacial scans plays a vital role in OSA detection, as increased BMI is heavily
associated with development of OSA [136].

3.3.2.4 Comparison to Similar Work

Similar work to a part of this study was presented in [137], where the authors used transfer learning
with VGG-Face [138] on social media images of people to predict their BMI. They achieved an
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Figure 3.13: A normalized confusion matrix displaying the fraction of correctly and incorrectly classified subjects
with respect to their BMI categories for 160 subjects. The classification is performed based on BMI values of
subjects that are predicted using a trained multi-view convolutional neural network, which takes as input eight
pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted BMI.

overall correlation coefficient of 0.65 compared to our correlation of 0.80. In [139], the authors
extracted facial measurements as features instead and used simple regression methods to obtain
an overall MAE of 3.14 kg/m2 compared to our MAE of 4.04 kg/m2. However, their work relied
on hand-engineered features instead of the more data-driven feature extraction presented in this
work. The work presented in [140] gives an extensive overview of different age predictors, showing
MAEs ranging from 8.84 years to 0.31 years. Compared to our MAE of 7.77, this shows that there
is clearly room for improvement with respect to age prediction. However, it must be noted that
widely different techniques and datasets are being compared, so one should be careful to place too
much emphasis on the comparison. Finally, [141] predicted the sex of subjects based on different
deep learning architectures and their best model achieved an accuracy of 93.57%, which is very
comparable to the 93% obtained in this work. Although our focus was not to achieve state-of-the-
art performance on predicting any demographic, the comparison to other studies still serves as a
validation of the proposed framework.

3.3.3 New Analyses After Publication

After publishing Paper I, which the research described above is based on, and working on Paper II,
which will be described in Section 3.4, some modifications were made to the methodology. These
modifications included 1) using 2D images and depth maps from five angles instead of eight, 2)
using textures with the scans, and 3) using 10-fold cross validation instead of a training, validation,
and test set split to train and evaluate the proposed models. The reasoning for these modifications
are explained in Section 3.4.
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The revised approach for Paper II was explored for the problem posed in Paper I, primarily to
evaluate performance across the entire dataset instead of on a small test set and to be able to
compare results from Paper I and Paper II when trained and evaluated on the same 1366 subjects
with the same approach. Consequently, the results have more power and any biases that could be
introduced in the test set when using a training, validation, and test set split would be diminished.
Furthermore, for the research for Paper II, three sleep medicine specialists were recruited to estimate
AHI based on the 3D craniofacial scans as described in Section 3.4.1.7. As part of this experiment,
they also guessed the age of each subject. Consequently, a comparison between the age predictions
of the proposed model and the sleep medicine specialists will also be included. All results from the
new analyses performed after publication are presented below.

3.3.3.1 Estimation of Sex

The accuracy for estimation of sex was 91 ± 3%, which was almost the same as before (93%). Figure
3.14 shows the normalized confusion matrix for the predictions. The sensitivity of 92% for males
and 90% for females was again almost the same as before (94% and 92%, respectively), showing
that there was no bias with respect to sex in the test set consisting of 160 subjects. However, this
was expected since classifying the sex of subjects from their craniofacial scans is a trivial task.

3.3.3.2 Estimation of Age

The MAE for estimation of age was 8.77 ± 0.53 years, which is exactly one year higher on average
than before (MAE of 7.77 years). The PCC was 0.68 ± 0.06 which was lower compared to the PCC
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Figure 3.14: A normalized confusion matrix displaying the fraction of correctly and incorrectly classified subjects
with respect to their sex for 1366 subjects. The classification is performed based on the sex of subjects that is
predicted using a trained multi-view convolutional neural network, which takes as input five pairs of 2D images
and depth maps derived from 3D craniofacial scans and outputs predicted sex.
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of 0.76 obtained before. Figure 3.15 shows a Bland-Altman plot of the true and predicted ages for
all 1366 subjects. Comparing Fig. 3.15 to the Bland-Altman plot for 160 subjects given in Fig.
3.11 shows an extremely similar overall trend while the greatest underprediction and overprediction
appears to have increased by 5 years in either direction. The results show that the slightly poorer
performance for the entire dataset consisting of 1366 subjects provides a better representation of
performance for age estimation based on 3D craniofacial scans than the smaller test set consisting
of 160 subjects.

The three sleep medicine specialists recruited to estimate AHI from 3D craniofacial scans (described
in Section 3.4.1.7) also guessed the age of each subject. They achieved a MAE of 7.34 years and a
PCC of 0.82, showing that the model estimating age does not perform as well as humans. Figure
3.16 compares Bland-Altman plots between the model’s age predictions and the sleep specialists’
age predictions, showing that there is less bias present for the specialists, particularly with respect
to overprediction of age, as the model tends to overestimate age more often than the specialists,
while the underpredictions appear more similar for both.
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Figure 3.15: Bland-Altman plot for the true and predicted age in the dataset consisting of 1366 subjects.
The predictions are performed using a trained multi-view convolutional neural network, which takes as input five
pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted age. The dashed
horizontal lines above and below 0 indicate the limits of the 95% confidence interval.
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Figure 3.16: Comparison of Bland-Altman plots for age predicted by the proposed model (blue) and by three
sleep medicine specialists (orange) evaluated for the entire dataset consisting of 1366 subjects. The age predictions
by the proposed model are performed using a trained multi-view convolutional neural network, which takes as
input five pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted age.
The age predictions by the sleep specialists are performed by inspecting 3D craniofacial scans of all subjects and
guessing their age. The dashed horizontal lines above and below 0 indicate the limits of the 95% confidence
interval.

3.3.3.3 Estimation of BMI

The MAE for estimation of BMI was 4.36 ± 0.29 kg/m2, which is slightly higher than before (4.04
kg/m2). The PCC was 0.73 ± 0.05, which was lower compared to the PCC of 0.80 obtained initially.
Figure 3.17 shows a Bland-Altman plot of the true and predicted BMIs for all 1366 subjects. The
overall trend looks similar to the Bland-Altman plot presented in Fig. 3.12, however the greatest
underprediction and overprediction appears to have increased by 10 kg/m2 in each direction, which
is most likely a result of including more subjects with abnormally high BMI to evaluate on.

Figure 3.18 shows the confusion matrix for predicted BMI categories for all 1366 subjects. Com-
paring this to Fig. 3.13, it is noticed that the sensitivity for normal subjects with respect to BMI
decreases slightly (from 45% to 43%), the sensitivity for overweight subjects increases (from 46%
to 57%), while the sensitivity for obese subjects decreases (from 86% to 74%). The main differ-
ence appears to be that overweight subjects are confused less with obese subjects and that obese
subjects are confused more with overweight subjects, again most likely because more subjects with
abnormal BMI are included in the analysis.
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Figure 3.17: Bland-Altman plot for the true and predicted BMI in the dataset consisting of 1366 subjects.
The predictions are performed using a trained multi-view convolutional neural network, which takes as input five
pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted BMI. The dashed
horizontal lines above and below 0 indicate the limits of the 95% confidence interval.
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Figure 3.18: A normalized confusion matrix displaying the fraction of correctly and incorrectly classified subjects
with respect to their BMI categories for 1366 subjects. The classification is performed based on BMI values of
subjects that are predicted using a trained multi-view convolutional neural network, which takes as input five pairs
of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted BMI.
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3.4 Paper II: Estimation of Apnea-Hypopnea Index Using Deep
Learning on 3D Craniofacial Scans

Abstract

Purpose: Obstructive sleep apnea (OSA) is characterized by decreased breathing events
that occur through the night, with severity reported as the apnea-hypopnea index (AHI),
which is associated with certain craniofacial features. In this study, we used data from
1366 patients collected as part of Stanford Technology Analytics and Genomics in Sleep
(STAGES) across 11 US and Canadian sleep clinics and analyzed 3D craniofacial scans with
the goal of predicting AHI, as measured using gold standard nocturnal polysomnography
(PSG).

Methods: First, the algorithm detects pre-specified landmarks on mesh objects and aligns
scans in 3D space. Subsequently, 2D images and depth maps are generated by rendering
and rotating scans by 45-degree increments. Resulting images were stacked as channels and
used as input to multi-view convolutional neural networks, which were trained and validated
in a supervised manner to predict AHI values derived from PSGs.

Results: The proposed model achieved a mean absolute error of 11.38 events/hour,
a Pearson correlation coefficient of 0.4, and accuracy for predicting OSA of 67% using
10-fold cross-validation. The model improved further by adding patient demographics
and variables from questionnaires. We also show that the model performed at the level
of three sleep medicine specialists, who used clinical experience to predict AHI based
on 3D scan displays. Finally, we created topographic displays of the most important fa-
cial features used by the model to predict AHI, showing importance of the neck and chin area.

Conclusion: The proposed algorithm has potential to serve as an inexpensive and efficient
screening tool for individuals with suspected OSA.

3.4.1 Methods

This section describes the approach for developing an automatic screening system for OSA based
on 3D craniofacial scans. An additional system using 3D scans, demographics, and questionnaire
variables to predict AHI was proposed as well. Figure 3.19 shows a block diagram of both systems.
The different components of the systems will be described in detail in the following.
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Figure 3.19: A block diagram of the proposed system for estimating apnea-hypopnea index (AHI) from 3D
craniofacial scans, demographics, and questionnaires. Top left block: A 3D craniofacial scan is converted to 2D
images and depth maps captured from 45-degree increments around the 3D scan using the multi-view consensus
convolutional neural network (CNN) for 3D facial landmark placement (Deep-MVLM) algorithm [127]. These
images are normalized to the range [0,1] and stacked into a matrix, yielding matrix dimensions of 20x224x224.
Bottom left block: The matrix containing craniofacial images is used as input for a CNN with a ResNet18
architecture for feature selection. The output of the CNN is a 512x1 feature vector, which is processed by two
dense layers with dropout (one layer preserving the 512 features and the next reducing 512 features to 128). A
final dense layer transforms the output into a scalar value for the prediction of AHI. Top right block: Patient
demographics (sex, age, and BMI) and questionnaire variables (seven OSA-related questions that the person
answers yes or no to) are extracted. Age and BMI values are normalized to the range [0,1] using min-max
normalization. Bottom right block: The demographics and questionnaire variables are processed by two separate
multi-layer perceptrons (MLPs), which consist of three dense layers each. The first two layers increase the number
of features (to 32 and then 64), and the final layer transforms the output into a scalar value for the prediction of
AHI. The AHI values predicted using the craniofacial scans, demographics, and questionnaires are ensembled by
averaging all three values. The model using only 3D craniofacial scans to predict AHI relies on the top left and
bottom left blocks and skips the top right and bottom right blocks entirely.
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3.4.1.1 Data Collection

The data collection for this study was the same as for the previous study described in Section
3.3.1.1.

3.4.1.2 Data Description

A detailed description of the 3D craniofacial scans collected for this study, including how the data
is structured, was provided in Section 3.3.1.2.

Out of 1756 subjects for whom 3D craniofacial scans were collected, 1366 subjects were included
in this study as the rest had missing demographics, questionnaires, and/or PSGs. Of the 1366
subjects, 724 were female and 642 were male. Mean age ± standard deviation was 45.9 ± 14.8
years, BMI was 30.9± 8.7 kg/m2, and AHI was 15.5± 19.3 events/hour (median: 9.3, IQR: 17.5).
The distributions of sex, age, and BMI were shown in Fig. 3.6 for 1605 subjects in the dataset. The
distributions of demographics for the 1366 subjects used for this study are not included as they are
approximately the same as in Fig. 3.6. Figure 3.20 shows the distribution of AHI values within the
dataset. AHI was derived from each PSG annotation file by using the following formula:

AHI = NOSA +NHY P

TST
· 60, (3.5)

where NOSA are the number of annotated obstructive apneas and NHY P are the number of anno-
tated hypopneas. TST is the total sleep time in minutes, which was calculated as:

TST = (EN1 + EN2 + EN3 + EREM ) · 30 seconds
60 , (3.6)

where EN1, EN2, EN3, and EREM are the number of annotated epochs (of 30 seconds) for each
sleep stage, respectively. TST represents the amount of time in minutes the subject spent asleep
during the PSG recording. TST is used instead of the recording time for AHI calculation because
apneas and hypopneas only occur during sleep. Central apneas were excluded from the analysis
because they have no known relation to craniofacial anatomy. Central hypopneas are very rare so
it was assumed that all annotated hypopneas were obstructive.

3.4.1.3 Pre-Processing

The pre-processing steps for this study were the same as detailed in Section 3.3.1.3 for the previous
study. However, at this time in the PhD project, it was discovered that some scans were not
complete with respect to the back of the head. Since this information does not contribute to AHI
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Figure 3.20: Distribution of apnea-hypopnea index (AHI) values for 1366 subjects in the dataset used to train
and evaluate a multi-view convolutional neural network for the estimation of AHI from 3D craniofacial scans.

prediction, only five pairs of 2D images and depth maps were used, emphasizing the frontal and
profile characteristics of face and neck from several angles as shown in Fig. 3.21. Note that textures
for the scans were included in this study as opposed to the previous study since computational cost
was not a concern this time around. The 2D images had three channels each (RGB) and the depth
maps had one channel each. Since there were five 2D images and five depth maps, the final stacked
matrix per subject contained 5×3 + 5×1 = 20 channels in total and 224×224 pixels per channel.

The patient demographics (age and BMI), which were also included as features for one model, were
normalized using min-max normalization given by

xnorm = x−min(xtrain)
max(xtrain)−min(xtrain) , (3.7)

where x is a vector containing one of the demographics for all subjects in the dataset and xtrain is a
vector containing one of the demographics for all subjects in the training set. This normalization was
performed to ensure faster convergence during training of the proposed model. No normalization
was necessary for sex because it was binary (0: female, 1: male).

The seven different variables from the modified STOP-Bang questionnaire described in Section
4.5.1 were also included as features for one model and they did not require normalization either
because those values were also binary (0: no, 1: yes). The complete STOP-Bang questionnaire
is provided in Appendix A. The modified STOP-Bang questionnaire used for this study did not
include neck circumference of subjects but was otherwise identical to the one in Appendix A.
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Figure 3.21: Example of five pairs of 2D images (top row) and depth maps (bottom row) captured at different
angles from a 3D craniofacial scan and used as input for the multi-view convolutional neural network, which is
trained to estimate the apnea-hypopnea index of a subject.

3.4.1.4 Multi-View Convolutional Neural Network

The purpose of applying machine learning was to reveal data-driven mapping differences within the
multi-view inputs across AHI values. For this purpose, we implemented a multi-view CNN with a
ResNet18 architecture [130]. The network architecture was almost identical to the one presented
in Section 3.3.1.4, where reasoning for the choice of network architecture was provided as well,
except that an extra fully connected layer followed by dropout was added to this network due to
the increased complexity of the task. Figure 3.22 shows the network architecture with all details.

The implemented multi-view CNN took 20 channels as input per subject and the input was pro-
cessed by the standard blocks of a ResNet18 network. Two additional fully connected layers were
added at the end, one preserving the 512 features and the other reducing 512 features to 128. Both
fully connected layers were followed by a ReLU activation and dropout (probability of 0.3 and
0.5, respectively). Dropout was added as a regularizing component to reduce overfitting during
training. The dropout probability and number of fully connected layers and neurons were selected
based on hyperparameter tuning, which was performed in a grid search-like manner where the
hyperparameters were varied and different combinations of these were investigated. The optimal
hyperparameters were the ones which yielded the lowest error on the validation set. The output
layer consisted of a single neuron, since the desired output was a single continuous AHI value.

Two additional networks were developed, one using demographics as input to predict AHI and
another using questionnaire variables as input to predict AHI. The first network took three input
features (sex, age, and BMI), while the second network took seven input features (seven ques-
tionnaire variables). Both networks were multilayer perceptrons (MLPs) with two fully connected
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layers followed by ReLU activation functions and a final output layer consisting of one neuron for
the predicted AHI value. Figure 3.23 shows the network architecture with all details for estimation
of AHI based on demographics and questionnaires. MLPs were selected because they are more
suitable when the input is a feature vector with independent features as compared to a CNN.

 Layer Type Dimension Activation Out dim 
0 Input 20x224x224 - - 

Layer Type Convolution Activation Out dim 
1 Conv 7x7, 64, /2 ReLU 64x112x112 
2 MP 3x3, -, /2 - 64x56x56 

Block 1 
3 Conv 3x3, 64 ReLU 64x56x56 
4 Conv 3x3, 64 - 64x56x56 
5 Conv 3x3, 64 ReLU 64x56x56 
6 Conv 3x3, 64 - 64x56x56 

Block 2 
7 Conv 3x3, 128, /2 ReLU 128x28x28 
8 Conv 3x3, 128 - 128x28x28 
9 Conv 3x3, 128 ReLU 128x28x28 
10 Conv 3x3, 128 - 128x28x28 

Block 3 
11 Conv 3x3, 256, /2 ReLU 256x14x14 
12 Conv 3x3, 256 - 256x14x14 
13 Conv 3x3, 256 ReLU 256x14x14 
14 Conv 3x3, 256 - 256x14x14 

Block 4 
15 Conv 3x3, 512, /2 ReLU 512x7x7 
16 Conv 3x3. 512 - 512x7x7 
17 Conv 3x3, 512 ReLU 512x7x7 
18 Conv 3x3, 512 - 512x7x7 

Layer Type Neurons Activation Out dim 
19 AP 512 - 512x1x1 
20 FC 512 ReLU 512x1 
21 Dropout - - 512x1 
22 FC 128 ReLU 128x1 
23 Dropout - - 128x1 
24 FC 1 - 1x1 

Figure 3.22: The applied multi-view convolutional neural network architecture for predicting the apnea-hypopnea
index of a subject based on 20-dimensional input craniofacial images derived from a 3D scan. The input dimensions
are given by number of channels x height x width. The convolution layers are specified by filter size (e.g., 3x3),
number of channels (e.g., 64), and a stride (e.g., /2). The same applies for the max pooling (MP) layer. The
output dimensions of the feature maps are given by number of channels x height x width. The convolution layers
are always followed by batch normalization in this architecture. The dropout layers have keep probabilities of 0.3
and 0.5, respectively. If the skip connections (arrows) are applied, the feature maps are down sampled instead by
applying 1x1 filters with a stride of 2x2. AP - Average pooling, FC - Fully connected.
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 Layer Type Dimension Activation Out dim 
0 Input 3x1 (7x1) - - 

Layer Type Neurons Activation Out dim 
1 FC 32 ReLU 32x1 
2 FC 64 ReLU 64x1 
3 FC 1 - 1x1 

Figure 3.23: The applied multi-layer perceptron (MLP) architecture for predicting the apnea-hypopnea index
of a subject based on the 3-dimensional input demographics (sex, age, and BMI) or the 7-dimensional input
questionnaire variables (snoring, tiredness, observed apnea, hypertension, being male, being older than 65 years,
and having a BMI greater than 35 kg/m2), which is indicated by parantheses in the figure. FC - Fully connected.

The AHI predictions of each of the three different networks, using scans, demographics, and ques-
tionnaires as inputs, respectively, were averaged using an ensemble approach to form final predic-
tions for AHI values as shown in Fig. 3.19. Thus, two different models were proposed in this study:
one predicting AHI based only on 3D craniofacial scans and another predicting AHI based on 3D
craniofacial scans, demographics and questionnaire variables combined.

3.4.1.5 Training, Validation, and Testing

Training, validation, and testing was carried out using 10-fold cross-validation. This was done by
splitting the dataset into 10 folds of equal size and utilizing 8 folds for training and 1 fold each for
validation and testing. Predictions for the test fold samples were computed after training and the
process was repeated by assigning new folds to training, validation, and testing. This procedure
was repeated 10 times, such that AHI predictions were performed for all subjects in the dataset.

Mean squared error (MSE) was used as loss function given by:

L = 1
N

N∑
i=1

(yi − ŷi)2, (3.8)

where yi is the true AHI value, ŷi is the predicted AHI value, and N is the number of samples in
the training set. The MSE was chosen to penalize greater errors, since most of the AHI values in
the dataset were in the range 0-15 events/hour (Fig. 3.20), and it was important for the model to
also learn to estimate AHI values for subjects with severe OSA (AHI > 30 events/hour).

The learning rate was set to 1 · 10−5 with a weight decay of 5 · 10−4 for the multi-view CNN,
and 1 · 10−2 (with the same weight decay) for the MLPs. The learning rate was chosen using
hyperparameter tuning and the optimal choice was a learning rate that is not too high, which can
cause the parameter update via gradient descent to diverge from the minima, and not too low,
which would slow down training significantly. The weight decay was used to add a penalty term to
the loss function during optimization, which shrinks the weights and helps to prevent overfitting.
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The batch size was set to 8 for all three networks and was limited by computational resources. The
Adam optimizer [133] was used for optimization of the network due to its superior performance
compared to other optimization algorithms. Early stopping was applied when the validation error
did not decrease for 3 consecutive epochs (patience of 3) to help prevent overfitting. Python 3.7.4
and Pytorch 1.3.1 were used for pre-processing and deep learning purposes.

Training was carried out on a GeForce RTX 2080 and the entire training, validation, and test
setup took approximately one hour to complete for the model using 3D cranofacial scans and
approximately fifteen minutes for the models using demographics and questionnaires, respectively.

3.4.1.6 Performance Measures

The measures used to evaluate model performance with respect to true and predicted AHI values
in the test set were mean absolute error (MAE) and Pearson Correlation Coefficient (PCC), which
are given by Eqs. 3.1 and 3.3.

Furthermore, predicted AHI was used to classify subjects into being normal or having OSA, where
an AHI of 15 events/hour or greater was the clinical criterion used for defining the presence of OSA
(moderate-severe versus mild or no OSA). Thus, accuracy of classification was another measure
used to evaluate the model performance, which was calculated using Eq. 3.4. In this case, the
positives were defined as subjects with OSA, so TP denoted the number of subjects with OSA
correctly classified as having OSA and TN denoted the number of subjects without OSA correctly
classified as being normal. FP represented the number of normal subjects incorrectly classified as
having OSA, while FN was the number of subjects with OSA incorrectly classified as normal.

The area under receiver operating characteristic curve (AUC ROC) was used as another perfor-
mance measure for the classification. The ROC curve plots the true positive rate against the false
positive rate for all classification thresholds, and the AUC ROC provides an aggregated metric for
model performance in distinguishing between the positive and negative class across all thresholds.

Bland-Altman plots [134] were used to illustrate the patterns of disagreement between true and
predicted AHI values, while a confusion matrix was displayed for the classification of normal/OSA
to show the fraction of misclassified subjects in both categories as well as the sensitivity of the
model in classifying each category.

3.4.1.7 Sleep Specialists’ Ability to Estimate Apnea-Hypopnea Index

Three experienced, board certified sleep medicine physicians with in-depth knowledge of OSA were
recruited to imitate the task of the proposed model, i.e., estimating AHI based on inspection of
the 3D craniofacial scan of each subject. The three physicians scored one third of the dataset each,
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while also annotating 150 of the same scans to estimate percentage agreement. When annotating
a scan, each physician was shown the scan from all desired angles, having the ability to rotate the
3D image for any desired amount of time. Physicians took approximately 30 seconds to score each
scan.

Their first thought was to size up the person based on their estimated age, with the awareness that
older individuals often have higher AHIs (due to lax musculature, redundant tissue, and an atrophic
skeletal scafolding that result in higher risk of airway collapse). Then they would ascertain if the
individual looked tired - droopy eyelids (ptosis), drawn face, pallor, circles/bags under the eyes,
etc. - that might suggest an underlying sleep disorder. Finally, they would look for some of the
high-yield characteristics: looking at the overall head and neck adiposity (fat), the characteristics
of the thyromental space, the over/under-bite (to suggest a retrognathic jaw that pushes the tongue
into the airway), the craniofacial complex (looking for maxillary or mandibular hypoplasia) and
noting whether there was a long/thin face suggestive of life-long nasal congestion (“adenoid facies”),
and the cervical lordosis (to see if subjects have their heads thrust forward, suggestive of position
modification in order to ease breathing). They would then roughly estimate the AHI based on all
these factors and their general knowledge of the known prevalence/proportions of varying severities
of OSA.

It is important to note that clinicians do not traditionally estimate AHI, but for this study their
estimates served as expert level performance as a comparison for the proposed model.

3.4.1.8 Topographic Display of Important Craniofacial Regions

A topographic display was created by generating saliency maps for the model using craniofacial
scans. A saliency map is a visualization technique based on the gradient of the network output with
respect to an input image [142]. Consequently, the pixels which contribute most to the prediction
of the network can be highlighted. For the topographic displays, we averaged saliency maps for
10 subjects with the highest predicted AHI values per cross-validation test fold and 10 subjects
with the lowest predicted AHI values per test fold, yielding an average of 100 saliency maps for the
highest and lowest predicted AHI values, respectively.

3.4.2 Results and Discussion

The model using craniofacial scans during cross-validation converged after 6.6 ± 1.6 epochs, the
model using demographics converged after 23.1 ± 6.9 epochs, and the model using questionnaires
converged after 12.5 ± 6.9 epochs. This was calculated by averaging the epochs it took for each
model to converge across all 10 folds. The following results were obtained by evaluating the proposed
models for all 1366 subjects in the dataset.
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3.4.2.1 Model Using Craniofacial Scans

Without demographic and questionnaire information available, our model achieved a MAE of
11.38 ± 1.36 events/hour and a PCC of 0.40 ± 0.04 using 10-fold cross-validation. In comparison,
if AHI for all subjects was predicted as the mean AHI value in the dataset (i.e., 15.5 events/hour),
the MAE would be 13.0 events/hour and the PCC would be -0.02. This means that the average ab-
solute deviation from true AHI per subject would be almost 2 events/hour more than the proposed
model, although the correlation would be significantly worse.

Figure 3.24 shows the Bland-Altman plot of true and predicted AHI values (blue data points),
where underpredictions of great magnitude are observed for subjects with very high AHI (>30
events/hour). In general, subjects with high AHI are hard to estimate because AHI values of 30,
60, or 90 events/hour are not significantly different, as they are all considered abnormal values.
There were more than 200 subjects with AHI above 30 events/hour and 12 subjects with AHI
more than 100 events/hour. Additionally, 50 subjects had an AHI of 0 events/hour, which were
overpredicted on average by 10 events/hour. The subjects with very high AHI and AHI of 0
events/hour contribute to the high standard deviation (19.3) of AHI values in the dataset and
increase the MAE as well.

When dividing subjects into normal/OSA using AHI ≥ 15 events/hour as a criterion for OSA, an
overall accuracy of 67 ± 4% was obtained based on the predicted AHI. Figure 3.25 (a) shows the
resulting confusion matrix of classifying subjects into normal or having OSA based on predicted
AHI values, showing that the model is better at classifying normal subjects compared to subjects
with OSA. Sensitivity was 59 ± 8%, specificity was 72 ± 5%, and AUC ROC was 65 ± 4%. In
comparison, if AHI for all subjects was predicted as the mean AHI value of the dataset, accuracy
would be 34%, and AUC ROC would be 50%.

The misclassifications observed in Fig. 3.25 (a) were further explored to reveal any patterns asso-
ciated with subjects wrongly classified as normal or having OSA. The top row of Fig. 3.26 shows
scatter plots of true and predicted AHI of subjects, divided into males and females and color coded
according to their BMI category, who were wrongly classified as being normal based on a predicted
AHI < 15 events/hour. For the misclassified subjects, it is observed that males have higher pre-
dicted AHI than females, which is in accordance with the fact that males have higher OSA risk
than females in general. Particularly for males, the predicted AHI for many subjects is around 14
events/hour, which means the model was close to classifying these subjects correctly, which would
have increased sensitivity of the model. Importantly though, all predicted AHI values for males
and most for females are above 5 events/hour, which means they are predicted to have mild OSA
as opposed to having no OSA when using the OSA severity classification described in Section 2.3.4.
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Figure 3.24: Bland-Altman plots of true and predicted apnea-hypopnea index (AHI) in the dataset consisting
of 1366 subjects, predicted by the model using only craniofacial images (blue), and predicted by the model
combining craniofacial images, demographics, and questionnaires (orange). Predictions for the first model are
obtained using a trained multi-view convolutional neural network, which takes as input five pairs of 2D images
and depth maps derived from 3D craniofacial scans and outputs predicted AHI. Predictions for the second model
are obtained by ensembling three different models, using craniofacial images, demographics, and questionnaires
as input, respectively, to output predicted AHI. The dashed horizontal lines above and below 0 indicate the 95%
confidence interval limits.

The data points in the top left corner represent the subjects who have AHI close to 15 events/hour
and for whom an AHI close to 15 events/hour was predicted. Although the AHI estimations
were close, a somewhat arbitrary cut-off of 15 events/hour causes misclassifications and reduced
sensitivity of the model with respect to OSA detection. Furthermore, the model is not aware of this
cut-off for subsequent classification as it has purely been trained to estimate AHI. Although the
cut-off for OSA detection can be useful for screening, it does not paint the complete picture. For
example, there would not be a big difference between subjects with AHI of 15 and 14.4 events/hour,
respectively, yet the cut-off differentiates the two and classifies one as having OSA and the other
as being normal. A classification model could be implemented which performs the classification
directly, but the benefit of AHI estimation for OSA severity would be lost in that case.

With respect to BMI categories, there is a mixture of normal, overweight, and obese males who
are misclassified, with overweight males being slightly more represented. The overweight males are
in the middle with respect to BMI categories and perhaps this causes the model to predict AHI
values that are somewhat in the middle as well. A likely explanation for subjects with normal BMI
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Figure 3.25: (a) Normalized confusion matrix for the model using only craniofacial images. (b) Normalized
confusion matrix for the model using a combination of craniofacial images, demographics, and questionnaires.
Predictions for the first model are obtained using a trained multi-view convolutional neural network, which takes
as input five pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted apnea-
hypopnea index (AHI). Predictions for the second model are obtained by ensembling three different models,
taking craniofacial images, demographics, and questionnaires as input, respectively, to output predicted AHI. The
confusion matrices show the results from classifying subjects into being normal or having obstructive sleep apnea
(OSA) using AHI ≥ 15 as a criterion for OSA based on the predicted AHI values by the proposed models.

not being classified as having OSA is the presence of other factors contributing to OSA, which can
not be assessed using craniofacial scans (such as narrow upper airway anatomy). As a result, the
model underestimates their AHI based on the fact that they have normal BMI and no apparent
craniofacial abnormalities. The males with most extreme AHI values are all overweight or obese,
and it is curious that the model predicts low AHI for those. The majority of females who are
wrongly classified as being normal are obese, which could be explained by the fact that women
have much lower risk of OSA than men despite being obese. Most likely, the model has picked up
on this discrimination based on all females in the dataset and thus underpredicts their AHI values
to a degree where they are wrongly classified based on the cut-off value.

The top row of Fig. 3.27 shows scatter plots of true and predicted AHI of subjects, divided into
males and females and color coded according to their BMI category, who were wrongly classified as
having OSA based on a predicted AHI ≥ 15 events/hour. Again, the males have higher predicted
AHI than females, and for males the overpredicted AHI values are mostly for overweight and obese
subjects, while for females, the majority of misclassified subjects are obese. Compared to the top
row of Fig. 3.26, much fewer subjects with normal BMI are observed in Fig. 3.27, showing that
most overpredicted AHI values are associated with increased BMI. It is also noted that many of the
misclassified subjects have AHI values close to 15 events/hour, demonstrating that the model was
close to classifying these subjects correctly, which would have increased specificity of the model.
This again highlights the shortcomings associated with using such cut-offs for OSA classification.
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Figure 3.26: Scatter plots showing the true and predicted apnea-hypopnea index (AHI) values for subjects
who were wrongly classified as being normal predicted by the model using only craniofacial images (top row) and
predicted by the model using a combination of craniofacial images, demographics, and questionnaires (bottom
row). The subjects were wrongly classified as being normal because the proposed model predicted an AHI value
< 15 events/hour. Separate figures are provided for males and females, and each subject is colored according to
their BMI category as obesity is a big risk factor for developing obstructive sleep apnea.

3.4.2.2 Model Using Craniofacial Scans, Demographics, and Questionnaires

Adding the clinically relevant demographics and questionnaire variables improved the model further,
yielding a MAE of 11.05±1.40 events/hour and a PCC of 0.45±0.04. Figure 3.24 shows the Bland-
Altman plot of the true and predicted AHI values (orange data points). Note how the difference
between true and predicted AHI is reduced in both directions compared to only using craniofacial
images, which gives more accurate AHI estimations as evident from the reduction in MAE from
11.38 to 11.05 events/hour. However, the extreme AHI values are still underpredicted with a similar
magnitude, highlighting that the model struggles with such subjects even when adding clinical data.
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Figure 3.27: Scatter plots showing the true and predicted apnea-hypopnea index (AHI) values for subjects who
were wrongly classified as having obstructive sleep apnea (OSA) predicted by the model using only craniofacial
images (top row) and predicted by the model using a combination of craniofacial images, demographics, and
questionnaires (bottom row). The subjects were wrongly classified as having OSA because the proposed model
predicted an AHI value ≥ 15 events/hour. Separate figures are provided for males and females, and each subject
is colored according to their BMI category as obesity is a big risk factor for developing OSA.

Using a cut-off of 15 events/hour, subjects were classified as being normal or having OSA based on
the predictions of this improved model. Figure 3.25 (b) shows the resulting confusion matrix from
the classification. Although the accuracy remained 67 ± 4%, sensitivity increased (from 59% to
74%), while specificity decreased (from 72% to 63%), suggesting that the model became better at
predicting subjects with OSA with the added information. Although the overall accuracy did not
increase, the AUC ROC improved from 65±4% to 69±3%, which reflects the overall improvements
in the classification.
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The bottom row of Fig. 3.26 shows scatter plots of subjects, divided into males and females and
color coded according to their BMI category, who were wrongly classified as being normal based
on a predicted AHI < 15 events/hour. Compared to the results shown in the top row of Fig. 3.26
using only craniofacial images, it is noted that the predicted AHI increases for misclassified subjects
after adding demographics and questionnaires, most notably for males. Interestingly, there are still
a handful of misclassified males who have predicted AHI around 14 events/hour, reflecting that
the model was close to classifying these correctly. Additionally, the number of males with extreme
AHI values who are wrongly classified as being normal is reduced compared to before as most data
points are concentrated in the upper left corner of the plot. All misclassified males are either normal
or overweight with respect to BMI, showing that all obese subjects who were wrongly classified as
normal before are correctly classified with the added BMI information and OSA related questions.
For women, there is still a mixture of normal, overweight and obese subjects, and the difference in
pathophysiology compared to men most likely plays a part in the misclassifications.

The bottom row of Fig. 3.27 shows similar scatter plots for subjects wrongly classified as having
OSA based on a predicted AHI ≥ 15 events/hour. A decrease in predicted AHI is observed for
both males and females. The misclassified males are mostly overweight or obese, while almost all
misclassified females are obese, showing that AHI overestimations are associated with increased
BMI. Most of the normal and overweight women who were wrongly classified as having OSA based
on their craniofacial scans are correctly classified as normal with added clinical information.

Table 3.1 compares performance metrics obtained using different modalities to estimate AHI on the
same dataset, e.g., model using only demographics, or deriving a diagnosis from the STOP-Bang
questionnaire. Although performance of the model using craniofacial images may appear modest,
it achieved a higher accuracy than the 62% obtained in the same dataset using the modified STOP-
Bang questionnaire. Given that questionnaires are regularly used as an early screening tool for
OSA, it is encouraging to observe that accuracy obtained using craniofacial scans exceeds that of
the questionnaires, with added ability to provide an estimate of disease severity (i.e., AHI), which
is not possible with a simple screening questionnaire.

3.4.2.3 Comparison to Similar Work

Table 3.2 compares model performance to similar work in the literature in terms of MAE, PCC,
accuracy, AUC ROC, and number of subjects used in each study. It is evident that the proposed
models are at a similar level to all other studies in terms of every performance measure. However,
our models were trained and evaluated on a much larger cohort collected at 11 different sleep
clinics and used a very different approach than that of others that predicted AHI using landmark-
based measured features [41, 42, 45]. A lot of manual work is needed to derive landmark-based,
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Table 3.1: Comparison of models using different inputs to predict the apnea-hypopnea index (AHI) of 1366
subjects. The STOP-Bang questionnaire was applied as in clinics to screen for obstructive sleep apnea (OSA)
without machine learning. The subject is classified as having OSA if they answer yes to at least 3 of 7 questions.
The models using questionnaire variables and demographics were multi-layer perceptrons and the model using
craniofacial scans was a multi-view convolutional neural network. An ensemble approach was used when combining
two or more inputs. Mean absolute error (MAE) and Pearson Correlation Coefficient (PCC) were calculated
between true and predicted AHI, while accuracy (ACC) and area under the receiver operating characteristics curve
(AUC ROC) were calculated by classifying subjects into normal/OSA using AHI ≥ 15 for OSA.

Model Input MAE PCC ACC AUC ROC
STOP-Bang Questionnaire - - 62± 4% 65± 4%
Questionnaire variables 11.42± 1.27 0.38± 0.07 64± 4% 66± 4%

Demographics 11.35± 1.26 0.40± 0.06 64± 4% 67± 3%
Scans 11.38± 1.36 0.40± 0.04 67± 4% 65± 4%

Demographics + Questionnaire variables 11.24± 1.28 0.41± 0.06 65± 4% 67± 4%
Scans + Demographics 11.12± 1.36 0.44± 0.03 67± 3% 67± 4%

Scans + Questionnaire variables 11.03± 1.40 0.45± 0.04 67± 4% 68± 4%
All combined 11.05± 1.36 0.45± 0.04 67± 4% 69± 3%

hand-selected features as opposed to using an entirely data driven approach as we propose. As
such, our study is reassuring in that the empirically identified features emphasized by the model,
recapitulated clinical expertise without the manual labor or years of clinical training and experience.
Only Islam et al. [46] used images directly in a data-driven manner, but these authors only used
depth information and only had craniofacial scans for 69 subjects as opposed to our 1366 subjects,
which is equivalent to the patient volume seen over the entire course of a clinical sleep medicine
training fellowship. We implemented the algorithm proposed by Islam et al. [46] on our dataset
as seen in Table 3.2, which decreased the overall accuracy from 67% to 60%. This makes sense
because our dataset is much larger and much more diverse, since it was collected at many different
sites. Furthermore, it shows that using images from several angles holds an advantage over using
only frontal depth maps when predicting OSA, even when a pre-trained network which has been
trained on more than two million general facial images is utilized.

3.4.2.4 Comparison to Sleep Medicine Specialists

Table 3.3 compares results from the proposed model using craniofacial scans to those of three sleep
medicine specialists predicting AHI values based on 3D craniofacial scan displays. The percentage
agreement between the three specialists was 67%, again highlighting the presence of significant
interscorer variability within the field of sleep medicine. The comparison shows that the model was
at a level similar to all three specialists in terms of each performance measure.

Figure 3.28 compares the Bland-Altman plot of true and predicted AHIs from the model using
craniofacial scans with a Bland-Altman plot of true and predicted AHIs by the specialists. As
discussed earlier, subjects with high AHI are hard to estimate, which is evident when looking at
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Table 3.2: Comparison between the two proposed models in this study (bold font) and similar models presented
in the literature for predicting apnea-hypopnea index (AHI) of subjects based on their craniofacial images. MAE -
Mean absolute error, PCC - Pearson Correlation Coefficient, ACC - Accuracy, AUC ROC - Area under the receiver
operating characteristics curve, N - Total number of subjects, N Test - Number of subjects used for testing.

Predictor MAE PCC ACC AUC
ROC N N

Test Method Validation
scheme

Craniofacial 11.38 0.40 67% 65% 1366 1366

Automatic land-
marks with CNN.
AHI prediction and
OSA classification
using 2D images
and depth maps
from five angles and
multi-view CNN.

10-fold
cross-
validation

Craniofacial +
demographics +
questionnaires

11.05 0.45 67% 69% 1366 1366

Same approach as
above but with an
ensemble of models
using scans, de-
mographics, and
questionnaires, re-
spectively.

10-fold
cross-
validation

Espinoza-Cuadros
et al. [41] 12.56 0.37 71% 67% 285 285

Automatic landmarks
with Active Appearance
Model. AHI prediction
using measurements
and Support Vector
Regression.

Leave-
one-out
cross-
validation

Nosrati et al. [42] 13.4 0.52 68% 75% 180 180

Manual landmarks.
AHI prediction using
measurements and Sup-
port Vector Regression.

Leave-
one-out
cross-
validation

Balaei et al. [45] - - 69% - 376 204

Automatic landmarks
with Support Vector
Machine and cas-
cade regression. OSA
classification using
measurements and
logistic regression.

Training-
test-set

Islam et al. [46] - - 67% - 69 14
OSA classification using
frontal depth maps and
pre-trained VGGFace.

Training-
validation-
test-set

Islam et al. [46] on
our dataset - - 60% 64% 1366 1366 Same approach as

above.

10-fold
cross-
validation
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the sleep specialists’ scorings, as they consistently underpredicted the higher AHI values with a
similar magnitude as the proposed model. Figure 3.28 also shows that even though both our model
and sleep specialists make large underpredictions for highest AHI values, the model does not make
large overpredictions in the same manner as sleep specialists. All overpredicted values by the model
are within the confidence interval which most likely stems from a bias in the model towards people
with low to moderate AHI values, i.e., 5-30 events/hour.

Table 3.3: Comparison of the main performance measures between the proposed model using craniofacial images
to predict apnea-hypopnea index (AHI) and three sleep medicine specialists guessing the AHI of subjects from
their 3D craniofacial scans. MAE - Mean absolute error, PCC - Pearson correlation coefficient, ACC - Accuracy,
AUC ROC - Area under the receiver operating characteristics curve.

Predictor MAE PCC ACC AUC ROC
Craniofacial 11.38± 1.36 0.40± 0.04 67± 4% 65± 4%

Specialists data combined 13.34± 1.39 0.35± 0.12 66± 4% 66± 4%
Specialist 1 13.39± 1.67 0.43± 0.11 68± 5% 66± 4%
Specialist 2 14.33± 0.69 0.42± 0.04 61± 2% 65± 1%
Specialist 3 12.08± 1.81 0.53± 0.17 69± 8% 72± 8%
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Figure 3.28: Comparison of Bland-Altman plots for apnea-hypopnea index (AHI) predicted by the proposed
model (blue) and by three sleep medicine specialists (orange) evaluated for 1366 subjects. Predictions by the
proposed model are performed using a trained multi-view convolutional neural network, which takes as input five
pairs of 2D images and depth maps derived from 3D craniofacial scans and outputs predicted AHI. The predictions
by the sleep specialists are performed by inspecting 3D craniofacial scans of all subjects and guessing their AHI.
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Figure 3.29 compares confusion matrices of classifying subjects into being normal/OSA based on
AHIs predicted from the model using craniofacial scans (Fig. 3.29 (a)) and on AHIs predicted by
the sleep specialists (Fig. 3.29 (b)). The sleep medicine specialists achieve a higher sensitivity
but a lower specificity than the proposed model. The performance of the specialists is important
because it provides context to the performance that can be obtained using craniofacial scans to
detect OSA. These specialists represent expert level performance and it is encouraging to see that
our model performs to their standards and behaves similarly with respect to AHI predictions.

3.4.2.5 Topographic Display of Important Craniofacial Regions

Figure 3.30 shows saliency maps averaged over the 100 subjects with the highest predicted AHI
values and the lowest predicted AHI values, respectively. The topographic display of Fig. 3.30
(a) shows that the network focuses mainly on the neck, jaw, and midface area when predicting
high AHI values. These exact same regions have been reported in the literature as being the most
important facial features related to OSA [38] and the same regions that sleep specialists focused on
when predicting AHI values. Interestingly however, when the network predicts low AHI values, as
shown in Fig. 3.30 (b), it seems to focus more selectively on regions of the craniofacial complex that
reflect skeletal anatomy (e.g., the maxilla and mandible) for predictions. This may reflect the fact
that subjects with milder AHI values have a different pathophysiology where skeletal abnormalities
more than body fat may be causing airflow limitations.

Normal OSA

Predicted Label

N
or

m
al

O
SA

Tr
ue

 L
ab

el

0.72 0.28

0.41 0.59

(a)

Normal OSA

Predicted Label

N
or

m
al

O
SA

Tr
ue

 L
ab

el

0.67 0.33

0.35 0.65

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.29: (a) Normalized confusion matrix for the model using craniofacial images. (b) Normalized confusion
matrix for the three sleep medicine specialists. Predictions by the proposed model are performed using a trained
multi-view convolutional neural network, which takes as input five pairs of 2D images and depth maps derived from
3D craniofacial scans and outputs predicted apnea-hypopnea index (AHI). The predictions by the sleep specialists
are performed by inspecting 3D craniofacial scans of all subjects and estimating their AHI. The confusion matrices
show the results of classifying 1366 subjects into normal/OSA using AHI ≥ 15 as a criterion for OSA based on
the predicted AHI values by the proposed model and sleep specialists.
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Figure 3.30: (a) Saliency maps averaged over 100 subjects with the highest predicted apnea-hypopnea index
(AHI) values by the proposed model. (b) Saliency maps averaged over 100 subjects with the lowest predicted AHI
values by the proposed model.
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3.4.2.6 Limitations

Even though our proposed model obtains similar performance compared to sleep specialists and
similar work in the literature, an average absolute error of more than 11 events/hour is still quite
high. First and foremost, it is important to keep in mind that the pathology of OSA is not exclu-
sively attributed to obesity and craniofacial factors. That is also why performance increases only
moderately when adding extra information such as demographics and questionnaires. Other vari-
ables that could not be assessed from our dataset are internal upper airway anatomy factors, such
as size and positioning of the tongue and palate. Other reasons for uncertainty may be physiolog-
ical changes that occur with age, independent of facial anatomy or obesity such as recruitment of
upper airway dilator muscles. Nonetheless, even if the features identified by the model are primarily
anatomic in nature, these findings may prove useful to determine phenotypic risk for certain types
of OSA. Finally, it should be noted that because our 3D scans were of structural facial features,
we intentionally excluded central/mixed apneas from the AHI, in order to focus our model on the
anatomical contributions to OSA. However, there are various models of this complex disorder that
also account for the physiologic aspects of OSA (e.g., loop gain [143]), which is something that
future modeling efforts should take into account.

Another limitation of this study was the quality and quantity of the captured 3D scans. The quality
of the scans varied significantly and reflected the fact that they were captured in many different sleep
clinics. Some scans had missing parts of the neck, whereas others were affected by poor lighting
conditions. Furthermore, we believe that the size of the dataset was too small to truly capture
the variation in craniofacial features across humans in relation to OSA in a data-driven manner.
Evidently, we observe that similar performance is obtainable in smaller datasets if the features are
hand-crafted like landmark-based measurements. The fact that scans were captured either at night
before the PSG or in the morning after did not have any effect on diagnostic performance, which
was evident when we obtained accuracies of 68% and 66% for scans captured in the morning and
at night, respectively, showing that scans can be obtained in both conditions.

Although the focus in this study is on providing a fast, efficient, and cheap screening tool for OSA,
efforts to explore alternative screening methods include sleep tests at home [144], usually with very
few sensors, such as sound [145, 146], and blood oxygen saturation [147, 148]. Potential of depth
and thermal cameras has also been explored in breathing monitoring at an early stage [149, 150].
Even contactless bed sensors have been proposed, although only with moderate success so far [151].
The benefit of using the mentioned approaches is that the person is more comfortable sleeping in
their own home wearing few or no wires. However, most studies use a small number of subjects to
validate their techniques and still requires a full night’s sleep to reach a diagnosis.
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3.4.2.7 Future Work

In future work, it would be interesting to explore if, beside AHI, other clinically important variables
captured by sleep studies could be better predicted. These could prove to not only make up a more
accurate model but could also improve our knowledge of OSA phenotypes and their relation to
facial anatomy. For example, Azarbarzin et al. [152] recently suggested that the hypoxic burden
is a better measure to use compared to AHI when evaluating sleep apnea severity and resulting
cardiovascular risk. Predicting hypoxic burden, oxygen desaturation index (ODI), or the duration
of events instead of the AHI, or newer derivatives that better describe sleep disorder breathing
heterogenicity could prove more useful and insightful.

3.5 Conclusions

Based on the methods, results, and discussions presented in Sections 3.3 and 3.4, the research
questions posed in Section 3.2 are now restated and answered:

Research Question 1: Can a dedicated computer vision model be trained to accurately estimate
the sex, age, and BMI of subjects based on their 3D craniofacial scans?

Research Conclusion 1: A framework was presented for predicting patient demographics based
on 3D craniofacial scans. This was achieved by converting the 3D images into a series of 2D images
and depth maps and implementing a multi-view convolutional neural network for learning. We
successfully showed that it is possible to derive variables such as sex (accuracy of 93%), age (MAE
of 7.77 years and PCC of 0.76), and BMI (MAE of 4.04 kg/m2 and PCC of 0.8) of a subject from
a surface scan of their face and neck. Subsequently, we implemented a cross-validation approach
to obtain performance across all 1366 subjects in the dataset, and results showed that the initial
performance was slightly overestimated. The new accuracy for estimation of sex was 91 ± 3%. The
new MAE for estimation of age was 8.77 ± 0.53 years, and the new PCC was 0.68 ± 0.06. The
new MAE for estimation of BMI was 4.36 ± 0.29 kg/m2, and the new PCC was 0.73 ± 0.05. This
serves as a proof of concept and the applied techniques can be extended to predict more biologically
relevant variables such as the AHI of subjects.

Research Question 2: Can a dedicated computer vision model be trained to accurately estimate
the AHI of subjects based on their 3D craniofacial scans?

Research Conclusion 2: A deep learning-based computer vision model was presented for pre-
dicting AHI automatically from 3D craniofacial scans that can be captured in a minute by a
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non-specialist. This was achieved by utilizing the framework developed for Research Question 1,
but using only five pairs of 2D images and depth maps (focusing on the frontal and profile charac-
teristics) instead of all eight, and including textures with the 3D scans. Furthermore, an additional
fully connected layer with dropout was added to the network architecture and training was carried
out using 10-fold cross-validation. We successfully showed that it is possible to derive AHI values
based on 3D scans using a dedicated computer vision model, which yielded a MAE of 11.38 ± 1.36
events/hour and a PCC of 0.40 ± 0.04 evaluated on 1366 subjects in the dataset.

Research Question 3: Can predicted AHI values from the proposed model be used to accurately
detect presence of OSA by classifying subjects as being normal or having OSA?

Research Conclusion 3: We used the clinical meaningful cut-off value for AHI of 15 events/hour
to classify subjects as being normal (AHI < 15) or having OSA (AHI ≥ 15) and achieved an accu-
racy of 67 ± 4%, with a sensitivity of 59 ± 8%, a specificity of 72 ± 5%, and an AUC ROC of 65
± 4%.

Research Question 4: Can adding clinically relevant information like demographics and ques-
tionnaires increase performance of the proposed model?

Research Conclusion 4: We added patient demographics (sex, age, and BMI) and seven OSA-
related questionnaire variables to the model. This was done by implementing two MLPs, one using
demographics and the other using questionnaires as input to predict AHI, and ensembling them
with the model using craniofacial scans to predict AHI. This improved model performance by de-
creasing the MAE from 11.38 ± 1.36 to 11.05 ± 1.40 events/hour and increasing the PCC from
0.40 ± 0.04 to 0.45 ± 0.04. Sensitivity increased from 59% to 74% while specificity decreased from
72% to 63%, but importantly, the overall AUC ROC improved from 65 ± 4% to 69 ± 3%.

Research Question 5: Can the proposed model perform better than current screening question-
naires for OSA?

Research Conclusion 5: All participants had filled out a modified STOP-Bang questionnaire
consisting of OSA-related questions. 1366 subjects in the dataset were classified as being healthy
or having OSA based on the STOP-Bang questionnaire, which yielded an accuracy of 62% and an
AUC ROC of 65%. In comparison, the model based on 3D craniofacial scans yielded an accuracy of
67% and an AUC ROC of 65%, while the model based on a combination of 3D craniofacial scans,
patient demographics, and questionnaire variables yielded an accuracy of 67% and an AUC ROC
of 69%. These results demonstrate that the proposed models perform better than current screen-
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ing methods, particularly the model using three different modalities, all of which can be acquired
within minutes.

Research Question 6: Can the proposed model perform at a level similar to that of sleep medicine
specialists with years of experience?

Research Conclusion 6: Three sleep medicine specialists were recruited to imitate the task of
the model, i.e., estimating AHI based on 3D craniofacial scans. The sleep specialist estimated
AHI for a third of the dataset each, while also estimating AHI for 150 of the same subjects, which
yielded an overall agreement of 67% between the sleep specialists. The model performance was at
a similar level to two sleep specialists and better than one, showing that the model is comparable
to physicians who have decades of experience working with OSA patients.

Research Question 7: Can regions of the face and neck be identified, which the proposed model
focuses on when predicting AHI?

Research Conclusion 7: A topographic display was created based on saliency maps to visualize
which craniofacial regions the model focuses on when predicting AHI. The topographic display
showed that the model focuses mainly on the neck, jaw, and midface area when predicting high
AHI values. These are the same regions which have been reported in the literature as being the
most important facial features related to OSA, showing that the model learned the correct features
in a data-driven manner.

To summarize the findings and state the overall conclusion, Hypothesis 1 is restated below and
answered:

Hypothesis 1

An automatic screening system can be invented, based on dedicated computer vision models,
which utilizes 3D craniofacial scans to estimate presence and severity of obstructive sleep
apnea more accurately than current screening questionnaires in a fast, cheap, and data-driven
manner.

The potential and power of using 3D craniofacial scans to estimate the presence and severity
of OSA has been demonstrated. The best performing approach is one using a combination of
craniofacial anatomy, patient demographics, and questionnaires, which surpasses performance of
current screening questionnaires for OSA. We have shown that our model performs at a level
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similar to sleep medicine specialists with decades of experience within the field. This is backed by
the fact that the model focuses on the exact same craniofacial regions (the neck, jaw, and midface)
as the sleep specialists do when they estimate AHI. Furthermore, these regions are associated
with development of OSA according to the medical literature. The proposed model has acquired
this knowledge by seeing a relatively small sample of 3D scans (<1500) compared to standard
current dataset sizes within deep learning and computer vision. A much larger dataset is required
for training and evaluation of a screening system such as the one proposed here before clinical
applicability can be considered. However, we have demonstrated that such a screening system can
be invented and that using it takes a few minutes to derive a diagnosis as opposed to sleeping an
entire night and having the data analyzed manually by technicians.



Chapter 4

Automatic Scoring of Drug-Induced
Sleep Endoscopy

This chapter explores the potential of automatic scoring of drug-induced sleep endoscopy (DISE)
with respect to sites of upper airway collapse and obstruction degrees in patients with obstructive
sleep apnea (OSA). The chapter consists of two parts, one based on a published paper and another
based on a paper currently under review for publication:

1) Upper Airway Classification in Sleep Endoscopy Examinations using Convolutional Recurrent
Neural Networks [153]

2) Automatic Scoring of Drug-Induced Sleep Endoscopy for Obstructive Sleep Apnea Using Deep
Learning

Part 1) was published as a conference paper and served as a proof of concept for the entire method-
ology utilized for part 2). While waiting to obtain a sufficient number of DISE videos to train and
evaluate an automatic deep learning-based scoring system on, we decided to use the small sample
of videos available at the time, simplify the problem, and publish the results as a conference paper.

The problem of scoring DISE was simplified to investigate if a dedicated computer vision model
could be trained to accurately classify upper airway regions that the endoscope is in throughout
a DISE examination. The upper airway regions should be easier to determine than scoring DISE
videos due to fewer variables that need to be predicted. Thus, results from part 1) also served as
a baseline for what the maximum expected performance could be for part 2). Part 2) was written
as a journal paper and explored how a computer vision model that we implemented based on deep
learning can be used to automatically score DISE videos with respect to upper airway collapse sites
and obstruction degrees. The majority of this chapter’s content is based on that journal paper.

67
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Section 4.1 provides the research background and motivation for this chapter. Section 4.2 states
the research questions and objectives of this chapter. Section 4.3 contains a data and methods
description, and a presentation of results and discussion for part 1), which is based on Paper III.
Similarly, Section 4.4 contains a data and methods description, and a presentation of results and
discussion for part 2), which is based on Paper IV. Finally, Section 4.5 concludes the chapter by
answering the research questions posed in Section 4.2 and relating the findings to Hypothesis 2,
which is stated in Section 1.4 and restated in Section 4.2.

4.1 Research Background

Continuous positive airway pressure (CPAP) is the gold-standard treatment for OSA and works by
providing a constant level of pressure sufficient to keep the upper airway open [53]. Although CPAP
is extremely effective in reducing OSA events, studies show that up to 50% of users give up on the
device within a year of therapy because of intolerance, noise, discomfort, or a negative impact on
intimacy [54]. Oral appliances may reduce upper airway collapse by advancing the mandible or
refraining the tongue and epiglottis from falling back, but, as they are generally less effective than
CPAP they are considered the second line of treatment after CPAP [109].

For some patients, surgical procedures can be viable options to prevent collapse or increase upper
airway space, with the most common surgery being a modified uvulopalatopharyngoplasty [110],
where excess tissue is removed from the soft palate and lateral walls of the pharynx, often combined
with tonsillectomy (removal of the palatine tonsils) [56]. Other procedures include TORS (transo-
ral robotic surgery) on the tongue base and epiglottis [154] and maxillomandibular advancement
(advancement of the upper and lower jaw) [57].

Prior to surgery, DISE is performed to examine the location and pattern of sleep-related upper
airway collapse using a fiberoptic endoscope under sedation, which is designed to simulate natural
sleep [58]. The endoscope is introduced through the nasal cavity and is used to examine the upper
airway from the nares to the level of the glottis. After a DISE examination, the surgeon evaluates
the sites of collapse in the upper airway according to the VOTE (velum, oropharynx, tongue base,
epiglottis) classification system, the most commonly used scoring system for DISE [59]. These four
sites can collapse, either individually or in combination, causing obstruction in the upper airway.
The four different sites are shown in Fig. 4.1 from an endoscope positioned at the top of the soft
palate looking downwards into the upper airway.

The VOTE classification system assigns a degree of obstruction to each upper airway site and a
pattern of collapse to each site where a collapse occurs. VOTE obstruction degrees are classified
either as 0 (no obstruction), 1 (partial obstruction), or 2 (complete obstruction) [59]. Additionally,
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Figure 4.1: A frame taken from a drug-induced sleep endoscopy examination, which is used to characterize the
upper airway collapse pattern in patients with obstructive sleep apnea. Collapse can occur at four different upper
airway sites: Velum (V), oropharynx (O), tongue base (T), and epiglottis (E). An obstruction degree is assigned
to each site and is classified either as 0 (no obstruction), 1 (partial obstruction), and 2 (complete obstruction).
In this image, V and O have obstruction degrees of 0, while T and E have obstruction degrees of 1.

there are three possible patterns of collapse: antero-posterior (A-P) collapse, lateral collapse, and
concentric collapse [59]. The upper airway can collapse in any of these patterns at V [155], but only
lateral collapse can occur at O, only A-P collapse at T, and only lateral and A-P at E as outlined
in Table 4.1. Lateral collapse at E is extremely rare in practice [156]. Figure 4.2 shows examples of
upper airway collapse patterns and obstruction degrees at V, while Fig. 4.3 shows similar examples
for O, T, and E.

DISE suggests location and indication for surgical intervention and its use has been shown to
improve OSA surgical outcomes [64]. The analysis however depends on the procedure and the
evaluation hereof and as such presents inter-rater variability between surgeons who score DISE.

Table 4.1: Upper airway sites where collapse can occur in obstructive sleep apnea patients according to the
VOTE classification system [59], which is used to score drug-induced sleep endoscopy videos. The VOTE classi-
fication system assigns an obstruction degree to each site, which is classified as either 0 (no collapse), 1 (partial
obstruction), or 2 (complete obstruction). Furthermore, a pattern of collapse is assigned to each site that collapses.
Checkmarks indicate the possible patterns of collapse at each site.

Site Degree of obstruction Pattern of collapse
Antero-posterior Lateral Concentric

Velum

0, 1, or 2

X X X
Oropharynx X
Tongue base X
Epiglottis X X



Chapter 4. Automatic Scoring of Drug-Induced Sleep Endoscopy 70

Ob
st

ru
ct

io
n 

De
gr

ee
 0

V No Collapse

Ob
st

ru
ct

io
n 

De
gr

ee
 1

V A-P Collapse V Lateral Collapse V Concentric Collapse

Ob
st

ru
ct

io
n 

De
gr

ee
 2

V A-P Collapse V Lateral Collapse V Concentric Collapse

Figure 4.2: Examples of possible ways the velum (V) can collapse in the upper airway in obstructive sleep apnea
patients. The obstruction caused by the collapse is classified either as 0 (no collapse), 1 (partial obstruction), or
2 (complete obstruction). The possible patterns of collapse are antero-posterior (A-P), lateral, or concentric.

First, there is an anatomical variation across subjects with respect to the upper airway, and the
pattern of collapse may also be affected by the depth of sedation [157–161]. Secondly, DISE videos
can appear chaotic due to several sites collapsing simultaneously in patients with severe OSA,
essentially pushing the endoscope around and making it difficult to determine the sites of col-
lapse. Mucus or saliva may also cover the endoscope, which can reduce or distort the video quality
significantly and at times make it almost impossible to visually inspect the upper airway. Further-
more, studies examining inter-rater reliability between surgeons show poor to moderate agreement
[60–65], demonstrating that despite a well-established classification system, interpretation remains
subjective. Due to these limitations associated with DISE and the VOTE classification system,
surgeons will benefit from a system capable of scoring DISE videos automatically in an unbiased
and data-driven manner. Such a system could in turn assist in the planning of surgical treatment
by identifying sites of upper airway collapse and associated obstruction degrees in OSA patients.
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Figure 4.3: Examples of possible ways the oropharynx (O), tongue base (T), and epiglottis (E) can collapse in
the upper airway in obstructive sleep apnea patients. The obstruction caused by the collapse is classified either
as 0 (no collapse), 1 (partial obstruction), or 2 (complete obstruction). The possible pattern of collapse is lateral
for O, antero-posterior (A-P) for T, and A-P for E. Lateral collapse for E has been left out, since it is rare.

4.2 Research Questions and Objectives

Based on the research background above, Hypothesis 2 from Section 1.4 is restated, followed by
research questions derived from Hypothesis 2 that this chapter aims to answer.

Hypothesis 2

An automatic scoring system can be invented, based on dedicated computer vision models,
which utilizes drug-induced sleep endoscopy examination videos to estimate sites of upper
airway collapse and obstruction degrees in obstructive sleep apnea patients with a similar
accuracy as otolaryngology - head and neck surgeons.
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Research Questions

Research Question 1: Can a dedicated computer vision model be trained to accurately
classify upper airway regions in DISE videos?

Research Question 2: Can a dedicated computer vision model be trained to accurately
score DISE videos for sites of upper airway collapse and obstruction degrees?

Research Question 3: Can the proposed model generalize well across DISE procedures
performed at different sleep centers by different otolaryngology - head and neck surgeons?

Research Question 4: Can the proposed model perform at a level similar to that of
otolaryngology - head and neck surgeons with years of experience?

From the research questions posed above, research objectives are formulated below, each one de-
signed to answer a specific research question:

(i) Label each DISE video second-by-second according to upper airway regions, and split the videos
into 5-second clips. Then utilize these input and output pairs to train and evaluate a dedicated
computer vision model to classify upper airway regions in DISE videos.

(ii) Split DISE videos into 5-second clips and label each clip according to the obstruction degree for
each upper airway site. Then utilize these input and output pairs to train and evaluate a dedicated
computer vision model for each upper airway site to classify the obstruction degree for each clip.

(iii) Evaluate performance of the proposed model for DISE videos obtained from different sleep
centers and performed by different otolaryngology - head and neck surgeons. Investigate if there is
any bias towards a specific sleep center or surgeon.

(iv) Compare performance of the proposed model with research papers reporting inter-rater relia-
bility among otolaryngology - head and neck surgeons in scoring obstruction degrees for each upper
airway site in DISE videos.

These research objectives will be fulfilled in the following sections.
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4.3 Paper III: Upper Airway Classification in Sleep Endoscopy
Examinations using Convolutional Recurrent Neural Networks

Abstract

Purpose: Assessing the upper airway of obstructive sleep apnea patients using drug-induced
sleep endoscopy (DISE) before potential surgery is standard practice in clinics to determine
the location of upper airway collapse. According to the VOTE classification system, upper
airway collapse can occur at the velum (V), oropharynx (O), tongue (T), and/or epiglottis
(E). Analyzing DISE videos is not trivial due to anatomical variation, simultaneous upper
airway collapse in several locations, and video distortion caused by mucus or saliva. This pa-
per is a proof of concept for classifying upper airway regions using 24 annotated DISE videos.

Methods: The first step towards automated analysis of DISE videos is to determine
which upper airway region the endoscope is in at any time throughout the video: V
(velum) or OTE (oropharynx, tongue, or epiglottis). An additional class denoted X
is introduced for times when the video is distorted to an extent where it is impossible
to determine the region. We propose a convolutional recurrent neural network using
a ResNet18 architecture combined with a two-layer bidirectional long short-term mem-
ory network. The classifications were performed on a sequence of 5 seconds of video at a time.

Results: The network achieved an overall accuracy of 82% and F1-score of 79% for the
three-class problem, showing potential for recognition of regions across patients despite
anatomical variation.

Conclusion: Results indicate that large-scale training on videos can be used to further
predict the location(s), type(s), and degree(s) of upper airway collapse, showing potential
for derivation of automatic diagnoses from DISE videos eventually.

4.3.1 Methods

This section describes the data collection of DISE videos and the subsequent pre-processing and use
of these videos to train a convolutional recurrent neural network to classify upper airway regions.
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4.3.1.1 Data Collection

The DISE examinations were performed in accordance with DISE procedure guidelines described
by Kiaer et al. [162] and Lan et al. [163]. Figure 4.4 shows how the DISE procedure is performed,
while Fig. 4.5 shows the endoscope that is used for the DISE procedure. Patients who are eligible
for a DISE procedure have confirmed OSA and no potential risk of any complications during the
procedure, such as being intolerant to propofol, having a nasal obstruction that can prevent the
passage of an endoscope, or having an airway that is deemed unsuitable for the procedure [164].

Figure 4.4: A drug-induced sleep endoscopy examination being performed. The patient lying in a supine position
is sedated using propofol, which is designed to simulate natural sleep. The otolaryngology surgeon is guiding the
long, tube-like endoscope through the nasal cavity into the throat of the patient and examining the upper airway
by looking at the screen, which is displaying real-time video from the endoscope. Source: [165]
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Figure 4.5: An example of an endoscope used for drug-induced sleep endoscopy. The endoscope is long and
tube-like and a ruler is provided in the picture for measurement to show how long the endoscope is. Source: [165]

The procedure is initiated by an anesthesiologist who sedates the patient with propofol, which is
designed to simulate natural sleep. After sedation, an otolaryngology - head and neck surgeon
introduces an endoscope through one of the nostrils of the patient and guides it through the
nasal cavity to the posterior nares. From there, the surgeon examines the upper airway from the
posterior nares to the level of the glottis. The surgeon may perform a jaw-thrust maneuver during
the examination to investigate the effect of mandibular advancement on upper airway collapse [166].
The video from the endoscope is transmitted in real-time to a screen that the surgeon looks at while
performing the procedure. The video is also recorded during the procedure and saved to a video
file for subsequent analysis and scoring using the VOTE classification system [59].

4.3.1.2 Data Description

We included a total of 24 DISE videos collected at Copenhagen University Hospital, which were
performed in accordance with the DISE procedure guideline described by Kiaer et al. [162]. The
Institution’s Ethical Review Board approved all experimental procedures involving human subjects.
The videos were approximately 2-5 minutes in duration with a frame rate of 25 frames per second
and a resolution of 864 × 540 pixels. The combined video duration in the dataset was approximately
one hour. All videos were anonymized by removing parts of recordings where the endoscope was
not inside the subject.

Each video was initially scored by the surgeon, who collected it, as a single line summary of where,
how, and to what degree the upper airway collapsed. However, the purpose of this study was
to classify upper airway regions that the endoscope is in at all times throughout a DISE video.
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Two upper airway regions were distinguished for this purpose: the region consisting of the velum
(V), and the region consisting of the oropharynx, tongue base, and epiglottis combined (OTE). An
additional class denoted X was introduced in case the video was distorted (e.g., due to mucus or
saliva on the camera) to a degree where it is impossible to recognize the upper airway. Figure 4.6
visualizes different examples of the three classes taken from DISE videos.

Figure 4.6: Three examples of each class used to classify upper airway regions in drug-induced sleep endoscopy
videos for patients with obstructive sleep apnea. The three classes are the velum (V) in the first column,
oropharynx, tongue, and epiglottis combined (OTE) in the second column, and distortion in video (X) in the third
column.
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For machine learning purposes, labels were required that detailed each time the endoscope tran-
sitioned either from one region to another (i.e., V to OTE or OTE to V) or from visible video to
distorted video and vice versa (i.e., V to X, OTE to X, X to V or X to OTE). Videos were labeled
in this manner by consulting with the otolaryngology surgeon who initially labeled the videos [165]
and another expert surgeon who introduced the VOTE classification system back in 2011 [59, 167].
Table 4.2 shows an example of the structure of labels created for this study, while Table 4.3 outlines
the distribution of the three classes within the dataset, showing that e.g., the class X is massively
underrepresented compared to V and OTE.

4.3.1.3 Pre-Processing

Initially, all frames were extracted from each video, yielding 25 frames per second. Subsequently,
every 5th frame was selected, yielding 5 frames per second, because no visual difference was observed
between consecutive frames during inspection. Assuming that the model would extract features
primarily related to anatomical structures and not color differences, frames were converted to gray
scale to reduce computational cost associated with training. All frames were rescaled to 224×224
pixels, which was found to be appropriate for reducing computational cost while still preserving
discriminatory information between upper airway regions. Finally, each frame was normalized to
the range [0,1], by dividing each pixel value by 255, to ensure faster convergence during training.

The final input output pairs were 5-second clips, consisting of 25 frames, and corresponding labels
denoting the upper airway region (V, OTE, or X) for each frame. Note from the structure of the
labels (Table 4.2) that is is possible to have different labels within the same 5-second clip if a
transition between regions occurs within that clip. This emphasizes the need for labels for each
frame instead of utilizing a single label for an entire 5-second clip.

Table 4.2: Example of labels created for drug-induced sleep endoscopy videos using three classes which are used
to classify upper airway regions: velum (V), oropharynx, tongue, and epiglottis combined (OTE), and distortion
in video (X).

Time (s) 7-15 16-28 29-35 36-40 40-45 45-57 57-60
Region V X OTE X V OTE V

Table 4.3: Distribution of the three classes in the dataset used for classification of upper airway regions: velum
(V), oropharynx, tongue, and epiglottis combined (OTE), and distortion in video (X).

Class Total Duration (s) N Frames
V 1543 7715

OTE 2041 10205
X 376 1880

Total 3960 19800
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4.3.1.4 Convolutional Recurrent Neural Network

The purpose of applying machine learning was to learn data-driven discriminatory information
about V, OTE, and X based on 5-second video clips from DISE examinations. For this purpose, we
implemented a convolutional neural network (CNN) with a ResNet18 architecture [130] combined
with a two-layer bidirectional long short-term memory (Bi-LSTM) neural network [168]. Figure 4.7
shows the network architecture with all details provided for classification of upper airway regions
using 5-second input clips derived from DISE videos.

The CNN was included for its ability to automatically extract meaningful features from the input
frames in relation to the desired outputs. They do so by applying layers of convolutions and non-
linear activation functions to the input frames, where the weights of the convolution filters are
learned during training based on the training data [131]. A ResNet18 architecture was selected
because it is state-of-the-art for image recognition compared to other CNN architectures such as
AlexNet [132] or VGG-16 [122]. ResNets utilize skip connections between layers to allow deeper
architectures (i.e., more layers) without hurting performance while being computationally cost-
efficient to train [130].

The Bi-LSTM network was included for its ability to learn context between the input frames in
both directions and preserving the temporal information that is present in data such as video
[169]. In contrast to regular neural networks, which are typically used when the input features are
independent of each other, Bi-LSTMs are suitable for data in which the order of the input features
matters, such as for time series data. The Bi-LSTM incorporates information from previous and
subsequent outputs when predicting an output at a given time step, which is useful for learning
patterns in temporal data [168]. 5-second clips were utilized for learning because the amount of
context in both directions was appropriate using this duration. Longer clips would lead to more
parameters in the network and were not investigated due to limited computational resources.

The Resnet18 network was implemented such that a 5-second clip (consisting of 25 frames) could be
input one frame at a time. The output was a feature map of size 1x512 for each frame. The feature
maps for all frames were concatenated to form a 25x512 matrix, where each row is considered a
time-step in the original 5-second clip and each column is a feature vector for a particular frame.
This matrix was then processed by a Bi-LSTM layer, followed by a dense layer, which reduced the
number of features from 512 to 128 while keeping time steps intact, i.e., resulting matrix dimensions
of 25x128. A second Bi-LSTM and dense layer reduced the number of features further from 128
to 3, yielding a matrix with dimensions 25x3. Finally, a softmax activation function was applied
to yield a probability for each class, i.e., V, OTE, and X, for each frame in the original 5-second
clip. The softmax activation function transforms the output vector to the range [0,1], where the
probabilities for all three classes sum to 1.
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The optimal number of time steps and hidden neurons in the Bi-LSTM layers were found using hy-
perparameter tuning, which was performed in a grid search-like manner where the hyperparameters
were varied and different combinations of these were investigated. The optimal hyperparameters
were the ones which yielded the lowest error on the validation set, which is defined in the next
section.

Figure 4.7: Architecture of the proposed model for classifying upper airway regions in drug-induced sleep
endoscopy videos. The input is a 5-second video consisting of 25 frames. The frames are input individually to
the convolutional neural network and the outputs are concatenated before the recurrent part of the network.
The parameters in the convolution operations (Conv) are kernel size, number of output channels, stride (s), and
padding (p), and the output dimensions are specified by number of channels (C), height (H), and width (W). The
parameters in the bidirectional long short-term memory (BiLSTM) network layers are number of input features
(nI) and number of hidden neurons in each direction (nH). The parameters in the fully connected layers (FC) are
input features (in dim) and output features (out dim).
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4.3.1.5 Training, Validation, and Testing

Training, validation, and testing was carried out by using a training, validation, and test set split.
18 videos (amounting to 51 minutes) were used for training, 3 videos (amounting to 8 minutes) for
validation, and 3 videos (amounting to 7 minutes) for testing. The split was prioritized such that
sufficient data was utilized to train the model to learn an accurate discrimination between upper
airway regions from DISE videos. The test set consisting of 3 videos was small, but given that the
entire dataset only consisted of 24 videos and that this study was solely a proof of concept, the
majority of data was assigned to train the proposed model, as it was a concern if this would be
enough to generalize across patients with different internal anatomies and videos of varying quality.

Cross-entropy was used as loss function given by:

L = − 1
N

N∑
i=1

K∑
j=1

yij log pij , (4.1)

where yij is the true probability that class j is the label of the ith training sample, and pij is the
predicted probability that class j is the label of the ith training sample. Here N is the number of
training samples, and K is the number of classes (i.e., 3). The true probability in each case is 1
for the target class and 0 for the two others. Cross-entropy was used as it is the natural choice for
multi-class classification problems.

The learning rate was set to 1 · 10−5 with a weight decay of 5 · 10−4 and was chosen using hyperpa-
rameter tuning. The optimal choice was a learning rate that is not too high, which can cause the
parameter update via gradient descent to diverge from the minima, and not too low, which would
slow down training significantly. The weight decay was used to add a penalty term to the loss
function during optimization, which shrinks the weights and helps to prevent overfitting. Weights
were applied in the loss function for the V and X classes, since the dataset was heavily imbalanced
as witnessed in Table 4.3. The weight for V was calculated as the ratio between the majority class
(OTE) and V, and the weight for X was calculated as the ratio between OTE and X.

The batch size was set to 2 and was limited by computational resources. The Adam optimizer
[133] was used for optimization of the network due to its superior performance compared to other
optimization algorithms. Early stopping was applied when the validation error did not decrease for
3 consecutive epochs (patience of 3) to help prevent overfitting.

Python 3.7.4 and Pytorch 1.3.1 were used for pre-processing and deep learning purposes. Training,
validation, and testing was carried out on a GeForce RTX 2080 and took approximately one hour
to complete.



Chapter 4. Automatic Scoring of Drug-Induced Sleep Endoscopy 81

4.3.1.6 Performance Measures

The classified upper airway region for each frame was compared to the labels. Performance was
evaluated using weighted a F1 score [170], which was used instead of accuracy due to a large
imbalance between the three classes. The F1 score is calculated as the harmonic mean of precision
and recall or alternatively in terms of true positives (TP), false positives (FP), and false negatives
(FN):

F1 score = TP

TP + 1
2(FP + FN)

(4.2)

Using a frame labeled V as example, TP represents the number of frames that are correctly classified
as V, FP represents the number of frames that are incorrectly classified as V, and FN represents
the number of frames classified as OTE and X that are actually V. The F1 scores for OTE and
X were calculated similarly. The weighted F1 score is calculated by averaging the F1 score of
the individual upper airway regions multiplied by their proportion in the dataset. The F1 scores
were averaged over all frames in each video, such that performance between each video could be
compared. Finally, the mean F1 score across the videos in the test set was calculated to yield the
overall performance of the proposed model in the test set.

4.3.2 Results and Discussion

This is the first attempt to use a data-driven approach to identify upper airway regions during the
DISE procedure. The performance reported on the classification of upper airway regions in DISE
videos was evaluated on the test set consisting of three videos.

4.3.2.1 Overall Performance

The mean weighted F1-score obtained using the proposed model was 79% in the test set. In
contrast, if the network had simply predicted all frames to be the majority class in the test set
(i.e. OTE), the overall F1-score would be 23%. In this context, the model performs much better
than random guessing. Furthermore, mean F1-scores for V, OTE, and X were 74%, 79%, and 68%,
respectively.

4.3.2.2 Misclassified Frames

Figure 4.8 shows the confusion matrix for the classification of upper airway regions, while Fig. 4.9
depicts examples of misclassified frames for each class. The X class is intuitively the easiest to
recognize since it means that the video is too distorted to derive anything and it would be a trivial
task to recognize this class even for a person unfamiliar with DISE videos. This is also reflected
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Figure 4.8: Normalized confusion matrix for classifying regions in the upper airway from 2150 frames with three
different classes: velum (V), oropharynx, tongue, and epiglottis combined (OTE), and distorted video (X). The
frames are classified using a trained convolutional recurrent neural network, which takes as input 25 frames from
drug-induced sleep endoscopy videos and outputs the classified upper airway region for each frame.

by the fact that even with the limited number of frames with class X in the dataset, the model
was easily able to learn to recognize this class. Looking at Fig. 4.8, it is noted that the sensitivity
is 100%, meaning that none of the frames labeled X are misclassified. However, both the V and
OTE classes are occasionally misclassified as X, which Fig. 4.9 shows examples of. It is noted that
the model classifies a frame as X any time there is mucus or saliva on the endoscope even if some
structures are still visible to some degree. When annotating the data, a frame was only labeled as
X if there was no way to estimate the region based on the video or context from previous frames,
while the model has learned that any mucus or saliva on the endoscope equals a classification of X.

The model also performed well for the OTE class, reflected by a high sensitivity and F1 score. It
is noted from Fig. 4.8 that when OTE is misclassified, it is mostly as X, which is again explained
by the fact that the model is sensitive to mucus and saliva on the camera, even if it is possible
to derive the upper airway region. Scenarios where OTE is misclassified as V is illustrated in Fig.
4.9, where it is observed that this occurs when the endoscope is at the border between the V and
OTE regions. Even experts analyzing these frames could have scored them as V instead of OTE,
and it appears that the last frame at the bottom has been wrongly labeled as OTE even though
the endoscope is in the V region.

For the V class, the model did not perform as well as for OTE and X. Figure 4.8 shows that the
misclassifications are almost equally split between OTE and X. The frames misclassified as X are
due to the same reason as for OTE. Examples of V being misclassified as OTE are shown in Fig.
4.9. In this case, it appears that the misclassifications do not necessarily occur when the endoscope
is close to the OTE region, but rather when the OTE region is visible from the V region so that
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Figure 4.9: Examples of frames wrongly classified with respect to upper airway regions: velum (V), oropharynx,
tongue and epiglottis combined (OTE), and distorted video (X). T is the true class and P is the predicted class.
The frames are classified using a trained convolutional recurrent neural network, which takes as input 25 frames
from drug-induced sleep endoscopy videos and outputs the classified upper airway region for each frame.

the model can recognize structures such as the tongue and epiglottis. It appears that with the
limited amount of data the model has seen, it is not able to derive distance-based decisions to
estimate the region as well as it recognizes structures associated with a given region. Furthermore,
the many noisy frames in the video (approximately 25%) most likely cause noise in the context of
the Bi-LSTM, which contributes to the poor performance for video 3.
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Table 4.4: Performance for the three videos in the test set obtained by classifying upper airway regions with
three different classes: velum (V), oropharynx, tongue, and epiglottis combined (OTE), and distorted video (X).
The frames are classified using a trained convolutional recurrent neural network, which takes as input 25 frames
from drug-induced sleep endoscopy videos and outputs the classified upper airway region for each frame.

Video F1 Class Class F1 N Frames

1 93%
V

OTE
X

94%
91%
-

386
264
0

2 75%
V

OTE
X

67%
93%
65%

166
741
93

3 62%
V

OTE
X

61%
54%
70%

252
123
125

4.3.2.3 Performance for Videos

Table 4.4 summarizes the performance for each of the three individual videos in the test set. It
is observed that the best performance is obtained for video 1, which has no frames with distorted
video and also few misclassifications for the V and OTE regions. During video 2, the endoscope is
by far the most in the OTE region and the F1-score is high for that class. The F1-score for both
V and X is modest because V is misclassified as both OTE and X, whereas OTE is misclassified
a few times as X as well. During video 3, most time is spent in the V region but the F1 score is
modest for all classes. In this case, V is still misclassified as both OTE and X, but OTE is also
sometimes misclassified as V and not only X, which is most likely due to wrong labels, similar to
the bottom frame in the middle column of Fig. 4.9, where V is labeled as OTE.

4.3.2.4 Limitations

There are two main limitations of this study: the quantity of data is extremely low, and the problem
posed is simplistic with respect to applicability in clinical practice. However, the results serve as
an important proof of concept, which shows that it is possible to apply deep learning techniques
on DISE videos, even though they contain large variations in terms of anatomical structure and
angles/positions in the upper airway across videos. Considering this, it is quite impressive that the
proposed model achieves high performance on little data and that it manages to learn meaningful
mappings between the classes and the series of frames that are used as input.

For a future study, we will obtain a much larger quantity of DISE videos and expand the problem to
classify sites of upper airway collapse and obstruction degrees according to the VOTE classification
system, which is a clinically more relevant endeavour compared to classifying upper airway regions
in DISE.
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4.3.3 New Analyses After Publication

After publishing Paper III and working on Paper IV, smaller modifications to the methodology
were made. The primary change was to utilize a cross-validation scheme instead of a training,
validation, and test set split. This revised approach was explored for the problem posed in Paper
III after publication, primarily to evaluate performance across the entire dataset (24 videos) instead
of on a small test set (3 videos).

Ideally, this approach would extend to the 281 videos used for Paper IV, however this would require
a labeling of all videos with respect to upper airway regions, which would be too time-consuming.
Thus, the cross-validation approach was applied for the 24 videos used for Paper III. Consequently,
the results have more power and any biases that could be introduced in the test set when using a
training, validation, and test split would be reduced. All results from the new analyses performed
after publication are presented below.

4.3.3.1 Overall Performance

Performance was evaluated in the same way as shown in Table 4.4, but this time across the full
dataset consisting of 24 videos, which yielded a mean F1 score of 66± 20%. This was much lower
than the performance reported in Paper III across 3 videos (mean F1 score of 79%), showing that
the initial test set was too small and not representative of the overall dataset. Similarly, F1 scores
for V, OTE, and X were 62±25%, 61±30%, and 53±25%, respectively, which was also lower than
the F1 scores obtained for the three videos previously (74%, 79%, and 68%, respectively).

4.3.3.2 Performance for Videos

Table 4.5 outlines performance for the three videos in the previous test set obtained using the
cross-validation approach. Interestingly, when comparing Table 4.5 to Table 4.4, it is observed that
the F1 score dropped from 93% to 75% for video 1, increased from 75% to 91% for video 2, and
remained unchanged for video 3. However, the class F1 scores relative to each other within each
video were similar for both approaches.

The change in performance when using cross-validation is expected because splitting the data
into five equal folds and using one fold for validation and another for testing yields less data for
training, i.e. 60% training data, compared to the training, validation, and test set split approach
used previously, which had 75% training data.

Figure 4.10 shows the distribution of F1 scores across the 24 videos in the dataset, which makes it
evident that the proposed model’s performance varies significantly from video to video, but that
the majority of videos achieve F1 scores of 60% or above.
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Table 4.5: Performance for the three videos in the previous test set for classifying upper airway regions with
three different classes: velum (V), oropharynx, tongue, and epiglottis combined (OTE), and distorted video (X).
The frames are classified using a trained convolutional recurrent neural network, which takes as input 25 frames
from drug-induced sleep endoscopy videos and outputs the classified upper airway region for each frame.

Video F1 Class Class F1 N Frames

1 75%
V

OTE
X

74%
76%
-

386
264
0

2 91%
V

OTE
X

78%
96%
68%

166
741
93

3 61%
V

OTE
X

65%
43%
67%

252
123
125
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Figure 4.10: Distribution of F1 scores for 24 DISE videos calculated as the average F1 score of all frames
making up each DISE examination with respect to three classes: velum (V), oropharynx, tongue, and epiglottis
combined (OTE), and distorted video (X). The frames are classified using a trained convolutional recurrent neural
network, which takes as input 25 frames from drug-induced sleep endoscopy videos and outputs the classified
upper airway region for each frame.

4.3.3.3 Misclassified Frames

Figure 4.11 shows the confusion matrix for the classification of upper airway regions in 24 DISE
videos. Comparing this to the confusion matrix shown in Fig. 4.8, it is observed that the sensitivity
for V has increased from 71% to 77%, sensitivity for OTE has decreased from 88% to 64%, and
sensitivity for X has decreased from 100% to 69%. These results again emphasize the importance
of having a sufficiently large test set for evaluating performance of a machine learning algorithm
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such that the performance is not overestimated. This is particularly true when it comes to applying
deep learning on DISE videos, since these videos present a lot of variation from subject to subject,
not only with respect to the upper airway anatomy, but also in relation to the video quality and
how the examination is filmed.
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Figure 4.11: Normalized confusion matrix for classifying regions in the upper airway from 19800 frames with
three different classes: velum (V), oropharynx, tongue, and epiglottis combined (OTE), and distorted video (X).
The frames are classified using a trained convolutional recurrent neural network, which takes as input 25 frames
from drug-induced sleep endoscopy videos and outputs the classified upper airway region for each frame.
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4.4 Paper IV: Automatic Scoring of Drug-Induced Sleep Endoscopy
for Obstructive Sleep Apnea Using Deep Learning

Abstract

Purpose: Treatment of obstructive sleep apnea is crucial for long term health and reduced
economic burden. For those considered for surgery, drug-induced sleep endoscopy (DISE)
is a method to characterize location and pattern of sleep-related upper airway collapse.
According to the VOTE classification system, four upper airway sites of collapse are
characterized: velum (V), oropharynx (O), tongue base (T), and epiglottis (E). The degree
of obstruction per site is classified as 0 (no obstruction), 1 (partial obstruction), or 2
(complete obstruction). Here we propose a deep learning approach for automatic scoring of
VOTE obstruction degrees from DISE videos.

Methods: We included 281 DISE videos with varying durations (6 seconds – 16 minutes)
from two sleep clinics: Copenhagen University Hospital and Stanford University Hospital.
Examinations were split into 5-second clips, each receiving annotations of 0, 1, 2, or X (site
not visible) for each site (V, O, T, and E), which was used to train a deep learning model.
Predicted VOTE obstruction degrees per examination were obtained by taking the highest
predicted degree per site across 5-second clips, which were evaluated against VOTE degrees
annotated by surgeons.

Results: Mean F1 score of 70% was obtained across all DISE examinations (V: 85%, O:
72%, T: 57%, E: 65%). For each site, sensitivity was highest for degree 2 and lowest for
degree 0. No bias in performance was observed between videos from different surgeons/hos-
pitals.

Conclusion: This study demonstrates that automating scoring of DISE examinations show
high validity and feasibility in degree of upper airway collapse.

4.4.1 Methods

This section describes the approach for developing an automatic scoring system for DISE videos
in OSA by estimating sites of upper airway collapse and obstruction degrees. Figure 4.12 shows a
block diagram of the proposed system. The different components of the system will be described
in detail in the following.
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Figure 4.12: A block diagram of the proposed system for predicting obstruction degrees for each upper airway
site in subjects using drug-induced sleep endoscopy (DISE) videos. This architecture is repeated for each of the
four upper airway sites (velum, oropharynx, tongue base, and epiglottis). Top block: A DISE examination is split
into 5-second clips. Middle block: Each individual frame (grayscale) of a 5-second clip is used as input one by
one for a convolutional neural network (CNN) with a ResNet18 architecture for feature extraction. All resulting
feature vectors (1x512) are concatenated (25x512) and input to a bidirectional long short-term memory network
(Bi-LSTM) for temporal analysis, followed by a dense layer to reduce number of features (25x128). Another
Bi-LSTM and dense layer reduce the feature vector (1x4), which is run through a softmax activation function.
This yields four probabilities, one for each obstruction degree (P(Y=0), P(Y=1), P(Y=2), and P(Y=X), where
X means that the site is not visible). The obstruction degree with highest probability is the predicted obstruction
degree. Bottom left block: Predictions for all clips within a DISE examination are collected. Bottom right block:
The maximum predicted obstruction degree across all 5-second clips that make up a full examination is chosen
as the overall degree if the model predicts this degree for at least 5% of all clips. Otherwise, same criterion is
checked for the next highest degree and if not fulfilled either, the predicted obstruction degree is 0 by default.
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4.4.1.1 Data Collection

The data collection for this study was the same as for the previous study described in Section
4.3.1.1.

4.4.1.2 Data Description

281 DISE videos were obtained in total from three different otolaryngology - head and neck surgeons
at two different locations: one surgeon from Copenhagen University Hospital (CUH) (51 videos)
and two surgeons at Stanford University Hospital (SUH) (58 and 172 videos, respectively). The
Institution’s Ethical Review Board approved all experimental procedures involving human subjects.

Each video was anonymized by removing any part where the endoscope was outside of the patient.
Median duration of videos after anonymization was 2.1 minutes with an interquartile range of 3.33
minutes (min – max: 6 seconds – 16.4 minutes) and the total amount of video footage was 13.7
hours. Figure 4.13 shows distribution of DISE examination durations, showing that most videos
in the dataset are less than 2 minutes long. Videos obtained from CUH had sampling rates of 25
frames per second, while videos from SUH had sampling rates of 30 frames per second.

For each examination, an annotation was obtained containing the VOTE score, i.e., obstruction
degree and collapse pattern at each site as shown in Table 4.6. Note that several sites can collapse
in the same subject (also in combination) and that a site like V can collapse in more than one way
in the same subject. The distribution of obstruction degrees for each site is shown in Fig. 4.14.
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Figure 4.13: Distribution of drug-induced sleep endoscopy video durations for 281 videos in the dataset used
to train and evaluate a convolutional recurrent neural network for predicting obstruction degrees for each upper
airway site.
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Table 4.6: Example of annotations provided by surgeons for drug-induced sleep endoscopy examinations. The
obstruction degree for each upper airway site (velum, oropharynx, tongue base, and epiglottis) is indicated by a
number (0, 1, or 2) followed by the collapse pattern (A-P, lateral or concentric).

Video Velum Oropharynx Tongue base Epiglottis
Video 1 2 A-P - Concentric 2 Lateral 1 A-P 2 Lateral
Video 2 2 A-P 2 Lateral 0 0
Video 3 1 A-P 0 2 A-P 2 A-P
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Figure 4.14: Distribution of obstruction degrees (0, 1, and 2) for each of the four upper airway sites (velum (V),
oropharynx (O), tongue base (T), and epiglottis (E)) annotated by otolaryngology surgeons for 281 drug-induced
sleep endoscopy videos.
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4.4.1.3 Pre-Processing

Since DISE examination videos varied greatly with respect to duration (Fig. 4.13) and there was
only a one-line annotation per video (Table 4.6), we decided that using data as it was would be
unsuitable for deep learning purposes. Consequently, all DISE videos were split into 5-second
clips, as shown in the top block of Fig. 4.12, and each clip received a label with respect to each
upper airway site. These labels were created by the authors in consultation with a chief surgeon
in otolaryngology at CUH [165]. Table 4.7 provides an example of the labels created for 5-second
clips. Note that the term annotations is used when describing the scored obstruction degrees by the
surgeons for an entire DISE video, while the term labels is used to describe the scored obstruction
degrees by the authors for 5-second clips.

Using 5-second clips, there are many scenarios where one or more upper airway sites are not visible.
Thus, another class was introduced for such situations, denoted X, such that there were four classes
(0, 1, 2, and X) for each upper airway site (V, O, T, and E) per 5-second clip, essentially amounting
to a 16-class classification problem. The idea was to train and evaluate the proposed computer
vision model on the 5-second clips with corresponding labels and then summarize all predictions
to form a single predicted obstruction degree per upper airway site for each DISE video. This, in
turn, can then be evaluated against the surgeons’ gold-standard annotations for each DISE video.

Figure 4.15 shows the distribution of labeled 5-second clips for each upper airway site with respect
to obstruction degrees for all 9895 5-second clips. Note how the distributions are different from
the ones presented in Fig. 4.14 because the longer DISE videos consist of more 5-second clips and
thus contribute more to the number of labeled clips with a given degree. Whereas the distributions
shown in Fig. 4.14 are based on entire DISE videos, i.e., one annotation for each site per video.

Although sampling rates for videos from RH and SUH were 25 and 30 frames per second, respec-
tively, we used only every 5th and 6th frame, respectively. This was done to reduce computational
cost, because no visual difference was observed between consecutive frames during inspection. Con-
sequently, the sampling rate for 5-second clips used in this study was 5 frames per second, yielding a
total of 25 frames for a 5-second clip. Instead of using all three color-channels for each clip (R,G,B),

Table 4.7: Example of obstruction degree labels (0, 1, 2, and X) created for 5-second clips of drug-induced
sleep endoscopy with respect to the four upper airway sites that can collapse (velum, oropharynx, tongue base,
and epiglottis). 0 means no collapse, 1 means partial collapse, 2 means complete collapse, and X means that a
given upper airway site is not visible in that 5-second clip.

Video clip Velum Oropharynx Tongue base Epiglottis
Video 1 Clip 1 2 X X X
Video 1 Clip 2 0 1 1 1
Video 1 Clip 3 X 1 2 2
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Figure 4.15: Distribution of obstruction degree labels (0, 1, 2, and X) created for 9895 5-second clips of drug-
induced sleep endoscopy with respect to the four upper airway sites that can collapse (velum (V), oropharynx (O),
tongue base (T), and epiglottis (E)). 0 means no collapse, 1 means partial collapse, 2 means complete collapse,
and X means that a given upper airway site is not visible in that 5-second clip.

the videos were converted to grayscale. Both approaches were investigated (with and without color
channels) and preserving colors did not make any noticeable difference, most likely because anatom-
ical composition is much more important than small differences in color, so grayscale frames were
used to reduce computational cost.

All frames in each 5-second clip were rescaled to 224×224 pixels, which was found to be appropriate
for reducing computational cost while still preserving discriminatory information between upper
airway sites. Finally, each frame was normalized to the range [0,1] by dividing each pixel value by
255. This was done to ensure faster convergence during training. The final input output pairs were
5-second clips, consisting of 25 frames, and corresponding labeled obstruction degrees (0, 1, 2, or
X) for each upper airway site (V, O, T, and E).
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4.4.1.4 Convolutional Recurrent Neural Network

The purpose of applying machine learning was to learn data-driven discriminatory information
about upper airway collapse at the different sites and whether the collapse is partial or complete.
For this purpose, we implemented a CNN with a ResNet18 architecture [130] combined with two
Bi-LSTM layers [168] as illustrated in the middle block of Fig. 4.12. The network architecture was
almost identical to the one presented in Section 4.3.1.4, where reasoning for the choice of network
architecture was provided as well, except for two key differences: 1) here we take the middle time
step of the second Bi-LSTM and dense layer output instead of using all time steps, since there is one
predicted obstruction degree for each upper airway site per 5-second clip, instead of predictions for
each frame, and 2) the number of output probabilities are 4 instead for 3, one for each obstruction
degree (0, 1, 2, and X). The architecture was implemented four times, one for each upper airway
site.

The CNN was implemented for automatic feature extraction from each video frame, while Bi-LSTM
layers were included to include temporal context in both forward and backward directions for each
frame. The Resnet18 network was implemented such that a 5-second clip (consisting of 25 frames)
could be input one frame at a time. The output of the CNN was then a feature map of size 1x512
for each frame. The feature maps for all frames were concatenated to form a 25x512 matrix, where
each row is considered a time-step in the original 5-second clip and each column is a feature vector
for a particular frame. This matrix was processed by a Bi-LSTM layer, followed by a dense layer,
which reduced the number of features from 512 to 128 while time steps were intact, i.e., resulting
matrix dimensions were 25x128. A second bidirectional LSTM and dense layer reduced the number
of features further from 128 to 4, yielding a matrix of dimension 25x4. From this matrix, the output
at the middle time step, i.e., 13 was taken as it represents the time step where the model has most
context in both directions. Finally, a softmax activation function was applied to the resulting 1x4
vector to yield a probability for each class, i.e., 0, 1, 2, and X.

The optimal number of time steps and hidden neurons in the Bi-LSTM layers were found using hy-
perparameter tuning, which was performed in a grid search-like manner where the hyperparameters
were varied and different combinations of these were investigated. The optimal hyperparameters
yielded the lowest error on the validation set, which is defined in the next section.

4.4.1.5 Training, Validation, and Testing

The proposed model was trained, validated, and tested using 10-fold cross-validation to get pre-
dictions for all DISE videos in the dataset. This was done by splitting the dataset into 10 folds of
equal size and utilizing 8 folds for training the network and 1 fold each for validation and testing,
respectively. The test fold predictions were stored and the process was repeated by assigning new
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folds to training, validation, and testing. This procedure was repeated 10 times, such that predicted
VOTE obstruction degrees were obtained for all DISE videos in the dataset.

The loss function for each upper airway site was the cross-entropy loss defined in Eq. 4.1 with
K = 4 classes. The loss functions for all four sites were added together and the combined loss
was used to optimize the weights of the model using the Adam optimizer [133]. The combined
loss function was used to optimize the model simultaneously with respect to all four upper airway
sites. Since the obstruction degrees for each site were imbalanced (Fig. 4.15), penalty weights were
introduced in the loss function during training. The weight for a particular class was calculated by
dividing the number of samples for the most represented class with the number of samples for a
particular class in the training set.

The model was trained using batches of size 8, where computational resources were the limiting
factor. The learning rate was set to 1 · 10−5 with a weight decay of 5 · 10−4, which was found using
hyperparameter tuning. Early stopping was applied with a patience of 3, to help prevent overfitting
to the training data.

Python 3.6.10 and Pytorch 1.10.0 were used for implementation of the proposed model. Training
of the model was performed using a GeForce RTX 3070 and the entire training, validation, and
test setup took approximately 16 hours to run.

4.4.1.6 Post-Processing

Post-processing steps are illustrated in the bottom blocks of Fig. 4.12. For each upper airway site
in each 5-second clip, the model predicted probabilities for each of the four different classes (0, 1,
2, and X). The predicted degree for each site was the one which the model predicted the highest
probability for. After a prediction was made for each site for each 5-second clip, the overall degree
for each site for a particular DISE examination was calculated as the maximum predicted degree
across all 5-second clips constituting a single DISE examination.

The maximum degree was selected only if this degree was predicted in at least 5% of the clips which
make up a full examination. This is to avoid any coincidences where a degree of e.g., 2 occurs one
time by chance or because of other upper airway sites and does not reflect the true behavior of
that site in a subject. In case the maximum degree did not satisfy this condition, the next greatest
degree was selected if it satisfied the same condition. If this was not satisfied either, the degree was
set to 0 by default. This is illustrated in the bottom right block of Fig 4.12.

A voting approach was not applied here, because surgeons annotate DISE examinations according
to the highest degree observed for each upper airway site.
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4.4.1.7 Performance Measures

The predicted VOTE obstruction degrees were compared to the surgeons’ annotations, considered
as ground truth, for all DISE videos in the dataset. Performance was evaluated using weighted F1
score [170]. Weighted F1 score was used instead of accuracy due to a large imbalance between the
annotated obstruction degrees as observed in Fig. 4.14.

The F1 score was calculated using Eq. 4.2. Using a degree of 0 as example, TP represents the
number of 0’s that are correctly predicted as 0’s, FP represents the number of predicted 0’s that
are not actually 0’s, and FN represents the number of predicted 1’s and 2’s that are actually 0’s.
The F1 scores for degrees 1 and 2 were calculated similarly. The weighted F1 score was calculated
by averaging the F1 score of the individual degrees multiplied by their proportion in the dataset.

Cohen’s kappa [171] was also used to compare model performance with inter-rater reliability re-
ported in the literature with respect to obstruction degrees, either for each site or overall.

4.4.2 Results and Discussion

Here we describe for the first time that deep learning can be used to reliably evaluate DISE videos
with the goal of identifying site of collapse and extent of obstruction. Performance was evaluated
across all 281 DISE videos in the dataset using 10-fold cross-validation.

4.4.2.1 Overall Performance

Mean F1 score for the 12-class problem, i.e., predicting obstruction degree (0, 1, or 2) for each of
the four upper airway sites across all DISE videos, was 70% (V: 85%, O: 72%, T: 57%, E: 65%). If
the model had instead predicted all examinations to have the most represented obstruction degree
for each site (i.e., 2 for V, O, and 1 for T, E as seen in Fig. 4.14), the average F1 score would be
only 48% (V: 74%, O: 45%, T: 29%, 44%).

Mean F1 score for the 16-class problem, i.e., predicting obstruction degrees for each individual
5-second clip (including the class X for when the site is not visible) was 65 ± 14% (V: 68 ± 21%,
O: 64± 22%, T: 64± 23%, E: 65± 23%) and was calculated by averaging all clips that make up a
full DISE examination and then averaging the performance over all 281 DISE videos. In contrast,
if the model predicted the obstruction degrees for each 5-second clip to be the most represented
obstruction degree for each site, respectively, the average F1 score would only be 20 ± 13% (V:
18±21%, O: 8±13%, T: 24±28%, E: 31±29%). This quantitative analysis supports the fact that
the model performs much better than random guessing and emphasizes the large gap that would
not be as apparent if a performance metric like accuracy would be used, which does not consider
how well the model predicts individual classes.
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When distinguishing between collapse/no collapse, i.e., combining obstruction degrees of 1 and 2 as
one class, the F1 score increased to 90% (V: 98%, O: 95%, T: 78%, E: 91%). Similarly, for 5-second
clips averaged over DISE examinations, where the classes are no collapse, collapse, and X, the F1
score increased to 74 ± 13% (V: 79 ± 19%, O: 76 ± 22%, T: 70 ± 22%, E: 71 ± 22%). The model
predicts especially well whether or not there is a collapse as shown by an F1 score of 90% when
combining degrees 1 and 2, showing that in general, the model confuses degrees 1 and 2 more often
than 0 and 1 or 0 and 2.

4.4.2.2 Sensitivity for Each Obstruction Degree

Figure 4.16 shows confusion matrices for the model’s predicted obstruction degree for each site
evaluated against the surgeons’ annotations across all DISE videos in the dataset. Figure 4.16 shows
that the highest sensitivity for degree 0 is obtained for E (55%), and that most misclassifications
occur because the model predicts degree 1. In very few cases (<10%), the model predicts degree 2
and after inspecting the three examinations in question, it occurs for two reasons: 1) E is reflected
in saliva causing a mirror image where it looks like E is collapsing, which in fact it is not, and 2)
the model confuses an A-P V collapse for an E collapse, particularly when the endoscope is close to
the collapse. In these examinations, however, the predicted probability for degree 2 is never higher
than 40% and it only occurs in 1-2 clips per examination for the three examinations.

The second highest sensitivity for degree 0 is obtained for T (35%), but it is confused for both
degrees 1 and 2. When degree 2 is predicted, it occurs for two reasons: the uvula or lower part of
the soft palate resembles the tongue and when it collapses, the model confuses it for the tongue
collapsing, and 2) when V or O are collapsing and the endoscope is extremely close to the tissue,
it resembles the tissue of the tongue.

The lowest sensitivity for degree 0 is obtained for V (17%), although there are only 6 out of 281
DISE examinations where V has a degree of 0. Presence of collapse at the level of V is extremely
common among OSA patients [172] which is also evident in the dataset by the lack of videos where
V has a degree of 0. However, it is encouraging that the model only confuses degree 0 with degree
1 and never predicts degree 2 in those cases.

The next lowest sensitivity for degree 0 is obtained for O (27%) and the confusion is equally split
between degrees 1 and 2. Again, there are only a small number of DISE examinations where O has
degree 0 (11 examinations), but the cases in which they are predicted as 2 are due to three reasons:
1) A lateral collapse at the level of E which is generally not considered part of O, (2) T collapsing
completely and the endoscope being very close such that the model mistakes it for a collapse at O,
and 3) V collapsing and the model mistakenly predicting a contribution of O as well, which can be
difficult to assess even for surgeons [173].
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Figure 4.16: Confusion matrices for predicted obstruction degrees evaluated for 281 drug-induced sleep en-
doscopy (DISE) videos with respect to four different upper airway sites: velum (V), oropharynx (O), tongue base
(T), and epiglottis (E). The obstruction degree for each site was predicted using a trained convolutional recurrent
neural network, which takes a 5-second DISE clip as input and outputs the obstruction degree for each site. The
predicted degrees for an entire DISE video were the maximum predicted degree for each site observed across all
5-second clips which the DISE video consisted of. The gold-standard annotations were provided by otolaryngology
surgeons who performed the DISE procedure.

The highest sensitivity for degree 1 is obtained for both V and E (64% and 63%, respectively), while
T and O are lower (50% and 47%, respectively). For all four sites, the model primarily confuses
degree 1 with degree 2 and very rarely with degree 0 (none for V, <5% for O, <10% for T and E).
For degree 2, the sensitivity is very high for V, O, and T (91%, 93%, and 85%, respectively), while
the sensitivity for E is lower (72%). For all four sites, the model almost exclusively confuses degree
2 with degree 1 and almost never with degree 0 (none for V and E, <5% for O and T). Although
the model confuses degree 1 with degree 2 to some extent for all sites, the model confuses degree
2 with degree 1 only for E, showing that for this site, the model appears to have most difficulty
distinguishing between degrees 1 and 2.
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4.4.2.3 Performance for Videos From Each Surgeon

Performance was also evaluated with respect to videos obtained from the three different surgeons
(one from CUH and two from SUH) to investigate any biases in the proposed model towards
videos from a particular surgeon. The results are summarized in Table 4.8, which shows that
there is no noticeable difference in overall F1 score between videos obtained from each of the three
surgeons, demonstrating that there is no meaningful bias towards any of them and suggesting that
the procedures are comparable.

For videos from surgeon 1 (S1) from CUH, the model yields the highest F1 score for V out of all
three but also the lowest F1 score for T and E. For videos obtained from surgeon 2 (S2) from SUH,
the model has the highest F1 score for T out of all three and the lowest F1 score for O. However,
the gap between the highest and lowest F1 score for S2 is much smaller than for S1 and in general
the discrepancy in performance between sites is lower for videos from S2. For videos obtained from
surgeon 3 (S3) from SUH, the model has the highest F1 scores for both O and E compared to S1
and S2 and the lowest F1 score for V. Again, the gap between highest and lowest F1 score is much
smaller than for S1.

4.4.2.4 Performance for 5-Second Clips

Figure 4.17 shows the distribution of F1 scores per DISE examination as the average F1 score with
respect to 5-second clips that make up an entire examination. It is noted that most examinations
have an F1 score above 50% (86% of all videos), but the lowest F1 score is at 24%. There are
three important factors which explain low performance for some examinations: 1) The duration
of an examination, since a very short examination consists of only few 5-second clips and even a
few misclassified clips reduce performance by a lot, 2) the video quality, since some examinations
have very low quality, which makes it difficult to assess the degree for each site, and 3) several sites
collapsing simultaneously, which pushes the endoscope around and makes the video appear chaotic.

Table 4.8: F1 scores for predicted obstruction degrees in drug-induced sleep endoscopy with respect to each
of the three surgeons who provided the videos. Performance is evaluated against the surgeons’ annotations with
respect to obstruction degree (0, 1, or 2) for four different upper airway sites: velum (V), oropharynx (O), tongue
base (T), and epiglottis (E). The obstruction degree for each site was predicted using a trained convolutional
recurrent neural network, which takes a 5-second DISE clip as input and outputs the obstruction degree for each
site. The predicted degrees for an entire DISE video were the maximum predicted degree for each site observed
across all 5-second clips which the DISE video consisted of.

Surgeon N Videos V (F1) O (F1) T (F1) E (F1) Overall (F1)
S1 (CUH) 51 91% 70% 53% 58% 68%
S2 (SUH) 58 89% 64% 63% 63% 70%
S3 (SUH) 172 82% 74% 56% 67% 70%
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Figure 4.17: Distribution of F1 scores for 281 DISE videos calculated as the average F1 score of all 5-second clips
making up each DISE examination with respect to four classes (0, 1, 2, and X) for the upper airway sites (velum,
oropharynx, tongue base, and epiglottis). The obstruction degree for each site was predicted using a trained
convolutional recurrent neural network, which takes a 5-second DISE clip as input and outputs the obstruction
degree for each site.

4.4.2.5 Probability Interpretation

Figure 4.18, which depicts an example of predicted probabilities for each degree (and X) for each
site over time, shows that the model regularly produces predictions with high confidence that are
easy to interpret due to the way they covary within and across sites. Such a plot provides insight
into model behavior and situations where the predictions are made with high or low confidence,
which can then be directly compared to the DISE examinations. For example, for time (t) = 0
seconds (s), the model predicts with high probability that V has degree 2 and that OTE are not
visible due to the obstruction at V. The probability of O not being visible is lower than for T and
E because V reopens in that clip and reveals O for a split second. This observation emphasizes
a limitation of the model: predictions are made on 5-second clips, during which several events
can occur, causing the model to be less confident in a single obstruction degree. For t = 5 s, V
transitions from degree 2 to 1, which enables the model to see OTE and predict degree 0 for all
three. However, probabilities for O and E are lower because they are both on the border between
having degrees 0 or 1. At t = 10 s, the model is confused whether V is not visible or has degree
1 because the endoscope is being moved down the airway and is at the border between V and O.
For O, the model becomes more confident that the degree is 0 as the lateral walls separate further.
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Figure 4.18: Probabilities for obstruction degrees (0, 1, 2) or X (site not visible) predicted by the proposed
model for 5-second clips for four different upper airway sites: velum (V), oropharynx (O), tongue base (T), and
epiglottis (E). The probability for each obstruction degree per site was predicted using a trained convolutional
recurrent neural network, which takes a 5-second drug-induced sleep endoscopy clip as input and outputs the
obstruction degree for each site.

At t = 15 s, probabilities for degree 0 decrease and degree 1 increase for OTE because these sites
move slightly, but not enough to cause any obstruction. At the same time, the model becomes
more confident that V is not visible as the camera is moved further down. For the remainder of
the video (t = 20-30 s), the model becomes more confident that OTE have degrees 0 again, but for
V, it switches between degree of 1 and X because, although the endoscope is further down in the
airway, the uvula occasionally vibrates and becomes visible, causing the model to confuse whether
V is visible or not.

4.4.2.6 Comparison to Inter-rater Reliability

Table 4.9 compares performance of the proposed model (in terms of Cohen’s kappa) to inter-rater
reliabilities reported in the literature between surgeons. The comparisons are made on three levels:
for each individual site (V, O, T, and E), region-based (palate and hypopharynx), and overall
(all sites combined). For region-based comparison, V was compared to the palate, and OTE were
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Table 4.9: Comparison of model performance in terms of Cohen’s kappa (κ) to inter-rater reliabilities between
surgeons reported in the literature for scoring obstruction degrees in drug-induced sleep endoscopy (DISE). Some
studies use palate vs. hypopharynx, where palate corresponds to velum (V) and hypopharynx corresponds to
oropharynx (O), tongue base (T), and epiglottis (E) combined. One study reports overall κ across all sites. Our
model was a convolutional recurrent neural network, which takes a 5-second DISE clip as input and predicts
obstruction degrees for all four sites. The overall obstruction degrees for an entire DISE video were obtained as
the maximum predicted degree for each site across all 5-second clips which the DISE video consists of.

Study V (κ) O (κ) T (κ) E (κ) N Scorers N DISE
Our model 0.55 0.45 0.38 0.44 N/A 281

Vroegop et al. [61] 0.30 0.66 0.03 0.61 7 6
Llatas et al. [63] 0.17 0.67 0.35 0.43 2 31
Green et al. [64] 0.40 0.42 0.60 0.55 4 275

Study Palate (κ) Hypopharynx (κ) N scorers N DISE
Our model 0.55 0.43 N/A 281

Kezirian et al. [60] 0.60 0.44 2 108
Koo et al. [65] 0.52 0.35 6 100

Study Overall (κ) N scorers N DISE
Our model 0.46 N/A 281

Gillespie et al. [62] 0.27 3 38

combined for hypopharynx comparisons. For V, our model achieves a higher kappa than the inter-
rater scores. For O and E, our model has lower kappa than two studies and slightly higher than
one. For T, our model has higher kappa than two studies and lower than one, demonstrating that
despite our model having low performance for T, surgeons can struggle with it as well which is
evident from a huge difference in kappa scores between studies (0.03 - 0.60).

For both the palate and hypopharynx, our model produces higher kappa than one study and lower
than another. For the overall evaluation of degrees, our model achieves a much higher kappa than
the one study where they conduct such an analysis. This comparison adds context to the model
performance and demonstrates that analysis of DISE examinations is not a trivial task, not even
for experiences surgeons.

4.4.2.7 Limitations

There are two main limitations of this study: 1) the model is not able to predict the pattern of
collapse, which would need to be added for the model to produce complete VOTE annotations as
the surgeons do, 2) no healthy controls are used in the study, but the model could benefit from
seeing more examples of absence of collapse, particularly for V and O. For the first limitation,
the absence of collapse pattern only really affects predictions for V, since O and T only have one
possible pattern and lateral obstructions for E are extremely rare [156]. However, the difference in
collapse patterns for V (particularly concentric vs. A-P or lateral) can lead to different treatment
strategies and is therefore important in clinical practice [174–176]. The second limitation is difficult



Chapter 4. Automatic Scoring of Drug-Induced Sleep Endoscopy 103

to compensate for because DISE examinations are performed for people with confirmed OSA as
the point of the procedure is to identify sites contributing to upper airway collapse prior to surgery.
However, such data could be gathered by using DISE with other medical procedures under sedation.

4.4.2.8 Future Work

In future work, pattern of collapse for V should be added to the output of the model. This could
be done by labeling the pattern for V for all 5-second clips, i.e., A-P, lateral, concentric, and X for
when there is no collapse. A network identical to the ones predicting VOTE obstruction degrees
could be implemented and trained simultaneously with the other networks. Future work would
also benefit from using a larger, multi-scored dataset for testing purposes, such that the inter-rater
reliability can be compared directly to the model’s performance on the same data. Finally, future
work should explore the potential of using self-supervised learning on DISE videos, which would
require fewer labels and save time and resources compared to the approach followed in this study.

4.5 Conclusions

Based on the described methods, results, and discussions in Sections 4.3 and 4.4, the research
questions posed in the beginning of the chapter are now restated and answered.

Research Question 1: Can a dedicated computer vision model be trained to accurately classify
upper airway regions in DISE videos?

Research Conclusion 1: A framework was presented for classifying upper airway regions for each
frame in DISE videos. This was achieved by labeling 24 DISE videos second by second with respect
to where in the upper airway the endoscope is using three classes: velum (V), oropharynx, tongue,
or epiglottis combined (OTE), or distortion in video (X). Then, videos were split into 5-second
clips, consisting of 25 frames each with a corresponding label, and these input and output pairs
were used to train a convolutional recurrent neural network for classifying upper airway regions.
We successfully showed that upper airway regions can be classified automatically on a test set
consisting of three videos, which yielded an overall F1 score of 79%, while class F1 scores of 74%,
79%, and 68% were obtained for V, OTE, and X, respectively. Subsequently, we implemented a
cross-validation approach to obtain performance across all 24 videos in the dataset, and results
showed that the initial performance was overestimated. The new F1 score was 66 ± 20%, while
class F1 scores were 62 ± 25%, 61 ± 30%, and 53 ± 25% for V, OTE, and X, respectively. This
serves as a proof of concept and the applied techniques can be extended to automatically score
DISE videos for sites of upper airway collapse and obstruction degrees.
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Research Question 2: Can a dedicated computer vision model be trained to accurately score
DISE videos for sites of upper airway collapse and obstruction degrees?

Research Conclusion 2: An automatic system was presented for scoring DISE videos with re-
spect to sites of upper airway collapse and obstruction degrees. This was achieved by first splitting
281 DISE videos into 5-second clips. Each clip was labeled according to an obstruction degree (0,
1, or 2) or X, which means that a site is not visible in the clip, for each upper airway site: velum
(V), oropharynx (O), tongue base (T), and epiglottis (E). The framework developed for Research
Question 1 was modified to yield four outputs and was repeated four times, one for each upper
airway site. 5-second clips with corresponding labels were used to train the proposed model to
automatically estimate obstruction degrees for each upper airway site. The maximum predicted
obstruction degree for each site observed across an entire DISE recording was evaluated against
the surgeons’ annotations. We succesfully showed that it is possible to automatically score DISE
videos using a dedicated computer vision model, which yielded an overall F1 score of 70% (V: 85%,
O: 72%, T: 57%, E: 65%).

Research Question 3: Can the proposed model generalize well across DISE procedures performed
at different sleep centers by different otolaryngology - head and neck surgeons?

Research Conclusion 3: The 281 DISE videos in the dataset were obtained from two different
clinics and were performed by three different surgeons. We investigated performance for videos
obtained from each surgeon and compared them to each other. Overall F1 scores of 68%, 70%, and
70% were obtained for each surgeon, respectively, showing no clear bias towards any of them and
suggesting that the proposed model generalizes well across DISE procedures performed at different
sleep centers and by different surgeons.

Research Question 4: Can the proposed model perform at a level similar to that of otolaryngology
- head and neck surgeons with years of experience?

Research Conclusion 4: We compared performance of the proposed model to inter-rater reliabil-
ities reported in the literature between surgeons scoring obstruction degrees for each upper airway
site. For comparisons at each individual site, the proposed model in general performed better than
surgeons for V and T and worse for O and E. For comparisons at the palate (V) and hypopharynx
(OTE), the proposed model in general performed as well as surgeons. For overall comparison across
all sites, the model performed notably better than the surgeons, leading to the conclusion that in
general, the proposed model performs at a level similar to that of otolaryngology - head and neck
surgeons with years of experience.
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To summarize the findings and state the overall conclusion, Hypothesis 2 is restated below and
answered:

Hypothesis 2

An automatic scoring system can be invented, based on dedicated computer vision models,
which utilizes drug-induced sleep endoscopy examination videos to estimate sites of upper
airway collapse and obstruction degrees in obstructive sleep apnea patients with a similar
accuracy as otolaryngology - head and neck surgeons.

The potential for automatic scoring of DISE videos has been demonstrated by inventing a system
based on dedicated computer vision models that is capable of estimating sites of upper airway
collapse and obstruction degrees. The proposed system was trained and evaluated on 281 DISE
videos and displayed solid performance in estimating obstruction degrees (0, 1, or 2) for each upper
airway site (V, O, T, and E). Mean F1 score of 70% was obtained in estimating obstruction degrees
across all four sites (V: 85%, O: 72%, T: 57%, E: 65%). Furthermore, we have shown that our model
performs at a level similar to otolaryngology - head and neck surgeons with years of experience
by comparing the model performance to inter-rater reliabilities reported in the literature. This
comparison yielded better performance than some studies and lower performance than others, but
in general appeared to be at a similar level as the surgeons. The proposed model has acquired
this knowledge by seeing a relatively small sample of DISE videos (< 300) compared to standard
current dataset sizes within deep learning and computer vision. A much larger dataset is required for
training and evaluation of a scoring system such as the one proposed here before clinical applicability
can be considered. However, we have demonstrated that such a scoring system can be invented and
that sites of upper airway collapse and obstruction degrees can be obtained in less than a minute
to provide surgeons with objective and data-driven conclusions, which can have a positive impact
on treatment strategy.



Chapter 5

Conclusions

This chapter concludes the dissertation and discusses future perspectives of the current work.
Section 5.1 relates the main research findings to the dissertation objective and research hypotheses
presented in Chapter 1. Section 5.2 discusses limitations associated with the project and future
perspectives that could improve it. Section 5.3 provides concluding remarks for the dissertation.

5.1 Research Conclusions

The focus of this dissertation was to invent automatic screening and scoring methods for obstructive
sleep apnea (OSA) that rely on imaging data. Imaging data can be acquired in a fast and inex-
pensive manner compared to physiological signals that are traditionally utilized for OSA diagnosis
and which require an entire night of sleep. The dissertation objective was stated follows:

Dissertation Objective

To invent automatic screening and scoring systems, based on dedicated computer vision
models, that rely on imaging data to detect the presence of obstructive sleep apnea and
characterize the upper airway collapse pattern in a fast, cheap, and data-driven manner.

Automatic and data-driven screening and characterization systems for OSA as presented in this
dissertation provide several benefits to patients and clinicians if they are implemented and utilized
in a clinical setting: 1) fast and cost-effective screening of OSA, based on modalities that can
be captured in a few minutes, which performs better than current screening questionnaires, 2)
less manual labor for clinicians due to the proposed systems being automatic, and 3) providing
clinicians with a second opinion that is objective and data-driven, which has potential of increasing
inter-rater reliability and yielding a better diagnosis and treatment plan for the patient.
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The two research hypotheses stated in Section 1.4 were answered in Chapters 3 and 4, respectively.
In the following, the main findings and conclusions related to each hypothesis are summarized:

Hypothesis 1

An automatic screening system can be invented, based on dedicated computer vision models,
which utilizes 3D craniofacial scans to estimate presence and severity of obstructive sleep
apnea more accurately than current screening questionnaires in a fast, cheap, and data-driven
manner.

Chapter 3 presented an automatic system for screening of OSA based on dedicated computer
vision models used on 3D craniofacial scans. In comparison to current screening methods, such as
questionnaires consisting of OSA-related questions, the proposed system using 3D craniofacial scans
performed better with an accuracy of 67% compared to 62% (obtained using a modified STOP-
Bang questionnaire) in classifying subjects as being normal or having OSA, although both methods
had the same area under receiver operating characteristic curve (AUC ROC) of 65%. However,
the best performing system used a combination of three modalities (3D scans, demographics, and
questionnaires), which yielded an accuracy of 67% but an improved AUC ROC of 69%. This
approach is extremely fast and cost-efficient as any of the three modalities can be acquired in
a few minutes and none of them require the presence of a physician. In this project, we have
taken one step towards clinical applicability by showing that 1) the proposed system estimates
apnea-hypopnea index (AHI) and OSA in a similar way as sleep medicine specialists with decades
of experience when inspecting craniofacial anatomy, 2) the proposed system correctly identifies
craniofacial regions that contribute to OSA development and that correspond perfectly with what
is described in the medical literature, and 3) the proposed system generalizes well across data from
different sleep clinics, as the dataset utilized to train and evaluate the proposed system comprises
3D scans and polysomnographies (PSGs) acquired from 11 different sites in the US and Canada.

Hypothesis 2

An automatic scoring system can be invented, based on dedicated computer vision models,
which utilizes drug-induced sleep endoscopy examination videos to estimate sites of upper
airway collapse and obstruction degrees in obstructive sleep apnea patients with a similar
accuracy as otolaryngology - head and neck surgeons.

Chapter 4 presented an automatic scoring system for identifying sites of upper airway collapse and
obstruction degrees in OSA patients based on dedicated computer vision models used on drug-
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induced sleep endoscopy (DISE) videos. To our knowledge, it is the first time that automated
scoring of DISE has been attempted. The proposed system displayed solid performance with a
mean weighted F1 score of 70% in estimating obstruction degrees across all four upper airway sites
(velum (V): 85%, oropharynx (O): 72%, tongue base (T): 57%, epiglottis (E): 65%). Performance
of the proposed system was compared to performance of otolaryngology - head and neck surgeons in
scoring obstruction degrees for different upper airway sites. This was done by calculating Cohen’s
Kappa coefficients for the system and comparing to the inter-rater reliabilities reported in the
literature. Results showed that the proposed system performs at a level similar to these surgeons.
The proposed system is fast and cost-efficient, but requires a DISE video as input, which is more
resource dependent than performing a 3D scan because it requires the presence of a surgeon and
time to sedate the patient. Consequently, the benefit of this system in a clinical setting is that it
provides surgeons with objective and data-driven scoring of DISE videos without the presence of
subjective human biases that reduce the inter-rater reliability among surgeons. Once the surgeon
has recorded a DISE video, it would take less than a minute to use the proposed system to obtain
sites of upper airway collapse and obstruction degrees.

5.2 Limitations and Future Perspectives

Although the two systems presented in Chapters 3 and 4 performed well compared to medical
experts within the fields of OSA and otolaryngology, both systems have limitations that should be
improved in the future for better clinical applicability. The quantity of data used for training and
evaluation of both systems should be increased, because they rely on anatomical data in which there
is a large variation present across subjects. For computer vision models to see a sufficient number
of examples and learn representative mappings for an entire population of OSA patients, we expect
that both systems would benefit from a five-to-ten-fold increase in their respective dataset sizes,
i.e. from 1366 3D scans to at least 10,000 scans, and from 281 DISE videos to at least 1000 videos.

Another important consideration that applies to both systems is the quality of data used for training
and evaluation. The quality of 3D scans varied significantly and reflected the fact that they were
captured in different sleep clinics and under different conditions. Some scans had missing parts
of the neck, whereas others were affected by poor lighting conditions. Similarly, there was a large
variation in the quality of DISE videos, where some videos were affected significantly by mucus
or saliva on the camera lens while other videos had poor choice of lighting, making it difficult to
see some upper airway sites. If data collection was dedicated towards developing systems such as
the ones presented in this dissertation, more care would have been taken towards collecting good
quality data and ensuring that all the data would have been collected under similar conditions.
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For the system described in Chapter 3, the most inherent limitation of the approach is that the
pathophysiology of OSA is not exclusively attributed to obesity and craniofacial features [1]. Upper
airway anatomy factors, such as the size and positioning of the tongue and palate cannot be assessed
with the proposed system as it only models the outer anatomy of a subject. A procedure like DISE,
which is used to examine the internal anatomy, is performed after confirmed OSA and is therefore
not used to screen for OSA [164]. A solution in future work could be to take a picture inside the
subject’s mouth or a picture of the tongue extending outwards to include additional information
about potential factors contributing to OSA in the screening system. Other factors that the system
may fail to capture are physiological changes that occur with age, such as recruitment of upper
airway dilator muscles, which is independent of facial anatomy or obesity [50].

Although the proposed system detects OSA based exclusively on structural features, there are
models that account for physiological factors of OSA, which should be considered in future efforts to
develop a more complete screening system for OSA [177, 178]. Furthermore, it would be interesting
to explore if, besides AHI, other clinically important variables captured by sleep studies could
be better predicted, such as the hypoxic burden described by Azarbarzin et al. [152]. These
could prove to not only make up a more accurate model but could also improve our knowledge of
OSA phenotypes and their relation to facial anatomy. For example, the AHI receives criticism by
some members of the sleep medicine community for being a frequency-based metric that does not
adequately capture OSA severity and associated outcomes. New metrics that arise to complement
the limitations of AHI can naturally be considered as target variables in future efforts investigating
the diagnostic potential of 3D craniofacial scans in relation to OSA.

For the system described in Chapter 4, the biggest limitation is that it does not estimate pattern of
collapse. The VOTE classification system categorizes three different variables: site of upper airway
collapse, obstruction degree, and pattern of collapse [59]. The latter was purposefully excluded
from the proposed system because the learning problem was growing complex enough as it was
by estimating sites of collapse and obstruction degrees, which amounts to a 16-class classification
problem when including the class X, which denotes when a particular site is not visible during a
5-second clip. However, extending the current framework to include pattern of collapse would not
be difficult, as the pattern of collapse only varies at the level of the velum (antero-posterior, lateral,
or concentric) and epiglottis (antero-posterior or lateral). Since lateral collapse is extremely rare
for the epiglottis [156], we would only have to include pattern of collapse at the velum. This could
be done by including another network identical to the four networks that were implemented for
each site to predict obstruction degree, and labelling each 5-second video according to the pattern
of collapse (antero-posterior, lateral, concentric, or X, which means there is no collapse). With
inclusion of pattern of collapse in the proposed system, it would be able to estimate VOTE scores
exactly as the surgeons do, which would increase the clinical applicability of the system even further.
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For the system described in Chapter 4, a big limitation is the lack of a multi-scored DISE cohort
annotated by several surgeons. Although performance of the proposed system was compared to
inter-rater reliabilities between surgeons reported in the literature, this is only the second-best
solution. Deriving inter-rater reliability from the same dataset that the system was trained and
evaluated on would have enabled us to compare the system performance directly to the surgeons in
a legitimate manner. The comparisons in Table 4.9 show that inter-rater reliabilities are estimated
from as little as six DISE videos in one case, which gives less power to the results and takes away
from the comparison to inter-rater reliabilities.

Finally, a limitation of the proposed system described in Chapter 4 was that it required a lot of
time and resources for labeling of the entire dataset. All 281 DISE videos in the dataset were
split into 5-second clips, which amounted to approximately 10,000 clips. The labeling of these
clips took almost three months to complete, which is valuable time that could have been spent
on other research activities. However, supervised deep learning requires an enormous quantity of
labeled data, particularly as the task grows more complex. In future work, semi-supervised [179]
or self-supervised [180] learning techniques should be explored within the problem of scoring DISE
videos automatically. Although the computational requirements to train such models would increase
dramatically and there would be no guarantee that it would work well, it is worth investigating
the feasibility of a self-supervised approach, which would not require labeling of data, or a semi-
supervised approach, which would require much fewer labels than the supervised approach. If
additional videos could be obtained for future work, a semi-supervised approach could be utilized,
where the existing labels would be included and there would be no need to create additional labels
for the new videos. This would be a good compromise between supervised and self-supervised
learning and would most likely lead to more successful results as the resulting model would benefit
from using more data without the need for additional labels.

5.3 Concluding Remarks

In this dissertation, we showed the potential role of imaging in the detection and characterization of
OSA. The advantage of using imaging data is that it can be captured in a few minutes compared to
overnight sleep tracking. We invented two systems based on computer vision and demonstrated their
clinical applicability. The advantages of both systems are that they present fast, cheap, and data-
driven methods for screening OSA patients and characterizing upper airway collapse automatically.
Future efforts should attempt to increase the dataset sizes, which the proposed systems are trained
and evaluated on, to take one step further towards the implementation of such systems in a clinical
setting.
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General Information Prevalence and Incidence Screening

Symptoms and Signs Comorbidities Predisposing Conditions

STOP-Bang Questionnaire





Is it possible that you have ...


Obstructive Sleep Apnea (OSA)?




Please answer the following questions below to determine if you might be at risk.

Yes



No

 Snoring ?



Do you Snore Loudly (loud enough to be heard through closed doors or your bed-partner elbows you for
snoring at night)?

Yes



No

 Tired ?



Do you often feel Tired, Fatigued, or Sleepy during the daytime (such as falling asleep during driving or
talking to someone)?

Yes



No

 Observed ?



Has anyone Observed you Stop Breathing or Choking/Gasping during your sleep ?

Yes



No

 Pressure ?



Do you have or are being treated for High Blood Pressure ?

 

For general population 

OSA - Low Risk : Yes to 0 - 2 questions


OSA - Intermediate Risk : Yes to 3 - 4 questions

OSA - High Risk : Yes to 5 - 8 questions


or Yes to 2 or more of 4 STOP questions + male gender



or Yes to 2 or more of 4 STOP questions + BMI > 35kg/m2

or Yes to 2 or more of 4 STOP questions + neck circumference 16 inches / 40cm 



Property of University Health Network. 




Please use the "About Us" for more information





Yes



No

 Body Mass Index more than 35 kg/m2? 





Body Mass Index Calculator

 cm / kg   
  inches / lb

Height: Weight:  

Calculate

BMI:  

Yes



No

 Age older than 50 ?

Yes



No

 Neck size large ? (Measured around Adams apple)



Is your shirt collar 16 inches / 40cm or larger?

Yes



No

 Gender = Male ?

    See Result
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Prediction of Patient Demographics using 3D Craniofacial Scans and
Multi-view CNNs*

Umaer Hanif1,3,4, Member, IEEE, Rasmus R. Paulsen2, Eileen B. Leary3, Emmanuel Mignot3,5,
Poul Jennum4,5, and Helge B. D. Sorensen1,5, Senior Member, IEEE

Abstract— 3D data is becoming increasingly popular and
accessible for computer vision tasks. A popular format for
3D data is the mesh format, which can depict a 3D surface
accurately and cost-effectively by connecting points in the
(x,y,z) plane, known as vertices, into triangles that can be
combined to approximate geometrical surfaces. However, mesh
objects are not suitable for standard deep learning techniques
due to their non-euclidean structure. We present an algorithm
which predicts the sex, age, and body mass index of a subject
based on a 3D scan of their face and neck. This algorithm
relies on an automatic pre-processing technique, which renders
and captures the 3D scan from eight different angles around
the x-axis in the form of 2D images and depth maps. Subse-
quently, the generated data is used to train three convolutional
neural networks, each with a ResNet18 architecture, to learn
a mapping between the set of 16 images per subject (eight
2D images and eight depth maps from different angles) and
their demographics. For age and body mass index, we achieved
a mean absolute error of 7.77 years and 4.04 kg/m2 on the
respective test sets, while Pearson correlation coefficients of
0.76 and 0.80 were obtained, respectively. The prediction of sex
yielded an accuracy of 93%. The developed framework serves
as a proof of concept for prediction of more clinically relevant
variables based on 3D craniofacial scans stored in mesh objects.

I. INTRODUCTION

As the field of deep learning continues to revolutionize
computer vision, increased emphasis is being placed on
the 3D domain and its potential to push boundaries within
computer vision even further. However, as 3D data becomes
more accessible and easier to utilize with the emergence of
datasets such as ModelNet [1], ShapeNet [2], and SHREC’16
[3], limitations and problems related to this domain also
become more evident [4].

A popular format for storing 3D data is a mesh object,
which can depict 3D geometries accurately and in a com-
putationally cost-effective manner considering the level of
detail that can be achieved [5]. Mesh objects are made up of
vertices, which are points in space, described by their (x,y,z)
coordinates. Three interconnected vertices form a triangle,
also known as a face, and several faces are combined to
construct a surface in 3D. Faces are the basic building blocks

*Research has been supported by The Klarman Family Foundation,
Stanford University, Technical University of Denmark, and Rigshospitalet

1Department of Health Technology, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

2Department of Applied Mathematics and Computer Science, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark

3Stanford Center for Sleep Sciences and Medicine, Stanford University,
94304 Palo Alto, USA

4Danish Center for Sleep Medicine, Rigshospitalet, 2600 Glostrup
5Shared last authors

of a mesh object, where finer details can be approximated
by using very small faces and cruder details can be depicted
by using a few large faces.

Even though mesh objects provide a cheap and convenient
way of storing 3D data, they are unsuitable for convolutional
neural networks (CNNs), which are traditionally applied in
a wide variety of computer vision tasks. This is due to the
non-euclidean structure of mesh objects [6]. In this work,
we attempt to convert mesh data to make it suitable as an
input for a CNN while still preserving as much of the 3D
information as possible. Specifically, we predict the sex, age,
and body mass index (BMI) of a subject by utilizing and
transforming a 3D scan of their face and neck into 2D images
and depth maps from several angles around the subject.
These images can then be applied as inputs to multi-view
CNNs to learn the mapping between a subject’s craniofacial
scan and their demographics. The motivation is to develop
a framework which can be extended to predict several
clinically significant variables based on 3D craniofacial scans
stored in mesh objects.

II. MATERIALS

A. Experimental Protocol

The 3D craniofacial images were captured as part of an
extensive study on sleep disorders known as the Stanford
Technology Analytics and Genomics in Sleep (STAGES)
program. Before the initiation of a diagnostic sleep test
on each patient, a 3D surface scan was performed of the
patient’s face and neck. For the scanning, a Structure Sensor
from Occipital Inc. was attached to an Apple iPad Pro
10.5-inch w/ 64 GB Storage, while the software used was
the STAGES 3D app developed by uGo3D. A scan was
performed by going around the subject and capturing their
face and neck from all angles, while the reconstruction of the
complete surface scan was done using the app software. The
Institution’s Ethical Review Board approved all procedures
involving human subjects.

B. Data Description

The dataset used for this study contained craniofacial scans
from 1605 patients, where 855 were women and 750 were
men. The mean age ± standard deviation was 45.8 ± 15
years and the BMI was 31.3 ± 8.9 kg/m2. Each scan was
stored in a mesh object, consisting of vertices, textures,
and vertex normals. Fig. 1 depicts an example of a 3D
craniofacial scan, where it is possible to see all the faces
that are combined to make up the surface scan.

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 1950
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Fig. 1: A 3D craniofacial scan depicted with the faces
(triangles) which are combined to form the surface.

III. METHODS

A. Preprocessing

In order to capture 2D images and depth maps from differ-
ent angles around each subject, the Deep-MVLM algorithm
was utilized [7]. Using a pre-trained neural network, 73 pre-
specified landmarks were detected automatically on each
of the face scans. Fig. 2 illustrates two examples of these
landmarks detected on a subject rendered from two different
angles. Once detected, these landmarks were used to align
all scans to remove the influence of rotation and translation.
Subsequently, all scans were rotated 180 degrees around the
x-axis. Images were captured each time the scan had been
turned 22.5 degrees, yielding eight different 2D images per
subject. Additionally, each of these images were converted
to depth maps as well, resulting in a total of 16 input images
for each patient, which were stacked as a single matrix with
16 channels. Each image was then normalized to the range
[0, 1] by dividing all pixel values by 255. Fig. 3 visualizes
a few examples of different angles at which 2D images and
depth maps have been captured for a subject. The dataset
was split into a training set (65%), a validation set (25%),
and a test set (10%).

B. Neural Network

To learn the mapping between the input images and
demographic values, a ResNet18 architecture was utilized
for training [8]. The input layer was modified to take a
16-channel input instead of RGB images, which have 3
channels. The final layer originally consisted of a fully
connected layer taking a feature map of 512 features and
predicting 1000 classes. This was modified to have a fully
connected layer which reduces the feature map from 512 to
256 features, followed by a ReLU activation and dropout [9]
with a probability of 0.4, and finally adding a single neuron
for prediction. For prediction of age and BMI, this neuron
predicted the values directly due to the regression setting,
but two separate networks were trained as the target values
were different. For prediction of sex, a sigmoid activation

Fig. 2: Examples of detected landmarks on a subject from
two different angles.

Fig. 3: Four examples of different angles at which 2D images
and depth maps have been captured.
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Fig. 4: A confusion matrix displaying the fraction of cor-
rectly and incorrectly classified patients with respect to their
sex.

was added at the end as this was a two-class classification
problem. The learning rate was set to 1 · 105 with a weight
decay of 5 · 10−4. For age and BMI prediction, the mean
absolute error (MAE) was used as loss function, while binary
cross entropy loss was used for prediction of sex. Finally,
Adam [10] was used as an optimizer during training of the
network and the validation loss was used as an early stopping
criterion.

IV. RESULTS

The performance metrics reported on the prediction of sex,
age, and BMI were all evaluated on the test set consisting
of 161 patients.

A. Sex

The network was trained for 13 epochs before early
stopping occurred. An accuracy of 93% was achieved in
classifying the sex of each patient in the test set. Fig. 4
shows the normalized confusion matrix for the predictions.

B. Age

The network was trained for 190 epochs before early stop-
ping occurred. A MAE of 7.77 and a correlation coefficient
of 0.76 was obtained between the true and predicted ages in
the test set. Fig. 5 shows a Bland-Altman plot [11] of the
true and predicted ages, i.e. the difference between the labels
and predicted ages as a function of the average of the two.

C. BMI

The network was trained for 196 epochs and achieved
a MAE of 4.04 and a correlation coefficient of 0.8 with
respect to true and predicted BMIs in the test set. Fig. 6
shows a Bland-Altman plot, illustrating the differences in
the true and predicted BMI values of the test set. Based on
the predicted BMI values, a classification was also attempted
into the standard BMI categories of normal, overweight, and
obese [12]. Fig. 7 depicts the confusion matrix displaying the
results from the classification. Several of the normal patients
are classified as overweight and many of the overweight
patients are classified as obese.

Fig. 5: Bland-Altman plot for the labels and predicted age
in the test set. The dashed horizontal lines above and below
0 indicate the limits of the 5% confidence interval.

Fig. 6: Bland-Altman plot for the labels and predicted BMI
in the test set. The dashed horizontal lines above and below
0 indicate the limits of the 5% confidence interval.

Fig. 7: A confusion matrix displaying the fraction of cor-
rectly and incorrectly classified patients with respect to their
BMI categories.
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V. DISCUSSION

The prediction of a subject’s sex yielded an accuracy of
93%. To put this in context, if the network simply predicted
all patients in the test set to be women, an accuracy of 52%
would be achieved. Similarly, if the network predicted the
age and BMI for all patients to be the mean values in their
respective distributions, a MAE of 12.9 years and 6.9 kg/m2

would be obtained, as compared to the actual MAEs of 7.77
years and 4.04 kg/m2, respectively. The MAE of the age
predictor being almost twice that of the BMI predictor also
makes sense, as in many cases it would be easier to derive
someone’s BMI based off of their face as compared to age.

Looking at the Bland-Altman plot for age prediction in
Fig. 5, it is noted that there is a slight trend showing that
lower ages are over predicted and higher ages are under
predicted. The Bland-Altman plot for BMI prediction in Fig.
6 shows small errors around the mean BMI of around 31
kg/m2, while the larger BMI values are under predicted.
The main uncertainty associated with prediction of BMI is
that the height of the person is unknown. Another drawback
is that the BMI values in the dataset are heavily centered
around the mean value of about 31 kg/m2. Thus, the more
extreme cases of either very low or high BMI values are
underrepresented in the dataset.

Using the predicted BMI values to classify the patients
into normal, overweight and obese shows that in many cases,
the BMI values have been overestimated. However, even a
small overestimation could lead to a misclassification, since
the boundary between each class is so subtle, and most
of the patients have BMI values centered around the cut-
off between overweight and obese. However, the highest
accuracy is obtained for the obese class and one could argue
that these patients are the most important to capture, since
they are the ones who are medically most at risk.

Similar work to a part of this study was presented in [13],
where they used transfer learning with VGG-Face [14] on
social media images of people to predict their BMI. They
achieved an overall correlation coefficient of 0.65 compared
to our correlation of 0.80. In [15], the authors extracted facial
measurements as features instead and used simple regression
methods to obtain an overall MAE of 3.14 compared to our
MAE of 4.04. However, their work relied on hand-engineered
features instead of the more data-driven feature extraction
presented in this work. [16] gives an extensive overview of
different age predictors, showing MAEs ranging from 8.84 to
0.31. Compared to our MAE of 7.77, this shows that there is
clearly room for improvement with respect to age prediction.
However, it must be noted that widely different techniques
and datasets are being compared, so one should be careful to
place too much emphasis on it. Finally, [17] predicted the sex
of subjects based on different deep learning architectures and
their best model achieved an accuracy of 93.57%, which is
very comparable to the 93% obtained in this work. Although
our focus wasn’t to achieve state-of-the-art performance on
predicting any demographic, the comparison to other studies
still serves as a validation of the proposed framework.

VI. CONCLUSION

This work presents a framework for predicting patient
demographics based on 3D craniofacial scans and deep
learning. We have successfully showed that it is possible
to derive variables such as sex, age, and BMI of a patient
from a surface scan of their face and neck. This serves as a
proof of concept and the applied techniques can be extended
to predict more biologically significant variables instead.
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Abstract—Obstructive sleep apnea (OSA) is character-
ized by decreased breathing events that occur through the
night, with severity reported as the apnea-hypopnea index
(AHI), which is associated with certain craniofacial features.
In this study, we used data from 1366 patients collected
as part of Stanford Technology Analytics and Genomics in
Sleep (STAGES) across 11 US and Canadian sleep clinics
and analyzed 3D craniofacial scans with the goal of pre-
dicting AHI, as measured using gold standard nocturnal
polysomnography (PSG). First, the algorithm detects pre-
specified landmarks on mesh objects and aligns scans in
3D space. Subsequently, 2D images and depth maps are
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generated by rendering and rotating scans by 45-degree in-
crements. Resulting images were stacked as channels and
used as input to multi-view convolutional neural networks,
which were trained and validated in a supervised manner
to predict AHI values derived from PSGs. The proposed
model achieved a mean absolute error of 11.38 events/hour,
a Pearson correlation coefficient of 0.4, and accuracy for
predicting OSA of 67% using 10-fold cross-validation. The
model improved further by adding patient demographics
and variables from questionnaires. We also show that the
model performed at the level of three sleep medicine spe-
cialists, who used clinical experience to predict AHI based
on 3D scan displays. Finally, we created topographic dis-
plays of the most important facial features used by the
model to predict AHI, showing importance of the neck and
chin area. The proposed algorithm has potential to serve as
an inexpensive and efficient screening tool for individuals
with suspected OSA.

Index Terms—Apnea, craniofacial scans, deep learning,
mesh, multi-view.

I. INTRODUCTION

OBSTRUCTIVE sleep apnea (OSA) is a sleep disorder
characterized by recurrent collapses of the upper airway

(UA) during sleep, resulting in decreased airflow (hypopnea) or
total cessation of breathing (apnea), lasting until the UA reopens
[1] and causing daytime sleepiness and increased cardiovascular
risk [2], [3]. OSA severity is measured by the apnea-hypopnea
index (AHI), representing the number of apneas and hypopneas
per hour of sleep. The presence of sleep disordered breathing
(SDB) is extremely common; in a recent study, the prevalence
of moderate-to-severe SDB (≥15 events/hour) was 23.4% in
women and 49.7% in men older than 40 [4]. Why and how
frequently the UA collapses is due to multiple factors, such as
narrow UA anatomy, poor recruitment of dilator muscles during
inspiration, central control of breathing (loop gain), and inabil-
ity/ability to arouse (arousal threshold) [5]. A strong contributing
factor to passive anatomy is obesity, which causes fat deposits
around the UA that narrow the airway during sleep [6]. Other
reasons include loss of muscle tone in the UA or the tongue
falling backwards into the throat [7]. Finally, research shows
that several craniofacial features, mainly related to the midface,
jaw, and neck are indicative of the presence of OSA [8].

Nocturnal polysomnography (PSG) is the accepted gold-
standard for diagnosing OSA [9]. PSGs are performed in a

2168-2194 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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sleep clinic or laboratory where the patient can sleep for a full
night. While the individual is sleeping, sensors measure airflow,
respiratory effort, snoring sounds, blood oxygen levels, eye
movements, leg movements, and electrical activity of the heart
(ECG) and brain (EEG). These signals are manually annotated
by sleep technicians, who follow standard definitions for apneas,
hypopneas, periodic leg movements, and sleep stages [10]. A
PSG, though gold-standard for OSA diagnosis, is expensive and
impractical; it requires a great number of modalities and a trained
technician to perform, then manually view and evaluate data.
Furthermore, scoring of PSG data is prone to errors, day-to-day
variance, and high interscorer variability [11], [12]. Finally, a
PSG is supposed to accurately portray sleep behavior, but this
is often difficult as only one night is recorded, the individual is
wearing equipment, and is connected to several wires, thereby
reducing their comfort. Due to these limitations, research efforts
have gone into finding alternative, data-driven approaches for
the diagnosis of sleep disorders, including use of deep neural
networks to score events [13]–[17].

Obesity and craniofacial features strongly contribute to OSA
risk; thus, technology and clinical examination tools have been
developed to assess these features. In clinical exams, it is fre-
quent for the clinician to examine the size of the jaw, top of the
mouth, position, and size of the tongue [18]. Imaging techniques
have been proposed, including cephalometry [19]–[21], com-
puted tomography [21], [22], and magnetic resonance imaging
[23]–[25]. Furthermore, dynamic collapsibility can be identified
with drug-induced sleep endoscopy (DISE) [26]. These methods
are, however, rarely used in routine practice, except in case of
surgery for OSA.

Since imaging modalities are cumbersome and expensive,
recent research has investigated the predictive value of facial
imaging [27]. Lee et al. [28] analyzed frontal and profile images
of 180 patients, manually deriving measurements on the face
and neck to classify subjects with or without OSA using logistic
regression. Others [29]–[31] used Support Vector Regression
(SVR) on similar landmarks to predict the AHI, a procedure
subsequently improved by Balaei et al. [32] who used automatic
instead of manual placement of landmarks. Islam et al. [33] used
3D scans from 69 subjects, which they converted to 2D depth
maps of the frontal face, applied transfer learning on a VGG-16
deep convolutional neural network (CNN), and modified the
network to classify subjects into OSA and non- OSA. Although
these studies had some success, all used small sample sizes, and,
with the exception of Islam et al. [33], all first derive possibly dis-
criminative facial features from annotated landmarks as detected
on 2D frontal and profile images, a process followed by statistical
feature selection. As attempted by Islam et al. [33] using a small
sample size, we believe that feature selection should be unbiased
by avoiding manual extraction of features and applying CNNs
instead.

In this study, taking advantage of the rapid development
of depth imaging in most hand held devices, we aimed to
explore how state of the art deep learning techniques as applied
to a dataset of more than 1300 3D images could be used to
develop a fully automatic system for the prediction of OSA
severity and AHI values. This study aims to (1) investigate how

accurately such a system could predict the AHI, (2) determine
how accurately we can classify OSA/non-OSA based on an AHI
cutoff of 15 events/hour, (3) estimate the predictive value of
adding clinically relevant information like demographics and
questionnaire variables to the model, and (4) use a data-driven
approach to identify which regions of the face and neck the CNN
found most useful in predicting OSA severity. From a clinical
standpoint, the study further aims to (5) compare our model
performance to that of three sleep medicine specialists asked to
predict OSA severity after inspecting the scans.

The novelty of this study is four-fold: the dataset consists
of 3D surface scans instead of frontal and profile images; we
compare our model predictions to those of three sleep medicine
specialists imitating the task of the model; we use a purely
data-driven approach to identify and reveal craniofacial features
related to OSA; and our dataset is four times greater than any
other study predicting OSA from craniofacial images. Facial
imaging for OSA diagnosis can be performed in one minute
with the current setup and presents a clear advantage; it does not
require an overnight stay at a sleep clinic with several sensors
connected to the body and a subsequent manual analysis by sleep
technicians, thereby saving both time and resources, while being
more comfortable for the patient.

II. MATERIALS

A. Data Collection

Data was collected at 11 different sleep clinic sites as part
of the Stanford Technology Analytics and Genomics in Sleep
(STAGES) study, which was initiated in 2018 and prematurely
terminated in 2020. STAGES was designed to better understand
and characterize sleep disorder phenotypes on a large scale.
For each subject participating in the study, a detailed sleep
questionnaire, actigraphy, psychometric testing, a PSG, a 3D
craniofacial scan, and blood samples were collected. The 3D
craniofacial scans were collected according to a procedure de-
scribed in Hanif et al. [34]. The scans were performed using a
Structure Sensor from Occipital Inc. [35], [36] attached to an
iPad Pro from Apple, which was used around the subject to
get a complete surface scan of face and neck. Each scan took
approximately one minute to complete and was captured either
at night before the PSG or in the morning after the PSG. uGo3D
Inc. developed an app for STAGES which was responsible for
transferring the scans to the server after they were captured. The
sleep questionnaire was a modified STOP-Bang questionnaire
[37] without neck circumference of the subject. The modified
STOP-Bang questionnaire is used as a screening tool for OSA
without the need for a specialist by asking the subject about
snoring, tiredness, observed apnea, high blood pressure, sex (is
the person male), age (is the person older than 65), and BMI (is
the BMI greater than 35 kg/m2). Each variable gets a value of 1 if
the person answers yes, so the total score from the questionnaire
ranges from 0 to 7, where a score of 3 or above indicates presence
of OSA. Each institution’s Ethical Review Board approved all
procedures involving human subjects. All participants provided
written informed consent to participate in the study. The 3D
scans from STAGES are not publicly available, since they count

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on December 10,2021 at 09:45:23 UTC from IEEE Xplore.  Restrictions apply. 



HANIF et al.: ESTIMATION OF APNEA-HYPOPNEA INDEX USING DEEP LEARNING ON 3D CRANIOFACIAL SCANS 4187

Fig. 1. An example of a 3D craniofacial scan (first author). Each
triangle is formed by connecting three vertices, which are points in 3D
space. Crude details are approximated using large triangles, whereas
finer details require smaller triangles. The axes to the right specify the
orientation of the coordinates.

as personal identifiable data, which the Institutional Review
Board would not allow to be made public. All other data from
STAGES, apart from blood samples, will be made available as
part of the National Sleep Research Resource (NSRR).

B. Data Description

During data collection for STAGES, a total of 1756 scans were
captured from enrolled participants. However, subjects were
discarded for this study if they had missing PSGs, demographics,
or questionnaires, so 1366 subjects were used; 724 females and
642 males. Mean age ± standard deviation was 45.9 ± 14.8
years, body mass index (BMI) was 30.9 ± 8.7 kg/m2, and AHI
was 15.5 ± 19.3 events/hour (median: 9.3, IQR: 17.5). Fig.
A.1. (appendix) shows the distribution of AHI values within the
dataset. AHI was derived from each PSG by summing the num-
ber of annotated obstructive apneas and hypopneas and dividing
this number by the total sleep time in hours. Central apneas
were excluded from the analysis because they have no known
relation to craniofacial anatomy. Each scan was stored as a mesh
object, defined by its vertices V = {v1, v2, . . . , vn} , V ∈ R3,
its triangles F, given as three interconnected vertices, and its
texture coordinates T = {t1, t2, . . . , tm} , T ∈ R3. A vertex
is a point in 3D space described by its (x,y,z) coordinates.
Three interconnected vertices form a triangle and several of
these triangles are combined to approximate a surface in three
dimensions. Furthermore, each scan also contains associated
textures. Fig. 1 shows a typical example of a craniofacial scan
where the triangles that make up the scan are also depicted.
Fig. A.2. (appendix) provides a simple example of the basic
components of a mesh, i.e., vertices, edges, and triangles.

III. METHODS

A. Preprocessing

Since 3D mesh scans are non-Euclidean, they cannot be used
directly as inputs to CNNs. Thus, to make craniofacial scans
suitable for CNNs, the multi-view consensus CNN for 3D facial

Fig. 2. Example of the five pairs of 2D images (top row) and depth
maps (bottom row) captured at different angles and used as input for
each subject in the multi-view convolutional neural network for predicting
AHI.

landmark placement (Deep-MVLM) algorithm [38] was applied
to transform each scan into a set of 2D images and depth maps
captured from angles around the scan. Deep-MVLM was chosen
as it outperforms state of the art algorithms [39], [40] and does
not rely on pre-alignment of scans, such that they have the same
orientation in 3D space. The choice of metric in Deep-MVLM
also makes it more suitable for 3D surfaces than similar methods.
Deep-MVLM was only used for alignment of scans and not for
the subsequent prediction of AHI.

Deep-MVLM works by first applying a pre-trained neural
network to automatically detect and place 73 pre-specified land-
marks on each mesh object. The alignment of scans is obtained
by using a least squares solution based on the detected landmarks
and therefore the individual landmark errors are less important
for the overall performance. Subsequently, these landmarks
are utilized to align all scans in 3D space, thereby removing
the influence of translation and rotation. Finally, each scan is
displayed multiple times as flat 2-D images taken from different
angles; this is done by rotating the scans 45 degrees around the
y-axis consecutively and capturing a 2D image and a depth map
at each angle. This results in eight pairs of 2D images and depth
maps for each subject. Since some scans were not complete with
respect to the back of the head and since this information does
not contribute to AHI prediction, only five pairs of 2D images
and depth maps were used, emphasizing the frontal and profile
characteristics of face and neck from several angles as shown
in Fig. 2. For each subject, these images were stacked into a
matrix. The 2D images had three channels each (RGB) and the
depth maps had one channel each. Since there were five 2D
images and five depth maps, the final input matrix per subject
contained 5× 3 + 5× 1 = 20-channels in total and 224 ×
224 pixels.

Each image was normalized to the range [0,1] by dividing each
pixel value by 255. This was done to ensure faster convergence
during training. Similarly, the patient demographics (age and
bmi) were normalized using min-max normalization given by

xnorm =
x−min (xtrain)

max (xtrain)−min (xtrain)

where x and xtrain are vectors containing one of the demo-
graphics for all patients in the entire dataset and training set,
respectively. No normalization was necessary for sex or the
seven different variables from the modified STOP-Bang ques-
tionnaires because these values were binary.
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TABLE I
THE APPLIED CNN ARCHITECTURE FOR PREDICTING AHI VALUES BASED

ON THE 20-DIMENSIONAL INPUT CRANIOFACIAL IMAGES. THE INPUT
DIMENSIONS ARE GIVEN BY NUMBER OF CHANNELS×HEIGHT×WIDTH. THE

CONVOLUTION LAYERS ARE SPECIFIED BY FILTER SIZE (E.G., 3×3),
NUMBER OF CHANNELS (E.G., 64), AND A STRIDE (E.G., /2). THE SAME

APPLIES FOR THE MAX POOLING (MP) LAYER. THE OUTPUT DIMENSIONS
OF THE FEATURE MAPS ARE GIVEN BY NUMBER OF

CHANNELS×HEIGHT×WIDTH. THE CONVOLUTION LAYERS ARE ALWAYS
FOLLOWED BY BATCH NORMALIZATION. THE DROPOUT LAYERS HAVE KEEP
PROBABILITIES OF 0.3 AND 0.5, RESPECTIVELY. IF THE SKIP CONNECTIONS

(ARROWS) ARE APPLIED, THE FEATURE MAPS ARE DOWN SAMPLED
INSTEAD BY APPLYING 1X1 FILTERS WITH A STRIDE OF 2X2. AP – AVERAGE

POOLING, FC – FULLY CONNECTED

B. Multi-View CNN

Our purpose for applying machine learning was to reveal
data-driven mapping differences within the multi-view inputs
across AHI values. For this purpose, we utilized a CNN with
a ResNet18 architecture [41], which was modified to take 20
channels as input per subject. Two additional fully connected
layers were added at the end, reducing 512 features to 128,
followed by a ReLU activation and dropout (probability of 0.3
and 0.5, respectively), and finally a single neuron for prediction
of the continuous AHI value. This architecture is illustrated
in Table I. The optimal number of neurons in the fully con-
nected layers were found by hyperparameter tuning. Additional
networks were developed for the demographics and question-
naires, respectively. Both networks were multilayer perceptrons
(MLPs) with three layers and varying number of inputs (three
for demographics and seven for questionnaires). This architec-
ture is shown in Table II. The AHI predictions of each of the

TABLE II
THE APPLIED MLP ARCHITECTURE FOR PREDICTING AHI VALUES BASED

ON THE 3-DIMENSIONAL INPUT DEMOGRAPHICS. THE MLP USING
QUESTIONNAIRES AS INPUT IS IDENTICAL EXCEPT FOR THE INPUT

DIMENSIONS, WHICH ARE 7×1. FC – FULLY CONNECTED

three networks, using scans, demographics, and questionnaires,
were averaged using an ensemble approach to form the final
prediction.

Training, validation, and testing was carried out using
10-fold cross-validation. Mean squared error (MSE) was used
as loss function to train the networks. This was done to penalize
greater errors, since most of the AHI values in the dataset were
in the range 0-15 events/hour (Fig. A.1.). Learning rate was set
to 1 · 10−5 with a weight decay of 5 · 10−4 for the multi-view
CNN, and 1 · 10−2 (with the same weight decay) for the MLPs,
while batch size was set to 8 for all three networks. The Adam
optimizer [42] was used for training, and early stopping was
applied when the validation error did not decrease for 3 consec-
utive epochs (patience of 3). Python 3.7.4 and Pytorch 1.3.1 were
used for preprocessing and deep learning purposes. Training was
carried out on a GeForce RTX 2080 and each model took one
hour to train.

The measures used to evaluate model performance on the test
set were mean absolute error (MAE) and Pearson Correlation
Coefficient (PCC). Furthermore, predicted AHI was used to
classify subjects into having OSA or not, where an AHI of 15
events/hour or greater was the clinical criterion used for defining
the presence of OSA (moderate-severe versus mild or no sleep
apnea). Thus, accuracy of classification was another measure
used to evaluate the model performance. Bland-Altman plots
[43] were used to illustrate the patterns of disagreement between
true and predicted AHI values.

C. Sleep Specialists’ Ability to Guess AHI

Three experienced, board certified sleep medicine physicians
with in-depth knowledge of OSA were recruited to imitate the
task of the proposed algorithm, estimating AHI based on inspec-
tion of the 3D scan of each subject (face and neck). The three
physicians scored one third of the dataset each, while also anno-
tating 150 of the same scans to estimate percentage agreement.
When annotating a scan, each physician was shown the scan
from all desired angles, having the ability to rotate the 3D image
for any desired amount of time. Physicians took approximately
30 seconds to score each scan. Their first thought was to size up
the person based on their estimated age, with the awareness that
older individualsoften have higher AHIs (due to lax musculature,
redundant tissue, and an atrophic skeletal scafolding that result
in higher risk of airway collapse). Then they would ascertain if
the individual looked tired - droopy eyelids (ptosis), drawn face,
pallor, circles/bags under the eyes, etc. - that might suggest an
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underlying sleep disorder. Finally, they would look for some
of the high-yield characteristics: looking at the overall head
and neck adiposity (fat), the characteristics of the thyromental
space, the over/under-bite (to suggest a retrognathic jaw that
pushes the tongue into the airway), the craniofacial complex
(looking for maxillary or mandibular hypoplasia) and noting
whether there was a long/thin face suggestive of life-long nasal
congestion (“adenoid facies”), and the cervical lordosis (to
see if subjects have their heads thrust forward, suggestive of
position modification in order to ease breathing). They would
then roughly estimate the AHI based on all these factors and
their general knowledge of the known prevalence/proportions
of varying severities of OSA. It is important to note that clini-
cians do not traditionally estimate AHI, but for this study their
estimates served as expert level performance as a comparison
for the proposed model.

D. Topographic Display of Important Features

A topographic display was created by generating saliency
maps for the model using craniofacial scans. A saliency map
is a visualization technique based on the gradient of the network
output with respect to an input image [44]. Consequently, the
pixels which contribute most to the prediction of the network
can be highlighted. For the topographic displays, we averaged
saliency maps for 10 subjects with the highest predicted AHI
values per fold and 10 subjects with the lowest predicted AHI
values per fold, yielding an average of 100 saliency maps for the
highest and lowest predicted AHI values, respectively.

IV. RESULTS

A. Performance of Multi-view CNNs

The model using craniofacial scans during cross-validation
converged after 6.6 ± 1.6 epochs, the model using demograph-
ics converged after 23.1 ± 6.9 epochs, and the model using
questionnaires converged after 12.5 ± 6.9 epochs.

Without demographic and questionnaire information avail-
able, our model achieved a MAE of 11.38 ± 1.36 events/hour
and a PCC of 0.40 ± 0.04 using 10-fold cross-validation. Fig. 3
shows the Bland-Altman plot of true and predicted AHI values.
When dividing subjects from the test set into non-OSA/OSA
using AHI ≥ 15 events/hour as a criterion for OSA, an overall
accuracy of 67 ± 4% was obtained. Sensitivity was 59 ± 8%,
specificity was 72 ± 5%, and area under the receiver operating
characteristic (AUC ROC) was 65 ± 4%. Fig. 4(a) shows the
resulting confusion matrix of the classification task. Cohen’s
kappa coefficient was 0.29 for the classification.

Adding clinically relevant demographics and questionnaire
scores to the model yielded a MAE of 11.05± 1.40 and a PCC of
0.45 ± 0.04. Fig. 3 shows the Bland-Altman plot of the true and
predicted AHI values. An accuracy of 67 ± 4% was achieved,
with sensitivity of 74 ± 7%, specificity of 63 ± 7%, and AUC
ROC of 69± 3%. Fig. 4(b) shows the resulting confusion matrix
of the classification task. Cohen’s kappa coefficient was 0.34 for
the classification.

Fig. 3. Bland-Altman plot for the model using only craniofacial images
and for the model using a combination of craniofacial images, demo-
graphics, and questionnaire scores. Means of true and predicted AHI
values are displayed on the abscissa axis and difference between true
and predicted AHI on the ordinate axis. The dashed horizontal lines
above and below 0 indicate the borders of the 95% confidence interval.

Fig. 4. (a) Confusion matrix for the model using only craniofacial im-
ages. (b) Confusion matrix for the model using a combination of cranio-
facial images, demographics, and questionnaire scores. The confusion
matrix shows the results from classifying subjects into non-OSA/OSA
using AHI ≥ 15 as a criterion for OSA based on the predicted AHI values
by the proposed models.

Table III compares model performance to similar work in
the literature. Performance measures for comparisons are MAE,
PCC, accuracy, AUC ROC, and number of subjects used in
each study. As an additional comparison, Table IV compares
accuracies obtained using different methods on the same dataset,
i.e., model with only demographics, or deriving a diagnosis from
the modified STOP-Bang questionnaire, or a combination of
both.

B. Performance of Sleep Medicine Specialists

Table V summarizes and compares results from the CNN to
those of three sleep medicine specialists predicting AHI values
based on 3D craniofacial scan displays from the test set. The
percentage agreement between the three specialists was 67%.
Fig. 5 compares the Bland-Altman plot of true and predicted
AHIs from the model using craniofacial scans with a Bland-
Altman plot of true and sleep specialists’ AHIs.
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TABLE III
COMPARISON BETWEEN THE TWO MODEL PERFORMANCES AND PERFORMANCE ACHIEVED IN THE LITERATURE. MAE – MEAN ABSOLUTE ERROR, PCC –

PEARSON CORRELATION COEFFICIENT, AUC ROC – AREA UNDER THE RECEIVER OPERATING CHARACTERISTICS CURVE, N – TOTAL NUMBER OF
SUBJECTS IN THE STUDY, N TEST – NUMBER OF SUBJECTS USED FOR TESTING, AMM - ACTIVE APPEARANCE MODEL, SVR – SUPPORT VECTOR

REGRESSION, SVM – SUPPORT VECTOR MACHINE

TABLE IV
COMPARISON OF PERFORMANCE MEASURES OBTAINED USING DIFFERENT VARIABLES TO TRAIN AND TEST NEURAL NETWORKS USING AN ENSEMBLE
APPROACH IN CASE OF TWO OR MORE MODALITIES. THE FIRST ROW IS OBTAINED BY USING THE MODIFIED STOP-BANG QUESTIONNAIRE AS IT IS
UTILIZED CLINICALLY TO SCREEN FOR OSA, I.E., WITHOUT MACHINE LEARNING MAE – MEAN ABSOLUTE ERROR, PCC – PEARSON CORRELATION

COEFFICIENT, AUC ROC – AREA UNDER THE RECEIVER OPERATING CHARACTERISTICS CURVE

TABLE V
COMPARISON OF THE MAIN PERFORMANCE MEASURES BETWEEN THE PROPOSED MODELS AND THREE SLEEP MEDICINE SPECIALISTS. MAE – MEAN
ABSOLUTE ERROR, PCC – PEARSON CORRELATION COEFFICIENT, AUC ROC – AREA UNDER THE RECEIVER OPERATING CHARACTERISTICS CURVE
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Fig. 5. Bland-Altman plot of the craniofacial model predictions com-
pared to the sleep medicine specialists’ predictions.

C. Topographic Display of Important Features

Fig. 6 (a) shows saliency maps averaged over the 100 subjects
with the highest predicted AHI values, whereas Fig. 6 (b) shows
saliency maps averaged over the 100 subjects with the lowest
predicted AHI values.

V. DISCUSSION

Our ML model based on craniofacial images alone achieved
a MAE of 11.38 events/hour, a PCC of 0.40, and an overall
accuracy of 67%. In comparison, if AHI for all subjects was
predicted as the mean AHI value of the dataset (i.e., 15.5
events/hour), the MAE would be 13.0 events/hour, the PCC
would be -0.02, accuracy would be 34%, and AUC ROC would
be 50%. This means that the average absolute deviation from true
AHI per subject would be almost 2 events/hour more than the
proposed model, though both correlation and accuracy would be
significantly worse.

Adding the clinically relevant demographics and question-
naire scores improved the model further, yielding a MAE of
11.05, a PCC of 0.45, and an accuracy of 67%. Importantly,
however, sensitivity increased (from 59% to 74%), while speci-
ficity decreased (from 72% to 63%), suggesting that the model
became better at predicting subjects with OSA with the added
information. Although the overall accuracy did not increase,
the AUC ROC improved after introducing demographics and
questionnaire scores into the model. Although this performance
may appear modest, both models achieved a higher accuracy
than the 62% obtained in the same dataset, respectively, using the
modified STOP-Bang questionnaire. Given that questionnaires
are regularly used as an early screening tool for OSA, it is
encouraging to observe that accuracy yielded using craniofacial
scans exceeds that of the questionnaires, with added ability to
provide an estimate of disease severity (i.e., AHI), which is not
possible with a simple screening questionnaire.

The Bland-Altman plots shown in Fig. 3 show signifi-
cant underpredictions for subjects with very high AHI (>30
events/hour). In general, subjects with high AHI are hard to
estimate, which is evident when looking at the sleep specialists’
scorings in Fig. 4, as they consistently underpredicted the higher

AHI values as well. In OSA context, AHI values of 30, 60, or
90 events/hour are not significantly different, since they are all
considered abnormal values. There were more than 200 subjects
with AHI above 30 events/hour and 12 subjects with AHI more
than 100 events/hour. Additionally, 50 subjects had an AHI
of 0 events/hour, which were overpredicted on average by 10
events/hour. The subjects with very high AHI and AHI of 0
events/hour contribute to the high standard deviation (19.3) of
AHI values in the dataset and increase the MAE as well.

Compared to similar work, the proposed models are at a
similar level to all other studies in terms of overall accuracy
(Table III). However, our models were trained and validated on
a much larger cohort collected at 11 different sleep clinics and
used a very different approach than that of others that predicted
AHI using landmark-based measured features [29], [30], [45].
A lot of manual work is needed to derive landmark-based,
hand-selected features as opposed to using an entirely data-
driven approach as we propose. As such, our study is reassuring
in that the empirically identified features emphasized by the
model, recapitulated clinical expertise without the manual labor
or years of clinical training and experience. Only Islam et al.
[33] used images directly in a data-driven manner, but these
authors only used depth information and only had craniofacial
scans for 69 subjects as opposed to our 1366 subjects, which is
equivalent to the patient volume seen over the entire course of
a clinical sleep medicine training fellowship. We implemented
the algorithm proposed by Islam et al. [33] on our dataset as
seen in Table III, which decreased the overall accuracy from
67% to 60%. This makes sense because our dataset is much
larger and much more diverse, since it was collected at many
different sites. Furthermore, it shows that using images from
several angles holds an advantage over using only frontal depth
maps when predicting OSA, even when a pretrained network
which has been trained on more than two million general facial
images is utilized.

When comparing model performance to that of three sleep
specialists guessing the AHI (Table V), it was observed that
the model was almost at the same level as two specialists and
better than one in terms of overall accuracy. Fig. 5 also shows
that even though both our model and sleep specialists make
large underpredictions for highest AHI values, the model does
not make large overpredictions in the same manner as sleep
specialists. All overpredicted values by the model are within the
confidence interval which most likely stems from a bias in the
model towards people with low to moderate AHI values, i.e.,
5-30 events/hour. Of note, however, the most underpredicted
values are underpredicted by sleep specialists by a similar mag-
nitude. The percentage agreement between the specialists was
67%, again highlighting the presence of significant interscorer
variability within the field of sleep medicine.

The topographic display of Fig. 6(a) shows that the network
focuses mainly on the neck, jaw, and midface area when pre-
dicting high AHI values. These exact same regions have been
reported in the literature as being the most important facial
features related to OSA [8] and also the same regions that sleep
specialists focused on when predicting AHI values. Interestingly
however, when the network predicts low AHI values, as shown
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Fig. 6. (a) Saliency maps averaged over 100 subjects with the highest predicted AHI values. (b) Saliency maps averaged over 100 subjects with
the lowest predicted AHI values.

in Fig. 6 (b), it seems to focus more selectively on regions
of the craniofacial complex that reflect skeletal anatomy (e.g.,
the maxilla and mandible) for predictions. This may reflect
the fact that subjects with milder AHI values have a different
pathophysiology where skeletal abnormalities more than body
fat may be causing airflow limitations. Even though our proposed
model obtains similar performance compared to sleep specialists
and similar work in the literature, an average absolute error of
more than 11 events/hour is still quite high. First and foremost,
it is important to keep in mind that the pathology of OSA is not
exclusively attributed to obesity and craniofacial factors. That is
also why performance increases only moderately when adding
extra information such as demographics and questionnaires.
Other variables that could not be assessed from our dataset are
internal upper airway anatomy factors, such as size and posi-
tioning of the tongue and palate. Other reasons for uncertainty
may be physiological changes that occur with age, independent
of facial anatomy or obesity such as recruitment of upper airway
dilator muscles. Nonetheless, even if the features identified by
the model are primarily anatomic in nature, these findings may
prove useful to determine phenotypic risk for certain types of
OSA. Finally, it should be noted that because our 3D scans
were of structural facial features, we intentionally excluded
central/mixed apneas from the AHI, in order to focus our model
on the anatomical contributions to OSA. However, there are
various models of this complex disorder that also account for
the physiologic aspects of OSA (e.g., loop gain [46]), which is
something that future modeling efforts should take into account.

Another limitation of this study was the quality and quan-
tity of the captured 3D scans. The quality of the scans varied
significantly and reflected the fact that they were captured in
many different sleep clinics. Some scans had missing parts of the
neck, whereas others were affected by poor lighting conditions.
Furthermore, we believe that the size of the dataset was too
small to truly capture the variation in craniofacial features across
humans in relation to OSA in a data-driven manner. Evidently,
we observe that similar performance is obtainable in smaller
datasets if the features are hand-crafted like landmark-based
measurements. The fact that scans were captured either at night
before the PSG or in the morning after did not have any effect on
diagnostic performance, which was evident when we obtained
accuracies of 68% and 66% for scans captured in the morning

and at night, respectively, showing that scans can be obtained in
both conditions.

Although the focus in this study is on providing a fast,
efficient, and cheap screening tool for OSA, efforts to explore
alternative screening methods include sleep tests at home [47],
usually with very few sensors, such as sound [48], [49] and blood
oxygen saturation [50], [51]. Potential of depth and thermal
cameras has also been explored in breathing monitoring at an
early stage [52], [53]. Even contactless bed sensors have been
proposed, although only with moderate success so far [54]. The
benefit of using the mentioned approaches is that the person is
more comfortable sleeping in their own home wearing few or
no wires. However, most studies use a small number of patients
to validate their techniques and still requires a full night’s sleep
to reach a diagnosis.

In future work, it would be interesting to explore if, beside
AHI, other clinically important variables captured by sleep stud-
ies could be better predicted. These could prove to not only make
up a more accurate model but could also improve our knowledge
of OSA phenotypes and their relation to facial anatomy. For
example, Azarbarzin et al. [55] recently suggested that the
hypoxic burden is a better measure to use compared to AHI when
evaluating sleep apnea severity and resulting cardiovascular risk.
Predicting hypoxic burden, oxygen desaturation index (ODI), or
the duration of events instead of the AHI, or newer derivatives
that better describe sleep disorder breathing heterogenicity could
prove more useful and insightful.

VI. CONCLUSION

The main purpose of this study was to develop an automatic al-
gorithm predicting AHI based on 3D craniofacial images that can
be captured in a minute by a non-specialist. This was achieved
by converting the 3D images into a series of 2D images and
depth maps and utilizing a multi-view CNN for learning. Two
models were implemented, one based exclusively on craniofa-
cial images and one using a combination of craniofacial images,
demographics, and questionnaire variables. Using these models,
a MAE of 11.38 events/hour was obtained with an accuracy of
67%, which was at a similar level to performance achieved in
similar work and higher than the current screening method, i.e.,
questionnaires. A topographic display was created, highlighting
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Fig. A.1. The distribution of apnea-hypopnea index (AHI) values in the
dataset.

Fig. A.2. Example of four vertices that have been connected using
edges, forming two triangles, which are the basic blocks of a 3D mesh
surface.

the most important regions of the face when predicting OSA in a
data-driven manner. These regions corresponded well with what
is reported in the medical literature. The obtained results were
at a similar level to two sleep specialists imitating the task and
better than one. These sleep specialists had an overall agreement
of 67% when scoring the scans. With this work, we have shown
that it is possible to derive AHI values based on 3D scans and
deep learning techniques for some OSA phenotypes and on a
level similar to or higher than vastly experienced physicians.
The proposed model has the potential to serve as a clinical
screening tool for suspected OSA patients before they undergo a
PSG.

APPENDIX

Fig. A.1. shows the distribution of AHI values within the
dataset, whereas Fig. A.2. example of the basic components of
a mesh, i.e., vertices, edges, and triangles.
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Abstract— Assessing the upper airway (UA) of obstructive
sleep apnea patients using drug-induced sleep endoscopy (DISE)
before potential surgery is standard practice in clinics to
determine the location of UA collapse. According to the VOTE
classification system, UA collapse can occur at the velum (V),
oropharynx (O), tongue (T), and/or epiglottis (E). Analyzing
DISE videos is not trivial due to anatomical variation, simul-
taneous UA collapse in several locations, and video distortion
caused by mucus or saliva. The first step towards automated
analysis of DISE videos is to determine which UA region the
endoscope is in at any time throughout the video: V (velum)
or OTE (oropharynx, tongue, or epiglottis). An additional class
denoted X is introduced for times when the video is distorted to
an extent where it is impossible to determine the region. This
paper is a proof of concept for classifying UA regions using 24
annotated DISE videos. We propose a convolutional recurrent
neural network using a ResNet18 architecture combined with a
two-layer bidirectional long short-term memory network. The
classifications were performed on a sequence of 5 seconds of
video at a time. The network achieved an overall accuracy
of 82% and F1-score of 79% for the three-class problem,
showing potential for recognition of regions across patients
despite anatomical variation. Results indicate that large-scale
training on videos can be used to further predict the location(s),
type(s), and degree(s) of UA collapse, showing potential for
derivation of automatic diagnoses from DISE videos eventually.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a sleep disorder during
which the upper airway (UA) collapses throughout the night,
causing events with partial or complete cessation of breathing
during sleep [1]. The development of OSA can be physiolog-
ically caused (loop gain, arousal threshold, poor recruitment
of dilator muscles) [2] or anatomically caused (craniofacial
abnormalities, obesity, narrow UA) [3] and treatment varies
depending on the underlying cause. If the pathology of OSA
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has an anatomical component, surgery may be necessary for
treatment [4]. Prior to a potential surgical procedure, it is
critical to examine the location(s) of collapse in the UA,
which according to the VOTE classification system [5] can
occur on four different levels: velum, oropharynx, tongue,
and/or epiglottis. The examination is commonly performed
using drug-induced sleep endoscopy (DISE) during which
the surgeon navigates the endoscope from the velum to the
epiglottis to determine the location(s), type(s), and degree(s)
of collapse occuring in the UA during OSA events [6].

Analyzing DISE videos to determine the appropriate type
of surgery is not a trivial task. First, there is a huge
anatomical variation in the UA across subjects. Additionally,
movements in the UA stemming from several structures
collapsing simultaneously push the endoscope back and
forth, while mucus or saliva covering the endoscope distorts
the video and reduces quality significantly. These challenges
are reflected in a relatively high interscorer variability when
different surgeons analyze DISE videos [7]. Due to these lim-
itations, surgeons will benefit from an algorithm capable of
analyzing DISE videos automatically to assist in determining
the locations(s), type(s), and degree(s) of collapse.

The first step towards such a goal is being able to estimate
which region of the UA the endoscope is in at any given time.
The clinically meaningful distinction is between the velum
(V) and anything below the velum (OTE). Thus, the aim of
this study is to classify whether the endoscope is in the V or
OTE region at any given time in a DISE video. Furthermore,
we introduce a third class (X) for any time the video is
so distorted that it is impossible to determine where the
endoscope is. For this problem, we propose a convolutional
recurrent neural network (CRNN) which is trained, validated
and tested on a small dataset of annotated DISE videos. This
study is the first attempt to apply a data-driven approach to
identify regions in the UA during a DISE procedure.

II. DATA DESCRIPTION

We included a total of 24 DISE videos collected at
Copenhagen University Hospital, which were performed in
accordance with the DISE procedure guideline described
by Kiaer et al. [8]. The Institution’s Ethical Review Board
approved all experimental procedures involving human sub-
jects.

The videos were approximately 2-5 minutes in duration
with a frame rate of 25 frames per second and a resolution of
864× 540 pixels. All videos were anonymized by removing
parts of recordings where the endoscope was not inside the
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subject. Each video was initially labeled by the surgeon who
collected them as a single line summary of where, how, and
to what degree the UA collapsed. However, for machine
learning purposes, labels were required that detailed each
time the endoscope transitioned either from one region to
another (i.e. V to OTE or OTE to V) or from visible video to
distorted video or vice versa (i.e. V to X, OTE to X, X to V or
X to OTE). Videos were labeled in this manner by consulting
with the surgeon who initially labeled the videos and another
expert surgeon who introduced the VOTE classification in
2011 [5]. Fig. 1 visualizes different examples of the three
classes, while Table I shows an example of the structure of
labels created for this study. Finally, Table II outlines the
distribution of the three classes within the dataset.

Fig. 1. Three examples of each class representing a region in the upper
airway, i.e. velum (V) in the first column, oropharynx, tongue or epiglottis
(OTE) in the second column, and distortion in video (X) in the third column.

TABLE I
EXAMPLE OF LABELS CREATED FOR PART OF A DISE VIDEO USING THE

THREE CLASSES, I.E. VELUM (V), OROPHARYNX, TONGUE OR

EPIGLOTTIS (OTE), AND DISTORTION IN VIDEO (X).

Time (s) 7-15 16-28 29-35 36-40 40-45
Region V X OTE X V

TABLE II
DISTRIBUTION OF THE THREE CLASSES IN THE DATASET: VELUM (V),
OROPHARYNX, TONGUE OR EPIGLOTTIS (OTE), AND DISTORTION IN

VIDEO (X).

Class Total duration (s) N Frames
V 1,543 7,715

OTE 2,041 10,205
X 376 1,880

Total 3,960 19,800

III. METHODS

A. Preprocessing

Initially, all frames were extracted from each video, yield-
ing 25 frames per second. Subsequently, every 5th frame
was selected, yielding 5 frames per second, because no
visual difference was observed between consecutive frames
during inspection. Assuming the network would extract
features primarily related to anatomical structures and not
color differences, all frames were converted to gray scale
to reduce computational cost of training the subsequent
network. All frames were rescaled to 224×224 pixels, which
was found to be appropriate for reducing computational cost
while still preserving discriminatory information between
UA structures. Finally, the dataset was split into a training set
(18 videos amounting to 15,275 frames), a validation set (3
videos amounting to 2,375 frames), and a test set (3 videos
amounting to 2,150 frames).

B. Convolutional Recurrent Neural Network

The proposed network architecture for learning was a
combination of a ResNet18 [9] convolutional neural network
(CNN) and a two-layer bidirectional long short-term memory
(LSTM) neural network [10] as shown in Fig. 2. The input
layer of the ResNet18 model was modified to take a 1-
channel input instead of RGB images with 3 channels,
since the frames were grayscale. The input consisted of 25
frames amounting to 5 seconds at 5 frames per second.
Each frame was individually input to the CNN and resulting
outputs were subsequently concatenated, forming a 25×512
dimensional feature matrix, i.e. 25-time steps each with 512
features. This sequence of features was then input to the
bidirectional LSTM to learn context in both forward and
backward directions. Both LSTM layers had 128 hidden
neurons in both directions followed by a softmax activation
function with three outputs such that each class had an output
probability. The optimal number of time-steps and hidden
neurons were found using hyperparameter tuning.

Optimization of the network was performed using a batch
size of 2 with cross entropy as loss function and Adam [11]
as optimizer. Weights were applied in the loss function for
the V and X classes, since the dataset was heavily imbalanced
as witnessed in Table II. The weights were calculated as the
ratio between the majority class (OTE) and a given other
class. The learning rate was set to 1 · 10−5 with a weight
decay of 5 · 10−4. Early stopping was applied when the
validation loss did not decrease for 3 consecutive epochs. The
network was implemented in Pytorch and all experiments
were carried out on a GeForce RTX 2080 graphics card. The
model took approximately one hour to train on this dataset.

C. Performance

Model performance was evaluated on the three videos in
the test set. Accuracy, F1-score, and the confusion matrix
were computed by summing correct classifications on a
frame-by-frame basis and averaged over individual videos
as well as over the entire test set, respectively.
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Fig. 2. Architecture for the proposed network for classifying UA regions.
The input is a 5-second video consisting of 25 frames. The frames are
input individually to the CNN and the outputs are concatenated before the
recurrent part of the network. The parameters in the convolution operations
(Conv) are kernel size, number of output channels, stride (s), and padding
(p), and the output dimensions are specified by number of channels (C),
height (H), and width (W). The parameters in the bidirectional LSTM
(BiLSTM) are number of input features (nI) and number of hidden neurons
in each direction (nH). The parameters in the fully connected layers (FC)
are input features (in dim) and output features (out dim).

IV. RESULTS

The best performing model converged after 2 epochs of
training. An overall accuracy of 82% and F1-score of 79%
was obtained over the entire test set. Furthermore, F1-scores
for V, OTE, and X were 68%, 80%, and 88%, respectively.
Fig. 3 shows the confusion matrix for the classification, while
Fig. 4 depicts examples of misclassified frames for each
class. Table III summarizes the performance for each of the
3 individual videos in the test set, respectively.

V. DISCUSSION

This is the first attempt to use a data-driven approach
to identify UA regions during the DISE procedure and the
overall accuracy and F1-score obtained using the proposed
model was 82% and 79%, respectively. In contrast, if the
network had simply predicted all frames to be the majority
class in the test set (i.e. OTE), the overall accuracy and F1-
score would be 52% and 23%, respectively. In this context,
the model performs much better than random guessing. In
terms of class F1 scores, the model performed best for the
X class, then OTE, and finally V.

The X class is intuitively the easiest to recognize since it
means that the video is too distorted to derive anything and

Fig. 3. Confusion matrix for classifying regions in the upper airway with
three different classes: velum (V), oropharynx, tongue or epiglottis (OTE),
and distorted video (X).

Fig. 4. Examples of misclassifications for each class, i.e. velum (V),
oropharynx, tongue or epiglottis (OTE), and distorted video (X), where T
is the true class and P is the predicted class.

TABLE III
PERFORMANCE FOR THE THREE VIDEOS IN THE TEST SET FOR

CLASSIFYING REGIONS IN THE UPPER AIRWAY WITH THREE DIFFERENT

CLASSES: VELUM (V), OROPHARYNX, TONGUE OR EPIGLOTTIS (OTE),
AND DISTORTED VIDEO (X).

Video Accuracy F1 Class Class F1 N Frames

1 93% 93%
V 94% 386

OTE 91% 264
X - 0

2 86% 75%
V 67% 166

OTE 93% 741
X 65% 93

3 63% 62%
V 61% 252

OTE 54% 123
X 70% 125
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it would be a trivial task to recognize this class even for a
person unfamiliar with DISE videos. This is also reflected
by the fact that even with the limited number of frames
with class X in the dataset (Table II), the model was easily
able to learn to recognize this class. Looking at Fig. 3, it
is noted that the sensitivity is 100%, meaning that none
of the frames labeled X are misclassified. However, both
the V and OTE classes are occasionally misclassified as X,
which Fig. 4 shows examples of. It is noted that the model
classifies a frame as X any time there is mucus or saliva
on the endoscope even if some structures are still visible to
some degree. When annotating the data, a frame was only
labeled as X if there was no way to estimate the region
based on the video or context from previous frames, while
the model has learned the relation that any mucus or saliva
on the endoscope equals a classification of X.

The model also performed well for the OTE class, reflected
by a high sensitivity and F1 score. It is noted from Fig. 3
that when OTE is misclassified, it is mostly as X, which is
again explained by the fact that the model is sensitive to
mucus and saliva on the camera, even if it is possible to
derive the UA region. Scenarios where OTE is misclassified
as V is illustrated in Fig. 4, where it is observed that this
occurs when the endoscope is at the border between the V
and OTE regions. Even experts analyzing these frames could
have scored them as V instead of OTE, and it appears that
the last frame at the bottom has been wrongly annotated as
OTE even though the endoscope is in the V region.

For the V class, the model did not perform as well as for
the two other classes. Fig. 3 shows that the misclassifications
are almost equally split between OTE and X. The frames
misclassified as X are due to the same reason as for OTE.
Examples of V being misclassified as OTE are shown in Fig.
4. In this case it appears that the misclassifications do not
necessarily occur when the endoscope is close to the OTE
region, but rather when the OTE region is visible from the
V region so that the model can recognize structures such
as the tongue and epiglottis. It makes sense that with the
limited amount of data the model has seen, it is not able to
derive distance-based decisions to estimate the region as well
as it recognizes structures associated with a given region.
Furthermore, the large amount of noisy frames in the video
(approximately 25%) most likely causes noise in the context
of the bidirectional LSTM, which contributes to the poor
performance for video 3.

Table III outlines performance for each individual video
in the test set. It is observed that the best performance is ob-
tained for video 1, which has no frames with distorted video
and also few misclassifications for the V and OTE regions.
During video 2, the endoscope is by far the most in the OTE
region and the F1-score is high for that class. The F1-score
for both V and X is modest because V is misclassified as
both OTE and X, whereas OTE is misclassified a few times
as X as well. During video 3, most time is spent in the V
region but the F1 score is modest for all classes. In this case,
V is still misclassified as both OTE and X, but OTE is also
sometimes misclassified as V and not only X, which is most

likely due to wrong annotations, similar to the bottom frame
in the middle column of Fig. 4, where V is labeled as OTE.

There are two main limitations of this study: the quantity
of data is extremely low, and the problem posed is simplistic
with respect to utilizing this in clinical practice. However,
the results serve as an important proof of concept, which
shows that it is possible to apply deep learning techniques
on DISE videos, even though they depict large variations
in terms of both anatomical structure and angles/positions in
the UA across videos. Considering this, it is quite impressive
that the proposed model obtains such a high performance on
so little data and that it actually manages to learn meaningful
mappings between the classes and the series of frames that
are used as input. For a future study, we will obtain a much
larger quantity of data (1000 videos) and expand the problem
for classification of where the UA collapses, how it collapses,
and what the degree of collapse is.

VI. CONCLUSION
This study shows potential for large-scale learning on

DISE videos in order to automatically recognize regions
in the UA and thereby derive where the collapse occurs
during OSA events, which is critical before any potential
surgery to treat OSA. The study was performed on a very
limited dataset and serves as a proof of concept for a future
study, where a larger quantity of data will be utilized and
several variables will be predicted. The presented method has
potential application for use in clinical medicine to identify
UA collapse.
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Key points: 

Question: Can drug-induced sleep endoscopy examinations in obstructive sleep apnea patients be 

scored automatically based on deep learning with respect to site of upper airway collapse and 

obstruction degree? 

Findings: Mean F1 score across all upper airway sites with respect to obstruction degree was 70% 

for 281 drug-induced sleep endoscopy videos and the proposed model generalized well across 

videos obtained from different clinicians and hospitals.  

Meaning: Otolaryngology surgeons can benefit from an automatic scoring tool that provides 

objective and data-driven estimations which may result in better surgical treatment for obstructive 

sleep apnea patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Importance: Scoring drug-induced sleep endoscopy in obstructive sleep apnea patients for site of 

upper airway collapse can be difficult and presents low to moderate interrater reliability among 

otolaryngology surgeons. Development of an automatic scoring tool can provide surgeons with 

objective and data-driven estimations of site of collapse which may reduce uncertainty and result 

in better surgical treatment. 

Objective: To develop a deep learning-based prediction model for estimating site of upper airway 

collapse and obstruction degree automatically from drug-induced sleep endoscopy videos. 

Design: A diagnostic/prognostic study was conducted and included drug-induced sleep endoscopy 

videos with varying durations (6 seconds – 16 minutes). Videos were split into 5-second clips, each 

receiving annotations for obstruction degree (0, 1, 2, or X if site is not visible) for each site (velum, 

oropharynx, tongue, and epiglottis), which was used to train a deep learning model. Predicted 

obstruction degrees per examination was obtained by taking the highest predicted degree per site 

across 5-second clips, which was evaluated against obstruction degrees annotated by surgeons. 

Setting: Drug-induced sleep endoscopy videos were obtained from two sleep clinics: Copenhagen 

University Hospital and Stanford University Hospital. These videos were collected by three 

different otolaryngology surgeons, one at Copenhagen University Hospital and two at Stanford 

University Hospital. 

Participants: 281 drug-induced sleep endoscopy videos were included and all examinations were 

performed for people with confirmed obstructive sleep apnea to evaluate where and how the upper 

airway collapses prior to potential surgical intervention.  

Main Outcomes and Measures: Ability to estimate site of upper airway collapse and obstruction 

degree assessed through F1 score, Cohen’s Kappa, sensitivity, and confusion matrices.  



Results: Mean F1 score of 70% was obtained across all videos (velum: 85%, oropharynx: 72%, 

tongue: 57%, epiglottis: 65%). For each site, sensitivity was highest for degree 2 and lowest for 

degree 0. No bias in performance was observed between videos from different clinicians/hospitals. 

Conclusions and Relevance: This study demonstrates that automating scoring of drug-induced 

sleep endoscopy videos show high validity and feasibility in site and degree of upper airway 

collapse. Surgeons can benefit from an automatic scoring system in clinical practice but additional 

study is required to validate the proposed model in a multi-scored dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Obstructive sleep apnea (OSA) is characterized by partial or complete obstruction of the upper 

airway during sleep, causing events with reduced airflow (hypopneas) or cessation of breathing 

(apneas) 1. Presence of repeated apneas and hypopneas cause disturbances in sleep leading to 

daytime sleepiness 2–4, increased risk of cardiovascular diseases 5–7, motor vehicle accidents 8, and 

elevated mortality rates 9. Prevalence of OSA is high; almost half a billion adults worldwide aged 

30-69 years suffer from moderate to severe OSA 10. The economic burden of undiagnosed or 

untreated OSA is $150 billion in the United States alone 11.   

Key contributors to OSA pathogenesis are narrow upper airway anatomy, low arousal threshold, 

inability to recruit dilator muscles during inspiration, and poor central control of breathing 12. 

Obesity is the most frequent cause of upper airway narrowing due to presence of excess fat tissue 

in the tongue and around the neck area 13. Other factors include enlarged tonsils, excess tissue in 

the soft palate or tongue base, the tongue falling backwards, and an underdeveloped or protracted 

jaw 14,15. Continuous positive airway pressure (CPAP) 16 is the gold-standard treatment for OSA 

and works by providing a constant level of pressure sufficient to keep the upper airway open. 

Although CPAP is extremely effective, studies show that up to 50% of users give up on the device 

within a year of therapy because of intolerance, noise, discomfort, or a negative impact on intimacy 

17. Oral appliances may reduce upper airway obstructions by advancing the mandible or refraining 

the tongue and epiglottis from falling back, but, as they are generally less effective than CPAP, 

they are considered the second line of treatment after CPAP 18.  

For some patients, surgical procedures can be viable options to increase upper airway space, with 

the most common surgery being a modified uvulopalatopharyngoplasty, where excess tissue is 

removed from the soft palate and lateral walls of the pharynx, often combined with tonsillectomy 



(removal of the palatine tonsils) 19,20. Other procedures include TORS (transoral robotic surgery) 

on the tongue base and epiglottis 21 and maxillomandibular advancement (advancement of the 

upper and lower jaw) 22. Prior to surgery, drug-induced sleep endoscopy (DISE) is often performed 

to examine the location and pattern of sleep-related upper airway collapse using a fiberoptic 

endoscope under sedation, which is designed to simulate natural sleep 23. The endoscope is 

introduced through the nasal cavity and examines the upper airway from the nares to the level of 

the glottis. After a DISE examination, the surgeon evaluates the sites of collapse in the upper 

airway according to the VOTE (velum, oropharynx lateral walls, tongue base, epiglottis) 

classification system, the most used scoring system 24. Collapse can occur at these four sites, either 

individually or in combination, causing obstruction in the upper airway. The VOTE classification 

system assigns a degree of obstruction and pattern of collapse to each site where a collapse occurs. 

VOTE obstruction degrees are classified either as 0 (no obstruction), 1 (partial <50% obstruction), 

or 2 (complete >50% obstruction) 24. Additionally, there are three patterns of collapse: antero-

posterior (A-P) collapse, lateral collapse, and concentric collapse 24. The upper airway can collapse 

in any of these patterns at V  25, but only lateral collapse can occur at O, only A-P collapse at T, 

and only lateral and A-P at E as outlined in Table 1. Lateral collapse at E is extremely rare in 

practice 26. Figure 1 shows examples of V and Figure 2 shows examples of O, T, and E with respect 

to obstruction degrees and collapse patterns. 

DISE suggests location and indication for surgical intervention and its use has been shown to 

improve OSA surgical outcomes 27. The analysis however depends on the procedure and the 

evaluation hereof and as such presents interrater variability. First, there is an anatomical variation 

across subjects with respect to the upper airway and the pattern of collapse may also be affected 

by the depth of sedation 28–32. Secondly, DISE videos can appear chaotic due to several sites 



collapsing simultaneously in patients with severe OSA, essentially pushing the endoscope around 

and making it difficult to determine the sites where collapses are occurring. Mucus or saliva may 

also cover the endoscope, which can reduce or distort the video quality significantly and at times 

making it almost impossible to visually inspect the upper airway. Furthermore, studies examining 

interscorer reliability between surgeons show poor to moderate agreement 27,33–37, demonstrating 

that despite a well-established classification system, interpretation remains subjective.  

In this study, we hypothesize that a deep learning-based model predicting VOTE obstruction 

degrees from DISE videos automatically could be trained and would generalize across subjects and 

centers when validated on a large amount of DISE videos (+10 hours of footage). Such a model 

could aid surgeons in the scoring of DISE videos and consequentially in the planning of surgical 

treatment. Deep learning techniques are chosen over other machine learning models because they 

allow for automatic and data-driven feature extraction from video frames through convolutional 

neural networks and context-based predictions through long short-term memory networks. In a 

former smaller study, we evaluated the use of deep learning on DISE examinations for estimation 

of upper airway regions with promising results 38. In this current study, we collect a much larger 

number of videos and design a model capable of predicting obstruction degree at each of the four 

different sites (VOTE), which is evaluated against gold-standard annotations provided by 

surgeons. To simplify the problem, we leave out pattern of collapse, which can affect treatment 

strategy at the level of the velum and lateral pharyngeal wall 39–42. 

 

2. Methods 

A. Data Description 



281 DISE videos were obtained in total from three different surgeons at two different locations: 

one surgeon from Copenhagen University Hospital (CUH) in Denmark (51 videos) and two 

surgeons at Stanford University Hospital (SUH) in California, USA (58 and 172 videos, 

respectively). The DISE examinations were performed for subjects with confirmed OSA in 

accordance with DISE procedure guidelines described by Kiaer et al. 43 and Lan et al. 44. 

Median duration of videos after anonymization was 2.1 minutes with an interquartile range of 3.33 

minutes (min – max: 6 seconds – 16.4 minutes) and the total amount of video footage was 13.7 

hours. eFigure 1 in the Supplement shows distribution of DISE examination durations in the 

dataset. For each examination, an annotation was obtained containing the VOTE score, i.e., 

obstruction degree and collapse pattern at each site as shown in eTable 1 in the Supplement. The 

distribution of obstruction degrees for each site is shown in eFigure 2 in the Supplement. The 

institutions IRB approved the study under IRB-64418. 

 

B. Pre-processing 

Since DISE examinations varied greatly with respect to duration (eFigure 1 in the Supplement) 

and there was only a one-line annotation per video (eTable 1 in the Supplement), we decided that 

using data as it was would be unsuitable for deep learning purposes. Consequently, all video 

examinations were split into 5-second clips, as shown in the top block of eFigure 3, and each clip 

received an annotation with respect to each site. These annotations were created in consultation 

with a chief surgeon in otorhinolaryngology at CUH (EKK).  

Using 5-second clips, there are many scenarios where one or more sites are not visible. Thus, 

another class was introduced for such situations, denoted X, such that there were four classes (0, 

1, 2, X) for each site (VOTE) per 5-second clip, essentially amounting to a 16-class classification 



problem. The idea was to train and validate the proposed deep learning model on the 5-second 

clips and then summarize all predictions to form a single VOTE obstruction degree prediction for 

each DISE examination, which could then be evaluated against the surgeons’ annotations.  

 

C. Deep Learning Architecture 

The proposed architecture is a combination of a convolutional neural network (CNN) with 

Resnet18 architecture 45 and a bidirectional long short-term memory (Bi-LSTM) network 46 as 

illustrated in the middle block of eFigure 3 in the Supplement. The CNN is implemented for 

automatic feature extraction from each video frame, while Bi-LSTM layers are included to include 

temporal context in both forward and backward directions for each frame. This architecture is 

identical to the one presented in earlier work 38 except for two differences: 1) the middle time step 

of the second Bi-LSTM output is taken instead of using all time steps, and 2) there are 4 output 

probabilities instead for 3. The proposed model was trained, validated, and tested using 10-fold 

cross-validation to get predictions for all DISE videos in the dataset. 

 

D. Post-processing 

Post-processing steps are illustrated in the bottom blocks of eFigure 3. For each site in each 5-

second clip, the model predicts probabilities for each of the four different classes (0, 1, 2, and X). 

The predicted degree for each site is the one which the model predicted the highest probability for. 

After a prediction is made for each site for each 5-second clip, the overall degree for each site for 

a particular DISE examination is calculated as the maximum predicted degree across all 5-second 

clips constituting a single DISE examination.  

 



E. Performance Evaluation 

The predicted obstruction degree for each site for each DISE examination was compared to the 

surgeons’ annotations, considered as ground truth. Performance is evaluated using weighted F1 

score 47. Weighted F1 score is used instead of accuracy due to a large imbalance between the 

obstruction degrees. The F1 score is calculated as the harmonic mean of precision and recall or 

alternatively in terms of true positives (TP), false positives (FP), and false negatives (FN):  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1
2

 (𝐹𝑃 + 𝐹𝑁)
 

Cohen’s kappa 48 is also used to compare model performance with interrater agreement reported 

in the literature with respect to degrees, either for each site or overall.  

 

3. Results 

Overall F1 score for the 12-class problem, i.e., predicting obstruction degree (0, 1, or 2) for each 

of the four upper airway sites across 281 DISE videos was 70% (V: 85%, O: 72%, T: 57%, E: 

65%). Figure 3 shows confusion matrices for the model’s predicted degree for each site evaluated 

against the surgeons’ annotations across all DISE videos in the dataset.  

Performance is also evaluated with respect to videos obtained from the three different surgeons 

(one from RH and two from SUH) to investigate any biases in the model towards videos from a 

particular surgeon. The results are summarized in eTable 2 in the Supplement.  

When distinguishing between no obstruction/obstruction, i.e., combining obstruction degrees of 1 

and 2 as one class, the F1 score increased to 90% (V: 98%, O: 95%, T: 78%, E: 91%).  

Finally, Table 2 compares performance of the model (in terms of Cohen’s kappa) to interrater 

reliabilities reported in the literature between surgeons. The comparisons are made on three levels: 

for each site (VOTE), region-based (palate and hypopharynx), and overall. For region-based 



comparison, V was compared to the palate, and OTE were combined for hypopharynx 

comparisons.   

 

4. Discussion 

Here we describe for the first time that DL can be used to reliably evaluate DISE videos with the 

goal of identifying site and extent of obstruction.  

 

B. Sensitivity for each obstruction degree 

The model predicts especially well whether or not there is obstruction as shown by an F1 score 

reaching 90% (V: 98%, O: 95%, T: 78%, E: 91%) when combining degrees 1 and 2, showing that 

in general, the model confuses degrees 1 and 2 more often than 0 and 1 or 0 and 2. Figure 3 shows 

that the highest sensitivity for degree 0 is obtained for E (55%), and that most misclassifications 

occur because the model predicts degree 1. In very few cases (<10%), the model predicts 2 and 

after inspecting the three examinations in question, it occurs for two reasons: 1) E is reflected in 

saliva causing a mirror image where it looks like E is collapsing, which in fact it is not, and 2) the 

model confuses an A-P V collapse for an E collapse, particularly when the endoscope is close to 

the collapse. In these examinations, however, the predicted probability for degree 2 is never higher 

than 40% and it only occurs in 1-2 clips per examination.  

The second highest sensitivity for degree 0 is obtained for T (35%), but it is confused for both 

degrees 1 and 2. When degree 2 is predicted, it occurs for two reasons: the uvula or lower part of 

the soft palate resembles the tongue and when it collapses, the model confuses it for the tongue 

collapsing, and 2) when V or O are collapsing and the endoscope is extremely close to the tissue, 

it resembles the tissue of the tongue. 



The lowest sensitivity for degree 0 is obtained for V (17%), although there are only 6 out of 281 

DISE examinations where V has a degree of 0. Presence of collapse at the level of V is extremely 

common among OSA patients 49 which is also evident in the dataset by the lack of videos where 

V has a degree of 0. However, it is encouraging that the model only confuses degree 0 with degree 

1 and never predicts degree 2 in those cases.  

The next lowest sensitivity for degree 0 is obtained for O (27%) and the confusion is equally split 

between degrees 1 and 2. Again, there are only a small number of DISE examinations where O has 

degree 0 (11 examinations), but the cases in which they are predicted as 2 are due to three reasons: 

1) A lateral collapse at the level of E which is generally not considered part of O, (2) T collapsing 

completely and the endoscope being very close such that the model mistakes it for a collapse at O, 

and 3) V collapsing and the model mistakenly predicting a contribution of O as well, which can be 

difficult to assess even for surgeons 50.  

The highest sensitivity for degree 1 is obtained for both V and E (64% and 63%, respectively), 

while T and O are lower (50% and 47%, respectively). For all four sites, the model primarily 

confuses it with degree 2 and very rarely with degree 0 (none for V, <5% for O, <10% for T and 

E). For degree 2, the sensitivity is very high for V, O, and T (91%, 93%, and 85%, respectively), 

while the sensitivity for E is lower (72%). For all four sites, the model almost exclusively confuses 

degree 2 with degree 1 and almost never with degree 0 (none for V and E, <5% for O and T). 

Although the model confuses degree 1 with degree 2 to some extent for all sites, the model confuses 

degree 2 with degree 1 only for E, showing that for this site, the model appears to have most 

difficulty distinguishing between degrees 1 and 2. 

 

C. Performance for videos from each surgeon 



eTable 2 shows that there is no noticeable difference in overall F1 score between videos obtained 

from each of the three surgeons, demonstrating that there is no meaningful bias towards any of 

them and suggesting that the procedures are comparable. For videos from surgeon 1 (S1) from RH, 

the model yields the highest F1 score for V out of all three but also the lowest F1 score for T and 

E. For videos obtained from surgeon 2 (S2) from SUH, the model has the highest F1 score for T 

out of all three and the lowest F1 score for O. However, the gap between the highest and lowest 

F1 score for S2 is much smaller than for S1 and in general the discrepancy in performance between 

sites is lower for videos from S2. For videos obtained from surgeon 3 (S3) from SUH, the model 

has the highest F1 scores for both O and E compared to S1 and S2 and the lowest F1 score for V. 

Again, the gap between highest and lowest F1 score is much smaller than for S1. 

 

G. Limitations 

There are two main limitations of this study: 1) the model is not able to predict the pattern of 

collapse, which would need to be added for the model to produce complete VOTE annotations as 

the surgeons do, 2) no healthy controls are used in the study, but the model could benefit from 

seeing more examples of absence of collapse, particularly for V and O. For the first limitation, the 

absence of collapse pattern only really affects predictions for V, since O and T only have one 

possible collapse pattern and lateral obstructions for E are extremely rare 26. However, the 

difference in collapse patterns for V (particularly concentric vs A-P or lateral) can lead to different 

treatment strategies at the level of the velum and lateral pharyngeal wall and is therefore important 

in clinical practice 51–53. The second limitation is difficult to compensate for because DISE 

examinations are only performed for people with confirmed OSA as the whole point of the 

procedure is to identify sites contributing to upper airway collapse prior to surgery. However, such 



data could be gathered by utilizing DISE under sedation associated with other medical procedures. 

There are three important factors which explain very low performance for some examinations: 1) 

The duration of an examination, since a very short examination consists of only few 5-second clips 

and even a few misclassified clips reduce performance by a lot, 2) the video quality, since some 

examinations have extremely low quality, which makes it difficult to assess the degree for each 

site, and 3) several sites collapsing simultaneously, causing the endoscope to be pushed back and 

forth and making the video chaotic to interpret. 

 

5. Conclusion 

This study presents the first ever model for predicting sites and obstruction degrees of upper airway 

collapse from DISE examinations using a dedicated deep learning model. The model produces 

solid performance with an overall F1 score of 70% and predicts obstruction degrees for the velum 

and oropharynx well but displays moderate performance for the tongue base and epiglottis. The 

main limitation is that it does not predict the pattern of collapse, which can affect treatment strategy 

at the level of the velum and lateral pharyngeal wall. The proposed model has potential to aid 

surgeons in interpreting DISE examinations in an automated manner but needs further validation 

on a multi-scored dataset and the added ability to predict collapse pattern. 
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Figure 1. Examples of possible ways the velum (V) can collapse in the upper airway. The 

collapse can be either partial (obstruction degree 1) or complete (obstruction degree 2). The 

patterns of collapse are antero-posterior (A-P), lateral, or concentric. 

 



 

Figure 2. Examples of possible ways the oropharynx (O), tongue base (T), and epiglottis (E) 

can collapse in the upper airway. The collapse can be either partial (obstruction degree 1) or 

complete (obstruction degree 2). The pattern of collapse is lateral for O, antero-posterior (A-P) for 

T, and A-P and lateral for E. Lateral collapse for E has been left out, since it is extremely rare.  

 



 

Figure 3. Confusion matrices for the predicted obstruction degrees. Evaluation is done for 281 

drug-induced sleep endoscopy videos with respect to the four different upper airway sites. V – 

velum, O – Oropharynx lateral walls, T – Tongue base, E – Epiglottis.   

 

 

 

 

 

 

 

 

 



Tables 

 

Table 1. Upper airway sites where collapse can occur during sleep according to the VOTE 

classification system. The degree of obstruction caused by collapse is either 0 (no collapse), 1 

(partial <50% obstruction), or 2 (complete >50% obstruction). Checkmarks indicate the possible 

pattern of collapse at each site.  

Site Degree of obstruction 
Pattern of collapse 

Antero-posterior Lateral Concentric 

Velum 

0, 1, or 2 

   
Oropharynx    
Tongue base    

Epiglottis    
 

Table 2. Comparison of model performance in terms of Cohen’s kappa (𝜿) to interscorer 

reliabilities calculated in studies from the literature. Some studies use palate vs hypopharynx, 

where palate corresponds to V and hypopharynx corresponds to O, T, and E combined. One study 

reports 𝜿 overall across all sites.  

Study V (𝜿) O (𝜿) T (𝜿) E (𝜿) N scorers N DISE 

Our model 0.55 0.45 0.38 0.44 N/A 281 

Vroegop et al. 33 0.30 0.66 0.03 0.61 7 6 

Llatas et al. 34 0.17 0.67 0.35 0.43 2 31 

Green et al. 27 0.40 0.42 0.60 0.55 4 275 

Study Palate (𝜿) Hypopharynx (𝜿) N scorers N DISE 

Our model 0.55 0.43 N/A 281 

Kezirian et al. 10 35 0.60 0.44 2 108 

Koo et al. 36 0.52 0.35 6 100 

Study Overall (𝜿) N scorers N DISE 

Our model 0.46 N/A 281 

Gillespie et al. 37 0.27 3 38 

 



Supplementary Material 

2. Methods 

A. Data Description 

Each video was anonymized by removing any part where the endoscope was outside of the 

patient and renaming the video file. eFigure 1 shows distribution of DISE examination 

durations in the dataset after anonymization, showing that most videos in the dataset are less 

than 2 minutes long. Videos obtained from CUH had sampling rates of 25 frames per second, 

while videos from SUH had sampling rates of 30 frames per second. For each examination, an 

annotation was obtained containing the VOTE score, i.e., obstruction degree and collapse 

pattern at each site as shown in eTable 1. Note that several sites can collapse in the same subject 

(sometimes even in combination) and that a site like V can collapse in more than one way in 

the same subject. The distribution of obstruction degrees for each site is shown in eFigure 2. 

 

eFigure 1. Distribution of durations of drug-induced sleep endoscopy videos in the dataset. 

 

 



eTable 1. Examples of annotations provided by surgeons for drug-induced sleep endoscopy 

examinations. The number (0, 1, or 2) for each upper airway site (VOTE) indicates the 

obstruction degree followed by the collapse pattern (A-P, lateral or concentric). V – velum, O 

– oropharyngeal lateral wall, T – tongue base, E – epiglottis, A-P – antero-posterior. 

Video V O T E 

Video 1 2 A-P - Concentric 2 Lateral 1 A-P 2 Lateral 

Video 2 2 A-P 2 Lateral 0 0 

Video 3 1 A-P 0 2 A-P 2 A-P 

 

 

eFigure 2. Distribution of obstruction degrees (0, 1, and 2) for each of the four upper airway 

sites (VOTE). DISE – drug-induced sleep endoscopy, V – velum, O – oropharynx lateral walls, 

T – tongue base, E – epiglottis. 



B. Pre-processing 

Although sampling rates for videos from RH and SUH were 25 and 30 frames per second, 

respectively, we used only every 5th and 6th frame, respectively, to reduce computational cost. 

Consequently, the sampling rates for 5-second clips used in the study were 5 frames per second, 

yielding a total of 25 frames for a 5-second clip. Instead of using all three color-channels for 

each clip (R,G,B), the videos were converted to grayscale. Both approaches were investigated 

(with and without color channels) and preserving colors did not make any noticeable 

difference, most likely because anatomical composition is much more important than small 

differences in color, so grayscale frames were used to reduce computational cost. 

 

C. Deep Learning Architecture 

The Resnet18 network is implemented such that a 5-second clip (consisting of 25 frames) could 

be input one frame at a time as shown in eFigure 3. The output is then a feature map of size 

1x512 for each frame. The feature maps for all frames are concatenated to form a 25x512 

matrix, where each row is considered a time-step in the original 5-second clip and each column 

is a feature vector for a particular frame. This matrix is processed by a bidirectional LSTM 

layer, followed by a dense layer, which reduces the number of features from 512 to 128 while 

time steps are intact, i.e., resulting matrix dimensions are 25x128. A second bidirectional 

LSTM and dense layer reduces the number of features further from 128 to 4, yielding a matrix 

of dimension 25x4. From this matrix, the output at the middle time step, i.e., 13 is taken as it 

represents the time step where the model has most context in both directions. Finally, a softmax 

activation function is applied to the resulting 1x4 vector to yield a probability for each class, 

i.e., 0, 1, 2, and X. This architecture is repeated four times, one for each site with their own 

loss function.  



 

eFigure 3. Architecture of proposed model for predicting obstruction degree based on 5-second 

clips from drug-induced sleep endoscopy (DISE) examinations. This architecture is repeated 

for each of the four upper airway sites (velum, oropharynx lateral walls, tongue base, 

epiglottis). Top block: A DISE examination is split into 5-second clips. Middle block: Each 

individual frame (grayscale) of a 5-second clip is used as input one by one for a convolutional 

neural network (CNN) with a ResNet18 architecture for feature extraction. All resulting feature 

vectors (1x512) are concatenated (25x512) and input to a bidirectional long short-term memory 

network (Bi-LSTM) for temporal analysis, followed by a dense layer to reduce number of 



features (25x128). Another Bi-LSTM and dense layer reduce the feature vector (1x4), which 

is run through a softmax activation function. This yields four probabilities, one for each 

obstruction degree (P(Y=0), P(Y=1), P(Y=2), and P(Y=X), where X means that the site is not 

visible). The obstruction degree  with highest probability is the predicted obstruction degree. 

Bottom left block: Predictions for all clips within a DISE examination are collected. Bottom 

right block: The maximum predicted obstruction degree across all 5-second clips that make up 

a full examination is chosen as the overall degree if the model predicts this degree for at least 

5% of all clips. Otherwise, same criterion is checked for the next highest degree and if not 

fulfilled either, the predicted obstruction degree is 0 by default. 

 

D. Training, Validation, and Testing 

The proposed model was trained, validated, and tested using 10-fold cross-validation to get 

predictions for all DISE videos in the dataset. The loss function for each site is the cross-

entropy loss, which is the loss function of choice in multi-classification settings. The loss 

functions for all four sites are added together and the combined loss function was used for 

optimizing the weights of the model using the Adam optimizer. The combined loss function is 

used to optimize the model simultaneously with respect to all four sites. Since the degrees for 

each site are imbalanced, penalty weights were introduced during training. The weight for a 

particular class is calculated by dividing the number of samples for the most represented class 

with the number of samples for a particular class in the training set. The model was trained 

using batch sizes of 8 and the learning rate was set to 1 ∙ 10ିହ with a weight decay of 5 ∙ 10ିସ. 

Early stopping was applied when the validation error stopped decreasing for 3 consecutive 

epochs, i.e., a patience of 3, to avoid overfitting to the training data. Python 3.6.10 and Pytorch 

1.10.0 were used for implementation of the proposed model. Training of the model was 



performed using a GeForce RTX 3070 and the entire training/validation/test setup took 

approximately 16 hours to run. 

 

E. Post-processing 

The maximum degree is selected only if this degree is predicted in at least 5% of the clips 

which make up a full examination. This is to avoid any coincidences where a degree of e.g., 2 

occurs one time by chance or because of other sites and does not reflect the true behavior of 

that site in a subject. In case the maximum degree does not satisfy this condition, the next 

greatest degree is selected if it satisfies the same condition. If this is not satisfied either, the 

degree is 0 by default. This is illustrated in the bottom right box of eFigure 3. A voting approach 

is not applied here, because surgeons annotate DISE examinations according to the highest 

degree observed. 

 

3. Results 

Performance is also evaluated with respect to videos obtained from the three different surgeons 

(one from RH and two from SUH) to investigate any biases in the model towards videos from 

a particular surgeon. The results are summarized in eTable 2. 

 

 

 

 



eTable 2. F1 score for drug-induced sleep endoscopy examinations with respect to each of the 

three surgeons who provided the videos. Performance is evaluated against the surgeons’ 

annotations with respect to obstruction degree (0, 1, or 2) for four different upper airway 

sites. V – velum, O – oropharynx lateral walls, T – tongue base, E – epiglottis, CUH – 

Copenhagen University Hospital, SUH – Stanford University Hospital.  

Surgeon N Videos V (F1) O (F1) T (F1) E (F1) Overall (F1) 

S1 (CUH) 51 91% 70% 53% 58% 68% 

S2 (SUH) 58 89% 64% 63% 63% 70% 

S3 (SUH) 172 82% 74% 56% 67% 70% 

 

 


