
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Jun 04, 2024

Classification of UXO and non-UXO from magnetic anomaly data: a case study on
inversion of drone magnetic data from Romo, Denmark

Wigh, Mark David; Kolster, Mick Emil; Hansen, Thomas Mejer; Dossing, Arne

Published in:
Geophysical Journal International

Link to article, DOI:
10.1093/gji/ggad097

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wigh, M. D., Kolster, M. E., Hansen, T. M., & Dossing, A. (2023). Classification of UXO and non-UXO from
magnetic anomaly data: a case study on inversion of drone magnetic data from Romo, Denmark. Geophysical
Journal International, 234(2), 915-932. https://doi.org/10.1093/gji/ggad097

https://doi.org/10.1093/gji/ggad097
https://orbit.dtu.dk/en/publications/9ca81f9a-058b-43c6-a212-9c18927f1484
https://doi.org/10.1093/gji/ggad097


Geophys. J. Int. (2023) 234, 915–932 https://doi.org/10.1093/gji/ggad097
Advance Access publication 2023 March 09
GJI Geophysical Journal International

Classification of UXO and non-UXO from magnetic anomaly data: a
case study on inversion of drone magnetic data from Rømø,
Denmark

Mark David Wigh ,1 Mick Emil Kolster ,1 Thomas Mejer Hansen 2 and
Arne Døssing1,3

1CMAGTRES, Crustal Magnetism Technology and Research Group, DTU Space, Technical University of Denmark, Centrifugevej 356, Denmark. E-mail:
mdwi@space.dtu.dk
2Department of Geoscience, Aarhus University, Høgh guldbergs-gade 2, Denmark
3DTU CERE, Center for Energy Resources Engineering , Kolonnevej, Denmark

Accepted 2023 March 3. Received 2023 February 28; in original form 2022 December 7

S U M M A R Y
A test site containing 24 targets of various disarmed unexploded ordnance (UXO) and non-
UXO items were placed on a beach on the island of Rømø (Denmark) in a 600 m × 100 m
area. Scalar magnetic anomalies were measured at 3–5 m altitude using an uncrewed aerial
vehicle (UAV), towing a bird with a three-sensor triangular configuration to achieve a dense
coverage with flight lines of 2 m spacing. The triple-sensor data set is utilized in a probabilistic
inversion setup to infer the magnetic moments of the 24 targets. The purpose of the study, is to
try and distinguish between different types of ferromagnetic objects (UXO, non-UXO) using
magnetic anomaly data. The inversion methodology uses different forward models (prolate
spheroids, rectangular prisms) to infer target shape, size and orientation in an attempt to
discriminate between UXO and non-UXO items. Stochastic inversions are carried out using
different prior assumptions of remanent magnetization strength (10, 50 and 80 per cent) of
the induced dipole moment. Among the three levels of remanent magnetization strength in the
prior, only some cases of discrimination seem evident for the lowest strength of remanence. One
item is correctly classified as a true-negative (i.e. non-UXO) when assuming low remanent
magnetization strength (10 per cent of the induced moment). However, at low remanent
strength, one false-negative classification emerges, making any discrimination unreliable when
assuming such low remanent magnetization. In addition to the discrimination study, different
covariance models are utilized to optimize the inversion by addressing correlated errors and
noise in the triple-sensor data set. Three covariance models are tested to try and account for
spatially correlated noise and potential errors among the three sensors of each overflight. In
many cases, the covariance models presented show a potential increase in sampling efficiency
and consistency between data and the noise model, suggesting a more robust approach to a
noise model in magnetic anomaly inversions. If the noise model is poor, however, it may bias
the results by addressing the anomaly signal as noise. The inversions with correlated noise
models are compared with inversions using a simple uncorrelated noise model. For several
cases of data anomalies, differences between the inversion estimates when using correlated and
uncorrelated noise models were evident, indicating that some bias may appear when assuming
uncorrelated noise. Due to the general high presence of correlated signals in magnetic survey
data, correlated noise models can significantly improve the overall uncertainty estimate of the
estimated dipole moment. The study demonstrates, in terms of the 24 targets considered, that
discrimination between UXO and non-UXO using magnetics is difficult. However, when using
scalar magnetic data of high quality and resolution, the estimated dipole moments are often
well resolved and uniquely defined in magnitude and position. This could provide valuable
posterior information for future inversion studies by building a library of inferred magnetic
moments from targets that have been found and inspected.
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1 I N T RO D U C T I O N

Unexploded ordnance (UXO) are continuously posing a threat in
former war zones or military exercise fields, causing potential haz-
ardous risks. UXO can be found in land areas and offshore environ-
ments, hindering effective use of locations in construction aspects
and the inhabitation of post-war land.

UXO generally consist of ferromagnetic material that can be
sensed remotely using geophysical methods such as magnetics or
electromagnetic induction (EMI). They can be utilized alone or in
combination to supplement combined knowledge from the data. In
terms of efficiency, magnetic surveying is often significantly faster
and easier to handle, while EMI can be ineffective for coverage
of larger areas. In terms of characterizing the magnetic signature
concerning source object shape/size, EMI has advantages because
it is less affected by any remanent magnetization that might be
present in the objects. However, due to the benefits of magnetic
surveying, it is usually the only affordable method for large-scale
data sets, so any possible target characterization from the magnetic
signature would be highly valuable. In this study, magnetic survey
data acquired from drone will be used to try and infer object shape
and size by inversion and modelling of magnetic signatures from
objects in the survey site. The survey data is from a survey campaign
at Rømø, Denmark, where 24 objects were laid out in a closed area,
and the magnetic anomalies were measured with a drone setup
towing a triple-sensor bird equipped with three rubidium optically
pumped sensors (Kolster et al. 2022). The 24 objects were a mixture
of ferromagnetic objects and one ordnance of aluminium. Some
were UXO, and others were non-UXO objects representing common
objects in the nearshore/offshore environment.

Magnetic surveying is an effective geophyiscal method for UXO
detection. Ferromagnetic objects have a magnetic signature due to
the influence of the inducing geomagnetic field, resulting in mag-
netic anomalies seen in the magnetic surveys. These anomalies give
the viewer information on where to find targets but do not pro-
vide any information on the type of target causing the anomaly.
In this study, high-quality magnetic anomaly data will be used in
the attempt to infer details on shallow magnetic sources and pro-
vide a robust approach for interpretation and modelling of mag-
netic anomalies. The aim is to discriminate between UXO and non-
UXO objects by inferring target shape and size while accounting
for remanent magnetization present in the sources. A probabilis-
tic inversion approach (Wigh et al. 2020, 2021) will be applied
to try to discriminate between UXO and non-UXO objects. Meth-
ods for optimizing the inversion of multiple sensor setups are also
discussed.

Utilizing magnetic anomaly data to classify and discriminate be-
tween UXO and non-UXO sources have been researched for many
years, where spheroidal approximations to the induced magneti-
zation distribution of typical UXO have proven to be an effective
application for modelling sources (Altshuler 1996; Butler et al.
1998; Billings 2004, 2006). However, remanent magnetization is
well known to limit the viability of classifying ferromagnetic objects
from the magnetic anomaly (Billings & Youmans 2006; Billings
2009; Wigh et al. 2020). A prerequisite for classifying magnetic
sources from their respective anomalies is that the acquired mag-
netic data must qualify sufficiently well in spatial data sampling and

accuracy. Recent advancements have been made in survey data qual-
ity and efficiency by using uncrewed aerial vehicles (UAVs) towing
magnetometers (e.g. Walter et al. 2020; Døssing et al. 2021; Kolster
& Døssing 2021a, b; Cunningham et al. 2021), making it possible to
obtain a more precise estimate of the magnetic dipole moment. The
work on UXO inversion using UAV magnetic survey data is limited
in quantity, but progress has been made in recent years (Kolster &
Døssing 2021a, b; Døssing et al. 2021; Kolster et al. 2022). In this
study, the data used have previously been presented in Kolster et al.
(2022), where a deterministic and a probabilistic approach have
been used to estimate point dipole moments of different UXO in
the survey data. In this study, the same data will be used to classify
and discriminate between UXO and non-UXO.

In this study, a triple sensor setup of magnetometers are utilized
in a point-down triangle configuration. The data acquired with the
triple-sensor magnetometer bird setup is of high quality, both in
terms of low instrumental noise and accurate sensor positioning,
with sufficiently dense line spacing due to the coverage of multiple
sensors and general high efficiency in surveying. While the main
conclusion from Kolster et al. (2022) indicated that all three sensors
were optimal to include as part of the inversion, results from us-
ing the single lower sensor often provided reasonable results in the
estimated position and magnetic moment. In this study, we will pri-
marily use the triple sensor data set, upon which several inversions
with different noise models are carried out

Five individual inversion setups with different noise models are
introduced for the purpose of classification and discrimination of
UXO/non-UXO sources. This is done by inferring shape and size
using two different forward models, from which a relative prob-
ability of UXO/non-UXO could be estimated using the posterior
samples for each of the different inversion setups. The discrimi-
nation study aims at classifying the shape of the anomaly source
using the two forward models of prolate spheroids and rectangular
prisms, similar to what has previously been done for a synthetic
study (Wigh et al. 2021). The discrimination study is carried out
for three different prior assumptions of remanent magnetization
strength in the sources, categorized with a remanent strength of 10,
50 and 80 per cent of the induced magnetization.

2 M E T H O D O L O G Y

2.1 Magnetic drone survey data from Rømø campaign

The 24 targets are pictured in Fig. 1, with additional information
appended in Table 1. Each target was measured and weighted after
the survey campaign. Additionally, a simple test was made using a
small permanent magnet. If the magnet did not stick to a specific part
of the object, it was classified as a non-ferromagnetic part. Weaker
magnetic contributions (such as ferrimagnetic material which can-
not be completely discarded, but is assumed to have no significant
contribution.)

Preprocessing and handling of the triple-sensor bird data is pre-
sented in Kolster et al. (2022). Only minor preprocessing of the
data has been carried out (small wavelength components have been
removed using FFT component analysis). In addition to this, the
along track difference (ATD) is used as a tool for highlighting short
wavelength signals (such as signals from UXO) in the data. The
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Figure 1. Items positioned in the survey area. Pictures originally from Kolster et al. (2022).

ATD is set to calculate the difference between every 8th-datapoint
(which is done for all datapoints in the flight line). The distance be-
tween every 8th datapoint can be assumed constant for all practical
purposes but may have minor fluctuations if the drone adjusts the
flight velocity or path in a survey line.

2.2 Probabilistic inversion setup

A general formulation of the inverse problem involves determining
some model parameters, m, that are related to some data, d, through

the forward function, g:

d = g(m) (1)

The inverse problem is the study of determining the model pa-
rameters from the measured data, which often are indirect measure-
ments of the model we want to estimate. This is generally not a
simple case. when the data are contaminated by unwanted signals
and errors or the forward relation might be imperfect.

Inversion of the magnetic data is carried out using a probabilistic
setup, where the posterior distribution is sampled in a stochastic
inversion process. The posterior distribution describes the combined
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Table 1. Overview table for the UXO, UXO fragments and debris objects
placed inside the survey area. Table originally from Kolster et al. (2022).

No. Weight Description Notes

1 11.8 kg Small airdropped L64 cm, Ø5.7 to 9 cm
2–6 26.2 ± 1.4 kg 155mm shell L57 cm; Ø5.5 to 16 cm
7 34.3 kg Cannonball (half) Ø33 cm. From ‘Slaget på

Reden’
8 14.5 kg Hinged L-beam L93 cm, H13 cm
9 7.4 kg Metal disc H10 cm, Ø36 cm
10 26.2 ± 1.4 kg 155mm shell L57 cm, 5.5 to 16 cm
11 12.3 kg Partial metal plate L50 cm, 43 cm, and 23 cm.

H1 cm
12 19.7 kg Square metal plate L50 cm, H1 cm
13 ? Unknown object L93 cm, Ø5 to 14 cm. Only

tail magnetic
14 8.1 kg Training Rocket L95 cm, Ø7 cm. Only tip

magnetic.
15 9.0 kg Bent tail fin L65 cm, Ø23 cm
16 6.0 kg Airdropped L120 cm, Ø20 cm
17 17.1 kg Fire extinguisher L83 cm, Ø14 cm
18 14.9 kg Round black sphere H42 cm, Ø45 cm
19 14.5 kg Bouyant sea mine

“316”
L60 cm, Ø25 cm

20 20.3 kg Alu. seamine
fragment

H40 cm, Ø65 cm

21 47.9 kg Depth charge L70 cm, Ø43 cm
22 26.3 kg Bouyant sea mine

“315”
L79 cm, Ø32 cm

23 48.3 kg 5-In training rocket L204 cm, Ø13 cm.
24 34.4 kg Aluminium winch L130 cm, Ø40 cm

information from prior knowledge with new information that may
be acquired from the data. The probabilistic inversion setup requires
one to be able to evaluate the model response with respect to the data,
which can be done as long as a forward model and data noise model
are defined. From the definition in Tarantola (2005), the posterior
probability density (PD), σ m(m), over the model parameters can be
expressed by

σm(m) = kL(m)ρm(m), (2)

where L(m) is the likelihood function giving an estimate of fit
between the model and data, and ρ(m) is the prior model PD. The
likelihood function is described by :

L(m) =
∫

D
dd

ρD(d)θ (d|m)

μD(d)
, (3)

where ρD(d) is describing the measurement uncertainties (e.g. er-
rors caused by uncertainties in the instruments or unwanted sig-
nals contaminated in the data). θ (d|m) is the theoretical probability
density representing errors related to solving the forward problem
and μM(m) is the homogeneous probability density, ensuring the
parametrization is invariant to changes in the coordinate system.
Under the condition of a linear dataspace (e.g. Cartesian), and an
assumption of zero theoretical error in the forward relation between
data and model prediction [perfect relation in d = g(m)], then the
likelihood is determined by the measurement uncertainties of the
data:

L(m) = ρD(g(m)). (4)

In general, unless dealing with linear inverse Gaussian problems,
it is not possible to analytically describe the posterior distribution.
Instead, sampling methods can be used that will generate a sample
of the posterior distributions, from which, and if the sample is large

enough, any statistics of the posterior distribution, can be obtained,
see for example Mosegaard & Sambrigde (2002). Here we use
a combination of the extended Metropolis algorithm (Mosegaard
& Tarantola 1995) and Gibbs sampling (Geman & Geman 1984)
to sample the posterior distribution, eq. (2), referred to as Gibbs-
within-Metropolis. The algorithm is utilized in the Matlab software
package, SIPPI (Hansen et al. 2013a), and has previously been used
in magnetic UXO modelling and inversion. Further details on the
inversion setup will be omitted here but can be found in details in
Wigh et al. (2020, 2021)

2.2.1 Classification of targets

The classification of targets is done by assigning a relative probabil-
ity to each of the classes/hypotheses by using the average posterior
likelihood from the posterior distributions. If one has two hypothe-
ses (such as 2 different priors or forward models) the relative prob-
ability of each hypothesis, H, can be computed from the average
posterior likelihood. If M∗

σ = [mσ
∗
1, ..., mσ

∗
Nr

] is a sample of Nr

realizations of σ (m|dobs,Hi ), then the average posterior likelihood
LP−Avg can be computed for each hypothesis as

L P−Avg(Hi ) = 1

Nr

Nr∑
i

L(mσ
∗
i |dobs,Hi ). (5)

Eq. (5) will be used to compare the three different class inversions
by determining the relative probability using the average posterior
likelihood estimates. However, it can not be used to compare the
posterior distributions that have been sampled under different noise
assumptions. It has previously been referred to as posterior evidence
(Wigh et al. 2021), due to the fact that the posterior likelihood is
an average likelihood from a sample of the posterior, whereas the
general evidence is defined as the average likelihood of a sample
from the prior.

2.3 Inversion of shape and size: forward models

The spheroid and prism forward models used for classification gen-
erate a similar point-dipole moment. The induced dipole moment
may be reproducible by both forward models, but in some cases, the
two forward models are uniquely defined. This is due to the prior
constraints on aspect ratio and orientation since an induced dipole
moment is inferred from an assumed shape with a specific aspect
ratio, orientation and volume. With the inclusion of remanent mag-
netization, the number of model parameters is further increased
as well as the non-uniqueness between the forward models. The
spheroid model has been used extensively to model various UXO
with similar shapes (Altshuler 1996; Butler et al. 1998; Billings
2006). The demagnetization factors for a spheroid can be analyti-
cally determined and used to produce the induced dipole moment.

Approximations to non-UXO objects are made by utilizing rect-
angular prisms to simulate non-UXO shapes (long rods and flat
plates) that are expected to be found in similar environments as
UXO. The prism forward model approximates demagnetization fac-
tors from the two aspect ratios defining the shape of the prism.
Further details on the forward models can be found in Wigh et al.
(2021). The prior models and related parameters assigned for each
of the forwards are shown in Table 2. The prism forward is used with
two different priors, one represents a flat plate item and the second
represents elongated rod objects. The last class is the spheroid class
which represents possible UXO targets. Another forward model is
the simple point-dipole moment, where the dipole-fit is sampled
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Table 2. Prior models used in the simple dipole moment inversion and the
three conceptual models of spheroids (UXO), rods and plates. The first group
of parameters are globally shared that have equal range for each conceptual
model, while the second to fourth groups define the unique priors. All prior
models are represented by uniform distributions (Uni. dist) with a chosen
range.

Shared global priors Range (min,max) Uni. Dist.

Depth (z-position relative to
expected surface height)

–0.6 to 7.5 [m]

Phi angle [–90, 90]
Theta angle [-35, 35]
x-position ±4 m
y- position ±4 m
Inclination Mrem [–90, 90]
Declination Mrem [0, 360]

Prism prior range (min,max) Uni. Dist.
λy Rod; [0.05, 0.008] Plate; [1.2,

0.82]
λz Rod; [0.005, 0.0008] Plate ;[0.3,

0.004]
Gamma angle Rod ;[–90, 90]; Plate [–35,35]
Kg steel 30–400 [kg]
Mrem strength [10, 50, 80] % of induced moment

Prolate spheroid prior range (min,max) Uni. Dist.
Aspect ratio, e (Spheroid) 1.1–7
Kg steel 30–400 [kg]
Mrem strength [10, 50, 80] % of induced moment

Dipole moment prior range (min,max) Uni. Dist.
mx, my, mz 0–8 [Am2]

independently of shape, size or orientation, in which case it is class-
independent. It is used to quality check the other forward and prior
models (both in terms of convergence and the selection of remanent
magnetization strength).

2.4 Noise models

In an ideal setup, the noise model describes a realistic distribution
of expected data errors and uncertainties. Setting up a noise model,
in practice, is easy if the errors and noise signals are uncorrelated
and normally distributed but become increasingly complex when
correlated noise and errors need to be accounted for. In magnetic
surveying, the measured signal will be a superposition of all mag-
netic fields at the observer point, making each data point heavily
correlated with adjacent points (if there are nearby magnetic con-
tributions from other objects not considered in the inversion or a
strong background field, for example). Hence, if there are magnetic
contributions originating from sources other than the object of in-
terest, then that signal will interfere as a residual field with high
spatial correlation, which may affect the model estimate provided
that the noise model is assumed Gaussian uncorrelated.

Some examples of what could contribute as correlated data noise
in the anomaly data include near surface geology, contributions
from ferromagnetic (human-made) sources not considered in the
inversion, Noise from the drone (instruments, engines), data errors
(positional uncertainties/errors of the sensor, sensor biases) and
measurement errors. Some of these uncertainties might affect all
of the sensors at different strengths of correlation due to the setup
of the triple-sensor bird. For instance, a height error in the bird for
a single survey line will have an effect on all of the three sensors.

Table 3. The five different inversion setups utilized in the study. Four of
these use the same data input (triple-sensor data set), while one only uti-
lizes data from the single lower sensor. Three out of the five setups utilize
covariance models (generated using a spherical variogram with specified
variance and anisotropic correlation length). The estimated variance in the
noise model for the first inversion setup is calculated from a signal-to-noise
ratio (SNR) for each anomaly. The four last setups utilize a fixed variance
denoted by a standard deviation (STD) and the associated variance (var)

Inversion setup (data + noise model) Variance

(1) Single-(lower) sensor uncorrelated
noise (fixed SNR)

SNR = 3

(2) Triple-sensor uncorrelated noise
(fixed STD)

std = 0.0328 nT

(3) Triple-sensor correlated noise
(line-correlation)

std = 0.0332 nT, var =
0.0011

(4) Triple-sensor correlated noise
(spatial-correlation)

std = 0.0158 nT, var =
2.5e-4, range (2 m + 8 m)

(5) Triple-sensor correlated noise (line-
+ spatial-correlation)

std = 0.0141 nT, var =
2.0e-4, range (8 m)

Therefore, we propose to describe these types of correlated noise
by the following correlated Gaussian models:

Cd line (Line-correlation): Assumed correlated noise along each
line (between all three sensors in the magnetometer bird) for ev-
ery overpass (i.e. for one fly-over the noise on all three sensors is
assumed to be correlated).

Cd space(Spatial-correlation): A noise model that introduces cor-
relations among nearby and adjacent data points. A geostatistical
variogram model was used to simulate spatial correlations, previ-
ously used in hydrogeophysics to account for subsurface variations
(Hansen et al. 2008, 2013b). The structure is chosen as spherical
and does require a length input to define the length of correlated
2-D structures. The structures generated with appropriate ranges
seem to have similarities to the background variations that are ap-
parent in the survey. It can also be used to account for local data
errors/noise/modelling errors.

By combining the two covariance matrices through addition (e.g.
Mosegaard & Tarantola 2002) the data covariance matrix is ob-
tained:

Cd = Cd line + Cd space. (6)

In total, three different covariance models will be tested on the
triple-sensor data set: (1) Covariance matrix with line correlations
between line groups of the three sensors (2) Covariance matrix with
spatial correlation. (3) Combination of (1) and (2).

If the measurement uncertainty can be described by a Gaussian
correlated model with mean dd and covariance Cd, the likelihood
function can be expressed as (see e.g. Hansen et al. 2014)

L(m) = k exp

(
− 1

2
(g(m) − dobs − dd )T C−1

d (g(m) − dobs − dd )

)
. (7)

To assess the different covariance models applied, multiple inver-
sions have been carried out with varying models of noise assigned
to the data structure for each inversion setup, as presented in the
bottom section of Table 3. The first and most straightforward setup
of the noise models is by assuming uncorrelated Gaussian noise,
which is done once using the lower single-sensor data (assuming
a fixed SNR) and once using the triple-sensor data set (assuming
a fixed STD). The last three inversion setups utilize data from the
three sensors with the addition of a data covariance matrix.
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Difficulties that arise when inferring more complex model spaces,
such as the spheroid and prism forward models, are expected to be
reduced by applying models for correlated data errors to the triple-
sensor data set, supposing it imitates some of the correlated errors in
the real data. This should mitigate sampling issues while providing
a more realistic noise model that might represent the data noise
better (i.e. correlated signals will often be present in a geospatial
magnetic survey).

Since modelling of a covariance matrix significantly increases
the inversion complexity, it might result in a significant loss of ef-
ficiency when an abundant amount of data is included. Tests have
been carried out using a 4× downsampled version of the triple-
sensor data (sampled at 200Hz) set without losing spatial resolution
or performance in the model prediction (except for a possible reduc-
tion in performance for the smallest targets). This helps sampling
and increases the efficiency significantly since we reduce the size of
the data covariance matrix by 75 per cent (e.g. a Cd matrix is reduced
to 2500 × 2500 instead of 10 000 × 10 000 due to the high sampling
rate of the sensors). Effects of the downsampling would appear as a
reduction in the positional accuracy of the target during inversion,
with a primary reduction in the estimate of source depth (whereas
a reduction in line spacing density would affect the horizontal po-
sitioning of the source). The depth and horizontal prediction of the
targets from inversions are sufficient in accuracy and usually well
resolved (with a slight decrease in accuracy and precision when the
correlated noise models are utilized).

3 R E S U LT S

The first part of the results focuses on discrimination between
spheroid and prism objects. For the inversion analysis, the dataset
used will contain data from all three sensors, except for one case
where only the lowest sensor is used. The use of the lower sensor has
previously shown promising results (Kolster et al. 2022) to achieve
a reliable estimate of the magnetic moment (at least for the larger
objects). One inversion scheme is established using the single lower
sensor with uncorrelated noise, while the remaining setups focus
on inversion of the data containing all three sensors. For the triple-
sensor case, inversions have been done with and without correlated
noise to test and quantify the sampling efficiency and assess differ-
ences in the estimated magnetic moments. All inversion setups are
carried out for different assumptions of remanent magnetization,
ranging from 0 to 10 per cent, 0–50 per cent and 0–80 per cent
relative to the induced magnetization.

3.1 Inversion and classification of target sources

The different covariance matrices that have been used, are denoted
as line, space and line + space covariance matrices. The three
versions differ by one being a combination of line correlation and
spatial correlation, for example Cd = Cd line + Cd space, while the
other two are generated with one of the two choices. The difference
between the versions can be found in the spatial covariance matrix,
where the first edition has a correlation range of 15 m and the
second composes a combination of correlation lengths of 15 and
2 m with a slightly higher variance. In Fig. 2, an example of a
covariance matrix (Line + space) and a realization of noise from
this covariance matrix are illustrated.

Inversions of the 24 targets are carried out for three different as-
sumptions of remanent magnetization. For the single sensor setup,
only uncorrelated Gaussian noise models are used. In the first case,

the spheroid and prism priors have 10 per cent remanent mag-
netization allowed as the maximum range, while for the second
case, the remanent magnetization of the spheroid prior is increased
to 50 per cent and, lastly, in the third, the maximum remanent
magnetization is set to 80 per cent. Having sampled the posterior
distribution for each forward model considered, the relative proba-
bility of each forward model is estimated by calculating the average
posterior likelihood over the last 10k samples. The area plot of
the probability computed from the average likelihoods is shown in
Fig. 3. It is limited to showcase only with remanence assumed to be
within 10 per cent. In fact, this is the only case of interest since the
other two cases with higher remanence provide zero discriminatory
capabilities.

The first column of Fig. 3 shows the relative probabilities when
considering the spheroid and prism (rod + plate) forwards. In the
second column, the simple dipole model is included in the assess-
ment, serving as an independent quality check of the other inversions
that infer target shape and size. The dipole moment model is inde-
pendent of any assumptions on remanence and induced moment.
Hence, if a reasonable fit is only achieved with the dipole model,
then one of three scenarios could be the cause: (1) The remanent
magnetization allowed in the prior is lower than the amount present
in the source. (2) The target magnetic signature cannot be fully mod-
elled by a spheroid/prism. (3) Convergence issues of spheroid/prism
sampling. The run carried out with uncorrelated noise (Fig. 3a) ex-
hibits potential convergence issues when comparing to the other
inversions using correlated noise models, as can be seen with tar-
gets 1, 4, 8, 20 and 21 where only one of the shape inversion seems
to converge properly.

A bottom bar plot (Fig. 3i) shows the mean estimated relative
probabilities computed from the values above for the three classes.
From the bar plot, two targets show discriminatory capabilities (Tar-
get 3 and 12). If the Line covariance inversion is left out (due to
the perhaps unrealistically high noise), Target 23 also appears as an
item that cannot be fitted equally by the shape models. It suggests
target 23 to be a prism object (primarily a rod), which seems reason-
able considering that it is a long cylindrical object with an aspect
ratio (the long axis) of approximately 15, which is much higher
than the spheroid prior allows. For target 12, some discrimination
seems possible, but it has more of a plate shape than an elongated
rod shape, yet the rod fits better, which could be due to remanent
magnetization. Target 3 is a 155 mm grenade projectile and can
only be fit by the rod prior, suggesting that the item has a significant
remanent magnetization (i.e. >10 per cent) that results in a wrong
classification.

An example of sampling using the different noise and forward
models is showcased in Fig. 4. The figure shows the LogL during
sampling with all four conceptual models (spheroid, prisms) using
the four noise models. An example of inversion of target 21 with
10 per cent remanent magnetization is shown. It is evident from
the figure, that sampling with uncorrelated noise does not manage
to converge in all cases. Additionally, the covariance noise models
increase the obtained LogL values closer to the range of –N/2 (where
N is 1866 datapoints), suggesting a higher consistency between data
and noise model.

3.1.1 Detailed inversion example of target 21 (80 per cent rem)

An example with inversion of the triple-sensor data set for target 21
(with 80 per cent) is shown in Figs 5 and 6. First, the dipole moment
inversion with uncorrelated noise is presented, showcasing the data,
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Classification of UXO and non-UXO 921

Figure 2. Example of data covariance matrix used for inversion of triple-sensor setup. The example shown is for target 21 using all three sensor data sets
(downsampled 4×). The error realization is shown for the data points of the lower sensor only. The covariance matrix is made such that the variance of each
data point is significantly lower than the case with uncorrelated Gaussian noise.

Figure 3. Comparison of the achieved models for the different forward and priors considered. For each row, the relative probabilities of each class are shown
for the different noise models used. The first column shows the area-plot for the spheroid (green), prism rod (red) and prism plate (blue) forward models. In
the second column, the simple dipole model (cyanic) inversion is included in the assessment, increasing the number of models used for comparison to four. A
bar plot is seen in the last row (i), showing the mean class probabilities when averaging over the relative probabilities of each inversion setup. The triple sensor
data set with different noise models and a fixed remanence of maximum 10 per cent have been used.

prediction and residual field for all three sensors (Fig. 5). Secondly,
residual fields of the lower sensor from the four different inversion
setups are presented in Fig. 6 to illustrate the estimated model
variations due to the different correlated noise setups. It can be seen,
that there is one line with a strong and highly correlated residual
signal. This could be explained by a data error (e.g. sensor altitude
positioning) or higher order moments in the source affecting the
lower sensor. From inspection of the individual flight line altitudes
(figure omitted here), the three middle lines above the target have an
approximate altitude to the centre of target 21 at 5–5.2 m (distance
from the lower sensor to the centre of the target). The survey lines in
the outer regions vary slightly more between 4.2 and 5.6 m altitude.
The flight lines with the lowest altitude, however, are farther away
from the source than the centre lines, so higher order moments are
unlikely to have any effect.

3.2 Overview plots of inversion results

To summarize on all of the different dipole moments obtained with
the various inversion setups, Figs 7, 8, 9 and 10 are made for a
presentable overview. The main figures (Figs 7, 8 and 9) present the
magnetic moments for each assumption of remanence, acquired by
inversion with the various inversion setups. The last figure (Fig. 10)
presents the relative probability of all UXO inversions obtained.
Since the magnetic dipole moment is the essential parameter for
any classification, some figures will be highlighted and presented
for better visualization due to the large amount of results.

Moments derived with the simple dipole model are presented in
Fig. 7 (here remanence and shape/size inversion are avoided, that is
it shows only model variability due to the different noise models).
The magnetic moments derived with the spheroid and prism forward
model with a prior assumption of 10 and 80 per cent remanent
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922 M.D. Wigh et al.

Figure 4. LogL samples of target 21 with 10 per cent remanence. Some sampling difficulties may appear for the uncorrelated noise model, especially when
sampling with low remanence as is showcased here. For each noise model used (as denoted by the text above the LogL samples), four inversions are carried
out using the different forward models [i.e. Red: Prism(Rod), blue: Prism(Plate), Green: Spheroid, cyanic: dipole moment sampling with no shape inference].
Number of data points in this example is N = 1866 (using data from all three sensors downsampled at 25 per cent).

magnetization are shown in Figs 8 and 9, respectively. The case with
remanence of 50 per cent is excluded due to the high similarity with
the former containing 80 per cent. The 10 per cent remanent case
is the only case where certain discrimination is apparent among the
different inversions (target 3, 12 and 23 which are highlighted at the
bottom of Fig. 8), while the inversions with higher assumptions of
remanence do not obtain any likely discrimination. Yet, the magnetic
moments in the case with high remanence do indeed differ among
the four forward models and the different inversion setups, reflecting
some of the variability in magnetic moments due to the selected
noise models (similar to the variations seen in Fig. 7 with moments
derived using the simple dipole inversion).

The variations in estimated dipole moments for each target can
be seen in Fig. 7, with some targets having a higher variation than
others. The results achieved by inversion of the single sensor and
triple sensor data with uncorrelated noise are in many cases sim-
ilar, while the three inversion-setups using correlated noise mod-
els tend to vary more for each target estimate, especially for the
larger magnetic anomalies (targets 21, 23 and 24) and also some
smaller anomalies (targets 7, 14 and 15). This variation is due to the
covariance models introduced, accounting for some of the spatial
correlations in the survey data. However, care must be taken when
using a correlated noise model since it can severely bias the results
if the anomaly signal becomes part of the correlated noise model.
Several tests were carried out with different covariance matrices
of different spatial ranges and amplitude of the diagonal variance
(e.g. STD of data points), from which it was clear, that the selected
variance in the correlated noise models is very sensitive and should
be significantly lower than the variance in the uncorrelated noise
models (for this specific data set at least). This is mostly in terms

of the space covariance matrix, where a high variance could give a
significantly worse fit that does clearly not fit the magnetic anomaly
sufficiently. However, the correlated noise models where only the
line-covariance matrix is applied were not as sensitive to the chosen
diagonal variance, and did fit the anomaly reasonably even with very
high diagonal variances (e.g. the line correlation does not describe
correlations similar to anomaly signals, which the space covariance
is more likely to do).

In Fig. 8 the magnetic moments obtained with 10 per cent rema-
nence are presented. The inversions are carried out with the three
forwards (spheroid, rectangular prisms (with 2 different priors) and
dipole moment) with the five different inversion setups (lower sen-
sor, triple sensor, triple sensor with x3 correlated noise). As such,
there are 20 estimates of the magnetic moment for each target,
which have been plotted for visualization. The three targets where
discrimination might be possible have been highlighted in a zoomed
in view for improved visualization between the estimated moments
of the three targets (bottom plot in Fig. 8). Here, it is apparent, how
the simple dipole and rod prior inversions obtain a dipole moment
different from the other shape inversions (mostly apparent in the Z-
component), which elucidates the discriminatory capabilities seen.
Besides this, some variation between the moments derived with
each noise model is apparent and seems to have similar structures
as the case with dipole moment sampling (Fig. 7), indicating that
these variations are mainly due to the covariance noise models (and
some inversions may not have been able to reproduce the anomaly
properly due to the low remanence).

The magnetic moments achieved estimated with 80 per cent re-
manence in the prior is displayed in Fig. 9. Due to the high re-
manence allowed in the prior, all shape inversions are expected to
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Classification of UXO and non-UXO 923

Figure 5. Example of fitting the data anomaly for target 21, shown for all three sensor data sets. The data are shown on the left, with the model prediction in
the middle and the residual (data - model prediction) on the right plot. The model prediction is from sampling of the dipole model with uncorrelated noise (last
sampled model in the posterior). (a–c) Lower sensor, (d–f): top left sensor and (g–i): top right sensor.

have converged to the same region as the inversions with the dipole
moment. Hence, similar results are seen in Figs 9 and 7. For the tar-
gets with small magnetic moments (and hence anomaly amplitude),
some variations are seen between the different shape inversions.
This might be due to the covariance models not being scaled with
anomaly amplitude causing a relatively higher effect since more of
the anomaly signal might be considered noise. This appears to have
a higher variation for the inversion with line covariance (which is
also scaled with a high variance)

The bar-plot in Fig. 10 summarizes the chances of discriminating
between UXO/non-UXO for the different inversions. The probabil-
ity of being in the spheroid class (i.e. UXO, PUXO) is shown for each
target, for each of the five inversion setups. The only case where
some discrimination between spheroid and prisms can be made is
at a prior remanence of maximum 10 per cent. Here, target 12 is
correctly classified as a prism, however, target 3 is also classified
as a prism but is an UXO (155 mm grenade). Target 3 most likely
contains more than 10 per cent of remanent strength which could

explain why it becomes wrongly classified. Hence, certain risks of
falsely discriminating are likely when the remanence is low, and
the discrimination diminishes if the remanence is increased, which
doesn’t seem to allow for any discrimination possible without fur-
ther assumptions on the remanent magnetization.

Variations in the PUXO values appear for most targets, however,
the values are generally quite consistent. This is mostly true for the
three inversions carried out using the covariance models, whereas
the inversions using lower sensor and triple sensor data with uncor-
related noise seem to have some outliers from the others with PUXO

= 0 and PUXO = 1 (e.g. targets 4, 18, 21 and 24), which could be
explained by convergence issues. However, when the five different
inversion setups achieve similar relative probabilities the estimate is
expected to be more robust, as is the case for targets 3 and 12 where
PUXO = 0 at 10 per cent remanence. For target 23, we see that four
out of the five inversion estimates suggest a non-UXO (rod object),
indicating that some discriminatory capabilities are possible (target
23 is actually an UXO, but has an aspect ratio of approximately 15,
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924 M.D. Wigh et al.

Figure 6. Scatterplot of the lower sensor residual (model-prediction) of target 21 for the four inversion setups. The model predictions are from sampling of
the spheroid model with 80 per cent remanence (the last sampled model in the posterior). Histograms of the lower sensor residuals are shown accompanied
by the root-mean-square residual value. (a–b): Inversion with lower sensor data set with uncorrelated noise, (c–d): Inversion with triple sensor data set,
line-covariance noise model, (e–f): Inversion with the triple sensor data set, space-covariance noise model, (g–h): Inversion with the triple sensor data set,
space- and line-covariance noise model.

which is much higher than the aspect ratio allowed in the spheroid
prior).

The influence of discriminatory capabilities due to remanence is
apparent in Fig. 10. Here, it is apparent how no discrimination can
be done when a remanent magnetization of 50 or 80 per cent is
allowed in the prior. If the remanent magnetization is constrained
to a maximum of 10 per cent, we see that some targets are correctly
estimated to be non-UXO items. However, some targets are incor-
rectly classified, posing major risks if it were to be used as a single
tool for classification in real scenarios.

In Fig. 11, the estimated mean dipole moment have been plot-
ted with targets sorted into their weight on the x-axis. The figure

attempts at combining all information gathered from the different
inversion setups. This has been done by taking the average of all the
model estimates from the different inversion setups (i.e. the results
shown in Fig. 7). In an attempt to quantify the uncertainty of this
single estimate, the error bars are computed by taking the average of
the individual STDs from the mean over the posterior samples, and
the STD over the 5 different mean posterior models. By utilizing
this as an error, it is evident that some targets are better resolved
than others, where it must be assumed that noise and errors play a
certain role here. It is evident from inspection of Fig. 11, that there
is no simple correlation between target magnetic moment and target
size. Remanent magnetization plays a major role here among other
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Classification of UXO and non-UXO 925

Figure 7. Mean estimated dipole moments from inversions using the different noise models. All estimates shown here are achieved using the simple dipole
moment inversion (no inference of shape/size), by taking a mean of the last 5 posterior samples (and error bars showing the standard deviation of the last 10
samples). The figure gives an illustration of the variability due to the different noise models utilized in the inversions.

factors related to the induced moment such as the orientation and
shape of the target.

3.3 Posterior model correlations of shape and size due to
remanent magnetization

To provide a deeper perspective on the variation of the model pa-
rameters due to remanent magnetization, an example study on two
targets (target 4: 155 mm grenade and target 21: A depth charge
ordnance, the largest UXO in the study) is showcased, where effort
has been put into sampling a broader region of the posterior distri-
bution. This is done by increasing the sampling length and splitting
the sampling process up into intervals of different prior assumptions
of remanent magnetization (hereby forcing it around in the model
space). The Gibbs sampling is set to nearest neighbour interpolation
(with low sampling density) to increase the exploration rate. This
can result in bad model samples with low likelihood, but these are
removed by cutting off samples with an obvious jump in likelihood,
ensuring that no bad samples are considered while supporting a
higher exploration rate of the model space.

Inversion of the lower single-sensor data will be used since this
data set is easier to sample and provides sufficient constraints on
the fitting dipole moment. 2-D marginal distributions of chosen
model samples are illustrated in Fig. 12 for all three shape-oriented
forward models. The model parameters in focus are kg steel (i.e.
volume), Mrem, Theta and Phi. The aspect ratios are left out for the
prism and spheroid models because they are not of much relevance
to compare.

In terms of depth estimation, the estimate is generally so well-
resolved that the values are close to identical for all three forward
models (within centimetres of range). This is due to the uncorrelated
noise model being used, when utilizing the correlated noise models
the precision generally decreases in the inversion estimates. For
instance, considering targets 21–24, When computing the average
depth estimate using the several noise models introduced, the depth
estimates all lie within ±0.4 m of the expected location of the
target centre. Positioning of sources from inversion is discussed in
Kolster et al. (2022) where similar depth estimates are obtained
when utilizing different inputs of data input from the triple sensor
setup.

Inspection of Fig. 12 shows a general high variation in weight
estimates, with a high correlation between the modelled remanent
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926 M.D. Wigh et al.

Figure 8. Mean estimated moments derived with remanence 10 per cent, for all three classes (rod, plate, spheroid) together with the simple dipole model. The
moments are estimated by taking a mean of the last 5 posterior samples (and error bars of the standard deviation of the last 10 samples). The only case where
some discrimination is seen is for targets 3, 12 and 23. These are highlighted in a focused figure bottom right.

magnetization strength and kg steel. For target 21, a clear trend
between the kg steel and Mrem is apparent in the model parameters
of the spheroid inversion. The amount of steel generally decreases
when the remanent magnetization is increased. If only the solutions
with Mrem < 0.4 are taken into account, then the estimated weight of

steel would be approximately between 380 and 700 kg. Considering
that target 21 weighs 48 kg, an estimate of 380 and 700 kg seems far
off and indicates that the relative remanent magnetization is much
higher in the source than the prior allows. As is evident from Fig. 12,
it can be seen see that the estimated volume of steel for target 21 is
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Classification of UXO and non-UXO 927

Figure 9. Mean estimated moments for all shape inversions with remanence up to 80 per cent. (almost) all inversions here have converged to equal logL-values
(there is no discrimination case in any of these). The plot gives an idea of the variance in the estimated moments for the different noise models and forwards
when inversion of the anomaly is carried out with the noise models.

much lower (many samples around 60–100 kg) when the remanence
is above 50 per cent. In this region the estimated kg steel is close to
the true value, indicating that the relative remanence is significant
(+50 per cent) in this particular object. Some modelling errors may
influence the estimated model parameters. For example, target 21
is not spherical but more cylindrical and has several metal hinges
on each of the ends. This could influence the magnetic signature
and thus the predicted aspect ratio, which is estimated to be around
6 when the kg steel is around the expected range of 50 kg (the
aspect ratio of target 21 is closer to aspect ratio = 2). However,
this may only have a minor influence on the model prediction.
Remanent magnetization in the source is still believed to have a
more significant influence on the prediction of shape.

For target 4, the posterior samples in Fig. 12 indicate a lower
relative remanence in the source. This item weighs about 25 kg,
which is mostly seen in the posterior samples when the remanence
is low (albeit some low volume samples are also with high re-
manence). The maximum estimated kg steel for the 155 mm is
approximately 85 kg when the remanent magnetization is around
50 per cent.

In Fig. 13, the posterior samples (shown in Fig. 12) have been used
to generate the estimated magnetic dipole moments. For both target
21 and 4, it is evident that despite the high variation in the posterior
samples of weight and remanent magnetization, the resulting dipole
moment is similar. As an example, the spheroid samples for target 21

model kg-steel values between 50 and 750 kg, illustrating the high
uncertainty in shape and size due to the remanent magnetization.

Examples of induced and remanent components from the
spheroid inversion are shown in Fig. 14. These are the same spheroid
samples as shown in Figs 12 and 13 for targets 4 and 21, but the
sampled components of induced and remanent magnetization are
here shown. Three figures are made for each target, with the left-
most plot showing the induced moment, remanent moment and the
combined moment for all samples. In the second plot only cases
with low volume (lowest 5–10 per cent of posterior) appear and in
the third only samples with high volume (highest 5–10 per cent of
posterior) are shown. It is evident from both target examples, that
when the model has high volume (high induced moment), then the
remanent magnetization is, to some degree, facing opposite of the
induced or ambient field. When the volume is low (i.e. middlemost
plot), then the direction of remanent is fairly constrained (For both
targets, these results are within a reasonable range of the actual
weight suggesting that the actual remanent magnetization could be
represented in these samples).

4 D I S C U S S I O N

It is evident from this study, that remanent magnetization in
UXO/non-UXO sources is indeed something that has to be as-
sessed when doing any inference of source shape solely from the
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928 M.D. Wigh et al.

Figure 10. Overview of all shape inversions, illustrating the estimated class probability of the spheroid (PUXO) for the different inversion setups. The PUXO

is calculated from the relative probabilities of the spheroidal forward model. The target numbers (x-axis) are colour coded to indicate if a target is an UXO
(green) or non-UXO (red).

Figure 11. Overview plot of estimated dipole moment for each target, sorted by weight. The error bars are estimated by averaging over the different inversion
estimates. It is computed by taking an average of the individual STDs of the last eight posterior samples of the different inversion setups, together with the
standard deviation between the mean estimates of the five inversion setups. The targets are grouped into three colour groups: Green: objects with an ‘obvious’
spheroidal shape, Red: non-UXO objects with no spheroidal resemblance. Purple: Items with semi-spheroidal shapes (primarily cylinders).
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Classification of UXO and non-UXO 929

Figure 12. Analysis of model parameter variations due to remanent magnetization and orientation of the targets. The analysis is made for the three forward
models: Prolate-(Spheroid), Rod-(Prism), Plate-(Prism) for two different anomalies (Target 4: Light blue and Target 21: Dark blue). 2-D marginal posterior
distributions are shown for the model parameters; Volume, Phi (Objects long axis angle with respect to north, Theta (dip of the object with respect to a flat
surface).

magnetic anomaly. Remanent magnetization may cause significant
changes to the amplitude and direction of the magnetic moment of
the source, which complicates any discrimination significantly. It
is evident from the inversions, having 10 per cent remanent mag-
netization strength allowed in the prior, that some discriminatory
capabilities are possible (e.g. target 12). However, a low remanent
magnetization also introduces scenarios where an item might be
falsely classified as a non-UXO (e.g. target 3). Therefore, it must
be concluded that discrimination seems difficult unless additional
constraints can be put on the remanent magnetization of the source.
Similarly, the non-uniqueness of the problem could be reduced if

more information was obtained about the source such as its aspect
ratio and orientation. For this study, the prior constraints on the
orientation of the targets were low in order to quantify the classi-
fication. The Phi angle (angle between the object’s long axis and
geomagnetic north) was unconstrained while the Theta angle (long
axis dip of the object relative to the surface) was limited between
–35◦ to 35◦. This is quite high, considering that the targets were
positioned on a flat beach area (i.e. all targets have been positioned
flat on the surface such that Theta < 5). It is most likely that the
discrimination procedure would perform better if the Theta angle
was reduced in the prior, such that objects were assumed to lie flat
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930 M.D. Wigh et al.

Figure 13. Plot of magnetic vector moments from the samples shown in Fig. 12. The moments are derived using the three different shapes (spheroid, rod,
plate) inversions and colour coded according to the legend. Left-hand plot: posterior samples from inversion of target 21. Right-hand plot: posterior samples
from inversion of target 4. All samples are produced from inversion using the uncorrelated noise model.

Figure 14. Vector moment plots of the estimated magnetic moments split up in induced and remanent contributions. The moments are generated using the
spheroid prior (same results as shown in 2-D posterior of Fig. 12. Top row (Target 4), Bottom row (Target 21); (a and d): Induced and remanent components
for all samples used. (b and e): Induced and remanent components for low volume samples only. (c and f): Induced and remanent components for high volume
samples only.
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Classification of UXO and non-UXO 931

on the surface. However, in real-case scenarios, it is hard to exclude
the possibility of buried objects where the object might have a sig-
nificant dip angle. Any information that could be obtained on the
orientation or shape of an object could improve the classification
significantly. However, magnetics is often the primary remote tool
for UXO detection and more accurate estimates of the orientation
or shape can first be obtained using local inspection or sensing
techniques.

Any constraints made on the remanent magnetization will gen-
erally provide an improvement in the resolution of estimated shape
and size parameters. One idea could be to try and limit the variation
due to remanent magnetization in the forward model by defining the
remanent contribution as a fixed range of values that are dependent
on expected remanence per volume steel instead of relative strength
with the induced moment. A range on remanence per cubic meter of
steel could potentially be interesting to implement in the modelling
process. This would reduce the number of correlations due to vari-
ations in the relative remanence, size and orientation of the source,
by making the sampled remanent magnetization independent of the
object shape and orientation. An alternative way to limit the effects
of remanent magnetization could be to constrain the direction of
the remanent moment if, for instance, the remanent magnetization
were subject to temporal changes (viscous remanent magnetization)
aligning it with the ambient field for a stationary source. However,
this would require unlikely assumptions in the prior model. 2-D
marginal analysis of the kg steel and the remanent strength (Mrem
in per cent) for target 21 in Fig. 12 suggests, that a remanence at
least above 50 per cent is necessary to estimate a somewhat correct
amount of steel (i.e. 50 kg). This limit is rather high and complicates
any certain characterization of source shape/size.

A number of different noise models were used in the study to
account for uncertainties in the model predictions, where three co-
variance models were used to simulate correlated errors and noise
in the data. As magnetic survey data often contain highly corre-
lated noise from other sources and likely correlated sensor errors,
it seems essential to have a more realistic description than a simple
assumption of uncorrelated noise. We see some improvements in the
inversions when using the three covariance models (in many cases
the sampling is easier, and likelihood values converging to logL =
–N/2 suggesting a more consistent description of the system), yet
the noise models used are probably far from realistic and do only
account for some errors (or maybe the noise models actually imply
errors). Inversion using correlated noise models appears to be quite
efficient without biasing the model prediction, as long as the co-
variance models are appropriately scaled and much lower than any
uncorrelated noise. A much higher likelihood is obtained with the
covariance models (e.g. logL closer to –N/2), suggesting that we are
describing the noise better than the cases with uncorrelated noise
models. Caution, however, must be taken since a high likelihood
could be obtained by creating a covariance model that describes the
anomaly signal patterns as noise ( this was experienced in earlier
cases, where a high covariance model obtains a different magnetic
moment that clearly does not fit the anomaly signal properly).

The line covariance model seems as a simple and efficient way to
account for some of the errors that are encountered while optimizing
the sampling, without causing any error biases to the spatial features
of the anomaly. The increased efficiency is most likely highest when
using all triple sensors for the inversion due to the high correlation
between the three sensors along each flyover. There were no tests
with correlated noise models when using the single sensor data
set. However, sampling difficulties seem to occur for some targets,
which may have been mitigated by using one of the three covariance

models, especially when considering that the lower sensor inversion
is carried out with a high noise assumed (SNR of 3).

The inversion with a dipole-moment model has previously been
made on the triple-sensor data set (Kolster et al. 2022), where the
optimal data configuration (single sensor, multiple sensors, hori-
zontal/vertical gradients between sensors) was investigated by in-
version. This was carried out using an uncorrelated noise model
for all configurations with a fixed SNR, but it does have certain
similarities to this study on the handling of noise. Taking the differ-
ence between the sensors is principally a matter of increasing the
signal-to-noise ratio, making it more applicable to use a simple un-
correlated noise model (assuming other longer wavelength signals
are diminished in the gradient differences). Taking the gradient dif-
ferences can be a strong method to highlight the shorter wavelength
signals that originate from near-surface sources. However, the gra-
dient may also cause significant data biases due to the enhancement
of errors when one or more sensor differences are used. This could
be avoided by applying a correlated noise model on the triple sen-
sor data without taking any gradient differences, which has proven
useful as long as a somewhat realistic covariance model is applied.
Both methods are applicable with their pros and cons and could be
used in synergy to increase the robustness. A combination of the
two is also possible but would require a rather complex covariance
model if it were to account for data errors due to sensor gradient
differences.

Only a few of the estimated magnetic moments have a direction
pointing away from the direction of the geomagnetic field. This
suggests, that there are few targets with a remanent magnetization
facing opposite/perpendicular from the geomagnetic field (assum-
ing there are no cases where the remanence is exactly opposite to the
induced moment). Only target 3 and potentially target 23 show a sig-
nificant deviation in direction from the expected induced moment.
One could expect that more targets had a deviation in direction of
the magnetic moment due to the presence of remanence, and the
fact that the targets were placed out randomly in the survey area on
the same day as the survey (i.e. any viscous remanence is negligible
and most likely not parallel to the geomagnetic field).

The covariance models have a fixed variance for all targets, so
targets with a small anomaly amplitude will have a higher model
uncertainty on the estimated moments, while the larger anomalies
are expected to have a higher model resolution. It is apparent, how-
ever, that the estimated moments for targets 21 and 24 have a high
variation between the estimates from the inversion setups, espe-
cially when considering the high magnetic moments. These two
cases appear to be caused by a residual offset between the data
and model prediction of a single survey line just above the target
(examples shown in Section 3.2 for target 21). This can be due to
several reasons such as higher-order moments due to the line being
closer to the target, or due to positional uncertainties in the height
of the survey line. In either case, using different noise models gives
a qualified perspective of the robustness in the estimated moments
and may highlight any inconsistencies between data and noise in
the modelling.

5 C O N C LU S I O N S

Magnetic anomalies of 24 UXO-related objects have been investi-
gated in an attempt to classify and discriminate between UXO and
non-UXO targets. Inference of the magnetic anomalies was carried
out in a probabilistic inversion approach, where shape and size were
inferred by simulating magnetic signatures from prolate spheroids
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and rectangular prisms. The inversions were carried out for different
assumptions of remanent strength in the prior. It was apparent that
discrimination only seemed possible for the lowest assumption of
remanence (10 per cent of the induced moment). At this range, two
objects were correctly classified while the third, a 155 mm grenade,
was wrongly classified as a prism rod, suggesting that a remanent
magnetization strength of 10 per cent is insufficient to represent
the actual source characteristics. When assuming a higher rema-
nent magnetization strength, no discrimination among the targets
was possible. The inversion results suggest that some targets have
a strong remanent magnetization (+50 per cent). This indicates,
that it is hard to predict any certain discrimination between the 24
targets using magnetics. The discrimination success may have been
higher if the shapes of the non-UXO objects were deviant from the
UXO shapes, for instance, if the aspect ratios of non-UXO were
much higher (provided that any presence of UXO with similar as-
pect ratios can be excluded). However, the presence of remanent
magnetization has a large influence on the discrimination success.
Any prior information obtained on expected remanent magnetiza-
tion strength, as well as the direction of the remanent magnetization
(assumptions on direction of remanence might be relevant for UXO
that have been in an idle position for many years), could prove to be
very valuable in future discrimination projects of UXO/non-UXO
when using magnetics. In the study, several covariance models were
utilized for handling of correlated noise, illustrating one method
to address noise in an inversion of magnetic survey data. The co-
variance models can be used instead of, or in combination with, a
simple uncorrelated noise model to obtain a more robust uncertainty
quantification. Utilizing covariance models to simulate correlated
noise may also improve sampling efficiency and exploration rate in
the inversion process.
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