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A microlaser with low energy consumption and high speed is crucial for on-chip photonic networks. Presently, the
modulation of microlasers is based on modulating the gain of the laser, which implies a trade-off between the output
peak power and modulation energy. Also, the temporal width of the output pulse is restricted by the carrier relaxation
time. These limitations can be overcome by modulating, instead, the loss of the laser by the scheme of cavity dumping,
which is ideal for intense and ultrashort pulse generation. However, the miniaturization of cavity-dumped lasers has
been a long-standing challenge, and no microscopic cavity-dumped lasers have yet been realized. Here, we demonstrate
an ultra-small cavity-dumped microscopic laser based on an optical Fano resonance, which generates optical pulses
with peak power more than one order of magnitude higher than the corresponding conventional gain-modulated laser.
This demonstration paves the way for realizing microscopic lasers for low-power chip-scale applications. © 2023 Optica

Publishing Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.476758

1. INTRODUCTION

On-chip optical interconnects [1] have the potential to overcome
the limits on bandwidth and power consumption in traditional
electrical interconnects [2]. The transmitter in an on-chip optical
network needs to meet several demanding requirements, i.e., suf-
ficient peak power, high speed, low energy consumption, and
ultra-small footprint. One well-known transmitter configuration
integrates external modulators [3,4] with continuous-wave (CW)
microlasers [5,6]. Another simpler one is the directly modulated
microlaser. The latter generally has much lower power consump-
tion, smaller size, and lower cost, and has been widely investigated
[7–14]. However, these microlasers are all based on modulating
the gain of the laser, implying a trade-off between the output peak
power and modulation energy [14]. In addition, the modula-
tion bandwidth is inherently limited by the relaxation oscillation
frequency.

One way to overcome these obstacles is to use the scheme of
cavity dumping, where the output power is modulated via the cav-
ity loss rather than the gain of the laser. The cavity-dumped laser
was first demonstrated more than 50 years ago [15], and has been
applied in numerous configurations to generate high-peak-power
pulses with pulse durations from nanoseconds [16–19] to fem-
toseconds (combined with mode-locking techniques) [20–23].
However, these configurations are traditionally based on large
and complicated multi-element systems with meter-sized cavity
lengths. Recently, several integrated lasers exploiting reflectivity
modulation were demonstrated [24–27]. Tessler et al . reported
a wide-band amplitude modulation edge-emitting laser [27];

Shchukin et al . demonstrated a large-bandwidth vertical-cavity
surface-emitting laser (VCSEL) [26], in both cases by tuning the
stopband edge of distributed Bragg reflectors (DBRs); Dong et al .
reported reflectivity-modulated lasers by employing a composite
mirror [24,25]. These systems, however, still have relatively large
footprints, and are complex and energy consuming.

Here, we demonstrate a microscopic cavity-dumped laser with a
mirror based on optical Fano resonance [28,29]. The rich physics
of Fano resonances has been studied in numerous photonic and
plasmonic nanostructures [30,31]. In particular, by replacing one
laser mirror with a narrowband mirror, the so-called Fano laser has
been demonstrated [32,33], showing several important features,
including suppression of feedback-induced instabilities [34],
self-pulsing [32], and orders-of-magnitude reduction of the laser
linewidth [35]. In this work, we experimentally and theoretically
demonstrate that the output power of a Fano laser can be effi-
ciently modulated via the nanocavity to perform cavity dumping,
leading to the generation of optical pulses with peak power more
than one order of magnitude higher than that of an equivalent
gain-modulated laser.

2. CONCEPT, SCHEMATIC, AND PRINCIPLE

The conventional way of modulating a laser is via the gain, cf.
Fig. 1(a) (here, we refer to the laser bias as the pumping source).
Such a modulation scheme typically cannot generate high-peak-
power pulses since the maximum output power of the laser is
limited by the modulation depth 1R/R , where R is the initial
pumping rate, and1R is the change. Thus, if the initial constant
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Fig. 1. (a) Concept of a conventional gain-modulated laser. An external modulation changes the gain of the active region in the laser cavity, resulting in
the generation of an optical pulse. (b) Concept of a cavity-dumped laser. The reflectivity of one of its mirrors is changed by external modulation, releasing
the optical energy in the laser cavity within a short time and thereby generating an optical pulse with high peak power in the output waveguide. (c) Example
of the computed dynamics of the output power (normalized) for cavity dumping, bias modulation, and gain switching. The spontaneous emission factors
βsp and maximum amplitude change of the reflection coefficient1rR are 0.001 and 0.1, respectively.

bias is above the laser threshold (called bias modulation), the peak
modulated power scales as Pb,peak = Ps + ηp(1R/R)Ps, where
Ps is the initial output power at steady state, and ηp is a coefficient
smaller than one (Supplement 1 A.1). Instead, the cavity-dumped
laser modulates the output signal via one of its mirrors, which acts
as a switchable “gate.” For example, by applying an external optical
pulse, the right mirror “opens” [Fig. 1(b)], and a large number
of photons initially stored in the laser cavity can thus be dumped
within a short time, generating a high-peak-power optical pulse at
the output. In this case, the maximum output power of the pulse,
achieved if the “gate” is opened instantaneously, is (Supplement
1 A.1)

Pd,peak = Ps +
1rR (2rR −1rR)

t2
R

Ps, (1)

where rR (tR) is the reflection (transmission) coefficient (assumed
to be real) of the right mirror at steady state, and1rR is the maxi-
mum amplitude change of the reflection coefficient. Since usually
rR→ 1 and t2

R� 1, Pd,peak can be much larger than Pb,peak, cf.
Fig. 1(c). It should be noted that by modulating the gain and keep-
ing the initial constant bias below the laser threshold, one can also
generate optical pulses, similar to the bias-modulation scheme
(called gain switching [36]). However, the maximum power Pg,peak

is still limited by the pumping rate, and much lower than Pd,peak,
cf. Fig. 1(c). For higher spontaneous emission factors, βsp, which is
the case for microscopic lasers, and a larger maximum amplitude
change of the reflection coefficient, 1rR, the advantage of the
cavity dumping scheme becomes more significant in terms of peak
power (Supplement 1 A.1). Additionally, the time duration of the
cavity-dumped output pulse, unless limited by the switching time
of the laser mirror, will be determined by the round trip time of the
laser cavity. This round trip time can be very short (femtoseconds
for microscopic lasers, Supplement 1 A.1), orders of magnitude
faster than the conventional gain-modulated scheme where the
pulse duration is limited by the carrier relaxation time (typically on
the order of several picoseconds even for high pumping rates).

Here, we realize a microscopic cavity-dumped laser that exploits
an optical Fano resonance. The laser is based on a photonic

crystal (PhC) membrane structure on silicon composed of a line-
defect waveguide (WG) and two qualitatively different mirrors
[Fig. 2(a)], with an effective footprint of only 12.5× 6 µm2. The
left mirror is a conventional broadband mirror formed by simply
terminating the WG with holes, while the right switchable mirror
is based on the Fano resonance originating from the interaction
between the continuum of WG modes and the discrete mode
of a side-coupled nanocavity. Specifically, the discrete mode is
the second-order mode of an L7 nanocavity formed by omitting
seven air holes. Due to the Fano destructive interference at the
output of the right mirror, wavelengths close to the resonance
of the nanocavity will be reflected with a near-unity reflection
coefficient [Fig. 2(b)]. If the total nanocavity decay rate is domi-
nated by the coupling rate γc between the nanocavity and the WG,
rather than by the intrinsic decay rate γv of the nanocavity, the
transmissivity (γv/(γv + γc)) at the nanocavity resonance will be
much smaller than the out-of-plane scattering of the nanocavity
(
√
γcγv/(γv + γc)). This feature of the Fano mirror is favorable

for generating optical pulses with high contrast in the output WG
(through-port). Similar to our recent demonstration of an ultra-
coherent Fano laser [35], we use a buried-heterostructure (BH)
region [12] containing a single InGaAsP/InAlGaAs quantum well
[Fig. 3(a)] to confine the active material to the laser cavity while
leaving the remaining area passive. Here, we refer to the laser cavity
as the region between the left mirror and the Fano mirror to sep-
arate it from the nanocavity. Details of the design and fabrication
can be found in Ref. [35].

The Fano laser is optically pumped by a CW laser via a broad-
band grating coupler [37] located at the right end of the WG
[Fig. 2(a)]. The detailed modulation principle is illustrated in
Fig. 2(c). At steady state, the lasing wavelength is aligned to the
peak reflectivity of the narrowband Fano mirror so the optical field
is well confined in the laser cavity and the nanocavity [see the upper
panel of Fig. 2(d)]. An optical pulse is injected from the top and is
coupled into the third-order mode of the nanocavity. This mode,
in contrast to the second-order mode of the nanocavity, is spatially
concentrated in the region of the nanocavity, i.e., it hardly couples
to the WG mode [see the bottom panel of Fig. 2(d)]. Such a strong
field localization not only causes an effective local index change
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Fig. 2. Schematic and principle of cavity-dumped Fano laser. (a) Schematic of the optically modulated cavity-dumped Fano laser based on a Fano mir-
ror formed by coupling a photonic crystal waveguide with a side-coupled nanocavity. (b) Example of calculated amplitude of reflection coefficient (red line),
transmission coefficient (blue line), and out-of-plane scattering (green line) of a Fano mirror. The intrinsic Q-factor Qv and coupling Q-factor Qc of the
nanocavity are 120,000 and 500, respectively. (c) Principle of the switchable (Fano) mirror. With the blueshift of the nanocavity resonance, the lasing wave-
length (solid vertical red arrow) will partially track the peak of the reflection spectrum (solid black curve), but the effective detuning will increase, leading
to a reduction in reflectivity. (d) Calculated (normalized) optical intensity profiles (|E|2) of the two relevant optical modes, both shown in the center plane
of the PhC membrane. The colorbar is saturated at 0.5 for clarity. The upper panel shows the Fano mode (corresponding to the second-order mode of the
L7 nanocavity), in which the laser oscillates, and the lower panel shows a higher-order mode (corresponding to the third-order mode of the L7 nanocavity),
which is mainly concentrated in the L7 nanocavity and used for modulating the nanocavity and thereby the right mirror.

through optical nonlinearities that quickly blueshift the resonant
frequency of the nanocavity, but also ensure that the nanocavity
rather than the entire laser gets modulated. During the resonance
shift, the lasing wavelength will partially track the nanocavity
resonance, but with an increasing effective detuning [33], leading
to a reduction (increase) in reflectivity (transmissivity) of the laser
mirror [Fig. 2(c)]. Thus, the photons stored in the laser cavity are
coupled out via the through-port.

3. DEMONSTRATION OF CAVITY DUMPING

Under constant pumping, the Fano laser oscillates in a single mode,
as observed in our previous works [32,35]. Figure 3(b) depicts the
output peak power versus pump power, showing a clear transition
to lasing at a threshold pump power of −5 dBm. The measured
maximum output power is about −50 dBm. For comparison,
a PhC line-defect laser, which can effectively be considered as a
Fabry–Perot (FP) laser, is also characterized [Fig. 3(c)]. The FP
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laser is identical to the side-coupled nanocavity used in the Fano
laser except for embedding an active BH into the nanocavity. The
FP laser is vertically pumped with the same light source as the Fano
laser, and the emission is collected vertically (Supplement 1 B.1 and
B.2 detail the static and dynamic measurement setups). Although
the pumping and collection schemes differ, the two lasers show
very similar characteristics in terms of laser threshold and collected
output power.

To verify the observation of cavity dumping, we measure
the dynamics of the output signal of the Fano laser coupled via
the through-port (emission from the grating coupler) and the
cross-port (emission from the nanocavity). We also characterize
the dynamics of the FP laser by aligning the modulating pulse to
the third-order mode of the L7 nanocavity, where the pump and
modulation powers are the same as for the Fano laser.

The output waveforms of the Fano laser [Fig. 4(a), after sub-
tracting the noise of the erbium- doped fiber amplifier (EDFA)
(Supplement 1 D)] differ qualitatively between the through- and
cross-ports. The through-port signal exhibits a high-contrast
“peak,” while a “dip” appears in the cross-port signal [Fig. 4(a)].
The cross-port signal directly reflects the energy stored in the laser
cavity, which follows an opposite time evolution as the through-
port signal that reflects the cavity-dumped energy. This is a typical
feature of cavity-dumped lasers [16,18,19]. In contrast, the output
signal from the FP laser evolves in the same way as the injected
signal, reflecting the conventional gain-modulation scheme.

The measured spectra of the Fano laser are asymmetric with an
enhanced blue component seen in both through- and cross-port
signals [Fig. 4(b)], which is in accordance with the modulation
mechanism of the Fano mirror [Fig. 2(c)]. The spectral broadening

is much larger for the through-port signal than for the cross-port
signal, which is consistent with their waveforms [Fig. 4(a)]. The
measurements can be well fitted by our numerical simulations
(Supplement 1 A.2 and A.3), cf. Figs. 4(c) and 4(d), showing that
the corresponding maximum amplitude change of the reflection
coefficient of the Fano mirror is smaller than 0.1 [see the red curve
in Fig. 4(e)]. In addition, the loss of the Fano laser is varying in
time and is governed by the mirror loss, which increases rapidly
after the arrival of the modulating pulse [see the upper panel of
Fig. 4(f )] due to the resonance shift of the nanocavity. The Fano
laser switches from the initial “ON” state to the “OFF” state as
the loss suddenly exceeds the gain. In contrast, the loss of the FP
laser remains constant [see the lower panel of Fig. 4(f )], in accor-
dance with the gain modulation due to linear absorption of the
modulated light in the third-order mode of the L7 nanocavity
(Supplement 1 C.3). Although the nonlinear absorption in the
nanocavity (including two-photon absorption and free-carrier
absorption) can also lead to the transmissivity increase of the Fano
mirror, it is unfavorable for high-power pulse generation, causing
a reduction in peak power by 30% according to simulations. It
should be emphasized that for the Fano laser, the measured wave-
forms are limited by the time resolution of the oscilloscope, which
is not the case for the FP laser due to the long duration of its output
pulse. The actual pulse peak power of the Fano laser is 50% higher
than the measured value [see the inset in Fig. 4(c)]. Although cavity
dumping is an effective approach to generate ultrashort pulses,
in our case, the pulse suffers from a relatively long tail, which is
due to the long lifetime of free carriers generated in the nanocavity
[38]. In addition, following the cavity dumping, when the gain
eventually exceeds the loss as the Fano resonance shifts back [see the
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upper panel of Fig. 4(f )], the laser switches from the “OFF” state
back to the “ON” state, releasing a “secondary pulse” due to cavity
Q-switching [33], thus adding a kink and elongating the tail of the
output waveform, cf. Figs. 4(a) and 4(c). Our theoretical model
predicts that for larger modulation power, the “primary” and “sec-
ondary” pulses can be well separated in time, which narrows the
time width of the main pulse (Supplement 1 C.2). This indicates
that a short pulse may still be generated even in the presence of a
long carrier lifetime.

4. DYNAMICS CHARACTERISTICS

Next, we compare the dynamics of the Fano laser and FP laser in
dependence of the modulation and pump powers. The power
value is measured at the final detector, and the estimated ratio of
the coupling efficiencies (from the output of the laser mirror to the
detector) of the Fano and FP lasers is about 2–6. The peak power of
the Fano laser increases efficiently with both the modulation power
[Fig. 5(a)] and pump power [Fig. 5(d)], which is not the case for the
FP laser [Figs. 5(b) and 5(e)]. This is also reflected in their corre-
sponding spectra (Supplement 1 C.1), and in accordance with our
simulations (Supplement 1 C.2). A direct comparison is provided
in Fig. 5(c) (varying the average modulation power, while keeping
the pump power constant) and Fig. 5(f ) (varying the pump power,
while keeping the modulation power constant). The peak power
of the output pulse from the Fano laser is more than one order of
magnitude higher than the FP laser (11–33 times when normalized
by the coupling efficiency). According to our simulations, a further
improvement by more than two orders of magnitude should be

achievable for higher modulation powers [Fig. 5(c)], which are,
however, not attainable in our experimental setup. This reflects the
intrinsic advantage of the cavity-dumping scheme enabled by the
Fano laser compared to the gain-modulation scheme, cf. earlier
discussion of the trade-off between the output peak power and
modulating pulse energy (Supplement 1 A.1 and A.3). For optical
pumping, the ratio of the output peak power with respect to the
average input modulation power, P p

o /P p
i , increases monotonically

with P p
i for the Fano laser [Fig. 5(c), Supplement 1 A.2], while

the peak power of the FP laser saturates [Fig. 5(c)], which is due to
carrier density saturation under optical modulation (Supplement
1 A.3). Although such a saturation effect is expected to be elimi-
nated under electrical modulation, which is beyond the scope of
this work and requires further investigations, our preliminary sim-
ulations show that compared to the FP laser, the pulse peak power
of the Fano laser is still much higher and increases much faster with
the modulation/pump power, due to the nature of cavity dumping.

5. DISCUSSION AND CONCLUSION

Theoretical fits to the experimental results suggest that the ini-
tial lasing wavelength of the Fano laser is slightly detuned with
respect to the peak of the Fano mirror reflectivity due to fabri-
cation imperfections, which degrades the quality of the output
pulse. This can be alleviated by using a microheater [39] to tune
the nanocavity resonance or the phase delay in the WG. The slow
carrier lifetime in the nanocavity sets a limit on the pulse duration
and thus the modulation speed of the Fano laser. This problem
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might be overcome by employing carrier sweeping [40], or replac-
ing the nanocavity material with one where instantaneous optical
Kerr [41] or Pockels electro-optic [42] effects dominate. The
frequency chirping imposed on the out-coupled pulse, appearing
to be unavoidable for Fano laser modulation, is not a problem for
on-chip applications because the optical interconnect distances
are so short that the effects of the pulse dispersion are negligible.
According to our simulations, although the absorbed energy for
modulation (∼16 fJ/pulse) is currently larger than the generated
pulse energy (∼0.85 fJ/pulse), the modulation energy can be
significantly decreased by increasing the Q-factor or reducing the
mode volume of the nanocavity, which can lead to a higher localiza-
tion of the nanocavity field and thus stronger optical nonlinearities,
as verified by PhC nanocavity switches [38,43]. However, as a high
Q-factor can limit the operation speed, a smaller mode volume
might be more favorable. For example, if the mode volume of the
nanocavity is reduced by a factor of 20, which is feasible by employ-
ing the effect of extreme dielectric confinement [44], the generated
pulse energy (0.85 fJ/pulse) will exceed the modulation energy
(0.83 fJ/pulse), acting as an optical transistor. A more efficient
modulation associated with a smaller mode volume could also help
in narrowing the pulse width (Supplement 1 C.2).

In summary, we have experimentally demonstrated an ultra-
small cavity-dumped microscopic laser based on optical Fano
resonance. By optically modulating the nanocavity-based Fano
mirror, the laser generates optical pulses with peak power more
than one order of magnitude higher than a corresponding gain-
modulated FP laser. The cavity-dumping scheme relaxes the
trade-off between the output peak power and modulating energy,
an inherent issue for conventional gain-modulated lasers, and
the small mode volume of the nanocavity helps reduce the energy
consumption. Importantly, the laser cavity based on a Fano mirror
sustains only a single lasing mode, essentially being a bound-state-
in-the-continuum [35], ensuring that cavity dumping rather than
mode switching is achieved. Our scheme based on optical Fano
resonance can be extended to other configurations, including ver-
tical [6] and hybrid integration [6,45], and can be combined with
electrical modulation [46,47], which is essential for low-power,
ultrafast chip-scale applications including conventional optical
communication and computation [48–50], as well as spiking
neuromorphic networks [51–53].
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