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Summary (English)

In the past decades, more and more areas of human life have become influenced by
networked cyber-physical systems (CPS). Increasingly, we trust these systems to exe-
cute critical functions, such as controlling our cars and airplanes and managing dan-
gerous processes in factories and energy systems. Hence, these CPS have stringent
safety, real-time, and security requirements. In this thesis, we consider CPS that are
using Time-Sensitive Networking (TSN) for communication. The IEEE 802.1 TSN
standardization is developing a “toolbox” of many standards that extends Ethernet for
safety-critical and real-time applications in several areas, e.g., automotive, aerospace,
or industrial automation. TSN-based distributed CPS are composed of end-systems in-
terconnected by network switches and duplex physical links; in TSN, communication
streams from safety-critical and real-time applications can share the same communica-
tion channel with less-critical streams safely. However, the flexibility of TSN comes
at the high price of a huge and poorly understood configuration space. TSN has many
“configuration knobs”, that decide, e.g., the real-time transmission of critical traffic via
so-called Gate Control List (GCL) schedules, the stream priorities and their assignment
to queues, and the routing of streams on disjoint paths to achieve fault-tolerance.

Most TSN scheduling mechanisms are designed for homogeneous TSN networks, in
which all network devices must have at least the TSN capabilities related to scheduled
gates and time synchronization. However, this assumption is often unrealistic since
many distributed applications use heterogeneous TSN networks with legacy or off-the-
shelf end-systems that are unscheduled and/or unsynchronized. In this thesis, we first
propose a new scheduling paradigm for heterogeneous TSN networks that intertwines
a network calculus worst-case interference analysis within the scheduling step. Thus,
we support heterogeneous TSN networks featuring unscheduled and/or unsynchronized
end-systems while guaranteeing the real-time properties of critical communication. Se-



ii

curity is an important requirement in distributed CPS. We highlight the importance of
addressing security at the same time with safety and timing requirements. We con-
sider the Timed Efficient Stream Loss-Tolerant Authentication (TESLA) low-resource
multicast authentication protocol to guarantee the security requirements, and redundant
disjunct message routes to tolerate link failures. Given a TSN-based distributed CPS, a
set of applications with tasks and messages, as well as a set of security and redundancy
requirements, in the second part of the thesis we are interested to synthesize a system
configuration such that the real-time, safety, and security requirements are upheld.

TSN is used within the computing continuum, from interconnecting IoT devices to
the networks used in Edge Computing and Cloud Computing data centers. However,
as systems become larger and more interconnected, the threat level increases and un-
trusted devices pose high security risks. Hence, in the final part of the thesis, we con-
sider the use of Remote Attestation (RA) to authenticate the functionality of a remote
device, thus, allowing for the provision of strong assurance guarantees. We propose
solutions for the automatic management of resources in the IoT to Edge Computing
continuum to integrate dynamic Edge applications with safety and security-critical real-
time applications. We show that our approach generates dependable configurations that
can meet the timing constraints of critical applications, have enough resources to per-
form RA for security, and can accommodate Edge applications.

The configuration synthesis challenges tackled in the thesis form intractable combina-
torial optimization problems. We have used a variety of optimization algorithms, from
problem-specific heuristics to metaheuristics such as Simulated Annealing, and exact
methods such as Constraint Programming, to tackle these problems. These approaches
are evaluated on synthetic and realistic test cases of different sizes, and their advantages
and disadvantages are discussed and compared to the related work. The approaches
proposed in the thesis have been implemented as open-source software prototypes and
have been validated via simulations.



Summary (Danish)

I de seneste årtier er flere og flere områder af menneskers liv blevet mere afhangi-
ge af og påvirkede fra cyber-physical systems (CPS). Vi stoler i stigende grad på,
at disse systemer udfører kritiske funktioner, såsom kontrol af vores biler og fly og
styring af farlige processer i fabrikker og energisystemer. Derfor har disse CPS stren-
ge safety-, realtids- og securitykrav. Fokus for denne afhandling er CPS, der bruger
Time-Sensitive Networking (TSN). IEEE 802.1 TSN- standardiseringen udvikler en
"værktøjskasse"med mange standarder, der udvider Ethernet til sikkerhedskritiske og
realtidsapplikationer på flere områder, f.eks. bilindustrien, rumfart eller industriel auto-
mation. TSN-baserede distribuerede CPS er sammensat af end-systems forbundet med
netværksswitches og duplex fysiske links; i TSN kan kommunikationsstrømme fra sik-
kerhedskritiske og realtidsapplikationer dele kommunikationskanal med mindre kriti-
ske strømme. Fleksibiliteten ved TSN kommer dog til den høje pris af en stor og dårligt
forstået configuration space. TSN har mange "konfigurationsknapper", som f.eks. be-
stemmer realtidstransmissionen af kritisk trafik via såkaldte Gate Control List (GCL),
streamprioriteter og deres tildeling til køer og routing af streams på usammenhængende
stier for at opnå fejltolerance.

De fleste TSN scheduling mekanismer er designet til homogene TSN-netværk, hvor
alle netværksenheder skal have mindst TSN-kapaciteter relateret til scheduled gates og
tidssynkronisering. Denne antagelse er dog ofte urealistisk, da mange distribuerede ap-
plikationer bruger heterogene TSN-netværk med ældre eller off-the-shelf end-systems,
der er unscheduled og/eller usynkroniserede. I denne afhandling foreslår vi først et
nyt scheduling methode for heterogene TSN-netværk, der bruger en network-calculus
worst-case interferensanalyse inden for planlægningstrinnet. Så støtter vi heterogene
TSN-netværk med unscheduled og/eller usynkroniserede end-systems, mens vi garan-
terer realtidsegenskaberne for kritisk kommunikation. Security er et vigtigt krav i di-
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stribueret CPS. Vi viser, at det er meget gavnligt at adressere security samtidig med
krav til safety og timing. Vi overvejer TESLA (Timed Efficient Stream Loss-Tolerant
Authentication) lavressource multicast-autheticationprotokol for at garantere security
og redundante disjunkte beskedruter til at tolerere linkfejl. Givet en TSN-baseret di-
stribueret CPS, et sæt applikationer med tasks og beskeder, samt et sæt security- og
redundanskrav, er vi i anden del af afhandlingen interesseret i at syntetisere en system-
konfiguration, således at real-time, safety, og securitykrav overholdes.

TSN bruges inden for computing continuum, fra sammenkobling af IoT-enheder til
netværk brugt i Edge Computing og Cloud Computing-datacentre. Men efterhånden
som systemerne bliver større og mere sammenkoblede, stiger trusselsniveauet, og upå-
lidelige enheder udgør højere sikkerhedsrisici. Derfor overvejer vi i den sidste del af
afhandlingen brugen af Remote Attestation (RA) til at autentificere funktionaliteten
af en enhed, hvilket giver mulighed for at give stærke assurance garantier. Vi foreslår
løsninger til automatisk styring af ressourcer i IoT til Edge Computing-continuum for
at integrere dynamiske Edge-applikationer med safety- og securitykritiske realtidsap-
plikationer. Vi viser, at vores tilgang genererer dependable konfigurationer, der kan
opfylde tidsbegrænsningerne for kritiske applikationer, har nok resourcer til at udføre
RA for sikkerheden og kan rumme Edge-applikationer.

Konfigurationsudfordringerne, der tages op i afhandlingen, danner intractable kombi-
natoriske optimeringsproblemer. Vi har brugt en række forskellige optimeringsalgorit-
mer, lige fra problemspecifikke heuristika til metaheuristik såsom Simulated Annea-
ling, og eksakte metoder såsom Constraint Programming, til at tackle disse problemer.
Disse algoritmer evalueres på syntetiske og realistiske testcases af forskellig størrelse,
og deres fordele og ulemper diskuteres og sammenlignes med relaterede arbejde. De
foreslåede tilgange i afhandlingen er implementeret som open source software prototy-
per og er blevet valideret via simuleringer.
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CHAPTER 1

Introduction

1.1 Motivation

Safety-critical systems are those whose failure may have catastrophic consequences,
such as environmental or economic damage or even loss of life [Kni02]. Cyber-Physical
System (CPS) are those that combine computational capabilities with the ability to in-
teract with the physical world [BG11], and thus can be potentially dangerous to hu-
mans. An example could be a computer-controlled robotic arm in a factory or a lane-
keeping assistant in a vehicle. Hence, many CPS are also safety critical. With the
replacement of mechanical controllers by hardware and software, and the increase in
computing power, more and more advanced applications become possible. Nowadays,
CPS are distributed, with many components, enabling autonomous driving, assisted
surgeries and efficient energy grids [SWYS11, BG11, Wol09]. Unfortunately, the im-
provements to quality of life or other areas, that these systems offer, are not without
risk. There have been cases in which improper systems design and configuration have
led to serious consequences, for example, during the Ariane V launch failure [ESA96]
or the crash of the London city ambulance dispatch system [Kni02]. In consequence,
properly configuring and protecting these systems is of the highest priority.

A careful planning process is necessary for the engineering and operation of a safety-
critical system. The IEC 61508 functional safety standard [Int10], which has been
an inspiration to many other industry-specific standards, defines a life cycle of a sys-
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tem split into fifteen individual phases [Rau14, SS11], of which we summarize the
most important ones for this work. The cycle begins with risk assessment stages, in
which potential hazards are identified, the risk of these appearing quantified and safety-
requirements to mitigate these risks are determined. Functions which are necessary to
safeguard the system are determined and assigned a Safety Integrity Level (SIL), based
on their expected reliability. In the next step, the system’s hardware and software is
designed based on the identified requirements and validated by intensive testing.

In many safety-critical systems, timing is of great importance, especially in networked
systems, where many components have to collaborate. For example, an important mes-
sage like the brake signal in a vehicle, or the emergency stop signal at a factory ma-
chine, should have a bounded latency, that is, arrive before a certain deadline and not
be unexpectedly delayed or lost. In some applications, the variation in arrival time be-
tween different instances of the same message, called jitter, is also critical [MAS+18].
The correctness of these systems’ behavior depends on the timing: A brake signal ar-
riving ten seconds late is worthless and may be catastrophic. Such systems are also
called real-time systems [KS22]. In real-time systems, there is a distinction between
soft and hard deadlines, where missing a soft deadline is sometimes acceptable, but de-
creases the systems’ usefulness, while missing a hard deadline may have catastrophic
consequences [KS22].

Many real-time systems use special operating systems and networking technologies,
which differ from those used in the consumer market. While consumer technologies
are optimized for speed and efficiency, they lack the mechanisms for providing the
guarantees necessary in safety-critical and real-time systems [Dec05]. For example,
to be able to guarantee timing requirements, real-time technologies provide hardware
that allows a designer to specify schedules, i.e., timetables which specify when which
message is sent and when which task is executed. The construction of such schedules,
as well as other associated optimization problems such as task mapping or routing,
are typically NP-hard, since the associated decision-problem is NP-complete. [Ste10,
SOLM22] One such real-time technology, which is the focus of this thesis, is Time-
Sensitive Networking (TSN), which allows the scheduling of messages in a network
by synchronizing devices and employing networking switches which can selectively
forward messages of different priorities using Gate-Control Lists (GCLs). More details
on TSN can be found in Section 1.2.

Historically, many safety-critical systems were disconnected from the outside world,
which gave them an extra layer of protection from malicious attacks from outsiders, and
which lead to research focusing on safety and reliability for those systems. However,
with the advent of, for example, smart cars, smart grids or Industry 4.0, there are safety-
critical systems that are inherently federated and rely on connection to other systems or
the internet for their functionality. Unfortunately, this also makes it easier for external
entities to attack these systems, with potentially catastrophic consequences [KK12].
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An example of an attack on critical infrastructure is the Maroochy water services
breach, in which a disgruntled ex-contractor managed to hack into the control sys-
tems of the company and cause one million liters of untreated sewage to enter lo-
cal waterways [SM07]. Another famous example of an attack on critical infrastruc-
ture is the Stuxnet malware discovered in 2010 [CAN11]. It was probably targeted
at Iran’s nuclear program and managed to infect an air-gapped (disconnected from
the internet) nuclear enrichment facility via the use of USB-flash drives. It exploited
multiple zero days (undiscovered vulnerabilities) to be able to stealthily change the
frequency of connected industrial drives, e.g., nuclear centrifuges, and thus damage
or destroy them [CAN11]. A more recent example are the sophisticated attacks on
Ukraine’s energy grid in 2015 and 2016 that left more than 225.000 customers without
power [Lee17].

Also in Denmark, there have been successful attacks on critical-infrastructure: Re-
cently, an attack on an external supplier of critical software lead to a complete standstill
of the national train network [Tro22]. Other attacks managed to disrupt the operations
of the public service company Kalundborg Forsyning [Hau22] and the energy provider
Vestas [NMFMMT22]. A recent report by the national audit agency found that many
society-critical systems are not prepared for computer system breakdowns or cyberat-
tacks [AJP+22].

Consequently, security has become an important aspect in designing safety-critical net-
works. Integrating security in the design process is not straightforward, since the secu-
rity measures come with their own requirements, which have to be carefully assessed
and integrated, considering the other strict timing and reliability requirements of the
network. We show the importance of considering security in conjunction with other
safety and reliability measures at the design-stage of a safety-critical system. We con-
sider the Timed Efficient Stream Loss-Tolerant Authentication (TESLA) protocol as
an example solution for message authentication, see Chapter 3, and the use of Remote
Attestation (RA) as an example solution to check the integrity of a remote device, see
Chapter 4.

1.2 Time-Sensitive Networking

Time-Sensitive Networking (TSN) is a set of standards and amendments to standards
developed by an IEEE 802.1 working group [Ins16c]. The goal of these standards is
to provide deterministic connectivity, i.e., guaranteed packet transport with bounded
latency and low packet delay variation (jitter) for previously non-deterministic IEEE
802 networks, e.g., those using 802.3 Ethernet. There are several proprietary technolo-
gies, that offer similar functionality, e.g., TTEthernet (SAE AS6802 [Iss11, SBHP11]),
PROFINET [Comb], and EtherCAT [Coma]. However, TSN is an open and flexible
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standard, provides high bandwidth for modern applications and allows multiple traffic
classes on the same wire [DXL+23, Ins16c, SOLM22].

To achieve these goals, TSN defines several “sub-standards” to IEEE 802.1Q [Ins14],
introducing new mechanisms for Ethernet bridges, extensions to the IEEE 802.3 Media
Access Control (MAC) layer, and introducing new protocols. It is not necessary to use
all sub-standards at the same time, rather they should be chosen based on the systems
requirements [SHM+21, LBS19]. TSN gives a system designer a large flexibility at
the cost of a complex configuration problem, where the designer has to decide which
sub-standards to use and how to configure each of them [LBS19]. Table 1.1 lists the
most relevant standards and amendments for our work.

Standard Description
802.1AS-Rev [Ins17a] Timing and Synchronization for Time-Sensitive Applications
802.1CB [Ins17b] Frame Replication and Elimination for Reliability
802.1Qbv [Ins16b] Enhancements for Scheduled Traffic, Time Aware Shaper
802.1Qbu [Ins16a] Frame Preemption
802.1Qci [Ins17c] Per-Stream Filtering and Policing

Table 1.1: Relevant TSN Standards and Amendments.

The fundamental mechanisms that enable deterministic temporal behavior over Ether-
net are, on the one hand, the clock synchronization protocol defined in IEEE 802.1AS-
rev [Ins17a], which provides a common clock reference with bounded deviation for
all nodes in the network, and on the other hand, the timed-gate functionality (IEEE
802.1Qbv [Ins16b]) enhancing the transmission selection on egress ports. The timed-
gate functionality enables the predictable transmission of communication streams ac-
cording to the predefined times encoded in schedules called Gate-Control Lists (GCL).
A stream in TSN is a communication carrying a certain payload size from a talker
end-system (sender) to one or multiple listener end-systems (receivers), which are con-
nected by switches. A stream may or may not have timing requirements. Critical
streams may have maximum end-to-end latency and jitter requirements and are often
transmitted periodically.

Other amendments within TSN (c.f. [Ins16c]) provide additional mechanisms that can
be used either in conjunction with 802.1Qbv or standalone. IEEE 802.1CB [Ins17b]
enables stream identification, based on, e.g., the destination MAC and VLAN-tag fields
in the frame, as well as frame replication and elimination for redundant transmission.
IEEE 802.1Qbu [Ins16a] enables preemption modes for mixed-criticality traffic, allow-
ing express frames to preempt lower-priority traffic. IEEE 802.1Qci [Ins17c] defines
frame metering, filtering, and time-based policing mechanisms on a per-stream basis
using the stream identification function defined in 802.1CB.

We detail the Time-Aware Shaper (TAS) mechanism defined in IEEE 802.1Qbv [Ins16b]
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(a) TSN Switch Internals.
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Figure 1.1: TSN Switch model and Gate Control List.

via the simplified representation of a TSN switch in Figure 1.1a. The figure presents
a scenario in which communication received on one of two available ingress ports will
be routed to an egress port. The switching fabric will determine, based on internal
routing tables and stream properties, to which egress port a frame belonging to the re-
spective stream will be routed (in our logical representation, there is only one egress
port). Each port will have a priority filter that determines which of the available 8
traffic classes (priorities) of that port the frame will be enqueued in. This selection
will be made based on either the PCP field of the 802.1Q VLAN-tag of frames or the
stream gate instance table of 802.1Qci, which can be used to circumvent traffic class
assignment of the PCP code.

As opposed to regular 802.1Q bridges, where the transmission selection sends en-
queued frames according to their respective priority, in 802.1Qbv bridges, there is a
TAS mechanism, providing timed-gates, associated with each traffic class queue and
positioned before the transmission selection algorithm (here depicted as a traffic light).
A timed-gate can be either in an open (o) or closed (C) state. When the gate is open,
traffic from the respected queue is allowed to be transmitted, while a closed gate will
not allow the respective queue to be selected for transmission, even if the queue is not
empty. The state of the queues is encoded in a local schedule (the GCL), depicted in
Figure 1.1b. Each entry defines a time interval and a bitvector, indicating which gates
are open and closed. Hence, whenever the local clock reaches the beginning of the next
time interval, the timed-gates will be changed to the respective open or closed state. If
multiple non-empty queues are open simultaneously, the transmission selection selects
the queue with the highest priority for transmission. The GCL has a limited number
of entries, so care should be taken to create schedules that do not require too many
entries [SOLM22].

The Time-Aware Shaper functionality of 802.1Qbv, together with the synchronization
protocol defined in 802.1ASrev, enables a global communication schedule that orches-
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Figure 1.2: Time-Aware Shaper Determinism Problem (Inspired by [CSCS16]).

trates the transmission of frames across the network such that real-time constraints
(usually end-to-end latencies) are fulfilled. Craciunas et al. [CSCS16] define correct-
ness conditions for generating GCL schedules, resulting in a strictly deterministic trans-
mission of frames with 0 jitter. Apart from the technological constraints, e.g., only one
frame transmitted on a link at a time, the deterministic behavior over TSN is enforced
in [CSCS16] through isolation constraints. Since the TAS determines the temporal be-
havior of entire traffic classes and not of individual frames, the queue state may become
non-deterministic if multiple streams share the same queue and arrive at similar times,
see Figure 1.2, where minor differences in arrival time could affect the queuing order.
Thus, [CSCS16] proposes strict isolation of critical streams by not allowing two criti-
cal streams to be enqueued in the same queue or at the same time. This restriction can
be relaxed if the possible overlap is accounted for in the latency calculations, as shown
in [SOCS18] or Chapter 2.

TSN offers the tools to provide many of the guarantees necessary for safety-critical
real-time networks. However, it also comes with a huge amount of different sub-
standards and their configuration, in which the system designer has to make the right
choices. This is only possible if the designer is aware of possible threats and methods
to counter them. Some of these threats and counters are described in the next section.

1.3 Safety and Security Threats and Protections

In this chapter, we describe some possible threats to safety-critical networks and how
to protect against them. Hereby, we differentiate between non-deliberate threats in
Section 1.3.1 and deliberate threats in Section 1.3.2.
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1.3.1 Safety Protections

One important threat to safety-critical networks are faults, a network addressing these
faults is called fault-tolerant. The authors in [NEL90] give the terms fault, error and
failure a specific meaning: A fault is an anomalous condition of the system, caused
by physical damage, radiation, electromagnetic interference, but also by implementa-
tion mistakes. An error is the manifestation of a fault in the system, leading to an
unintended logical state. A fault does not necessarily have to result in an error. If an
error leaves the systems unable to perform its function, we speak of a failure. Faults
can be categorized by their duration: A transient fault occurs once and disappears. An
intermittent fault occurs in regular intervals. A permanent fault never disappears.

A system designer should anticipate faults and configure the system, such that they
cannot turn into an error or failure. Dependability is the measure of how well a system
can perform its intended function in the presence of faults [NEL90]. It can be quantified
deterministically (the system tolerates X faults) or probabilistically (the system can
perform its function at time Y with a probability Z). This probabilistic measure is also
called reliability.

To improve the reliability of a system, a lot of different techniques are used. A fun-
damental technique is redundancy in hardware and software [NEL90]. The same pro-
cessing unit, cable, or function can be replicated multiple times. When a fault occurs
in one unit, it can be masked by the correct functionality of the other units. To de-
cide which result is the correct one, if the faulty unit forwards a wrong result, there
can be a voting mechanism in which only the result with the most votes is forwarded.
Sometimes it is also possible for a unit to self-detect its faulty state and prevent its
result from being forwarded. Another technique is the detection of errors, followed
by diagnosis, containment, and repair. Some error can be corrected immediately, e.g.,
using error-correcting codes. Others may be corrected by replacing the faulty part or
by reconfiguring the system to avoid it.

1.3.2 Security Protections

Another large threat to safety-critical networks are deliberate attacks, which security
measures attempt to prevent. Already during the initial risk assessment stage of safety-
critical product development should security be considered. A common tool used in
security research are threat models [Sho14]. The idea is to consider the product being
built and theorize what an attacker could do given certain capabilities, to then decide
on countermeasures.
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Fundamental Goals

It is difficult to clearly divide security goals and solutions into separate categories.
However, three fundamental goals in security that are often mentioned are confiden-
tiality, integrity, and availability [CWW+16].

The goal of confidentiality is to ensure that only authorized entities can see a piece of
information. Methods to achieve confidentiality include encryption, authorization, and
access control, including physical access [GT14]. Some examples of confidentiality
measures in safety-critical networks are presented in [MYPB14] and [JEP12], where
the authors propose a scheduling scheme to prevent unauthorized tasks from reading
information from other tasks and use message-encryption to prevent an eavesdropper
on the network from learning the content of messages.

Integrity is the concept that only authorized entities should be able to create or modify
information [CWW+16]. Many methods to provide integrity are also used for fault-
tolerance purposes, as they protect both again faults and deliberate attacks. Some ex-
amples include checksums, error-correcting codes, backups, and redundancy [GT14].
A method to provide integrity that is unique to security is authentication. It attempts
to ensure that an entity is who they claim to be, and that its communication is gen-
uine [CWW+16, GT14]. Remote Attestation is another security method, which enables
the remote checking of a device’s integrity. We present these methods in more details
in Section 1.3.2 and Section 1.3.2, since we use them to provide security guarantees in
Chapter 3 and Chapter 4.

The last fundamental goal of security is availability, the notion that systems and infor-
mation are accessible and functional [GT14]. Methods to ensure availability include
physical protection, redundancy, backups, and traffic filtering. Attacks against avail-
ability include, for example, physical destruction or Denial of Service (DoS) attacks,
where a system is flooded with fake messages. Much of the work that considers re-
dundancy is also applicable here, possibly in conjunction with remote attestation to
identify misbehaving end-systems. There is also, for example, some work that uses
802.1Qci filtering abilities to protect against DoS in TSN [MHKS19].

Authentication

In the context of secure network communication, it is a common assumption that a so
called man-in-the-middle can listen to and modify messages between two end-systems.
In this case, we want to ensure that a modified message is not accepted at the listener,
which is called message authentication [MVOV96, Chapter 9].
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The most commonly used schemes for message authentication are message authentica-
tion codes (MACs) and digital signatures [MVOV96]. A MAC is calculated on a given
message using a shared secret key and a cryptographic primitive, e.g., a cryptographic
hash function, and appended to the message. Without the knowledge of the key, it
should be infeasible to compute the correct MAC for a given message. An end-system,
which possesses the secret key, can thus verify that a received message is genuine, by
calculating the MAC of the message and comparing it to the received MAC, as can be
seen in Figure 1.3a. This is called a symmetric scheme, since the same key is used at
both ends. Digital signatures are an example of an asymmetric scheme, where different
keys are used at the sender and the receiver. The sender possesses a secret private key,
with which he calculates a signature, which is appended to the message. The receivers
possess a public key, which allows them to decrypt the signature, without being able to
create the same signature themselves, as can be seen in Figure 1.3b.
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Figure 1.3: Comparison of Symmetric and Asymmetric Authentication.

The advantage of symmetric authentication is its simplicity and efficiency, but is prob-
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lematic in a setting with many end-systems [BDF01]. If all end-systems share the
same key, just one compromised end-system would allow an attacker to impersonate
all other end-systems. To avoid this, a different key for each end-system pair could
be used. However, this comes with a storage overhead, and is infeasible in a multi-
cast setting, where the same message is sent to a lot of receivers. In that case, the
size of the message would grow linearly with the number of receivers, as a differ-
ent MAC would have to be appended for each receiver. Asymmetric authentication
avoids these problems, but comes at the cost of a high bandwidth and computation
overhead [PCTS02, MVOV96]. A hybrid scheme that works well for multicast authen-
tication is Timed Efficient Stream Loss-Tolerant Authentication (TESLA), which we
explain in detail in Chapter 3. It uses efficient symmetric authentication with MACs,
but uses time for asymmetry, by keeping the key secret until the associated message
has arrived. It relies on time synchronization between end-systems, which is available
in TSN.

Remote Attestation

Verifier
(trusted)

Prover
(untrusted)

1. Generate
challenge c

2. Send challenge c
Attestation code

(protected)
Memory

3. Run attestation
on memory4. Send result r5. Verify r 

Expected  Prover
Memory

Figure 1.4: Remote Attestation Process (Inspired by [SL16]).

Remote Attestation (RA) is a mechanism to ensure the integrity of devices in a net-
work [SL16]. Using RA, a trusted device called verifier can check if an untrusted
device called prover is in a legitimate state. It can, for example, be used in critical sen-
sor networks for medical emergency [KLC+10] or wildfire detection [HHSH06, SL16],
where a compromised or faulty node could report false information or disrupt opera-
tion. A typical RA mechanism is depicted in Figure 1.4. It uses a challenge-response
protocol, where the verifier sends a challenge to the prover. The prover will then ex-
ecute an attestation routine and send back a response based on the challenge and its
internal state, for example a hash of its memory. The verifier knows the expected in-
ternal state and expects a valid response within a certain timeframe. The attestation
routine has to be very carefully implemented to avoid an attacker from forging a valid
response or avoiding detection. This can be achieved using special tamper-resistant
hardware like trusted platform modules (TPMs), carefully written software, or hybrid
approaches that make some assumptions on available hardware. More information can
be found in [SL16].
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1.4 Related Work

The configuration of real-time safety-critical systems is a very broad topic that includes
many research areas such as real-time operating systems, real-time networks, software
engineering and reliable hardware design. Security is a related area that is increasingly
also looked at in this context, as security breaches may impair safety. In the literature
study for this thesis, we focus on optimization problems in real-time networks, espe-
cially those using TSN with the TAS mechanism, and the security mechanisms that
have been considered.

The recent and extensive survey [SOLM22] provides a good overview of the research
in this area. Interesting optimization problems have arisen, for example, in the areas
of task and message scheduling, task mapping and message routing. The survey shows
that, since the publication of the first papers in 2016, the number of publications in this
area has steadily increased (with an exception in 2019). Other surveys [SHM+21] and
[DXL+23] have a wider scope and consider other design steps, scheduling, and queuing
mechanisms, at the expense of detail. The paper by Steiner [Ste10] is widely considered
a seminal work, which inspired many authors. It predates TSN, but it was one of the
first to tackle the per-flow scheduling problem in Ethernet networks. In general, a lot of
the TSN research evolved from earlier work on other real-time networking technologies
like FlexRay or TTEthernet. [PPEP06, TSPS15, CSO16]

Scheduling streams in TSN networks is an NP-hard problem, since the decision prob-
lem whether a schedule is feasible is NP-complete, as it can be reduced to the bin-
packing problem [Ste10, CSO16, SOLM22]. There are two categories of approaches
to solve the scheduling problem: exact approaches that find an optimal solution and
heuristic approaches that find a reasonable solution quickly.

Exact approaches in the literature include Satisfiability Modulo Theories (SMT) [Ste10,
CSCS16], Integer Linear Programming (ILP) [PLCS16, VHB+20] and Constraint Pro-
gramming (CP) [DWZ21, BZP20]. In SMT, scheduling problems are expressed as
first-order logic formulas. The SMT solver searches for an assignment of variables
which satisfies the formula.1 ILP describes the scheduling problem as a collection of
linear inequalities between integer variables. The solver returns an assignment of inte-
ger variables which minimizes a cost function. CP is a more general solution, in which
the solver employs techniques like backtracking and constraint propagation to find a
solution for a problem declared as a set of variables with domains, constraints on these
variables and an optional cost function.

Heuristic approaches include Tabu search [DN16, HGF+20], Simulated Annealing

1If an optimal solution according to a cost function is needed, Optimization Modulo Theories (OMT)
can be used.
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(SA) [BAH+22], Greedy Randomized Adaptive Search Procedures (GRASP) [GP18,
GZRP18], Genetic Algorithms (GA) [PSS19, PO18, MJHPC22] and List Schedul-
ing [PTO19]. The simplest heuristic is List Scheduling, in which streams are or-
dered in a list, e.g., by priority or deadline, and scheduled one-after-another subject
to resource constraints. A method for stream placement here could be As-Soon-As-
Possible (ASAP) or As-Late-As-Possible (ALAP). The other four methods are meta-
heuristics: Their goal is to avoid getting stuck in local optima, which is an issue
when using local search when only improving steps from an initial solution are taken.
GRASP repeatedly selects a solution generated by a greedy randomized algorithm and
improves it by a local search. Tabu search follows a local search, but keeps a list of
previously selected solutions which become forbidden. To avoid local optima, it allows
worsening steps, if no other steps are available. SA follows a local search, but allows
worsening steps to be taken with a certain probability, which decreases according to a
so-called temperature function. GA is inspired by biology. With GA, there is a pool of
candidate solutions and new solutions can be constructed by combining two or more
existing solutions with random mutations. The solutions disappear from the pool with
a certain probability, which is determined by the cost function. The best solution after
a certain number of generations is returned.

These scheduling problems have often been extended with other considerations. One
extension is to consider the scheduling of tasks alongside messages, as distributed real-
time systems often have complex dependencies between task executions and message
transmission [FY21, BZP20]. Other extensions also consider the mapping of tasks, i.e.,
the assignment of tasks to end-systems, to meet timing, computing resource or energy
constraints [Sin06, GBI21, SP18]. Some works consider reliability measures such as
message replication [FCD22, FDCL22] and redundant routing [AHM20, GZPS17].

Finally, routing of messages has been extensively covered [GHKS98, WH00]. Mul-
tiple authors have also looked at the combined routing and scheduling problem. The
authors in [SDT+17, NDR18b] provide ILP solutions and show that optimizing routes
increases schedulability compared to fixed routes, and that solving time is more in-
fluenced by stream amount than topology size. In [TSPS15] the authors used a Tabu
search and in [LPS16] a GRASP metaheuristic to solve similar problems. While some
works do a joint routing and scheduling optimization, others do routing and scheduling
in separate steps. The authors in [SGRT17] show that the 2-step approach decreases the
solution quality for large problems at the benefit of shorter solving times. In [PTO19]
the authors presented a heuristic for a more complex application model that allows
multicast streams. They were able to solve problems that were infeasible to solve using
ILP or separate routing and scheduling. In [PD12] the authors provide a simple set
of constraints to solve a general multicast routing problem using constraint program-
ming, which [GZPS17] builds on that to solve a combined topology and route synthesis
problem.

Recently, authors have started to present security-aware scheduling problems. A good
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overview of potential attacks on TSN networks is presented in [EBN+21]. One de-
sirable security property is confidentiality, such that a man-in-the-middle cannot un-
derstand the contents of a message. In [JEP12] the authors present a security-aware
task and message scheduling problem, in which messages can be encrypted to provide
confidentiality. Each encryption requires an extra task and can either be done slowly in
software or faster on special hardware units, the amount of which they try to minimize.
The authors in [MAS+19] solve a similar problem, where they try to maximize the
security level of applications, by using stronger encryption, which comes at the cost of
increasing time overhead. In [AEP18] the authors provide an efficient algorithm that
can solve a similar problem online, i.e., at runtime. The authors in [MYPB14] present
a threat model in which information from critical tasks can leak to attacker-controlled
non-critical tasks through the use of a shared cache. They propose a scheduling algo-
rithm that avoids placing non-critical tasks after critical tasks as much as possible, to
avoid time-intensive cache flushes.

A second important property is integrity/authentication, such that a man-in-the-middle
cannot modify a message unnoticed. In [MAS+19] the authors solve a combined rout-
ing and scheduling problem for TSN with authentication using symmetric block ci-
phers. The authors in [ZQLY19] provided a task and message scheduling formulation
for TTEthernet using the asymmetric TESLA protocol for authentication. Another im-
portant property is privacy. In the context of task mapping or message routing, there
may be a measure of trust given to each end-system or network link. One work that
considers this is [SAR+17], in which the problem is to map tasks with different privacy
requirements to edge and cloud resources, where edge resources are more trusted and
have shorter response times.

To summarize, there are many promising research directions in the area of safety-
critical real-time systems. Since the analysis and scheduling of messages on TSN
has been extensively researched, many researchers have extended these problems with
other aspects such as task mapping, routing, fault-tolerance and security. Exact so-
lutions are now often complemented by fast and efficient heuristics that enable the
configuration of big networks and live reconfiguration. Initial work has been done on
security, and we expect this area of research to grow as increasingly interconnected
safety-critical systems enter the market.
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1.5 Thesis Overview and Contributions

The thesis includes the following three papers:

• Paper A: Reusch, N., Barzegaran, M., Zhao, L., Craciunas, S.S. and Pop, P.,
2023. Configuration Optimization for Heterogeneous Time-Sensitive Networks.
Submitted to Real-Time Systems Journal, special issue with invited papers from
the 30th International Conference on Real-Time Networks and Systems.
This paper is an extended version of: Barzegaran, M., Reusch, N., Zhao, L.,
Craciunas, S.S. and Pop, P., 2022, June. Real-Time Traffic Guarantees in Het-
erogeneous Time-Sensitive Networks. In Proceedings of the 30th International
Conference on Real-Time Networks and Systems (RTNS) (pp. 46-57). [BRZ+22]

• Paper B: Reusch, N., Craciunas, S.S. and Pop, P., 2022. Dependability-aware
routing and scheduling for Time-Sensitive Networking. IET Cyber-Physical Sys-
tems: Theory & Applications. [RCP22]
This paper is an extended version of: Reusch, N., Pop, P. and Craciunas, S.S.,
2020, December. Safe and secure configuration synthesis for TSN using con-
straint programming. In 2020 IEEE Real-Time Systems Symposium (RTSS) (pp.
387-390). [RPC20]

• Paper C: Reusch, N. and Pop, P., 2023. Mapping and Scheduling Real-Time
Applications on Edge Computing Platforms with Remote Attestation for Secu-
rity. To be submitted to ACM Transactions on Design Automation of Electronic
Systems.
This paper is an extended version of: Reusch, N. and Pop, P., 2021. Scheduling
Real-Time Applications on Edge Computing Platforms with Remote Attestation
for Security. In 2021 IEEE/ACM Symposium on Edge Computing (SEC) (pp.
403-408). [RP21]

Additionally, the following papers, not included in this thesis, were published during
the Ph.D studies:

• Reusch, N., Zhao, L., Craciunas, S. S., & Pop, P., 2020. Window-Based Sched-
ule Synthesis for Industrial IEEE 802.1Qbv TSN Networks. Proceedings of 16Th
IEEE International Conference on Factory Communication Systems (WFCS) (pp.
31-34). [RZCP20]

• Kyriakakis, E., Tange, K., Reusch, N., Zaballa, E. O., Fafoutis, X., Schoeberl,
M., & Dragoni, N., 2021. Fault-tolerant Clock Synchronization using Precise
Time Protocol Multi-Domain Aggregation. Proceddings of 2021 IEEE 24th In-
ternational Symposium on Real-Time Distributed Computing (ISORC) (pp. 114-
122). [KTR+21]
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Paper A in Chapter 2 addresses the configuration problem of heterogeneous networks,
in which end-systems may not be time synchronized or scheduled. This challenges a
fundamental assumption that most of the related work on network scheduling makes.
However, removing such an assumption is highly relevant for systems with legacy or
off-the-shelf hardware. Without the synchronization of end-systems, we do not know
the arrival time of streams on the first switch, and we do not know the order of ar-
rival of multiple streams sharing the same queue. Consequently, we cannot schedule
streams/frames individually, but we have to resort to scheduling windows with enough
capacity for all streams. To be able to guarantee a streams’ deadline, we employ a
Network-Calculus-based worst-case delay analysis. I first proposed this window-based
scheduling approach in [RZCP20], where we presented a simple heuristic to solve the
problem. This work was expanded by Barzegaran et al. in [BRZ+22] with a Constraint
Programming formulation, which also allowed the optimization of window offsets, in
addition to window lengths. Finally, the paper that is presented in this thesis, is an ex-
tension I did of [BRZ+22], which proposes a Simulated Annealing-based metaheuris-
tic. The metaheursitic is compared to the Constraint Programming solution and shown
to be much more scalable.

Paper B in Chapter 3 addresses the configuration of networks with high-dependability
requirements. In that paper I formulate an extensive combinatorial optimization prob-
lem that includes complex applications, composed of tasks with message dependen-
cies, that have real-time but also security and redundancy requirements. It is the
first work that proposes the use of the TESLA protocol to provide authentication for
security-critical messages in a TSN network. This mandates the execution of additional
tasks and the sending of additional messages with their own timing and ordering con-
straints. I also assume the possibilities of links failing (or being blocked by an attacker),
against which we defend by routing streams among multiple disjunct paths. I devel-
oped and compared an optimal Constraint Programming and a fast problem-specific
Simulated Annealing solution. This paper was first published as work-in-progress
in [RPC20], before an extended version with the Simulated Annealing solution was
published in [RCP22].

Paper C in Chapter 4 addresses the configuration of Edge Computing platforms and
is the first work, that looks at resource management for edge applications while con-
sidering real-time applications and security. It is also, to be best of our knowledge, the
first work that considers Remote Attestation and its special requirements in a schedul-
ing problem for TSN. Remote Attestation allows checking the integrity of untrusted
devices, but is not easy to configure in real-time environments, due to the need for long
uninterrupted computations for attestation, which may clash with low period real-time
tasks. A special technique is required to securely split the computation into smaller
chunks, which I present in the paper. Building on that technique, I formulated an op-
timization problem and constraints, which minimize the average time between attesta-
tions, while guaranteeing real-time constraints of critical applications and minimizing
latency for dynamically appearing edge applications. The evaluation remains to be
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completed, but we included the evaluation of an earlier version of this work ( [RP21]),
where we solved a simplified version of this problem with fixed task mapping and
routing.

Lastly, we present a test case and scheduling visualization tool in Appendix A. It has
been developed to aid the experiments for the above papers, and is available as an
open-source project on GitHub2 and can be tested in the browser3.

2https://github.com/nreusch/TSNConf
3https://tsnconf-demo.herokuapp.com/

https://github.com/nreusch/TSNConf
https://tsnconf-demo.herokuapp.com/
https://github.com/nreusch/TSNConf
https://tsnconf-demo.herokuapp.com/


CHAPTER 2

Paper A: Configuration
Optimization for

Heterogeneous
Time-Sensitive Networks

Time-Sensitive Networking (TSN) collectively defines a set of protocols and standard
amendments that enhance IEEE 802.1Q Ethernet nodes with time-aware and fault-
tolerant capabilities. Specifically, the IEEE 802.1Qbv amendment defines a timed-gate
mechanism that governs the real-time transmission of critical traffic via a so-called Gate
Control List (GCL) schedule encoded in each TSN-capable network device. Most TSN
scheduling mechanisms are designed for homogeneous TSN networks, in which all
network devices must have at least the TSN capabilities related to scheduled gates and
time synchronization. However, this assumption is often unrealistic since many dis-
tributed applications use heterogeneous TSN networks with legacy or off-the-shelf end
systems that are unscheduled and/or unsynchronized. We propose a new scheduling
paradigm for heterogeneous TSN networks that intertwines a network calculus worst-
case interference analysis within the scheduling step. Through this, we compromise
on the solution’s optimality to be able to support heterogeneous TSN networks featur-
ing unscheduled and/or unsynchronized end-systems while guaranteeing the real-time
properties of critical communication. Within this new paradigm, we propose two so-
lutions to solve the problem, one based on a Constraint Programming formulation and
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one based on a Simulated Annealing metaheuristic, that provide different trade-offs and
scalability properties. We compare and evaluate our flexible window-based scheduling
methods using both synthetic and real-world test cases, validating the correctness and
scalability of our implementation. Furthermore, we use OMNET++ to validate the
generated GCL schedules.

2.1 Introduction

Standardized communication protocols allowing safety-critical communication with
real-time guarantees are becoming increasingly relevant in application domains be-
yond aerospace, e.g., in industrial automation and even in the automotive sector for
advanced driver assistance functions or fully autonomous driving [ALD+21]. Time-
Sensitive Networking (TSN) [Ins16c] amends the standard Ethernet protocol with real-
time capabilities ranging from clock synchronization and frame preemption to redun-
dancy management and schedule-based traffic shaping [CSCS16]. These novel mecha-
nisms allow standard best-effort (BE) Ethernet traffic to coexist with isolated and guar-
anteed scheduled traffic (ST) within the same multi-hop switched Ethernet network.
The main enablers of this coexistence are a network-wide clock synchronization proto-
col (802.1ASrev [Ins17a]) defining a global network time, known and bounded device
latencies (e.g., switch forwarding delays), and a Time-Aware Shaper (TAS) mecha-
nism [Ins16b] with a global communication schedule implemented in so-called Gate
Control Lists (GCLs), facilitating ST traffic with bounded latency and jitter in isola-
tion from BE communication. The TAS mechanism is implemented as a gate for each
transmission queue that either allows or denies the sending of frames according to the
configured GCL schedule.

Most approaches in the literature that guarantee real-time temporal properties of crit-
ical traffic (e.g., [CSCS16, SOCS18, PLCS16]) assume a homogeneous TSN network
in which all devices have the time-aware shaper mechanism and are synchronized to a
global network time. However, many brownfield deployments in industrial systems re-
quire end-to-end guarantees in heterogeneous TSN networks that connect TSN-capable
switches with legacy resource-constrained end-points (e.g., PLC, sensors, actuators)
that are not easily retrofitted with TSN capabilities. Moreover, in industrial systems
that have a long life-cycle and which are dependent on legacy technology [SKJ18],
customers are more likely to accept the replacement of switches but not of customized
end-points; hence it is more beneficial to transition gradually to new technologies mak-
ing the integration of legacy systems into TSN networks essential [MAP+21]. Further-
more, converged IT/OT networks in, e.g., fog and edge use-cases [SKJ18], interconnec-
tion of TSN networks with, e.g., 5G domains [LLEM+20], or multi-domain TSN net-
works with different sync mechanisms cannot readily communicate isochronous (fully
periodic) traffic [BW21]. Here, the region outside the TSN domain can be viewed as
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an unscheduled and unsynchronized end-point sending sporadic critical traffic. More-
over, even if the end-points do have some form of TSN capability (e.g., via switched
end-points [vADF+20]), the software layers on top of the TSN hardware mechanism
can suffer from non-deterministic jitter and delays, leading to missed transmission slots
and ultimately resulting in a sporadic, rather than periodic frame transmission from the
end-points

Hence, we investigate in this paper heterogeneous TSN networks where the end-systems
are unscheduled and/or unsynchronized (i.e., they do not have the TSN capabilities re-
lated to 802.1Qbv and 802.1AS), leading to a sporadic arrival of critical traffic at the
TSN-capable switches in the network. Classical schedule generation methods for GCLs
enforce either a fully deterministic 0-jitter forwarding of critical frames using either
exact SMT/ILP-based solvers [CSCS16] or heuristics [PLCS16], or a more flexible
window-based approach that allows some (bounded) degree of interference between
critical frames [SOCS18]. However, both methods require that end-systems send the
respective critical frames in a scheduled and synchronized way that matches the for-
warding schedule defined in the switches, thus requiring TSN capabilities on both end
systems and switches. Other work, c.f. [RZCP20, HFG+20], introduce scheduling ap-
proaches that do not impose synchronization on the end-systems level but constrain all
forwarding GCL windows on switches to be aligned and, furthermore, do not use safe
formal verification methods like network calculus for the interference calculation used
for the schedule creation.

In this paper, we consider heterogeneous TSN networks, relaxing the requirement that
end-systems need to be synchronized and/or scheduled and, furthermore, take into ac-
count relative offsets of windows on different nodes. We intertwine the worst-case
delay analysis from [ZPGF32] with the scheduling step in order to generate correct
schedules where the end-to-end requirements of ST streams (also called flows in pre-
vious work) are met. Furthermore, we compare different TSN scheduling approaches
that have been proposed in the literature (see Table 2.1 for an overview) to our flexible
window-based approach. We define the analysis-driven window optimization problem
resulting from our more flexible approach with the goal to be able to enlarge the solu-
tion space, reduce computational complexity, and apply it to end-systems without TSN
mechanisms. Depending on industrial applications’ requirements, our evaluation can
help system designers choose the most appropriate combination of configurations for
their use-case. The main contributions of the paper are:

• We propose a novel flexible window-based scheduling method that does not indi-
vidually schedule ST frames and streams, but rather schedules open gate windows
for individually scheduled queues. Hence, we can support non-deterministic queue
states and thus networks with unscheduled and/or unsynchronized end-systems by
integrating the WCD Network Calculus (NC) analysis into the scheduling step. The
NC analysis is used to construct a worst-case scenario for each stream to check its
schedulability, considering arbitrary arrival times of these streams and the given open
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GCL window placements.
• We formulate the “window optimization problem” and provide timing guarantees

for real-time streams even in systems with unscheduled and unsynchronized end
systems.

• We propose two solutions to solve the problem, one based on a Constraint Program-
ming formulation and one based on a Simulated Annealing metaheuristic.

• For the CP formulation, we propose a proxy function as an alternative to the network
calculus analysis in [ZPGF32] and use it to provide timing guarantees inside the CP
search.

• We compare and evaluate our flexible window-based scheduling method with exist-
ing scheduling methods for TSN networks. The evaluation is based on both synthetic
and real-world test cases, validating the correctness and the scalability of our imple-
mentation. Furthermore, we use the OMNET++ simulator to validate the generated
solutions.

We start with a review of related research, focusing on the existing scheduling mech-
anisms that we compare our work to, in Section 2.2. We then introduce the system,
network, and application models, as well as a description of the main TSN standards,
in Section 2.3. We outline the problem in Section 2.4 and present our scheduling op-
timization strategies based on Constraint Programming (CP) and Simulate Annealing
(SA) in Section 2.5 and Section 2.6. We then evaluate and compore both strategies in
Section 2.7 before we conclude the paper in Section 2.8.

2.2 Related Work

Scheduling homogeneous TSN networks in which all devices are scheduled and syn-
chronized has been solved in using various heuristics [NDR18a, MAS+18, PO18,
PTO19, VBHT22] and optimal ILP- or SMT-based approaches [CSCS16, SOCS18,
FDR18, VHT21, ZSEP21b, ZSEP21a]. The most relevant results for providing real-
time communication properties in TSN networks, to which we compare our approach,
have been presented in [CSCS16, SOCS18, PLCS16, DN16] (summarized in Table 2.1).
Originally, the TSN scheduling problem was addressed in [CSCS16] for fully deter-
ministic ST traffic temporal behavior and temporal isolation between ST and non-
ST (e.g., AVB, BE) streams/flows, similar to TTEthernet [Ste10, CSO16]. In our
comparison, we call this method 0GCL, since, besides enforcing the required end-
to-end latency of ST streams, the scheduling constraints also impose a strictly peri-
odic frame transmission resulting in 0 jitter forwarding of critical traffic. The work
in [PLCS16] uses heuristics instead of SMT-solvers to solve the 0-jitter scheduling
problem in order to improve scalability while also minimizing the end-to-end latency
of AVB streams. In [SOCS18], which we call Frame-to-Window-based, the 0-jitter
constraint of [CSCS16] is relaxed by allowing more variance in the transmission times
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of frames over the hops of their routed paths. This increases the solution space at the ex-
pense of increased complexity in the correctness constraints. The method in [SOCS18]
can be viewed as window-based scheduling, but, unlike our approach, it requires a
unique mapping between GCL windows and frames in order to avoid non-determinism
in the queues. In [DN16] the TSN scheduling problem is reduced to having one sin-
gle queue for ST traffic and solving it using Tabu Search that optimizes the number of
guard-bands in order to optimize bandwidth usage.

The main goal of the aforementioned works is similar to ours, namely to allow tem-
poral isolation and compositional system design for ST streams with end-to-end guar-
antees and deterministic communication behavior. However, all previous methods im-
pose that the end-systems from which the ST traffic originates are synchronized to the
rest of the network and have the IEEE 802.1Qbv timed-gate mechanism (i.e., they are
scheduled). The open gate windows are then either a result of the frame transmis-
sion schedule [CSCS16, PLCS16] or are uniquely associated with predefined subsets
of frames [SOCS18]. However, the above property is a significant limitation. In many
use cases, especially in the industrial and automotive domains (c.f. [SKJ18]), the end-
systems are usually off-the-shelf sensors, microcontrollers, industrial PCs, and edge
devices that do not have TSN capabilities.

The work in [RZCP20] proposed a more naive window-based approach (WND) in
which the GCL window offsets on different network nodes are not included, thereby
essentially limiting the mechanisms by requiring all GCL windows to be lined up be-
tween bridges. Moreover, [RZCP20] uses a less advanced analysis step (c.f. [ZPC18])
in the scheduling decisions and a more naive heuristic approach. These limiting as-
sumptions were relaxed in [BRZ+22], which has proposed a Constraint Programming
solution to the window optimization problem.

The work in [HGF+20] proposes a scheduling model for TSN networks in indus-
trial automation with different traffic types and a hierarchical scheduling procedure
for isochronous traffic. The method proposed in [HFG+20] adopts a so-called stream
batching approach, which can be classified as window-based in that it can assign multi-
ple frames to the same GCL window. However, the end-points still need to be synchro-
nized and scheduled, and, additionally, the worst-case delay bounds within the batch
windows may lead to deadline misses since they are not based on formal methods like
the network calculus framework in our approach. In [SNSH21], the authors present an
NC-based analysis for overlapping GCL windows with less pessimistic latency bounds
and a scheduling algorithm (FWOS) that focuses on maximizing the allowable overlap
of GCL windows to increase the bandwidth of unscheduled traffic without jeopardizing
the schedulability of ST traffic. As opposed to our method, [SNSH21] cannot guarantee
the schedulability of traffic arriving from unscheduled or unsynchronized end-systems.

Classical approaches like strict priority (SP) and AVB [Ins11] do not require a time-gate
mechanism and also work with unscheduled end-systems. In order to provide response-
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time guarantees, a worst-case end-to-end timing analysis through methods like network
calculus [SHHS03, DAB14] or Compositional Performance Analysis (CPA) [DTE12]
are used. In [ZPL+17, ZXZL14, BDNM16], the rate-constrained (RC) streams of
TTEthernet [Iss11, SBHP11] are analyzed using network calculus. Other works, such
as [WT06a, KM14], study the response-time analysis for TDMA-based networks un-
der the strict priority (SP) and weighted round-robin (WRR) queuing policies. Zhao
et al. [ZPGF32] present a worst-case delay analysis, which we use in this paper, for
determining the interference delay between ST traffic on the level of flexible GCL
windows. Using SP only or leaving all ST windows open for the entire hyperperiod
duration (which amounts to SP for ST traffic) will not result in the same response-time
bounds and schedulability as our method. Our method can delay specific high-priority
ST streams when needed to allow a timely transmission of lower-priority ST streams
with a much tighter deadline. Unlike SP, our method uses the IEEE 802.1Qbv timed
gates to open and close queues as needed to enforce isolation between traffic classes.
With pure SP (or when leaving all gates open at all times), misbehaving end-systems
(e.g., babbling-idiot failures) will disrupt all (lower-priority) traffic classes, potentially
leading to a loss of all real-time properties of the network.

In [VHB+20], the authors present hardware enhancements to standard IEEE 802.1Qbv
bridges (along with correctness constraints for the schedule generation) that remove the
need for the isolation constraints between frames scheduled in the same egress queue
defined in [CSCS16]. Another hardware adaptation for TSN bridges, which has been
proposed by Heilmann et al. [HF19] is to increase the number of non-critical queues in
order to improve the bandwidth utilization without impacting the guarantees for critical
messages.

2.2.1 In-depth Formal Comparison

In this section, we compare FWND with the related work in terms of the objectives and
constraints. The related work on ST scheduling using 802.1Qbv consists of: (i) zero-
jitter GCL (0GCL) in [CSCS16, PLCS16], (ii) Frame-to-Window-based GCL (FGCL)
in [SOCS18], and (iii) Window-based GCL (WND) in [RZCP20].

We summarize the requirements of the ST scheduling approaches from the related work
and our FWND approach in the first column of Table 2.1. The first three requirements
refer to the device capabilities needed for the different approaches, and the next seven
rows summarize which constraints and isolation requirements are needed by which ap-
proach. The last two rows present the requirements of the complexity of the optimiza-
tion problem that needs to be solved to provide a solution for the respective approach.

To better understand the fundamental differences and the similarities (in terms of the
imposed correctness constraints and schedulability parameters) between our work and
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Table 2.1: Scheduling Approaches in TSN.

Requirements 0GCL
[CSCS16] [PLCS16]

FGCL
[SOCS18]

WND
[RZCP20] FWND

Device Capabilities 802.1Qbv 802.1Qbv 802.1Qbv 802.1Qbv
ES Capabilities scheduled scheduled non-scheduled non-scheduled
SW Capabilities scheduled scheduled scheduled scheduled
Frame Constraint Yes Yes Yes Yes
Link Constraint1 Yes Yes No No
Bandwidth Constraint2 Implicit Yes Yes Yes
Stream Transmission Constraint3 Yes Yes No No
Frame-to-Window Assignment Implicit Yes No No
Stream/Frame Isolation Yes Yes No No
End-to-end Constraint Yes Yes Yes Yes

Schedule synthesis
Yes

(intractable)
Yes

(intractable)
No (only
windows)

No (only
windows)

Timing analysis required No No Yes Yes
1 This constraint refers to windows on different queues of the same port not allowing to overlap in the time

domain. This constraint is called “ordered window constraint” in [SOCS18].
2 This constraint is called “window size constraint” in [SOCS18].
3 This constraint is called “Stream Constraint” in [SOCS18].

the approaches that require synchronized and scheduled end systems, we briefly reiter-
ate the formal constraints of previous work. We describe, based on [CSCS16, CSO17,
SOCS18], the relevant scheduling constraints for creating correct TSN schedules when
using frame- and window-based methods. Table 2.1 shows which of these are needed
by which approach.

We adapt some notations from [CSCS16, CSO17] to describe the constraints and as-
sume certain simplifications without loss of generality, e.g. the macrotick is the same
in all devices, all streams have only one frame per period, the propagation delay dp is
0. We refer the reader to [CSCS16, SOCS18] for a complete and generalized for-
mal definition of the correctness constraints. We denote the messages (frames) of
a stream fi on a link [va,vb] as m[va,vb]

i . A message m[va,vb]
i is defined by the tuple

⟨m[va,vb]
i .φ ,m[va,vb]

i .l⟩, denoting the transmission time and duration of the frame on the
respective link [CSCS16, CSO17].

Frame Constraint. Any frame belonging to a critical stream has to be transmit-
ted between time 0 and its period Ti. To enforce this, we have the frame constraint
from [CSCS16]:

∀ fi ∈ F ,∀[va,vb] ∈ fi.r :(
m[va,vb]

i .φ ≥ 0
)
∧
(

m[va,vb]
i .φ ≤ fi.T −m[va,vb]

i .l
)
.

Link Constraint. A physical constraint of Ethernet-based networks is that only one
frame can be on the wire from one port to another at a time. In [CSCS16] and [SOCS18]
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this constraint is expressed as windows on two different queues of the same egress
port not being able to overlap. In [RZCP20] and the FWND method presented in this
paper, windows on different queues may overlap, leading to added interference delays
since, naturally, only one frame can be sent on the physical link at a time. Still, in
both [RZCP20] and the FWND, solutions where windows overlap are excluded since
there is no added improvement from such schedules.

The link constraint adapted from [CSCS16] is hence:

∀[va,vb] ∈E,∀m[va,vb]
i ,m[va,vb]

j (i ̸= j),

∀a ∈ [0,hp j
i / fi.T −1],∀b ∈ [0,hp j

i / f j.T −1] :(
m[va,vb]

i .φ +a× fi.T ≥ m[va,vb]
j .φ +b× f j.T +m[va,vb]

j .l
)
∨(

m[va,vb]
j .φ +b× f j.T ≥ m[va,vb]

i .φ +a× fi.T +m[va,vb]
i .l

)
,

where hp j
i = lcm( fi.T, f j.T ) is the hyperperiod of fi and f j.

Bandwidth Constraint. The bandwidth constraint expressed explicitly in our method
ensures that there is no infinite backlog, i.e., the windows for the streams are large
enough that the frames of the streams can be transmitted at some point. In 0GCL
from [CSCS16] this constraint is implicit since the schedule is created without the sep-
aration of streams and windows, meaning that each window is large enough to transmit
the respective frames. In [SOCS18] there is no one-to-one assignment between frames
and windows; however, the window size constraint is equivalent to the bandwidth con-
straint. Using this constraint, the length of the gate open window is required to be
equal to the sum of the frame lengths that have been assigned to it. In [RZCP20] the
bandwidth constraint is explicit in the conditions for the correctness of the schedule
generation.

Stream Transmission Constraint. The stream transmission constraint expresses that
the propagation of frames of a stream follows the sequential order along the path of the
stream. This (optional) constraint enforces that a frame is forwarded by a device only
after it has been received at that device also taking into account the network precision,
denoted with δ :

∀ fi ∈ F ,∀[va,vx], [vx,vb] ∈ fi.r,∀m[va,vx]
i ,∀m[vx,vb]

i :

m[vx,vb]
i .φ −δ ≥ m[va,vx]

i .φ +m[va,vx]
i .l.

In FWND (and also in [RZCP20]) this constraint is not explicitly needed since there is
no predefined assignment of frames to windows and hence, there is no explicit ordering
needed in sequential hops along the route of a stream, i.e., the transmission GCL win-
dow which is used at a certain time will depend on the enqueueing order at that time in
the egress queue.
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End-to-End Constraint. The maximum end-to-end latency constraint (expressed by
the deadline fi.D) enforces a maximum time between the sending and the reception of a
stream. We denote the sending link of stream fi with src( fi) and the last link before the
receiving node with dest( fi). The maximum end-to-end latency constraint [CSCS16]
is hence

∀ fi ∈ F : mdest( fi)
i .φ +mdest( fi)

i .L−msrc( fi)
i .φ ≤ fi.D−δ .

Here again the network precision δ needs to be taken into account since the local times
of the sending and receiving devices can deviate by at most δ .

802.1Qbv Stream/Frame Isolation. Due to the non-determinism problem in TSN
(c.f. Section 2.3.2), previous solutions (e.g., [CSCS16, SOCS18]) need an isolation
constraint that maintains queue determinism. We refer the reader to [CSCS16] for an
in-depth explanation, and only summarize here the stream and frame isolation con-
straint adapted from [CSCS16]. Let m[va,vb]

i and m[va,vb]
j be, respectively, the frame

instances of fi ∈ F and f j ∈ F scheduled on the outgoing link [va,vb] of device va.
Stream fi arrives at the device va from some device vx on link [vx,va]. Similarly, stream
f j arrives from another device vy on incoming link [vy,va]. The simplified stream iso-
lation constraint adapted from [CSCS16], under the assumption that the macrotick of
the involved devices is the same, is as follows:

∀[va,vb] ∈E,∀m[va,vb]
i ,m[va,vb]

j (i ̸= j),

∀a ∈ [0,hp j
i / fi.T −1],∀b ∈ [0,hp j

i / f j.T −1] :(
m[va,vb]

i .φ +a× fi.T +δ ≤ m[vy,va]
j .φ +b× f j.T

)
∨(

m[va,vb]
j .φ +b× f j.T +δ ≤ m[vx,va]

i .φ +a× fi.T
)
.

Here again hp j
i = lcm( fi.T, f j.T ) is the hyperperiod of fi and f j. The constraint ensures

that once a stream arrives at a device, no other stream can enter the device until the first
stream has been sent.

The above constraints apply to frames that are placed in the same queue on the egress
port. However, the scheduler may choose (if possible) to place streams in different
queues, isolating them in the space domain. Hence, the complete constraint [CSCS16]
for frame/stream isolation for two streams fi and f j scheduled on the same link [va,vb]
can be expressed as (

Φ[va,vb]( fi, f j)
)
∨
(

m[va,vb]
i .q ̸= m[va,vb]

j .q
)
,

with m[va,vb]
i .q ≤ Ntt and m[va,vb]

j .q ≤ Ntt and where Φ[va,vb]( fi, f j) denotes either the
stream or frame isolation constraint from before.
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Decoupling of frames. So far, the constraints were applicable on the level of frames,
and the open windows of the GCLs were constructed from the resulting frame schedule.
The approach in [SOCS18] decouples the frame transmission from the respective open
gate windows defined in the GCLs, similar to our approach1. However, in [SOCS18]
the requirement is that there is a unique assignment of which frames are transmitted
in which windows, although also multiple frames can be assigned to be sent in the
same window. Hence, the assignment of frames and, consequently, the length of each
gate open window are, therefore, an output of the scheduler. Therefore, we have to
construct additional constraints when (partially) decoupling frames from windows. For
a more in-depth description and formalization of these constraints, we refer the reader
to [SOCS18].

Frame-to-Window Assignment. The frame-to-window assignment restricts a frame to
be assigned to a specific window, although multiple frames can be assigned to the same
window. In [CSCS16] each frame is assigned implicitly to exactly one GCL window.

Comparing the existing approaches with the one proposed in this paper, we see that
the choice of scheduling mechanism is, on the one hand, highly use-case specific and,
on the other hand, is constrained by the available TSN hardware capabilities in the
network nodes. While the frame- and window-based methods from related work result
in precise schedules that emulate either a 0- or constrained-jitter approach (e.g., like
in TTEthernet), they require end systems to not only be synchronized to the network
time but also the end devices to have 802.1Qbv capabilities, i.e., to be scheduled. This
limitation might be too restrictive for many real-world systems relying on off-the-shelf
sensors, processing, and actuating nodes. While our FWND method overcomes this
limitation, it does require a worst-case end-to-end analysis that introduces a level of
pessimism into the timing bounds, thereby reducing the schedulability space for some
use cases. However, as seen in Table 2.1, our method does not require many of the
constraints imposed on the streams and scheduled devices from previous work, thereby
reducing the complexity of the schedule synthesis.

1Note that [CSCS16, SOCS18, PLCS16] cannot be used in our context because they require scheduled
and synchronized ESs.
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Table 2.2: Summary of System Model Notations.

Symbol System model
G = (V ,E) Network graph with nodes (V ) and links (E)
[va,vb] ∈E Link
[va,vb].C, Link speed
[va,vb].mt Link macrotick
p ∈ P Output port
p.Q Eight priority queues in an output port p
q ∈ p.QST A queue used for ST traffic in p
⟨φ ,w,T ⟩q GCL configuration for a queue q ∈ p.QST ,

where q.φ , q.w, and q.T are the window off-
set, length, and period for queue q, respec-
tively.

f .l, f .T Payload size and period of a stream f ∈ F
f .P, f .D Priority, and deadline of a stream f ∈ F
f .r Route for a stream f ∈ F

2.3 System Model

This section defines our system model for which we summarize the notation in Ta-
ble 2.2.

2.3.1 Network Model

We represent the network as a directed graph G = (V ,E) where V = ES
⋃
SW is

the set of end systems (ES) and switches (SW) (also called nodes), and E is the set of
bi-directional full-duplex physical links. An ES can receive and send network traffic
while SWs are forwarding nodes through which the traffic is routed. The edges E of the
graph represent the full-duplex physical links between two nodes, E ⊆V ×V . If there
is a physical link between two nodes va,vb ∈ V , then there exist two ordered tuples
[va,vb], [vb,va] ∈E. An equivalence between output ports p ∈ P and links [va,vb] ∈E
can be drawn, as each output port is connected to exactly one link. A link [va,vb] ∈E
is defined by the link speed C (Mbps), propagation delay dp (which is a function of
the physical medium and the link length), and the macrotick mt. The macrotick is the
length of a discrete time unit in the network, defining the granularity of the scheduling
timeline [CSCS16]. Without loss of generality, we assume dp = 0 in this paper.

As opposed to previous work, we do not require that end-system are either synchro-
nized or scheduled. Since ESs can be unsynchronized and unscheduled, they transmit
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frames according to a strict priority (SP) mechanism. Switches still need to be syn-
chronized and scheduled using the 802.1ASrev and 802.1Qbv, respectively.

2.3.2 Switch Model

Figure 2.1a depicts the internals of a TSN switch. The switching fabric decides, based
on the internal routing table to which output port p a received frame will be for-
warded. Each egress port has a priority filter that determines in which of the avail-
able 8 queues/traffic-classes q ∈ p.Q of that port a frame will be put. Within a queue,
frames are transmitted in first-in-first-out (FIFO) order. Similar to [CSCS16], a sub-
set (p.QST ) of the queues are reserved for ST traffic, while the rest (p.Q) are used for
non-critical communication. As opposed to regular 802.1Q bridges, where enqueued
frames are sent out according to their respective priority, in 802.1Qbv bridges, there is a
Time-Aware Shaper (TAS), also called timed-gate, associated with each queue and po-
sitioned behind it. A timed-gate can be either in an open (O) or closed (C) state. When
the gate is open, traffic from the respective queue is allowed to be transmitted, while a
closed gate will not allow transmission, even if the queue is not empty. When multi-
ple gates are open simultaneously, the highest priority queue has preference, blocking
others until it is empty or the corresponding gate is closed. The 802.1Qbv standard in-
cludes a mechanism to ensure that no frames can be transmitted beyond the respective
gate’s closing point. This look-ahead checks whether the entire frame present in the
queue can be fully transmitted before the gate closes and, if not, it will not start the
transmission.

The state of the queues is encoded in a GCL, which acts on the level of traffic-classes
(contrary to, e.g., TTEthernet [Iss11]) instead of on an individual frame level [CSO17].
Hence, an imperfect time synchronization, frame loss, ingress policing (c.f. [CSCS16]),

(a) TSN Switch Internals.
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(b) Queue states
(inspired by [VHB+20]).

Figure 2.1: TSN Switch model and Queue Interference.
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or the variance in the arrival of frames from unscheduled and/or unsynchronized ESs
may lead to non-determinism in the state of the egress queues and, as a consequence, in
the whole network. If the state of the queue is not deterministic at runtime, the order and
timing of the sending of ST frames can vary dynamically. In Figure 2.1b, the schedule
for the queue of the (simplified) switch SW, opens for two frames and then, sometime
later, for the duration of another two frames. The arrival of frames from unscheduled
and/or unsynchronized end systems may lead to a different pattern in the egress queue
of the switch, as illustrated in the top and bottom figures of Figure 2.1b. Note that
we do not actually know the arrival times of the frames, and what we depict in the
figure are just two scenarios to illustrate the non-determinism. There may be scenarios
where one of the frames, e.g., frame “2”, arrives much later. This variance makes it
impossible to isolate frames in windows and obtain deterministic queue states, and,
as a consequence, deterministic egress transmission patterns, as required by previous
methods for TSN scheduling (e.g. [CSCS16, SOCS18, PLCS16, DN16]). We refer the
reader to [CSCS16] for an in-depth explanation of the TSN non-determinism problem.

The queue configuration is expressed by q = ⟨QST ,Q⟩. The decision in which queue
to place frames is taken either according to the priority code point (PCP) of the VLAN
tag or according to the priority assignment of the IEEE 802.1Qci mechanism. In or-
der to formulate the scheduling problem, the GCL configuration is defined as a tuple
⟨φ ,w,T ⟩q for each queue q ∈ p.QST in an output port p, with the window offset φ ,
window length w and window period T .

2.3.3 Application Model

The traffic class we focus on in this paper is scheduled traffic (ST), also called time-
sensitive traffic. ST traffic is defined as having requirements on the bounded end-
to-end latency and/or minimal jitter [CSCS16]. Communication requirements of ST
traffic itself are modeled with the concept of streams (also called flows), representing
a communication from one sender (talker) to one or multiple receivers (listeners). We
define the set of ST streams in the network as F . A stream f ∈ F is expressed as
the tuple ⟨l,T,P,D⟩ f , including the frame size, the stream period in the source ES, the
priority of the stream, and the required deadline representing the upper bound on the
end-to-end delay of the stream.

The route for each stream is statically defined as an ordered sequence of directed links,
e.g., a stream f ∈ F sending from a source ES v1 to another destination ES vn has the
route r = [[v1,v2], ..., [vn−1,vn]]. Without loss of generality, the notation is simplified
by limiting the number of destination ES to one, i.e., unicast communication. Please
note that the model can be easily extended to multicast communication by adding each
sender-receiver pair as a stand-alone stream with additional constraints between them
on the common path.
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We assume that streams arrive sporadically, meaning at a random time, but with a
minimum interarrival time of the stream’s period.

2.4 Problem Formulation

Given (1) a set of streams F with statically defined routes R, and (2) a network graph G,
we are interested in determining GCLs, which is equivalent to determining (i) the offset
of windows q.φ , (ii) the length of windows q.w, and (iii) the period of windows q.T
such that the deadlines of all streams are satisfied and the overall bandwidth utilization
(c.f. Section 2.5.1) is minimized.

We remind the reader that with flexible window-based scheduling we do not know the
arrival times of frames, and frames of different ST streams may interfere with each
other. Frames that arrive earlier will delay frames that arrive later; also, a frame may
need to wait until a gate is open, or arrive at a time just before a gate closure and cannot
fit in the interval that remains for transmission.

Once the problem is unschedulable (some stream deadlines are missed), we determine
the solution in which the number of missed stream deadlines, are minimized. In this
paper, we use Network Calculus [JYP01] to calculate the worst-case delay of streams.

Our problem is intractable, i.e., the decision problem associated with the scheduling
problem has been proved to be (NP)-complete in the strong sense [Sin07a]. We present
two solutions for this problem. Our first solution is based on Constraint Programming
(CP), see Section 2.5. CP is an exact mathematical programming approach that at-
tempts to find an optimal solution. However, as our experiments in Section 2.7 will
show, CP cannot handle realistic test cases. Hence, we also propose a second solution,
based on a Simulated Annealing (SA) metaheuristic, see Section 2.6. Metaheuristics
have been used as an alternative to exact optimization methods such as CP [BK+05].

2.4.1 Motivational Example

Let us illustrate the importance of determining optimized windows. Recall that with
flexible window-based scheduling we do not know the arrival times of frames, and
frames of different ST streams may interfere with each other. Frames that arrive earlier
will delay frames that arrive later; also, a frame may need to wait until a gate is open,
or arrive at a time just before a gate closure and cannot fit in the interval that remains
for transmission.
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We illustrate in Figure 2.2 three window configurations (a), (b), and (c), motivating
the need to optimize the windows. The vertical axis represents each egress port in the
network, and the horizontal axis represents the timeline. The tall grey rectangles give
the gate open time for a priority queue. As mentioned, we do not know the arrival
times of the frames; thus it is necessary to provide a formal analysis method to ensure
real-time performance. In this paper, we use the Network Calculus (NC)-based ap-
proach from [ZPGF32] to determine the worst-case end-to-end delay bounds (WCDs)
for each stream. In the motivational example, the WCDs are determined by construct-
ing a worst-case scenario for each stream. Hence, in Figure 2.2 we show worst-case
scenarios. The red and blue rectangles in the figure represent ST frames’ transmission.
There are two periodic streams f1 (blue rectangles) and f2 (red rectangles) with the
same frame size and priority. We use the arrows pointing down to mark the arrival time
for ST frames creating the worst-case case for f2. Let us assume that the deadline of
each stream equals its period fi.T . In each configuration in Figure 2.2 we show that ar-
rival scenario which would lead to the worst-case situation for frame f2, i.e., the largest
WCD for f2.

Since the ESs are unscheduled (without TAS) and/or unsynchronized, the frames can
arrive and be transmitted by the ES at any time (the offset of a periodic stream on
the ES is in an arbitrary relationship with the offsets of the windows in the SWs).
However, on the switches, frame transmissions are allowed to be forwarded only during
the scheduled window. The worst-case for f2 happens when the frame (1.1) of f1 arrives
on [ES1,SW1] slightly earlier than the frame (2.1) of f2 arrives on [ES2,SW1], and at
the same time, they arrive on the subsequent egress port [SW1,SW2] at a time when the

Figure 2.2: Example Window Configurations.
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remaining time during the current window is smaller than the frame transmission time.
In this case, the guard band delays the frames until the next window slot.

With the windows configuration in Figure 2.2(a), the WCD of f2 is larger than its
deadline, i.e., WCD( f2) > f2.T , hence, f2 is not schedulable. If the window period
is narrowed down, as shown in Figure 2.2(b), the WCD of f2 satisfies its deadline.
However, there is a large bandwidth usage occupied by the windows. Figure 2.2(c) uses
the same window period as in Figure 2.2(a) but changes the window offset. As can be
seen in the figure, the WCD of the stream f2 is also smaller than its deadline f2.T , and
compared with Figure 2.2(b), the bandwidth usage of the windows is reduced. With
the increasing complexity of the network, e.g., multiple streams joining and leaving
at any switch in the network and/or an increased number of ST streams and priorities,
an optimized window configuration cannot be done manually; therefore, optimization
algorithms are needed to solve this problem.

2.5 Constraint Programming Window Optimization

In this section, we present a solution based on a Constraint Programming formula-
tion. Although CP can perform an exhaustive search and find the optimal solution,
this is infeasible for large networks. Hence, we propose a strategy called Constraint
Programming-based Window Optimization (CPWO) that is able to “prune” the search
to find optimized solutions in a reasonable time, at the expense of optimality. CPWO
has two features intended to speed up the search:

(i) A metaheuristic search traversal strategy: CP solvers can be configured with user-
defined search strategies, which enforce a custom order for selecting variables for as-
signment and for selecting the values from the variable’s domain. Here, we use a
metaheuristic strategy based on Tabu Search [BK+05].

(ii) A timing constraint specified in the CP model that prunes the search space: Ideally,
the WCD Analysis would be called for each new solution. However, an NC-based
analysis is time-consuming, and it would slow down the search considerably if called
each time the CP solver visits a new valid solution. Hence, we have introduced “search
pruning” constraints in the CP model (the “Timing (pruning)” constraints in the “CP
model” box in Figure 2.3), explained in Section 2.5.4.

CPWO takes as the inputs the architecture and application models and outputs a set
of the best solutions found during search (see Figure 2.3). We use CP to search for
solutions (the “CP solver” box). CP performs a systematic search to assign the values
of variables to satisfy a set of constraints and optimize an objective function, see the
“CP model” box: the sets of variables are defined in Section 2.5.2, the constraints in
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Section 2.5.3 and the objective function in Section 2.5.1. A feasible solution is a valid
solution that is schedulable, i.e., the worst-case delays (WCDs) of streams are within
their deadlines. Since it is impractical to check for schedulability within a CP formula-
tion, we employ instead the Network Calculus (NC)-based approach from [ZPGF32] to
determine the WCDs, see the “WCD Analysis” box in Figure 2.3. The WCD Analysis
is called every time the CP solver finds a “new solution” which is valid with respect
to the CP constraints. The “new solution” is not schedulable if the calculated latency
upper bounds are larger than the deadlines of some critical streams.

These timing constraints implement a crude analysis that indicates if a solution may
be schedulable and are solely used by the CP solver to eliminate solutions from the
search space. These constraints may lead to both “relaxed-pruning” scenarios that are
actually unschedulable or “aggressive-pruning” scenarios that eliminate solutions that
are schedulable. The proxy function (pruning constraint) can thus be parameterized to
trade-off runtime performance for search-space pruning in the CP-model.

The timing constraints assume that for a given stream, its frames in a queue will be
delayed by other frames in the same queue, including a backlog of frames of the same
stream. A parameter B is used to adjust the number of frames in the backlog, tuning
the pruning level of the CP model’s timing constraints. Note that NC still checks the
actual schedulability, so it does not matter if the CP analysis is too relaxed—this will
only prune fewer solutions, slowing down the search. However, using overly aggressive
pruning runs the risk of eliminating schedulable solutions of good quality. We consider
that B is given by the user, controlling how fast to explore the search space. In the
experiments, we adjusted B based on the feedback from the WCD Analysis and the
pruning constraint. If, during a CPWO run, the pruning constraint from Section 2.5.4
was invoked too often, we decreased B, as it was pruning too aggressively; otherwise,
if the WCD analysis was invoked too often and was reporting that the solutions were
schedulable, we increased B.

CP solver

New solution
Variables
Domains
Constraints

Timing (pruning)
Objective function

CP model

Search traversal 
strategy: Metaheuristic

WCD Analysis
Network Calculus

Schedulable 
solutions

β

Architecture model Application model

Best solutions found

Figure 2.3: Overview of our CPWO Optimization Strategy.
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Table 2.3: Definition of Terms for CP Model Formulation.

Term Definition
N (P) Total number of windows assigned to priority queues
K(p) Hyperperiod of the port p
L(q) Maximum size of any frame from all streams assigned to q
GB(q) Maximum transmission time of ST frames competing in q
R(q) All streams assigned to the queue q
X (q) All streams arriving from a switch and assigned to the queue q

We first define the terms needed for the CP model in Table 2.3. Then, we continue
with the definition of the objective function, model variables, and constraints of the CP
model.

2.5.1 CP Objective Function

The CP solver uses the objective function Ω, which minimizes the average bandwidth
usage:

∀p ∈ P,∀q ∈ p.Q : Ω =
∑

q.w
q.T

N (P)
. (2.1)

The average bandwidth usage is calculated as the sum of each window’s utilization,
i.e., the window length over its period, divided by the total number of windows in
the CP model. Note that solutions found by a CP solver are guaranteed to satisfy the
constraints defined in Section 2.5.3. In addition, the schedulability is checked with the
NC-based WCD Analysis [ZPGF32].

2.5.2 Variables

The model variables are the offset, length, and period of each window, see Section 2.3.2.
For each variable, we define a domain, which is a set of finite values that can be as-
signed to the variable. CP decides the values of the variables as an integer from their
domain in each visited solution during the search. The domains of offset q.φ , length
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q.w, and period q.T variables are defined, respectively, by

∀p ∈ P,∀q ∈ p.Q :

0 < q.T ≤ K(p)
[va,vb].mt

, 0 ≤ q.φ ≤ K(p)
[va,vb].mt

,

L(q)
[va,vb].mt × [va,vb].C

+GB(q)≤ q.w ≤ K(p)
[va,vb].mt

.

(2.2)

The domain of the window period is defined in the range from 0 to the hyperperiod of
the respective port p, i.e., the Least Common Multiple (LCM) of all the stream periods
forwarded via the port. The window period is an integer and cannot be zero. The
domain of the window offset is defined in the range from 0 to the hyperperiod of the
respective port p. Finally, the domain of the window length is defined in the range
from minimum accepted window length to the hyperperiod of the respective port p.
The minimum accepted window length is the length required to transfer the largest
frame from all streams assigned to the queue q, protected by the guard band GB(q) of
the queue. A port p is attached to only one link [va,vb]; and values and domains are
scaled by the macrotick mt of the respective link.

2.5.3 Constraints

The first three constraints need to be satisfied by a valid solution: (1) the window is
valid, (2) two windows in the same port do not overlap, and (3) windows’ bandwidth
is not exceeded. The last two constraints reduce the search space by restricting the pe-
riods of (4) queues and (5) windows to harmonic values in relation to the hyperperiod.
Harmonicity may eliminate some feasible solutions, but we use this heuristic strategy
to speed up the search.

(1) The Window Validity Constraint (Equation 2.3) states that the offset plus the
length of a window should be smaller or equal to the window’s period:

∀p ∈ P,∀q ∈ p.Q : (q.w+q.φ)≤ q.T. (2.3)

(2) Non-overlapping Constraint (Equation 2.4). Since we search for solutions in
which windows of the same port do not overlap, the opening or closing of each window
on the same port (defined by its offset and the sum of its offset and length, respectively)
is not in the range of another window, over all period instances:

∀p ∈ P,∀q ∈ p.Q,∀q′ ∈ p.Q,Tq,q′ = max(q.T,q′T ),

∀a ∈ [0,Tq,q′/q.T ),∀b ∈ [0,Tq,q′/q′.T ) :
(q.φ +q.w+a×q.T )≤ (q′.φ +b×q′.T )∨ (2.4)
(q′.φ +q′.w+b×q′.T )≤ (q.φ +a×q.T )
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Figure 2.4: Example Capacity for a Window.

(3) The Bandwidth Constraint (Eq. (2.5)) ensures that all the windows have enough
bandwidth for the assigned streams:

∀p ∈ P,∀q ∈ p.Q,∀ f ∈ F(q) :
q.w
q.T

≥ ∑
f .l
f .T

. (2.5)

where F(q) is the set of streams assigned to the queue q.

(4) The Port Period Constraint (Equation 2.6) imposes that the periods of all the
queues in a port should be harmonic. This constraint is used to avoid window overlap-
ping and to reduce the search space.

∀p ∈ P,∀q ∈ p.Q,∀q′ ∈ p.Q : (q.T %q′.T = 0)∨ (q′.T %q.T = 0). (2.6)

(5) The Period Limit Constraint (Equation 2.7) reduces the search space by consid-
ering window periods q.T that are harmonic with the hyperperiod of the port K(p)
(divide it):

∀p ∈ P,∀q ∈ p.Q : K(p)%q.T = 0. (2.7)

2.5.4 Timing Constraints

As mentioned, it is infeasible to use a Network Calculus-based worst-case delay analy-
sis to check the schedulability of each solution visited. Thus, we have defined a Timing
Constraint as a way to prune the search space. Every solution that is not eliminated via
this timing constraint is evaluated for schedulability with the NC WCD analysis. The
timing constraint is a heuristic that prunes the search space of (potentially unschedu-
lable) solutions; it is not a sufficient nor a necessary schedulability test. The timing
constraint is related to the optimality of the solution, not to its correctness in terms of
schedulability. A too aggressive pruning may eliminate good quality solutions, and too
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Figure 2.5: Example Capacity and Transmission Demand for a Window.

little pruning will slow down the search because the NC WCD analysis is invoked too
often.

The challenge is that the min+ algebra used by NC cannot be directly expressed in first-
order formulation of CP. However, the NC formulation from [ZPGF32] has inspired us
in defining the CP timing constraints. The Timing Constraint is defined in Equation 2.8
and uses the concepts of window capacity WC and transmission demand WD to direct
the CP solver to visit only those solutions where the capacity of each window, i.e., the
amount of time available to transmit frames assigned to its queue, is greater than or
equal to its transmission demand, i.e., the amount of transmission time required by the
frames in the queue. A window capacity larger than the transmission demand indicates
that a solution has high chances to be schedulable:

∀p ∈ P,∀q ∈ p.Q : WD ≤WC. (2.8)

Thus, we first calculate the capacity WC of each window within the hyperperiod. This
capacity is similar to the NC concept of a service curve, and its calculation is similar
to the service curves proposed in the literature [Wan06] for resources that use Time-
Division Multiple Access (TDMA), which is how our windows behave. For e.g., a
window with a period of 10 µs, a length of 4 µs, and an offset of 3 µs; forwards 150
bytes over a 100 Mbps link in a hyperperiod of 30 µs. In Figure 2.4, the capacity of
such a window is depicted, where the blue line shows the throughput of the window
for transferring data. The capacity increases when the window opens (the rising slopes
of the curve). The effect of window offset on the capacity (the area under the curve)
can be observed in the figure. The function WC calculates the area under the curve to
characterize the amount of capacity for a window in a hyperperiod, defined in Equa-
tion 2.9, where the link [va,vb] is attached to the port p and assigned to the queue q;
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and function Y captures the transmission time of a single byte through link [va,vb].

To calculate the area under the curve, we consider 3 terms that are S1, S2, and S3.
They represent the total area under the curve caused by the window length, the window
closure in the remainder of the window period, and the window period, respectively.
The WC value of the example in Figure 2.4 is 2,250 Bytes×µs, where the S terms are
shown.

∀p ∈ P,∀q ∈ p.Q :

I =
K(p)
q.T

, J =
(q.w−GB(q))×Y([va,vb])

[va,vb].C
,

S1 = I × q.w× J
2

, S2 = I × (q.T −q.w.−q.φ)× J,

S3 =
I × (I −1)

2
×q.T × J, WC = S1 +S2 +S3

(2.9)

Secondly, we calculate the transmission demand WD using Equation 2.10, where R(q)
captures all the streams that are assigned to the queue q. The transmission demand is
inspired by the arrival curves of NC. These are carefully determined in NC considering
that the streams pass via switches and may change their arrival patterns [ZPGF32]. In
our case, we have made the following simplifying assumptions to be able to express
the “transmission demand” in CP. We assume that all streams are strictly periodic and
arrive at the beginning of their respective periods. This is “optimistic” with respect to
NC in the sense that NC may determine that some of the streams have a bursty behavior
when they reach our window. To compensate for this, we consider that those streams
that arrive from a switch may be bursty and thus have a backlog B of frames that have
accumulated; streams that arrive from ESs do not accumulate a backlog. Figure 2.5
shows three streams, f1 to f3, and only f3 arrives from a switch and hence will have a
backlog of frames captured by the stream denoted with f ′3 (we consider a B of 1 in the
example). We also assume that the backlog f ′3 will not arrive at the same time as the
original stream f3, and instead, it is delayed by a period. Again, this is a heuristic used
for pruning, and the actual schedulability check is done with the NC analysis. So, the
definition of the “transmission demand” does not impact correctness, but, as discussed,
it will impact our algorithm’s ability to search for solutions.

Since, in our case, the deadlines can be larger than the periods, we also need to con-
sider, for each stream, bursts of frames coming from SWs and an additional frame
for each stream coming from ESs (the ES periods are not synchronized with the SWs
GCLs). Since we do not perform a worst-case analysis, we instead use a backlog pa-
rameter B, capturing the possible number of delayed frames in a burst within a stream
forwarded from another SW. Note that, as explained in the overview at the beginning
of Section 2.5, B is a user-defined parameter that controls the “pruning level” of our
timing constraint, i.e., how aggressively it eliminates candidates from the search space.
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For example, in Figure 2.5, the streams f1 < 50,5,0,5 > and f2 < 60,6,0,6 > have
been received from an ES and the stream f3 < 100,15,0,15 > has been received from a
SW. For the stream f3 forwarded from a previous switch, we consider that one instance
of the stream (determined by the backlog parameter B = 1), let us call it f ′3, may have
been delayed and received together with the current instance f3. This would cause
a delay in the reception of the streams in the current node. The reception curve in
Figure 2.5 is the sum of curves for each stream separately in a hyperperiod of 30 µs.

We give the general definition of the transmission demand value WD as the area un-
der the curve for the accumulated data amount of received streams and backlogs of
the streams arrived from switches in a hyperperiod. For calculating the transmission
demand WD, we consider 2 terms that are A1 and A2. The term A1 calculates the area
under the curve for the accumulated data of all streams assigned to the queue q cap-
tured by R(q), in a hyperperiod. Any frames of all streams R(q) have arrived at the
beginning of their period. The term A2 calculates the area under the curve for the ac-
cumulated backlog data of the streams arrived from a switch captured by X (q). The
backlog data of the streams X (q) are delayed for a period and controlled by B, which
captures the number of backlogs. The function WD returns 16,650 Bytes× µs in our
example, see also Figure 2.5 for the values of the terms A1 and A2.

∀p ∈ P,∀q ∈ p.Q,∀ f ∈R(q),∀ f ′ ∈ X (q) :

I =
K(p)
f .T

, I′ =
K(p)
f ′.T

A1 =
I × (I +1)

2
× f .T × f .l,

A2 =
I′× (I′+1−2×B)

2
× f ′.T × f ′.l,

WD = A1 +A2

(2.10)

Please note that the correctness of the constraints (Eq. (2.3), (2.4), (2.5)) follows from
the implicit hardware constraints of 802.1Qbv (see the discussion in [CSCS16, SOCS18])
while other constraints (Eq. (2.6), (2.7)) are used to limit the placement of GCL win-
dows and are not related to correctness, just to optimality. Since the transmission of
frames is decoupled from the GCL windows, the schedule’s correctness concerning the
end-to-end latency of streams is always guaranteed due to the NC analysis, which is
intertwined in the schedule step.
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2.6 Simulated Annealing Window Optimization

The previously described CPWO delivers good results in a reasonable time for small
problem sizes. However, for larger problem sizes, the method either becomes in-
tractable, or the search space pruning has to be done very aggressively, leading to a
degradation in the quality of the results. Therefore, we propose a heuristic algorithm
that is aimed to be scalable for large problem sizes while still offering good quality
solutions.

Several metaheuristic approaches have been proposed in the literature for intractable
problems [BK+05]. Based on the review of the related work, we have decided to
develop a Simulated Annealing (SA)-based metaheuristic solution. Metaheuristics are
designed to find good quality solutions while still being scalable for large problem
sizes, but are not guaranteed to find an optimal (or any) solution.

Our Simulated Annealing Window Optimization (SAWO) algorithm is shown in Al-
gorithm 1. The key feature of SA is that it avoids getting stuck in a local optimum
by accepting worse intermediate solutions with a certain probability, which decreases
throughout the search [KGJV83, BK+05]. The likelihood of considering a worse so-
lution (compared to the current solution) depends on the worsening of the objective
function and a temperature parameter t [VW02]. In SA, the temperature starts from
an initial temperature Tstart (line 4) and is decreased in every iteration with a factor
0 < α < 1 (line 15).

SA starts from an initial solution Φ (line 2, see Section 2.6.1) which is evaluated using
the objective function ΩSA (line 3), see Section 2.6.2 for details. When there are no
infeasible streams the objective functions for CPWO and SAWO are identical and thus
comparable. If there are infeasible streams, we penalize this in the SAWO solution in
order to guide the search (see Section 2.6.2).

SA iterates until a stopping criterion, like a timeout or iteration limit, is satisfied (lines
5–15). In every iteration, we generate a random “neighbor” of the current solution (line
6) and calculate the difference δ between its objective value ΩSA

new and the objective
value ΩSA of the current solution (line 8). Section 2.6.3 presents how we generate a
neighbor solution. If the new objective value is smaller, we accept the new solution as
the current (and possibly best, see lines 12–14). However, we also sometimes accept
a worse neighbor solution. This is the case, if a random value (between 0 and 1) is
smaller than an “acceptance probability function” e

δ
t (see line 9). This acceptance

probability function decreases with a larger δ , i.e., we are less likely to accept worse
neighbors if they are further from the current solution, or a smaller temperature, i.e.,
the probability of accepting worse neighbors decreases during the search. We use a
time limit as the stopping criterion.
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Algorithm 1: Simulated Annealing Window Optimization (SAWO)

1 Function SAWO(F ,P)
2 Φbest = Φ = InitialSolution(F ,P);
3 ΩSA

best = ΩSA = Objective(Φ);
4 t = Tstart ;
5 while stopping-criterion not True do
6 Φnew = RandomNeighbor(Φ, pmv);
7 ΩSA

new = Objective(Φnew);
8 δ = ΩSA

new −ΩSA;

9 if δ < 0 or random[0,1) < e
δ
t then

10 Φ = Φnew;
11 ΩSA = ΩSA

new;
12 if ΩSA

new < ΩSA
best then

13 Φbest = Φnew;
14 ΩSA

best = ΩSA
new;

15 t = t ∗α;

16 return Φbest ;

2.6.1 Initial Solution

The goal of the InitialSolution function, shown in Alg. 2, is to find a good starting
point for SA. We start out by choosing a common period for all windows in the port,
which helps speed up overlap and worst-case latency calculations. The choice of this
period is important: A larger period means longer worst-case latencies but less band-
width occupation, since the distance between two consecutive windows is longer (in
the worst-case a stream arrives right at the moment when it can’t fit into the current
window anymore, requiring it to wait a full window period). We choose the minimum
period that is larger than the combined length of all streams in the port from a set con-
taining all stream periods, their greatest common divisor, and half of that value (line
3-6). Then we decide the length for each window (line 11). It has to be at least as long
as the total sending time of all streams in that queue (line 9), and its size relative to
the period of the window has to be at least as big as the stream sizes relative to their
period (line 10). Finally, we align the windows in the different queues, so they do not
overlap (line 12-13), since, in the worst-case, an overlapping part of a window has to
be considered occupied.
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Algorithm 2: SA Initial Solution

1 Function InitialSolution(F ,P)
2 foreach p ∈ P do
3 T p = { f .T | q ∈ p.QST , f ∈ F(q)};
4 foreach q ∈ p.QST do
5 q.T = MinPossiblePeriod(T p ∪gcd(T p)∪ gcd(T p)

2 );
6 end
7 φcur = 0;
8 forall q ∈ p.QST do
9 tl = sum({ f .l | f ∈ F(q)});

10 pp = sum({ f .l
f .T | f ∈ F(q)});

11 q.w = max(tl, pp∗q.T )+max(Fq
l );

12 q.φ = φcur;
13 φcur = φcur +q.w;
14 end
15 end
16 return P;

2.6.2 SA Objective Function

The objective function ΩSA used inside SA is shown in Equation 2.11. The difference
between ΩSA and Ω used by CP (Equation 2.1, Section 2.5.1) is that Ω minimizes
the average bandwidth usage and then uses timing constraints and network calculus to
check that a solution is schedulable.

ΩSA has two components: The first component Ωbw is measuring the bandwidth con-
sumed by all windows across all ports on average, and is equivalent Ω. The second
component Ωin f is the number of streams that miss their deadline, also called infea-
sible streams. Thus, instead of using the schedulability as a constraint as in the CP
formulation, we allow SA to visit unschedulable solutions in the hope of driving the
search towards schedulable solutions. The amount of infeasible streams is determined
by running the NC-based worst-case delay analysis of [ZPGF32] with the given set
of windows. Since the average consumed bandwidth is at most 1 (equals to 100%),
any missed deadlines will increase the objective value and thus drive the search to
schedulable solutions that decrease Ωin f , which dominates the objective function when
a solution is not schedulable. The weights wa and wb in Equation 2.11 can be used to
control the relative importance of the two components, e.g., when a system engineer
prefers lower bandwidth at the expense of schedulability, wa can be increased and wb
decreased. In our experiments, we have used wa = wb = 1, which we found is a good
choice when searching for schedulable solutions.
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Ω
SA = wa ×Ω

bw +wb ×Ω
in f , where (2.11)

Ω
bw =

∑
q.w
q.T

N (P)
,∀p ∈ P,∀q ∈ p.Q

Ω
in f = |{ f | f ∈ F ∧mdest( f )

i .φ +mdest( f )
i .L−msrc( f )

i .φ > f .D−δ}|

2.6.3 Neighbor Function

The purpose of the RandomNeighbor(Φ, pmv) function in Algorithm 1 is to select a
close neighbor of the current solution Φ. A neighbor is generated by performing a
transformation (also called “moves”) on the current solution. This transformation func-
tion is designed such that the SA search will have good coverage of the solution space.
The solution space, in our case, includes all solutions that have one window per queue,
with a minimum length and without overlap of windows in the same port. Our neighbor
function uses two different moves to change the current solution:

• MoveWindow: Selects a random occupied queue. Changes the window offset to
a random value within the range of all offsets where the window will not overlap
with windows in other queues on the same port. This move occurs with a given
probability of pmv.

• ChangeWindowSize: Selects a random occupied queue. Changes the window
size to a random value in the range between the minimum window size and the
maximum size before an overlap with another window in the same port would
occur. This move is applied with a probability of 1− pmv.

We have used a value of pmv = 0.8 in the experiments. This makes it more likely for a
MoveWindow move to occur, which is usually more impactful, since the window sizes
are already set to reasonable initial values by the initial solution, while the window
alignment across ports is not very good yet.
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Figure 2.6: Network Topologies used in the Test Cases [ZPS17]-

2.7 Evaluation

In this section, we evaluate our optimization solutions CPWO and SAWO for FWND
on synthetic and real-world test cases in Section 2.7.1 and Section 2.7.2, respectively.

2.7.1 CPWO Evaluation

Test Cases and Setup

We implemented our CPWO approach using the Java version of Google OR-Tools and
the Java kernel of the RTC toolbox [Goo20, WT06b]. The tests were run on an i9
CPU (3.6 GHz) with 32 GB of memory. The timeout for is set to 10 to 90 minutes,
depending on the size of the test case. The macrotick and B parameters are set to 1 µs
and 1, respectively, in all the test cases.

We have generated 15 synthetic test cases that have different network topologies (three
test cases for each topology in Figure 2.6) inspired by industrial and automotive ap-
plication requirements. Similar to [ZPS17], the network topologies are small ring
& mesh (SRM), medium ring (MR), medium mesh (MM), small tree-depth 1 (ST),
and medium tree-depth 2 (MT). The message sizes of streams are randomly cho-
sen between 64 bytes and 1518 bytes, while their periods are selected from the set
P = {1,500, 2,500, 3,500, 5,000, 7,500, 10,000}µs. The physical link speed is set for
100 Mbps. The details of the synthetic test cases are in Table 2.4 where the second
column shows the topology of the test cases, and the number of switches, end systems,
and streams are shown in columns 3 to 6.

We have also used two realistic test cases: an automotive case from General Motors
(GM) and an aerospace case, the Orion Crew Exploration Vehicle (CEV). The GM
case consists of 27 streams varying in size between 100 and 1,500 bytes, with periods
between 1 ms and 40 ms and deadlines smaller or equal to the respective periods. The
CEV case is larger, consisting of 137 streams, with sizes ranging from 87 to 1,527
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Table 2.4: Details of the Synthetic Test Cases.

No. Network Total No. Total No. Total No. Hyperperiod
Topology of SWs of ESs of Streams (µs)

1 SRM 2 3 9 15,000
2 SRM 3 3 11 70,000
3 SRM 3 4 15 70,000
4 MR 4 6 15 30,000
5 MR 4 8 21 210,000
6 MR 5 11 27 210,000
7 MM 4 5 13 15,000
8 MM 6 12 30 210,000
9 MM 7 13 35 210,000
10 ST 3 4 7 15,000
11 ST 3 6 12 15,000
12 ST 3 7 16 105,000
13 MT 7 8 18 105,000
14 MT 7 8 25 105,000
15 MT 7 12 32 210,000

bytes, periods between 4 ms and 375 ms, and deadlines smaller or equal to the respec-
tive periods. The physical link speed is set for 1000 Mbps. More information can be
found in the corresponding columns in Table 2.6. Use cases use the same topologies as
in [GZPS17] and [ZPGF32], and we consider that all streams are ST.

CPWO Evaluation on Synthetic Test Cases

We have evaluated our CPWO solution for FWND on synthetic test cases. The results
are depicted in Table 2.5 where we show the objective function value (average band-
width Ω from Equation 2.1) and the mean WCDs. For a quantitative comparison, we
have also reported the results for the three other ST scheduling approaches: 0GCL,
FGCL, WND. 0GCL and FGCL were implemented by us with a CP formulation us-
ing the constraints from [CSCS16] and [SOCS18], respectively. The WND method
has been implemented with the heuristic presented in [RZCP20], but instead of us-
ing the WCD analysis from [ZPC18], we extend it to use the analysis from [ZPGF32]
instead, in order not to unfairly disadvantage WND over our CPWO solution. Note
that the respective mean worst-case end-to-end delays in the table are obtained over all
the streams in a test case, from a single run of the algorithms, since the output of the
algorithms is deterministic based on worst-case analyses, not based on simulations.

It is important to note that 0GCL and FGCL are presented here as a means to evaluate
CPWO; however, they are not producing valid solutions for our problem, which con-
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Table 2.5: CPWO Evaluation Results on Synthetic Test Cases.

No. Ω1 Ω1 Ω1 Ω1 Mean worst-case Mean worst-case Mean worst-case Mean worst-case Mean Runtime Mean Runtime
for for for for e2e-delay for e2e-delay for e2e-delay for e2e-delay for for for

0GCL FGCL WND CPWO 0GCL (µs) FGCL(µs) WND (µs) CPWO (µs) 0GCL (ms) CPWO (ms)
1 35 35 614 510 192 126 1838 1556 215 8/164
2 25 22 640 528 246 151 2461 1806 895 12/249
3 15 15 549 495 175 486 1964 1384 1518 22/203
4 13 13 330 285 160 776 2925 1832 525 16/338
5 14 NA2 295 285 131 NA2 2838 2347 5187 16/423
6 13 NA2 275 205 129 NA2 2953 1976 6291 17/721
7 12 12 238 204 125 764 2913 1561 1152 35/3235
8 13 NA2 238 202 114 NA2 2878 1725 7603 36/2075
9 12 NA2 217 191 122 NA2 3074 1927 9171 56/12084
10 8 8 329 265 136 2284 4397 4327 2611 165/325
11 10 10 381 302 159 984 3047 2057 2840 231/1552
12 11 NA2 516 321 187 NA2 2543 1326 4650 260/3393
13 10 10 401 302 101 561 2529 471 978 130/914
14 9 9 611 402 120 785 2254 628 1256 162/1077
15 9 NA2 544 413 114 NA2 2680 713 6116 163/1433
1 Values are multiplied by 1000
2 Ran out of memory

siders unscheduled end systems, see Table 2.1 for the requirements of each method.
As expected, when end systems are scheduled and synchronized with the rest of the
network as is considered in 0GCL and FGCL, we obtain the best results in terms of
bandwidth usage (Ω) and WCDs, noting that 0GCL may further reduce the WCDs
compared to FGCL.

The only other approach that has similar assumptions to our CPWO approach is WND
from [RZCP20]. As we can see from Table 2.5, in comparison to WND, our CPWO
solution can slightly reduce the bandwidth usage. The most important result is that
CPWO significantly reduces the WCDs compared to WND, with an average of 104%
and up to 437% for some test cases such as TC13. Hence, we are able to obtain schedu-
lable solutions in more cases compared to the work in [RZCP20]. Also, when compar-
ing the WCDs obtained by our CPWO approach with the case when the end systems
are scheduled, i.e., 0GCL and FGCL, we can see that the increase in WCDs is not
dramatic. This means that for many classes of applications, which can tolerate a slight
increase in latency, we can use our CPWO approach to provide solutions for more types
of network implementations, including those that have unscheduled and/or unsynchro-
nized end systems. In addition, due to the complexity of their CP model, it takes a
long runtime to obtain solutions for 0GCL and FGCL, and the CP-model for FGCL run
out of memory for some of the test cases (the NA in the table). As shown in the last
two columns of Table 2.5, where we present the runtimes of 0GCL and CPWO, CPWO
reduces the runtime significantly. The two numbers in the runtime column represent
the runtime for the obtaining the last solution and the runtime for the whole CPWO
run, respectively. The reason for reduced runtime with CPWO is that the CP model
has to determine values for fewer variables compared to 0GCL. CPWO introduces 3
variables (offset, period and length) for each window (queue) in the network, whereas
0GCL introduces a variable for each frame of each stream. The number of variables in
the 0GCL model depends on the hyperperiod, the number of streams, and the stream
periods, whereas the number of variables in the CPWO model depends on the number
of switches and used queues.



2.7 Evaluation 47

Table 2.6: CPWO Results on Realistic Test Cases.

ORION (CEV) GM
ES 31 20
SW 15 20
Streams 137 27
Mean WCDs (µs) 10,376 1,981
Ω (×1000) 435 84
Runtime (s) 891 17

CPWO Evaluation on Realistic Test Cases

We have used two realistic test cases to investigate the scalability of CPWO and its
ability to produce schedulable solutions for real-life applications. The results of the
evaluation are presented in Table 2.6 where the mean WCDs, objective value Ω, and
runtime for the two test cases are given. As we can see, CPWO has successfully sched-
uled all the streams in both test cases. Note that once all streams are schedulable,
CPWO aims at minimizing the bandwidth. This means that CPWO may be able to
achieve even smaller WCD values at the expense of bandwidth usage. In terms o run-
time, the CEV test case takes longer since it has 864 variables, whereas GM has only
102 variables in the CP models.

Note that we had to use a very aggressive pruning parameter B = 1 for all the CPWO
experiments. This was the only way to ensure that CPWO terminates and returns a
solution. A more “relaxed” B will result in CPWO running for several days without
returning a solution. Due to the aggressive pruning, the solution returned by CPWO
is not guaranteed to find the optimal solution and will, in fact, as the next section will
show, miss good quality solutions.

Validating the CPWO Solutions with OMNET++

We have used the OMNET++ simulator with the TSN NeSTiNg extension [FHC+19]
to validate the generated GCLs. Thus, we have synthesized the GCLs for all approaches
on all synthetic test cases, and we have observed that the GCLs are correct, and the sim-
ulation behaves as expected. The mean WCDs of CPWO for the synthetic test cases
and the worst-case latency observed during multiple OMNET++ simulations (with the
windows from CPWO) are depicted in Figure 2.7a. As expected, the latency values
reported by OMNET++ are smaller than the WCDs, as reported by the WCD Analy-
sis from [ZPGF32]. This is because a simulation cannot easily uncover the worst-case
behavior. However, the simulation indicates the average behavior, and small delays
mean that even for unscheduled/unsynchronized end systems, we are able to obtain so-
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Figure 2.7: WCD vs. Simulated Delays.

lutions that are not only schedulable (WCDs are smaller than the deadlines) but also
have good average behavior, where most of the time the delays are reasonable, even
smaller than the static schedules obtained by 0GCL and CPWO for scheduled and syn-
chronized ESs. The pessimism result of the WCD analysis is unavoidable in systems
with un-synchronized and/or unscheduled end-systems; in practice, however, simulated
delays are much smaller, as can be seen in Figure 2.7a and Figure 2.7b. We also show
in Figure 2.7b the simulated delays and WCDs for all streams of TC12. All the streams
are schedulable, and, as expected, the simulated delays are smaller than the WCDs,
calculated with the worst-case delay analysis derived in the work from [ZPGF32].

CPWO Scalability Evaluation

We have investigated the scalability of CPWO on 6 larger test cases (TC1 to TC6), that
have up to 120 devices (75 ESs and 45 SWs) and 500 streams. The results and the
details of the test cases are presented in Table 2.7, where columns 2, 3, and 4 show
the number of streams, end-systems, and switches, respectively. Columns 5, 6, and 7

Table 2.7: Scalability Evaluation of CPWO.

No. Total No. Total No. Total No. Mean WCDs Largest deadline Ω

of Streams of ESs of SWs µs µs (×1000)
TC1 100 50 35 3,226 4,000 249
TC2 150 55 40 3,521 4,000 366
TC3 200 60 40 4,387 5,000 396
TC4 300 65 40 4,911 6,000 468
TC5 400 70 45 5,210 6,000 498
TC6 500 75 45 4,399 5,000 511
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show the mean WCD of streams in µs, the largest deadline of all streams in µs, and the
objective value Ω, related to bandwidth, see Equation 2.1. CPWO was able to generate
schedulable solutions in all cases. Furthermore, CPWO is optimize the schedules for
minimum bandwidth usage and has generated solutions that, besides being schedulable,
have mean WCDs on average 14% smaller than the respective deadlines in all test cases.

2.7.2 SAWO Evaluation

Test Cases and Setup

For the comparison of SAWO and CPWO in Section 2.7.2 and the SAWO evaluation
using realistic test cases in Section 2.7.2, we used the same test cases defined in Sec-
tion 2.7.1. For the test cases in Section 2.7.2 we have taken the topology sizes proposed
in [CSO16] as a reference. We implemented our SAWO solution in Python and config-
ured it for all experiments with a = b = 1, pmv = 0.8 on an i7-8565U CPU with 16GB
memory and using Python 3. The solution communicates with the worst-case delay
analysis of [ZPGF32] via socket, eliminating unnecessary delay of file I/O.

SAWO Comparison to CPWO

We compare the SA-based approach (SAWO) to the CP-based solution (CPWO) but
also to the classical zero-jitter GCL (0GCL) [CSCS16, PLCS16], Frame-to-Window-
based GCL (FGCL) [SOCS18], and Window-based GCL (WND) [RZCP20] solutions,
in terms of the objective value (i.e., quality of the solution) and the mean worst-case
end-to-end latency for the streams. We do not show the runtime figures, since the SA-
based solution was always set to a runtime of 2 and 10 min. We note that the runtime
for CPWO is small due to the aggressive pruning parameter, thus trading off the quality
of the solution for algorithm runtime. For the experiments, we use the same synthetic
test cases described in Section 2.7.1. The details of the synthetic test cases can be found
in Table 2.4.

Table 2.8 presents the results for SAWO compared to the aforementioned solutions.
For SAWO, the columns showing the objective value Ω and the mean worst-case e2e
delay present two numbers obtained with 2 and 10 minute runtime, respectively.

We can see that SAWO can achieve significantly better results than CPWO in terms of
the objective value Ω. While the runtime of 2 min is sufficient to get a good result,
this result can be further improved by a longer runtime (see Section 2.7.2 for a more
detailed analysis of the runtime impact). The objective function does not include the
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Table 2.8: SAWO Evaluation Results on Synthetic Test Cases.

No. Ω1 Ω1 Ω1 Ω1 Ω1 Mean worst-case Mean worst-case Mean worst-case Mean worst-case Mean worst-case
for for for for for e2e-delay for e2e-delay for e2e-delay for e2e-delay for e2e-delay for

0GCL FGCL WND CPWO SAWO 0GCL (µs) FGCL(µs) WND (µs) CPWO (µs) SAWO (µs)
1 35 35 614 510 452/455 192 126 1838 1556 1412/1424
2 25 22 640 528 346/343 246 151 2461 1806 1648/1797
3 15 15 549 495 300/293 175 486 1964 1384 1684/1752
4 13 13 330 285 236/222 160 776 2925 1832 1608/1488
5 14 NA2 295 285 250/225 131 NA2 2838 2347 1380/1526
6 13 NA2 275 205 254/208 129 NA2 2953 1976 1250/1407
7 12 12 238 204 136/92 125 764 2913 1561 848/784
8 13 NA2 238 202 225/144 114 NA2 2878 1725 787/981
9 12 NA2 217 191 218/146 122 NA2 3074 1927 774/1138
10 8 8 329 265 85/84 136 2284 4397 4327 4787/4509
11 10 10 381 302 104/97 159 984 3047 2057 2472/2518
12 11 NA2 516 321 254/251 187 NA2 2543 1326 1367/1188
13 10 10 401 302 157/166 101 561 2529 471 1149/898
14 9 9 611 402 196/201 120 785 2254 628 1219/1057
15 9 NA2 544 413 210/206 114 NA2 2680 713 1045/1081
1 Values are multiplied by 1000
2 Ran out of memory

mean e2e-delay but the number of infeasible streams. That means that it is beneficial
for the solutions to accept a higher mean e2e-delay for a lower objective value, e.g.,
by decreasing the size of a window. That can be seen, for example, in test case 2.
However, sometimes there are also solutions that have both a lower objective value
and e2e-delay, e.g., test case 4. This can happen through a window being moved to
a better offset, which would decrease the e2e-delay without increasing the objective
value. Please note that the objective function Ω is the same for both CPWO and SAWO
since SAWO can schedule all streams and thus there is no penalty term for infeasible
streams in the SAWO objective function.

As mentioned before in Section 2.7.1, 0GCL and FGCL are included as a means to
evaluate SAWO; however, they are not producing valid solutions for our problem, as
they require scheduled end-systems. As expected, when end systems are scheduled
and synchronized with the rest of the network, as is considered in 0GCL and FGCL,
we obtain the best results in terms of bandwidth usage (Ω) and WCDs.

SAWO Evaluation on Realistic Test Cases

Table 2.9: SAWO Results on Realistic Test Cases.

ORION (CEV) GM
ES 31 20
SW 15 20
Streams 137 27
Mean WCDs (µs) 341 992
Ω (×1000) 374 15
Runtime (s) 600 600

As with CPWO, we have used two realistic test cases from [GZPS17] and [ZPGF32],
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an automotive case from General Motors (GM) and an aerospace case, the Orion Crew
Exploration Vehicle (CEV), where we consider that all streams are critical and sched-
uled. For the details of the test cases, please see the description in Section 2.7.1. We
show the scalability of SAWO and its ability to produce schedulable solutions for real-
life applications. The results of the evaluation are presented in Table 2.9 where the
mean WCDs, objective value Ω, and runtime for the two test cases are given. As a
comparison to CPWO, we refer the reader to the results presented in Table 2.6. As
we can see, SAWO has successfully scheduled all the streams in both test cases and
produces better results than CPWO in terms of mean WCD and quality of the solution
(objective value Ω). The runtime for SAWO was set to 10 minutes for the two realistic
test cases.

SAWO Evaluation on Large Synthetic Test Cases

As previously described, CPWO delivers good results in a reasonable time for small
problem sizes, but does not scale well for large inputs unless the search space pruning
is done very aggressively, which leads to low-quality solution. Therefore, we show that
our SAWO heuristic algorithm scales well with the network and problem size while
still offering good quality solutions.

To evaluate the impact of the heuristic runtime and the test case size on the resulting
solution quality, we have created three test batches as described in Table 2.10. Each
batch consists of 50 test cases with a mesh topology (see Figure 2.6) with sizes medium,
large, and huge as described in [CSO16]. For each test case, we generated streams with
random routes, priorities, and sizes under the constraint that no link utilization may
exceed 50% until an average link utilization threshold of 15% was reached. For the
medium test cases, there were between 31 and 67 streams with an average of around
46 streams per test case. For the large batch, the 50 test cases had between 127 and
178 streams averaging 147 streams. The huge test batches averaged 416 streams per
test case with a minimum of 364 and a maximum of 475. Each stream has a random
size between 64 and 1500 Bytes and a random period from the set {1,2,5,10} ms,
as defined for the use cases in [KZH15]. The stream deadline is set to ten times the
stream’s period.

Table 2.10: Parameters of SAWO Test Batches.

Topology Number of testcases SW ES Avg. number of streams
medium mesh 50 4 16 46

large mesh 50 8 48 148
huge mesh 50 16 96 416
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We ran each test batch with a 2-minute and a 10-minute timeout and measured the
best objective function value ΩSA obtained within the timeout. Figure 2.8 shows the
results as box plots for the medium and large test batches (y-axis), with all objective
values multiplied by 1000 for clarity (x-axis). We set the upper and lower whisker
bounds to depict outliers above 1.5× IQR of the 3rd quartile and under 1.5× IQR of
the 1st quartile. Additionally, we show all data points within the figure. The median
for the medium size test-cases with 2 minutes and 10 minutes timeout was 172.5 and
140, respectively. The median for the large test cases with 2 minutes and 10 minutes
timeout was 180 and 179, respectively.

We can see that the test cases are consistently completely schedulable (objective value
below 1000) with good solution quality. Furthermore, we can see that the heuristic
quickly can find good quality solutions. A longer runtime has a positive impact on the
solution quality, but this impact depends on the size of the test case. The time needed to
achieve significant improvement increases with the size of the test case, as the amount
of possible moves increases in parallel with the worst-case analysis taking more time
per iteration.

Figure 2.9 shows the result for the huge test batches as a box plot with the same whisker
boundaries and outlier setting as before but with a logarithmic x-axis showing the ob-
jective value. The median for the huge test cases were 180.5 and 179.5 for the 2 and
10 minute timeout, respectively. With a 2 minute timeout, 13 out of 50 test cases had
at least one unschedulable stream (objective value over 1000) and overall low solution
quality. With a 10 min timeout, the solution quality improved, and only 8 out of 50 test
cases had at least one unschedulable stream. From the total of 20810 streams in the 50
test cases, a total of 35 streams were unschedulable with a 2 minute timeout, while a
total of 21 were unschedulable with the 10 minute timeout.

100 150 200 250
Objective value

Medium 2min

Medium 10min

Large 2min

Large 10min

Figure 2.8: Objective Value Boxplots for Medium and Large SAWO Test Batches.
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Figure 2.9: Objective Value Boxplots for Huge SAWO Test Batches.

2.8 Conclusions

We have addressed the problem of guaranteeing real-time communication behavior in
heterogeneous TSN networks, introducing a more flexible heuristic schedule synthesis
approach (FWND) which decouples the frame transmission from the scheduled time-
aware shaper (TAS) windows. Using this approach, we have proposed two solutions to
solve the problem, one based on a Constraint-Programming formulation within a Tabu
Search metaheuristic (CPWO) and one based on a Simulated Annealing metaheuristic
(SAWO). The CPWO solution uses a novel proxy function that can be parametrized to
trade off run-time performance for search-space pruning in the CP-model. We have
shown that for large use cases, CPWO has to either aggressively prune the search
space, leading to low-quality solutions, or is intractable. Therefore, we have intro-
duced SAWO, which scales better for large test cases while still offering good quality
solutions. We evaluated our approaches using synthetic and real-world test cases, com-
paring them with existing mechanisms, and validated the generated schedules using
OMNET++.
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CHAPTER 3

Paper B:
Dependability-Aware

Routing and Scheduling for
Time-Sensitive Networking

Time-Sensitive Networking (TSN) extends IEEE 802.1 Ethernet for safety-critical and
real-time applications in several areas, e.g., automotive, aerospace or industrial au-
tomation. However, many of these systems also have stringent security requirements,
and security attacks may impair safety. Given a TSN-based distributed architecture,
a set of applications with tasks and messages, as well as a set of security and redun-
dancy requirements, we are interested to synthesize a system configuration such that
the real-time, safety and security requirements are upheld. We use the Timed Efficient
Stream Loss-Tolerant Authentication (TESLA) low-resource multicast authentication
protocol to guarantee the security requirements, and redundant disjunct message routes
to tolerate link failures. We consider that tasks are dispatched using a static cyclic
schedule table and that the messages use the time-sensitive traffic class in TSN, which
relies on schedule tables (called Gate Control Lists, GCLs) in the network switches. A
configuration consists of the schedule tables for tasks, as well as the disjoint routes and
GCLs for messages. We propose a Constraint Programming-based formulation which
can be used to find an optimal solution with respect to our cost function. Additionally,
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we propose a Simulated Annealing based metaheuristic, which can find good solution
for large test cases. We evaluate both approaches on several test cases.

3.1 Introduction

Many modern safety-critical real-time systems are implemented on distributed archi-
tectures. They integrate various software functions with different security and safety
requirements over the same deterministic communication network. For example, the
network in a modern vehicle has to integrate high-bandwidth video and LIDAR data
for Advanced Driver Assistance Systems (ADAS) functions with the highly critical but
low bandwidth traffic of e.g., the powertrain functions, but also with the best-effort
messages of the low-criticality diagnostic services [GP20]. Figure 3.1 presents an ex-
ample of an ADAS network architecture with redundant routes.

Time-Sensitive Networking (TSN) [Ins16c], which is becoming the standard for com-
munication in several application areas, e.g., automotive to industrial control, is com-
prised of a set of amendments and additions to the IEEE 802.1 standard, equipping
Ethernet with the capabilities to handle real-time mixed-criticality traffic with high
bandwidth. A TSN network consists of several end-systems that run mixed-criticality
applications interconnected via network switches and physical links. Available traffic
types are Time-Triggered (TT) traffic for real-time applications, Audio-Video Bridging
(AVB) for communication that requires less stringent bounded latency guarantees, and
Best-Effort (BE) traffic for non-critical traffic [GZRP18].

We assume that safety-critical applications are scheduled using static cyclic scheduling
and use the TT traffic type with a given Redundancy Level (RL) for communication.
We consider that the task-level redundancy is addressed using solutions such as replica-
tion [IPEP05], and we instead focus on the safety and security of the communication in
TSN. The real-time safety requirements of critical traffic in TSN networks are enforced
through offline-computed schedule tables, called Gate Control Lists (GCLs), that spec-
ify the sending and forwarding times of all critical frames in the network. Schedul-
ing time-sensitive traffic in TSN is non-trivial (and fundamentally different from e.g.,
TTEthernet) because TSN does not schedule communication at the level of individual
frames as is the case in TTEthernet. Instead, the static schedule tables (GCLs) gov-
ern the behavior of entire traffic classes (queues), which may lead to non-deterministic
frame transmissions [CSCS16].

Since link and connector failures in TSN could result in fatal consequences, the network
topology uses redundancy, e.g., derived with methods such as [GZPS17]. In TSN,
IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER) enables the
transmission of duplicate frames over different (disjoint) routes, implementing merging
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Figure 3.1: Automotive TSN-based CPS with Redundant Routes.

of frames and discarding of duplicates.

Nowadays, modern Cyber-Physical Systems (CPSs) are becoming increasingly more
interconnected with the outside world opening new attack vectors [PBA17, SNA+13]
that may also compromise safety. Therefore, the security aspects should be equally
important to the safety aspects. Timed Efficient Stream Loss-Tolerant Authentica-
tion (TESLA) [PCST01] has been investigated as a low-resource authentication proto-
col for several networks, such as FlexRay and TTEthernet [ZQLY19] networks. How-
ever, adding security mechanisms such as TESLA after the scheduling stage is often
not possible without breaking real-time constraints, e.g., on end-to-end latency, and
degrading the performance of the system [ZQLY19]. Thus we consider TESLA and
the overhead and constraints it imposes as part of our configuration synthesis problem
formulation.

3.1.1 Related Work

Scheduling for TSN networks is a well-researched problem. It has been solved for a
variety of different traffic type combinations (TT, AVB, BE) and device capabilities
using methods such as Integer Linear Programming (ILP), Satisfiability Modulo The-
ories (SMT) or various metaheuristics such as tabu search [CSCS16, SOCS18, DN16,
GZRP18, ZSEP21a, HAD+21, SALC21, VHT21, VBHT22].

Routing has also been extensively researched [WH00, GHKS98]. In [SBCH13] the au-
thors presented an ILP solution to solve the routing problem for safety-critical AFDX
networks. In [TSPS15] the authors used a tabu search metaheuristic to solve the com-
bined routing and scheduling problem for TT traffic in TTEthernet. In [PD12] the
authors provide a simple set of constraints to solve a general multicast routing problem
using constraint programming, which [GZPS17] builds on that to solve a combined
topology and route synthesis problem. In [OY20] the authors use a load-balancing
heuristic to distribute the bandwidth usage over the network and achieve lower latency
for critical traffic.
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Multiple authors have also looked at the combined routing and scheduling problem.
The authors in [LPS16] and [NDR18b] showed that they are able to significantly reduce
the latency by solving the combined problem with an ILP formulation. In [PTO19]
the authors presented a heuristic for a more complex application model that allows
multicast streams. They were able to solve problems that were infeasible to solve using
ILP or separate routing and scheduling.

Recently authors have started to present security- and redundancy-aware problem for-
mulations. The authors in [ZQLY19] provided a security-aware scheduling formulation
for TTEthernet using TESLA for authentication. In [MAS+19] the authors solve the
combined routing and scheduling problem and considered authentication using block
ciphers. The authors in [HWW+21] and [AHM20], on the other hand, present a rout-
ing and scheduling formulation that is redundancy-aware but has no security consider-
ations.

To the best of our knowledge, our work is the first to provide a formulation that is both
security and redundancy-aware.

3.1.2 Contributions

In this paper, we address TSN-based distributed safety-critical systems and solve the
problem of configuration synthesis such that both safety and security aspects are con-
sidered. Determining an optimized configuration means deciding on the schedule tables
for tasks as well as the disjoint routes and GCLs for messages. Our contributions are
the following:

1. We apply TESLA to TSN networks considering both the timing constraints im-
posed by TSN and the security constraints imposed by TESLA.

2. We formulate an optimization problem to determine: (i) the redundant routing
of all messages; (ii) the schedule of all messages, encapsulated into Ethernet
frames, represented by the GCLs in the network devices, and (iii) the schedule
of all related tasks on end-systems.

3. We extend our Constraint Programming (CP) formulation from [RPC20] and
propose a new Simulated Annealing (SA)-based metaheuristic to tackle large-
scale networks that cannot be solved with CP

4. We evaluate the impact of adding the security from TESLA on the schedulabil-
ity of applications, and we evaluate the solution quality and scalability of the
Constraint Programming (CP) and Simulated Annealing (SA) optimization ap-
proaches

We introduce the fundamental concepts of TSN in Section 3.2 and of TESLA in Sec-
tion 3.3. In Section 3.4 we present the model of our system, consisting of the network
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Figure 3.2: Simplified TSN Switch Representation.

architecture and applications running on this architecture. Additionally we present a
threat model and how it is addressed by TESLA with a security model. In Section 3.5
we formulate the problem we are solving using the established models and present an
example. In Section 3.6 and Section 3.7 we present the two different optimization ap-
proaches, CP and SA. Then, we evaluate these approaches using several test cases in
Section 3.8. Section 3.9 concludes the paper.

3.2 Time-Sensitive Networking

Time-Sensitive Networking [Ins16c] has arisen out of the need to have more stringent
real-time communication capabilities within standard Ethernet networks. Other tech-
nologies that offer real-time guarantees for distributed systems are TTEthernet (SAE
AS6802 [Iss11, SBHP11]), PROFINET, and EtherCAT [Pry08]. TSN comprises a set
of (sub-)standards and amendments for the IEEE 802.1Q standard, introducing sev-
eral new mechanisms for Ethernet bridges, extensions to the IEEE 802.3 media access
control (MAC) layer, as well as other standards and protocols (e.g., 802.1ASrev). A
survey on the research results and the standardization efforts for TSN can be found
in [SHM+21].

The fundamental mechanisms that enable deterministic temporal behavior over Ether-
net are, on the one hand, the clock synchronization protocol defined in IEEE 802.1AS-
rev [Ins17a], which provides a common clock reference with bounded deviation for
all nodes in the network, and on the other hand, the timed-gate functionality (IEEE
802.1Qbv [Ins16b]) enhancing the transmission selection on egress ports. The timed-
gate functionality (IEEE 802.1Qbv [Ins16b]) enables the predictable transmission of
communication streams according to the predefined times encoded in schedules called
Gate-Control Lists (GCL). A stream in TSN definition is a communication carrying
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a certain payload size from a talker (sender) to one or multiple listeners (receivers),
which may or may not have timing requirements. In the case of critical streams, the
communication has a defined period and a maximum allowed end-to-end latency.

Other amendments within TSN (c.f. [Ins16c]) provide additional mechanisms that can
be used either in conjunction with 802.1Qbv or stand-alone. IEEE 802.1CB [Ins17b]
enables stream identification, based on e.g., the destination MAC and VLAN-tag fields
in the frame, as well as frame replication and elimination for redundant transmission.
IEEE 802.1Qbu [Ins16a] enables preemption modes for mixed-criticality traffic, allow-
ing express frames to preempt lower-priority traffic. IEEE 802.1Qci [Ins17c] defines
frame metering, filtering, and time-based policing mechanisms on a per-stream basis
using the stream identification function defined in 802.1CB.

We detail the Time-Aware Shaper (TAS) mechanism defined in IEEE 802.1Qbv [Ins16b]
via the simplified representation of a TSN switch in Figure 3.2. The figure presents a
scenario in which communication received on one of two available ingress ports (A and
B) will be routed to an egress port C. The switching fabric will determine, based on
internal routing tables and stream properties, to which egress port a frame belonging
to the respective stream will be routed (in our logical representation, there is only one
egress port). Each port will have a priority filter that determines which of the available
8 traffic classes (priorities) of that port the frame will be enqueued in. This selection
will be made based on either the PCP field of the 802.1Q VLAN-tag of frames or
the stream gate instance table of 802.1Qci, which can be used to circumvent traffic
class assignment of the PCP code. As opposed to regular 802.1Q bridges, where the
transmission selection sends enqueued frames according to their respective priority, in
802.1Qbv bridges, there is a Time-Aware Shaper (TAS), also called timed-gate, asso-
ciated with each traffic class queue and positioned before the transmission selection
algorithm. A timed-gate can be either in an open (o) or closed (C) state. When the gate
is open, traffic from the respected queue is allowed to be transmitted, while a closed
gate will not allow the respective queue to be selected for transmission, even if the
queue is not empty. The state of the queues is encoded in a local schedule called Gate-
Control List (GCL). Each entry defines a time value and a state (o or C) for each of the
8 queues. Hence whenever the local clock reaches the specified time, the timed-gates
will be changed to the respective open or closed state. If multiple nonempty queues
are open simultaneously, the transmission selection selects the queue with the highest
priority for transmission.

The Time-Aware Shaper functionality of 802.1Qbv, together with the synchronization
protocol defined in 802.1ASrev, enables a global communication schedule that orches-
trates the transmission of frames across the network such that real-time constraints
(usually end-to-end latencies) are fulfilled. The GCL schedule synthesis problem has
been addressed in [CSCS16, SOCS18, PLCS16, DN16] for ensuring deterministic
communication behavior for critical streams.
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Craciunas et al. [CSCS16] define correctness conditions for generating GCL sched-
ules, resulting in a strictly deterministic transmission of frames with 0 jitter. Apart
from technological constraints, e.g., only one frame transmitted on a link at a time, the
deterministic behavior over TSN is enforced in [CSCS16] through isolation constraints.
Since the TAS determines the temporal behavior of entire traffic classes and not of in-
dividual frames, the queue state always has to be deterministic and hence, [CSCS16]
enforces a strict isolation of critical streams by not allowing two critical streams to be
enqueued in the same queue at the same time. This condition is called frame/stream
isolation in [CSCS16]. In [SOCS18], critical streams are allowed to overlap to some
degree (determined by a given jitter requirement) in the same queue in the time domain,
thus relaxing the strict isolation.

Both approaches enforce that gate states of different scheduled queues are mutually
exclusive, i.e., only one gate is open at any time, thus preventing the transmission se-
lection from sending frames based on their assigned traffic class’s priority. By circum-
venting the priority mechanism through the TAS, it is ensured that no additional delay
is produced through streams of higher priorities, thus enforcing a highly deterministic
temporal behavior.

3.3 Timed Efficient Stream Loss-Tolerant Authentica-
tion

TESLA provides a resource-efficient way to perform asymmetric authentication in a
multicast setting [PCST01]. It is described in detail in [PCST01] and [PSC+05].

We are considering systems where one end-system wants to send a multicast signal
to multiple receiver end-systems, e.g., periodic sensor data. A message authentication
code (MAC), which is appended to each signal, can guarantee authenticity, i.e., that
the sender is whom he claims to be, and integrity, i.e., that the message has not been
altered. The MAC is generated and authenticated by a secret key that all end-systems
share (i.e., symmetric authentication). The downside of this approach is that if any of
the receiving end-systems is compromised, the attacker would be able to masquerade as
the sender by knowing the secret key. In a multicast setting, an asymmetric approach,
in which the receivers do not have to trust each other, is preferable.

The traditional asymmetric authentication approach is to use asymmetric cryptography
with digital signatures (i.e., private and public keys); however, as stated in [PCTS02],
the method is computationally intensive and not well suited for systems with limited
resources and strict timing constraints.
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Figure 3.3: TESLA Key Chain (adapted from [PCTS02]).

However, TESLA uses an approach where the source of asymmetry is a time-delayed
key disclosure [PCST01]. Although this can be implemented with much less over-
head, it requires time synchronization between the network nodes. For TSN, the time
synchronization is given through the 802.1ASrev protocol.

Figure 3.3 visualizes the TESLA protocol. As described in [PCTS02], when using
TESLA, time is divided into fixed intervals of length Pint . At startup a one-way chain of
self authenticating keys Ki is generated using a hash function H, where Ki = H(Ki+1).
Each key is assigned to one interval. The protocol is bootstrapped by creating this chain
and securely distributing K0 to all receivers [ZQLY19].

Normally in TESLA, as described in [ZQLY19], when a sender sends a message m
in the i-th interval, it appends to that message: i, a keyed-MAC using the key of that
interval Ki, and a previously used key Ki−d . Thus, a key remains secret for d intervals.
When a receiver receives a message m in the interval i it can not yet authenticate it
and must wait until a message arrives in the interval i+d. This message discloses Ki,
which can be used to decrypt the MAC of m and thus authenticate it. To ensure that
Ki itself is valid, we can use any previously validated key. For e.g., we can check that
H(Ki) = Ki−1, H(H(Ki)) = Ki−2 etc. This makes TESLA also robust to packet loss
since any lost keys can be reconstructed from a later key, and any key can always be
checked against K0.

Due to the deterministic nature of our schedule, we can make some modifications to the
basic TESLA protocol without sacrificing security. The first modification is adopted
from [ZQLY19]. Since bandwidth is scarce, we do not release the key Ki−d with every
message/stream. Instead, it will be released once in its own stream with an appropriate
redundancy level. The second modification concerns the TESLA parameter d, the key
disclosure delay. This parameter is useful in a non-deterministic setting since the arrival
time of a stream is uncertain. A high value for d means that the corresponding key is
released later, making it more likely that a stream can be authenticated, at the cost of
increased latency [PSC+05]. However, in our case, we know the exact time a stream
will be sent and arrive. Thus, we assume that a stream’s keyed-MAC will be generated
using the key from the interval it arrives at the last receiver. We will always release the
key Ki in the interval i+ 1, minimizing the key disclosure delay and thus the latency
before a stream can be authenticated.
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3.4 System Models

This section presents the architecture and application models, as well as the threat, se-
curity, and fault models. Our application model is similar to the one used in related
work [ZQLY19], but we have extended it to consider TSN networks and the optimiza-
tion of redundant routing in conjunction with scheduling.

3.4.1 Architecture Model

We model our TSN network as a directed graph consisting of a set of nodes N and a
set of edges L. The nodes of the graph are either end-systems (ESs) or switches (SWs):
N = ES ∪SW . The edges L of the graph represent the network links.

We assume that all of the nodes in the network are TSN-capable, specifically that they
support the standards 802.1ASrev [Ins17a] and 802.1Qbv [Ins16b]. Thus, we assume
the whole network, including the end-systems, to be time-synchronized with a known
bounded precision δ . All nodes use the time-aware shaper mechanism from 802.1Qbv
to control the traffic flow.

Each end-system ei ∈ ES features a real-time operating system with a periodic table-
driven task scheduler. Hash computations, which will be necessary for TESLA opera-
tions on that end-system, take ei.H µs.

A network link between nodes na ∈ N and nb ∈ N is defined as la,b ∈ L. Since in
Ethernet-compliant networks all links are bi-directional and full-duplex, we have that
for each la,b ∈ L there is also lb,a ∈ L. A link la,b ∈ L is defined by a link speed la,b.s.

Figure 3.4a shows a small example architecture with four end-systems, two switches,
and full-duplex links.

3.4.2 Application Model

An application λl ∈ Λ is modeled as a directed, acyclic graph consisting of a set of
nodes representing tasks Γl and a set of edges El representing a data dependency be-
tween tasks.

A task is executed on a certain end-system tm.e. The worst-case execution time (WCET)
of a task is defined by tm.w µs. A task needs all its incoming streams (incoming edges
in the application graph) to arrive before it can be executed. It produces outgoing
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Table 3.1: System Model Notations.

Description Notation Unit
Header overhead OH Byte
Maximum transmission unit MTU Byte
TESLA key size KS Byte
TESLA MAC size MAC Byte
Hyperperiod H µs
TSN Network Graph (N ,L)
- Nodes N = ES ∪SW
- End-system ei ∈ ES

- Hash computation time ei.H µs
- Switch sw j ∈ SW

- Links L ⊆N ×N
- Network link la,b

- Link speed la,b.s µs
Application λl ∈ Λ

- Tuple (Γl ,El)
- Period λl .T µs
- Communication Depth λl .C
- Tasks tm ∈ T
- Execution end-system tm.e
- Worst-case execution time tm.w µs
- Period tm.T µs

- Streams sn ∈ S
- Source task sn.ts
- Destination tasks sn.Td
- Size sn.b Byte
- Period sn.T µs
- Redundancy Level sn.rl
- Security Level sn.sl
- MAC generation task tg

sn

- MAC verification task tmv
sn

Security Application λ s
l ∈ Λsec

- Key release task tr
m

- Key verification task tv
m

- Key source end-system tv
m.src

- Key stream sk
n ∈ Sk
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(a) Example Architecture.

Application 1 (λ1):  

(b) Example Application.

Figure 3.4: Example Architecture and Application Models.

streams at the end of its execution time. Communication dependencies between tasks
that run on the same end-system are usually done via, e.g., shared memory or message
queues, where the overhead of reading/writing data is negligible and included in the
WCET definition of the respective tasks. Dependencies between tasks on separate end-
systems constitute communication requirements and are modeled by streams. A stream
in the TSN context is a communication requirement between a sender and one (unicast)
or multiple (multicast) receivers. An example application can be seen in Figure 3.4b.
An application is periodic with a period λl .T , which is inherited by all its tasks and
streams.

A stream sn originates at a source task sn.ts and travels to set of destination tasks sn.Td
(since we consider multicast streams). The stream size sn.b is assumed to be smaller
than the MTU (maximum transmission unit) defined for the network. Each stream has
a redundancy level sn.rl, which determines the amount of required disjunct redundant
routes for the stream to take. For each of these routes we model a sub-stream: si

n ∈
Ssn ,0 ≤ i < sn.rl Hereby Ssn is a set containing all sub-streams of sn. This notation is
useful for differentiating the different routes a stream takes through the network and
making sure those routes do not overlap. A stream also has a binary security level sn.sl
which determines if it is authenticated using TESLA (sl = 1) or not (sl = 0).

We define the hyperperiod H as the least-common multiple of all application periods:
H = lcm({λl .T |λl ∈Λ}) We define the set T to contain all tasks and the set S to contain
all streams (including redundant copies).
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3.4.3 Fault Model

Reliability models discussed in [GZPS17] (e.g., Siemens SN 29500) indicate that the
most common type of permanent hardware failures is due to link failures (especially
physical connectors) and that ESs and SWs are less likely to fail. These models are
complementary to the mean time to failure (MTTF) targets established, for example,
in the automotive domain within the SIL levels of the ISO 26262 certification stan-
dard [GZPS17]. As mentioned, we assume that we know the required redundancy level
to protect against permanent link failures. Our disjoint routing can guarantee the trans-
mission of a stream of RL n despite any n−1 link failures. For example, for the routing
of s2 with RL 2 in Figure 3.4a, any 1-link failure would still result in a successful trans-
mission.

3.4.4 Threat Model

We use a similar threat model to [ZQLY19] and assume that an attacker is capable of
gaining access to some end-systems of our system, e.g., through an external gateway
or physical access.

We consider that the attackers have the following abilities:

• They know about the network schedule and the content of the streams on the
network;

• They can replay streams sent by other ES;

• They can attempt to masquerade as other ES by faking the source address of
streams they send;

• They have access to all keys released and received by the ES they control;

3.4.5 Security Model

We use TESLA to address the threats identified in the previous section, which means
that additional security-related models are required. These additional applications,
tasks and streams can be automatically generated from a given architecture and ap-
plication model.

First off, we need to generate, send, and verify a key in each interval for each set
of communicating end-systems. We generate a key authentication application λs ∈
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Security Application 1 (λ2):  

 

  

Security Application 2 (λ3):  

Figure 3.5: Example Security Model for the Applications in Figure 3.4.

Λsec for each sender end-system, which is modeled similarly to a normal application
as a directed acyclic graph. The period λs.T is equal to Pint (see Section 3.3) and
again inherited by tasks and streams. Each of these applications consists of one key
release task tr

m scheduled on the sending end-system ei. Additionally, it consists of
key verification tasks tv

j on each end-system e j that receives a stream from ei. The
release task sends a multicast key-stream sk

n to each of those verification tasks. The
redundancy level of a key-stream sk

n.rl is set to the maximum redundancy level of all
streams emitted by ei. The size of a key stream sk

n.b is equal to the key size KS specified
by the TESLA implementation. The security model for our example from Figure 3.4
can be seen in Figure 3.5.

For a key verification task tv
m.src is the end-system ei whose key this task is verifying.

Its execution time is equal to the length of one hash execution on its execution end-
system: tv

m.w = (tv
m.e).H. The execution time of a key release task is very short since

the key it releases has already been generated during bootstrapping. We model it to be
half the time of a hash execution: tr

m.w = (tr
m.e).H

2

Secondly, we need to append MACs to all non-key-streams with sn.sl = 1. Thus, their
length increases by the MAC length MAC specified by the TESLA implementation. For
each stream sn, a MAC generation task tg

sn is added to the sender and a MAC validation
task tmv

sn to each receiver. Those tasks take the time of one MAC computation on the
processing element to execute.

We define the set T n
kr to contain all key release tasks and T n

kv to contain all key verifica-
tion tasks for a given node n. Furthermore, let Sk contain all key streams.

Figure 3.4a shows key release and verification tasks in orange and MAC generation
and validation tasks in red.

Figure 3.5 shows the security applications for our example.
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3.5 Problem Formulation

Given a set of applications running on TSN-capable end-systems that are intercon-
nected in a TSN network as described in the architecture, application and security
models in Section 3.4, we want to determine a system configuration consisting of:

• an interval duration Pint for TESLA operations,

• the routing of streams,

• the task schedule,

• the network schedule as 802.1Qbv Gate-Control Lists (GCLs),

such that:

• all deadline requirements of all applications are satisfied.

• the redundancy requirements of all streams and the security conditions of TESLA
are fulfilled.

• the overall latency of applications is minimized.

3.5.1 Motivational Example

We illustrate the problem using the architecture and application from Figure 3.4. We
have one application Figure 3.4b with 4 tasks, 2 streams, and a period and deadline of
1000 µs. The tasks are mapped to the end-systems as indicated in the figure. Stream s2
will be multicast. The size of both streams is 50 B. For TESLA’s security requirements,
i.e. s1.sl = s2.sl = 1, we generate two additional security applications (Figure 3.5).

We have a TSN network with a link speed of 10 Mbit/s and zero propagation delay.
Our TESLA implementation uses keys that are 16 B and MACs that are 16 B. A hash
computation takes 10 µs on every ES.

A solution that does not consider security and redundancy requirements is shown in
Figure 3.6a. With the TSN stream isolation constraint outlined in Section 3.2 taken
into account, the GCLs are equivalent to frame schedules. We depict in Figure 3.6a
the GCLs as a Gantt chart, where the red rectangles show the transmission of streams
s1 and s2 on network links, and the blue rectangles show the tasks’ execution on the
respective end-systems. To guarantee deterministic message transmission in TSN, we
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0 500 1000

(a) Schedule without Security & Redundancy.

0 500 1000

(b) Schedule with Security & Redundancy.

Figure 3.6: Example Solution Schedules for the Models in Figure 3.4.

have to isolate the frames in the time (or space) domain, leading to the delay of s1
and thus t3. We refer the reader to [CSCS16] for an in-depth discussion on the non-
determinism problem and isolation solution in TSN.

In this paper, we are interested in solutions such as the one in Figure 3.6b, which
considers both the redundancy and security requirements. The black dashed line in the
figure separates the TESLA key release intervals, where Pint was determined to be 500
µs. Streams carrying keys are orange, key generation tasks pink, key verification tasks
green, and the MAC generation/validation operations on ESs are shown in red. The
routing of the non-key streams can be seen in Figure 3.4a. Note how the two redundant
copies of s2, s0

2 and s1
2 use non-overlapping paths.

The delay incurred by the time-delayed release of keys is particularly important: tasks
t3 and t4 can only be executed after the keys authenticating s1 and s2 have arrived in the
second interval, and after key verification and MAC validation tasks have been run.

Scheduling problems like the one addressed in this paper are NP-hard as they can be
reduced to the Bin-Packing problem [FDR18] and may be intractable for large input
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X s1 s2_0 s2_1
ES1 ES1 nil nil
ES2 nil ES2 ES2
ES3 SW1 SW1 SW2
ES4 nil SW1 SW2
SW1 ES1 ES2 nil
SW2 nil nil ES2

Table 3.2: Matrix X for Example from Section 3.5.1.

sizes. In the following sections, we will propose a Constraint Programming (CP) for-
mulation to solve the problem optimally for small test cases and a heuristic to solve the
problem for large test cases.

3.6 Constraint Programming Formulation

Constraint Programming (CP) is a technique to solve combinatorial problems defined
using sets of constraints on decision variables. For large scheduling problems, it be-
comes intractable to use CP due to the exponential increase in the size of the solution
space [RVBW06]. In order to achieve reasonable runtime performance, we split the
problem into 3 sub-problems which we solve sequentially: (i) finding a route for all
streams, (ii) finding Pint , and (iii) finding the network and task schedule.

3.6.1 Optimizing Redundant Routing

The first step of solving the proposed problem is to find a set of (partially) disjoint
routes for each stream, depending on the stream’s redundancy level. The constraints in
this section are inspired by [GZPS17] and [PD12].

We model the stream routes with an integer matrix X , where the columns represent
streams (including their redundant copies) and rows represent nodes of the network.
An entry at the position of a stream sn and a node n in this matrix referring to a node m,
represents a link from m to n on the route of stream sn. Alternatively, the entry could
be nil, in which case n is not part of the route.

Using the matrix X , we can construct the route for each stream bottom-up as a tree by
starting at the receiver nodes. See Table 3.2 for the matrix of our example.
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To determine the route for each stream sn ∈ S , for each node n ∈ N we have the
following optimization variables:

• x(sn,n) represents an entry of our matrix X. The domain of x(sn,n) is defined
as: D(x(sn,n)) = {m ∈ N|lm,n ∈ L}∪ {n}∪ {nil}. We refer to x(sn,n) as the
successor of n on the path to the stream sender node.

• y(sn,n) represents the length of the path from n to sn.ts.e, i.e. the length of the
path from node n to the sender node of the stream. D(y(sn,n)) = {i|0 <= i <=
|SW|+1}

Furthermore, we define a few helper variables and functions. First off, we define Sd

as the set of all distinct streams, i.e., excluding the redundant copies of streams with
redundancy level (RL) greater than one. Additionally, we define Ssd as the set of all
redundant copies (including the stream itself) of sd . Then we define the following
helper function:

xsum(sd ,n,m) = ∑
s′d∈Ssd

(x(s′d ,n) == m) (3.1)

This function allows us, for any given sd ∈ Sd , to determine the number of redundant
copies (including sd itself) that use the link from m to n (nil is counted as zero).

Then we have the following constraint optimization problem:

Minimize : ∑
sn∈S

cost(sn) (RC1)

where

cost(sn) = ∑
n∈N\{sn.ts.e}

(x(sn,n)! = nil) (RC2)
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s.t.

x(sn,n) ̸= nil ⇒ y(sn,n) = y( f ,x(sn,n))+1, (R1)
∀sn ∈ S, n ∈N \{sn.ts.e}

x(sn,m) = nil ⇔ x(sn,n) ̸= m, (R2)
∀sn ∈ S, n,m ∈N

x(sn,n) ̸= nil, (R3.1)
∀sn ∈ S, n ∈ {tr.e|tr ∈ sn.Td}

x(sn,sn.ts.e) = sn.ts.e, (R3.2)
∀sn ∈ S

x(sn,n) = nil, (R3.3)
∀sn ∈ S, n ∈ ES \{tr.e|tr ∈ sn.Td}

y(sn,sn.ts.e) = 0, (R4)
∀sn ∈ S

∑
sd∈Sd

(
(xsum(sd ,n,m)> 0

)
× sd .b

sd .T
)≤ [m,n].s, (R5)

n,m ∈N
x(sn,n) ̸= x(s′n,n), (R6)

∀sn ∈ S, s′n ∈ Ssn \ sn, n ∈N \{sn.ts.e},

Please note that == and != are boolean expressions that evaluate to 1 if true and to 0
otherwise.

The cost function we are minimizing ((RC1),(RC2)) measures the length of the route
of each stream.1

The constraint (R1) prevents cycles in the route, as defined in [PD12]. The con-
straint (R2) disallows “loose ends”, i.e., a node that has a successor/predecessor must
have a predecessor/successor itself. Please note that we refer to the successor on the
path from receiver to sender, i.e., the predecessor on the route. The constraint (R3.1)
states that all receivers of a stream have to have a successor. Constraints (R3.2), (R3.3),
and (R4) impose that the sender of the stream has itself as the successor, no other end-
system has a successor, and the path length is 0 at the sender node, respectively. The
constraint (R5) restricts the bandwidth usage of each link to be under 100%. If multiple
copies of the same stream use the same link, only one of them is counted as consum-
ing bandwidth, since we assume that streams are intelligently split and merged using
IEEE 802.1CB. The constraint (R6) forbids the routes of redundant copies of a stream
to overlap at any point.

1For some use cases, fully disjoint routes are not necessary. Refer to Section 3.10 for an updated
formulation for this case
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3.6.2 Optimizing Pint

To set up the TESLA protocol, we need to choose the parameter Pint . Pint is the duration
of one key disclosure interval. It has a big influence on the latency of secure streams
and thus on the feasibility/quality of the schedule.

When choosing Pint there is a trade-off between overhead and latency. A small Pint
reduces the latency of secure streams but necessitates more key generation/verification
tasks and key streams. Thus, we want to determine the maximum value of Pint for which
the latency is still within all deadline bounds. To this end, we formulate constraints
inspired by [ZQLY19] for which we then determine the optimal solution. This value is
used as a constant in the subsequent optimization of the schedule.

We introduce a new notation: For each application λl ∈ Λ we define λl .C to be the
communication depth, i.e., the length of the longest path in the application graph where
only edges with associated secure streams are counted (ES-internal dependencies and
non-secure streams are ignored). This gives us a measure of the longest chain of secure
communications within the application, which we can use to estimate the amount of
necessary TESLA intervals. Then we have:

Maximize : Pint (P0)

s.t.

∀λl ∈ Λ, Pint · (λl .C+1)≤ λl .T (P1)
H mod Pint = 0 (P2)
Pint mod gcd({λl .T |λl ∈ Λ}) = 0 or

Pint ∗n = gcd({λl .T |λl ∈ Λ}), n ∈ N (P3)

The constraint (P1) guarantees that Pint is small enough to accommodate the authen-
tication of all secure streams for all applications. The communication depth λl .C of
an application gives a lower bound of how many TESLA intervals are necessary to ac-
commodate all these streams within the period of the application since there have to be
n+1 intervals to accommodate the authentication of n secure streams.

The purpose of the constraints (P2) and (P3) is to align the TESLA intervals with
the schedule. The (P2) makes Pint a divisor of the hyperperiod, while constraint (P3)
makes Pint either a multiple or a divisor of the greatest common divisor of all application
periods.
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3.6.3 Optimizing Scheduling

In this step, we want to find a schedule for all tasks and streams which minimizes the
overall latency of streams while fulfilling all constraints imposed by deadlines, TESLA,
and TSN. The routes for each stream and Pint are given by the previous scheduling steps
and assumed constant here.

We define the following integer optimization variables:

• os
l : offset of stream s on link or node l

• cs
l : transmission duration of stream s on link or node l

• as
l : end-time of stream s on link or node l

• ϕs: index of the earliest interval where stream s can be authenticated on any
receiver

• ot
n: offset of task t (on node t.e)

• at
n: end-time of task t (on node t.e)

As an example, let us assume a hyperperiod of 1000us and a stream s with a period of
500us. os

l = 100, cs
l = 50, as

l = 150 would imply that the stream s is scheduled on link
l in the following time intervals: (100, 150) and (600, 650).

We also define several helper variables. Let E s be the set containing all receiver end-
systems of stream s:

E s = {t.e | t ∈ s.Td}

Let Rs be the set containing all links on the route of stream s as well as sender and
receiver nodes:

Rs = {s.ts.e}∪E s ∪{la,b | x(s,b) = a, la,b ∈ L} (3.2)

Using these helper functions we define the following constraint-optimization problem
for the task and network scheduling step:

Minimize : ∑
λl∈Λ

cost(λl) (CS1)

where

cost(λl) = max({at | t ∈ Γl})−min({ot | t ∈ Γl}) (CS2)
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s.t.

cost(λl)≤ λl .T (S1)
∀λl ∈ Λ

os
l = cs

l = as
l = 0, (S2.1)

∀s ∈ S, la,b ∈ L, la,b ̸∈ Rs

os
n = cs

n = as
n = 0, (S2.2)

∀s ∈ S, n ∈N , n ̸∈ Rs

os
l + cs

l = as
l , (S3.1)

∀s ∈ S, la,b ∈ L, la,b ∈Rs

os
n + cs

n = as
n, (S3.2)

∀s ∈ S, n ∈N , n ∈Rs

cs
l =

⌈
s.b
l.s

⌉
, (S4.1)

∀s ∈ S, la,b ∈ L, la,b ∈Rs

cs
n = n.H, (S4.2)

∀s ∈ S, n ∈N ∩Rs,s.secure == 1

The cost function we are minimizing here ((CS1),(CS2)) is the sum of the end-to-end
latencies of all applications, i.e. the distance between the start time of the earliest
task and the end time of the latest task for each application. The constraint (S1) sets
the deadline for the completion of an application to its period. The constraints (S2.1)
and (S2.2) set all optimization variables to zero for every stream, for all nodes and
links not part of its route. For all other links and nodes constraints, (S3.1) and (S3.2)
set the end-time to be the sum of offset a length. For each link on the route of a
stream constraint (S4.1) sets the length to be the byte-size of the stream divided by the
link-speed. In constraint (S4.2) the length of secure streams on end-systems is set to
the length of one hash-computation on that end-system, approximating the duration of
MAC generation/verification.

ϕ
s >

⌊
as

n

Pint

⌋
, (S5)

∀s ∈ S, la,b ∈ L∩Rs, b ∈ E s, s.secure == 1
os

n ≥ atkey +ϕ
s ∗Pint (S6)

∀s ∈ S, n ∈ E s,s.secure = 1
∀tkey ∈ T n

kv
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as
la,b ≤ os

lb,c (S7.1)

∀s ∈ S, lb,c ∈ L∩Rs

a = x(s,b)

as
a ≤ os

la,b (S7.2)

∀s ∈ S, s.secure == 1,
la,b ∈ {la,b | la,b ∈ L∩Rs, a = s.ts.e}

as
la,b ≤ os

b (S7.3)

∀s ∈ S, s.secure == 1,
la,b ∈ {la,b | la,b ∈ L∩Rs, b ∈ E s}

In constraint (S5) the earliest authentication interval for a stream ϕs is bound to be
after the latest stream transmission interval. In constraint (S6) the start time of the
stream on any receiver end-system is then bound to be greater or equal to the start
time of that interval plus the end-time of the necessary preceding key verification task.
The constraints (S7.1), (S7.2) and (S7.3) make sure that every stream is scheduled
consecutively along its route. Thus, constraint (S7.1) enforces the precedence among
two links, (S7.2) among the MAC generation on the sender and the first link and (S7.3)
among the last link and the following MAC verification.

(α × s1.T +as1
l ≤ β × s2.T +os2

l ) ∨ (S8)
(β × s2.T +as2

l <= α × s1.T +os1
l )

∀s1,s2 ∈ S,s1 ̸= s2,∀l ∈Rs
1 ∩Rs

2,

∀α ∈ {0, ..., lcm(s1.T,s2.T )/s1.T},
∀β ∈ {0, ..., lcm(s1.T,s2.T )/s2.T}

(α × s2.T +os2
lb,c

<= β × s1.T +os1
la1 ,b

) ∨ (S9)

(β × s1.T +os1
lb,c

<= α × s2.T +os2
la2 ,b

)

∀s1,s2 ∈ S,s1 ̸= s2,∀l ∈Rs
1 ∩Rs

2,

a1 = x(s1,b), a2 = x(s2,b),

∀α ∈ {0, ..., lcm(s1.T,s2.T )/s1.T},
∀β ∈ {0, ..., lcm(s1.T,s2.T )/s2.T}

The constraint (S8) prevents any streams from overlapping on any nodes or links. Fur-
thermore, constraint (S9) guarantees that for each link connected to an output port of
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a switch, the frames arriving on all input ports of that switch that want to use this out-
put port cannot overlap in the time domain. This is the frame isolation necessary for
determinism in our TSN configuration, which is further explained in [CSCS16].

ot + t.w = at , ∀t ∈ T (T1)
at ≤ os

t.e (T2.1)
∀t ∈ T , s ∈ S, s.ts = t, s.secure == 1

at ≤ os
la,b (T2.2)

∀t ∈ T , s ∈ S, s.ts = t, s.secure == 0
∀la,b ∈ L∩Rs, a == t.e

as
t.e ≤ ot (T3.1)

∀t ∈ T , s ∈ S, t ∈ s.Td , s.secure == 1
as

la,b ≤ ot (T3.2)

∀t ∈ T , s ∈ S, t ∈ s.Ts, s.secure == 0
∀la,b ∈ L∩Rs, b ∈ E s

(α × t1.T +at1 ≤ β × t2.T +ot2) ∨ (T4)
(β × t2.T +at2 ≤ α × t1.T +ot1)

∀t1, t2 ∈ T , t1 ̸= t2,

∀α ∈ {0, ..., lcm(t1.T, t2.T )/t1.T},
∀β ∈ {0, ..., lcm(t1.T, t2.T )/t2.T}

(α × t.T +at ≤ β × s.T +os
t.e) ∨ (T5)

(β × s.T +as
t.e ≤ α × t.T +ot)

∀t ∈ T , s ∈ S,s.secure == 1, t.e ∈Rs

∀α ∈ {0, ..., lcm(t.T,s.T )/t.T},
∀β ∈ {0, ..., lcm(t.T,s.T )/s.T}

The constraint (T1) sets the end-time of a task to be the sum of offset and length. The
constraints (T2.1) and (T2.2) model the dependency between a task and all its outgoing
streams: such streams may only start after the task has finished. Similarly, constraints
(T3.1) and (T3.2) model the dependency between a task and its incoming streams: such
a task may only start after all incoming streams have arrived. Finally, constraint (T4)
prevents any two tasks from overlapping, while constraint (T5) prevents a task from
overlapping with a MAC generation/verification operation.
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3.7 Metaheuristic Formulation

As mentioned in Section 3.6, the scheduling problem addressed in this paper is NP-
hard. As a consequence, a pure CP formulation solved using a CP solver is not tractable
for large problem sizes. Hence, in this section, we propose a metaheuristic-based strat-
egy, which aims to find good solutions (without the guarantee of optimality) in a rea-
sonable time, even for large test cases.

An overview of our strategy is presented in Algorithm 3. We use a Simulated Anneal-
ing (SA) metaheuristic [KGJV83] to find solutions Φ = (R,Σ), consisting of a set of
routes R and a schedule Σ. As an input, we provide our architecture model (N ,L)
and the application model Λ. SA randomly explorers the solution space in each iter-
ation by generating “‘neighbors” of the current solution using design transformations
(or “moves”). We consider both routing and scheduling-related moves, and the choice
is controlled by a prmv parameter that gives the probability of a routing move. To mea-
sure the quality of a solution, we use a cost function with two parameters, a and b,
which are factors for punishing overlap of redundant streams and missed deadlines for
applications, respectively. While we always accept better solutions, the central idea
of Simulated Annealing is to also accept worse solutions with a certain probability in
order not to get stuck in local optima [BK+05].

Algorithm 3 shows the main loop of the heuristic. We start out with an initial solution,
a cost value, and a positive temperature. (line 2-4). Then, we repeat the steps described
below until a stopping criterion like a time- or iteration-limit is met. We create a slight
permutation of the current solution Φ by using the RandomNeighbour function (line
6). We calculate the cost of the new solution (line 7) and a delta of the new and old
cost (line 8). Now, if the delta is smaller than 0, i.e., if Φnew is a better solution than
Φ, we choose Φnew as the current solution (line 10-12). Alternatively, the new solution
is also accepted if a randomly chosen value between 0 and 1 is smaller than the value
of the acceptance probability function e−

δ
t . This acceptance probability will decrease

with the temperature over time and is also influenced by δ , which gives a measure of
how much worse the new solution is. Finally, since we will occasionally accept worse
solutions, we keep track of the best cost achieved overall and adjust it if necessary (line
12-14).

3.7.1 Precedence Graph

We introduce a helper data structure in the form of a precedence graph. A precedence
graph is a collection of special DAGs, one for each application. These DAGs are ex-
panded versions of the DAGs from the application model. Here, streams are modeled
as nodes instead of edges, and each redundant copy of a stream has its own node. See
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Algorithm 3: Simulated Annealing Metaheuristic

1 Function heuristic(N ,L,Λ,Tstart ,α,k, prmv,a,b,w)
2 Φbest = Φ = InitialSolution(N ,L,Λ, k);
3 cbest = c = Cost(Φ, a, b);
4 t = Tstart ;
5 while stopping-criterion not True do
6 Φnew = RandomNeighbour(Φ, prmv);
7 cnew = Cost(Φnew, a, b);
8 δ = cnew − c;

9 if δ < 0 or random[0,1) < e−
δ
t then

10 Φ = Φnew;
11 c = cnew;
12 if cnew < cbest then
13 Φbest = Φnew;
14 cbest = cnew

15 t = t ∗α;
16 end
17 return Φbest ;

Order:

Figure 3.7: Example Precedence Graph with Associated Order.

Figure 3.7 for an example. This data structure helps to model all the dependencies
between tasks and streams in the scheduling algorithm. Additionally, we will use the
set of all topological orders of this graph as our solution space for the scheduling step.
An order can be seen as a scheduling priority assignment that respects all precedence
constraints.
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3.7.2 Initial Solution

In the beginning, we create an initial solution Φ from the given architecture and appli-
cation model. A solution is a tuple (R,Σ) consisting of a set of routes R and a schedule
Σ. Algorithm 4 details the function to find the initial solution.

To find an initial set of routes, we iterate through all streams and all pairs of sender
and receiver ES (lines 2-3). For each such pair, we calculate and store k shortest paths
for the given topology (line 5). For each redundant copy of a stream beyond the first,
we calculate the shortest path in a weighted graph, where we weight all links used
by previous copies with w instead of 1 (line 7). For the initial solution, we choose
the shortest path for each pair (line 8). Note that our k-shortest-path algorithm only
generates paths without repeated nodes that do not traverse any end-system.

To find an initial schedule, we have to create the precedence graph P (line 11) and
decide an order O of this graph.

For the initial solution, we construct an order on the level of applications, i.e., we avoid
interleaving nodes of different applications. We prioritize key applications (lines 12-
14) before other (normal) applications (lines 15-17). This order is consequently used
to create a schedule (line 19). See Figure 3.7 for an example order.

3.7.3 Neighbourhood Function

The neighbourhood function RandomNeighbour(Λ, prmv) is detailed in Algorithm 5.
It is used during Simulated Annealing to create a slight permutation of a given solu-
tion/candidate Φ. It contains two fundamental moves: Changing the routing Λ.R or
changing the schedule Λ.Σ. Which move is taken is decided randomly (line 3). The pa-
rameter prmv influences how likely it is that the routing move is taken, e.g., prmv = 0.5
would result in a probability of 50%.

A routing move consists of choosing a random stream s out of the set of all streams
(line 4), choosing a random receiver er out of all receivers of that stream (line 5) and
then assigning a random path out of the set of k-shortest-paths calculated during the
creation of the initial solution (line 6).

A scheduling move consists of choosing two random normal (non-key) applications d1
and d2 (lines 8, 9), switching their order O in the precedence graph P (line 10) and
recalculating the schedule (line 11). Whenever a new schedule is calculated, we also
optimize its latency (line 12). This is further explained in Section 3.7.6.
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Algorithm 4: InitialSolution

1 Function InitialSolution(N ,L,Λ,k,w)
// routing

2 foreach s ∈ S do
3 foreach er ∈ {tr.e|tr ∈ s.Td} do
4 if IsFirstCopyOfStream(s) then
5 Ker

s = ShortestPaths(s.ts.e,er,k,N ,L);
6 else
7 Ker

s = ShortestPathsWeighted(s.ts.e,er,k,N ,L,w);
8 Φ.Rs = ShortestPath(Ker

s ) ;
9 end

10 end
// schedule

11 P = CreatePrecedenceGraph(Λ);
12 foreach λs ∈ Λsec do
13 O = O ∪ TopologicalOrder(λs,P);
14 end
15 foreach λn ∈ Λ\Λsec do
16 O = O ∪ TopologicalOrder(λn,P);
17 end
18 Φ.K = K;Φ.P = P;Φ.O = O;
19 Φ.Σ = Schedule(O,Φ.R);
20 return Φ;

Algorithm 5: RandomNeighbour

1 Function RandomNeighbour(Φ, prmv)
2 p = random[0,1];
3 if p < prmv then
4 s = RandomStream(Φ);
5 er = RandomReceiver(s);
6 Φ.Rs = RandomPath(Φ.Ker

s );
7 else
8 d1 = RandomNormalApplication(Φ);
9 d2 = RandomNormalApplication(Φ);

10 Φ.O = SwitchSchedulingOrder(d1, d2, Φ.O);
11 Φ.Σ = Schedule(Φ.O,Φ.R);
12 Φ.Σ = OptimizeLatency(Φ.Σ, Φ.P);
13 end
14 return Φ;
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3.7.4 Cost Function

The cost function is used in the simulated annealing metaheuristic to evaluate the qual-
ity of a solution. A lower cost means a better solution. Algorithm 6 shows how our
cost function is calculated. It consists of two components: a routing cost croute and a
schedule cost csched . The routing cost is the sum of the number of overlaps of redun-
dant stream (one for each stream for each link) which is punished with a factor a and
the total accrued length of all routes. The schedule cost is the sum of the number of
infeasible applications, which is punished with a factor b, and the total sum of all appli-
cation latencies (distance between start-time of first task and end-time of the last task).
The factors a and b should be sufficiently high such that solutions with less overlap and
infeasible applications are preferred.

Algorithm 6: Cost

1 Function Cost(Φ, a, b)
2 croute = a * Overlaps(Φ.R) + Length(Φ.R);
3 csched = b * Infeasible(Φ.Σ) + Latency(Φ.Σ);
4 return croute + csched ;

3.7.5 ASAP List Scheduling

To calculate a schedule for a given precedence graph with associated order and routing,
we use an ASAP list-scheduling heuristic [Sin07b], which schedules each node of the
precedence graph in the given order.

The algorithm, presented in Algorithm 7, starts by iterating through each entry n of
the given order O (line 2). An entry may either be a task or a stream. For each entry,
we determine where it will be scheduled and create an indexable list L with all these
locations (line 3). For a task, that set would contain just one end-system, while for
a stream, it may contain many links (which are synonymous to an output port of a
switch/ES) and also multiple end-systems, if the stream is secure, thus requiring MAC
generation/verification.

Using these locations we also create a set of blocks (line 4). A block b is a tuple
(e, l,o,o,o, prev,next) which is associated to an entry e (task/stream) and a location l
(node/link). o represents the block offset. o and o are parameters representing a lower
and upper bound on the offset, which are used during the algorithm. The set B is
implemented as a linked list, where prev and next are references to neighboring blocks
on the route L. Note that, in the case of multicast streams, next could contain references
to multiple blocks.
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We now iterate over all these blocks (lines 7-8). For each block, we begin by calculating
the lower bound on the offset (line 9)2. Usually, this lower bound is going to be the
end-time (offset+length) of the block on the previous link, making sure that a stream
is scheduled consecutively along its route. The first block is the maximum of all end-
times of the last blocks of the predecessors of the current entry n in the precedence
graph. For example, for application λ1 in Figure 3.7, the lower bound of the offset of
the block of t3 would be set to the maximum of the end-times of the last blocks of s1,
s0

2 and s1
2.

Also, for a secure stream, for all blocks on receiver ESs (i.e., MAC validation tasks),
the lower bound is set to the end-time of the corresponding key verification task in
the TESLA interval after the stream was received on the ES, since, according to the
TESLA security condition, the stream can only be authenticated from that point on.

In the next step, the earliest possible offset for the current block is calculated (line 10).
This function returns the earliest offset greater or equal to the lower bound within the
feasible region. For more detail, see Section 34.

If such an offset is found, and it is smaller than or equal to the upper bound, we can
assign it to the block (line 14). We then iterate through each of the following blocks
and set their upper bound to the latest point in time when their node is available and
has been since the offset (line 15-18). This is done to fulfill the TSN constraint, which
forbids different streams to interleave within a queue (c.f. [RP17], [CSCS16] for a more
detailed explanation).

If such an offset is found, but it is larger than the upper bound, it is impossible to
schedule the block while the port is still available, i.e., without it interleaving with
other streams (line 25). Consequently, we have to backtrack and schedule the previous
block at a later time. Therefore, we set the lower bound of the previous block to the
earliest time when the current port is available and remains so until the offset (line
26-27).

Figure 3.8 gives an example of this process. In step 1, s1 has already been scheduled,
and we are in the process of scheduling s2. We have scheduled the first block on le2,sw1
and are now trying to schedule the second one on lsw1,e3 . The lower bound of our offset
o is set to the end-time of the first block. The upper bound o is set to the latest time
after which lsw1,e3 is still available after the offset of the first block, i.e., the start time
of s1 on that link. Finally, we find the earliest offset o to be only after the end time
of s1. It cannot be earlier, since then the blocks of s2 and s1 would overlap. However,
scheduling s2 at that time is not possible since it would mean that the two streams
interleave at the same port. Consequently, in step 2, we backtrack and reschedule the
first block of s2 by setting the lower bound on its offset to the earliest time when its

2The algorithm can be found in Section 3.11
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Algorithm 7: Scheduling - ASAP Heuristic

1 Function Schedule(P,R)
2 foreach n ∈ O do
3 L = GetRoute(n, R);
4 B = CreateBlocks(n, L);
5 l = L[0];
6 i = 0;
7 while true do
8 b = B[l];
9 b.o = CalculateLowerBound(n, b, P, R);

10 o = EarliestOffset(b, l);

11 if o == ∞ then
12 return false;
13 else if o ≤ b.o then
14 b.o = o;
15 foreach g ∈ b.next do
16 if IsBlockOnLink(g) then
17 g.o = LatestQueueAvailableTime(g, o);
18 end
19 i = i + 1;
20 if i < len(L) then
21 l = L[i];
22 else
23 break;
24 end
25 else
26 g = b.prev;
27 g.o = EarliestQueueAvailableTime(b, o);
28 l = b.prev.l;
29 i = L.indexOf(l);
30 end
31 end
32 Σ = UpdateSchedule(n);
33 end
34 return Σ;

port is available and remains so until o. In step 3, we are able to schedule the second
block of s2 without problems.

Once we have successfully found an offset for each block, we can update the schedule
(line 32). This will remove the found blocks B from the feasible region.
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(a) Step 1. (b) Step 2.

(c) Step 3.

Figure 3.8: Backtrack Example: Scheduling s2.

Calculating the Earliest Offset

Calculating the earliest offset for a given block is an important part of the heuristic.
Algorithm 8 shows the function. It takes a block b as an input and calculates the
feasible region for that block (line 2). It then returns the lowest possible time that is
within the feasible region and greater or equal than the lower bound (lines 3-6).

Algorithm 8: ASAP Heuristic - EarliestOffset

1 Function EarliestOffset(b)
/* ordered set of intervals */

2 I = GetFeasibleRegion(b);
3 foreach i ∈ I do
4 o = max(b.o, i.begin);
5 if i.contains(o) then
6 return o;
7 end

The function to calculate the feasible regions for a given block b is detailed in Algo-
rithm 9. We start by getting all free intervals on the node/link b.l for the period b.e.T of
the block (line 3). This ensures that the feasible region does not include any previously
scheduled blocks on that node/link. The function then proceeds to fill the data structure
R f eas with the free intervals, while cutting off a piece with the length of the block b
from the end of each such interval (lines 4-7). This makes the feasible region represent
all feasible values for the offset of the block.

If the block is assigned to a link, we have to cut down the feasible region further. Due
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to the TSN isolation constraint, it is not allowed to transmit two different streams on the
same port at the same time. Thus, we iterate here over all the subsequent blocks bnext
of the current block b, i.e., the blocks on the next links/ES on the route of the stream
associated with the block (line 9). If the next block is also assigned to a link (not to an
ES), we iterate through all already scheduled blocks bother on that link bnext .l. These
are blocks from other streams with whose predecessors, wherever they are scheduled,
we are not allowed to overlap. Thus, we cut the interval (bother.prev.o, bother.o) from
the feasible region (line 13).

Algorithm 9: ASAP Heuristic - GetFeasibleRegion

1 Function GetFeasibleRegion(b)
2 R f eas = /0;
3 B f ree = GetFreeIntervals(b.l, b.e.T );

/* (i) Add all free intervals that could contain block b */
4 foreach iv ∈ B f ree do
5 if iv.end −Length(b)≥ iv.begin then
6 R f eas = AddToFeasibleRegion(R f eas, (iv.begin, iv.end - Length(b)));
7 end

8 if IsLink(b.l) then
/* (ii) Cut out the interval blocked by other streams on

the next port (TSN Stream Isolation) */
9 foreach bnext ∈ b.next do

10 if IsLink(bnext .l) then
11 foreach bother ∈ GetAllBlocksForLink(bnext .l) do
12 if bother ̸= bnext then
13 R f eas = CutFromFeasibleRegion(R f eas,

(bother.prev.o,bother.o));
14 end
15 end
16 return R f eas;

Figure 3.9 provides two examples of feasible regions, shown in green, for a stream s2
on two different routes. Looking at Figure 3.9(a), note the free space at the end of the
period and before s1 on lsw1,e3 . Choosing an offset anywhere in this space would result
in s2 being scheduled outside its period or overlapping with s1. Choosing an offset in
the first free space on le2,sw1 would result in s1 and s2 being transmitted to the same port
at the same time, breaking the TSN isolation constraint. Note how in Figure 3.9(b) this
is not the case, since s2 is transmitted to a different port (lsw1,e4 ) than s1.
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Feasible regions for: Along the route:

(a) Route 1.

Feasible regions for: Along the route:

(b) Route 2.

Figure 3.9: Feasible Region Example.

3.7.6 Optimizing the Latency for Secure Streams

After we have created a new schedule, we can apply some post-processing to minimize
its latency. Since TESLA requires a separation of sending and receiving tasks into sep-
arate intervals and since we are using an ASAP heuristic, there can be a significant gap
between those tasks, as can be seen in Figure 3.10(a), resulting in an increased latency.
To minimize the latency, the algorithm in Algorithm 10 will go through each secure
stream of each application (line 4). It will use the OptimizeLatencyForSecureStream
function in Algorithm 11 to optimize each stream individually. This function shifts
all instances of the given stream as close to the instances on the receiver end-system
as possible without breaking the TESLA constraint. It also has an optional boolean
parameter. If that is set, it also shifts the sending task of the given stream (otherwise,
there would be no latency gain). However, when we are optimizing a redundant stream,
i.e., a stream where multiple copies originate at the same task, said task should only
be moved when the last copy is optimized (lines 6-11). Otherwise, we can shift it
immediately (line 13)

The OptimizeLatencyForSecureStream function in Algorithm 11 works internally by
looping through the list of receivers of the given stream (line 2, multiple in case of a
multicast stream). It goes backwards through the linked list of blocks for the stream,
starting with the block on the last link before the current receiver (line 4). For each
block, it will increase the offset as much as possible (move them as far as possible
to the right) (line 10). After changing the offset, we update the schedule (line 11).
Then we continue iterating through the linked list (lines 17-19). If we arrive at the last
block and the move_task boolean is set, we finish by the offset of the sender task (lines
12-16).
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Algorithm 10: ASAP Heuristic - OptimizeLatency

1 Function OptimizeLatency(Σ,P)
2 foreach λ inΛ do
3 foreach n ∈ TopologicalOrder(λ ,P) do
4 if IsStream(n.e) and n.e.secure and n.e ∈ Sd then
5 if n.e.rl > 1 then
6 foreach sr ∈ Sn.e do
7 if sr ̸= n.e then
8 nr = GetNode(sr, P);
9 OptimizeLatencyForStream(nr, False);

10 end
11 OptimizeLatencyForStream(n.e, True);
12 else
13 OptimizeLatencyForStream(n, True);
14 end
15 end

(a) Non-Optimized Stream. (b) Optimized Stream.

Figure 3.10: Example Latency Optimization for Secure Streams.
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Algorithm 11: ASAP Heuristic - OptimizeLatencyForStream

1 Function OptimizeLatencyForStream(n, move_task)
2 foreach esrecv ∈ receivers(n) do
3 b = BlockOnLink(esrecv, n);
4 bprev = b.prev;
5 tkv = GetKeyVerificationTask(n.src, e);
6 bkv = GetBlock(tkv);
7 i = GetTESLAIntervalForBlock(bkv);
8 ub = i∗ tkv.T −bprev.L;

9 while bprev ̸= /0 do
10 bprev.o = min(ub, bprev.o);
11 UpdateSchedule(n);
12 if bprev.prev == /0 and move_task and IsLastReceiver(esrecv) then

/* Also move the sender task closer to the first
block of the stream */

13 tsender = GetSenderTask(n);
14 bsender = GetBlock(tsender);
15 ub = bprev.o−bsender.L;
16 bprev = tsender;
17 else if bprev.prev ̸= /0 then
18 ub = bprev.o−bprev.prev.L;
19 bprev = bprev.prev;
20 end
21 end
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3.8 Experimental Results

In this section, we evaluate our two solutions to the formulated problem: The Con-
straint Programming formulation (referred to as CP, described in Section 3.6) and the
Simulated Annealing metaheuristic (referred to as SA, described in Section 3.7). We
analyze their scalability, runtime, and solution quality and evaluate the impact of added
redundancy and security.

Both solutions were implemented in Python 3.9. We developed a software tool with
a web-based interactive user interface to display the models and solutions, including a
routing graph and the schedule.3 For solving the CP formulation, we use the CP-SAT
solver from Google OR-Tools [Goo]. For calculating k-shortest-paths in the meta-
heuristic we use the shortest_simple_paths function from the NetworkX [HSS08] li-
brary. All evaluations were run on a High-Performance Computing (HPC) cluster,
where each node consists of two Intel Xeon 2660v3 Processors with 10 cores running
at 2.60GHz and 16GB memory. Both CP and SA run on one node at a time.

3.8.1 Test Cases

For the scalability evaluation, we used the following test cases, see Table 3.3: the ex-
ample presented in Section 3.5 (example), a realistic automotive test case from a large
automotive manufacturer (auto) [GZPS17], a medium-sized automotive case study
from [KHM05] (case_study) and 16 synthetic test cases of increasing size and com-
plexity. The topology of the auto test case was adjusted to allow disjunct redundant
routes.

For the redundancy/security impact evaluation, we used an additional set of 100 syn-
thetic test cases grouped into four batches.

We created the synthetic test cases to be as realistic as possible: They all feature secure
streams, redundancy levels between 1 and 3, applications with complex dependencies
and a realistic network topology that allows disjunct redundant paths.

To create realistic topologies, we developed a custom algorithm, as follows. For a given
number of switches and end-systems, we create that many random points in 2D space.
Then we connect each switch to its closest neighbor until every switch is connected to
4 other switches. Afterward, we connect each end-system to the closest 3 switches.

To create realistic application DAGs, we used the GGen tool presented in [CMP+10]
3The tool including the obtained results is available on GitHub: https://github.com/nreusch/

TSNConf

https://github.com/nreusch/TSNConf
https://github.com/nreusch/TSNConf
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and the layer-by-layer method with a depth of 3 and a connection probability of 50%.
If a DAG contains separate subgraphs, these are split into separate applications. The
application period is chosen randomly among the set {10, 15, 20, 50ms}. Nodes of the
generated DAG are interpreted as tasks with a random WCET, upper bound at 6% of
the period. Tasks are divided randomly between ES. All outgoing edges of a node in
the DAG combined are interpreted as a stream, with the source node as sender task and
the destination nodes as receiver tasks. The stream has a random size below or equal
to 1.500 Bytes, with a random RL between 1-3 and a 30% probability to be considered
security-critical.

We used a link speed of 1000 Mbit/s for all links in the network. TESLA uses 16 B
keys and MACs, and a hash computation takes 10 µs on every ES.

3.8.2 Scalability Evaluation

To evaluate the scalability, we ran both the CP and the SA solutions on the same test
cases with the same computing resources. Table 3.3 shows the results for each test
case for both solutions. The columns # ES, # SW, # Streams, # Tasks give the total
number of ES, SW, streams, and tasks, respectively. # Receiver Tasks gives the total
sum of stream receiver tasks (since we consider multicast streams, one stream can have
multiple). The Cost column gives the total cost of the found solution following the cost
function in Algorithm 6. The T column shows the total runtime of the solver.

The CP solution was given a timeout of 60 min. If CP failed to find an optimal solution
in time, or ran out of memory, we reported Cost and T as empty “/”. The SA solution
was given a timeout of 10 min (20 min for the largest test case, giant1). We used
ParamILS [HHLBS09] to optimize the following parameters for the SA heuristic: Tstart ,
α , k, prmv and w. a was set to 50000, b to 10000.

Note that the CP solver will return once the optimal solution is found, while the SA
solver will always run until the timeout and return the best feasible (i.e., no missed
deadlines or overlap) solution found up to that point. However, SA is able to find a first
feasible solution very quickly. For all test cases in Table 3.3 it could find one in less
than 10 s.

The table shows that CP is able to find solutions up to medium-sized test cases within
the given timeout, but it does not scale to the larger test cases. SA is scalable; it is able
to find solutions even for the largest test cases. This scalability comes at an increase
in cost by 67% on average, which can be reduced by giving a longer timeout. This
increase is mostly caused by increased application latencies (scheduling cost), which
are still within the deadlines, while the routing cost is usually close to or equal to the
optimal routing cost from the CP solution. The conclusion is that SA can be success-
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Test case Method # ES # SW # Streams # Recv. Tasks # Tasks Cost T
example CP 4 2 6 10 9 467 1 s
example SA 4 2 6 10 9 477 10 m

auto CP 20 32 84 102 74 / /
auto SA 20 32 84 102 74 38031 10 m

case_study CP 6 2 29 31 28 3771 130 s
case_study SA 6 2 29 31 28 6114 10 m

tiny1 CP 4 2 2 2 6 1708 0.2 s
tiny1 SA 4 2 2 2 6 1708 10 m
tiny2 CP 4 2 3 4 6 1732 0.2 s
tiny2 SA 4 2 3 4 6 1732 10 m
tiny3 CP 4 2 11 13 15 7450 14 m
tiny3 SA 4 2 11 13 15 18088 10 m

small1 CP 8 4 10 16 20 5421 2 s
small1 SA 8 4 10 16 20 13303 10 m
small2 CP 8 4 14 20 23 9110 60 m
small2 SA 8 4 14 20 23 13794 10 m
small3 CP 8 4 29 48 35 7705 17.5 m
small3 SA 8 4 29 48 35 13781 10 m

medium1 CP 16 8 23 34 37 12991 4.5 m
medium1 SA 16 8 23 34 37 22883 10 m
medium2 CP 16 8 30 47 43 6552 5.2 m
medium2 SA 16 8 30 47 43 19455 10 m
medium3 CP 16 8 36 53 47 15515 60 m
medium3 SA 16 8 36 53 47 26486 10 m

large1 CP 32 16 47 86 73 / /
large1 SA 32 16 47 86 73 43872 10 m
large2 CP 32 16 33 65 72 24953 25 m
large2 SA 32 16 33 65 72 41026 10 m
large3 CP 32 16 69 170 104 / /
large3 SA 32 16 69 170 104 34860 10 m
huge1 CP 64 32 84 183 133 / /
huge1 SA 64 32 84 183 133 73070 10 m
huge2 CP 64 32 99 213 161 / /
huge2 SA 64 32 99 213 161 57246 10 m
huge3 CP 64 32 99 197 169 / /
huge3 SA 64 32 99 197 169 93357 10 m
giant1 CP 128 64 144 347 261 / /
giant1 SA 128 64 144 347 261 101799 20 m

Table 3.3: Results of Scalability Tests.

fully used to route and schedule large realistic test cases, and its quality is comparable
to the optimal solutions obtained by CP.

Furthermore, we have investigated the impact of scaling different parameters on the
runtime of the CP solution. We created three sets of test cases: The set A, used in Fig-
ure 3.11a, in which we keep a fixed set of applications but scale the size of the network
topology, the set B, used in Figure 3.11b, in which we keep a fixed network topology
and scale the number of tasks, and streams and the set C, used in Figure 3.11c in which
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(c) Impact of Both (Set C).

Figure 3.11: Scalability Results of CP Solution.

we scale both at the same time. We ran the tests on the same computing resources and
took the average runtime of multiple runs to reduce the impact of external factors (disk
access, caching, etc.). While, as expected, all the parameters have a measurable impact
on runtime, we noticed that the number of streams and the complexities of their routes
have a significant impact, as can also be seen in Figure 3.11b.

3.8.3 Impact of Adding Redundancy and Security to a Test Case

Fulfilling the security and redundancy requirements of applications introduces extra
tasks and streams that need to be routed and scheduled, leading to an overhead com-
pared to ignoring those security and redundancy requirements. In this set of experi-
ments, we were interested in evaluating the overhead of fulfilling the redundancy and
security requirements compared to the case these are ignored. These overheads were
measured on solution cost, available bandwidth, and CPU resources. Hence, we cre-
ated four batches of 25 synthetic test cases each. Each test case has a random topology
with 8 switches and 16 end-systems, 24 tasks, and multiple applications with random
DAGs. Streams have a random RL between 1 and 3 and 30% probability to be consid-
ered security-critical. We also ran the same experiments with the auto test case from
Table 3.3 to give an expectation for the overhead in a realistic scenario.

Each batch features either large (1000-1500 B) or small (1-250B) streams and either
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Batch name Security Redundancy Cost Bandwidth CPU
0 batch0 - large streams, small tasks no no 3822.08 0.09 1.44
1 no yes +1.34% +25.45% +0.00%
2 yes no +256.25% +5.49% +12.99%
3 yes yes +258.10% +36.64% +15.93%
4 batch1 - large streams, large tasks no no 17721.32 0.08 7.06
5 no yes +-0.00% +15.91% +0.00%
6 yes no +64.31% +3.18% +1.39%
7 yes yes +64.98% +22.16% +1.75%
8 batch2 - small streams, large tasks no no 18547.6 0.01 7.51
9 no yes +0.06% +31.29% +0.00%
10 yes no +52.86% +33.92% +0.21%
11 yes yes +53.12% +97.96% +0.70%
12 batch3 - small streams, small tasks no no 3713.32 0.01 1.55
13 no yes +0.37% +26.62% +0.00%
14 yes no +238.77% +27.73% +8.54%
15 yes yes +245.32% +85.57% +10.57%

Table 3.4: Impact of Security and Redundancy Measures.

large (≤10% of period) or small (≤2% of period) tasks. Each batch was run 4 times
using the first feasible SA solution with different combinations of enabled/disabled
security and redundancy requirements. Disabled security means that all streams are set
to a security level of 0, while disabled redundancy means that all streams are set to a
redundancy level of 1.

Table 3.4 shows the results. We always take the results for the no-security, no-redundancy
run as a baseline and note the percentual increase in total cost, total bandwidth occupa-
tion percentage and total CPU utilization percentage in the following rows. Bandwidth
and CPU utilization are measured as the mean of the utilization over all links and ESs,
respectively. Bandwidth utilization for a specific link is the percentage of the hyperpe-
riod in which streams are traversing this link. CPU utilization for a specific ES is the
percentage of the hyperperiod in which tasks are running.

As can be seen, the impact of adding security and redundancy differs significantly,
depending on the size of initial streams and tasks. Note that an increase in overhead is
expected with an increase in the number and difficulty of the security and redundancy
requirements.

Adding redundancy has a negligible impact on cost and CPU utilization, but always
has a significant impact on bandwidth. Adding security always has a significant impact
on cost. This is because of the fundamental requirement of TESLA that sender and
receiver tasks of secure streams lie in separate intervals, which will increase the end-to-
end latency of the corresponding application. Therefore, the more consecutive secure
streams exist in an application, the higher is the impact. However, our approach will
always make sure that, if feasible, no application deadline is missed, despite the higher
latency. The impact of adding security on bandwidth and CPU utilization depends
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largely on the relative size of streams and WCET of tasks compared to the TESLA
overhead. For example, the 16 B of overhead for a MAC is much more significant for
a 100 B stream than for a 1000 B stream.

3.8.4 Discussion

Our proposed SA implementation is able to determine good solutions in a reasonable
time, even for large test cases. In addition, it can find feasible solutions (where all tim-
ing, safety, and redundancy requirements are satisfied) extremely quickly, within 10 s
even for large test cases. This can be useful, e.g., for evaluating several architectures in
terms of their monetary costs and redundancy allowed by the physical topology, pro-
totyping or for rapid runtime reconfiguration in case of failures or changes in traffic
patterns. Although CP can find optimal solutions, it does not scale for large test cases,
and it is not flexible; that is, it will not report solutions that are not feasible. An ad-
vantage of SA is its ability to find return near-feasible solutions for those test cases
that cannot be solved, i.e., solutions with some infeasible applications or overlapping
streams. SA can point out the offending apps/tasks and streams, which can give hints
of where the configuration has to be improved to become feasible, e.g., by increasing
the redundancy in the physical topology or by changing the mapping of tasks to ESs.

3.9 Conclusion

In this paper, we addressed the combined TSN routing and scheduling problem for
complex applications with redundancy and security requirements. We used TESLA,
which is an efficient authentication protocol for use-cases with multicast communica-
tion between low-power devices, with a modification to the protocol that makes it more
lightweight, made possible by the real-time requirements of our network.

We developed two methods to solve the combined routing and scheduling problem:
A Constraint Programming solution that can solve small and medium-sized test cases
optimally and a solution that combines a Simulated Annealing metaheuristic and an
ASAP list scheduling that can solve very large test cases. In the process, we formal-
ized the constraints governing our problem and introduced novel ways to handle the
complexities introduced by TESLA and redundancy while calculating correct solutions
in the heuristic. Additionally, we developed an open-source tool for the reuse of our
solutions and interactive visualization of routes and schedules. Finally, we evaluated
the impact of adding security and redundancy to existing applications and showed that
the majority of overheads depend on the size of existing tasks and streams and thus
ultimately on the requirements of the application area.
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3.10 Appendix A: Routing Constraint Formulation for
Allowed Overlap

To achieve a constraint formulation in which overlap of redundant streams is possible,
the following steps need to be done:

Replace (RC2):

cost(sn) = length_cost(sn)+100∗overlap_cost(sn) (RC2)

Introduce the following:

length_cost(sn) = ∑
n∈N\{sn.ts.e}

(x(sn,n)! = nil) (RC3)

overlap_cost(sn) = ∑
n∈N\{sn.ts.e}

∑
m∈N\{n}

link_cost(sn,n,m) (RC4)

link_cost(sn,n,m) = (xsum(sn,n,m)−1)∗ (x(sn,n) == m) (RC5)

Remove (R6). The overlap cost for a stream is dependent on how many redundant
copies a stream overlaps with, and on how many links. In (RC2) the total overlap cost
is weighted with 100, but other values are also possible.

3.11 Appendix B: More Functions from Metaheuristic
Formulation

3.11.1 CalculateLowerBound

The function in Algorithm 12 determines the lower bound on the offset of a given block
b. For a task or first stream instance, this is the maximum end-time of the blocks of
the predecessors of the current entry n in the precedence graph P (lines 3–7). This is
the maximum end-time of all blocks from predecessor links for other stream instances
on links (lines 8-12). Finally, for the stream instance on a receiver end-system, which
models a MAC validation, the lower bound is the end-time of the corresponding key
verification task, which is necessary to happen before a MAC can be validated (lines
13–17).
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Algorithm 12: ASAP Heuristic - CalculateLowerBound

1 Function CalculateLowerBound(n, b, P, R)
2 lb = 0;
3 if b.prev == /0 then

/* If n is a task or the first stream instance */
4 foreach nprev ∈ Predecessors(n,P) do
5 b = LastBlock(nprev);
6 lb = max(lb, b.o+Length(b));
7 end
8 else if IsLink(b.l) then

/* If n is a stream and b.l is a link */
9 foreach lprev ∈ PredecessorLinks(b.l,n,R) do

10 bprev = BlockOnLink(b.l, n);
11 lb = max(lb, bprev.o+Length(bprev));
12 end
13 else

/* If n is a stream and l is a receiver end-system */
14 tveri f y

key = GetKeyVerificationTask(n, l);

15 bveri f y
key = GetBlockForEntry(tveri f y

key );

16 i = GetTESLAIntervalForBlock(bveri f y
key );

17 lb = bveri f y
key .o+ i∗bveri f y

key .e.T +Length(bveri f y
key );

18 end
19 return max(lb, b.o);
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3.11.2 UpdateSchedule

The function in Algorithm 13 updates the schedule with all the blocks that were calcu-
lated for a given entry n. It iterates through all the links/nodes the entry is scheduled
on (line 3). It calculates all offsets and end-times across the hyperperiod (lines 4–8)
and proceeds to cut out the appropriate parts from the feasible regions for each existing
period in the network (lines 9–20).

Algorithm 13: ASAP Heuristic - UpdateSchedule

1 Function UpdateSchedule(n)
2 L = GetLinks(n);
3 foreach l ∈ L do
4 for i = 0 to H

n.T do
5 offsets[i] = b.o+ i∗b.e.T ;
6 endtimes[i] = b.o+ i∗b.e.T +Length(b);
7 i = i + 1;
8 end

/* Block queues/end-systems */
9 foreach T ∈ Periods do

10 for i = 0 to len(offsets)-1 do
11 o = offset[i];
12 e = endtimes[i];
13 if e%T < o%T then

/* Handle wrap around period border */
14 CutFromFeasibleRegion(T, l, o%T , T);
15 CutFromFeasibleRegion(T, l, 0, e%T );
16 else
17 CutFromFeasibleRegion(T, l, o%T , e%T );
18 end
19 end
20 end
21 end



CHAPTER 4

Paper C: Mapping and
Scheduling Real-Time
Applications on Edge

Computing Platforms with
Remote Attestation for

Security

Edge Computing Platforms (ECP) increasingly have to integrate diverse applications
with mixed-criticality requirements. In this paper, we consider that critical applications
and non-critical Edge applications share an ECP. Critical applications are implemented
as periodic hard real-time tasks and messages and have stringent timing and security
requirements. Edge applications are implemented as aperiodic tasks and messages,
and are not critical. We assume that the critical tasks are scheduled using static cyclic
scheduling. Time-Sensitive Networking (TSN) is used for dependable communication,
and Remote Attestation (RA) is employed to check that the platform components are
secure. We are interested to determine an optimized mapping and scheduling of critical
and Edge applications, such that (i) the deadlines of the critical applications are guar-
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anteed at design-time, (ii) the platform has resources to perform RA, and (iii) we can
successfully accommodate multiple dynamic responsive Edge applications at runtime.
We evaluate our approach on a realistic use case. The results show that our approach
generates dependable solutions that can meet the timing constraints of the critical appli-
cations, have enough periodic slack to perform RA for security, and can accommodate
Edge applications with a shorter response time.

4.1 Introduction

We are at the beginning of a new industrial revolution (Industry 4.0), which will bring
increased productivity and flexibility, mass customization, reduced time to market, im-
proved product quality, innovations, and new business models [LFK+14]. However,
Industry 4.0 will only become a reality through the convergence of Operational and
Information Technologies (OT & IT). OT consists of cyber-physical systems that mon-
itor and control physical processes that manage, e.g., automated manufacturing, critical
infrastructures, smart buildings, and smart cities. These application areas are typically
safety-critical and real-time, requiring guaranteed extra-functional properties, such as,
real-time behavior, reliability, availability, safety, and security, and are often required
to show compliance to industry-specific standards.

Edge Computing is envisioned as an architectural means to realize the IT/OT con-
vergence [PZB+21]. It is a new architectural paradigm in which the resources of
an edge server are placed at the edge of the Internet, in proximity to cyber-physical
systems, mobile devices, sensors and IoT endpoints [SPX19]. With Edge Comput-
ing, devices are extended with computational and storage resources to enable a va-
riety of communication and computation options, which will lead to improved inter-
operability, security, more efficient and rich control, and higher manufacturing effi-
ciency and flexibility. Several initiatives are currently working towards realizing this
vision [PML+19, PZB+21].

Mixed-criticality applications can be classified in several ways depending, e.g., on their
safety-criticality and time-criticality. In safety-critical systems, a failure (e.g., due to a
malfunction or a security attack) may lead to loss of life or damage to the environment
or property. Many safety-critical systems are also real-time, where the correctness of
the results depends also on the time when they are delivered, e.g., deadlines have to
be satisfied. Conversely, noncritical dynamic applications are not safety related and
do not have stringent timing requirements. To realize the vision of Industry 4.0, such
non-critical dynamic applications e.g., related to new business models, data analyt-
ics, software updates for security and maintenance, and connected equipment services,
have to be hosted by an Edge Computing Platform (ECP). These Edge applications are
aperiodic, i.e., their arrival-time is unknown, and the ECP should dynamically allocate
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resources such that their quality-of-service is maximized, e.g., their response times are
reduced. To enable this, we have to map and schedule the critical applications at de-
sign time in a way that leaves periodic slack in the schedule table, to be used by Edge
applications.

An Edge Computing Platform (ECP) includes Edge Devices (EDs) capable of com-
municating and executing computations in the proximity of the “things” (sensors, ac-
tuators, IoT endpoints, etc.) and data sources to guarantee effective collaboration be-
tween devices, nodes, and the cloud. An ED is a compute node that integrates mixed-
criticality applications that share the ECP. Regarding computation, we assume that the
critical tasks are running in a Real-Time Operating System using real-time scheduling
policies. We consider static-cyclic scheduling in this paper, as it is suitable for appli-
cations of high-criticality [But11]. We assume that mixed-criticality applications can
be separated in different partitions enforced using hardware-supported virtualization,
based on hypervisors, such as ACRN or PikeOS, see [PZB+21, BCP20] for a discus-
sion and references.

Regarding communication, we consider the ECP to use IEEE 802.1 TSN [Ins16c] as
the wired communication solution, as envisioned by several industrial consortiums.
TSN [Ins16c], which is becoming the standard for communication in several applica-
tion areas, e.g., from industrial control to automotive and aerospace, is a set of amend-
ments to the IEEE 802.1 standards [Ins16c], equipping Ethernet with the capabilities
to handle real-time mixed-criticality traffic with high bandwidth. TSN supports multi-
ple traffic types, and hence, is suitable for mixed-criticality applications running on an
ECP. Researchers and standardization bodies are also working towards extending TSN
capabilities over wireless networks (e.g., IEEE 802.11 and 5G). The solution presented
in the paper can also be extended to consider wireless TSN.

As ECPs become more interconnected with the outside world, new attack vectors are
possible [PBA17, XJL+19] that may also compromise safety. Therefore, we also con-
sider security aspects in our work. One desirable goal in large heterogeneous ECP’s is
to assure the integrity of devices. Malicious behavior of devices should be detected in
a timely manner and appropriate measures taken, e.g., the filling of a tank should be
stopped if the pressure sensor is found to report fake values. One promising direction is
to use Remote Attestation (RA) to authenticate the hardware and software configuration
of a remote device, thus allowing the provision of strong assurance guarantees.

RA provides a mechanism to validate the integrity of software running on untrusted de-
vices. The assumption is that there are both trusted (e.g., high-end EDs) and untrusted
devices (e.g., low-end IoT endpoints) in our network. For validation, the trusted party,
called verifier, sends an attestation request to an untrusted party, called prover. The
prover responds with a certificate of its currently running software, e.g., by including
a hash of its memory content. Measures are in place such that that certificate cannot
be faked by an attacker controlling the prover or the communication link. The verifier
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checks this certificate and that the memory content is as expected. If that is not the case
or no response is received to the attestation request, the verifier initiates appropriate
measures (out of scope for this work) [SL16].

4.1.1 Related Work

This work touches on a lot of different configuration problems typical for safety-critical
systems: task mapping, task and message scheduling, routing, and security are all
actively studied topics.

The task mapping problem is concerned with assigning tasks to different, possibly mul-
ticore, devices in the network [Sin06]. Typical goals are to meet real-time deadlines
and fulfill computational or energy resource constraints [GBI21, SP18]. Another goal,
which becomes increasingly relevant in heterogeneous networks with devices of sig-
nificantly different computational capabilities, is offloading of tasks from less to more
powerful devices [RZH+19, SGAS20]. This allows for a reduction in energy consump-
tion and execution times [CTHC15, DTF16]. Some work has looked at mapping tasks
of mixed-criticality on the same platforms [BD17, TSP15, BP22]. This comes with the
benefit of, for example, savings in cost, weight, space and energy, but requires careful
partitioning mechanisms to avoid harmful interaction between tasks.

Task scheduling in real-time systems is a very well-studied topic, and researchers have
considered various scheduling policies, from non-preemptive static-cyclic scheduling,
considered in this paper, to preemptive dynamic scheduling [But11]. Researchers have
also addressed the problem of real-time message scheduling [Ste10]. Many works con-
sider scheduling in TSN using the Time-Aware Shaper (TAS), which requires the syn-
thesis of GCLs [CSCS16, PLCS16]. Although initially the work has focused only on
message scheduling, recent work proposes solutions to extended problems, considering
task scheduling and routing [Bar21, RCP22].

Security in Edge/Fog Computing and IoT has been extensively investigated [TDDFD20].
There is also some work specifically focusing on real-time systems. The authors
in [ZZJ+13] show a tradeoff between better security and task execution time/energy.
In [JPJ17] the authors consider the overhead for secure communication between tasks
on different devices, which scales with the strength of the encryption. Remote Attesta-
tion (RA) is a promising approach to authenticate untrusted remote devices in hetero-
geneous networks [SL16]. RA has been studied in the context of IoT and Fog/Edge
Computing [ADD21], but the timeliness aspects of RA, e.g., that it may lead to dead-
line misses for real-time applications, have been ignored.

Researchers have investigated the impact of security mechanisms on safety-critical
real-time systems, e.g., for resource authentication protocols such as TESLA [ZQLY19,
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RCP22] or for protecting messages with cryptography [JEP12, JPJ17]. However, no ap-
proaches exist that evaluate the impact of remote attestation on real-time applications,
which are increasingly being implemented using Edge Computing platforms.

4.1.2 Contributions

As discussed in Section 4.1.1, researchers have addressed the scheduling of safety-
critical real-time applications on ECPs that consider TSN. However, the existing work
often looks at computation and communication separately or does not consider mixed-
criticality applications or security. In our work, we are interested in schedules that can
integrate both critical and Edge applications, i.e., the deadlines of the critical appli-
cations are guaranteed and at the same time, the slack in the schedule (the idle times
on processors and links) can successfully accommodate multiple dynamic responsive
Edge applications at runtime. We consider that we have devices with vastly different
computational capabilities and try to optimize the mapping of tasks of critical applica-
tions to reduce their latency.

Regarding security, we consider Remote Attestation as a scheme to provide device
integrity. We assume that we have trusted end-systems acting as verifiers and untrusted
end-systems acting as provers. Critical applications, TSN and RA all place constraints
on the scheduling of tasks and messages in the network. Our solution synthesizes
schedules such that there is enough periodic slack to run regular attestation to secure
the ECP. RA requires regular attestation on prover end-systems to minimize the chance
of malware going undetected. We formalize the problem and provide a CP formulation
to solve it.

To the best of our knowledge, this is the first work that considers the impact of RA on
the implementation of mixed-criticality applications on Edge Computing Platforms.

This paper is organized as follows. In Section 4.2 we introduce the model of the Edge
Computing Platform we are considering and explain our usage of TSN and RA. In Sec-
tion 4.3 we introduce the application model. The problem is formulated in Section 4.4
and our CP solution is presented in Section 4.5. In Section 4.6 we evaluate a solution
to a simplified problem on a use case. Section 4.7 concludes the paper.

4.2 Edge Computing Platform Model

The ECP is modeled as a directed graph G = {N ,L}, where N = E
⋃
V
⋃
P
⋃
SW

is the set of nodes and L is the set of links. A node can either be an ordinary edge
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Edge

Cell Cell

Line Line

Figure 4.1: Architecture of the Edge Computing Platform.

device ei ∈ E , a trusted verifier device vi ∈ V , an untrusted prover device pi ∈ P or
a network switch swi ∈ SW . A node has an associated capacity n.C which is the
percentage of its hyperperiod that can be occupied by critical tasks. The set of links L
represents bidirectional full-duplex physical links. Each link li, j between nodes ni and
n j is characterized by the tuple ⟨s,d⟩ denoting the speed of the link in Mbit/s and the
propagation delay in ms. An example ECP architecture graph is shown in Figure 4.1.
The topology is inspired by an industrial use case, in which the network consists of
one Edge area, which is connected to production cells containing production lines in a
tree-like structure and is connected to the cloud. The devices at the top of the tree are
the most powerful in terms of computation power, while the ones at the bottom are the
least powerful. Verifiers are assumed to be powerful devices from the edge area, while
provers are low-end and exposed devices in production cells, though this could differ
from use case to use case.

Mixed-criticality applications, running on edge devices (possibly including verifiers),
require different scheduling policies depending on their timing criticality [But11]. Sim-
ilar to related work, we use static cyclic scheduling (timeline scheduling) for critical
control applications. A static cyclic schedule captures the start and finishing time of
tasks and flows and repeats with a hyperperiod H, which is the least common multiple
of the application periods.

Researchers have used “fixed priority servers” to integrated periodic and aperiodic ap-
plications, which run in the slack of the critical application schedules. Such servers are
implemented as a periodic task DCi that runs in a core Ci and it is characterized by the
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Figure 4.2: TSN Switch.

tuple ⟨c, t⟩ denoting the server capacity and the server period in ms. Within a hyper-
period H, a server will have several instances, which are referred to as server slices.
Hence, we consider that Edge applications are scheduled using a special type of server
called a deferrable server [But11]. Deferrable servers use a soft resource reservation
technique to allocate its resources to the Edge tasks. Edge application flows are trans-
mitted using the TSN mechanisms specific for strict priority (SP) flows in the windows
when ST critical flows are not scheduled, see Section 4.2.1.

At runtime, the ECP handles Edge applications through monitoring and resource man-
agement techniques [PZB+21]. Once the Edge applications are submitted to run on
the ECP, the controller ED, which is determined at run-time using mechanisms such
as [KP17], receives the submission request. The controller has knowledge on the avail-
able resources on the EDs and SWs. It then decides the placement of Edge application
tasks on the EDs using resource allocation techniques, e.g., [SKR+18] which deter-
mines the ED that provides the minimum response time for the Edge application.

4.2.1 Time-Sensitive Networking (TSN)

The fundamental mechanisms that enable deterministic temporal behavior over Ether-
net are, on the one hand, the clock synchronization protocol defined in IEEE 802.1AS-
rev, which provides a common clock reference with bounded deviation for all nodes in
the network, and on the other hand, the timed-gate functionality (IEEE 802.1Qbv) en-
hancing the transmission selection on egress ports. We detail the Time-Aware Shaper
(TAS) mechanism defined in IEEE 802.1Qbv in Figure 4.2. The TAS is associated with
each traffic class queue and positioned before the transmission selection algorithm. A
timed-gate can be either in an open (o) or closed (C) state. When the gate is open,
traffic from the respected queue is allowed to be transmitted, while a closed gate will
not allow the respective queue to be selected for transmission, even if the queue is not
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empty. The state of the queues is encoded in a local schedule called the Gate-Control
List (GCL). Our optimization strategy derives these GCLs.

4.2.2 Remote Attestation

Remote Attestation on our platform is performed as follows: A trusted verifier node vi
sends an attestation request to an untrusted prover p j. In response, p j invokes some
trusted attestation code AttC that measures a region of memory. This measurement is
protected using a Message Authentication Code (MAC) with a secret, shared, key K
and returned to vi, which determines whether p j is in a healthy or compromised state.

The attestation architecture we use is called SMART [EDPT12]. It is a hybrid attesta-
tion architecture, suitable for low-end low-powered prover devices. In SMART AttC
and K are stored in read-only memory (ROM). The key is guarded by MCU access con-
trol rules, such that only AttC can read it. The execution of AttC is non-interruptible
and does not leak information. More details about the security assumptions can be
found in [EDPT12]. Furthermore, we assume that SMART is extended with a reliable
read-only clock (RROC) as proposed in [BRST16], to prevent denial of service attacks
on the prover.

In the basic version of SMART, AttC attests the whole memory at once, in an unin-
terruptible process. This is infeasible for our platform, since this process would take
multiple seconds on low-powered devices, in which no critical real-time task could be
executed. Instead, we adopt the ideas of SMARM [CRT18]. This is a technique that is
built on top of SMART. However, instead of attesting the whole memory, the memory is
divided into blocks M1, ...,Mn of size BS. For a given attestation request, only a certain
block Mi is attested, whereby i is randomly determined based on the attestation request.
Depending on the frequency and block size, this makes it improbable for malware to
hide, given that it cannot predict the memory location that is going to be attested. From
the scheduling side, we can choose these parameters appropriately, such that we have
a good attestation coverage while also guaranteeing all deadlines of critical tasks. We
will choose a block size, such that all remaining slack, after scheduling critical tasks,
is used on attestation.

4.3 Application Models

Our application model consists of (i) a set of critical applications considered at design-
time, denoted with Λcrit , which we capture using a periodic hard real-time task model,
(ii) a set of Edge applications considered at runtime, denoted with Λedge, for which we
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use an aperiodic best-effort task model and (iii) a set of Remote Attestation applications
Λra which are generated at design-time after the scheduling of critical applications.

4.3.1 Critical Application Model

Critical applications appear periodically and consist of tasks and streams. Each critical
application λi ∈ Λcrit is modeled with a Directed Acyclic Graph (DAG), where nodes
represent tasks and edges represent data flows between the nodes, see, for example,
Figure 4.3. The set of all tasks and the set of all streams in a critical control application
are denoted with λi.T and λi.S respectively. The set of all tasks is denoted as T , the
set of all streams as S.

A critical task tm ∈ λi.T is characterized by the tuple ⟨T,e⟩ denoting the task period
and the device the task is mapped to. The Worst-case Execution Time (WCET) of a
task depends on the device it is mapped to. We define a function ω : T ×N → N that
maps any tuple of task t ∈ T and device n ∈ N to the worst-case execution time of t
on n. In some use cases there might be a constraint on which device a task may be
mapped. The task deadline is equal to its period. Each task is ready to execute when
all its inputs have arrived. The output of a task is produced upon the termination of
the task. The task tm will have H/tm.T instances denoted with |tm| in a hyperperiod H
which are referred to as jobs denoted with t j

m. A job is associated with φ denoting the
start time of the job.

A stream sm ∈ λi.S is responsible for sending the frames that encapsulate the data
from an application, and it is characterized by the tuple ⟨p,b,T, ts,Td⟩ denoting the
priority, the size in bytes, the period, sending task and set of receiving tasks. The
deadline, i.e., the maximum allowed end-to-end delay, is equal to this period. A stream
may be multicast, i.e. have multiple receivers. The frames of a stream will have to be

Critical Application 1:  

 

 

 

Figure 4.3: Critical Application Example.
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Edge Application 1:  

Figure 4.4: Edge Application Example.

transmitted multiple times within a hyperperiod, and we refer to each such transmission
as an instance of a stream. The number of instances for a stream sm is denoted with |sm|,
and is derived from the period of the stream T and the hyperperiod H.

Each stream sm is transmitted via a route Rsm which is represented by ordered list of
devices and switches, e.g., Rsm = [e1,sw1,sw2,e2]. We assume that each stream is
associated to only one route, but several streams may share the same route.

4.3.2 Edge Application Model

Each Edge application λ ′
i ∈ Λedge consists of a set of aperiodic tasks and a set of ape-

riodic streams denoted by λ ′
i .T and λ ′

i .S , respectively. The tasks do not have data
dependencies, i.e., a task will start when it arrives, but they may exchange data asyn-
chronously using streams. An Edge task t ′n ∈ λ ′

i .T is denoted by the tuple ⟨e,w,a⟩
denoting the node it is mapped to, the workload (which is the average execution time)
in µs, and its arrival time in µs. The arrival times, mapping and workloads of Edge
tasks are unknown at design time. An Edge stream s′n ∈ λ ′

i .S is also aperiodic. Such
a stream is denoted by the tuple ⟨p,b,a⟩ denoting the priority, size in bytes, and the
arrival time in µs. Figure 4.4 shows an example edge application.

4.3.3 Remote Attestation Model

A Remote Attestation application follows the same model as critical applications, but
always has the same Direct Acyclic Graph (DAG) and is scheduled after critical appli-
cations during the design phase. The RA application λ ∗

i ∈ λ ra consists of three tasks
tv1, tp, tv2 ∈ λ ∗

i .T and two streams sreq,sres ∈ λ ∗
i .S. tv1 is executed on a verifier and

emits the stream sreq containing the attestation request. tp is executed on a prover in
response to this request and emits the stream sres. All tasks and streams are scheduled
in the slack leftover after scheduling critical applications. Figure 4.5 shows an example
RA application.
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RA Application 1:  

Figure 4.5: RA Application Example.

4.4 Problem Formulation

We formally define the mapping and scheduling problem we address in the paper as
follows. Given (1) an ECP modeled with an architecture graph G, (2) a set of critical
real-time applications Λcrit , and (3) a set of verifier/prover pairs, we want to determine
a configuration Ψ consisting of: (i) the mapping of tasks to end-systems, (ii) the static
task schedule tables, (iii) the routes for each stream, (iv) the GCLs for each switch, (v)
the period and capacity of the deferrable servers DCi on edge devices, and (vi) the RA
applications Λra.

Although not part of the optimization problem definition, note that at runtime, our
approach handles (vii) the migration of Edge applications to the nodes that have re-
sources for their execution, (viii) the scheduling of Edge tasks on the servers and of
their streams on TSN.

We are interested in an optimized configuration Ψ such that: the deadlines of all the
critical applications are met and the resources available for the RA and Edge applica-
tions are maximized, such that we can maximize the RA-based security and minimize
the response times for Edge applications. The quality of a configuration is determined
by the cost function Equation CS1 introduced in Section 4.5.

Synthesizing a static task schedule for the nodes is equivalent to determining the task
mapping tm.e, the offsets t j

m.φ , and the server slices’ offsets D j
Ci
.φ . Additionally, syn-

thesizing GCLs for the ports of network nodes is equivalent to determining the critical
streams’ routes sm.r and offsets sk

m,n.φ .

4.4.1 Example

Let’s consider an example using the architecture in Figure 4.1. This network archi-
tecture may belong to a factory with an edge computing center, containing powerful
machines acting as verifiers. e2 and e3 are devices responsible for controlling a robotic
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0 500 1000

....

(a) Schedule without RA & Edge Resource Optimization.

0 500 1000

....

(b) Schedule with RA & Edge Resource Optimization.

Figure 4.6: Example Solution Schedules.

arm p1 in a production line. We have four critical applications for different movements,
consisting of a ti to send the movement and ti.1 to execute it. The mapping for ti.1 is
fixed to p1, while ti may be executed on any device in the associated production cell,
so either e2 or e3. ti.1 has a data dependency on ti, so there is a stream with a small size
being sent across the network. All these applications and their tasks have a period of
1,000 µs.

Figure 4.6a shows a solution for the given scheduling problem without optimizing the
resources for RA and Edge applications. Notice the long worst-case response time for
an edge application, e.g., t ′1 appearing a t=0. Similarly, on the prover, notice how a large
continuous time interval is taken up by critical tasks, giving an attacker ample time to
perform malicious activities and possibly hide before being detected by attestation.

In comparison, Figure 4.6b shows a solution with optimizing the resources for RA and
Edge applications. In this case, the worst-case response time for an edge application
is significantly reduced. In addition, attestation can happen more frequently on the
prover, increasing security.
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4.5 Optimization Strategy

To solve the formulated problem, we use Constraint Programming (CP), which is a
method to solve combinatorial optimization problems by expressing them as a set of
optimization variables and constraints. CP can find the optimal solution to reason-
ably large realistic use cases, as we have demonstrated in our previous work [RCP21]
focused on the routing and scheduling of secure TSN streams.

Our cost functions (CS1) consists of two equally weighted components: scheduling
cost and extensibility cost. The scheduling cost (CS2) is equal to the sum of all critical
application end-to-end latencies. The application latency is defined as the distance
between the start time of the first task and the end time of the last tasks.

We use “extensibility cost” as a metric to evaluate the capability of a schedule to sup-
port RA and Edge applications. Thus, the extensibility cost in (CS3) prefers task sched-
ules with frequent slack of even size. To achieve this, we maximize the sum of the
minimum distances from each task to another; see [Bar21] for more details. Let H be
the hyperperiod of the schedule, which is the least common multiple of all application
periods. Let min_dist(t) be a function that gives the minimum distance to another task
on the same node for any task t. To transform the maximization into a minimization
problem, we subtract the minimum distance from the hyperperiod.

cost(Λcrit) = costs(Λcrit)+ coste(Λcrit) (CS1)

costs(Λcrit) = ∑
λi∈Λcrit

max({φt + t.w | t ∈ λi.T })−

min({φt | t ∈ λi.T }) (CS2)

coste(Λcrit) = ∑
λi∈Λcrit

∑
t∈λi.T

H −min_dist(t) (CS3)

In the following sections, we formally define the constraints under which we minimize
this cost function, whereby we reuse some of the notations and constraints from [RCP22].

4.5.1 Routing Constraints

We model the stream route variables with an integer matrix X , where the columns
represent streams and rows represent nodes of the network. An entry at the position of
a stream sn and a node n in this matrix referring to a node m, represents a link from m
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to n on the route of stream sn. Alternatively, the entry could be nil, in which case n is
not part of the route.

To determine the route for each stream sn ∈ S , for each node n ∈ N we have an opti-
mization variable x(sn,n) representing an entry in our matrix X. The domain of x(sn,n)
is defined as: D(x(sn,n)) = {m ∈N|lm,n ∈ L}∪{n}∪{nil}. We refer to x(sn,n) as the
successor of n on the path to the stream sender node. Furthermore, we use y(sn,n) to
represent the length of the path from n to sn.ts.e, i.e. the length of the path from node n
to the sender node of the stream. D(y(sn,n)) = {i|0 <= i <= |SW|+1}

We define the following constraints for the routing of streams:

x(sn,n) ̸= nil ⇒ y(sn,n) = y( f ,x(sn,n))+1, (R1)
∀sn ∈ S, n ∈N \{sn.ts.e}

x(sn,m) = nil ⇔ x(sn,n) ̸= m, (R2)
∀sn ∈ S, n,m ∈N

x(sn,n) ̸= nil, (R3.1)
∀sn ∈ S, n ∈ {tr.e|tr ∈ sn.Td}

x(sn,sn.ts.e) = sn.ts.e, (R3.2)
∀sn ∈ S

x(sn,n) = nil, (R3.3)
∀sn ∈ S, n ∈ E \{tr.e|tr ∈ sn.Td}

y(sn,sn.ts.e) = 0, (R4)
∀sn ∈ S

∑
sd∈Sd

(
(x(sd ,n) == m

)
× sd .b

sd .T
)≤ [m,n].s, (R5)

∀n,m ∈N

Please note that == and != are boolean expressions that evaluate to 1 if true and to 0
otherwise.

The constraint (R1) prevents cycles in the route, as shown in [PD12]. The constraint (R2)
disallows “loose ends”, i.e., a node that has a successor/predecessor must have a pre-
decessor/successor itself. Please note that we refer to the successor on the path from
receiver to sender, i.e., the predecessor on the route. The constraint (R3.1) states that
all receivers of a stream have to have a successor. Constraints (R3.2), (R3.3), and (R4)
impose that the sender of the stream has itself as the successor, no other end-system
has a successor, and the path length is 0 at the sender node, respectively. The constraint
(R5) restricts the bandwidth usage of each link to be under 100%.
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4.5.2 Task Constraints

We define the following optimization variables for tasks and streams:

• t.e: end-system that t is mapped to

• ot : offset of task t (on node t.e)

• at : end-time of task t (on node t.e)

• os
l : offset of stream s on link l

• cs
l : transmission duration of stream s on link l

• as
l : end-time of stream s on link l

For tasks we have the following constraints:

ot + t.w = at , ∀t ∈ T (T1)
at ≤ os

la,b (T2.2)

∀t ∈ T , s ∈ S, s.ts = t

∀la,b ∈ L∩Rs, a == t.e

as
la,b ≤ ot (T3)

∀t ∈ T , s ∈ S, t ∈ s.Ts

∀la,b ∈ L∩Rs, b ∈ E s

(α × t1.T +at1 ≤ β × t2.T +ot2) ∨ (T4)
(β × t2.T +at2 ≤ α × t1.T +ot1)

∀t1, t2 ∈ T , t1 ̸= t2,

∀α ∈ {0, ..., lcm(t1.T, t2.T )/t1.T},
∀β ∈ {0, ..., lcm(t1.T, t2.T )/t2.T}

∑
t∈T

((t.e == n)∗ω(t,n))≤ n.C, , (T5)

∀n ∈N

The constraint (T1) sets the end-time of a task to be the sum of offset and length. The
constraints (T2.2) models the dependency between a task and all its outgoing streams:
such streams may only start after the task has finished. Similarly, constraint (T3) mod-
els the dependency between a task and its incoming streams: such a task may only start
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after all incoming streams have arrived. Constraint (T4) prevents any two tasks from
overlapping, and (T5) prevents tasks from exceeding the capacity of the node they are
mapped to.

4.5.3 Stream Constraints

Finally we define the following constraints for streams:

costs(λl)≤ λl .T (S1)

∀λl ∈ Λ
crit

os
l = cs

l = as
l = 0, (S2)

∀s ∈ S, la,b ∈ L, la,b ̸∈ Rs

os
l + cs

l = as
l , (S3)

∀s ∈ S, la,b ∈ L, la,b ∈Rs

cs
l =

⌈
s.b
l.s

⌉
, (S4)

∀s ∈ S, la,b ∈ L, la,b ∈Rs

as
la,b ≤ os

lb,c (S5)

∀s ∈ S, lb,c ∈ L∩Rs,a = x(s,b)

The constraint (S1) sets the deadline for the completion of an application to its period.
The constraints (S2) sets all optimization variables to zero for all links not part of a
streams route. For all other links and nodes (S3) sets the end-time to be the sum of
offset a length. For each link on the route of a stream constraint, (S4) sets the length to
be the byte-size of the stream divided by the link-speed. Constraint (S5) enforces that
a stream is scheduled consecutively along its route.

(α × s1.T +as1
l ≤ β × s2.T +os2

l ) ∨ (S6)
(β × s2.T +as2

l <= α × s1.T +os1
l )

∀s1,s2 ∈ S,s1 ̸= s2,∀l ∈Rs
1 ∩Rs

2,

∀α ∈ {0, ..., lcm(s1.T,s2.T )/s1.T},
∀β ∈ {0, ..., lcm(s1.T,s2.T )/s2.T}
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(α × s2.T +os2
lb,c

<= β × s1.T +os1
la1 ,b

) ∨ (S7)

(β × s1.T +os1
lb,c

<= α × s2.T +os2
la2 ,b

)

∀s1,s2 ∈ S,s1 ̸= s2,∀l ∈Rs
1 ∩Rs

2,

a1 = x(s1,b), a2 = x(s2,b),

∀α ∈ {0, ..., lcm(s1.T,s2.T )/s1.T},
∀β ∈ {0, ..., lcm(s1.T,s2.T )/s2.T}

The constraint (S6) prevents any streams from overlapping on any nodes or links. Fur-
thermore, constraint (S7) guarantees that for each link connected to an output port of
a switch, the frames arriving on all input ports of that switch that want to use this out-
put port cannot overlap in the time domain. This is the frame isolation necessary for
determinism in our TSN configuration, which is further explained in [CSCS16].

4.6 Experimental Evaluation

For the evaluation, we are interested in measuring the impact of our extensiblity- and
RA-aware solution on the formulated problem.

To this extent, we created an industrial-inspired use case, inspired by [Bar21]. The
architecture can be seen in Figure 4.1. The nodes e1, v1 and v2 are high-powered
edge servers running on-premise in a secure room in a factory. v1 and v2 were chosen
as verifiers as they are the most trusted and protected machines. e1 is connected to
the cloud and responsible for data analytics. The factory consists of two production
floors (cells). On the first floor there are two control systems e2 and e3 that control a
robotic arm p1 and a conveyor belt p2. On the second floor there is a control system
e4 that controls an industrial oven p3 and gets readings from a temperature sensor p4.
The systems p1 to p4 were identified as the most safety-critical and should thus be
regularly verified. v1 will do this for p1 and p2, while v2 will do it for p3 and p4.
Attestation of e2, e3 and e4 could also make sense, but is out of scope for this work
because higher-powered systems can use different RA techniques.

Overall, the use case consists of 19 critical applications, 27 critical tasks and 8 streams.
Furthermore, we created 7 sets, labelled E1-E7, of 12 non-critical edge applications,
each with 1–2 tasks, half of which exchange non-critical streams. The edge applica-
tions implement data analytics and diagnostics and have random arrival times. We ran
two experiments: NOEXT without the extensibility cost (see Section 4.5) and EXT
with this cost. Our solution was implemented in Python 3.9 using the CP-SAT solver
from Google OR-Tools [Goo]. It was run on a machine with an i7-8565U CPU with



116
Paper C: Mapping and Scheduling Real-Time Applications on Edge

Computing Platforms with Remote Attestation for Security

NOEXT EXT
T r

max 425 150
T e

wc 350 233
T e

avg 66421 45117
L 4668 5141

Table 4.1: Evaluation Results.

NOEXT EXT
E1 121.75 79.75 (-34.5%)
E2 180.83 107.83 (-40.37%)
E3 215.0 185.17 (-13.87%)
E4 166.25 148.33 (-10.78%)
E5 161.67 134.67 (-16.7%)
E6 109.83 109.0 (-0.76%)
E7 101.5 65.33 (-35.64%)

Table 4.2: Impact of Extensibility Formulation on Average Latency of Edge Applica-
tions.

16 GB of DDR4-RAM. 1

The results can be seen in Table 4.1. T r
max is the average maximum unattested time

among all provers. The longer a prover stays unattested, the more time an attacker has
to execute malicious code and hide itself before the next attestation. T e

wc is the average
worst-case response time for edge applications, and T e

avg is the average average-case re-
sponse time. These averages are taken across all nodes that could execute edge applica-
tions (all nodes except provers) and assume the edge application to appear at a random
time. L is the sum of critical application latencies, i.e., costs from Equation CS2.

As the results show, in EXT the average unattested time is reduced by 64.7%, resulting
in better security. Additionally, in EXT the average and worst-case response times for
dynamic edge application are significantly improved. These improvements come at a
slight cost in the form of increased latency for critical applications. However, these
applications can still easily meet their deadlines.

The improvement in response time for edge applications is also shown by our exper-
iments with the randomly generated set of edge applications E1-E7 in Table 4.2. For
each of these sets we measured the average end-to-end latency both for NOEXT and
EXT. On average, edge applications have 21% smaller latency with our solution.

1The tool including the obtained results is available on GitHub: https://github.com/nreusch/
TSNConf

https://github.com/nreusch/TSNConf
https://github.com/nreusch/TSNConf


4.7 Conclusions and Future Work 117

4.7 Conclusions and Future Work

Edge Computing is an enabler for Industry 4.0 where mixed-criticality applications are
running on a shared computing platform, which guarantees their safety, security and
performance. In this paper, we considered an ECP that uses TSN for the communica-
tion and RA for security, and implements mixed-criticality applications. The critical
applications are scheduled with static cyclic scheduling, whereas the noncritical Edge
applications are handled dynamically at runtime.

We proposed a CP-based solution to the problem of mapping and scheduling the mixed-
criticality applications on an ECP, which decides the mapping of tasks to devices and
their schedule tables, as well as the GCLs for the TSN communication. As the use case
has shown, our approach is able to guarantee the deadlines of the critical applications
at design time, provision resources to perform RA, and successfully accommodate dy-
namic responsive Edge applications at runtime with a shorter response time.

In our future work, we want to do a more extensive evaluation and propose a metaheuristic-
based solution to handle large realistic use cases.
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APPENDIX A

TSNConf: Testcase and
Schedule Visualization Tool

The methods presented in this thesis have been implemented as open-source software
prototypes, available for download from public repositories. We collectively call these
software prototypes “TSNConf” from “TSN configuration tools”. In this appendix, we
present the visualization component of TSNConf, used to visualize our test cases and
help us run our experiments. This has proven helpful, e.g., when developing heuris-
tics, to visualize example test cases and have a graphic representation of the topology,
routing, and schedule, instead of imagining and remembering all these things. When
using Constraint Programming, it was useful to quickly see the changes to the resulting
schedule under certain constraints, without having to parse a text file.

The tool was developed using Python 31 and uses the Dash framework2 for a reactive
browser interface. It is openly available on GitHub3 and can be tested in the browser4.
The tool has the following main features:

• Visualization of network architecture and task mapping using GraphViz5 plots

1https://www.python.org/
2https://dash.plotly.com/introduction
3https://github.com/nreusch/TSNConf
4https://tsnconf-demo.herokuapp.com/
5https://graphviz.org/

https://github.com/nreusch/TSNConf
https://tsnconf-demo.herokuapp.com/
https://www.python.org/
https://dash.plotly.com/introduction
https://github.com/nreusch/TSNConf
https://tsnconf-demo.herokuapp.com/
https://graphviz.org/
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• Visualization of application DAGs using GraphViz5 plots

• Structured presentation of task & message information

• Interactive visualization of message routes

• Interactive visualization of task & message schedule

The tool is executed on the command line using a Python interpreter, requiring a net-
work description file as input. The network description file uses an easy-to-read XML
syntax to describe a test case, as shown in Listing A.1. It can also translate to and from
various other formats, including the format necessary for OMNet++ simulations with
NeSTiNg.

Figure A.1 shows the visualization of an example network architecture, including the
mapping of tasks to different end-systems. The graph is described in the DOT6 lan-
guage and visualized using a GraphViz library for Python. It is also exported as DOT-
and PDF-file.

Figure A.1: TSNConf: Network Architecture Visualization.

DAGs representing applications, i.e., tasks with message dependencies, are also de-
scribed in DOT language and rendered using GraphViz, see for example Figure A.2a.
The widget includes a search bar. Other available information about tasks and messages
is displayed in various tables, see, for example, Figure A.2b.

6https://graphviz.org/doc/info/lang.html

https://graphviz.org/doc/info/lang.html
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(a) Application Visualization (b) Information Tables

Figure A.2: TSNConf: Various Visualizations.

Routing of messages is visualized as a Cytoscape7 network. Individual routes can be
toggled on and off. The graph can be arranged according to different layout algorithms
(Cose-Bilkent, Euler, Dagre, etc.) or by dragging nodes around. See Figure A.3 for an
example.

Figure A.3: TSNConf: Routing visualization.

The resulting combined network- and task-schedule is visualized as a customized bar
chart. Different categories of tasks and message can be displayed in different colors and
can enabled/disabled individually. Hovering over a block gives detailed information
about start time, end time etc. It is possible to zoom into selected areas and export the
schedule as PDF, SVG or interactive HTML. See Figure A.4 for an example.

The tool uses a modular architecture and a flexible XML-parser for the input test cases.
This allows a user to work with an input model of his own liking and omit or extend
parts of our own models. This way, the tool can be used to help solve a wide range of
problems. It uses Python’s pickling feature to output files, from which all the visual-
izations and results can be restored without re-running time intensive optimization.

7https://dash.plotly.com/cytoscape

https://dash.plotly.com/cytoscape
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Figure A.4: TSNConf: Schedule Visualization

<NetworkDescription mtu="1500" frame_overhead="16" key_length="16" mac_length="22">
<device name="SW1" type="Switch"/>
<device name="SW2" type="Switch"/>
<device name="ES1" type="EndSystem" mac_exec_time="10"/>
...

<link src="SW1" dest="ES1" speed="12.50"/>
...
<link src="ES4" dest="SW2" speed="12.50"/>

<application name="App1" period="1000" type="NORMAL">
<tasks>

<task name="t1" node="ES1" wcet="100" period="1000" arrival_time="
0" type="NORMAL"/>

...
</tasks>
<streams>

<stream name="s1" src="ES1" dest="ES3" sender_task="t1"
receiver_tasks="t3" size="538" period="1000" rl="1" secure="
True" type="NORMAL" />

...
</streams>

</application>
...

<route stream="s1_0">
<link src="ES1" dest="SW1" />
<link src="SW1" dest="ES3" />

</route>
...

<schedule>
<node src="ES1" dest="ES1">

<block start="258" duration="100" end="358" creator="t1"/>
...

</node>
...
<costs>

<cost app_id="App1" value="405"/>
<cost app_id="SecApp_ES1" value="23"/>
<cost app_id="SecApp_ES2" value="23"/>

</costs>
</schedule>

</NetworkDescription>

Listing A.1: TSNConf: Network Description File
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