
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 07, 2024

Antimicrobial Resistance Modeling

Bangsgaard, Elisabeth Ottesen

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bangsgaard, E. O. (2022). Antimicrobial Resistance Modeling. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/8610d5e1-dc65-43d7-9085-3eb7a1938bad


Antimicrobial Resistance
Modeling

Elisabeth Ottesen Bangsgaard

Ph.D. Thesis
Kongens Lyngby, August 2022



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk
ISSN: 0909-3192



Summary (English)

Antimicrobial resistance is a growing concern in connection with treatment of in-
fections and the World Health Organization (WHO) now recognizes it as being
amongst the ten biggest threats to the global health. Antimicrobial resistance bac-
teria can cause treatment extension or failure due to resistance against antimicrobial
drugs. The spread of antimicrobial resistance in livestock constitutes a risk for an-
imal welfare and increases the risk of transferring antimicrobial resistant bacteria
from animals to humans.

The overall aim of the Ph.D. thesis is to gain more knowledge on the influence
of antimicrobial use and management factors on antimicrobial resistance in Danish
slaughter pigs. This is achieved by analyzing and modeling the spread of antimi-
crobial resistance genes in fecal samples from Danish slaughter pigs in relation to
antimicrobial exposure and management factors. The data on antimicrobial resis-
tance originates from a study, where faeces from Danish pigs were sampled at the
time of slaughter. The collected fecal samples were analyzed by qPCR quantifying
the amount of antimicrobial resistance genes.

An algorithm was develop for estimating the antimicrobial exposure of the sampled
pigs. In Denmark, pigs are categorized into three phases based on their weight:
piglets, weaners and finishers. The algorithm estimates the average antimicrobial
exposure for a Danish pig in each rearing period. This is done by tracing the loca-
tion(s) based on movements of the pigs registered in the Pig Movement Database
and subsequently estimating the antimicrobial exposure derived from the national
VetStat-register, which contains information on purchased veterinary drugs.

Mixed effect models were applied to data to examine the relationship between an-
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timicrobial exposure, management factors and antimicrobial resistance in the pig
production. Tetracyclines are one of the most used antimicrobial classes in the
pig production. The total resistance level against tetracycline, calculated as a sum
of the genes coding for resistance against tetracycline and the level of individual
resistance genes coding for resistance against different antimicrobial classes were
modeled. The measured individual resistance genes, which were observed in at least
50% of the samples were modeled and the results were compared to metagenomic
data of an antimicrobial resistance context study.

The key findings are that management factors in the form of movement patterns and
ownership of the farms are crucial for the resistance levels of Danish slaughter pigs.
In addition, some observed complex antimicrobial exposure and resistance patterns
described by the models, might be explained by co-occurrence of antimicrobial re-
sistance genes i.e. antimicrobial resistance genes which occur together in a genomic
context. The modeling suggested that the occurrence of the resistance gene tet(X)
is affected only by the antimicrobial exposure of macrolide and lincosamide classes,
which is in contrast to the commonly accepted hypothesis that it provides resistance
against tetracyclines. This result might be a consequence of observed co-occurrence
with erm(F), that provides resistance against several antimicrobial classes including
macrolides and lincosamides.

The results could contribute to qualified discussions on treatment strategies and
targeted interventions in Danish pig production. Reductions in usage of certain
antimicrobial classes do not necessarily yield a lower abundance of resistance genes
for these classes and the genomic context should be considered in assessments.
Furthermore, there should be a focus on more systematic data collection in future
studies and the surveillance of the development in antimicrobial resistant bacteria
should continue with high quality.



Summary (Danish)

Antibiotikaresistens skaber voksende bekymring i forbindelse med behandling af in-
fektioner og Verdenssundhedsorganisationen (WHO) anser nu antibiotikaresistens
for at være blandt de ti største trusler mod den globale sundhed. Antibiotikaresi-
stente bakterier kan forårsage forlænget eller mislykket behandling grundet resistens
mod antibiotiske lægemidler. Udbredelsen af antibiotikaresistens i husdyrproduktio-
nen udgør en risiko for dyrevelfærden og øger risikoen for at antibiotikaresistente
bakterier overføres fra dyr til mennesker.

Det overordnede mål med denne Ph.D.-afhandling er at opnå større viden om an-
tibiotikaforbrug og mangementfaktorers indflydelse på antibiotikaresistens i danske
slagtesvin. Dette er opnået ved at analysere og modellere udbredelsen af antibioti-
karesistensgener i fækale prøver fra danske slagtesvin, i relation til antibiotikaeks-
ponering og managementfaktorer. Antibiotikaresistensdata stammer fra et studie,
hvor danske slagtesvin fik taget fækale prøver ved slagtning. De indsamlede prøver
blev analyseret ved qPCR for at kvantificere mængden af antibiotikaresistesgener.

En algoritme blev udviklet til estimering af antibiotikaeksponeringen for de prøvetag-
ne grise. I Danmark, kategoriseres grise i tre faser baseret på deres vægt: smågrise,
fravænningsgrise og slagtesvin. Algoritmen estimerer middel antibiotikaeksponerin-
gen for en dansk gris i hver periode. Dette bliver gjort ved at opspore lokation(er)
på baggrund af flytninger af grisene i svineflytteregisteret og derefter estimere an-
tibiotikaeksponering ved hjælp af det nationale VetStat-register, som indeholder
information om indkøbte veterinære lægemidler.

Mixed effect modeller blev anvendt til at undersøge sammenhængen mellem antibi-
otikaeksponering, managementfaktorer og antibiotikaresistens i svineproduktionen.
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Tetracykliner er en af de mest udbredte antibiotikaklasser i svineproduktionen. Det
totale resistensniveau mod tetracyklin, udregnet som en sum af gener der koder for
resistens mod tetracyklin, og niveauet af individuelle resistensgener mod forskellige
antibiotikaklasser blev modelleret. De målte individuelle resistensgener, som blev ob-
serveret i mindst 50% af prøverne blev modelleret og resultaterne blev sammenlignet
med metagenomisk data fra et antibiotikaresistens-kontektsstudie.

De væsentligste resultater er, at managementfaktorer i form af �yttemønstre og går-
denes ejerforhold er afgørende for resistensniveau hos danske slagtesvin. Derudover
kan observerede komplekse antibiotika-eksponering og �resistens mønstre beskrevet
af modellerne delvist forklares vedco-occurrenceaf antibiotikaresistensgener, dvs.
de optræder sammen i genetisk sammenhæng. Modelleringen viser, at forekomsten
af resistensgenet tet(X) kun er påvirket af antibiotikaeksponering af makrolid- og
lincosamid-klasser, hvilket står i kontrast til den udbredte hypotese, at tet(X) giver
resistens mod tetracykliner. Dette resultat formentlig en konsekvens af observeret
co-occurrencemed erm(F), som giver resistens mod �ere antibiotikaklasser inklusiv
macrolider og lincosamider.

Resultaterne kan bidrage til kvali�cerede diskussioner om behandlingsstrategier og
målrettede interventioner i dansk svineproduktion. Reduktioner i forbrug af visse
antibiotikaklasser medfører ikke nødvendigvis en lavere forekomst af resistensgener
for disse klasser og genomiske kontekster af resistensgenerne bør medtages i vur-
deringer. Derudover bør mere systematisk dataindsamling være i fokus i fremtidige
studier og overvågning af udviklingen i antibiotikaresistente bakterier bør fortsætte
med høj kvalitet.



Preface

This Ph.D. thesis was composed at the department of Applied Mathematics and
Computer Science at the Technical University of Denmark in ful�llment of the
requirements for acquiring an PhD degree. The research conducted in this PhD
project was carried out in the Section for Dynamical Systems in the period November
1st 2018 to August 4th 2022 interrupted by a maternity leave.

The Ph.D. project was performed under the supervision of Senior Researcher Lasse
E. Christiansen and Senior Researcher Kaare Græsbøll. This work was supported by
The Danish Ministry of Food, Agriculture and Fisheries as part of theVeterinær-
forlig III project.

In this thesis, research related to antimicrobial resistance in Danish pig production
is presented. The intention of this Ph.D. thesis is to provide a brief overview of the
background and motivation for the three articles written during the PhD study as
well as a summarized presentation of the published work, additional results together
with discussions and perspectives.

Lyngby, 04-August-2022

Elisabeth Ottesen Bangsgaard
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Chapter 1

Introduction

Antimicrobial resistance (AMR) is a major global threat for humans as well as for
animals. In 2019, the World Health Organization (WHO) recognized AMR as being
amongst the ten biggest threats to the global health [1]. AMR bacteria can lead
to ine�ective treatments of severe diseases resulting in prolonged illness, extended
treatment, and even untreatable infections [2]. Gaining more insight into the key
drivers af AMR would yield useful information about the spread of AMR and how
to reduce it.

It is an increasing concern that AMR in livestock, including pig rearing, constitutes
a notable risk of transferring AMR bacteria to humans [3, 4, 5]. Accumulating
evidence suggests that overuse and misuse of antimicrobials are leading to ine�ective
treatment of diseases by the selection-pressure of antimicrobial resistance genes
(ARGs) [6, 7]. The antimicrobial usage (AMU) in livestock and other potential
in�uencing factors have therefore obtained an increased attention lately.

AMR is a broad research �eld, however, in this thesis, only ARGs in bacteria found
in fecal samples of Danish slaughter pigs were considered.



2 Introduction

1.1 Aim of the Thesis

The aim of this thesis is to investigate the in�uence of antimicrobial exposure and
management factors on the occurrence of antimicrobial resistance genes in fecal
samples of Danish pigs at the time of slaughter by exploiting available data.

1.2 Antimicrobial Resistance

AMR is the microorganisms' defense against antimicrobial drugs which are devel-
oped to eliminate them. Even though this mechanism occurs naturally in some
microorganisms as a self-defense, it can also rise from an alternation in the genome
[8, 9]. In bacteria the genome consists of the chromosal DNA and small, circular
DNA molecules (plasmids), both where the antimicrobial resistance genes (ARGs)
causing the resistance can be located. ARGs in chromosomes can be inherited by
the daughter cell while ARGs in the plasmids can be transferred between bacteria.

Co-occurrence. If more than one ARG is located on the same plasmid or other
genetic elements in the same bacteria, the ARGs are said to be co-occurring. This
means, that the bacteria have the ability of being multidrug-resistant, which is a
big issue when trying to defeat them.

Co-selection. Bacteria can carry several ARGs providing resistance against more
than one antimicrobialclass. Co-selection means that one ARG can select for another
ARG, for example if they are co-occurring. A resistance gene against a particular
antimicrobial class might therefore be selected even in the absent of a drug from
that antimicrobial class. This also implies that using one antimicrobial drug class
can preserve the AMR against all the drug classes for the co-occurring ARGs i.e.
co-resistance [10].

Horizontal gene transfer. It is possible for bacteria to pass on resistance by
transferring plasmids, this is called horizontal gene transfer (HGT) [11]. On a
smaller scale, mobility of ARGs within a single cell can be facilitated by mobile
genetic elements (MGEs) located close to the ARGs [12].

1.3 Measuring Antimicrobial Resistance

AMR can be de�ned and measured in various ways. The detection of AMR was tra-
ditionally culture-based and evaluating the phenotypic resistance. However, DNA-
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based methods quantifying the generic resistance are more commonly applied today.
The advances of DNA-based methods includes lower cost, many samples can be
processed fast, and the opportunity of detecting ARGs in all (known) bacteria in
samples and not only in the subset that can be cultivated [13, 14]. However, it
is not possible to determine if the ARGs are expressed i.e. if the gene results in
phenotypic AMR. In this Ph.D. project, data from two DNA-based methods, qPCR
and Metagenomics, formed the base of the statistical analyses.

The primary focus is on the qPCR data, while the metagenomic data is used to
con�rm �ndings from the qPCR data. The qPCR data was collected, analyzed and
prepared by DTU Bioengineering, while the collection of the metagenomic data and
the related bioinformatic part were performed by DTU FOOD.

qPCR. The quantitative Polymerase Chain Reaction method is capable of quanti-
fying an ARG based on a designed DNA template called a primer. The basic idea
behind the method is that the part of the sample DNA in interest is ampli�ed in
each cycle [15]. In each cycle, the sample DNA is �rst separated into single strings
and then replicated by help from the selected primer. This results in a copy i.e.
a doubling of the DNA segment which is measured by �ourescent dye. The �rst
cycle where the number of copies is su�cient for the �ourescence to be detected is
denotedCq (quanti�cation cycle). In this way, theCq-value can be used to quantify
the amount of DNA: A lowCq-value indicates a high initial amount of the gene of
interest, while a highCq-value suggests an low initial amount. In this project, the
Cq-values were normalized by the reference gene 16S, this is explained in detail in
section 3.2. For further explanation of the qPCR procedure used for the data in this
project, see [16].

Metagenomics. The principle of the metagenomic method is to extract DNA
from a sample, perform sequencing and then classify it according to an established
reference database. There exist a number of di�erent approaches and various com-
puter tools for performing metagenomic calculations [17]. A concise overview of the
method, necessary to follow the work in this project is as follows: after sequencing
the DNA, the small DNA pieces are assembled into contiguous sequences called
contigs. These contigs consist of the overlapping reads and represent larger parts
of the DNA. The contigs are then matched with known DNA sequences from a
database in order to predict and classify the genes. It is also possible to get in-
formation about the origin of the gene as well as the genomic context by binning
them into individual metagenome-assembled genomes. For more detail on the exact
method applied to the data considered in this project see [18].
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1.4 Antimicrobial Use in Danish Pig Production

The pig sector in Denmark is well established and constitutes a population of 13 mil-
lion animals in total, which is more than double the size of the human population
of Denmark in 2022 [19].

Rearing periods. In general, the rearing periods can be divided into three groups
based on the weight of the pigs: thepiglet period (birth until approximately 7 kg),
the weanerperiod (approximately 7 to 30 kg) and the�nisher period (30 kg until
slaughter). A herd is the pig population on a farm whereas a group of pigs reared
together in the same period is referred to as a batch.

There exist many di�erent types of farms in Denmark, such as fully integrated
(including all three rearing groups), partly integrated (including piglets and weaners
or weaners and �nishers) or farms rearing only one of the three. This result in
many di�erent production networks transferring pigs between farms. The pigs are
usually moved, when they enter a new rearing period, if they are transferred between
di�erent farms. There exist multiple complex trading patterns in the Danish pig
industry, which covers several locations and owners [20].

AMU survillance. DANMAP is a systematic surveillance program for antimicrobial
usage and resistance established in Denmark [21]. The main purpose of DANMAP
is to collect veterinary data on AMU and AMR as a basis for research and counseling
within the �eld. The abundance of AMR in Denmark is lower than for other Eu-
ropean countries [22], most likely due to the initiatives that has been implemented
during the years, to control and limit AMR bacteria in the Danish pig sector [23].

However, the pig production in Denmark still constitutes the main part of veterinary
antimicrobial consumption, even though it only accounts for 47% of estimated live
biomass. In 2020, it was reported that the Danish pig industry accounted for 76% of
all antimicrobial drugs prescribed, this corresponds to 75.9 tonnes active compound
[21]. The AMU data reported by DANMAP is build on the national VetStat registry,
described in more detail in section 2.1.

Antimicrobial drugs. Antimicrobials are medicines used to prevent and treat infec-
tions caused by bacteria, viruses, fungi or parasites. There are several antimicrobial
drugs on the market, however, in this thesis AMU is estimated for each of the
twelve major antimicrobial classes:Aminoglycosides, Amphenicols, Lincosamides,
Macrolides, Simple penicillins, Extended penicillins, Sulfonamides (incl. trimetho-
prim), Tetracyclines, Pleuromutilins, Cephalosporins, Fluoroquinolones, and Other
according to the de�nitions in VetStat.

Animal de�ned daily dose. As an attempt to standardize the use, measurement
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and reporting of antimicrobial consumption, theanimal de�ned daily dose(ADD)
was introduced in VetStat [24]. The ADD de�nes the average maintenance dose
of the drug for the main indication within an age group of a species. Based on
this, the antimicrobial exposure in this project is calculated as the average dose of
the speci�ed antimicrobial used for treatment of one kilogram pig for each rearing
period of the pig [25]. The calculations are explained in section 3.1. Estimating
antimicrobial exposure in this way allows for a comparison between the AMU in the
di�erent rearing periods, as well as a summation over the rearing periods to describe
the lifetime exposure.

Yellow card initiative. The implementation of theyellow card initiativein 2010
has caused a reduction in antimicrobial use in the Danish pig production. The main
idea is that farms using too much antimicrobials, get a yellow card by the authorities
followed by a 9 months period to reduce it and a follow up action plan, in case of no
improvement [23]. The antimicrobial thresholds are determined by the authorities
and are di�erentiated between the drug classes, depending on how critical they are
for human treatments.

1.5 Factors In�uencing AMR

Besides the direct e�ect of AMU on AMR occurrence in pig production, it has been
indicated that several other factors contribute to the occurrence. Management
factors associated with the pig production have gained an increasing importance
when studying AMR levels at pig farms. These include size of the farms, movement
patterns, quality of feed and, in general, the daily routines such as number of people
working on the farm, treatment strategies and applications [26, 27, 28, 29].

However, some of these factors can be di�cult to quantify or collect information
about. In this thesis, only management factors that are possible to retrieve through
register data are considered. These factors are: the total number of farms in the
production network (network size), the movement patterns including the ownership
(production type) and number of di�erent antimicrobial drug classes.

1.6 Project Structure and Role

This Ph.D. project was conducted as part of theVeterinærforlig IIIproject, �nanced
by the Danish Ministry of Food, Agriculture and Fisheriesin collaboration with DTU
Bioengineering and DTU FOOD. The main objective was to develop a model as a
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supporting tool for prediction of AMR in the Danish pig production as an input to
the overall project goal of reducing AMU and AMR in veterinary context. In this
setting, the main contribution of this Ph.D. project was the developed algorithm for
antimicrobial exposure as well as obtained knowledge of AMU-AMR associations
based on analysis and modeling of the collected data in Danish pigs.

The metagenomic data sampling and the accompanying bioinformatic analyses were
carried out by DTU FOOD. The study in which pigs were sampled at the slaughter
line and the related qPCR analyses were performed by DTU Bioengineering.

Large parts of the work conducted during the project period concerned understand-
ing and quality checking the register data and the qPCR data. A major challenge
was to merge and prepare the data from the di�erent registries in order to get
useful results for the modeling part. Data collected in the real world, especially
self reported, can be quite messy, and combining all the collected information into
useful exposure estimates and including this in the analysis of the qPCR data, com-
promised a signi�cant proportion of the work. In this way, the project has been
a combination of understanding and analyzing data of various sources and struc-
ture, programming, visualization, and interpretation, as well as an interdisciplinary
project uniting antimicrobial resistance, Danish pig production, statistical modeling
and plenty of programming.



Chapter 2

Data Sources

This chapter brie�y introduces the underlying data sources that forms the basis of
the work in this Ph.D. project.

The data for the analyses performed in this project is derived from fecal samples
collected in Danish slaughter pigs, in combination with available register data. In
Denmark, it is mandatory to report information about pig herds in the Central
Husbandry Register (CHR), information about all movements of pigs in the Pig
Movement Database (PMD) and information about antimicrobial purchases in Vet-
Stat. The registers are maintained by the Danish Ministry of Food, Agriculture
and Fisheries. They are of high quality, however, they do still contain some errors,
such as wrongly entered or missing data and inconsistencies across the registries.
Examples of this are: failed upload, late registration, and manual changes of errors
combined with di�erent data extraction times [30]. In this project, all needed data
covering the period 2014-2019 was extracted and prepared for analysis only once.

2.1 Danish Data Registries

CHR
All livestock in Denmark are registered in the CHR, by a unique CHR number linked
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to the geographical location. The CHR number can, for example, be used to identify
transfers of pigs and antimicrobial purchases in the two other registers. In the CHR,
demographics such as animal species on the farm, number of animals, farm type and
ownership are registered. For pigs, the farm type distinguishes between, for example,
slaughter houses, production farms, breeding farms, and exporting facilities. The
number of pigs is reported within the three groups: sows, weaners and �nishers.
The ownership of the farms is registered by a unique CVR number. This means that
more than one farm can be associated with a CVR number ( i.e. having the same
owner), but only one farm can be associated with a CHR number. It is also possible
to have two CVR numbers linked to one CHR number i.e. two owners sharing a
farm location. [31]

Pig Movement Database
The PMD is part of the CHR and holds all information about pigs moved between
farms in Denmark. Usually pigs are transferred between farms when they are entering
a new rearing period or sent for slaughter. The movements are reported on farm and
rearing group level i.e. it is not possible to trace a unique pig through the database.
Information about the sending and receiving farm including CHR and CVR number,
number of moved pigs and the date of transfer is to be reported within 7 days. [32]

VetStat
The antimicrobial veterinary use in Denmark is monitored based on the VetStat
registry. VetStat is a national registry for all prescription drugs for veterinary use.
The register is used for regulation of AMU as well as for research purposes. VetStat
contains detailed information on the purchased drugs including active compound,
strength, amount, administration route, and intended use. In addition, the standard
ADD for drugs is also found here, indicating the average dose for the main indication
in the speci�c animal type and age group. [33]

2.2 Fecal Samples From Danish Slaughter Pigs

As part of theVeterinærforlig II and III, initiated by the Danish Ministry of Food,
Agriculture and Fisheries, fecal samples from Danish slaughter pigs were collected
at the slaughter line in 2015, 2017 and 2019. Five individual pigs from the same
farm were sampled and these samples were mixed. The mixing resulted in a pooled
sample describing the resistance level at in the herd, rather than in the individual
pig [34, 35]. The pooled samples were analyzed with the qPCR method by DTU
Bioengineering, for further detail see [16]. However, unforeseen budget cut on the
overall project a�ected the number of collected samples (planned sampling of sows)
and the number of samples analyzed with qPCR. It was therefore not possible to
include all collected samples in the Ph.D. project due to the non-analyzed samples
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together with missing access to the list linking the sample IDs to the CHR numbers.

In total, 1153 samples from 749 farms were eligible for analysis in this project. Herds
from 205 farms were sampled multiple times, see Table 2.1 for details.

Number of farms Number of samples
122 2
34 3
18 4
15 5
15 6, 7, 8
1 14

Table 2.1: Number of re-sampled slaughter pig farms in theVeterinærforlig II and
III project.
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Chapter 3

Summary of Methods in the
Articles

This chapter presents the main objectives of the research articles I-III and gives a
summary of the used methods.

3.1 Research Article I

The objective of research article I (The ALEX Algorithm - Estimating Average Life-
time Antimicrobial Exposure of Danish Slaughter Pigs in a Fast, Automated and
Robust Way) was to present and discuss, the developed algorithm for estimating
antimicrobial exposure and production type in Danish pig production. The motiva-
tion behind the article was to share �ndings and solutions for others in the area to
use.

The purpose of developing the Average Lifetime Antimicrobial Exposure algorithm
(ALEX) was to provide a faster, automated and more robust procedure for calcu-
lating the average exposure of antimicrobials in Danish pig production based on
a previous method (the LEA algorithm [20]). The algorithm is designed to work
purely on register data.
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Back-tracing. All plausible routes of pigs from piglet to slaughter are identi�ed by
searching the PMD. In the �rst step, farms moving pigs to the slaughter farm in a
speci�ed time window are searched. In the second step, movements to these farms
are searched. This identi�es the production network by movements of piglet to
weaner and weaner to �nisher farms. Internal movements are estimated in the case
of missing movements, based on what is registered in the CHR on speci�c rearing
groups for the particular farm. Internal movements are also estimated in case where
two, or more, rearing groups are registered on one farm according to the CHR. The
time windows of the moving period for back tracing the movements in the PMD
are based on �ndings in [20]. Figure 3.1 depicts the steps and time windows in the
ALEX algorithm.

Figure 3.1: Illustration of the steps in the ALEX algorithm [36]. In the �rst step
(1) movements of weaners to �nisher farms are traced and based on
this, movements of piglets to the identi�ed weaner farms are traced
(2). The last step of the algorithm is to calculate and weight the
average AMU on these farms in speci�c time windows (3).

Estimating. The antimicrobials purchased for all the identi�ed farms in the pro-
duction network in the relevant periods are extracted from VetStat. The AMU is
smoothed over the relevant rearing period extended by 180 days prior. The exposure
is calculated by,

AMU x =
purchased antimicrobials

number of pigs� ADD x � purchase time window
� time in rearing period

wherex is the antimicrobial drug class. The purchased antimicrobials are measured
by the total amount of compound in mg. DTU FOOD converted the strength,
amount and number of packages into the total amount (mg) and adjusted the
standard ADD values for combination preparations and converted the unit into
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mg/kg. The number of pigs is based on the registration of the herd size for the
rearing group in CHR.

As mentioned, the AMU measure is smoothed by including all prescriptions 180
day before the rearing period, together with the prescriptions during the rearing
period. These are averaged over the prescription period and multiplied to re�ect
the average exposure of the speci�c antimicrobial drug class in the particular rearing
period. The unit ofAMU x is [kg pig� day] and re�ects the total average exposure in
the respective rearing period. In this way, a lifetime exposure can easily be calculated
by adding the three estimates from each rearing period, which is possible, because
the unit is not depended on the weight of the pigs in the di�erent rearing periods.

Weighting. The AMU estimates are weighted according to registered number of
pigs moved between the farms to get an average exposure for each rearing group.
The weighting is only performed in the case of multiple suppliers including internal
movements. The AMU estimates are adjusted and weighted for production network,
involving multiple piglet or weaner farms, by calculating the proportion of pigs
transferred to the speci�c rearing group out of the total pigs moved to the rearing
group on that farm. The sum of the average exposure in each rearing period
constitutes the average lifetime exposure for a slaughter pig from the given farm.

Management factors. The number of farms identi�ed in the PMD and the own-
ership information retrieved from the CHR for the pig networks are documented in
parallel to the exposure estimation. The number of piglet farms and weaner farms
together with the number of registered CVR numbers in the production network is
based on the results of the back-tracing.

Successful traces. Several checks are implemented for quality insurance and vali-
dation. Traces where no movements from weaner to �nisher or piglet to weaner farm
are identi�ed, are of course, if no internal movement could be estimated, regarded
as failed traces. In addition, the traces should be su�cient which was de�ned as:

(1) the proportion between estimated number of moved piglets/weaners and
estimated number of weaners/�nishers is higher than 50%,

(2) the fraction of the movement chain that is complete is higher than 80%,

(3) the number of farms detected in a network is less than 8.

Criteria (1) and (2) are implemented to allow for discrepancies between the registries
and the real world. Criterion (3) is based on investigations carried out in connection
with research article II [16].
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3.2 Research Article II

The main objective of research article II (Mixed e�ect modeling of tetracycline
resistance levels in Danish slaughter pigs[16]) was to investigate the in�uence of
management factors on tetracycline resistance, in addition to tetracycline exposure,
in Danish pig production. The focus on tetracycline arose from the fact, that it is
one of the most commonly used antimicrobials in pig production [21, 26].

Resistance measure. In this work, the qPCR data, described in section 2.1, was
used for modeling. As mentioned, the samples were collected on the slaughter line
at Danish slaughterhouses in 2015, 2017 and 2019.

In this PhD project, all the qPCR results are normalized by 16S rRNA by calculat-
ing: � Cq = Cq;16s � Cq;ARG . This normalization allows for a comparison between
samples by considering the amount of bacterial DNA. In other words,2� Cq repre-
sents the proportion of the sample, containing the ARG relative to the 16S gene,
since theCq-values are naturally on alog2-scale. The interpretation of� Cq = � 1
is therefore, that it is detected half as often as the reference 16S gene. In the case
of three available technical replicates, the median was calculated and used.

To summarize the total tetracycline level it was chosen to make a variable summing
up the individual qPCR results of the measured tetracycline resistance genes,

R(tet) =
X

k

2� C ( q;k )

wherek covers the genes: tet(A), tet(B), tet(C), tet(L), tet(M), tet(O)-1, tet(O)-
2, tet(PA), tet(Q), tet(W), tet(X), and tet(32). Summing over the 2� Cq gives an
additive measure of the total tetracycline resistance level rather than just summing
over the� Cq, which is just the di�erence between running cycles of the ARG and
the reference gene. The additive nature of the variable means, that the value can
exceed 1 as it represents the sum of the relative proportions of the individual ARGs,
since multiple ARGs can be present in the same bacteria.

In�uential factors. The exposure to tetracycline and other antimicrobials were es-
timated using the algorithm ALEX. Likewise, the investigated management factors,
were estimated by the ALEX algorithm. The management factors include:network
size, production typeand number of antimicrobial classes used. The network size
was constructed by counting the number of farms detected in the production net-
work, the production type was based on ownership details retrieved from the CHR
registry and the number of antimicrobial classes was counted for each rearing group,
as an indicator of the general management hygiene level.

The production type was categorized into the following four groups:
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1) CHR integrated:
Pigs stay on the same farm during all of the production,

2) CVR integrated:
Pigs are moved between at least two farms with the same owner,

3) other - 2:
Pigs are only moved between two farms, however, with di�erent owners,

4) others - 3+:
The production network consists of three or more farms and multiple owners.

Mixed e�ect models. Four non-nested linear mixed e�ect models were formulated,
reduced and compared. The response variable waslog2-transformed due to the
natural origin of the data. All formulated models included exposure variables divided
into the di�erent antimicrobial classes and rearing groups as �xed e�ects and the
farms as random e�ect. The �rst model only included the exposure variables, the
second model included a variable describing the size of the production network, the
third model included a production type variable and the fourth model included a
counting variable for the number of antimicrobial classes used. The models were
reduced by backwards elimination and the non-nested models were then compared
by the Akaike Information Criterion(AIC) and log-likelihood to evaluate the models
�t to data. To counteract for the multiple comparisons in the backwards elimination
process the Bonferroni correction method was used with an overall alpha level of
0.05.

The Bonferroni method was implemented by dividing the signi�cance level by the
number of tests i.e. number of variables in the initial models tested in the back-
wards elimination process,� Bon: = 0:05

Number of variables tested in model : The backwards
elimination was carried out by using thestep function from the LmerTest package
in R. The full models, including all potential variables, were estimated and then
provided to the step function which tested potential reductions of the models. The
reduced, non-nested models were then compared by AIC which provides a relative
measure of the quality of the model �ts to the dataset and constitutes a good aid
in model selection. The model with the lowest AIC was chosen, because it �ts data
best in the simplest way i.e. with the minimum amount of variables amongst the
tested models. Model checking plots for the �nal model were examined and gave
no concern.

3.3 Research Article III

The objective of research article III (Antimicrobial exposure and observed resistance
patterns in slaughter pigs explained by genomic context) was to explain observed
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AMU-AMR patterns in a broad pig population study by �ndings in a more narrow
metagenomic study.

The work presented in research article III, can be divided into two major parts,
depending on the analysis of data collected in: theantimicrobial usage (AMU)
study and the resistance gene context study. The AMU study refers to the previ-
ously described qPCR study sampling slaughter pigs in 2015, 2017 and 2019, while
the context study refers to a metagenomic study performed on one farm over 11
weeks. The data collected and qPCR analyses in the AMU study were carried out
by DTU Bioengineering, while the data collection and bioinformatic analyses in
the context study were performed by DTU FOOD, as mentioned in the introduc-
tion. In this article, individual antimicrobial resistance genes measured in the AMU
study, were analyzed by mixed e�ect modeling and the results were compared to
the �ndings of the context study.

Mixed e�ect models. Based on the results of research article II, mixed e�ect
models were formulated. The main di�erence between the two articles is the re-
sponse variable. With the previous work as a starting point, mixed e�ect models
were developed and reduced for each of the measured resistance genes for di�erent
antimicrobial classes (with su�cient number of observations), rather than for the
sum of tetracycline resistance genes. The individual models were backwards reduced
using Bonferroni correction, similar to the procedure in research article II. Model
checking plots were examined for all reduced models and none of them caused a
signi�cant concern.

Box-Cox transformation. The response variable of the individual models was the
� Cq-values for each resistance gene and alog2 transformation was therefore not
applied, in contrast to the models in research article II. However, an investigation
of Box-Cox transformation of the exposure variables for various� suggested, that
a square root transformation was appropriate. This was achieved by optimizing
the value of � in the range [0.1, 1], based on the log-likelihood of the models,
implemented as a for-loop and utilizing the build-in functionoptimize in R. The
exposure variables included variables, describing the antimicrobial exposure for each
of the 12 antimicrobial drug classes, in each of the three rearing periods i.e. 36
variables.

Co-occurrence matrix. A matrix describing and illustrating the co-occurrences of
the ARGs measured in the context study was constructed, based on the metage-
nomic data from the context study. The ARGs were determined to be co-occurring,
when they were detected close to each other on the same contig, according to the
de�nitions by DTU FOOD [18].



Chapter 4

Summary of Results in the
Articles

This chapter presents the most important �ndings of the research articles I-III.
It includes a condensed version of the main results and a highlight of the key
conclusions.

4.1 Research Article I

To obtain fast and reliable estimates of antimicrobial exposure, for investigating
the AMU-AMR relationship in this project, an algorithm (ALEX) was implemented.
ALEX is capable of estimating AMU, within the di�erent rearing periods of the pigs,
and mapping the production networks in a transparent way.

ALEX was compared to the published algorithmLEA [37], which showed, that
ALEX is faster and more robust. Sensitivity analyses of the parameters related to the
window sizes of movements and antimicrobial purchases were carried out underlining
the robustness. The e�ectiveness of the ALEX algorithm was studied, this included
a trace of all batches, from meat producing farms, sending at least one batch for
slaughter during 2019 in each quarter. In 2019, on average 3346 di�erent farms
moved slaughter batches of minimum 20 pigs to a slaughter house each quarter,
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according to the PMD. The successful trace rates were between 73-82% for each
of the periods. Figure 4.1 depicts the data selection based on all slaughters in the
PMD and the structures of the failed ALEX traces for the �rst quarter of 2019. The

Figure 4.1: Flow chart of the failed ALEX traces of slaughter batches in �rst quar-
ter of 2019. Out of the 3497 identi�ed farms sending to slaughter in
�rst quarter, 2559 were successfully traced resulting in a success rate
of 73%.

structure of the failed traces in the �rst quarter exempli�es, that a signi�cant share
of the failures are due to missing registrations of pig movements in the PMD, within
the de�ned time windows. for unknown reasons some of these lacks of movements
were over a 2 months period, and would therefore not have been traceable by
extending the windows slightly. Extending the windows too much, would probably
result in �nding unintended movements for the particular trace.

Typing errors in both the CHR, PMD and VetStat introduces challenges when
estimating the antimicrobial exposure. Inconsistencies across the registries were
encountered multiple times in this project. A few examples of these inconsistencies
are: a registration of a piglet to weaner movement in the PMD, where the receiver
farm does not have weaners registered in the CHR. A movement in the PMD of
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more pigs than what is registered on either the sender or receiver farm in the CHR.
In general, many strange registrations were discovered when investigating special
cases in connection with validation of the results and understanding of the failures
of the algorithm. In addition, inconsistencies were found within registries, e.g. in
the CHR, where a farm for some months changed the production type by reporting
zero pigs in the weaner period and then suddenly changing it back again. This was
partly dealt with by using a running median of 3 months for each rearing group
registered in the CHR. Furthermore, updates of CHR is supposed to be registered
on an ongoing basis, however, some updates are performed in connection with the
yearly update.

Figure 4.2 shows the AMU of tetracycline, estimated by ALEX, in the four quarters
of 2019. The AMU is grouped by thetype of production. The results show no
evidence of major seasonal variation in the lifetime tetracycline usage and only a
slightly increasing tendency in the median of the production type, however, there is
no signi�cant di�erence.

Figure 4.2: Tetracycline lifetime exposure for all slaughter pigs, traced by ALEX,
in the four quarters of 2019. The tetracycline AMU is grouped by the
production type.

Two direct usages of the ALEX results were presented in the article. A visualization
tool (see Figure 4.3) and a comparison of tetracycline and macrolide use in 2019 in
relation to 2015. The comparison includes all farms, having at least one traceable
slaughter batch in 2015 and 2019, with the ALEX algorithm.
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Figure 4.3: Screen shot of the shiny app developed for visualizing the identi�ed
production networks, movements and AMU estimates provided by the
ALEX algorithm.

Figure 4.4 presents the changes in tetracycline and macrolide exposure from 2015
to 2019, separated into groups depending on the exposure level in 2015. Overall
this shows, that the pigs from production networks, having a high exposure in 2015,
are the ones, where the biggest reduction is observed. The median of the change
in macrolide exposure is above zero for the group, with low macrolide exposure
in 2015. This was further investigated by plotting the distributions of changes in
macrolide exposure divided into groups, based on the magnitude of the change in
tetracycline exposure (see [36]). This showed, that the farms reducing tetracycline
use the most, also were the farms increasing the macrolide use for the weaner and
�nisher rearing groups.

(a) (b)

Figure 4.4: Plots showing the changes from 2015 to 2019, in tetracycline use (a)
and macrolide use (b), separated into groups based on the magnitude
of the exposure in 2015.
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4.2 Research Article II

It was found, that a mixed e�ect model including tetracycline exposure in the weaner
and �nisher period, pleuromutilins exposure in the �nisher period, and a variable
classifying the production type, was the most suitable, amongst the tested models,
for describing the total tetracycline resistance level in Danish slaughter pigs.

The �nal model was selected based on AIC and the correlation between the observed
and �tted total tetracycline resistance level (R(tet)) was 0.89, see Figure 4.5.

Figure 4.5: Correlation between �tted R(tet) and observedR(tet). The �nal
model was a linear mixed e�ect model, with tetracycline exposure in
the weaner and �nisher period, pleuromutilins in the �nisher period
and production typeas �xed e�ects and farm as random e�ect.

The �t of the �nal model seems to capture the overall trend of the data, even though
the prediction variance is increasing for higherR(tet) values, which is expected, due
to the �tting on log2-scale.

The estimates of the production type suggest, that CHR integrated farms have
a lower reference level of tetracycline resistance. Furthermore, CVR integrated
farms seem to have a lower background level, compared to non-CHR and non-CVR
integrated farms. According to these results, it appears that complicated moving
patterns and production types, with several farms and owners have an increasing
e�ect, on the level of the total tetracycline resistance.

The R(tet) sum is primarily dominated by the tet(O) genes, tet(W), tet(Q), and
tet(32). tet(W) was the most abundant gene and contributed by 45% (� 8%) on
average, in each sample, to the total tetracycline resistance sum in this study.
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4.3 Research Article III

The �ndings showed that combing results from two AMR studies could explain some
complex observed AMU-AMR relationships. The two studies were performed in the
broad national pig population, quantifying the relationship between AMU and AMR
by mixed e�ect modeling, and in a single herd, investigating the genomic context,
respectively.

Figure 4.6 presents the results of the reduced mixed e�ect models for the individual
ARGs. The estimates for each of the models are shown, together with an indication
of the signi�cance. This suggest that di�erent ARGs are associated with di�erent
AMU, in di�erent rearing periods. The most frequently occurring variables across
the models are tetracycline and macrolide AMU in the weaner and �nisher rearing
periods. Two things to have in mind is, that the pigs are sampled close to �nisher
rearing period (at slaughter) and the extensive use of these drugs in these rearing
periods. The variable 'Type' covering the production type is signi�cant in seven out
of the 14 models.
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Figure 4.6: Results of the mixed e�ect models of the individual ARGs measured by
qPCR in the AMU study. The� Cq-values for the measured ARGs are
modeled as function of antimicrobial exposure for each antimicrobial
class in each rearing period of the pig, and the type of production. Each
column contains the estimates from the reduced mixed e�ect model for
the given ARG. Note, that the AMU variables in the models are square
root transformed. The stars represent the level of signi�cance of the
estimates: 0 '***' 0.001 '**' 0.01 '*' 0.05. For the models, where the
variable 'Type' is included, the intercept value is covering intercept for
CHR integrated farms. The estimates and signi�cance for 'CVR int.',
'Other 2' and 'Other 3' all have the CHR integrated intercept value as
reference.
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Figure 4.7 provides the context table showing co-occurring ARGs. The numbers
indicate how many times the particular ARGs were detected together i.e. on the
same contig. The numbers in the diagonal, can therefore be interpreted as total
number of detections of the given ARG in the context study.

Figure 4.7: Context table indicating how many times ARGs were detected together
on a contig. The yellow background color on the ARG labels indicates
ARGs, that were also measured in the AMU study. The diagonal
illustrates, how many times the ARG was identi�ed in the context
study, and the o�-diagonal shows number of co-occurrences with other
ARGs on a contig.

The most interesting �ndings of this article included tet(X) and aph(3')-III.

In the AMU study, it was observed that tet(X) only was associated with macrolide
and lincosamide AMU, despite the expected in�uence of tetracycline exposure (see
Figure 4.6). This could be explained by the genomic context study, where tet(X) was
found co-occurring with erm(F) in four out of the �ve detections (see Figure 4.7).
erm(F) is commonly known to provide resistance against macrolide, lincosamide and
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streptogramin B. This result might therefore be an example of co-selection.

The aminoglycoside ARG aph(3')-III was also found to be a�ected by multiple
antimicrobials in the AMU study. This matches the observation in the context
study, where it was co-occurring with multiple ARGs. This again highlights the
complexity of antimicrobial exposure and resistance patterns.
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Chapter 5

Additional Results

This chapter introduces further results, not included in research articles I-III, yet
relevant and important for the general discussion of the previous results. First dis-
tribution plots of tetracycline resistance levels are presented, next, an investigation
of repeated measurements in the collected data is carried out and lastly, a modest
comparison of qPCR and metagenomic data is presented, together with examination
of antimicrobial exposure patterns.

5.1 Tetracycline Resistance Distribution

The distributions of tetracycline resistance levels over the three collection years
(2015, 2017 and 2019) are investigated to get a better understanding of the trends.
The data in this section represents all sampled farms in the qPCR study, irregardless
of the traceability of the batches using the ALEX algorithm. In 2015, pigs from 443
unique farms were sampled, while pigs from 249 and 202 unique slaughter farms
were sampled in 2017 and 2019, respectively. Only the �rst sample of each farm
each year is included in the following.

Yearly distributions. Figure 5.1 illustrates the distribution of the total tetracycline
resistance levels on the sampled farms by year. The total tetracycline resistance
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level shows a slightly decreasing trend over time, even though the level actually
seemed to increase vaguely from 2015 to 2017. Figure 5.2 shows the individual

Figure 5.1: Distribution plot of the total resistance level of tetracycline (R(tet)) in
Danish slaughter pigs samples, collected in 2015, 2017 and 2019. The
vertical lines represent the meanR(tet) value each year. This shows
an overall decreasing trend in the mean value of the total tetracycline
resistance levels.

distributions of tet(W) and tet(X) ARGs reported in2� Cq . Here the di�erences,
in the yearly trends of the two individual tetracycline ARGs, are exposed. tet(W)
is one of the most prevalent ARGs, showing a minor decreasing trend, while tet(X)
exhibits an increasing trend, despite the observed decrease in tetracycline AMU.
This exempli�es how the di�erent tetracycline ARGs exhibits di�erent distribution
patterns over the years.

The total tetracycline resistance level sum (R(tet)) is, however, heavily dominated
by tet(W). Table 5.1 reports the fraction of the total resistance level accounted for
by each of the ARGs each year. From this it is clear, that the total tetracycline level
is greatly in�uenced by tet(W). In 2019, the relative tet(W) proportion composed
48% on average in the samples, while tet(O)-2 and tet(Q) accounted for 15% and
18%, respectively. This highlights the prevalence of tet(W) in the collected samples.
In contrast, tet(X) only contributed by 1% on average in 2019, but it seems like it
is getting an increasing (but still low) importance in the total tetracycline level.
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(a)

(b)

Figure 5.2: The yearly distributions of (a) tet(W) and (b) tet(X) (2� Cq). The
vertical lines represent the mean2� Cq value by year. The tet(W)
distribution shows an overall decrease in the mean value, tet(X) shows
an overall increase in the mean value, from 2015 to 2019.
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Percentage ofR(tet) (mean and standard deviations)

Gene 2015 2017 2019
tet(A) 0.06% (� 0.21%) 0.08% (� 0.16%) 0.07% (� 0.15%)
tet(B) 0.01% (� 0.19%) 0.01% (� 0.12%) 0.01% (� 0.13%)
tet(C) 0.12% (� 0.20%) 0.08% (� 0.09%) 0.09% (� 0.11%)
tet(L) 3.44% (� 3.25%) 3.90% (� 3.22%) 4.37% (� 4.03%)
tet(M) 0.25% (� 0.26%) 0.27% (� 0.23%) 0.46% (� 0.92%)
tet(O)-1 7.16% (� 2.98%) 6.59% (� 2.64%) 6.02% (� 2.60%)
tet(O)-2 17.79% (� 6.05%) 16.89% (� 6.06%) 14.95% (� 6.58%)
tet(PA) 0.41% (� 0.35%) 0.51% (� 0.40%) 1.06% (� 0.79%)
tet(Q) 17.93% (� 8.42%) 18.59% (� 7.30%) 17.58% (� 7.67%)
tet(W) 44.03% (� 7.38%) 44.99% (� 8.02%) 48.04% (� 9.05%)
tet(X) 0.50% (� 0.58%) 0.56% (� 0.55%) 1.04% (� 1.37%)
tet(32) 8.72% (� 4.79%) 8.18% (� 5.14%) 7.53% (� 5.51%)

Table 5.1: The mean and standard deviation, across farms, of the proportion (in
percentage) of the total tetracycline resistance levels (calculated by
R(tet) =

P
k 2� C ( q;k ) ), for each of the tetracycline ARGs constituting

the sum. Based on the �rst observation for each farm each year.
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5.2 Repeated Samples

The number of repeated samples in the project was unfortunately not as high as
expected and hoped, due to unforeseen �nancial circumstances and project re-
organization. In total, only 17 farms were sampled, analyzed and successfully traced
with ALEX, across all three collection periods in 2015, 2017 and 2019. By expand-
ing this criterion to include farms, sampled at least three times, in minimum two
di�erent collection years, 48 farms were identi�ed. 24 of these farms were sampled
exactly three times, while the rest of the farms were sampled between four and 14
times.

Information level. This subset of data is investigated in order to understand the
information level over time and the possibility of building a dynamic model based
on this. The main interest is, to study the magnitude of change in resistance levels
for the individual farms over time. The ARG tet(W) was chosen as target, due to
the high prevalence in the samples.

Production type. There is an overrepresentation of farms with complicated trading
patterns, in this subset of data i.e. productions with multiple owners and several
farms in the network. This might be an expression of larger farms, which are
sending pigs for slaughter more regularly, and therefore got sampled more often in
this study. Seven of the production networks were estimated to have two di�erent
production types within one year, which might be a re�ection of networks, that
include additional farms when needed, to �ll up all pens (i.e. changing production
type from other - 2 to other - 3+).

Change in tetracycline exposure. A classi�er (tet-classi�er) was calculated to
indicate, whether slaughter pigs have been exposed to relatively high or low tetra-
cycline treatment. The classi�er speci�es, if the slaughter pigs have been exposed
to more (over) or less (under), than the median lifetime tetracycline use, which was
calculated based on this subset of data (33.5 AMU). The farms are then split into
two groups:no change in treatment strategy(farms where thetet-classi�er did not
change) andchange in treatment strategy(farms where the tet-classi�er at some
point changed).

The tet(W) measurements are averaged by year for each farm, assuming that the
change in the lifetime AMU and production type is greater between the collection
year, than within a collection year (2 years time span compared to 2 months time
span).

Figure 5.3 shows the average tet(W) resistance level (� Cq) as a function of time.
To the left, farms that did not change the treatment strategy are shown (i.e. did not
change the treatment strategy enough to cross the median use). It shows a weak
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Figure 5.3: Average tet(W) resistance levels as function of time divided into groups
of farms that did not change treatment strategy and farms that did.
Change in treatment strategy is, in this section, de�ned as changing the
tetracycline exposure enough to cross the median tetracycline exposure
in the data.

tendency for the farms, that had a relatively higher tetracycline exposure of the pigs
(red dots), to also be the ones, that seem to have the highest tet(W) resistance
levels. To the right, farms that did change their treatment strategy, enough to cross
the median, are shown. From 2017 to 2019, it seem like, a number of the farms
reduced the overall tetracycline treatment (red dots changed to blue dots), resulting
in a minor reduction in tet(W) resistance.

Changes in �C q . Table 5.2 presents the summary statistics of the changes in� Cq

for tet(W). The minimum (-0.97) and maximum (1.13) values are corresponding to
a reduction by half and a doubling, approximately. However, most of the changes in
� Cq are far from these values and might re�ect, that most of the resampled farms
did not have a big change in tet(W) resistance levels. The median (-0.18) and mean
(-0.11) values of all farms suggest an average reduction of 12-15% tet(W) copies in
the samples, compared to the previous taken samples. When looking at the farms,
that did not change the treatment strategy considerably, the median of the changes
in � Cq (-0.01) re�ects a reduction of 0.7% of relative tet(W), compared to previous
measurement.

The results show, that there are few farms sampled during all three collection peri-
ods. In addition, the resistance levels for tet(W) and AMU, for the resampled farms,
did change over time, but not to the extend of revealing signi�cant associations. In
the sampling, there was no systematic focus on resampling farms or sampling farms
extensively changing their AMU patterns. The samples were taken at the slaughter
line, from the pigs that were randomly send for slaughter on the sampling day. A
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No change in treatment strategy (26 farms)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.84 -0.30 -0.01 -0.04 0.16 1.10

Change in treatment strategy (22 farms)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.97 -0.47 -0.23 -0.18 -0.04 1.13

All farms (48 farms)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.97 -0.39 -0.18 -0.11 0.11 1.13

Table 5.2: Summary statistics of thechanges in �C q for tet(W) grouped by
treatment changes and all farms. Change in treatment strategy is, in
this section, de�ned as changing the tetracycline exposure enough to
cross the median tetracycline exposure in the data.

more controlled sampling setting could be achieved, by sampling the pigs at the
farms instead, however, this would be more costly. The data collected in this study,
make a great basis for investigating the the resistance levels in the broader Danish
pig population and more static AMU, however, it is not suitable for examine more
complex dynamics e.g. by dynamical models, bacause the information level is not
high enough, to support parameter estimation.

5.3 qPCR and Metagenomic Data Comparison

A small subset of the data collected inVeterinærforlig II was analyzed both by
qPCR and metagenom (83 samples from 79 farms). The consistency between the
results of the two methods is investigated by ranking pro�les of each sample and
each gene, for the ARGs detected by both methods. The ranking comparison was
chosen, to �nd a common way of measuring the two methods' ARG quanti�cation.
The qPCR method o�ers relative gene proportion, while the metagenomic method
provides gene counts.

Ranking of samples. The ARGs are ranked within each sample according to the
measured level by each of the methods. The lowest ranking, i.e. 1, refers to the most
widespread ARG in the given sample, measured with the speci�c method. In the
cases where more ARGs were not detected in a sample, these were given equal (high)
ranks. Figure 5.4 compares the ranking of the two methods' ARG quanti�cation.
The correspondence between the two rankings within the samples are in relatively
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Figure 5.4: Ranking plot comparing qPCR and metagenome results, in order to
investigate the consistency. The labels indicate the percentages of
samples, where the speci�c ARG was detected with the qPCR method.

good agreement, except for some speci�c ARGs, especially, blaTEM, sul2, lnu(C),
and vat(E). The results suggest that the methods to some extend observe similar
resistance pro�les. In addition, the comparison of rankings for lnu(C) reveals, that
there might have been an issue with the primer.

Ranking of samples within ARGs. Figure 5.5 shows the rankings of the samples
within the ARGs. The numbers in each plot indicate the average� Cq-value for
the particular ARG. In the case, where an ARG was not detected in any sample
with the qPCR method, no number is shown on the sub�gure. In this way, the
ranking of the samples reveals, which of the samples the two methods found to
have the highest abundance. The vertical lines in the plots, can be interpreted as
non-detections by the qPCR method (i.e. they get the same ranking), but detections
by the metagenomic method. For some of the ARGs, the ranking of samples are in
a good agreement, while for other ARGs the rankings are deviating.

The results are compared based on the ARG classes de�ned in the qPCR data.
In the metagenomic data, the ARG results are categorized into the same classes.
This could be an explanation of the vertical lines observed in Figure 5.5. These
lines show, how the ranking of the metagenomic data manages to di�erentiate
between the samples, while the ranking of the qPCR does not (the samples get the
same ranking, because of no detection). The qPCR method only detects the gene
determined by the speci�c primer, whereas the metagenomic method is capable of
detecting di�erent gene sequences for the same ARG class based on what is de�ned
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Figure 5.5: Comparison of the ranking of samples with qPCR and metagenome for
each ARG. The numbers in the individual plots indicate the average
� Cq-value for all samples and the standard deviation. In case of no
detection with the qPCR method of a speci�c gene, the ranking value
is the same for all samples.

in the data base.

The deviations in the rankings of the ARGs by each gene could partly be attributed
the variation in abundance in the samples. The ranking of samples with a low
standard deviation will naturally, be more prone to get a non-unique ranking.

5.4 AMU Exposure Patterns

Figure 5.6 shows the AMU exposure patterns of the sampled pigs in the qPCR
study. The exposure is displayed as the total number of AMUs, separated between
the three rearing periods and based on the results of the ALEX algorithm. To avoid
too much bias in the plot, only the �rst observation per farm per year is included.

It is noticed, that cephalosporins and �uoroquinolones are not really used in any of
the rearing periods. These drug classes are classi�ed as critically important by the
Danish Health Authority [38], and are therefore primary prescribed for pets and not
production animals [21].
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Figure 5.6: Total number of AMUs for the sampled farms in the qPCR study
estimated by ALEX. The total number of AMUs is divided into the
antimicrobial drug classes and the pig rearing periods.

Pleuromutilins, tetracyclines and macrolides are mostly used for weaners and �n-
ishers, while sulfonamides (incl. trimethoprim) and penicillins are more used in the
piglet rearing period. Aminoglycosides and amphenicols are mainly used in the piglet
and weaner rearing period. The observed usage patterns in the study population
are similar to, what is reported for the national pig population by DANMAP [21].

Figure 5.7 presents boxplots for the 12 measured tetracycline ARGs grouped by
the relative tetracycline exposure. This show the qPCR results in relation to the
tetracycline exposure patterns. 16 batches were estimated by ALEX to have no
tetracycline lifetime exposure, 356 to have a low exposure and 373 to have a high
exposure. A� Cq-value of -25 in the �gure means, that the gene was not detected
in the sample. The low and high exposure groups are created by comparing the
estimated exposure to the median tetracycline exposure. It is observed, that the re-
sistance levels seem to increase with the exposure, but with no signi�cant di�erence
between the groups. The resistance levels for the no exposure group indicate, that
several tetracycline ARGs are present, despite the estimated absent of exposure.
The estimated exposure covers half a year before each of the rearing groups, this
suggests that not using tetracycline (for at least half a year) lowers the resistance
levels, but does not necessarily mean, that the resistance genes does not occur.
Only the tetracycline exposure is included here, which means, that the relation to
usage of other antimicrobials in these batches are not examined, in relation to pos-
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Figure 5.7: Resistance levels of the 12 tetracycline ARGs, measured in the qPCR
study, divided into tetracycline exposure groups. 'No exposure' means,
that the pigs did not get any tetracycline exposure during their lifetime
(estimated by ALEX). 'Low exposure' and 'High exposure' mean, that
the pigs got less or more than the median tetracycline exposure. 16
batches were estimated by ALEX to have no tetracycline exposure, 356
to have low and 373 to have high. A� Cq value of -25 means, that
the gene was not detected in the sample.

sible co-selection. In addition, the exposure patterns of the farms with no exposure,
have not been investigated i.e. if tetracycline was used just before the smoothing
period (the purchase window in ALEX), or if tetracycline has not been used in a
longer period on these farms. The life time exposure is considered for simpli�cation,
however, this does not reveal patterns in the exposure within the rearing periods.
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Chapter 6

Discussion

This chapter contains extended discussions of the results and methods presented
in research article I-III along with additional discussion points, limitations and per-
spectives.

The main goal of this thesis was to study and model antimicrobial resistance levels
in Danish slaughter pigs. A method of estimating antimicrobial exposure per pig,
in a fast and e�cient way, was needed, in order to investigate the AMU-AMR
associations for the large number of sampled slaughter pigs. In that context the
ALEX algorithm presented in research article I was developed.

ALEX provides a fast, reliable and robust estimate purely based on register data,
which is a big advantage when doing large scale studies due to lower time consump-
tion and costs. Unfortunately, primary AMU data collected in Danish pig production
networks documenting the exposures throughout the pigs rearing periods, were not
available in this project. It was therefore not possible to do a direct validation of
the traces and calculations in the algorithm. However, the ALEX estimates were
validated against an already accepted lifetime exposure algorithm [36].

Another strength of the ALEX algorithm is, that it can provide a simple and fast
way of comparing lifetime exposure as well as treatment strategies of Danish slaugh-
ter pigs over time. This was used to compare the changes on individual farms in
tetracycline and macrolide lifetime exposure in 2015 and 2019, rather than overall
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changes on a national level. Comparing the changes on farm level can give some
valuable understandings on for example how legislation a�ects the farmers treat-
ment behavior. In the tetracycline-macrolide case investigated in research article
I, tetracycline exposure was observed to decline from 2015 to 2019, most likely as
a response to theyellow card implementation[21, 23]. Furthermore, it was ob-
served, that the production networks with the biggest tetracycline reduction had an
increased macrolide use [36], which could be di�cult to discover without the ALEX
approach.

There were a number of challenges and uncertainties associated with the regis-
ter based algorithm ALEX, besides typing errors and inconsistencies in data [30].
Deviations between what is recorded in VetStat and what is actually used on the
farms for the particular rearing groups also contributes to uncertainties in the esti-
mates [25]. Another aspect is, that only the purchase date and the total purchased
amount of antimicrobial drug are registered in VetStat. This means that the exact
batch receiving the treatment, how many treated pigs in the batch, which dose or
the length of the treatment period are not registered and have to be estimated.
Furthermore, the pigs are not individually traceable through the production chain,
which makes it di�cult to obtain unique moving patterns for the traced pigs. The
internal movements on farms are not registered in the PMD and were estimated
based on information in the CHR. The number of piglets is not registered in the
CHR and was calculated based on the average number of piglets per sow registered
in the CHR. In VetStat there is no separation between the antimicrobial drugs pur-
chased for sow and piglets, however, it was assumed that piglets and sows, to some
extend, had a similar antimicrobial exposure [39].

One way to improve the register based AMU estimates is to increase the information
level. This could include registration of antimicrobial exposure on batch, pen or
even pig level, and individual movement registrations, as already implemented for
cattle in Denmark [31]. However, this would increase administrative reporting tasks
and not necessarily reduce the reported typing errors and inconsistencies across the
registries.

There exists a discrepancy between the number of ownership registered in CHR
and in Statistics Denmark. Statistics Denmark has the opportunity of collecting
more CVR numbers associated with one owner [40] and thereby revealing di�erent
production structures, than the CHR based production types estimated by ALEX.
This minor deviation does not change the fact that the production type including
management factors, appear to have a noticeable in�uence on AMR levels. However,
there seems to be an association between the AMU on farms and the biosecurity
standards [41]. Both the production type and high AMU appear to be associated
with low biosecurity [42, 43]. There seems to be a small tendency for the complex
production types ('other - 3+'), to use more antimicrobial than the other production
types, at least when considering tetracycline in the sampled farms in the qPCR study.
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Having this in mind, the in�uence of production type and the related biosecurity
should be investigated further as the number of pig farms in Denmark is decreasing
and developing into fewer, larger and more specialized farms [40].

In research article II, mixed e�ect modeling of the total tetracycline resistance level
was used to quantifying relationships between AMU, management factors and AMR
in Danish slaughter pigs. Historically, tetracycline is one of the most used antimicro-
bial drugs for pigs, especially, for weaners and �nishers, even though there has been
an overall reduction on a nation scale [21]. However, the fecal samples collected in
the qPCR study only show a minor reduction in the total tetracycline resistance level
during the period of 2015 to 2019. Therefore the individual distributions of each
tetracycline ARG was examined revealing that the level of some ARGs were decreas-
ing while others were increasing. This highlights one of the issues of measuring,
reporting and �ghting AMR, namely, whether the ARGs should be considered indi-
vidually or as an integrated part of an overall resistance pro�le. The ARGs exhibit
di�erent patterns, but in the end, the goal is to reduce the total resistance level.
It is also important to consider the individual ARGs in the light of co-selection and
even more important, to take into account, in which bacteria the ARGs are present
and how likely they are to be expressed i.e. providing phenotypical resistance.

In research article III, associations between AMU and AMR were investigated by
individually mixed e�ect modeling of the most prevalent and abundant ARGs mea-
sured with qPCR. Similar patterns of dependence on production type were observed
both when modeling the total tetracycline resistance level and in half of the indi-
vidual ARG models. This implies that ownership and number of farms (number of
transferred pigs and mixing of pigs), gives rise to higher resistance levels. However,
it remains unclear if it is the actual mixing of pigs, the biosecurity standards on the
farms (as discussed above), higher treatment frequencies, the feeding procedures
or something else that is causing this. It should be further explored exactly which
management factors behind the production type that are more in�uential in order
to implement strategies in the productions based on this.

The �ndings of the individual modeling of the ARGs also show that they are as-
sociated with AMU in the di�erent rearing periods. This demonstrates that AMU,
during the full life time of the pig, should be considered when modeling. This
could also act as an inspiration for decision makers, when discussing and planning
treatment strategies, however, the results should be interpreted with some caution,
because certain antimicrobials are mostly used in speci�c rearing periods. This is
exempli�ed by the antimicrobial drug class aminoglycosides, which seems to only
have an in�uence on AMR levels in the weaner rearing period based on the modeling.
However, comparing this with the AMU exposure patterns show that aminoglyco-
sides are most commonly used in this rearing group. Therefore it should not be
concluded, based on these results, that it is better to expose pigs in the piglet
and �nisher period to aminoglycosides. Furthermore, the variables that are most
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often identi�ed as statistically signi�cant from the models are the tetracycline and
macrolide exposure in the weaner and �nisher rearing periods. Part of this could,
however, be due to the sampling of the pigs just after slaughter i.e. closest to the
�nisher rearing period, and the extensive use of these two classes in these rearing
periods.

It is important to understand AMR, both from an epidemiological perspective, but
also on a more detailed genomic level. The epidemiological perspective provides
information on how the AMR is developing in the pig population, while the genomic
data can help explaining the observed patterns. Furthermore, there is a trade-o�
when conducting studies. Well-controlled and detailed data collection will often
lead to small-scale studies, due to cost and time consumption. In this thesis, a
combination of information from di�erent studies was utilized to investigate some
unexpected AMU-AMR patterns of tet(X). The distribution of tet(X) shows an
increasing trend of the mean value during the years, despite a reduction in tetra-
cycline AMU nation wide. Modeling tet(X) individually shows that it is in�uenced
by macrolide and lincosamide exposure, rather than tetracycline. This might be a
result of co-selection. The modeling results might be explained by combining it with
observations from the smaller context study, where tet(X) is often co-occurring with
erm(F), which is coding for macrolide and lincosamide AMR. The data originated
from two di�erent studies with di�erent study populations as well as data collec-
tion and analysis methods. The context study only included a single farm, but the
indications of the combination of the results clearly reveals, that this might be an
interesting issue for future research to investigate.

With the growing accessibly of gathered AMU data and detailed analyses of AMR
samples, it is important to keep an eye on the quality and the di�erences introduced
over time [44]. The ADD values provided in VetStat has been updated and changed
over time by the Ministry of Food, Agriculture and Fisheries, so a recalculation of
exposure must be performed, when considering longer time periods for comparisons
[45, 46]. Changing the ADD values means that the average dose for the given
antimicrobials has been changed, and since many AMU measures includes the ADD
as part of the calculations, this might a�ect the exposure estimates. In this project,
the register data covering the full study period was retrieved only once and the same
ADD values were used for all data. There are also some precautions that must be
made, when evaluating AMR measurements over time. It has been documented
that both the qPCR equipment and the procedures followed by the lab technician
performing the analysis have an impact on the results [47]. In this project, a con-
sistent bias in the reruns of 2015 samples and inconsistency in the reruns of 2017
samples were observed in connection with the qPCR analyses of the 2019 data. ,
Based on these observations, it was decided to rerun all collected samples to obtain
a more reliable comparison of AMR over the years. This emphasizes the value of
quality checking the data and demonstrates that improved procedures and methods
are needed.
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Both types of methods for detecting and quantifying AMR in this project were
DNA-based. The methods are very sensitive and excellent in detecting even very
small amounts of ARGs in samples [48]. However, they are not capable of determine
whether the detected ARGs are expressed or not i.e. resulting in phenotypic resis-
tance. Nevertheless, the intrinsically existence of ARGs might constitute a hazard
due to potential expression and/or horizontal gene transfer [49].

A relating issue to the qPCR method is imperfect matching of primers and targets,
which was observed in the small substudy comparing qPCR and metagenomic re-
sistance ranking pro�les. This was clear for lnu(C). Moreover, the primers �nd the
ARGs based on the exact design of the primer, whereas the metagenomic method
can match against all versions (mutations) of the gene stored in the database. As
an example, this appeared to be the case for blaOXA in the ranking comparison,
where rankings for the qPCR results showed equally ranking of all samples due to
no detections, while the rankings for the metagenomic results distinguished between
the samples. In general, the qPCR method o�ers highly sensitive results by being
able to detect ARGs even in the presence of only a few gene copies, but the metage-
nomic method seems to provide a better coverage of the ARGs, by being able of
detecting diverse versions of the genes [50, 51].

As mentioned, the qPCR method only detects exactly what is searched for, de-
termined by the selected primers. The metagenomic method detects what can be
matched according to a database. This means that both methods are only enabled
of �nding previously described ARGs [52], which might be an challenge when study-
ing new AMR mechanisms and ARGs. However, the focus in this thesis was on
already known antimicrobials and ARGs due to the relative restrictive legislation in
Denmark.

The collection period of the key study (qPCR) in this project was spanning over
four years in total, including unsystematic collections at slaughter houses in 2015,
2017 and 2019. However, further data collection is required to determine more
accurately how AMU, and other management factors, exactly a�ect AMR in the
pig production. The collected data demonstrates how AMR steadily continues on
farms with low AMU within a certain drug class. This is most likely interlinked
with the co-selection caused by co-occurrence. Consequently, the ultimate impact
of co-selection is that even banning a particular antimicrobial drug is not enough
to eliminate the resistance against that drug class, even though a reduction might
introduce a reduction in the long term [53, 54].

Several recent research studies focus on association between metal and antimicro-
bial resistance in the light of co-selection [55, 56, 57]. As a reaction, the European
Commission has banned medical zinc, which is mainly used for prophylactic treat-
ment of diarrhea, in pig production from 2022 [21]. Based on this, medical zinc has
been phased out in the previous years in Danish pig production. Diarrhea is often
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observed in the weaner rearing period when changing feed. In Denmark, actions on
management and feed concepts to replace medical zink, are already being imple-
mented. This highlights the complexity of AMR and the importance of including
other factors than simply AMU in studies. It also show that alternatives to AMU
should be implemented with caution and monitored. It appears that no easy solu-
tion exists on solving the AMR issue, because banning certain antimicrobial classes
or introducing alternative treatments, most likely does not solve the problem with
co-selection, at least not in the short term.

Although the data analyzed in this thesis was collected in the Danish pig sector,
the relevance for humans is high. The human risk is a�ected directly by the po-
tential spread from pig to humans through farmers [58] or the food chain [59, 60].
Moreover, pigs can be used as human models and based on this, the �ndings of this
project highlight the need for further research of co-occurrence and the consequences
[61, 62].
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Concluding Remarks

The work presented in this thesis demonstrate that besides the association between
AMU and AMR abundance, there also exists an association between AMR and
production typein Danish pig production.

Mixed e�ect modeling of the total tetracycline resistance level as well as individual
ARG levels revealed complex AMU-AMR patterns in the Danish pig population,
depending on both type of production and exposure of certain antimicrobial classes
in speci�c rearing periods. To some extend, parts of these complex patterns could
be explained by observed co-occurrence in a small scale genomic study.

The average antimicrobial exposure of pigs, during all three rearing periods, was
estimated by the ALEX algorithm, which provides a fast and robust estimate based
solely on register data. More quality checking in the data registers as well as
improved collection of exposure and movement details can potentially result in more
accurate AMU estimates.

The results of this research should be interpreted and implemented with some cau-
tion. The �ndings can, however, contribute as inspiration for discussions on treat-
ment strategies or as a basis for future studies. Future work should include more sys-
tematic data collection over an extended period, ensuring multiple samples per farm.
Monthly resampling of farms that are changing the treatment strategies drastically
would be to prefer in order to obtain more knowledge on the AMU-AMR dynamics.
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Continuing the monitoring of antimicrobial resistance levels is necessary, since low-
ering antimicrobial exposure does not automatically lower ARGs as a consequence
of co-selection. Alternative treatments should also be implemented with care and
the implications should be tracked to avoid situations like the one with medical zink,
causing co-selection between metal and antimicrobial resistance genes. Investigat-
ing the genomic context of the ARGs in the sense of co-occurrence, bacterial host
species and horizontal gene transfer is important for assessing the human risk and
could be an important part of future studies.
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4.2. The context study

As previously described, 66 samples were taken from the six pigs over 11 weeks and used
to generate within-pig co-assemblies. The polished Nanopore assemblies from the six pigs were
�ltered for 1Kb+ sca� olds and were 3627 Mb long, with an N50 of 42 Kb. 4228 contigs were at
least 100Kb long.

The distributions of detected ARGs within each pig can be found in a table in the supplemen-
tary material. The ARGs are found in all six pigs in the range of 69� 112 ARGs per pig. No
clear di� erence between the pigs was observed, and especially the ARGs observed at least eight
times in the study appear to be well distributed and detected in all six pigs.

Figure 3 presents the number of co-occurrences of ARGs on the same contig. The number
in the diagonal represents how many times the ARG was found in the context study and the
o� -diagonal shows how many times the ARG was found on a contig with another ARG.

Some contigs included three or four ARGs, however, this cannot be observed in this �gure. In
total, 441 contigs included only one ARG, 53 contigs included two ARGs, four contigs included
three ARGs and two contigs included four ARGs i.e. in total 569 ARGs were identi�ed in the
metagenomic assemblies.

tet(W), lnu(C), tet(Q), andant(6)-Iawere the most frequently detected ARGs in the context
study. Even thoughtet(W)was found on 74 contigs, it was only found once on a contig with
tet(40) and twice withant(6)-Ia. The same applies forlnu(C) and tet(Q): tet(40) was found
together withtet(O)in 7 out of the 18 contigs.

lnu(B) andlsa(E)were found co-occurring in seven contigs, in �ve of these cases they were
found in a contig also includingant(6)-Iaand in two of these �ve cases they were found with the
additional ARGaph(3')-III. This means that this group of ARGs constitutes three out of the four
contigs including three ARGs and two contigs with four ARGs. The last contig including three
ARGs containedtet(X), tet(Q)anderm(F).

tetB(P)was found together withtetA(P)in three out of �ve contigs.aph(3')-III co-occurred
with three other ARGs, but most frequently withant(6)-Ia. msr(D)was only found co-occurring
on contigs includingerm(G). erm(F)was found in four out of the �ve contigs wheretet(X)was
found.
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Figure 3: Table representing how many times ARGs were detected together in a contig. The yellow background color
on the ARG labels indicates ARGs that were measured in the AMU study. The diagonal illustrates how many times
the ARG was identi�ed in the context study and the o� -diagonal shows the number of co-occurrences with other ARGs
within a contig.
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ARG
Number of
detections

Number of contigs
including

the ARG and a MGE

Number of detections
together with
unique MGEs

tet(W) 74 8 6
tet(Q) 58 12 5
mef(A) 21 8 6
cfxA5 14 1 1
erm(F) 11 3 2
cfxA6 7 4 1
tet(L) 5 1 1
tet(X) 5 2 2
aph(3”)-Ib 1 2 2

Table 2: Overview of ARGs found together with MGEs on the same contig in the context study.

Table 2 reports the number of ARG occurrences, the number of co-occurrences with MGEs,
and the number of unique combinations of ARGs and MGEs in the context study. The full table
with all ARGs in the context study found together with an MGE on a contig is included in the
supplementary material.

tet(W)was detected in 74 of the contigs and in 8 (10.1%) of the cases it was found together
with an MGE.tet(Q)was detected together with an MGE in 12 out of 58 (20.6%).mef(A)was
found together with an MGE in 8 out of the 21 cases (38.1%). ThecfxA5variant was only found
co-occurring with an MGE in 1 out of the 14 contigs, while thecfxA6variant co-occurred with
an MGE in 4 out of 7 contigs.

5. Discussion and Conclusion

The AMU study was a larger study performed on many slaughter pigs from di� erent farms.
Its data can be used to investigate the average resistance level nationwide. On the other hand, the
context study was a small study conducted on fewer slaughter pigs all from the same herd. This
study provided more detailed data which can be used to study the contexts and co-occurrence
of the ARGs and MGEs in pigs. Combining the �ndings of the two di� erent studies improves
the understanding of the AMR dynamics in Danish slaughter pigs. It is important to emphasize
that the context study expresses the �ndings on one speci�c Danish slaughter farm, but still the
�ndings can be used to support the results of the wider AMU study.

In both studies,tet(W) and tet(Q) are amongst the most widespread ARGs. In the AMU
study, they were found in 100% of the samples and had the highest� Cq-values, and in the
context study they appeared on 74 and 58 contigs, respectively. Similar results are reported by
Yang et al. [16], where the highest abundance of ARG in pigs was fortet(W)in the study across
di� erent countries.lnu(C) was detected on most contigs in the context study. However, it was
not measured in the AMU study and therefore it was not possible to do a comparison.

In the AMU study, the model fortet(X), the macrolide exposure and the lincosamide exposure
in the piglet group were signi�cant variables, while all tetracycline variables were eliminated
in the �nal model. The AMU variables in the mixed e� ect models were all smoothed over a
period of six months to capture the continuous exposure on the farm rather than an instantaneous
estimate. This might also reduce the probability of wrongly associating speci�c AMU with an
ARG due to the long decay in a herd [17, 18]. This result could be explained by the context
study results, wheretet(X) was found on a contig co-occurring witherm(F) in four out of the
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�ve detections. erm(F) is commonly known as an ARG giving rise to macrolide, lincosamide
and streptogramin B resistance. Likewisetet(Q)was found to be a� ected by pleurimutilins and
macrolides, where the latter might be a consequence of the observed co-occurrence witherm(F)
in the context study. Similar results were reported by Chung et al. [19]. Munk et al. [20] and
Van Gompel et al. [21] also reported similar associations between AMU exposure of di� erent
drug classes and ARGs.

aph(3')-III provides aminoglycoside resistance. In the AMU study, the level ofaph(3')-
III was found to be increased by exposure to not only aminoglycoside in the weaner period,
but also lincomasides in the weaner period and macrolides in the �nisher period. This could
be a consequence of co-selection [4]. The in�uence of lincosamides could arise from the co-
occurrence ofaph(3')-III and lnu(B), which was found in the context study.aph(3')-III was
found co-occurring on two contigs with three other ARGs. This highlights the complexity of
antimicrobial resistance in the sense of co-selection, cross-resistance, and multi-resistance.

The variant cfxA5 was detected on 14 contigs, while the variant cfxA6 was detected on
seven contigs. However, the cfxA6 variant co-occurred with an MGE in approximately half of
the cases. So even though cfxA6 was less widespread than cfxA5 in the context study, there
might be a greater risk of mobilization to zoonotic bacteria.

The most frequently signi�cant variables in the mixed e� ect models appeared to be exposure
to tetracyclines and macrolides in the �nisher age group. Two things could explain parts of this,
one is that the pigs are sampled at slaughter i.e. closest to the �nisher period, the other could
be the extended use of tetracyclines and macrolides in this age group. This also applies to the
aminoglycosides that are mostly used to treat weaners, which is also re�ected in the mixed e� ect
models.

Studying antimicrobial resistance by inspecting single genes can give some valuable insight
into some of the dynamics. However, the results of this combination of two studies highlight the
importance of analyzing the genomic context of the ARGs and the co-occurrence with MGEs
to get a deeper understanding. ARGs co-occuring on the same DNA element can result in co-
selection and ARGs captured by MGEs can potentially be transferred to a zoonotic bacteria,
thereby posing a greater human risk. It is therefore of great importance to consider both the
genomic context as well as the phenotypic resistance of the ARGs when planning and imple-
menting treatment strategies. A treatment strategy in reducing resistance against tetracycline
might be introduced by reducing exposure to tetracycline. However, since the level oftet(X)
is driven by macrolides and lincosamides and not tetracycline, this might maintain the tetracy-
cline resistance due to co-selection byerm(F). Such knowledge is also crucial when developing
simulation models in order to get the most reliable results based on the mechanisms behind the
resistance.

Both studies presented are based on DNA-based methods for detecting antimicrobial resis-
tance. However, these methods are not capable of distinguishing between expressed and non-
expressed ARGs, i.e. detecting ARGs by these methods does not necessarily result in phenotypic
resistance. Having that said, the presence and prevalence of the ARGs will always constitute a
risk of expressing resistance or gene transfer [6]. A challenge of working with the di� erent
methods is that, by the qPCR-method only pre-speci�ed ARGs are detected by the pre-designed
primers, while all ARGs in a chosen database are detectable with the metagenomic method. The
qPCR method is very sensitive in detecting the ARGs and has a low quanti�cation limit. This
emphasizes that the qPCR method provides more sensitive results, but the metagenomic method
provides better coverage of the di� erent ARGs [22, 23]. This also means that we only �nd ex-
actly what we are looking for with the qPCR method and known ARGs matched in the database
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with the metagenomic method but not any novel ARGs.
The AMU and context studies were performed on Danish slaughter pigs. Besides exploring

the direct impact on human health by the potential risk of spreading multi-drug resistant bacteria
[9], the studies also o� er knowledge that can be used in a more indirect way. Using pigs as
human models is very common, mostly due to the size and anatonomy of pigs [24, 25]. The
achieved insights into potential drivers of speci�c ARG genes are therefore of great value in
future research.
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1. ARGs in the context study

Table 1 lists all the antimicrobial resistance genes (ARGs) detected in the context study. The
genes in bold are genes also measured in the AMU study.

Aminoglycoside resistance
aac(6’)-Im aadA1 ant(6)-Ia ant(6)-Ib aph(2”)-Ib aph(3”)-Ib (alternative name: strA)
aph(3’)-III aph(6)-Id (alternative name: strB)

Beta-lactam resistance
blaA blaACI-1 blaOXA-193 cfxA5 cfxA6

Glycopeptide / Vancomycin resistance
VanG2XY VanGXY

Lincosamide resistance
lnu(B) lnu(C) lnu(P)

Lincosamide / Streptogramin A / Pleuromutilin resistance
lsa(E)

Macrolide resistance
mef(A) mph(N)

Macrolide / Lincosamide / Streptogramin B resistance
erm(A) erm(B) erm(F) erm(G) erm(Q) erm(T)

Macrolide / Streptogramin B resistance
msr(D)

Nitroimidazole resistance
nimH nimJ

Oxazolidinone / Amphenicol / Lincosamide / Streptogramin A / Pleuromutilin resistance
cfr(C)

Streptogramin A resistance
vat(F)

Tetracycline resistance
tet(L) tet(O) tet(O/32/O) tet(O/W)-1 tet(O/W/32/O) tetA(P) tetB(P) tet(Q)
tet(W) tet(X) tet(32) tet(40) tet(44)

Table 1: Table of ARGs found in the context study. The ARGs in bold were also measured in the AMU study.
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1.1. ARG distribution within the pigs

Table 2 shows the distribution of the detected ARGs within each pig.

Pig A Pig B Pig C Pig D Pig E Pig F Sum
lnu(C) 14 14 7 21 14 6 76
tet(W) 17 9 12 17 11 8 74
tet(Q) 16 7 8 9 9 9 58
ant(6)-Ia 8 15 3 13 12 5 56
erm(B) 5 6 4 3 8 4 30
mef(A) 3 3 1 3 6 5 21
tet(O) 2 7 3 2 4 2 20
tet(40) 5 5 1 1 5 1 18
tetA(P) 3 1 2 2 7 3 18
aph(3’)-III 3 3 1 2 4 2 15
cfxA5 4 2 2 3 1 2 14
erm(G) 3 3 2 3 1 2 14
cfr(C) 4 2 1 2 2 1 12
lnu(P) 3 1 1 2 3 1 11
erm(F) 1 0 2 3 2 3 11
blaACI-1 2 1 1 3 1 2 10
tet(44) 1 2 1 3 1 2 10
ant(6)-Ib 1 1 1 3 1 2 9
erm(Q) 1 2 2 1 1 1 8
lnu(B) 1 1 0 2 2 1 7
lsa(E) 1 1 0 2 2 1 7
cfxA6 1 0 0 1 1 4 7
tetB(P) 1 1 1 0 1 1 5
VanG2XY 1 0 1 1 1 1 5
msr(D) 1 1 1 1 0 1 5
nimH 1 1 0 0 2 1 5
tet(L) 1 1 1 1 1 0 5
tet(O/W/32/O) 1 1 1 0 1 1 5
tet(X) 0 0 2 1 1 1 5
mph(N) 0 1 0 1 1 1 4
erm(A) 1 0 1 1 0 0 3
tet(O/W)-1 1 1 1 0 0 0 3
aadA1 0 0 1 1 1 0 3
tet(O/32/O) 1 0 0 0 1 0 2
nimJ 1 0 0 0 0 0 1
erm(T) 1 0 0 0 0 0 1
VanGXY 0 1 0 0 0 0 1
aph(3”)-Ib 0 0 1 0 0 0 1
aph(6)-Id 0 0 1 0 0 0 1
aac(6’)-Im 0 0 1 0 0 0 1
aph(2”)-Ib 0 0 1 0 0 0 1
vat(F) 0 0 0 1 0 0 1
blaA 0 0 0 1 0 0 1
blaOXA-193 0 0 0 1 0 0 1
tet(32) 0 0 0 1 0 0 1
Sum 110 94 69 112 108 74 567

Table 2: Number of detections of ARGs in each pig is presented in this table.
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1.2. Co-occuring ARGs

Figure 1 illustrates all the ARGs co-occuring on a contig in the context study.

Figure 1: Figure representing how many times ARGs were found together. The yellow background color on the ARG
labels indicates ARGs that were measured in the AMU study. The diagonal illustrates how many times the ARG was
identified in the context study, while the off-diagonal shows number of co-occurrences with other ARGs within a contig.
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