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Preface

This thesis has been prepared at the Department of Applied Mathematics and
Computer Science, Technical University of Denmark in fulfilment of the require-
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The dissertation summarizes the work carried out by the author during his Ph.D.
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The Ph.D. project has been funded by the internal DTU Compute scholarship
and the Centre for Ocean Life at DTU Aqua.
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tific papers, 1 of which have been peer-reviewed and published, 1 of which has
been submitted to a peer-reviewed journal and 1 of which is in preparation.
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Summary (English)

Diel vertical migration (DVM) is a daily migration between the depths and
the surface of the sea on various scales in marine communities ranging from
zooplankton to marine mammals. In DVM marine animals remain in deep,
dark layers of a water column during daytime period to avoid encountering
visual predators and migrate to shallow nutrient-rich regions at dusk to feed.

It is usually assumed that animals optimize some fitness functional and, thus,
the interactions between the organisms should be modelled and understood
using the game theoretical toolbox. For diel vertical migration the migrational
patterns can be thought as strategies the animals select trying to optimize their
biological fitness over lifetime period.

This PhD thesis develops a mean field game theoretical framework for expressing
diel vertical migration as a vertical differential game the marine animals play
against each other. Understanding these ecological games is of great importance
to theoretical ecology, which helps predicting responses of the marine ecosystem
to various changes in the ecological environment like climate change.
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Summary (Danish)

Den daglige vertikal migration (DVM) er en migration mellem det dybe hav
og havoverfladen, af marine grupper på tværs af hele størrelselspektret, fra zoo-
plankton til havpattedyr. I den daglige vertikale migration forbliver de fleste dyr
i de dybe mørke dele af vandsøjlen om dagen for at undgå visuel prædation, og
om ved skumring migrerer de op til de næringsholdige dele af vandsøjlen nær
overfladen.

Det er almindeligt at antage at dyr optimerer et funktionale der beskriver deres
vækst, og derfor bør interaktionerne mellem dem forstås ved at benytte sig af
værktøjskassen fra spilteori. I den daglige vertikale migration så kan bevægelsels
mønstrene i migrationen forstås som strategier dyrene vælger for at optimere
deres biologiske fitness over hele deres levetid.

Denne PhD afhandling udvikler en spilteoretisk tilgang der kan benyttes til at
beskrive den daglige vertikal migration som et differntialspil som dyr i havet
spiller mod hinanden. At forstår disse spil i økosystemer er af stor betydning for
teoretisk økologi, da de kan benyttes til at forudsige effekten af diverse ændringer
i miljøet så som klimaforandringer på økosystemer.
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Part I

Summary Report





Chapter 1

Introduction

1.1 Context and motivation

Two of the main objectives in theoretical ecology and the Centre for Ocean Life
in particular are to develop a fundamental understanding of marine ecosystems
and build predictive ecosystem models, that e.g. can predict how the marine
ecosystems respond to increased fishing pressure or change of temperature due
to climate change. Thus, one needs to know how population dynamics of marine
organisms respond to these changes in the environment.

To make these concepts more specific, this PhD thesis focuses on diel verti-
cal migration (DVM), a pronounced phenomenon constituting the largest daily
movement of organisms on the planet Hays (2003) which is ubiquitous on var-
ious scales in marine communities from plankton to marine mammals Brierley
(2014). DVM is a migration pattern when marine organisms remain in deep,
dark layers of a water column during daylight hours to reduce encounter rate
with visual predators and migrate to shallow depths with higher concentration
of nutrients at dusk to feed. In this PhD dissertation only this form of diel
vertical migration is modelled, though a so-called reverse DVM (dusk descent
- dawn ascend) exists Sims et al. (2005). An example of the daily migration is
shown in 4 echograms from different oceans in Figure 1.1.
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Figure 1.1: Echograms of a water column from different geographic regions
spanning 24 hour period. Warmer colours indicate a higher con-
centration of biomass. The image has been taken from Klevjer
et al. (2016).

Analysis of diel vertical migration in the thesis starts on the individual level,
since the population dynamic is determined by the behavior of individuals in the
populations. In theoretical ecology it is usually assumed that the individuals are
fitness optimizing, which must be understood in game theoretic sense. Hence,
the game theoretical toolbox is widely applied in ecological context and impor-
tant biological phenomena like the evolution of cooperative behaviour among
animals Maynard Smith (1982) have been explained using game theoretical anal-
ysis.

Game theory deals with interacting individuals in a conflict situation where each
agent has a number of available choices and the final outcome or the received
reward of the game depends upon the choices of all other players. Thus, every
agent has an impact on the result of the interaction and the reward that she
receives. By resolving ecological games like diel vertical migration one can deter-
mine emergent population dynamics, and predict responses to various changes
in the ecological environment at ecosystem level.

Each marine organism performing diel vertical migration faces a trade-off be-
tween staying in a foraging arena with higher concentration of nutrients and
avoiding predation risk at dark depths. The migration patterns can be ratio-
nalized as strategies, where each animal is considered as a player who tries to
optimize its biological fitness over lifetime period subject to natural constraints
like cost of locomotion between different depth levels in the water column. The
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marine ecosystems involve a large number of interacting agents, thus the area
of mean field game theory is the central topic of the PhD dissertation.

Mean field game theory (MFG), originally outlined by Lasry and Lions around
2006-2007 in papers Lasry and Lions (2006a,b, 2007), generalizes traditional
mean field theory from statistical physics which studies models from a “contin-
uum limit” – by letting the number of particles go to infinity. In contrast to
statistical physics studying particle ensembles, mean field game theory grants
the individual particles choice and considers them as rational players. Each
individual player maximizes some optimization criterion and the MFG theory
studies large populations of interacting agents, potentially in the limit as the
number of players goes to infinity n → +∞, and the structure of equilibria in
these games.

Usually equilibrium behavior of a large number of particles is untraceable ana-
lytically. Thus, mean field game theory assumes that all the players are iden-
tical, meaning that they have the same state dynamics, share the same set of
admissible strategies and have identical structure of the objective function. Ev-
ery agent has access to the information about the structure of the population
through, for example, empirical measure and has to make decisions based on
statistical information about the surrounding environment as shown in Figure
1.2. In turn, decisions of each agent together influence the macroscopic prop-
erties of the whole population. These symmetry assumptions simplify analysis
of the behaviour of a large population of rational agents in a equilibrium, a
Nash equilibrium in particular for competing agents. Mean field game theory
has a number of applications in economic theory and financial engineering mod-
elling from financial market stability to the dynamics of the income distribution
Carmona and Delarue (2018a,b), behaviour of crowds Carmona and Delarue
(2018a) and emission control with carbon regulation design Carmona (2016).

The first work on game-theoretical modelling of diel vertical migration has been
done in Iwasa (1982) where a habitat-selection matrix game model of DVM
has been derived. The established results have been pushed further either by
constructing games with more features Sainmont et al. (2013); Pinti and Visser
(2019) or utilizing dynamic programming approach Mangel and Clark (1986);
Fiksen and Giske (1995); Sainmont et al. (2015); Thygesen and Patterson (2019).
But most of these models have discrete space or time domains, thus unable to
provide high resolutions of the players’ behaviour at dawn and dusk, when the
migration between depth layers happens. The paper Thygesen and Patterson
(2019) was a starting point of the PhD project and considers diel vertical mi-
gration in both continuous space and time, but ignoring the cost of motion.

Understanding the dynamics driving this large scale movement is important for
modelling vertical transport of carbon from upper to deeper layers in a water
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Figure 1.2: The mean field game theoretical type of interaction between agents
in a population when each player sees aggregated statistical infor-
mation (empirical measure, for example) about the whole popula-
tion. Credit: https://www.science4all.org.

column, the so-called biological carbon pump phenomenon. Marine organisms
moving vertically in a water column transport carbon between water layers,
which has implications for the global carbon cycle and a better understanding
of global climate Pinti et al. (2021); Hansen and Visser (2016). As the ver-
tical migration influences the encounter rates between animals, DVM is also
important for understanding fluxes through the food networks Thygesen and
Patterson (2019).

Also, there is an emergent paradigm in theoretical ecology, namely that pre-
dictive ecosystem models should derived by assuming that individuals behave
optimally. This PhD thesis explores the feasibility of this paradigm by consid-
ering the specific case of diel vertical migrations in the ocean.

1.2 Thesis outline

Chapter 2 presents the necessary theoretical scope for subsequent chapters to
make the presentation self-contained. Five sections introduce the necessary
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overview of main theoretical results from game theory, calculus of variations,
control theory, mean field game theory, numerical methods and provide main
references for further details.

Chapter 3 summarizes the peer-reviewed scientific output of the three PhD sub-
projects. The first part of the chapter formulates diel vertical migration as a
vertical differential game on the individual level for a so-called representative
player. Subsequent chapters derive mean field systems for finding optimal ver-
tical distribution in a water column as a Nash equilibrium.

Chapter 4 summarizes the main results of the PhD dissertation, discusses arised
issues with the derived models and outlines perspective directions for future
research.
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Chapter 2

Preliminaries

This chapter covers the background material for presented papers in the next
chapters of the PhD thesis to make the presentation self-sufficient. Overview of
the main topics is presented and used references are provided.

2.1 Game theory

Classical game theory studies situations with interacting decision making agents
who simultaneously maximize their own utility functions. A utility function,
which is also called a pay-off, payment or gain function, is usually a real-valued
function which reflects how “good” or “bad” is an outcome of the game for an
agent. More formally, a utility function for a n-player game can be defined in
the following way:

Definition 2.1 In a game with n interacting players, each with a corre-
sponding finite set Ai of admissible strategies, a utility function ui is a mapping
between the set of all n-tuples of admissible strategies into real numbers:

ui : A1 ×A2 × . . .×An → R,
(α1, α2, . . . , αn) 7→ ui(α1, α2, . . . , αn).

(2.1)



10 Preliminaries

The utility function (2.1) can be external to the player as a reward for winning
in a game, financial gain or probability of survival during a day; or it can be
internal as the agent’s own preference or satisfaction of an outcome of a game.

Game theory models and analyses the behavior between interacting decision
makers. Each player in the game has its own goals as well as trade-offs, which
can be conflicting with other players’ objectives, and the decision of each agent
affects the total outcome for all the interacting agents. This is the main feature
which distinguishes game theory from classical optimization theory.

The interaction structure between the agents divides game theory into two ma-
jor subfields: cooperative games, where the players can agree on coordinated
actions to achieve their goals, and noncooperative games with the agents play
independently of each other. The main focus of this thesis is to model diel ver-
tical migration of marine organisms as a noncooperative game in the limit when
the number of players n → +∞ with infinitely many feasible strategies.

2.1.1 Nash equilibrium

Game theory considers players as a group of rational interacting agents who
individually try to find an advantageous strategy in the game. The concept
of an advantageous strategy profile, n-tuples of individual strategies, can have
several interpretations and the choice of an appropriate definition is the key to
the analysis of any game.

An intuitive approach is to consider strategy profiles where no individual player
wants to deviate from her strategy if other players stick to the planned actions.
This reasoning gives rise to a notion of a Nash equilibirum.

More formally, by a n-tuple α∗ = (α∗
1, α

∗
2, . . . , α

∗
n) is denoted a strategy profile

where the i-th player chooses her admissible strategy α∗
i ∈ Ai. Then let α∗

−i =
(α∗

1, . . . , α
∗
i−1, α

∗
i+1, . . . , α

∗
n) be a strategy vector of all the players not including

the player i.

Definition 2.2 A strategy α∗
i is a best reply (best response) of i-th player

to the strategy profile α∗
−i if:

u(α∗
i , α

∗
−i) = max

αi∈Ai

u(αi, α
∗
−i) (2.2)

Definition 2.3 A strategy profile α∗ = (α∗
1, α

∗
2, . . . , α

∗
n) is a Nash equilib-

rium if and only if for every player 1 ≤ i ≤ n the following inequality holds:

u(α∗
i , α

∗
−i) ≥ u(αi, α

∗
−i) for ∀αi ∈ Ai (2.3)
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In simple terms, the definition 2.3 says that in a Nash equilibrium no single
player benefits by deviating from the equilibrium if other decision makers stick
to their choice. Or, using the definition 2.2 and comparing expressions (2.2) and
(2.3), one can say that a Nash equilibrium is a best response to itself.

The definition 2.3 raises the following questions: Does a Nash equilibrium exist
in every game? Is it unique? Next three examples of two-player games shed
some light on the matter. The strategies are shown in blue and red for player 1
and 2, respectively, with the corresponding utilities on intersections of selected
strategies.

Example 2.1 Let’s consider a game with two competing fishing boats trawling
the same fish-stock in a sea. There are four possible outcomes: both parties stay
without any profit if no one fishes from the stock. If only one player uses the
fishing resource, then she gains a share of market and the other fisherman does
not receives anything. If both of them fish, then all players receive some positive
income. The pay-off matrix for this set-up is shown in Table 2.1.

B1 (not fish) B2 (fish)
A1 (not fish) 0 / 0 0 / 2
A2 (fish) 2 / 0 1 / 1

Table 2.1: Pay-offs in the Game 1.

This game has only one Nash equilibrium profile – (fish, fish) strategy. Both
parties should fish in the sea.

Example 2.2 Here is a more realistic modification of the Game 1: if both
player fish, then they overfish the stock and it goes extinct. The modified pay-off
matrix is presented in Table 2.2.

B1 (not fish) B2 (fish)
A1 (not fish) 0 / 0 0 / 2
A2 (fish) 2 / 0 -1 / -1

Table 2.2: Pay-offs in the Game 2.

The Game 2 has two Nash equilibria - (fish, not fish) and (not fish, fish) strate-
gies. In ecological literature, this situation is referred as survival of the first.

Example 2.3 Third example is a well-known game of Rock Paper Scissors.
Pay-off matrix of the game is presented in Table 2.3.

This game has no Nash equilibrium.
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B1 (rock) B2 (paper) B3 (scissors)
A1 (rock) 0 / 0 -1 / +1 +1 / -1
A2 (paper) +1 / -1 0 / 0 -1 / +1
A3 (scissors) -1 / +1 +1 / -1 0 / 0

Table 2.3: Pay-offs in the Game 3.

These examples illustrate that situations with no, one or many Nash equilibria
are equally possible. One of the main results in game theory in Von Neumann
and Morgenstern (2007) which has been further extended by Nash in Nash
(1951) says that if randomness in strategy selection is allowed, so-called mixed
strategy profiles, then any finite player game has a Nash equilibrium.

Definition 2.4 A mixed strategy σ of a player is a probability distribution
over her set of admissible strategies A where |A| = k i.e.

σ =
(
p(1), p(2), . . . , p(k)

)
, (2.4)

where p(j) is a probability to choose the jth strategy αj ∈ A and p(1) + p(2) +
. . .+ p(k) = 1.

In simple terms, a mixed strategy (2.4) is a probability distribution which spec-
ifies frequencies at which the admissible pure strategies are selected assuming
that each player makes her choice independently. It should be noted that a pure
strategy αj is a mixed strategy with the probability 1 one j-th place. Then the
utility function for mixed strategies profile (σ1, σ2, . . . , σn) is the expected value
of the corresponding random variable:

u(σ1, σ2, . . . , σn) =
∑

(αj1
,...,αjn )∈A1×...×An

u(αj1 , αj2 , . . . , αjn)p
(j1)
1 p

(j2)
2 . . . p(jn)n

(2.5)

Theorem 2.5 Nash (1951) Every game with a finite number of players and
in which every player has a finite number of strategies, has a Nash equilibrium
in mixed strategies.

Returning back to the presented above examples, as has been shown already in
the example 2.3, the Game 2.3 doesn’t have a Nash equilibrium in pure strate-
gies. But this game, according to the Nash theorem 2.5, should have a Nash
equilibrium in mixed strategies – a strategy profile where both players equally
likely choose rock, paper or scissors, i.e. the mixed strategy σ = (1/3, 1/3, 1/3).
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One more thing to note: the Nash theorem 2.5 only establishes the existence
of a Nash equilibrium, but nothing about the uniqueness. The Game 2.2 is an
example of a game with several Nash equilibria.

2.1.2 Evolutionary stable strategy

In contrast to classical game theory, the main assumption about rationality of
the interacting agents in biology is omitted because it’s unreasonable to expect
rational game-theoretical reasoning from a fish or a zooplankton. This assump-
tion is replaced by evolutionary selection with the following line of reasoning:
animals might not behave rationally, but if players’ strategies are replicated
in future generations, agents who do not play a beneficial strategy will be re-
placed by players with a better strategy profile and it should propagate in future
generations. Thus, evolutionary selection of advantageous strategies is a good
substitute for the rationality assumption.

As has been discussed above, a Nash equilibrium is a best response strategy
to itself. However, in ecology, a strategy being a best reply to itself does not
always prevent invasion of animals adopting a more beneficial strategy. Thus, a
more refined notion of a Nash equilibrium is needed to deal with this case.

Now a large population of animals is considered and by u(α∗, α∗∗) is denoted the
expected utility of an animal playing the strategy (potentially a mixed one) α∗

in the population where all other players adopt the mixed strategy α∗∗, which
represents the frequencies of strategies in the population.

Let’s consider a population with the vast majority of individuals following a
strategy α∗, while a fraction ε of the population (mutants, invaders) adopts
another strategy α∗∗. Then the strategy profile of the whole population is
denoted by (1− ε)δα∗ + εδα∗∗ .

Definition 2.6 A strategy α∗ is said to be evolutionarily stable against an-
other strategy α∗∗ if there exists an ε∗ such that:

u(α∗, (1− ε)δα∗ + εδα∗∗) > u(α∗∗, (1− ε)δα∗ + εδα∗∗) for 0 < ε ≤ ε∗. (2.6)

The strategy α∗ is an Evolutionarily Stable Strategy (ESS) if it is evolutionarily
stable against α∗∗ for every other strategy α∗ ̸= α∗∗.

The ESS definition (2.6) in this manuscript is adopted from Broom and Rychtár
(2013).
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In other terms, the inequality (2.6) means that any invasive strategy α∗∗ must
do worse than the initial strategy for small enough number of invaders. ESS
is a strategy such that if all animals in a population adopt it, then no mutant
strategy can invade the population under the influence of natural selection.

Comparing the definitions of a Nash equilibrium and an ESS one can see that
a Nash equilibrium is a strategy profile, where actions of all players matter,
while an ESS is a population strategy and actions of a single player in the
population don’t matter. And if a strategy is evolutionarily stable, then it is a
Nash equilibrium. But the other direction does not hold.

Example 2.4 In this game two hunters decide if they are going to hunt on a
stag or a hare. The pay-off matrix is presented in Table 2.4.

B1 (hunt stag) B2 (hunt hare)
A1 (hunt stag) 2 / 2 0 / 2
A2 (hunt hare) 2 / 0 1 / 1

Table 2.4: Pay-offs in the Game 4.

The Game 4 has two Nash equilibria - (hunt stag, hunt stag) and (hunt hare,
hunt hare) strategies. But there is only one evolutionary stable strategy.

For the strategy hunt stag we have:

u(A1, (1− ε)B1 + εB2) = 2− 2ε < 2− ε = u(A2, (1− ε)B1 + εB2)

which indicates that hunt stag is not an ESS.

For the strategy hunt hare we have:

u(A2, (1− ε)B2 + εB1) = 1− ε ≥ 2ε = u(A1, (1− ε)B2 + εB1),

i.e. hunt hare is an ESS if less than ε∗ = 1/3 of the population adopt the
invasive strategy strategy hunt stag.

The Nash theorem 2.5 guarantees the existence of a Nash equilibrium and the
same question arises about ESS: does an evolutionarily stable strategy always
exist? The answer is negative.

Example 2.5 Maynard Smith (1982) This game is a modification of the Rock
Paper Scissors game from the example 2.3. Updated pay-off matrix is presented
in Table 2.5.
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B1 B2 B3

A1 2/3 / 2/3 0 / 1 1 / 0
A2 1 / 0 2/3 / 2/3 0 / 1
A3 0 / 1 1 / 0 2/3 / 2/3

Table 2.5: Pay-offs in the without ESS.

This game has one Nash equilibrium in mixed strategies σ = (1/3, 1/3, 1/3) for
both players. To see if it’s an evolutionary stable strategy, the inequality from
the definition 2.6 has to be verified. For example, the mutants adopt the strategy
x = (1, 0, 0) always playing A1 yield pay-offs:

u(σ, (1− ε)δσ + εδx) = 5/9 < 5/9 + 3ε = u(x, (1− ε)δσ + εδx),

for any ε > 0. Then the Nash equilibrium strategy σ is not an ESS.

2.1.3 References

The foundation of game theory for games with a finite number of players has
been established in the book Von Neumann and Morgenstern (2007) by the
mathematician John von Neumann and the economist Oskar Morgenstern with
the first edition published in 1944. Later the established theory has been pushed
further and extended by a series of papers regarding equilibrium strategy pro-
files by the mathematician John Forbes Nash in Nash Jr (1950a,b); Nash (1951)
from 1950s. The book Maschler et al. (2020) provides a comprehensive in-
troduction to various topics in classical and modern game theory. The book
Broom and Rychtár (2013) introduces game-theoretical concepts like evolution-
arily stable strategy from the point of view of applications in biology. The book
Maynard Smith (1982) provides an excellent reference on evolutionary game
theory.

2.2 Calculus of variations

Calculus of variations generalizes a notion of a constrained optimization problem
to functional spaces. Now the set of all admissible points is a functional set and
the objective function has a form of mapping between the function space and
real numbers, a functional. The standard formulation of a calculus of variations
problem can be stated in the following way:
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Among all admissible real-valued functions f ∈ A, f : [a, b] → R satisfying
boundary conditions:

y(a) = y0 y(b) = y1,

find a maximizer of the cost functional:

J(y) =

∫ b

a

L(y(t), y′(t), t) dt. (2.7)

Usually one is interested in the admissible set A being a space of smooth func-
tions. For example, a standard option is A = Cd ([a, b]) – a set of d times
differentiable functions on the interval [a, b].

Considering small perturbations in the function y in the set of admissible func-
tions and resulting changes in the functional (2.7), writing down its first-order
Taylor expansion, one can arrive to the following theorem:

Theorem 2.7 A function f is a stationary point of the optimization problem
(2.7) if and only if

∂L

∂y
=

∂

∂t

(
∂L

∂y′

)
, (2.8)

where the derivatives with respect to y and y′ should be understood in the classical
sense, treating the functions as independent variables.

The equation (2.8) is called Euler-Lagrange equation. This is a (system) of
second-order ordinary differential equations which provides the first-order nec-
essary condition for optimality.

2.2.1 References

The main used reference is Liberzon (2011) with detailed introduction to cal-
culus of variations, historical remarks of the theory and connections between
optimal control theory and calculus of variations.

2.3 Control theory

Optimal control theory, or which is sometimes called dynamic optimization,
deals with situations where the behaviour of a dynamical system is controlled
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through an input function from a given set of admissible controls. Then, for a
given performance measure, one can assign a value to the system’s behaviour
and the ultimate goal is to find an input function which yields the optimal
behaviour of the controlled system on a specified time interval of interest. In this
thesis only optimal control problems with finite time horizon will be considered,
i.e. problems on the time interval [0, T ], where T < +∞. An example of
a dynamic optimization problem is an animal who tries to optimize its total
harvested energy over the time interval [0, T ] including a cost of migration in a
water column. For example, the paper Thygesen et al. (2016) explores dynamic
optimization model of Bigeye tuna maximizing its energy harvest rate.

Informally, an optimal control problem consists of two main components which
are described below. The first main component of an optimal control problem
is a dynamical (controlled) system which is governed by a (system) of ordinary
differential equations:

ẋt = f(xt, αt, t), x(0) = x0, (2.9)

where f is a given deterministic function, x0 is the initial state of the controlled
dynamical system and αt ∈ A in an input (control) function from the admissible
set A. It is assumed that the problem (2.9) is well-posed: the solution xt exists
and unique on the time interval [0, T ].

In the equation (2.9) by xt is denoted the state of the controlled system. It can
be, for example, a vertical position of a fish in a water column or gut fullness of
a marine animal. Then αt is the fish’s vertical speed at time t or a strategy of
the animal to eat or escape the feeding arena.

The second basic component is the cost functional J(α), which serves as a
measure of system’s performance for the selected control function αt. For each
admissible control the cost functional assigns a real value. In this thesis, the
cost functional will be of the form:

J(α) =

∫ T

0

L(xs, αs, s) ds+K(xT , T ), (2.10)

where L is the running cost, and K is the terminal cost, which are given functions
and T is the final (terminal) time. The functional (2.10) can be, for example,
the amount of harvested energy by the fish over the time interval [0, T ].

Then the ultimate goal of the optimal control problem (2.9) - (2.10) is to find
an optimal control α∗ among admissible controls in A which maximizes (or
minimizes) the functional J(α).
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2.3.1 The Hamilton-Jacobi-Bellman equation

One of the approaches to solve an optimal control problem is via the dynamic
programming approach utilizing the principle of optimality. This principle will
be stated precisely later, but verbally it can be formulated in the following way:

Definition 2.8 (Optimality principle) Bellman (1966) An optimal policy has
the property that whatever the initial state and initial decision are, the remain-
ing decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

Then the idea is to start with the terminal cost K(xT , T ) and iteratively move
backwards and solve a family of sub-problems.

To start with, an auxiliary function J(x, α, t) is introduced:

J(x, α, t) =

∫ T

t

L(xs, αs, s) ds+K(xT , T ), (2.11)

which is a cost function of an optimal control sub-problem of the original control
problem (2.9) - (2.10) starting at time t.

The following function, so-called value function, is defined as:

u(x, t) = sup
α

J(x, α, t) (2.12)

In simple terms, the value function (2.12) tells how “good” is the position x of
the dynamical system at time t (assuming that the optimal control α is applied).
Then the principle of optimality from the definition 2.8 can be formulated as:

u(x, t) = sup
α[t,t+∆t]

{∫ t+∆t

t

L(xs, αs, s) ds+ u (x(t+∆t), t+∆t)

}
(2.13)

Applying the Taylor expansion to the formulation of the principle of optimality
(2.13) we arrive to the so-called Hamilton–Jacobi–Bellman equation:

∂u

∂t
+ sup

α

(
∂u

∂x
f(x, α, t) + L(x, α, t)

)
= 0, u(x, T ) = K(xT , T ). (2.14)

The Hamilton–Jacobi–Bellman equation (2.14) is a non-linear partial differential
equation, which is usually impossible to solve analytically with a couple of simple
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cases when the functions f and L are “good enough”. But this PDE allows to
quantify the value function u and, if the solution is sufficiently smooth, infer the
optimal control α∗ which yields the optimal behaviour of the dynamical system
(2.9). The following theorem provides more details on this matter.

Theorem 2.9 Liberzon (2011) Let a C1 function u∗ satisfies the Hamilton-
Jacobi-Bellman equation (2.14) and suppose that a control α∗ is where the supre-
mum is attained. Then u∗ is the optimal cost and α∗ is an optimal control.

The theorem guarantees that if a sufficiently smooth solution exists and an
control where the supremum is attained is found, then it’s optimal. But it
doesn’t say anything about uniqueness of the optimal control, there might be
several input functions which yield the same value of the cost functional.

2.3.2 Stochastic case

For the sake of completeness, the case of stochastic optimal control problems
is presented here. Now the dynamics of the controlled system is governed by a
(system) of stochastic differential equations:

dXt = f(Xt, αt, t) dt+ σ(Xt, αt, t) dBt, X0 = x0, (2.15)

where Bt is standard Brownian motion. It is again assumed that the problem
(2.15) is well-posed: the solution exists and unique on the time interval [0, T ].

Since trajectories of the dynamical system (2.15) are subject to random fluctu-
ations, the functional (2.10) is adjusted make sense in the stochastic case:

J(α) = E

[∫ T

0

L(Xs, αs, s) ds+K(XT , T )

]
(2.16)

The value function is defined in a similar way as in the deterministic case:

u(x, t) = sup
α

J(x, α, t) (2.17)

The Hamilton-Jacobi-Bellman equation in the stochastic case has a slightly dif-
ferent form compared with the deterministic one:

∂u

∂t
+ sup

α

(
∂u

∂x
f(x, α, t) +

σ2(x, α, t)

2

∂2u

∂x2
+ L(x, α, t)

)
= 0, u(x, T ) = K(xT , T ),

(2.18)
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i.e. now the partial differential equation includes a second derivative of the value
function.

The stochastic analog to the verification theorem is stated below:

Theorem 2.10 Oksendal (2013) Let a C2 function u∗ satisfies the Hamilton-
Jacobi-Bellman equation (2.18)and suppose that a control α∗ is where the supre-
mum is attained. Then u∗ is the optimal cost and α∗ is an optimal control.

It also should be noted that in many cases, both for deterministic and stochastic
controlled systems, the value function u is a not smooth function. Hence, there
is the need for a weaker notion of a solution to the Hamilton-Jacobi-Bellman
equation. One development in this direction is a notion of a viscosity solutions
Evans (2010), but it will not be considered in this manuscript.

2.3.3 Feynman–Kac formula

For the sake of completeness, here is presented the Feynman–Kac formula which
establishes the connection between theory of partial differential equation and
probability theory. This formula has been used further in the thesis to derive
the mean field systems of partial differential equations.

Theorem 2.11 Carmona (2016) Let u solves the partial differential equation:

∂u

∂t
+ f(x, t)

∂u

∂x
+

σ2(x, t)

2

∂2u

∂x2
− c(x, t)u+ d(x, t) = 0, u(x, T ) = g(x),

(2.19)

then the solution u has the following representation:

u(x, t) = E

[∫ T

t

d(Xs, s) exp

(
−
∫ s

t

c(Xr, t) dr

)
ds

+g(XT , T ) exp

(
−
∫ T

t

c(Xr, r) dr

)] (2.20)

if f, σ, c, d are continuous functions and d has quadratic growth on x.

Sometimes (2.20) is called the Feynman-Kac representation formula.

The important aspect of the Feynman-Kac formula is that it allows exponential
discounting inside the integral (2.20), which is used in the PhD manuscript to



2.4 Mean field game theory 21

take into account the probability of death of a player in differential games, i.e.,
the exponential integral is the probability of survival during a specified time
interval.

2.3.4 References

The main used reference is the book Liberzon (2011) which provides a good in-
troduction to main concepts and results of deterministic optimal control theory.
A more detailed discussion on the Hamilton-Jacobi-Bellman equation together
with some extensions to non-classical solutions, viscosity solutions as one ex-
ample, is presented in the book Evans (2010). The book Oksendal (2013) pro-
vides an excellent introduction to theory of stochastic differential equations and
stochastic optimal control. First chapters of the book Carmona (2016) serve as
a good introduction to stochastic optimal control and connections with mean
field game theory.

2.4 Mean field game theory

Mean field game theory studies systems of n interacting Ito processes and their
individual state dynamics is governed by a system of coupled stochastic differ-
ential equations:

dXi
t = f(Xi

t , α
i
t, µ̂t) dt+ σ(Xi

t , α
i
t, µ̂t) dB

i
t, (2.21)

where µ̂t is the empirical measure of the particle system:

µ̂t =
1

n

n∑

j=1

δXj
t
, (2.22)

The empirical measure µ̂ from (2.21) is the only source of interaction between the
agents and shows that each player can see only aggregated statistical information
about the behaviour of the total population.

The drift f and diffusion σ coefficients in the system (2.21) are the same for
each particle and any two particles have independent driving Brownian motions.
These assumptions postulate that the particle system is symmetric, meaning
that any permutation of the Ito processes Xi

t results in exactly the same system.
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Each agent i in the population of agents tries to maximize some objective cri-
terion of the form:

Ji(α1, α2, . . . , αN ) = E

[∫ T

0

L(Xi
s, αi,s, µ̂s) ds+K(Xi

T , µ̂T )

]
, (2.23)

where T > 0 is a finite time horizon of the optimization problem and each
particle i can select an admissible control process αi,t. Again, by the symmetry
assumption, the running cost L and the terminal cost K are required to be the
same for each player. The optimization problem (2.23) faced by each particle in
the system are interdependent due to the coupling term through the empirical
measure µ̂.

Passing the number of players n to the limit n → +∞, the interaction between
the agents through the empirical measure becomes weaker. At some point, when
n is big enough, contribution of each particle in (2.22) becomes negligible and
can be disregarded. Then all the particles should be identically independently
distributed (i.i.d.), because all have the same drift, noise level and independent
trajectories of Brownian motion.

Keeping the above mentioned assumptions about the symmetry between agents
in mean field games, identical objective function and the limit, the idea is to
consider a so-called representative player from the population and solve the
corresponding control problem. Then, the results of the control problem can be
extrapolated to all other agents invoking the symmetry.

Mean field theory studies systems of partial differential equations in the form:
{

∂u
∂t + supα

(
∂u
∂xf + σ2

2 ∆u+ L
)
= 0

∂µ
∂t − σ2

2 ∆µ+∇. (fµ) = 0,
(2.24)

which is essentially is a system of the Hamilton-Jacobi-Bellman and the Fokker-
Planck equations together. This coupling is illustrated in Figure 2.1.

Solving such a system analytically or numerically is a very non-trivial task.
Moreover, very little known about existence and uniqueness of solutions to the
systems of partial differential equations in the form (2.24) with a few very tech-
nical results are available, for example, Lasry and Lions (2007).

The main objective of this PhD thesis is modelling and analysis of the behaviour
of the system of marine animals in an equilibrium. It is assumed that the
players in this vertical differential game don’t cooperate in optimizing their
own objective functions. Thus, this dissertation focuses on the behavior of the
particle system in a Nash equilibrium.
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Figure 2.1: Visual representation of the coupling (2.24). The Hamilton-
Jacobi-Bellman equation describes how agents react to the in-
teraction and optimize (left panel). The Fokker-Planck defines
the movement of the whole population (right panel). Credit:
https://www.science4all.org.

2.4.1 References

A two-volume standard reference for mean field game theory is Carmona and
Delarue (2018a,b), which provides a detailed introduction to the theory with
applications in finance, economics and social science. The book Carmona (2016)
is an excelled supplementary material with a focus on applications in finance.
Two other references Lacker (2015, 2018) are less-structured, but can serve as
supplementary reading to the main textbooks.

2.5 Numerical methods

The remaining part of this introductory chapter will be dedicated to presenting
a short overview of the spectral element methods, which have been extensively
applied to approximate solutions to the mean field systems of partial differential
equations in the PhD sub-projects.

The idea of the spectral methods is to look for the unknown solution to a partial
differential equation in a “good enough” functional space. For technical reasons,
which are discussed below, the most suitable space, so-called approximation
space, is a space equipped with weighted inner product and a norm. One of the
most popular choices is a Hilbert space L2

w(a, b). The weighted Hilbert space
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L2
w(a, b) defined as:

L2
w(a, b) =

{
f : [a, b] → R,

∫ b

a

|f(x)|2w(x) dx < ∞
}
, (2.25)

with the inner product associated with this space is:

(f, g)L2
w(a,b) =

∫ b

a

f(x)g(x)w(x) dx, (2.26)

for any two function f, g ∈ L2
w(a, b).

Since L2
w(a, b) has a basis, then the unknown function can be expanded in the

form:

u(x) =

+∞∑

j=0

ûjpj(x), (2.27)

where ûj are unknown coefficients. These are the coefficients of the projection of
the unknown function u on the basis, usually orthonormal, pj in the approxima-
tion space L2

w and the goal of the spectral methods is estimate the coefficients
ûj . The approximation (2.27) is a modal expansion with coefficients ûj .

To make use of the basis expansion for computational applications, the infinite
series (2.27) has to be truncated and replaced by a finite series up to some
pre-defined order N :

uN (x) =

N∑

j=0

ûjpj(x), (2.28)

Then the error of the truncation of the infinite series is equal:

τ(x) =

+∞∑

j=N+1

ûjpj(x). (2.29)

Thus, the true solution is composed of two parts:

u(x) = uN (x) + τ(x), (2.30)

and to estimate the accuracy of the approximation, norm of the truncation error
of the approximate series (2.28), from the Parseval’s identity, is given by:

∥τ∥ =

+∞∑

j=N+1

|ûj |2∥pj∥2, (2.31)
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Figure 2.2: First polynomials of order ≤ 5 from the orthonormal Legendre
basis system in L2(−1, 1) with w(x) = 1.

i.e. the norm of the error depends on the decay of the coefficients ûj . For
orthonormal basis the norm ∥pj∥2 = 1. Although the approximation theory for
general basis choice is rather technical, the main result says that the decay rate
of the modes depends on smoothness of the function u and can be exponential
for infinitely smooth functions Kopriva (2009). This result implies that for
smooth functions, to achieve the same order of accuracy compared with low-
order numerical methods for solving differential equations like finite difference
schemes, less basis functions is needed, and, thus, less computational effort.
This results in faster numerical routines.

A defining character of any spectral method is the choice of orthogonal basis
functions used to approximate the solution with. Suitable choice of a functional
basis might be beneficial and can help satisfy boundary conditions. For example,
Fourier basis with the complex exponentials exp(ikx) is a standard choice for
periodic problems. In other cases the Jacobi polynomials P

(α,β)
k (x), with Leg-

endre polynomials as a particular class of Jacobi polynomials with α = β = 0, is
a standard basis selection. First orthonormal Legendre polynomials are shown
in Figure 2.2.

Another advantage of the spectral methods over finite difference schemes is
geometrical flexibility. To handle complex geometries or make a trade-off be-
tween approximating the unknown function on the whole domain with more
basis functions or approximating on subdomains with less basis functions, one
can reduce the approximation of the unknown function on the whole domain to
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Figure 2.3: Triangulation of the unit square domain. The square is split into
a set of smaller triangular domains and the unknown solution is
approximated over each triangle.

approximation on subdomains.

For example, the computational domain of a unit square can be split into tri-
angular subdomains by the triangulation procedure as shown in Figure 2.3, but
other shapes like rectangles in 2D or tetrahedra hexahedra in 3D. Then the
unknown solution is approximated on each subdomain and approximations on
the subdomains are gethered together to restore the whole solution.

2.5.1 References

The main reference for spectral element methods is the book Kopriva (2009)
which provides introduction to the theory and detailed explanation of implemen-
tation of the numerical methods. The books Canuto et al. (2007b,a); Hesthaven
and Warburton (2007) focus more on theoretical foundations of the spectral
element methods.



Chapter 3

Vertical Mean Field Games

This chapter is dedicated to summarizing the key findings of the 3 papers on
modelling diel vertical migration as a mean field game the animals play against
each other.

3.1 Individual-level dynamics

To start with, the usual mathematical set-up is a water column of depth H
which is represented as an interval x ∈ [0, H] and time t ∈ [0,+∞).

Modelling diel vertical migration as an optimal control problem starts with defin-
ing the individual level dynamics of a representative agent from the population.
Then, as discussed above, the standard approach is to consider the dynamics of
the representative player to infer the information about temporal evolution of
the players’ distribution on the population level.

By Xt is denoted the vertical position of an animal in the water column at
time t and it is assumed that all agents in the population are identical, i.e.
the standard symmetry assumption in mean field game theory. The vertical
state of the representative agent in the water column is driven by the stochastic
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differential equation:

dXt = f(Xt, Vt, t) dt+ σ(Xt, Vt, t) dBt, (3.1)

where Vt is the vertical speed which the representative player can control. The
drift f and the diffusion σ functions are predefined in the model and Bt as
standard Brownian motion. The reflective boundary condition is imposed for the
equation (3.1) on the surface and the bottom of the water column meaning that
no new agents can appear through the boundary. It should also be noted that
the state equation (3.1) does not include coupling terms with the population.

For diel vertical migration model in the thesis the drift is chosen to be equal to
the player’s control:

f(Xt, Vt, t) = Vt, (3.2)

meaning that each player in the population can control its drift coefficient. The
noise level is assumed to be a constant:

σ(Xt, Vt, t) = C, (3.3)

which means that the vertical positions in the water column is subject to random
fluctuations due to, for example, local turbulence. The noise level is independent
of the player’s state Xt and its vertical speed Vt.

The equation (3.1) on the individual level is consistent the Fokker-Planck or the
forward Kolmogorov equation on the population level. Temporal evolution of
vertical distribution of the population follows:

∂N

∂t
= −∂(NV )

∂x
+

σ2

2

∂2N

∂x2
, (3.4)

where N describes vertical distribution function of the population in the water
column and is the velocity field. The velocity field V is a Markovian control,
i.e. V = V (Xt, t) which assigns the vertical velocity to an agent at the position
Xt at time t.

The objective function the representative player from the population is trying
to optimize has the form:

J(V ) =

∫ τ

0

L(Xs, Vs, s) ds, (3.5)

where τ is a Markovian random time of death. For the representative player
to be dead means that the state process follows (3.1) for t < τ and, after the
death t ≥ τ the Ito process enters a special “coffin” state Xt = ∂ and stays
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there Oksendal (2013). The death or killing rate of the stochastic process Xt is
defined as:

µ(x, t) = lim
s→0

1

s
P [Xt+s = ∂ | Xt = x, x ̸= ∂] . (3.6)

The particular form of the mortality rate extensively used in this thesis is:

µ(x, t) = µ0 + µ1N(x, t), (3.7)

which a sum of the encounter rate due to high abundance of light in the water
column through µ0 and the density dependent term µ1N , which describes the
encounter risk for prey in big groups.

In this PhD thesis the running cost has the form:

L(x, v, t) = g(x, t)− ν|v|2
2

. (3.8)

This form of the running cost emphasizes the trade-off each representative player
faces between staying closer to the water surface in regions with high nutrient
concentration and forage through the term g or reducing the encounter rate with
predators through the mortality rate µ subject to the cost of motion at a rate
ν|v|2/2. Squared cost of motion is selected to illustrate the model and other
power laws are possible when modelling diel vertical migration of large animals.

The reason to consider energy gain (3.5) as the optimization criterion for the
representative player is the following: what each animal is really optimizing is
the number of descendants, according to Darwin’s theory of evolution by natural
selection. And one can use as a proxy the net energy gain during the lifetime
with the reasoning: the individual is limited by how much energy is put into
reproduction.

The ultimate goal of the PhD sub-projects presented in subsequent sections of
this chapter is to model diel vertical migration as a mean field game and find
the equilibrium behaviour of the population of animals, in a Nash equilibrium
to be more precise, since no cooperation between the animals is assumed.

3.2 Mean field game without diffusion

Paper A considers the deterministic case when the representative player controls
its vertical speed in the water column and no diffusion influences its vertical
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state, i.e. the governing equation is:

dXt = Vt dt (3.9)

Several assumptions are made to simplify analysis of the final model. First, it’s
assumed that the animals live in a periodic environment, i.e. that all days are
identical and seasonal fluctuations in the environment are disregarded. Which
means that only periodic pairs of the solutions (N,V ) are of interest.

Second, only long-lived animals, compared to one day time, are modelled. With
these assumptions the expression for the objective function (3.5) changes to:

J(V ) =

∫ T

0

L(Xs, Vs, s) ds, (3.10)

where T = 24 hours. Then the running cost L from (3.8) has the form:

L(x, v, t) = g(x, t)− Fµ(x, t)− ν|v|2
2

. (3.11)

Here the parameter F is the expected harvested energy until the animal dies:

F (x, t) =

∫ ∞

t

[
g(Xs, s)−

1

2
ν|Vs|2

]
exp

(∫ s

t

µ(Xξ, ξ) dξ

)
ds (3.12)

The discounting exponent inside the integral (3.12) is the survival probability
of the representative player over the interval [t, s]. With the assumption about
the long-lived animals, fluctuations in the expected fitness F over time can be
discarded and the parameter becomes a constant. This is a so-called quasi-static
approximation.

Also, due to short time period of the control problem, fluctuations in the popu-
lation size N can be disregarded and the population dynamics can be neglected.

Then it is possible to consider the optimization problem (3.10) as a problem
from calculus of variations and invoke the Euler–Lagrange equation (2.8) for
finding the optimal velocity field V . Substituting all the form of the running
cost, adding the transport equation to the system one arrives to:

∂N

∂t
+

∂(NV )

∂x
= 0

ν

(
∂V

∂t
+

1

2

∂(V 2)

∂x

)
+

∂g

∂x
− F

(
∂µ0

∂x
+

∂(Nµ1)

∂x

)
= 0

(3.13)



3.2 Mean field game without diffusion 31

0

200

400

Baseline Costly movement

0 20

0

200

400

Increased 1

0 20

Increased fitness

0.001

0.002

0.003

0.004

0.005

De
pt

h 
[m

]

Time [h]

Figure 3.1: Solutions to the PDE system (3.13) for several modelling scenarios
are shown. Dark lines correspond to trajectories of individual
animals. Picture is taken from A.

The system of PDEs (3.13) defines the optimal distribution of the animals N
in the water column and the corresponding optimal vertical speed profile V for
the population.

It is very important to emphasize that this equation must only hold where
animals are found, i.e. in regions of the water column where the distribution
N > 0, since in parts where N = 0, i.e. vacuum regions, the vertical velocity V
is not defined.

Solutions to several modelling scenarios for varying the modelling parameters
in the system (3.13) are shown in Figure 3.1. It should be noted, as discussed
above, that all the modelling cases have positive distribution of the animals in
the water columns at any point of time, i.e. so-called “shallow water case”. And
this is the main limitation of the established model, that the domain should
be selected to keep the distribution N positive everywhere, otherwise standard
numerical schemes become unstable.

To overcome the numerical instabilities while solving the system (3.13), a tai-
lored computational scheme has been developed to resolve these equations. The
idea is to iteratively solve a sequence of parameterized sub-problems (3.14),
where ε is a parameter. The solution for the case ε = 0 is known and, using
the solution to previous iteration as an initial guess in the next one, varying the
parameter ε → 1, one can find a numerical approximation to the solution to the
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original system (3.13). It is an adaptation of the homotopy method Alexander
and Yorke (1978).

∂N

∂t
+

∂(NV )

∂x
= 0

ν

(
∂V

∂t
+

1

2

∂(V 2)

∂x

)
+ ε

∂g

∂x
− F

(
ε
∂µ0

∂x
+

∂(Nµ1)

∂x

)
= 0

(3.14)

The main contribution of Paper A is establishing a framework for formulating
the vertical game as a mean field system of partial differential equations gov-
erning the optimal behaviour of the animals in the water column. But the main
limitation of the model is the requirement of positive distribution everywhere
in the water column, i.e. the so-called “shallow-water case”.

3.3 Mean field game with diffusion

To overcome the complications with the domain selection, Paper B adds random
noise to the vertical state of the representative player, i.e. the position of the
agent in the water column is governed by the stochastic differential equation:

dXt = Vt dt+ σ dBt (3.15)

With added noise to the state, the representative animal has a non-zero prob-
ability to be at any point of the water column and the distribution is positive
everywhere for any water column of arbitrary depth.

Also, the assumption about the negligible fluctuations in the fitness function
F is omitted and now the objective functional (3.5) in its initial form with the
random death time τ is considered. The following function is introduced:

u(x, t) = sup
V

EXt=x

[∫ +∞

t

(
g(Xs, s)−

ν

2
V 2(Xs, s)

)
exp

(
−
∫ s

t

µ(Xξ, ξ) dξ

)
ds | x ̸= ∂

]
,

(3.16)

which is the expected fitness of the representative player who starts in Xt = x0

at time t. The exponent in the expression is the conditional probability of the
player surviving the [t, s] time interval.
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Invoking the Feynman–Kac representation formula, it turns out that the func-
tion u solves the partial differential equation:

∂u

∂t
+ sup

v

(
Lu+ g − νv2

2

)
= 0, (3.17)

where the the differential operator L is defined as:

Lu = v
∂u

∂x
+

σ2

2

∂2u

∂x2
− µu. (3.18)

Gathering all the pieces together, the mean field system for finding the Nash
equilibrium for the stochastic case has the following form:




∂N
∂t = −∂(NV )

∂x + σ2

2
∂2N
∂x2 (x, t) ∈ (0, H)× (0, T )

∂u
∂t + 1

2ν

(
∂u
∂x

)2
+ σ2

2
∂2u
∂x2 + g − u(µ0 + µ1N) = 0 (x, t) ∈ (0, H)× (0, T )∫H

0
N(y, t) dy = 1 t ∈ [0, T ]

u(x, 0) = u(x, T ) x ∈ [0, H]

N(x, 0) = N(x, T ) x ∈ [0, H]

(NV − σ2

2
∂N
∂x )(x, t) = 0 x ∈ {0, H}

∂u
∂x (x, t) = 0 x ∈ {0, H}
V = 1

ν
∂u
∂x

(3.19)

Varying the model parameters in the system (3.19) yields the solutions as pre-
sented in Figure 3.2. As can be seen in the right panel of the plot, the fitness
function u is allowed to fluctuate compared with the previous model, where the
quasi-static approximation has been imposed.

The main contribution of Paper B is extending the mean field framework to
a broader range of depths by including the diffusivity to the vertical state.
The Hamilton-Jacobi-Bellman formalism allows to define what is the optimal
vertical speed in void regions where there are no animals, i.e. the speed of an
agent which happens to be there. It also allows to cover cases with fluctuating
environment without assuming the constant fitness, in contrast to Paper A with
the quasi-static approximation.

3.4 Multispecies mean field game

Paper C extends the established mean field game theoretical framework and the
results from Paper B to a multispecies set-up. Papers A, B included predators
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Figure 3.2: Solutions to the mean field system (3.19). Dark lines correspond
to trajectories of individual animals. Picture is taken from B.

implicitly through the predation risk terms. Now the aim is to resolve the
vertical dynamics with explicit presence of predators.

As usual, the mean field game formulation starts with deriving the state dy-
namics and the objective functional for a representative agent. In this case,
with two explicitly interacting populations, the representative animal from each
population is considered to derive the mean field system.

State dynamics of the representative prey in the water column is driven by the
stochastic differential equation:

dXt
prey = V prey

t dt+ σprey dBt, (3.20)

where the player controls the drift part of the state equation and the diffusion
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coefficient σprey is a constant parameter in the model.

The prey player optimizes her objective functional in the form:

Jprey(V prey) = E

[∫ τprey

0

g − νprey(V prey
s )2

2
ds

]
, (3.21)

where g corresponds to energy harvest rate and τprey is a Markovian death time
for the prey defined in terms of the mortality rate:

µprey(x, t) = µlight(x, t)CpredNpred(x, t) + µ1C
preyNprey(x, t). (3.22)

The risk rate (3.22) for the prey representative player is composed of two parts:
the first term in the expression is the mortality rate due to visual predation,
which depends on the light abundance µlight and local predator concentration
CpredNpred. The second term in the sum is the risk rate due to interactions
with other prey.

Then the mean field system for prey is given by:
{

∂Nprey

∂t = −∂(NpreyV prey)
∂x + (σprey)2

2
∂2Nprey

∂x2

∂Uprey

∂t + 1
2νprey

(
∂Uprey

∂x

)2
+ (σprey)2

2
∂2Uprey

∂x2 + g − Upreyµprey = 0
(3.23)

Individual dynamics of the representative predator in the water column is driven
by the stochastic differential equation:

dXt
pred = V pred

t dt+ σpred dBt, (3.24)

i.e. the predator controls its vertical speed and the state is subject to random
fluctuations.

The fitness of the predator over its lifetime period:

Jpred(V pred) = E

[∫ τpred

0

εCpreyµlightNprey − νpred(V pred
s )2

2
ds

]
, (3.25)

where the predator can feed on prey through the term εCpreyµlightNprey and
the random death time τpred is defined in terms of the mortaliy rate, as for the
prey:

µpred(x, t) = µ2.

For the sake of simplicity, the model considers the case of constant predator
mortality.
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Utilizing the mean field limit, gathering all pieces together from the predators
individual dynamics, one arrives to the mean field system of partial differential
equations:




∂Npred

∂t = −∂(NpredV pred)
∂x + (σpred)2

2
∂2Npred

∂x2

∂Upred

∂t + 1
2νpred

(
∂Upred

∂x

)2
+ (σpred)2

2
∂2Upred

∂x2 + εCpreyβNprey − Upredµpred = 0

(3.26)

The final mean field system describing the optimal distribution of prey and
predators in the water column over one day time period is composed of two
sub-systems (3.23) and (3.26). Numerical solution to the system of partial
differential equations is shown in Figure 3.3.
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Figure 3.3: Time evolution of vertical distributions of prey and predator pop-
ulations in the Nash equilibrium over one day given by (3.23),
(3.26). Picture is taken from Paper C.

The main contribution of Paper C is formulation of the mean field system for
several interacting populations, two player set-up in this case. Now the source
of the interaction between the prey and predators is in the growth and mortality
terms in the system (3.23), (3.26). This allows to explicitly resolve the vertical
migration patterns of two interacting populations of the predators and the prey
in the water column during the one day time period.



Chapter 4

Conclusions and
Perspectives

This thesis contributes by advancing modelling diel vertical migration with mean
field game theoretical framework. In this chapter the main results are summa-
rized and possible directions for future research are outlined.

4.1 Overview of contributions

The main focus of this dissertation has been centered around formulating the
mean field game theoretical framework for expressing diel vertical migration as
a differential game.

Paper A established the ground for deriving the mean field system for the de-
terministic case, without noise in the state equation. Solutions to the derived
system of partial differential equations reproduced the diel vertical migration
pattern in the water column over one day time period. For the derived system
the tailored numerical scheme has been proposed, but the system of PDEs has
to be solved only for the “shallow water” set-up.

Paper B expanded the derived mean field game theoretical model from Paper
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A to the stochastic case, i.e. the vertical state of the agents in the water col-
umn is subject to random fluctuations. This technical extension has resolved
the so-called “deep water problem”. Deriving the governing system of partial
differential equations for finding the Nash equilibrium has been done via uti-
lizing the The Feynman–Kac formula, a different approach compared with the
Hamilton-Jacobi-Bellman formalism.

Paper C has pushed the results from Paper B further and extended the mean
field system of partial differential equations to the multi-player set-up with sev-
eral interacting populations, a predator-prey system with two explicitly coupled
populations of players for the case of Paper C.

The main conclusion and result of the PhD thesis that mean field game theory
present a huge opportunity to model interaction of large populations of agents
with diel vertical migration as a particular case of this manuscript.

Although the optimal behaviour paradigm in theoretical ecology is conceptually
appealing, it remains a technical challenge to actually identify these optimal
behaviors of the animals. The thesis has contributed to making this paradigm
operational by explicitly resolving such a game in a particular case of diel vertical
migration.

4.2 Future research

The main results of this dissertation and arised issues while working on the
papers motivate several future research directions which will be presented in
the remaining part of the chapter.

4.2.1 Numerical methods

Solving the derived mean field systems numerically constituted a large part of
the PhD projects and has been a source of many issues with calculated approxi-
mations to the unknown solution to the systems of partial differential equations.

To solve these mean field systems of partial differential equation, the family of
spectral element methods (see Sec. 2.5) for discretizing the differential equa-
tions has been selected and applied. In particular, the continuous Galerkin (CG)
methods subset of the spectral method toolbox. The distinguishing feature of
the CG methods is the requirement that the numerical approximations over
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each subdomain (element) should coincide on the elements’ boundary, i.e. the
continuity requirement on the boundaries. One of the two mains reasons for
selecting the CG is good convergence properties of these methods for smooth
functions compared with compared with finite difference schemes and, thus,
smaller required grid size to achieve the same level of numerical accuracy. An-
other advantage of the CG methods is the geometrical flexibility which allows to
handle complex computational domains by constructing suitable mesh. More-
over, the basis selection flexibility of the CG numerical methods can help to
choose a suitable basis set and satisfy the boundary conditions for the differen-
tial equations in the model.

But while solving the analytical models, the numerical routines diverged some-
times, which required increased grid size and reduced step size in the Newton
stepping method part of the numerical procedure. In the end, these changes
resulted in longer computational times for some model scenarios.

Two two main reasons were identified as a potential source of issues for this
divergent behaviour. First, the structural properties of the unknown solution to
the mean field systems. The solution can have shocks or kinks, which reduces
exponential convergence of the CG methods and makes them less suitable for the
problem, reducing their overall performance. One way to get around this issue
to apply the discontinuous Galerkin (DG) spectral element methods Hesthaven
and Warburton (2007); Kopriva (2009). These methods omit the continuity
requirement on the subdomains’ boundaries as shown in Figure 4.1. This can
be advantageous for approximating discontinuous functions or functions with
jumps or shocks, since a carefully constructed mesh coincides or approximates
the jumps in the function. Plus, the DG methods are highly parallelizable which
can further reduce computational time compared with the continuous Galerkin
methods.

Another explanation for the divergent behaviour is analytical properties, yet un-
known and unexplored, of the solutions to the mean field systems which should
be taken into account when choosing a suitable numerical toolbox. Further
analytical investigation of the model equations is required and constitute an
interesting mathematical direction for future research.

4.2.2 Reinforcement learning approach

Reinforcement learning Sutton and Barto (2018) in another computational paradigm
for solving control problems. This is an agent-based approach, where an agent
learns how to behave optimally in the problem through repetitive interaction
with the surrounding environment. For each selected action the agent receives
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Figure 4.1: Discontinuous Galerkin approximation of a function where ap-
proximation on the subdomains have discontinuous jumps on the
boundaries.

a reward (internal or external), updates current information about the environ-
ment and repeats this loop. The learning process is outlined in Figure 4.2.

The reinforcement learning paradigm can be applied to model diel vertical mi-
gration in a water column. The agents not necessarily need to know any prior
model of the surrounding environment and should learn the optimal policy
through repetitive interaction with the environment in the water column and the
other agents in the water column. The results should coincide with the numeri-
cal solutions to the mean field systems. But the advantage of the reinforcement
approach is the absence of any differential equations, which are usually very
hard to analyse analytically and solve numerically. The disadvantage of this
approach is slow convergence rate of the state-of-the-art reinforcement learning
algorithms, when many iterations are required for the algorithms to converge to
a good approximation of the optimal behaviour.

One interesting case to investigate further diel vertical migration models with
reinforcement learning is the questions about how quick can one expect to see
behavioral adaption to a new environment when the surrounding environment
changes? It is fair to assume that organisms have been exposed to fluctuating
environments over evolutionary timescales, and therefore animals have evolved
strategies to respond to such fluctuations. However, how large fluctuations can



4.2 Future research 41
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Action At

State St+1

Reward Rt+1

Figure 4.2: Reinforcement interaction loop where the agent selects an action
At at time step t. Then the system’s state is updated to St+1

and the agent receives a reward Rt+1. The quantities St+1 and
Rt+1 are then used to update the agent’s current knowledge of the
surrounding environment and the whole loop repeats.

they handle, and which information do they use to learn that the environment
has changed? Because the derived mean field game models assume perfect
information about the environment. This is where reinforcement learning could
be applied.

4.2.3 Model improvements

In this thesis the game theoretical framework has been proposed under certain
simplifications to illustrate the theoretical framework. Here several improve-
ments of the final models are suggested to make the established modelling tool-
box more realistic.

One possible direction for future improvement is to omit the assumed time-
scale separation between the behaviour in the form of a vertical game (fast time
scale) and population dynamics (slow time scale). When deriving the mean
field system it is assumed that the population dynamics can be ignored when
studying a single day time frame. Thus, the population size is assumed to be a
fixed quantity since the one-day time is shorter than the life time of an animal.
Without this assumption analysis of the model will include the slow-fast coupling
between the behavioral level with diel vertical migration and the original mean
field system and the population level with changing population’s size through
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the Lotka–Volterra model, for example. Expanding the time horizon of the
optimal control problem will ultimately include growth and mortality terms in
the Fokker-Planck equation which will require some notion of quasi-periodicity
of the solutions. Another addition when studying diel vertical migration on the
extended time period is seasonal migration of animals in the ocean to make the
model more realistic. Including possibility of horizontal dynamics and examining
sensitivity of the solution to the mean field system with seasonal migration of
the animals would be interesting to pursue.

Another improvement of the governing equations is to consider more sophisti-
cated functional responses in the models. For now the nutrient consumption,
for example, has linear form. A more realistic case is to include functional re-
sponses, where a predator has saturation in growth term. The prey can locally
saturate the predators, so this would lead to “positive” density dependence in
the mortality term which would make beneficial aggregation in a group, ulti-
mately leading to schooling type phenomena. This is an interesting and rich
improvement of the mean field model.

One more possible improvement of the derived models is by including other
forms of the cost of movement. Current models include quadratic cost in the
speed, which describes the energy spent on locomotion for small animals. For
larger animals, the flow around the swimming animal is not viscous/creeping,
so the quadratic scaling does not apply. For very large animals, one could use
the high-Reynolds number limit, which would be a cubic scaling. Other forms
of penalty is time spent on migration (assuming that the animal cannot feed
and migrate simultaneously) and increased exposure to predators.

Independence of white noise realizations is a very important technical assump-
tion in the models, but a more realistic scenario is a form of correlation of
disturbance in the vertical position for neighboring animals, with turbulence in
the water column as an example. In contrast to (2.21), the state of a represen-
tative player in common noise models is governed by a stochastic differential
equation:

dXi
t = f(Xi

t , α
i
t, µ̂t) dt+ σ(Xi

t , α
i
t, µ̂t) dB

i
t + σ0(X

i
t , α

i
t, µ̂t) dWt,

adding one more independent Brownian motion Wt for all the players.

This gives a rise to cases with correlated noise, common noise or shocks Carmona
and Delarue (2018a,b) with systems of stochastic partial differential equations.
These models will have increased analytical and numerical complexity and serve
as an interesting mathematical challenge for future research.

Another possible topic of future research is the situation where animals of the
same species are not completely identical, but differ e.g. in size. This would
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presumably lead to a structured distribution, where animals of different size
employ different strategies and therefore end up occupying different niches in a
water column.

4.3 Final conclusion

The derived mean field systems of partial differential equations in the thesis
gradually expand previous models on modelling diel vertical migration phe-
nomenon. The PhD sub-projects pushed the mean field game theoretical frame-
work by combining diffusion in the vertical state of a representative agent in the
water column, taking into account a cost of motion between water layers and
resolve the vertical differential game in continuous space and time domains.

Overall, the PhD dissertation contains the methodologies required to derive
the mean field systems, reproduce the migration phenomenon and compare the
results with the real-world data. The equations can be used to predict changes in
the marine ecosystems, in particular the responses to natural and anthropogenic
forcing, by including the behavior of individuals when deriving the equilibrium
behaviour of animal populations.
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Abstract
We consider the collective motion of animals in time-varying environments, using as a case the diel vertical migration of 
marine copepods. The animals are distributed in space such that each animal moves optimally, seeking regions which offer 
high growth rates and low mortalities, subject to costs on excessive movements as well as being in regions with high densities 
of conspecifics. The model applies to repeated scenarios such as diel or seasonal patterns, where the animals are aware of both 
current and future environmental conditions. We show that this problem can be viewed as a differential game of mean field 
type, and that the evolutionary stable solution, i.e., the Nash equilibrium, is characterized by partial differential equations, 
which govern the distributions and migration velocities of animals. These equations have similarities to equations that appear 
in the fluid dynamics, specifically the Euler equations for compressible inviscid fluids. If the environment is constant, the 
ideal free distribution emerges as an equilibrium. We illustrate the theory with a numerical example of vertical migrations 
of oceanic copepods, where animals are attracted to nutrient-rich surface waters while repulsed from light during daytime 
due to the presence of visual predators, aiming to reduce both proximity to conspecifics and swimming efforts. For this 
case, we show that optimal movements are diel vertical migrations in qualitative agreement with observations of copepods.

Keywords  Vertical migration · Optimal behavior · Evolutionary games · Habitat selection

Introduction

Animals move in space in order to forage, avoid predators, or 
seek mates, and the resulting movements impact the dynam-
ics of ecosystems (Nathan et al. 2008). The spatial distribu-
tions of populations, which emerge from the movements of 
individuals, govern the rate with which predators meet prey, 
and therefore how biomass is transported from lower trophic 
levels to higher trophic levels, as well as the growth rate and 
mortality of the various populations. In turn, the movements 
of individual animals are motivated by the spatial structure 
of their habitat.

A noteworthy example of animal movement is vertical 
migrations in the ocean, which are ubiquitous (Brierley 
2014) and believed to constitute the largest movement of 

biomass on the planet. Even phytoplankton display vertical 
migration (Wirtz and Smith 2020), while diel migrations of 
zooplankton and forage fish give rise to the dynamics of the 
deep scattering layer (Cisewski et al. 2010). Top predators 
generally track the movements of their prey, but take into 
account the limits imposed by physiological constraints such 
as light, oxygen, and temperature (Thygesen et al. 2016). 
These migrations that occur across trophic levels have impli-
cations not just for the animals that perform them, their prey 
and predators, but also for ecosystem functioning such as 
the vertical transport of carbon, a mechanism known as the 
biological carbon pump (Longhurst and Harrison 1989). 
Vertical distributions also affect measurements taken from 
the system and their interpretation, such as trawl surveys 
or acoustic surveys targeting forage fish or zooplankton 
(Gauthier and Rose 2005).

It is generally agreed that prey descend at day into the 
dark deep to avoid visual predation (Bollens and Frost 1989) 
and that predators follow their prey (Josse et al. 1998). 
Optimization arguments have been used to explain both 
the behavior of planktonic prey and planktivorous preda-
tors (Mangel and Clark 1988). While these motions seem 
to have “bottom-up” dynamics, in that the prey initiate the 
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movement and the predators follow, they must be understood 
in a game-theoretic setting, since they involve the simulta-
neous decisions of several agents which each pursue their 
own interests. One phenomenon which adds credibility to 
the game-theoretic understanding is that the migrations 
can drive reverse migrations by even lower trophic levels 
(Ohman et al. 1983): Here, as predatory copepods descend at 
dawn to avoid visual predation from forage fish, their smaller 
planktonic prey ascend to spend the day near the surface, 
where the absence of predatory copepods implies relative 
safety.

To understand and explain these diel vertical migrations 
using the notions of game theory, Iwasa (1982) was seminal in 
modeling the phenomenon as a matrix game. This framework 
was pursued further by several authors including Sainmont 
et al. (2013) and Pinti and Visser (2019), with increasing 
fidelity as well as complexity, both in terms of modeling and 
computations. Thygesen and Patterson (2018) modeled the 
phenomenon in continuous space and time, using differen-
tial equations. This leads to higher fidelity and in particular 
resolves the narrow windows of opportunity and risk that arise 
at dawn and dusk, and also allows a more direct comparison to 
data. However, the modeling framework is more technically 
challenging, and to make progress, Thygesen and Patterson 
(2018) ignored the costs and constraints of locomotion. While 
this may be reasonable for larger animals, such as tunas, 
smaller animals such as copepods or larvae are constrained 
by their maximum swimming speed, and the cost of locomo-
tion can be expected to be a significant part of their energy 
budgets (Sprung 1984).

Therefore, this study aims to improve on the modeling 
framework developed by Thygesen and Patterson (2018) 
by including the cost of locomotion. Thus, we formulate 
a game, where each player is an animal which chooses a 
trajectory in space such as to maximize its fitness in a Dar-
winian sense. We assume that there are effectively infinitely 
many players, so that model is a differential mean field game 
in the sense of Lasry and Lions (2007). To achieve a simple 
and tractable model structure, we focus on the single-species 
case, where individuals of the same species play against each 
other. A model with some structural similarity has recently 
been posed for the collective motion of human pedestrians 
(Achdou and Lasry 2019).

We apply calculus of variations (Liberzon 2011) to reach 
a characterization of the Nash equilibrium in terms of par-
tial differential equations, which turn out to have similari-
ties to—but also notable differences from—the governing 
equations of fluid mechanics. Similar observations have been 
made in the field of differential mean field games (Lasry and 
Lions 2007). A seminal mean field game in spatial ecology 
is that which leads to the ideal free distribution (Fretwell and 
Lucas 1969), and we show that our model can be viewed as 
a dynamic extension of this paradigm.

Models based on partial differential equations are com-
mon in spatial ecology (Okubo and Levin 2001), many of 
these models being advection–diffusion equations. Most 
basically, such models assume the movement strategies of 
animals and determine the resulting distributions. In con-
trast, we seek the optimal strategies as well as the resulting 
distributions, across all conceivable movement strategies, 
but assuming that animals are rational decision-makers 
that have perfect global information about their current 
and future environment. Thus, our motivation is similar to 
that of Cosner (2005) and Cantrell and Cosner (2018), who 
identified dispersal strategies that resulted in the ideal free 
distribution: Starting from the axiom that each individual 
acts in its own interest, but do so in environments shaped by 
the actions of other animals, we seek equations that describe 
the dynamics at population level.

To be more specific, we demonstrate the approach using 
a test case which mimics diel vertical migrations of marine 
copepods. The animals are attracted to feeding opportuni-
ties near the surface, but repulsed from daylight due to the 
presence of visual predators; they also aim to avoid move-
ments and being too close to conspecifics. This is an arche-
typal situation where animals have an incentive to migrate 
in response to persistent fluctuations in their environment. 
Our ambition is to verify that diel vertical migrations are the 
optimal behavioral response to this scenario, and to examine 
the shape of these migrations as we vary key parameters in 
the model. Relative to the study of Thygesen and Patterson 
(2018), our method offers the advantage of including cost 
of motion. Relative to the methodology employed by Pinti 
and Visser (2019), which was to formulate the problem as a 
matrix game and solve it using the replicator equation, our 
method has the advantage of representing time and space 
and time continuously and in particular resolve dawn and 
dusk. Moreover, the partial differential equations in our 
model lend themselves to efficient methods for analysis, 
including numerical analysis.

Indeed, an important element of our contribution is 
numerical analysis of the resulting equations. The struc-
tural similarity between the dynamics of fluids and those of 
optimal foragers suggests that inspiration can be found in 
well-established methods for computational fluid dynamics. 
However, these methods cannot be used off the shelf, since 
we pursue periodic solutions which turn out to be unstable, 
and therefore we establish numerical methods tailored for 
the specific problem.

Although our study focuses on the case of diel vertical 
migration in the plankton, we believe that differentiable 
mean field games are a natural framework in ecology that 
has wider applicability. The models we pursue here can 
cover also other cases of predictable migrations, such as 
seasonal migrations across latitudes. Further, the framework 
can be modified to cover dynamics of other state variables 
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than position, such as individual body size. Our ambition for 
the study is to build a case for the general applicability of the 
approach, by demonstrating it on a fairly specific example. In 
the discussion we shall return to these perspectives.

Migrations as a dynamic game 
between individuals of the same species

Consider a population of animals distributed in a spatial 
domain � ⊂ �

d ; the dimension d of the space may be one, 
two or three. We are interested in how the spatial density 
of animals varies over time, i.e., the function N(t, x), t ∈ � , 
x ∈ � . Animals at position (t, x) move vertically with veloc-
ity V(t, x). Our current aim is to pose equations that govern 
N and V. We are interested in phenomena which take place 
on a shorter timescale than the life span of an individual, so 
we ignore population dynamics and require that the continu-
ity equation

holds. Here, Ṅ = 𝜕N∕𝜕t is time derivative while ∇⋅ is the 
divergence, 

∑
i �∕�xi . Our interest is in a bounded domain 

with no-flux boundary conditions, which express that no ani-
mals leave or enter the domain across the boundary:

where n(x) is normal to the boundary of � at x. Together, the 
continuity Eq. (1) and the no-flux boundary Eq. (2) express 
that a constant number of animals redistribute themselves in 
space by moving according to the velocity field V. This field 
V arises from decisions by the animals and thus derives from 
fitness optimization, as detailed in the following.

An animal at time t, position x and moving with velocity v 
is able to harvest energy at a rate g(t, x) but spends energy on 
locomotion at a rate 1

2
�|v|2 . At the same time, it is subjected 

to a density-dependent mortality

which is large enough to affect the decisions of the animals 
yet small enough that the resulting population dynamics 
can be ignored. For simplicity we let the density-dependent 
mortality be governed by a coefficient 𝜇1 > 0 which is con-
stant in space and time. Our interest is the situation of diel 
migrations where g and �0 are periodic in time with period 
T = 1 day.

The animal aims to maximize its net energy gain while 
minimizing its mortality and therefore has an incentive to 
seek out regions in space where the harvest rate g(x, t) is 
high and the mortality �(t, x) is low, but it must do so with-
out excessive movements. According to unified foraging 
theory (Mangel and Clark 1986), these conflicting objectives 

(1)Ṅ + ∇ ⋅ (NV) = 0

(2)(NV)(t, x) ⟂ n(x) for all t ∈ �, x ∈ ��

(3)�(t, x) = �0(t, x) + �1N(t, x)

are traded off against each other by combining them into a 
net gain rate

which includes harvest, cost of locomotion, and mortality. 
Here the parameter F converts mortality to energy and is 
the expected harvest of energy until the animal dies, so that 
probability of dying � dt in a small time interval dt is ener-
getically equivalent to a loss of energy F� dt . We describe 
F as the “fitness” of the animal, since the energy harvested 
could be channeled into reproduction; this term should not 
be understood too literally.

For complete consistency, the fitness F would depend on 
time and space and would be obtained as the expected future 
energy harvest, i.e.,

where (Xs,Vs) is the position and velocity of an animal which 
is alive at time t and at position Xt = x , and which behaves 
optimally thereafter. Ss is the probability that this animal is 
alive at time s > t , i.e., Ss = exp(− ∫ s

t
�(u,Xu) du) . However, 

we once again assume that our model covers a small time 
span relative to the lifespan of the individual, so that tem-
poral fluctuations in fitness can be ignored, and therefore 
we can consider F constant in time. Moreover, we aim to 
establish a game between the animals and pursue the Nash 
equilibrium of this game; at this equilibrium, all animals 
have the same fitness, so that F does not vary with space. 
Finally, by focusing on a single day and realizing that the 
environmental conditions may vary during the remaining 
lifetime of the animal, F cannot be computed solely from 
present-day conditions. In summary, we consider F constant 
and a free parameter.

If an animal chooses a trajectory {Xt ∶ t ∈ [0, T]} with 
corresponding velocity {Ut = dXt∕dt = V(t,Xt)} , then its 
change in fitness over one period [0, T] is

Our fundamental assumption is that each animal behaves 
optimally in the sense of choosing a periodic trajectory 
{(Xt,Ut) ∶ 0 ≤ t ≤ T} such as to maximize this integral, for 
a given density function N ∶ (t, x) ↦ N(t, x) , i.e., the solu-
tion (N, V) must have the property that if all animals are 
distributed in space according to N(t, x), then no single ani-
mal can benefit by deviating from the strategy Ut = V(t,Xt) . 
From a game-theoretic perspective, this is the definition of 
a Nash equilibrium in the mean field game, where each indi-
vidual plays against the continuum of the remaining popu-
lation (Lasry and Lions 2007). Mathematically, it can also 

(4)r(t, x, v) = g(t, x) −
1

2
�|v|2 − F�(t, x),

(5)F(t, x) = ∫
∞

t

[
g(Xs, s) −

1

2
�|Vs|2

]
Ss ds

(6)∫
T

0
r(t,Xt,Ut) dt .
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be interpreted as a symmetric Nash equilibrium in mixed 
strategies in a two-player game, where N(t, x) represents the 
probability density function of the opponent. From the point 
of view of evolution and adaptive dynamics (Geritz et al. 
1998), the model is related to the strategy Ut = V(t,Xt) being 
evolutionary singular: If the resident follows this strategy, 
then no rare mutant can obtain a higher invasion fitness. 
Note, however, that our model does not include population 
dynamics and therefore we do not follow the entire program 
of adaptive dynamics, where the hypothetical invader meets 
a resident population in ecological equilibrium.

From this fundamental assumption, we can derive the 
variational principle that the change in fitness  (6) over 
one period must be insensitive to perturbations �Xt of the 
trajectory, i.e., the first variation vanishes. As is standard 
in calculus of variations (Liberzon 2011), we reach the 
Euler–Lagrange equations, which are d coupled ordinary 
differential equations governing Xt and Ut:

Inserting the specific forms for r, we find

Here, we omit the arguments (t,Xt) for notational clarity. 
If an animal has velocity Ut = V(t,Xt) , then its acceleration 
is d

dt
Ut = ∇V(t,Xt)V(t,Xt) + V̇(t,Xt) , where ∇V  is a matrix 

field with elements �Vi∕�xj . We obtain:

Importantly, this equation must only hold where animals 
are found, i.e., at points (t, x) such that N(t, x) > 0 . In places 
(t, x) where N(t, x) = 0 , we do not define the velocity. Any 
trajectory that spends time in a region with N = 0 must lead 
to an increase in fitness over a period which is no greater 
than what is obtained by the animals that follow optimal 
trajectories. In this study we disregard this side condition, as 
our numerical case has N(t, x) > 0 everywhere, but we shall 
return to it in the discussion.

It is instructive to notice the structural similarity between 
this Eq. (7) and the one describing conservation of momen-
tum in the flow of a compressible inviscid fluids, i.e., the 
Euler equation (Batchelor 1967, p. 164). See also the discus-
sion in (Lasry and Lions 2007). With our notation, conserva-
tion of momentum in a fluid would imply

where (N, V) would be fluid density and velocity, u would 
be an external mass-specific potential acting on the fluid, 
and p would be pressure. We see that in this analogy, the 

�r

�x
(t,Xt,Ut) −

d

dt

[
�r

�v
(t,Xt,Ut)

]
dt = 0 .

∇(g − F�0) − �1F∇N + �
d

dt
Ut = 0

(7)𝜈
[
V̇ + (∇V)V

]
+ ∇(g − F𝜇0) − 𝜇1F∇N = 0 .

V̇ + (∇V)V + ∇u +
1

N
∇p = 0

habitat quality (g − �0F)∕� corresponds to the potential 
u driving the motion. Notice that the resulting “force” on 
the individual animal is in the direction of decreased qual-
ity g − �0F . This sign may seem counter-intuitive, but is 
consistent with the single-animal problem (Thygesen, in 
prep). Apart from the sign, it is an expected analogy that 
the external environment—specifically, spatial fluctuations 
in growth and mortality—drive the motion of animals. The 
term �1F∇N in (7) indicate how animals should respond to 
the density of conspecifics. This corresponds to the pres-
sure term in fluid dynamics, if we define the “pressure” as 
p(t, x) = −N2(t, x)�1F∕� . Note the sign and that the force 
on the individual animal, arising from the pressure gradi-
ent, is toward increased densities, which also may seem 
counter-intuitive but follows the same logic as the external 
forces. In summary, optimal foragers satisfy equations that 
are reminiscent of those governing fluid flows, although the 
signs and forces and the functional form of pressure could 
probably not have been guessed. The underlying reason for 
this similarity is the principle of least action (Goldstein et al. 
2002). This principle, which permeates physics, states that 
molecules in a fluid follow trajectories which render the so-
called action integral stationary, in the same way optimal 
foragers follow trajectories which render the fitness integral 
stationary.

Steady state and the ideal free distribution

Our principal interest is on the dynamics, but it is useful to 
also consider steady states. This, of course, assumes that 
the harvest rate g and the mortality � do not vary with time. 
In one spatial dimension ( d = 1 ), we seek solutions where 
�N∕�t = 0 and V ≡ 0 , i.e., each animal has chosen a fixed 
spatial location. Then, (7) simplifies to

By integration, we find g − F�0 − �1FN = c where c is 
an integration constant. This is the celebrated ideal free dis-
tribution (Fretwell and Lucas 1969): In that terminology, 
g(x) − F�0(x) − �1FN(x) is the suitability of the habitat at 
x, which in our case decreases linearly with the density N. 
In the ideal free distribution, the animals distribute them-
selves according to N(x) such that no animal can benefit 
from relocating; a consequence is that all animals experience 
the same suitability c. The side condition then states that 
all void habitats ( N(x) = 0 ) have a smaller basic suitabil-
ity g(x) − F�0(x) , implying that no animal can benefit from 
moving into a void habitat.

We can therefore view our model as an extension of 
the ideal free distribution to dynamic situations and tak-
ing into account cost of locomotion. This explains that we 

�g

�x
− F

��0

�x
− �1F

�N

�x
= 0 .
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characterize the general solution as an ideal free flow of 
optimal foragers.

In a true steady state, consistency requires that the fitness 
F can be found from the integral (5) and thus satisfies

for all x. Thus the integration constant vanishes ( c = 0 ), and 
we reach

or, isolating the density N(x):

If the total abundance, i.e., the integral ∫ N(x) dx , is 
known, then this allows us to determine F and subsequently 
the distribution N(x). Alternatively, if we assume steady-
state also for population dynamics, then the fitness F can in 
principle be determined as the energetic cost to produce an 
offspring, and this allows us to determine the distribution 
N(x) and the total abundance ∫ N(x) dx.

This establishes an equilibrium solution to the governing 
Eqs. (1) and (7) for the case where the parameters g and � are 
constant in time. This equilibrium is typically hyperbolic, 
i.e., there exist stable and unstable manifolds consisting of 
solutions that converge to, or diverge from, the equilibrium. 
These stable solutions come into play when the environment 
is stationary, but the population is initially out of steady 
state and therefore has to redistribute to reach the ideal free 
distribution. Similarly, a terminal reward can be added to 
the model so that the population will eventually depart from 
the ideal free distribution along the unstable manifold to 
pursue the terminal reward. This hyperbolic structure is a 
general feature of dynamic optimization problems (Liberzon 
2011). An important consequence of this, for the case of 
time-varying parameters, is that one should not attempt to 
solve the governing equations as initial value problems: Such 
solutions will quickly diverge along the unstable manifolds, 
which renders the solutions useless.

A numerical example

In this section we discuss a particular case of diel vertical 
migration in the ocean. The model is chosen to illustrate 
the mathematical framework as simply as possible, rather 
than to mimic a specific system. We envision a species of 
zooplankton, e.g., copepods, that are small enough that 
their movements are constrained by viscous drag and hence 
the power required is quadratic in the speed, in agreement 
with (7). We consider a relatively shallow habitat such as 

F =
g(x)

�0(x) + �1(x)N(x)
,

g(x) − �0(x)F − �1FN(x) = 0 ,

N(x) =
g(x) − F𝜇0(x)

F𝜇1

whenever N(x) > 0.

a continental shelf sea (alternatively, a deep lake), so that 
it is plausible that the simplifying condition N(t, x) > 0 
holds everywhere. The copepods are subject to predation 
by planktivorous fish, which rely on visual detection, so that 
the instantaneous mortality depends on local light levels. 
The copepods themselves, in turn, rely on mechanosensing, 
so that their feeding rates do not depend on light levels but 
only on the abundance of prey, which varies with depth but 
not with time.

Model specification

We now detail the model, i.e., the functional forms of energy 
harvest rates and mortalities. Specific parameters in the 
model are given in Table 1 and argued for at the end of this 
section.

Mortality

The density-independent mortality �0 stems from visual 
predators. We take the resulting mortality to derive directly 
from the local light intensity, which governs the distance at 
which a predator can detect its prey. Our starting point is 
therefore the surface irradiance, which varies with the time 
of day according to the periodic function

The resulting irradiance is seen in Fig. 1 (left panel). Note 
that Thygesen and Patterson (2018) take into account astron-
omy and atmosphere optics; such an effort would hardly be 
worthwhile in the present more idealized context. Below the 
water surface, light decays exponentially with absorption 

(8)Is(t) =
I0

1 + exp (A cos(2�t∕T))
.

Table 1   Parameters in the model

Symbol Parameter Value Units

H Depth 400 m
T Period 24 hour
A Amplitude of light fluctuations 13 -
� Maximum detection distance 0.02 m
� Drag 10

−6 Jh∕m2

�
1

Density-dependent mortality 1 1/hour
F Fitness 2 J
k
1

Absorption coefficient 0.02 1/m
g
0

Maximum food availability 10
−2 J/hour

k
2

Harvest decay rate 0.02 1/m
xclin Mixed layer depth 100 m
m Mortality scaling 25 m−2hour−1

I
0

Maximum irradiance 1 Wm−2nm−1

K Saturating light level 1 Wm−2nm−1
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coefficient k1 . Then the light intensity I(t, x) at depth x is 
given by

We next introduce the local detection radius r(t, x), which 
is defined as the distance at which a predator can detect 
a prey at depth x and time t. We follow the reasoning of 
Aksnes and Utne (1997) and take as detection criterion that 
enough scattered photons from a prey arrive on the preda-
tor’s retina and trigger a neural response in the predator. 
Aksnes and Utne (1997) take into account the spherical 
spread of light between prey and predator, the exponential 
decay of light along this line due to absorption, and satura-
tion in the neural response, to arrive at the transcendental 
equation

Here I is the light level from (9) and K is a saturation 
parameter reflecting the transformation of the light energy 
to neural activity. � is a compound parameter which com-
bines the optical properties of the prey with the sensitivity 
of the predator, and which can be characterized as the detec-
tion distance in clear water ( k1 = 0 ) when light is abundant 
( I → ∞ ). Once the detection distance r has been found, we 
posit that the predation mortality scales quadratically with 
the detection distance:

Here, m is a free parameter which combines the speed, 
abundance and attacking success of predators. The justifica-
tion is that predators cruise through the water with a speed 
that exceeds those of the zooplankton, effectively clearing 
cylindrical volumes (Kiørboe 2008a) in which the radius is r. 
This implicitly assumes that the density of predators is con-
stant; a simplification that could be bypassed by explicitly 
modeling the distribution and movements of predators. The 
resulting mortality is depicted in Fig. 1, right panel.

The density-dependent mortality, in turn, is considered 
constant and fixed (Table 1). This is a coarse simplification 

(9)I(t, x) = Is(t) exp(−k1x) .

(10)r2 exp(k1r) = �2
I(t, x)

K + I(t, x)
.

(11)�0(t, x) = mr2 .

of how densities of conspecifics affect the vital rates of an 
organism, and its justification is solely mathematical sim-
plicity. We return to this in the discussion.

Energy harvest rate

We assume that the energy harvest rate is greatest near the 
surface and decreases with depth. Since we do not wish to 
include an explicit model of the distribution of the phyto-
plankton or microzooplankton that are the food source of our 
focal organism, we simply assume that harvest rate g(t, x) 
depends logistically on depth:

Note that we take the harvest rate to be constant in time. 
This is consistent with copepods detecting prey using 
mechanical cues and assumes that behavior and prey density 
is constant during the day, which appears to be a reasonable 
approximation.

Model parametrization

The numerical values for parameters, as given in Table 1, are 
fixed mainly for illustrative purposes, but mimicking a case 
of an oceanic copepod of length 1 mm.

The maximum light level I0 = 1Wm−2mm−1 just below 
the surface corresponds to blue light on a typical clear 
day (Wozniak and Dera 2007, p. 4), and the light ampli-
tude A = 13 implies that the light levels at midnight are 
reduced with a factor exp(13) ≈ 4.4 ⋅ 105 corresponding to 
a full moon (Bond 1861). The day is roughly as long as 
the night, meaning that the scene is low latitudes and/
or around equinox. The absorption coefficient k1 = 0.02 
per meter corresponds to blue light in fairly clear ocean 
water (Wozniak and Dera 2007, p. 6). A saturation con-
stant of K = 1Wm−2mm−1 in the vision of the predatory 
fish implies that they are generally not limited by light 
saturation, except partly at noon and at the surface. For 
the upper limit on detection distance we take � = 2 cm in 

(12)g(t, x) =
g0

1 + exp(k2(x − xclin))
.

Fig. 1   Model components. Left 
panel: Surface irradiance I

s
(t) 

during a day. Right panel: The 
density-independent mortality 
rate �

0
(t, x) (in per hour) as a 

function of depth and time of 
day
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coarse agreement with (Munk and Kiørboe 1985). With 
these parameters, it is the spherical spread of light between 
prey and predator, rather than absorption, that determines 
the detection probability, as detection distances are short 
compared to the length scale of absorption.

The drag coefficient of 2 ⋅ 10−6 Jh∕m2 corresponds to a 
spherical body of diameter 1 mm and a viscosity of 1 mPa s 
(Sharqawy et al. 2010, Fig. 8). Here we have used Stokes’ 
law F = 6�r�v for the viscous drag, the well-known rela-
tionship between force, velocity, and power, a muscular 
efficiency of 26 % and a hydrodynamic efficiency of 1 % 
(Kiørboe 2008b), and we have converted time from seconds 
to hours.

For the maximum rate of energy uptake, Kiørboe et al. 
(2014) reports a daily egg production under ideal condi-
tions of 65 % of the body mass, with a 36 % efficiency from 
intake to eggs, and a body dry weight of 13 � g. We assume 
that the dry weight of the eggs is all protein and therefore 
has energy density 16 kJ/g. This gives an energy uptake of 
15 mJ/hour. To reflect that uptake in the field is likely lower 
than under ideal laboratory conditions, we round this down 
and use a maximum uptake of g0 = 10 mJ/hour. For the ver-
tical profile, we take a fairly gradual transition with a cline 
at xclin = 100 m and a 1∕k2 = 50 m transition zone, noting 
that the vertical structure of the oceans display considerable 
variation (de Boyer et al. 2004).

The mortality parameter m is fixed so that the maximum 
predation mortality is m�2 = 0.01 pr. hour, and the fitness F 
corresponds to the energy harvested over a time span of 200 
hours. These mortalities and life spans are within the range 
reported by Hirst and Kiørboe (2002). Note that we study a 
single day during the yearly cycle, and that constant uptakes 
and mortalities can be added to the model without changing 
the optimal migrations, so that fitness does not need to bal-
ance growth and mortality exactly.

Realizing that many of these parameters are very coarsely 
estimated, we use these parameters as a baseline and inves-
tigate also alternative scenarios, where selected key param-
eters are modified. We return to the issue of parameters in 
the discussion.

Computational scheme

We determine the periodic-in-time solution to the Eqs. (1) 
and (7) with no-flux boundary conditions (2) numerically by 
discretizing time and space and solving the resulting system 
of algebraic equations using a Newton method. To ensure 
convergence of the Newton method, we apply a homotopy 
perturbation method (Alexander and Yorke 1978; He 1999). 
Specifically, we include a homotopy perturbation parameter 
� which modifies the original Eqs. (1) and (7) to the follow-
ing system

Following the homotopy perturbation principle, the case 
� = 1 recovers the original system of equations, while for 
� = 0 we know an analytical solution: N(t, x) is constant in 
space and time, and V(t, x) ≡ 0 . Increasing the parameter � 
from 0 to 1, we track the solution, until the solution to the 
original system is obtained with � = 1.

For a given value of � ∈ (0, 1] , we find the solution using 
an iterative Newton method. At each iteration, we linearize 
the equations around the previous guess and solve the result-
ing linearized PDE system. Our experience with the numer-
ics is that these systems are all well posed so that the good 
initial guess from the previous value of � ensures that the 
Newton method converges swiftly. We have not pursued the 
theoretical question if these systems of equations are well 
posed.

We discretize both time and space using the spectral col-
location method. As functional basis we choose the Fourier 
basis with equidistant quadrature nodes for time, since we 
pursue periodic-in-time solutions, while for space we use 
a Legendre basis with Gauss–Lobatto quadrature nodes, 
respectively (Kopriva 2009). The computations are per-
formed in Python.

Results

Figure 2 displays the density N(t, x) corresponding to the 
baseline parameters in Table 1 (top left panel). During the 
daytime, the animals move to deeper waters to avoid visual 
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Fig. 2   Different simulated scenarios. Dark lines correspond to tra-
jectories of an animal. Top left: Parameters from Table 1. Top right: 
Increased cost of motion � ( ×10 ). Bottom left: Increased density-
dependent mortality �

1
 ( ×3 ). Bottom right: Increased fitness F ( ×1.5)
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predation, while at dusk they return to upper levels to ben-
efit from better feeding conditions during the night. The 
panel also displays the trajectories of 3 individual animals, 
chosen at the 25, 50, and 75 percentile of the distribution, 
respectively.

The figure also displays the results of modifying the 
underlying parameters. In the top right panel, the cost of 
motion has been increased by multiplying the parameter 
� with a factor 10. As expected, the effect of this is that 
the animals perform migrations with narrower range. In 
the bottom left panel, the parameter �1 describing density-
dependent mortality has been increased with a factor 3, 
resulting in a less concentrated distribution of animals. In 
the bottom right panel, the fitness F has been increased with 
a factor 1.5, corresponding to a situation where conditions 
are expected to improve, or where an extra constant source 
of food is available. The effect of this is that the trade-off 
between energy harvest and mortality is altered, so that the 
animals pursue more cautious strategies, i.e., follow deeper 
trajectories.

Figure  3 shows the environment that a single animal 
experiences during the course of a day. The quantile in these 
plots refer to the vertical distribution of animals, so that an 
animal with quantile 0 is always the closest animal to the 

surface while an animal with quantile 0.5 always has 50% of 
the animal population above it. Note that the model assumes 
that animals maintain their quantiles during the day, i.e., 
they do not pass each other, as this would be suboptimal. In 
the left panel, we see the light experienced by the animals. 
We see that animals, despite migration downward at dawn, 
experience much higher light levels during the day, although 
the light levels gradually decreases around noon, as the ani-
mals continue their migration. In the right panel, we see the 
instantaneous rate of change of fitness, i.e., the integrand r 
in (6) given by  (4). We see that animals closer to the surface 
experience greater daily fluctuations, where the nighttime 
provide positive change due to feeding opportunities under 
relative safety, while the daytime poses threats of mortality 
that outweigh feeding opportunities. For the deeper animals, 
the pattern is qualitatively identical but less pronounced, 
as these animals experience less fluctuating environments.

Figure  4 shows the contributions to the change in fitness, 
integrated over the single day, for different animals given 
in terms of their quantiles. The left panel shows the net 
growth (uptake minus cost of motion) as well as loss of fit-
ness due to mortality, while the right panel focuses on cost 
of transport. Note the different scales on the two horizontal 
axes; the cost of motion is orders of magnitude lower than 

Fig. 3   The environment that an animal experience during a day. In both 
panels, the horizontal axis gives the time during the day (in hours) while 
the vertical axis gives the quantile of the animal in question; 0 being the 
animal nearest the surface and 1 being the animal nearest the bottom. 

Left panel:  The light level experienced by the animal (in W∕m2∕nm ). 
Right panel:  The instantaneous rate of change in the fitness of the ani-
mal. Both panels are for the reference parameters in Table 1

Fig. 4   The components in the 
daily change in fitness. In both 
panels, the horizontal axis gives 
the change in fitness (in joules) 
while vertical axis gives the 
quantile of the animal in ques-
tion, as in Fig. 3. Left panel:  
Net growth (uptake minus cost 
of motion) (blue), loss of fitness 
due to mortality (red), and total 
gain of fitness (black) . Right 
panel:  Total cost of motion 
(green)
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the other fitness components. In the left panel, we see that 
all animals have the same loss of fitness of approximately 
0.07 J during the day, which follows from the construction 
of a Nash equilibrium between the animals. However, the 
different animals reach this total in very different ways: The 
deepest animals have hardly any growth and low mortality, 
corresponding to an expected life time of approximately 
25 days, while the animals closest to the surface only have 
an expected lifetime of about 7 days, but compensate with 
significant growth. In the right panel, we see that the cost 
of motion is generally low in comparison to the other com-
ponents, but also that the animals in the middle spend the 
most energy on migrating.

Discussion

We have considered a population distributed in space, where 
each individual moves to maximize its fitness, and shown 
that the governing equations for the bulk movement of the 
population coincides with those that describe an inviscid 
compressible fluid.

Our case study concerns diel vertical migrations of a sin-
gle species in the aquatic regime, but the problem and the 
approach has wider applicability in ecology. Most directly, 
it could be adapted to seasonal migrations, taking into 
account both costs of migrations and density dependence. 
In the aquatic regime, seasonal migrations driven by fluctua-
tions in food availability and predation risks are common 
among the fishes and have been investigated with optimiza-
tion models, for example roaches migrating between lakes 
and streams (Brönmark et al. 2008). We speculate that the 
approach could be applied to seasonal migrations of birds, 
insects, and terrestrial herbivores. Each of these applica-
tions possesses features that would require adaptation of 
the framework, such as intermittent migration of herbivores 
(Owen-Smith et al. 2010) and the effects of wind on long-
range migration of insects (Chapman et al. 2015). Since the 
analysis provides both spatial distributions and trajectories 
of individual animals, data both at individual and population 
level can be used to inform, parametrize, and validate the 
models. The outcome of such modeling studies could be to 
predict changes in distributions and migratory behavior as 
results of changing environmental conditions.

At a higher level of abstraction, the approach can be 
generalized from movements in physical space to describe 
also changes in other state variables of the animal, such as 
body size. This would make the approach applicable to size-
structured communities (Andersen 2019), where organisms 
face a growth/mortality trade-off which is influenced by the 
size composition in their community. In a broader sense, 
our study was motivated by the quest for mathematical 
techniques to support the trait-based approach to ecology 

(Kiørboe et al. 2018). Here, we believe that a natural and 
promising starting point is mean-field games, where indi-
viduals aim to maximize fitness in environments that are 
shaped by the behavior of other animals.

Many of these potential applications involve multiple 
interacting species, so a topic of future studies is to include 
predator–prey interactions or competition between multiple 
species. While this is straightforward, in principle, the mod-
eling efforts will grow with the complexity of the system, 
as will the computational challenges, so case studies must 
be designed carefully. A first step could be to apply the 
present modeling framework to the system of Thygesen and 
Patterson (2018).

When parameters are constant in time, the ideal free dis-
tribution emerges as a special solution, and thus our model 
is a dynamic generalization of the ideal free distribution. 
There are several alternative approaches to such dynamic 
ideal free distributions: Cosner (2005) posed a partial differ-
ential equation, the equilibrium solution of which is the ideal 
free distribution. Cantrell et al. (2021) used the framework 
of adaptive dynamics to derive an evolutionarily stable dis-
persal strategy, and recently, Cantrell et al. (2010) extended 
the framework to path-dependent fitness in time-periodic 
environments. A key distinguishing element between mod-
els is the assumed information available to the animals. 
In standard chemotaxis models (Okubo and Levin 2001), 
animals infer on local conditions from sensory inputs, and 
Cantrell and Cosner (2018) showed that local information 
could yield the ideal free distribution in a stationary environ-
ment, but not in a time-periodic one. Here, we have made the 
idealization that animals are perfectly aware of both current 
and future conditions in the entire domain. Thus, our model 
can explain motion in response to periodic fluctuations in 
conditions, which have remained stable over evolutionary 
timescales. Diel and seasonal migrations are the most imme-
diate examples of such motion.

We have not addressed if and how actual animals can fol-
low the optimal trajectories that we have identified. In our 
case study, the solutions resemble qualitatively the widely 
documented diel vertical migrations of zooplankton (Klevjer 
et al. 2016), but we have refrained from a more quantitative 
comparison at a specific time, place, and for a given species. 
It is plausible that similar motions can be implemented with 
simple behavioral rules, for example, pursuing a constant 
light intensity while avoiding high densities of conspecif-
ics as and excessive movements. The rationale behind the 
current study is that evolution has established some mecha-
nism which yields patterns that resemble optimal ones. An 
interesting avenue of future research would be to extend the 
sensitivity study lying under Fig. 2 to examine also to which 
degrees such different trajectories can be obtained by sim-
ple behavioral rules. Such a study would arguably be more 
worthwhile in a more specific setting, parameterized for a 
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particular species and system, as opposed to the idealized 
and generic settings of the current study.

In the periodic solutions we establish, all animals obtain 
by definition the same increase in fitness over the day, even 
if this increase may be distributed over the period differ-
ently for different animals. However, the animals closer to 
the surface obtain this increase by aggressively pursuing 
high growth rates, thus also enduring high mortalities. In 
contrast, the deeper animals have slower growth and lower 
mortality; also, different animals incur very different costs 
of locomotion. Thus, the population spans a niche in which 
different zones call for different specialized adaptations, and 
it is plausible that there are limits to how wide this niche 
can be while still remain in the scope of the species. These 
considerations are beyond the present modeling study, but 
would be interesting to pursue.

At a technical level, we established the governing equa-
tions using calculus of variations. The most common 
approach in studies of mean field games is to include diffu-
sion and pose a Hamilton–Jacobi–Bellman equation, which 
would govern the optimization problem of the individual 
animal, in which the density of conspecifics enter as data. 
Here, without diffusive motion in the model, calculus of vari-
ations seems more direct and also yields the similarity with 
the Euler equations of fluid dynamics. However, the model 
can yield regions that are completely void of animals due to 
disadvantageous conditions at a given point in time, in the 
same way the ideal free distribution may predict void regions. 
Voids are numerically challenging, so we chose param-
eters for our numerical case study to avoid such regions. It 
would be interesting to investigate if such void regions can 
be resolved numerically using techniques from free surface 
flows, but pragmatically they can also be avoided by includ-
ing a small diffusivity as a regularization parameter. With 
diffusion, the Hamilton–Jacobi–Bellman approach appears 
stronger. We intend to pursue more efficient numerical meth-
ods in future studies, so that wider regions in parameter space 
can be explored, and so that regions void or almost-void of 
animals can be investigated.

Computational practicalities aside, ecological reason-
ing would justify the inclusion of diffusion in the model of 
motion (Okubo and Levin 2001): The small aquatic animals 
we have in mind generally move unpredictably, which can 
be modeled as biased random walks and represented with 
diffusion terms in the governing equations, and are subject 
to turbulence which can also be represented by diffusion. In 
the interest of sparsity we have omitted diffusion from the 
model, noting that the main effect of diffusivity—to make 
animals spread out—is found in the model thanks to the 
density dependence of fitness, which gives the animals an 
incentive to disperse.

Our numerical analysis has employed spectral meth-
ods, while the common choice in numerical analysis of 

mean field games is finite difference methods (Achdou and 
Capuzzo-Dolcetta 2010; Achdou and Lasry 2019). The time 
periodicity of the domain, and the expected smoothness of 
the solution, motivated our choice. While spectral methods 
in this case give relatively high fidelity with relatively few 
basis functions, it is more difficult to establish properties of 
the discretized operators which guarantee convergence of 
the iterative solvers. Although the homotopy principle per-
formed well, we believe that this issue underlies the numeri-
cal problems we encountered when pushing the limits of 
parameters space, in particular, as regions in space become 
almost-void of animals. We aim to investigate this further 
in future studies.

Our model is built using simplified functional forms, which 
could be expanded in future studies. First, our cost of move-
ment is quadratic in the speed. This describes the energy spent 
on propulsion in creeping flow, which is justifiable for small 
animals. Other forms could include inviscid flows, which 
would lead to a cubic relationship between speed and cost, 
lost opportunity as described, e.g., by Thygesen et al. (2016), 
or increased conspicuousness to predators (Kiørboe et al. 
1985). A second simplification is that the cost depends lin-
early on the density of conspecifics. A mechanistically based 
density dependence is not trivial to include in the model, as 
it could involve both interference in the foraging of conspe-
cifics and attraction of predators to patches of conspecifics. 
Both of these extensions point in the direction of two-species 
models, or more generally multi-species models, which we 
aim to address in future studies. In the present study, the role 
of density dependent is to avoid singular distributions, i.e., all 
animals following the same trajectory, whereas the specifics 
of the density-dependent term is rather arbitrary. Another sim-
plification is the form of the nutrient uptake, i.e., the term g in 
(4). It simple to extend this uptake to reflect a specific habitat 
with higher fidelity, but a more substantial extension, which 
would require quite different techniques for analysis, would be 
to include the dynamics and constraints of stomach fullness.

In our case study, the parameters have been chosen with 
a view toward oceanic copepods, but without being explicit 
about the system and the species. The justification for this 
is that the case is primarily motivated to illustrate the theo-
retical framework, and it must be acknowledged that several 
key parameters are not well known; in particular, the density 
dependence and the fitness. Therefore, sensitivity studies 
remain an important element of any study.

Our model is based on a time scale separation, where 
we argue that population dynamics can be ignored when 
studying a single day, even if mortality is high enough that 
animals take it into account when choosing diel strategies. 
The copepods in our case have a life time of weeks, which is 
arguably around the lower limit for the time scale separation 
to be justifiable. It would be easy to include mortality in the 
conservation equation, and correspondingly make the fitness 
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a function of time, but we would then pursue quasi-periodic 
solutions rather than strictly periodic ones, and the benefit 
of including mortality explicitly would be questionable. 
Reproduction would be more difficult to include, as such a 
model would probably also have to include seasonal fluctua-
tions in conditions, the stage structure of the populations in 
question, and the life history of the individual. Extending 
the model in these directions would perhaps be simple from 
a conceptual perspective, but tedious in terms of modeling 
and computations, and we believe that such an effort would 
not result in increased clarity compared to our approach of 
investigating a fast periodic pattern during which life history 
can be neglected.

We have emphasized the analogy between our governing 
equations and the Euler equations of fluid dynamics which 
describe compressible inviscid fluids. In this analogy, the 
density-independent terms in growth and mortality serve 
as an exogenous potential that varies in time and space 
and which drives the motion, while the density-dependent 
terms correspond to the thermodynamic concept of pressure. 
This analogy gives conceptual insight which may appeal in 
particular to ocean ecologists, as fluid flows already play a 
fundamental role in shaping oceanic habitats as well as the 
vital rates of animals that move and forage in these habitats. 
The analogy also gives access to a rich toolbox for analysis, 
including established numerical methods.

Nevertheless, there are important differences between 
the motion of animals and those of fluid particles, even 
within the model. First, while the potential in a physical 
model corresponds to net growth in a behavioral optimiza-
tion model, we expect a compressible fluid to concentrate 
where the potential is lowest, while we expect animals to 
aggregate where the net growth rate is highest. Similarly, 
it may seem disturbing that the “pressure” of animals is 
negative and decreases with the density. These observa-
tions are related to the solutions of interest: While focus 
of fluid mechanics is, generally, on (Lyapunov) stable solu-
tions or attractors, the solutions of interest for the motion 
of animals are intrinsically unstable when viewed as initial 
value problems.

This also contrasts our model to the typical advection– 
diffusion equations in spatial ecology: In our case, the solu-
tions are stabilized by the animals looking ahead in time 
when taking decisions and responding to anticipated events 
such as sunrise, so information travels backward while densi-
ties evolve forwards. This is the situation for optimal control 
problems (Liberzon 2011) as well as for mean-field differ-
ential games (Lasry and Lions 2007; Achdou and Capuzzo-
Dolcetta 2010). For numerical analysis, one can therefore 
not rely on time stepping (neither forward nor backward),  
which is the reason we in this paper have focused on time-
periodic solutions, as was also done by Achdou and Capuzzo- 
Dolcetta (2010). Alternatively, one may consider mixed 

initial/terminal value problems, as was done by Achdou  
and Lasry (2019) for human pedestrians.

In conclusion, we have established a framework consist-
ing of partial differential equations governing the optimal 
motion of individual members of a population in response to 
periodically fluctuating environmental conditions. The equa-
tions are similar to those governing fluid flows, so that their 
solutions describe ideal free flows of optimal foragers. We 
have investigated a particular case, in an idealized setting, 
of planktonic copepods performing diel vertical migrations 
in the water column in response to sunrise and sunset, and 
shown that the model predicts patterns which are similar 
to those empirically observed. In general, we believe that 
the framework of differential mean field games has wide 
applications in ecology. More specifically, we believe that 
viewing migrating animals as elements in ideal free flows 
can illuminate animal migration and offers rich opportunities 
for further development, both in terms of theoretical analysis 
and specific case studies.
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Abstract

We present a theoretical framework, based on differential mean field
games, for expressing diel vertical migration in the ocean as a game with
a continuum of players. In such a game each agent partially controls its
own state by adjusting its vertical velocity but the vertical position in
a water column also subject to random fluctuations. A representative
player has to make decisions based on aggregated information about the
states of the other players. For this vertical differential game we derive
a mean field system of partial differential equations for finding a Nash
equilibrium for the whole population. It turns out that finding Nash
equilibria in the game is equivalent to solving a PDE-constrained opti-
mization problem, which we derive under constant approximation of the
expected fitness of the representative player and solve both formulations
numerically. We illustrate the results on simple numerical examples and
construct several test cases to compare the two analytical approaches.

Keywords: Vertical migration, Optimal behavior, Mean field games, Habitat
selection
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1 Introduction

Mean field game theory, introduced by Lasry and Lions in Lasry and Lions
(2007), models games with a large number of interacting agents in the limit
as the number of players goes to infinity N → +∞. To make the limiting case
traceable it is usually assumed that all the players are equivalent, meaning
that they share the same set of admissible strategies and have identical struc-
ture of the utility function, but see for example Carmona and Zhu (2016);
Bensoussan et al (2018) for games with relaxed assumption on the symmetry
between the players. Every agent has access to aggregated information about
the organization of the population and has to make decisions based on the
mean field structure of the available information about the surrounding envi-
ronment. In turn, individual decisions of each agent change the macroscopic
organization of the whole population. Mean field game theory has a number
of applications in economic theory and financial engineering Carmona (2020);
Gomes et al (2015); Bertucci et al (2020), behaviour of crowds Carmona and
Delarue (2018a) and policy design Carmona (2016).

Another domain with large populations of interacting agents is ecol-
ogy, where animals may interact through predation and compete for limited
resources. One example of a game with a vast number of players is diel vertical
migration in aquatic systems, which is believed to constitute the largest move-
ment of biomass on the planet and is ubiquitous in the ocean Brierley (2014).
In the migration process animals remain in deep water layers during daylight
hours to avoid visual predators and migrate to upper levels in a water column
at dusk to feed.

This manuscript contributes to a series of papers to understand and model
diel vertical migration using a game theoretical framework. The first work to
our knowledge is Iwasa (1982) where the author constructed a matrix game
model of the phenomenon. Established results were pushed further by several
authors, for example: the work Sainmont et al (2013) divided the water column
in two layers – namely, surface and depth. However, these solutions are not
evolutionarily stable due to absence of self-interaction Gabriel and Thomas
(1988). The paper Pinti and Visser (2019) increased the spatial resolution but
kept the time resolution in two states – day and night time periods. These
models use coarse resolution in either space or time (or both), thus giving a very
crude approximation of the positions and strategies of the players at transition
time period – at dawn and dusk. The work Thygesen and Patterson (2019)
modeled vertical migrations in continuous space and time, using control theory
tools Liberzon (2011) for finding optimal strategies of the animals. It allows to
resolve the narrow time frame at dawn and dusk and a more direct comparison
to data. However, the resulting modeling framework is more technical and
the paper Thygesen and Patterson (2019) ignored the costs and constraints
of locomotion. The model from Thygesen and Mazuryn (2022) resolves the
dynamics in continuous space and time taking into account the cost of motion,
but the equations are limited to the shallow water case, where the optimal
density of the players is strictly positive at each point of a water column. The
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aim of this manuscript is to extend our previous modelling framework from
Thygesen and Mazuryn (2022) with added random fluctuations in the vertical
position of the agents to cover all depth ranges. In contrast to the previous
paper, we utilize the Feynman-Kac formula Kac (1949) to derive the resulting
mean field system with the previous model being a special case of the new one.

Here, we model diel vertical migration as a mean field game with a contin-
uum of individuals and apply the mean field game theoretical framework to
describe Nash equilibrium in terms of partial differential equations. We add
random fluctuations to the state of each agent which might be due to incom-
plete perception of the surrounding environment or random forces acting on
the individual, e.g. from turbulence. It is important to stress that any two
agents have independent trajectories of the white noise realizations. The case
with correlated noise, common noise or shocks Carmona and Delarue (2018a,b)
will not be considered in this manuscript.

An important contribution of this work is establishing two equivalent for-
mulations of the problem: as a system of partial differential equations via mean
field limit or, under quasi-static approximation, as a PDE-constrained opti-
mization problem. This equivalence allows access to a wide range of analytical
tools to study the problem analytically and numerically.

2 Method

2.1 The vertical game formulation

We consider a population of generic species distributed in a water column

[0, H] of maximum depth H with X
(i)
t as the vertical position of i-th player at

time t. Our model includes only vertical migration of the agents and disregards
horizontal dynamics. We model diel vertical migration of marine organisms as
a game with infinitely many players where each animal plays against others,
seeking regions with high concentration of food and low mortality subject

to cost of motion. The vertical speed V
(i)
t can be considered as a strategy

the i-th player can choose to play against other agents. Sometimes we will

utilize control theory terminology and refer to X
(i)
t and V

(i)
t as a state of the

individual and its control, respectively.
It is assumed that all the players are identical and the information an agent

has access to is a mean field type, i.e. each player can only see aggregated
information about the population. Due to the symmetry between the players
we choose a representative player to model the behaviour of the whole pop-
ulation. To highlight indistinguishability of the agents in the game we omit
upper indexes in the state Xt and the control Vt variables and consider them
as vertical coordinate and speed of the representative player, respectively.

The position dynamics of the representative agent in the water column is
driven by the stochastic differential equation:

dXt = Vt dt+ σ dBt, (1)
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with Bt as standard Brownian motion scaled with constant noise level σ and
each player in the population has an independent realization of the Brownian
motion. The scaling factor σ is the same for all the players.

The equation (1) describes vertical motion of the representative player who
can control its vertical speed Vt at each moment of time subject to uncontrolled
external random fluctuations σ dBt of its vertical position. We impose reflective
boundary condition on the surface and the bottom of the water column [0, H]
assuming that no new agents can appear through the boundary.

Each player in this vertical game optimizes the fitness functional over its
lifetime period:

J(V ) = EX0=x

[∫ τ

0

g(Xs, s)−
ν

2
V 2(Xs, s) ds

]
, (2)

where τ is a random time of death of the representative player. For the process
Xt to be alive means that for t < τ it follows the equation (1), while for time
t ≥ τ after the ”death” we assume that the process enters a special ”coffin”
state Xt = ∂ and stays there for t ≥ τ Oksendal (2013). The killing rate is
defined as:

µ(x, t) = lim
s→0

1

s
PXt=x [Xt+s = ∂] , x 6= ∂

Further in the text we use terms killing rate and risk rate interchangeably.
The functional (2) represents the fitness of the representative player defined

as expected accumulated energy of the player over the lifetime period following
the trajectory Xt and the vertical speed Vt, which are coupled by the stochastic
differential equation (1). Expression of the functional favours regions of high
food concentration with the energy harvest rate g and avoids visiting regions
with high mortality rate µ, which is implicitly present through the death time
τ of the agent. The functional takes into account the cost of locomotion by
penalizing quick changes in the vertical position of the player. We assume that
our animals are small enough, for example copepods or other zooplankton,
to keep the cost of motion proportional to squared vertical speed with drag
coefficient ν.

The risk rate µ is defined as:

µ(x, t) = µ0(x, t) + µ1N(x, t). (3)

The risk rate is composed of density independent mortality rate µ0, which
represents the risk of encounter of a single agent with visual predators and
defined as a function of light abundance, and the density dependent mortality
term µ1N which penalizes aggregation of the players. The latter term in (3) is
a mean field component of the model which describes the interaction between
the representative player and the whole population.

We fix the time period T = 24 hours and assume that both harvest g and
density independent mortality µ0 rates are periodic functions with a period T ,
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i.e. all days are identical and seasonal fluctuations are disregarded. The selected
time period is small enough to neglect population dynamics and fluctuations
in the population size. We fix the total biomass in the water column and
normalize it to 1. Now the optimal density N can be considered as a probability
distribution of finding a player in a specified depth range at a fixed point of
time.

Utilizing the above mentioned symmetry assumption we are looking for the
vertical speed as a Markovian closed loop control in the form V = V (Xt, t),
i.e. the optimal strategy for the representative player is a function of its state
Xt at time t. With periodic mortality µ0 and harvest g terms we are looking
for a time-periodic solution pair (N,V ) to the differential game.

2.2 Mean field system

The outlined formulation of the game as a control problem with the state (1)
and the objective functional (2) can be transformed into a system of partial
differential equations via the mean-field limit. The idea is to utilize the pos-
tulated symmetry of the information and the fact that the game has infinite
number of players. It allows to zoom out from the individual-level dynamics
of the representative player descried by the stochastic differential equation (1)
and consider the time evolution of the population density.

The stochastic differential equation (1), which governs evolution of the
vertical position of the representative player, is consistent with the forward
Kolmogorov or Fokker-Plank equation:

∂N

∂t
= −∂(NV )

∂x
+
σ2

2

∂2N

∂x2
. (4)

We omit mortality and source terms in the forward Kolmogorov equation
from the random death time τ because we are solving the vertical game in a
short time period, relative to the lifetime of the players, where the population
dynamics can be disregarded.

The no-flux condition on the boundary x = {0, H} of the water column is
expressed as:

NV − σ2

2

∂N

∂x
= 0. (5)

The normalization condition for the total biomass is written as:

∫ H

0

N(y, t) dy = 1,

for time t ∈ [0, T ].
We define the value function U for a given density N as the expected

fitness of the representative player starting in Xt = x at time t and who plays
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optimally:

U(x, t) = sup
V

EXt=x
[∫ +∞

t

(
g(Xs, s)−

ν

2
V 2(Xs, s)

)
e−

∫ s
t
µ(Xξ,ξ) dξ ds

]
, x 6= ∂

(6)

conditional on the representative playing the optimal strategy V . The exponent
in the expression (6) is the conditional probability of the player being alive. We
would like to find the optimal velocity field V which maximizes the expected
fitness of the representative player.

The integral in the expression (6) exists by the dominated convergence
theorem Rudin et al (1976) because both terms g and V are bounded functions
and the integral in the exponent is a nonnegative bounded number. Invoking
the Feynman-Kac formula Kac (1949), the fitness U from (6) is the solution to:

∂U

∂t
+ sup

v

(
LU + g − νv2

2

)
= 0, (7)

where the generator L is defined as the differential operator:

LU = v
∂U

∂x
+
σ2

2

∂2U

∂x2
− µU.

Similar to Thygesen (2022), we can use the duality argument between the
forward and backward Kolmogorov equations to establish that reflection at
the boundaries x ∈ {0, H} from (5) corresponds to a homogeneous Neumann
boundary condition for the function U :

∂U

∂x
(x, t) = 0 for x ∈ {0, H}

The interval of our interest for the control problem is [0, T ] due to the
periodicity assumption. The boundary condition for the value function on the
interval is U(x, 0) = U(x, T ), meaning that the expected fitness of the repre-
sentative player at t = 0 is the same as at t = T , assuming that the player
survives during the one day time interval.

As the function inside the supremum in (7) is a concave quadratic function
of the argument v, the global maximum exists and is attained at V = 1

ν
∂U
∂x .
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Substituting the form for the optimal velocity V into the Hamilton-Jacobi-
Bellman equation we arrive to the following mean field system:





∂N
∂t = −∂(NV )

∂x + σ2

2
∂2N
∂x2 (x, t) ∈ (0, H)× (0, T )

∂U
∂t + 1

2ν

(
∂U
∂x

)2
+ σ2

2
∂2U
∂x2 + g − U(µ0 + µ1N) = 0 (x, t) ∈ (0, H)× (0, T )∫H

0
N(y, t) dy = 1 t ∈ [0, T ]

U(x, 0) = U(x, T ) x ∈ [0, H]

N(x, 0) = N(x, T ) x ∈ [0, H]

(NV − σ2

2
∂N
∂x )(x, t) = 0 x ∈ {0, H}

∂U
∂x (x, t) = 0 x ∈ {0, H}
V = 1

ν
∂U
∂x

(8)

The PDE system (8) is similar to the one from Thygesen and Mazuryn
(2022) with a couple of major differences: now there is a diffusion term in the
Fokker-Plank equation due to the randomness in the vertical position of the
representative player. And, since we don’t impose the quasi-static approxima-
tion for the value function, the mortality term in the Hamilton-Jacobi-Bellman
equation includes U instead of a constant approximation of the expected
fitness.

Our modelling set-up is not covered by the contemporary existence and
uniqueness theorems in the mean field game theory literature Lasry and Lions
(2007); Carmona (2016); Carmona and Delarue (2018a,b), therefore we use
the verification theorem approach for the Hamilton-Jacobi-Bellman equation
Oksendal (2013): if we can solve the PDE system (8), then we have found
a Nash equilibrium of the vertical game and the optimal control exists and
indeed is given by V = 1

ν
∂U
∂x . Numerical analysis will reveal if the solution is

locally unique, i.e. if the differential equations are locally well-posed.

2.3 PDE-constrained optimization formulation

In this section we aim to show that the Nash equilibrium in the differential
mean field game can also be found through a related (but different) optimiza-
tion over the population. One of the reasons to consider this equivalence is
due to flexibility of choice for numerical methods when solving the vertical
game. We can use optimization-based methods for solving a PDE-constrained
optimization problem rather than equation-solving methods for the system (8).

For simplicity, we consider the mean field limit where the animals are long
lived relative to the day, so that fluctuations in the value function U over the
one day time can be neglected. Then a system of PDEs similar to (8) appears
by replacing U with a constant approximate fitness F . Each individual in the



Springer Nature 2021 LATEX template

8 Mean field games for diel vertical migration with diffusion

new game optimizes the fitness functional:

J(V ) = EX0=x

[∫ 24

0

g(Xs, s)− Fµ(Xs, s)−
ν

2
V 2(Xs, s) ds

]
, (9)

with the state subject to (1). The deterministic version of this game has been
extensively studied in the paper Thygesen and Mazuryn (2022) and here we
will discuss another analytical approach for finding the Nash equilibrium.

To find the pair (N,V ) for the quasi-static vertical game (9) we consider
the following PDE-constrained optimization problem:

max
N,V

∫ H

0

∫ T

0

(
g − F

(
µ0 +

µ1N

2

)
− νV 2

2

)
N dsdy, (10)

subject to the forward Kolmogorov equation:

∂N

∂t
= −∂(NV )

∂x
+
σ2

2

∂2N

∂x2
, (11)

with the zero-flux, periodic and normalization conditions on the density N and
control V from the PDE system (8). The constant F here is an approximate
expected fitness of the representative player until death.

It should be noted that the objective functional (10) in the optimization
problem is almost identical to the expected fitness (9) from the formulation
of the mean field system. The only difference is in the term which describes
interaction between an individual player and the aggregate of other agents
µ1N/2, which is another manifestation of the intrinsic structure of the mean
field game. It turns out that all the players as the whole optimize a slightly
different quantity than the total fitness of the population.

The equivalence comes from the fact that the differential game with the
objective (9) has a potential structure Lasry and Lions (2007), when the run-
ning cost is a functional derivative De los Reyes (2015) of some potential. It
turns out that solving a game with the potential structure is equivalent to
solving the PDE-constrained optimization problem (10). Similar observations
on the differential games have been made in the paper Lasry and Lions (2007)
and we include the equivalence argument here because our form of the cost
functional is slightly different and to keep the presentation self-contained.

One way to establish the correspondence is to consider the functional
equivalent of the method of Lagrange multipliers for the PDE-constrained opti-
mization problem by writing the corresponding optimality system De los Reyes
(2015) for the PDE-constrained problem. The Lagrange functional associated
to the constrained problem (10) has the following form:

L(N,V, p) =

〈
g − F

(
µ0 +

µ1N

2

)
− νV 2

2
, N

〉
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−
〈
∂N

∂t
+
∂(NV )

∂x
− σ2

2

∂2N

∂x2
, p

〉
,

where p is a Lagrange multiplier corresponding to the constraint (11). The
brackets here indicate inner product, i.e. integrals over both space and time.

We calculate functional derivatives of the Lagrange functional L with
respect to each of the variables N,V and p along admissible directions by inte-
grating the corresponding integrals by parts and setting them to be equal to
zero.

LN (N,V, p)δN =

〈
g − F (µ0 + µ1N)− νV 2

2

+
∂p

∂t
+
∂p

∂x
V +

σ2

2

∂2p

∂x2
, δN

〉

−
∮

∂Ωt={0,T}

pδN · ndα− σ2

2

∮

∂Ωx={0,H}

∂p

∂x
δN · n dα

= 0.

(12)

LV (N,V, p)δV =

〈
N

(
∂p

∂x
− νV

)
, δV

〉
= 0. (13)

Lp(N,V, p)δp = −
〈
∂N

∂t
+
∂(NV )

∂x
− σ2

2

∂2N

∂x2
, δp

〉
= 0. (14)

These equalities should hold along any admissible direction δN , δV and
δp. We are not particularly concerned about which functional spaces these
functions belong to, only them being admissible directions.

The expression (14) yields the forward Kolmogorov equation from the mean
field system (8). From (13) we arrive to V = 1

ν
∂p
∂x , which establishes the relation

between the adjoint state p and the velocity field V , similar to the one we
established between the value function U and the optimal control V in (8). The
first term in the equation (12) yields the Hamilton-Jacobi-Bellman equation
from (8) replacing the co-state p with the value function U and applying the
quasi-static approximation of the expected fitness. The contour integrals give
the time periodicity condition for the co-state as a function of time and the
homogeneous Neumann boundary condition for p along ∂Ωx={0,H} part of the
domain boundary.

One more thing to note is that the constrained optimization problem (10)
optimizes over all admissible pairs (N,V ). Due to nonzero diffusivity parameter
σ we can optimize over the vertical speed V and retrieve the corresponding
optimal density N from the forward Kolmogorov equation due to its well-
posedness.
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3 Numerical study

In this section we take the system of PDEs (8) and solve it numerically for
different parameter scenarios. Specific forms of the harvest and mortality rates
are taken from our previous paper and here we briefly present essential parts
of the model to make the text self-contained. For a more detailed discussion on
the model parameters we refer to Thygesen and Mazuryn (2022). The model
is inspired by the vertical migration of zooplankton subject to visual predators
like planktivorous fish. It will be shown that daily fluctuations in the light
levels at depth cause diel vertical migration of the animals.

3.1 Model set-up

We incorporate only visual predation in the model with the mortality rate µ0

which corresponds to the chance of being detected and eaten by a predator
(planktivorous fish). The encounter risk is proportional to the surface area
of a detection sphere – a theoretical concept which denotes a ball around a
predator of the critical radius r, where enough scattered photons from a prey
arrive on the predator’s eye and trigger a neural response.

The surface illumination is a periodic function with a period T :

Is(t) =
I0

1 + exp (A cos(2πt/T ))

At depth in the water column the light intensity decays exponentially with
the absorption coefficient k1:

I(x, t) = Is(t) exp(−k1x)

By r we denote radius of the detection sphere with center at depth x at
time t. Utilizing the visual range model with saturation from Aksnes and Utne
(1997) yields:

r2 exp(k1r) = γ2 I(x, t)

K + I(x, t)

The parameter γ here combines the reflection properties of the prey with the
visual sensitivity of the predator eye.

Then the risk rate µ0 is proportional to surface area of the detection sphere
with the scaling constant m plus the baseline mortality µbase – a constant
mortality rate due to other causes than predation:

µ0(x, t) = mr2 + µbase

The energy harvest rate g is proportional to the food abundance in the
environment – phytoplankton concentration for this specific example. For the
sake of simplicity, to avoid explicit modelling phytoplankton distribution in the
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Symbol Parameter Value Units
H Depth 500 m
T Period 24 hour
I0 Maximum irradiance 1 W m−2 nm−1

K Saturating light level 1 W m−2 nm−1

γ Maximum detection distance 0.02 m
k1 Absorption coefficient 0.02 m−1

A Amplitude of light fluctuations 13 -
ν Drag 10−6 J h m−2

σ2 Diffusion 20 m2 hour−1

µ1 Density-dependent mortality 1 hour−1

m Mortality scaling 100 m−2 hour−1

µbase Baseline mortality 10−5 hour−1

k2 Harvest decay rate 0.02 m−1

g0 Maximum food availability 0.01 J hour−1

xclin Mixed layer depth 100 m

Table 1 Model parameters mostly from Thygesen and Mazuryn (2022) with added
diffusivity and baseline mortality.

sea, we assume that the harvest rate is time invariant and depends logistically
on depth:

g(x, t) =
g0

1 + exp(k2(x− xclin))

3.2 Numerical methods

To calculate numerical solutions we discretize the system (8) with a spec-
tral element scheme using the FEniCS package. The computational domain
[0, H] × [0, T ] is triangulated and the analytical solution is approximated by
polynomials with pre-defined degrees on each triangle. In calculations we select
first and second order polynomials to approximate the unknown function pair
(N,V ).

The discretized version of the PDE system is solved by a Newton-type
method where we can control the step size. This approach is different from
the paper Thygesen and Mazuryn (2022), where we developed the homotopy
method and solve a sequence of auxiliary problems to find a Nash equilibrium
in the vertical game.

The numerical approximation of the equivalent PDE-constrained opti-
mization problem (10) and its comparison with the mean field system (8) is
presented in Appendix B.

3.3 Numerical results

We take the parameters from Table 1 and numerically solve the system of
partial differential equations (8). Figure 1 displays the optimal distribution
N of the population in the water column for the fixed time period with the
optimal vertical velocity field V .
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Fig. 1 Nash equilibrium for the model parameters from Table 1. Left panel : Optimal density
N . Middle panel : Value function U . Right panel : Vertical velocity field V .

During daytime hours the animals move to deep water layers with low light
intensity to reduce the encounter rate with the visual predators as in Figure
1 (left panel). When light intensity decreases at dusk, the players return to
upper layers with decreased mortality risk near the surface to benefit from
higher nutrient concentration. It should be noted that the optimal density N is
symmetric around t = 12 hours which, as expected, comes from the symmetry
of the model parameters.

Naively, one would anticipate a symmetric velocity profile V by looking
at the symmetry of the optimal density in Figure 1 (right panel). In contrast
to the density N , the vertical speed field is not an odd function. The model
predicts that at around t = 10 animals descend faster than they ascend at
around t = 16 and it is due to high risk of being close to the surface during
daytime. The speed distribution shows that if an agent gets in that region by
influence of the error σ dBt in the vertical position, then it should leave the
region immediately even at a cost of high speed.

The origin of the asymmetry comes from the state dynamics (1) of the
representative player. Two processes contribute to the final position of the
agent: the player can only control the advection part by choosing appropriate
vertical speed, while the diffusion process is left uncontrolled. The agent tries
to compensate contribution of the diffusion part to the position in the water
column by adjusting its vertical speed. We refer to Appendix A for a more
analytical discussion on the observed asymmetry in Figure 1 and numerical
study of the analytical model for various noise levels σ.

Figure 2 displays optimal densitiesN and the corresponding value functions
U of simulating several modelling scenarios with modified model parameters.
In the top row panels we fix the baseline case from Figure 1 discussed above. We
add black lines which correspond to mean trajectories of 3 individual players
for a better visualization of impact of the parameters on individual dynamics.
In the middle panels, the cost of motion has been increased by multiplying
the drag parameter ν with a factor 10. As expected, now the players are less
inclined to move and stay in the preferred water level. In the bottom row,
the risk rate µ1 describing density-dependent mortality has been decreased by
a factor 10, which can correspond to decreasing predator abundance in the
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Fig. 2 Sensitivity of the Nash equilibrium for several model set-ups. Top row : Baseline case
with the parameters from Table 1. Middle row : Increased cost of motion ν (×10). Bottom
row : Reduced density-dependent mortality µ1 (×0.1).

water column. Reduced number of predators makes beneficial high aggregation
of the players. Now the fitness is increased (right figure), and, therefore, the
animals not only aggregate more but also go deeper during the daytime to
avoid the risky region near the surface with high probability of being seen by
the predators.

4 Discussion

The starting point of this paper was our model proposed in Thygesen and
Mazuryn (2022), and in particular its limitation to the cases where there are no
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void regions – parts in a water column where the optimal density function has
zero values. The issue comes from the fact that it is not clear how to properly
define the vertical speed of a player in the void regions without animals. We
refer to set-ups with empty regions as the ”deep water problem”.

In this paper, we have presented a novel model which addresses the issues
with the zero concentration regions, covering deep water scenarios by includ-
ing randomness to the model. Now the players in the vertical game can adjust
their vertical position by controlling their vertical speed with random distur-
bances in the state. The diffusivity ensures that there are, in fact, no strictly
void regions. While the model in Thygesen and Mazuryn (2022) used the Euler-
Lagrange approach, we have in here employed a Hamilton-Jacobi-Bellman
formulation, in which it is well defined what is the optimal vertical speed,
even in regions where there are no animals – the speed of a hypothetical agent
which happens to find itself there even if it shouldn’t be there.

Diffusion terms in PDE models are common in ecology, see for exam-
ple Okubo and Levin (2001), and randomness can correspond to errors in
decision-making of the animals due to incomplete perception of the surround-
ing environment and emerge from search-type movements. This is reflected in
the empirical fact that animals move unpredictably, but it can also result from
structure of water flow, i.e. turbulence. In this latter case, though, one would
expect correlation between neighboring animals. It is important to emphasize
importance of the assumption about independence of white noise processes for
each player. Cases with correlated noise, as for the case with turbulence in
the water column, lead to systems of stochastic partial differential equations
which dramatically increase complexity of analytical and numerical traceabil-
ity of the resulting models. This type of mean field differential games with
common noise is not considered here and serves as a potential extension of the
established results in this manuscript.

The model includes the density dependent mortality term, which can be
due to higher detection rate of animals in big groups. But this ”group” inter-
pretation is only one possible mechanism of the density dependence. As one
alternative explanation of the mean field term is density dependent forag-
ing when a higher resource availability typically attracts higher concentration
animals which results in a competition for the limited resource.

While deriving the final model we take another approach than in our previ-
ous paper Thygesen and Mazuryn (2022). Here we employed the Feymann-Kac
formula for establishing the equivalence between optimizing the fitness func-
tional and the Hamilton-Jacobi-Bellman formalism. This allows us to include
cases where the fitness fluctuates with time, so that the model framework
can also be applied to situations where the environmental variations are not
short compared to the life history of the animal. To our knowledge, this is the
first explicit application of the Feynman-Kac formula in mathematical analy-
sis within behavioral ecology, even if similar growth/mortality trade-offs are
well studied Mangel and Clark (1986).
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We disregard the source and mortality terms in the forward Kolmogorov
equation due to the short time interval of interest, assuming that the players
are long-lived. It is also a technical assumption which allows us to find a time-
periodic solution to the Kolmogorov equation. As another potential direction
of future research can be relaxing the periodicity assumption in the game and
solving the mean field system with all the necessary terms in the Fokker-Plank
equation.

We also establish the equivalence between finding a Nash equilibrium for
the vertical differential game by solving the mean field system and the PDE-
constrained optimization problem. These two approaches allow flexibility in
the choice for a more suitable numerical framework for approximating a Nash
equilibrium. We test these approaches on two examples and compare the final
results. The two constructed examples provide consistent solutions in regions
with non-zero concentration of the agents. Numerical issues arise in the opti-
mization approach because the optimization problem is ill-conditioned, in the
sense that the criterion is very insensitive to the strategy of animals in regions
which are almost-void. One way to address this inconsistency is to use heuris-
tic procedures for estimation of a better guess or use more robust algorithms
for numerical optimization. But one should keep in mind that the established
equivalence is valid only under the quasi-static approximation, when fluctua-
tions in the value function can be disregarded. Also the equivalence between the
two formulations is valid for set-ups with a population of homogeneous players:
the agents have symmetric functional and identical set of admissible strategies.
This result doesn’t directly translate to populations of heterogeneous agents
where the symmetry assumption is relaxed.

As a potential perspective for future work can be mentioned expansion
of the modelling framework to several interacting populations to cover the
multi-player set-up. In the current model we only include implicit presence
of the predators through the mortality term, but the model can be expanded
to explicitly incorporate several vertical densities of a trophic network in the
equations. Similar work with two populations has been done in Thygesen and
Patterson (2019) but without taking into account the cost of motion. Another
interesting direction to pursue might be, for example, if a population consist
of almost-identical animals, which however differ slightly in size, how do they
partition the habitat among themselves?

One more possible direction for improvement is to omit the time-scale sep-
aration between the vertical game and population dynamics. This will lead to
a mean field game formulation with population dynamics where the abundance
of predators and preys are time varying quantities. Also, as mentioned earlier,
for the sake of simplicity, our final model includes only vertical migration of
the agents and disregards horizontal dynamics to avoid this level of generality
and keep complexity to a reasonable level. It is also possible to include sea-
sonal migration of animals to the model, when the agents can change their
geographic location in the ocean.
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To summarize, we have expanded the established PDE framework from
Thygesen and Mazuryn (2022) to solve the deep water problem and cover
all ranges of depth. Feymann-Kac formalism has been utilized to derive the
Hamilton-Jacobi-Bellman equation in the mean field game system. For the
derived system of PDEs we formulate the equivalent PDE-constrained prob-
lem under the quasi-static approximation and solve both formulations with
the numerical scheme based on spectral elements method Kopriva (2009) and
validate the model results on several test examples.
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Appendix A (A)symmetry of the velocity field

In this section we elaborate further on the observed asymmetry in Figure 1 in
the optimal velocity field V with the symmetric optimal density N around the
midday time. We discuss the observed feature of the velocity field in a more
general set up for an arbitrary fixed period T > 0.

To start with, we assume that the optimal distribution N is symmetric or
an even function as a function of time:

N(x, t) = N(x, T − t), (A1)

for x ∈ [0, H] and t ∈ [0, T ].
We aim to show that the symmetry of the density N in the sense (A1) does

not imply that the vertical velocity field V is an odd function around on the
interval [0, T ]:

V (x, t) = −V (x, T − t). (A2)

To show that the equality (A2) does not hold we differentiate the expression
(A1) with respect to t and substitute the forward Kolmogorov equation (4)
into both sides:

∂N

∂x
(x, t) =

∂N

∂x
(x, T − t)

−∂(NV )

∂x
(x, t) +

σ2

2

∂2N

∂x2
(x, t) =

∂(NV )

∂x
(x, T − t)− σ2

2

∂2N

∂x2
(x, T − t)

Integrating both sides with respect to x from 0 to x and taking into account
the zero-flux boundary condition (5) with the periodicity condition (A1) we
arrive to:

N(x, t)(V (x, t) + V (x, T − t))− σ2 ∂N

∂x
(x, t) = 0 (A3)

If (A2) holds, we reach the conclusion that ∂N/∂x = 0. Thus, the velocity
can only be symmetric if the optimal density N is constant in space, which
would imply that the velocity profile V is zero everywhere. This argument
relies on the assumption that σ > 0, and that we do in fact get symmetry in
absence of diffusion.

For the sake of completeness, to study numerically the behaviour of the
vertical speed field, we take the parameters from Table 1 and vary the noise
level σ. We also decrease the mortality scaling parameter m by 2 to avoid the
low-concentration regions near the surface of the water column to eliminate
high speed values there and make the asymmetry more pronounced. Approx-
imate solutions for the corresponding differential mean field game for various
values of the diffusivity parameter are shown in Figure A1.
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It can be seen that for small values of σ the speed field V approaches an
odd function in the sense (A2) (right panel) while the qualitative structure
of the surface of the optimal density N doesn’t change across the parameter
range, with only slight changes in the concentration of players (left panel).
Slight differences in the optimal density for small values of σ is due to the fact
that the vertical migration is an advection-dominated process and contribution
of the diffusion part is negligible. In contrast to small diffusivity values in the
upper part of Figure A1, in the lower plots with high noise level σ we observe
diffusion-dominated process with higher spread of the agents in the vertical
game and more pronounced asymmetry in the optimal speed V as expected.

Appendix B Numerical comparison of the
MFG system and the
PDE-constrained problem

In this section we examine the equivalence between the mean field system (8)
with the quasi-static approximation, when the value function U is replaced by
the constant expected fitness F , and the PDE-constrained optimization prob-
lem (10) from numerical viewpoint. To compare these methods we construct
two test cases to examine corresponding numerical approximations.

For the first example we take the model parameters from Table 1 and
find the corresponding numerical solutions for the optimal density N and the
optimal velocity V . Numerical approximations of the solution are shown in
Figure B2.

One can notice almost identical optimal densities N and optimal controls
V of the population in the water column. There are two sources of the observed
discrepancy: left column comes from the system (8), where we don’t impose the
quasi-static approximation of the fitness, and the value function fluctuations
can be seen in Figure 1. Right column assumes constant fitness in the formu-
lation of the corresponding PDE-constrained optimization problem. Another
possible explanation of the difference in the approximate solutions can be
numerical: we compare the numerical results from calculations with reasonable
run-time. It turns out that for the chosen set of model parameters the opti-
mization problem requires significant amount of computational time. Also the
velocity fields V differ in void regions with low concentration of the players.
It can be due to a poor choice of the initial guess for the optimization prob-
lem (10) with the initial speed profile being too far from the optimal one. The
Newton-type algorithm, which has been utilized in the calculations, doesn’t
change the values of V due to the zero gradient of the objective function in
that region.

For the second test example we select a parameter set without void regions
in the optimal density N . We use the constructed example from Appendix A
where the mortality scaling m have been reduced to make the region near the
surface more attractive to the animals. The numerical solutions are shown in
Figure B3.
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Fig. A1 Asymmetry manifestation in the vertical speed V for varying noise level σ.

With no regions with sharp transition to numerically zero concentration
in the optimal density near the surface both methods provide almost identical
numerical approximations of the solutions to the problem. Again, as in the
previous test example, there are two possible sources of the observed difference
in the numerical solution: validity of the quasi-static approximation and the
computational aspect of the PDE-constrained optimization formulation.
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Fig. B2 Nash equilibrium for the parameters from Table 1. Left column: Mean field PDE
system. Right column: PDE-constrained formulation.
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Abstract

We propose and explore a framework for diel vertical migrations
in a water column which is based on mean field games. Our model in-
cludes two populations of players, that interact as predators and prey.
Using mean field game theory, we pose a system of partial differen-
tial equations which governs the Nash equilibrium where all players
of each species behave optimally. We solve these partial differential
equations numerically. Next, we conduct a sensitivity study where we
examine the response of population-level quantities to changes in the
total abundance of predators and prey. These quantities include the
growth and mortality experienced by a single individual. This allows
us to identify the emergent form of components in dynamic models of
the two populations.

1 Introduction

Predator-prey models form the base of most ecosystem models, and this
justifies the continued effort in improving the fidelity of these models. The
most fundamental of all predator-prey models, the celebrated Lotka-Volterra
equations (Murray, 1989), assume that first order mass action holds: In
standard notation, the number of prey consumed by predators is βNP where
N is the number of prey, P is the number of predators, and β is a constant.
Moreover, the specific growth rate of prey is constant, as is the mortality of
the predators. This implicitly assumes that the behavior of the animals in
the system is unaffected by the number of animals.

Within theoretical ecology, there is an abundant literature on functional
responses, i.e. how the vital rates of an individual vary in response to the
abundance of other animals (first and foremost, the abundance of its prey, but
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also the abundance of its conspecifics and predators). Most basically (Mur-
ray, 1989) the type II functional response (also known as Holling’s disk equa-
tion) states that the growth rate of predators increases but decelerates, when
the abundance of their prey is increased. The original explanation for this
phenomenon relates to handling time: A predator spends some time search-
ing for prey, and some time processing the individual prey after capture. As
the prey abundance is increased, the searching time decreases, and eventually
the predator will spend all its time handling prey, at which point a further
increase in prey density will not result in increased uptake. It is well known
Murray (1989) that these functional responses have profound implications
for the dynamics of ecosystems. For example, in the original Lotka-Volterra
system, the equilibrium is a center, but when a type II functional response is
included, the equilibrium becomes unstable, as an increased prey abundance
reduces the mortality of the individual prey. Similarly, when density depen-
dent mortality is included - e.g., the exponential growth of prey is replaced
by the logistic growth model - this stabilizes the equilibrium. The combined
effect of stabilizing and destabilizing components can yield complex dynam-
ics, for example the bifurcations in the now classic Rosenzweig-MacArthur
model (Rosenzweig and MacArthur, 1963; Rosenzweig, 1971).

While the early studies of functional responses were motivated by empiri-
cal observations, and laboratory experiments in simple settings such as doves
collecting grain, and synthesized in mechanistic models, more recent studies
have focused on the behavorial changes that are induced when individuals
adapt to fluctuations in their environment; for example, (Křivan, 1996). To
model these behavioral changes, the paradigm assumes that animal behavior
has been selected by evolution to be optimal in the given environment, what-
ever it is. Thus, evolution also favors animals that can identify and adapt
to fluctuations in their environment. Here, what is optimized is lifetime
reproductive success; essentially, one’s number of descendants.

While the study of optimal behaviors initially studied the optimal dy-
namic response to given environments (Stephens and Krebs, 1987; Mangel
and Clark, 1988; Houston and McNamara, 1999), focus has later been on
the interaction between the many individuals that constitute an ecosystem.
This changes the problem from a single-sided optimization problem to one of
a game. In the context of evolutionary ecology, game theory initially studied
pairwise interactions (such as the hawk/dove game, (Maynard Smith and
Price, 1973)), but it was from the beginning recognized that these animals
were “playing the field”; i.e. they have for practical purposes infinitely many
possible opponents. When the animals are characterized by an internal state,
and aim to maximize their lifetime reproductive success, we are thus lead to
dynamic games between individuals which constitute a population.
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To approach such problems, the theory of mean field games (Lasry and
Lions, 2007) can be applied. Here, the object of study is games with a large
number of symmetrically interacting agents. The symmetry assumption on
the players makes the limit in traceable and allows to derive equations for
describing a Nash equilibrium. In this paper, we consider mean field games
with several interacting populations, based on the theoretical framework for
mean field games with several types of players (Bensoussan et al., 2018; Fujii,
2019).

The research idea behind the current manuscript is therefore that we
can employ the theory of mean field games to derive the optimal behavior
of animals in a given ecosystem. This allows us to compute vital rates of
individuals - how long do they live, how many offspring do they produce on
average - and thereby the net population growth rates. As the population
grows, we can assume that animals have been selected by evolution to adapt
their behavior, so that they remain optimal. Therefore, we derive emergent
population dynamics and ultimately ecosystem dynamics.

To pursue this program, we consider a specific case, aiming to explore the
feasibility and technical difficulties. As a case, we chose the coupled diel ver-
tical migrations of two species, a prey species and a predator species. Here,
the driving dynamics is day/night cycles in light and the vertical structure
of the ocean: The areas near the surface are productive, due to the light
which penetrates only the top layer of the ocean, and therefore rich in phy-
toplankton that can be exploited by a grazer such as a planktonic copepod.
At the same time, the light makes the grazer vulnerable to predation by an-
imals that use light to identify their prey, such as a fish larvae. Thus, the
grazers are attracted to the surface during the nighttime but repulsed during
the daytime, and diel vertical migrations emerge. Diel vertical migrations
are observed throughout the aquatic regime, basically for organisms of all
sizes and in every aquatic ecosystem, and have been exmined thoroughly,
both empirically and theoretically. The present manuscript builds on our
earlier contributions (Thygesen et al., 2016; Thygesen and Patterson, 2019;
Thygesen and Mazuryn, 2022; Mazuryn and Thygesen, 2022), and we refer
to the more detailed review there. Our specific starting point is the mean
field game model for diel vertical migration from (Thygesen and Mazuryn,
2022) and its extension to cover the deep water problem in (Mazuryn and
Thygesen, 2022). In the present contribution, we extend the previous results
to explicitly incorporate two species, one of predators and one of prey.

We assume that the mean field limit holds and describe Nash equilibrium
in terms of a system of partial differential equations. We include random dis-
turbances in the vertical position, so that each individual is faced with the
problem of optimizing its expected lifetime reward subject to a stochastic
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differential equation which governs its state dynamics. We assume that dif-
ferent players are affected by independent noise, disregarding the possibility
that noise could be correlated or that players are exposed to common noise
or shocks (Carmona and Delarue, 2018a,b).

2 Methods

The model for diel vertical migration incorporates two populations, preda-
tors and prey, both distributed in a water column [0, H]. By Xt is denoted
the vertical position of a representative player at time t and by Vt its ver-
tical speed. In control theory terminology, Xt and Vt are state and control,
respectively.

To identify the evolutionarily optimal migration strategies, we pose a
mean field game between these players. This game is resolved in terms of a
system of four partial differential equations, viz. two Fokker-Planck equations
governing the spatial distributions of the two species, and two Hamilton-
Jacobi-Bellman equation governing the fitness of the animals and the optimal
strategies. The derivation of these equations is similar to the single-species
case that we considered in (Mazuryn and Thygesen, 2022), but with the
added complexity of two interacting populations. The interaction is in that
the payoff to an individual of one species depends on the strategies of its
conspecifics as well as those of the individuals of the other species.

We first consider a representative prey player. The state of this individ-
ual is its vertical position Xprey

t , which evolves according to the stochastic
differential equation:

dXt
prey = V prey

t dt+ σprey dBprey
t , (1)

where the prey agent controls its position by adjusting the vertical speed
V prey
t , but is subject to random fluctuations in the form of standard Brown-

ian motion Bprey
t scaled with constant noise level σprey. The prey is reflected

at the boundaries of the domain, i.e., at the surface x = 0 and at the bottom
x = H. We do not include this reflection term explicitly in the equation gov-
erning the animal position, but in the following, we will add it as a boundary
condition on the Fokker-Planck equation.

The fitness of this representative prey is defined as its net energy surplus
over its lifespan, depending on its strategy V prey:

Jprey(V prey) = E
[∫ τprey

0

g(Xs, s)−
νprey(V prey

s )2

2
ds

]
. (2)
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Here, the expectation is with respect to the stationary distribution of a player
following the strategy V prey. The integrand is the instantaneous energy sur-
plus, which is obtained from an energy harvest rate g(Xs, s) and an energetic
cost of locomotion, which is quadratic in the velocity V prey

s . This particular
choice for the locomotion is justified for small organisms such as copepods,
where viscous drag dominates the energy budget; beyond this, we choose this
form mainly for mathematical convenience. In this fitness functional, τprey

is the random time of death of the animal. That is, the stochastic process
Xt follows (1) for t < τprey and enters the special coffin state Xt = ∂prey

after the death at t = τprey (Øksendal, 2013). The time of death τprey is
constructed as a Markov time, given in terms of the mortailty µprey(Xt, t).
This is the killing rate of the process, i.e. the rate with which the process
jumps from state Xt to the coffin state ∂prey. This mortality is composed of
a predation risk, which is independent of prey density but depends on local
predator density, as well as time t and position x, and a density-dependent
mortality rate inflicted by conspecifics, yielding a total mortality:

µprey(x, t) = β(x, t)CpredNpred(x, t) + µ1C
preyNprey(x, t). (3)

We refer to the last term also as the intraspecific density dependent mor-
tality. In the total mortality, β(x, t) can be seen as the clearance rate of a
predator, which depends on light levels, since we assume that predators pre-
dominantly use vision to detect prey. CpredNpred(x, t) is the local predator
density; with Cpred giving the total predator abundance and Npred(x, t) being
the probability density of the position of an individual predator. We take
Cpred to be a dimensionless number, viz. the number of individuals in the
system; an alternative would have been to consider Cpred a density of animals
per surface area. With our choice, the dimension of β is length per time, in-
dicating the vertical range that a predator can scan for prey per time unit.
Similarly, µ1C

preyNprey is a mortality experienced by the individual prey due
to interactions with other prey and therefore depending on the local prey
density.

To reiterate, the functional (2) is the expected accumulated energy of
the representative agent over its lifetime period assuming that it follows the
strategy V prey leading to the trajectory Xt. The expression formalizes the
trade-off the representative prey agent faces between harvesting energy in
regions where g is high and at the same time minimizing risk by avoiding re-
gions with high concentration of predators Npred and/or high light abundance
β, all subject to the cost of locomotion. In our case study in the following,
the upper levels of the ocean near the surface offers both the potential for
fast energy accumulation (i.e., high g) but at the same time high exposure
to predation (i.e., high β).
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We now shift attention to a representative predator. Its state trajectory
is given by the Itô equation

dXt
pred = V pred

t dt+ σpred dBpred
t , (4)

so that also the predator controls its position through its velocity V pred
t , but

is perturbed with a constant noise level σpred. The fitness functional of the
representative predator has the following form:

Jpred(V pred) = E

[∫ τpred

0

εCpreyβNprey − νpred(V pred
s )2

2
ds

]
, (5)

where we have omitted arguments (Xpred
s , s) for brevity. The random time

of death τpred is given in terms of a mortality µpred, as for the prey. For the
sake of simplicity, we take the predator mortality to be constant:

µpred(x, t) = µ2.

The energy budget of the predator involves an energy gain derived from
predation as well as a loss term corresponding to the cost of locomotion.
The energy gain from predation corresponds to the mortality experienced by
the prey, although we include a conversion effiiency ε. That is, the local rate
of predation events is CpreyNpreyβCpredNpred, corresponding to first order
mass action. Seen from the point of view of the individual prey, this leads to
a mortality βCpredNpred, while seen from the point of view of the individual
predator, it leads to a predation rate of βCpreyNprey. We see that the predator
should favor regions with high concentration of prey, but also regions with
high clearance rates β; at the same time it should avoid excessive locomotion.

Our interest is in the case where the dynamics are driven by day/night
cycles, i.e. a periodic light abundance gives rise to a periodic clearance rate
β(x, t) with period T = 24 hours for each x. That is, we disregard seasonal
fluctuations in the surrounding environment, so that we resolve the game
at a particular time of the year. For the sake of simplicity, we take the
harvest rate g of the prey to be constant. We assume population dynamics
are slow enough that we can ignore temporal variation in the population size
during the day. Thus, the total biomass in the water column is fixed so that
Nprey(x, t) represents a probability distribution of the prey at each point in
time, and Cprey is considered constant. The analogous statements hold for
the predators.

In summary, we search for the vertical distributions for both popula-
tions, and the speed profiles as a Markovian closed loop control in the form
V = V (Xt, t), for both predators and prey. With the periodicity assumption

6



in hand we are looking for time-periodic solution pairs (Nprey, V prey) and
(Npred, V pred) to the mean field differential game. We derive the governing
equations in the next section.

2.1 Mean field system

We now consider the optimal control problem that a representative player
faces, given the strategies of all other players in the system. Further, assum-
ing that all players behave optimally, and that all players of the same species
are indistinguishable, we pose the system of partial differential equations
which governs the mean field limit.

If all prey individuals follow the same strategy V prey and are perturbed
by independent noise sources, then the prey density is identical up to scale
with the probability density function of the individual prey. In turn, given
the stochastic differential equation (1), the probability density Nprey(x, t) of a
representative prey is governed by the forward Kolmogorov or Fokker-Planck
equation:

∂Nprey

∂t
= −∂(NpreyV prey)

∂x
+

(σprey)2

2

∂2Nprey

∂x2
. (6)

Due to the short time period of the game relative to the lifetime of the
agents, we omit mortality and source terms in the forward equation (6); thus,
the local population density is only affected by migrations.

We assume that no players enter or exit the domain through the boundary
and therefore impose reflective boundary condition for the state equation (1)
on the surface and the bottom of the water column [0, H]. The no-flux
boundary condition has the following form:

NpreyV prey − (σprey)2

2

∂Nprey

∂x
= 0. (7)

Since Nprey is a probability density, it normalized:

∫ H

0

Nprey(y, t) dy = 1. (8)

Since probability is conserved under the Fokker-Planck equation with no-flux
boundary conditions, this holds for all times t iff it holds for any time t, e.g.
t = 0.

We now consider the distribution of prey and predators given - i.e., we
fix Nprey and Npred - and ask how a representative prey should behave in
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this environment. To this end, we first rewrite the fitness function by taking
expectation over the time of death τprey, and next condition on the initial
condition Xt = x. We thus obtain the value function:

Uprey(x, t) = sup
V

EXt=x

[∫ +∞

t

(
g(Xs, s)−

νprey(V prey
s )2

2

)
e−

∫ s
t µprey(Xξ,ξ) dξ ds

]
.

(9)

This is the expected lifetime energy surplus for a prey which is alive at time
t and in state Xt = x ̸= ∂, and which is playing the optimal strategy V prey.
The exponential factor in the integral (9) is the conditional probability of
the prey surviving the interval [t, s]; see Thygesen (2022) for the details of
this construction. Thus, the mortality is represented by discounting of future
energy harvest.

Combining the Hamilton-Jacobi-Bellman equation and the Feynman-Kac
formula (Kac, 1949; Øksendal, 2013), the fitness Uprey introduced in (9) is
the solution to the following partial differential equation:

∂Uprey

∂t
+ sup

v

(
LpreyUprey + g − νpreyv2

2

)
= 0, (10)

where the differential operator Lprey is defined as:

LpreyUprey = v
∂Uprey

∂x
+

(σprey)2

2

∂2Uprey

∂x2
− µpreyUprey.

This is the sometimes referred to as the Hamilton-Jacobi-Bellman equation
with discounting. Note that the differential operator Lprey depends on the
densities Nprey, Npred, through the mortality, but that we suppress this in
the notation, since we consider the environment fixed at this point.

As the expression inside the supremum function in (10) is a concave
quadratic function of the argument v, the global maximum exists and is
attained at V prey = 1

νprey
∂Uprey

∂x
.

Similar to (Thygesen, 2022; Mazuryn and Thygesen, 2022), the duality
argument between the forward and backward Kolmogorov equations yields
that the reflection at the boundaries x = 0 and x = H from (7) corresponds
to a homogeneous Neumann boundary condition for the value function Uprey:

∂Uprey

∂x
(x, t) = 0. (11)

The assumed periodicity reduces the time interval of the differential mean
field game to [0, T ]. The value function on the time interval is periodic, i.e.
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Uprey(x, 0) = Uprey(x, T ), meaning that the expected fitness of the represen-
tative player at position x ̸= ∂ and time t = 0 is equal to the expected
fitness of the same player at the same position x and t = T , conditional on
the player surviving the one day time interval.

Gathering all pieces together (6) - (8) and (11) and substituting the form
for the optimal velocity V prey into the Hamilton-Jacobi-Bellman equation
(10) we arrive to the following prey part of the mean field system:

{
∂Nprey

∂t
= −∂(NpreyV prey)

∂x
+ (σprey)2

2
∂2Nprey

∂x2

∂Uprey

∂t
+ 1

2νprey

(
∂Uprey

∂x

)2
+ (σprey)2

2
∂2Uprey

∂x2 + g − Upreyµprey = 0
(12)

which hold for (x, t) ∈ (0, H)× (0, T ), and the boundary conditions





∫ H

0
Nprey(y, t) dy = 1 t ∈ [0, T ]

Nprey(x, 0) = Nprey(x, T ) x ∈ {0, H}
Uprey(x, 0) = Uprey(x, T ) x ∈ {0, H}
(NpreyV prey − (σprey)2

2
∂Nprey

∂x
)(x, t) = 0 x ∈ {0, H}

∂Uprey

∂x
(x, t) = 0 x ∈ {0, H}

V prey = 1
νprey

∂Uprey

∂x

. (13)

With the same reasoning for the predators, using the state equation (4)
and the expected fitness functional (5), we arrive at the system of partial
differential equations governing the density and fitness of predators:




∂Npred

∂t
= −∂(NpredV pred)

∂x
+ (σpred)2

2
∂2Npred

∂x2

∂Upred

∂t
+ 1

2νpred

(
∂Upred

∂x

)2
+ (σpred)2

2
∂2Upred

∂x2 + εCpreyβNprey − Upredµpred = 0

(14)

which holds for (x, t) ∈ (0, H)× (0, T ), and the boundary conditions





∫ H

0
Npred(y, t) dy = 1 t ∈ [0, T ]

Npred(x, 0) = Npred(x, T ) x ∈ {0, H}
Upred(x, 0) = Upred(x, T ) x ∈ {0, H}
(NpredV pred − (σpred)2

2
∂Npred

∂x
)(x, t) = 0 x ∈ {0, H}

∂Upred

∂x
(x, t) = 0 x ∈ {0, H}

V pred = 1
νpred

∂Upred

∂x

. (15)

These systems of partial differential equations (12) and (14) with bound-
ary conditions form the final mean field system for solving the vertical dif-
ferential game. Each PDE system alone is similar to the one derived in
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(Mazuryn and Thygesen, 2022), but here, our final system includes two in-
teracting populations in the game and explicitly incorporates the interaction
between these two populations in the growth and mortality terms. This
allows to resolve the coupled vertical migrations of predators and prey.

3 Model parametrization

Here, we present a numerical study of the mean field model from (12) and
(14) with boundary conditions. The functional forms and model parameters
build on (Thygesen and Mazuryn, 2022; Mazuryn and Thygesen, 2022) and
here we only give a brief overview of the selected parameters to make the
manuscript self-contained. See these references for more detailed discussion
of the selected functions. The parametrization is inspired by a situation
where the prey are copepods (small zooplankton) which are preyed upon by
fish larvae. Not all parameters are chosen realistically, so the following study
serves mostly as a proof of concept to demonstrate that the framework is
operational. We will return to the issue of parametrization in the discussion.

To model the light-dependent clearance rate β which governs the encoun-
ters between predators and prey, we start with the illumination at the surface,
Is. This is a T -periodic function of time:

Is(t) =
I0

1 + exp (A cos(2πt/T ))
.

At depth, the light intensity I(x, t) decays exponentially with a constant
absorption coefficient k1:

I(x, t) = Is(t) exp(−k1x).

Predators detect prey visually when they enter into a detection sphere cen-
tered at the predator. The radius r of this sphere depends on depth x at
time t through the light intensity, as developed in the model of visual range
with saturation by Aksnes and Utne (1997):

r2 exp(k1r) = γ2 I(x, t)

K + I(x, t)
.

This relation implicitly defines the distance r of visual detection as a function
of depth and time. The detection distance r translates into a clearance rate
mr2, corresponding to predators cruising through the water with constant
speed and thus clearing cylindrical volumes. We add a baseline clearance rate
βbase to ensure that even in dark water, the prey cannot escape predation
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Symbol Parameter Value Units
H Depth 500 m
T Period 24 hour
I0 Maximum irradiance 1 W m−2 nm−1

K Saturating light level 1 W m−2 nm−1

γ Maximum detection distance 0.02 m
k1 Absorption coefficient 0.02 m−1

A Amplitude of light fluctuations 13 -
νprey Drag (Prey) 10−6 J h m−2

νpred Drag (Predator) 10−9 J h m−2

(σprey)2 Diffusion (Prey) 20 m2 h−1

(σpred)2 Diffusion (Predator) 20 m2 h−1

µ1 Density-dependent mortality (prey) 1 m h−1

µ2 Mortality (predator) 10−12 h−1

m Search rate 25 m−1 hour−1

µbase Baseline mortality 10−5 h−1

k2 Harvest decay rate 0.02 m−1

g0 Maximum food availability 0.01 J h−1

xclin Depth of nutricline 100 m
Cpred Predator abundance 10 · 103 -
Cprey Prey abundance 10 -

Table 1: Model parameters.

completely; this can be interpreted as prey detection through hydromechan-
ical sensing rather than vision. We therefore obtain a total clearance rate

β(x, t) = mr2 + µbase.

We assume that for the prey, the harvest rate is time invariant and depends
logistically on depth:

g(x, t) =
g0

1 + exp(k2(x− xclin))

so that energy harvest is highest at the surface x = 0, and transitions at
depth xclin.

The specific values for the parameters are given in table 1. These are
consistent with the parameters used in (Mazuryn and Thygesen, 2022); in
addition, we have added parameters that describe the interaction between
predators and prey, but to reiterate, these choices are somewhat arbitrary
and serve to verify the model internally rather than validate it against a
real-world system.
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Figure 1: The evolution over a day of the vertical distributions of prey and
predators. Parameters from Table 1.

3.1 Numerical methods

The numerical solution to the mean field system has been calculated us-
ing the same approach as in Mazuryn and Thygesen (2022), although with
the extra complication of two species. Briefly, we employ the spectral ele-
ment discretization scheme. The computational domain [0, T ] × [0, H] has
been triangulated and the unknown solution to the system of partial differ-
ential equations (12) - (14) with boundary conditions is approximated by
orthogonal polynomials on each element. The final solution to the system is
composed of these polynomials on each subdomain.

4 Results

For the base model parameters in Table 1, the numerical solution results in
vertical distributions and migrations of the two populations as presented in
Figure 1.

We can see that prey players migrate at dawn to deeper levels in the water
column to reduce encounter rate with the predators; at dusk, the reverse
migration takes place. The predators follow a similar pattern, but with much
less movement, presumably because predation rates at depth would be too
small to justify the energy spent on the migration.

During the day, the prey agents go deeper than the predators and spread
even in the regions with low light intensity and no predators. This is due
to the form of the density dependent mortality term in (3), so that these
prey are avoiding conspecifics rather than predators. In these regions with
absence of predation, the vertical distribution resembles single-species ideal
free distribution.

In contrast to the results from (Thygesen and Mazuryn, 2022; Mazuryn
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and Thygesen, 2022), the vertical distributions of both populations are not
symmetrical around t = 12: The agents have sharper transition at dawn and
slowly return to the surface at dusk. The plausible explanation for this is
that the fitness fluctuates significantly over the day.

4.1 Emergent functional responses and population dy-
namics

In this section we focus on the sensitivity of the model to various parameters,
specifically the predator abundance Cpred and prey abundance Cprey. We then
examine how changes in these abundances affect the fitness components and
behavior of predators and prey.

With fitness components, we mean summary statistics concerning energy
budgets and mortality, since these combine to define the fitness of the animal.
For the prey, we compute the total mortality

µ̄prey =
1

T

∫

[0,T ]

∫

[0,H]

(µpreyNprey)(x, t) dx dt. (16)

This is the mortality averaged both over time and over the population of
prey. We also compute the part of this mortality that is due to predation:

µpredation =
1

T

∫

[0,T ]

∫

[0,H]

(βCpredNpredNprey)(x, t) dx dt. (17)

Finally, we compute the average rate of energy surplus experienced by the
individual prey:

ḡprey =
1

T

∫

[0,T ]

∫

[0,H]

(gNprey)(x, t) dx dt. (18)

For the predators, we compute the average harvest rate:

ḡpred =
1

T

∫

[0,T ]

∫

[0,H]

εCprey(βNpreyNpred)(x, t) dx dt. (19)

Figure 2 shows how these population-level rates change as the predator
abundance is varied orders of magnitude. The predation mortality (both due
to visibility of prey and total risk rate) experienced by the prey in figure 2
(top panel) increases when increasing the predator abundance. Initially, the
increase is steep: At this point, mortality is less important than growth, so
the prey do not significantly modify their behavior in response to increased
predator abundance. As the predator abundance increases further, the prey
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adapt through predator avoidance, and therefore the mortality curves de-
celerate. The gap between the two lines is intraspecific density-dependent
mortality; this is largely independent of the number of predators, indicating
that the prey do not repond by increased aggregation.

The prey growth rate (19) decreases with increasing predator abundance
in figure 2 (center panel), since the prey agents adapt to the increasing con-
centration of predators which makes the prey migrate to deeper layers of the
water column where the nutrient concentration is significantly lower.

Finally, in the bottom panel, we see that the predators experience de-
creased specific growth rates when their abundance increases. This is be-
cause increased predator abundance stimulate the prey to increase predator
avoidance, so that the individual predator has more difficulties finding prey.

In figure 3, we show the corresponding result when we modify the prey
abundance. We see that the individual prey experiences increased mortality
(top panel). Most of this is due to increased intraspecific density depen-
dent mortality, i.e., a direct effect. There is also some increased predation
mortality, which is an indirect effect.

To examine this indirect effect, we first inspect the prey growth rate (mid-
dle panel), which increases with increasing prey abundance. The explanation
for this is that as the prey abundance increases, the fitness of the individual
prey decreases, due to the intraspecific density dependent mortality. As a
result, the individual prey becomes less risk-averse and gives higher priority
to growth rather than mortality. Therefore they will spend time closer to the
surface to benefit from higher nutrient concentration in these regions, even
if this implies more exposure to predators.

This explains why the predation mortality of the individual prey increases
when the prey abundance increases. It is also consistent with predator growth
rate (lower panel), which increases superlinearly (i.e., accelerating, convexly)
with the prey abundance.

5 Discussion

This manuscript contributes to our previous work on diel vertical migration
with the mean field game theoretical framework (Thygesen and Mazuryn,
2022; Mazuryn and Thygesen, 2022). Here we develop a game theoretical
model to describe the two-species set-up with explicit interactions between
the populations. The presented equations in this paper has successfully re-
produced the phenomenon of diel vertical migration of marine organisms in
the water column. A similar model with two populations in continuous space
and time was considered by Thygesen and Patterson (2019) but without tak-
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Figure 2: Population-level quantities as function of predator abundance
Cpred. The blue curve, labelled “light”, indicates predation mortality. Bot-
tom panel: Predator growth rate (19) in the Nash equilibrium.
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ing into account the cost of motion.
We have demonstrated that it is possible to identify the Nash equilibrium

and thereby predict the optimal vertical distributions of each species, in the
game-theoretic sense. These distributions have, largely, the appearance that
one would expect, given the empirical studies in the literature as well as
previous theoretical models, both by ourselves and others. Moreover, we have
demonstrated that it is possible to predict changes in the behavior, growth,
and mortality of organisms as the environment changes; here, exemplified
by changes in the abundance of the two species. Ultimately, these emergent
functional responses - understood in the broad sense, i.e., how vital rates
of organisms depend on their environment - can enter into dynamic models
of populations and thereby predict ecosystem dynamics. Extrapolating even
further, these models can be used to predict ecosystem services, such as:
How many fish will we be able to harvest sustainably from the seas, when
we experience global climate change?

Although it is possible to explain qualitatively the resulting functional
responses, it is important to realize that they are non-trivial, as direct effects
and indirect effects often work in opposite directions, so that detailed studies
are needed even to predict the sign of a change. For example, we see that the
predator growth rate is an increasing and accelerating (convex) function of
the prey density. This phenomenon is known as a Holling type III response
within theoretical ecology, and it is often explained with predator behavior:
When prey are scarce, it does not pay for the predator to pursue them, and
the predator explores other opportunities or wait for better times. Here, the
explanation for the phenomenon is different: As prey densities increase, the
prey are experience an increased intraspecific density dependent mortality,
so their fitness decrease, and they become more willing to expose themselves
to predation in order to pursue increased growth.

The specific parameters we have used in our numerical examples were
chosen mostly from a mathematical point of view, rather than for ecological
realism. That is, we explore the mathematical and numerical properties of
the model and the algorithms. Therefore, the contribution in the present
state should be seen mostly as a proof of concept which gives results of qual-
itative nature. In the future, we aim to complete this numerical exploration
so that we also bring in higher degree of ecological realism.

It can be argued that our model has an internal inconsistency in that we
include the mortality in the Hamilton-Jacobi-Bellman equation, in the form
of discounting, but not in the Fokker-Planck equation for the population
densities. We argue that this inconsistency is permissible. Consider the
analogy of human behavior in traffic: It is fair to say that the risk of death
by accident affects human behavior, but also that the mortality is low enough
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that it can be ignored when describing the flow of traffic and the loads on
the road system.

As a potential perspective for future work can be models with explicit
population dynamics where the predator and prey abundances are time vary-
ing quantities. Here, we do not include mortality terms in the Fokker-Planck
equation, due to assumed low mortality rates, but one can expand the model
by including these terms explicitly. Then, the periodicity assumption on the
solution to the mean field system should be replaced by some other notion
of quasi-periodic solutions. This will also include analysis of the slow-fast
coupling between behavior (diel vertical migration) and population dynam-
ics. Expanding the time horizon could also involve horizontal movements
and seasonal migrations, as well as the growth of individual animals during
their lifetimes. This is a formidable research program and our contribution
should be seen as a first step in this direction.

More manageable extensions would be to include more sophisticated forms
of functional response in the fitness functional. The current model assumes
first order mass action at the local level, for given prey density and predator
density. It would be possible to include handling times or saturation of the
predators, which would give rise to a local type II functional response. One
can speculate that this gives the prey an incentive to aggregate, as they can
then locally saturate the predators, so that the individual prey experiences
decreased predation mortality. Of course, this is countered by the aggrega-
tion of predators, as well as the intraspecific density dependent mortality
of the prey, but one can anticipate that this in some situations can lead to
schooling (or shoaling), which would affect the mean-field limit and could
lead to pattern formation.

Another component which could be extended is the nature of the cost
of movement. In this manuscript, we have focused on viscous drag, where
the power required to move with a given speed is quadratic in the speed.
This is applicable for small animals and is even detabable for fish larvae. For
larger animals, a cubic cost of motion would be more appropriate, in that
it corresponds to the inviscid drag. One can also imagine costs associated
with motion that are not related to energy budgets; for example, loss of time
spent on foraging, or increased exposure to predators e.g. through larger
hydromchanical signatures.

As mentioned earlier, our model builds critically on the assumed indepen-
dence of white noise processes for each player in the vertical game. But more
realistic scenarios are cases with correlated noise, as for the case with turbu-
lence in the water column or some other events experienced by neighbouring
agents. Such extensions lead to an analytical machinery with high analytical
complexity like systems of stochastic partial differential equations. This type
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of mean field differential games with common noise is not considered here
and serves as a direction for future reseach.

To summarize, we have expanded the established framework from (Thyge-
sen and Mazuryn, 2022; Mazuryn and Thygesen, 2022) to resolve the diel
vertical migration with two interacting populations. The model ouput can
also be used to calculate and analyse population quantities like experienced
growth and mortality rates for individual players, which has been demon-
strated on a toy example.
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