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Abstract
In this thesis we have systematically investigated the ground state and response
properties of around 3000 two-dimensional materials using density functional the-
ory (DFT) and many body perturbation theory methods. A computational work-
flow scheme has been developed which allows us to accurately calculate the struc-
tural, thermodynamic, elastic, electronic, magnetic, and optical properties of any
two-dimensional material.
Today, around 50 compounds have been synthesised in monolayer form and many
more layered materials are known. Using combinatorial lattice decoration, we gener-
ate new, hypothetical, structures from the existing ones and systematically calculate
their properties. To ensure the physical reasonableness of the hypothetical structures,
we carefully investigate their global (thermodynamic) and local (mechanical) stability.
This analysis reveals hundreds of novel two-dimensional materials with high stabil-
ity which it should be possible to synthesise. One of the most exciting features of
two-dimensional materials is their ability to form heterostructures; patterned stacks
of different two-dimensional materials, with precisely tunable properties. This means
that the discovery of a new stable two-dimensional material also represents the dis-
covery of a new building block in this stacking framework.
The systematic calculation of properties for all materials also allows us to investi-
gate the performance of simpler models, and lets us understand in more detail where
they break down. An example of this is the behaviour of bound electron-hole pairs:
excitons. They are frequently modelled using a hydrogen-like equation, but compar-
ison with the BSE binding energy reveals several regimes where the model performs
poorly.
Access to the complete structured database enables us to study structure-property
and property-property relations in a data-driven manner. Using this paradigm, we
can accurately predict the heat of formation of the two-dimensional materials based
on knowledge of the chemical composition and the abstract crystal structure. Fur-
ther investigations in this direction are likely to yield promising descriptors for more
complex properties.
Recognising the unavoidable trade-off between computational depth and computa-
tional breadth, we also identify some tens of materials with novel magnetic, plasmonic
or transport properties; which would be worth studying in greater detail, using more
advanced methods.
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Finally, at the complete opposite end of the depth vs. breadth spectrum from the
systematic study of 3000 materials, we investigate the dissociation of excitons in a
single two-dimensional material, MoS2, upon application of an electric field. From
this we conclude that it is possible to generate free electrons and holes using realistic
field strengths.



Resumé
I denne afhandling er en række strukturelle, termodynamiske, elastiske, electroniske,
magnetiske og optiske egenskaber beregnet for omkring 3000 atomart tynde materi-
aler. Beregningerne bygger på tæthedsfunktionalteori (DFT) og mange-legeme per-
turbationsteori (MBPT). Der er udviklet et workflow til automatisk at beregne egen-
skaber for et vilkårligt to-dimensionelt materiale.
På nuværende tidspunkt er omkring 50 to-dimensionelle materialer blevet syntetis-
eret, og mange flere lagdelte strukturer kendes. Ved systematisk at dekorere det
underliggende atomgitter for de kendte strukturer med andre grundstoffer fra det
periodiske system kan vi generere nye, hypotetiske strukturer ud fra eksisterende, og
derefter beregne deres egenskaber. For at sikre at de hypotetiske strukturer er fy-
sisk ladsiggørlige, foretages en grundig analyse af deres lokale (mekaniske) stabilitet
og deres globale (termodynamiske) stabilitet. Ud fra denne analyse ses det at flere
hundrede af de undersøgte materialer er stabile, og det ville derfor være muligt at
syntetisere dem. En af de ting der kendetegner to-dimensionelle materialer er at de
nemt kan stables til Van der Waals heterostrukturer; kunstigt lagdelte strukturer
med skræddersyede egenskaber. Hvert nyt to-dimensionelt materialer der opdages,
repræsenterer derfor også en ny byggeklods i dette univers.
Når vi beregner egenskaber systematisk for mange forskellige materialer er det også
muligt at undersøge opførslen af simplere modeller og tilnærmelser, og opnå en dybere
forståelse af hvornår de er gyldige. Et eksempel på dette er bundne elektron-hul par
i to-dimensionelle materialer: eksitoner. De beskrives ofte ved hjælp af en brintatom-
lignende model, men en sammenligning med resultaterne fra Bethe-Salpeter ligningen
viser en række områder hvor denne beskrivelse er utilstrækkelig.
Den komplette samling af data gør det også muligt at undersøge sammenhænge
mellem struktur og egenskaber, og mellem forskellige egenskaber. Ved brug af maskin-
llæring er det muligt nøjagtigt at forudsige energien af forskellige strukturer udelukkende
ved kendskab til deres komposition og deres krystalstruktur.
I et hvert studie må der foretages en afvejning af dybde og bredde, og på baggrund af
nogle udvælgelseskriterier identificeres derfor en række materialer som kunne være in-
teressante at studere nærmere. Materialerne har interessante transport-, magnetiske,
eller plasmoniske egenskaber, som gør at de kunne finde teknologisk anvendelse.
Endelig – i den modsatte ende af dybde/bredde spektret fra hvor vi startede – studeres
dissociation af eksitoner i et enkelt materiale, MoS2, og det konstateres at det er
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muligt at generere frie elektroner og huller ved realistiske elektriske feltstyrker.
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CHAPTER 1
Introduction

Technological advancement and access to new materials go hand in hand, with new
materials enabling the invention of new technologies, and new technologies enabling
the discovery of new materials. Finding and exploiting new materials is thus the
key to unlocking the technologies of tomorrow. The historical examples of this are
too many to list, but a notable examples of each situation can be found in the case
glass and aluminium. Glass provides an example of a materials-driven technological
advancement, as high-quality glass is a prerequisite for the production of lenses, for
glasses, binoculars or telescopes. Aluminium provides a clear example of the oppo-
site case – technologically driven materials discovery. Aluminium commonly occurs
as aluminium oxide, and to produce metallic aluminium from alumina involves an
electrolytic process, and a high degree of technological sophistication.

Currently, much of our lives and societies have been shaped by one single material,
namely silicon. If we return to an earlier practice of naming historical eras after
materials, we might well be said to be living in the Silicon Age. The invention of the
transistor in the late 1940s and early 1950s[1, 2] has enabled the computer revolution,
and the ever-decreasing cost and size of silicon transistors has meant that in less
than the space of a human lifetime we have progressed from having large mainframe
computers typically operated by large companies or scientific institutions to having
ubiquitous computers in our pockets. This trend of miniaturization has resulted in
feature sizes in the latest generation of computer processors reaching just 7 nm[3], and
has been partly responsible for the emergence of the field of nanoscience. Eventually,
it will no longer be possible to continue this trend of miniaturizing features in silicon,
and something new will emerge – either a new material or a new technology to build
new devices.

In 2004, Kostya Novoselov and André Geim successfully isolated a single layer of car-
bon atoms in a hexagonal lattice: graphene[4]; for which discovery they were awarded
the Nobel Prize in physics in 2010. Graphene is in many ways an extraordinary ma-
terial, characterized by a high thermal conductivity[5], a high carrier mobility[6], and
a large tensile strength [7]. Graphene also has unique quantum properties[8], but
one thing it does not have is a band gap, making it unsuitable for many applications.
Much research has gone into modifying or patterning graphene to achieve a gap[9,
10], but so far only with modest success.

Following the discovery of graphene, mechanical or liquid exfoliation of many other
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layered compounds was attempted, leading to a whole family of known 2D materials,
with many different properties, so that both metallic, semi-metallic, semiconducting
and superconducting 2D materials have been observed[11, 12] though these materi-
als have different properties, their 2D nature means that they also have a number of
things in common, namely a significant quantum confinement effect and a weak dielec-
tric screening. Additionally, the materials have in common that their exact properties
are easily tunable, through mechanical strain, electrostatic gating, or substrate inter-
actions[13, 14]. Finally, 2D materials represent perhaps the ultimate maximization of
the surface area to volume ratio, giving them an advantage in applications where the
surface area is important, such as catalysis and light absorption. So far more than 50
compounds have been synthesized in monolayer form, and it seems that 2D materials
are much more common than anyone would have dreamed of in 2004. Additionally,
it has proven possible to stack different 2D layers in so called van der Waals het-
erostructures[15, 16], allowing high-precision control of the properties of the resulting
structure.
There is no reason to believe that the currently synthesized 2D materials are the only
ones which could exist, and the discovery of new 2D materials is an active field of
research, and this is where computational materials design can play an important
role. The tremendous increase in computer power in the last 50 years, as well as the
continued advances in theoretical models means that it is currently possible to simu-
late materials properties with accuracies comparable to experiments, but much faster,
and at a much lower cost. Starting from experimentally known layered structures,
a recent computational study found hundreds of materials where single layers could
potentially be exfoliated, exactly like graphene was in 2004[17].
In this work, we have taken a different approach, and explored 2D materials with
no known layered analogue. Instead, we have based our exploration on the crystal
structures of the known 2D materials, and systematically replaced the constituent
atoms of the known structures with chemically similar atoms from the periodic table.
This has led to a set of 3000 materials being investigated, with 550 of these being
classed as stable.
By casting the net wide, we undoubtedly calculate the properties of materials which
turn out not to be of interest. The great advantage of consistently calculating all
properties for all but the most unstable materials is that it allows us to see which
properties correlate to one another, and how these are linked to the structure of the
material. Ultimately, this allows us to develop easy to calculate descriptors for the
properties we are interested in.
The second advantage of a systematic and comprehensive calculation is that it can
serve as a reference for future work, thereby avoiding the duplication of efforts. Ad-
ditionally, the creation of open databases helps the development and testing of new
methods, and serves as a useful tool for benchmarking[18].
In any study there is a trade-off between depth and breadth: It is possible to examine
a large number of different materials, and it is possible to examine materials in great
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depth, but it is not possible to do both at the same time, and the essential thing is
to know when to use which approach.

1.1 Outline
The remainder of this thesis is structured as follows:
Chapters 2 and 3 provide necessary background information on the tools we use to
describe the properties of matter and how matter responds to external perturbation.
Chapter 4 presents an overview of how we can use these methods to accurately cal-
culate the properties of many novel two-dimensional materials, and in chapter 5 I
restrict myself to describing a single type of excitation in monolayer MoS2.
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CHAPTER 2
Electronic Structure

Theory
This chapter describes the fundamental theory we use to calculate and describe the
properties of matter, from both a theoretical and a practical perspective
Since the start of the 20th century we have known that on a microscopic level, matter
consists of atoms, which in turn are made up of light electrons and heavy nuclei.
Adopting a bottom-up perspective, the properties of matter are determined by the
behavior of the electrons and nuclei. The incredible variety of materials and their
properties that we see in our daily lives can thus – in principle – be understood by
understanding the behavior of the electrons and nuclei which make up the materials.
The goal of electronic structure theory is then to predict the behavior of electrons
and nuclei in any configuration.

2.1 The many-body Hamiltonian
The two ingredients needed for a quantum mechanical description of matter are the
wave function and the Schrödinger equation. The wave function describes the con-
figuration of a system as a function of time, and is written Ψ(r,R, t), where r and
R denote the full set of electronic and nuclear coordinates respectively: r = {ri},
R = {Ri}. The Schrödinger equation then describes how this configuration evolves
in time

Ĥ(t)Ψ(t) = −i∂tΨ(t), (2.1)

where we have used atomic units as described in Appendix A, and suppressed all
arguments to the functions apart from time.
Frequently, we are interested in equilibrium properties of materials, and the relevant
equation becomes the time independent Schrödinger equation,

ĤΨ = εΨ(t). (2.2)

Here ε denotes the eigenvalue corresponding to the many body eigenfunction of the
Hamiltonian, Ĥ. The general Hamiltonian of a system of N electrons and M nuclei
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interacting via the Coulomb interaction can be written as

Ĥ = T̂e + T̂n + Ûee + Ûnn + Ûne

Ĥ = −
N∑

i=1

∇2
i

2
−

M∑
I=1

∇2
I

2MI

+ 1
2

N∑
i=1

∑
j ̸=i

1
|ri − rj |

+ 1
2

M∑
I=1

∑
J ̸=I

ZIZJ

|RI − RJ |

−
N∑

i=1

M∑
I=1

ZI

|ri − RI |
(2.3)

The first two terms represent the kinetic energy of the electrons and nuclei respectively,
while the next three terms describe the electron-electron, the nucleus-nucleus and the
electron-nucleus interaction. MI and ZI are the mass and charge on the I’th nucleus,
and the factor 1

2 appearing in both terms on the second line accounts for the double
counting of the interaction between electrons i and j and j and i.
In principle, all equilibrium properties of a system can be found by solving the
Schrödinger equation with this Hamiltonian. In practice, this is infeasible for all
but the simplest systems. This is due to the coupling between all the electronic and
nuclear degrees of freedom arising from the Coulomb interaction, which means that
we cannot describe each electron or nucleus separately, as their behavior depends on
that of all the others. Consider the example of a system consisting of two electrons
and two nuclei (four particles in total). If we discretize space into a grid of 16×16×16
points, specifying a single many-body configuration requires 1612 = 248 ≈ 2 × 1014

numbers.
To proceed, a number of simplifying assumptions are therefore needed. One first
simplification we can make is to separate the electronic and nucleic degrees of free-
dom. A proton is 2000 times heavier than an electron, and the nuclei will therefore
move on very different timescales to the electrons. From the point of view of the
electrons, the nuclei can be considered stationary, while from the point of view of
the nuclei, the electrons can be considered to always be in their ground state. This
is known as the Born-Oppenheimer approximation, and corresponds to making the
ansatz Ψ(r,R) = ψ(r; R)⊗Φ(R). The electronic wave function depends parametrically
on the nuclear coordinates, meaning that the functional form of ψ(r) depends on the
nuclear coordinates.
The Hamiltonian for the electronic system can then be written as

Ĥel = T̂e + V̂ee + V̂ext, (2.4)

Where V̂ext describes the Coulomb potential set up by the nuclei, as well as any
external potential applied. The number of degrees of freedom in this equation has
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thus been reduced from 3(M + N) to 3N . Returning to the example above, this
means that it would now be feasible to store the configuration of up to four electrons.
Evidently further approximations are needed, in order to render the problem tractable.
Before moving on, it is however worth stepping back to see what has been accom-
plished. We started this chapter with the goal of describing the behavior of matter,
and have now reduced this problem to that of describing a system of interacting
electrons moving in an external potential – a great simplification!

2.2 Density functional Theory
One very successful approach to avoiding the complexities involved in solving the
many-body Schrödinger equation directly is to focus on the electron density instead
of the electronic wave function. The density is inherently a much simpler quantity
than the wave function, as it is a function of only three variables, rather than 3N , so
if it is possible to formulate the electronic structure problem in terms of the density,
much complexity could be avoided.
The first attempts in this direction were made in the 1920s by Thomas and Fermi[19,
20], but it was not until the 1960s that modern density functional theory (DFT)
emerged[21][22]. The basis of DFT consists of the Hohenberg-Kohn theorems, which
demonstrate that it is indeed possible to work only with the density, rather than the
many body wave function.
The first Hohenberg-Kohn theorem states that

First Hohenberg-Kohn Theorem There is a one-to-one mapping between the
external potential and the ground state density of a system.
That a given potential gives a given ground state density is obvious. For, knowing
the potential, we could solve the many-body Schrödinger equation to get the ground
state wave function, and from this we could obtain the density. The other direction
is more surprising, since there is no a priori reason that we could not have two
different external potentials which gave rise to the same ground state density, but
with different ground state wave functions. But this is not the case, as will be shown.
Suppose two different external potentials V̂ and V̂ ′ gave rise to the same electronic
density n0(r). The potentials would have different Hamiltonians, Ĥ and Ĥ ′, and
different corresponding ground state wave functions, ψ and ψ′. If we let E0 and
E′

0 be the non-degenerate ground state energies of the two systems, we are ready to
proceed. As E0 is the ground state energy of Ĥ, we must have that the expectation
value of H on ψ′ is strictly greater than E0

E0 <
⟨
ψ′

∣∣∣Ĥ∣∣∣ψ′
⟩

=
⟨
ψ′

∣∣∣Ĥ ′
∣∣∣ψ′

⟩
+

⟨
ψ′

∣∣∣Ĥ − Ĥ ′
∣∣∣ψ′

⟩
= E′

0 +
∫

dr n0(r) [V (r) − V ′(r)] (2.5)
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Similarly for the expectation value of Ĥ ′ on ψ:

E′
0 <

⟨
ψ

∣∣∣Ĥ ′
∣∣∣ψ⟩

=
⟨
ψ

∣∣∣Ĥ∣∣∣ψ⟩
+

⟨
ψ

∣∣∣Ĥ ′ − Ĥ
∣∣∣ψ⟩

= E0 +
∫

dr n0(r) [V ′(r) − V (r)] (2.6)

Summing Eq. (2.5) and (2.6) we arrive at the contradiction that E0 +E′
0 < E0 +E′

0,
and the theorem is thus proved. Since the ground state wave function can be deter-
mined from the external potential, this means that the ground state wave function
and the ground state density contain the same information: knowing one, we can
find the other. This means that the expectation values of the kinetic energy and the
electron-electron interaction energies are also functionals of the density. The ground
state energy of the system can then be written

E0 = E[n0] = T [n0] + Vee[n0] +
∫

dr n0(r)vext(r) (2.7)

The first two terms on the right hand side are independent of the system under
consideration, that is, the functional F [n] ≡ T [n] + Vee[n] is universal. The second
Hohenberg-Kohn theorem then states that

Second Hohenberg-Kohn Theorem The total energy functional is subject to a
variational principle, so that E[n] ≥ E[n0] for all densities n(r).
We can thus find the ground state density by minimizing E[n]. This can be seen
by using the mapping between the ground state density and the ground state wave
function established by the first theorem. This variational approach gives us a method
to find the ground state density, by evaluating the energy functional E[n] at different
densities, and looking for a minimum.
Together, these two theorems can help us solve the problem of having to find the many-
body wave function, by focusing on the density instead. It should be emphasized that
so far the theory is exact, and no approximations have been made. The main problem
is that until now both T [n] and Vee are only implicit functionals of n, through the
bijection between the ground state wave function and the ground state density. Thus,
in order to evaluate them, we would need to calculate the many body wave function -
exactly what we wish to avoid. To proceed, we need a further trick, and this is found
in the Kohn-Sham equations.

2.3 Kohn-Sham DFT
To overcome the issue of having to find the many-body wave function, Kohn and
Sham proposed an ingenious scheme in 1965[22]. The crucial idea insight is to con-
sider a reference system consisting of non-interacting electrons moving in an effective
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potential, and then to require that this reference system and the true system have
the same ground state density.
We start by splitting the energy functional in (2.7) into known and unknown parts

E[n] = Tr[n] + VH[n] + Vext[n] + T [n] − Tr[n] + Vee[n] − VH[n]︸ ︷︷ ︸
Exc[n]

, (2.8)

where Tr is the kinetic energy of the non-interacting reference system and the Hartree
energy, VH ≡

∫
dr′dr n(r)n(r′)

|r−r′| , is the classical electrostatic energy associated with a
charge distribution n(r). The last term, Exc is the so-called exchange-correlation
functional and accounts for all of the many-body effects in our system.
For the non-interacting reference system moving in an effective potential, a general
energy functional reads Er[n] = Tr[n]+VKS[n], where VKS[n] =

∫
dr n(r)vKS(r) is the

energy associated with the effective potential vKS(r). Requiring that the reference
system and the true system have the same ground state density is the same as requir-
ing that the same density minimizes both energy functionals. This in turn allows us
to write the effective potential in terms of functional derivatives

vKS = δVH

δn
+ δVext

δn
+ δExc

δn
= vH(r) + vext(r) + vxc(r)

Using this effective potential, we are ready to find the ground state of the reference
system. We can readily find the relevant one-electron orbitals by solving the single-
particle Schrödinger equation[

−∇2

2
+ vKS(r)

]
ϕi(r) = εiϕi(r). (2.9)

The ground state density of the non-interacting system can then be found by summing
over the occupied orbitals, so that nr(r) =

∑occ
i |ϕi(r)|2. Since the reference system

is constructed so that it has the same ground state density as the true system, this
finally allows us to obtain the ground state density we were seeking.
One thing to note is that both vH and vxc depend on the density, and the Kohn-Sham
equations (2.9) must therefore be solved self-consistently: starting with a trial density,
we evaluate the potential, vKS, produced by that density. We then solve the Kohn-
Sham equations using this potential to get a new density, which in turn produces a
new potential. This process is repeated until the potential and the density agree.

2.4 The exchange-correlation functional
All of the complexity of the many-body problem has been hidden in the exchange-
correlation term, and the usefulness of Kohn-Sham DFT depends on finding a good
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expression for this term. If we knew the exact form of EKS, the Kohn-Sham scheme
would be exact, which is also an indication of the tremendous complexity which must
be hidden there.
The simplest possible approximation which can be made is the Local Density Ap-
proximation (LDA). If we assume that the exchange-correlation energy depends only
pointwise on the density, we can write

ELDA
xc =

∫
dr n(r)ϵLDA

xc (n(r)). (2.10)

The exchange-correlation energy density, ϵLDA
xc , is now just a function1 rather than

a functional2, since it depends only on the density at a single point, rather than
the whole density. If we restricted ourselves only to constant densities, the above
expression would be exact. On the other hand, for an electron gas of constant den-
sity – the homogeneous electron gas – we have analytical results for the exchange
energy density[23], and the correlation energy density has been found through quan-
tum Monte Carlo simulations[24]. A first approximation to the exchange-correlation
energy is thus to take the exchange and correlation energy densities from the homo-
geneous electron gas and use directly in Eq. (2.10). Because the approximation is
based on the homogeneous electron gas, the LDA should be expected to perform well
when used for systems where the density is approximately uniform. In practice it has
worked surprisingly well even for systems which are far from uniform, mainly due to
a fortuitous cancellation of errors in the estimates for the exchange and correlation
energies[25]. Overall, the LDA underestimates band gaps[26] and thus overestimates
the dielectric screening[27].
A natural extension of the local density approximation is to include not only the
density at each point in the calculation of the exchange-correlation energy, but also the
gradient of the density. This leads to a class of functionals known as the generalized
gradient approximations (GGAs). In this work these will mainly be used in the form
written down by Purdue, Burke and Ernzerhof[28].

2.5 Beyond DFT: Many-body perturbation theory
By construction, DFT is intended to reproduce exactly the ground state density,
and all quantities which can be written as functionals of the ground state density.
The wave functions and single particle eigenvalues which appear in the Kohn-Sham
formulation of DFT are not physically meaningful, and there is no reason that they
should reproduce experimentally observed band structures and band gaps.
A very useful way of correctly calculating the single particle energies can be found in
the many-body perturbation theory approach. When an electron is added from the

1A map from R3 to R.
2A map from the space of functions on R3 to R.
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system, the repulsive force on all the other electrons creates a region around the elec-
tron with decreased electronic density. Compared with the neutral system, the bare
electron is thus dressed by a positively charged screening cloud. The quasi-particle ex-
citations of the system correspond to the bare electron along with its screening cloud.
The same applies, mutatis mutandis, for excitations involving electron removal. The
success of the quasiparticle approach lies in the fact that the dressed electrons in-
teract weakly with one another through the screened Coulomb interaction, and a
single-particle picture is thus appropriate.

To obtain the quasiparticle energies and eigenfunctions, we should solve the single-
particle equation,(

−1
2

∇2 + vext + vH)
)
ψQP(r) +

∫
dr′ Σxc(r, r′, εQP)ψQP(r′) = εψQP(r) (2.11)

where the non-local, energy-dependent self-energy Σ has replaced the exchange-correlation
functional of the Kohn-Sham equations. The self-energy accounts for all exchange and
correlation effects between quasiparticles in the system.

A very useful way of predicting quasiparticle energies and gaps is the GW approxi-
mation[29], in which the self-energy is defined as

Σ(r, r′, ω) = i

∫
ωG(r, r′, ω + ω′)W (r, r′, ω), (2.12)

where G is the single-particle Green’s function, and W is the screened Coulomb inter-
action; see Eq. (3.2). The simplest approach to calculating the screened interaction
is to use the Green’s function and screened interaction arising from the Kohn-Sham
eigenstates and eigenvalues of DFT. This is the so-called G0W0 approximation and it
has proven to give significantly more accurate band gaps than bare DFT[26].

Examining (2.11), we see that the self-energy should be evaluated at the quasiparticle
energies in order to determine the potential experienced by the quasiparticles. Since
these energies are not known beforehand, we can instead treat the correction Σ−Vxc as
a small quantity, and use first order perturbation theory to approximate the energies,
giving

εQP ≈ εKS + Z
⟨
ϕKS∣∣Σ − Vxc

∣∣ϕKS⟩
(2.13)

The normalization factor Z is close to unity if the Kohn-Sham wave function is a
good approximation to the quasi-particle wave function.

For more detail on the GW approximation, and on many body perturbation theory
in general, we refer the reader to [30].
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2.6 Electronic Structure Calculations in GPAW
So far, we have only discussed the physical and mathematical approximations which
need to be made in order to perform electronic structure calculations. An additional
level of approximations is introduced when it comes to carrying these approximations
out in practice. The numerical approximations in DFT lie in the details of how the
Kohn-Sham wave functions are represented, and how the self-consistent cycle in Eq.
(2.9) is carried out.
In this work, we use the gpaw[31] electronic structure code to do calculations, and
the atomic simulation environment (ase) to work with atomic structures[32]. Wave
functions in gpaw can be represented either on a real-space grid, using a plane-wave
basis set, or as a linear combination of atomic orbitals. Unless otherwise stated, the
calculations in this work have all been carried out using the plane wave basis set.
Close to the nuclei, the potential varies quickly, and the wave functions are expected
to exhibit oscillations at very short length scales. Representing these oscillations
with a plane wave basis set or on a grid would require prohibitively many basis
functions. Since the wave functions oscillate over much longer length scales away
from the nuclei, using this level of detail in all of space would be wasteful. To
avoid this, gpaw uses the projector-augmented wave method[33] to divide space into
two different regions. Close to the nuclei (inside the augmentation spheres), the
wave functions are represented on an atom-like basis, while in the regions further
away, the wave functions are represented using one of the three basis sets described
above. Matching these representations at the boundary of the augmentation spheres
ensures that we can access the all-electron (non-smooth) wave function via a linear
transformation of the smooth wave functions.
An additional approximation which is frequently adopted, and which greatly speeds
up calculations is the frozen core approximation. This approximation is rooted in
the observation that the core electrons of a material are tightly bound to the nuclei
and thus do not participate in bonding or (low-energy) excitations. Since they are
insensitive to the chemical environment, their behavior can be calculated once and for
all for the isolated atoms, and there is no need to treat them explicitly in Eq. (2.9).
As well as being a DFT calculator, gpaw has tools to carry out beyond-DFT calcula-
tions, such as GW calculations (as described in the previous section), as well as linear
response calculations (see the following chapter) and the Bethe-Salpeter Equation
(see chapter 5)



CHAPTER 3
Dielectric Response in

Solids
In the previous chapter, we saw how all the complexities involved in describing the
properties of matter can ultimately be reduced to the problem of describing how
interacting electrons behave in an external potential. This insight holds for almost
all cases of interest, but the tools we use to describe the electrons differ according to
the properties we wish to study.
One of the key properties of a material is how it interacts with an electromagnetic
field. From an experimental perspective, almost every probe we can make of a system
will involve an electromagnetic field, whether it be in absorption, emission, reflectance
EELS, or transport measurements. From a technological perspective, understanding
the response to an electric field can greatly help in designing materials for novel
applications. In the case of 2D materials, one of their unique properties is their
strong interaction with light[34].
From classical electromagnetism, it is well known that when we apply an electric field
to a material, the total field inside the material is different from the one we apply.
This is because the applied field creates a macroscopic polarization in the material,
which then creates its own field. The applied field is thus screened by the material.
In Maxwell’s equations, this is expressed by the difference between the field we apply
– the displacement field, D – and the total field, E. These two quantities are linked
by the dielectric function D = ϵE, and for many bulk materials and purposes, ϵ is
a constant. If the field is longitudinal, we can reformulate the problem in terms of
potentials, and the dielectric function then expresses how the external potential varies
as a function of the total potential:

ϵ(r, r′, t, t′) = δvtot(r, t)
δvext(r′, t′)

. (3.1)

The different arguments to the potentials indicate that the full dielectric function is
non-local, so that a perturbation at a point r′ can give rise to a response at r. A
more intuitive quantity than the dielectric function is the inverse dielectric function,
which relates the total potential to the external potential, such that
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vtot(r, t) =
∫

dt′
∫

dr′ ϵ−1(r, t; r′, t′)vext(r′, t′) (3.2)

In the following sections, I will describe how we can use electronic structure theory to
calculate both the macroscopic and the microscopic dielectric response of a material.
I will also describe how we can use the dielectric function to calculate the optical
absorption, and comment on the differences between the 2D and 3D cases.

3.1 Modeling response in DFT
We saw in the previous chapter that the essential properties of condensed matter can
be described through the electronic density. The goal is therefore to describe how the
electronic density changes on the application of an external field. For small fields we
would expect a linear relationship between the applied potential and the change in
the density, and the most general way of writing such as relationship is

δn(t) =
∫

dt′
∫

dr′ χ(r, t; r′, t′)vext(r′, t′). (3.3)

The object χ is the density-response function which shows how the density at (r, t)
varies due to an external potential at r′, t′.
In the Kubo linear response framework[35], the first order change in the density due
to an external perturbation H ′ is found as

δ⟨Ô(t)⟩ = −i
∫ ∞

t0

dt′θ(t− t′)
⟨[
Ô(t), V̂ (t′)

]⟩
0

(3.4)

The Heaviside step function ensures that the response of the system obeys the causal-
ity principle, meaning that the response of the system at a time t does not depend
on the perturbation at future times t′, and ⟨·⟩0 denotes the expectation value of an
operator with respect to the unperturbed system. Comparing equations (3.3) and
(3.4), we see that we must have

χ(r, t; r′, t′) = −iθ(t− t′) ⟨[n̂(r, t), n̂(r′, t′)]⟩0 . (3.5)

In DFT, accessing the density response function is difficult, but we can more easily
access the non-interacting response function χ0. This is the response the system would
have if the electrons were non-interacting, which is exactly the case for the fictitious
particles considered in the Kohn-Sham framework. Fortunately, the interacting and
non-interacting response functions are related through the Dyson equation[36]

χ̂ = χ̂0 + χ̂0(v̂ + fxc)χ̂, (3.6)
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where all quantities are understood as operators, and fxc is the functional derivative
of the exchange-correlation potential with respect to the density. In the random
phase approximation (RPA)[37], the exchange-correlation kernel is neglected, and
the interacting response function is given by

χ̂ = χ̂0 + χ̂0v̂χ̂ (3.7)

The question then becomes how we calculate the non-interacting response function.
Assuming homogeneity in time, so that the time dependence of the response function
becomes χ0(r, t; r′, t′) = χ0(r, r′, t − t′), we can Fourier transform in time to get the
response function χ0(r, r′, ω). This can be shown[38] to read

χ0(r, r′, ω) =
∑
m,n

∑
k,q

fm,k − fn,k+q

ω + εmk − εn,k+q + iη

× ψ∗
m,k (r)ψn,k+q (r)ψm,k (r′)ψ∗

n,k+q (r′) (3.8)

Here fn,k are the occupation numbers of the system, satisfying
∑

n,k fn,k = N , where
N is the number of electrons in the system, ψm,k are Kohn-Sham eigenfunctions, εm,k
are the corresponding eigenenergies and η is an infinitesimal introduced to ensure the
convergence of the Fourier transform.
As we are dealing with a periodic crystal, it must be the case that χ0(r, r′, ω) = χ0(r+
R, r′ +R′, ω) for any two lattice vectors R and R′. In this case, it is more convenient
to express χ0 in a plane wave basis, which finally gives the non-interacting response
function in reciprocal space[37, 39]

χ0
GG′(q, ω) = 2

∑
m,n

∑
k,q

fm,k − fn,k+q

ω + εmk − εn,k+q + iη

×
⟨
ψmk

∣∣∣ei(G+q)·r
∣∣∣ψn,k+q

⟩ ⟨
ψn,k+q

∣∣∣ei(G′+q)·r
∣∣∣ψmk

⟩
(3.9)

From this we can obtain the interacting density response function via Eq. (3.7), and
the inverse dielectric function can then be found as

ϵ−1
GG′(q, ω) = δGG′ + νχGG′(q, ω) (3.10)

The total potential is given by

vtot
G (q, ω) =

∑
G′

ϵ−1
GG′(q, ω)vext

G′ (q, ω), (3.11)

and we can thus describe how the system will respond to any applied field.



16 3 Dielectric Response in Solids

3.2 The macroscopic dielectric function
We also see that the structure of ϵGG′ means that the total potential will have rapid
variations on the scale of the unit cell, even if a slowly varying external potential is
applied. These are the local field effects[!!!].
We can link the microscopic picture and our macroscopic experiments by taking the
average of the total potential over a single unit cell. The macroscopic total potential
is then linked to the external potential via V tot(q, ω) = ϵ−1

00 (q, ω)V ext(q, ω), from
which we see that the macroscopic dielectric function in three dimensions, ϵM,3D, is
given by

ϵM,3D(q, ω) = 1
ϵ−1

00 (q, ω)
. (3.12)

It is important to note that ϵM,3D ̸= ϵ00, since off-diagonal elements of ϵGG′ can
contribute to the head when the matrix is inverted.
For the case of two-dimensional materials, this procedure for extracting the macro-
scopic dielectric function fails. This is because of the averaging procedure used to
link the macroscopic and microscopic dielectric functions, and because of the way we
represent 2D layers. Typically, we represent 2D crystals as 3D crystals with a very
large out of plane lattice constant, which lets us avoid spurious interlayer interactions
and hybridization between the different layers. The electronic density and response
are however confined to the 2D layer, and when the average of the microscopic dielec-
tric function is taken over the whole unit cell, most of the contribution comes from
the vacuum between layers, where there is no response. From this we would thus
conclude that there is essentially no screening of charges, regardless of q[40].
The natural approach to dealing with this issue is to limit the out of plane average
to a certain thickness, instead of averaging over the whole unit cell[41]. Doing this
yields the quasi-2D analogue of the 3D dielectric function, which links the in-plane
total potential to the in-plane external potential. In the limit of a purely 2D material,
the macroscopic dielectric function is linear in q and has the form

ϵ(q, ω) = 1 + 2πα(ω)q (3.13)
We see that as q → 0, ϵ → 1, meaning that there is no long-range screening in two
dimensions. Intuitively, this makes sense: when two charges in a 2D material are
well separated, almost all of the field lines between them will lie outside the 2D layer,
where there is no screening.
The advantage of the functional form of Eq. (3.13) is that it is possible to analytically
perform the Fourier transform and derive the real-space screened interaction[42]

W (r) = 1
4α

[Y0(ρ) −H0(ρ)]ρ=r/2πα , (3.14)

Where Y0 is a Bessel function of the second kind, and H0 is a Struve function. This is
a very different functional compared with the 3D screened Coulomb interaction which
generally has the form W (r) ∼ 1

ϵr . Eq. 3.14 has the following limiting behaviors
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W (r → ∞) ∼ 1
r

W (r → 0) ∼ log(r),

And thus shows the expected lack of screening at long distances, and a logarithmic
divergence at the origin.

3.3 Optical Properties
We can also use the dielectric function to determine the optical absorption of a ma-
terial. Within the RPA, the absorption in a given direction, ê, is given by[16]

ABSê(ω) = lim
q→0

−4π
q2 Im

(
χ0

M(qê, ω)
)
, (3.15)

where χ0
M is the macroscopic non-interacting polarizability. In three dimensions, we

can combine Eqs. (3.7) and (3.10) to obtain ϵM(q, ω) = 1 − 4π
q2 χ

0
M(q, ω), from which

we immediately see that

ABSê,3D(ω) = lim
q→0

(ϵM(qê, ω)) . (3.16)

As we saw in the previous section, the 2D macroscopic dielectric function is ill-defined,
but the polarizability retains its structure. To see this, we can look at the q → 0
limit of χ0

GG′ . Using k · p perturbation theory, we find that in this limit, the matrix
elements in Eq. (3.9) go as

⟨
ψm,k

∣∣eiq·r∣∣ψn,k+q
⟩

≈ ⟨ψm,k|p̂|ψm,k⟩
εmk − εn,k+q

· q (3.17)

For semiconductors, the energy difference in the denominator will always be non-zero.
We therefore have that as q → 0, the matrix elements are O(q), and χ0 goes as O(q2).
The limit in Eq. (3.15) is thus well-defined, and we have a valid expression for the
optical absorption also in two dimensions.
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CHAPTER 4
The computational 2D

materials database
In the preceding two chapters, we have seen how we can calculate a wide variety of
properties of any material based solely on knowledge of the atomic positions. We
have also seen how two-dimensional materials are different from three-dimensional
materials, at least with regards to their dielectric screening properties. Using this
knowledge we can systematically calculate the properties of many materials.

As we saw in chapter 1, 2D materials have a number of unique properties, and more
than fifty compounds have been synthesized as monolayers. Many more compounds
are predicted to exist, but so far no systematic study has been undertaken to explore
these properties, or to map out this materials space.

We have set out to perform just such systematic a study, starting with the known
2D structures. The most important figure in the genesis of the C2DB is shown
on Fig. 4.1. This illustrates the workflow we have developed to characterize the
structural, thermodynamic, elastic, electronic, magnetic, and optical properties of any
2D material, starting with determining just which structure we should be looking at.
The following two sections will explain the left and the right hand side of the figure
using illustrative examples, and will go into the reasoning behind the choices we have
made in developing the workflow. A great deal of time will be spent dealing with
stability issues, as it is our stability analysis which makes us confident that we are
working with real materials, rather than abstract atoms arranged in space. After
explaining how we can calculate the properties of 2D materials, the final section
of this chapter shows some examples of scientific insights we have gained from the
database, as well as listing some materials which are potentially of interest for further
study.

Before moving on, the reader should note two things. Firstly, this chapter is intended
to both summarize and complement the work described in Paper I. For a comprehen-
sive overview of the work, the reader should look there.

Secondly, since the publication of Paper I, we have completed calculations for many
new materials and released a new version of the database, version 18.09. This brings
the total number of materials studied from 1900 to 3000, and the total number of
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Figure 4.1: The workflow used to generate the structures in the C2DB and to cal-
culate their properties.

stable materials found to 550. When we quote results from full the database, they
will refer to the version with 3000 materials, unless otherwise stated.

4.1 Generating novel 2D structures
The first step in the systematic investigation of 2D materials is the question of how
to generate novel 2D structures, that is the left hand side of 4.1 In principle, using
electronic structure methods, it should be possible to calculate the properties of arbi-
trary arrangements of atoms. The probability of any one of these arrangements being
physically meaningful is very small, and the probability of discovering a novel layered
or two-dimensional structure is even smaller.

The guiding idea behind the initial generation of structures is that similar materials
are likely to have similar properties. Therefore, if we start from the existing set of
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known 2D materials, and perform small changes, we are likely to arrive at another 2D
material. The most obvious variation we can perform is varying the composition: for
example, if there is a known 2D material with composition MX3, with M a metal atom
and X a halogen atom, then the same structure with a different halogen atom, MY3, is
potentially of interest. We term this approach to generating materials combinatorial
lattice decoration.
To generate structures, we therefore base our exploration on known layered and 2D
materials. For these crystals, we have chosen to substitute materials from within the
same group in the periodic table (for the nonmetallic elements), or across all the tran-
sition metals. This approach seems chemically reasonable; an alternative approach
could have been to use a scale of chemical similarity such as the Pettifor scale[43] or
a modified version[44] to determine which substitutions should be attempted.
This approach of lattice decoration will undoubtedly lead to structures which are not
synthesizable, or which are unstable (see Sec. 4.1.1), but it will also lead to some
stable structures with interesting properties. The great advantage of performing
computational materials’ discovery is that it is significantly faster and cheaper than
working experimentally. This means that we can use in silico discovery to guide
experimental discovery, by identifying materials or classes of materials with useful
properties. In this way, we can create a map for the space of materials properties,
and hopefully put some crosses on it to say “X marks the spot”.
From a perspective of understanding correlations and trends, performing the substi-
tutions and calculating properties for entire, closed classes of material is very useful.
This lets us make general statements about the behavior of one entire class compared
with another, or about the behavior of one composition across different classes. The
complete, structured and consistently calculated data are also an ideal playground
for data mining and data driven approaches to materials modeling. See Sec. 4.3.2 for
more detail on this.
Once we have an initial structure, we relax it, by allowing the atomic coordinates and
the lattice parameters to vary, and finding the nearest local energy minimum with
respect to the atomic positions and the atomic parameters. This accounts for the
different sizes of the substituting, atoms, as well as the different bond angles of the
systems.
To keep track of the different phases we investigate, we label each material according
to a representative material with the same crystal structure, as will be described in
section 4.1.2. An subset of the representative structures is shown in Fig. 4.2
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Figure 4.2: A subset of the different prototypes in the C2DB.
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4.1.1 Stability
The most important decision we make with respect to a given structure is whether or
not we consider it stable – for it is this winnowing of the stable structures from the
unstable which links our computationally derived novel structures with the outside
world. A useful way looking at the stability is to look at local and global stability,
namely stability with respect to local distortions – dynamical stability – and stability
with respect to global reconfiguration of the atoms in the structure – thermodynamic
stability. In the following, I will explain the two different axes, and describe the
stability scale we use to classify the stability of a 2D material.
As described in the previous section, the first thing we do when we consider a new
2D structure is to relax the atomic positions and the lattice parameters. We would
therefore expect that the final structure is in a local minimum of the potential energy
surface, and no local distortions would be energetically favorable. The reason that we
need to consider the dynamical stability is that the initial relaxation is constrained
to preserve the symmetries of the original structure. This means that our relaxation
only guarantees that we are on a saddle point of the potential energy surface, and
a symmetry-breaking distortion of the structure which lowers the energy would not
be discovered. An example of this is the case of WTe2 which undergoes a distortion
from a hexagonal structure, as illustrated in Fig 4.3.

Figure 4.3: The distortion of WTe2 from the T phase (left) to the T′ phase (right).

To make it more likely that the structure we have found truly is at a minimum
of the potential energy surface, we calculate the Γ-point phonons of the 2 × 2 cell.
To do this, we successively displace every atom in the primitive cell along the three
coordinate axes, and calculate the forces on all the other atoms. In the basis of atomic
displacements, these forces express the curvature of the potential energy surface. By
diagonalizing the force matrix, we obtain the principal curvatures of the potential
energy surface in all directions, and the normal modes which describe the motion of
the atoms along these directions. If any of the principal curvatures is negative, the
structure can gain energy by moving along the corresponding normal mode, and the
structure is therefore unstable. Fig. 4.4 shows the phonon energies of WTe2 in the
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CdI2 phase (left panel of Fig. 4.3). As expected, we see modes with negative energy,
indicating that this configuration of atoms is not locally stable.
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Figure 4.4: The phonons of WTe2 in the CdI2 phase at the zone center and at the
zone boundary.

Along with stability towards local distortions, global thermodynamic stability is also
an important factor. A first approximation to this is the heat of formation of the
structure, which compares the energy of the structure with the energy of the most
stable phases of its constituent elements. If the heat of formation is positive, the
energy of the structure is higher than that of the constituent elements, and the ma-
terial will be both difficult to synthesize from elemental precursors, and, if formed,
likely to dissociate back into the elemental states. However, the heat of formation
does not tell the full story of the thermodynamic stability: It is not sufficient that
a material be stable with respect to the elemental references: to be truly stable, the
material should also be stable with respect to every other arrangement of the same
atoms. We can quantify this by comparing the energy of the structure with respect
to all the competing phases of the structure. The relevant quantity is the convex hull
of the energies of the competing phases; for any composition it gives the energy of
the optimal linear combination of alternative phases. An example of a convex hull is
shown in Fig. 4.5, for iron-selenium compounds. We see that for FeSe3 in the TiS3
prototype, the heat of formation is negative, and there is no structure with the same
stoichiometry and a lower heat of formation. However, the material is unstable, as the
total energy would be lowered if the following reaction took place FeSe3 −−→ FeSe2 +
Se. With respect to the convex hull, the most stable 2D material in this class has AB
stoichiometry, as it actually lies on the hull.
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Figure 4.5: An example of a two-component convex hull, with the bulk reference
structures in blue, and the 2D materials in orange. The blue line indi-
cates the convex hull of the energies of the reference states.

Ideally, we would consider only dynamically stable materials lying on the convex hull.
This criterion is fulfilled by approximately 7% of the materials studied. However,
such a criterion is too strict.
It is true that given sufficient time, we would expect to observe only the ground state
atomic configuration, i.e. the global minimum of the potential energy surface. This
might be a different phase with the same stoichiometry, or it might involve phase
separation into two different phases lying on the convex hull. The crucial issue is one
of time scales. If the length of time it takes for a material to move from its local
minimum to the global minimum is longer than the time we are concerned with, then
we can treat the material as stable. We call this property of being stable for long
enough metastability, and a classic example of this is diamond. The most stable phase
of elemental carbon under standard conditions is graphite, but nonetheless diamond
is easily accessible for both commercial and technological purposes, and it would be
a mistake to exclude it from consideration just because a more stable phase exists.
Looking for atomic configurations which lie in local minima of the potential energy
surface is therefore sufficient for our considerations. This is also why investigating the
dynamical stability is so important, for we would expect local distortions (if any) to
take place on short timescales, as they involve moving downhill on the potential energy
surface towards the local minimum, and therefore have essentially no energy barrier.
Nonetheless, even dynamically unstable materials can sometimes be stabilized by
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substrate interactions, or by encapsulation in other materials such as boron nitride. A
striking example of this is the prediction of two-dimensional phases of ice encapsulated
in graphene[45].
In addition to the possibility of stabilization, we must consider the accuracy of the
calculations. We know that PBE formation energies have an error of up to 0.2
eV/atom[46], and there are also errors in our determination of the convex hull. To
account for these effects we therefore devise a stability scale for both thermodynamic
and dynamical stability, and classify each material as having “HIGH”, “MEDIUM”
or “LOW” stability along each axis. The choices we have made defining each axis are
as follows, where the minimum eigenvalue of the force matrix ω2

min has units of eV/Å,
and the heats of formation have units of eV/atom:

LOW MEDIUM HIGH
Dynamic stability ω2

min < −2 −2 < ω2
min < 0 ω2

min ≥ 0
Thermodynamic stability ∆Hf > 0.2 ∆Hf < 0.2 ∆Hhull < 0.2

In addition to these requirements, for a material to be classed as dynamically stable,
we also require that it be stable under mechanical strain. Applying these criteria to
all the materials included in the C2DB v. 18.09 gives the distribution of stabilities
shown in table 4.1. We see that the approach of combinatorial lattice decoration has
resulted in almost 20% of the structures investigated being classed as highly stable
on both axes, and thus potentially synthesizable.

Thermodynamic Dynamic stability

stability LOW MEDIUM HIGH Total

LOW 6.9% 3.5% 2.0% 12.3%
MEDIUM 17.8% 12.7% 8.6% 39.1%

HIGH 9.8% 20.0% 18.9% 48.6%

Total 34.4% 36.2% 29.4%

Table 4.1: The materials in the C2DB distributed over the nine stability categories
defined by the three levels of dynamical stability and thermodynamic
stability. The color indicates the overall stability of the materials, which
is defined as the lower of the two separate stability scales.

To complement the tabulation of the stability levels, we can also visualize the distri-
bution of all the materials in the database along the two stability axes, which is done
on Fig. 4.6. From this we see that there is generally a correlation between dynamical
and thermodynamic stability: the most dynamically stable materials are also more
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likely to be thermodynamically stable. It is also encouraging to see that most of the
materials with known layered parent structures have a formation energy above the
convex hull close to zero, indicating that the interlayer interactions are weak.
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Figure 4.6: The distribution of the materials in the C2DB v. 18.09 according to the
minimum eigenvalue of the hessian and the energy above the convex hull.
The materials are colored according to their dynamical stability level,
and the experimentally known monolayers and layered bulk structures
are highlighted.

It should be noted that the stability analysis we do here only concerns itself with zero-
temperature stability of the structure in isolation. This means that we are missing
two effects which are relevant to the stability of any synthesized material. The first
is the role of entropic effects at finite temperatures, where we should be considering
changes in free energies rather than changes in total energies. The second effect is that
of stability in an environment: Interactions with the environment, such as oxidation,
reduction or the leaching away of metal atoms by a solute can all impact whether
or not a material is suitable for a given purpose. The stability levels we define here
should thus be seen as a guideline, rather than an absolute statement of fact.
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Overall, by far the most time – certainly human time, and potentially also CPU
time – has been spent in relaxing structures from an initial state and in performing
the stability analysis. The result of this is that we can be fairly certain that we are
working with physically reasonable and potentially synthesizable structures. Once we
have completed the stability analysis do we move on to calculating the properties of
the material – and for unstable materials (those with low stability on either stability
axis), we do not calculate any properties.

The first thing we do is to class the materials into prototypes according to some
symmetry criteria. This is described briefly in Paper I, but since then we have devel-
oped an improved method of prototype determination, which will be described in the
following section.

4.1.2 Crystal Structure Prototypes
From an abstract perspective, the crystals we are considering can all be classed ac-
cording to their space group, which reveals all the symmetry transformations that
map the crystal onto itself.

The prototype requirement we have considers only the space group of the atoms,
meaning that structures which intuitively seem wildly different could be given the
same prototype. In the first classes of materials we considered (∼ 1900 structures),
this occurred very infrequently, and was mainly due to some materials having exten-
sion out of plane, while others did not. Figure 4.7 shows the case of hBN and GaS,
which both have reduced stoichiometry AB and space group P6m2. To account cases
for these in a first approximation, we have therefore also classed materials as 2D or
quasi-2D, depending on their out-of-plane extension.

Figure 4.7: The structures of hBN and GaS, both with the space group P6m2. Vi-
sual inspection shows that the in-plane structures are the same, and the
mirror plane at z = 0 maps all atoms of BN to itself, and all atoms of
GaS to an equivalent atom.
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A better approach to symmetry classification is to look at the site symmetry group
of each atom. In the case of BN, each atom lies in a horizontal mirror plane, and is
thus mapped to itself under a reflection in this plane. On the other hand, for GaS,
none of the atoms lie on a mirror plane, and under a reflection in the mirror plane,
they are mapped to equivalent atoms, rather than to themselves.
The formalization of this idea leads us to look at the conjugate subgroups of the space
group, and gives us the Wyckoff sites of the crystal. These have been tabulated for
every space group[47]. By specifying which Wyckoff sites are occupied, we therefore
arrive at a full symmetry classification of the system. One thing to note in this
respect is that sometimes a given set of occupied Wyckoff sites is related to another
set through a rigid transformation (rotation or translation). This means that for a
given crystal, a different choice of unit cell could result in a different set of Wyckoff
sites being occupied. A method is therefore needed to identify these equivalent sets
of occupations, and this was provided in [48].
Including the Wyckoff positions in our analysis, we are able to distinguish not only
the case of BN and GaS highlighted above, but also that of graphane and GaSe shown
in Fig. 4.8.

Figure 4.8: The structures of CH and GaSe, both with the space group P3m1.

Both structures again have space group P6m2, but for graphane, the occupied Wyckoff
positions are d and d, while for GaSe they are c and d. Intuitively, these different
positions capture the fact that for GaSe, identical metal atoms are located directly
above one another, while for the CH prototype, we have inequivalent atoms above
one another.
The key feature of the symmetry-based prototype analysis, is that we can scale the
unit cell of the crystal, and vary all the free parameters in the Wyckoff sites without
affecting the symmetries. This can be both an advantage and a disadvantage – in
some cases, these transformations can yield structures which are sufficiently different
that at first glance they should belong to different prototypes. A second point is that
the presence or absence of a symmetry is inherently a discontinuous property. Even
with a large tolerance parameter, there will still be arbitrarily similar structures which
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fall into different symmetry classes. Due to these issues, a natural question to ask is
what the prototype determination would look like if an different method were used,
one which depends only on the positions of the atoms, and not on the symmetries.
To capture this notion of intuitive similarity, a metric for 3D and 2D periodic struc-
tures has recently been proposed[49], which calculates the atomic displacements be-
tween two systems, taking account the periodicity of the crystal. Using this metric,
we can calculate the distance between a selection of structures with the AB stoichiom-
etry, and based on this distance, we can cluster all the structures into different classes,
using a hierarchical clustering analysis1. The distance matrix and resulting dendro-
gram are shown in Fig. 4.9. The dendrogram is created by initially considering each
structure to be its own cluster, and then successively merging the two closest clusters,
keeping note of what the cluster-cluster distance was at the point of merging.
The structure of the data is also visible in the distance matrix on the bottom, where
we observe darker squares along the diagonal of the matrix, indicating that the matrix
has been ordered so that similar structures are close to one another.
From the figure, we see that there is generally good agreement between the symmetry-
based prototyping and the atomic distance measure: If we cut the dendrogram at the
height indicated by the dashed line, we end up with seven clusters. For seven of these,
the cluster only contains materials assigned the same symmetry-based prototype;
the remaining cluster consists of small symmetry distortions of the same template.
Each different symmetry prototype lies entirely within the same cluster, with the
exception of FeSe which has been split in two. This agreement between the symmetry-
based prototype assignment and the distance-based clustering is, as it indicates that
the prototype assignment we perform is meaningful, and reflects some underlying
structure in the data.
To evaluate the performance of the clustering more systematically, we can compare
the distance between each pair of structures, and the height at which the two are
merged in the hierarchical clustering. This last quantity is known as the cophenetic
distance[50], and the correlation between the original distance and the cophenetic
distance is the cophenetic correlation coefficient. For the clustering shown in figure
4.9, this value comes to 0.84, again illustrating that there is a good match between
the geometric similarity, and the clustering we have performed.

1Completely flat structures are not included, and neither are prototypes with only one or two
structures in the database
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4.2 Calculating the properties of 2D materials
In this section, I will explain the philosophy behind our approach to calculating
materials properties of 2D materials (the right panel of Fig. 4.1), and the reasoning
behind the choices we have made. I will do this through the illustrative example
of the effective masses. For the complete details of how we calculate all the various
quantities shown in the right panel of Fig. 4.1, we refer to Paper I, which extensively
documents and validates the calculations we have performed, as well as listing all the
relevant parameters.
Frequently, we are interested in modeling the behavior of free carriers in solids, that
is electrons in the conduction band or holes in the valence band. These carriers
can be generated through photo-absorption processes, or through impurities in the
crystal which donate or trap electrons. The population of carriers will live at the
bottom (top) of the conduction (valence) band, and usually, interband tunneling and
scattering for these carriers is small, so that when an external force is applied to the
carriers, they will move along the dispersion curve of their band[51].
Close to a band minimum, the dispersion of a smooth band will be approximately
parabolic, and in the simplest, isotropic case, the energy as a function of k around
these points thus looks like E(k) = E0+ 1

2ck
2 to lowest order, for some band curvature

c. The dispersion relation of a free electron looks like E(k) = E0 + k2

2m0
. Comparing

these two expressions, we see that near the band edge, an electron behaves like a free
electron, but with an effective mass given by

1
m∗ = c = ∂2E

∂k2 . (4.1)

This means that we can consider the carriers to act as if they were in free space, but
with an effective mass determined from the curvature of the band at that point. In
a semi-classical picture, when a force is applied to the carriers, they obey Newton’s
laws, but with their mass given by the effective mass. The entirety of the band
structure of the solid and the quantum mechanical nature of the problem has thus
been abstracted away into one parameter.
Often, however, the situation is slightly more complex. The curvature in one direction
can be different from the curvature in other directions, and the effective mass becomes
an N ×N tensor in N dimensions, rather than a scalar. In the semi-classical picture,
this means that depending on which direction a force is applied in, the carriers will
respond as if they had different masses.
The first step in calculating the effective mass is to find the band edges in the Brillouin
zone. For 3D materials, just finding the band edge can be a challenge, as it requires
a very fine k-point sampling throughout the entire Brillouin zone[52]. What is often
done instead is to restrict the search to certain high-symmetry paths in the Brillouin
zone, and look for the edges values there. In two dimensions, finding the band edges
is a much simpler task, as the parameter space is much smaller. It is therefore not
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too computationally costly to finely sample the entire Brillouin zone and find the true
band edges. This also turns out to be necessary, as 15% of the semiconductors in the
C2DB have at least one of their band edges away from a high-symmetry line. The
upper two panels of Fig. 4.10 show the band structure and Brillouin zone of SnS in
the GeSe structure, as well as where the band edges are located in the Brillouin zone.
We see that in this case, both the valence band maximum and the conduction band
minimum lie on a high-symmetry line, but neither lies on a high-symmetry point.
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Figure 4.10: Band structure, Brillouin zone and band edge zoom for SnS in the
GeSe prototype.

Once we have identified the points of interest, we need to calculate the curvature. We
do this by calculating the eigenvalues on a fine k-point mesh in a circle around the
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relevant point, with the radius of the circle chosen so that for a typical curvature,
the energy differences are above the noise level of the calculation, but still within the
harmonic regime. The energy scale of the dispersion within the circle is also small
enough that the risk of “accidental” band crossings and degeneracies is minimized.
Once we have the energies, we can obtain the curvature (and thus the mass) by fitting
a polynomial to them. It turns out that the procedure is less sensitive to the numerical
details of the k-point sampling if we fit a third order polynomial, and then use that to
extract the effective mass tensor. By diagonalizing the effective mass tensor, we can
obtain the two principal axes of the (potentially anisotropic) masses, and to check the
quality of the fit, we also calculate the exact eigenvalues along these two directions.
For the case of SnS in the GeSe structure, this is shown on the lower panel of Fig.
4.10, where we see anisotropic conduction and valence masses, as well as a Rashba-like
band splitting in the conduction band.
The philosophy behind the calculation of the effective masses, and the database as a
whole can be summarized in the following

• Robustness: The method used has to work across a wide range of different
systems and situations, and fail only in the rarest of cases.

• Simplicity: The method should represent the simplest way of calculating the
desired quantity from a DFT calculation. A simple but slow method is prefer-
able to a complex but faster.

• Accuracy: The calculated value should quickly converge towards the true value
as a function of some convergence parameter. There should be as few conver-
gence parameters in the calculation as possible.

Overall, none of the above principles is revolutionary, but they all play a significant
part in making the project management simpler. This will be described further in
the following section.

4.2.1 Project Management
The number of different materials included in the C2DB, and the number of properties
calculated for each material have meant that much time has been spent on managing
calculations, and ensuring that they were proceeding as planned. A quick estimate
of the number of calculations involved shows that at a minimum, a 200000 DFT
calculations have been performed to reach the final database; not taking into account
all the failed calculations along the way.
The most important tool in managing the project is the workflow illustrated in Fig.
4.1. Organizing calculations in this way has been a great help in structuring the
process of calculating all the required properties. Ultimately, considering the full
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set of calculations as a workflow or assembly line has meant the creation of scripts
which (i) Take well-defined inputs; (ii) perform one simple calculation; (iii) produce
a well-defined output, which can be consumed by subsequent tasks.
A lesson learned along the way is that it is necessary to automate as much of the
calculation as possible, and only require human input in extraordinary cases. This
means, for example, that the dependency graph implied by the workflow should be
automatically enforced, rather than relying on people to submit the correct jobs at
the correct time. It also means that the common failure cases of a calculation, namely
lack of resources, should be dealt with automatically, rather than relying on human
intervention. These considerations led to the creation of the myqueue tool, which is
described in https://gitlab.com/jensj/myqueue.
Aside from the workflow and the calculations themselves, several steps are needed to
generate the completed database file and the associated website. These are illustrated
schematically in Fig. 4.11, and are separated into three separate phases, namely:
running calculations, collecting data, and organizing its presentation. I will not go
into detail of the different steps; the most important thing to note is that the last
two phases should be carried out frequently, to ensure that they still work, even with
new materials in the database or new tasks in the workflow.

Figure 4.11: The steps involved in the creation of the database.

4.3 Using the database
The scientific value of the database extends far beyond merely being a reference work
in which we can look up values if we ever need to. In this section I will highlight
three ways in which we can use the database to advance materials science.
One advantage of having comprehensive data is that it is possible to evaluate the
performance of simple descriptors over a wide range of materials, and we can begin
to understand where simpler models break down. I will explore this theme more fully
in Section 4.3.1
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A second advantage of having all the properties calculated is that we can begin to
explore structure-property and property-property relations, and thereby develop new
descriptors for properties we are interested in. A surprising example of this is the
agreement we observe between the G0W0 band gap of the 2D materials and GLLB-SC
band gap; we observe that they scale in the same manner.
Finally, because we did not have a specific application in mind when creating the
database, we can use it for many different applications. In particular the database
can be used as the starting point for later screening studies, based on properties we
have already calculated and descriptors we can derive from them. Some examples of
interesting materials which might be found in this way are for novel high-mobility 2D
materials, materials with magnetic properties, or with properties making them useful
in tandem solar cells.

4.3.1 Evaluating the Performance of Descriptors and Simple
Models

An advantage of having comprehensive data for a large and heterogeneous set of 2D
materials is that it is possible to evaluate the performance of simpler models which
work well in restricted situations. An example of this is in exciton binding energies,
which are frequently described using a Mott-Wannier model (5.3), or the even simpler
2D hydrogen-like model[53]. For the systems which were originally considered, these
models worked very well, but when they are applied to the full set of 2D materials,
their performance drops significantly.
Figure 4.12 compares performance of the screened hydrogen model with the full solu-
tion of the BSE. The mean absolute deviation between BSE and the model is 0.28 eV
for all materials and 0.20 eV for the subset of transition metal dichalcogenides. For
very strongly bound excitons, it seems that the model systematically overestimates
the binding energy, while for weakly bound excitons, it appears to underestimate the
binding energy. We attribute the errors in the model to two sources

• Weak screening: If α2D is small, the exciton becomes strongly localized and the
orbital character of the states comprising the exciton plays a significant role.

• Breakdown of the parabolic band approximation: If the bands of the material
are flatter in the vicinity of the minimum (maximum) than predicted by a
parabolic band approximation, the exciton will be more delocalized in k-space
than predicted by the Mott-Wannier model, leading to a stronger localization
in real space, and thus a larger binding energy.

4.3.1.1 Band gaps and effective masses

A similar story holds for the relationship between band gaps and effective masses.
Applying k · p perturbation theory, we can write down an expression for the band
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Figure 4.12: The performance of the simple hydrogen model for exciton in 2D ma-
terials evaluated on the original set of TMDCs (left) and on all the
materials in the C2DB (right).

energy as a function of k near a band edge (which for simplicity is assumed to occur
at k = 0). This gives

En,k = En,0 + k2

2
+

∑
m̸=n

|⟨un,0|k · p̂|um,0⟩|2

En,0 − Em,0

= En,0 + k2

2
+

∑
m̸=n

|k · ⟨un,0|p̂|um,0⟩|2

En,0 − Em,0
(4.2)

If the main contribution to this expression comes from just the valence and conduction
band, we see that the band curvature should be inversely proportional to the band gap,
and hence the band gap should be proportional to the effective mass. Additionally,
if the corresponding matrix element ⟨ψc|p̂|ψv⟩ is roughly constant across material
classes, we would expect this relationship to be universal. This is the case for 3D
direct band gap semiconductors, where a rule of thumb is that for carriers in the
valence band[54],

1
m∗ = 1

m0

(
1 + 20 eV

Eg

)
(4.3)

Fig. 4.13 shows the inverse electron mass as a function of the inverse band gap
for the semiconductors in the C2DB. Evidently, the clear correlation predicted by the
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preceding analysis is not present. One of the main approximations used to predict the
simple relationship 4.3 was to assume that the momentum matrix elements between
conduction band states and valence band states are constant across material classes.
To reduce the influence of this assumption, we can focus on materials of similar
composition and crystal structure, where the approximation should hold. For these
materials, there is a clearer relationship between the effective mass and the band gap,
but it is by no means as simple as predicted by Eq. 4.3.
Overall, these examples show that while simple models work well for some cases, it is
important to remember that they will break down at some point, and it is important
to systematically check the validity of the assumptions behind the model.

4.3.2 Data-driven Analysis
As discussed in the beginning of chapter 2.2, the fundamental idea behind the atomic
theory of materials is that all the properties of a material depend uniquely on the
atomic structure of the material. Using electronic structure theory, we can access
these properties, but at great computational cost.
One approach to finding correlations in data which has become immensely popular
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in the last few years is known as machine learning. Outside of physics and materials
science, machine learning and data analytics approaches have resulted in impressive
performance in image recognition[55], speech recognition[56], self-driving cars[57] and
games of strategy[58]. Within the field of materials science, there is also active re-
search in applying machine learning methods [59, 60].
A full description of machine learning approaches is outside the scope of this thesis,
so I will be extremely brief. The goal of a supervised machine learning process is to
learn a function which maps some inputs to some target outputs. This requires a
parameterized form of the target function, and an optimization routine which selects
the best such parameters given a set of known (input, output) pairs.
The first step, before beginning with any kind of machine learning approach, is to
find some way of representing a structure in a way that is useful for the problem
at hand. Many different representations have been proposed, such as the coulomb
matrix[61], the many-body tensor representation[62], the bag-of-bonds approach[63]
or the smooth overlap of atomic potentials[64]. Ideally, a generalized representation
of a structure should obey the following criteria

1. The representation should be one-to-one: Each platonic structure should corre-
spond to one representation, and each representation should correspond to one
structure

2. The representation should be invariant under transformations which do not
change the structure, such as translations or rotations. For periodic systems,
the representation should be invariant with respect to different choices of unit
cell.

3. The representation should be continuous: Similar structures should have similar
representations.

4. The representation should be simple to calculate

In the following, we use the FCHL representation[65], which represents structures in
terms of the distances, angles and dihedral angles between the constituent atoms, and
which uses a Gaussian placed on the periodic table to represent the chemical species.
As an input, this fingerprint requires the atomic coordinates of the structure.
One of the issues with using a fingerprint based on the relaxed coordinates of a
structure as input to a machine learning model is that relaxed structures are often
difficult to find, or at least harder to find than some of the properties we might want
to do machine learning for. For example, performing a local relaxation of a given
structure may take tens of self-consistent calculations. Once that’s accomplished,
though, calculating the heat of formation takes just one self-consistent calculation, as
does calculating the DFT band gap. Calculating a band-structure, which is already
a more complex object, takes a similarly short time. The upshot of this is that to
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create a machine learning model which takes as input a relaxed set of coordinates and
produces as output a heat of formation, is nonsensical, as it violates rule 4 above.

Rather than using the relaxed structures as input to our model, we can instead use
the fact that we have performed combinatorial lattice decoration based on known
structures. For each structure in the database, we have access to the atomic coordi-
nates of the seed structure. By replacing the atomic species of the seed structure with
those of the target structure, we obtain a sensible initial guess of the coordinates of
the target structure. This can be improved further by scaling the lattice parameter
of the structure according to the ratio between the mean covalent radius of the target
and seed structures. Using this approach, we can generate a representation for each
structure in the database without knowing the relaxed coordinates.

In this case, the inputs are the representations of the structures given above, and the
target outputs are the heats of formation. As a model, we use kernel ridge regression
using a Gaussian kernel.

In this case the model y of a given input x is given by y(x) =
∑

i αiK(x, x′;σ), where

the kernel K is given by K(xi, xj ;σ) = e
∥xi−xj∥2

2σ2 and the sum runs over the i training
points in the data. The regression coefficients αi can be found as ααα = (K + λI)−1 y,
where λ is a regularization parameter which prevents over-fitting and ensures that the
matrix inversion is possible, and y is the vector of known outputs corresponding to
the training points x. Doing this for all the materials in the database, and optimizing
the values of σ and λ gives the model performance and training curves shown in Fig.
4.14, where we have used a six-fold cross validation scheme.

We see that when training on 2500 materials, the model achieves a mean absolute error
of 0.12 eV/atom, which is comparable to the accuracy of the DFT calculation itself. If
we had used the prediction to evaluate the thermodynamic stability of the structures
in each prototype, we would have found the following: 84% of the materials would
have been correctly predicted to be potentially stable (medium or high stability) and
11% would have been correctly predicted to be unstable. A further 2% would have
been predicted to be stable while actually being unstable, while 3% would be stable,
despite being predicted as unstable. Using this approach to pre-screen the prototypes
would thus allow us to reject the majority of the unstable materials without having
to obtain the relaxed structure.

Ideally, we would like to be able to test the heat of formation of a completely new
prototype before performing any relaxations. In this case, the preceding analysis is
slightly too optimistic, since for every material in the test set there was a represen-
tative from the training set. Instead, we can train the model on N − 1 prototypes,
and test it on the remaining prototype. Doing this gives a mean absolute error of
0.28 eV/atom, which is a significantly worse result. However, it is still sufficiently
accurate we can determine which prototypes are generally more stable than others,
and thus prioritize investigating those first.
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Figure 4.14: Predicting the heat of formation of the compounds in the C2DB using
machine learning. (left) the predicted heat of formation vs the true
heat of formation for each of the 3000 compounds in the C2DB, when
the machine is trained on 2500 structures. (right) The learning curve
of the model, showing the mean absolute error of the predicted heats
of formation, as a function of the size of the training set.

This is only the first step in exploring the wealth of data available, but it already
shows the promise of the approach. More work is needed to develop other descriptors,
which can quickly predict properties of interest for 2D materials.

4.3.3 New materials for different applications
A widely used approach to materials discovery is a screening or funnel approach, which
can be extremely useful when one has a specific application in mind and is search-
ing for materials which would perform well. By defining a sequence of descriptors
which characterize how well a material performs the desired tasks, and an accompa-
nying set of exclusion criteria, one can take a starting set of candidate materials and
successively filter out unsuitable materials. To reduce the computational cost, the
calculations should be carried out so that the simplest descriptors are calculated first,
and unsuitable materials are excluded as soon as possible.
For the C2DB, the only exclusion criteria we have applied are stability criteria. Oth-
erwise, all properties have been calculated for all materials2. This means that we
are not limited to a single application, but can search through the database, for any
combination of properties, including for applications we did not have in mind when
designing the workflow. Looking through the database, we find a number of differ-

2Apart from G0W0 band structures and the BSE spectrum
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ent materials with interesting transport properties or magnetic properties. These will
briefly be described in the following sections, which are a condensed version of section
3.2 of Paper I.

4.3.3.1 Transport

A key property for transport applications is the carrier mobility, which relates the
drift velocity of the carriers to the strength of an applied field. In many cases, we wish
to see as high a mobility as possible. Calculating the mobility from first principles
is possible, but time-consuming. On the other hand, if one assumes energetically
isolated and parabolic bands, the intrinsic mobility limited only by scattering on
acoustic phonons can be estimated from the Takagi formula [66],

µi = eℏ3ρv2
i

kBTm∗
im

∗
dD

2
i

. (4.4)

Here µ is the mobility, i refers to the transport direction, ρ is the mass density, vi

is the speed of sound in the material, m∗
i is the carrier mass, m∗

d is the equivalent
isotropic density-of-state mass defined as m∗

d =
√
m∗

xm
∗
y, and Di is the deformation

potential, which expresses how the band edges of the system move under strain, and
is a good descriptor for the strength of the electron-phonon coupling.
Comparing the terms appearing in Eq. (4.4) with the properties we calculate in Fig.
4.1, we see that all of the necessary quantities are already calculated. This means
that we have enough information to estimate the mobility of all the semiconductors
in the C2DB.
Restricting our attention to the materials with high stability in both directions, we
find several materials with high electron or hole mobilities, which could be of interest
for further study. As a validation of our approach, we observe the known high-mobility
semiconductors appear in our list. Table 4.2 shows some key transport properties of
stable, novel 2D materials with high carrier mobilities.

4.3.3.2 Magnetism

Magnetism in low-dimensional materials is currently a very active field of research,
since the discovery of magnetism in monolayer CrI3[67]. From the Mermin-Wagner
theorem[68], we know that for isotropic systems in low dimensions is not possible
at finite temperatures. A finite magnetic anisotropy with an out of plane easy axis
breaks the assumption behind the Mermin-Wagner theorem and makes magnetic order
possible at finite temperature. The critical temperature for magnetic order in 2D
materials will thus have a strong dependence on the anisotropy.
On table 4.3 we list some stable magnetic materials with magnetic anisotropies com-
parable or greater than those of CrI3; these are likely to have critical temperatures
similar to, or potentially even higher than, CrI3.
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Carrier Formula Prototype Gap
(eV)

µhigh
(cm2/(V·s))

m∗

(m0)
µhigh

µlow

Holes PbS2 MoS2 1.39 30000 0.62 1.4
OsO2 WTe2 0.17 23000 0.23 3.0
ZrCl2 MoS2 0.98 12000 0.43 1.1
WSSe MoSSe 1.40 5500 0.37 1.0

Electrons PtTe2 CdI2 0.30 9600 0.17 1.3
GaO GaS 1.56 7200 0.32 1.0
NiS2 CdI2 0.58 6000 0.29 1.5
RuTe2 WTe2 0.64 4600 1.55 8.5

Table 4.2: Stable materials with high intrinsic mobility according to Equation (4.4),
and some selected transport properties. µhigh is the larger value of the
mobilities in the x or y directions, m∗ is the corresponding effective mass,
and µhigh/µlow quantifies the anisotropy in the mobility..

Formula Prototype MM
(µB)

Gap
(eV)

MA
(meV/atom)

Magnetic
state

∆Hhull
(eV/atom)

OsI3 BiI3 0.9 0.0 −3.17 FM 0.18
CrTe FeSe 2.6 0.0 −1.85 AFM 0.15
FeCl3 BiI3 1.0 0.01 −1.84 FM −0.08
FeTe FeSe 1.9 0.0 −1.06 FM 0.08
MnTe2 CdI2 2.7 0.0 −0.94 FM −0.10
FeBr3 BiI3 1.0 0.04 −0.88 FM −0.04
CrI3 BiI3 3.0 0.90 −0.85 FM −0.21
MnTe FeSe 3.8 0.69 −0.75 AFM −0.15
NiO PbSe 1.1 0.0 −0.53 FM 0.05
FeBrO FeOCl 1.1 0.0 −0.47 FM −0.05
CrISe FeOCl 3.0 0.0 −0.45 FM −0.10
MnSe2 CdI2 2.8 0.0 −0.40 FM −0.18
CrIS FeOCl 3.0 0.35 −0.36 FM −0.10
MnO2 CdI2 3.0 1.13 −0.36 FM 0.02
VCl3 BiI3 2.0 0.0 −0.35 FM −0.01
MnSe FeSe 3.7 0.90 −0.31 AFM −0.20
CrSe FeSe 2.0 0.0 −0.31 AFM 0.12

Table 4.3: A selection of magnetic materials with a negative MA per magnetic atom.
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CHAPTER 5
Dissociation of Excitons

in 2D materials
In this chapter, the focus shifts from calculating general properties for many different
materials, to calculating single properties for only one or two materials, namely the
dissociation rate of excitons in the transition metal dichalcogenides MoS2 and WSe2.
One of they key features of two-dimensional materials is a very strong interaction with
light. As an illustration, monolayers of the three transition metal dichalcogenides
WS2, MoS2 and MoSe2 have been observed to absorb more than 5% of incident
sunlight[34]. Additionally, it has been observed that there is a strong optical response
below the quasiparticle band gap[69, 70]. This fact seems counter-intuitive, as the
band gap is an energy region with no electronic states, and it should therefore not be
possible to have transitions with energies below the gap. The answer to the paradox
lies in the breakdown of the single particle picture of the quasiparticles: When an
electron is excited from the valence band to the conduction band, it leaves behind a
positively charged hole. When the electron and the hole are close to one another, the
Coulomb interaction between them causes them to gain energy compared with when
they are separated. This excitonic state, with an electron bound to a hole, has lower
energy than a free electron and hole, and thus lives inside the quasiparticle gap
The key feature of excitons is that they are bound; for many purposes however, we
are interested in generating free carriers, rather than excitons. An example could be
photovoltaic applications or photodetectors, which both depend on the separation of
electrons and holes. Typically, this is much harder to accomplish with excitons in
2D (where binding energies are on the order of 0.1-1.0 eV) than it is in 3D systems
(where the binding energies are much smaller)[71]. This means that thermal effects are
typically not strong enough to dissociate 2D excitons, and an additional mechanism
is needed.
One way this can be accomplished is by the application of an electric field[72], which
causes the electron and hole to move in opposite directions, thereby dissociating the
exciton. The exciton thus changes from a bound state to a resonance with a finite
lifetime, and shifts down in energy – the so-called Stark shift[73].
In the following, I will describe how we can model excitons using many-body per-
turbation theory, and how this leads to a hydrogen-like model for the exciton wave
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function.
Following that, in section 5.2, I will develop the theory of how to define resonances,
and describe how it is necessary to use open boundary conditions to describe them
mathematically. I will then provide a brief overview of the complex scaling technique,
which allows us to precisely calculate the lifetimes and energy shifts.
Finally, I will summarize the contents of two publications in this area – Paper IIand
Paper III– which demonstrate that it is realistic to use electric fields to dissociate
excitons in two-dimensional materials, and furthermore illustrate the applicability of
the complex scaling technique.

5.1 Modeling Excitons
In the single-particle picture, the optical absorption is given by (3.16) and (3.15) for
3D and 2D materials respectively. In both cases, we see that the absorption onset
corresponds to the onset of single-particle transitions, as this is where the denominator
in the expression diverges.
To model the excitonic behavior, we therefore need to include many-body effects.
This is accomplished by writing the excitation we seek for as a linear combination of
single particle excitations, Ψex(qex) =

∑
vck F (k)Φck+qex,vk , where Φck+qex,vk ≡ ΦS

is the state created from the electronic ground state by taking an electron from an
occupied state v with momentum k and placing it into an unoccupied state c with
momentum k + qex. Frequently it is sufficient to consider only a few occupied and
unoccupied bands, and to consider only positive energy transitions[74]. Inserting the
trial state into the many-body Hamiltonian (equation (2.3)) reveals that the expansion
coefficients F obey the equation

∑
S′

HSS′(qex)Fλ
S′(qex) = Eλ(qex)Fλ

S (qex), (5.1)

with the two-particle Hamiltonian given by

HSS′(q) = (εc,k+q − εv,k)δSS′ − (fc,k+q − fv,k)KSS′(q) (5.2)

The kernel, K is given by the sum of two separate terms, namely the unscreened ex-
change interaction, and the screened direct electron-hole interaction, so thatKSS′(q) =
2VSS′ − WSS′ . The factor of two on the first term accounts for spin. Fourier trans-
forming the expansion coefficients F appearing in Eq. (5.1), we can show[75] that
they obey a hydrogen-like equation of the form[

− ∇2

2µex
+W (r)

]
ψex(r) = εnψex(r) (5.3)
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An equation of this type holds in both two and in three dimensions, where in the
two-dimensional case, the kinetic energy operator and the positions vectors are also
two-dimensional. The difference between the two-dimensional case and the three-
dimensional case lies in the behavior of the screened Coulomb interaction. In 3D,
semiconductors typically have strong screening, and the potential in Eq. (5.3) is thus
expected to be shallow, giving small binding energies. In 2D materials, the screening
of the Coulomb interaction is much weaker, and thus the exciton binding energies are
much larger.
As we have seen in section 3.2, the functional form of the screened Coulomb interaction
is also different in 2D compared with 3D, which notably causes the higher-lying
excitonic states to deviate from the expected Rydberg series behavior[76]. If the layers
we are considering have negligible thickness, the 2D screening is given by ϵ2D = 1 +
2παq, leading to the expression for W (r) given in Eq. (3.14) to model the behavior
of excitons. For thicker layers, a more sophisticated approach is needed, but the
approximation remains valid for small q [41].
Examining (3.14), we see that the relevant parameters we should calculate via ab initio
calculations are the reduced exciton mass, and the slope of the dielectric screening
at q = 0. In Tab. 5.1 I show the parameters for a single layer of MoS2, as well as
the exciton binding energy these Mott-Wannier model, as well as the result obtained
from solving the BSE.

Material µex (m0) α (a0) Eb,Mott-Wannier (eV) Eb,BSE (eV)
MoS2 0.27 11.1 0.62 0.43[41]

Table 5.1: The Mott-Wannier parameters for monolayer MoS2, and the correspond-
ing exciton binding energy.

5.2 From Bound States to Resonances
To calculate the lifetime of an exciton in an electric field, we should look first at
what changes when an electric field is applied. Figure 5.1 sketches the situation. The
left panel shows the situation when no electric field is applied:The screened Coulomb
interaction from the hole creates a potential well, localizing the electron in a bound
state nearby, with a discrete, real energy. A continuum of unbound states lies above
all the bound states, these represent free electrons and holes. The energy difference
between the bound state and the lowest lying continuum states is the binding energy
of the exciton. Applying a constant electric field corresponds to adding a linear
term to the potential, as shown in the right panel of the figure. The bound states
previously identified are no longer eigenstates of the Hamiltonian, since the exciton
now couples to all of the continuum states, and can leak out of the potential well.
For the situation sketched in the figure, the exciton can dissociate even for arbitrarily
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small field strengths – as long as the electric field extends out far enough, it will
always be energetically favorable for the electron to move “downhill” in the field.

Figure 5.1: A sketch of the potentials and states involved in exciton dissociation.
On the left we see the screened Coulomb potential of the hole, which
gives rise to bound states confined to the well. On the right, we have the
same screened Coulomb potential with an additional constant electric
field. The previously bound state now couple to the continuum states,
and leak out of the well. Its energy shifts down due to the Stark effect,
and broadens, due to lifetime effects..

From an intuitive perspective, this decay of the exciton state can be modeled by
giving the exciton a complex energy E = ER + iΓ, with Γ representing its inverse
lifetime. When this state evolves in time, it will undergo exponential decay, precisely
as desired. However, this approach is unsatisfactory for two reasons. Firstly, in quan-
tum mechanics we usually consider Hermitian Hamiltonians, which must of necessity
have real eigenstates. In this setting, an eigenstate of the Hamiltonian with a complex
eigenvalue is nonsensical. Secondly, by focusing on the resonance and its lifetime as
a property of the Hamiltonian, we encounter Howland’s razor, which states that

No satisfactory definition of a resonance can depend only on the structure
of a single operator on an abstract Hilbert space.[77]

An illustration of this principle is given by the family of Stark Hamiltonians, Ĥκ(r) =
− ∇2

2 − 1
r + κx. Then, for every nonzero κ and κ′, there is a unitary transformation

connecting the two Hamiltonians Ĥκ and Ĥκ′ . This transformation preserves eigen-
values, and we arrive at the puzzling conclusion that the decay rate of our state is
independent of the electric field applied.
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In order to describe these resonant states, a different approach is therefore needed. A
key point to note is that the resonant states, such as decaying excitons, correspond
to particles leaking out of our system. This means that the wave functions which
correspond to these states are of a class we do not typically consider: Instead of
having square-integrable wave functions ψ, with |ψ(r)| → 0 as r → ∞, we should
look instead for states which resemble plane waves at infinity: ψ(r) → aeiκ·r, with the
(potentially complex) momentum κ obeying ℜ (κ · r) > 0. These boundary conditions
correspond to having only outgoing plane waves far away from the scattering region,
and were first investigated by Siegert[78].
Mathematically, what we are doing by allowing these non square-integrable wave
functions is to greatly extend the domain of the Hamiltonian. In this domain, there
are stationary states with complex eigenvalues, and these are precisely the resonances
we seek.
In principle, it should be possible to directly diagonalize the Hamiltonian we are
interested in subject to these scattering boundary conditions. In practice, this is
usually a difficult undertaking. Usually, we prefer to work with square-integrable
functions and zero boundary conditions. These have the advantage that the boundary
conditions are easy to impose, and the convergence of a simulation with respect to
system size can easily be checked. The resonant states are not only divergent, they
also have energy-dependent boundary conditions: for a plane wave state, the energy
is related to the momentum through E = k2

2m . Instead of directly diagonalizing the
Hamiltonian, a much better approach is to use complex scaling.

5.3 Complex Scaling
The idea behind complex scaling is to somehow transform the problem sketched in
the previous section in such a way that we can deal with square-integrable func-
tions instead of divergent ones, and with zero boundary conditions instead of energy-
dependent ones. The following brief explanation is based on [79], and the reader is
invited to look there and in [80, 81] for a more rigorous treatment.
As hinted at by the name, the complex scaling technique involves transforming real
positions and momenta into the complex plane. More specifically, we rotate the
coordinates into the complex plane according to the following recipe

p ≡ i∇ → e−iθp ≡ ie−iθ∇
r → eiθr,

for some real angle θ. A single-particle Hamiltonian with a local potential then
transforms as

Ĥ ≡ − ∇2

2m
+ V (r) → −e−i2θ ∇2

2m
+ V

(
eiθr

)
≡ Ĥθ, (5.4)
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and the transformed time-independent Schrödinger equation then reads Ĥθψθ(r) =
εθψθ(r).
In order for the transformation to leave the bound states and their energies unchanged,
we must require that all wave functions transform as ψθ(r) = eiNθ/2ψ

(
eiθ

)
t).

To see this, we can look at the inner product ε0 =
⟨
ψ

∣∣∣Ĥ∣∣∣ψ⟩
. This is given by the

integral ε0 =
∫

dN rψ∗(r)Hψ(r). If the state ψ under consideration decays quickly
enough, and both Ĥ and ψ are analytic, we can use contour integration to rotate the
axis of integration into the complex plane without affecting the value of the integral.
Letting ρα = eiθrα for each of the N Cartesian directions α, we have

ε0 =
∫

dN r [ψ∗(r)H(r)ψ(r)]

=
∫

dNρ [ψ∗(ρ)H(ρ)ψ(ρ)]

=
∫

dN reiθ
[
ψ∗(reiθ)H(reiθ)ψ(reiθ)

]
=

∫
dN r

[
eiNθ/2ψ∗(reiθ)H(reiθ)eiNθ/2ψ(reiθ)

]
=

∫
dN r [ψ∗

θ(r)Hθ(r)ψθ(r)] = εθ

From this sketch, we can already see that for the complex scaling technique to work,
there are certain requirements for the potential under consideration. That the poten-
tial is analytic is not a sufficient condition; it must also be dilatation analytic. This is
a slightly technical requirement, which is described in more detail in [81]. For our pur-
poses, it suffices to note that the class of allowed potentials is large enough to include
the Coulomb potential and all Yukawa potentials, as well as the potential described
by Eq. (3.14). Unfortunately, a constant electric field is not dilatation analytic, but
for this particular case, it has been shown that the complex scaling technique works
nevertheless[82].
The crucial result from complex scaling is that the eigenstates and eigenvalues of Hθ

behave differently depending on whether they are bound states, resonances or part
of the continuum. We have already seen that the bound states remain bound under
the transformation, with the same eigenvalues. As to the continuum states, we can
understand their behavior under the complex scaling by examining them far away
from the scattering center, where the potential is negligible. In this region, we thus
have Ĥ ∼ − ∇2

2m , and the wave functions resemble plane waves, ψc(r) ∼ eik·r, with
energy eigenvalue k2

2m . Any eigenstate of Ĥ is also an eigenstate of Ĥθ, but with
eigenvalue εθ = −i2θε0. The continuum states thus rotate into the complex plane,
with a rotation angle equal to twice the scaling angle.
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Finally, the last and most interesting case is that of the resonances. Let us consider
a state satisfying the Siegert resonant boundary conditions and apply the complex
scaling transformation to it, and let κ ≡ p − iq be the complex momentum of this
state. Then as r → ∞ we have

ψθ(r) = eiNθ/2ψ(r exp iθ),

= eiNθ/2ei(p−iq)·eiθr

= eiNθ/2ei(p cos θ+q sin θ)·r e(−p sin θ+q cos θ)·r.

We see that the final term leads to an exponential decay of the wave function with
increasing r, as long as θ > tan−1 (q · r̂/p · r). For values of θ greater than this,
the resonant state is therefore square integrable, and by an argument similar to that
used for the bound states, it can be shown that the eigenvalue which then appears is
independent of the value of θ.
Figure 5.2 shows the calculated eigenvalues of the Mott-Wannier exciton for MoS2
with no applied electric field, for different values of the scaling parameter θ. The
ground state of the exciton, as well as the higher-lying excitonic states can clearly be
seen, as can the continuum, which rotates exactly as predicted. Due to the finite size
of the simulation box, the continuum states do not start at zero energy, but slightly
below it. For this system, there are no resonances since the electric field has been set
to zero.
Armed with newfound understanding of what resonances are and how we can use
complex scaling to describe them, we turn now to two separate applications of the
complex scaling technique, in papers IIand III. In the first, the technique is applied
to excitons in monolayer MoS2, while in the second we wish to describe excitons in
WSe2
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Figure 5.2: The numerically evaluated eigenvalues of the complex-scaled Mott-
Wannier model of an exciton in MoS2 for different values of the scaling
parameter θ. The different behavior of the bound states and the res-
onances is clear; the slope of the dashed lines is not fitted, but rather
forced to be 2θ. Due to the finite size of the simulation box, the contin-
uum does not start at zero, but slightly below it.

5.4 Paper I: Stark shift and electric-field-induced
dissociation of excitons in monolayer MoS2 and
hBN/MoS2 heterostructures

In Paper I the complex scaling technique is used to describe exciton dissociation in
a monolayer of MoS2 in different dielectric environments. The exciton was modeled
using the Mott-Wannier model, Eq. (5.3), and the screened potential was described
using the linear 2D Coulomb interaction of (3.13), ϵ(q) = 1 + 2παq. Using this linear
interaction has the advantage that there is a known analytic form of the potential in
real space (Eq. (3.14)) which lends itself to easy evaluation on complex arguments.
Using the complex scaling technique, we obtain information about how both the real
and imaginary part of the complex eigenvalue changes as a function of the electric field
strength. The imaginary part reveals how the lifetime of the exciton is affected by
the field, while the change in the real part quantifies the Stark shift of the resonance
energy. This effect is directly observable in absorption measurements, which could be
used verify the model.
From second order perturbation theory, we would expect the Stark shift to be quadratic
in the field strength, for small fields. This is because the excitonic ground state is
symmetric about r = 0; the applied field induces a small dipole moment to this charge
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distribution, and it is the interaction of this dipole with the field which gives the Stark
shift.
Using a simple hydrogenic model for the exciton[53], the Stark shift is evaluated to
be

∆E = −21
64
ϵ4eff
µ3 E

2

where µ is the exciton mass, and ϵeff = 1
2 + 1

2

√
1 + 32παµ/3, with α defined as in

Eq. (3.13). A comparison of the result from perturbation theory with the result from
complex scaling shows excellent agreement.
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Figure 5.3: The exciton dissociation rates as a function of field strengths for three
different dielectric environments of MoS2.

With regards to the rates, we calculate the dissociation rates for freestanding MoS2,
MoS2 on a single layer of graphene, and MoS2 encapsulated between two layers of
graphene. These rates are shown on Fig. 5.3 The graphene changes the dielectric en-
vironment of the exciton, and increases the dissociation rates by orders of magnitude.
We also see that for all three systems, and for a realistic range of field strengths, the
dissociation rate is greater than the intrinsic exciton decay rate. It should therefore
be possible to use this approach to generate free electrons and holes from excitons.
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5.5 Paper III: Dissociation of two-dimensional excitons
in monolayer WSe2

In this experimental paper, time and spectrally resolved photocurrent measurements
in a monolayer WSe2 pn junction were used to measure the dissociation rates of
excitons under the application of an in-plane static electric field, and the results were
found to be consistent with the field-induced ionization of 2D Mott-Wannier excitons.
My contribution to the paper was in helping calculate the parameters used to model
the excitons and using the complex scaling technique to calculate the dissociation
rates.
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6.1 Paper I
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1. Introduction

Over the past decade, atomically thin two-dimensional 
(2D) materials have made their way to the forefront of 
several research areas including batteries, (electro-)
catalysis, electronics, and photonics [1, 2]. This 
development was prompted by the intriguing and 
easily tunable properties of atomically thin crystals 
and has been fueled by the constant discovery of new 
2D materials and the emergent concepts of lateral 
[3] and vertical [4] 2D heterostructures, which opens 
completely new possibilities for designing materials 
with tailored and superior properties.

So far more than fifty compounds have been syn-
thesised or exfoliated as single layers (see figure 7). 
These include the well known monoelemental crys-
tals (Xenes, e.g. graphene, phosphorene) [5] and 
their ligand functionalised derivatives (Xanes, e.g. CF, 
GeH) [6], transition metal dichalcogenides (TMDCs, 
e.g. MoS2, TaSe2) [7], transition metal carbides and 
-nitrides (MXenes, e.g. Ti2CO2) [8], group III–V 

semiconductors and insulators (e.g. GaN, BN) [9, 10],  
transition metal halides (e.g. CrI3) [11, 12], post-trans-
ition metal chalcogenides (e.g. GaS and GaSe) [13, 14]  
and organic-inorganic hybrid perovskites (e.g. 
Pb(C4H9NH3)2I4) [15]. However, the already known 
monolayers are only the tip of a much larger iceberg. 
Indeed, recent data mining studies indicate that several 
hundred 2D materials could be exfoliated from known 
layered bulk crystals [16–19]. In the present work we 
take a complementary approach to 2D materials dis-
covery based on combinatorial lattice decoration and 
identify another few hundred previously unknown 
and potentially synthesisable monolayers.

In the search for new materials with tailored 
properties or novel functionalities, first-principles 
calcul ations are playing an increasingly important 
role. The continuous increase in computing power 
and significant advancements of theoretical methods 
and numerical algorithms have pushed the field to a 
point where first-principles calculations are compa-
rable to experiments in terms of accuracy and greatly  
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Abstract
We introduce the Computational 2D Materials Database (C2DB), which organises a variety of 
structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 
two-dimensional materials distributed over more than 30 different crystal structures. Material 
properties are systematically calculated by state-of-the-art density functional theory and many-body 
perturbation theory (G0W0 and the Bethe–Salpeter equation for  ∼250 materials) following a semi-
automated workflow for maximal consistency and transparency. The C2DB is fully open and can be 
browsed online (http://c2db.fysik.dtu.dk) or downloaded in its entirety. In this paper, we describe 
the workflow behind the database, present an overview of the properties and materials currently 
available, and explore trends and correlations in the data. Moreover, we identify a large number of 
new potentially synthesisable 2D materials with interesting properties targeting applications within 
spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily 
accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for 
computational modeling and design of new 2D materials and van der Waals heterostructures.
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surpass them in terms of speed and cost. For more 
than a century, experimental databases on e.g. struc-
tural, thermal, and electronic properties, have been a 
cornerstone of materials science, and in the past dec-
ade, the experimental data have been augmented by an 
explosion of computational data obtained from first- 
principles calculations. Strong efforts are currently 
being focused on storing and organising the compu-
tational data in open repositories [20, 21]. Some of 
the larger repositories, together containing millions 
of material entries, are the Materials Project [22], the 
Automatic Flow for Materials Discovery (AFLOW-
LIB) [23], the Open Quantum Materials Database 
(OQMD) [24, 25], and the Novel Materials Discovery 
(NOMAD) Repository [26].

The advantages of computational materials data-
bases are many. Most obviously, they facilitate open 
sharing and comparison of research data whilst reduc-
ing duplication of efforts. In addition, they underpin 
the development and benchmarking of new methods 
by providing easy access to common reference sys-
tems [27]. Finally, the databases enable the applica-
tion of machine learning techniques to identify deep 
and complex correlations in the materials space and 
to use them for designing materials with tailored 
properties and for accelerating the discovery of new  
mat erials [28–30]. Among the challenges facing the 
computational databases is the quality of the stored 
data, which depends both on the numerical precision 
(e.g. the employed k-point grid and basis set size) and 
the accuracy of the employed physical models (e.g. the 
exchange-correlation functional). Most of the existing 
computational databases store results of standard den-
sity functional theory (DFT) calculations. While such 
methods, when properly conducted, are quite reliable 
for ground state properties such as structural and ther-
modynamic properties, they are generally not quantita-
tively accurate for excited state properties such as elec-
tronic band structures and optical absorption spectra.

Compared to databases of bulk materials, data-
bases of 2D materials are still few and less developed. 
Early work used DFT to explore the stability and elec-
tronic structures of monolayers of group III–V honey-
comb lattices [31, 32] and the class of MX2 trans ition 
metal dichalcogenides and oxides [33]. Later, by data- 
filtering the inorganic crystal structure database 
(ICSD), 92 experimentally known layered crystals 
were identified and their electronic band structures 
calculated at the DFT level [34]. Another DFT study, 
also focused on stability and band structures, explored 
around one hundred 2D materials selected from differ-
ent structure classes [35]. To overcome the known limi-
tations of DFT, a database with many-body G0W0 band 
structures for 50 semiconducting TMDCs was estab-
lished [36]. Very recently, data mining of the Materials 
Project and experimental crystal structure databases in 
the spirit of [34], led to the identification of close to 
one thousand experimentally known layered crystals 
from which single layers could potentially be exfoliated  

[16–19]. These works also computed basic energetic, 
structural and electronic properties of the monolayers 
(or at least selected subsets) at the DFT level.

In this paper, we introduce the open Computa-
tional 2D Materials Database (C2DB) which organises 
a variety of ab initio calculated properties for more 
than 1500 different 2D materials. The key characteris-
tics of the C2DB are:

 •  Materials: the database focuses entirely on 2D 
materials, i.e. isolated monolayers, obtained by 
combinatorial lattice decoration of known crystal 
structure prototypes.

 •  Consistency: all properties of all materials are 
calculated using the same code and parameter 
settings following the same workflow for 
maximum transparency, reproducibility, and 
consistency of the data.

 •  Properties: the database contains a large and 
diverse set of properties covering structural, 
thermodynamic, magnetic, elastic, electronic, 
dielectric and optical properties.

 •  Accuracy: Hybrid functionals (HSE06) as well 
as beyond-DFT many-body perturbation theory 
(G0W0) are employed to obtain quantitatively 
accurate band structures, and optical properties are 
obtained from the random phase approximation 
(RPA) and Bethe–Salpeter equation (BSE).

 •  Openness: the database is freely accessible and can 
be directly downloaded and browsed online using 
simple and advanced queries.

The systematic combinatorial approach used to 
generate the structures in the database inevitably pro-
duces many materials that are unstable and thus unre-
alistic and impossible to synthesise in reality. Such 
‘hypothetical’ structures may, however, still be useful in 
a number of contexts, e.g. for method development and 
benchmarking, testing and training of machine learn-
ing algorithms, identification of trends and structure-
property relationships, etc. For this reason we map out 
the properties of all but the most unstable (and thus 
chemically unreasonable) compounds. Nevertheless, 
the reliable assessment of stability and synthesisability 
of the candidate structures is an essential issue. Using 
the 55 materials in the C2DB, which have been exper-
imentally synthesised in monolayer form, as a guide-
line, we set down the criteria that a hypothesised 2D 
material should fulfill in order for it to be ‘likely syn-
thesisable’. On the basis of these criteria, we introduce a 
simple stability scale to quantify a candidate material’s 
dynamic and thermodynamic stability. Out of an ini-
tial set of around 1900 monolayers distributed over 32 
different crystal structures, we find 350 in the most sta-
ble category. In addition to the 55 experimentally syn-
thesised monolayers, this set also includes around 80 
mono layers from experimentally known vdW layered 
bulk materials, and thus around 200 completely new 
and potentially synthesisable 2D materials.

2D Mater. 5 (2018) 042002
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In section 2, we describe the computational work-
flow behind the database. The structure and properties 
of the materials are calculated using well established 
state-of-the-art methodology. Technical descriptions 
of the different steps in the workflow are accompanied 
by illustrative examples and comparisons with litera-
ture data. Since documentation and validation is the 
main purpose of the section, we deliberately focus on 
well known 2D materials like the Xenes and transition 
metal dichalcogenides where plenty of both compu-
tational and experimental reference data is available. 
It should be clear that the novelty of the present work 
does not lie in the employed methodology nor in the 
type of materials properties that we calculate (we note, 
however, that to the best of our knowledge the present 
compilation of GW and BSE calculations represents 
the largest of its kind reported so far). The significance 
of our work is rather reflected by the fact that when 
large and consistently produced data sets are organised 
and made easily accessible, new scientific opportuni-
ties arise. As outlined below, this paper presents several 
examples of this effect.

In section 3 we give an overview of the materials 
and the data contained in the C2DB and provide some 
specific examples to illustrate its use. Using an exten-
sive set of many-body G0W0 calculations as a refer-
ence, we establish the performance of various DFT xc- 
functionals for predicting band gaps, band edge posi-
tions, and band alignment at hetero-interfaces, and 
we propose an optimal strategy for obtaining accurate 
band energies at low computational cost. Similarly, 

the 250 BSE calculations allow us to explore trends in 
exciton binding energies and perform a statistically 
significant and unbiased assessment of the accuracy 
and limitations of the widely used Mott–Wannier 
model for 2D excitons. From the data on more than 
600 semiconductor monolayers, we present strong 
empirical evidence against an often employed relation 
between effective masses and band gaps derived from 
k · p perturbation theory. Inspired by the potential 
of using 2D materials as building blocks for plasmon-
ics and photonics, we propose a model to predict the 
plasmon dispersion relations in 2D metals from the 
(intraband) plasma frequency and the onset of inter-
band trans itions and use it to identify 2D metals with 
plasmons in the optical frequency regime. We propose 
several new magnetic 2D materials (including both 
metals and semiconductors) with ferromagnetic or 
anti-ferromagnetic ordering and significant out-of-
plane magnetic anisotropy. Finally, we point to new 
high-mobility 2D semiconductors including some 
with band gaps in the range of interest for (opto)elec-
tronic applications.

In section 4 we provide our conclusions together 
with an outlook discussing some opportunities and 
possible future directions for the C2DB.

2. Workflow

The workflow used to generate the data in the C2DB 
is illustrated in figure 1. It consists of two parts: In the 
first part (left panel) the unit cell and atom positions 

Figure 1. The workflow used to calculate the structure and properties of the materials in C2DB. The cross indicates that the material 
is not included in the database at all, while the stop sign indicates that no more of the workflow is performed.

2D Mater. 5 (2018) 042002
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are optimised for different magnetic configurations: 
non-magnetic (NM), ferro-magnetic (FM) and 
antiferro-magnetic (AFM). Materials satisfying 
certain stability and geometry criteria (indicated 
by green boxes) are subject to the second part (right 
panel) where the different properties are computed 
using DFT and many-body methods. The G0W0 band 
structure and BSE absorbance calculations have been 
performed only for semiconducting materials with up 
to four atoms in the unit cell. Per default, properties 
shown in the online database include spin–orbit 
coupling (SOC); however, to aid comparison with 
other calculations, most properties are also calculated 
and stored without SOC.

All DFT and many-body calculations are per-
formed with the projector augmented wave code 
GPAW [37] using plane wave basis sets and PAW 
potentials version 0.9.2. The workflow is managed 
using the Python based atomic simulation environ-
ment (ASE) [38]. We have developed a library of 
robust and numerically accurate (convergence veri-
fied) ASE-GPAW scripts to perform the various tasks 
of the workflow, and to create the database afterwards. 
The library is freely available, under a GPL license.

Below we describe all steps of the workflow in 
detail. As the main purpose is to document the work-
flow, the focus is on technical aspects, including 
numerical convergence and benchmarking. An over-
view of the most important parameters used for the 
different calculations is provided in table 1.

2.1. Structure relaxation
The workflow is initiated with a crystal structure 
defined by its unit cell (Bravais lattice and atomic 
basis). The crystal lattice is typically that of an 
experimentally known prototype (the ‘seed 
structure’) decorated with atoms picked from a 
subset of the periodic table, see figure 2. We refer 
to materials by the chemical formula of their 
unit cell followed by the crystal structure. The 
latter is indicated by a representative material of 
that prototype, as described in section 3.1. For 
example, monolayer MoS2 in the hexagonal H 
and T phases are denoted MoS2-MoS2 and MoS2-
CdI2, respectively. Now, MoS2 is in fact not stable 
in the T phase, but undergoes a 2 × 1 distortion to 
the so-called T′ phase. Because the T′ phase is the 
thermodynamically stable phase of WTe2, we denote 
MoS2 in the distorted T phase by Mo2S4-WTe2. In the 
following, we shall refer to the unit cell with which 
the workflow is initiated, i.e. the unit cell of the seed 
structure, as the primitive cell or the 1 × 1 cell, even if 
this cell is not dynamically stable for the considered 
material (see section 2.4).

The unit cell and internal coordinates of the atoms 
are relaxed in both a spin-paired (NM), ferromagnetic 
(FM), and anti-ferromagnetic (AFM) configuration. 
Calculations for the AFM configuration are performed 
only for unit cells containing at least two metal atoms. 

The symmetries of the initial seed structure are kept 
during relaxation. All relevant computational details 
are provided in table 1.

After relaxation, we check that the structure has 
remained a covalently connected 2D material and not 
disintegrated into 1D or 0D clusters. This is done by 
defining clusters of atoms using the covalent radius 
[39]  +  30% as a measure for covalent bonds between 
atoms. The dimensionality of a cluster is obtained 
from the scaling of the number of atoms in a cluster 
upon repetition of the unit cell following the method 
described by Ashton et al [16]. Only materials con-
taining exactly one cluster of dimensionality 2 are 
given further consideration (an exception is made for 
the metal-organic perovskites (prototype PbA2I4) for 
which the metal atom inside the octahedron represents 
a 0D cluster embedded in a 2D cluster). To illustrate the 
effect of the covalent radius  +  30% threshold, figure 3 
shows the distribution of the candidate structures in 
the database as a function of the covalent factor needed 
to fully connect the structure. Most materials have a 
critical covalent factor below 1.3 and fall in the green 
shaded region. There is, however, a tail of around 100 
disconnected materials (red region); these materials 
are not included in the database (see first green box in 
figure 1).

We also check that the material is not already con-
tained in the database (second green box in figure 1). 
This is done by measuring the root mean square dis-
tance (RMSD) [40] relative to all other materials in 
the C2DB with the same reduced chemical formula. A 
threshold of 0.01 Å is used for this test.

In case of multiple metastable magnetic configu-
rations (in practice, if both a FM and AFM ground 
state are found), these are regarded as different phases 
of the same material and will be treated separately 
throughout the rest of the workflow. To indicate the 
magnetic phase we add the extensions ‘FM’ or ‘AFM’ 
to the material name. The total energy of the spin-
paired ground state is always stored, even when it 
is not the lowest. If the energy of the non-magnetic 
state is higher than the most stable magnetic state 
by less than 10 meV/atom, the workflow is also per-
formed for the non-magnetic state. This is done in 
recognition of the finite accuracy of DFT for predict-
ing the correct energetic ordering of different magn-
etic states.

We have compared the lattice constants of 29 
monolayers with those reported in [41], which were 
obtained with the VASP code using PBE and very 
similar numerical settings and find a mean absolute 
deviation of 0.024 Å corresponding to 0.4%. The small 
yet finite deviations are ascribed to differences in the 
employed PAW potentials.

2.2. Crystal structure classification
2.2.1. Symmetry
To classify the symmetries of the crystal structure 
the 3D space group is determined using the crystal 

2D Mater. 5 (2018) 042002



5

S Haastrup et al

symmetry library Spglib [42] on the 3D supercell with 
a tolerance of 10−4 Å.

2.2.2. Prototypes
The materials are classified into crystal structure 
prototypes based on the symmetry of the crystals. 
For two materials to belong to the same prototype, 
we require that they have the same space group, the 
same stoichiometry, and comparable thicknesses. The 
last requirement is included to distinguish between 
materials with the same symmetry and stoichiometry 
but with different number of atomic layers, see for 
example monolayer BN and GaS in figure 4. Each 
prototype is labelled by a specific representative 
material. For prototypes which have been previously 

investigated, we comply with the established 
conventions. However, since the field of 2D materials is 
still young and because C2DB contains a large number 
of never-synthesised materials, some of the considered 
crystal structures fall outside the known prototypes. In 
these cases we have chosen the representative material 
to be the one with the lowest energy with respect to the 
convex hull. Some of the crystal structure prototypes 
presently contained in the C2DB are shown in figure 4.

2.3. Thermodynamic stability
The heat of formation, ∆H , is defined as the energy 
of the material with respect to the standard states of 
its constituent elements. For example, the heat of 
formation per atom of a binary compound, AxBy, is

Table 1. Overview of the methods and parameters used for the different steps of the workflow. If a parameter is not specified at a given step, 
its value equals that of the last step where it was specified.

Workflow step(s) Parameters

Structure and energetics (1–4)a vacuum  =  15 Å; k-point density  =  6.0/̊A
−1

; Fermi smearing  =  0.05 eV; PW  

cutoff  =  800 eV; xc functional  =  PBE; maximum force  =  0.01 eV/Å; maximum 

stress  =  0.002 eV/̊A
3
; phonon displacement  =  0.01Å

Elastic constants (5) k-point density  =  12.0/Å
−1

; strain  =  ±1%

Magnetic anisotropy (6) k-point density  =  20.0/Å
−1

; spin–orbit coupling  =  True

PBE electronic properties (7–10 and 12) k-point density  =  12.0/Å
−1

 (36.0/Å
−1

 for step 7)

Effective masses (11) k-point density  =  45.0/Å
−1

; finite difference

Deformation potential (13) k-point density  =  12.0/̊A
−1

; strain  =  ±1%

Plasma frequency (14) k-point density  =  20.0/̊A
−1

; tetrahedral interpolation

HSE band structure (8–12) HSE06@PBE; k-point density  =  12.0/̊A
−1

G0W0 band structure (8, 9) G0W0@PBE; k-point density  =  5.0/Å
−1

; PW cutoff  =  ∞ (extrapolated from 170, 185 and 

200 eV); full frequency integration; analytical treatment of W(q) for small q; truncated 

Coulomb interaction

RPA polarisability (15) RPA@PBE; k-point density  =  20.0/Å
−1

; PW cutoff  =  50 eV; truncated Coulomb  

interaction; tetrahedral interpolation

BSE absorbance (16) BSE@PBE with G0W0 scissors operator; k-point density  =  20.0/Å
−1

; PW cutoff  =  50 eV; 

truncated Coulomb interaction; at least 4 occupied and 4 empty bands

a For the cases with convergence issues, we set a k-point density of 9.0 and a smearing of 0.02 eV.

Figure 2. The materials in the C2DB are initially generated by decorating an experimentally known crystal structure prototype with 
atoms chosen from a (chemically reasonable) subset of the periodic table.
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∆H = (E(AxBy)− xE(A)− yE(B))/(x + y), (1)

where E(AxBy) is the total energy of the material AxBy, 
and E(A) and E(B) are the total energies of the elements 
A and B in their standard state. When assessing the 
stability of a material in the C2DB, it should be kept 
in mind that the accuracy of the PBE functional for 
the heat of formation is only around 0.2 eV/atom 
on average [43]. Other materials databases, e.g. 
OQMD, Materials Project, and AFLOW, employ fitted 
elementary reference energies (FERE) [44] and apply a 
Hubbard U term [45] for  the rare earth and transition 
metal atoms (or a selected subset of them). While 
such correction schemes in general improve ∆H  
they also introduce some ambiguity, e.g. the dataset 
from which the FERE are determined or the exact 
form of the orbitals on which the U term is applied. 
Thus in order not to compromise the transparency 
and reproducibility of the data we use the pure PBE 
energies.

For a material to be thermodynamically stable it is 
necessary but not sufficient that ∆H < 0. Indeed, ther-
modynamic stability requires that ∆H  be negative not 
only relative to its pure elemental phases but relative to 
all other competing phases, i.e. its energy must be below 
the convex hull [46]. We stress, however, that in general, 
but for 2D materials in particular, this definition cannot 
be directly applied as a criterion for stability and syn-
thesisability. The most important reasons for this are 
(i) the intrinsic uncertainty on the DFT energies stem-
ming from the approximate xc-functional (ii) substrate 
interactions or other external effects that can stabilise 
the monolayer (iii) kinetic barriers that separate the 
monolayer from other lower energy phases rendering 
the monolayer (meta)stable for all practical purposes.

We calculate the energy of the 2D material relative 
to the convex hull of competing bulk phases, ∆Hhull. 
The convex hull is currently constructed from the 2836 
most stable binary bulk compounds which were 
obtained from the OQMD [24]. The energies of the 

bulk phases were recalculated with GPAW using the 
PBE xc-functional and the same numerical settings 
as applied for the 2D materials (but the structure was 
not re-optimised). Because the bulk reference struc-
tures from OQMD were optimised with the VASP 
code and with Hubbard U corrections for materials 
containing 3d elements, and because the PBE misses 
attractive vdW interaction, the bulk energies could be 
slightly overestimated relative to the monolayers. As a 
consequence, monolayers that also exist in a layered 
bulk phase could have ∆Hhull < 0, even if the layered 
bulk phase is part of the convex hull and thus should 
be energetically more stable than the monolayer. Com-
paring our ∆Hhull values for 35 compounds with the 
exfoliation energies calculated in [18] employing vdW 
compliant xc-functionals for both bulk and mono-
layer, we estimate the errors in the convex hull energies 
to be below 0.1 eV/atom.

As an example, the convex hull for FexSe1−x is 
shown in figure 5. The convex hull as defined by the 
bulk binaries is indicated by the blue lines. The labels 
for the 2D materials refer to the crystal prototype and 
magnetic order. Clearly, most 2D materials lie above 
the convex hull and are thus predicted to be thermo-
dynamically unstable in freestanding form under 
standard conditions. However, as mentioned above, 
depending on the material, errors on the PBE forma-
tion energies can be sizable and thus the hull diagram 
should only be taken as guideline. Nevertheless, in 
the present example we find that FeSe (which is itself 
a prototype) with anti-ferromagnetic ordering lies 
slightly below the convex hull and is thus predicted to 
be thermodynamically stable. This prediction is con-
sistent with the recent experimental observation that 
monolayer FeSe deposited on SrTiO3 exhibits AFM 
order [47].

2.4. Phonons and dynamic stability
Due to the applied symmetry constraints and/or 
the limited size of the unit cell, there is a risk that the 
structure obtained after relaxation does not represent 
a local minimum of the potential energy surface, but 
only a saddle point. We test for dynamical stability by 
calculating the Γ-point phonons of a 2 × 2 repeated 
cell (without re-optimising the structure) as well as 
the elastic constants (see section 2.5). These quantities 
represent second-order derivatives of the total energy 
with respect to atom displacements and unit cell 
lengths, respectively, and negative values for either 
quantity indicate a structural instability.

The Γ-point phonons of the 2 × 2 supercell are 
obtained using the finite displacement method [48]. 
We displace each atom in the primitive cell by  ±0.01 Å, 
and calculate the forces induced on all the atoms in the 
supercell. From the forces we construct the dynamical 
matrix, which is diagonalised to obtain the Γ-point 
phonons of the 2 × 2 cell (or equivalently the Γ-point 
and zone boundary phonons of the primitive cell). The 
eigenvalues of the dynamical matrix correspond to the 
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Figure 3. The distribution of candidate structures for the 
C2DB with respect to the critical covalent factor at which 
they become 2D. Materials in the red region are excluded 
from the database.
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square of the mass-renormalised phonon frequencies, 
ω̃ . Negative eigenvalues are equivalent to imaginary 
frequencies and signal a saddle point.

Our procedure explicitly tests for stability against 
local distortions of periodicities up to 2 × 2 and thus 
provides a necessary, but not sufficient condition for 
dynamic stability. We stress, however, that even in 
cases where a material would spontaneously relax 
into a structure with periodicity larger than 2 × 2, 
the Γ-point dynamical matrix of the 2 × 2 cell could 

exhibit negative eigenvalues. Our test is thus more 
stringent than it might seem at first glance. In principle, 
a rigorous test for dynamic stability would require the 
calculation of the full phonon band structure. Math-
ematically, the instabilities missed by our approach are 
those that result in imaginary phonons in the interior 
of the BZ but not at the zone boundary. Physically, such 
modes could be out of plane buckling or charge den-
sity wave-driven reconstructions with periodicities of 
several unit cells. In general, however, these types of 

Figure 4. Examples of crystal structure prototypes currently included in the C2DB.
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instabilities are typically rather weak (as measured by 
the magnitude of the imaginary frequency) as com-
pared to more local distortions such as the T to T′ dist-
ortion considered below. Moreover, they could well 
be a special property of the isolated monolayer and 
become stabilised by the ubiquitous interactions of the 
2D material with its environment, e.g. substrates. This 
is in fact supported by the full phonon calculations by 
Mounet et al for ∼ 250 isolated monolayers predicted 
to be easily exfoliable from experimentally known lay-
ered bulk phases [18]. Indeed, most of the instabilities 
revealed by their calculations are of the type described 
above and would thus be missed by our test. However, 
these instabilities cannot be too critical as the mono-
layers are known to be stable in the vdW bonded lay-
ered bulk structure.

As an example, figure 6 compares the dynami-
cal stability of a subset of transition metal dichalco-
genides and -oxides in the T and T′ phases (CdI2 and 
WTe2 prototypes). The two upper panels show the 
smallest eigenvalue of the Γ-point dynamical matrix 
of the 2 × 2 cell. Only materials above the dashed line 
are considered dynamically stable (for this example we 
do not consider the sign of the elastic constants which 
could further reduce the set of dynamically stable 
materials). Since the unit cell of the T′ phase contains 
that of the T phase it is likely that a material initially 
set up in the T′ phase relaxes back to the T phase. To 
identify these cases, and thereby avoid the presence of 
duplicates in the database, the third panel shows the 
root mean square distance (RMSD) between the struc-
tures obtained after relaxations starting in the T- and 
T′ phase, respectively. Structures below the dashed 
line are considered identical. The color of each sym-
bol refers to the four different potential energy surfaces 
illustrated at the bottom of the figure.

2.4.1. Stability criteria
To assess the stability of the materials in the C2DB, we 
turn to the set of experimentally synthesised/exfoliated 
monolayers. For these materials, the calculated energy 
above the convex hull and minimum eigenvalue of 
the dynamical matrix are shown on figure 7. It is clear 
that all but five known monolayers have a hull energy 
below 0.2 eV/atom, and three of these have only been 
synthesised on a metal substrate. Turning to the 
dynamical stability, all but one of the experimentally 
known monolayers have a minimum eigenvalue of the 
dynamical matrix above −2 eV Å−2, and 70% have a 
minimum eigenvalue above −1 × 10−5 eV Å−2.

Guided by these considerations, we assign each 
material in the C2DB a stability level (low, medium 
or high) for both dynamical and thermodynamic sta-
bility, as illustrated in table 2. For ease of reference, we 
also define the overall stability level of a given mat erial 
as the lower of the dynamical and thermodynamic 
stability levels. If a material has ‘low’ overall stability 
(marked by bold in the table), we consider it unstable 
and do not carry out the rest of the workflow. Mat erials 

with ‘high’ overall stability are considered likely to be 
stable and thus potentially synthesisable. Mat erials 
in the ‘medium’ stability category, while unlikely to 
be stable as freestanding monolayers, cannot be dis-
carded and might be metastable and possible to syn-
thesise under the right conditions. For example, free-
standing silicene has a heat of formation of 0.66 eV/
atom, but can be grown on a silver substrate. Likewise, 
the T′ phase of MoS2 (WTe2 prototype) has an energy 
of 0.27 eV/atom higher than the thermodynami-
cally stable H phase, but can be stabilised by electron  

doping.

2.5. Elastic constants
The elastic constants of a material are defined by the 
generalised Hooke’s law,

σij = Cijklεkl (2)

where σij , Cijkl and εkl are the stress, stiffness and 
strain tensors, respectively, and where we have 
used the Einstein summation convention. In two 
dimensions, the stress and strain tensors have three 
independent components, namely planar stress/
strain in the x and y directions, as well as shear stress/
strain. The stiffness tensor is a symmetric linear map 
between these two tensors, and therefore has up to 
six independent components. Disregarding shear 
deformations, the relationship between planar strain 
and stress is[

σxx

σyy

]
=

[
C11 C12

C12 C22

] [
εxx

εyy

]
. (3)

For all materials in the C2DB, we calculate the planar 
elastic stiffness coefficients C11, C22, and C12. These are 
calculated using a central difference approximation 
to the derivative of the stress tensor: the material 
is strained along one of the coordinate axes, x or y, 
and the stress tensor is calculated after the ions have 
relaxed. We use strains of ±1% which we have found 
to be sufficiently large to eliminate effects of numerical 

0.0 0.5 1.0
FexSe1−x

−0.3

−0.2

−0.1

0.0

∆
H

[e
V

/a
to

m
]

FeSe

Fe2Se4

Fe2Se2
FeSe (AFM)

CdI2 (FM)
MoS2 (FM)

TiS3 (NM)

WTe2 (NM)

Bulk
2D

Figure 5. Convex hull for FexSe1−x. The convex hull as 
defined by the bulk phases is represented by the blue lines. 
Blue squares denote bulk binary reference phases while 
orange triangles represent 2D materials. The labels for the 2D 
materials refer to the crystal prototype and magnetic order.
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noise and sufficiently small to stay within the linear 
response regime.

Table 3 shows the calculated planar stiffness coef-
ficients of a set of 2D materials. As can be seen the val-
ues from the C2DB are in very good agreement with  
previously published PBE results. For the isotropic 
mat erials MoS2, WSe2 and WS2, C11 and C22 should 
be identical, and we see a variation of up to 0.6%. This 
provides a test of how well converged the values are 

with respect to numerical settings.

2.6. Magnetic anisotropy
The energy dependence on the direction of 
magnetisation, or magnetic anisotropy (MA), arises 
from spin–orbit coupling (SOC). According to the 
magnetic force theorem [96] this can be evaluated from 
the eigenvalue differences such that the correction to 
the energy becomes

∆E(n̂) =
∑

kn

f (εn̂
kn)ε

n̂
kn −

∑
kn

f (ε0
kn)ε

0
kn, (4)

where εn̂
kn and f (εn̂

kn) are the eigenenergies and 
occupation numbers, respectively, obtained by 
diagonalising the Kohn–Sham Hamiltonian including 
SOC in a basis of collinear spinors aligned along the 

direction n̂, while ε0
kn and f (ε0

kn) are the bare Kohn–
Sham eigenenergies and occupation numbers without 
SOC.

For all magnetic materials we have calculated 
the energy difference between out-of-plane and in-
plane magnetisation EMA(i) = ∆E(ẑ)−∆E(i),  
(i = x̂, ŷ). Negative values of EMA(i) thus indicate  
that there is an out-of-plane easy axis of magnet isation.

Calculations for the ground state have been per-
formed with plane-wave cutoff and energetic conv-
ergence threshold set to 800 eV and 0.5 meV/atom 
respectively. For all calculations we have used a 
Γ-centered Monkhorst–Pack k-point with a den-

sity of 20/̊A
−1

. The SOC contribution is introduced 

via a non-self-consistent diagonalisation of the 
Kohn–Sham Hamiltonian evaluated in the projector- 
augmented wave formalism [97].

2.7. Projected density of states
The projected density of states (PDOS) is a useful tool 
for identifying which atomic orbitals comprise a band. 
It is defined as

ρS
l (ε) =

∑
a∈S

∑
kn

∑
m

|〈φa
l,m|ψkn〉|2δ(ε− εkn), (5)

where ψkn are the Kohn–Sham wave functions with 
eigenvalues εkn and φa

l,m are the spin-paired Kohn–
Sham orbitals of atomic species S with angular 
momentum l (s, p, d, f ). We sum over all atoms 
belonging to species S so every atomic species has one 

T
T′

T
T′

T
T′

T
T′

Figure 6. Dynamical stability of a set of transition metal dichalcogenides and -oxides in the T and Tʹ  phases (CdI2 and WTe2 
prototypes), respectively. The first and second panels show the minimum eigenvalue of the Γ-point dynamical matrix of the 2 × 2 
unit cell (containing 12 and 24 atoms for the T and T′ phase, respectively. The lower panel shows the root mean square distance 
(RMSD) between the relaxed structures. The color indicates whether the material is dynamically stable in the T phase (black), the T′ 
phase (blue), both phases (orange) or neither of the phases (green).
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entry per angular momentum channel. In the PAW 
formalism this can be approximated as

ρS
l (ε) =

∑
a∈S

∑
kn

∑
m

|〈p̃a
l,m|ψ̃kn〉|2δ(ε− εkn) (6)

where ψ̃kn are the pseudo wave functions and p̃a
l,m are 

the PAW projectors associated with the atomic orbitals 

φa
l,m. The PDOS is calculated from equation (6) using 

linear tetrahedron interpolation [98] (LTI) of energy 

eigenvalues obtained from a ground state calculation 

with a k-point sampling of 36/Å
−1

. In contrast to other 

techniques for calculating the PDOS using smearing, 

the PDOS yielded by the LTI method returns exactly 

zero at energies with no states. Examples of PDOS 

Figure 7. The calculated energy above the convex hull and minimum eigenvalue of the dynamical matrix (evaluated at the Γ-point 
for the 2 × 2 cell) for the 55 materials in the C2DB that have been synthesised or exfoliated in monolayer form, see [6, 9, 10, 12, 
49–94]. The three materials highlighted in red have only been synthesised on metallic substrates. The black dashed lines indicate the 
thresholds used to categorise the thermodynamic and dynamic stability of materials in the C2DB.
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are shown in figure 9 (right) for respectively the 
ferromagnetic metal VO2 and the semiconductor WS2 
in the H phase (MoS2 prototype).

2.8. Band structures
Electronic band structures are calculated along 
the high symmetry paths shown in figure 8 for the 
five different types of 2D Bravais lattices. The band 
energies are computed within DFT using three 
different xc-functionals, namely PBE, HSE06, and 
GLLBSC. These single-particle approaches are 
complemented by many-body G0W0 calculations 
for materials with a finite gap and up to four atoms 
in the unit cell (currently around 250 materials). For 
all methods, SOC is included by non-selfconsistent 
diagonalisation in the full basis of Kohn–Sham 
eigenstates. Band energies always refer to the 
vacuum level defined as the asymptotic limit of the 
Hartree potential, see figure 12. Below we outline the 
employed methodology while section 3.2.1 provides 
an overview and comparison of the band energies 
obtained with the different methods.

2.8.1. PBE band structure
The electron density is determined self-consistently 

on a uniform k-point grid of density 12.0/̊A
−1

. From 
this density, the PBE band structure is computed 
non-selfconsistently at 400 k-points distributed 
along the band path (see figure 8). Examples of 
PBE band structures are shown in figure 9 for the 
ferromagnetic metal VO2 and the semiconductor 
WS2 both in the MoS2 prototype structure. The 

expectation value of the out-of-plane spin component, 

〈χnkσ|Ŝz|χnkσ〉, is evaluated for each spinorial wave 

function, χnkσ = (ψnk↑,ψnk↓), and is indicated by 
the color of the band. For materials with inversion 
symmetry, the SOC cannot induce band splitting, 

meaning that 〈χnkσ|Ŝz|χnkσ〉 is ill-defined and no 

color coding is used. The band structure without SOC 
is indicated by a dashed grey line. We have compared 
our PBE  +  SOC band gaps of 29 different monolayers 
with those obtained with the VASP code in [41] and 
find a mean absolute deviation of 0.041 eV.

2.8.2. HSE band structure
The band structure is calculated non-selfconsistently 
using the range-separated hybrid functional HSE06 
[99] on top of a PBE calculation with k-point density 

12.0/̊A
−1

 and 800 eV plane wave cutoff. We have 
checked for selected systems that the HSE band 
structure is well converged with these settings. The 
energies along the band path are obtained by spline 
interpolation from the uniform k-point grid. As an 
example, the HSE band structure of WS2 is shown in 
the left panel of figure 10 (black line) together with 
the PBE band structure (grey dashed). The PBE band 
gap increases from 1.52 eV to 2.05 eV with the HSE06 
functional in good agreement with earlier work 
reporting band gaps of 1.50 eV (PBE) and 1.90 eV 
(HSE) [100] and 1.55 eV (PBE) and 1.98 eV (HSE) 
[101], respectively. A more systematic comparison of 
our results with the HSE  +  SOC band gaps obtained 
with the VASP code in [41] for 29 monolayers yield a 
mean absolute deviation of 0.14 eV. We suspect this 
small but non-zero deviation is due to differences in the 
employed PAW potentials and the non-selfconsistent 
treatment of the HSE in our calculations.

Table 2. The materials in the C2DB distributed over the nine stability categories defined by the three levels (high, medium and low) of 
dynamical stability (columns) and thermodynamic stability (rows).  The overall stability of the materials is defined as the lower of the two 
separate stability scales. Materials with low overall stability (bold) are considered unstable.

Thermodynamic stability 

(eV/atom)

Dynamic stability (eVÅ−2)

Total|ω̃2
min| > 2 or Cii  <  0 10−5 < |ω̃2

min| < 2, Cii  >  0 |ω̃2
min| < 10−5, Cii > 0

∆H > 0.2 6.0% 4.2% 1.7% 12.0%

∆H < 0.2 14.9% 10.9% 6.4% 32.2%

∆Hhull < 0.2 11.4% 24.1% 20.3% 55.8%

Total 32.3% 39.2% 28.5%

Table 3. Planar elastic stiffness coefficients (in N m−1) calculated at the PBE level. The results of this work are compared to previous 
calculations from the literature and the mean absolute deviation (MAD) is shown.

C11 (N m−1) C22 (N m−1) C12 (N m−1)

C2DB Literature C2DB Literature C2DB Literature

P (phosphorene) 101.9 105.2 [95] 25.1 26.2 [95] 16.9 18.4 [95]

MoS2 131.4 132.6 [19] 131.3 132.6 [19] 32.6 32.7 [19]

WSe2 120.6 119.5 [19] 121.3 119.5 [19] 22.8 22.7 [19]

WS2 146.3 145.3 [19] 146.7 145.3 [19] 32.2 31.5 [19]

MAD 1.7 — 1.4 — 0.6 —

2D Mater. 5 (2018) 042002
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2.8.3. GLLBSC fundamental gap
For materials with a finite PBE band gap, the 
fundamental gap (i.e. the difference between the 
ionisation potential and electron affinity) also 
sometimes referred to as the quasiparticle gap, is 
calculated self-consistently using the GLLBSC [102] 
xc-functional with a Monkhorst–Pack k-point grid 
of density 12.0/̊A

−1
. The GLLBSC is an orbital-

dependent exact exchange-based functional, which 
evaluates the fundamental gap as the sum of the 
Kohn–Sham gap and the xc-derivative discontinuity, 

Egap = εKS
gap +∆xc. The method has been shown to 

yield excellent quasiparticle band gaps at very low 

computational cost for both bulk [102, 103] and 2D 
semiconductors [36].

In the exact Kohn–Sham theory, εKS
v  should equal 

the exact ionisation potential and thus ∆xc should be 
used to correct only the conduction band energies 
[104]. Unfortunately, we have found that in prac-
tice this procedure leads to up-shifted band energies 
(compared with the presumably more accurate G0W0 
results, see figure 20). Consequently, we store only the 
fundamental gap and ∆xc in the database. However, as 
will be shown in section 3.2.1 the center of the gap is in 
fact reasonably well described by PBE suggesting that 
efficient and fairly accurate predictions of the absolute 

Figure 8. Overview of the five 2D Bravais lattices and corresponding Brillouin zones. The unit vectors a1 and a2 are shown together 
with the angle between them γ. The primitive unit cell is indicated in gray. High symmetry points of the BZ and the path along which 
the band structure is evaluated, are indicated in blue.
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band edge energies can be obtained by a symmetric 
GLLBSC correction of the PBE band edges.

2.8.4. G0W0 band structure
For materials with finite PBE band gap the quasiparticle 
(QP) band structure is calculated using the G0W0 
approximation on top of PBE following our earlier 
work [105, 106]. Currently, this resource demanding 
step is performed only for materials with up to four 
atoms in the unit cell. The number of plane waves 
and the number of unoccupied bands included in the 
calculation of the non-interacting density response 
function and the GW self-energy are always set equal. 
The individual QP energies are extrapolated to the 
infinite basis set limit from calculations at plane wave 
cutoffs of 170, 185 and 200 eV, following the standard 
1/NG dependence [107, 108], see figure 11 (right). 
The screened Coulomb interaction is represented on 
a non-linear real frequency grid ranging from 0 eV to 

230 eV and includes around 250 frequency points. The 
exchange contribution to the self-energy is calculated 
using a Wigner–Seitz truncation scheme [109] for a 
more efficient treatment of the long range part of the 
exchange potential. For the correlation part of the self-
energy, a 2D truncation of the Coulomb interaction is 
used [110, 111]. We stress that the use of a truncated 
Coulomb interaction is essential to avoid unphysical 
screening from periodically repeated layers which 
otherwise leads to significant band gap reductions.

Importantly, the use of a truncated Coulomb 
interaction leads to much slower k-point conv-
ergence because of the strong q-dependence of the 
2D di electric function around q  =  0. We allevi-
ate this problem by using an analytical expression 
for the screened interaction when performing the 
BZ int egral around q  =  0 [106]. This allows us 

to obtain well converged results with a relatively 

low k-point density of 5.0/Å
−1
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0 1 2 3 4
projected dos [states / eV]

−8

−7

−6

−5

−4

−3

−2

−1

E
−

E
va

c
[e

V
]

W (s)
W (p)
W (d)
S (s)
S (p)

−2 0 2
projected dos [states / eV]

−10

−9

−8

−7

−6

−5

E
−

E
va

c
[e

V
]

V (s)
V (p)
V (d)
O (s)
O (p)
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calculated with the PBE xc-functional. The z-component of the spin is indicated by the color code on the band structure.
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12 × 12 k-points for MoS2). For example, with this 
setting the G0W0 band gap of MoS2 is converged to 
within 0.05 eV, see figure 11 (left). In comparison, 
standard BZ sampling with no special treatment of 
the q  =  0 limit, requires around 40 × 40 k-points to 
reach the same accuracy.

Figure 10 (right) shows the PBE and G0W0 band 
structures of WS2 (including SOC). The G0W0 self-
energy opens the PBE band gap by 1.00 eV and the HSE 
gap by 0.47 eV, in good agreement with previous stud-

ies [112]. We note in passing that our previously pub-
lished G0W0 band gaps for 51 monolayer TMDCs [36] 
are in good agreement with the results obtained using 
the workflow described here. The mean absolute error 
between the two data sets is around 0.1 eV and can be 
ascribed to the use of PBE rather than LDA as start-
ing point and the use of the analytical expression for W 
around q  =  0.

A detailed comparison of our results with previ-
ously published G0W0 data is not meaningful because 
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Figure 10. Band structure of WS2 calculated with the HSE06 functional (left) and G0W0 (right). For comparison the PBE result is 
also shown (grey dashed). Spin–orbit coupling (SOC) is included in all calculations. The band energies refer to the vacuum level. 
The points show the calculated eigenvalues from which the band structure is interpolated. The relatively coarse k-point grid used for 
G0W0 is justified by the analytical treatment of the screened interaction W(q) around q  =  0, see figure 11.
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of the rather large differences in the employed imple-
mentations/parameter settings. In particular, most 
reported calculations do not employ a truncated 
Coulomb interaction and thus suffer from spurious 
screening effects, which are then corrected for in dif-
ferent ways. Moreover, they differ in the amount of 
vacuum included the supercell, the employed k-point 
grids and basis sets, the in-plane lattice constants, and 
the DFT starting points. For example, published val-
ues for the QP band gap of monolayer MoS2 vary from 
from 2.40 to 2.90 eV [113–120] (see [119] for a detailed 
overview). The rather large variation in published GW 
results for 2D materials is a result of the significant 
numerical complexity of such calculations and under-
lines the importance of establishing large and consist-
ently produced benchmark data sets like the present.

For bulk materials, self-consistency in the Green’s 
function part of the self-energy, i.e. the GW0 method, 
has been shown to increase the G0W0 band gaps and 
improve the agreement with experiments [121]. The 
trend of band gap opening is also observed for 2D 
materials [106, 120, 120, 122], however, no system-
atic improvement with respect to experiments has 
been established [122]. For both bulk and 2D mat-
erials, the fully self-consistent GW self-energy system-
atically overestimates the band gap [121, 122] due to 
the neglect of vertex corrections [122, 123]. In G0W0 
the neglect of vertex corrections is partially compen-
sated by the smaller band gap of the non-interacting 
Kohn–Sham Green’s function compared to the true 
interacting Green’s function. In this case, the vertex 
corrections corrections will affect mainly the abso-
lute position of the bands relative to vacuum while the 
effect on the band gap is relatively minor [122].

In table 4 we compare calculated band gaps from 
C2DB with experimental band gaps for three mono-
layer TMDCs and phosphorene. The exper imental 
data has been corrected for substrate interactions [122, 
124], but not for zero-point motion, which is expected 
to be small (<0.1 eV). The G0W0 results are all within 
0.2 eV of the experiments. A further (indirect) test of 
the G0W0 band gaps against exper imental values is 
provided by the comparison of our BSE spectra against 
experimental photoluminescence data in table 7, 
where we have used a G0W0 scissors operator. Finally, 
we stress that the employed PAW potentials are not 
norm-conserving, and this can lead to errors for bands 
with highly localised states (mainly 4f and 3d orbitals), 

as shown in [108]. Inclusion of vertex corrections and 
use of norm conserving potentials will be the focus of 

future work on the C2DB.

2.9. Band extrema
For materials with a finite band gap, the positions of 
the valence band maximum (VBM) and conduction 
band minimum (CBM) within the BZ are identified 
together with their energies relative to the vacuum 
level. The latter is defined as the asymptotic value of 
the electrostatic potential, see figure 12. The PBE 
electrostatic potential is used to define the vacuum level 
in the non-selfconsistent HSE and G0W0 calculations. 
For materials with an out-of-plane dipole moment, a 
dipole correction is applied during the selfconsistent 
DFT calculation, and the vacuum level is defined as the 
average of the asymptotic electrostatic potentials on 
the two sides of the structure. The PBE vacuum level 
shift is also stored in the database.

2.10. Fermi surface
The Fermi surface is calculated using the PBE xc-
functional including SOC for all metallic compounds 
in the database. Based on a ground state calculation 

with a k-point density of at least 20/̊A
−1

, the 
eigenvalues are interpolated with quadratic splines and 
plotted within the first BZ. Figure 13 (left) shows an 
example of the Fermi surface for VO2-MoS2 with color 
code indicating the out-of-plane spin projection 〈Sz〉. 
The band structure refers to the ferromagnetic ground 
state of VO2-MoS2, which has a magnetic moment of 
0.70 µB per unit cell, characterised by alternating spin-
polarised lobes with 〈Sz〉 = ±1.

2.11. Effective masses
For materials with a finite PBE gap, the effective 
electron and hole masses are calculated from the 
PBE eigenvalues; initially these are calculated on 

an ultrafine k-point mesh of density 45.0/Å
−1

 

uniformly distributed inside a circle of radius  

0.015 ̊A
−1

 centered at the VBM and CBM, respectively. 

The radius is chosen to be safely above the noise level of 
the calculated eigenvalues but still within the harmonic 
regime; it corresponds to a spread of eigenvalues of 
about 1 meV within the circle for an effective mass 
of 1 m0. For each band within an energy window of  
100 meV above/below the CBM/VBM, the band 

Table 4. Comparison between calculated and experimental band gaps for four freestanding monolayers. The experimental values have 
been corrected for substrate screening. MAD refers to the mean absolute deviation between the predicted values and the measured values.

Material

Band gap (eV)

PBE HSE06 GLLBSC G0W0 Experiment

MoS2 1.58 2.09 2.21 2.53 2.50 [125]

MoSe2 1.32 1.80 1.88 2.12 2.31 [126]

WS2 1.53 2.05 2.16 2.53 2.72 [127]

P (phosphorene) 0.90 1.51 1.75 2.03 2.20 [124]

MAD w.r.t. experiment 1.10 0.57 0.43 0.15 —
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curvature is obtained by fitting a third order polynomial. 
Even though the masses represent the second derivative 
of the band energies, we have found that the inclusion 
of 3rd order terms stabilises the fitting procedure and 
yields masses that are less sensitive to the details of 
the employed k-point grids. For each band the mass 
tensor is diagonalised to yield heavy and light masses 
in case of anisotropic band curvatures. The masses (in 
two directions) and the energetic splitting of all bands 
within 100 meV of the band extremum are calculated 
both with and without SOC and stored in the database. 
Other approaches exist for calculating effective masses, 
such as k · p perturbation theory (see e.g. [128] and 
references therein); the present scheme was chosen for 
its simplicity and ease of application to a wide range of 
different materials.

In addition to the effective masses at the VBM 
and CBM, the exciton reduced mass is calcu-
lated by applying the above procedure to the direct 
valence-conduction band transition energies, 
εv−c(k) = εc(k)− εv(k). For direct band gap mat-
erials the exciton reduced mass is related to the elec-
tron and hole masses by 1/µex = 1/m∗

e + 1/m∗
h , but in 

the more typical case of indirect band gaps, this rela-
tion does not hold.

As an example, figure 14 shows a zoom of the band 
structure of SnS-GeSe around the VBM and CBM 
(upper and lower panels). The second order fits to 
the band energies (extracted from the fitted 3rd order 
polynomial) are shown by red dashed lines. It can be 
seen that both the conduction and valence bands are 
anisotropic leading to a heavy and light mass direction 
(left and right panels, respectively). The valence band 
is split by the SOC resulting in two bands separated by 
∼ 10 meV and with slightly different curvatures. The 
conduction band exhibits a non-trivial band split-
ting in one of the two directions. The peculiar band  
splitting is due to a Rashba effect arising from the 
combination of spin–orbit coupling and the finite 
perpend icular electric field created by the permanent 
dipole of the SnS structure where Sn and S atoms are 
displaced in the out of plane direction leading to a siz-
able vacuum level difference of 1.13 eV, see figure 12.

Table 5 shows a comparison between selected effec-
tive masses from the C2DB and previously published 
data also obtained with the PBE xc-correlation func-
tional and including SOC. Overall, the agreement is 

very satisfactory.

2.12. Work function
For metallic compounds, the work function is 
obtained as the difference between the Fermi energy 
and the asymptotic value of the electrostatic potential 
in the vacuum region, see figure 12. The work function 
is determined for both PBE and HSE band structures 
(both including SOC) on a uniform k-point grid 

of density 12.0/̊A
−1

. Since the SOC is evaluated 
non-selfconsistently, the Fermi energy is adjusted 
afterwards based on a charge neutrality condition.

2.13. Deformation potentials
For semiconductors, the deformation potentials 
quantify the shift in band edge energies (VBM or 
CBM) upon a linear deformation of the lattice. The 
uniaxial absolute deformation potential along axis i 
(i = x, y) is defined as [129, 130]

Dα
ii =

∆Eα

εii
, α = VBM, CBM (7)

where ∆Eα is the energy shift upon strain and εii are 
the strains in the i-directions.

The deformation potentials are important physical 
quantities as they provide an estimate of the strength 
of the (acoustic) electron-phonon interaction, see sec-
tion 3.2.2. Moreover, they are obviously of interest in 
the context of strain-engineering of band gaps and 
they can be used to can be used to infer an error bar on 
the band gap or band edge positions due to a known or 
estimated error bar on the lattice constant.

The calculation of Dα
ii  is based on a central differ-

ence approximation to the derivative. A strain of ±
1% is applied separately in the x and y directions and 
the ions are allowed to relax while keeping the unit cell 
fixed. Calculations are performed with the PBE xc-
functional, a plane wave cutoff of 800 eV, and a k-point 

density of 12/̊A
−1

.
The change in band energy, ∆Eα, is measured rela-

tive to the vacuum level. In cases with nearly degen-
erate bands, care must be taken to track the correct 
bands as different bands might cross under strain. In 

this case, we use the expectation value 〈Ŝz〉 to follow 
the correct band under strain. Figure 15 shows how 
the band structure of MoS2 changes as a function of 
strain. Both the VBM and the CBM shift down (relative 
to the vacuum level) when tensile strain is applied in 
the x direction, but the conduction band shows a much 
larger shift, leading to an effective band gap closing 
under tensile strain.

Table 6 shows a comparison between the defor-
mation potentials in the C2DB, and literature values 
obtained using similar methods. There is generally 
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Figure 12. Electrostatic potential profile perpendicular to 
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VBM and CBM are indicated together with the splitting of 
the vacuum levels caused by the out-of-plane dipole moment 
of the MoSSe layer.
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Figure 13. Left: Brillouin zone and Fermi surface calculated with PBE and spin–orbit coupling for VO2 in the MoS2 crystal structure. The 
Fermi surface is colored by the spin projection along the z-axis. Right: Brillouin zone, valence band maximum (VBM) and conduction 
band minimum (CBM) for WS2 in the MoS2 crystal structure. The grey areas in both plots mark the irreducible Brillouin zone.
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Figure 14. Zoom of the band structure of SnS in the GeSe crystal structure around the conduction and valence band extrema 
(upper and lower panels). Second order fits used to determine the effective masses are shown by red dashed lines. The peculiar 
band splitting in the conduction band minimum (upper left panel) is caused by a Rashba effect arising from the combination of 
spin–orbit coupling and the finite perpendicular electric field created by the asymmetric SnS structure.

Table 5. Calculated PBE effective masses (in units of m0), for the highest valence band and lowest conduction band, for different 2D 
materials. All C2DB values are calculated including spin–orbit coupling.

Material k-point

Electron mass (m0) Hole mass (m0)

C2DB Literature C2DB Literature

MoS2 K 0.42 0.44 [128] 0.53 0.54 [128]

WSe2 K 0.46 0.40 [128] 0.35 0.36 [128]

Phosphorene (zig-zag) Γ 1.24 1.24 [95] 6.56 6.48 [95]

Phosphorene (armchair) Γ 0.14 0.13 [95] 0.13 0.12 [95]

MAD 0.02 — 0.03 —
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good agreement, and part of the discrepancy can be 
ascribed to the fact that, in contrast to [131], our num-

bers include spin–orbit coupling.

2.14. Plasma frequencies
The dielectric response of a 2D material is described 
by its 2D polarisability, α2D (see section 2.15 
for a general introduction of this quantity). For 
metals, it can be separated into contributions 
from intraband and interband transitions, i.e. 
α2D = α2D,intra + α2D,inter . We have found that local 
field effects (LFEs) are negligible for the intraband 
component, which consequently can be treated 
separately and evaluated as an integral over the Fermi 
surface. Specifically, this leads to the Drude expression 
for the polarisability in the long wave length limit 

α2D,intra(ω) = −ω2
P,2D/(2πω

2) where ωP,2D is the 2D 
plasma frequency, which in atomic units is given by

ω2
P,2D =

4π

A

∑
snk

|q̂ · vsnk|2δ(εsnk − εF), (8)

where vsnk = 〈snk|p̂/m0|snk〉 is a velocity matrix 
element (with m0 the electron mass), q̂ = q/q is the 
polarisation direction, s, n, k denote spin, band and 
momentum indices, and A is the supercell area. The 
2D plasma frequency is related to the conventional 3D 

plasma frequency by ω2
P,2D(ω) = ω2

P,3D(ω)L/2 where L 
is the supercell height.

The plasma frequency defined above determines the 
intraband response of the 2D metal to external fields. 

In particular, it determines the dispersion relation of 
plasmon excitations in the metal. The latter are defined 
by the condition ε2D(ωP) = 1 + 2πqα2D(ωP) = 0, 
where q is the plasmon wave vector. Neglecting inter-
band transitions (the effect of which is considered in 
section 3.2.4), the 2D plasmon dispersion relation 
becomes

ωP(q) = ωP,2D
√

q. (9)

The plasma frequencies, ωP,2D, for polarisation in 
the x and y directions, respectively, are calculated for 
all metals in the C2DB using the linear tetrahedron 
method [98] to interpolate matrix elements and 
eigenvalues based on a PBE band structure calculation 

with a k-point density of 20/Å
−1

.

2.15. Electronic polarisability
The polarisability tensor αij  is defined by

Pi(q,ω) =
∑

j

αij(q,ω)Ej(q,ω),
 (10)

where Pi is the i’th component of the induced 
polarisation averaged over a unit cell and Ej is the j’th 
component of the macroscopic electric field. Using 

that Pi = (Di − Ei)/(4π) =
∑

j(εij − δij)Ej/(4π) 

one observes that αij = (εij − δij)/(4π), where εij is 
the dielectric function. In contrast to the dielectric 
function, whose definition for a 2D material is not 
straightforward [119], the polarisability allows for 
a natural generalisation to 2D by considering the 
induced dipole moment per unit area,
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Figure 15. Left: Valence- and conduction bands of MoS2 for  ±4.5% biaxial strain. Right: Energies of the VBM and CBM at the 
K point as function of strain. The symbols are the results of full DFT calculations, while the dashed lines are obtained from the 
deformation potentials evaluated at ±1% strain.

Table 6. Absolute deformation potentials (in eV) of the VBM and CBM for different materials. All results are based on the PBE xc-
functional.

Material k-point

Valence band Conduction band

C2DB Ref. [131] C2DB Ref. [131]

MoSe2 K −1.43 −1.86 −5.57 −5.62

WS2 K −1.25 −1.59 −6.66 −6.76

WSe2 K −1.21 −1.43 −6.21 −6.35

hBN K −1.57 −1.63 −4.55 −4.62

MAD 0.26 — 0.14 —
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P2D
i (q,ω) =

∑
j

α2D
ij (q,ω)Ej(q,ω).

 (11)

Since the Pi is a full unit cell average and P2D
i  is 

integrated in the direction orthogonal to the slab, we 

have P2D
i = LPi and α2D

ij = Lαij, where L is the length 
of the unit cell in the direction orthogonal to the slab.

In the following, we focus on the longitudinal 
components of the polarisability and dielectric ten-
sors, which are simply denoted by α and ε. These are 
related to the density-density response function, χ, via 
the relations

α2D(q,ω) =
L

4π
(ε(q,ω)− 1), (12)

ε−1(q,ω) = 1 + 〈vc(q)χ(ω)〉q, (13)

where vc  is the Coulomb interaction and

〈vcχ(ω)〉q =
1

V

∫

Cell
drdr′dr′′vc(r, r′)χ(r′, r′′,ω)e−iq(r−r′′),

 (14)

where Cell is the supercell with volume V . The re-  
sponse function, χ, satisfies the Dyson equation [132] 
χ = χirr + χirrvcχ, where χirr is the irreducible 
density-density response function. In the random 
phase approximation (RPA) χirr is replaced by the 
non-interacting response function, χ0, whose plane 
wave representation is given by [133, 134]

χ0
GG′(q,ω) =

1

Ω

∑
k∈BZ

∑
mn

( fnk − fmk+q)

×
〈ψnk|e−i(q+G)·r|ψmk+q〉〈ψmk+q|ei(q+G′)·r|ψnk〉

�ω + εnk − εmk+q + iη
,

 (15)

where G, G′ are reciprocal lattice vectors and Ω is the 
crystal volume.

For all materials in the database, we calculate the 
polarisability within the RPA for both in-plane and 
out-of-plane polarisation in the optical limit q → 0. 
For metals, the interband contribution to the polaris-
ability is obtained from equation (15) while the intra-
band contribution is treated separately as described in 
section 2.14. The single-particle eigenvalues and eigen-
states used in equation (15) are calculated with PBE, a 

k-point density of 20/Å
−1

 (corresponding to a k-point 

grid of 48 × 48 for MoS2 and 60 × 60 for graphene), 
and 800 eV plane wave cutoff. The Dyson equation is 
solved using a truncated Coulomb potential [105, 
111] to avoid spurious interactions from neighboring 
images. We use the tetrahedron method to interpolate 
the eigenvalues and eigenstates and a peak broadening 
of η = 50 meV. Local field effects are accounted for by 
including G-vectors up to 50 eV. For the band sum-
mation we include 5 times as many unoccupied bands 
as occupied bands, which roughly corresponds to an 
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Figure 16. Real and imaginary part of the RPA in-plane polarisability of monolayer MoS2 in the H phase (left) and the metallic 
monolayer NbS2 in the T phase (right). For metals, the real part is shown both with and without the intraband contributions.
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energy cutoff of 50 eV. The calculations are performed 
without spin–orbit coupling.

In figure 16 we show the real and imaginary part of 
α2D for the semiconductor MoS2. The PBE band gap of 
this material is 1.6 eV and we see the onset of dissipa-
tion at that energy. We also see that the initial structure 
of Im α is a constant, which is exactly what would be 
expected from the density of states in a 2D mat erial 
with parabolic dispersion. Finally, we note that the 

static polarisability Re α|ω=0 ≈ 6Å, which can easily 
be read off the figure. The polarisability is also shown 
for the metallic 1T-NbS2 where we display the real part 
with and without the intraband Drude contribution 
ω2

P,2D/(�ω + iη)2.

2.16. Optical absorbance
The power absorbed by a 2D material under 
illumination of a monochromatic light field with 
polarisation ê is quantified by the dimensionless 
absorbance:

Abs(ω) = 4πωα2D(qê → 0,ω)/c, (16)

where c is the speed of light. In section 2.15 we gave a 
prescription for evaluating α2D in the RPA. However, 
absorption spectra of 2D semiconductors often display 
pronounced excitonic effects, which are not captured 
by the RPA. The Bethe–Salpeter equation (BSE) is a 
well-known method capable of describing excitonic 
effects and has been shown to provide good agreement 
with experimental absorption spectra for a wide range 
of materials [135].

For materials with finite band gap and up to four 
atoms per unit cell, we have calculated the RPA and 
the BSE absorption spectra for electric fields polarised 
parallel and perpendicular to the layers. The calcul-
ations are performed on top of PBE eigenstates and 
eigenvalues with spin–orbit coupling included and 
all unoccupied band energies shifted by a constant 
in order to reproduce the G0W0 quasiparticle gap 
(the scissors operator method). If the G0W0 gap is 
not available we use the GLLBSC gap for non-magn-
etic materials and the HSE gap for magnetic mat-
erials (since GLLBSC is not implemented in GPAW 
for spin-polarised systems). The screened interaction 
entering the BSE Hamiltonian is calculated within the 
RPA using a non-interacting response function evalu-
ated from equation (15) with local field effects (i.e. 
G-vectors) included up to 50 eV and 5 times as many 
unoccupied bands as occupied bands for the sum over 
states. We apply a peak broadening of η = 50 meV and 
use a truncated Coulomb interaction. The BSE Ham-
iltonian is constructed from the four highest occu-
pied and four lowest unoccupied bands on a k-point 

grid of density of 20/Å
−1

, and is diagonalised within 

the Tamm–Dancoff approximation. We note that the 
Tamm–Dancoff approximation has been found to 
be very accurate for bulk semiconductors [136]. For 
monolayer MoS2 we have checked that it reproduces 

the full solution of the BSE, but its general validity for 
2D materials, in particular those with small band gaps, 
should be more thoroughly tested.

In figure 17 we show the optical absorption spec-
trum of MoS2 obtained with the electric field polarised 
parallel and perpendicular to the layer, respectively. 
Both RPA and BSE spectra are shown (the in-plane 
RPA absorbance equals the imaginary part of the RPA 
polarisability, see figure 16 (left), apart from the factor 
4πω and the scissors operator shift). The low energy 
part of the in-plane BSE spectrum is dominated by a 
double exciton peak (the so-called A and B excitons) 
and is in excellent agreement with experiments [55].

In general, calculations of electronic excitations 
of 2D materials converge rather slowly with respect 
to k-points due to the non-analytic behavior of the 
dielectric function in the vicinity of q  =  0 [119, 
137, 138]. In figure 18 we show the k-point depend-
ence of the binding energy of the A exciton in MoS2 
obtained as the difference between the direct band 
gap and the position of the first peak in figure 17. We 
observe a strong overestimation of the exciton bind-
ing energy at small k-point samplings, which conv-
erges slowly to a value of  ∼0.5 eV at large k-point 
samplings. For 48 × 48 k-points, corresponding to 
the k-point sampling used for the BSE calculations 
in the database, the exciton binding energy is 0.53 eV, 
whereas a 1/N2

k  extrapolation to infinite k-point sam-
pling gives 0.47 eV (see inset in figure 18). In general, 
the exciton binding energy decreases with increasing 
k-point sampling, and thus the exciton binding ener-
gies reported in the C2DB might be slightly overesti-
mated. However, since G0W0 band gaps also decrease 
when the k-point sampling is increased (see figure 11) 
the two errors tend to cancel such that the absolute 
position of the absorption peak from BSE-G0W0 
conv erges faster than the band gap or exciton binding 
energy alone.
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Figure 18. Convergence of the binding energy of the lowest 
exciton in monolayer MoS2 obtained from a BSE calculation 
as a function of k-point mesh. The quasiparticle energies 
entering the BSE Hamiltonian are obtained from a fully 
converged PBE calculation with a scissors operator applied 
to match the G0W0 band gap. The red point represents the 
k-point sampling applied in the database, which is seen 
to overestimate the extrapolated exciton binding energy 
by  ∼0.06 eV (inset).
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The BSE-G0W0 method has previously been 
shown to provide good agreement with experimental 
photoluminescence and absorption measurements on 
2D semiconductors. In table 7 we show that our calcu-
lated position of the first excitonic peak agree well with 
experimental observations for four different TMDCs 
and phosphorene. Experimentally, the monolayers are 
typically supported by a substrate, which may alter the 
screening of excitons. However the resulting decrease 
in exciton binding energies is largely cancelled by a 
reduced quasiparticle gap such that the positions of 
the excitons are only slightly red-shifted as compared 
with the case of pristine monolayers [139].

3. Database overview

Having described the computational workflow, we 
now turn to the content of the database itself. We first 
present a statistical overview of all the materials in the 
C2DB (i.e. without applying any stability filtering) 
by displaying their distribution over crystal structure 
prototypes and their basic properties. We also provide 
a short list with some of the most stable materials, 
which to our knowledge have not been previously 
studied. Next, the predicted stability of the total set of 
materials is discussed and visualised in terms of the 
descriptors for thermodynamic and dynamic stability 
introduced in section 2.4.1. In section 3.2 we analyse 
selected properties in greater detail focusing on 
band gaps and band alignment, effective masses and 
mobility, magnetic properties, plasmons, and excitons. 
Throughout the sections we explore general trends and 
correlations in the data and identify several promising 
materials with interesting physical properties.

3.1. Materials
In table 8 we list the major classes of materials currently 
included in the database. The materials are grouped 
according to their prototype, see section 2.2.2. For each 
prototype we list the corresponding space group, the 
total number of materials, and the number of materials 
satisfying a range of different conditions. The atomic 
structure of some of the different prototypes were 
shown in figure 4. The vast majority of the 2D materials 
that have been experimentally synthesised in monolayer 

form are contained in the C2DB (the 55 materials in 
figure 7 in addition to seven metal-organic perovskites). 
These materials are marked in the database and a 
literature reference is provided. Additionally, 80 of the 
monolayers in the C2DB could potentially be exfoliated 
from experimentally known layered bulk structures 
[16–19]. These materials are also marked and the ID of 
the bulk compound in the relevant experimental crystal 

structure database is provided.
To illustrate how all the materials are distributed in 

terms of stability, we show the energy above the con-
vex hull plotted against ω̃2

min in figure 19. It can be seen 
that the structures naturally sort themselves into two 
clusters according to the dynamic stability. The points 
have been colored according to the three levels for 
dynamic stability introduced in section 2.4. The lower 
panel shows the distribution of the materials in the 
grey region on a linear scale. While most of the exper-
imentally known materials (red and black dots) have 
high dynamic stability, a significant part of them fall 
into the medium stability category. The marginal dis-
tributions on the plot show that the more dynamically 
stable materials are also more thermodynamically sta-
ble. The mean energy above the convex hull is 0.12 eV 
for the materials with high dynamical stability, while it 
is 0.25 eV for the others.

In table 9 we show the key properties of a selected 
set of stable materials, distributed across a variety of 
different crystal structure prototypes. To our knowl-
edge, these materials are not experimentally known, 
and they are therefore promising candidates further 

study and experimental synthesis.

3.2. Properties: example applications
In the following sections we present a series of case 
studies focusing on different properties of 2D materials 
including band gaps and band alignment, effective 
masses and mobility, magnetic order, plasmons and 
excitons. The purpose is not to provide an in-depth 
nor material specific analysis, but rather to explore 
trends and correlations in the data and showcase some 
potential applications of the C2DB. Along the way, we 
report some of the novel candidate materials revealed 
by this analysis, which could be interesting to explore 
closer in the future.

Table 7. Comparison between calculated and experimental positions of the first excitonic peak for four different transition metal 
dichalcogenide monolayers and phosphorene.

Material

Energy of the first bright exciton (eV)

BSE@PBE-G0W0 Experiment

MoS2 2.00 1.83 [140], 1.86 [141], 1.87 [142]

MoSe2 1.62 1.57 [140], 1.57 [143], 1.58 [144]

WS2 2.07 1.96 [141], 2.02 [144]

WSe2 1.71 1.64 [142], 1.66 [143]

P (phosphorene) 1.45 1.45 [145], 1.75 [146]

MAD w.r.t. experiment 0.066 —
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3.2.1. Band gaps and band alignment
The band gaps and band edge positions of all 
semiconductors and insulators in the C2DB have 
been calculated with the PBE, HSE06, and GLLBSC 
xc-functionals while G0W0 calculations have been 
performed for the  ∼250 simplest materials. The relatively 
large size of these datasets and the high degree of 
consistency in the way they are generated (all calculations 
performed with the same code using same PAW 
potentials and basis set etc) provide a unique opportunity 
to benchmark the performance of the different xc-
functionals against the more accurate G0W0 method.

Figure 20 compares the size and center of the 
band gaps obtained with the density functionals to 
the G0W0 results. Relative to G0W0 the PBE func-
tional underestimates the gaps by 45%, i.e. on average 
the PBE values must be scaled by 1.83 to reproduce 
the G0W0 results. The HSE06 band gaps are closer to 
G0W0 but are nevertheless systematically underesti-

mated by more than 20%. On the other hand, GLLBSC 
shows very good performance with band gaps only 
2% smaller than G0W0 on average. Table 10 shows the 
mean absolute deviations of the DFT methods relative 
to G0W0. We note that although GLLBSC provides an 
excellent description of the G0W0 band gaps on aver-
age the spread is sizable with a mean absolute deviation 

of 0.4 eV.
We note a handful of outliers in figure 20 with large 

HSE band gaps compared to PBE and G0W0. For one 
of these, namely the ferromagnetic CoBr2-CdI2, we 
obtain the band gaps: 0.30 eV (PBE), 3.41 eV (HSE), 
and 0.91 eV (G0W0). For validation, we have per-
formed GPAW and QuantumEspresso calculations 
with the norm-conserving HGH pseudopotentials 
and plane wave cutoff up to 1600 eV. The converged 
band gaps are 0.49 eV (GPAW-HGH-PBE), 0.51 eV 
(QE-HGH-PBE) and 3.69 eV (GPAW-HGH-HSE), 
3.52 eV (QE-HGH-HSE), which are all in reasonable 

Table 8. Overview of the materials currently in the C2DB. The table shows the number of compounds listed by their crystal structure 
prototype and selected properties. Egap > 0 and ‘direct gap’ refer to the PBE values, ‘high stability’ refers to the stability scale defined in 
section 2.4.1, and the last three columns refer to the magnetic state, see section 2.1. In this overview, separate magnetic phases of the same 
structure are considered different materials.

Prototype Symmetry

Number of materials

Total Egap > 0 Direct gap

High 

stability NM FM AFM

C P6/mmm 4 4 3 1 4 0 0

CH P3m1 8 7 6 1 8 0 0

CH2Si P3m1 2 2 2 1 2 0 0

BN P3m2 10 9 5 1 10 0 0

GaS P3m2 125 34 95 8 100 18 7

FeSe P4/nmm 103 13 90 26 74 18 11

GeSe P3m1 20 19 5 6 20 0 0

PbSe P4/mmm 44 6 38 1 33 8 3

P Pmna 9 9 0 1 9 0 0

MoS2 P3m2 241 85 176 53 156 85 0

CdI2 P3m1 315 95 231 90 218 80 17

WTe2 P21/m 75 29 48 34 57 13 5

FeOCl Pmmn 443 92 385 65 328 63 52

MoSSe P3m1 9 6 6 5 8 1 0

C3N P6/mmm 25 1 24 0 25 0 0

YBr3 P6/mmm 57 11 51 0 21 24 12

TiCl3 P32m 69 35 51 2 32 23 14

BiI3 P3m1 123 69 66 15 48 54 21

TiS3 Pmmn 34 8 28 5 31 2 1

MnTe3 P21/m 29 3 27 1 22 4 3

Cr3WS8 Pmm2 35 34 18 8 35 0 0

CrWS4 Pmm2 18 17 7 8 18 0 0

Ti2CO2 P3m1 28 8 20 12 19 6 3

Ti2CH2O2 P3m1 13 3 12 3 10 2 1

Ti3C2 P3m2 12 0 12 0 7 5 0

Ti3C2O2 P3m2 26 0 26 0 20 6 0

Ti3C2H2O2 P3m2 14 0 14 0 10 4 0

PbA2I4 P1 27 27 27 0 27 0 0

Sum 1918 626 151 347 1352 416 150

2D Mater. 5 (2018) 042002



23

S Haastrup et al

agreement with the C2DB results. It should be interest-
ing to explore the reason for the anomalous behavior 
of the HSE band gap in these materials.

Compared to the band gaps, the gap centers pre-
dicted by PBE and HSE06 are in overall better agreement 
with the G0W0 results. This implies that, on average, the 
G0W0 correction of the DFT band energies is symmet-
ric on the valence and conduction band. In contrast, the 
GLLBSC predicts less accurate results for the gap center. 
This suggests that an accurate and efficient prediction 
of absolute band energies is obtained by combining the 
GLLBSC band gap with the PBE band gap center.

Next, we consider the band alignment at the inter-
face between different 2D materials. Assuming that 
the bands line up with a common vacuum level and 
neglecting hybridisation/charge transfer at the inter-
face, the band alignment is directly given by the VBM 
and CBM positions relative to vacuum.

We focus on pairs of 2D semiconductors for which 
the G0W0 band alignment is either Type II (∆E > 0) or 
Type III (∆E < 0), see figure 21 (left). Out of approxi-
mately 10 000 bilayers predicted to have Type II band 
alignment by G0W0, the PBE and HSE06 functionals 

predict qualitatively wrong band alignment (i.e. Type 
III) in 44% and 21% cases, respectively (grey shaded 
areas). In particular, PBE shows a sizable and system-
atic underestimation of ∆E as a direct consequence of 
the underestimation of the band gaps in both mono-
layers.

3.2.2. Effective masses and mobilities
The carrier mobility relates the drift velocity of 
electrons or holes to the strength of an applied electric 
field and is among the most important parameters for 
a semiconductor material. In general, the mobility is a 
sample specific property which is highly dependent on 
the sample purity and geometry, and (for 2D materials) 
interactions with substrate or embedding layers. Here 
we consider the phonon-limited mobility, which can 
be considered as the intrinsic mobility of the material, 
i.e. the mobility that would be measured in the absence 
of any sample specific- or external scattering sources.

The effective masses of the charge carriers have 
been calculated both with and without SOC for  ∼600 
semiconductors. Figure 22 shows the electron mass 
plotted against the hole mass. The data points are scat-
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/Å
2
]

Figure 19. The dynamic stability of the candidate materials as a function of the energy above the convex hull on a log scale (top), 
and a linear scale (bottom). Experimentally synthesised monolayers are circled in black, while the known layered 3D structures are 
marked in red. The three different dynamic stability levels are indicated both by the horizontal dashed lines and the color of the 
points. The upper panel shows the marginal distribution of the energy over the convex hull for the points in each of the three stability 
levels.
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tered, with no clear correlation between the electron 
and hole masses. Overall, the electron masses are gen-
erally slightly smaller than the hole masses. The mean 
electron mass is 0.9 m0, while the mean hole mass is 1.1 
m0, and 80% of the electron masses are below m0 while 
the fraction is only 65% for the holes. This is not too 
surprising, since, on average, the energetically lower 
valence band states are expected to be more localised 
and thus less dispersive than the conduction band 
states.

The right panel of figure 22 shows the effective 
mass for electrons and holes plotted as a function of 
the inverse band gap. It can be seen that there is no clear 
correlation between the two quantities, which is con-
firmed by calculating the cross-correlation coefficient: 

for both electrons and holes it is less than 0.02. This 
provides empirical evidence against the linear rela-
tion between effective masses and inverse band gaps 
derived from k · p perturbation theory. The relation is 
based on the assumption that the perturbative expan-
sion is dominated by the conduction and valence band 
and that the momentum matrix element between 
these states, 

〈
uc

∣∣p̂∣∣uv

〉
, does not vary too much as 

function of the considered parameter (here the type 
of material). These assumptions clearly do not hold 
across a large set of different semiconductors. If we 
focus on a specific class of materials, e.g. sulfides in the 
MoS2 structure indicated by the highlighted symbols, 
we see a slightly improved trend but still with signifi-
cant fluctuations.

Table 9. Key properties of selected stable materials in the C2DB, which have not been previously synthesised. The calculated properties 
are the magnetic state, formation energy, energy above the convex hull, work function, PBE gap and and the nature of the gap (direct or 
indirect).

Prototype Formula Magnetic state ∆H  (eV) ∆Hhull (eV) Φ (eV) PBE gap (eV) Direct gap

BiI3 VI3 FM −0.51 −0.15 5.3

CoCl3 NM −0.65 −0.21 1.13 No

CoBr3 NM −0.41 −0.16 0.96 No

CoI3 NM −0.14 −0.14 0.53 No

CdI2 FeO2 FM −1.14 −0.36 7.31

MnSe2 FM −0.47 −0.18 5.09

MnS2 FM −0.57 −0.12 5.74

PdO2 NM −0.40 −0.08 1.38 No

CaBr2 NM −2.09 −0.02 4.86 No

FeOCl RhClO NM −0.65 −0.18 5.49

NiClO AFM −0.64 −0.17 6.32

NiBrO AFM −0.52 −0.16 5.78

ScIS NM −1.68 −0.14 1.66 Yes

FeSe CoSe FM −0.27 0.02 4.22

RuS NM −0.38 0.05 4.72

MnSe AFM −0.50 −0.20 0.90 No

MnS AFM −0.64 −0.19 0.78 No

GaS AlSe NM −0.72 −0.02 2.00 No

AlS NM −0.89 0.00 2.09 No

GeSe GeSe NM −0.19 0.04 2.22 No

GeS NM −0.22 0.05 2.45 No

GeTe NM −0.01 0.09 1.47 No

SnSe NM −0.33 0.10 2.15 No

MoS2 VS2 FM −0.88 −0.02 5.95

ScBr2 FM −1.59 −0.40 0.16 No

YBr2 FM −1.73 −0.23 0.34 No

FeCl2 FM −0.67 −0.16 0.35 Yes

TiBr2 NM −1.14 −0.04 0.76 No

ZrBr2 NM −1.34 −0.04 0.83 No

Ti2CO2 Zr2CF2 NM −2.36 −0.08 3.92

Hf2CF2 NM −2.26 0.03 3.62

Y2CF2 NM −2.50 −0.17 1.12 No

WTe2 NbI2 NM −0.37 0.04 3.01

HfBr2 NM −1.16 −0.18 0.85 No

OsSe2 NM −0.17 0.00 0.57 No
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If one assumes energetically isolated and parabolic 
bands, the intrinsic mobility limited only by scattering 
on acoustic phonons can be estimated from the Takagi 
formula [147],

µi =
e�3ρv2

i

kBTm∗
i m∗

dD2
i

. (17)

Here i refers to the transport direction, ρ is the mass 
density, vi  is the speed of sound in the material, m∗

i  is 
the carrier mass, m∗

d is the equivalent isotropic density-
of-state mass defined as m∗

d =
√

m∗
x m∗

y , and Di is the 
deformation potential. We stress that the simple Takagi 
formula is only valid for temperatures high enough 
that the acoustic phonon population can be approxi-
mated by the Rayleigh–Jeans law, n ≈ �ωac/kBT , but 
low enough that scattering on optical phonons can be 
neglected.

For the semiconductors in the C2DB we have 
found that the denominator of equation (17) var-
ies more than the numerator. Consequently, a small 
product of deformation potential and effective mass 
is expected to correlate with high mobility. Figure 23 
shows the deformation potential plotted against the 
carrier mass for the valence and conduction bands, 
respectively. The shaded area corresponds, somewhat 
arbitrarily, to the region for which m∗

i Di < m0(1 eV). 
The 2D semiconductors which have been synthesised 
in monolayer form are indicated with orange symbols 
while those which have been used in field effect tran-
sistors are labeled. Consistent with experimental find-
ings, phosphorene (P) is predicted to be among the 

materials with the highest mobility for both electrons 
and holes.

Interestingly, a number of previously unknown 2D 
materials lie in this shaded region and could be can-
didates for high mobility 2D semiconductors. Table 11 
lists a few selected materials with high intrinsic mobil-
ity according to equation (17), which all have ‘high’ 
overall stability (see section 2.4.1). In the future, it will 
be interesting to explore the transport properties of 

these candidate materials in greater detail.
To put the numbers in table 11 to scale, we consider 

the well studied example of MoS2. For this material we 
obtain an electron mobility of 240 cm2 V−1 s−1 while 
a full ab initio calculation found a phonon-limited 
mobility of 400 cm2 V−1 s−1 (in good agreement with 
experiments on hBN encapsulated MoS2 [148]), with 
the acoustic phonon contribution corre sponding to a 
mobility of 1000 cm2 V−1 s−1. Similarly, for the series 
MX2 (M  =  W, Mo, X  =  S, Se), we calculate room-
temper ature electron mobilities between 200 cm2 V−1 
s−1 and 400 cm2 V−1 s−1, which are all within 50% of 
the ab initio results [149]. Presumably, as in the case 
for MoS2, the good quantitative agreement is partly a 
result of error cancellation between an overestimated 
acoustic phonon scattering and the neglect of optical 
phonon scattering. Importantly, however, the relative 
ordering of the mobilities of the four MX2 mono layers 
is correctly predicted by equation (17) for all but one 
pair (MoS2 and WSe2) out of the six pairs. These results 
illustrate that equation (17) should only be used for 
‘order of magnitude’ estimates of the mobility but  
that relative comparisons of mobilities in different 
materials are probably reliable.

3.2.3. Magnetic properties
Recently, a single layer of CrI3 was reported to exhibit 
ferromagnetic order with a Curie temperature of 
45 K [12]. This comprises the first example of a pure 
2D material exhibiting magnetic order and there is 
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band gaps of PBE (blue), HSE06 (orange), and GLLBSC (green) are fitted linearly to G0W0. For the gap centers the bisector is shown.

Table 10. The mean absolute deviation (in eV) of the band gap and 
band gap center calculated with three different xc-functionals with 
respect to G0W0.

PBE HSE06 GLLBSC

MAD w.r.t. G0W0 (band gap) 1.49 0.82 0.38

MAD w.r.t. G0W0 (gap center) 0.37 0.32 0.76
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currently an intense search for new 2D materials with 
magnetic order persisting above room temperature 
[150–152].

For 2D materials, magnetic order will only per-
sist at finite temperatures in the presence of magnetic 
anisotropy (MA). Indeed, by virtue of the Mermin–
Wagner theorem, magnetic order is impossible in 2D 
unless the rotational symmetry of the spins is broken 
[153]. A finite MA with an out of plane easy axis breaks 
the assumption behind the Mermin–Wagner theorem 
and makes magnetic order possible at finite temper-
ature. The critical temperature for magnetic order in 
2D materials will thus have a strong dependence on the 
anisotropy.

The MA originates from spin–orbit coupling and 
is here defined as the energy difference between in-
plane and out-of-plane orientation of the magnetic 
moments, see equation (4). With our definition, a 
negative MA corresponds to an out-of-plane easy axis. 
We note that most of the materials in the C2DB are 
nearly isotropic in-plane. Consequently, if the easy 
axis lies in the plane, the spins will exhibit an approxi-
mate in-plane rotational symmetry, which prohibits 
magnetic order at finite temperatures. Since spin–
orbit coupling becomes large for heavy elements, we 
generally expect to find larger MA for materials con-
taining heavier elements. In general the magnitude of 
the MA is small. For example, for a monolayer of CrI3 
with a Curie temper ature of 45 K [12] we find a MA of  
–0.85 meV per Cr atom in agreement with previous 

calculations [154]. Although small, the MA is, how-
ever, crucial for magnetic order to emerge at finite 
temperature.

In figure 24 we show the magnitude of the magn etic 
anisotropy (red triangles) and the magnetic moment per 
metal atom (blue triangles) averaged over all materials 
with a given chemical composition. The plot is based on 
data for around 1200 materials in the medium to high 
stability categories (see table 2) out of which around 
350 are magnetic. It is interesting to note that while the 
magn etic moment is mainly determined by the metal 
atom, the MA depends strongly on the non-metal atom. 
For example, the halides (Cl, Br, I) generally exhibit much 
larger MAs than the chalcogenides (S, Se, Te). Overall, 
iodine (I) stands out as the most significant element for a 
large MA while the 3d metals Cr, Mn, Fe, Co are the most 
important elements for a large magnetic moment. Since 
the MA is driven by spin–orbit coupling (SOC) and the 
spin is mainly located on the metal atom, one would 
expect a large MA to correlate with a heavy metal atom. 
However, it is clear from the figure that it is not essential 
that the spin-carrying metal atom should also host the 
large SOC. For example, we find large MA for several 3d 
metal-iodides despite of the relatively weak SOC on the  
3d metals. This shows that the MA is governed by a rather 
complex interplay between the spins, orbital hybridisa-
tion and crystal field.

A selection of materials predicted to have high 
overall stability (see section 2.4.1) and high out-
of-plane magnetic anisotropy (MA < −0.3 meV/

Table 11. Key transport properties of selected materials with high intrinsic room-temperature mobility according to equation (17). All the 
materials shown have ‘high’ overall stability as defined in section 2.4.1. µhigh is the larger value of the mobilities in the x or y directions, m* 
is the corresponding effective mass, and µhigh/µlow  is the ratio of the mobilities in the two directions.

Carrier Formula Prototype PBE gap (eV) µhigh (cm2 V−1 s−1) m* (m0)
µhigh

µlow

Holes PbS2 MoS2 1.39 30 000 0.62 1.4

OsO2 WTe2 0.17 23 000 0.23 3.0

ZrCl2 MoS2 0.98 12 000 0.43 1.1

WSSe MoSSe 1.40 5500 0.37 1.0

Electrons PtTe2 CdI2 0.30 9600 0.17 1.3

GaO GaS 1.56 7200 0.32 1.0

NiS2 CdI2 0.58 6000 0.29 1.5

RuTe2 WTe2 0.64 4600 1.55 8.5
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Figure 24. Absolute magnetic anisotropy (red) and magnetic moment (blue) averaged over all materials in the C2DB with a given 
composition. The two red boxes highlight the halides and 3d metals, respectively.
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magn etic atom) is listed in table 12. We find several 
semiconductors with anisotropies comparable to CrI3 
and some metals with higher values. If we also look at 
materials with medium overall stability, we find semi-
conductors with anisotropies up to 2 meV/atom. It 
is likely that some of these materials will have Curie 

temper atures similar to, or even higher than, CrI3.
In addition to the MA, the critical temperature 

depends sensitively on the magnetic exchange cou-
plings. We are presently developing a workflow for 
systematic calculation of exchange coupling constants, 
which will allow us to estimate the Curie temper-
ature of all the magnetically ordered 2D materials. 
The database contains several 2D materials with anti- 
ferromagnetic order. As a note of caution, we mention 

that the magnetic interactions in AFM materials typi-
cally arise from the super-exchange mechanism, which 
is poorly described by PBE and requires a careful verifi-
cation using a PBE  +  U scheme [155].

3.2.4. Plasmons
The unique optical properties of 2D materials 
make them highly interesting as building blocks for 
nanophotonic applications [156, 157]. Many of these 
applications involve electron rich components which 
can capture, focus, and manipulate light via plasmons 
or plasmon-polaritons. Graphene sheets can host 
plasmons that are long lived, can be easily tuned via 
electrostatic or chemical doping, and can be used 
to confine light to extremely small volumes [158]. 

Table 12. Selection of magnetic materials with a negative MA per magnetic atom. The prototype, the magnetic moment of the 
magnetic atom, the energy gap calculated with PBE xc-functional and the magnetic state are also shown. The experimentally synthesised 
ferromagnetic monolayer CrI3 is highlighted.

Formula Prototype

Magnetic 

moment (µB)

PBE gap 

(eV) MA (meV/atom) Magnetic state

∆Hhull 

(eV/atom)

OsI3 BiI3 0.9 0.0 −3.17 FM 0.18

CrTe FeSe 2.6 0.0 −1.85 AFM 0.15

FeCl3 BiI3 1.0 0.01 −1.84 FM −0.08

FeTe FeSe 1.9 0.0 −1.06 FM 0.08

MnTe2 CdI2 2.7 0.0 −0.94 FM −0.10

FeBr3 BiI3 1.0 0.04 −0.88 FM −0.04

CrI3 BiI3 3.0 0.90 −0.85 FM −0.21

MnTe FeSe 3.8 0.69 −0.75 AFM −0.15

NiO PbSe 1.1 0.0 −0.53 FM 0.05

FeBrO FeOCl 1.1 0.0 −0.47 FM −0.05

CrISe FeOCl 3.0 0.0 −0.45 FM −0.10

MnSe2 CdI2 2.8 0.0 −0.40 FM −0.18

CrIS FeOCl 3.0 0.35 −0.36 FM −0.10

MnO2 CdI2 3.0 1.13 −0.36 FM 0.02

VCl3 BiI3 2.0 0.0 −0.35 FM −0.01

MnSe FeSe 3.7 0.90 −0.31 AFM −0.20

CrSe FeSe 2.0 0.0 −0.31 AFM 0.12
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Figure 25. (left) Plasmon dispersion relations for the unscreened (i.e. intraband) and true plasmons, �ωP and �ωtrue
P , respectively, 

for NbS2 in the H phase (the MoS2 crystal structure prototype). This is compared to the full first principles calculations of 
the plasmons in NbS2 by Andersen et al (data points) [159]. (right) The in-plane averaged true plasmon frequency versus the 
unscreened plasmon frequency for all metals in C2DB at a plasmon wavelength of λP = 50 nm corresponding to q0 in the left panel. 
The data points are colored by the overall stability level as defined in section 2.4.1, and the straight line corresponds to �ωP = �ωtrue

P .
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However, due to the limited charge carrier density 
achievable in graphene, its plasmons are limited to the 
mid-infrared regime. Here we show that some metallic 
monolayers support plasmons with significantly 
higher energies than graphene and could potentially 
push 2D plasmonics into the optical regime.

Figure 25 (left) shows the plasmon dispersion 
for monolayer NbS2 in the MoS2 crystal structure. 
The effect of interband transitions on the plasmon is 
significant as can be seen by comparison to the pure 
intraband plasmon (�ωP). The true plasmon energies 
are obtained from the poles of the (long wave length 
limit) dielectric function including the interband 
transitions, ε = 1 + 2πq(α2D,intra + α2D,inter), yield-
ing ωtrue

P = ωP,2Dq1/2[1 + 2πqα2D,inter(ωtrue
P )]−1/2. For 

simplicity we ignore the frequency dependence of the  
interband polarisability, i.e. we set α2D,inter(ωtrue

P ) ≈ 
α2D,inter(ω = 0), which should be valid for small plas-
mon energies (far from the onset of interband trans-
itions). The validity of this approximation is con-
firmed by comparing to the full ab initio calculations 
of Andersen et al (blue dots) which include the full q- 
and ω-dependence [159]. The figure shows that inter-
band screening generally reduces the plasmon energy 
and becomes increasingly important for larger q.

Figure 25 (right) shows the in-plane averaged true 
plasmon energy of all metals in the C2DB plotted 
against the intraband plasmon energy at a fixed plas-
mon wavelength of λP = 50 nm (corresponding to q0 
at the dashed vertical line in the left panel). For com-
parison, the plasmon energy of freestanding graphene 
at this wavelength and for the highest achievable dop-
ing level (EF = ±0.5 eV relative to the Dirac point) is 
around 0.4 eV. The data points are colored according 
to the overall stability level as defined in section 2.4.1. 
Table 13 shows a selection of the 2D metals with ‘high’ 
overall stability (see section 2.4.1) and large plasmon 
frequencies. We briefly note the interesting band 
structures of the metals in the FeOCl prototype (not 
shown) which exhibits band gaps above or below the 
partially occupied metallic band(s), which is likely to 
lead to reduced losses in plasmonic applications [160]. 

A detailed study of the plasmonic properties of the 
lead candidate materials will be published elsewhere. 
However, from figure 25 (right) it is already clear that 
several of the 2D metals have plasmon energies around 
1 eV at λP = 50 nm, which significantly exceeds the 

plasmon energies in highly doped graphene.

3.2.5. Excitons
Two-dimensional materials generally exhibit 
pronounced many-body effects due to weak screening 
and strong quantum confinement. In particular, 
exciton binding energies in monolayers are typically an 
order of magnitude larger than in the corresponding 
layered bulk phase and it is absolutely crucial to include 
excitonic effects in order to reproduce experimental 
absorption spectra.

The electronic screening is characterised by the 
in-plane 2D polarisability, see equation (12). For a 
strictly 2D insulator, the screened Coulomb poten-
tial can be written as W2D(q) = v2D

c (q)/ε2D(q) with 
ε2D(q) = 1 + 2πα2Dq and v2D

c (q) = 2π/q is the 
2D Fourier transform of the Coulomb interaction. 
The q-dependence of ε2D indicates that the screen-
ing is non-local, i.e. it cannot be represented by a q- 
independent dielectric constant, and that Coulomb 
interactions tend to be weakly screened at large dis-
tances (small q vectors) [119, 161, 162]. This is in 
sharp contrast to the case of 3D semiconductors/
insulators where screening is most effective at large 
distances where its effect can be accounted for by a q- 
independent dielectric constant. For a two-band 
model with isotropic parabolic bands, the excitons 
can be modeled by a 2D Hydrogen-like (Mott–Wan-
nier) Hamiltonian where the Coulomb interaction is 
replaced by W = 1/εr and the electron mass is replaced 
by a reduced excitonic mass µex  derived from the cur-
vature of conduction and valence bands. It has previ-
ously been shown that the excitonic Rydberg series of 
a 2D semiconductor can be accurately reproduced by 
this model if the dielectric constant, ε, is obtained by 
averaging ε2D(q) over the extent of the exciton in recip-
rocal space [163]. For the lowest exciton (n  =  1), the 
binding energy can then be expressed as

EB =
8µex

(1 +
√

1 + 32πα2Dµex/3)2
. (18)

It has furthermore been demonstrated that this 
expression gives excellent agreement with a 
numerical solution of the Mott–Wannier model 
employing the full q-dependent dielectric function, 
ε2D(q) = 1 + 2πα2Dq, for 51 transition metal 
dichalcogenides [163]. We note that the previous 
calculations were based on LDA and we generally find 
that the PBE values for α2D obtained in the present 
work are 10–20% smaller compared with LDA.

In figure 26, we compare the binding energy of the 
lowest exciton obtained from BSE-PBE with G0W0 
scissors operator and the Mott–Wannier model equa-
tion (18), respectively. Results are shown for the 194 

Table 13. Selection of 2D metals with high plasmon energies ωtrue
P  

for a plasmon wavelength of λP = 50 nm. The interband screening 
α2D,inter at ω = 0 and the in-plane averaged 2D plasma frequency 
ωP,2D, which are required to reproduce ωtrue

P , are also reported.

Prototype Formula Magnetic state

ωtrue
P  

(eV)

α2D,inter 

(Å)

ωP,2D  

(eV Å0.5)

TiS3 TaSe3 NM 0.99 12.54 12.48

FeOCl PdClS NM 0.93 4.13 9.52

FeOCl NiClS NM 0.90 5.60 9.66

CdI2 TaS2 NM 0.82 5.59 8.79

FeOCl ZrIS NM 0.75 7.68 8.43

CdI2 NbS2 NM 0.73 8.2 8.42

FeOCl ZrClS NM 0.73 13.6 9.35

TiS3 TaS3 NM 0.73 34.22 12.44

PbSe NiO FM 0.72 2.9 7.16
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non-magnetic semiconductors out of the total set of 
∼ 250 materials for which BSE calculations have been 
performed. We focus on the optically active zero-
momentum excitons and compute the exciton masses 
by evaluating the curvature of the band energies at the 
direct gap, see section 2.11. For anisotropic materials 
we average the heavy and light exciton masses as well 
as the x and y components of the polarisability, α2D, 
to generate input parameters for the isotropic model 
equation (18).

Although a clear correlation with the BSE results 
is observed, it is also evident that the Mott–Wannier 
model can produce significant errors. The mean abso-
lute deviation between BSE and the model is 0.28 eV 
for all materials and 0.20 eV for the subset of trans-
ition metal dichalcogenides (TMDCs). Furthermore, 
the Mott–Wannier model seems to overestimate EB for 
more strongly bound excitons while the opposite trend 
is seen for weakly bound excitons. As explained below 
these trends are a consequence of systematic errors in 
the Mott–Wannier model which can be traced to two 
distinct sources.

 (i)  Weak screening: If α2D is small (on the order of  
1 Å), the exciton becomes strongly localised and 
the orbital character of the states comprising the 
exciton plays a significant role. In general, the 
Mott–Wannier model tends to overestimate the 
exciton binding energy in this case as can be seen 
from the relatively large deviation of points with 
model binding energies  >2.0 eV in figure 26. The 
overestimated binding energy results from the 
homogeneous electron and hole distributions 
implicitly assumed in the Mott–Wannier model. 
In reality, the short range variation of the electron 
and hole distributions is determined by the shape 
of the conduction and valence band states. In 
general these will differ leading to a reduced spatial 
overlap of the electron and hole and thus a lower 
Coulomb interaction. For example, SrCl2 in the 
CdI2 prototype (α2D = 0.68 Å) has a BSE binding 

energy of 2.1 eV and a model binding energy of 
3.4 eV. From the PDOS of this material (see the 
C2DB webpage) it is evident that the electron and 
hole are mainly residing on the Sr and Cl atoms, 
respectively.

 (ii)  Breakdown of the parabolic band approximation: 
Materials with small band gaps often exhibit 
hyperbolic rather than parabolic band structures 
in the vicinity of the band gap. This typically 
happens in materials with small band gaps such 
as BSb in the BN prototype. In figure 26 these 
materials can be identified as the cluster of points 
with model binding energies  <0.25 eV and BSE 
binding energies  >0.25 eV. A similar situation 
occurs if the conduction and valence bands flatten 
out away from the band gap region. In both of 
these cases, the excitons tend to be delocalised over 
a larger area in the Brillouin zone than predicted 
by the parabolic band approximation of the Mott–
Wannier model. Typically, such delocalisation will 
result in larger binding energies than predicted by 
the model. For example, FeI2 in the CdI2 prototype 
exhibits shallow band minima in a ring around the 
Γ-point and has a BSE binding energy of 1.1 eV 
and a model binding energy of 0.5 eV because the 
model assumes that the exciton will be located 
in the vicinity of the shallow minimum (and 
thus more delocalised in real space). A detailed 
inspection reveals that such break down of the 
parabolic band approximation is responsible for 
most of the cases where the model underestimates 
the binding energy.

Other sources of errors come from contributions 
to the exciton from higher/lower lying bands, i.e. break 
down of the two-band approximation, and aniso-
tropic exciton masses not explicitly accounted for by 
equation (18).

Based on this comprehensive and unbiased assess-
ment of the Mott–Wannier model, we conclude 
that while the model can be useful for understand-
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ing trends and qualitative properties of excitons, its 
quanti tative accuracy is rather limited when applied to 
a broad set of materials without any parameter tuning. 
For quantitative estimates α2D should not be too small 
(certainly not less than 2 Å) and the the validity of 
the effective mass approximation should be carefully 
checked by inspection of the band structure.

It has been argued that there should exist a robust 
and universal scaling between the exciton binding 
energy and the quasiparticle band gap of 2D semi-
conductors, namely EB ≈ Egap/4 [164]. This scaling 
relation was deduced empirically based on BSE-GW 
calculations for around 20 monolayers and explained 
from equation (18) and the relation α2D ∝ 1/Egap 
from k · p perturbation theory. Another work 
observed a similar trend [165] but explained it from 
the 1/Egap dependence of the exciton effective mass 
expected from k · p perturbation theory. Based on our 
results we can completely refute the latter explanation 
(see figure 22 (right)). In figure 26 (right) we show the 
exciton binding energy plotted versus the direct PBE 
and G0W0 band gaps, respectively. While there is a cor-
relation, it is by no means as clear as found in [164].

4. Conclusions and outlook

The C2DB is an open database with calculated properties 
of two-dimensional materials. It currently contains 
more than 1500 materials distributed over 32 different 
crystal structures. A variety of structural, elastic, 
thermodynamic, electronic, magnetic and optical 
properties are computed following a high-throughput, 
semi-automated workflow employing state of the art 
DFT and many-body methods. The C2DB is growing 
continuously as new structures and properties are being 
added; thus the present paper provides a snapshot of the 
present state of the database. The C2DB can be browsed 
online using simple and advanced queries, and it can be 
downloaded freely at https://c2db.fysik.dtu.dk/ under a 
Creative Commons license.

The materials in the C2DB comprise both exper-
imentally known and not previously synthesised 
structures. They have been generated in a system-
atic fashion by combinatorial decoration of differ-
ent 2D crystal lattices. The full property workflow 
is performed only for structures that are found to be 
dynamically stable and have a negative heat of forma-
tion. We employ a liberal stability criterion in order not 
to exclude potentially interesting materials that could 
be stabilised by external means like substrate interac-
tions or doping even if they are unstable in freestand-
ing form. As an important and rather unique feature, 
the C2DB employs beyond-DFT methods, such as the 
many-body GW approximation, the random phase 
approx imation (RPA) and the Bethe–Salpeter equa-
tion (BSE). Such methods are essential for obtaining 
quantitatively accurate descriptions of key properties 
like band gaps and optical spectra. This is par ticularly 
important for 2D materials due the weak dielectric 

screening in reduced dimensions, which tends to 
enhance many-body effects. For maximal transpar-
ency and reproducibility of the data in the C2DB, all 
relevant parameters have been provided in this paper. 
Additionally, all scripts used to generate the data are 
freely available for download under a GPL license.

Beyond its obvious use as a look-up table, the 
C2DB offers access to numerous well documented, 
high-quality calculations, making it ideally suited for 
benchmarking and comparison of different codes 
and methodologies. The large set of different available 
properties makes the C2DB interesting as a playground 
for exploring structure-property relations and for 
applying and advancing machine learning approaches 
in materials science. Moreover, the C2DB should be 
useful as a stepping stone towards the development 
of theoretical models for more complex 2D structures 
such as van der Waals heterostructures (see below).

As reported in this work, based on the combinato-
rial screening approach, we have identified a number 
of new, potentially synthesisable 2D materials with 
interesting properties including ferromagnets with 
large magnetic anisotropy, semiconductors with high 
intrinsic carrier mobility, and metals with plasmons in 
the visible frequency range. These predictions are all 
based on the computed properties of the perfect crys-
talline materials. While the pristine crystal constitutes 
an important baseline reference it remains an idealised 
model of any real material. In the future, it would be 
interesting to extend the database to monolayers with 
adsorbed species and/or point defects. Not only would 
this allow for a more realistic assessment of the magn-
etic and (opto)electronic properties, it would also 
facilitate the design and discovery of 2D materials for 
e.g. battery electrodes and (electro)catalysis [166, 167].

The C2DB should also be useful as a platform for 
establishing parametrisations of computationally 
less expensive methods such as tight-binding models 
[168] and k · p perturbation theory [128]. Such meth-
ods are required e.g. for device modeling, descrip-
tion of magn etic field effects, and van der Waals het-
erostructures. The database already provides band 
structures, spin orbit-induced band splittings, and 
effective masses, which can be directly used to deter-
mine model parameters. It would be straightforward 
to complement these with momentum matrix ele-
ments at band extrema for modeling of optical prop-
erties and construction of full k · p Hamiltonians. 
Similarly, the spread functional required as input for 
the construction of Wannier functions e.g. by the ASE 
[38] or the Wannier90 [169] packages, could be easily 
and systematically produced. This would enable direct 
construction of minimal basis set Hamiltonians and 
would allow for the calculation of Born charges and 
piezo electric coefficients as well as certain topologi-
cal invariants [170]. A workflow to calculate exchange 
couplings of magnetic 2D materials is currently being 
developed with the aim of predicting magnetic phase 
transitions and critical temperatures.
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Of specific interest is the modeling of the elec-
tronic and optical properties of vdW heterostructures. 
Due to lattice mismatch or rotational misalignment 
between stacked 2D layers, such structures are difficult 
or even impossible to treat by conventional ab initio 
techniques. Different simplified models have been 
proposed to describe the electronic bands, including 
tight-binding Hamiltonians derived from strained lat-
tice configurations [171] and perturbative treatments 
of the interlayer coupling [172]. In both cases, the data 
in the C2DB represents a good starting point for con-
structing such models. The effect of dielectric screen-
ing in vdW heterostructures can be incorporated e.g. 
by the quantum electrostatic heterostructure (QEH) 
model [173] which computes the dielectric function 
of the vdW heterostructure from the polarisabilities of 
the isolated monolayers. The latter are directly avail-
able in the C2DB, at least in the long wavelength limit.

Finally, it would be relevant to supplement the 
current optical absorbance spectra by other types of 
spectra, such as Raman spectra, infrared absorption 
or XPS, in order to assist experimentalists in charac-
terising their synthesised samples. The automatic first-
principles calculation of such spectra is, however, not 
straightforward and will require significant computa-

tional investments.
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Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a
first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the
dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field.
The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic
Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using
complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic
Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime
is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly,
encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (hBN), enhances the dissociation
rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is
an effective way to control exciton lifetimes in two-dimensional materials.

DOI: 10.1103/PhysRevB.94.041401

Two-dimensional (2D) semiconductors, such as single-
and few-layer transition-metal dichalcogenides, are presently
being intensively researched due to their extraordinary elec-
tronic and optical properties which include strong light-
matter interactions, spin-valley coupling, and easily tunable
electronic states [1–14]. One of the hallmarks of the 2D
semiconductors is the presence of strongly bound excitons
with binding energies reaching up to 30% of the band gap.
These large binding energies are mainly a result of the reduced
dielectric screening in two dimensions [15–19]. Although
such strongly bound excitons are highly interesting from
a fundamental point of view (for example, in the context
of Bose-Einstein condensates [20]) they are problematic for
many of the envisioned applications of 2D materials, such
as photodetectors and solar cells which rely on efficient
conversion of photons into electrical currents. This is because
the strong attraction between the electron and the hole makes
it difficult to dissociate the excitons into free carriers.

Photocurrent measurements on suspended MoS2 samples
have found that the photocurrent produced by below-band-gap
photons is strongly dependent on the applied voltage indicating
that the electric field plays an important role in the generation
of free carriers [21]. One way to increase the photoresponse
could be to embed the active 2D material into a van der Waals
heterostructure [22–24]. This embedding would enhance the
screening of the electron-hole interaction without altering the
overall shape of the band structure of the material. The effects
of this increased screening on the exciton dissociation are
studied in this Rapid Communication.

In general, rigorous calculations of exciton binding energies
require a many-body approach, such as the Bethe-Salpeter
equation (BSE) which directly finds the (real) poles of the
interacting response function, corresponding to the neutral
excitation energies of the system [25,26]. Such calculations are

computationally demanding and typically only used to study
excitations from the ground state, i.e., not in the presence of
external fields. We mention, however, that the BSE has been
used to study field-induced exciton dissociation in carbon nan-
otubes by fitting the BSE absorption spectrum to the Fano line
shape [27]. In this Rapid Communication we take a different
approach using that, under certain simplifying circumstances,
the calculation of the many-body excitonic state can be
reformulated as an effective hydrogenic Hamiltonian whose
eigenvalues and eigenstates represent the exciton binding
energies and the envelope wave function describing the relative
electron-hole motion. This is the so-called Mott-Wannier
model which has been instrumental in the description of
excitons in inorganic bulk semiconductors. A 2D version of the
Mott-Wannier model has recently been shown to yield exciton
binding energies in good agreement with BSE calculations
and experiments for both freestanding [15,16,18,19,28] and
supported [15,28,29] transition-metal dichalcogenide layers.
The dissociation rate of the exciton is then obtained by complex
scaling, which is a formally exact technique to compute
resonance energies and lifetimes. By employing a recently
developed quantum-classical method for calculating the di-
electric function of general van der Waals heterostructures,
we predict the effect of embedding the MoS2 in hBN on
the screened electron-hole interaction and exciton dissociation
rate.

When an in-plane constant electric field is applied to an
exciton, it will eventually decay into a free electron and hole.
This effect belongs to a class first studied by Keldysh [30]
and Franz [31], who examined how the optical properties of
semiconductors change in the presence of a static electric field.
The application of a constant electric field changes the exciton
from a bound state to a resonance with a finite lifetime equal
to the inverse dissociation rate.

2469-9950/2016/94(4)/041401(5) 041401-1 ©2016 American Physical Society
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The literature on resonances in quantum physics is vast,
and we will not go into the topic here but simply mention a
few important facts. First, it should be understood that even
the definition of a resonance is nontrivial. The reason for this
can be understood from Howland’s razor which states that no
satisfactory definition of a resonance can depend only on the
structure of a single operator on an abstract Hilbert space [32].
To illustrate the content of the statement consider the Stark
effect in hydrogen: Let Ĥ (ε) = − 1

2� − 1/r + εx. It can be
shown that Ĥ (ε) is unitarily equivalent to Ĥ (ε′) for all nonzero
ε and ε′s. Since we expect the properties of the resonances and,
in particular, their lifetimes to depend on field strength ε, this
example shows that the resonance cannot be viewed only as a
property of the operator Ĥ (ε). Instead the notion of resonance
is only meaningful when the real-space geometry of the given
system and relevant boundary conditions on the wave functions
are considered.

There are generally two approaches used to compute res-
onances. The so-called indirect methods identify resonances
as the poles of the scattering amplitude analytically extended
to the complex energy plane [33], whereas the direct methods
obtain the resonance states directly as eigenstates of a complex
scaled non-Hermitian Hamiltonian [34,35]. In this Rapid
Communication we will use the latter approach.

To describe excitons in a 2D semiconductor we use a Mott-
Wannier model of the form

[
− ∇2

2D

2μex
+ W (r)

]
F (r) = EbF (r), (1)

where μex is the exciton effective mass μ−1
ex = m−1

e + m−1
h ,

W is the screened electron-hole interaction, r is an in-plane
position vector, and Eb denotes the exciton binding energy. In
principle there should be an exchange term included here, but a
full ab initio solution of the BSE has shown that the exchange
term decreases the binding energy of the lowest exciton in

MoS2 by less than 4% [15], and the term can therefore be
neglected.

The screened electron-hole interaction is obtained as the
inverse Fourier transform of [ε2D(q)q]−1, where ε2D(q) is
the static dielectric function of the 2D material and 1/q is
the in-plane 2D Fourier transform of 1/r . In the small-q limit,
we can approximate ε as a linear function of q [16–19] so that

ε2D(q) = 1 + 2παq, (2)

with α being the polarizability of the material. An analytic
expression can then be obtained for the screened electron-hole
interaction [17],

W (r) = 1

4α
[Y0(x) − H0(x)]x=r/2πα, (3)

where Y0 is a Bessel function of the second kind and H0 is
a Struve function. For later use we note that both of these
functions are analytic on the entire complex plane away from
z = 0.

The expression (3) for the screened interaction relies on
a first-order expansion of ε2D(q) around q = 0; the validity
of this approximation has been demonstrated for a number of
freestanding 2D semiconductors [16,18,19] and recently for
MoS2 embedded in a few layers of hBN [15]. As a rule of
thumb, the linear screening approximation [Eq. (2)] remains
valid for intralayer excitons in van der Waals heterostructures
as long as the in-plane exciton radius is large compared to
the thickness of the heterostructure [15]. For thicker slabs, the
linear approximation breaks down, and the fully q-dependent
ε2D(q) must be used to obtain W (r). We follow the common
practice of using the static dielectric function for evaluating the
screened interaction of the Mott-Wannier model. For details
on how we calculate the dielectric functions of 2D layers and
heterostructures we refer to Ref. [29]. Using these methods,
the static dielectric function ε2D(q) can be calculated, and the
slope at q = 0 can be determined.
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(d) Continuum

E = ε0
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�E

FIG. 1. (a)–(c) The three different structures considered in this Rapid Communication: isolated MoS2, MoS2 on a single layer of hBN, and
MoS2 sandwiched between two hBN layers. (d) Illustration of the Mott-Wannier model for monolayer MoS2 in the absence (left) and presence
(right) of an in-plane constant electric field. The exciton potential is shown in blue, the exciton wave function is sketched in green, and the
energy is shown in red. When an electric field is applied, the energy of the exciton shifts down, and the sharp energy peak is broadened due to
the coupling to the continuum of states.
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Here we have considered a MoS2 layer in three different
configurations: isolated, placed on a single layer of hBN,
and sandwiched between two hBN layers. The systems are
sketched in Figs. 1(a)–1(c). The distance between the MoS2

base plane and the hBN sheets was 5.1 Å and was chosen as
the mean of the interlayer distance in pure MoS2 and hBN.
Sensitivity testing showed that varying this distance by 20%
results in a variation in the slope of ε2D(q) of less than 2%.

The lattices of MoS2 and hBN are incommensurable, but
the quantum-electrostatic heterostructure model introduced
in Ref. [29] allows us to obtain the dielectric function of
the heterostructure by electrostatic coupling of the response
of the individual layers thus avoiding the issue of in-plane
lattice mismatch. Table I shows the obtained polarizabilities
and corresponding exciton binding energies. As expected,
embedding the MoS2 in hBN leads to an increase in screening
and a reduction in the binding energy with the calculated results
for the binding energy being in good agreement with ab initio
calculations [15].

Once an in-plane constant electric field is applied to the
system, the bound states of the Mott-Wannier Hamiltonian
become metastable. The situation is illustrated in Fig. 1(d). In
the model we have used, we assume that the band structure
and, in particular, the effective mass of the exciton are not
altered by the electric field.

Within the so-called direct methods, a resonance is defined
as an eigenstate of the Hamiltonian under the boundary
condition that only outgoing waves exist outside the scattering
region. Such an eigenstate must necessarily have a complex
eigenvalue E = ε0 − iγ and a wave function that adopts
the asymptotic form e±iKx for x → ±∞ (focusing on the
one-dimensional case for simplicity) where K = k − iκ with
k > 0 (an outgoing wave) and κ > 0. The latter condition
implies that the wave function increases exponentially away
from the scattering region. The decay rate of the resonance
state, evaluated as the rate of decay of the probability for
finding the particle in any finite region of space, is given by
γ = kκ . It can be shown that the resonance eigenvalue E is a
pole of the analytically continued scattering matrix [36].

To compute the resonance, one could in principle solve the
Schrödinger equation with the appropriate boundary condi-
tions. In practice, however, it is more convenient to perform a
“complex scaling” of the Hamiltonian, whereby the coordinate
r → eiθ r and ∇ → e−iθ∇, and then solve for the eigenstates
of the resulting (non-Hermitian) operator Ĥθ with the more
standard zero boundary conditions. For θ > tan−1(γ /k), the
complex scaled resonance wave function (that is the wave
function evaluated on the line reiθ after analytic continuation)
is an eigenstate of Ĥθ with eigenvalue E but now decaying

TABLE I. Calculated values for the polarizability (α) and exciton
binding energy (Eb) for single-layer MoS2 in the three configurations
shown in Figs. 2(a)–2(c).

Material α (a.u.) Eb (eV)

MoS2 11.1 0.62
MoS2-hBN 13.0 0.55
hBN-MoS2-hBN 16.1 0.47

exponentially as r → ±∞. The resonances thus appear as
isolated complex eigenvalues of Ĥθ with energy independent
of θ and a square integrable wave function [37]. The complex
scaled wave function of the bound states remain exponentially
decaying eigenstates of Ĥθ with real eigenvalues [34].

The unbound continuum states have a different behavior: If
the potentials involved are localized, the asymptotic form of
these states as r → ∞ is eikr with k,r ∈ R. They are thus finite
at infinity but non-normalizable. If this is to remain true after
the complex scaling is performed, the transformation r → reiθ

must be accompanied by the transformation k → ke−iθ . As
the energy of a plane wave is proportional to k2, the complex
scaling operation results in the energy of the continuum states
rotating into the complex plane at an angle of 2θ .

We mention that the complex scaling procedure cannot be
applied to any potential V (r) [35], but the class of potentials
for which the procedure works is large enough to include the
bare and the screened Coulomb potential [38] as well as a
constant electric field [39].

In Fig. 2 we show an example of the spectrum of the
complex-scaled exciton Hamiltonian for isolated MoS2 in
zero field for different values of the scaling parameter θ .
The two classes of states, bound and unbound, can clearly
be distinguished; for zero field there are no resonances.

For the systems shown in Figs. 2(a)– 2(c) we compute the
screened interaction between charges located in the MoS2 layer
using the random phase approximation (RPA) and the local
density approximation (LDA) as implemented in the GPAW

code [40,41]. The response calculations were done with a 60 ×
60 k-point grid and a 150-eV energy cutoff for G and G′.
The bandstructure obtained from the LDA calculations gives
an effective exciton mass for MoS2 of 0.27me. Once α and
μex are known, the 2D eigenvalue problem for the complex-
scaled Hamiltonian is solved on a real-space grid using radial
coordinates. In order to converge the exciton energies, a large
simulation cell is needed—significantly larger than the exciton
radius, which is around 10 Å for all of the systems considered.
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FIG. 2. The different behaviors of bound and continuum states
under the complex scaling operation for the potential corresponding
to isolated MoS2. The black dashed lines start at −0.15 eV and have
been rotated into the complex plane by −2θ for each of the complex
scaling angles. Note that the continuum starts at −0.15 eV and not 0
because of the finite size of the simulation box.
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FIG. 3. The dissociation rate of an exciton in the MoS2 layer as
a function of in-plane field strength for the three different structures.
The intrinsic decay rate spans between the defect-assisted fast decay
of the excitons of 2–5 ps (upper limit) and the much slower radiative
recombination of the excitons at room temperature (lower limit).

As the screened potential has a logarithmic singularity at r = 0
while being virtually flat at the edge of the simulation cell, a
nonlinear grid is used, which allows us to perform simulations
in a disk of radius 250 Å. The Laplacian is represented by a
finite-difference stencil. In order to avoid diagonalization of
the full Hamiltonian, we used the iterative eigensolver ARPACK.

Figure 3 shows the MoS2 exciton dissociation rate as a
function of in-plane field strength for three different structures.
As expected, larger fields lead to shorter lifetimes, and the
rate is seen to depend roughly exponentially on 1/E for
the considered field strengths. It can also be seen that the
dissociation rate can be tuned to a high degree by changing
the environment of the MoS2. When MoS2 is placed on a single
layer of boron nitride, the extra screening greatly increases the
dissociation rate, and similarly, when the MoS2 is sandwiched
between two layers of BN, the rate is even larger. This is as
expected since larger screening results in more weakly bound
excitons, which should in turn dissociate more readily. Adding
more hBN layers on either side is expected to further enhance
the screening and hence the dissociation rates, but this has not
been pursued here as the linear screening model breaks down
in this regime [15].

Along with information about the lifetime of the resonant
states, the complex eigenvalue can provide information on
the Stark shift of the resonance energy, an effect which
is directly observable in optical absorption measurements.
Figure 4 shows how the real part of the eigenvalue varies with
field strength, and as expected, for small fields we observe
a parabolic shift. The breakdown of this parabolic behavior
occurs at smallest fields for the most screened excitons.

Recently, it has been shown that excitons in 2D materials
can be described by a 2D hydrogen model with an effective di-
electric constant [28], which for the linear screening described
by Eq. (2) is given by εeff = 1

2 + 1
2

√
1 + 32παμ/3. Based on

this model and second-order perturbation theory, the shift can
be predicted to be

�E = −21

64

ε4
eff

μ3
E2. (4)

Figure 4 shows that this prediction fits well with our calcula-
tions for small fields.
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FIG. 4. The Stark shift in the MoS2 heterostructures. The inset
shows the shift for small fields, along with the shift predicted for a 2D
hydrogen atom with an effective dielectric constant εeff ; see Eq. (4).

In a real device, the field-induced dissociation of excitons
described here is in competition with other decay mechanisms,
such as direct radiative recombination [42], defect-assisted
recombination [43], and exciton-exciton annihilation [44]. The
relative importance of these effects is highly dependent on the
temperature of the MoS2, the presence and concentration of
defects, and the exciton density.

At very low temperatures, the direct radiative decay of
zero momentum excitons dominates with a characteristic
lifetime of ∼200 fs [42,45,46]. At room temperature, most
of the excitons have nonvanishing momenta, and the radiative
recombination lifetime is ∼1 ns [42,43]. For these systems,
defect-assisted recombination therefore becomes an important
mechanism with a characteristic lifetime of 2–5 ps [43,47,48].
Exciton-exciton annihilations become important only when
the density of excitons in a sample is large; equivalently when
the average distance between excitons is small. At a density of
1 × 1012 cm−2, the effective lifetime from annihilation is on
the order of 10 ps [44].

The calculations performed here indicate that for field
strengths larger than 0.1 V/nm, the dissociation lifetime is
shorter than 1 ps in all the systems considered. A potential
gradient of this size (0.1 V/nm) over the extent of the
exciton (around 2 nm) is realistic to achieve close to the
metal-MoS2 contact region where charge transfer and interface
dipole formation driven by Fermi-level mismatch can lead to
significant variation of the potential and band energies even in
the absence of an applied bias voltage. Under such conditions,
the field-induced dissociation is faster than any other decay
channel and should therefore dominate as indicated by the fact
that in Fig. 3, the data points all lie above the shaded region.

To summarize we have used complex scaling to compute the
lifetime of excitons in two-dimensional MoS2 and MoS2/hBN
structures under an applied static electric field. The exciton was
simulated using a 2D Mott-Wannier model which has previ-
ously been found to yield a reliable description of the lowest-
lying excitonic states in transition-metal dichalcogenides. We
found that for field strengths around 0.1 V/nm, the exciton
dissociation is larger than the intrinsic exciton decay rate in
MoS2. Moreover, encapsulation in a few layers of hBN was
found to increase the dissociation rate by an order of magnitude
for fixed field strength due to the increased screening provided
by the electrons in the hBN.
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Two-dimensional (2D) semiconducting materials are promising building blocks for optoe-

lectronic applications, many of which require efficient dissociation of excitons into free

electrons and holes. However, the strongly bound excitons arising from the enhanced Cou-

lomb interaction in these monolayers suppresses the creation of free carriers. Here, we

identify the main exciton dissociation mechanism through time and spectrally resolved

photocurrent measurements in a monolayer WSe2 p–n junction. We find that under static in-

plane electric field, excitons dissociate at a rate corresponding to the one predicted for tunnel

ionization of 2D Wannier–Mott excitons. This study is essential for understanding the pho-

toresponse of 2D semiconductors and offers design rules for the realization of efficient

photodetectors, valley dependent optoelectronics, and novel quantum coherent phases.
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As Johan Stark first observed in hydrogen atoms1, applying
an electric field on Coulomb-bound particles shifts their
energy levels and eventually leads to their dissociation

(Fig. 1a). In condensed matter physics, Wannier–Mott excitons
display features analogous to those of hydrogen2, but with the
crucial difference that they recombine if they are not dissociated.
Thermal energy is usually sufficient to ionize excitons in 3D
semiconductors owing to their small binding energy EB (typically
a few meV). In contrast, quantum confinement effects and
reduced Coulomb screening in low-dimensional materials give
rise to large exciton binding energy (EB > 100meV), which pre-
vents thermal or spontaneous dissociation even at elevated tem-
peratures and exciton densities.

In particular, monolayer transition metal dichalcogenides
(TMDs) have aroused tremendous interest due to their unique
optical properties governed by prominent excitonic features3–6 and
spin- and valley dependent effects7–11. These 2D semiconductors
provide an exciting testbed for probing the physics arising from
many-body Coulomb interactions6,12. Recently, all-optical experi-
ments have revealed a wealth of physical phenomena such as
exciton13,14, trion15,16, and biexciton17 formation, bandgap renor-
malization18, exciton–exciton annihilation19–25, and optical Stark
effect7,11. Exciton dissociation, on the other hand, can in principle
be assessed through photocurrent measurements since photo-
current directly stems from the conversion of excitons into free
carriers. A large number of studies have investigated photodetection
performances of 2D TMDs26–29 and demonstrated their potential
as photodetectors and solar cells. However, it is still unclear which

dissociation process can overcome the large exciton binding energy
and lead to efficient photocurrent generation in these devices.
Theoretical studies suggest that strong electric fields may provide
the energy required to dissociate the excitons30–32, but the precise
mechanism governing exciton dissociation in 2D TMDs remains to
be experimentally investigated.

Here, we address this important issue by monitoring the exciton
dissociation and subsequent transport of free carriers in a monolayer
TMD p–n junction through spectrally and temporally resolved pho-
tocurrent measurements. Combining these two approaches allow us to
assess and correlate two essential excitonic properties under static
electric field, namely the Stark shift and the dissociation time. Further,
we make use of the extreme thinness of 2D materials and their
contamination-free assembly into heterostructures to reliably control
the potential landscape experienced by the excitons. By placing the
monolayer TMD in close proximity to metallic split gates, we can
generate high in-plane electric fields and drive a photocurrent (PC). We
find that at low field the photoresponse time of our device is limited by
the rate at which excitons tunnel into the continuum through the
potential barrier created by their binding energy, a process known as
tunnel ionization (Fig. 1a). Tuning the electric field inside the p–n
junction further allows us to disentangle various dynamical processes of
excitons and free carriers and to identify the kinetic bottlenecks that
govern the performance of TMD-based optoelectronic devices.

Results
Device structure and characterization. Figure 1b, c presents a
schematic and optical micrograph of our lateral p–n junction
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e0
hν
AP, where A= 5% is the absorption coefficient
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device made by assembling exfoliated flakes on metallic split gates
(VG1 and VG2) separated by 200 nm (see “Methods”). Few-layer
graphite flakes placed on both ends of a monolayer WSe2 flake
serve as ambipolar electrical contacts33 that we use to apply a bias
voltage VB and collect the photogenerated charges. The lateral
graphite-WSe2-graphite assembly is fully encapsulated in hex-
agonal boron nitride, typically 20 nm thick, which provides a
clean and flat substrate. Three devices were measured (see Sup-
plementary Note 1 and Supplementary Figs. 1–3), but unless
otherwise specified, all measurements presented in the main text
are obtained at room temperature from the device shown in
Fig. 1c.

Tuning of bias and gate voltages allows us to finely control the
in-plane electric field F. Finite-element and analytical calculations
of the electric field distribution in our device (see Supplementary
Note 2 and Supplementary Figs. 4–7) provide us with a precise
estimate of F and the electrostatic doping inside the WSe2
(Fig. 1d). Applying gate voltages of opposite polarity (Vasym=
VG1=−VG2=−10 V) leads to the formation of a sharp
p–n junction (Fig. 1e) with an in-plane electric field reaching
21 V µm−1 (Fig. 1d). The photoresponse that we observed at the
junction (Fig. 1c) follows a photodiode-like behavior: PC is only
generated in the p–n or n–p configuration (see Supplementary
Fig. 1c) and can be increased by applying a reverse bias voltage
(Fig. 1f).

Spectral response. We probe the absorption spectrum in the
photoactive region by measuring the PC as a function of photon

energy hυ at a constant laser power P and in-plane electric field F.
Figure 2a shows the responsivity (PC/P) spectra of a device
similar to the one presented in Fig. 1c, measured at various VB

and at low temperature (T= 30 K) in order to reduce thermal
broadening. We observe a pronounced peak at a photon energy
hυ= 1.73 eV, corresponding to the A exciton, and a step-like
increase around 1.87 eV. For increasing electric field, this step-like
feature broadens and an additional shoulder appears at 1.83 eV.

To identify the various spectral features, we compare the
experimental spectra with first-principles calculations for a
monolayer WSe2 embedded in hBN (see Supplementary Note 3
and Supplementary Fig. 8). By including the electronic screening
from the hBN layers in the many-body G0W0 and Bethe–Salpeter
Equation (BSE) frameworks34 we obtain a bandgap of 1.85 eV
and a lowest bound exciton at 1.67 eV in good agreement with the
experimental spectra. To account for the effect of a constant in-
plane electric field we use a model based on the 2D Wannier
equation (see Supplementary Note 4 and Supplementary Fig. 9).
In these model calculations, screening by the TMD itself as well as
the surrounding dielectric materials is described via the Keldysh
potential for the electron–hole interaction. Figure 2b shows
calculated absorption spectra for different in-plane fields F.
Excellent agreement between experiment and calculations is
found assuming a bandgap of 1.9 eV, which yields a binding
energy of EB= 170 meV for the A excitons consistent with the
first-principles calculations. The unbroadened spectrum calcu-
lated at zero field (Fig. 2b, solid black line) confirms the presence
of multiple overlapping excited excitonic peaks below the
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bandgap. The calculated spectra for higher field reproduce
remarkably well the field-induced increase of the sub-bandgap
absorption observed experimentally. This is a manifestation of the
Franz–Keldysh effect, which results from the leakage of the free
electron and hole wave functions into the bandgap (inset of
Fig. 2b). We note that our experimental value of EB agrees well
with the one estimated from the diamagnetic shift of a monolayer
WSe2 encapsulated between silica and hBN35. Larger EB has been
observed in SiO2-supported WSe2 samples36–38, underlining the
role of the dielectric environment on the excitonic properties39.

Excitonic Stark effect. Turning our attention to the A exciton
photocurrent peak, we observe a pronounced red-shift as VB

(Fig. 2c) and Vasym increase. We attribute this to the DC Stark
effect. In first approximation, the Stark shift of a 1s exciton
(without dipole moment) is given by ΔE ¼ � 1

2 αF
2, where α is the

in-plane polarizability. As shown in Fig. 2d, the A exciton energy
shows a quadratic dependence with the maximum in-plane
electric field FM calculated for different values of Vasym and VB

(Fig. 2e), yielding a polarizability of α ¼ 1 ± 0:2ð Þ ´ 10�6 Dm/V.
This shift matches well with the predicted polarizability of α ¼
9:4 ´ 10�7 Dm/V for EB= 170 meV, thus supporting our previous
spectral analysis. Interestingly, we note that the measured in-
plane polarizability is two order of magnitude larger than the out-
of-plane value recently obtained in PL experiments40. This strong
anisotropy confirms the 2D nature of the A exciton and
demonstrates the advantage of using in-plane electric fields for
controlling the optical properties of TMDs31.

Photoresponse dynamics. Along with the Stark shift, the appli-
cation of a large in-plane electric field shortens the lifetime of
excitons, which eventually decay into free electrons and holes
(Fig. 1a). We probe these decay dynamics by assessing the pho-
toresponse time τ of the device with time-resolved photocurrent
measurements (TRPC), banking on the nonlinear photoresponse

of the WSe2. Figure 3a, b shows the strong sublinear power
dependence of the photocurrent (and the corresponding
responsivity) under resonant pulsed optical excitation (hυ= 1.65
eV, see “Methods”). Many physical processes may be responsible
for or contribute to the observed sublinearity, including phase
space filling41 and dynamic screening effects (e.g., bandgap
renormalization18). These many-body effects become intricate as
the exciton gas approaches the Mott transition42. However, recent
time-resolved spectroscopy19,22 and photoluminescence20,23

experiments indicate that in this exciton density regime (1011 ≲ N
≲ 1013 cm−2), exciton–exciton annihilation (EEA, or exciton
Auger recombination) is the dominant decay process for excitons
in TMDs24. To account for EEA in the rate equation governing
the photocurrent we add a loss term that scales quadratically with
the exciton density (γN2, where γ is the EEA rate). Assuming that
each pulse generates an initial exciton population N0, this model
yields PC / ln 1þ γτN0ð Þ, which reproduces well the observed
sublinear photoresponse (black lines in Fig. 3a, b, see Supple-
mentary Note 5). Moreover, the fits capture adequately the var-
iation of the sublinear photoresponse with bias (Fig. 3a, b) and
gate (Supplementary Fig. 10a) voltages, from which we extract the
values of 1=γτ (Fig. 3c). Hence, these nonlinear measurements
already offer an indirect way to probe the photoresponse time.

In order to directly extract τ;we resonantly excite A excitons in
the p–n junction with a pair of 200 fs-long laser pulses separated
by a variable time delay Δt, for various values of Vasym (Fig. 3d, e).
Due to the sublinear power dependence, the photocurrent
displays a symmetric dip when the two pulses coincide in time
(Δt= 0). By extending our nonlinear photocurrent model to the
case of two time-delayed pulses (see Supplementary Note 5 and
Supplementary Fig. 10), we can show that the time dependence of
this dip is dominated by an exponential time constant
corresponding to the intrinsic photoresponse time τ of the
device. The photoresponse rate Γ ¼ 1

τ is extracted from TRPC
measurements at various values of Vasym (Fig. 3d, e) and VB (see
Supplementary Fig. 10d) and presented in Fig. 3c. We observe
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that Γ increases markedly with gate and bias voltages, and
remarkably follows the same trend as the values of 1=γτ obtained
from the power dependence measurements. Comparing these two
results, we obtain an EEA rate of γ= 0.05 cm2/s, which is similar
to those found in WSe219,23, MoS221,22, and WS220,25. We also
note that the shortest response time we measure, τ = 10.3 ± 0.4
ps, translates into a bandwidth of f= 0.55/τ ~ 50 GHz, which
compares with the fastest responses measured in TMD-based
photodetectors43,44.

Discussion
To directly address the exciton dissociation caused by the in-
plane electric field FM, we examine the dependence of the pho-
toresponse rate Γ on FM at the p–n junction (Fig. 4a). Clearly, two
regimes can be distinguished. The rapid increase of Γ with FM is
attributed to dissociation by tunnel ionization. We verify this by
comparing the measured Γ to the calculated tunnel ionization rate
Γdiss, obtained by introducing the complex scaling formalism in
the 2D Wannier–Mott exciton model (see Supplementary Note 4
and Supplementary Table 1). According to this model, Γdiss can be
evaluated in first approximation by the product of the “attempt
frequency”45, which scales with EB=h, and the exponential tun-
neling term expð�EB=e0dFMÞ, where e0 is the elementary charge,
d is the exciton diameter, and h is the Plank constant. We find
that the dependence of Γ at low field (FM < 15 V µm−1) coincides
well with the calculated dissociation rate of excitons with EB=
170 meV, in agreement with our photocurrent spectroscopy
analysis. More importantly, this shows that in the low-field

regime the exciton dissociation process is the rate-limiting step
governing the generation of photocurrent. We note that in
multilayer TMDs, where EB ~ 50 meV, the ionization rate is two
orders of magnitude larger than in the monolayer case46, and
hence this process was not found to limit the photoresponse rate
of multilayer devices44.

At high electric field (FM > 20 V µm−1), the photoresponse rate
deviates from the dissociation rate-limited model and enters a
new regime characterized by a more moderate increase of Γ with
FM. The observed linear scaling of Γ(FM) suggests that, in this
regime, the photoresponse rate is limited by the drift-diffusive
transport of free carriers out of the p–n junction. By considering a
carrier drift velocity vdrift ¼ μF, we estimate that carriers gener-
ated in the center of the junction of length L= 200 nm escape the
junction at a rate Γdrift ¼ 2μF=L. Comparing this simple expres-
sion (dotted line in Fig. 4a) to the measured Γ at high field, we
find μ ¼ 4 ± 1 cm2 V−1 s–1, which is very similar to the room
temperature field-effect mobility that we measure in our sample
(μFE ~ 3 cm2 V−1 s–1, see Supplementary Note 1).

A complete photocurrent model is achieved by introducing
competing loss mechanisms caused by the radiative and non-
radiative recombination of excitons (see Supplementary Note 6).
Good agreement with the experimental data is obtained by con-
sidering the finite lifetime of excitons (τr;N ¼ 1=Γr;N ~ 1 ns20,23,
see Supplementary Note 1) and free carriers (τr;n ¼ 1=Γr;n~ 30
ps41) at zero electric field. This comprehensive picture of the
dynamical processes (Fig. 4b) offers valuable insights into the
internal quantum efficiency (IQE) of the photocurrent generation
mechanism in this device. Indeed, the efficiency η of each
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exciton dissociation and free carrier drift are consecutive processes, the total photoresponse rate of the device is Γ � 1
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VB measured at Vasym= 10 V extracted from Fig. 1f (left axis, blue data points). Extraction efficiency, ηextract ¼ τr;n
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τr;N
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;calculated with our model vs.
VB (right axis, black solid line). b Schematic of the processes contributing to the photoresponse of the device. Excitons are generated by resonant optical
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� �
of them reach the p–n junction by diffusion during their lifetime τr;N: Excitons entering the p–n junctions (black

dotted box) may either recombine with a time constant τr;N or dissociate by tunnel ionization at a rate Γdiss. The resultant free carriers generate a
photocurrent as they drift out of the junction at a rate Γdrift, but a fraction is also lost due to their finite lifetime τr;n. Holes and electrons are represented by
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photocurrent step depends on the competition between the PC-
generating (τdrift, τdiss) and the loss (τr;N=n) pathways, such that
ηdiss=drift ¼ τr;N=n=ðτr;N=n þ τdiss=driftÞ. In the inset of Fig. 4a, we
compare the IQE measured at low power as a function of VB with
the total extraction efficiency ηextract ¼ ηdrift ηdiss derived from the
kinetic model shown in Fig. 4b. We find that ηextract captures very
well the bias dependence of the IQE, indicating that we correctly
identified the relevant PC-generating processes. The field-
independent discrepancy of 30% is attributed to the collection
efficiency ηcoll, which we define as the ratio between the number
of excitons reaching the p–n junction and the number of absor-
bed photons. This value coincides with our analysis of the mea-
sured photocurrent profile and with the prediction of our exciton
diffusion model (see Supplementary Note 7 and Supplementary
Fig. 11).

In summary, our study offers a global understanding of the
fundamental mechanisms governing the exciton dynamics and
associated photoresponse in monolayer TMDs under in-plane
electric field. We demonstrate that despite their large binding
energy, photogenerated excitons can rapidly dissociate into free
carriers via tunnel ionization, thereby outcompeting recombina-
tion processes. Importantly, this knowledge allows us to identify
the main material properties that limit photocurrent generation
in TMDs such as carrier mobility, exciton binding energy, and
lifetime. This provides guidelines in terms of device design,
material quality improvement, and Coulomb engineering of the
van der Waals heterostructure to further improve the perfor-
mances of TMD-based optoelectronics devices and develop their
applications in valleytronics. We finally note that the observed
Stark and Franz–Keldysh effects open up exciting opportunities
for modulating light with 2D materials47.

Methods
Device fabrication. Exfoliated layers are assembled in a van der Waals hetero-
structure using the same technique as described in ref. 48. The monolayer of WSe2
is identified by photoluminescence measurement (see Supplementary Note 1). The
heterostructure is deposited onto metallic split gates (15 nm palladium) defined by
electron-beam lithography on a degenerately doped silicon substrate covered with a
285-nm-thick SiO2 layer. The two graphite flakes are electrically connected by one-
dimensional contacts48 made of Ti/Au (2/100 nm).

Photocurrent measurements. Photocurrent measurements are performed using a
photocurrent scanning microscope setup, where a laser beam is focused by a
microscope objective (Olympus LUCPlanFLN × 40) onto the device placed on a
piezoelectric stage (Attocube ANC300). Photocurrent is measured with a pre-
amplifier and a lock-in amplifier synchronized with a mechanical chopper. A
supercontinuum laser (NKT Photonics SuperK Extreme), with a pulse duration of
∼40 ps, repetition rate of 40 MHz and tunable wavelength (from 500 to 1500 nm) is
employed to characterize the devices, perform photocurrent spectroscopy, and
measure the photocurrent power dependence. Time-resolved photocurrent mea-
surements are performed using a Ti:sapphire laser (Thorlabs Octavius) with ∼200
fs pulses (at the sample), with a repetition rate of 85 MHz, and centered at hυ=
1.65 eV (FWHM= 0.07 eV), which corresponds to the A exciton absorption peak.
The laser beam is split into two arms and recombined using 50/50 beamsplitters. A
mechanical chopper modulates the laser beam in one arm (pump), while the other
arm (probe) has a motorized translation stage that allows for the generation of a
computer-controlled time delay Δt between the two pulses.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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CHAPTER 7
Conclusion and

Outlook
In this thesis, we have seen how we can use electronic structure theory to calcu-
late a wide range of properties for a vast range of two-dimensional materials. The
structures have been generated using combinatorial lattice decoration of the known
two-dimensional structures.
We have also seen how the use of an automated workflow truly helps in performing
electronic structure calculations, and reduces the time it takes to calculate any given
property.
The properties calculated in the database can serve as a look-up table for experi-
mental researchers, and they well-documented high-quality calculations can be used
to benchmark and compare different codes and methodologies. In addition to these
uses of the data, we have seen how data-driven approaches can be used to determine
structure-property relations, and in the future it will be interesting to explore this
further. Eventually, this will hopefully lead to new models and descriptors, which
can help determine properties of interest without having to do ab-initio calculations.
In this vein, it would be natural to extend the workflow to calculate parameters which
appear in less computationally expensive models, such as the momentum matrix
elements for k · p perturbation theory, or localized Wannier functions to calculate
Born charges and piezoelectric coefficients.
We have also seen how access to high-quality calculations allows us to assess the
performance of simpler models, and understand in more detail how and why they
break down. Once more properties are calculated, it will be interesting to continue
this work, and to use these validations as a guide for model development.
In this work we have identified hundreds of novel, stable two-dimensional materials
and some tens of materials with interesting properties, including semiconductors with
high intrinsic carrier mobility and ferro-magnets with large magnetic anisotropy, as
well as plasmons in the visible energy range. It will be interesting to study these
materials in more detail. In particular, all of the materials properties are calculated
for the perfect crystalline materials, and for many applications taking defects into
account will be necessary.
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Finally, we have seen how the method of complex scaling can be used to describe open
quantum systems, and applied the theory to the dissociation of excitons in MoS2 and
WSe2.



APPENDIX A
A Note on units

In this work, unless otherwise stated, we are working in Hartree atomic units.
In practice, this means that the following four elemental constants have been set to
one: The reduced Planck’s constant, ℏ; The elementary charge, e; The electron mass,
me; and Coulomb’s constant, 1

4πε0
. In these units, an electron has mass 1 and charge

−1, and it creates an electric potential given by V (r) = 1
r . Table A.1 shows how

quantities in atomic units are related to those in SI units.

Quantity Atomic unit SI equivalent
Mass Electron mass (me) 9.11 × 10−31 kg
Length Bohr radius (a0) 5.29 × 10−11 m
Time 2.42 × 10−17 s
Energy Hartree (Ha) 4.36 × 10−18 J

Table A.1: The atomic units of mass, time, length and energy, and their relation to
SI units.
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