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Introducing Two Hyperparameters in Bayesian Estimation of Wave Spectra

Ulrik Dam Nielsen
∗

Department of Mechanical Engineering,

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract. An estimate of the on-site wave spectrum can be obtained from measured ship re-

sponses by use of Bayesian modelling, which means that the wave spectrum is found as the

optimum solution from a probabilistic viewpoint. The paper describes the introduction of two

hyperparameters into Bayesian modelling so that the prior information included in the mod-

elling is based on two constraints: the wave spectrum must be smooth directional-wise as well

as frequency-wise. Traditionally, only one hyperparameter has been used to control the amount

of smoothing applied in both the frequency and directional ranges. From numerical simulations

of stochastic response measurements, it is shown that the optimal hyperparameters, determined

by use of ABIC (a Bayesian Information Criterion), correspond to the best estimate of the wave

spectrum, which is not always the case when only one hyperparameter is included in the Bayesian

modelling. The paper includes also an analysis of full-scale motion measurements where wave

spectra estimated by the Bayesian modelling are compared with results from ocean surface mea-

surements by satellite and from a wave radar. The agreement is found to be reasonable.

Key words: Wave spectra, measured ship responses, probabilistic viewpoint, Bayesian modelling,

ABIC, two hyperparameters, stochastic simulations, full-scale measurements

1. Introduction

1.1. Background and Motivation. Navigational and operational guidance to the master of a

ship can be given by use of in-service monitoring, or decision support, systems where a set of

sensors measures specific ship responses. The topic is widely dealt with in the literature, e.g Huss

and Olander [12], Debord and Hennessy [5] and Slaughter et al. [26], and as well by different kinds

of commercial and academia projects, e.g. Nielsen et al. [18] and the EU project ADOPT [1]. For

the given guidance to be reliable it is paramount to have information, in the statistical sense, about
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the wave excitations of the ship. This information can be given in terms of the on-site (directional)

wave spectrum.

On-site wave spectra can be estimated on the basis of measured ship responses (e.g. motion data)

by use of Bayesian modelling, c.f. Iseki and Terada [14] and Nielsen [20]. Thus, in addition to

the physical equations relating the measured and the calculated responses, prior constraints are

introduced to make the wave spectrum smooth. The relative weight of the applied smoothness is

governed by a so-called hyperparameter. Basically, this means that Bayesian modelling is a trade-

off between the good-fit of the solution to the data (i.e. agreement between data and solution) and

the smoothness, or stability, of the solution. Therefore, an optimal value of the hyperparameter

must be considered, and the criterion, which is normally used for the selection, is ABIC (a Bayesian

Information Criterion), see Akaike [2]. In this sense, the on-site wave spectrum is found as the

optimal solution from a probabilistic viewpoint.

Typically, the wave spectrum is assumed to be smooth in the frequency and the directional ranges

with only one hyperparameter to control the amount of smoothness, e.g. Iseki and Ohtsu [13]. The

study of data and associated estimated (and measured) wave spectra, e.g. Nielsen [20], reveals,

however, that the use of one optimal hyperparameter does often not give realistic estimations of

the wave spectra. The reason is that two different hyperparameters must be considered in order to

properly control the amount of smoothing in both the directional range and the frequency range.

In view of decision support systems for safe navigation of ships, it is important to rely on an

automatically selection of the best estimation of the on-site wave spectrum. Since problems in this

respect, thus, have been encountered, when only one hyperparameter is considered in the Bayesian

modelling, it is of interest to develop the Bayesian modelling so that it facilitates an automatically

selection of the (best) wave spectrum.

1.2. The Study. This paper addresses the introduction of two hyperparameters in the Bayesian

modelling and, thus, ABIC must be given in a form that takes two hyperparameters into account.

The introduction of two hyperparameters is similar to the geophysical description of geodetic data

inversion to estimate slip history at a plate interface based on viscoelastic slip-response functions.

Hence, Fukahata et al. [8] and Fukahata et al. [9] introduced a proper formulation of ABIC to

incorporate two sorts of partially dependent prior information into observed data.

The paper contains a study of numerical simulations of time histories with focus on the estimation

of wave spectra. Thus, the wave estimations are carried out from numerical simulations with exact
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known underlying wave excitations, i.e. wave parameters. In this way it is possible to evaluate that

the minimum value of ABIC does correspond to the optimal values of hyperparameters in the sense

that the best solution, as regards the good-fit as well as stability of the solution, is obtained for

the specific selection, by ABIC, of hyperparameters. This is in contrast to the case when only one

hyperparameter is considered in the Bayesian modelling, which will be illustrated by examples.

1.3. Composition of Paper. The organisation of the paper is as follows. In Section 2, the

fundamental theory of Bayesian modelling is outlined. In addition, Section 2 gives the details on

how to include two hyperparameters in Bayesian modelling with a particular focus on formulating

ABIC properly. The calculation of specific sea state parameters is described in Section 3. Section

4 deals with examples based on numerical simulations of motion measurements of ship responses,

whereas Section 5 contains the analysis of full-scale measurements. In both sections the results

are primarily given in tabular form and visualised graphically. Finally, Section 6 summarises and

concludes on the presented material.

2. Bayesian Modelling

2.1. Fundamentals. The present subsection gives the fundamentals of Bayesian modelling applied

to estimate directional wave spectra. The subsection is by no means comprehensive and for details

the literature should be consulted, e.g. Iseki and Terada [14] and Nielsen [20].

On the assumption that the ship responses are stationary and linear with the incident waves, the

complex-valued frequency response functions Φi (ωe, β) and Φj (ωe, β) for the ith and jth responses

yield the theoretical relationship between the ith and the jth components of the cross spectra

Sij(ωe) and the directional wave spectrum E (ωe, β) through the following integral equation

Sij (ωe) =

∫ π

−π

Φi (ωe, β) Φj (ωe, β)E (ωe, β) dβ (1)

where the bar denotes the complex conjugate, and with β being the heading of the ship (relative to

the waves) and ωe being the encounter frequency. The heading is defined so that β = π corresponds

to head waves. It should be realised that the wave spectrum is given in terms of the heading, which

is justified by letting the wave direction, θ, and the course of the ship be given relative to the same

datum, so that the heading and the wave direction are coincident. Finally, it should be noted that

the complex-valued frequency response functions are written as functions of only the heading and

the encounter frequency, since the implication of changing operational parameters is understood.
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The wave spectrum is advantageously estimated in the wave frequency domain. This means that

the speed-of-advance, or triple-valued function, problem needs to be considered. The triple-valued

function problem stems from the relation/requirement

ωe = ω − ω2A , A =
V

g
cos β (2)

where ω is the true wave frequency, V is the speed of the ship, and g is the acceleration of gravity.

The requirement has been properly incorporated by Iseki and Ohtsu [13], for details see Nielsen

[20].

In terms of matrix notation, Eq. (1) can be written

b = Af (x) + w (3)

The vector function f (x) expresses the unknown values of the wave spectrum E (ω, β) through a

non-negativity constraint f (x) = exp(x), so that x = lnE (ω, β). w is a Gaussian white noise

sequence vector with zero mean and variance σ2, introduced for stochastic reasons so that the

Bayesian modelling is facilitated, cf. Akaike [2]. The vector b contains the elements of Sij(ωe), and

the coefficient matrix A has elements according to the products of the transfer functions and the

derivative of the wave frequency, cf. Eq. (1).

In principle, Eq. (3) can be solved for x by minimising χ2(x) with

χ2(x) ≡ ‖Af (x) − b‖2 (4)

where ‖·‖ represents the L2 norm.

2.2. Prior Information. The equation system given by Eq. (4) is in most cases underdetermined,

or otherwise degenerate, which means that the solution is unstable. To overcome this problem

Bayesian modelling is introduced, see Akaike [2], so that x is evaluated by maximisation of the

product of the likelihood function and the prior distributions, which must be defined properly. The

prior distributions act as a stochastic constraint and are a general character of the model that

is known in advance, e.g. Iseki and Terada [14]. For the model above, the likelihood function is

written as

l
(

x|σ2
)

=

(

1

2πσ2

)
P

2

exp

(

− 1

2σ2
‖Af (x) − b‖2

)

(5)

where P is the total number of integral equations derived from Eq. (1) including a number of

equations yielding equivalence of energy on the left- and right-hand side of Eq. (1), cf. Nielsen [20].
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In this paper, two prior distributions are taken into account. Both distributions are a Gaussian

smoothness prior distribution which minimises the sum of the second order difference of the unknown

vector x in order to smoothen the change with frequency and direction, respectively, of the wave

spectrum, e.g. Nielsen [20] and Iseki and Terada [14]. The prior distributions are therefore defined

by the minimisation of the functionals

N
∑

n=1

M
∑

m=1

ε2
1mn =

N
∑

n=1

M
∑

m=1

(xm−1,n − 2xm,n + xm+1,n)
2
; (x0,n = xM,n, xM+1,n = x1,n) (6)

N
∑

n=1

M
∑

m=1

ε2
2mn =

M
∑

m=1

N−1
∑

n=2

(xm,n−1 − 2xm,n + xm,n+1)
2

(7)

where N and M are the number of discrete wave frequencies and discrete headings, respectively.

Thus, considering ε1mn and ε2mn to be normal distributions with zero mean and variance σ2/u2

and σ2/v2, respectively, the prior distribution is given in terms of the so-called hyperparameters u

and v. In matrix notation the functionals can be written, see e.g. Press et al. [24]

N
∑

n=1

M
∑

m=1

ε2
1mn = xT H1x (8)

N
∑

n=1

M
∑

m=1

ε2
2mn = xT H2x (9)

In accordance with Akaike [2], the posterior distribution p
(

x|u, v, σ2
)

is proportional to the product

of the likelihood function and the prior distribution, which can be written, cf. Fukahata et al. [8],

p
(

x|u, v, σ2
)

= c

(

1

2πσ2

)

P+KM

2

|det(u2H1 + v2H2)|1/2 exp

(

− 1

2σ2
S(x)

)

(10)

with

S (x) = ‖Af (x) − b‖2
+ xT (u2H1 + v2H2)x (11)

and where c is a normalising factor independent of the model parameters x and the hyperparameters

u and v. Akaike [2] proposes to maximise the posterior distribution for the evaluation of x, which

equivalently corresponds to minimising S (x). In this regard it is necessary to linearise the non-

negativity constraint f(x); see Nielsen [19].

The hyperparameters control the trade-off between the good-fit of the solution to the data and

the smoothness, or stability, of the solution, and the optimum values of the hyperparameters are

determined by minimising the control criterion ABIC, cf. Akaike [2],

ABIC = −2 ln

∫

p
(

x|u, v, σ2
)

dx (12)
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i.e. the minimisation of minus twice the logarithm to the marginal likelihood of the parameter(s)

which may be in question. In general, such a minimisation of a likelihood calls for an approximation

due to the high-dimensional integral. This matter is an entire subject of its own and is treated

among many others by Davison [4] and Shun and McCullagh [25]. The calculation of the integral

in Eq. (12) yields the following expression

ABIC = P lnS (x∗) − ln |det(u2H1 + v2H2)| + ln |det(AT A + u2H1 + v2H2)| + C (13)

where the best estimate of x = x∗ for fixed u2 and v2 can be obtained by

S (x∗) = P · σ2
min (14)

Here, σ2
min is the minimum variance of the residuals in the minimisation of S (x). The integration

constant C is independent of the hyperparameters u and v, and the search for the values of u and v

which minimise ABIC can be carried out numerically. Hence, with the values of the hyperparameters

minimising ABIC, the best estimate of x = x∗ are - schematically - obtained from, cf. Press et al.

[24]

x∗ =

(

1

AT A + u2H1 + v2H2

AT A

)

A−1b (schematic only!) (15)

Basically, this finishes the Bayesian modelling, although with many details on algebra and numeric

left out. Details can be found in Nielsen [20] and Nielsen [19].

3. Integrated Wave Parameters

The overall outcome of the Bayesian modelling is given by a directional wave spectrum E (ω, θ). For

comparative reasons, integrated wave parameters need therefore to be evaluated in each estimation,

and this subsection serves as the reference for the calculation of these parameters.

The frequency wave spectrum is obtained by integrating the directional wave spectrum with respect

to direction

F (ω) =

∫ π

−π

E (ω, θ) dθ (16)

and hence the spectral moment of order n is defined by

mn =

∫

∞

0

ωnF (ω) dω (17)

where the latter integral, in practical computations, extends from zero to a sufficiently large value

of ω.
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Thus, the significant wave height Hs and the mean wave period Ts are estimated from

Hs = 4
√

m0 (18)

Ts = 2π
m0

m1

(19)

In addition, the peak period is

Tp =
2π

ωp
, F (ωp) = max

ω
F (ω) (20)

The mean heading βs is derived on the basis of the course of the vessel in combination with the

mean wave direction given by

θs = arctan(d/c) (21)

where d and c are defined according to

d =

∫ π

−π

∫

∞

0

E (ω, θ) sin θdωdθ

c =

∫ π

−π

∫

∞

0

E (ω, θ) cos θdωdθ
(22)

Waves entering on starboard side are indicated by ’+’ whereas waves entering on port side are

indicated with a ’-’ and head sea corresponds to βs = 180 deg.

Finally, the mean directional spread is given by

σs =

(

2 − 2

m0

√

d2 + c2

)0.5

(23)

which should not be confused with the spreading parameter s, since the directional spread σs is

measured in radians.

4. Numerical Simulations

This section presents results of the Bayesian modelling when the procedure is applied to stochastic

numerical simulations of motion components. As it will be seen estimations are carried out with both

one and two hyperparameters in the Bayesian modelling. This is in order to illustrate the problems

encountered when only one hyperparameter is considered. It should be noted that theoretical

aspects, related to the Bayesian modelling with only one hyperparameter, can be found in e.g. Iseki

and Terada [14] and Nielsen [20].
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4.1. Generation of Time Series. Ship motions can, in principle, be found by a time domain

solution

η = η(t) (24)

of the generalised equations of motion where the motions, in six degrees of freedom, ηi, i = 1, 2, ..., 6,

are the surge, sway, heave, roll, pitch, and the yaw. In addition, global ship responses, e.g. the

vertical acceleration and the wave induced bending moment, can be derived from the ship motions.

In the following, a general global ship response R(t) will be considered, without differentiation

between ship motions and derived responses.

On the assumption of a linear relationship between responses and wave excitations, the time domain

solution of the response R(t) of a ship can be expressed in terms of the complex-valued frequency

response function ΦR(ω, β), see for example St Denis and Pierson [6]. In this paper, the time domain

solution of the response is, however, presented with the same format as in Jensen and Capul [15],

although the latter reference considers only unidirectional waves. Thus, the response is written as a

Gaussian process introduced by the set of uncorrelated, standard normal distributed variables umn

and ūmn. Hence,

R(t) =

N0
∑

n=1

M0
∑

m=1

[umncmn(t) + ūmnc̄mn(t)] (25)

The deterministic coefficients cmn(t) and c̄mn(t) are given by

cmn(t) = σmn|ΦR(ωn, βm)| cos(ωe,nt + ǫmn)

c̄mn(t) = −σmn|ΦR(ωn, βm)| sin(ωe,nt + ǫmn)

σ2
mn = E(ωn, βm)∆ωn∆βm

(26)

where it should be noted that the discretised number of wave frequencies N0 and the discretised

number of headings M0 not (necessarily) take the same numbers as in the estimation analysis, cf.

Eqs. (8) and (9). Furthermore, it should be realised that the variation over time is expressed in

terms of the encounter frequency which is given by Eq. (2).

E (ωn, βm) is the directional wave spectrum under the assumption that the wave direction is mea-

sured relative to the ship course (i.e. β = θ), and ∆ωn and ∆βm are the increments of the discrete

wave frequencies and the discrete headings, respectively. The phase angles are calculated from

ǫmn =
Im[ΦR(ωn, βm)]

Re[ΦR(ωn, βm)]
. (27)

It should be noted that for an equidistant frequency discretisation, the signal R (t) will repeat itself

after a period of 2π
∆ω . Thus, in order to avoid this problem, the frequency discretisation is taken to
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Table 1. Main dimensions of the considered ship.

Length, Lpp 275.0 m
Breadth, Bmld 40.0 m
Draught, T 12.0 m
Displacement 50,000 t

be non-equidistant

ωi+1 = ωi + c · pi (28)

with c as an ’appropriately’ small factor while pi denotes a stochastic variable with values between

0 and 1.

4.2. Setup of Test Cases. The numerical study will be carried out for a container vessel with

characteristics as seen in Table 1. The complex-valued frequency response functions for the ship

have been calculated by the 3-dimensional time domain code Wasim, e.g. DNV [7]. In the cases,

which will be studied, three responses are considered. The responses are the sway, the heave and

the pitch motions, and the speed of the vessel is V = 10.0 m/s in all the numerical simulations. It

should be realised that the sway response is an asymmetric response with respect to waves entering

on the starboard/port side, cf. Nielsen [20] and Tannuri et al. [27].

The wave excitations, applied in the numerical simulation of the motion measurements, are based on

a Pierson Moskowitz (PM) spectrum, including directional spreading. Hence, the bimodal spectrum

given by Hogben and Cobb [11] is applied. The wave spectrum is introduced in two ways: In the

first way, a unimodal PM wave spectrum is assumed, whereas a bimodal PM wave spectrum is

considered in the second way. The test cases are summarised in Table 2, where it is seen that Case

A corresponds to excitations characterised by swells with a significant wave height Hs = 2.0 m, a

peak period Tp = 14.0 s, a spreading parameter s = 4.0 and a mean wave heading β = +105 deg.

Case B is a combination of wind sea and swells having an energy content represented by Hs = 3.0 m

and Hs = 2.0 m, respectively. The remaining wave parameters are given in Table 2.

Table 2. The underlying wave parameters of the test cases and the corresponding

speed of the vessel.

Case Hs [m] Tp [s] s βs [deg.] V [m/s]

A 2.0 14.0 4.0 +105 10.0
B 3.0/2.0 8.0/14.0 3.0/4.0 +015/-135 10.0
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Figure 1. Contour plots of the directional wave spectra of Cases A (left) and B (right).

The directional wave spectra of Cases A and B are visualised in Figure 1 which shows contour plots

of the wave spectra in a polar format. In the estimation procedure, the vessel is assumed to be at

a course corresponding to 0 deg. in the polar plots. The directions are given in degrees and the

wave frequencies are given in Hz.

In the analysis, each of the cases listed in Table 2 is applied to simulate 20 runs of the set of responses

(sway, heave, pitch) mentioned above. All the runs have a duration of 15 minutes corresponding to

900 seconds. Furthermore, it should be noted that no white noise has been added to the numerical

generated time series and, similar, no uncertainties are considered in the estimations, so that the

used complex-valued frequency response functions are assumed to give a perfect description of the

hydrodynamic behaviour of the ship.

4.3. Minimum of ABIC. In accordance with theory, the best solution, i.e. the best estimate of

the directional wave spectrum, to the observed data corresponds to the value of the hyperparame-

ter(s) that gives the minimum value of ABIC. In case of only one hyperparameter in the Bayesian
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Figure 2. ABIC plotted for all twenty estimations in Cases A (left) and B (right)

when only one hyperparameter is considered in the Bayesian modelling.
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modelling the results of ABIC are shown in Figure 2. Thus, ABIC is depicted as function of the

logarithm to the hyperparameter µ in Cases A and B, and the results of all twenty estimations

in each case are seen in the plots. The hyperparameter is denoted by µ in the case of only one

hyperparameter in order to illustrate that the hyperparameter represents another prior distribution

than do u and v in the case of two hyperparameters.

From Figure 2 it is seen that ABIC decreases monotonously as µ increases; as a matter of fact,

ABIC decreases infinitely as µ approaches infinity. The reason is that the prior information is

described by only one hyperparameter although two sorts of prior distributions are considered.

Hence, a problem similar to the improper formulation of ABIC, mentioned by Fukahata et al. [9],

is observed. In the other direction of µ, i.e. for µ → 0, ABIC increases until the solution stops

converging. Figure 2 illustrates therefore, indeed, the problem in obtaining, automatically, the best

solution, i.e. the best wave spectrum, to the observed data. Instead, the best solution must be

chosen from a manual selection in the specific cases.

The introduction of two hyperparameters into Bayesian modelling was described in Section 2.

Hence, each of the prior distributions is represented by its own corresponding hyperparameter and,

therefore, the value of ABIC is given as a surface in the space of (u, v). In Figure 3, the surfaces

of ABIC are shown for one single estimation (out of twenty) in Cases A and B. From the figure it

is seen that ABIC has a distinct minimum for a given set of u and v in Case A as well as Case B.

Thus, the best solution can be obtained automatically; it is understood that the minimum value of

ABIC does correspond to the best estimate of the wave spectrum.
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Figure 3. Examples of the ABIC surfaces in Case A (left) and Case B when two

hyperparameters are considered in the Bayesian modelling.
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It should be noted that similar surfaces, with a unique minimum, are observed in all of the twenty

estimations in each of the cases (A and B).

4.4. Estimation of Wave Spectra. In the preceding subsection it was illustrated that the Bayesian

modelling did not give a unique minimum in the case with only one hyperparameter, which was in

contrast to the case of two hyperparameters. A reasonable solution can, however, be obtained for

the estimations based on one hyperparameter, since ’a best solution’ can be selected manually, be-

cause the sought solution is known in advance. That is, the estimated wave spectrum with the best

resemblance to the true (known) spectrum is - manually - selected. In the following, the results are,

therefore, only selected automatically for the Bayesian modelling based on two hyperparameters.

The results of the estimation analyses are presented in Tables 3 and 4. Thus, these tables list

the characteristic wave parameters as calculated by Eqs. (16)-(23) and, specifically, the significant

wave height Hs, the peak period Tp, the mean period Ts, the mean direction θs, and the mean

directional spread σs are found in the tables. It should be noted that the shape parameter λ of the

wave spectrum (λ = 1 for a PM spectrum) is not included in the tables, since this parameter is

difficult to obtain. A somewhat similar measure could be established by the combined measures of

skewness and kurtosis of the wave spectrum. In the analysis, these numbers are, however, not dealt

with. Finally, it should be mentioned that in the estimation analysis the wave field is discretised

into N = 30 wave frequencies ([0.01 − 0.30 Hz]) and M = 18 directions ([0 − 360 deg.]). The

sensitivity to discretisation is not studied, but it should be noted that a previous study, Nielsen

[20], indicates that the solution is not particularly sensitive to the values of N and M (if chosen

appropriately), and in the study it was found that N = 30 and M = 18 are reasonable values to

use in the discretisation of the wave field.

Table 3. True and estimated wave parameters. Numbers for one hyperparameter

(left) and two hyperparameters (right) are shown.

Hs Tp Ts θs σs

Case [m] [s] [s] [deg.] [deg.]

A true 2.0 14.0 11.0 +105 36
mean 1.9∗ 2.0 13.1∗ 12.8 11.2∗ 11.1 +109∗ +109 46∗ 46
error −5%∗ 0 −6%∗

−9% 2%∗ 1% 4∗ 4 10∗ 10

B true 3.6 – 7.5 -172 –
mean 3.2∗ 3.3 − − 8.2∗ 8.2 −156∗

−155 − −

error −11%∗

−8% − − 9%∗ 9% 16∗ 17 − −

∗ Value based on manual selection of the hyperparameter.
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Table 4. Partitioning of the bimodal wave spectrum. Mean values from the twenty

simulations/estimations are shown.

Wind sea Swells

Hs Tp Ts θs σs Hs Tp Ts θs σs

Case [m] [s] [s] [deg.] [deg.] [m] [s] [s] [deg.] [deg.]

B true 3.0 8.0 6.5 +015 41 2.0 14.0 11.0 -135 36
bay1 2.6∗ 7.2∗ 7.4∗ +002∗ 29∗ 1.8∗ 14.1∗ 14.0∗ -125∗ 22∗

bay2 2.7 7.4 7.4 +004 45 1.9 14.6 14.1 -125 31
∗ Value based on manual selection of the hyperparameter.

It is seen that Table 3 contains results for only the significant wave height, the mean wave period

and the mean wave direction for Case B, since the table represents the total wave system. In

addition to Table 3, Table 4 needs therefore to be considered for the partitioning, e.g. Komen et

al. [16] and Gerling [10], of the wave spectrum in Case B.

From Table 3, it can be seen that three values, denoted ’true’, ’mean’ and ’error’, are given to

each case. The values ’true’ correspond to the exact parameters of the wave spectrum as seen

from Table 2. For the two other values - ’mean’ and ’error’ - two numbers are given to each

wave parameter. The first number, i.e. the left one, yields the result as obtained by the Bayesian

modelling based on only one hyperparameter, whereas the second number, i.e. the right one, yields

the result as obtained by the Bayesian modelling with two hyperparameters. It is understood

that the value ’mean’ represents the mean value of the specific estimated parameter for the twenty

simulations/estimations carried out in the individual cases. The value ’error’, which is also based

on the mean of the twenty estimations, yields the error between the estimated mean and the true

value relative to the true value, except for the parameters related to the wave direction where the

absolute value of the error is shown.

Tables 3 and 4 show that the results of the Bayesian modelling match the true wave parameters

with reasonable accuracies. It is seen that the energy content, represented by the significant wave

height, is slightly underestimated in Case B. This problem originates probably because of filtering,

since it is difficult to capture the high-frequency excitations due to the relatively large inertia of

the considered vessel, cf. Table 1. The problem is, to some extent, visualised in Figure 4 which

shows the distribution of energy with frequency in the form of the frequency wave spectra. Results

for both one hyperparameter (left plots) and two hyperparameters (right plots) are shown, and the

results of all twenty estimations is visualised in each of the cases.
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Based on the plots of Case B, it is seen that the energy distribution of the wind sea component

of the wave spectrum does not follow the true distribution exactly. Hence, the location of the

estimated (wind) peak is shifted and the energy is contained within a shorter frequency range. The

problems related to filtering will, however, not be discussed any further here. Instead, reference is

given to Nielsen [21] that deals with the problem in detail.

Examples on the estimated directional wave spectra in Case B are visualised in Figure 5 which

shows contour plots of the wave spectrum in a polar format. It should be pointed out that the

figure illustrates only one of the twenty estimated directional wave spectra, although similar plots

are observed in the remaining cases. In the figure, the true directional spectrum is shown to the

left and the results based on only one and on two hyperparameters are shown in the middle and to

the right, respectively. The vessel has a course corresponding to 0 deg., and the waves are depicted

as approaching.

In summary on the results from the Bayesian modelling it is seen that the directional wave spectrum

is estimated with a reasonable accuracy compared to the true spectrum. It is, however, important

to emphasise that it is only the results based on the Bayesian modelling with two hyperparameters

that are determined automatically. The results based on one hyperparameter are, on the other

hand, selected manually, since the evaluation of ABIC does not suggest an optimal value for the

hyperparameter because no unique minimum is observed for ABIC. In this respect, it should be

kept in mind that a manual selection of the ’best solution’ is only possible since the sought - true -

wave spectrum is known in advance.
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Figure 4. The estimated frequency wave spectra of Cases A and B. All twenty

estimations are shown in each of the plots.
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Figure 5. Examples of contour plots of the estimated directional wave spectra in

Case B.

For comparative reasons, as regards the Bayesian modelling based on two hyperparameters, it should

be mentioned that by picking a set of hyperparameters (u, v), which does not give the minimum

value of ABIC, both the content of energy and the specific distribution of energy are estimated

worse than seen for the optimal set (u, v)min of the hyperparameters.

5. Analysis of Full-scale Measurements

Based on full-scale motion measurements recorded on the vessel studied in the previous section,

see Table 1, wave spectra have been estimated. The data consists of eight sets: A, B, ..., H, each

of a duration of 15 minutes. The duration is taken in the middle of a 30 minutes period used

for the wave radar (WAVEX) estimations and during this time, the operational conditions were

(nearly) constant. The estimations are based on the responses of heave, roll and pitch. For a

thorough discussion on the type of responses on which the estimations should be based, reference

is given to e.g. Tannuri et al. [27], Aschehoug [3] and Nielsen [20]. In the estimation analyses

it is, however, important to emphasise that the complex-valued transfer functions are believed

to give a perfect relationship between the wave excitations and the ship responses. This means

that the natural uncertainty related to the transfer functions is not accounted for. This includes

phenomena such as: not perfectly controlled/known operational conditions (in particular, as regards

the loading condition); unknown noise phenomena in the response signals; the degree of non-linearity

between excitations and responses is difficult to predict about; relative to the size of the ship the

high-frequency wave components induce no significant motions; etc. Consequently, the estimated

directional wave spectrum and the associated underlying wave parameters carry uncertainty which

is, however, not considered in the Bayesian modelling. Similarly, sensitivity analyses of the transfer

functions as regards the final outcome of the wave estimations have not been conducted.
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Table 5. Comparison of wave parameters; the significant wave height Hs, the

mean wave period Ts and the mean wave heading βs.

Hs [m] Ts [s] βs [deg.]

Data bay sat wav bay sat wav bay sat wav

A 2.7 3.0 3.0 (±0.4) 7.9 8.1 6.9 -090 -040 -100
B 2.7 3.0 2.5 (±0.3) 7.6 7.9 6.8 -060 -045 -045
C 2.0 2.7 2.6 (±0.3) 7.6 7.4 6.5 -060 -030 -060
D 1.5 2.3 2.5 (±0.3) 10.7 6.6 6.6 +015 -160 +065
E 4.6 3.0 4.9 (±1.5) 9.3 9.5 9.2 +170 +160 -150
F 3.8 5.6 4.8 (±1.0) 11.1 10.6 8.6 +020 +040 000
G 4.2 4.2 4.5 (±0.6) 11.0 11.1 8.7 +135 +125 +120
H 4.6 5.2 4.4 (±1.4) 9.3 10.5 8.8 +130 +115 +145

5.1. Wave Parameters and Frequency Wave Spectra. The results of the estimations are

shown in Table 5. The table lists values of the significant wave height Hs, the mean wave period

Ts and the mean heading βs relative to the waves; with all the individual parameters calculated

according to Eqs. (16)-(23). The table shows results by the Bayesian modelling (bay), by the wave

radar system WAVEX (wav), e.g. MIROS [17], and by satellite measurements (sat), e.g. Ocean-

weather [22]. As regards WAVEX, the technical manual [17] considers the statistical uncertainty of

the measurements related to the significant wave height and this uncertainty is included in paren-

thesis in Table 5. It should be emphasised that all results of the Bayesian modelling are based on

the optimum values of the hyperparameters, which are the pairs of u and v that give minimum

ABIC for the specific data sets.

From Table 5 it is seen that the energy content, represented by the significant wave height, is esti-

mated with a reasonable agreement between the three different estimations. The exact distribution

of energy with frequency can be seen in Figure 6 which shows the frequency wave spectra of all eight

cases. In the figure, results are shown for WAVEX and for the Bayesian Method. It is not possible

to obtain frequency wave spectra from the satellite measurements. Figure 6 seems to suggest that

the best frequency-wise agreement between WAVEX and Bayesian modelling, in general, is found

in the lower frequency region. In particular, with focus on Data D, it is observed that the Bayesian

Method captures only a swell part of the wave spectrum, whereas WAVEX estimates a similar swell

part (however with less energy) and, in addition, a wind generated peak. This fact has probably

to do with filtering introduced because of the relatively large inertia of the ship, which means that

high-frequency components of the wave spectrum is not estimated as accurately as low-frequency

ones by the Bayesian Method. This phenomenon is a general problem for response-based estimation
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of wave spectra and has been reported by e.g. Tannuri et al. [27], Pascoal et al. [23] and Nielsen

[21].

The visualisations of the wave spectra, Figure 6, illustrate also the differences between WAVEX

and the Bayesian Method observed in Table 5 on the mean wave period. At this point, it should,

however, be mentioned that the best agreement on Ts is actually found between the satellite mea-

surements and the results of the Bayesian modelling (except Data D). As regards the mean wave

heading βs, Table 5 reveals no clear tendency between the results, since the agreement between

the three different estimations seems fair. The exception is, however, Data D, which has already

been discussed and, furthermore, it is noted that WAVEX estimates waves entering on the port

side of the ship for Data E, contrary to the results of the Bayesian modelling and the satellite

measurements, which both estimate waves entering on the starboard side.
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Figure 6. The estimated frequency wave spectra. (Note the difference in scales.)



INTRODUCING TWO HYPERPARAMETERS IN BAYESIAN ESTIMATION OF WAVE SPECTRA 18

As a final comment on the results it should be kept in mind that the three different means of

estimation all give an estimate of the true wave spectrum, so that it cannot be decided which one

is to be taken to be the truth. Overall, the resemblance is, however, fair.

6. Summary and Conclusions

In the paper, two hyperparameters were introduced into Bayesian modelling based on two prior

distributions. The introduction is necessary in order to properly control the amount of smoothing

applied in the directional as well as the frequency ranges as regards the good-fit versus the stability

of the solution. The optimal amount of smoothing, expressed in terms of two hyperparameters, is

determined by use of ABIC (a Bayesian Information Criterion). In the literature, traditionally, only

one hyperparameter has been applied to describe the directional- and frequency-wise smoothing of

the wave spectrum. ABIC has therefore been rewritten so that a proper formulation has been

obtained.

From numerical simulations of motion measurements with exact known underlying wave parameters

it was seen that the best solution was obtained for values of the hyperparameters corresponding

to the minimum of ABIC. Hence, the analysis of the associated estimations of the wave spectrum

revealed that the best solution of the Bayesian modelling did predict the wave parameters with rea-

sonable accuracy. This was not the case for the Bayesian modelling when only one hyperparameter

was taken into account to model the prior distributions, since a unique minimum for ABIC was not

observed in this specific case. Thus, the best solution had to be selected manually when only one

hyperparameter was considered, and a manual selection was only possible because the true wave

spectrum was known in advance.

In addition, the paper considered full-scale motion measurements and from analyses it was seen that

the estimated wave spectra agreed reasonably well with results by the wave radar system WAVEX

and with ocean surface measurements obtained by satellite.
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