
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 07, 2024

The Geometry of Generative Models

Kalatzis, Dimitrios

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kalatzis, D. (2022). The Geometry of Generative Models. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/fb87ed7a-f8ae-4337-bac5-7f91ec0385fb


The Geometry of Generative Models
Dimitris Kalatzis



Supervisor: Prof. Søren Hauberg
Co-supervisor: Prof. Ole Winther

DTU Compute

Section for Cognitive Systems

Technical University of Denmark

Richard Petersens Plads

Building 321

2800 Kongens Lyngby, Denmark



Summary
Deep generative models have achieved remarkable success in modelling various types
of data, such as images or natural language. In most cases these types of data are
considered to be Euclidean or are being modelled with Euclidean tools. Many types
of data, however, are most “naturally” represented on non-Euclidean manifolds or are
considered to reside on some lower dimensional non-Euclidean manifold embedded in
a Euclidean ambient space. Such cases lead to known failure modes of many popular
deep generative models. In response, there has been a recent interest and effort in de-
veloping generative models with structural priors tailored for specific manifolds. This
thesis is dedicated to using tools from differential geometry and topology to develop
generative models for efficiently modelling manifold-valued data with no assumptions
on the topological properties on the underlying manifold structure of the data.
In chapter 2, we focus on the estimation of geodesic distances and pull-back metrics in
the context of variational autoencoders to preserve relationships between data points
and subsequently make the associated latent spaces identifiable and informative with
regards to the geometric structure of the data. In chapter 3 we generalize this scheme
to variational autoencoders with a variety of non-Gaussian decoders. Finally, in
chapter 4 we show that we can take advantage of the class of functions represented
by normalizing flows to build generative models that form a smooth atlas over the
data manifold, thus using locally Euclidean tools to learn the overall non-Euclidean
structure of the data. We evaluate these methods over a range of tasks from density
estimation of synthetic, image, geological and physical systems data to downstream
tasks such as classification, pose estimation and posterior inference.



ii



Preface
This thesis was prepared at the section for Cognitive Systems in the Department of
Applied Mathematics and Computer Science (DTU Compute), Technical University
of Denmark. It constitutes a partial fulfillment of the requirements for acquiring a
PhD at the Technical University of Denmark.
The PhD project was supervised by Søren Hauberg and Ole Winther and it was
financed by the EU2020 project ”Measuring with no tape”. The PhD project was
carried out at the Technical University of Denmark from November 2018 to August
2022 with the following exceptions: an external research stay at the University of
Amsterdam (AMLAB), Amsterdam, the Netherlands from February 2020 to June
2020, where I was supervised by Patrick Forré, and an internship at Qualcomm AI
Research in Amsterdam, the Netherlands from May 2021 to November 2021, where I
was supervised by Arash Behboodi.
Throughout my PhD, I have worked on applying principles from topology and dif-
ferential geometry to generative models, specifically variational autoencoders and
normalizing flows. This framework was applied to both synthetic and real world use
cases ranging from human pose data to geological and physical systems data. This
has resulted in three research papers, two of which are peer-reviewed and one cur-
rently being considered for publication, all of which, constitute the material for this
thesis.

Kongens Lyngby, 1st September 2022

Dimitris Kalatzis



iv



Acknowledgements
First and foremost, I would like to thank my supervisors Søren Hauberg and Ole
Winther. Søren has taught me the value of mathematical rigour and good intuition,
but also optimism in research, though I’ve yet to fully internalize that last part. More
importantly though, Søren gave me a chance to learn how to conduct research back
in 2018 and has repeatedly gone above and beyond the call of duty of a supervisor
throughout all these years, for which I will be eternally grateful to him. I had fewer
interactions with Ole throughout my PhD, but they were all very fruitful and helped
shape my habits and identity as a researcher for which I’m thankful.
I’d also like to thank all my friends, mentors and collaborators at AMLAB and Qual-
comm AI Research from which I have learned a lot: Patrick Forré, Arash Behboodi,
Johann Brehmer, Daniel Dijkman, Hanno Ackermann, Tribhuvanesh Orekondy, Ilia
Karmanov, Farhad Ghazvinian Zanjani and Christos Louizos.
Furthermore, I’d like to thank my collaborators Jesper Wohlert, David Eklund, Johan
Ye, Miguel González-Duque, Alison Pouplin, Georgios Arvanitidis and Søren Hauberg
for working with me and contributing to my training as a researcher, each in their
own special way.
I am grateful to my friends and officemates in Copenhagen and elsewhere, Didrik
Nielsen, Maxim Khomiakov, Giorgio Giannone, Valentin Liévin, Cilie Feldager Hansen
for many fun times and fruitful discussions, Siobhan McKenzie Hall for being a true
friend and whose perseverance and determination has been an inspiration ever since
I met her. Also, Georgios Arvanitidis for his help and support upon my arrival in
Copenhagen back in 2018, and Pablo Moreno Muñoz, Pola Schwöbel and Federico
Bergamin who will never know how much their company and support meant to me
during the final year of my PhD.
I also want to express my gratidute to Nikos who has been my friend and comrade for
more than 20 years and our friendship is one of these things that has kept me sane
throughout my PhD and Vassilis, whose company, cigarettes and discounted drinks
have also provided help in the same way. Also Eve for her love, support and patience
with me throughout my PhD. I’m also grateful to my family for all their love and
support and for cultivating my curiosity and faith in hard work.
Finally, I’m grateful for every obstacle in my path presented by people or simply



vi Acknowledgements

unlucky circumstances. One can expand the limits of one’s strength and resilience
only through adversity.



Contents
Summary i

Preface iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 The topology of smooth manifolds . . . . . . . . . . . . . . . . . . . . 1
1.2 A review on Riemannian geometry . . . . . . . . . . . . . . . . . . . . 3
1.3 Normalizing flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Definition for “discrete time” flows . . . . . . . . . . . . . . . . 4
1.3.2 Definition for “continuous time” flows . . . . . . . . . . . . . . 5

1.3.2.1 Backpropagation with the Adjoint Method . . . . . . 6
1.3.3 Construction of flow models . . . . . . . . . . . . . . . . . . . . 6

1.3.3.1 Invertible linear transformations . . . . . . . . . . . . 7
1.3.3.2 Coupling layers . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3.3 Spline flow layers . . . . . . . . . . . . . . . . . . . . . 9

1.4 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Latent variable models . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Autoencoding variational inference . . . . . . . . . . . . . . . . 13

2 Variational Autoencoders with Riemannian Brownian Motion Priors 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Variational autoencoders . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 VAE decoders as immersions . . . . . . . . . . . . . . . . . . . 17

2.3 Geometric latent priors . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Meaningful variance estimation . . . . . . . . . . . . . . . . . . . . . . 23



viii Contents

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Generative modelling . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Pulling back information geometry 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The geometry of generative models . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Stochastic decoders . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Information geometric latent metric . . . . . . . . . . . . . . . . . . . 35

3.3.1 The Riemannian pull-back metric . . . . . . . . . . . . . . . . . 37
3.3.2 Efficient shortest path computation . . . . . . . . . . . . . . . . 38
3.3.3 Example: categorical decoders . . . . . . . . . . . . . . . . . . 39
3.3.4 Black-box random geometry . . . . . . . . . . . . . . . . . . . . 39

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Pulling back Euclidean and Fisher-Rao metric with Gaussian

decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 The Fisher-Rao pullback metric for various distributions with

toy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Motion capture data with products of von Mises-Fisher distribu-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.4 Numerical approximation of the Fisher-Rao pullback metric . . 43
3.4.5 Statistical models on manifolds . . . . . . . . . . . . . . . . . . 44
3.4.6 Movie preferences via latent interpolants . . . . . . . . . . . . . 44

3.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Density estimation on smooth manifolds with normalizing flows 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 A multi-charted approach to density estimation on manifolds . . . . . 49

4.2.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Introducing a lower bound to the density . . . . . . . . . . . . 50
4.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Qualitative experiments: Estimation of synthetic densities on
2D manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Qualitative experiments: Estimation of real world densities on
2D manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Qualitative experiments: Lorenz attractor . . . . . . . . . . . . 55
4.4.4 Quantitative experiments: Real world particle physics data . . 56



Contents ix

4.4.5 Running times . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Conclusion 61

Appendices 63

Appendix A Appendix to chapter 2 65
A.1 On neural network-based immersions . . . . . . . . . . . . . . . . . . . 65
A.2 Geodesic estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3.1 Section 5.1 experiment . . . . . . . . . . . . . . . . . . . . . . . 66
A.3.2 Section 5.2 experiment . . . . . . . . . . . . . . . . . . . . . . . 67
A.3.3 Runtime comparisons . . . . . . . . . . . . . . . . . . . . . . . 67
A.3.4 Complete results for VAE-VampPrior . . . . . . . . . . . . . . 67

Appendix B Appendix to chapter 3 69
B.1 Additional details for information geometry . . . . . . . . . . . . . . . 69

B.1.1 The Fisher-Rao metric for several distributions . . . . . . . . . 71
B.2 Curve energy approximation for categorical data . . . . . . . . . . . . 74
B.3 Information geometry in generative modeling . . . . . . . . . . . . . . 75

B.3.1 Details for the pullback metric in the latent space . . . . . . . 75
B.3.2 Uncertainty quantification and regularization . . . . . . . . . . 78

B.4 Details for our implementation and experiments . . . . . . . . . . . . . 79
B.4.1 What we mean when we say black-box random geometry . . . 80
B.4.2 Shortest path approximation with cubic splines . . . . . . . . . 81
B.4.3 Models used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.4.4 Metric approximation and KL by sampling . . . . . . . . . . . 84
B.4.5 Computational complexity . . . . . . . . . . . . . . . . . . . . . 84
B.4.6 Information for the movie preferences experiment . . . . . . . . 85
B.4.7 Information for fitting the LAND model . . . . . . . . . . . . . 85

Appendix C Appendix to chapter 4 87
C.1 Proof of the lower bound on the data manifold log likelihood . . . . . 87
C.2 Details on synthetic 2D experiments . . . . . . . . . . . . . . . . . . . 89
C.3 Details on real world 2D experiments . . . . . . . . . . . . . . . . . . . 90

C.3.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . 90
C.4 Details on the Lorenz experiment . . . . . . . . . . . . . . . . . . . . . 91

C.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.5 Details on the Large Hadron Collider experiment . . . . . . . . . . . . 93



x Contents

Bibliography 95



CHAPTER 1
Introduction

The manifold hypothesis is a common heuristic in machine learning which states that
data lie near or on a lower dimensional manifold embedded in some high dimensional
ambient space. It is a useful heuristic, underlying the bulk of dimensionality reduction
techniques, which are so prevalent in machine learning. It is also a central premise to
the development of the models presented in subsequent chapters of this thesis. Thus,
to make subsequent exposition clearer we will attempt to demystify the notion of a
manifold from a topological and geometric perspective in the section that immediately
follows. Then we will conclude this introductory chapter by reviewing the details of
the generative models present in this thesis.

1.1 The topology of smooth manifolds
Let’s begin with the definition of a smooth manifold.
Definition 1. A smooth manifold M of dimension d is a topological space that is
locally Euclidean, i.e. each point of M has a neighborhood U which is diffeomorphic
to an open subset of V ⊂ Rd.

Figure 1.1. Smoothly compatible charts.

We can now formalize the “locally Eu-
clidean” property of a smooth manifold
by introducing smooth local coordinate
charts on M.
Definition 2. Given a d-dimensional
topological manifold M, a smooth coor-
dinate chart on M is a pair (U,φ), where
φ : U → V is a diffeomorphism between
the open subsets U ⊂ M and V ⊂ Rd.

To have local coordinates for every point
on M we can define a collection of
smooth coordinate charts that covers M.
This collection is called a smooth atlas.
This construction is necessary to define smooth functions (such as probability density



2 Introduction

functions) and perform gradient-based optimization on M, since for any smooth co-
ordinate chart (U,φ) and a function f : M → R, the composition f ◦ φ−1 : V → R
is smooth. It further allows us to account for points occurring in overlapping charts
without issues with regard to smoothness, since given two smooth coordinate charts
(U1,φ1), (U2,φ2) with U1 ∩ U2 %= ∅, the composition φ2 ◦φ−1

1 is smooth and invertible.
These charts are then called smoothly compatible (see Fig. 1.1).
In this work we are considering a smooth manifold M of dimension d, embedded in
some Euclidean space RD with d < D. Embedded submanifolds can be defined as
the images of smooth embeddings.

Definition 3. A smooth embedding is a smooth immersion (i.e. a map, with Jacobian
that is full rank everywhere), which is also a diffeomorphism onto its image.

More specifically, a neighborhood U ⊂ M can be expressed as the image of a smooth
embedding F : V → RD, with V ⊂ Rd (see Fig. 1.2). Smooth embeddings are
diffeomorphisms onto their image and as such, invertible when their codomain is
restricted to it. Thus, the open subset U ⊂ M inherits the Euclidean topology of V
and we can define local coordinates on U , through the coordinate chart (U,φ) with
φ = F −1 : RD → V by restricting the domain of F −1 to U .

Figure 1.2. A neighborhood U of an embedded submanifold M ⊂ RD is the image of a
smooth embedding F : V → RD, with V ⊂ Rd.



1.2 A review on Riemannian geometry 3

1.2 A review on Riemannian geometry

Hence, we give a short review of Riemannian geometry.
A smooth manifold M is a topological manifold endowed with a smooth structure.
That is to say M is locally homeomorphic to Euclidean space and we are able to do
calculus on it. For a point p ∈ M, the tangent space TpM is a vector space centered
on p which contains all tangent vectors to M passing through point p (Fig. 1.3).
With this we can give a formal definition of the Riemannian metric tensor which is
of central importance to any analysis involving Riemannian geometry.

Definition 4. (Riemannian metric) [do Carmo, 1992] Given a smooth mani-
fold M, a Riemannian metric on M assigns on each point p ∈ M an inner prod-
uct (i.e. a symmetric, positive definite, bilinear form) 〈·, ·〉p in the tangent space
TpM which varies smoothly in the following sense: if x : Rn ⊃ U → M is a local
coordinate chart centered at p and ∂

∂xi
(q) = dxq(0, . . . , 1, . . . , 0) for q ∈ U , then

〈 ∂
∂xi

(q), ∂
∂xj

(q)〉x(q) = gij(q) is a smooth function on U .

By generalizing the inner product to Riemannian manifolds, the metric tensor gives
meaning to length, angle and volume on manifolds. Central to distributions defined
on a Riemannian manifold, the volume measure over an infinitesimal region centered
at point p is defined as dMp =

√
det Gpdp, where Gp is the matrix representation of

the metric tensor evaluated at point p. Shortest paths on manifolds are represented
by geodesic curves, which generalize straight lines in Euclidean space. A geodesic is
a constant speed curve and its length can be computed by integrating the norm of its
velocity vector under the metric, in other words L =

∫ 1
0 || dγ

dt ||gdt. For p ∈ M there is
a useful map defined on a neighborhood of the origin of TpM called the exponential
map. More precisely, the exponential map is a diffeomorphism, i.e. a smooth map
with a smooth inverse, between an open subset U ⊂ TpM and an open subset U ′ ⊂ M.
Given p ∈ M and v ∈ U , there is a unique geodesic γ : [0, 1] → M with γ(0) = p and
dγ
dt (0) = v. The exponential map is given by expp(v) = γ(1). Note that expp(0) = p.
The inverse map (from U ′ to U) exp−1

p = logp is called the logarithmic map.

Let M ⊆ RM be an embedded n-dimensional manifold and consider local coordinates
φ : U → M with U ⊆ RN an open subset. The Euclidean metric on RM induces
a Riemannian metric on M. Expressed in terms of the coordinates given by φ, this
metric is known as the pull-back metric on U under φ. For u ∈ U , the pull-back
metric Gu at u is given by

Gu = J#
φ (u)Jφ(u), (1.1)

where Jφ denotes the Jacobian matrix of φ.



4 Introduction

Figure 1.3. A manifold M with a tangent space TpM centered at point p. The exponential
map centered at p, maps the tangent vector v ∈ TpM to the (red, dashed) geodesic curve
on the manifold M.

1.3 Normalizing flows

1.3.1 Definition for “discrete time” flows

A normalizing flow [Rezende and Mohamed, 2015] consists of a diffeomorphic map
fθ : U → X parameterized by θ with U ⊆ RD and X ⊆ RD, and a base or “latent”
distribution on U , with density given by p(u). Typically, the goal is to estimate a
target probability density on X given by p%(x), which is usually achieved through
maximum likelihood estimation of a model likelihood p(x). We assume the following
generative process:

u ∼ p(u)
x = f(u; θ), (1.2)

where the parameters of the flow, θ are given by neural networks.
The map f induces a probability density in X and since it is a diffeomorphism (a dif-
ferentiable, invertible map with a differentiable inverse) we can evaluate p(x) exactly
using the change of variables formula:

p(x) = p(u)| det Jf (u)|−1 (1.3)
= p(u)| det Jf−1(x)| (1.4)

with u = f−1(x).



1.3 Normalizing flows 5

In practice, the diffeomorphism f is constructed as a composition of simpler diffeo-
morphisms and in a subsequent section we will see some ways this is implemented in
practice. Intuitively, this construction describes the discretized dynamics of f in as
many steps as we have compositions. This intuition gives rise to an alternative way
of considering f , namely in the “continuous time” setting, where f is constructed
through the parameterization of its infinitesimal dynamics. As such, f is now defin-
ing a vector field over the data space X , which we need to integrate to retrieve the
transformation from the target distribution to the base distribution. Thus, a contin-
uous normalizing flow (CNF) is an integral curve given by an ordinary differential
equation (ODE). In this thesis we will focus on discrete flows, however we include the
definition for CNFs for completeness in the next section.

1.3.2 Definition for “continuous time” flows

We denote by zt the dynamics of the flow at time t with t ∈ [t0, t1]. We assume that
zt0 = u and zt1 = x, with u, x ∈ RD. A CNF [Chen et al., 2018c] parameterizes the
derivative dzt

dt with a function fθ, itself parameterized by θ:

dzt

dt
= fθ(zt, t) (1.5)

The function fθ needs to be Lipschitz continuous for the above ODE to have a unique
solution according to the Picard-Lindelöf theorem [Coddington and Levinson, 1955].
In practice, fθ is implemented as a neural network which is Lipschitz continuous. To
compute the forward transformation, we integrate the dynamics from t0 to t1:

zt1 = u +
∫ t1

t0

fθ(zt, t)dt (1.6)

To compute the inverse transform, we integrate in the reverse direction:

zt0 = x +
∫ t0

t1

fθ(zt, t)dt (1.7)

In the “discrete time” case the change in (log) density is equivalent to the change
in volume | det Jf (u)|−1. The “continuous time” equivalent is given by Chen et al.
[2018c]:

d log(zt)
dt

= − Tr(Jf (zt)), (1.8)

where Tr(·) denotes the trace of a square matrix and Jf (zt), the Jacobian of f . In
practice, to avoid having to make O(D) backpropagation calls, the trace can be



6 Introduction

estimated by Hutchinson’s estimator [Hutchinson, 1989], which was first introduced
in a Neural ODE/CNF setting by Grathwohl et al. [2018]:

Tr(Jf ) = Ep(ε)[ε#Jf ε], (1.9)

where ε is a random vector with E[ε] = 0 and Cov[ε] = I. Finally, the log density of
x can be computed as:

log p(x) = log p(u) −
∫ t1

t0

Tr(Jf (zt))dt (1.10)

1.3.2.1 Backpropagation with the Adjoint Method

The adjoint sensitivity method [Pontryagin, 1987] was used by Chen et al. [2018c] as
an alternative to backpropagation through the ODE solver, which is computationally
inefficient. They show that the gradient of the loss with respect to the intermediate
states zt is given by the following ODE:

d

dt

∂L

∂zt
= − ∂L

∂zt

# ∂fθ(zt, t)
∂zt

(1.11)

The quantity ∂L
∂zt

is called the adjoint state of the ODE. The gradient with respect
to flow parameters θ is given by:

dL

dθ
=
∫ t0

t1

∂L

∂zt

# ∂fθ(zt, t)
∂θ

dt (1.12)

The forward pass 1.6 is computed by a call to an ODE solver, while another call to
the solver will yield the gradient with respect to the flow parameters 1.12. This pro-
cess can be considered the continuous time analog to the backpropagation algorithm
[Rumelhart et al., 1986a].

1.3.3 Construction of flow models

Throughout this section we will discuss some of the most common transformations
used in the construction of flow models. We will focus on transformations that are
used throughout this work. For a more exhaustive overview we refer the interested
reader to Papamakarios et al. [2021].
An obvious consideration in the design of normalizing flows is dealing effectively with
the determinant of the Jacobian of f . Taking the determinant of arbitrary matrices is



1.3 Normalizing flows 7

an O(D3) operation which in all but the most trivial cases is prohibitively expensive
and so a naïve call to a determinant method is impractical. Furthermore, we would
like to be able to invert f efficiently - ideally by having access to the analytical
inverse, which would enable efficient maximum likelihood training. Thus, the flow
transformations presented below are designed with two goals in mind:

1. Reducing the computational cost of computing the determinant while paying
the minimum price in regard to the overall transformation flexibility.

2. Inverting the overall transformation (ideally) in constant time.

The main strategy to achieve both of these objectives is to design the transformation
f as a composition of simple transformations gi, which are easily invertible and their
Jacobian determinants are cheap to compute. Thus, the transformation f has the
following form:

f(x) = gN (zN−1) ◦ gN−1(zN−2) ◦ · · · ◦ g1(x) (1.13)

where N is the number of transformations used in the composition and zi are the
intermediate representations.
The Jacobian of f is of the form:

Jf = JgN · JgN−1 · . . . · Jg1 (1.14)

And for the computation of the determinant of Jf we have:
det Jf = det

(
JgN · JgN−1 · . . . · Jg1

)
(1.15)

= det JgN det JgN−1 . . . det Jg1 (1.16)

We note that depending on the application, the two objectives/restrictions to the
design of flow transformations mentioned above regarding tractability of determinants
and access to the analytical inverse of the transformation can be relaxed. E.g. Ho
et al. [2019], Wehenkel and Louppe [2019] use transformations which are guaranteed
to be invertible but do not have an analytical inverse. In such cases, root finding
methods can be employed with the most popular one being bisection [Burden et al.,
2015]. For a more comprehensive overview of such methods we once again refer the
interested reader to Papamakarios et al. [2021].

1.3.3.1 Invertible linear transformations

Given x, z ∈ RD, linear transformations have the following form:
z = g(x) (1.17)

= Wx, (1.18)



8 Introduction

with W ∈ RD×D

The simplest way to implement this transformation would be to directly parameterize
the matrix W . However, for our transformation to be practically useful, we need to
consider the two objectives/restrictions we laid out in the previous section. Let’s first
consider the matter of computing the determinant of the Jacobian of g. The Jacobian
of g in this case is the matrix in question itself, W . We have already stated in the
previous section that taking the determinant of an arbitrary matrix is too costly to
be practical. As for the second restriction, that pertaining to the invertibility of g,
the matrix W is not guaranteed to be invertible, at least in this general way we have
defined it. Even if it is invertible, inverting this matrix naïvely is an operation that,
similar to the naïve computation of the determinant, is cubic in time complexity. To
alleviate these two problems we need to make certain assumptions on the structure
of the matrix W and indeed, many different types of linear transformations have
appeared in the literature based on exactly these assumptions, e.g. W being a permu-
tation matrix, i.e. a volume preserving (meaning it has a Jacobian determinant of 1)
binary matrix with exactly one element per row being 1 and all other elements in the
row being 0. Another, arguably more useful strategy, at least for high dimensional
and/or complex data is to parameterize W through matrix decomposition, that is to
say a product of matrices with specified structure, such that relatively cheap Jacobian
determinant computation and inversion are guaranteed. Below we will briefly discuss
one such popular decomposition.

PLU linear transform A matrix W ∈ RD×D can be written as a product of three
matrices P, L, U ∈ RD×D, where P is a permutation matrix, L is a lower triangular
matrix and U is an upper triangular matrix:

W = PLU (1.19)

By restricting the diagonal elements of L and U to be positive we can ensure that W
is invertible. The determinant of W is simply the product of the diagonal elements
of L and U :

det W =
D∏

i

LiiUii (1.20)

Computing the inverse of W involves three steps:

1. Reversing the permutation

2. Solving an upper triangular system

3. Solving a lower triangular system



1.3 Normalizing flows 9

Solving the systems is an O(D2) operation, thus computing the inverse of a PLU
transformation is also an O(D2) operation.

1.3.3.2 Coupling layers

Coupling layers are transformations of the following form. Given x ∈ RD, g(·) the
coupling layer transformation, z = g(x) and d < D:

z1:d = x1:d (1.21)
zd+1:D = x1:d . exp(s(x1:d)) + t(x1:d) (1.22)

where s(·), t(·) are functions represented by neural networks and . denotes the ele-
mentwise/Hadamard product.
The transformation described by eqs. 1.21 and 1.22 is quite simple and in practice,
many of these layers are either composed in an alternating fashion or with invertible
linear layers interspersed in-between to achieve a meaningful transformation of the
data. In essence, coupling layers establish a dependence between parts of the input
vector while ensuring that the computation of the Jacobian determinant remains
tractable. The Jacobian of a coupling layer has the following form:

Jg(x) =
[ Id 0
∂zd+1:D
∂x1:d

diag(exp(s(x1:d)))

]
(1.23)

where diag(exp(s(x1:d))) denotes the diagonal matrix, the diagonal elements of which
are given by the vector exp(s(x1:d)). The Jacobian of g is triangular, as such its
determinant is simply the product of its diagonal elements. In this particular case the
determinant is computed as exp

(∑d
i s(xi)

)
. We note that to compute the Jacobian

of g, we do not need to compute the Jacobians of s and t, so the neural networks
representing those functions can be arbitrarily complex. Inverting a coupling layer is
trivial:

x1:d = z1:d (1.24)
xd+1:D = (zd+1:D − t(z1:d)) . exp(−s(z1:d)) (1.25)

Evaluating the forward and inverse transformations carries the same computational
complexity, in other words inference and sampling are made possible by paying the
same price computationally.

1.3.3.3 Spline flow layers

As stated in the preceding section, coupling transformations are rather simplistic and
one typically needs to compose many of them to achieve a flexible transformation of



10 Introduction

the data. An alternative transformation is based on monotonic splines. Splines are
functions that are defined piecewise in an interval [A, B]. This interval is divided
in K segments and the overall spline transformation consists of simple functions
defined in each segment, where subsequent segments agree on the knot points between
them. Because the spline transformations are monotonically increasing, analytical
invertibility is ensured. Spline transformations are applied elementwise in the input
vector. Various spline flows based on monotonic polynomials have been proposed in
the literature [Dolatabadi et al., 2020, Durkan et al., 2019a,b, Müller et al., 2019].
Below we will briefly discuss a flexible spline flow which is used predominantly in
chapter 4.

Monotonic rational quadratic splines Durkan et al. [2019a] construct a ra-
tional quadratic spline flow in the interval [−B, B] by defining rational-quadratic
splines in K segments of the interval, the boundaries of which are given by K + 1
monotonically increasing knot points {x(k), y(k)}K

k=0, where {x(0), y(0)} = (−B, −B)
and {x(K), y(K)} = (B, B). To avoid discontinuities in the derivative of the transfor-
mation, and thus subsequent numerical instability during training, the derivatives in
the internal K − 1 knot points are set arbitrarily to {δ(k), δ(k)}K−1

k=1 positive values.
Given sk = yk+1−yk

xk+1−xk and ξ(x) = x−xk

xk+1−xk , a rational quadratic function α(k)(ξ)
β(k)(ξ) defined

in segment k has the following form:

α(k)(ξ)
β(k)(ξ) = y(k) + (y(k+1) − y(k))[s(k)ξ2 + δ(k)ξ(1 − ξ)]

s(k) + [δ(k+1) + δ(k) − 2s(k)]ξ(1 − ξ) (1.26)

The transformation is applied elementwise on the input vector, thus the logarithm
of the absolute value of the Jacobian determinant is given by the sum of the log
derivatives of eq. 1.26 with respect to each element x of the input vector x:

d

dx

[
α(k)(ξ)
β(k)(ξ)

]
= (s(k))2[δ(k+1)ξ2 + 2s(k)ξ(1 − ξ) + δ(k)(1 − ξ)2]

[s(k) + [δ(k+1) + δ(k) − 2s(k)]ξ(1 − ξ)]2 (1.27)

To evaluate the inverse of the rational quadratic function we need to solve for the
roots of a quadratic equation and since the equation is monotonic we can always
determine the appropriate root. For more details on the relevant expressions and
procedure please see Durkan et al. [2019a].



1.4 Variational Autoencoders 11

1.4 Variational Autoencoders

1.4.1 Latent variable models

Latent variable models are parametric models of the following form:

pθ(x) =
∫

pθ(x, z)dz, (1.28)

where x are considered the observed variables and z the hidden or latent variables.
The joint distribution pθ(x, z) is called the complete data likelihood. Typically, the
joint distribution factorizes in the following way:

pθ(x, z) = pθ(x|z)p(z), (1.29)

where the conditional distribution over the observations x is called the likelihood and
p(z) is the prior distribution over latent variables z. The decomposition in eq. 1.29
is prevalent in generative modeling, where it is used to model the generative process
of observations x in the following sense: a latent variable representing some defining
attribute (e.g. the angle of rotation for an object in the case of image data or the
class of the observation in the case of discrete latent variables) of observation x is
first sampled from the prior p(z), which is then used to sample an observed variable
from the conditional distribution pθ(x|z).
During inference we are interested in computing the posterior distribution over the
latent variables:

pθ(z|x) = pθ(x, z)
p(x) = pθ(x|z)p(z)∫

pθ(x|z)p(z)dz
(1.30)

However, in practice the integral in eq. 1.28 is often intractable (e.g. due to a high
number of dimensions), in which case we need to resort to approximate methods. At
this point we have two options: either resort to sampling methods like Markov Chain
Monte Carlo (MCMC) to approximately draw samples from the true posterior or
view the approximation of the posterior as an optimization problem, where we need
to optimize the parameters of a parametric model to approximate the true posterior.
The latter approach is generally known as variational inference.

1.4.2 Variational inference

MCMC constructs an ergodic Markov chain that has p(z|x) as its stationary distribu-
tion. The sampler then yields samples from the chain/stationary distribution. If we
want to evaluate the posterior we compute an empirical estimate from these samples.



12 Introduction

MCMC comes with guarantees for asymptotically yielding exact samples from the tar-
get distribution [Blei et al., 2017, Robert et al., 1999], however it is not suited to high
dimensional datasets or complicated models due to the fact that it generally tends to
be a computationally intensive method. Thus, in terms of computational expediency
variational inference is a more practical choice, although it comes at the cost of the
(asymptotic) guarantees MCMC carries. In this thesis, posterior approximation is
relevant for chapters 2 and 3, where between MCMC and variational inference we
opted for the latter method.
As stated in the previous section variational inference turns the inference problem
into an optimization one. In the current section we will explain the overall setting
and the objective function of the approach. We are interested in approximating the
true posterior distribution p(z|x). To do so, we first specify a variational family of
distributions parameterized by φ. We will optimize φ to arrive at the member of
this family which best approximates p(z|x) and we will measure the quality of this
approximation via the KL divergence. We can now formulate our problem:

q%(z) = arg min
φ

DKL(qφ(z)||p(z|x)), (1.31)

Solving this minimization problem gives us the best approximating distribution within
a given variational family. Recall, however, that we cannot compute this KL diver-
gence, since we cannot compute p(z|x):

DKL(qφ(z)||p(z|x)) = Eq[log qφ(z)] − Eq[log pθ(x, z)] + log p(x) (1.32)

We can optimize the alternative objective:

L(x, θ,φ) = Eq[log pθ(x, z)] − Eq[qφ(z)] (1.33)

This function provides a lower bound to the marginal likelihood log p(x). The KL
divergence is a non-negative quantity and it is equal to zero when the distributions
match and so the tightness of the bound depends on the quality of the approximation
of the posterior. Thus, rearranging eq. 1.32 we get:

log p(x) = Eq[log pθ(x, z)] − Eq[qφ(z)] + DKL(qφ(z)||p(z|x)) (1.34)
= L(x, θ,φ) + DKL(qφ(z)||p(z|x)), (1.35)

which given what we stated above, we can express as a lower bound, with equality
achieved when the term DKL(qφ(z)||p(z|x)) is zero:

log p(x) ≥ L(x, θ,φ) (1.36)

Thus we can reframe our optimization problem expressed in eq. 1.31 as one where we
equivalently want to maximize this lower bound.
The marginal log-likelihood log p(x) is also called the evidence and thus the function
L(x, θ,φ) is called the evidence lower bound (ELBO). Often, the ELBO is expressed



1.4 Variational Autoencoders 13

in terms of the conditional log-likelihood and the KL divergence between the approx-
imate posterior qφ(z) and the prior p(z):

L(x, θ,φ) = Eq[log pθ(x, z)] + Eq[p(z)] (1.37)
= Eq[log pθ(x|z)] + DKL(qφ(z)||p(z)) (1.38)

1.4.3 Autoencoding variational inference

Historically, the approach employed in variational inference is based on the following
choice for the variational family:

q(z) =
∏

i

qi(zi), (1.39)

in which latent variables are independent and each of them is governed by the density
qi. This implies that each data point x is governed by its own variational parameters.
We note that this family is not a function of data points x and the only way in which
they are connected to the conditional likelihood is through the optimization problem
[Blei et al., 2017]. This approach is called mean-field variational inference.
In recent years, however, a different approach has gained traction, which is based
on amortized inference [Gershman and Goodman, 2014]. The focus of amortized
inference is the sharing of variational parameters across data points, as opposed to
the mean-field method which optimizes variational parameters separately for each
data point. The paradigm which best exemplifies amortized inference with respect to
posterior inference is a neural network-based approach called Variational autoencoders
(VAEs) [Kingma and Welling, 2014, Rezende et al., 2014]. VAEs jointly optimize the
parameters of the variational family φ and the likelihood θ. In VAEs the variational
family is actually a function of data points x, such that we can rewrite it as qφ(z|x)
and is often called the inference/recognition model or encoder, while the conditional
likelihood pθ(x|z) is called the decoder. Both of these densities are parameterized
by neural networks. A typical choice for the encoder is a Gaussian distribution with
diagonal covariance:

qφ(z|x) = N (z|µφ(x),diag(σ2
φ(x))), (1.40)

where parameter vectors µ and σ2 are output by a neural network with parameters
φ. The prior density is usually defined as a standard Gaussian. Finally, the like-
lihood/decoder density is chosen according to the data modality, e.g. a Bernoulli
distribution would be the appropriate choice for binary data, while a Gaussian distri-
bution would be better suited to real valued data, etc. From an autoencoder point
of view, the likelihood term in eq. 1.38 can be viewed as a reconstruction term while
the KL term can be viewed as a regularizer.



14 Introduction

To evaluate the expectations in eq. 1.38 we need samples from the approximate poste-
rior qφ(z|x). This presents us with the problem of having to backpropagate through
a sampling step during training. Kingma and Welling [2014] showed that for certain
distributions, sampling can be re-expressed as a deterministic transformation of a
random variable, which is differentiable with respect to its parameters. For Gaussian
distributions this amounts to sampling a random variable ε ∼ N (0, I) and then ap-
plying the transformation z = µφ(x)+σφ(x).ε, where µφ(x),σφ(x) are respectively
the mean and variance parameters of the Gaussian distribution, parameterized by
neural networks with parameters φ. By deriving samples in this way, we are able to
backpropagate through deterministic functions µφ and σφ. In the context of VAEs
this is called the reparameterization trick and it allows for low variance estimates of
gradients with respect to parameters.



CHAPTER 2
Variational

Autoencoders with
Riemannian Brownian

Motion Priors
This chapter is adapted from Kalatzis et al. [2020]
Authors: Dimitris Kalatzis, David Eklund, Georgios Arvanitidis, Søren Hauberg

Abstract

Variational Autoencoders (VAEs) represent the given data in a low dimensional
latent space, which is generally assumed to be Euclidean. This assumption nat-
urally leads to the common choice of a standard Gaussian prior over continuous
latent variables. Recent work has, however, shown that this prior has a detri-
mental effect on model capacity, leading to subpar performance. We propose
that the Euclidean assumption lies at the heart of this failure mode. To counter
this, we assume a Riemannian structure over the latent space, which constitutes
a more principled geometric view of the latent codes, and replace the standard
Gaussian prior with a Riemannian Brownian motion prior. We propose an effi-
cient inference scheme that does not rely on the unknown normalizing factor of
this prior. Finally, we demonstrate that this prior significantly increases model
capacity using only one additional scalar parameter.

2.1 Introduction

Variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014]
simultaneously learn a conditional density p(x|z) of high dimensional observations



16 2 Variational Autoencoders with Riemannian Brownian Motion Priors

and low dimensional representations z giving rise to these observations. In VAEs, a
prior distribution p(z) is assigned to the latent variables which is typically a standard
Gaussian. It has, unfortunately, turned out that this choice of distribution is limiting
the modelling capacity of VAEs and richer priors have been proposed instead [Bauer
and Mnih, 2018, Klushyn et al., 2019, Tomczak and Welling, 2017, van den Oord
et al., 2017]. In contrast to this popular view, we will argue that the limitations of
the prior are not due to lack of capacity, but rather lack of principle.
Informally, the Gaussian prior has two key problems.
1. The Euclidean representation is arbitrary. Behind the Gaussian prior
lies the assumption that the latent space Z is Euclidean. However, if the decoder
pθ(x|z) is of sufficiently high capacity, then it is always possible to reparameterize
the latent space from z to h(z), h : Z → Z, and then let the decoder invert this
reparameterization as part of its decoding process [Arvanitidis et al., 2018, Hauberg,
2018b]. This implies that we cannot assign any meaning to specific instantiations
of the latent variables, and that Euclidean distances carry limited meaning in Z.
This is an identifiability problem and it is well-known that even the most elementary
latent variable models are subject to such. For example, Gaussian mixtures can
be reparameterized by permuting cluster indices, and principal components can be
arbitrarily rotated [Bishop, 2006].
2. Latent manifolds are mismapped onto Z. In all but the simplest cases, the
latent manifold M giving rise to data observations is embedded in Z. An encoder
with adequate capacity will always recover some smoothened form of M, which will
either result in the latent space containing “holes” of low density or, in M being
mapped to the whole of Z under the influence of the prior. Both cases will lead
to bad samples or convergence problems. This problem is called manifold mismatch
[Davidson et al., 2018a, Falorsi et al., 2018] and is closely related to distribution
mismatch [Bauer and Mnih, 2018, Hoffman and Johnson, 2016, Rosca et al., 2018]
where the prior samples from regions to which the variational posterior (or encoder)
does not assign any density. A graphical illustration of this situation can be seen on
the left panel of Fig. 2.1, where a VAE is trained on the 1-digits of MNIST under the

Figure 2.1. The latent space priors of two VAEs trained on the digit 1 from MNIST.
Left: Using a unit Gaussian prior. Right: Using a Riemannian Brownian motion (ours) with
trainable (scalar) variance.



2.2 Background 17

Gaussian prior. The prior assigns density where there is none.
In this paper, we consider an alternative prior, which is shown in the right panel
of Fig. 2.1. This is a Riemannian Brownian motion model defined over the manifold
immersed by the decoder. The Riemannian structure solves the identifiability problem
and gives a meaningful representation that is invariant to reparametrizations and at
the same time restricts the prior to sample only from the image of M onto Z. The
prior generalizes the Gaussian to the Riemannian setting. It only has a single scalar
variance parameter, yet it is able to capture intrinsic complexities in the data.

2.2 Background

2.2.1 Variational autoencoders

VAEs learn a generative model pθ(x, z) by specifying a likelihood of observations
conditioned on latent variables pθ(x|z) and a prior over the latent variables p(z).
The marginal likelihood of the observations pθ(x) =

∫
pθ(x|z)p(z)dz is intractable.

As such, VAEs are trained by maximizing the variational Evidence Lower Bound
(ELBO) on the marginal likelihood :

Eq(z|x)[log pθ(x|z)] − DKL(qφ(z|x)||p(z)), (2.1)

where qφ(z|x) denotes the variational family. Kingma and Welling [2014], Rezende
et al. [2014] proposed a low variance estimator of stochastic gradients of the ELBO,
known as reparameterization trick.
In the VAE framework, both the variational family qφ(z|x) and the conditional like-
lihood pθ(x|z) are parameterized by neural networks with variational parameters φ
and generative parameters θ. In the language of autoencoders, these networks are
often called encoder and decoder parameterizing the variational family and the gen-
erative model respectively. From an autoencoder perspective, Eq. 2.1 can be seen
as a loss function involving a data reconstruction term (the generative model) and a
regularization term (the KL divergence between the variational family and the prior
distribution over the latent variables).

2.2.2 VAE decoders as immersions

We will dedicate this subsection to showing that, under certain architectural choices,
VAE decoders induce Riemannian metrics in the latent space. That is to say, they
belong to a certain class of maps, called smooth immersions, which give rise to im-
mersed submanifolds. In other words, we will formally describe our intuition about



18 2 Variational Autoencoders with Riemannian Brownian Motion Priors

VAEs mapping the latent space back to data space, using the language of smooth
manifolds and Riemannian geometry.
The generative and variational distributions can be seen as families of parameterized
mappings gφ : X → Z and fθ : Z → RM , Z ⊂ RN and M > N and parameters φ and
θ respectively. The family defined by the generative model is of particular interest. To
make the subsequent exposition clearer we will assume a Gaussian generative model
and rewrite it in the following form:

fθ(z) = µθ(z) + σθ(z) . ε, ε ∼ N (0, IM ) (2.2)

with µθ : Z → RM , σθ : Z → RM
+ , denoting the mean and standard deviation of

the generative model parameterized by neural networks with parameters θ and .
denoting the Hadamard or element-wise product.
Definition 5. (Smooth immersions) Given smooth manifolds M and M′ with
dim(M) < dim(M′), a mapping f : M → M′, a point p ∈ M and its image f(p) ∈
M′, the mapping f is called an immersion if its differential dfp : TpM → Tf(p)M′ is
injective for all p ∈ M.

We will consider a particular Riemannian metric on Z induced by µθ and σθ. The
architectures of µθ and σθ are such that these maps are immersions. Consider now
the diagonal immersion

f : Z → RM × RM
+ : z 1→ (µθ(z),σθ(z)), (2.3)

whose geometry encodes both mean and variance. The random map fθ is a random
projection given by ε of the diagonal immersion. Sampling using the decoder can
therefore be seen as first sampling the image of this immersion and then randomly
projecting down to X [Eklund and Hauberg, 2019]. Taking the pull-back metric Gz
of f to Z we obtain

Gz = Jµ(z)#Jµ(z) + Jσ(z)#Jσ(z), (2.4)

where Jµ and Jσ are the Jacobian matrices of µθ and σθ.
The metric Gz was studied by Arvanitidis et al. [2018] and is known to yield geodesics
that follow high density regions in latent space. As an example, Fig. 2.2 shows
geodesics of a VAE trained on 1-digits from MNIST, which follow the data due to
the variance term of the metric, which penalizes geodesics going through low density
regions of the latent space.

2.3 Geometric latent priors
The standard Gaussian prior relies on the usual Lebesgue measure which in turn,
assumes a Euclidean structure over the latent space Z. Recently, it has been noted



2.3 Geometric latent priors 19

Figure 2.2. Example geodesics under the pull-back metric equation 2.4. The associated
VAE is the same as in Fig. 2.1.

Figure 2.3. Inferred latent space for a toy data set, embedded via a non-linear function
in R100. The background color, with blue representing lower and red representing higher
values, from left to right, show: the (log) standard deviation estimated by a typical neural
network; the associated (log) volume measure; the RBF (log) standard deviation estimate;
and the associated (log) volume measure. Best viewed in color.

[Arvanitidis et al., 2018, Hauberg, 2018b] that this assumption is mathematically
questionable, and that, empirically, Euclidean latent space distances carry little in-
formation about the relationship between data points. Rather, a Riemannian inter-
pretation of the latent space appears more promising. It is evident that the geometric
structure over the latent space carries significant information about data density that
the traditional Euclidean interpretation foregoes. With this in mind, we propose
that the prior should be defined with respect to the geometric structure. We could
opt for a Riemannian normal distribution, which is well-studied [Arvanitidis et al.,
2016a, Hauberg, 2018a, Mardia and Jupp, 2000, Oller, 1993, Pennec, 2006a]. Unfortu-
nately, computing its normalization constant is expensive and involves Monte Carlo
integration. Furthermore, it is equally hard to sample from this distribution, since it
generally requires rejection sampling with non-trivial proposal distributions.
Instead we consider a cheap and flexible alternative, namely the heat kernel of a
Brownian motion process [Hsu, 2002]. A Brownian motion Xt on an immersed Rie-
mannian manifold M ⊆ RM can be defined through a stochastic differential equation



20 2 Variational Autoencoders with Riemannian Brownian Motion Priors

on Stratonovich form:

dXt =
M∑

α=1
Pα(Xt) ◦ dWα

t . (2.5)

Here Wt = (W 1
t , . . . , W M

t ) is a Brownian motion in RM and P1(Xt), . . . , PM (Xt)
denotes the projection of the standard basis of RM onto the tangent space of M at
Xt. This way, a Brownian motion on M is driven by a Euclidean Brownian motion
Wt projected to the tangent space. Fixing an initial point µ ∈ M and a time t > 0,
Brownian motion starting at µ running for time t gives rise to a random variable on
M. Its density function is the transition density p(x). An alternative description
of Brownian motion on M is that p(x) is the heat kernel associated to the Laplace-
Beltrami operator of a scalar function h on M:

∆h = dM−1∂i

(
dMgij∂jh

)
(2.6)

where dM is the volume measure of the immersed submanifold M, gij are the com-
ponents of the inverse metric tensor and ∂i := ∂

∂xi , ∂j := ∂
∂xj are the basis vectors

at the tangent space TpM. We will express the transition density in terms of local
coordinates Z → M on M. Conveniently, we may approximate the transition density
by a so-called Parametrix expansion in a power series [Hsu, 2002]. In this paper we
will use the zeroth order approximation which gives rise to the following expression
for p(z) with z ∈ Z:

p(z) ≈ (2πt)−d/2H0 exp
(

− l2(z, µ)
2t

)
, (2.7)

where:

• t ∈ R, denotes the duration of the Brownian motion, and corresponds to vari-
ance on Euclidean manifolds.

• d is the dimensionality of z.

• µ ∈ Z is the center of the Brownian motion.

• l(·, ·) is the geodesic distance on the manifold.

• H0 = ( det Gz
det Gµ

)1/2 is the ratio of the Riemannian volume measure evaluated at
points z and µ respectively.

Equation 2.7 can be evaluated reasonably fast as no Monte Carlo integration is re-
quired. The most expensive computation is the evaluation of the geodesic distance for
which several efficient algorithms exist [Arvanitidis et al., 2019, Hennig and Hauberg,
2014]. Here we parameterize the geodesic as a cubic spline and perform direct energy
minimization.



2.3 Geometric latent priors 21

2.3.1 Inference

Since we use the heat kernel density function for the prior p(z), we need the variational
family qφ(z|x) to be defined with respect to the same Riemannian measure. We
therefore also use the heat kernel density function for the variational family, which is
parameterized by the encoder network with variational parameters φ. The parameter
t of the prior is learned through optimization. The ELBO can be derived with respect
to the volume measure dM:

logp(x) ≥ LM(x; θ,φ)

!
∫

M
log
(

pθ(x|z)p(z)
qφ(z|x)

)
qφ(z|x)dMz

= Eq(z|x)[log pθ(x|z)] − DKL(qφ(z|x)||p(z)). (2.8)

This ELBO can be estimated using Monte Carlo samples from the variational pos-
terior. With no analytical solution to the KL divergence we resort to Monte Carlo
integration:

DKL(q||p) =
∫

M
log qφ(z|x)

p(z) qφ(z|x)dMz

= Eq(z|x)[log q(z|x) − log p(z)]

≈ 1
N

N∑

i=1
(log q(zi|x) − log p(zi)) (2.9)

with:

log qφ(z|x) = −d

2 log(2πtq) + log H0,q −
l2
q

2tq
(2.10)

log p(z) = −d

2 log(2πtp) + log H0,p −
l2
p

2tp
(2.11)

where l2
q = l2(z, µq), l2

p = l2(z, µp).
Thus, the final form of the Monte Carlo evaluation of the KL divergence is:

DKL(q||p) ≈ 1
2

[ 1
N

N∑

i=1

(
log det Gµp(zi)−

log det Gµq (zi) + l2(zi, µp)
tp

− l2(zi, µq)
tq

)

+ d(log tp − log tq)
]

(2.12)



22 2 Variational Autoencoders with Riemannian Brownian Motion Priors

Figure 2.4. Latent space of an R-VAE, plotted against the Riemannian volume measure
dM. Once again note the “borders” created by the metric roughly demarcating the latent
code support. The latent codes are colored according to label. Best viewed in color.

2.3.2 Sampling

In the previous section we mentioned that a Brownian motion (BM) on the manifold
can be derived by projecting each BM step Xt on the tangent space at t. However
we will take each step directly in the latent space and avoid having to evaluate the
exponential map. Given a manifold M with dimension N , the immersion f : M →
RM , a point a ∈ M and its image under f , A ∈ RM we take a random step from A:

∆ ∼ N (0, ΣM ) . (2.13)

Applying a Taylor expansion we have:

f(a + ε) = f(a) + Jaε+ O
(
ε2
)

. (2.14)

With ∆ = f(a + ε) − f(a) we have:

∆ = Jaε+ O
(
ε2
)

. (2.15)

For small ε an approximation to taking a step directly in the latent space is then
b = a + ε with ε ≈ J+

a ∆ and J+
a =

(
J#

a Ja
)−1 J#

a ∈ RN×M the pseudoinverse of Ja.



2.4 Meaningful variance estimation 23

Since ∆ ∼ N (0, ΣM ) the step ε can be written:

ε ∼ N
(

0, J+
a ΣM

(
J+

a
)#
)

. (2.16)

We consider an isotropic heat kernel so in our case ΣM = σ2I. Furthermore:

J+
a ΣM

(
J+

a
)# =

(
J#

a Ja
)−1 J#

a ΣM Ja
(
J#

a Ja
)−#

= σ2 (J#
a Ja

)−1 J#
a Ja

(
J#

a Ja
)−#

= σ2 (J#
a Ja

)−# = σ2 (J#
a Ja

)−1
. (2.17)

This implies that

ε ∼ N
(

0,σ2 (J#
a Ja

)−1)
. (2.18)

Thus, to sample from the prior we simply need to run Brownian motion for t =
1, . . . , T :

zt ∼ N
(

zt−1,
σ2

T

(
J#

zt−1Jzt−1

)−1)
(2.19)

An obvious concern regarding the computational cost of sampling is the inverting of
the metric tensor. While this is a valid concern for large latent dimensionalities, in
practice and for the typical number of latent dimensions found in generative mod-
elling literature the sampling cost is bearable, considering that the operation can be
parallelized for K samples. We further note that from a practical standpoint for small
diffusion times the number of discretized steps can be small. The time complexity of
the sampling operation is

O(KHM + KMN2 + N3) (2.20)

where K is the number of samples, N is the latent space dimensionality, M is the
input space dimensionality and H is the decoder hidden layer size.

2.4 Meaningful variance estimation
We now turn to the problem of restricting our prior to sample from the image of
our manifold in Z. Since typically the geometry of the data is not known a priori,
we adopt the Bayesian approach and relate uncertainty estimation in the generative
model to the geometry of the latent manifold. Specifically, since the generative model



24 2 Variational Autoencoders with Riemannian Brownian Motion Priors

parameterizes fθ : Z → X we construct it such that the pull-back metric will acquire
high values away from the data support and thereby restrict prior samples to high
density regions of the latent manifold.
In Sec. 2.2.2 we described the metric tensor arising from the diagonal immersion f .
By the form of the metric, it is clear that both µθ(z) and σθ(z) contribute to the
manifold geometry. In recent works [Arvanitidis et al., 2018, Detlefsen et al., 2019a,
Hauberg, 2018b] it was shown that neural network variance estimates are typically
poor in regions away from the training data, due to poor extrapolation properties.
Thus, neural networks cannot be trusted to properly estimate the variance of the gen-
erative model “off-the-shelf” when the functional form of the immersion (and thus the
geometry of the data) is not known a priori. By extension, this leads to poor estimates
of latent manifold geometry and latent densities. Arvanitidis et al. [2018] propose to
use a radial basis function (RBF) network [Que and Belkin, 2016] to estimate preci-
sion, rather than variance. We adopt this approach due to its simplicity and relative
numerical stability, however we note that similar approaches for principled variance
estimation exist [Detlefsen et al., 2019a, Stirn and Knowles, 2020].
The influence of the RBF network can be seen in Fig. 2.3, where it is compared with
a usual neural network variance estimate. Note that the metric creates “borders”
demarcating the regions to which the latent codes have been mapped by the encoder.
This makes interpolations and random walks generally follow the trend of the latent
points instead of wondering off the support. Thus, this regularization scheme restricts
prior sampling to such high density regions. A similar effect is not observed in the
usual Gaussian VAE, where the prior samples from regions to which the variational
posterior has not necessarily placed probability density [Hoffman and Johnson, 2016,
Rosca et al., 2018].

2.5 Experiments

2.5.1 Generative modelling

For our first experiment we train a VAE with a Riemannian Brownian motion prior
(R-VAE) for different latent dimensions and compare it to a VAE with a standard
Normal prior and a VAE with a VampPrior. Tables 2.1 & 2.2 show the results. R-VAE
achieves a better lower bound than both its Euclidean counterparts. The Brownian
motion prior adapts to the latent code support and as such yields more expressive
representations. On the other hand, with only a single parameter it results in a model
that generalizes better than VAEs with a VampPrior.



2.5 Experiments 25

Table 2.1. Results on MNIST (mean & std deviation over 10 runs). Rec denotes the
negative conditional likelihood.

Model Neg. ELBO Rec KL
VAE
d = 2 -1030.38±5.34 -1033.06±5.48 2.68±.14
d = 5 -1076.64±4.48 -1078.91±4.44 2.27±.04
d = 10 -1110.79±1.17 -1113.01±1.13 2.22±.03

VAE-VampPrior
d = 2 -1045.03±5.22 -1047.34±5.20 2.30±.03
d = 5 -1109.74±4.87 -1111.63±4.87 1.88±.01
d = 10 -1116.58±4.23 -1118.27±4.20 1.69±.02
R-VAE
d = 2 -1047.29±2.77 -1053.70±2.75 14.33±.01
d = 5 -1141.06±7.09 -1177.86±3.39 28.00±.2
d = 10 -1170.03±18.52 -1280.94±14.67 57.76±3.85

2.5.2 Classification

We next assess the usefulness of the latent representations of R-VAE. Fig. 2.4 shows
the latent code clusters. R-VAE has produced more separable clusters in the latent
space due to the prior adapting to the latent codes, which results in a less regularized
clustering. We quantitatively measured the utility of the R-VAE latent codes in
different dimensionalities by training a classifier to predict digit labels and measuring
the average overall and per-digit F1 score. Table 2.3 shows the results when comparing
against the same classifier trained on latent codes derived by a VAE. R-VAE has a
significant advantage in low dimensions. As dimensionality increases this advantage
becomes non-existent. An explanation for this is that due to the KL annealing of the
Euclidean VAE, its representations have become more informative.

2.5.3 Qualitative results

Finally we explore the geometric properties of a R-VAE with a 2-dimensional latent
space. Fig 2.4 shows the learned manifold. As in Fig. 2.3, the influence of the
variance network on the metric can be seen in the “borders” surrounding the latent
code support.
We begin by investigating the behavior of distances on the induced manifold. Fig. 2.5
shows the geodesic curves between two pairs of random points on the manifold, com-



26 2 Variational Autoencoders with Riemannian Brownian Motion Priors

Table 2.2. Results on FashionMNIST (mean & std deviation over 10 runs). Rec denotes
the negative conditional likelihood.

Model Neg. ELBO Rec KL
VAE
d = 2 -443.13±10.67 -447.44±10.8 4.31±.14
d = 5 -511.65±3.70 -517.41±3.84 5.76±.21
d = 10 -525.05±5.87 -530.86±5.9 5.81±.05

VAE-VampPrior
d = 2 -705.90±17.3 -708.45±17.29 2.54±.01
d = 5 -769.27±5. -770.1±5.02 0.83±.09
d = 10 -774.17±10.83 -777.75 ±10.78 3.57±.06
R-VAE
d = 2 -708.77±6.93 -722.41±5.736 13.64±1.51
d = 5 -889.62±3.44 -913.61±3.38 23.83±.8
d = 10 -959.2±5.37 -1001.4±4.08 40.35±.8

Table 2.3. Per digit and average F1 score for a classifier trained on the learned latent codes
of VAE and R-VAE. Results are averaged over 5 classifier training runs.

Digits 0 1 2 3 4 5 6 7 8 9 Avg
VAE
d = 2 0.94 0.95 0.88 0.67 0.55 0.42 0.86 0.68 0.61 0.53 0.72±.002
d = 5 0.95 0.97 0.94 0.90 0.90 0.89 0.95 0.93 0.88 0.87 0.92±.001
d = 10 0.98 0.99 0.97 0.94 0.96 0.95 0.98 0.97 0.93 0.94 0.96±.001
R-VAE
d = 2 0.95 0.97 0.89 0.68 0.64 0.56 0.88 0.85 0.71 0.64 0.78±.002
d = 5 0.95 0.98 0.94 0.91 0.94 0.88 0.95 0.93 0.90 0.89 0.93±.0008
d = 10 0.98 0.98 0.96 0.95 0.96 0.95 0.97 0.97 0.93 0.94 0.96±.001

pared against their Euclidean counterpart. The geodesic interpolation is influenced
by the metric tensor, which makes sure that shortest paths will generally avoid areas
of low density. This can easily be seen in top left Fig. 2.5, where the geodesic curve
follows a path along a high density region. Contrast this to the Euclidean straight
line between the two points traversing a lower density region. Reconstructed images
along the curves can be seen in the middle and bottom rows. Even in less apparent
cases (top right Fig. 2.5), reconstructions of latent codes along geodesic curves gen-
erally provide smoother transitions between the curve endpoints as can be seen by
comparing the middle right and bottom right sections of the figure.



2.5 Experiments 27

Figure 2.5. Top: Interpolations plotted in the latent space of R-VAE. Black indicates a
geodesic interpolant, red indicates a Euclidean interpolant. Middle: Images reconstructed
along the geodesic interpolation. Bottom: Images reconstructed along the Euclidean inter-
polation. The latent codes are color-coded according to label. Best viewed in color.

Figure 2.6. Top: Brownian motion runs on the learned latent manifold. Bottom: Corre-
sponding sampled images. The sampler mostly stays in high density regions of the latent
manifold. Best viewed in color.

Next, we investigate sampling from R-VAE. In Sec. 2.4 we claimed that a Brownian
motion prior coupled with the RBF regularization of the decoder variance network
would yield samples that mostly avoid low density regions of the latent space. To



28 2 Variational Autoencoders with Riemannian Brownian Motion Priors

((a)) ((b)) ((c))

Figure 2.7. Brownian motion runs with artificially increased t (diffusion) parameter beyond
the learned value. Note that the borders created by the metric tensor stop the sampler from
exploring low density regions any further - the sampler either stops (a and b) or returns to
regions of higher density (c). This effect is observed in the sampled images. Best viewed in
color.

empirically prove this, we executed two sets of multiple sampling runs on the latent
manifold. In the first set we ran Brownian motion with the learned prior parameters.
These runs and the resulting images are displayed in Fig. 2.6. The random walks
generally stay within high density regions of the manifold. Cases where they explore
low density regions do exist but they are rare. The samples generally seem clear
although sometimes their quality drops, especially when the sampler is transitioning
between classes, where variance estimates are higher. This could potentially be recti-
fied with a less aggressive deterministic warm-up scheme, which would result in more
concentrated densities with thinner tails, although between-class variance estimates
would likely still be higher compared to within-class ones. For the second set of the
sampling runs, we increased the duration of the Brownian motion. These runs are
displayed along with the sampled images in Fig. 2.7. The influence of the variance
estimates on the metric tensor is clearly shown here. As the sampler is moving farther
away from the latent code support, evaluations of the metric tensor increase making
these regions harder to traverse. As a result the random walk either oscillates with
decreased speed and stops close to the boundary (as in Figures 2.7(a) and 2.7(b)) or
returns to higher density regions of the manifold. This clearly shows that R-VAE
mostly avoids the manifold mismatch problem.



2.6 Related work 29

2.6 Related work

Learned priors. In recent literature many works have identified the adverse effects
of the KL divergence regularization when the prior is chosen to be a standard Gaus-
sian. As such, there have been many approaches of learning a more flexible prior.
Chen et al. [2016] propose learning an autoregressive prior by applying an Inverse
Autoregressive transformation [Kingma et al., 2016] to a simple prior. Nalisnick and
Smyth [2016] propose a non-parametric stick-breaking prior. Tomczak and Welling
[2017] propose learning the prior as a mixture of variational posteriors. More recently,
Bauer and Mnih [2018] present a rejection sampling approach with a learned accep-
tance function, while Klushyn et al. [2019] proposed a hierarchical prior through an
alternative formulation of the objective.

Non-Euclidean latent space. Arvanitidis et al. [2018] was one of the first to
analyze the latent space of a VAE from a non-Euclidean perspective. This work was
inspired by Tosi et al. [2014] that studied the Riemannian geometry of the Gaussian
process latent variable model [Lawrence, 2005b]. Arvanitidis et al. [2018] train a
Euclidean VAE and fit a latent Riemannian LAND distribution [Arvanitidis et al.,
2016a] and show that this view of the latent space leads to more accurate statistical
estimates, as well as better sample quality.
Since then, a number of other works have appeared in literature that propose learning
non-Euclidean latent manifolds. Xu and Durrett [2018] and Davidson et al. [2018a]
learn a VAE with a von Mises-Fisher latent distribution, which samples codes on the
unit hypersphere. Similarly, Mathieu et al. [2019] and Nagano et al. [2019] extend
VAEs to hyperbolic spaces. Mathieu et al. [2019] assume a Poincaré ball model as a
latent space and present 2 generalizations of the Euclidean Gaussian distribution - a
wrapped Normal and the Riemannian Normal distributions, of which only the latter
is a maximum entropy generalization. In practice, they perform similarly. Nagano
et al. [2019] assume a Lorentz hyperbolic model as a latent space and also present
a wrapped Normal generalization of the Gaussian. While these works have correctly
identified the problem of the standard Gaussian not being a truly uninformative
prior, due to the Euclidean assumption, they have proposed approaches which are
designed for observations with known geometries. Most of the time, however, this
information is not available and a more general framework for learning geometrically
informed VAEs is needed. In response to this, Skopek et al. [2019] propose VAEs
with the latent space modelled as a product of constant curvature manifolds, where
each component curvature is learned. While more general than a model with a fixed
curvature latent manifold, this framework still requires the specification of number of
component manifolds along with the sign of their respective curvature. Finally, similar
to our approach, Li et al. [2019] and Rey et al. [2019] both propose the heat kernel as a
variational family representing a Brownian motion process on a Riemannian manifold.



30 2 Variational Autoencoders with Riemannian Brownian Motion Priors

They test their approaches on a priori chosen manifolds.

2.7 Conclusion
In this paper we presented VAEs with Riemannian manifolds as latent spaces and pro-
posed a Riemannian generalization of the Gaussian along with an efficient sampling
scheme. We show that the pull-back metric informs distances in the latent space, re-
maining invariant to reparameterizations. We further make explicit the relationship
between uncertainty estimation and proper latent geometry and qualitatively show
that geometrically informed priors avoid manifold mismatch by drawing samples from
the image of the manifold in the latent space. Quantitatively, we show that our ap-
proach outperforms Euclidean VAEs both in an unsupervised learning task and a
classification task, especially in low latent space dimensions.



CHAPTER 3
Pulling back

information geometry
This chapter is adapted from Arvanitidis et al. [2021a]
Authors: Georgios Arvanitidis1, Miguel González-Duque1, Alison Pouplin1, Dimitris
Kalatzis1, Søren Hauberg1

Abstract

Latent space geometry has shown itself to provide a rich and rigorous frame-
work for interacting with the latent variables of deep generative models. The
existing theory, however, relies on the decoder being a Gaussian distribution
as its simple reparametrization allows us to interpret the generating process as
a random projection of a deterministic manifold. Consequently, this approach
breaks down when applied to decoders that are not as easily reparametrized.
We here propose to use the Fisher-Rao metric associated with the space of de-
coder distributions as a reference metric, which we pull back to the latent space.
We show that we can achieve meaningful latent geometries for a wide range of
decoder distributions for which the previous theory was not applicable, opening
the door to ‘black box’ latent geometries.

3.1 Introduction

Generative models such as variational autoencoders (VAEs) [Kingma and Welling,
2014, Rezende et al., 2014] and generative adversarial networks (GANs) [Goodfellow
et al., 2014] provide state-of-the-art density estimators for high dimensional data.
The underlying assumption is that data x ∈ X lie near a low-dimensional manifold
M ⊂ X , which is parametrized through a low-dimensional latent representation z ∈
Z. As data is finite and noisy, we only recover a probabilistic estimate of the true

0Equal contribution.



32 3 Pulling back information geometry

manifold, which, in VAEs, is represented through a decoder distribution p(x|z). Our
target is the geometry of this random manifold.
The geometry of the manifold has been shown to carry great value when systematically
interacting with the latent representations, as it provides a stringent solution to the
identifiability problem that plagues latent variable models [Arvanitidis et al., 2018,
Hauberg, 2018c, Tosi et al., 2014]. For example, this geometry has allowed VAEs
to discover latent evolutionary signals in proteins [Detlefsen et al., 2020], provide
efficient robot controls [Beik-Mohammadi et al., 2021, Chen et al., 2018b, Scannell
et al., 2021], improve latent clustering abilities [Arvanitidis et al., 2018, Yang et al.,
2018] and more. The fundamental issue with these geometric approaches is that the
studied manifold is inherently a stochastic object, but classic differential geometry
only supports the study of deterministic manifolds. To bridge the gap, Eklund and
Hauberg [2019] have shown how VAEs with a Gaussian decoder family can be viewed
as a random projection of a deterministic manifold, thereby making the classic theories
applicable to the random manifold.
A key strength of VAEs is that they can model data from diverse modalities through
the choice of decoder distribution p(x|z). For discrete data, we use categorical de-
coders, while for continuous data we may opt for a Gaussian, a Gamma or whichever
distribution best suits the data. However, for non-Gaussian decoders, there exists no
useful approach for treating the associated random manifold as deterministic, which
prevents us from systematically interacting with the latent representations without
being subjected to identifiability issues. This limitation motivates the current work.
In this paper, we provide a general framework that allows us to interact with the
geometry of almost any random manifold. The key, and simple idea is to reinterpret
the decoder as spanning a deterministic manifold in the space of probability distri-
butions H, rather than a random manifold in the observation space (see Fig. 3.1).
Calling on classical information geometry [Amari, 2016, Nielsen, 2020], we show that
the learned manifold is a Riemannian manifold of H, and provide the corresponding
computational tools. The approach is applicable to any family of decoders for which
the KL-divergence can be differentiated, allowing us to work with a wide range of
models from a single codebase.

3.2 The geometry of generative models

As a starting point, consider the deterministic generative model given by a prior p(z)
and a decoder f : Z = Rd → X = RD, which is assumed to be a smooth immersion.
The latent representation z of an observation x is generally not identifiable, meaning
that one can recover different latent representations that give rise to equally good
density estimates. For example, let g : Z → Z be a smooth invertible function such
that z ∼ p(z) ⇔ g(z) ∼ p(z), then the latent representation g(z) coupled with the



3.2 The geometry of generative models 33

decoder f ◦g−1 gives the same density estimate as z coupled with f [Hauberg, 2018c].
Practically speaking, the identifiability issue implies that it is improper to view the
latent space Z as being Euclidean, as any reasonable view of Z should be invariant
to reparametrizations g.
The classic geometric solution to the identifiability problem is to define any quantity
of interest in the observation space X rather than the latent space Z. For example,
the length of a curve γ : [0, 1] → Z in the latent space can be defined as its length
measured in X on the manifold M = f(Z) with N → +∞ as:

L(γ) =
N−1∑

n=1
‖f(γ(tn+1))−f(γ(tn))‖ =

∫ 1

0
‖ḟ(γ(t))‖dt

=
∫ 1

0

√
γ̇(t)#Jf (γ(t))#Jf (γ(t))γ̇(t)dt, (3.1)

where tn = n/N and tn+1 = n + 1/N and we used the chain rule ∂tf(γ(t)) = Jf (γ(t))γ̇(t)
with γ̇(t) = ∂tγ(t) being the curve derivative, and Jf (γ(t)) ∈ RD×d the Jacobian of
f at γ(t). This construction shows how we may calculate lengths in the latent space
with respect to the metric of the observation space, which is typically assumed to be
the Euclidean, but other options exist [Arvanitidis et al., 2021b]. In this way, the
symmetric positive definite matrix Jf (γ(t))#Jf (γ(t)) is denoted by G(γ(t)) ∈ Rd×d

%0
and captures the geometry of M in Z. This is known as the pullback metric as it
pulls the Euclidean metric from X into Z. As the Jacobian spans the d-dimensional
tangent space at the point x = f(z), we may interpret G(z) as an inner product
〈u, v〉G = u#G(z)v over this tangent space, given us all the ingredients to define
Riemannian manifolds:
Definition 6. A Riemannian manifold is a smooth manifold M together with a
Riemannian metric G(z), which is a positive definite matrix that changes smoothly
throughout space and defines an inner product on the tangent space TzM.

Figure 3.1. Traditionally (left), we view the learned manifold as a stochastic manifold in
the observation space. We propose (right) to view the learned manifold as a deterministic
manifold embedded in the space of decoder distributions, which is equipped with a Fisher-
Rao metric based on information geometry.



34 3 Pulling back information geometry

We see that the decoder naturally spans a Riemannian manifold and the latent space
Z can be considered as the intrinsic coordinates. Technically, we can consider any
Euclidean space as the intrinsic coordinates of an abstract M using a suitable metric
G(z), which is implicitly induced by an abstract f . Since the Riemannian length
of a latent curve equation 3.1, by construction, is invariant to reparametrizations, it
is natural to extend this view with a notion of distance. We say that the distance
between two points z0, z1 ∈ Z is simply the length of the shortest connecting path,
dist(z0, z1) = minγ L(γ). Calculating distances implies finding the shortest path.
One can show [Gallot et al., 2004] that length minimizing curves also have minimal
energy:

E(γ)=
∫ 1

0
‖ḟ(γ(t))‖2dt=

∫ 1

0
γ̇(t)#G(γ(t))γ̇(t)dt, (3.2)

which is a locally convex functional. Shortest paths can then be found by direct
energy minimization [Yang et al., 2018] or by solving the associated system of ordinary
differential equations (ODEs) [Arvanitidis et al., 2019, Hennig and Hauberg, 2014]
(see supplementary materials for additional details).

3.2.1 Stochastic decoders

As previously discussed, deterministic decoders directly induce a Riemannian geom-
etry in the latent space. However, most models of interest are stochastic and there
is significant evidence that this stochasticity is important to faithfully capture the
intrinsic structure of data [Hauberg, 2018c]. When the decoder is a smooth stochastic
process, e.g. as in the Gaussian Process Latent Variable Model (GP-LVM) [Lawrence,
2005a], Tosi et al. [2014] laid the foundations for modeling a stochastic geometry.
Most contemporary models, such as VAEs, assume independent noise, making this
theory inapplicable. Arvanitidis et al. [2018] proposed an extension of this stochastic
geometry to VAEs with Gaussian decoders, which take the form

f(z) = µ(z) + σ(z) . ε

=
[
ID diag(ε)

] [µ(z)
σ(z)

]
= Pε h(z), (3.3)

where ε ∼ N (0, ID). Here we have written the Gaussian decoder in its reparametrized
form. This can be viewed as a random projection of a deterministic manifold spanned
by h with projection matrix Pε [Eklund and Hauberg, 2019], which can easily be given
a geometry. The associated Riemannian metric,

G(z) = Jµ(z)#Jµ(z) + Jσ(z)#Jσ(z), (3.4)

gives shortest paths that follow the data as distances grow with the model uncertainty
[Arvanitidis et al., 2018, Hauberg, 2018c]. An example of a shortest path γ(t) ∈ Z



3.3 Information geometric latent metric 35

computed under this metric is shown in Fig. 3.2 and the respective curve on the
corresponding expected manifold µ(γ(t)) ∈ M ⊂ X .
Previous work has, thus, focused on pulling back the Euclidean metric from the obser-
vation space to the latent space using the reparameterization of the Gaussian decoder.
This is, however, intrinsically linked with the simple reparameterization of the Gaus-
sian, and this strategy can only extend to location-scale distributions. We propose an
alternative, principled way of dealing with stochasticity by changing the focus from
the observation space X to the parameter space H associated to the distribution of
the decoder, leveraging the metrics defined in classical information geometry.

3.3 Information geometric latent metric

So far we have seen how we can endow the latent space Z with meaningful distances
only when our stochastic decoders are reparameterizable and their codomain is the
observation space X . Ideally, we would like a more general framework of computing
shortest path distances for a more general class of distributions.
We first note that the codomain of a VAE decoder is the parameter space H of a
probability density function. In particular, depending on the type of data we specify
a likelihood p(x|η) with parameters η ∈ H, which we can rewrite as p(x|z) using the
mapping h : Z → H.
With this in mind, we can ask what is a natural distance in the latent space Z between
two infinitesimally near points z1 and z2 = z1 +ε when measured in H. Since our
latent codes map to distributions we can define the (infinitesimal) distance through
the KL-divergence:

dist2(z1, z2) = DKL(p(x|z1)||p(x|z2)). (3.5)

So we can define the length of a curve γ : [0, 1]→Z as

L(γ) = lim
N→∞

N−1∑

n=1
DKL(p(x|γ(tn)||p(x|γ(tn+1)))

1
2 , (3.6)

and distances could be defined as before. This would satisfy our desiderata of a
deterministic notion of similarity in the latent space that is applicable to wide range
of decoder distributions.
This construction may seem arbitrary, but in reality it carries deeper geometric mean-
ing. Information geometry [Nielsen, 2020] considers families of probabilistic densities
p(x|η) as represented by their parameters η ∈ H, such that H is constructed as a sta-
tistical manifold equipped with the Fisher-Rao metric, which infinitesimally coincides



36 3 Pulling back information geometry

with the KL divergence in equation 3.5. This is known to be a Riemannian metric
over H that takes the following form:

IH(η)=
∫

X
[∇η log p(x|η)∇η log p(x|η)#]p(x|η)dx. (3.7)

When the parameter space H is equipped with this metric, we call it a statistical
manifold.
Definition 7. A statistical manifold consists of the parameter space H of a probability
density function p(x|η) equipped with the Fisher-Rao information matrix IH(η) as a
Riemannian metric.

Note that the geometry induced by the Fisher-Rao metric is predefined and can be
seen as a modeling decision, since it is related to the chosen likelihood and does not
change with data.
As previously mentioned, a known result in Information Geometry is that the Fisher-
Rao metric coincides with the KL-divergence locally [Amari, 2016, Nielsen, 2020]:
Proposition 1. The Fisher-Rao metric is the second order approximation of the
KL-divergence between perturbed distributions:

DKL(p(x|η||p(x|η + δη)) = 1
2δη

#IH(η)δη + o(δη2). (3.8)

The central idea put forward in this paper is to consider the decoder as a map h :
Z → H instead of f : Z → X , and let H be equipped with the appropriate Fisher-
Rao metric. The VAE can then be interpreted as spanning a manifold h(Z) in H and
the latent space Z can be endowed with the corresponding metric. We detail this
approach in the following section.

M ⊂ X Z

Figure 3.2. A conceptual example of a Riemannian manifold M = µ(Z) lying in X and
the corresponding latent space Z, together with an associated shortest path.



3.3 Information geometric latent metric 37

3.3.1 The Riemannian pull-back metric

Our construction implies that the length of a latent curve γ : [0, 1] → Z when mapped
through h can be measured in the parameter space H using the Fisher-Rao metric
therein as

L(γ) =
∫ 1

0

√
∂th(γ(t))#IH(h(γ(t)))∂th(γ(t))dt, (3.9)

with M the pullback metric:
Proposition 2. Let h : Z → H be an immersion that parameterizes the likelihood.
Then, the latent space Z is equipped with the Riemannian pull-back metric G(z) =
J#

h (z)IH(h(z))Jh(z).

Proof. See appendix, Prop. 7.

Note that instead of considering the parameters η ∈ H of the probabilistic density
function p(x|η) that approximates the data, we can consider the latent variable z as
the actual parameters of the model. This view is equivalent to the one explained above,
and the corresponding pull-back metric is directly the Fisher-Rao metric endowed in
the latent space Z:
Proposition 3. The pullback metric G(z) is identical to the Fisher-Rao metric
obtained over the parameter space Z as G(z) =

∫
X
[
∇z log p(x|z)∇z log p(x|z)#]

p(x|z)dx.

Proof. See appendix, Prop. 8.

Therefore, pulling back the Fisher-Rao metric from H into Z enables us to compute
length minimizing curves which are indentifiable (see Sec. 3.2). The advantange of
this approach is that it applies to any type of decoders and data, as the actual distance
is measured over the manifold spanned by h in the parameter space H. So shortest
paths between probability distributions move optimally on this manifold while taking
the geometry of H into account through the Fisher-Rao metric.
Computing shortest paths directly in H need not result in a sensible sequence of
probability density functions p(x|η). To ensure that the shortest paths computed
under our metric stay within the support of the data, we carefully design our de-
coder h to extrapolate to uncertain distributions outside the support of the data (see
supplements for additional details).
In Fig. 3.3 we compare a shortest path γ : [0, 1] → Z under the proposed metric
G(z) against a curve c : [0, 1] → H with minimal length. We consider a Gaussian
likelihood with isotropic covariance. We show the resulting sequence of means for



38 3 Pulling back information geometry

M ⊂ X µ(Z) ⊂ H

Figure 3.3. Left: The optimal γ(t) (blue curve) under G(z) results to distributions that
respect the structure of data, while the curve c(t) (red-green curve) with minimal length in
H does not as it leaves M. Red and green signal high and low variance respectively. Right:
A part of the spanned manifold h(Z) = [µ(Z), σ(Z)] ∈ H colored by |G(z)|. Note that we
design σ(z) to increase far from the data, which ensures that γ(t) stays within their support.

both interpolants color-coded by the corresponding variances. As expected c(t) does
not take into account the given data, but only respects the geometry of H implied by
the likelihood.

3.3.2 Efficient shortest path computation

An essential task in computational geometry is to compute shortest paths. This can
be achieved by minimizing curve energy equation 3.2 or solving the corresponding sys-
tem of ODEs (see supplementary material). The latter, however, requires inordinate
computational resources, since the evaluation of the system relies on the Jacobian of
the decoder and its derivatives.
Bearing in mind that the metric is an approximation of the KL divergence between
perturbations equation 3.8, the energy is directly expressed as a sum of KL divergence
terms along a discretized curve γ:

E(γ) ∝ lim
N→∞

N−1∑

n=1
DKL(p(x|γ(tn)||p(x|γ(tn+1))). (3.10)

The proof can be found in the appendix, Prop. 6. A simple algorithm for computing
shortest paths is to minimize equation 3.10 with respect to the parameters of the
curve γ. Here we represent γ as a cubic spline with fixed end-points. Then standard
free-form optimization can be applied to minimize this energy.



3.3 Information geometric latent metric 39

3.3.3 Example: categorical decoders

The motivation for our approach is that, while several options for decoders exist
in VAEs depending on the type of the given data, we could only capture and use
the learned geometry in a principled way with Gaussian decoders. Our proposed
methodology is more general.
For a constructive example, assume that x is a categorical variable. We can select a
generalized Bernoulli likelihood p(x|z), such that h(z) = (η1, · · · , ηD) where each ηi

represents the probability of xi being 1. Thus, the parameters η lie on the unit simplex
H, and the distance under the corresponding Fisher-Rao metric between points on
the simplex coincides with the spherical distance between the points √

η on the unit
sphere,

dist(η, η′) = arccos
(√

η#√η′
)

. (3.11)

We derive in detail this previously known result in the supplementary materials.
Given a curve γ : [0, 1] → Z we can approximate the energy by using the small angle
approximation cos θ ≈ 1 − θ2/2 ⇔ θ2 ≈ 2 − 2 cos θ to give

E(γ) =
N−1∑

n=1

(
2 − 2

√
h(γ(tn))#√

h(γ(tn+1))
)

, (3.12)

for sufficiently fine discretization with tn = n/N and tn+1 = n + 1/N. This gives
a particular simple expression for the energy, which we can minimize in order to
compute the shortest path.

3.3.4 Black-box random geometry

In general, we can derive suitable expressions for computing metrics and energies for
families of decoders, doing so is tedious, error-prone and time-consuming. This limits
the practical use of the developed theory.
Drawing inspiration from black-box variational inference [Ranganath et al., 2014], we
propose a notion of black-box random geometry. Assume that we have access to a
differentiable KL divergence for our choice of decoder distribution. We can then
apply the methodology presented in Sec. 3.3.2 to compute shortest paths.
In practice, modern libraries such as PyTorch [Paszke et al., 2019] have this func-
tionality implemented for several distributions. When we do not have closed-form
expression for the KL divergence, we can resort to Monte Carlo estimates thereof.
More specifically, we can estimate the KL divergence by generating samples from the
likelihood based on the re-parametrization trick, which allows us to get derivatives
with automatic differentiation.



40 3 Pulling back information geometry

Interestingly, apart from finding the shortest path through the KL formulation, we
can also approximate the actual metric tensor G(z). As we have discussed above,
evaluating explicitly this metric is not a trivial task in many cases. One problem
is that we need access to the Jacobian of the parametrization h, which is typically
a deep neural network, so the computation is not always straightforward. Alterna-
tively, one could use that the Fisher-Rao metric is the Hessian of the KL-divergence
equation 3.8, but such approaches fare poorly with current tools for automatic differ-
entiation, where higher-order derivatives are often incompatible with batching. Fur-
thermore, the Fisher-Rao metric itself may be intractable depending on the chosen
likelihood p(x|η). Nevertheless, we show that the KL formulation equation 3.8 allows
us to approximate the latent metric as:
Proposition 4. We define perturbations vectors as δei = ε · ei, with ε ∈ R+ a
small infinitesimal quantity, and ei a canonical basis vector in Rd. For clarity, we
rename DKL(p(x|z)||p(x|z + δz)) = KLz(δz) and we note Gij = Gji the components
of G(z). We can then approximate by a system of equations the diagonal and non-
diagonal elements of the metric:

Gii ≈ 2 KLz(δei)/ε2

Gji ≈ (KLz(δei+δej) − KLz(δei) − KLz(δej)) /ε2.

See Prop. 10 in the appendix for a proof. Note that this formulation only requires h
to be a smooth immersion. This is particularly useful, as the metric is used for other
purposes on a Riemannian manifold and not exclusively for computing shortest paths.
For example, relying on G(z) we can compute the exponential map by solving the
corresponding ODE system as an initial value problem. Assuming a fully differentiable
KL divergence, then the approximated metric is also differentiable. This is all that is
required for practical usage of differential geometry, and thus, we have a reasonable
notion of black-box random geometry.

3.4 Experiments

3.4.1 Pulling back Euclidean and Fisher-Rao metric with Gaussian
decoders

We start our experiments by comparing our proposed way of inducing geometry in
latent spaces with the existing theory: pulling back the Euclidean metric using a
stochastic Gaussian decoder (see equation 3.4). We also include in this comparison
the effect of regularizing the uncertainty quantification in the learned geometries. In
this regularization, we use transition networks [Detlefsen et al., 2019b] to ensure high



3.4 Experiments 41

Figure 3.4. Pulling back the Euclidean and Fisher-Rao metrics with Gaussian decoders.
Left to right: Euclidean pull-back with regularized uncertainty, Euclidean pull-back with
a NN to model uncertainty, Fisher-Rao pull-back with regularized uncertainty, Fisher-Rao
pull-back with a NN to model uncertainty.

Figure 3.5. Pulling back the metric from different parameter spaces. From left to right:
Normal, Bernoulli, Beta, Dirichlet and Exponential. White areas represent low entropy of
the decoded distribution, while blue areas represent higher entropy. Notice that the Bernoulli
latent space is darker blue (i.e. more entropic) because distributions with parameters around
1/2 are near uniform.

uncertainty outside the support of the data (see Sec. B.3.2 in the supplementary
material).
In this experiment, we train four VAEs on a subset of the MNIST dataset composed
of only the digits with label 1. Two of these VAEs implement a standard Gaussian
decoder, and we induce a metric in the latent space by pulling the Euclidean metric
back using the Jacobian of the decoder. In the other two, we consider the output
of the decoder as lying in a statistical manifold and approximate the pullback of the
Fisher-Rao metric by using the KL divergence locally. In each of these two sets, one
of the decoders implements the uncertainty regularization described above.
Fig. 3.4 shows the latent spaces of these four decoders, illuminated by the volume mea-
sure. In each of this latent spaces, we analyze the geometry induced by the respective
pullbacks by computing and plotting several shortest paths. This figure illustrates
two key findings: (1) Our approach is on par with the existing literature in learning
geometric structure, which can be seen by comparing the first and third latent spaces
(Euclidean vs. Fisher Rao, respectively), and (2) Performing uncertainty regulariza-
tion plays an instrumental role on learning a sensible geometric structure, which can
be seen when comparing the first and second latent spaces (both coming from the
Euclidean pullback, with and without regularization respectively), and similarly for
the third and fourth.



42 3 Pulling back information geometry

3.4.2 The Fisher-Rao pullback metric for various distributions with
toy data

For our second experiment, we induced a geometry on a known latent space (given
by noisy circular data in Ztoy = R2) by pulling back the Fisher-Rao metric from the
parameter space of different distributions, showcasing the potential for computing
shortest paths efficiently, even in non-Gaussian settings. The statistical manifolds
from which we pull the metric are associated with multivariate versions of the Normal,
Bernoulli, Beta, Dirichlet and Exponential distributions. For this approximation
to follow the support of the data we need to ensure that our mapping Ztoy → H
extrapolates to high uncertainty outside our training codes (see Fig. 3.4). To do so,
we perform uncertainty regularization for each one of the decoded distributions (see
supplementary materials for implementation details).
In Fig. 3.5 we show the toy latent space alongside several shortest paths computed
using the pullback of the Fisher-Rao metric from the statistical manifolds associated
with the Gaussian, Bernoulli, Beta, Dirichlet and Exponential distributions. We
parametrize the curves as cubic splines and minimize their energy using automatic
differentiation (see Sec. 3.3.2). These results show that the approximated pulled-back
metric induces a meaningful geometry in this latent space, which recovers the true
circular structure of the data. In the case of the Bernoulli distribution, we notice that
some of the paths fail to converge. We hypothesize that our uncertainty regularization
(which decodes to the uniform distribution outside the support) is not strong enough
since Bernoulli distributions with parameters close to 1/2 are already highly entropic.

Figure 3.6. Left: Geodesics in the latent space of a von Mises-Fisher decoder. Middle:
Shortest path (green) vs. linear (red). Right: decoding the shortest path (green) vs. the
linear interpolation (red) as poses (i.e. the product of von Mises-Fisher distributions). Our
path follows the trend of the data manifold, while the linear path traverses regions with no
data support.



3.4 Experiments 43

3.4.3 Motion capture data with products of von Mises-Fisher
distributions

As a further demonstration of our black-box random geometry, we consider a model
of human motion capture data. Here we observe a time series, where each time point
represent a ‘skeleton’ corresponding to a human pose. As only pose, and not shape,
changes over time, individual limbs on the body only change position and orientation,
but not length. Each limb is then a point on a sphere in R3 with radius given by the
limb length. Following Tournier et al. [2009] we view the skeleton representation space
as a product of spheres. From this, we build a VAE where the decoder distribution is a
product of von Mises-Fisher distributions. To ensure a sensible uncertainty estimates
in the decoder, we enforce that the concentration parameter extrapolate to a small
constant.
In this case, we do not have easily accessible Fisher-Rao metrics, so we lean on the
KL formulation from Sec. 3.3.4. Since, the KL does not have a closed-form expression
for the von Mises-Fisher distribution, we resort to a Monte Carlo estimate thereof.
This is realisable with off-the-shelf tools [Davidson et al., 2018b].
Fig. 3.6 shows the latent representation of a motion capture sequence of a person
walking (Seq. 69_06 from http://mocap.cs.cmu.edu/) with shortest paths superim-
posed. We see that our paths follow the trend of the data, and reflect the underlying
periodic nature of the observed walking motion. We pick two random points in the
latent space, and traverse both the shortest path and the straight line implied by
a Euclidean interpretation of the latent space. As we traverse, we sample from the
decoder distribution, thereby producing two new motion sequences, which appear in
Fig. 3.6. As can be seen, the straight line traverses uncharted territory of the latent
space and end up creating an implausible motion. This is in contrast to the shortest
path, that consistently generates meaningful poses.

3.4.4 Numerical approximation of the Fisher-Rao pullback metric

Prop. 4 provide an approximation to the metric and we test its accuracy as per
equation 3.8. We discretize the latent space for the just-described von Mises-Fisher
decoder and, for each z in this grid, we both approximate G(z) and compute the
expected value of ‖KL(p(x|z), p(x|z + δz)) − 1

2δz
#G(z)δz‖ for several samples of δz,

uniformly distributed around the circle of radius ε = 0.1. Notice that we do not have
a ground truth to compare against, and that this error will always be off by O(δz2).
Fig. 3.7 shows the average error, where we can see that the approximate metric is
well-estimated both within and outside the support of the data. The error, however,
grows at the boundaries of the support, where the distribution is changing from a
concentrated von Mises-Fisher to a uniform distribution. It is worth mentioning

http://mocap.cs.cmu.edu/


44 3 Pulling back information geometry

that we observe some approximated metrics have negative determinant, showing that
our numerical approximations are imprecise at the boundary. These results warrant
further research on more stable ways of approximating pulled back metrics under our
proposed approach.

3.4.5 Statistical models on manifolds

We demonstrate the usefulness of the approximated metrics, by fitting a distribu-
tion to data in the latent space, which requires normalization according to the mea-
sure induced by the metric. In particular, we fit a locally adaptive normal distri-
bution (LAND) [Arvanitidis et al., 2016b], which extends the Gaussian distribu-
tion to learned manifolds. The probability density function is ρ(z) = C(µ, Σ) ·
exp

(
−0.5 · Logµ(z)#ΓLogµ(z)

)
, where µ ∈ Rd is the mean, Γ ∈ Rd×d

%0 is the precision
matrix and C(µ, Γ) the normalization constant. The operator Logµ(z) returns the
scaled initial velocity v = γ̇(0) ∈ Rd of the shortest connecting path with γ(1) = z
and ||v|| = Length(γ). In Fig. 3.7 we show the LAND density on the learned latent
representations under the approximated Riemannian metric from Sec. 3.4.4. Since
shortest paths follow the data, so does the density ρ. See supplementary material for
details.

3.4.6 Movie preferences via latent interpolants

In addition, we explored the latent space of the movie-users rating dataset Movie-
Lens 25M (https://grouplens.org/datasets/movielens/25m/). In particular, we
consider a Bernoulli VAE to model if a user has watched a movie among the 60 most
popular in the dataset. Also, we considered only users who have seen less than 30

Figure 3.7. Left: Average error of the approximated metric in the von Mises-Fisher latent
space. Darker colors indicate lower error (less than ε2), while higher values are clear. Right:
The LAND density well-adapts to the nonlinear structure of the latent representations due
to the shortest paths behavior.

https://grouplens.org/datasets/movielens/25m/


3.5 Related work 45

movies. The implementation and preprocessing details can be found in the supplemen-
tary material. Our VAE decodes to 60 Bernoulli parameters that are conditionally
independent given the latent code z, which state the likelihood that a given user has
seen these movies. Latent codes in this space, then, can be seen as individual users
with certain movie preferences.
We then computed the shortest path between two points by considering the pulled-
back Fisher-Rao (see Sec. 3.3.2), and we compare against a straight line interpolation.
We consider the cosine similarity of the decoded outputs. This cosine similarity
measures whether two users (encoded as points in the latent space) have similar
preferences according to our model. In Fig. 3.8 we see that our path follows users
with similar movie preferences locally, while the linear interpolation failed to capture
a local notion of preference.
We then computed the shortest path between two points by considering the pulled-
back Fisher-Rao (see Sec. 3.3.2), and we compare against a straight line interpolation.
We consider the cosine similarity of the decoded outputs. This cosine similarity
measures whether two users (encoded as points in the latent space) have similar
preferences according to our model. In Fig. 3.8 we see that our path follows users
with similar movie preferences locally, while the linear interpolation failed to capture
a local notion of preference.

3.5 Related work

The literature is rich on deterministic generative models such as autoencoders [Rumel-
hart et al., 1986b] and generative adversarial networks [Goodfellow et al., 2014],and
a series of papers have investigated such deterministic decoders [Chen et al., 2018a,
Laine, 2018, Shao et al., 2018]. However, our work is not applicable to this setting.
As demonstrated in Sec. 3.4.1 stochasticity is essential to shape the latent space ac-
cording to the data manifold. Hauberg [2018c] argues model uncertainty plays a role
much akin to topology in classic geometry, in that it, practically, allows us to deviate
from the Euclidean topology of the latent space.
Our constructions rely on information geometry and in particular Fisher-Rao metrics
[Nielsen, 2020]. While our work is within the spirit of information geometry, it does
not represent typical usage of this theory. Information geometry has been widely
used in the context of optimisation with natural gradients [Martens, 2014, Martens
and Grosse, 2015], Markov Chain Monte Carlo methods [Girolami and Calderhead,
2011] and hypothesis testing [Nielsen, 2020]. The key difference between natural
gradients and our work is the space we wish to explore: in the case of the natural
gradients, the shortest path is obtained on the space of the weights of the neural
networks, while we aim to explore the latent space of a VAE. It can also be noted
that Information geometry provides a rich family of alternative divergences over the



46 3 Pulling back information geometry

here-applied KL-divergence. We did not investigate their usage in our context.
To make use of the here-developed tools, we may lean on techniques for statistics on
manifolds. These provide generalizations of a long list of classic statistical algorithms
[Fletcher, 2011, Hauberg, 2016, Zhang and Fletcher, 2013]. We refer the reader to
Pennec [2006b] for a gentle introduction to this line of research.

3.6 Conclusion and discussion
We have proposed a new approach for getting a well-defined and useful geometry in
the latent space of generative models with stochastic decoders. The theory is easy
to apply and readily generalize to a large family of decoder distributions. The latent
geometry gives access to a series of operations on latent variables that are invariant
to reparametrizations of the latent space, and therefore are not subject to a large
class of identifiability issues. Such operational representations have already shown
great value in applications ranging from biology [Detlefsen et al., 2020] to robotics
[Scannell et al., 2021]. We have here focused on the Fisher-Rao metric, but other
geometries over distributions may apply equally well, e.g. the Wasserstein geometry
may be interesting to explore.

Limitations. The largest practical hurdle with the proposed methodology, is that
it only works well for decoders with well-calibrated uncertainties. That is, the decoder
should yield high entropy in regions of little training data to ensure that shortest paths
follow the trend of the data. This constraint is shared with existing approaches [Ar-
vanitidis et al., 2018]. Some heuristics exists [Detlefsen et al., 2019b], but principled
approaches are currently lacking.

Our path Linear path

Cosine similarities

Figure 3.8. Our path (green) follows users with similar preferences, as similarity is only
locally high. Instead, the line (red) does not respect the learned structure resulting to users
with no specific preferences.



CHAPTER 4
Density estimation on
smooth manifolds with

normalizing flows
This chapter is adapted from Kalatzis et al. [2021]
Authors: Dimitris Kalatzis, Johan Ziruo Ye, Alison Pouplin, Jesper Wohlert, Søren
Hauberg

Abstract

We present a framework for learning probability distributions on topologically
non-trivial manifolds, utilizing normalizing flows. Current methods focus on
manifolds that are homeomorphic to Euclidean space, enforce strong structural
priors on the learned models or use operations that do not easily scale to high
dimensions. In contrast, our method learns distributions on a data manifold by
“gluing” together multiple local models, thus defining an open cover of the data
manifold. We demonstrate the efficiency of our approach on synthetic data of
known manifolds, as well as higher dimensional manifolds of unknown topology,
where our method exhibits better sample efficiency and competitive or superior
performance against baselines in a number of tasks.

4.1 Introduction

Normalizing flows [Papamakarios et al., 2021, Rezende and Mohamed, 2015] pro-
vide an elegant framework for modelling complex, multimodal probability distri-
butions. Normalizing flows comprise a base distribution PU on a latent space U
and a diffeomorphism, which provides a 1-to-1 mapping of points from the data
space to the latent space according to this base distribution. Given a data point
x, the marginal likelihood can be computed via the change of variables formula



48 4 Density estimation on smooth manifolds with normalizing flows

p(x) = p(u)|det Jf (u)|−1 = p(u)|det Jf−1(x)| with x = f(u). Typically, the base
distribution PU is a normal or a uniform distribution, both of which are defined in
Euclidean space.
Real world data, however, often lie on a manifold, with examples including protein
structures [Boomsma et al., 2008, Hamelryck et al., 2006], geological data [Karpatne
et al., 2018, Peel et al., 2001] or graph-structured and hierarchical data [Roy et al.,
2007, Steyvers and Tenenbaum, 2005]. Diffeomorphisms preserve the topological prop-
erties of their domain and therefore modelling the density of manifold-valued data is
a known failure mode of flows, due to the topological mismatch between the target
distribution PX! and the base distribution PU [Cornish et al., 2020, Dinh et al., 2019,
Dupont et al., 2019]. In response, recent works have constructed flows for specific
manifolds, such as tori, spheres and hyperbolic spaces [Bose et al., 2020, Rezende
et al., 2020].
Still, in many realistic situations one may not know the topological properties of
a given data set a priori, but one may reasonably assume an underlying manifold
structure. Such cases generally fall under the manifold hypothesis [Fefferman et al.,
2016], an important heuristic in machine learning, which states that high dimensional
data can be described by a low dimensional submanifold embedded in the observation
space. Brehmer and Cranmer [2020] propose to learn the shape of the manifold via
learning a (single) chart to it, however this implies that the manifold’s topological
structure is Euclidean. Another set of works [Falorsi and Forré, 2020, Lou et al., 2020,
Mathieu and Nickel, 2020, Rozen et al., 2021] exploit local geometric information to
learn distributions on embedded submanifolds with non-Euclidean topology but these
operations do not easily scale to high dimensions. So the question then emerges: Can
flow models learn a probability distribution on manifolds with complex topology and
also scale to higher dimensions?
Our approach leverages the class of functions typically learned by flow models to
learn a collection of smooth coordinate charts that cover the data manifold. Unlike
existing methods, which do not make assumptions on manifold topology, we are able
to learn probability distributions on data manifolds with complex (non-Euclidean)
topological structure (Fig. 4.1). Furthermore, in contrast to methods that depend
on local geometry, our model scales to high dimensional non-Euclidean data. Finally,
we are able to achieve competitive or superior performance in all tasks with better
sample efficiency and faster runtimes than most of our baselines.

Figure 4.1. A bimodal distribu-
tion on a sphere. Contrary to our
approach, single-charted models
(like the M-flow model [Brehmer
and Cranmer, 2020]) struggles to
push probability mass to cover
both modes.

Ground truth Multi-chart flows M-flow



4.2 A multi-charted approach to density estimation on manifolds 49

4.2 A multi-charted approach to density estimation
on manifolds

We now present our main contribution, Multi-chart flows (MCF). We introduce the
construction of density functions on smooth manifolds and subsequently discuss train-
ing, inference and the generative process.

4.2.1 Model specification

Given a local coordinate chart (U,φ) on the manifold, a probability density pU sup-
ported on a neighborhood U ⊂ M can be expressed through the change of variables
formula:

pU (x) = pV (u)| det G(u)|− 1
2 (4.1)

where pV denotes a simple base density (e.g. a standard Gaussian) over the Euclidean
subset V , u = φ(x) and G = J#

φ−1Jφ−1 is induced by the smooth embedding φ−1 with
the corresponding Jacobian matrix Jφ−1 ∈ RD×d. Here the more general form of the
volume form is used, since φ−1 is injective. We seek to construct a probability density
function pM : M → R over the manifold, by “gluing” together multiple local models
defined in subsets U ⊂ M. To achieve this we will turn to a partition of unity
construction [Lee, 2013, Strichartz, 2003] of such a density function. Let {Ui}K

i=1 be
an open cover of M. Partitions of unity are families {fi}K

i=1, of continuous functions
f : M → R with suppfi ⊆ Ui that satisfy the following:

1. In a neighborhood around a point x ∈ M, only a finite subset of {fi} are
non-zero.

2.
∑K

i=1 fi(x) = 1.

As such, we can construct our density function pM over the manifold by “blending”
together the density functions pU defined in local neighborhoods/coordinate patches
on the manifold (eq. 4.1). Thus, with i = 1, . . . , K denoting the index of the neigh-
borhood and K the number of the overall neighborhoods in our cover of M, which
we treat as a hyperparameter we have:

pM(x) =
K∑

i=1
wipUi(x) =

K∑

i=1
wipVi(u)| det Gi(u)|− 1

2 , (4.2)

where
∑K

i=1 wi = 1 and u = φi(x). We can furthermore normalize wipUi(x) to satisfy
the second condition of the partition of unity. This construction is convenient since it



50 4 Density estimation on smooth manifolds with normalizing flows

simultaneously allows us to define an open cover over our data manifold, which we can
use as a smooth atlas, and removes the need to explicitly learn a reconstruction of the
embedded manifold. The overall topological structure is preserved by constructing
the manifold from locally Euclidean models. Furthermore, we avoid continuity/differ-
entiability issues at the neighborhood boundaries. Because we are using flow models
for our coordinate maps φi, smooth chart compatibility is ensured by construction,
since for overlapping coordinate charts (U1,φ1), (U2,φ2), the composition φ2 ◦ φ−1

1 is
a diffeomorphism as it is a composition of diffeomorphisms.

4.2.2 Introducing a lower bound to the density

While the determinant term in eq. 4.2 can be computed exactly, it involves evalu-
ating G = J#

φ−1
i

Jφ−1
i
, which is prohibitively expensive even for a modest number of

dimensions, since computing the determinant is an O(d3) operation. We introduce a
lower bound to the log likelihood contribution of each chart (eq. 4.1), thereby lower
bounding the complete data log likelihood (eq. 4.2). We will replace the determinant
with the trace of G which is an O(d) operation. A sketch of a proof follows, with all
details in Appendix C.1. We drop neighborhood indices i and for the log likelihood
in a given coordinate patch U with coordinate map φ, we denote the singular values
of Jφ−1 by {si}d

i=1 and we have:

log pU (x) = log pV (u) − 1
2 log det |G(u)| (4.3)

= log pV (u) − 1
2

d∑

i=1
log s2

i . (4.4)

Using Jensen’s inequality with uniform weights ai = 1/d we can bound this density
by:

log pU (x) ≥ log pV (u) − d

2 log
(

d∑

i=1
s2

i

)
+ c (4.5)

= log pV (u) − d

2 log Tr
[
(Jφ−1(u))#Jφ−1(u)

]

+ c, (4.6)

where c = d log(d)/2 is a constant. We can compute the trace efficiently using Hutchin-
son’s estimator [Hutchinson, 1989], arriving at:

log pU (x) ≥ log pV (u) − d

2 logEp(ε)
[
||J#

φ−1ε||22
]

(4.7)

with ε ∼ N (0, ID). Because for all i we have wi ∈ [0, 1], inequality 4.9 below holds
for all neighborhoods Ui, and by extension the lower bound holds for the overall data



4.2 A multi-charted approach to density estimation on manifolds 51

log likelihood on the manifold:

log pM(x) = log
K∑

i

wipUi(x) = log
K∑

i

wipVi(u) det |Gi(u)|− 1
2 (4.8)

≥ log
[

C ·
K∑

i

wipVi(u)Ep(ε)
[
||J#

φ−1ε||22
]− d

2

]
with C = dd/2. (4.9)

4.2.3 Training

We train our model using maximum likelihood estimation on the lower bounded den-
sity (eq. 4.9). As mentioned before we do not need an explicit manifold learning/re-
construction step. We, furthermore, construct our coordinate maps as embeddings.
To construct such a map using flow models, we append D − d zeros to the base vari-
able u ∈ Rd and map to M ⊂ RD with φ−1. We denote this “augmented” variable by
u′ = [u1, . . . , ud, 0, . . . , 0]# ∈ RD and for the remainder of the paper we will use this
symbol to refer to this construction. As for the forward maps φ : U ⊂ M → V ⊂ Rd

we follow the strategy of Beitler et al. [2021], where we split the dimensions of the ob-
served variable x into the intrinsic manifold dimensions d and the directions normal
to the manifold D − d. We then use the map φ to map the manifold dimensions to
the base distribution pV in the Euclidean subset V and the orthogonal directions to
a distribution pV ⊥ , which is tightly centered around 0, e.g. a zero-centered Gaussian
with σ2 = 0.01. This way we can define the map φ as a projection from the manifold
to the Euclidean domain Vi. Crucially and in contrast to Beitler et al. [2021] we train
on the more general form of the change of variables employing the correct volume
measure induced by our embeddings φ−1, i.e. dV =

√
G(u)du, with G a Riemannian

metric tensor defined as: G = J#
φ−1Jφ−1 . Although it is flexible, this construction

deprives us of the ability to directly compare likelihoods across models, since the
volume measure will depend on the chart parameterization of the manifold through
the inverse coordinate map φ−1.

4.2.4 Sampling

To determine the mixture probabilities for our model we use a neural network during
training, in other words w = NN(x; θ) with θ denoting the neural network parameters,
w a normalized vector in RK and K the number of coordinate charts. To be able to
sample from our model however, we assume a Categorical distribution over the charts
and keep estimates of these probabilities throughout training, by simply normalizing
the counts of coordinate chart assignments over the whole dataset. Denoting the index
of a data point by n = 1, . . . , N , the index of a coordinate chart by i = 1, . . . , K and



52 4 Density estimation on smooth manifolds with normalizing flows

Figure 4.2. Overview of the sampling/generative process proposed in Multi-chart flows.
First, the index k of some Euclidean subset Vk is sampled. Then, points sampled in the
lower dimensional Euclidean spaces Vk are mapped onto the embedded data manifold by the
inverse coordinate maps, φ−1

i .

the number of data points assigned to coordinate chart i by Ni:

w̃i = Ni

N
(4.10)

p(c; w̃) =
K∏

i=1
w̃ci

i (4.11)

Then, we can sample from the model through ancestral sampling, where we first
sample chart ck ∼ p(c; w̃), then the d-dimensional latent variable u, append D − d
zeros to get u′ and map to M ⊂ RD with φ−1

k (Fig. 4.2).

4.3 Related work

Learning the manifold structure. Brehmer and Cranmer [2020] propose learning
the topological structure of the manifold separately from learning the probability
distribution on it and so they split training into two distinct phases. Initially they
learn a reconstruction of the data manifold via an embedding g : M → RD, which
can be considered a composition f ◦ φ with φ : M → Rd the manifold chart and
f : Rd → RD a smooth, injective map. Then they learn the density on the manifold
via a transformation h : Rd → Rd. A crucial limitation is that the data manifold is
assumed to be covered by the single chart φ, i.e. it is homeomorphic to Euclidean space.
The model, thus, cannot represent non-trivial manifolds. Lou et al. [2020] proposed
another closely related method treating the exponential map as a chart. Since the
exponential map exp : TxM → M is a local diffeomorphism between the (Euclidean)
tangent space at x and the manifold M, it is treated as a chart φ centered at x. They
learn a vector field in TxM by solving a local ODE for a short time interval, which
is mapped onto M by the expmap. They use the inverse chart, log : M → Tx′M,
to map to the new tangent space centered at x′ and repeat the process. In principle,



4.3 Related work 53

this scheme is general, but in practice, the exponential and logarithmic maps are
prohibitively expensive for high dimensional manifolds. Rozen et al. [2021] propose
Moser flow (MF), a generative model where the learned density consists of a source
distribution minus the divergence of a neural network. Therefore, their suggested
model falls within the broader family of continuous normalizing flows (CNFs), however
they approximate the local divergence operator instead of solving the ODE, achieving
significant speedups against CNF-based models (such as e.g. [Grathwohl et al., 2018,
Mathieu and Nickel, 2020]) in low dimensions. An important limitation, however, is
that the divergence is computationally expensive to approximate in high dimensions,
limiting the applicability of MF to general high dimensional settings. Finally, works
that learn an atlas of the manifold have appeared in the literature. Nascimento et al.
[2014] use Gaussian processes for the chart maps which are combined probabilistically
to form an atlas, Pitelis et al. [2013] combine local linear models into an atlas by
minimizing a regularized reconstruction error that encourages a small number of
charts. Brand [2002] uses a mixture of kernel-based linear projections to build a
common coordinate system of connected Euclidean patches. Finally, Schonsheck et al.
[2019] propose autoencoder-based coordinate maps to construct their atlas.

Flows on fixed manifolds. A related body of work pertains to flows on manifolds
with a priori known topological structure. Rezende et al. [2020] construct flows de-
fined on circles, tori and spheres through projective transformations, as well as by
adapting Euclidean models, such as autoregressive flows [Papamakarios et al., 2017]
and spline flows [Durkan et al., 2019a, Müller et al., 2019]. Flow-based models de-
fined in hyperbolic space were presented by Bose et al. [2020], wherein two variants
are proposed, which use parallel transport of vectors and repeated calls to the expo-
nential and logarithmic maps to map between the tangent bundle and the manifold.
A more general method of learning a flow on a manifold was proposed by Gemici
et al. [2016], which assumes knowledge of a coordinate chart φ : M → Rd and an
embedding g : Rd → RD with d < D. A limitation here is that M needs to be home-
omorphic to Rd, since it is described by a single chart. When φ and g are learned we
arrive at the models presented by Brehmer and Cranmer [2020]. We generalize this
setting by learning transformations between patches of the manifold M and subsets
of Euclidean space RD.



54 4 Density estimation on smooth manifolds with normalizing flows

Target MCF (ours) NMODE NCPS

Figure 4.3. Density estimation on the sphere S2 visualized via the Mollweide projection.
Baselines: Neural Manifold ODEs (NMODE) by Lou et al. [2020] and NCPS by Rezende
et al. [2020]

4.4 Experiments

4.4.1 Qualitative experiments: Estimation of synthetic densities on
2D manifolds

For our first experiment we trained our model, denoted MCF (Multi-chart flows), on
synthetic densities on the sphere S2, a 2D manifold with well studied topological struc-
ture. Our baselines were chosen among models that encode topological information as
structural priors by way of a prescribed chart to access the manifold, and models that
generally rely on the exponential map which still encodes local topological information
on the manifold. Of the former, we chose the recursive circular spline flow (NCPS)
[Rezende et al., 2020]. As for the latter, we chose neural manifold ODEs (NMODE)
[Lou et al., 2020]. Results can be seen in Figure 4.3. Our approach achieves improved
performance over NCPS and performs on par with NMODE at significantly reduced
running times (see section 4.4.5). For the “four wrapped normals” dataset (Fig. 4.3
top row) MCF uses two coordinate charts and each coordinate map comprises two
rational quadratic (RQ) coupling layers interspersed with LU-decomposed, invertible
linear maps. For the “checkerboard” dataset (Fig. 4.3 bottom row), MCF uses four
coordinate charts, with each coordinate map comprising three RQ coupling layers
interspersed with LU-decomposed linear maps. Complete experimental details can
be found in Appendix C.2



4.4 Experiments 55

4.4.2 Qualitative experiments: Estimation of real world densities
on 2D manifolds

We next examine a scenario of real world densities. Our datasets contain the locations
of two types of natural disasters: earthquakes [NOAA, 2020] and fires [EOSDIS,
2020]. These distributions are represented on the sphere S2. Their complexity and
multimodality make them suitable test cases for assessing MCF’s usefulness in real
world scenarios. Figure 4.4 shows the model’s results. The density learned by MCF
generally captures the modes and patterns in the data and can serve as a modelling
tool which can be subject to further refinement by domain experts. As baselines,
we trained NCPS and NMODEs, the same models we trained on spherical densities
in section 4.4.1, but could not achieve satisfactory results. We include them for
completeness along with different spherical projections in Appendix C.3.

4.4.3 Qualitative experiments: Lorenz attractor

Next, we model a distribution residing on a topologically non-trivial manifold. We
illustrate our model’s ability to preserve the “global” manifold structure and learn
the probability density of the Lorenz system by training on points along sampled
trajectories. The stable manifold of the system’s trajectories is a genus 2 manifold
embedded in R3. For the classical parameter values, the Lorenz attractor admits
a Sinai-Ruelle-Bowen (SRB) measure with support over the surface of the system
[Tucker, 2002]. Informally, we can say that initial values “diffuse” over this surface.
To create an i.i.d. dataset we generated 100 trajectories using the classical parameter
values for the system, then uniformly sampled positions x(t) ∈ R3 for t ∈ [0, 1000]
along these. The procedure for the creation of the data set matches that of Brehmer
and Cranmer [2020]. Our model consists of flows comprising five layers of RQ coupling
transformations and models the manifold using two coordinate charts. More details
on architectures and hyperparameter settings can be found in Appendix C.4.
Fig. 4.5 shows the manifold and probability distribution learned by our model and
M-flow. Parameterizing the manifold with multiple charts allows MCF to preserve
the global topological structure of the manifold and to learn the probability distri-
bution on it, even though the surface is self-intersecting. The single charted M-flow
struggles to accurately reconstruct the manifold, as it tries to cover the surface with a
single coordinate chart, which implies the surface is homeomorphic to the plane. We
do note however that M-flow has captured the coarse-grained topological features of
the surface, e.g. the reconstructed manifold is still genus 2 (i.e. contains two “holes”).



56 4 Density estimation on smooth manifolds with normalizing flows

Figure 4.4. Density estimation results on real world densities. Learned density of the
earthquakes (left) and fires (right) geological data as distributions on a sphere. Blue points
are sampled from the training set, while red points are sampled from the evaluation set.

4.4.4 Quantitative experiments: Real world particle physics data

Our quantitative experiment focuses on the task of inferring the parameters of a
proton-proton collision process at the Large Hadron Collider (LHC). Raw data is
usually in the order of millions, but following common practice among domain experts,
we use a vector of 40 features to represent the data. The model of the process is based
on a simulator which generates data x ∈ R40 given parameters θ ∈ R3 according to
an implicit probability distribution p(x|θ). From domain experts we know that the
data resides in a 14-dimensional manifold embedded in R40. Given the observations x
and parameters θ, our task is to infer the posterior distribution over the parameters
p(θ|x). Thus, we train our model as a conditional density estimator to learn the
simulator likelihood function.
Baseline models include a Euclidean flow in the ambient space (RQ-Flow, [Durkan
et al., 2019a]), the M-flow model, as well as an M-flow variant with an unrestricted
encoder denoted by Me-flow, both of which were proposed by Brehmer and Cran-
mer [2020]. Furthermore, Brehmer and Cranmer [2020] introduced versions of the
models trained with the SCANDAL method [Brehmer et al., 2020], which improves
inference performance. All baselines are composed of thirty-five RQ coupling layers,
interspersed with invertible, LU-decomposed linear transformations. The RQ-Flow is
trained with maximum likelihood, while the M-flow models are trained in two phases,
as in [Brehmer and Cranmer, 2020] corresponding to a manifold learning phase and
a density estimation phase. Our model (MCF) comprises five coordinate charts and
each coordinate map is composed of ten RQ coupling layers, interspersed with invert-
ible, LU-decomposed linear transformations. For further details on architectures and



4.4 Experiments 57

Figure 4.5. The manifold and probability distribution for the Lorenz attractor system. For
the M-flow model, the depicted manifold is learned, whereas for MCF the manifold shape
is implicitly preserved through locally invertible models. Brighter color represents areas of
higher estimated density. Ground truth shows sampled trajectories and the implicit surface
formed by the system.

hyperparameters, see Appendix C.5.

Model sample closure ↓ log posterior ↑
RQ-Flow [Durkan et al., 2019a] 0.0019 ± 0.0001 -3.94 ± 0.87

RQ-Flow (SCANDAL) 0.0565 ± 0.0059 -0.49 ± 0.09
M-flow [Brehmer and Cranmer, 2020] 0.0045 ± 0.0004 -1.71 ± 0.30

M-flow (SCANDAL) 0.0045 ± 0.0004 0.11 ± 0.04
Me-flow [Brehmer and Cranmer, 2020] 0.0046 ± 0.0002 -1.44 ± 0.34

Me-flow (SCANDAL) 0.0291 ± 0.0010 0.03 ± 0.09
MCF [ours] 0.0040 ± 0.001 0.55 ± 0.21

Table 4.1. Quantitative results on the large hadron collider (LHC) data. Sample closure
measures sample quality (lower is better), log-posterior score log p(θ|xobs) measures quality
of inference (higher is better). Each model is trained five times with independent initializa-
tions. The top and bottom values are removed and the mean is computed over the remaining
runs. Best results are shown in bold. Baseline results by Brehmer and Cranmer [2020].

For model evaluation, first we investigate the generative capabilities of all models by
evaluating a series of tests on model samples. These “closure tests” are a weighted
sum of individual constraints encoding relationships (derived from domain knowledge)
between dimensions in the observed vector, taking values in [0, 1], where smaller values



58 4 Density estimation on smooth manifolds with normalizing flows

denote higher sample quality. Second, we measure the quality of the log posterior
inference. Given a set of 20 observed samples xobs ∼ p(x|θ%), we evaluate model
likelihood in an MCMC sampler to generate posterior samples θ ∼ p(θ|xobs). To
evaluate the posterior, we then use kernel density estimation with a Gaussian kernel.
We evaluate all models for three different ground truth parameter points θ%. For more
details on the experimental setting of the task, see Brehmer and Cranmer [2020].
Table 4.1 summarizes results for the LHC data. While the RQ-Flow learns a good
sampler for the observed data judging by the closure test score, it does not estimate
the density well, as evidenced by the log posterior score. Maximum likelihood in
the ambient space does not take manifold topology into account, rather it relies on
models with enough capacity to map the data to a base distribution in the ambient
space. To the extent the model manages to learn such a mapping, it will be an
adequate data sampler but will concurrently lead to biased density estimates due
to the mismatch in the volume measures. Conversely, models that learn (such as
M-flow) or preserve (such as MCF) the topological structure of the data, achieve
more accurate density estimates. Using multiple charts, our method outperforms
all baselines in log posterior scores. In terms of sample quality, our method yields
marginally better results than the single-charted baselines, which could imply that the
underlying manifold is homeomorphic to Euclidean space, meaning a single chart is
enough to capture its topology, however using multiple charts is beneficial for density
estimation.

4.4.5 Running times

Respecting the topology of the data manifold yields tangible benefits to runtimes.
Our approach generally uses fewer flow layers and parameters than most baselines
leading to consistently smaller convergence times than all other baselines. Table 4.2
shows model wallclock times. For the experiments on section 4.4.1 all models were
trained on the CPU. For all other experiments all models were trained on a Titan X
(Pascal) GPU.

4.5 Conclusion
We have presented a flow-based framework for modelling data distributions on non-
Euclidean manifolds. Recent works in this direction either encode the topology of the
target manifold in the model’s architecture, rely on operations that do not scale to
high dimensions or can, in principle, only learn Euclidean manifolds. In contrast, our
method can generalize to manifolds of higher dimensions and/or complex topology.
Our approach can converge faster and to better optima compared to most baselines.
Shorter convergence times are not surprising since our approach does not require a lot



4.5 Conclusion 59

Datasets Models
MCF (ours) NMODE NCPS

Wrapped normals (S2) 1.53 ±0.64 54.28 ± 4.01 2.69 ± 0.42
Checkerboard (S2) 3.40 ±0.22 50.81 ± 2.74 8.13 ± 0.82

MCF (ours) M-flow
Lorenz attractor 16.35 ±0.28 35.84 ± 0.91

MCF (ours) M-flow RQ-Flow
Large Hadron Collider 80.5 ±1.32 96.61 ± 1.93 99.74 ± 4.71

Table 4.2. Model wallclock time per dataset (in hours). Computed over 3 training runs.

of capacity to learn subsets of the manifold with simpler topology. ODE-based models
and models that exploit local geometry match or surpass the performance of our
approach, since geometric operations respect manifold topology, therefore providing
a strong inductive bias. However, these models are inherently at a disadvantage
regarding computational cost and scalability, since they rely either on sequential
solvers, not taking full advantage of parallelization or on approximations of local
operators that become prohibitively expensive in higher dimensions. Against models
with structural priors, our model converges faster and achieves better optima since
it does not rely on classical projective maps (like the cylindrical projection used by
Rezende et al. [2020]) which do not preserve topology.

Limitations. Optimizing multi-charted manifold flow models is consistently harder
than their Euclidean counterparts, making hyperparameter configuration an impor-
tant consideration. We also assume that the data resides on a smooth manifold, which
might not necessarily be true. Finally, quantitative comparisons with other models
become harder as different chart parameterizations of manifolds result in different
units for the estimated log-likelihood.



60



Conclusion
In machine learning and related fields, data is represented as a set of vectors such that
they can be efficiently processed by numerical algorithms. While a naïve view of this
arbitrary choice could lead to the conclusion that Euclidean models and the related
algorithms are well suited to handling such data, we often find that the vector/Eu-
clidean representation does not actually imply a Euclidean underlying structure, in
terms of topology and/or geometry. As a result, Euclidean models are either ineffi-
cient or fail outright to model such datasets. In other cases we may even want to
represent data points as points on a manifold, albeit still with reference to an ambient
coordinate system in a vector format. Such examples include hierarchical data, typi-
cally represented as points on hyperbolic spaces or amino acids typically represented
as points on tori. In such cases Euclidean models are dropped entirely in favor of
models developed specifically for these particular spaces.
In this thesis we have presented our approach for designing models that respect the
topological and geometric features of the data without making any further assump-
tions regarding these other than that they are non-Euclidean. In chapter 2 we used
the notions of pull-back metrics and geodesics, i.e. the generalization of shortest
path distances to curved spaces as building blocks to design a Brownian motion-
based prior distribution defined on manifolds as well as endow the latent space with
a non-Euclidean geometric structure. We showed how employing this prior preserves
the relationships between encoded data points, at least from a perspective of short-
est distances between them and alleviates the problems of mapping datasets with
compact support onto a Euclidean space under the Gaussian distribution. Whereas
in chapter 2 we used Gaussian decoders to facilitate our approach, in chapter 3 we
generalized our method to non-Gaussian decoders by considering the manifold of
probability distributions and pulling back the related Fisher-Rao metric to the latent
space, allowing us to endow the latent space of VAEs with non-reparameterizable
and/or discrete decoders with a meaningful geometry. Finally, in chapter 4 we pre-
sented our approach for using normalizing flows to form a smooth atlas over the data
manifold and learn probability distributions defined on manifolds with complex (i.e.
non-Euclidean) topological properties.
By now it should be apparent to the reader that the running theme of our work is find-
ing ways to use elements from the theory of geometry and topology of non-Euclidean
spaces to build models that benefit from such considerations. We have presented



62 Conclusion

results that showcase that the use of such models for exploratory analyses of datasets
yields much more sensible outcomes, such as geodesic (as opposed to Euclidean short-
est path) interpolations. We judge this to be a strong indication that respecting the
geometry of the data manifold preserves relationships between data points, insofar
one accepts the argument that these are reflected in the relevant geometry. This
approach also yields promising results in downstream tasks that benefit from repre-
sentations that more accurately preserve these relationships, such as classification.
We have also presented a strategy to extend this approach to non-reparameterizable
distributions through the use of information geometry, extending its utility beyond
the usual optimization setting where its application is related to natural gradients.
Importantly, both in the case of VAEs and normalizing flows, the use of non-Euclidean
mathematical frameworks represents a general strategy to avoid numerical problems
and unstable optimization related to the mismatch between the topology of the data
manifold and that of the latent spaces of these models. Furthermore, and for flows
in particular, we have shown how to use such Euclidean tools to learn distributions
on non-Euclidean spaces. Well performing Riemannian normalizing flow-based ap-
proaches that encode the topology or geometry of particular manifolds as structural
priors exist in the literature, yet our approach based on forming a smooth atlas over
the data manifold and as such, avoiding costly and largely non-scalable Riemannian
computations yields faster training times with comparable results.

Future work Models with geometric inductive biases are gaining more traction in
the machine learning community, yet scalable models with geometric inductive biases
that are general enough as to be agnostic to the particular topological features of the
data manifolds in question are still rare. The dichotomy of mathematical principle
on the one hand, and intensive tinkering through experimentation on the other is
something the machine learning community is no stranger to and with the advent
of large scale diffusion-based models, the scales seem tipped in favor of the latter.
However, we think that these two approaches need not be antithetical but rather can
be made to work in synergy. We consider the models we have presented in this thesis
to be the initial steps towards the development of efficient and scalable non-Euclidean
tools with more general topological/geometric inductive biases. We believe that such
approaches should, at minimum, yield comparable results to large scale Euclidean
models, while at the same time be characterized by more efficient training with regards
to optimization, training times and sample efficiency. Some initial encouraging results
in this direction are already present in this thesis. Thus, there remains a lot of room
for future work in merging topological/geometric approaches with large scale models
in a way that enhances the efficiency and/or performance of the latter.



Appendices





APPENDIX A
Appendix to chapter 2
A.1 On neural network-based immersions

For the decoder map 2.2 to be a valid immersion, its differential df needs to be
injective for all p ∈ M as stated in definition 5. The differential of f is represented
by its Jacobian matrix Jf and for it to be injective for all p ∈ M, it needs to be
full rank. This is ensured if for the MLPs representing the decoder µθ and σψ the
following are true:

• Each hidden layer in the network has an equal or greater number of units to
the previous layer (nL−1 ≤ nL).

• All weight matrices in the network are full rank.

• The activation functions are at least twice differentiable and strictly monotonic.

In our experiments, we opt for the same number of units in each hidden layer of
the network and ELU non-linearities. In theory, the ELU activation function could
present problems since it has a point of discontinuity at 0, however we did not experi-
ence any numerical instability that would arise in such case. All weight matrices are
initialized uniformly He et al. [2015] which practically has zero probability of yielding
low rank weight matrices. While theoretically this could change via the gradient up-
dates of the weights, this would once again immediately break experiments because
of numerical instabilities, which we did not observe.

A.2 Geodesic estimation

We estimate geodesic distances by minimizing curve energy. In detail, we represent
the geodesic curve with a cubic spline with parameters initialized to form a straight
line. These parameters are then optimized via gradient descent by minimizing the



66 Appendix A Appendix to chapter 2

curve energy:

E(γ) = 1
2

∫ 1

0
||γ̇(t)||2g dt

= 1
2

∫ 1

0
γ̇#(t)Gγ γ̇(t) dt (A.1)

where γ is the geodesic curve, γ̇ is the first derivative of the curve, i.e. its velocity
vector and Gγ is the matrix representation of the metric tensor evaluated at the
curve points. The integral A.1 is computed by numerical approximation, where the
partition of the interval can be chosen as a hyperparameter.

A.3 Experimental setup

The architectures of all model variants are shown below in Tables A.1 and A.2. The
encoder mean and variance, as well as the decoder mean are modelled by 2-layer MLPs
as shown below. The decoder mean mirrors the encoder mean, while the precision
β is estimated by the RBF network. The number of the RBF centers is set to 350
and the bandwidth is set to 0.01 in all cases. For a fair comparison, all models share
the same underlying architecture for the encoder and decoder. Tables A.1 and A.2
summarize the architectures, listing the activation function for each layer with the
units corresponding to each layer in parentheses.

Table A.1. Encoder network architectures.

Network Layer 1 Layer 2 Output
µφ(x) ELU (300) ELU (300) Linear (dim(z))
σ2
φ(x) ELU (300) ELU (300) Softplus (dim(z))

Table A.2. Decoder network architectures. * denotes strictly positive weights.

Network Layer 1 Layer 2 Output
µθ(z) ELU (300) ELU (300) Linear (dim(x))
βψ(z) RBF (Rdim(Z)×350) Linear* (dim(x)) Identity (dim(x))

A.3.1 Section 5.1 experiment

Detlefsen et al. [2019a] highlighted the importance of optimizing the mean and vari-
ance components separately, when training VAEs with Gaussian generative models.



Appendix A.3 Experimental setup 67

Following this paradigm, in all our experiments we first optimize the encoder com-
ponents (µφ and σφ) along with the decoder µθ. Then, keeping these fixed, we
optimize the decoder σψ. All models were trained for 300 epochs. More specifically,
the R-VAE was trained as an autoencoder (optimizing only the encoder µφ and σφ
and the decoder µθ) for the first 100 epochs and for the remaining 200 epochs the
latent prior and the decoder βψ were optimized. Similarly for a VAE, it was deter-
ministically warmed up for 100 epochs and for the remaining 200 epochs, the decoder
βψ was optimized. All experiments were run with the Adam optimizer Kingma and
Ba [2015] with default parameter settings and a fixed learning rate of 10−3. The
batch size was 100 for all models.

A.3.2 Section 5.2 experiment

The classifier used on this section was a single, 100-unit layer MLP with ReLU non-
linearities, trained for 100 epochs with the Adam optimizer with default parameter
settings and a learning rate of 10−3. The batch size was set at 64. The architectures
of the models giving rise to the latent representations are as in the previous section.

A.3.3 Runtime comparisons

Below is the wall clock time for every model used in the experiments. The statistics
were computed without a fixed seed. The latent space dimensions are denoted by d.
In VAE-VampPrior, n denotes the number of mixture components in the latent prior.

Table A.3. Per epoch training time for each model. Mean and std deviation in seconds,
computed over 100 epochs on MNIST.

Model d = 2 d = 5 d = 10
VAE 10.64±.51 11.01±.77 11.10±.60
VAE-VampPrior (n = 128) 10.66±.6 11.22±.9 11.37±.96
VAE-VampPrior (n = 256) 10.72±.3 11.34±1.21 11.52±.77
VAE-VampPrior (n = 512) 10.9±.34 11.38±.93 12.18±1.12
R-VAE 55.73±4.36 59.97±1.33 60.13±1.19

A.3.4 Complete results for VAE-VampPrior

Tables 2.1 & 2.2 show the results of the best performing VampPrior model variant.
Here we show the complete results of the VAE-VampPrior in all settings. Below n



68 Appendix A Appendix to chapter 2

denotes the number of mixture components in the latent prior, while d denotes the
latent space dimensions.

Table A.4. MNIST results of VAE with VampPrior for varying latent space dimensions
and number of mixture components in the latent prior.

Model Neg. ELBO Rec KL
d = 2

VAE-VampPrior (n = 128) -1039.66±2.56 -1042.13±2.56 2.46±.01
VAE-VampPrior (n = 256) -1045.04±5.20 -1047.34±5.22 2.30±.03
VAE-VampPrior (n = 512) -1040.79±9.23 -1043.24±9.25 2.45±.05

d = 5
VAE-VampPrior (n = 128) -1100.77±4.98 -1102.46±4.91 1.69±.06
VAE-VampPrior (n = 256) -1103.29±1.85 -1105.04±1.79 1.75±.12
VAE-VampPrior (n = 512) -1109.74±4.87 -1111.63±4.87 1.88±.01

d = 10
VAE-VampPrior (n = 128) -1110.05±6.10 -1112.23±5.82 1.84±.04
VAE-VampPrior (n = 256) -1116.58±4.23 -1118.28±4.20 1.69±.02
VAE-VampPrior (n = 512) -1100.64±2.93 -1102.42±2.97 1.78±.03

Table A.5. FashionMNIST results of VAE with VampPrior for varying latent space dimen-
sions and number of mixture components in the latent prior.

Model Neg. ELBO Rec KL
d = 2

VAE-VampPrior (n = 128) -694.63±8.65 -697.14±8.65 2.50±.01
VAE-VampPrior (n = 256) -702.67±17.45 -705.19±17.44 2.52±.04
VAE-VampPrior (n = 512) -705.90±21.29 -708.45±21.29 2.54±.01

d = 5
VAE-VampPrior (n = 128) -755.80±.66 -756.58±.71 0.77±.06
VAE-VampPrior (n = 256) -767.54±3.22 -768.33±3.31 0.78±.09
VAE-VampPrior (n = 512) -769.27±5.0 -770.10±5.02 0.83±.09

d = 10
VAE-VampPrior (n = 128) -754.47±6.78 -758.20±6.72 3.72±.06
VAE-VampPrior (n = 256) -756.13±5.40 -760.49±5.1 3.69±.06
VAE-VampPrior (n = 512) -774.17±10.83 -777.75±10.78 3.58±.06



APPENDIX B
Appendix to chapter 3
B.1 Additional details for information geometry
In this section we provide additional information regarding information geometry. We
note that many of these proposition are already know in the literature, however, we
include them for completion and for the paper to be standalone.
The Fisher-Rao metric is positive definite only if it is non-singular, and then, defines
a Riemannian metric [Nielsen, 2020]. In this paper, we assume that the observation
x ∈ X is a random variable following a probability distribution p(x) such that x ∼
p(x|η), and any smooth changes of the parameter η would alter the observation x.
This way, the Fisher-Rao metric used in our paper is non-singular and the statistical
manifold H is a Riemannian manifold.
A known result in information geometry [Amari, 2016, Nielsen, 2020] is that the
Fisher-Rao metric is the first order approximation of the KL-divergence, as recall in
Proposition 5. Using this fact, we can define the Fisher-Rao distance and energy in
function of the KL-divergence, leading to Proposition 6.
Proposition 5. The Fisher-Rao metric is the first order approximation of the KL-
divergence between perturbed distributions:

DKL(p(x|η)||p(x|η + δη)) = 1
2δη

$
IH(η)δη + O(δη2),

with IH(η) =
∫

p(x|η)
[
∇η log p(x|η)∇η log p(x|η)#] dx.

Proof. Let’s decompose log p(x|η + δη) using the Taylor expansion:

log p(x|η+ δη) = log p(x|η) + ∇η log p(x|η)#δη+ 1
2δη

#Hessη [log p(x|η)] δη+ O(δη2),

where the Hessian is Hessη [log p(x|η)] = Hessη [p(x|η)]
p(x|η) − ∇η log p(x|η)∇η log p(x|η)#

and the ∇η log p(x|η) = ∇ηp(x|η)
p(x|η) .

Also
∫

∇ηp(x|η)dx = ∇η

∫
p(x|η)dx = 0 and

∫
Hessη[p(x|η)]dx = Hessη[

∫
p(x|η)dx]

= 0.



70 Appendix B Appendix to chapter 3

Replacing all those expressions to the first equation finally gives:

DKL(p(x|η)||p(x|η + δη))

=
∫

p(x|η) log p(x|η)dx −
∫

p(x|η) log p(x|η + δη)dx

= −
∫

p(x|η)
(

∇η log p(x|η)#δη + 1
2δη

#Hessη[log p(x|η)]δη + O(δη2)
)

dx

= 1
2δη

#
[∫

p(x|η)
[
∇η log p(x|η)∇η log p(x|η)#] dx

]
δη + O(δη2).

Definition 8. We consider a curve γ(t) and its derivative γ̇(t) on the statistical
manifold such that, ∀t ∈ [0, 1], γ(t) = ηt ∈ H. The manifold is equipped with the
Fisher-Rao metric. The length and the energy functionals are defined with respect to
the metric IH(η):

Length(γ) =
∫ 1

0

√
γ̇(t)#IH(η)γ̇(t)dt and Energy(γ) =

∫ 1

0
γ̇(t)#IH(η)γ̇(t)dt.

Locally length-minimising curves between two connecting points are called geodesics.
These can be found by minimizing the energy using the Euler-Lagrange equations
which gives the following system of 2nd order nonlinear ordinary differential equations
(ODEs) [Arvanitidis et al., 2018]

γ̈(t) = −1
2I−1

H (γ(t))
[
2(γ̇(t)# ⊗ Id)∂vec[IH(γ(t))]

∂γ(t) γ̇(t)− ∂vec[IH(γ(t))]
∂γ(t)

#
(γ̇(t)⊗ γ̇(t))

]
.

(B.1)
Proposition 6. The KL-divergence between two close elements of the curve γ is
defined as: KL(pt, pt+δt) = DKL(p(x|γ(t))||p(x|γ(t + δt))). The length and the
energy functionals can be approximated with respect to this KL-divergence:

Length(γ) ≈
√

2
∑T

t=1 KL(pt, pt+δt) and Energy(γ) ≈ 2
δt

∑T
t=1 KL(pt, pt+δt)

Proof. On the statistical manifold, we have γ(t + δt) = γ(t) + δtγ̇(t). The KL diver-
gence between perturbed distributions can be defined as:

KL(pt, pt+δt) = KL(p(x|γ(t)), p(x|γ(t + δt))) = KL(p(x|ηt), p(x|ηt + δηt)), (B.2)

with ηt = γ(t) and δηt = δt γ̇(t). Then, we obtain:

KL(pt, pt+δt) = 1
2δt

2 γ̇(t)#IH(ηt)γ̇(t) + O(δt2).



Appendix B.1 Additional details for information geometry 71

The length and energy terms appear in the following equations:
∫ 1

0
KL(pt, pt+δt)dt = δt2

2

∫ 1

0
γ̇(t)#IH(ηt)γ̇(t)dt + O(δt2) = δt2

2 Energy(γ)

+O(δt2),
∫ 1

0

√
KL(pt, pt+δt)dt = δt√

2

∫ 1

0

√
γ̇(t)#IH(ηt)γ̇(t)dt + Oδt2) = δt√

2
Length(γ)

+O(δt2).

If we want approximate any continuous function f with a discrete sequence, by parti-
tioning it in T small segments, such that: δt ≈ 1

T , we have:
∫ 1

0 f(t)dt ≈
∑T

t=1 f(t)δt,
which in our case gives:

Length(γ) ≈
√

2
∑T

t=1 KL(pt, pt+δt) and Energy(γ) ≈ 2
δt

∑T
t=1 KL(pt, pt+δt).

B.1.1 The Fisher-Rao metric for several distributions

Distributions PDFs Parameters Fisher-Rao matrix

Normal 1√
2πσ2 exp

{
− (x−µ)2

2σ2

}
µ,σ2 IN (µ,σ2)

Bernoulli θx(1 − θ)1−x θ IB(θ)

Categorical
∏K

k=1 θ
xk
k θ1, . . . , θK IC(θ1, . . . , θK)

Gamma βαxα−1e−βx

Γ(α) α,β IG(α,β)

Von Mises-Fisher (S2) κ
4π sinhκ exp

{
(κµ#x)

}
κ, µ IS(κ, µ)

Beta Γ(α)Γ(β)
Γ(α+β) xα−1(1 − x)β−1 α,β IB(α,β)

Table B.1. List of distributions

With the notations of Table B.1, the Fisher-Rao matrices of the the univariate Normal,
Bernoulli and Categorical are:

IN (µ,σ2) =
( 1
σ2 0
0 1

2σ2

)
, IB(θ) = 1

θ(1 − θ) , IC(θ1, . . . , θK) = diag(1/θ1, . . . , 1/θK)



72 Appendix B Appendix to chapter 3

In addition, the Fisher-Rao matrices of the Gamma, Von Mises-Fisher and the Beta
distributions are:

IG(α,β) =
( α
β2 − 1

β

− 1
β Ψ1(α)

)
,

IS(κ, µ) =
(
κK(κ)(1 − 3µµ

$) + κ2µµ
$ (κK(κ)2 − 2

k K(κ) + 1)µ
(κK(κ)2 − 2

k K(κ) + 1)µ$ 3K(κ)2 − 2
κK(κ) + 1

)
,

IB(α,β) =
(

Ψ1(α) − Ψ1(α+ β) −Ψ1(α+ β)
−Ψ1(α+ β) Ψ1(β) − Ψ1(α+ β)

)
,

with Ψ1(α) = ∂2 ln Γ(α)
∂α the trigamma function, and K(κ) = coth κ− 1

κ .

Proof. The univariate Normal, Bernoulli and Categorical have already been studied
by Tomczak [2012], and the Beta distribution by Brigant and Puechmorel [2019]. We
will then focus our proof on the Gamma and the Von-Mises Fisher distributions.
In order to bypass unnecessary details, we will use the following notations, we redefine
the Fisher-Rao as: I(η) = Ex[g(η, x)g(η, x)#], with g(η, x) = ∇η ln p(x|η) the Fisher
score. We call G = g(η, x)g(η, x)$ , and Gij the matrix elements.
Gamma distribution:
We have p(x|α,β) = Γ(α)−1βαxα−1e−βx, which leads to:

ln p(x|α,β) = − ln Γ(α) + α ln β + (α− 1) ln x − βx,

∂ ln p

∂α
= −Ψ(α) + ln β + ln x,

∂ ln p

∂β
= α

β
− x.

Then:

G11 =
(
∂ ln p

∂α

)2
= (Ψ0(α) + ln β)2 + 2(Ψ(α) + ln β)lnx + ln2 x,

G22 =
(
∂ ln p

∂β

)2
=
(
α

β

)2
− 2α

β
x + x2,

G12 = G21 = ∂ ln p

∂α
· ∂ ln p

∂β
= (Ψ(α) + ln β)

(
α

β
− x

)
+ α

β
ln x − x ln x.

We know that E[x] = α
β . We can compute, using your favorite symbolic computation



Appendix B.1 Additional details for information geometry 73

software, the following moments:

E[ln x] = − ln β + Ψ(α)

E[x ln x] = α

β
(Ψ(α+ 1) − ln β)

E[ln2 x] = (ln β − Ψ(α))2 + Ψ1(α)

Replacing the moments for the following equations: E[G11], E[G22] and E[G12] will
finally give the Fisher-Rao matrix.

Von Mises Fisher distribution, for S2:
We have p(x|µ,κ) = C3(κ) exp

(
κµ#x

)
, with C3(κ) = κ(4π sinh κ)−1. Here, µ is a

3-dimensional vector with ‖µ‖ = 1.

ln p(x|µ,κ) = ln κ− ln 4π − ln sinh(κ) + κµ#x

∇µ ln p = κx

∂ ln p

∂κ
= κ−1 − coth(κ) + µ#x.

Here, the Fisher-Rao matrix IS will be composed of block matrices, such that: IS =
E[G], with G11 a 3 × 3-matrix, G22 a scalar, and G12 = G

$

21 a 3-dimensional vector.

G11 = ∇µ ln p∇µ ln p
$ = κ2xx#

G22 =
(
∂ ln p

∂κ

)2
= K(κ)2 + 2K(κ)µ$

x + (µ#x)2

G12 = G
$

21 = ∂ ln p

∂κ
· ∇µ ln p =

(
K(κ) + µ#x

)
κx,

with K(κ) = coth(κ) − 1
κ .

We know from Hillen et al. [2016] that the mean and variance of the Von Mises Fisher
distribution in the 3-dimensional case is: E[x] = K(κ)µ and Var[x] = 1

κK(κ)1+ (1 −
coth(κ)

κ + 2
κ2 − coth2(κ))µµ

$ . We can then deduce the following meaningful moments:

E[xx
$ ] = Var[x] + E[x]E[x]$ =

(
1 − 3

κ
K(κ)

)
µµ

$ + 1
κ

K(κ)1,

E[µ#x] = µ
$
E[x] = K(κ)µ$

µ = K(κ)

E[(µ#x)2] = µ
$Var[x]µ + E[µ#x]2 = 1 − 2

κ
K(κ),

E[µ#xx] = E[µxx#] = E[xx#]µ =
(

1 − 3
κ

K(κ)
)

µ + 1
κ

K(κ)µ.

Replacing those moments in the following expressions: E[G11], E[G22], E[G12] directly
gives the Fisher-Rao metric.



74 Appendix B Appendix to chapter 3

B.2 Curve energy approximation for categorical data
In this section we present the details of the example in Section 3.3.3. In particular,
we the steps to derive an approximation to the energy of a latent curve in closed form,
which is suitable for applying automatic differentiation. This is particularly useful
for our setting, since it allows us to consider our framework as a Black Box Random
Geometry processing toolbox.
Let a random variable x ∈ RD that follows a generalized Bernoulli likelihood p(x|η),
so the vector x ∈ RD is of the form x = (0, · · · , 1, · · · , 0) with

∑
i xi = 1. The param-

eters η ∈ RD are given as η = h(z), with ηi ≥ 0 ∀i and
∑

i ηi = 1 so we know that
the parameters lie on the unit simplex. Actually, they represent the probability the
corresponding dimension to be 1 on a random draw. Also, the p(x|z) = η[x1]

1 · · · η[xD]
D ,

where [xi] = 1 if xi = 1 else [xi] = 0 which can be seen as an indicator function. The
log p(x|η) =

∑
i[xi] log(ηi) and ∇η log p(x|η) =

(
[x1]
η1

, . . . , [xD]
ηD

)
. Due to the outer

product we have to compute the following expectations

Ex

[ [xi]
ηi

[xj ]
ηj

]
= 0, if i %= j, (B.3)

Ex

[( [xi]
ηi

)2]
= 1
ηi

, if i = j, (B.4)

because the [xi] and [xj ] cannot be 1 on the same time, while the Ex[[xi]2] = ηi as
it shows the number of times xi = 1. So the Fisher-Rao metric of H is equal to
IH(η) = diag (1/η1, . . . , 1/ηD). Note that the shortest paths between two distributions
must be on the unit simplex in H, while on the same time respecting the geometry
of the Fisher-Rao metric.
We can easily parametrize the unit simplex by [η1, . . . , ηD−1, η̃D] with

η̃D(η1, . . . , ηD−1) = 1 −
D−1∑

i=1
ηi. (B.5)

This allows to pullback the Fisher-Rao metric in the latent space [η1, . . . , ηD−1] as
we have described in this paper. Intuitively, the z = [η1, . . . , ηD−1] and the function
h is the parametrization of the simplex. Hence, we are able to compute the shortest
path using the induced metric.
However, there is a simpler way to compute this path. We know that the element-
wise square root of the parameters η gives a point on the positive orthonant of the
unit sphere as yi = √

ηi ⇒
∑

i y2
i =

∑
i
√
ηi

2 = 1. We also know that the shortest
path on a sphere is the great-circle. Therefore, the distance between two distributions
parametrized by η and η′ on the unit simplex in H, can be equivalently measured



Appendix B.3 Information geometry in generative modeling 75

using the great-circle distance between their square roots as
dist(η, η′) = arccos √

η#√η′. (B.6)

In this way, we can approximate the energy of a curve c(t) in the latent space as
follows

Energy[c] ≈
N−1∑

n=1
dist2(h(c(n/N)), h(c(n + 1/N))) (B.7)

=
N−1∑

n=1
arccos2√h(c(n/N))#√

h(c(n + 1/N))

=
N−1∑

n=1

(
2 − 2

√
h(c(n/N))#√

h(c(n + 1/N))
)

, (B.8)

where we used at the last step the small angle approximation cos θ ≈ 1 − θ2

2 ⇔ θ2 ≈
2−2 cos θ. Note that this formulation is suitable for our proposed method to compute
shortest paths (see Section 3.3.2).
The derivation above represents the conceptual strategy, while in general we proposed
to use the KL divergence approximation result equation 3.8 in place of the great-circle
distance. Intuitively, when the KL divergence has an analytic solution, we can derive
an analogous energy approximation. Even if the solution of the KL is intractable, we
can still use our approach as long as we can estimate the KL using Monte Carlo and
propagate the gradient through the samples using a re-parametrization scheme or a
score function estimator.

B.3 Information geometry in generative modeling
In this section we present the additional technical information related to the pullback
Fisher-Rao metric in the latent space of a VAE.

B.3.1 Details for the pullback metric in the latent space

We call h the non linear function, typically parametrized as deep neural networks,
that maps the variables from the latent space Z to the parameter space H, such that:
h(z) = η, with z ∈ Z and η ∈ H. Furthermore, the data x ∈ X is reconstructed such
that it follows a specific distribution: x ∼ p(x|η), with p(x|η) being for instance a
Bernoulli or Gaussian distribution. The parameter space H is a statistical manifold
equipped with Fisher-Rao metric: IH(η) ∆=

∫
p(x|η)

[
∇η log p(x|η)∇η log p(x|η)#] dx.

We denote by Jh the Jacobian of h.



76 Appendix B Appendix to chapter 3

Proposition 7. The latent space Z is equipped with the Riemannian pullback metric
tensor:

G(z) ∆= Jh(z)#IH(h(z))Jh(z).

Proof. The parameter space is a statistical manifold equipped with the Fisher-Rao
metric IH(η), thus the scalar product at η between two vectors dη1, dη2 ∈ H is:
〈dη1, dη2〉IH(η) = dη#

1 IH(η)dη2. For two vectors dz1, dz2 ∈ Z, we have at η = f(z)
that: 〈dη1, dη2〉IH(η) = 〈Jh(z)dz1, Jh(z)dz2〉IH(η) = dz#

1 (Jh(z)#IH(h(z))Jh(z))dz2.
IH(h(z)) is a Riemannian metric tensor by definition, and it is then positive definite.
Furthermore, h : Z → H is a smooth immersion, and so Jh(z) is full-rank. It follows
that Jh(z)#IH(h(z))Jh(z) is positive definite. Hence G(z) is a Riemannian metric
tensor.

Proposition 8. Our pullback metric G(z) is actually equal to the Fisher-Rao metric
obtained over the parameter space Z:

G(z) = IZ(z) ∆=
∫

p(x|z)
[
∇z log p(x|z)∇z log p(x|z)#] dx

Proof. We will show that IZ(z) = Jf (z)#IH(η)Jf (z). Let’s consider the definition
of the Fisher-Rao metric in Z :

IZ(z) =
∫

∇z log p(x | z) · ∇z log p(x | z)#p(x | z)dx (B.9)

=
∫

Jf (z)#∇η log p(x|η)∇η log p(x|η)#Jf (z)p(x|η)dx (B.10)

= Jf (z)#
[∫

X
∇η log p(x|η)∇η log p(x|η)#p(x|η)dx

]
Jf (z) (B.11)

= Jf (z)#IH(f(z))Jf (z) = G(z)

where we use the fact that η = f(z) so the ∇z log p(x|f(z)) = Jf (z)# · ∇η log p(x|η)
The same argument can be proved as follows:

〈dη, IH(η)dη〉 = 〈Jf (z)dz, IH(f(z))Jf (z)dz〉 (B.12)

= 〈Jf (z)dz,

∫
∇η log p(x|η)∇η log p(x|η)#p(x|η)dx Jf (z)dz〉 (B.13)

= 〈dz,

∫
Jf (z)# · ∇η log p(x|η) ∇η log p(x|η)# · Jf (z)p(x|η)dx dz〉 (B.14)

= 〈dz,

∫
∇z log p(x|z)∇z log p(x|z)#p(x|z)dx dz〉 = 〈dz, IZ(z)dz〉 (B.15)



Appendix B.3 Information geometry in generative modeling 77

In section B.1.1, we have seen how to derive a close-form expression of the Fisher-
Rao metric for a one-dimensional observation x that follows a specific distribution.
In practice, x ∈ X ⊂ RD is a multi-dimensional variable where each dimension
represents, for instance, a pixel when working with images or a feature when working
with tabular data. Each feature, xi with i = 1 · · · D, is obtained for a specific set of
parameters {ηi}. We assume that the features follow the same distribution D, such
that: xi ∼ p(xi|ηi), and p(x|η) =

∏D
i=1 p(xi|ηi).

Proposition 9. If the features follow the same distribution D, such that: xi ∼ p(xi|ηi)
and p(x|η) =

∏D
i=1 p(xi|ηi), then the Fisher-Rao metric IH(η) is a block matrix where

the diagonal terms are the Fisher-Rao matrices IH,i obtained for each data feature xi:

IH(η) =





IH,1 0 . . . 0
0 IH,2 . . . 0
...

... . . . ...
0 0 . . . IH,D





Proof. We have xi ∼ p(xi|ηi) and IH,i =
∫

p(xi|ηi)
[
∇ηi log p(xi|ηi)∇ηi log p(xi|ηi)#] dxi.

Also, we assumed: p(x|η) =
∏D

i=1 p(xi|ηi). We then have: log p(x|η) =
∑D

i=1 log p(xi|ηi),
and the Fisher score:

∇η log p(x|η) = ∇η

D∑

i=1
log p(xi|ηi) = [∇η1 ln p(x1|η1), . . . , ∇ηD ln p(x1|ηD)]#

(B.16)

The matrix IH(η) is thus a D × D block matrix, where the (i, j)-block element is:

Iij =
∫

p(xi|ηi)
[
∇ηi log p(xi|ηi)∇ηi log p(xj |ηj)#] dxi.

Let’s note that:
∫

p(xi|ηi)∇ηi log p(xi|ηi)dxi =
∫

p(xi|ηi)
∇ηip(xi|ηi)

p(xi|ηi)
dxi = ∇ηi

∫
p(xi|ηi)dxi = 0.

When i = j, we have Iii = IH,i, with IH,i being the Fisher-Rao metric obtained for:
xi ∼ p(xi|ηi).
When i %= j, we have: Iij = ∇ log p(xj |ηj)# ∫ p(xi|ηi)∇ηi log p(xi|ηi)dxi = 0.

Then, for example, if we are dealing with binary images, and make the assumption
that each pixel xi follows a Bernoulli distribution: p(xi|ηi) = ηxi(1 − ηi)1−xi , then
according to Section B.1.1 and Proposition 9, the Fisher-Rao matrix that endows the



78 Appendix B Appendix to chapter 3

parameter space H is:

IH(η) =





1
η1(1−η1) 0 . . . 0

0 1
η2(1−η2) . . . 0

...
... . . . ...

0 0 . . . 1
ηD(1−ηD)




.

We have seen that in theory, we can obtain a close form expression for the pullback
metric, if the probability distribution is known. In practice, we can directly infer the
metric using the approximation of the KL-divergence.
Proposition 10. We define perturbations vectors as: δei = ε·ei, with ε ∈ R+ a small
infinitesimal quantity, and (ei) a canonical basis vector in Rd. For clarity, we rename
DKL(p(x|z)||p(x|z + δz)) = KLz(δz) and we note Gij the components of G(z). We
can then approximate by a system of equations the diagonal and non-diagonal elements
of the metric:

Gii ≈ 2 KLz(δei)/ε2

Gij = Gji ≈ (KLz(δei + δej) − KLz(δei) − KLz(δej)) /ε2.

Proof. From Proposition 5, we know that:

KLz(δz) = 1
2δz

$
G(z)δz + o(δz2).

Let’s take δei = ε · ei. On one hand, we have: δe$

i G(z)δei = ε2Gii. On the second
hand, we also have: δe$

i G(z)δei ≈ 2KLz(δei), which gives us the equation to infer
the diagonal elements of the metric.

Now, let’s take δei + δej = ε · (ei + ej). Then, we have: (δei + δej)$
G(z)(δei + δej) =

ε2(Gii + Gjj + Gij + Gji). We also know that Gji = Gij . Again, we also have:
(δei + δej)$

G(z)(δei + δej) ≈ 2KLz(δei + δej).
We can replace the terms Gii and Gjj in the equation obtained above with the KL-
divergence for the diagonal terms. Which finally gives us:

Gij = Gji ≈ (KLz(δei + δej) − KLz(δei) − KLz(δej)) /ε2. (B.17)

B.3.2 Uncertainty quantification and regularization

As discussed in the main text, we carefully design our mappings from latent space
to parameter space such that they model the training codes according to the learned



Appendix B.4 Details for our implementation and experiments 79

decoders, and extrapolate to uncertainty outside the support of the data. This, we
refer to as uncertainty regularization. In this section we explain it in detail.
The core idea of this uncertainty regularization is imposing a “slider” that forces the
distribution p(x|z) to change when z is far from the training latent codes. For this,
we use a combination of KMeans and the sigmoid activation function.
We start by encoding our training data, arriving at a set of latent codes {zn}N

n=1 ⊆ Z.
We then train KMeans(k) on these latent codes (where k is a hyperparameter that
we tweak manually), arriving at k cluster centers {cj}k

j=1. These cluster centers serve
as a proxy for ”closeness” to the data: we know that a latent code z ∈ Z is near the
support if D(z) := minj

{
‖z − cj‖2} is close to 0.

The next step in our regularization process is to reweight our decoded distributions
such that we decode to high uncertainty when D(z) is large, and we decode to our
learned distributions when D(z) ≈ 0. This mapping from [0, ∞) → (0, 1) can be
constructed using a modified sigmoid function Detlefsen et al. [2019b, 2020], consider
indeed

σ̃β(d) = Sigmoid
(

d − c · Softplus(β)
Softplus(β)

)
, (B.18)

where β ∈ R is another hyperparameter that we manually tweak, and c ≈ 7.
With this translated sigmoid, we have that σ̃β(D(z)) is close to 0 when z is close to
the support of the data (i.e. close to the cluster centers), and it converges to 1 when
D(z) → ∞. σ̃β(D(z)) serves, then, as a slider that indicates closeness to the training
codes. This reweighting takes the following form:

reweight(z) = (1 − σ̃β(D(z)))h(z) + σ̃β(D(z)) extrapolate(z), (B.19)

where h(z) = η ∈ H represents our learned networks in parameter space, and
extrapolate(z) returns the parameters of the distribution that maximize uncertainty
(e.g. σ → ∞ in the case of an isotropic Gaussian, p → 1/2 in the case of a Bernoulli,
and κ → 0 in the case of the von Mises-Fisher).
For the particular case of the experiment in which we pull back the Fisher-Rao metric
from the parameter space of several distributions (see 3.4.2), Table B.2 provides the
exact extrapolation mechanisms and implementations of h(z).

B.4 Details for our implementation and experiments

In this section we present the technical details that we used in our implementation
and experiments. We are currently implementing an open-source version of our code
here.

https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries


80 Appendix B Appendix to chapter 3

Distribution h : Ztoy → H Extrapolation mechanism
Normal µ(z) = 10 · f3(z), σ(z) = 10 · Softplus(f3(z)) σ(z) → ∞
Bernoulli p(z) = Sigmoid(f15(z)) p(z) = 1/2
Beta α(z) = 10 · Softplus(f3(z)), β(z) = 10 · Softplus(f3(z)) (α(z),β(z)) = (1, 1)
Dirichlet α(z) = Softplus(f3(z)) α(z) = 1
Exponential λ(z) = Softplus(f3(z)) λ(z) → 0

Table B.2. This table shows the implementations of the decode and extrapolate functions
in Eq. (B.19) for all the distributions studied in our second experiment (see Sec. 3.4.2).
Here we represent a randomly initialized neural network with fi, where i represents the
size of the co-domain. For example, in the case of the Dirichlet distribution, we use a
randomly initialized neural network to compute the parameters α of the distribution and,
since these have to be positive, we pass the output of this network through a Softplus
activation; moreover, since the Dirichlet distribution is approximately uniform when all its
parameters equal 1, our extrapolation mechanism consists of replacing the output of the
network with a constant vector of ones.

B.4.1 What we mean when we say black-box random geometry

Before we dive into the specific details of our experiments, it is worth noting that
they were all made using the same interface. This is precisely what we mean when we
say that our results open the doors for black-box random geometry: We can define a
curve_energy method that is agnostic to the distribution our models decode to.
To hammer this point home, consider the following interface, written in Python:

1 class StatisticalManifold:
2 def __init__(self, model: torch.nn.Module):
3 # A model with regularized uncertainty (see Uncertainty

Quantification)
4 self.model = model
5 assert "decode" in dir(model)
6
7 def curve_energy(self, curve: CubicSpline) -> torch.Tensor:
8 # An energy function that can be minimized using autodifferentiation

.
9

10 dt = (curve[1] - curve[0])
11 dist1 = self.model.decode(curve[:-1])
12 dist2 = self.model.decode(curve[1:])
13 kl = kl_divergence(dist1, dist2)
14 energy = kl.sum() * (2 * dt ** -1)
15
16 return energy

Notice that the user need only provide a model that implements a decode function
which is expected to return a distribution with proper uncertainty estimates (as de-



Appendix B.4 Details for our implementation and experiments 81

scribed in Sec. B.3.2). Line 14 is a direct implementation of our derived expression
for the energy (see Prop. 6). Most distributions of interest are available in the Torch
submodule torch.distributions, and similar implementations could be done for
other frameworks.

B.4.2 Shortest path approximation with cubic splines

As we described in the main paper, we use an approximate solution for the shortest
paths based on cubic splines. Let a cubic spline

c\ψ(t) = [1, t, t2, t3]#[\ψ0, \ψ1, \ψ2, \ψ3] (B.20)

with parameters \ψi ∈ Rd×1. Also, in our implementation the actual curve is a
piecewise cubic spline and we optimize the K control points ck as well. We opti-
mize the parameters using the approximation of the curve energy {\ψ∗

k, c∗
k}K

k=1 =
arg min\ψ Energy[c\ψ]. In general, we can use Prop. 6 as long as we can propagate
the gradient through the KL or as in equation B.7 if an explicit closed form solution
exists. In this case, we are able to use automatic differentiation for the optimization
of the parameters (as discussed in Sec. B.4.1).
In practical terms, we compute these shortest paths by creating a uniform grid in
latent space and computing, only once, the curve energy for the edges of this grid.
After this expensive computation (which only needs to be performed once) we can use
shortest-paths algorithms in graphs to create a suitable initialization of the geodesic.
We fit a cubic spline to this initialization and then optimize its parameters further.

B.4.3 Models used

In this section we describe, in detail, the models that we used for our experiments (see
Sec.3.4). All the networks that we used are Multi-Layer Perceptrons implemented in
PyTorch.
First, Table B.3 shows the Variational Autoencoder implemented for the experiment
described in Sec. 3.4.1. In the computations without uncertainty regularization,
we used a simpler model for the uncertainty quantification (namely, a single Linear
layer, followed by a Softplus activation). For our second experiment involving a toy
latent space, we also provide the implementation of the respective MLPs in Table
B.4. Finally, Table B.5 and B.6 respectively represents the VAE trained for the
experiments related to motion capture (Sec. 3.4.3) and movie rating (Sec. 3.4.6). For
the motion capture experiments, we are training a VAE that decodes to a von Mises
Fisher distribution, and for the movie rating experiments, we decode to a Bernoulli
distribution.



82 Appendix B Appendix to chapter 3

Pulling back the Euclidean vs. Fisher-Rao (Sec. 3.4.1)
Module MLP

Encoder
µ Linear(728, 2)

Decoder
µ Linear(2, 728)

σUR RBF(), PosLinear(500, 1), Reciprocal(), PosLinear(1, 728)
σno UR Linear(2, 728), Softplus()

Optimizer Adam (α = 1 × 10−5)
Batch size 32

Table B.3. This table shows the Variational Autoencoder used in our first experiment
(see Sec. 3.4.1). The network for approximating the standard deviation σ leverages ideas
from Arvanitidis et al. [2018], in which an RBF network is trained on latent codes using
centers positioned through KMeans. The operation PosLinear(a, b) represents the usual
Linear transformation with a inputs and b outputs, but considering only positive weights.
To compare between having and not having uncertainty regularization, we use two different
approximations of the standard deviation in the decoder: σUR when performing meaningful
uncertainty quantification, and σ no UR otherwise.

Toy latent spaces (Sec. 3.4.2)
Distribution Module MLP Random seed β in σ̃β

Normal µ Linear(2,3) 1 -2.5
σ Linear(2,3), Softplus()

Bernoulli p Linear(2,15), Sigmoid() 1 -3.5

Beta α Linear(2,3), Softplus() 1 -4.0
β Linear(2,3), Softplus()

Dirichlet α Linear(2,3), Softplus() 17 -4.0
Exponential λ Linear(2,3), Softplus() 17 -4.0

Table B.4. This table describes the neural networks used for the experiment presented in
Sec. 3.4.2. Following the notation of PyTorch, Linear(a, b) represents an MLP layer with a
input nodes and b output nodes. In each of these networks, we implement the reweighting
operation described in Sec. B.3.2, and we describe the β hyperparameter present in the
modified sigmoid function (Eq. (B.18)). This networks were not trained in any way, and
they were initialized using the provided seed.



Appendix B.4 Details for our implementation and experiments 83

Decoding to a von Mises-Fisher Distribution (Sec 3.4.3, 3.4.4, 3.4.5)
Module MLP

Encoder (Normal dist.)
µ Linear(3 × 26, 90), Linear(90, 2)
σ Linear(3 × 26, 90), Linear(90, 2), Softplus()

Decoder (vMF dist.)
µ Linear(2, 90), Linear(90, 3 × 26), Linear(3 × 26, 3 × 26)
κ Linear(2, 90), Linear(90, 3 × 26), Linear(3 × 26, 26), Softplus()

Optimizer Adam (α = 1 × 10−3)
Batch size 16
β in σ̃β -5.5

KL annealing 0.01
Extrapolation κ → 0.1

Table B.5. This table shows the Variational Autoencoder used in our last two experiments
(see Sec. 3.4.3, 3.4.4). Our motion capture data tracked 26 different bones, and thus we
decode to a product of 26 different von Mises-Fisher distributions.

Decoding to a Bernoulli Distribution (Sec 3.4.6)
Module MLP

Encoder (Normal dist.)
µ Linear(60, 16), Tanh(), Linear(16, 16), Tanh(), Linear(16, 2)
σ Linear(60, 16), Tanh(), Linear(16, 16), Tanh(), Linear(16, 2), Softplus()

Decoder (Bernoulli dist.)
p Linear(2, 16), Tanh(), Linear(16, 16), Tanh(), Linear(16, 60), Sigmoid()

Optimizer Adam (α = 1 × 10−3, ω = 1 × 10−7)
Batch size 256
β in σ̃β -3.0

KL annealing 0.01
Extrapolation p → 1/2

Table B.6. This table shows the Variational Autoencoder used in the movie rating ex-
periement (see Sec. 3.4.6). The MovieLens 25M dataset has been preprocessed such that
it is composed of 10000 users rating if they have seen some of 60 selected movies. We only
select users that have seen more than two movies and less than 30 movies, to avoid outliers
and aim for a more realistic scenario. We used the same extrapolation mechanism described
in the toy experiments for the Bernoulli: having the probits be 1/2 (see Sec. B.3.2).



84 Appendix B Appendix to chapter 3

All of these VAEs were trained by maximizing the Evidence Lower Bound with differ-
ent values for KL annealing which can be read from the different tables. For example,
Table B.5 shows that the KL annealing constant was chosen to be 0.01.

B.4.4 Metric approximation and KL by sampling

When visualising our latent space as a statistical manifold, we can obtain a direct
approximation of the metric using the KL-divergence between two close distributions
(Proposition 4). We will show here, in simple cases, how our metric approximation
compares to close-form expressions.
In the following experiment, our statistical manifold is the parameter space of known
distributions (Beta and Normal). Their Fisher-Rao matrices are well-known (Sec.
B.1.1), and we approximate them by computing the KL-divergence of sampled dis-
tributions. We call Gt the theoretical metric and Ga the approximated metric, and
we note εr = ‖Gt−Ga‖

‖Gt‖ the relative error between the theoretical and approximated
matrices. Here, ‖·‖ denotes the Frobenius norm. For the Normal distribution, we
empirically obtain: εr = 5.32 · 10−4 ± 9.63 · 10−4, and for the Beta distribution, we
have: εr = 1.73 · 10−5 ± 1.17 · 10−5.

B.4.5 Computational complexity

Proposition 5 shows the system of equations required to approximate the pullback
metric in the latent space. Each KL operation requires 2 forward passes from the
decoder to compute, so first we establish the lower bound on the time complexity of
the decoder forward pass. Ignoring all activation function related operations, for an
MLP with H hidden layers, N -dimensional network output, K-dimensional hidden
layer output and single M -dimensional vector input, this lower bound is:

Ω
(

MK1 + KHN +
H−1∑

i=1
MiMi+1

)
(B.21)

For each diagonal element Gii of the metric tensor we need to compute a single KL
divergence, which will require two forward passes through the decoder network giving
us a (lower bounded) time complexity of Ω

[
2
(

MK1 + KHN +
∑H−1

i=1 MiMi+1
)]

for
each element. For the off-diagonal elements we will need to compute the KL three
times which corresponds to six forward passes through the decoder network. which
yields a (lower bounded) time complexity Ω

[
6
(

MK1 + KHN +
∑H−1

i=1 MiMi+1
)]

per element.



Appendix B.4 Details for our implementation and experiments 85

B.4.6 Information for the movie preferences experiment

For this experiment we used the MovieLens 25M dataset (https://grouplens.org/
datasets/movielens/25m/). Each cell of the data matrix represents the rating of a
user (row) from 1 to 5 for the corresponding movie (column). In order to fit a Bernouli
VAE we considered the matrix as binary i.e. if a user has seen a movie (1) or not (0).
We then selected the 60 most popular movies, as well as, 10000 users who have seen
between 2 and 30 of these movies. We also verified that all the movies have been seen
from at least 600 users. In this way we reduced the size of the dataset, obtaining a
realistic scenario where: 1) some movies are more popular than the others, and 2) we
do not include users that have seen 0 or almost all the movies. We show in Fig. B.1
the number of views for each movie and the number of movies each user has seen. In
Table B.6 we present the details for the Bernouli VAE.

Figure B.1. The numbers of views for the movies and the users.

B.4.7 Information for fitting the LAND model

The locally adaptive normal distribution (LAND) [Arvanitidis et al., 2016b] is the
extension of the normal distribution on Riemannian manifolds learned from data.
Pennec [2006b] first derived this distribution on predefined manifolds as the sphere
and also showed that it is the maximum entropy distribution given a mean and a
precision matrix. The flexibility of this probability density relies on the shortest paths.
However, the computational demand to fit this model is relatively high, especially in
our case, since we need to use an approximation scheme to find the shortest paths.
In particular, we compute the logarithmic map v = Logx(y) by first finding the
shortest path between x and y, and then, rescaling the initial velocity as v =

ċ(0)
||ċ(0)|| Length(c), which ensures that ||v|| = Length(c). In addition, for the estimation
of the normalization constant we use the exponential map Expx(v) = cv(t), which is
the inverse operator that generates the shortest path with c(1) = y taking the rescaled
initial velocity v as input. Also, we should be able to evaluate the metric. While

https://%20grouplens.org/datasets/movielens/25m/
https://%20grouplens.org/datasets/movielens/25m/


86 Appendix B Appendix to chapter 3

the logarithmic map can be approximated using our approach (Section B.4.2), for the
exponential map we need to solve the ODEs system equation B.1 as an initial value
problem (IVP). Note that we fit the LAND using gradient descent, which implies that
the computation of these operators is the main computational bottleneck.
We provided a method in Proposition 4, which enables us to approximate the pull-
back metric in the latent space of a generative model using the corresponding KL
divergence. Even if this is a sensible approach, in practice, the computational cost is
relatively high as we might need to estimate the KL using Monte Carlo. For example,
this is the case when the likelihood is the von Mises-Fisher. This further implies that
fitting the LAND using this approach is prohibited due to the computational cost.
Especially, since we need to evaluate many times the metric and its derivative for the
computation of each exponential map. Hence, in order to fit the LAND efficiently,
we used the following approximation based on Hauberg et al. [2012].
First we construct a uniformly spaced grid in the latent space. Then, we evaluate
the metric using Proposition 4 for each point on the grid getting a set {zs, Gs}S

s=1 of
metric tensors. Thus, we can estimate the metric at any point z as

G(z) =
S∑

s=1
w̃s(z)Gs, with w̃s(z) = ws(z)

∑S
j=1 ws(z)

and ws(z) = exp
(

− ||zs − z||2

2σ2

)

(B.22)
where σ > 0 the bandwidth parameter. This is by definition a Riemannian metric
as a weighted sum of Riemannian metrics with a smooth weighting function. In this
way, we can approximate the pullback of the Fisher-Rao metric in the latent space Z
in order to perform the necessary computations more efficiently.



APPENDIXC
Appendix to chapter 4
C.1 Proof of the lower bound on the data manifold

log likelihood

We will denote with M the data manifold of dimension d embedded in some higher
dimensional Euclidean ambient space RD. An open cover U of M consists of K
local coordinate charts (Ui,φi)K

i=1 with Ui ⊂ M and φi : Ui → Vi ⊂ Rd. A prob-
ability density function pM : M → R can be constructed with a smooth partition
of unity subordinate to U . That is, an indexed family {fi}K

i=1 of smooth functions
with suppfi ⊂ Ui, where for a neighborhood around any data point x ∈ M, only a
finite subset of {fi} is non-zero and

∑K
i=1 fi(x) = 1. For our particular case, we take

fi = wipUi with wi ∈ [0, 1] and construct pM as a weighted sum of smooth density
functions defined locally in each coordinate patch Ui, i.e. pM(x) =

∑K
i=1 wipUi =∑K

i wipVi(u) det |Gi(u)|− 1
2 , with pVi the base distribution in Euclidean subset Vi,

u = φi(x) and Gi(u) = JT
φi−1

Jφ−1
i
.

Proposition 11. The log-likelihood log pM(x) is bounded from below by
L = log

[
C ·
∑K

i wipVi(u)Tr(JT
φ−1

i

(u)Jφ−1
i

(u))− d
2

]
with C = dd/2

Proof For a local coordinate chart (U,φ), with U ⊂ M with M ⊂ RD and φ :
M → Rd, we denote the log-likelihood in neighborhood U by log pU (x). Furthermore,
denoting the singular values of matrix JT

φ−1(u) by si, we will use Jensen’s inequality
to first lower-bound the probability density in a local neighborhood U :



88 Appendix C Appendix to chapter 4

1
2

d∑

i=1
log s2

i = d

2

d∑

i=1

1
d

log s2
i ≤ d

2 log
(

d∑

i=1

s2
i

d

)
= d

2 log
(

d∑

i=1
s2

i

)
− d log(d)

2
(C.1)

−1
2

d∑

i=1
log s2

i ≥ −d

2 log
(

d∑

i=1
s2

i

)
+ d log(d)

2 (C.2)

log pV (u) − 1
2

d∑

i=1
log s2

i ≥ log pV (u) − d

2 log
(

d∑

i=1
s2

i

)
+ d log(d)

2 (C.3)

log pV (u) − 1
2 log[JT

φ−1(u)Jφ−1(u)] ≥ log pV (u) − d

2 log
(

d∑

i=1
s2

i

)
+ d log(d)

2 (C.4)

log pU (x) ≥ log pV (u) − d

2 log
(

d∑

i=1
s2

i

)
+ d log(d)

2 (C.5)

Now for a matrix A, we have:

Tr(AT A) = Tr(UT ΣT V V T ΣU) = Tr(ΣT ΣUUT ) = Tr(ΣT Σ) =
d∑

i=1
s2

i (C.6)

with U, V orthogonal matrices and Σ a diagonal matrix containing the singular values
of A.
Thus, eq. C.5 becomes:

log pU (x) ≥ log pV (u) − d

2 log Tr(JT
φ−1(u)Jφ−1(u)) + d log(d)

2 = LU (C.7)

Thus, we have introduced a lower bound to the probability density in neighborhood
U ∈ M. Because log(·) is a monotonic function and for all i we have wi ∈ [0, 1], the
direction of the inequality in eq. C.5 is preserved for all K neighborhoods in our open
cover of M, so our lower bound holds for the complete data log likelihood:

log p(x) = log
K∑

i

wipUi(x) (C.8)

= log
K∑

i

wipVi(u) det |Gi(u)|− 1
2 (C.9)

≥ log
[

C ·
K∑

i

wipVi(u)Tr
(

JT
φ−1

i
(u)Jφ−1

i
(u)
)− d

2

]
= L (C.10)



Appendix C.2 Details on synthetic 2D experiments 89

with C = dd/2. Using Hutchinson’s estimator we can compute the trace efficiently.
With Jφ−1 ∈ RD×d and p(ε) = N (0, ID):

LU ≈ log pVi(u) − d

2 logEp(ε)
[
εT JT

φ−1(u)Jφ−1(u)ε
]

+ d log(d)
2 (C.11)

= log pVi(u) − d

2 logEp(ε)
[
||JT

φ−1ε||22
]

+ d log(d)
2 (C.12)

C.2 Details on synthetic 2D experiments

Datasets For all target densities in Figure 4.3 we generated 50000 points for the
train set and 10000 points for the validation set. For details on generating the datasets,
see Lou et al. [2020].

Architectures Table C.1 shows the architecture details for MCF. All flow layers
are implemented as rational quadratic coupling flows. In all cases, our base distribu-
tions pVi are standard normals over the Euclidean spaces Vi. The distribution of the
orthogonal directions to the manifold pV ⊥

i
is a standard normal with σ2 = 0.01.

Baseline implementations are provided by Lou et al. [2020] in https://github.com/
CUAI/Neural-Manifold-Ordinary-Differential-Equations.

Hyperparameters Datasets
Checkerboard (S2) Four wrapped Normals (S2)

Charts 4 2
Chart flow layers 3 2

Chart bins 5 1
Spline range [-3, 3] [-4, 4]

Linear transform LU LU
ResNet layers (& units) 2 (64) 2 (16)

Activation ReLU ReLU

Table C.1. Architecture details for MCF on all synthetic datasets.

Training We train MCF using maximum likelihood. For the spherical checkerboard
dataset we train for 300 epochs and for the four wrapped normals we train for 250
epochs. For both datasets we used a batch size of 256 with a learning rate of 3 · 10−4.
To train NCPS we used a learning rate of 10−3 and a batch size of 200. For the
spherical checkerboard dataset we train for 10000 epochs, while for the four wrapped
normals dataset we train for 5000 epochs.

https://github.com/CUAI/Neural-Manifold-Ordinary-Differential-Equations
https://github.com/CUAI/Neural-Manifold-Ordinary-Differential-Equations


90 Appendix C Appendix to chapter 4

For NMODE, on four wrapped normals we used a batch size of 200 and a learning
rate of 10−2, training for 600 epochs. For the spherical checkerboard we used a batch
size of 200 and a learning rate of 10−2, training for 700 epochs.
All models are trained with the Adam optimizer [Kingma and Ba, 2014]. In gen-
eral, we chose baseline hyperparameters such that we can have the fastest possible
convergence without sacrificing training stability. Please note however that this is
a different training setting to the one used for NMODE and the other baselines by
Lou et al. [2020], as they generated a random batch of points on the manifold for
every iteration, whereas in our case we generate a fixed amount of training points
and iterate on those. We think that while this is a much harder training scenario, it’s
also a more realistic one.

C.3 Details on real world 2D experiments

Hyperparameters Datasets
Fires Earthquakes

Charts 2 2
Chart flow layers 5 4

Chart bins 10 16
Spline range [-6, 6] [-6, 6]

Linear transform LU LU
ResNet layers (& units) 2 (100) 2 (64)

Activation CELU CELU

Table C.2. Architecture details for MCF on all synthetic datasets.

C.3.1 Experimental details

MCF For architectural details please see table C.2. Our base distribution pVi is
a standard normal in the Euclidean spaces Vi. The distribution of the orthogonal
directions to the manifold pV ⊥

i
is a standard normal with σ2 = 0.01.

Baselines The architectures of both the NMODE and NCPS baselines are the same
as in the synthetic datasets case.

Datasets The fires dataset consists of 66444 data points, while the earthquakes
dataset consists of 5883 data points at the time of writing. We shuffle both datasets
and keep 80% for the training sets and 20% for the validation sets.



Appendix C.4 Details on the Lorenz experiment 91

Training on earthquakes We train MCF using maximum likelihood for 3000
epochs using the Adam optimizer with a batch size of 128 and a learning rate of
3 · 10−4. Throughout training we annealed the learning rate using a cosine annealing
schedule.
We train NCPS with the Adam optimizer for 10000 epochs with a learning rate of
10−3 and a batch size of 200.
We train NMODE with the Adam optimizer for 10000 epochs with a learning rate
3 · 10−4 and a batch size of 500.

Training on fires We train MCF using maximum likelihood for 1000 epochs using
the Adam optimizer with a batch size of 256 and a learning rate 10−4. Throughout
training we annealed the learning rate using a cosine annealing schedule and clipped
the gradient norm to 8.
We train NCPS with the Adam optimizer for 3000 epochs with a learning rate of 10−3

and a batch size of 200.
We train NMODE with the Adam optimizer for 600 epochs with a learning rate 3·10−4

and a batch size of 500.
For all baselines in both datasets we decay the learning rate every 1/3d of the total
epochs with a scaling factor of 0.1. We found that training was difficult for all
models. The hardest model to train was NMODE even though results for both
baselines are generally unsatisfactory (see figure C.1). Given this, in our choice of
hyperparameters we attempted to strike a balance between fast convergence and
stable gradient updates. Furthermore, we checkpoint all models to retain the best
performing parameter configuration according to validation results.

C.4 Details on the Lorenz experiment

C.4.1 Architecture

MCF Our model uses two coordinate charts to parameterize the manifold. The
chart models φ comprise five flow layers. These are implemented as rational quadratic
coupling layers, interspersed with random feature permutations. We use five bins in
the range [−3, 3]. Each coupling transform is parameterized by a residual network
with 1 residual block containing 2 hidden layers per block. Each hidden layer consists
of 32 ReLU units. Our base distribution pVi is a standard normal over the Euclidean
spaces Vi. The distribution of the orthogonal directions to the manifold pV ⊥

i
is a

standard normal with σ2 = 0.01.



92 Appendix C Appendix to chapter 4

Earthquakes Fires

Figure C.1. Density estimation results on the earthquakes and fires data. Robinson
projection. Top row: MCF (ours), middle row: NMODE, bottom row: NCPS

M-flow For M-flow we reproduced the reference architecture given by Brehmer
and Cranmer [2020]. Both the chart model and the base model comprise 5 rational
quadratic coupling layers, interspersed with random feature permutations. We use 5
bins for both maps in the range [-3, 3]. Each coupling transform is parameterized by
a residual network with 2 residual blocks and 2 hidden layers per block. Each hidden
layer consists of 100 ReLU units.



Appendix C.5 Details on the Large Hadron Collider experiment 93

C.4.2 Training

MCF We trained the model on a dataset of 106 samples using maximum likelihood
training for 1000 epochs. The AdamW optimizer [Loshchilov and Hutter, 2017] was
used with a learning rate of 10−4. We use a batch size of 10000.

M-flow We trained the model on a dataset of 106 samples with split manifold
learning and maximum likelihood training phases, assigning 50 epochs to each phase
(100 in total). The AdamW optimizer was used with a learning rate of 3 ·10−4, cosine
annealing and weight decay of 10−4. We use a batch size of 100.

C.5 Details on the Large Hadron Collider experiment
For details on dataset generation, as well as an explanation on the closure tests
we refer the interested reader to Brehmer and Cranmer [2020]. The dataset itself
can be found in https://drive.google.com/drive/folders/13x8lEO8--L8-ORoN_
QTUbSC_fRBAdRPT.

MCF Our model uses five coordinate charts to parameterize the manifold. The
chart models φ comprise ten flow layers. These are implemented as rational quadratic
coupling layers, interspersed with LU-decomposed invertible linear transformations.
We use 11 bins in the range [-10, 10]. Each coupling transform is parameterized by a
residual network with two residual blocks of two hidden layers per block. Each hidden
layer consists of 100 ReLU units. Our base distributions pVi are standard normals
over the Euclidean spaces Vi. The distribution of the orthogonal directions to the
manifold pV ⊥

i
is a standard normal with σ2 = 0.01.

Baselines To estimate baseline runtimes we run both RQ-flow and M-flow but we
note that baseline results are taken from the paper itself. Both baselines are composed
of 35 rational quadratic coupling layers, interspersed with LU-decomposed invertible
linear transformations. For M-flow, the chart model φ uses 20 layers and the base
model h uses 15 layers. Each coupling transform is parameterized by a residual
network with two residual blocks of two hidden layers per block. Each hidden layer
consists of 100 ReLU units. All runtime estimations are based on the implementation
provided by Brehmer and Cranmer [2020], which can be found in https://github.
com/johannbrehmer/manifold-flow.

Training We trained our model using maximum likelihood on the same dataset as
Brehmer and Cranmer [2020], using 106 samples. We used the AdamW optimizer

https://drive.google.com/drive/folders/13x8lEO8--L8-ORoN_QTUbSC_fRBAdRPT
https://drive.google.com/drive/folders/13x8lEO8--L8-ORoN_QTUbSC_fRBAdRPT
https://github.com/johannbrehmer/manifold-flow
https://github.com/johannbrehmer/manifold-flow


94 Appendix C Appendix to chapter 4

with a learning rate of 3 · 10−4, a batch size of 256, cosine annealing and a weight
decay of 10−5 and trained the model for 50 epochs.

Evaluation Our evaluation procedure is identical to Brehmer and Cranmer [2020].
In brief, we generate 3 different datasets using 3 different parameter points θ1 =
(0, 0), θ2 = (0.5, 0) and θ3 = (−1, −1). Each dataset has 15 i.i.d. samples. For each
model and each observed dataset, we generate four MCMC chains of length 750 each,
with a Gaussian proposal distribution with mean step size 0.15 and a burn in of 100
steps. Then we obtain kernel density estimates of the log-posterior for each of the
3 parameter points and report the average value in table 4.1. Like Brehmer and
Cranmer [2020] we train 5 instances of our model with independent initializations,
remove the top and bottom value and report the mean over the remaining runs.



Bibliography
Shunichi Amari. Information Geometry and Its Applications. Springer Publishing
Company, Incorporated, 1st edition, 2016. ISBN 4431559779.

Georgios Arvanitidis, Lars K Hansen, and Søren Hauberg. A locally adaptive normal
distribution. In Advances in Neural Information Processing Systems, pages 4251–
4259, 2016a.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. A locally adaptive normal
distribution. In Advances in Neural Information Processing Systems (NeurIPS), jun
2016b.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on
the curvature of deep generative models. In International Conference on Learning
Representations (ICLR), 2018.

Georgios Arvanitidis, Søren Hauberg, Philipp Hennig, and Michael Schober. Fast and
robust shortest paths on manifolds learned from data. In Proceedings of the 19th
international Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

Georgios Arvanitidis, Miguel González-Duque, Alison Pouplin, Dimitris Kalatzis,
and Søren Hauberg. Pulling back information geometry. arXiv preprint
arXiv:2106.05367, 2021a.

Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. Geometrically En-
riched Latent Spaces. In Artificial Intelligence and Statistics (AISTATS), 2021b.

Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders.
arXiv preprint arXiv:1810.11428, 2018.

Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann,
and Leonel Rozo. Learning riemannian manifolds for geodesic motion skills. In
Robotics: Science and Systems (R:SS), 2021.

Jan Jetze Beitler, Ivan Sosnovik, and Arnold Smeulders. Pie: Pseudo-invertible
encoder. arXiv preprint arXiv:2111.00619, 2021.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.



96 Bibliography

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877,
2017.

Wouter Boomsma, Kanti V Mardia, Charles C Taylor, Jesper Ferkinghoff-Borg, An-
ders Krogh, and Thomas Hamelryck. A generative, probabilistic model of local
protein structure. Proceedings of the National Academy of Sciences, 105(26):8932–
8937, 2008.

Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton.
Latent variable modelling with hyperbolic normalizing flows. In Hal Daumé III and
Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 1045–
1055, Virtual, 13–18 Jul 2020. PMLR. URL http://proceedings.mlr.press/
v119/bose20a.html.

Matthew Brand. Charting a manifold. In Suzanna Becker, Sebastian Thrun,
and Klaus Obermayer, editors, Advances in Neural Information Process-
ing Systems 15 [Neural Information Processing Systems, NIPS 2002, De-
cember 9-14, 2002, Vancouver, British Columbia, Canada], pages 961–968.
MIT Press, 2002. URL https://proceedings.neurips.cc/paper/2002/hash/
8929c70f8d710e412d38da624b21c3c8-Abstract.html.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and
density estimation. arXiv preprint arXiv:2003.13913, 2020.

Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. Mining gold from
implicit models to improve likelihood-free inference. Proceedings of the National
Academy of Sciences, 117(10):5242–5249, 2020.

Alice Le Brigant and Stéphane Puechmorel. The fisher-rao geometry of beta distri-
butions applied to the study of canonical moments, 2019.

Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis.
Cengage learning, 2015.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick
Smagt. Metrics for deep generative models. In International Conference on Artifi-
cial Intelligence and Statistics, pages 1540–1550, 2018a.

Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel Benbouzid, and Patrick
van der Smagt. Active learning based on data uncertainty and model sensitivity,
2018b.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems,
31, 2018c.

http://proceedings.mlr.press/v119/bose20a.html
http://proceedings.mlr.press/v119/bose20a.html
https://proceedings.neurips.cc/paper/2002/hash/8929c70f8d710e412d38da624b21c3c8-Abstract.html
https://proceedings.neurips.cc/paper/2002/hash/8929c70f8d710e412d38da624b21c3c8-Abstract.html


Bibliography 97

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John
Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv
preprint arXiv:1611.02731, 2016.

Earl A Coddington and Norman Levinson. Theory of ordinary differential equations.
Tata McGraw-Hill Education, 1955.

Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Re-
laxing bijectivity constraints with continuously indexed normalising flows. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pages 2133–2143, Virtual, 13–18 Jul 2020. PMLR. URL http:
//proceedings.mlr.press/v119/cornish20a.html.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak.
Hyperspherical variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018a.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tom-
czak. Hyperspherical variational auto-encoders. 34th Conference on Uncertainty
in Artificial Intelligence (UAI-18), 2018b.

Nicki S Detlefsen, Martin Jørgensen, and Søren Hauberg. Reliable training and esti-
mation of variance networks. arXiv preprint arXiv:1906.03260, 2019a.

Nicki S Detlefsen, Martin Jørgensen, and Søren Hauberg. Reliable training and estima-
tion of variance networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2019b.

Nicki Skafte Detlefsen, Søren Hauberg, and Wouter Boomsma. What is a meaningful
representation of protein sequences?, 2020.

Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, and Hugo Larochelle. A RAD
approach to deep mixture models. CoRR, abs/1903.07714, 2019. URL http://
arxiv.org/abs/1903.07714.

M.P. do Carmo. Riemannian Geometry. Mathematics (Boston, Mass.). Birkhäuser,
1992.

Hadi Mohaghegh Dolatabadi, Sarah Erfani, and Christopher Leckie. Invertible genera-
tive modeling using linear rational splines. In International Conference on Artificial
Intelligence and Statistics, pages 4236–4246. PMLR, 2020.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32, pages
3140–3150. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf.

http://proceedings.mlr.press/v119/cornish20a.html
http://proceedings.mlr.press/v119/cornish20a.html
http://arxiv.org/abs/1903.07714
http://arxiv.org/abs/1903.07714
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf


98 Bibliography

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios.
Neural spline flows. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 32, pages 7511–7522. Curran Asso-
ciates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
7ac71d433f282034e088473244df8c02-Paper.pdf.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-spline
flows. arXiv preprint arXiv:1906.02145, 2019b.

David Eklund and Søren Hauberg. Expected path length on random manifolds. arXiv
preprint arXiv:1908.07377, 2019.

EOSDIS. Active fire data. https://earthdata.nasa.gov/earth-observation-
data/near-real-time/firms/active-fire-data, 2020. Land, Atmosphere Near
real-time Capability for EOS (LANCE) system operated by NASA’s Earth Science
Data and Information System (ESDIS).

Luca Falorsi and Patrick Forré. Neural ordinary differential equations on manifolds.
arXiv preprint arXiv:2006.06663, 2020.

Luca Falorsi, Pim de Haan, Tim R Davidson, Nicola De Cao, Maurice Weiler, Patrick
Forré, and Taco S Cohen. Explorations in homeomorphic variational auto-encoding.
arXiv preprint arXiv:1807.04689, 2018.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold
hypothesis. Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Thomas Fletcher. Geodesic regression on riemannian manifolds. In Proceedings of
the Third International Workshop on Mathematical Foundations of Computational
Anatomy-Geometrical and Statistical Methods for Modelling Biological Shape Vari-
ability, pages 75–86, 2011.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian metrics,
pages 51–127. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on
riemannian manifolds. arXiv preprint arXiv:1611.02304, 2016.

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reason-
ing. In Proceedings of the annual meeting of the cognitive science society, volume 36,
2014.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian
monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data


Bibliography 99

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.
In Advances in Neural Information Processing Systems (NeurIPS), 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Du-
venaud. Ffjord: Free-form continuous dynamics for scalable reversible generative
models. arXiv preprint arXiv:1810.01367, 2018.

Thomas Hamelryck, John T Kent, and Anders Krogh. Sampling realistic protein
conformations using local structural bias. PLoS Comput Biol, 2(9):e131, 2006.

Søren Hauberg. Principal Curves on Riemannian Manifolds. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2016.

Søren Hauberg. Directional statistics with the spherical normal distribution. In 2018
21st International Conference on Information Fusion (FUSION), pages 704–711.
IEEE, 2018a.

Søren Hauberg. Only bayes should learn a manifold (on the estimation of differential
geometric structure from data). arXiv preprint arXiv:1806.04994, 2018b.

Søren Hauberg. Only bayes should learn a manifold. 2018c.

Søren Hauberg, Oren Freifeld, and Michael J. Black. A Geometric Take on Metric
Learning. In Advances in Neural Information Processing Systems (NIPS) 25, pages
2033–2041, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 1026–1034. IEEE Computer Society, 2015. doi:
10.1109/ICCV.2015.123. URL https://doi.org/10.1109/ICCV.2015.123.

Philipp Hennig and Søren Hauberg. Probabilistic solutions to differential equations
and their application to riemannian statistics. In Proceedings of the 17th interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), volume 33,
2014.

Thomas Hillen, Kevin Painter, Amanda Swan, and Albert Murtha. Moments of
von mises and fisher distributions and applications. Mathematical Biosciences and
Engineering, 14:673–694, 12 2016. doi: 10.3934/mbe.2017038.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++:
Improving flow-based generative models with variational dequantization and archi-
tecture design. In International Conference on Machine Learning, pages 2722–2730.
PMLR, 2019.

https://doi.org/10.1109/ICCV.2015.123


100 Bibliography

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve
up the variational evidence lower bound. In Workshop in Advances in Approximate
Bayesian Inference, NIPS, volume 1, page 2, 2016.

Elton P Hsu. Stochastic analysis on manifolds, volume 38. American Mathematical
Soc., 2002.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines. Communications in Statistics-Simulation and Compu-
tation, 18(3):1059–1076, 1989.

Dimitris Kalatzis, David Eklund, Georgios Arvanitidis, and Søren Hauberg. Vari-
ational autoencoders with riemannian brownian motion priors. arXiv preprint
arXiv:2002.05227, 2020.

Dimitris Kalatzis, Johan Ziruo Ye, Alison Pouplin, Jesper Wohlert, and Søren
Hauberg. Density estimation on smooth manifolds with normalizing flows. arXiv
preprint arXiv:2106.03500, 2021.

Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, Hassan Ali Babaie, and Vipin Ku-
mar. Machine learning for the geosciences: Challenges and opportunities. IEEE
Transactions on Knowledge and Data Engineering, 31(8):1544–1554, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In Pro-
ceedings of the 2nd International Conference on Learning Representations (ICLR),
2014.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In Ad-
vances in neural information processing systems, pages 4743–4751, 2016.

Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der
Smagt. Learning hierarchical priors in vaes. In Advances in Neural Information
Processing Systems, pages 2866–2875, 2019.

Samuli Laine. Feature-based metrics for exploring the latent space of generative
models. 2018.

Neil Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian
Process Latent Variable Models. J. Mach. Learn. Res., 2005a.

http://arxiv.org/abs/1412.6980


Bibliography 101

Neil D. Lawrence. Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of machine learning research, 6(Nov):1783–
1816, 2005b.

John M Lee. Smooth manifolds. In Introduction to Smooth Manifolds, pages 1–31.
Springer, 2013.

Henry Li, Ofir Lindenbaum, Xiuyuan Cheng, and Alexander Cloninger. Vari-
ational diffusion autoencoders with random walk sampling. arXiv preprint
arXiv:1905.12724, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim,
and Christopher De Sa. Neural manifold ordinary differential equations. arXiv
preprint arXiv:2006.10254, 2020.

Kanti V Mardia and Peter E Jupp. Basic concepts and models. Mardia KV, Jupp
PE. Directional statistics, 2nd edition. Chichester (UK): John Wiley & Sons, pages
25–56, 2000.

James Martens. New insights and perspectives on the natural gradient method. arXiv
preprint arXiv:1412.1193, 2014.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-
factored approximate curvature. In International conference on machine learning,
pages 2408–2417. PMLR, 2015.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows.
arXiv preprint arXiv:2006.10605, 2020.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye
Teh. Continuous hierarchical representations with poincaré variational auto-
encoders. In Advances in neural information processing systems, pages 12544–12555,
2019.

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
Neural importance sampling. ACM Trans. Graph., 38(5), October 2019. ISSN
0730-0301. doi: 10.1145/3341156. URL https://doi.org/10.1145/3341156.

Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama.
A differentiable gaussian-like distribution on hyperbolic space for gradient-based
learning. arXiv preprint arXiv:1902.02992, 2019.

Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. arXiv
preprint arXiv:1605.06197, 2016.

https://doi.org/10.1145/3341156


102 Bibliography

Jacinto C. Nascimento, Jorge G. Silva, Jorge S. Marques, and João Miranda Lemos.
Manifold learning for object tracking with multiple nonlinear models. IEEE Trans.
Image Process., 23(4):1593–1605, 2014. doi: 10.1109/TIP.2014.2303652. URL
https://doi.org/10.1109/TIP.2014.2303652.

Frank Nielsen. An elementary introduction to information geometry. Entropy, 22(10):
1100, Sep 2020. ISSN 1099-4300. doi: 10.3390/e22101100. URL http://dx.doi.
org/10.3390/e22101100.

NOAA. Ncei/wd5 global significant earthquake database. https://www.ngdc.noaa.
gov/hazard/earthqk.shtml, 2020. National Geophysical Data Center / World
Data Service (NGDC/WDS).

Josep M Oller. On an intrinsic analysis of statistical estimation. In Multivariate
Analysis: Future Directions 2, pages 421–437. Elsevier, 1993.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow
for density estimation. arXiv preprint arXiv:1705.07057, 2017.

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and
inference. J. Mach. Learn. Res., 22:57:1–57:64, 2021. URL http://jmlr.org/
papers/v22/19-1028.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32 (NeurIPS). 2019.

David Peel, William J Whiten, and Geoffrey J McLachlan. Fitting mixtures of kent
distributions to aid in joint set identification. Journal of the American Statistical
Association, 96(453):56–63, 2001.

Xavier Pennec. Intrinsic statistics on riemannian manifolds: Basic tools for geometric
measurements. Journal of Mathematical Imaging and Vision, 25(1):127, 2006a.

Xavier Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geo-
metric Measurements. Journal of Mathematical Imaging and Vision, 2006b.

Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Learning a manifold as an atlas.
In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland,
OR, USA, June 23-28, 2013, pages 1642–1649. IEEE Computer Society, 2013. doi:
10.1109/CVPR.2013.215. URL https://doi.org/10.1109/CVPR.2013.215.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press,
1987.

https://doi.org/10.1109/TIP.2014.2303652
http://dx.doi.org/10.3390/e22101100
http://dx.doi.org/10.3390/e22101100
https://www.ngdc.noaa.gov/hazard/earthqk.shtml
https://www.ngdc.noaa.gov/hazard/earthqk.shtml
http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html
https://doi.org/10.1109/CVPR.2013.215


Bibliography 103

Qichao Que and Mikhail Belkin. Back to the future: Radial basis function networks
revisited. In Artificial Intelligence and Statistics (AISTATS), 2016.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. In
Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics (AISTATS), 2014.

Luis A Pérez Rey, Vlado Menkovski, and Jacobus W Portegies. Diffusion variational
autoencoders. arXiv preprint arXiv:1901.08991, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1530–1538, Lille, France, 07–09 Jul 2015. PMLR. URL http:
//proceedings.mlr.press/v37/rezende15.html.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-
agation and variational inference in deep latent gaussian models. In International
Conference on Machine Learning, volume 2, 2014.

Danilo Jimenez Rezende, George Papamakarios, Sebastien Racaniere, Michael Al-
bergo, Gurtej Kanwar, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on
tori and spheres. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 8083–8092, Virtual, 13–18 Jul 2020. PMLR.
URL http://proceedings.mlr.press/v119/rezende20a.html.

Christian P Robert, George Casella, and George Casella. Monte Carlo statistical
methods, volume 2. Springer, 1999.

Mihaela Rosca, Balaji Lakshminarayanan, and Shakir Mohamed. Distribution match-
ing in variational inference. arXiv preprint arXiv:1802.06847, 2018.

Daniel M Roy, Charles Kemp, Vikash K Mansinghka, and Joshua B Tenenbaum.
Learning annotated hierarchies from relational data. In Advances in neural infor-
mation processing systems, pages 1185–1192, 2007.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow:
Divergence-based generative modeling on manifolds. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986a.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Repre-
sentations by Back-propagating Errors. Nature, 323, 1986b.

http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v119/rezende20a.html


104 Bibliography

Aidan Scannell, Carl Henrik Ek, and Arthur Richards. Trajectory Optimisation in
Learned Multimodal Dynamical Systems Via Latent-ODE Collocation. In Proceed-
ings of the IEEE International Conference on Robotics and Automation. IEEE,
2021.

Stefan Schonsheck, Jie Chen, and Rongjie Lai. Chart auto-encoders for manifold
structured data. arXiv preprint arXiv:1912.10094, 2019.

Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry
of deep generative models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 315–323, 2018.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature varia-
tional autoencoders. arXiv preprint arXiv:1911.08411, 2019.

Mark Steyvers and Joshua B Tenenbaum. The large-scale structure of semantic net-
works: Statistical analyses and a model of semantic growth. Cognitive science, 29
(1):41–78, 2005.

Andrew Stirn and David A Knowles. Variational variance: Simple and reliable pre-
dictive variance parameterization. arXiv preprint arXiv:2006.04910, 2020.

Robert S Strichartz. A guide to distribution theory and Fourier transforms. World
Scientific Publishing Company, 2003.

Jakub Tomczak. Fisher information matrix for Gaussian and categorical distribu-
tions. https://www.ii.pwr.edu.pl/~tomczak/PDF/[JMT]Fisher_inf.pdf, 2012.
Online; accessed 17 Mai 2021.

Jakub M Tomczak and Max Welling. Vae with a vampprior. arXiv preprint
arXiv:1705.07120, 2017.

Alessandra Tosi, Søren Hauberg, Alfredo Vellido, and Neil D. Lawrence. Metrics for
Probabilistic Geometries. In The Conference on Uncertainty in Artificial Intelli-
gence (UAI), July 2014.

Maxime Tournier, Xiaomao Wu, Nicolas Courty, Elise Arnaud, and Lionel Reveret.
Motion compression using principal geodesics analysis. In Computer Graphics Fo-
rum, volume 28, pages 355–364. Wiley Online Library, 2009.

Warwick Tucker. A rigorous ode solver and smale’s 14th problem. Foundations of
Computational Mathematics, 2(1):53–117, 2002.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks.
Advances in neural information processing systems, 32, 2019.

https://www.ii.pwr.edu.pl/~tomczak/PDF/%5BJMT%5DFisher_inf.pdf


Bibliography 105

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoen-
coders. arXiv preprint arXiv:1808.10805, 2018.

Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg.
Geodesic clustering in deep generative models. In arXiv preprint, 2018.

Miaomiao Zhang and Tom Fletcher. Probabilistic principal geodesic analysis. Ad-
vances in Neural Information Processing Systems, 26:1178–1186, 2013.




	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 The topology of smooth manifolds
	1.2 A review on Riemannian geometry
	1.3 Normalizing flows
	1.3.1 Definition for ``discrete time'' flows
	1.3.2 Definition for ``continuous time'' flows
	1.3.2.1 Backpropagation with the Adjoint Method

	1.3.3 Construction of flow models
	1.3.3.1 Invertible linear transformations
	1.3.3.2 Coupling layers
	1.3.3.3 Spline flow layers


	1.4 Variational Autoencoders
	1.4.1 Latent variable models
	1.4.2 Variational inference
	1.4.3 Autoencoding variational inference


	2 Variational Autoencoders with Riemannian Brownian Motion Priors
	2.1 Introduction
	2.2 Background
	2.2.1 Variational autoencoders
	2.2.2 VAE decoders as immersions

	2.3 Geometric latent priors
	2.3.1 Inference
	2.3.2 Sampling

	2.4 Meaningful variance estimation
	2.5 Experiments
	2.5.1 Generative modelling
	2.5.2 Classification
	2.5.3 Qualitative results

	2.6 Related work
	2.7 Conclusion

	3 Pulling back information geometry
	3.1 Introduction
	3.2 The geometry of generative models
	3.2.1 Stochastic decoders

	3.3 Information geometric latent metric
	3.3.1 The Riemannian pull-back metric
	3.3.2 Efficient shortest path computation
	3.3.3 Example: categorical decoders
	3.3.4 Black-box random geometry

	3.4 Experiments
	3.4.1 Pulling back Euclidean and Fisher-Rao metric with Gaussian decoders
	3.4.2 The Fisher-Rao pullback metric for various distributions with toy data
	3.4.3 Motion capture data with products of von Mises-Fisher distributions
	3.4.4 Numerical approximation of the Fisher-Rao pullback metric
	3.4.5 Statistical models on manifolds
	3.4.6 Movie preferences via latent interpolants

	3.5 Related work
	3.6 Conclusion and discussion

	4 Density estimation on smooth manifolds with normalizing flows
	4.1 Introduction
	4.2 A multi-charted approach to density estimation on manifolds
	4.2.1 Model specification
	4.2.2 Introducing a lower bound to the density
	4.2.3 Training
	4.2.4 Sampling

	4.3 Related work
	4.4 Experiments
	4.4.1 Qualitative experiments: Estimation of synthetic densities on 2D manifolds
	4.4.2 Qualitative experiments: Estimation of real world densities on 2D manifolds
	4.4.3 Qualitative experiments: Lorenz attractor
	4.4.4 Quantitative experiments: Real world particle physics data
	4.4.5 Running times

	4.5 Conclusion


	Conclusion
	Appendices
	A Appendix to chapter 2
	A.1 On neural network-based immersions
	A.2 Geodesic estimation
	A.3 Experimental setup
	A.3.1 Section 5.1 experiment
	A.3.2 Section 5.2 experiment
	A.3.3 Runtime comparisons
	A.3.4 Complete results for VAE-VampPrior


	B Appendix to chapter 3
	B.1 Additional details for information geometry
	B.1.1 The Fisher-Rao metric for several distributions

	B.2 Curve energy approximation for categorical data
	B.3 Information geometry in generative modeling
	B.3.1 Details for the pullback metric in the latent space
	B.3.2 Uncertainty quantification and regularization

	B.4 Details for our implementation and experiments
	B.4.1 What we mean when we say black-box random geometry
	B.4.2 Shortest path approximation with cubic splines
	B.4.3 Models used
	B.4.4 Metric approximation and KL by sampling
	B.4.5 Computational complexity
	B.4.6 Information for the movie preferences experiment
	B.4.7 Information for fitting the LAND model


	C Appendix to chapter 4
	C.1 Proof of the lower bound on the data manifold log likelihood
	C.2 Details on synthetic 2D experiments
	C.3 Details on real world 2D experiments
	C.3.1 Experimental details

	C.4 Details on the Lorenz experiment
	C.4.1 Architecture
	C.4.2 Training

	C.5 Details on the Large Hadron Collider experiment


	Bibliography

