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This talk presents…

• A brief outline of past an ongoing activities related to the use of ships as 
sailing wave buoys
– Emphasis on a hybrid approach (“ML-informed physics-based approach”)

• Just a few glimpses of the associated mathematical theory

• Many slides… so I will try to be swift; but just reach out and we can 
continue the discussions later

3 (out 31)
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Introduction: Why do we want to measure waves?

• Because waves are the fundamental driver of most of the 
processes* we are concerned about (as maritime engineers, naval 
architects, or ocean scientists)

* Analysing wave-structure interactions before/during/after operations

* Collecting historical data for design and rule specifications

* Understanding mechanisms of surface-water mixing and air-sea 

fluxes 

4
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Introduction: How can we estimate waves?

• Well-known means for sea state estimation
 In-situ buoys

 Remote sensing (aircraft or satellite)

 Wave radar (X-band marine radar)

 …

 All with their own pros and cons

 The specific use-case (previous slide) may set 

different requirements to availability and updating-

frequency

5
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Analogy to a wave buoy

• Measurements of the buoy’s motions are processed to 
give the wave spectrum in real-time and at the buoy’s 
exact position.

• Can we do the same with a ship...?? Yes!

6

Inherent complexities:
- Geometry
- Size (low-pass filter)
- Forward speed
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The wave buoy analogy (= WBA)

• A ship is like a wave buoy; it responds to the waves… (and has plenty of 
sensors installed)
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MRU: Motion Response Unit

MRU
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Estimating waves through measured ship 
responses in a nutshell
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“Unknown” process (= waves) Responses

Sea state (Wave spectrum)

Time Time
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Filter analogy (St. Denis and Pierson, 1953)
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- AI = Machine Learning
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Physics-based framework
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The governing equation system is based on 
a comparison of response spectra...

Response

spectra

Measure-
ments:

 Motions

(e.g. heave,roll,pitch)

 Accelerations

 VBM𝑆 , 𝜔
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Physics-based framework
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The governing equation system is based on 
a comparison of response spectra...

Response

spectra

Measure-
ments:

 Motions

(e.g. heave,roll,pitch)

 Accelerations

 VBM

Wave

spectrum

Complex-
valued 
transfer 
functions

Response

spectra

Theoretical 
estimate:

Error

calculation

Improve estimate

Match?

𝑆 , 𝜔
𝑆 , 𝜔

𝑆 , 𝜔 ,
Note: Fundamentally, expressions 
originate from the governing 
physics (Newton’s 2nd law) 
physics-based approach.
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Solving the problem

 Underdetermined equation system solved 
by a Bayesian (non-parametric) method
solving directly for all of the unknown (discrete) spectral 
ordinates of the spectrum E (ω, μ), requiring regularization.

 Regularization, i.e. smoothing (minimization of the second 
order difference) of the spectrum in the two dimensions

 Solution obtained as the compromise between “goodness 
of fit” and smoothness

 A glimpse of the theory…

11

Zoom
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Solving the problem

 Bayesian (non-parametric) method solving directly for all K·M unknowns, requiring regularization.

 Parametric method based on optimisation of wave parameters (Hs, Tz, β, ...) in a summation of 
parameterised wave spectrum formulations (e.g. JONSWAP) and a directional spreading function.

 Spectral-residual calculation solving directly for M unknowns while ‘optimising’ for the mean heading β
used as input for a directional spreading function. (essentially a combination of the other two)

Note: In the general case, forward speed is different from zero 
Consideration of the Doppler shift!

12
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Bayesian method (1)

• Governing equation (matrix notation) established by minimization

introducing a non-negativity constraint f(x) = exp(x).

• Regularization (smoothing) based on minimization of the second order derivative 
(difference)

13
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Bayesian method (2)

• Principally, the solution is obtained from the minimization of

which is equivalent to maximizing the (posterior):

• The solution is controlled by the hyperparameters u and v; and the optimum solution is 
obtained for minimum of ‘A Bayesian Information Criterion’:

14



DTU Construct

Results (… by the ”original”, unconditioned method)
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Physics-based framework (Part 1)

• Combination of measured data and transfer 
functions

• Comparison between estimates by a wave 
buoy and corresponding results using ship 
motions

Nielsen et al. (2018)
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• Similar agreements for the other four 
cases (ID07 – ID10)… and for the 
parametric approach even better agreements are 
obtained (cf. appendix)

• Main take-away: Good estimates 
can be expected under “controlled” 
conditions where uncertainties in 
operational parameters are small 
RAOs are reliable(!)
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Results (… by the ”original”, unconditioned method)
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Physics-based framework (Part 2)

• Combination of measured data and transfer 
functions

• Comparison with wave radar (Wavex)
• Nearly two years of operational data
• No info about loading condition (Ttransit = 9.5 m)

Nielsen et al. (2023)
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Results (Part 2)

• Physics-based (= ‘WBA’) vs. Wavex
results…

• NB. All data is considered.

• Can we improve the estimates by the 
WBA by combining results from ML and 
physics-based?

• Using a hybrid framework... 

• First, however, what is the motivation 
for such an approach?

18
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Machine learning-based framework

19

Machine Learning (ML)

• Training of convolutional neural 
networks; based on the following

 Two years of ship telemetry data:
 MRU located close to COG
 Accelerations
 Strains
 Speed

Wave data obtained by wave radar 
(WaveX from Miros)

 Targets: Hs, Tp, Dm (or β)

Mittendorf et al. (2022)
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Results using ML

• Assessment based on test data (20 %); 
from Mittendorf et al. (2022)

• No use of transfer functions

20

Estimated Hs [m]

W
av

ex
H

s
[m

]

W
av

ex
T

p
[s

]

Estimated Tp [s]

Estimated Dm [deg]

W
av

ex
D

m
[d

eg
]

Epochs

“Classic approach”; 
using transfer function



DTU Construct

Wave spectrum estimation conditioned on 
output from machine learning 

• Motivation:
1) Physics-based gives the detailed 2D wave spectrum 

(ML does not)
2) ML provides reliable estimates of wave parameters 

(Physics-based does not always; wave direction appears 
to be the most difficult)

• Methodology:
– Constrain the wave spectrum estimate
– Formulation of additional equations based on output 

from the Machine Learning model (Mittendorf et al., 
2022); concatenated into the governing equation 
system:

21

Nielsen et al. (2023)
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Wave spectrum estim. 
conditioned on ML

• Results
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Nielsen et al. (2023)

0 2 4 6 8 10 12
WBA Hs [m]

0

2

4

6

8

10

12

W
av

ex
 H

s [m
]

RMSE = 1.23 m

0 4 8 12 16 20
WBA T p [s]

0

4

8

12

16

20

W
av

ex
 T

p [s
]

RMSE = 2.06 s

0 60 120 180 240 300 360
WBA Dm [deg]

0

60

120

180

240

300

360

W
av

ex
 D

m
 [d

eg
]

MAE = 18 deg

Unconditioned estimates

Conditioned estimates

• NB: Constraints are 
imposed on only Hs
and Dm.



DTU Construct

Directional wave spectra (arbitrary outcomes)

23
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Future applications (1):
Reconstructing the encountered surface elevation

• Investigations made with experimental 
data (seakeeping model tests)

24

Takami et al. (2022,2023)
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Future applications (2a):
Spatial Wave Data from a Network of Buoys and Ships

25

• Nowcasting as well as forecasting of waves on a 
large-scale geographical domains using multiple 
observation platforms, including ships

• Assessment of wave energy resources, operational 
windows, ship routing, assimilation (weather + waves), 
…

Mounet et al. (2023)
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Future applications (2b):
Spatial Wave Data from a Network of Buoys and Ships
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Closing remarks

• DTU has conducted work on the use of ships a sailing wave buoys for the past two decades

• Generally, the wave buoy analogy provides reasonable results, with fair agreement compared to other 
means for wave estimation (remote sensing, wave radar, buoy measurements, spectral wave models); 
despite “inherent” complexities (hull geometry, relative size, forward speed)

• The use of transfer function requires detailed and exact knowledge about the operational condition 
(notably loading condition and speed); if not available significant uncertainty can exist

• Machine learning methods - with no need for transfer functions - have shown to yield good results for 
wave parameters; but the (directional) wave spectrum is not available

• A hybrid approach (“machine learning-informed physics-based”) is appealing since scarcity of data and 
other inherent problems related to data can be partly mitigated via use of transfer functions

• The wave buoy analogy appears attractive, considering the large number of ships operating around; 
future application using multiple ships in a network

27
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The potential…

28

A snapshot of vessel positions around the world’s ocean based on data from AIS 
(green: terrestrial, red: satellites)
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