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Summary (English)

The last decades have seen a significant development of computational methods
that make automatic predictions of variables of interest, such as a subject’s di-
agnosis or prognosis, based on brain Magnetic Resonance Imaging (MRI) scans.
Since MRI is able to detect subtle effects in brain anatomy more than clini-
cal assessment, these methods have a huge potential in clinical tasks such as
early diagnosis, therapy planning and monitoring, paving the way to person-
alized treatments. Many different image-based prediction methods have been
proposed in the literature, with a special focus on discriminative deep learning
techniques in the last years.

In this thesis, we propose an alternative approach for image-based predictions,
based on a lightweight generative method, which yields accurate and inter-
pretable predictions. We first demonstrate that the proposed method achieves
competitive performances as compared to state-of-the-art benchmarks in age
and gender prediction tasks, especially when the sample size is at most of a few
thousand subjects, which is the typical scenario in many neuroimaging applica-
tions. We then give insight into the interpretability properties of the proposed
method: It automatically yields spatial maps displaying morphological effects of
the variable of interest, which are straightforward to interpret. Being both accu-
rate and interpretable, the proposed method bridges the gap between classical
brain mapping techniques, which produce interpretable maps by studying ef-
fects of variables of interest on the brain on a population level, and more recent
prediction methods, which provide accurate predictions on a subject-specific
level.

We also present possible model extensions and applications, showing that the
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proposed method can be easily extended to incorporate known covariates and/or
nonlinearities. Finally, we discuss possible future work, such as extending the
proposed method to a longitudinal setting, where more than one scan per subject
is available.



Summary (Danish)

De sidste årtier har set en betydelig udvikling af beregningsmetoder, der foreta-
ger automatiske forudsigelser af variabler af interesse, såsom et forsøgspersons
diagnose eller prognose, baseret på Magnetisk resonans (MR)-scanninger. Da
MR er i stand til at detektere subtile effekter i hjernens anatomi mere end
klinisk vurdering, har disse metoder et enormt potentiale i kliniske opgaver så-
som tidlig diagnose, terapiplanlægning og overvågning, hvilket baner vejen for
personlige behandlinger. Mange forskellige billedbaserede forudsigelsesmetoder
er blevet foreslået i litteraturen, med særligt fokus på diskriminerende deep
learning-teknikker i de seneste år.

I dette speciale foreslår vi en alternativ tilgang til billedbaserede forudsigelser
baseret på en letvægts generativ metode, som giver nøjagtige og fortolkelige for-
udsigelser. Vi demonstrerer først, at den foreslåede metode opnår konkurrence-
dygtige præstationer sammenlignet med state-of-the-art benchmarks i alders- og
kønsforudsigelsesopgaver, især når stikprøvestørrelsen højst er på et par tusinde
forsøgspersoner, hvilket er det typiske scenarie i mange neuroimaging applika-
tioner. Vi giver derefter indsigt i den foreslåede metodes fortolkningsegenskaber:
Den giver automatisk rumlige kort, der viser morfologiske effekter af variabe-
len af interesse, som er ligetil at fortolke. Da den foreslåede metode både er
nøjagtig og kan fortolkes, bygger den bro over kløften mellem klassiske hjerne-
kortlægningsteknikker, som producerer fortolkbare kort ved at studere effekter
af variabler af interesse på hjernen på et befolkningsniveau, og nyere forudsigel-
sesmetoder, som giver nøjagtige forudsigelser om et emne-specifikt niveau.

Vi præsenterer også mulige modeludvidelser og applikationer, hvilket viser, at
den foreslåede metode let kan udvides til at inkorporere kendte kovariater og/eller
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ikke-lineariteter. Til sidst diskuterer vi muligt fremtidigt arbejde, såsom at ud-
vide den foreslåede metode til en longitudinel indstilling, hvor mere end én
scanning pr. emne er tilgængelig.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is extensively used in neuro-clinical prac-
tice, to support clinicians in making diagnosis and planning treatments. Devel-
oping computational methods that are able to automatically predict variables
of interest, such as a subject’s diagnosis or prognosis, directly from brain MRI
scans has received increasing attention in the last decades, for its many potential
clinical applications, such as providing early diagnosis and/or personalized treat-
ment. Several image-based prediction methods have been therefore developed
and tested, using different prediction techniques, with a boost of discriminative
deep learning methods in the last few years, thanks to the increasing availability
of very large imagining datasets. While these methods are able to produce accu-
rate results, especially when trained on large amounts of data, they have been
proven to be difficult to interpret Haufe et al. (2014); Wilming et al. (2022).
This may be problematic, since, in many neuroimaging tasks, it is important
not only to predict well, but also to interpret morphological changes underlying
predictions. In this thesis, we therefore propose a lightweight generative model
for image-based prediction, which yields interpretable results, without sacrificing
prediction accuracy.



2 Introduction

1.1 Contributions

In paper A, we developed an interpretable linear generative model for image-
based prediction, and validated it with experiments on the UK Biobank.

In paper B, we explored in more details the proposed prediction method. In
particular, in this paper we included more extensive experiments on the UK
Biobank, with provided insights into our method’s and benchmarks’ perfor-
mances in terms of bias-variance trade-off. We also provided more insights into
interpretability aspects, and possible model extensions with inclusion of known
variables and/or nonlinearities in the model, with related experiments.

1.2 Overview of the thesis

The remainder of the thesis has the following structure:

• Chapter 2 gives an introduction about image-based prediction methods
in neuroimaging: first about their clinical applications, then a general
overview of different classes of prediction methods, as well as a motivation
for the choice of the method proposed in this thesis and its advantages.

• Chapter 3 describes the proposed prediction method, with details about
both training and testing phases.

• Chapter 4 first presents experiments conducted on the UK Biobank, show-
ing prediction performances of the proposed method on age and gender
prediction tasks, as well as comparison with three benchmarks. It then il-
lustrates interpretability properties of the proposed method, together with
difficulties that other types of models experience in this regard. Finally, it
provides more insight into the performances of the proposed method and
benchmarks in terms of the bias-variance trade-off.

• Chapter 5 presents some possible model extensions and applications. It
first describes how to extend the proposed method to incorporate variables
that are possibly known about the subjects and/or nonlinearities. It then
presents a possible application, where some model parameters estimated
on a large training set are subsequently re-used in an experiment with a
smaller cohort.

• Chapter 6 discusses the results presented in this thesis, and describes
possible directions for future work.



Chapter 2

Image-based prediction

This chapter provides an overview of image-based prediction methods, specifi-
cally based on brain MRI scans, and is structured as follows:

• We first illustrate the clinical relevance and possible applications of these
methods; and

• We then provide a general overview of different types of prediction methods
proposed in the literature, and describe the motivations that led us to
develop the proposed model, as well as its advantages.

2.1 Why image-based prediction?

MRI is a widely used technique for acquiring medical scans, which relies on a
strong magnetic field to acquire three dimensional images of anatomy and phys-
iological processes of the body. As compared to other imaging techniques such
as Positron Emission Tomography (PET) and Computed Tomography (CT), it
has the advantage of not using X-rays, or having to inject radioactive substances
in patients, and it also produces images with a better contrast in soft tissues.
Regarding its disadvantages, it should be mentioned that it is not suited for
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subjects with metal implants, because of the strong magnetic field, and that
bones are not well imaged with MRI.

MRI scans are extensively used in clinical practice to detect and monitor various
diseases. A specific category of diseases where MRI is particularly significant
are brain disorders, which are the most prevalent type of diseases in Europe,
representing a burden and a huge cost for society. Since brain MRI scans can
detect subtle morphological changes better than clinical assessment, developing
computational methods that can predict a variable of interest directly from a
subject’s brain scan is of great interest. The aim of these image-based prediction
methods can be to predict either a continuous variable such as a subject’s dis-
ability score (regression methods), or a categorical variable such as a patient’s
diagnosis or prognosis (classification methods).

The potential clinical applications of these image-based prediction methods are
numerous. For instance, automatic prediction of a subject’s diagnosis based
on brain MRI scans can allow to diagnose brain diseases earlier and more reli-
ably than using only clinical assessment, thanks to the high sensitivity of MRI
scans to subtle anatomical changes, with consequent better clinical outcomes.
Furthermore, it is also particularly useful for diseases with no standard clini-
cal tests, such as schizophrenia1. Another example is automatic prediction of
disability scores from brain MRI scans, which can provide more accurate es-
timates of the scores than clinical tests, which are more noisy due to human
factors. Another image-based prediction task of interest is to estimate disease
progression of individual patients, for instance by identifying patients at higher
risk of future disability accrual. This can lead to better and more personal-
ized treatment planning and is particularly useful for diseases, such as multiple
sclerosis, where several possible treatments are available2, but their efficacy de-
pends on the specific patient and may be hard to predict in the initial phase of
the disease. Automatically predicting individual prognosis from brain scans has
also the potential of uncovering subtle morphological and temporal mechanisms
underlying disease progression.

With this huge potential for applications in clinical practice, prediction methods
based on brain MRI scans have seen a huge development in the last decades,
with many different prediction techniques proposed in the literature.

1https://www.nhs.uk/mental-health/conditions/schizophrenia/diagnosis/
2http://nationalMSsociety.org/DMT

https://www.nhs.uk/mental-health/conditions/schizophrenia/diagnosis/
http://nationalMSsociety.org/DMT
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2.2 Methods for image-based predictions

Classical methods for analysis of brain scans are the so-called human brain map-
ping techniques Wright et al. (1995); Ashburner et al. (2000); Davatzikos et al.
(2001); Chung et al. (2001); Fischl et al. (2000); Snook et al. (2007); Friston et al.
(1994); Worsley and Friston (1995); Friston et al. (1991); Worsley et al. (1992),
which were developed since the 1990s. Their aim is to identify on a population
level brain areas with significant differences between two groups of subjects (such
as patients and healthy controls), regions correlated with specific variables of
interest (such as age, disease severity, etc.), or interactions among various effects
of interest. This aim is achieved by registering imaging data to a standard tem-
plate space, and then performing statistical tests on voxel-level measurements
independently. Since these brain mapping approaches analyze single voxel-level
measurements separately, they are called mass-univariate methods. These tech-
niques originally started with functional imaging, first using PET imaging and
then functional MRI, using activation maps as input data Friston et al. (1991);
Worsley et al. (1992); Friston et al. (1994); Worsley and Friston (1995). Sub-
sequently, they translated to structural MRI, with input data of several types,
such as deformations Chung et al. (2001); Davatzikos et al. (2001), tissue den-
sity maps, such as gray or white matter segmentations Wright et al. (1995);
Ashburner et al. (2000) , cortical thickness measurements Fischl et al. (2000),
and voxel-level values in diffusion tensor imaging Snook et al. (2007).

While these techniques generate valuable maps of various effects of interest that
are straightforward to interpret, they cannot provide accurate predictions at an
individual-level, since they consider each voxel independently. For instance, a
single voxel displaying a significant group difference is not necessarily a good
classifier at an individual-level. Therefore, with the goal to provide accurate
subject-specific predictions, multivariate methods have been subsequently de-
veloped, which consider all voxel-level measurements simultaneously, captur-
ing multivariate association patterns. These methods are able to leverage the
predictive power of many voxels, which may be only poorly predictive if used
independently, to achieve accurate predictions.

Several multivariate methods for image-based prediction have been developed in
the last decade, most of which are discriminative models, which directly predict
a variable of interest from a subject’s image. As opposed to these models,
generative methods express the image as function of the target variable, and
then need to be "inverted" to provide predictions of the variable of interest.
Another possible classification of prediction methods divides them into linear,
shallow nonlinear and deep nonlinear models Schulz et al. (2019): linear and
shallow nonlinear models are classical machine learning methods, which may
include nonlinearities through e.g. kernels, as opposed to deep learning models,



6 Image-based prediction

which are characterized by a cascade of sequential nonlinear functions.

Many methods developed for image-based prediction have been tested on a
particular application: age prediction based on a subject’s brain scan - the so
called brain age Cole et al. (2019). This prediction task has been vastly used
for model development, since it is straightforward to collect age information
about subjects. In this sense, it represents a unique case in image-based predic-
tion, since typical neuroimaging applications count on much smaller datasets.
Furthermore, during the last three years (i.e. during this PhD project), the de-
velopment of brain age prediction methods has received a further boost, thanks
to the increasing access to large datasets, comprising thousands or even tens of
thousand of data. Apart from its value for model development, predicting brain
age has also clinical applications, since the difference between brain age and
chronological age (called the "brain age gap") has been proven to be a potential
biomarker of healthy aging and patological deviations. A brain age gap larger
than average is in fact associated with several neurological diseases, such as
Alzheimer’s disease, dementia, schizophrenia, and multiple sclerosis Cole et al.
(2019); Kaufmann et al. (2019).

Fig. 2.1 shows a classification of image-based prediction models that have been
proposed for age prediction, divided into discriminative vs generative, and linear
vs nonlinear models. In each quadrant, we display the number of methods of the
corresponding class that have been proposed in the literature, according to Cole
et al. (2019) and our subsequent literature review on the topic. For simplicity,
we have grouped together linear and shallow nonlinear models.

First, we observe that generative models, in particular linear and shallow non-
linear ones, are almost unexplored for image-based predictions, with the great-
est majority of methods being discriminative. In particular, we found only two
deep nonlinear generative models proposed for age prediction: Zhao et al. (2019)
which employs a Variational Autoencoder (VAE), and Wilms et al. (2020) which
models the bidirectional functional relationship between brain morphology and
age using normalizaing flows. The only linear generative model that we found for
age prediction is He et al. (2020), which uses a kernel regression method. Re-
garding a possible comparison between discriminative and generative models,
prior studies in non-neuroimaging tasks compared classification performances
of linear generative methods, such as Naive Bayes classifier, and discrimina-
tive models (such as logistic regression or rule learners), showing two distinct
regimes of performances: for limited sample sizes, the Naive Bayes classifier
achieves better results, while after a certain training size the roles are reserved
Domingos et al. (1997); Ng et al. (2002); Domingos (2012). However, a similar
comparison in neuroimaging prediction tasks is missing.

Regarding the use of linear vs nonlinear methods, until 2019 the majority of
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Fig. 2.1: Number of image-based prediction models proposed for age predic-
tion, classified into generative vs discriminative, and linear/shallow
nonlinear vs deep nonlinear models.

image-based prediction methods tested on age prediction were linear or shallow-
nonlinear discriminative methods, mostly Support Vector Machine, Relevance
Vector Machine, Gaussian Process Regression and Elastic Net Cole et al. (2019).
The review in Cole et al. (2019) in fact reports 38 studies that use machine
learning methods for brain age prediction, and only 5 studies employing neural
networks. In the following years, the field has seen a significant development of
deep learning discriminative models, especially Convolutional Neural Networks
based on 2D image slices or on 3D volumes: we counted 71 studies that use ma-
chine learning methods, and 28 studies based on deep learning models, offering
a quite different picture from the one provided a few years ago by Cole et al.
(2019). About possible advantages of adding deep nonlinearities in image-based
prediction methods, there is an ongoing discussion in the neuroimaging field,
mostly for the discriminative case, debating if deep learning models are actually
beneficial for performances or if they provide the same results as their linear
counterparts. On one hand, studies such as He et al. (2020) and Schulz et al.
(2019) showed that discriminative neural networks and simple linear methods
achieve comparable prediction performances. On the other hand, studies like
Peng et al. (2021) employed neural networks to achieve state-of-the-art perfor-
mances, reporting better results than linear discriminative benchmarks.

This overall picture about image-based prediction methods drew our attention
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towards the class of linear and shallow nonlinear generative models, which is
essentially yet unexplored in neuroimaging. Therefore, in this PhD project we
decided to investigate this class of methods and to explore if they can achieve
good prediction performances. Besides the desire to investigate an unexplored
class of methods and to corroborate previous findings about discriminative vs
generative and nonlinear vs linear models, this choice was motivated by the
still unmet need in neuroimaging of developing prediction models that are in-
terpretable. In fact, in neuroimaging applications, it is of extreme importance
not only to achieve accurate predictions, but also to interpret the underlying
anatomical mechanisms, which has proven to be difficult with discriminative
methods Haufe et al. (2014); Wilming et al. (2022).

Therefore, in this project we developed a linear or shallow non-linear generative
method for image-based predictions, and demonstrated that it achieves accurate
and interpretable predictions. The proposed method consists of a causal part,
directly expressing the effect of the variable of interest on a subject’s image, and
a noise component, which uses latent variables to capture correlations between
voxels, and to automatically model the variability in the images which is not due
to the target variable. For the choice of a noise model based on latent variables,
we took inspiration from the VAE. The resulting forward model needs to be
subsequently "inverted" to make predictions about the variable of interest. The
proposed model can be regarded as an extension of the Naive Bayes classifier,
where the strong assumption of feature independence conditioned on the class,
which does not suit imaging tasks, is relaxed.

The proposed method for image-based prediction provides the following advan-
tages:

• It combines mass-univariate and multivariate approaches,

• It yields interpretable predictions,

• It works well with limited sample sizes,

• It is simple and fast to use.

We will now give more insight into these four advantages.

Combining mass-univariate and multivariate approaches

The proposed method has the conceptual advantage of bridging the gap be-
tween classical mass-univariate brain mapping techniques, which have the
form of linear generative models that are not subsequently inverted, and
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state-of-the-art discriminative multivariate methods. In fact, the causal
part of the proposed method, like univariate approaches, expresses and fits
with a generative model the effect of the variable of interest on each voxel
independently. However, unlike these classical approaches, our method has
a latent variable noise model capturing correlations between voxels, and is
subsequently inverted to make predictions about the target variable. This
yields a discriminative predictor that, like multivariate methods, captures
correlation patterns and leverages the contribution of all voxels simulta-
neously.

Note that other methods have been proposed in the literature for combin-
ing generative and discriminative approaches Batmanghelich et al. (2011);
Varol et al. (2018), in order to achieve accurate single-subject predictions
while remaining interpretable. However, these methods had to artificially
constrain the models’ weights, to keep them interpretable. Instead, the
proposed method naturally combines generative univariate and discrim-
inative multivariate approaches, yielding accurate and interpretable pre-
dictions without having to impose external interpretability constraints.

Interpretable predictions

In the neuroimaging field, the ability to interpret a model’s predictions
is of great interest. The proposed method meets this need, by directly
modeling the effect that the target variable has on image intensities. This
yields weight maps showing target-related changes in neuroanatomy on a
population level, which are therefore straightforward to interpret Haufe
et al. (2014). These maps are in common with classical brain mapping
techniques, but, as opposed to those methods, the proposed model also
provides predictions about the target variable.

The straightforward availability of these maps is an advantage of our
method, which other prediction models do not offer, be they generative
or discriminative. In fact, nonlinear generative models can still produce
interpretable maps, but these are not readily available and instead require
heavy computations Zhao et al. (2019); Wilms et al. (2020). Regarding
discriminative methods, they have proven to be difficult to interpret, both
in the linear and nonlinear case Haufe et al. (2014); Arun et al. (2021);
Ghassemi et al. (2021); Adebayo et al. (2018); Rudin (2019); Wilming
et al. (2022); Lipton (2018); Sixt et al. (2020); Gu and Tresp (2019). In
fact, in recent years, the Explainable AI (XAI) field has developed many
techniques that aim at explaining a discriminative model’s decision, pro-
ducing maps that highlight important areas for prediction - the so-called
saliency maps Ras et al. (2022); Simonyan et al. (2014); Baehrens et al.
(2010); Erhan et al. (2009); Shrikumar et al. (2017); Sundararajan et al.
(2017); Springenberg et al. (2014); Selvaraju et al. (2017); Smilkov et al.
(2017a); Zeiler and Fergus (2014); Bach et al. (2015); Ribeiro et al. (2016);
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Lundberg and Lee (2017); Ribeiro et al. (2018); Kindermans et al. (2017);
Montavon et al. (2017); Simonyan and Zisserman (2014); Fisher et al.
(2019); Zien et al. (2009), but these methods have been shown to suffer
from several difficulties. The main conceptual issue is that, while saliency
maps identify areas in the input image that were most relevant for making
a certain prediction, they do not explain why those regions were important
Ghassemi et al. (2021); Rudin (2019). This problem has been illustrated
in Wilming et al. (2022), where many XAI techniques have been used to
locate the signal of interest, on synthetic data with structured noise. The
majority of the tested saliency maps failed in retrieving the signal and
instead highlighted a mixture of signal and noise, showing that regions
that are important for predictions are not necessarily directly affected by
the signal. This also holds in the apparently simple case of linear discrim-
inative methods, where nonzero weights are used to amplify the signal
of interest or remove noise from the image, making their interpretation
problematic Haufe et al. (2014); Wilming et al. (2022).

Limited sample sizes

As we will show in the next chapters, the proposed method achieves com-
petitive performances in prediction tasks, especially when the training set
size is limited. This property meets the need in neuroimaging of devel-
oping models that can learn efficiently from quite small training sets. In
fact, while tasks commonly used to develop prediction models such as
age prediction can count on tens of thousands of scans from very large
datasets Alfaro-Almagro et al. (2018); German National Cohort Consor-
tium (2014); Breteler et al. (2014); Schram et al. (2014), sample sizes in
typical neuroimaging applications are much more limited. For instance,
Arbabshirani et al. (2017) contains a review of over 200 studies on pre-
dictions of brain diseases from various neuroimaging modalities, showing
that sample sizes are typically small, with mean and median of only 186
and 88 subjects, respectively, as illustrated in Fig. 2.2.

Even in extremely large studies as the UK Biobank Sudlow et al. (2015);
Miller et al. (2016); Alfaro-Almagro et al. (2018), the number of subjects
with quite common disorders is fairly limited. The UK Biobank is the
world’s largest epidemiological and imaging prospective study, compris-
ing 500.000 subjects, 100.000 of which have been selected for multimodal
imaging acquisition Alfaro-Almagro et al. (2018). The scanning process is
still underway, with the 50.000th participant scanned in January 20223. In
2022, the UK Biobank should roughly include scans of 900 subjects with
stroke, 900 with Alzheimer’s Disease, and 600 with Parkinson’s Disease,
while in 2027, these amount are projected to increase to 4.000 subjects

3https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/
world-s-largest-imaging-study-scans-50-000th-participant

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/world-s-largest-imaging-study-scans-50-000th-participant
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/world-s-largest-imaging-study-scans-50-000th-participant
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Fig. 2.2: Histogram of sample sizes in brain diseases prediction studies, as
reported by Arbabshirani et al. (2017).

with stroke, 6.000 with Alzheimer’s Disease, and 2.800 with Parkinson’s
Disease, considering these diseases’ prevalence in the population and the
number of scanned subjects Sudlow et al. (2015); Alfaro-Almagro et al.
(2018). Regarding other diseases such as Multiple Sclerosis and epilepsy,
in 2021, there were only 87 scans of subjects with MS and 185 of subjects
with epilepsy in the UK Biobank (according to the imaging data to which
we had access). These estimates reveal that, even in the world’s biggest
imaging project, the number of subjects with quite common disorders is
fairly modest, and will not be huge even in the coming years.

Analogous considerations hold for other large prospective imaging studies,
such as the the German National Cohort, which plans to scan 30.000 par-
ticipants to study several major chronic disorders German National Cohort
Consortium (2014), the Rhineland Study, which targets to acquire images
of 30.000 subjects to investigate neurodegenerative and neuropsychiatric
diseases Breteler et al. (2014), and the Maastricht Study, including 10.000
participants, which is however augmented with type 2 diabetes subjects,
to better investigate this disease Schram et al. (2014).

Other imaging cohorts gathered for investigating specific disorders and/or
healthy aging comprises at most 1000-2000 subjects, such as ADNI Jack Jr
et al. (2008), ABIDE Di Martino et al. (2014), AIBL Ellis et al. (2009),
CoRR Zuo et al. (2014), HCP Glasser et al. (2016), PING Jernigan et al.
(2016), PNC Satterthwaite et al. (2014), SHIP Hosten et al. (2021).

Given this scenario characterizing many potential neuroimaging applica-
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tions, it is important to develop prediction models that are able to achieve
accurate results on modest sample sizes, and we will demonstrate that the
proposed method meets this goal.

Simple and fast to use

The proposed method has also the advantage of being simple and fast to
use. In fact, as we will show in the next chapter, it does not need approxi-
mations, having closed-form expressions for training and testing, and it is
simple to tune, with only one hyperparameter to estimate. Additionally,
training the proposed method is fast for typical sample sizes, without the
need for GPUs.

Conversely, deep learning methods can be much harder to use, with many
more knobs to turn, and time consuming to train, even on GPUs. For
example, a deep learning method that was recently proposed for brain age
prediction Peng et al. (2021) reports the selection of a good combination
of data augmentation technique, optimizer, training loss, batch size, etc.,
and a training time of 65 hours for about 13.000 data, with two GPUs. We
trained this model as benchmark, following the same setting described in
Peng et al. (2021), and even found that a special GPU with large memory
- which may be difficult to have - was necessary to train the model for the
given data resolution and batch size.

Given these advantages, the proposed method is well-suited for image-based pre-
diction applications, yielding interpretable results without sacrificing prediction
accuracy, especially in typical scenarios with moderate sample sizes.



Chapter 3
Proposed generative

prediction method

In this chapter, we describe the proposed method for image-based predictions,
with the following outline:

• Forward generative model;

• Model inversion to make predictions; and

• Model training.

3.1 Forward model

Let t ∈ RJ denote a a vectorized version of a subject’s image, containing J
voxel-level measurements, and x ∈ R a variable of interest about that subject,
that we aim to predict. The proposed forward generative model has the form

t = m+ xwG + η, (3.1)

where η ∈ RJ is a vector with random noise, with distribution

p(η) = N (η|0,C), (3.2)
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Fig. 3.1: Cartoon illustration of the generative model in (3.1).

and wG,m ∈ RJ are two spatial weight maps expressing the effect of the vari-
able of interest x on voxels of t, and a mean effect, respectively. This generative
model is illustrated in Fig. 3.1, in a toy 2D example: the model involves decom-
posing the input signal t as a sum of a mean effect m, the target effect xwG,
and a subject-specific noise vector η.

This forward model can also be extended to include known variables about the
subject and/or a nonlinear function of x, as we will show in chapter 5. For the
rest of the thesis, we will name wG the generative weight map, and gather the
two spatial maps in a single matrix W = (m,wG).

Note that the model in (3.1) with diagonal C is the linear generative model used
in classical mass-univariate brain mapping techniques, where statistical tests are
performed on wG, to identify brain areas with significant group differences or
associated with specific variables of interest. As opposed to these methods, here
we consider a non-diagonal C with spatial structure, as we will show in the next
section, which allows to obtain accurate predictions about x once the model is
inverted.
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3.2 Inverting the model to make predictions

Let us now assume that the parameters W and C of the model are known, and
that we have an unseen subject with image t∗ and unknown variable of interest
x∗. We can then invert the model with Bayes’ rule to make predictions about
the target x∗.

In the classification case of a binary target variable x∗ ∈ {0, 1}, assuming the
two values have equal prior probability, we get:

p(x∗ = 1|t∗,W,C) = σ
(
wT

Dt∗ + wo

)
, (3.3)

where σ(·) is the logistic function, wo = −wT
D(m+wG/2), and

wD = C−1wG. (3.4)

Note that (3.3) has the form of a logistic classifier with discriminative weights
wD. We can then predict x∗ as 1 if

wT
Dt∗ + wo > 0, (3.5)

and 0 otherwise.

In the regression case of a continuous target variable with a flat prior p(x∗) ∝ 1,
the posterior distribution is Gaussian, of the form:

p(x∗|t∗,W,C) = N (x∗|y(t∗), σ2
x), (3.6)

where we have defined mean

y(t∗) = σ2
x(w

T
Dt∗ + b0), (3.7)

and variance
σ2
x =

(
wT

GC
−1wG

)−1
, (3.8)

with b0 = −wT
Dm. Point prediction of x∗ can be done with (3.7), which takes

the form of a linear discrimitive predictor, entailing the scalar product between
discriminative weights wD and the input image t∗.

The procedure of inverting the model to predict x∗ is displayed in Fig. 3.2, with
a cartoon illustration. It entails projecting t∗ orthogonally onto the direction
of wD, to retrieve the signal of interest in presence of noise with covariance C.
Note that the direction of wD can be very different from wG, since wD also
accounts for the noise structure. For example, in Fig. 3.2, wD obtains a large
y-component, despite wG has zero weight in that direction. This gives insight
into the problems that arise when trying to interpret the discriminative weights
wD. We will explore this topic in more details in section 4.2.
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Fig. 3.2: Cartoon illustration of inverting the model to predict x∗ based on t∗.
by projecting t∗ orthogonally onto the direction of wD.

3.3 Model training

In practice, the model parameters W and C are not known and need to be
learned from training data. Assume that we have N training pairs {tn, xn}Nn=1,
the marginal likelihood of these training data is given by:

p
(
{tn}Nn=1|{xn}Nn=1,W,C

)
=

N∏

n=1

N (tn| m+ xnwG,C) . (3.9)

The maximum likelihood (ML) estimate of W and C can be then found by
maximizing (3.9) with respect to these parameters.

For W, the ML estimate is given in closed form:

W =

(
N∑

n=1

tnϕ
T
n

)(
N∑

n=1

ϕnϕ
T
n

)−1

with ϕn = (1, xn)
T . (3.10)

Note that estimating W with (3.10) equals to fitting an Ordinary Least Squares
regression model independently in each voxel.

Estimating the noise covariance matrix C is troublesome, since it has J(J +
1)/2 free parameters, where J is the number of voxels, and this is larger than
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usual training set sizes by orders of magnitude. To elude this problem, we
constrain C to have a specific structure, using a latent variable model known
as factor analysis Bishop and Nasrabadi (2006a). This allows us to control the
number of parameters while still capturing the dominant correlations in the
data. Specifically, we consider a structured noise of the form:

η = Vz+ ϵ, (3.11)

where z is a vector of K unknown latent variables with prior distribution p(z) =
N (z|0, IK), V includes the corresponding, unknown weights, and ϵ is a Gaussian
error of the form

p(ϵ|∆) = N (ϵ|0,∆), (3.12)

where ∆ is unknown and diagonal.

Integrating over z, the noise vector η is still distributed as a zero-mean Gaussian
with covariance matrix C, while C is now given by

C = VVT +∆,

and is now controlled by a smaller set of parameters V and ∆. The number
of latent variables K, which is also the number of columns in V, is the only
hyperparameter of the model, which needs to be determined experimentally.

The parameters V and ∆ can now be estimated, by maximizing the data
marginal likelihood in (3.9). We can do this by plugging in the ML estimate of
W given by (3.10), and then using the Expectation-Maximization (EM) algo-
rithm Rubin et al. (1982). Defining t̃n = tn −Wϕn, this results in an iterative
algorithm that repeatedly evaluates the posterior distribution over the latent
variables:

p(zn |̃tn,V,∆) = N (zn|µn,Σ) (3.13)

with µn = ΣVT∆−1t̃n and Σ = (IK+VT∆−1V)−1, and subsequently updates
the parameters:

V←
(

N∑

n=1

t̃nµ
T
n

)(
N∑

n=1

(
µnµ

T
n +Σ

)
)−1

(3.14)

∆← diag

(
1

N

N∑

n=1

t̃nt̃
T
n −V

1

N

N∑

n=1

µnt̃
T
n

)
. (3.15)

The notation diag(·) means that all non-diagonal entries are set to zero. We
detect convergence of the EM algorithm by looking at the relative change in
marginal likelihood between iterations. After converge, we have an estimate of
all the unknown parameters in the model, and we can then proceed to make
predictions on unseen data, as described in section 3.2.
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Chapter 4

Results on UK Biobank

In this chapter, we present experiments where the proposed method is employed
for age and gender prediction on the UK Biobank data, and we compare the
obtained results with selected benchmark methods. In particular, the chapter
is structured as follow:

• We first show prediction performances of proposed method and bench-
marks for age and gender prediction, on the UK Biobank data;

• We explore the interpretability of the proposed method vs discriminative
benchmarks; and

• We then give insight into the considered methods’ performances in terms
of trade-off between bias and variance.

4.1 Prediction performances and benchmarks

In these experiments, we employed the UK Biobank dataset (Sudlow et al., 2015;
Alfaro-Almagro et al., 2018), a huge prospective study that aims at scanning
100.000 subjects. The data release used for these experiments includes 42,180
T1-weighted MRI scans, which after some exclusion criteria (selection of healthy
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subjects and baseline scans) yielded MRI scans of 26,127 healthy subjects, aged
44-82 years. We employed these data for a regression task (age prediction) and
a classification task (gender prediction), on healthy subjects.

To assess if the proposed method achieves competitive results, we compared its
performances with three other prediction methods. Since we aim at investigating
properties of nonlinear vs linear and discriminative vs generative models, we
selected as benchmarks one method of each type: one discriminative nonlinear
method (SFCN Peng et al. (2021)), one discriminative linear model (RVoxM
Sabuncu et al. (2012)), and one generative nonlinear model (variational auto-
encoder Zhao et al. (2019)).

SFCN: This is a lightweight convolutional neural network proposed in Peng
et al. (2021) for brain age prediction. We selected this method as discriminative
nonlinear benchmark since it achieves, to the best of our knowledge, state-of-
the-art performances for age prediction, and it also won the 2019 Predictive
Analysis Challenge for this task. In Peng et al. (2021), the authors train the
SFCN on the UK Biobank for age and gender prediction, based on training
sets of different sizes. We used a similar setting for our experiment and trained
the SFCN and the other selected models on the UK Biobank. We followed the
training regime described in Peng et al. (2021), with only the number of epochs
used for training left as hyperparameter of the method.

RVoxM: This is a linear discriminative method, proposed in Sabuncu et al.
(2012), which we selected as benchmark since its performances are competitive
within the class of linear discriminative models. The method provides weight
maps that are sparse and spatially smooth as a form of regularization, and the
strength of this spatial smoothness is the one hyperparameter of the method.

Variational auto-encoder: We employed a variational auto-encoder (VAE)
proposed for age prediction in Zhao et al. (2019) as nonlinear generative bench-
mark. This model can be seen as a nonlinear version of the proposed method,
where its latent variables are decoded nonlinearly through a deep neural net-
work. This model has two hyperparameters, which control the amount of reg-
ularization (dropout factor and L2 regularization). In Zhao et al. (2019), the
VAE is trained on T1 scans that are cropped around the ventricles, therefore we
considered the same setting and compared performances of the proposed model
and VAE, both trained on cropped T1 scans.

In the next two sections, we first show the comparison of prediction performances
obtained by the proposed method, RVoxM and SFCN on whole T1 scans; then,
we present the comparison with VAE in a separate experiment, where both
methods are applied on T1 scans cropped around the ventricles.
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4.1.1 Comparison with discriminative benchmarks: SFCN
and RVoxM

We first compared prediction performances of the proposed method, SFCN and
RVoxM for age and gender prediction, based on T1-weighted scans from the UK
Biobank. The dataset provides skull-stripped, bias-field corrected T1 scans in
subject space, and both an affine and a deformable transformation from subject
space to MNI space, which can be used to spatially normalize the images. In
Peng et al. (2021), the authors mostly use T1 scans that are affinely registered to
template space. However, since the deformable transformation is available and
already used for skull-stripping, we deemed more meaningful to use nonlinearly
registered T1 scans in our experiments. We anyway also employed the affinely
registered T1s, to be able to compare results with Peng et al. (2021). In the
remainder, we will call "affine T1s" and "deformable T1s" the scans registered
with the affine and deformable transformations, respectively.

We aimed at comparing prediction performances of the considered methods in
different training scenarios, therefore we considered training sizes from 100 sub-
jects up to 7800 (for age) and 9800 subjects (for gender), resembling the setting
in Peng et al. (2021). In all the experiments, we employed a validation set of 500
subjects, and a test set of 1000 subjects. We performed hyperparameter selec-
tion using grid search on the validation set, with validation MAE (for age) and
validation accuracy (for gender) as metrics to be optimized. For each training
size, we used 10 randomly sampled training sets, (only 3 sets for sizes strictly
larger than 1000 subjects), and averaged the obtained prediction metrics on the
test set, to get more robust results.

Fig. 4.1 shows the obtained results for age prediction, in terms of MAE and
Pearson correlation coefficient between real and predicted values, and Fig. 4.2
displays results for gender classification, in terms of test accuracy. Comparing
performances obtained on affine vs deformable T1s, we observe that the pro-
posed method and RVoxM achieve clearly worse results on affine T1s, while the
effect of input data type on prediction performances is much less pronounced for
SFCN, with almost no effect for age, and a small difference for gender predic-
tion. These findings are not surprising, since the proposed model and RVoxM are
linear methods, and therefore they cannot model nonlinear deformations that
have not been removed from the input images by the the affine registration,
while the SFCN has the capability of doing it. However, since these nonlinear
deformations are known and actually used to compute the affine T1s, we deem
that it is more meaningful to consider results on deformable T1s. Comparing
performances of the proposed method and RVoxM, we observe that their results
for age and gender prediction on both affine and deformable T1s are comparable
up to a few thousand of training subjects, after which the RVoxM starts out-
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Fig. 4.1: Comparison of performances for age prediction, for the proposed
method, RVoxM and SFCN. Results are shown on both affine and
deformable T1s, for all methods.

Fig. 4.2: Comparison of performances for gender classification, for the pro-
posed method, RVoxM and SFCN. Results are shown on both affine
and deformable T1s, for all methods.

performing the proposed method (except for gender prediction on deformable
T1s, where the two methods achieve equal performances even at N=9800). Re-
garding the comparison between the proposed method and SFCN, we find that,
on affine T1s, the SFCN achieves better results for each training size, for both
age and gender prediction. When using deformable T1s, the scenario is very
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Fig. 4.3: Comparison of performances obtained by SFCN for age prediction
(left) and gender prediction (right) when re-trained vs as reported in
Peng et al. (2021).

different: for age prediction, the proposed method yields comparable or better
results in regimes up to 2600 training subjects, after which it is outperformed
by the SFCN. For gender prediction, we find that the proposed method outper-
forms the SFCN for all training sizes, apart from N = 9800 where they perform
comparably.

In order to make sure to perform a fair comparison of proposed method vs
SFCN, we also checked if the results we obtained by re-training the SFCN are
in line with the ones reported in Peng et al. (2021) (cf. Fig. 4.3). For age
prediction, we are reproducing the results reported in Peng et al. (2021) for up
to N = 1000, with a small variability caused by the use of different data, whereas
for larger sizes, the errors that we obtain are systematically worse than in Peng
et al. (2021). However, this does not change the conclusions drawn from Figure
4.1 about the comparison of proposed method and SFCN for age prediction.
Regarding gender prediction, there is a systematic difference between our results
and the ones from Peng et al. (2021), with a larger gap for N = 100 and
N = 1000. In this regard, it is worth reminding that we used different training
and test set as compared to Peng et al. (2021), and that their results, obtained on
only one training set for each size, may depend a lot on the choice of training data
when N is small. Anyway, considering both Fig. 4.2 and 4.3, we could conclude
that SFCN for gender prediction on deformable T1s performs comparably to
the proposed method for each training size.

To give an idea of the usability of the considered methods, we show in Table 4.1
training times for proposed method, RVoxM and SFCN, for age prediction on
deformable T1s. The times reported in the table are training times for a single
selected value of the models’ hyperparameter (for SFCN, this is the training time
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N=100 N=200 N=300 N=500 N=1000 N=2600 N=5200 N=7800

Proposed method 1.20 min 0.67 min 1.94 min 9.53 min 32.18 min ≈3h ≈15h ≈ 69 h

RVoxM 92.42 min 66.46 min 75.36 min 76.21 min 129.05 min 126.55 min ≈ 22 h ≈ 21 h

SFCN ≈ 8h ≈ 11 h ≈ 16 h ≈ 18 h ≈ 34h ≈ 76h ≈ 69h ≈ 102 h

Table 4.1: Training times of proposed method, RVoxM and SFCN, for age
prediction on deformable T1s, averaged across all training runs.
For proposed method and RVoxM, the reported times are CPU
times obtained with Matlab on a state-of-the-art desktop, while for
SFCN they are obtained with a NVIDIA A100 SXM4 GPU (40 GB
of RAM).

N=100 N=200 N=300 N=500 N=1000 N=2600 N=5200 N=7800
Proposed method 19.80 20.40 52.00 86.00 120.00 366.67 1833.33 3333.33

RVoxM 24950 18250 23400 19400 31000 31666.67 200000 200000
SFCN 218.10 217.10 221.50 248.33 226.50 262.67 146.00 123.67

Table 4.2: Values of hyperparameters selected on the validation set for pro-
posed method, RVoxM and SFCN, averaged across all runs, for age
prediction on deformable T1s.

up to the selected epoch). We observe that for small N , the proposed method
is much faster than the other models, with training times of only a few minutes.
With 2600 and 5200 training subjects, our method becomes comparable to the
RVoxM, while for N = 7800 it is slower. Furthermore, training the SFCN
takes more time than the other models, for each size. When performing this
comparison, we need to take into account that for proposed method and RVoxM
these are CPU times with 3mm T1 scans, while for SFCN they are GPU times
with 1mm T1s, and that training the SFCN in the same setting as described in
Peng et al. (2021) required to use a GPU with particularly large memory (40
GB RAM).

Furthermore, Table 4.2 displays the selected values of the methods’ hyperpa-
rameters, averaged across all runs of each size, for age prediction on deformable
T1s. We observe that for the proposed method, the number of latent variables
on average increases monotonically as the training set size grows, as expected
since larger sizes allow more flexible models. Conversely, for RVoxM and SFCN,
the hyperparameter behaviour is not monotone, which can be due to different
hyperparameter values giving similar results.
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Fig. 4.4: Test MAE and Pearson correlation coefficient obtained by the pro-
posed method and VAE for age prediction, on deformable T1s
cropped around the ventricles.

4.1.2 Comparison with generative benchmark: VAE

We then compared results obtained by the proposed method with the generative
benchmark (VAE), for age prediction, on the UK Biobank. Since in Zhao et al.
(2019), the method is applied to T1 scans cropped around the ventricles, we
trained the proposed method on the same input type, to perform a fair compar-
ison. In this experiment, we used only deformable T1s, and the same validation
and test set of 500 and 1000 subjects respectively as in the previous experiment.
We again selected the models’ hyperparameters with grid search, by optimizing
the validation MAE. Since the VAE was used in Zhao et al. (2019) with around
200 training subjects, with the number of latent variables chosen accordingly,
we considered in this experiment only training sets of similar sizes (from 100
to 400 subjects). For each training size, we employed 10 randomly sampled
training sets, and averaged the obtained test MAEs and correlations, for both
proposed method and VAE. In Fig. 4.4 we show the results: the proposed
method achieves better results than the VAE for each considered training size.
These findings suggest that, at least for training sets of a few hundred subjects,
including more flexibility into the model with the nonlinear expansion of latent
variables is not advantageous, and it may even decrease performances.

Concerning training times, the VAE training took on average 9.40 minutes for
N=200, using a NVIDIA GeForce RTX 2080 Ti GPU (11 GB of RAM), while
training the proposed method took on average 1.16 minutes with the same size,
using Matlab on a state-of-the-art desktop. In both cases, these are training
times for the selected values of the hyperparameters.

Additionally, Table 4.3 displays which values of the hyperparameters are se-
lected on the validation set on average, for both proposed method and VAE.
For the proposed method, the number of latent variables is almost always in-
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N=100 N=150 N=200 N=250 N=300 N=400
Proposed method 16.28 21.78 25.56 49.11 43.06 49.17

VAE (dropout, L2 regularization) (0.64, 0.31) (0.61, 0.24) (0.57, 0.14) (0.57, 0.07) (0.63, 0.03) (0.54, 0.12)

Table 4.3: Values of hyperparameters selected on the validation set for pro-
posed method and VAE, averaged across all runs.

Fig. 4.5: Performances of proposed method for age prediction on T1s cropped
around the ventricles vs full-brain T1s (both deformable). Results
are averaged across 10 different training sets for each size.

creasing with the training set size, as already observed for the comparison with
discriminative benchmarks. As opposed to Table 4.2 where the trend of the la-
tent space size was monotone, here there is a fluctuation for N = 300, probably
due to the smaller gap between the considered training sizes. For the VAE, we
note that the dropout factor (fraction of units to drop) and L2 regularization
are almost always decreasing with the training set size, which is expected since
larger training sizes require a smaller degree of regularization.

As a side experiment, we can compare the proposed method’s performances
for age prediction on deformable full-brain T1s (used when comparing with dis-
criminative benchmarks) vs deformable T1s cropped around the ventricles (used
when comparing with VAE). Results are shown in Fig. 4.5, for training sizes
from 100 to 1000 subjects. We observe that for very small training sets, perfor-
mances on cropped T1s are better than on full-brain T1s, while for training sizes
bigger than around 300 subjects, the roles are reversed. A possible explanation
is that increasing the input dimensionality when the training size is very small
raises the chance of overfitting and therefore of worse results, considering also
that the ventricle area is already informative. Including more input features
may become beneficial only if there are enough data to exploit the additional
information.
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Fig. 4.6: Cartoon illustration of signal decomposition t = m+xwG +η (left),
and inversion of the model to make predictions (right).

4.2 Interpretability

One of the main perks of the proposed method is that it produces an inter-
pretable spatial map (wG), showing the direct effect of the variable of interest
on image intensities, on a population level. This map is obtained through a
decomposition of the signal (image) into an average anatomy, the effect of the
variable of interest and a subject-specific noise. This decomposition is illus-
trated in Fig. 4.6 in a 2D toy example, and in Fig. 4.7 with images, for the
age prediction task. Thanks to the form of this decomposition, the generative
map wG expresses how the variable of interest affects a subject’s image, encod-
ing target-related neuroanatomical changes Haufe et al. (2014). Consistently
with this, the generative map for age displayed in Fig. 4.7 expresses known age-
related effects, such as gray matter atrophy and enlargement of ventricles Fjell
et al. (2009); Fjell and Walhovd (2010).

When the model is subsequently inverted, the discriminative weight map wD

(3.4) is obtained by combining the generative maps with the noise covariance
matrix, and used to make predictions through a scalar product with the test
subject’s image, as illustrated in Fig. 4.6 for vectors and Fig. 4.7 for images.
This discriminative map contains the weights given to voxels for predicting the
variable of interest, and therefore highlights image areas the model uses for
predictions. However, since it includes both generative effect and noise pattern,
it does not directly express target-related changes in neuroanatomy and it results
in an uninterpretable spatial pattern Haufe et al. (2014). This concept is shown
in Fig. 4.6, illustrating how the y channel has a large component in wD, although
it is not affected by the target variable since its weight in wG is zero. Similarly,
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Fig. 4.7: Discriminative linear regression (bottom) is mathematically the same
as decomposing the signal into its constituents in the model (top), but
not in terms of interpretability. Maps obtained for age prediction on
the UK Biobank, on a training set of 300 subjects (with deformable
T1s).

the age discriminative map shown in Fig. 4.7 does not present the typical age-
related patterns that characterize the generative map, but it mostly highlights
white matter areas.

Fig. 4.8 shows other 2D slices of both generative and discriminative maps ob-
tained for age prediction. We observe again the large difference between the
two maps: while the generative maps display typical age-related effects, mostly
highlighting gray matter borders and ventricles, the discriminative maps focus
on very different areas, mainly within white matter, with both positive and
negative weights.

It is also interesting to compare the generative map wG not only with its discrim-
inative counterpart wD, but also with spatial maps of the other discriminative
methods employed as benchmarks. Additionally, we are interested in analyzing
the stability of these spatial maps when changing training set, both of same and
different sizes. For these reasons, we display in Fig. 4.9 spatial maps of the
proposed method (both wG and wD), RVoxM and SFCN, obtained on training
sets of 300, 2600 and 7800 subjects. To also investigate the behaviour of these
maps when changing training data within the same cohort size, in Fig. 4.10 we
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Fig. 4.8: 2D slices of generative map wG (top) and discriminative map wD

(bottom), obtained for age prediction on UK Biobank data, on a
training set of 300 subjects (with deformable T1s).

display maps obtained by the methods on three randomly sampled training sets
of 2600 subjects. Since SFCN is a neural network and therefore does not au-
tomatically provide spatial maps, we used SmoothGrad Smilkov et al. (2017b)
to compute saliency maps for this method. The SmoothGrad maps are com-
monly used as post-hoc explanations of deep learning models, and they can be
seen as a generalization of linear methods’ weight maps (i.e. the SmoothGrad
map computed for a linear discriminative method would correspond exactly to
the model’s weight map Adebayo et al. (2018)). Note that, since SmoothGrad
provides subject-specific maps, in order to obtain a single template that could
be compared with the other methods’ ones, we averaged the SmoothGrad maps
of all test subjects. This technique is considered a relevant way to produce
population-level maps for instance-based XAI methods, since it removes the
noise characterizing single-subject maps Wilming et al. (2022), consistent with
the finding that it’s the aggregate use of saliency maps rather than the individual
one that can yield significant results Ghassemi et al. (2021).

First, from Fig. 4.9 and 4.10, we note that the discriminative spatial patterns of
wD, RVoxM, and SFCN are much less intuitive than wG, which shows known
age-related effects. These findings seem to support what we discussed in Chapter
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Fig. 4.9: Maps of proposed method (wG and wD), RVoxM, and SFCN (with
SmoothGrad), for different training set sizes. Voxels with zero weight
are transparent. Discriminative maps are displayed for the optimal
value of the hyperpameter, selected as described in section 4.1.

2, namely that discriminative maps highlight regions that are most important
to make predictions, but they do not directly express anatomical changes caused
by the variable of interest, and this holds even in the apparently simple case of
a linear discriminative method Haufe et al. (2014); Wilming et al. (2022). Ad-
ditionally, regarding the dependency of maps on specific training data, we note
that the generative maps wG are quite stable across different training samples.
The discriminative maps wD and RVoxM’s also show some consistency, espe-
cially when keeping the same training set size, but with more differences than
the generative maps. A possible explanation is that wD and the RVoxM’s maps
depend on an hyperparameter, which in general varies with the specific training
data, especially when changing training size (cf. Table 4.2), while wG does not.
Additionally, generative maps are produced by estimating two weights from N



4.2 Interpretability 31

Fig. 4.10: Maps of proposed method (wG and wD), RVoxM, and SFCN (with
SmoothGrad), computed on 3 different training sets of 2600 sub-
jects. Voxels with zero weight are transparent. Discriminative maps
are displayed for the optimal value of the hyperpameter, selected as
described in section 4.1.

data point in each voxel independently, which is expected to yield rather stable
fittings. Instead, wD involves estimating many more basis functions, together
with their coefficients, in a multivariate way, and RVoxM’s maps entail fitting a
very high-dimensional hyperplane from N data - which are both likely to be less
stable operations. Regarding SFCN, we observe that there is a huge variability
in its maps when changing training sets, both of same and different sizes. These



32 Results on UK Biobank

Fig. 4.11: Top: original images of a 47 years old subject. Bottom: counterfac-
tual images of the same subject at the age of 80. All images are on
the same intensity scale.

findings seem consistent with Arun et al. (2021), which shows that many com-
monly used saliency maps methods, including SmoothGrad, did not pass a test
of reproducibility when the model is retrained with a different random initial-
ization or with a different architecture yielding similar prediction performances.
All these results illustrate some difficulties that arise in the interpretation of dis-
criminative maps - both theoretical difficulties, since such maps do not express
the causal effects of interest for interpretation purposes, and empirical ones,
since especially SFCN maps rely heavily on the specific choice of training data.

Like all generative models, the proposed method can also generate counterfac-
tual images. Figure 4.11 displays an example of counterfactual image generated
by the proposed method, where the brain of a 47 years old subject is artificially
aged to 80 years. The aging patterns shown in the counterfactual image are
consistent with the effects encoded by wG: the aged brain is characterized by
larger ventricles, enhanced gray matter atrophy, and a general slight decrease in
image intensities. Counterfactual images are useful for showing target-related
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effects at a subject-specific level. Furthermore, Pearl and Mackenzie (2018) il-
lustrates that counterfactual reasoning is typical of human thinking: answering
counterfactual questions is the highest degree of human casual inference, and the
advantages that humans have had in evolution from being able to do it are huge.
This seems to suggest that the way a generative model captures target-related
effects is similar to the human perception of causation.

It is interesting to note that any generative model can generate counterfactual
images, showing target-related effects on specific subjects. However, the pro-
posed method has the big advantage of providing spatial maps of target-related
patterns on a population level, which may be more difficult to obtain with com-
plex nonlinear generative models such as the ones proposed in Zhao et al. (2019);
Wilms et al. (2020). For instance, nonlinear generative methods can produce
age-specific templates, from which global aging effects can be retrieved by com-
puting the jacobian determinant of the deformation between pairs of templates,
as in Wilms et al. (2020); Zhao et al. (2019). However, producing such maps re-
quires a lot of computation, and depends on the selected age-gap. Furthermore,
Wilms et al. (2020) also uses another technique to generate a population-level
interpretable spatial map, by computing the partial derivative of the model’s
inverse map with respect to age. But again, this technique involves heavy com-
putations, and it provides a less intuitive spatial pattern Wilms et al. (2020). As
opposed to these nonlinear generative models, it is straightforward for the pro-
posed method to produce population-level spatial maps, which can be computed
in sub-second speed.

To further investigate how the proposed model works, we can also compute the
eigenvectors of the noise covariance matrix C. Fig. 4.12 shows the effect of the
first three eigenvectors. We notice that the first eigenvector expresses a scaling
factor in image intensities, the second one encodes bias field in the top part of
brain that has not been removed in the data pre-processing, and the third one
encodes differences in the lateral ventricles size. It is worth noting that that
the bias-field is modelled by the proposed method in the noise component and
therefore it is disentangled from the signal of interest. Conversely, discrimina-
tive methods would implicitly consider it when estimating their spatial weights,
therefore relying on an intensity pattern that is unrelated to the task at hand.

4.3 Bias-variance trade-off

In section 4.1, we showed that the proposed method and the two discriminative
benchmarks perform quite similarly on age prediction based on deformable T1s,
in training regimes up to a few thousands of subjects. This finding is perhaps
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Fig. 4.12: Effect of the first three eigenvectors of the covariance matrix C.
The middle line displays slices of the average volume. The top ad
bottom lines show the average volume modified in direction of the
eigenvectors, with negative and positive sign respectively.

surprising if we consider the vastly different numbers of parameters in the meth-
ods. In fact, on one hand, the proposed method has J(K + 3) −K(K − 1)/2
free parameters (2 columns of J elements in W, K columns of J parameters in
V and J diagonal elements in ∆, which are reduced by K(K − 1)/2 because
any rotation in the latent space provides the same model Bishop and Nasrabadi
(2006a)), with J ≈ 80, 000 in our experiments and K that varies from tens
to thousands, depending on the training set size (Cf. Table 4.2). On the other
hand, the RVoxM has J free parameters, and the SFCN has 3 million parameters
Peng et al. (2021).
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However, several factors determine a method’s prediction performances besides
the number of parameters, and it is in general not straightforward to predict
which method will perform best a priori. For instance, the choice of the opti-
mizer and how it explores the hypothesis space has an impact on a method’s
performances, where optimizers that try fewer hypothesis, restrict the hypoth-
esis space and act as regularizers Domingos (2012). Additionally, the posterior
distribution of a "wrong" generative model can still give correct predictions
Domingos et al. (1997), and even on simulated data, an incorrect model can
achieve better prediction performances than the "true" model in certain regimes
Domingos (2012), making an a priori guess of the best-performing method ex-
tremely hard.

Given these difficulties, to gain more insight into the performances of considered
methods, we can perform the so-called bias-variance decomposition of prediction
errors. We compute it for age prediction, since it is more straightforward for
a continuous variable than in a classification case. For a given method, the
prediction mean squared error (MSE) can be decomposed into a bias term,
which denotes how well the method performs on average, and a variance term,
which indicates how much predictions for the same test subjects change across
different training runs Hart et al. (2000); Bishop and Nasrabadi (2006b).

In particular, if we consider a test pair (t∗, x∗), and we denote with y(t∗;D)
the prediction made by the model trained on a dataset D for test subject t∗,
we obtain the following decomposition:

Et∗,D

[
(x∗ − y(t∗;D))

2
]

︸ ︷︷ ︸
MSE

= Et∗

[
(x∗ − ED [y(t∗;D)])

2
]

︸ ︷︷ ︸
bias

+

+ Et∗,D

[
(y(t∗;D)− ED [y(t∗;D)])

2
]

︸ ︷︷ ︸
variance

(4.1)

where ED[·] denotes the expected value over all training sets D of a fixed size,
and Et∗ [·] denotes the expected value over all possible inputs t∗. In practice, if
we consider M test pairs {t∗m, x∗

m}Mm=1, and B different training sets {Db}Bb=1

of a given size, we can write for test subject m:
∑B

b=1 (x
∗
m − y(t∗m;Db))

2

B
= (x∗

m − ȳ(t∗m))
2
+

+

∑B
b=1 (y(t

∗
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2

B
(4.2)

where we have defined the mean prediction for test subject m as ȳ(t∗m) =∑B
b=1 y(t

∗
m;Db)/B. We can than average the decomposition in (4.2) over all

test subjects.
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Typically, a very flexible model will have a large variance and a low bias, re-
flecting an overfitting of the training data, while a strongly constrained method
will have the opposite behaviour, resulting in underfitting of the training data
Hart et al. (2000); Bishop and Nasrabadi (2006b). Finding the right balance
in the bias-variance trade-off is a key point to achieve good results in a given
setting, and there is no method that can be in absolute better than others ("no
free lunch" theorem) Domingos (2012); Hart et al. (2000).

The bias-variance decomposition principle is illustrated in Fig. 4.13, in a 2D
toy example from the proposed method. We generate 5 data points for several
training sets using a full covariance matrix, and we consider one specific test
subject (t∗, x∗) drawn from the same distribution. We then predict the target
variable for the test subject, fitting both a diagonal (wrong model) and a full
(correct model) covariance matrix to the training sets. The histogram shows the
distribution of the signed prediction error y(t∗;D)−x∗ for the two models, over
10.000 training runs. The overall MSE is similar in the two cases (MSE= 0.068
vs MSE= 0.072), but the error distribution is very different: the model with
diagonal C yields predictions that are very similar across training runs but
systematically wrong (low variance, high bias), while predictions obtained by
the more flexible model with full C vary more across training runs but they are
on average correct (high variance, low bias). This is also illustrated by the three
shown examples.

In order to gain a similar insight in the real-data experiment, we computed MSE,
bias and variance with (4.2), for proposed method, RVoxM and SFCN, using
the same training runs described in section 4.1 for age prediction on deformable
T1s. We therefore averaged across the training sets that we already have (10
for sizes up to N = 1000 and 3 for larger sizes), and used the same test set of
1000 subjects. The computed decomposition is shown in Fig. 4.14. Let us first
analyze the decomposition of our method (blue lines). We can see that the bias
is reduced as the training set size increases, and the variance slightly decreases.
This behaviour is achieved through the method’s regularization hyperparameter
K: for small training sizes, the hyperparameter constrains the models in order
to control the variance, and this results in a larger bias. As the training size
increases, the variance is naturally reduced thanks to the larger number of train-
ing subjects Hart et al. (2000). This allows the method to be less regularized -
as we saw in Table 4.2, the value of K increases as N becomes larger - and thus
to achieve a smaller bias.

If we now consider the decomposition of RVoxM and SFCN (red and black lines,
respectively), we observe a similar behaviour as in our method, with decreas-
ing bias and variance as N increases. If we compare the decomposition of the
three methods, we observe that the our method’s variance is smaller than the
others, except for very large N, where the benchmarks’ variances reach (and
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histogram of y(t∗;D)− x∗

true model has full C

fit with diagonal C fit with full C

Fig. 4.13: Visualization of bias-variance principle: fitting a model with diag-
onal C (wrong model) yields predictions that are consistent across
training runs, but systematically wrong (low variance, high bias),
while fitting a model with full C (correct model) yields predictions
that are more variable but on average correct. This principle is il-
lustrated by the histogram of prediction errors, and by the cartoon
examples, which display model inversion as in figure 3.2: the test
data point t∗ is projected orthogonally onto the direction of wD to
obtain predictions y(t∗), while x∗ indicates the real target.
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Fig. 4.14: Bias-variance decomposition for the proposed method, RVoxM and
SFCN. We used the same training runs as in section 4.1.

become smaller than, in the RVoxM case) the proposed method’s one. Instead,
the proposed method’s bias is larger than the other methods’ counterpart, with
some training sizes where they are comparable, especially for the RVoxM. This
behaviour is in general expected since the proposed method is less flexible than
other two, and therefore has a higher bias and a smaller variance, while for
larger N, all methods can achieve a small variance thanks to the large number
of subjects. The bias-variance trade-off is therefore a tool for interpreting pre-
diction performances: a simpler model like the proposed method is competitive
or even outperforms the much more powerful SFCN with training sizes up to
a few thousand subjects, because, although its strong assumptions make it on
average incorrect (large bias), they also prevent it to overfit (small variance),
and this compensates and possibly overcomes the large bias. Conversely, for
larger training sizes, there is less risk of overfitting even for a flexible model
such as the SFCN, and thus its smaller bias becomes decisive to obtain better
prediction errors. These findings are in line with previous studies showing that
a more powerful method is not necessarily better than a simpler one, and that,
when the training size is limited, models with stronger assumptions - even if
incorrect - may yield better performances than more flexible methods, because
the latter overfit more Domingos (2012).

We also computed the bias-variance decomposition of age prediction errors for
the VAE. We again used the same training runs as in section 4.1, i.e. deformable
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Fig. 4.15: Bias-variance decomposition for the proposed method and VAE. We
used the same training runs as in section 4.1.

T1s cropped around the ventricular area as input data, and 10 training sets for
each size, in a reduced range (from N = 100 to N = 400). We also computed
the decomposition of our method, trained in the same setting. The computed
MSE, bias and variances and displayed in Fig. 4.15. We observe that the VAE
has a slightly larger variance and a much larger bias then the proposed method.
Therefore the VAE’s worse performances than our method’s for age prediction
reported in section 4.1 are explained mostly by the VAE’s higher bias.



40 Results on UK Biobank



Chapter 5

Model extensions and other
applications

In this chapter, we present some extensions that can be added to the proposed
model, and some possible applications of the method. The chapter is structured
as follow:

• We first present model extensions, such as inclusion of known covariates
and/or nonlinear effects in the causal model, with relative experimental
results.

• We then show results of a possible application, where we try to improve
classification performances of the proposed method on a small training set
by reusing weights of the model previously trained on a larger cohort.

5.1 Model extensions

In this section we show the effect of extending the proposed model to incorporate
known subject-specific variables and nonlinear dependencies on the variable of
interest.
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Model CV accuracy CV AUC CV sensitivity CV specificity

Without covariates 0.7023 0.7645 0.6718 0.7328

With extra hyperparameter regulating covariates
0.7214 0.7669 0.6794 0.7634

(age and gender selected in all CV folds)

Table 5.1: Performances achieved on the MS vs healthy classification task on
262 subjects from the Munich dataset, with two nested 5-fold CV
loops. AUC denotes the area under the ROC curve.

5.1.1 Additional known covariates

In some cases, subject-specific variables are available, such as demographic vari-
ables or information about patients, like disease duration, and it can be useful
to take them into account. In the proposed model, it is straightforward to do it
by simply adding the known variables in the forward model. Note that having
a principled way to incorporate known covariates is one of the advantages of
the proposed method, as compared to discriminative deep learning models. In
fact, for discriminative neural networks, adding known variables is not straight-
forward and requires to choose in which network layer to infuse them, as in
Armanious et al. (2021).

In order to analyze the effect of adding known covariates into the model, we
considered the task of classifying multiple sclerosis (MS) patiens vs healthy con-
trols, and added age and gender as covariates. This experiment was conducted
using gray matter segmentations from a private dataset owned by Klinikum
rechts der Isar (Munich, Germany), from which we selected a cohort of 262
subjects (131 MS patients and 131 age- and sex-matched healthy controls). To
assess the contribution of the covariates in an unbiased way, we added an extra
binary hyperparameter in the model, regulating the possible inclusion of age
and gender, and estimated it together with the number of latent variables with
cross-validation (CV). Specifically, we performed two-nested 5-fold CV loops
to estimate hyperparameter and assess prediction performances on this small
cohort, in an unbiased way: one CV loop is needed to assess prediction perfor-
mances, since the cohort is too small to have an independent test set, while a
second CV loop is used to estimate hyperparmaters, because of the lack of a
separate validation set. We then compared the obtained results with the base-
line version of the model with no additional covariates (including only the "MS
effect").

Table 5.1 displays the obtained results. The model with the additional hyperpa-
rameter regulating the use of covariates selected the inclusion of age and gender
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Fig. 5.1: Comparison of test accuracy for gender prediction on UK Biobank,
with binary hyperparmater regulating inclusion of age, and without
covariates.

in all the CV folds, and obtained slightly better test results then the baseline
model.

We also tested the inclusion of known variables on UK Biobank, by incorporat-
ing age as covariate in gender classification tasks based on T1 scans. In this
experiment, we used the same setting as in section 4.1, and the binary hyperpa-
rameter regulating the possible inclusion of age is estimated on the validation
set. Fig. 5.1 shows the results, compared with the baseline model without any
covariate. We see that, in this experiment, adding age does not improve predic-
tion accuracy. A possible explanation is that, when the covariate is not included
in the model, the variability in images due to age is automatically modelled by
the method in the noise component.

5.1.2 Nonlinear forward model

The proposed generative method described in Chapter 3 models image intensi-
ties as linear functions of the variable of interest. However, in some scenarios
it may be useful to incorporate nonlinear dependencies on the target variable.
This can be easily done in the proposed method, by adding nonlinear terms in
the causal model.
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Model CV MAE CV RMSE CV correlation

Linear 4.7335 5.9283 0.9330

With extra hyperparameter for quadratic vs linear
4.3627 5.4322 0.9445

(quadratic model selected in all CV folds)

Table 5.2: Performances for age prediction from GM images, on the IXI
dataset, with two nested 5-fold CV loops.

We explored the effect of adding nonlinearities, by using a quadratic forward
model for age prediction. We selected this test case, since it has been shown that
aging has an approximately quadratic effect on several brain structures across
the entire lifespan Walhovd et al. (2005) Fjell et al. (2013). For this experiment,
we considered a dataset with a larger age span than the UK Biobank, which
makes the quadratic effect more visible. In particular, we used the IXI dataset,
an open access collection of around 600 T1-weighted MRI scans of healthy sub-
jects, aged 20-86 years. Since gray matter is one of the brain tissues displaying
a quadratic behaviour Walhovd et al. (2005) Fjell et al. (2013), we employed
gray matter segmentations as input data.

As for adding known covariates, we implemented the possible inclusion of a
quadratic term with an extra binary hyperparameter that is estimated with
CV, and then compared this model against the linear version. Table 5.2 displays
the results. When using the extra hyper-parameter for the choice of linear vs
quadratic model, the quadratic version is selected in all the CV folds, and it
achieves better test results than the baseline model.

We also tested the quadratic model for age prediction on T1 scans from UK
Biobank data. For this experiment, we used the same validation and test set
as in section 4.1, and we considered several training sizes. The validation set is
used to estimate the binary hyperparameter which selects the linear or quadratic
model, together with the number of latent variables. Table 5.3 shows the ob-
tained results, and comparison with the linear model. Here, the quadratic model
was selected for all training sizes, while results on the test set present some vari-
ability, but are anyway quite similar for the two models. N=7800 is the only
case where the quadratic model outperforms the linear version both in terms of
MAE and correlation. These results seem to suggest that adding a quadratic
term in the model for age prediction on UK Biobank’s T1 scans does not im-
pact performances, except for very large training sizes where it yields a certain
improvement. This is probably due to the limited age range in the UK Biobank
(44-82 years), which makes the quadratic effect much less pronounced. There-
fore, adding a nonlinear term may become beneficial only when the training size
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Model Test MAE Test correlation

N=300 N=2600 N=7800 N=300 N=2600 N=7800

Linear 3.5840 2.7410 2.7053 0.8159 0.8892 0.8938

With extra hyperparameter
3.5758 2.7658 2.6226 0.8047 0.8852 0.8972

(quadratic model selected for each N)

Table 5.3: Performances for age prediction on T1 scans from the UK Biobank,
for different training sizes.

is large enough to actually observe the quadratic trend in the data.

As a side note, if we compare MAEs obtained on IXI data and UK Biobank for
similar training sizes, we observe that errors obtained on the IXI dataset are
larger. Besides the different input features (GM vs T1), this is caused by the
larger age span in the IXI data, which automatically results in bigger prediction
errors Cole et al. (2019).

5.2 Reusing part of the model

Let us consider a task that is characterized by a small cohort, such as classi-
fication of a certain disease vs healthy controls, where small sample sizes are
the typical scenario. A possible advantage of the proposed method in this sce-
nario is the possibility to train the method on a huge cohort of healthy subjects
(that may be available), and then re-use the estimated noise model in the small
cohort task. We wanted to explore if this technique can yield more accurate
results than performing the classification task using only the small cohort, since
the noise model would be estimated on a much larger sample.

In order to do this, we used T1 scans from the UK Biobank, and we considered
the classification task of MS patients vs healthy controls. The UK Biobank
contains 87 scans of MS patients, and we selected the same amount of age-
and sex-matched healthy subjects, yielding a cohort of 174 data. We then
compared results of our method trained on this cohort (with two-nested 5-fold
cross validation loops: one for assessing prediction performances and the other
for hyperparameter selection), with the following version: the model is first
trained on N = 9800 healthy subjects from the UK Biobank, with age and
gender as variables in the causal model. Subsequently, the estimated noise
model, together with age and gender effects, are re-used in the MS vs healthy
classification task, with only the "disease effect" being estimated on the small
cohort, and prediction performances assessed with a single 5-fold CV loop.
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CV accuracy CV AUC CV sensitivity CV specificity

Model fit on small cohort 0.7356 0.7685 0.6207 0.8506

With pre-trained weights 0.5632 0.5920 0.1264 1.0000

Table 5.4: Results of MS vs healthy classification on 174 data from UK
Biobank. The model trained entirely on the small cohort is com-
pared to the model with weights pre-trained on 9800 healthy sub-
jects. AUC denotes the area under the ROC curve.

CV accuracy CV AUC CV sensitivity CV specificity

Model fit on small cohort 0.7356 0.7685 0.6207 0.8506

With pre-trained weights and scaling 0.7874 0.8575 0.7471 0.8276

Table 5.5: Same comparison as in Table 5.4, but the model with pre-trained
weights now includes a scaling factor in the disease effect. The
selected (cross-validated) scaling factor is 0.1.

Results are shown in Table 5.4. We see that, conversely to what we expected,
the model with pre-trained weights completely overfit to the training data. How-
ever, we noticed that if we consider the weights of the disease effect (the only
weights that are actually estimated on the small cohort) and scale them by a
certain factor, the classifier starts to work well. We therefore cross-validated
the estimate of this factor, and results are shown in Table 5.5. We can see
that the classifier with pre-trained weights now outperforms the model that is
trained entirely on the small cohort. At the time of writing, we were not able to
fully understand why the model with pre-trained weights does not work at all
without the scaling factor, which can be seen as a form of regularization (with
a prior over the weights that encourages smaller estimates).
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Conclusions and future work

As discussed in chapter 1, in this thesis we wanted to explore if a linear or shallow
nonlinear generative model, which provides interpretable predictions, could also
achieve good prediction performances in neuroimaging tasks. For this reason,
we developed a generative method for image-based predictions, with a forward
model composed by two parts: On one hand, the causal part expresses the effect
of the target variable on brain anatomy, yielding interpretable maps. On the
other hand a linear noise model captures the dominant correlations between
voxels, allowing us, when the model is inverted, to obtain accurate predictions.
The proposed model can also be extended to include shallow nonlinearities in
the variable of interest and/or known subject-specific covariates.

We demonstrated that the proposed method achieves good performances in
prediction tasks, with no trade-off between accuracy and interpretability. In
fact, in the experiments performed for age prediction based on brain MRI scans,
we showed that it was competitive with discriminative state-of-the-art methods,
especially for moderate sample sizes (up to 2600 training subjects), which is
the typical setting in many neuroimaging applications. In gender classification
experiments, it was even competitive for every considered sample size (up to
9800 training subjects). We also gave insight into the performances of our
method and benchmarks in terms of bias-variance trade-off: we found that the
good performances of our method derive from its low variance, which offsets the
large bias that characterizes a simple method.
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The proposed method achieved good performances when compared to nonlinear
generative benchmarks as well. We demonstrated this by comparing our method
with the VAE proposed in Zhao et al. (2019) for age prediction, which can be
regarded as a deep nonlinear version of our method. We found that our method
achieved better results than the VAE in the age prediction task for every tested
training size, suggesting that adding deep nonlinearities in the model in not
beneficial in this scenario. Another nonlinear generative model proposed in the
literature for age prediction is Wilms et al. (2020), which uses normalizìng flows.
We did not explicitly compare this method with our model, but its reported
MAE as percentage of age range (6.3% with N=4281) is similar to ours (7.4%
with N=2600 and 7.3% with N=5200).

In addition to competitive performances, we showed that the proposed method
has the advantage of being interpretable, producing maps that show target-
related morphological changes on a population-level. Conversely, discriminative
methods have been proven to be problematic to interpret, both in the linear and
nonlinear case. For deep nonlinear generative methods, as discussed in section
4.2, it is still possible to produce global interpretable maps, but it is much more
difficult than for our method, for which they are readily available. Furthermore,
we also illustrated that the proposed method has also the advantage of being
simpler to use than discriminative and generative benchmarks, and it requires
less time and resources for training it.

A downside of our method is that, while it fits very well settings with up to a
few thousands of training data, training the model on larger samples becomes
moderately slow (on a CPU), and the achieved performances are not competitive
in regression tasks.

As future work, the proposed method can be extended to operate in a longi-
tudinal scenario, where more than one image per subject is acquired. Being
generative, our method can easily adapt to the longitudinal setting, which usu-
ally presents variability in number of scans per subject and in time intervals
between scans. Conversely, discriminative methods have to impute missing data
or discard observations in order to tackle this kind of data, and are therefore less
suited for this scenario. The longitudinal version of the proposed method can
be obtained using mixed-effect models, which take into account the temporal
correlation between different images of the same subject.

Finally, in the experiments performed in this thesis, the number of latent vari-
ables in the model was tuned using grid search. A possible extension is to
directly estimate this hyperparameter on the training set, with variational meth-
ods Bishop and Nasrabadi (2006a), which gives the advantage of avoiding re-
peated model training.
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Abstract. Recent years have seen a growing interest in methods for
predicting a variable of interest, such as a subject’s age, from individ-
ual brain scans. Although the field has focused strongly on nonlinear
discriminative methods using deep learning, here we explore whether
linear generative techniques can be used as practical alternatives that
are easier to tune, train and interpret. The models we propose consist of
(1) a causal forward model expressing the effect of variables of interest
on brain morphology, and (2) a latent variable noise model, based on
factor analysis, that is quick to learn and invert. In experiments esti-
mating individuals’ age and gender from the UK Biobank dataset, we
demonstrate competitive prediction performance even when the number
of training subjects is in the thousands – the typical scenario in many
potential applications. The method is easy to use as it has only a single
hyperparameter, and directly estimates interpretable spatial maps of the
underlying structural changes that are driving the predictions.

1 Introduction

Image-based prediction methods aim to estimate a variable of interest, such as
a subject’s diagnosis or prognosis, directly from a medical scan. Predicting a
subject’s age based on a brain scan – the so called brain age – in particular has
seen significant interest in the last decade [12], with the gap between brain age
and chronological age being suggested as a potential biomarker of healthy aging
and/or neurological disease [12, 25].

Methods with state-of-the-art prediction performance are currently based
on discriminative learning, in which a variable of interest x is directly predicted
from an input image t. Although there are ongoing controversies in the literature
regarding whether nonlinear or linear discriminative methods predict better [23,
⋆ Corresponding author. Email address: cmau@dtu.dk
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32, 28], recent years have seen a strong focus on nonlinear variants based on deep
learning (DL), with impressive performances especially when the training size
is very large [28]. Nevertheless, these powerful methods come with a number of
potential limitations:

The available training size is often limited: While methods for predicting
age and gender can be trained on thousands of subjects using large imaging
studies [4, 21, 24, 14, 16], in many potential applications the size of the train-
ing set is much more modest. In a recent survey on single-subject prediction
of brain disorders in neuroimaging, the mean and median samples size was
only 186 and 88 subjects, respectively [5]. Even in such ambitious imaging
projects as the UK Biobank [4], the number of subjects with diseases such
as multiple sclerosis is only projected to be in the hundreds in the coming
years.

Discriminative methods are hard to interpret: As opposed to generative
methods that explicitly model the effect a variable of interest x has on a sub-
ject’s image t, correctly interpreting the internal workings of discriminative
methods is known to be difficult [22, 6, 20, 3]. Whereas the spatial weight
maps of linear discriminative methods, or more generally the saliency maps
of nonlinear ones [35, 8, 17, 34, 38, 37, 33, 36], are useful for highlighting which
image areas are being used in the prediction process [20, 29], they do not ex-
plain why specific voxels are given specific attention: Amplifying the signal of
interest, or suppressing noninteresting noise characteristics in the data [22].

DL can be more difficult to use: Compared to less expressive techniques,
DL methods are often harder to use, as they can be time consuming to train,
and have many more “knobs” that can be turned to obtain good results
(e.g., the choice of architecture, data augmentation, optimizer, training loss,
etc. [28]).

In this paper, we propose a lightweight generative model that aims to be eas-
ier to use and more straightforward to interpret, without sacrificing prediction
performance in typical sample size settings. Like in the mass-univariate tech-
niques that have traditionally been used in human brain mapping [7, 13, 11, 18],
the method has a causal forward model that encodes how variables of interest
affect brain shape, and is therefore intuitive to interpret. Unlike such techniques,
however, the method also includes a linear-Gaussian latent variable noise model
that captures the dominant correlations between voxels. As we will show, this
allows us to efficiently “invert” the model to obtain accurate predictions of vari-
ables of interest, yielding an effective linear prediction method without externally
enforced interpretability constraints [9, 39].

The method we propose can be viewed as an extension of prior work demon-
strating that naive Bayesian classifiers can empirically outperform more pow-
erful methods when the training size is limited, even though the latter have
asymptotically better performance [15, 27]. Here we show that these findings
translate to prediction tasks in neuroimaging when the strong conditional inde-
pendence assumption of such “naive” methods is relaxed. Using experiments on
age and gender prediction in the UK Biobank imaging dataset, we demonstrate
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empirically that, even when the number of training subjects is the thousands,
our lightweight linear generative method yields prediction performance that is
competitive with state-of-the-art nonlinear discriminative [28], linear discrimi-
native [31], and nonlinear generative [40] methods.

2 Method

Let t denote a vectorized version of a subject’s image, and ϕ = (x,ϕT
\x)

T a
vector of variables specific to that subject, consisting of a variable of interest
x (such as their age or gender), along with any other known5 subject-specific
covariates ϕ\x. A simple generative model is then of the form

t = Wϕ+ η, (1)

where η is a random noise vector, assumed to be Gaussian distributed with zero
mean and covariance C, and W = (wx W\x) is a matrix with spatial weight
maps stacked in its columns. The first column, wx, expresses how strongly the
variable of interest x is expressed in the voxels of t; we will refer to it as the
generative weight map. Taking everything together, the image t is effectively
modeled as Gaussian distributed:

p(t|ϕ,W ,C) = N (t|Wϕ,C).

Making predictions

When the parameters of the model are known, the unknown target variable x∗

of a subject with image t∗ and covariates ϕ∗
\x can be inferred by inverting the

model using Bayes’ rule. For a binary target variable x∗ ∈ {0, 1} where the two
outcomes have equal prior probability, the target posterior distribution takes the
form of a logistic regression classifier:

p(x∗ = 1|t∗,ϕ∗
\x,W ,C) = σ

(
wT

Dt∗ + wo

)
,

where
wD = C−1wx

are a set discriminative spatial weights, σ(·) denotes the logistic function, and
wo = −wT

D(W\xϕ∗
\x+wx/2). The prediction of x∗ is therefore 1 if wT

Dt∗+wo > 0,
and 0 otherwise.

For a continuous target variable with Gaussian prior distribution p(x∗) =
N (x∗|0, σ2), the posterior distribution is also Gaussian with mean

σ2
x(w

T
Dt∗ + b0), (2)

where b0 = −wT
DW\xϕ∗

\x and σ2
x =

(
σ−2 +wT

xC
−1wx

)−1. The predicted value
of x∗ is therefore given by (2), which again involves taking the inner product of
the discriminative weights wD with t∗.
5 For notational convenience, we include 1 as a dummy “covariate”.
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Model training

In practice the model parameters W and C need to be estimated from train-
ing data. Given N training pairs {tn,ϕn}Nn=1, their maximum likelihood (ML)
estimate is obtained by maximizing the marginal likelihood

p
(
{tn}Nn=1|{ϕn}Nn=1,W ,C

)
=

N∏

n=1

N (tn| Wϕn,C) (3)

with respect to these parameters. For the spatial maps W , the solution is given
in closed form:

W =

(
N∑

n=1

tnϕ
T
n

)(
N∑

n=1

ϕnϕ
T
n

)−1

. (4)

Obtaining the noise covariance matrix C directly by ML estimation is problem-
atic, however: For images with J voxels, C has J(J + 1)/2 free parameters –
orders of magnitude more than there are training samples. To circumvent this
problem, we impose a specific structure on C by using a latent variable model
known as factor analysis [10]. In particular, we model the noise as

η = V z + ϵ,

where z is a small set of K unknown latent variables distributed as p(z) =
N (z|0, IK), V contains K corresponding, unknown spatial weight maps, and ϵ
is a zero-mean Gaussian distributed error with unknown diagonal covariance ∆.
Marginalizing over z yields a zero-mean Gaussian noise model with covariance
matrix

C = V V T +∆,

which is now controlled by a reduced set of parameters V and ∆. The number
of columns in V (i.e., the number of latent variables K) is a hyperparameter in
the model that needs to be tuned experimentally.

Plugging in the ML estimate of W given by (4), the parameters V and ∆
maximizing the marginal likelihood (3) can be estimated using an Expectation-
Maximization (EM) algorithm [30]. Applied to our setting, this yields an iterative
algorithm that repeatedly evaluates the posterior distribution over the latent
variables:

p(zn|tn,W ,V ,∆) = N (zn|µn,Σ)

where µn = ΣV T∆−1(tn −Wϕn) and Σ = (IK + V T∆−1V )−1, and subse-
quently updates the parameters:

V ←
(

N∑

n=1

(tn −Wϕn)µ
T
n

)(
N∑

n=1

(
µnµ

T
n +Σ

)
)−1

∆← diag

(
1

N

N∑

n=1

(tn −Wϕn)(tn −Wϕn)
T − V

1

N

N∑

n=1

µn(tn −Wϕn)
T

)
.
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3 Experiments

In our implementation, we initialize the EM algorithm by using a matrix with
standard Gaussian random entries for V , and a diagonal matrix with the sam-
ple variance in each voxel across the training set for ∆. For continuous target
variables, we de-mean the target and use the sample variance as the prior vari-
ance σ2. Convergence is detected when the relative change in the log marginal
likelihood is smaller than 10−5.

The method has a single hyperparameter, the number of latent variables K,
that we set empirically using cross-validation on a validation set, by optimizing
the mean absolute error (MAE) for regression and the accuracy for classification.
Running times vary with the size of the training set N , which also influences
the selected value of K – in our implementation, typical training runs in the
full-brain experiments described below took between 2.8 and 16.3 minutes for
N = 200 and N = 1000, respectively (CPU time for a single selected value of
K; Matlab on a state-of-the-art desktop). Once the model is trained, testing is
fast: typically 0.01 seconds per subject when trained on N = 1000.

Comparing performance of an image-based prediction method with state-
of-the-art benchmark methods is hampered by the dearth of publicly available
software implementations, and the strong dependency of attainable performance
on the datasets that are used [12]. Within these constraints, we conducted the
following comparisons of the proposed linear generative method:

Nonlinear discriminative benchmark: As the main benchmark method,
we selected the convolutional neural network SFCN proposed in [28], which
is, to the best of our knowledge, currently the best performing image-based
prediction method. The paper reports performance for age and gender pre-
diction over a wide range of training sizes in preprocessed UK Biobank data
(14,503 healthy subjects, aged 44-80 years), using a validation set of 518
subjects and a test set of 1036 subjects. For a training size of 12,949 sub-
jects, the authors report a training time of 65 hours on two NVIDIA P100
GPUs [28]. Although the method uses affinely registered T1-weighted scans
as input (“affine T1s”), these are in fact skull-stripped and subsequently bias-
field-corrected based on deformable registrations that are also available [4].
Because of this reason, and because the authors report only very minor im-
provements of their method when deformable T1s are used instead (∼ 2.5%
decrease in MAE for age prediction on 2590 training subjects), we com-
pared our method using both affine and deformable T1s, based on a set-up
that closely resembles theirs (validation set of 500 subjects, test set of 1000
subjects).

Linear discriminative benchmark: In order to compare against a state-of-
the-art linear discriminative method, we selected the RVoxM method [31]
because its training code is readily available [1] and its performance is com-
parable to the best linear discriminative method tested in [28]. RVoxM regu-
larizes its linear discriminant surface by encouraging spatial smoothness and
sparsity of its weight maps, using a regularization strength that is the one
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hyperparameter of the method. In our experiments, we selected the optimal
value of this hyperparameter in the same way as we do it for the proposed
method, i.e., by cross-validation on our 500-subject validation set. Typical
training times were between 66 and 122 minutes for N = 200 and N = 1000,
respectively (CPU time for a single selected value of the model’s hyperpa-
rameter; Matlab on a state-of-the-art desktop).

Nonlinear generative benchmark: As a final benchmark, we compared against
a variational auto-encoder (VAE) [40] that was recently proposed for age pre-
diction, and that has training code publicly available [2]. It is based on a
generative model that is similar to ours, except that its latent variables are
expanded (“decoded”) nonlinearly using a deep neural network, which makes
the EM training algorithm more involved compared to our closed-form ex-
pressions [26]. In [40], the authors use T1 volumes that are cropped around
the ventricular area (cf. Fig. 1 right), and they train their method on ∼200
subjects. We closely follow their example and train both the VAE and the
proposed method on similarly sized training sets of warped T1 scans from the
UK Biobank, cropped in the same way. There are two hyperparameters in
the VAE model (dropout factor and L2 regularization), which we optimized
on our validation set of 500 subjects using grid search. The training time for
this method was on average 9.40 minutes for N=200 with the optimal set of
hyperparameters, using a NVIDIA GeForce RTX 2080 Ti GPU.

For each training size tested, we trained each method three times, using
randomly sampled training sets, and report the average test MAE and accu-
racy results. For gender classification, we used age as a known covariate in ϕ\x,
while for age prediction no other variables were employed. All our experiments
were performed on downsampled (to 2mm isotropic) data, with the exception
of RVoxM where 3mm was used due to time constraints – we verified experi-
mentally that results for RVoxM nor the proposed method would have changed
significantly had the downsampling factor been changed (max difference of 0.32%
in MAE between 2mm and 3mm across multiple training sizes between 100 and
1000). Since training code for SFCN is not publicly available, we report the re-
sults as they appear in [28], noting that the method was tuned on a 518-subject
validation set as described in the paper.

4 Results

Fig. 1 shows examples of the generative spatial map wx estimated by the pro-
posed method, along with the the corresponding discriminative map wD. The
generative map shows the direct effect age has on image intensities, and reflects
the typical age-related gray matter atrophy patterns reported in previous stud-
ies [19]. The discriminative map, which highlights voxels that are employed for
prediction, is notably different from the generative map and heavily engages
white matter areas instead. This illustrates the interpretation problem in dis-
criminative models: the discriminative weight map does not directly relate to
changes in neuroanatomy, but rather summarizes the net effect of decomposing
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the signal as a sum of age-related changes and a typical noise pattern seen in
the training data (1), resulting in a non-intuitive spatial pattern [22].

Fig. 2 shows the performances obtained by the proposed method, compared
to the discriminative benchmarks RVoxM and SFCN, for age and gender predic-
tion. Both our method and RVoxM achieve clearly worse results when they are
applied to affine T1s compared to deformable T1s, whereas SFCN’s performance
is virtually unaffected by the type of input data (at least for age prediction with
2590 training subjects – the only available data point for SFCN with deformable
T1s [28]). These results are perhaps not surprising, since both our method and
RVoxM are linear predictors that do not have the same capacity as neural net-
works to “model away” nonlinear deformations that have not been removed from
the input images (even though these are actually known and were used for gen-
erating the affine T1s).

Comparing the performances of the different methods, our generative model
generally outperforms the linear discriminative RVoxM for both age and gender
prediction, except when using very large training sets of affine T1s. For nonlinear
discriminative SFCN, the situation is more nuanced: For age prediction, SFCN
starts outperforming our method for training sets larger than 2600 subjects,
while for more moderate training sizes our method achieves better performances
when deformable T1s are used. For gender prediction, our method based on
deformable T1s is competitive with SFCN even on the biggest training set sizes,
although it should be noted that SFCN’s results are based on affine T1s as its
performance on deformable T1s for gender prediction was not tested6 in [28].

Finally, Fig. 3 compares the age prediction results of our linear generative
model with the nonlinear generative VAE, both trained on cropped deformable
T1s. Our method clearly outperforms the VAE for all the considered training
sizes, suggesting that, at least when only a few hundred training subjects are
available, adding nonlinearities in the model is not beneficial.

5 Discussion

In this paper, we have introduced a lightweight method for image-based predic-
tion that is based on a linear generative model. The method aims to be easier
to use, faster to train and less opaque than state-of-the-art nonlinear and/or
discriminative methods. Based on our experiments in predicting age and gender
from brain MRI scans, the method seems to attain these goals without sacrific-
ing prediction accuracy, especially in the limited training size scenarios that are
characteristic of neuroimaging applications.

Although the method presented here is linear in both its causal forward model
and in its noise model, it would be straightforward to introduce nonlinearities in
the forward model while still maintaining numerical invertibility. This may be
beneficial in e.g., age prediction in datasets with a much wider age range than the
UK Biobank data used here. The method can also be generalized to longitudinal
6 Nevertheless, SFCN’s gender prediction, based on affine T1s, is reported by its au-

thors to be the best in the literature.
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Fig. 1: Examples of generative maps wx encoding age effects vs. the correspond-
ing discriminative maps wD predicting age, obtained on deformable T1s from
300 subjects and overlaid on the average T1 volume. Voxels with zero weight are
transparent. Left: results on whole T1 images (used for comparing the proposed
method with SFCN and RVoxM). Right: results on cropped T1s (used for com-
paring with VAE).

Fig. 2: Comparison of the proposed method, RVoxM and SFCN on an age pre-
diction task (left) and on a gender classification task (right). For each method,
results are shown for both affine and deformable T1 input data – except for
SFCN for which the result for deformable T1s is only known for age prediction,
in a single point (indicated by an arrow at 2590 subjects).

Fig. 3: Test MAE for age predic-
tion obtained by the proposed
method and VAE on cropped,
deformable T1s.
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data, where addressing the intersubject variability in both the timing and the
number of follow-up scans is well suited for generative models such as the one
proposed here.
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An Accurate and Interpretable Generative Model
for Image-based Prediction

Chiara Mauri, Stefano Cerri, Oula Puonti, Mark Mühlau, Koen Van Leemput

Abstract— Recent years have seen a significant develop-
ment of computational methods for predicting a variable
of interest, such as a subject’s diagnosis or prognosis,
based on brain Magnetic Resonance Imaging (MRI) scans.
While the field has mainly focused on deep discriminative
learning techniques, here we propose an alternative ap-
proach for image-based prediction based on a lightweight
generative method, which yields accurate and interpretable
predictions, and which is also simple and fast to use, with
only one hyperparameter to tune. The proposed method
consists of (1) a causal forward model expressing the direct
effect of the variable of interest on brain anatomy, and
(2) a linear latent variable noise model, based on factor
analysis, which captures dominant correlations in the data
and allows to obtain accurate predictions once the model
is inverted. In experiments estimating individuals’ age and
gender from the UK Biobank dataset, we demonstrate
competitive prediction performance as compared to state-
of-the-art benchmarks, even when the number of training
subjects is in the thousands, which is the typical scenario
in many potential applications. Using the task of age predic-
tion, we also demonstrate that the proposed method is in-
terpretable, providing spatial maps that display known age-
related effects on brain morphology. We finally investigate
possible model extensions and applications, where the
proposed method is easily extended to incorporate known
covariates and/or nonlinearities in the target variable.

Index Terms—

I. INTRODUCTION

Image-based prediction methods aim to estimate a variable
of interest directly from a medical scan - either a continuous
variable such as a subject’s disease score (regression methods),
or a categorical variable such as a patient’s diagnosis or
prognosis (classification methods). The ability to make reli-
able image-based predictions at individual level is of clinical
interest; For example, methods for automatic prediction of
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a subject’s diagnosis can leverage subtle anatomical changes
detected by MRI scans and diagnose disorders earlier than
clinical assessment, with consequent better clinical outcomes.
Image-based diagnosis is also particularly useful for diseases
with no standard clinical tests, such as schizophrenia1, and
it can provide new understanding of disorders and their
underlying mechanisms. Another relevant task is to predict
individual disease progression, for example by identifying
patients at higher risk of future disability accrual, allowing
better counseling and more personalized treatments. This is
particularly useful for diseases, such as multiple sclerosis,
where several possible treatments are available2, and it is
hard to foresee in the initial stages the efficacy of different
treatments on a specific patient and the disease time course and
outcome. Image-based prediction of individual prognosis has
also the potential of giving insight into subtle morphological
and temporal dynamics underlying disease progression.

A specific application that has seen a significant devel-
opment in the last decade is prediction of a subject’s age
based on the brain scan - the so called brain age [1]. In
particular, the last three years have seen a further increase
of brain age prediction studies, encouraged by the growing
availability of large datasets, containing thousands or even tens
of thousand subjects. Besides its utility for developing and
testing image-based prediction methods, brain age prediction
has shown clinical interest, with the gap between brain age and
chronological age being suggested as a potential biomarker of
healthy aging and/or neurological disease [1], [2].

Image-based prediction methods with state-of-the-art pre-
diction performance are currently based on discriminative
learning, in which a variable of interest x is directly pre-
dicted from an input image t. Although there are ongoing
controversies in the literature regarding whether nonlinear or
linear discriminative methods predict better [3]–[5], recent
years have seen a strong focus on nonlinear variants based on
deep learning (DL), with impressive performances especially
when the training size is very large [5]. Nevertheless, these
powerful methods come with a number of potential limitations:

• The available training size is often limited:
While methods for predicting age and gender can be
trained on many thousands of healthy subjects using large
imaging studies [6]–[9], in many potential applications
the size of the training set is much more modest. For

1https://www.nhs.uk/mental-health/conditions/schizophrenia/diagnosis/
2http://nationalMSsociety.org/DMT
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instance, in a recent survey of over 200 papers on single-
subject prediction of brain disorders in neuroimaging, the
mean and median samples size was only 186 and 88
subjects, respectively [10], as shown in Fig. 1. Even in
such ambitious imaging projects as the UK Biobank [6],
[11], which aims at scanning 100.000 participants, the
number of subjects with fairly common diseases is quite
modest. In fact, in 2022 the UK Biobank should contain
images of 900 subjects with stroke, 900 with Alzheimer’s
Disease, and 600 with Parkinson’s Disease, given these
diseases’ prevalence in the population [12] and the fact
that the scanning process is still half way, with 50.000
subjects scanned3. In 2027, these numbers are expected to
rise to 4.000 subjects with stroke, 6.000 with Alzheimer’s
Disease, and 2.800 with Parkinson’s Disease [6]. These
estimates show that, even in the world’s largest imaging
study, the amount of subjects with fairly common diseases
is quite moderate, and it will not be massive even in the
coming years.
Similar considerations can be applied to other prospective
cohort imaging studies, such as the German National
Cohort, which aims at scanning 30.000 subjects for inves-
tigating several major chronic diseases [7], the Rhineland
Study, which plans to scan 30.000 participants to study
neurodegenerative and neuropsychiatric diseases [8], and
the Maastricht Study composed by 10.000 subjects, which
is however artificially enriched with type 2 diabetes
participants, to increase efficiency in the study of this
disease [9]. Other imaging datasets collected for studying
specific diseases and/or healthy aging have sizes at most
of the order of 1000-2000 subjects, such as ADNI [13],
ABIDE [14], AIBL [15], CoRR [16], HCP [17], PING
[18], PNC [19], SHIP [20].
Therefore, given the amount of available imaging data in
many practical, e.g. diseases-related, applications, there
is a continued need for methods that can learn efficiently
from fairly small sample sizes.

• Discriminative methods are hard to interpret:
Generative methods explicitly model the effect a vari-
able of interest x has on a subject’s image t, directly
expressing how it affects brain anatomy [21]. Conversely,
for discriminative methods, gaining insight into the ĺink
between the predicted value and the input image has
proven to be difficult, both in the linear and non-linear
case [21]–[29]. Many methods have been proposed in the
Explainable AI (XAI) field, to provide explanations to a
model’s decision, through maps highlighting important
areas for prediction - the so-called saliency maps [30]–
[48]. However, these methods suffer from both theoret-
ical and empirical difficulties. Theoretically, the main
problem of these maps is that they locate the regions
within the input image that were most important to make
a certain prediction, being therefore useful for debugging
purposes [23], but they do not reveal why the model
was looking at that area [23], [25]. In an attempt to

3https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/world-s-
largest-imaging-study-scans-50-000th-participant

Fig. 1: Histogram of sample sizes in brain disorders prediction
studies, as reported by [10].

demonstrate this, several XAI methods have been tested
in the task of retrieving the signal of interest in presence
of noise with a specific pattern, on a linearly generated
synthetic dataset [26]: many of them were not able to
locate the signal, but rather extracted a mixture of signal
and noise, demonstrating the difference between areas
used for predictions and areas that are directly related to
the signal. This difficulty also applies to spatial weight
maps of seemingly simple linear discriminative methods,
where voxels can be assigned a nonzero weight to amplify
the signal of interest or to suppress noninteresting noise
from the image, resulting in a non-interpretable spatial
pattern [21], [26]. This also holds when inverting the
proposed generative method in order to make predictions:
voxels with zero weight in the generative model, and
therefore not affected by the target variable, can obtain
a large weight after model inversion, as we will show in
the next section.
The literature has also pointed out empirical difficul-
ties with XAI methods: studies have reported cases of
saliency maps that are insensitive to model parameters
[24] or to input-output relationships [23], [24], [29],
tending to highlight features, such as edges, that are
unrelated to the prediction task [24], [28], and being often
similar across different classes [25]. Additionally, cases
of XAI methods failing in a localization task in medical
images have been reported [22], therefore questioning
even their ability of localizing interesting areas, as well as
examples of instability of the highlighted features across
different training runs [22].
Given these difficulties in interpreting discriminative
methods, and the importance in neuroimaging of provid-
ing insights into the underlying causes of predictions, a
possible solution is to use methods that are inherently
interpretable, such as generative models, instead of post-
hoc explanations, without necessarily sacrificing predic-
tion performances [25].

• DL can be more difficult to use:
Compared to less expressive techniques, DL methods
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are often harder to use, as they can be time consuming
to train, even when using GPUs, and have many more
“knobs” that need to be turned to obtain good results. For
instance, a recent “lightweight” DL method that achieves
state-of-the-art performances for brain age prediction [5]
reports a training regime that includes choosing a good
combination of data augmentation scheme, optimizer,
training loss, batch size and other factors, and a training
time of 65 hours for around 13,000 subjects, using two
(NVIDIA P100) GPUs. We re-trained this method as
state-of-the-art benchmark, in the same setting as in [5],
and found that training the model was time consuming
even for moderate sizes (almost one and two days on a
(NVIDIA A100 SXM4) GPU, for 300 and 1000 training
subjects, respectively) . Furthermore, for the given data
resolution and batch size, training the model required to
use a specialized GPU with large memory (40GB RAM),
to which even state-of-the-art GPU clusters may not have
access. Given these difficulties, there may be an intrinsic
value in developing prediction methods that are easier to
use, especially if they are less opaque and more efficient
at learning from small sample sizes.

In this paper, we propose a lightweight generative model
that aims to be easier to use and more straightforward to
interpret, without sacrificing prediction performance in typical
sample size settings. An early version of this work can be
found in [49]. Like in the mass-univariate techniques that have
traditionally been used in human brain mapping [50]–[53], the
proposed method has a causal forward model that encodes how
variables of interest affect brain shape, and is therefore intu-
itive to interpret. Unlike such techniques, however, the method
also includes a linear-Gaussian latent variable noise model
that captures the dominant correlations between voxels. As we
will show, this allows us to efficiently “invert” the model to
obtain accurate predictions of variables of interest, yielding an
effective linear prediction method without externally enforced
interpretability constraints [54], [55].

The method we propose can be viewed as an extension
of prior work demonstrating that naive Bayesian classifiers
can empirically outperform more powerful methods when the
training size is limited, even though the latter have asymptot-
ically better performance [56], [57]. Here we show that these
findings translate to prediction tasks in neuroimaging when the
strong conditional independence assumption of such “naive”
methods is relaxed. Using experiments on age and gender
prediction in the UK Biobank imaging dataset, we demonstrate
empirically that, even when the number of training subjects is
the thousands, our lightweight linear generative method yields
prediction performance that is competitive with state-of-the-
art nonlinear discriminative [5], linear discriminative [58], and
nonlinear generative [59] methods. We then further investigate
this comparison of performances in terms of bias-variance
trade-off, giving insight into the reasons underlying our com-
petitive prediction performances. Finally, with experiments
on age prediction and on classification of multiple sclerosis
patients vs healthy controls, we also demonstrate that the pro-
posed method can be easily modified to incorporate possibly

Fig. 2: Toy 2D illustration of the generative model in (1).

known covariates or nonlinearities in the target variable.

II. METHOD

In this section, we describe the core version of the proposed
method, while possible extensions, such as inclusion of known
subject-specific covariates or nonlinear dependencies on the
variable of interest, will be discussed in section IV.

A. Generative model

Let t ∈ RJ denote a a vector that contains the intensities
in the J voxels of a subject’s image, and x a scalar variable
of interest about that subject (such as their age or gender). A
simple generative model, illustrated in Fig. 2 and 3, is then of
the form

t = m+ xwG + η, (1)

where η ∈ RJ is a random noise vector, assumed to be
Gaussian distributed with zero mean and covariance C, and
wG,m ∈ RJ are two spatial weight maps that reflect how
strongly the variable of interest x is expressed in the voxels of
t, and the baseline intensities (i.e., when x = 0), respectively.
For the remainder of the paper, we will refer to wG as the
generative weight map, and collect the two spatial weight
maps in a single matrix W = (m,wG) for notational
convenience.

Note that this is the model commonly assumed in traditional
mass-univariate brain mapping techniques, such as voxel- and
deformation-based morphometry [50], [52], where diagonal C
is assumed and wG is analyzed with statistical tests to reveal
brain regions with significant group differences or related to
specific variables of interest. In contrast, here we assume that
C has spatial structure, allowing us, besides interpreting wG,
to accurately predict x from t by inverting the model, as shown
in the remainder.

B. Making predictions

When the parameters of the model (W and C) are known,
the unknown target variable x∗ of a subject with image t∗

can be inferred by inverting the model using Bayes’ rule. For
a binary target variable x∗ ∈ {0, 1}, it is well-known that
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Fig. 3: Example of the image decomposition in (1) applied to age estimation (x denotes the difference between the age of the
subject and the average age in the training set), for a 47 year old subject. The model parameters were estimated on a training
set of 300 subjects (see section III-A).

the target posterior distribution takes the form of a logistic
regression classifier [60]: Assuming the two outcomes have
equal prior probability, we obtain (cf. Appendix I)

p(x∗ = 1|t∗,W,C) = σ
(
wT

Dt∗ + wo

)
, (2)

where
wD = C−1wG (3)

are a set discriminative spatial weights, σ(a) = 1/(1 + e−a)
denotes the logistic function, and wo = −wT

D(m + wG/2).
The maximum a posteriori (MAP) estimate of x∗ is therefore
1 if

wT
Dt∗ + wo > 0, (4)

and 0 otherwise.
For a continuous target variable with a flat prior p(x∗) ∝ 1,

the posterior distribution is Gaussian with variance

σ2
x =

(
wT

GC
−1wG

)−1
(5)

and mean
y(t∗) = σ2

x(w
T
Dt∗ + b0), (6)

where b0 = −wT
Dm (cf. Appendix I). The predicted value of

x∗ is therefore given by (6), which again involves taking the
inner product of the discriminative weights wD with t∗.

C. Model training

In practice the model parameters W and C need to be esti-
mated from training data. Given N training pairs {tn, xn}Nn=1,
their maximum likelihood (ML) estimate is obtained by max-
imizing the marginal likelihood

p
(
{tn}Nn=1|{xn}Nn=1,W,C

)
=

N∏

n=1

N (tn| m+ xnwG,C)

(7)
with respect to W and C. For the spatial maps, the solution
is given in closed form (cf. Appendix I):

W =

(
N∑

n=1

tnϕ
T
n

)(
N∑

n=1

ϕnϕ
T
n

)−1

with ϕn = (1, xn)
T .

(8)

This amounts to performing a linear regression with two basis
functions independently in each voxel. Obtaining the noise
covariance matrix C directly by ML estimation is problematic,
however: C has J(J + 1)/2 free parameters – orders of
magnitude more than there are training samples. To circumvent
this problem, we impose a specific structure on C by using
a latent variable model known as factor analysis [61]. In
particular, we model the noise as

η = Vz+ ϵ, (9)

where z is a small set of K unknown latent variables dis-
tributed as p(z) = N (z|0, IK), V contains K corresponding,
unknown spatial weight maps, and ϵ is a zero-mean Gaus-
sian distributed error with unknown diagonal covariance ∆.
Marginalizing over z yields a zero-mean Gaussian noise model
with covariance matrix

C = VVT +∆,

which is now controlled by a reduced set of parameters V and
∆. The number of columns in V (i.e., the number of latent
variables K) is a hyperparameter in the model that needs to
be tuned experimentally.

Plugging in the ML estimate of W given by (8), the
parameters V and ∆ maximizing the marginal likelihood (7)
can be estimated using an Expectation-Maximization (EM)
algorithm [62]. Defining t̃n = tn − Wϕn, this yields
an iterative algorithm that repeatedly evaluates the posterior
distribution over the latent variables:

p(zn |̃tn,V,∆) = N (zn|µn,Σ) (10)

where µn = ΣVT∆−1t̃n and Σ = (IK+VT∆−1V)−1, and
subsequently updates the parameters:

V←
(

N∑

n=1

t̃nµ
T
n

)(
N∑

n=1

(
µnµ

T
n +Σ

)
)−1

(11)

∆← diag

(
1

N

N∑

n=1

t̃nt̃
T
n −V

1

N

N∑

n=1

µnt̃
T
n

)
. (12)

Here diag(·) sets all the non-diagonal entries to zero.
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D. Practical implementation

With the proposed method, both making predictions and
training the model involves manipulating matrices of size
J×J . Despite the high dimensionality (recall that J is the
number of voxels), computations can be performed efficiently
by exploiting the structure of these matrices: As detailed in
Appendix III, training and predicting can be implemented in
a way that only involves the posterior covariance of the latent
variables Σ, which is of much smaller size K×K.

In our implementation, we center the target variable x, i.e.,
we subtract the sample mean of the training set (

∑N
n=1 xn)/N

from x during both training and testing. This has the advantage
that the estimated m is a template that reflects the average
anatomy of the subjects in the training set. We initialize the
EM algorithm by first computing, for each voxel, the variance
across the training subjects in the centered training images
{t̃n}Nn=1. Each row in V is then initialized with random entries
drawn from a zero-mean Gaussian with the corresponding
variance. Similarly, the diagonal elements in ∆ are initially set
to the corresponding voxel’s variance. Convergence of the EM
procedure is detected by checking whether the relative change
in the log marginal likelihood drops below 10−5 between
iterations.

III. EXPERIMENTS AND RESULTS

In this section, we present experiments about age and gender
prediction, performed with the core method described in
section II. Possible extensions, including experimental results,
will be described in section IV.

A. Data and experimental set up

We employed the proposed generative model for predicting
age and gender using the UK Biobank dataset, which com-
prises MRI T1-weighted scans of 26,127 healthy subjects ,
aged 44-82 years. These scans were already preprocessed
with skull stripping and bias field correction [6], and the
nonlinear registration used to perform accurate skull stripping
is provided. We therefore used it to nonlinearly warp the
scans to MNI space, obtaining ”deformable T1s”. Since [5]
makes predictions based on skull-stripped, bias-field corrected
T1 scans from the UK Biobank, that are instead affinely
registered to MNI space, for completeness we also trained
our method on such affinely registered T1s (“affine T1s”). We
however note that the use of affine T1s is very strange set up,
since nonlinear deformations are provided and already used to
perform accurate skull-stripping, whose result is in turn used
in subsequent processing steps, such as bias field correction.
Additionally, the use of affine T1s is expected to disadvantage
linear methods (which are also used as benchmarks in [5]),
since – unlike neural networks – they are not able to model
nonlinear deformations that have not been removed from the
input data by the the affine registration. Therefore, in our
experiments we mainly focused on deformable T1s, although
we also report results on affine T1s for completeness sake.

Following the study design in [5], for all the experiments,
we selected a validation set of 500 subjects, and a test set

of 1000 subjects. Additionally, in order to investigate pre-
diction performances and explainability for different number
of training subjects, we trained the proposed method on sets
of different sizes from 100 subjects up to 7800 (for age) and
9800 subjects (for gender). For each size, we trained on 10
randomly sampled training sets (on only 3 sets for sizes larger
than 1000 (i.e., N > 1000)). The method’s one hyperparam-
eter K is selected by using grid search on the validation set
as the one that yields the smallest validation Mean Absolute
Error (MAE) (for age) and the largest validation accuracy (for
gender).

To speed up computations, we trained on downsampled
data, specifically on 3mm isotropic - we empirically found
that performances with 3mm and 2mm are comparable for
the proposed method, and therefore we used 3mm to reduce
training times.

Before investigating prediction performances, we can give
insight into the working of the porposed method by displaying
the estimated forward model for age prediction on N = 2600
training subjects. The estimates obtained for m and wG are
displayed in Fig. 4: m represents the average image, while
the generative weights wG encode the direct effect of age in
image intensities. Additionally, to give insight into the features
captured by the noise model, we display in Fig. 5 the major
modes of variation, encoded by the first three eigenvectors of
the noise covariance matrix C. Details about the computation
of eigenvectors in high dimension are provided in Appendix
I. We observe that the first eigenvector encodes a general
darkening/brightening of image intensities, the second one
seems to model residual bias field that has not been removed
from the data in the preprocessing, and the third one expresses
differences in the size of the lateral ventricles.

Regarding the estimate of the model’s hyperparameter K
which regulates the number of free parameters in the noise
model, in Table I we report its optimal values selected on the
validation set, averaged across all runs of each size, for age
prediction on deformable T1s. We observe that the optimal
value of K increases with the training size N ; This is not
surprising since in general larger training sets allow the use
of more flexible models.

B. Benchmark methods

To compare prediction performances, we selected three
benchmark methods: a discriminative nonlinear model (SFCN
[5]), a discriminative linear method (RVoxM [58]) and a
generative nonlinear one (variational auto-encoder [59]).

• SFCN: as discriminative nonlinear benchmark, we se-
lected the SFCN, a lightweight convolutional neural net-
work proposed in [5]. It is, to the best of our knowledge,
the best performing method for image-based prediction,
and it won the 2019 Predictive Analysis Challenge for
brain age prediction. In [5], the SFCN is employed
to predict age and gender on UK Biobank data, using
several training sizes. Since the SFCN’s training code
is not publicly available (only the model code has been
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m wG

Fig. 4: Estimate of m and wG obtained for age prediction, by the proposed method trained on N = 2600 subjects on
deformable T1s.

N=100 N=200 N=300 N=500 N=1000 N=2600 N=5200 N=7800

K for age prediction 19.80 20.40 52.00 86.00 120.00 366.67 1833.33 3333.33

TABLE I: Optimal hyperparameters selected for the proposed method on the validation set, averaged across all the runs, for
age prediction on deformable T1s.

released4), we used the SFCN implementation5 provided
by [63], with some modifications described in Appendix
VI. To match the setting described in [5], we trained
this method on 1mm isotropic scans. This method has
one hyperparameter, which is the number of epochs used
for training.

• RVoxM: It is a discriminative linear method, proposed
in [58], which encourages sparsity and spatial smooth-
ness of its weight map as a form of regularization.
The strength of the spatial smoothness is controlled by
the one hyperparameter of the model. We selected this
method as discriminative linear benchmark because it
provides competitive performances among the class of
such methods, and it is comparable or it outperforms
the best linear discriminative model tested in [5]. As
implementation for this method, we used the code that
is publicly available6, with some adaptations described
in Appendix VI. Similarly to our method, to speed up
computations we trained the RVoxM on 3mm scans, after
assessing that performances with 3mm and 2mm are
comparable.

• Variational auto-encoder: as nonlinear generative
benchmark, we selected a variational auto-encoder (VAE)
that was recently proposed for age prediction [59]. This
method is similar to ours, except that its latent vari-
ables contribute nonlinearly to the generative model,

4https://github.com/ha-ha-ha-han/UKBiobank deep pretrain
5https://github.com/pmouches/Multi-modal-biological-brain-age-

prediction/blob/main/sfcn model.py
6https://sabuncu.engineering.cornell.edu/software-projects/relevance-voxel-

machine-rvoxm-code-release/

through a deep neural network, which makes the EM
training algorithm more elaborate than our closed-form
expressions [64]. This method contains two regularization
hyperparameters (dropout factor and L2 regularization)
and its training code is publicly available7. As in [59],
we trained this model on 2mm T1 scans.

We trained the two discriminative benchmarks for predicting
age and gender, using the same experimental set-up as for our
method, i.e. training on varying sizes and using 10 different
training sets for each size (only 3 sets for N > 1000). As for
the proposed method, we selected these models’ hyperparame-
ters on the validation set, using grid search, by minimizing the
validation MAE for age, and validation accuracy for gender.

Regarding the VAE, we employed a different set-up: we
trained it only for age prediction, on T1 scans cropped around
the ventricular area, following the same setting as in [59].
Additionally, since in [59] the VAE was proposed for around
200 training subjects, with number of latent variables hard-
coded (to 12), we tested only training sizes in a similar range
(from 100 to 400 training subjects). For each of these sizes, we
trained the model on 10 randomly sampled training sets, and
we estimated the model’s hyperparameters on the validation
set, as for the other methods. We also trained the proposed
method using this same setting, to perform a comparison.

C. Prediction performance and training time
After training, we computed the average test MAE (for age)

and test accuracy (for gender) across all the training runs of
each size, for our method, RVoxM and SFCN. Results are

7https://github.com/QingyuZhao/VAE-for-Regression
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1st mode of variation 2nd mode of variation 3rd mode of variation

Fig. 5: Modes of variation encoded by the first three eigenvectors of the covariance matrix C, obtained for age prediction, by
the proposed method trained on N = 2600 subjects on deformable T1s. The middle line shows slices of the average image m.
The top ad bottom line display the average volume modified in direction of the eigenvectors, with negative and positive sign
respectively.

shown in Fig. 6, for both age and gender prediction, based
on deformable T1s. Because we retrained SFCN ourselves,
for completeness we also show results as reported in [5].
The experimental setting in [5] is slightly different than in
our re-implementation: only one training set for each size
is employed, while we use multiple sets, and the specific
choice of training sets, validation and test set is in general
different from ours. Additionally, results in [5] are obtained
using affine T1s, while performances displayed here for our
own implementation are based on deformable T1s. However,
the paper also shows that performances obtained on affine and
deformable T1s are very similar, and we replicated this finding
with our own implementation (Cf. Appendix V).

Comparing performances of different methods for age pre-
diction, we observe that the proposed method and RVoxM

achieve comparable performances, except for very large N,
where the RVoxM starts achieving better results. Regarding the
SFCN, we note that we are able to reproduce results in [5] for
up to 1000 training subjects, with a small variability probably
due to the use of different training and test sets, after which
we start getting systematically larger errors. In this regard, we
point out that we did our best to reproduce SFCN’s results
despite the unavailability of the training code. Comparing
our method’s and SFCN’s performances, we observe that
the proposed method performs comparably or better than the
SFCN in regimes up to 2600 training subjects, after which the
SFCN achieves better results (more markedly for the SFCN
as reported in the paper).

Regarding gender prediction, we find that our method and
the RVoxM perform equally for all tested training sizes. For the
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Fig. 6: Comparison of the proposed method, RVoxM and SFCN on an age prediction task (left) and on a gender classification
task (right). For SFCN, we also display performances as reported in [5].

SFCN, we observe a systematic gap between our performances
and results from [5], with a larger difference for N = 100
and N = 1000. However, the SFCN as reported in the paper,
although it performs better than our own re-implementation,
is not able to achieve the same prediction performances as
our method, except for very large training sizes where the
performances are comparable.

Additionally, training times for the three methods are shown
in Table II, for age prediction. For small sizes, training the
proposed method takes only a few minutes, being much faster
than the other methods. As the training size increases, our
method becomes comparable to the RVoxM for N = 2600
and N = 5200, and then slower for N = 7800. The SFCN
is slower than the other methods, for any size. It should be
noted that for proposed method and RVoxM, these are CPU
times (with 3mm T1 scans), while for SFCN they are GPU
times (for 1mm T1s).

Regarding the comparison with the VAE, in Fig. 7 we
display the test MAE averaged across all training sets of each
size, for both our method and VAE. We observe that the pro-
posed method achieves better results for every tested training
size, suggesting that, at least when the training set consists of
a few hundred subjects, adding more flexibility to the model
is not beneficial - it may even hurt performances. Regarding
training times, training the VAE took on average 9.40 minutes
for N=200 with the optimal set of hyperparameters, using a
NVIDIA GeForce RTX 2080 Ti GPU (11 GB of RAM), while
training time for the proposed method with N=200 was 1.16
minutes, with the selected value of the hyperparameter, using
Matlab on a state-of-the-art desktop.

D. Explainability
One of the main perks of the proposed method is that it

produces an interpretable spatial map (wG), showing the direct
effect of the variable of interest on image intensities, on a

Fig. 7: Test MAE obtained by the proposed method and VAE
for age prediction, on deformable T1s cropped around the
ventricles.

population level. This map is obtained through a decomposi-
tion of the signal (image) into an average anatomy, the effect
of the variable of interest and a subject-specific noise. This
decomposition is illustrated in Fig. 2 in a 2D toy example, and
in Fig. 3 with images, for the age prediction task. Thanks to the
form of this decomposition, the generative map wG expresses
how the variable of interest affects a subject’s image, encoding
target-related neuroanatomical changes [21]. Consistently with
this, the generative map for age displayed in Fig. 3 expresses
known age-related effects, such as gray matter atrophy and
enlargement of ventricles [65], [66].

When the model is subsequently inverted, the discriminative
weight map wD (3) is obtained by combining the generative
maps with the noise covariance matrix, and used to make
predictions through a scalar product with the test subject’s
image, as illustrated in Fig. 8 for vectors and Fig. 9 for images.
This discriminative map contains the weights given to voxels
for predicting the variable of interest, and therefore highlights
image areas the model uses for predictions. However, since
it includes both generative effect and noise pattern, it does
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N=100 N=200 N=300 N=500 N=1000 N=2600 N=5200 N=7800

Proposed method 1.20 min 0.67 min 1.94 min 9.53 min 32.18 min ≈3h ≈15h ≈ 69 h

RVoxM 92.42 min 66.46 min 75.36 min 76.21 min 129.05 min 126.55 min ≈ 22 h ≈ 21 h

SFCN ≈ 8h ≈ 11 h ≈ 16 h ≈ 18 h ≈ 34h ≈ 76h ≈ 69h ≈ 102 h

TABLE II: Training times for age prediction on deformable T1s, for proposed method, RVoxM and SFCN, averaged across
all training runs. For proposed method and RVoxM, the table displays CPU time for a single selected value of the models’
hyperparameter, obtained with Matlab on a state-of-the-art desktop. For SFCN, the reported time is the training time up to the
selected epoch, obtained with a NVIDIA A100 SXM4 GPU (40 GB of RAM).

Fig. 8: Illustration of the inversion process of the toy gen-
erative model shown in Fig. 2: Measurements (indicated by
individual points) are orthogonally projected onto the direc-
tion wD = C−1wG, as the resulting 1-dimensional signal
optimally disentangles the variable of interest (illustrated by
the histogram) in the presence of noise.

not directly express target-related changes in neuroanatomy
and it results in an uninterpretable spatial pattern [21]. This
concept is shown in Fig. 8, illustrating how the y channel
has a large component in wD, although it is not affected by
the target variable since its weight in wG is zero. Similarly,
the age discriminative map shown in Fig. 9 does not present
the typical age-related patterns that characterize the generative
map, but it mostly highlights white matter areas.

Fig. 10 shows other 2D slices of both generative and
discriminative maps obtained for age prediction. We observe
again the large difference between the two maps: while the
generative maps display typical age-related effects, mostly
highlighting gray matter borders and ventricles, the discrimi-
native maps focus on very different areas, mainly within white
matter, with both positive and negative weights.

It is also interesting to compare the generative map wG

not only with its discriminative counterpart wD, but also with
spatial maps of the other discriminative methods employed
as benchmarks. Additionally, we are interested in analyzing
the stability of these spatial maps when changing training
set, both of same and different sizes. For these reasons,

we display in Fig. 11 spatial maps of the proposed method
(both wG and wD), RVoxM and SFCN, obtained on training
sets of 300, 2600 and 7800 subjects. To also investigate
the behaviour of these maps when changing training data
within the same cohort size, in Fig. 12 we display maps
obtained by the methods on three randomly sampled training
sets of 2600 subjects. Since SFCN is a neural network and
therefore does not automatically provide spatial maps, we
used SmoothGrad [67] to compute saliency maps for this
method. The SmoothGrad maps are commonly used as post-
hoc explanations of deep learning models, and they can be seen
as a generalization of linear methods’ weight maps (i.e. the
SmoothGrad map computed for a linear discriminative method
would correspond exactly to the model’s weight map [24]).
Note that, since SmoothGrad provides subject-specific maps,
in order to obtain a single template that could be compared
with the other methods’ ones, we averaged the SmoothGrad
maps of all test subjects. This technique is considered a
relevant way to produce population-level maps for instance-
based XAI methods, since it removes the noise characterizing
single-subject maps [26], consistent with the finding that it’s
the aggregate use of saliency maps rather than the individual
one that can yield significant results [23].

First, from Fig. 11 and 12, we note that the discriminative
spatial patterns of wD, RVoxM, and SFCN are much less
intuitive than wG, which shows known age-related effects:
Discriminative maps highlight regions that are most impor-
tant to make predictions, but they do not directly express
anatomical changes caused by the variable of interest. Addi-
tionally, regarding the dependency of maps on specific training
data, we note that the generative maps wG are quite stable
across different training samples. The discriminative maps wD

and RVoxM’s also show some consistency, especially when
keeping the same training set size, but with more differences
than the generative maps. A possible explanation is that wD

and the RVoxM’s maps depend on an hyperparameter, which
in general varies with the specific training data, especially
when changing training size (cf. Table I), while wG does
not. Additionally, generative maps are produced by estimating
two weights from N data point in each voxel independently,
which is expected to yield rather stable fittings. Instead, wD

involves estimating many more basis functions, together with
their coefficients, in a multivariate way, and RVoxM’s maps
entail fitting a very high-dimensional hyperplane from N data
- which are both likely to be less stable operations. Regarding
SFCN, we observe that there is a huge variability in its
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Fig. 9: Illustration of how a subject’s age is estimated by inverting the model shown in Fig. 3. Note that the resulting
discriminative linear regression is mathematically the same as decomposing the signal into the individual constituents shown
in Fig. 3, but not in terms of interpretability.

Fig. 10: 2D slices of generative map wG (top) and discriminative map wD (bottom), obtained for age prediction on UK
Biobank data, on a training set of 300 subjects (with deformable T1s).

maps when changing training sets, both of same and different
sizes. These findings seem consistent with [22], which shows
that many commonly used saliency maps methods, including
SmoothGrad, did not pass a test of reproducibility when the
model is retrained with a different random initialization or
with a different architecture yielding similar prediction perfor-
mances. All these results illustrate some difficulties that arise

in the interpretation of discriminative maps - both theoretical
difficulties, since such maps do not express the causal effects
of interest for interpretation purposes, and empirical ones,
since especially SFCN maps rely heavily on the specific choice
of training data.
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Fig. 11: Maps of proposed method (wG and wD), RVoxM, and SFCN (with SmoothGrad), for different training set sizes.
Voxels with zero weight are transparent. Discriminative maps are displayed for the optimal value of the hyperpameter, selected
as described in section III-A and III-B.

In addition to visualizing wG, which reflects the average
causal effect of age on brain morphometry on a population
level, our generative model also allows us to generate subject-
specific counterfactuals [68] – imaginary images of a specific
individual if they had been younger or older than they really
are. Specifically, given an image t and their real age x, (1)
can be used to compute the noise vector η, which captures the
subject’s individual idiosyncracies that are not explained by the
population-level causal model. Counterfactual images can then
by obtained by simply re-assembling the forward model ((1)
and Fig. 3) from its constituent components, using a different,
imaginary age x instead of the real one. An example of this
process is shown in Fig. 13, where the brain of a 47 years old
subject is artificially changed to 80 years, with the expected

aging-related changes occurring. Such counterfactuals can
therefore be used as an intuitive way to explain the age
estimation process of our method in a particular individual, one
that has been argued to closely match human intuition [68]: A
specific age is estimated because, had the subject been older
or younger, their scan would have looked different.
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Fig. 12: Maps of proposed method (wG and wD), RVoxM, and SFCN (with SmoothGrad), computed on 3 different training
sets of 2600 subjects. Voxels with zero weight are transparent. Discriminative maps are displayed for the optimal value of the
hyperpameter, selected as described in section III-A and III-B.

E. Bias-variance trade-off (gaining further insight)

In section III-C, we showed that prediction performances for
age prediction of the proposed method and the two discrimi-
native benchmarks are quite similar, in training regimes up to
a few thousands of subjects. This finding is perhaps surprising
if we consider the vastly different numbers of parameters in
the methods. In fact, on one hand, the proposed method has
J(K + 3) − K(K − 1)/2 free parameters (2 columns of J
elements in W, K columns of J parameters in V and J
diagonal elements in ∆, which are reduced by K(K − 1)/2
because any rotation in the latent space provides the same
model [61]), with J ≈ 80, 000 in our experiments and K that
varies from tens to thousands, depending on the training set
size (Cf. Table I). On the other hand, the RVoxM has J free

parameters, and the SFCN has 3 million parameters [5].
However, there are a lot of factors underlying a method’s

prediction performances besides the number of parameters,
and in general it is not straightforward to predict which method
will perform best a priori. For instance, the choice of the
optimizer and how it explores the hypothesis space has an
impact on a method’s performances, where optimizers that
try fewer hypothesis, restrict the hypothesis space and act as
regularizers [69]. Additionally, the posterior distribution of a
”wrong” generative model can still give correct predictions
[56], and even on simulated data, an incorrect model can
achieve better prediction performances than the ”true” model
in certain regimes [69], making an a priori guess of the best-
performing method extremely hard.

Given these difficulties, to gain more insight in the perfor-
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Fig. 13: Top: original images of a 47 years old subject. Bottom: counterfactual images of the same subject at the age of
80. All images are on the same intensity scale. The aging patterns shown in the counterfactual image are consistent with the
effects encoded by wG: the aged brain is characterized by larger ventricles, enhanced gray matter atrophy, and a general slight
decrease in image intensities.

mances of the considered methods, we can perform the so-
called bias-variance decomposition of prediction errors. We
compute it for age prediction, since it is more straightforward
for a continuous variable than in a classification case. For a
given method, the prediction mean squared error (MSE) can
be decomposed into a bias term, which denotes how well
the method performs on average, and a variance term, which
indicates how much predictions for the same test subjects
change across different training runs [70], [71]. In particular, if
we consider a test pair (t∗, x∗), and we denote with y(t∗;D)
the prediction made by the model trained on a dataset D for
test subject t∗, we obtain the following decomposition:

Et∗,D

[
(x∗ − y(t∗;D))

2
]

︸ ︷︷ ︸
MSE

= Et∗

[
(x∗ − ED [y(t∗;D)])

2
]

︸ ︷︷ ︸
bias

+

+ Et∗,D

[
(y(t∗;D)− ED [y(t∗;D)])

2
]

︸ ︷︷ ︸
variance

(13)

where ED[·] denotes the expected value over all training sets
D of a fixed size, and Et∗ [·] denotes the expected value over
all possible inputs t∗. In practice, if we consider M test pairs
{t∗m, x∗

m}Mm=1, and B different training sets {Db}Bb=1 of a
given size, we can write for test subject m:
∑B

b=1 (x
∗
m − y(t∗m;Db))

2

B
= (x∗

m − ȳ(t∗m))
2
+

+

∑B
b=1 (y(t

∗
m;Db)− ȳ(t∗m))

2

B
(14)

where we have defined the mean prediction for test subject
m as ȳ(t∗m) =

∑B
b=1 y(t

∗
m;Db)/B. We can than average the

decomposition in (14) over all test subjects.
Typically, a very flexible model will have a large variance

and a low bias, reflecting an overfitting of the training data,
while a strongly constrained method will have the opposite
behaviour, resulting in underfitting of the training data [70],
[71]. Finding the right balance in the bias-variance trade-off
is a key point to achieve good results in a given setting, and
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true model has full C histogram of y(t∗;D)− x∗

fit with diagonal C fit with full C

Fig. 14: Visualization of the bias-variance principle: Fitting a model with diagonal C (wrong model) yields predictions that are
consistent across training runs, but systematically wrong (low variance, high bias), while fitting a model with full C (correct
model) yields predictions that are more variable but on average correct. In the end, though, both models reach almost identical
prediction performance. This principle is illustrated by the histogram of prediction errors, and by the cartoon examples, which
display model inversion: The test data point t∗ is projected orthogonally onto the direction of wD to obtain predictions y(t∗),
while x∗ indicates the real target. These models are fitted using 5 data points for training, which are displayed as dots in the
shown examples.

there is no method that can be in absolute better than others
(”no free lunch” theorem) [69], [70].

The bias-variance decomposition principle is illustrated in
Fig. 14, in a 2D toy example from the proposed method. We
generate 5 data points for several training sets using a full
covariance matrix, and we consider one specific test subject
(t∗, x∗) drawn from the same distribution. We then predict
the target variable for the test subject, fitting both a diagonal
(wrong model) and a full (correct model) covariance matrix
to the training sets. The histogram shows the distribution of
the signed prediction error y(t∗;D)− x∗ for the two models,
over 10.000 training runs. The overall MSE is similar in
the two cases (MSE = 0.068 vs MSE = 0.072), but the
error distribution is very different: the model with diagonal
C yields predictions that are very similar across training runs
but systematically wrong (low variance, high bias), while
predictions obtained by the more flexible model with full C
vary more across training runs but they are on average correct
(high variance, low bias). This is also illustrated by the three
shown examples.

In order to gain a similar insight in the real-data experiment,

we computed MSE, bias and variance with (14), for proposed
method, RVoxM and SFCN, using the same training runs as
described in section III-A and III-B for age prediction. The
training sets in (14) are therefore the same that we used
for assessing prediction performances (10 for sizes up to
N = 1000 and 3 for larger sizes). We then averaged the
decomposition in (14) over the 1000 subjects of our usual
test set. The computed decomposition is shown in Fig. 15
(left). Let us first analyze the decomposition of our method
(blue lines). We observe that the bias is reduced as the
training set size increases, and the variance slightly decreases
as well. This behaviour is achieved through the method’s
regularization hyperparameter K: for small training sizes, the
hyperparameter constrains the models in order to control the
variance, and this results in a larger bias. As the training size
increases, the variance is naturally reduced thanks to the larger
number of training subjects [70]. This allows the method to
be less regularized - as we saw in Table I, the value of K
increases as N becomes larger - and thus to achieve a smaller
bias.

If we now consider the decomposition of RVoxM and
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Fig. 15: Left: Bias-variance decomposition for the proposed method, RVoxM and SFCN. Right: Bias-variance decomposition
for the proposed method and VAE. We used the same training runs as described in section III-A and III-B.

SFCN (red and black lines, respectively), we observe a similar
behaviour as in our method, with decreasing bias and variance
as N increases.

If we compare the decomposition of the three methods,
we observe that the our method’s variance is smaller than
the others, except for very large N, where the benchmarks’
variances reach (and become smaller than, in the RVoxM case)
the proposed method’s one. Instead, the proposed method’s
bias is larger than the other methods’ counterpart, with some
training sizes where they are comparable, especially for the
RVoxM. This behaviour is in general expected since the
proposed method is less flexible than other two, and therefore
has a higher bias and a smaller variance, while for larger N,
all methods can achieve a small variance thanks to the large
number of subjects. The bias-variance trade-off is therefore a
tool for interpreting prediction performances: a simpler model
like the proposed method is competitive or it even outperforms
the much more powerful SFCN with training sizes up to a few
thousand subjects, because, although its strong assumptions
make it on average incorrect (large bias), they also prevent it
to overfit (small variance), and this compensates and possibly
overcomes the large bias. Conversely, for larger training sizes,
there is less risk of overfitting even for a flexible model such
as the SFCN, and thus its smaller bias becomes decisive to
obtain better prediction errors. These findings are in line with
previous studies showing that a more powerful method is
not necessarily better than a simpler one, and that, when the
training size is limited, models with stronger assumptions -
even if incorrect - may yield better performances than more
flexible methods, because the latter overfit more [69].

We also computed the bias-variance decomposition of age
prediction errors for the VAE. We again used the same training
runs as in section III-B, i.e. deformable T1s cropped around
the ventricular area as input data, and 10 training sets for
each size, in a reduced range (from N = 100 to N = 400).

We also computed the decomposition of our method, trained
in the same setting. The computed MSE, bias and variances
and displayed in Fig. 15 (right). We observe that the VAE
has a slightly larger variance and a much larger bias then the
proposed method. Therefore the VAE’s worse performances
than our method’s for age prediction reported in section III-C
are explained mostly by the VAE’s higher bias.

IV. EXTENSIONS

The generative model proposed in (1) expresses a linear
dependency of the voxels’ intensities on the target variable.
However, in some applications it can be of interest to also
model nonlinear effects that characterize the images. Further-
more, in some cases additional information are available about
the subjects, and it might be beneficial for predictions to take
them into account. Therefore, in this section we show how the
proposed model can be easily extended to include nonlinear
effects of the variable of interest, and to incorporate subjects-
specific covariates that are possibly known.

A. Known covariates
In some cases, subject-specific covariates are known and

can be taken into account to build a more accurate model.
Assuming each subject has L known covariates y1, . . . , yL,
the model (1) can be extended to

t = m+ xwG +
L∑

l=1

ylwl
y + η, (15)

where {wl
y}Ll=1 are L extra spatial weight maps that also

need to be estimated from training data. During training, the
corresponding W = (m,wG,w

1
y, . . . ,w

L
y ) can be estimated

using (8), provided that ϕn = (1, xn, y
1
n, . . . , y

L
n )

T is used
instead of ϕn = (1, xn)

T . The updates of V and ∆ are
still given by (11) and (12), where the estimated W and
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ϕn = (1, xn, y
1
n, . . . , y

L
n )

T are used. To predict an unknown
variable of interest x∗ from a subject with image t∗ and known
covariates y∗1, . . . , y∗L, (4) and (6) remain valid, but with(
t∗ −∑l y

∗lwl
y

)
replacing t∗.

We explored the impact of including known variables into
the model by adding age and gender as covariates in a classifi-
cation experiment of multiple sclerosis (MS) patiens vs healthy
controls. We performed this experiment using a private dataset
from Klinikum rechts der Isar (Munich, Germany), from which
we extracted T1-weighted scans of 131 MS subjects and 131
healthy controls, age- and sex-matched, obtaining a dataset of
262 subjects. We pre-processed all the scans with SPM12, in
order to produce gray matter segmentations, modulated and
warped to a standard template space. Since the occurrence of
white matter lesions in MS patients is known to yield tissues
misclassifications, as input to the segmentation pipeline we
used a lesion-filled version of the T1-weighted scans that was
available in the dataset. The obtained gray matter images were
then used to discriminate between MS subjects and healthy
controls. In order to perform a comparison in an unbiased
way, we implemented the possible inclusion of age and gender
in the model as an additional binary hyperparameter, which
is estimated together with the latent space size. This model
is then compared to the version where no covariates are
used. In both cases, two-nested cross-validation loops are
performed: On one hand, since the small training set size (262
subjects) prevents us to split the data into training and test
set, we need to perform cross-validation to assess predictions
performances in an unbiased way. On the other hand, an
additional cross-validation loop is needed to estimate the
model’s hyperparameter(s), (since there are not enough data to
create a separate validation set for hyperparameter selection.)
Results are shown in Table III. In all the folds, the cross-

validation procedure selected the model with age and gender as
covariates, which yields a slight improvement in performances
as compared to the baseline model.

We also tested the possible inclusion of covariates on UK
Biobank data, by adding age as known variable in gender
prediction experiments based on deformable T1s. In this
case, we found that the model with the extra hyperparameter
regulating the inclusion of age achieved similar performances
as the baseline model for every tested training size (from
N = 100 to N = 9800), possibly because, even if age is
not included in the model, the method automatically models
its variability in the noise component.

It is worth noting how easy it is for the proposed method
to incorporate known variables into the model, as opposed to
discriminative neural networks, that would require to select in
which network layer to insert them, as done for instance in
[72] for inclusion of gender.

B. Nonlinearities in the causal model

For regression problems, the model (1) can also be extended
to include nonlinear dependencies on the variable of interest:

t = m+ xwG +

Q∑

q=1

fq(x)w
q
f + η, (16)

where {fq(·)}Qq=1 are Q nonlinear functions, and {wq
f}

Q
q=1

are their corresponding spatial weight maps. During training,
each fq(x) can be treated as a known covariate, and therefore
the same training procedure as in section IV-A applies. Once
trained, estimating x∗ from an image t∗ is no longer governed
by the linear equation (6), however inverting the model can
still proceed by finely discretizing x∗ into P possible values
xp, p = 1, . . . , P , and evaluating the posterior probability of
each:

p(x∗ = xp|t∗,W,V,∆) =

N (t|m+ xpwG +
∑Q

q=1 fq(xp)w
q
f ,C)

∑P
p′=1N (t|m+ xp′wG +

∑Q
q=1 fq(xp′)wq

f ,C)
, (17)

where (20), (21), and (22) (Cf. Appendix III) can be used to
evaluate the Gaussian distributions in (17). The prediction
can then be obtained as the expected value:

∑P
p=1 xpp(x

∗ =
xp|t∗,W,V,∆).

In order to investigate the effect of a nonlinear causal model,
we performed age prediction on the IXI dataset, a publicly
available collection of around 600 T1-weighted MRI scans
from healthy subjects, aged 20-86 years. Since aging is known
to have an approximately quadratic effect across adulthood on
some brain structures [73] [74], and the IXI dataset covers an
age span that is large enough to possibly show this behaviour,
we used IXI data to test a causal model with quadratic depen-
dency on age. As in the previous experiment, we used SPM12
to compute grey matter segmentations, modulated and warped
to a standard template space. After performing segmentations
quality control and implementing some exclusion criteria (e.g.,
removing subjects with unknown age), we obtained a dataset
of 562 grey matter images of healthy subjects. As in the pre-
vious experiment, we used two-nested cross-validation loops
to estimate a binary hyperparameter regulating the possible
inclusion of a quadratic term into the model, together with the
number of latent variables. This model is then compared to the
linear version of the proposed method, without the additional
hyperparmeter, trained on the same input data. In the quadratic
model, predictions are made using a discretization of the age
range in 20 bins. Results are shown in Table IV. In all the CV
folds, a quadratic causal model was selected, yielding better
performances as compared to the linear version of the model.
Additionally, we note that MAEs obtained on IXI data are

larger than on UK Biobank, for similar training set sizes. In
this regard, apart from the different type of input data (GM vs
T1), we should take into consideration that the IXI dataset has
a larger age range, and this intrinsically yields larger prediction
errors [1].

We also tested the quadratic model for age prediction on
deformable T1s from the UK Biobank, for several training
sizes. In this case, including a quadratic dependency did not
affect results except for very large training sets, where it
yielded a slight improvement in test performances (MAE =
2.62 years with extra binary hyperparameter, which selected
the quadratic version, vs MAE = 2.71 years with linear model,
for N = 7800). A possible explanation for these results lies
in the limited age span of the UK Biobank, which therefore
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CV accuracy CV AUC CV sensitivity CV specificity

Without covariates 0.7023 0.7645 0.6718 0.7328

With extra hyperparameter (regulating covariates) 0.7214 0.7669 0.6794 0.7634

TABLE III: Performances achieved on the MS vs healthy classification task on 262 subjects from the Munich dataset, with two
nested 5-fold CV loops. With the additional hyper-parameter regulating the use of covariates, age and gender are added in all
the folds. AUC denotes the area under the ROC curve.

CV MAE CV RMSE CV correlation

Linear model 4.7335 5.9283 0.9330

With extra hyperparameter (for quadratic vs linear model) 4.3627 5.4322 0.9445

TABLE IV: Performances for age prediction from GM images, on the IXI dataset, with two nested 5-fold CV loops. When
using the additional hyper-parameter encoding a linear or quadratic causal model, the quadratic model is selected in all the
folds.

requires very large sample sizes to observe a quadratic effect
in the data.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a generative method for image-
based predictions, which directly models how the variable of
interest affects image intensities. It also includes a linear noise
model, and it possibly incorporates nonlinearities in the target
variable and/or additional covariates that may be known about
the subjects. The model is subsequently ”inverted” to make
predictions using Bayes’ rule, which is numerically possible
even in case of added nonlinearities.

In the experiments performed for age prediction based on
brain MRI scans, we proved that the proposed method for
regression achieves competitive performances as compared to
discriminative state-of-the-art models, for training set sizes up
to a few thousands of subjects, which is the typical scenario
in many neuroimaging applications. Furthermore, in the clas-
sification task of gender prediction, we showed that it is com-
petitive with state-of-the-art methods for every tested training
set size (up to 9800 training subjects). We also gave insight
into the different methods’ performances for age prediction in
terms of bias-variance decomposition. We demonstrated that
the proposed method, since it makes stronger assumptions,
has in general larger bias and smaller variance than the
discriminative benchmarks, with its small variance being the
key feature behind its competitive performances. Additionally,
we showed that, as compared to discriminative benchmarks,
the proposed method has the advantage of being easier to use,
less opaque and faster to train.

Other generative models were proposed in the literature
for brain age prediction [59], [75], but, unlike our method,
they include deep nonlinearities. The VAE proposed in [59]
can be regarded as a deep nonlinear version of our method,
where latent variables and the variable of interest are expanded
nonlinearly through a neural network. The generative model
proposed in [75] instead utilizes normalizing flows to model
the bidirectional functional relationship between age and
brain morphology. Adding deep nonlinearities in a generative
method does not seem beneficial for brain age prediction. We
showed this for VAE in section III-C, and, although we did

not explicitly compare our method against [75], their reported
MAE as percentage of age range (6.3% with N=4281) is
similar to ours (7.4% with N=2600 and 7.3% with N=5200).
Furthermore, including nonlinearities makes more difficult to
visualize age-related morphological changes captured by the
model. In fact, nonlinear generative methods can still provide
interpretable maps, for instance by generating age-conditioned
templates, from which age-related changes can be extracted
using the jacobian determinant, as in [59], [75]. However,
this visualization is age-gap dependent and it requires a lot
of sampling and computations. Additionally, [75] produces an
interpretable attribution map for its method, by computing the
partial derivative of the inverse map with respect to age, but
this is again computationally heavy and it results in a less
intuitive spatial pattern than our spatial map. Furthermore, like
the proposed method, nonlinear generative models can create
counterfactual images, which allow to illustrate aging patterns
encoded by the model, in a what-if scenario on a subject-
specific level [76]. And yet, despite all these visualization
techniques, the simplicity wherewith our method provides a
single template expressing target-related anatomical changes at
a group level cannot be attained by nonlinear models. Besides
this advantage, the proposed method is also easier to use than
its deep nonlinear counterparts, with less time and resources
needed for training.

Among drawbacks of the proposed model, it should be
mentioned that, while the method is well suited for scenarios
with up to a few thousands of training subjects, for bigger
sizes training the model becomes quite slow (on a CPU) and
its performances are less competitive in regression tasks.

Possible future extensions of the proposed work include re-
using part of a trained model in a separate task. In particular,
we could train the model on a huge cohort of healthy subjects,
and simply re-use the estimated noise model in a task involving
a small cohort, e.g. classification of a certain disease vs healthy
controls, where small sample sizes are the typical scenario. In
the small cohort, only the causal part of the model, e.g the
disease effect, would be estimated, resulting in a sub-second
speed training. In fact, while learning the noise model is the
time-consuming part of training, estimating the causal part is
almost immediate. This technique has also the advantage of
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providing a supposedly more accurate noise model, since this
would be estimated on a large cohort.

Another possible future extension consists of modifying the
proposed model to work in a longitudinal setting, where sev-
eral scans per subject are available. Our method is particularly
suited for a longitudinal scenario, since, unlike discriminative
models, it can easily deal with inconsistent number of images
per subject and time intervals between follow-up scans, which
is the typical scenario in longitudinal studies. The longitudinal
extension of our method can be obtained through mixed-effect
models, where the temporal correlation between scans of the
same subject is explicitly modelled.

Finally, in this paper the number of latent variables in the
noise model was set using cross-validation, while it could be
automatically estimated from training data using variational
methods [61], without the need of re-training the model many
times in a grid search procedure.

APPENDIX I
MAKING PREDICTIONS

Here we derive the expressions for making predictions about
the variable of interest. For a binary target variable x∗ with
prior p(x∗ = 0) = p(x∗ = 1) = 0.5, we have

p(x∗=1|t∗,W,C)

=
p(t∗|x∗=1,W,C)p(x∗=1)

p(t∗|x∗=1,W,C)p(x∗=1) + p(t∗|x∗=0,W,C)p(x∗=0)

=
1

1 + p(t∗|x∗=0,W ,C)
p(t∗|x∗=1,W ,C)

= σ
[
log p(t∗|x∗=1,W,C)− log p(t∗|x∗=0,W,C)

]

where

log p(t∗|x∗=1,W,C)− log p(t∗|x∗=0,W,C)

= −1

2
(t∗ −m−wG)

TC−1(t∗ −m−wG)

+
1

2
(t∗ −m)TC−1(t∗ −m)

= wT
GC

−1(t∗ −m)− 1

2
wT

GC
−1wG,

which explains (2).
For a continuous target variable with flat prior, the log-

posterior

log p(x∗|t∗,W,C)

= −1

2
(t∗ −m− x∗wG)

TC−1(t∗ −m− x∗wG) + const

is quadratic with derivate

d log p(x∗|t∗,W,C)

dx∗ = wT
GC

−1(t∗ −m− x∗wG) (18)

and curvature
d2 log p(x∗|t∗,W,C)

dx∗2 = −wT
GC

−1wG.

Therefore, the posterior is Gaussian, with variance given by
(5). The mean is obtained by setting (18) to zero, which yields
(6).

APPENDIX II
ESTIMATE OF W

For training, the log marginal likelihood is given by

log p
(
{tn}Nn=1|{xn}Nn=1,W,C

)

=
N∑

n=1

−1

2
(tn −Wϕn)

TC−1(tn −Wϕn) + const,

which has as gradient with respect to W

N∑

n=1

C−1(tn −Wϕn)ϕ
T
n .

Setting to zero and re-arranging yields (8).

APPENDIX III
EFFICIENT IMPLEMENTATION

Using Woodbury’s identity, we obtain

C−1 = ∆−1 −∆−1V
(
IK +VT∆−1V

)−1
VT∆−1

= ∆−1 −∆−1VΣVT∆−1, (19)

and therefore (3) can be computed as

wD = ∆−1wG −∆−1VΣ
(
VT∆−1wG

)
.

Using this result, (5) is given by σ2
x = 1/(wT

DwG).

Both computing the marginal likelihood (7), needed to
monitor convergence of the EM algorithm for model training,
and the inversion equation (17) for a forward model with
nonlinearities involve numerical evaluations of the form

logN
(
t̃| 0,C

)
∝ t̃TC−1t̃+ log |C|+ const. (20)

Using (19), the first term can be computed as

t̃TC−1t̃ = t̃T∆−1(t̃−VΣVT∆−1t̃)

= t̃T∆−1(t̃−Vµ), (21)

with µ = ΣVT∆−1t̃ being an estimate of the latent vari-
ables. The second term can be computed using Sylvester’s
determinant identity [77]:

|VVT∆−1 + IJ | = |VT∆−1V + IK |
= |Σ|−1,

so that
log |C| = log |∆| − log |Σ|. (22)

Finally, the EM update (12) of the diagonal matrix ∆ can
be computed one element at a time: the jth diagonal element
is given by

∆jj =

∑N
n=1

(
t̃ j
n − vT

j µn

)
t̃ j
n

N
,

where t̃ j
n and vT

j denote the jth element (row) of t̃n and V,
respectively.
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Fig. 16: Comparison of the proposed method, RVoxM and
SFCN on the age prediction task. For each method, results
are shown for both affine and deformable T1 input data.

APPENDIX IV
COMPUTATION OF HIGH-DIMENSIONAL EIGENVECTORS

In order to compute the eigenvectors of VVT in section
III-A, we use the SVD decomposition of V, given by V =
USRT , with U J × J orthogonal matrix, S J ×K diagonal
matrix, and R K ×K orthogonal matrix. This yields:

VVT = US(RTR)STUT = U(SST )UT , (23)

where U contains eigenvectors of VVT and SST is a diagonal
matrix with the eigenvalues.

APPENDIX V
AFFINE VS. DEFORMABLE T1S

Fig. 16 and Fig. 17 show prediction performances obtained
by our method, RVoxM and SFCN for age and gender pre-
diction respectively, on both affine and deformable T1s (with
our own implementation). We obtain that performances of
SFCN based on affine and deformable T1s are very similar,
consistently with the finding reported in [5]. Instead, for our
method and RVoxM, performances are clearly worse when
using affine T1s as compared to deformable T1s, which is
expected since they are linear methods, and therefore they do
not have the capability of modeling nonlinear deformations
in the data that have not been removed by the the affine
registration.

APPENDIX VI
CODES

Regarding the SFCN for age prediction, we adapted the
implementation8 provided by [63] to more closely resemble
the architecture and setting described in [5]. In particular we
implemented the following changes:

- We added a convolutional block

8https://github.com/pmouches/Multi-modal-biological-brain-age-
prediction/blob/main/sfcn model.py

Fig. 17: Comparison of the proposed method, RVoxM and
SFCN on the gender classification task. For each method,
results are shown for both affine and deformable T1 input
data.

- We used the same L2 weight decay coefficient reported
in [5] (0.001)

- We used the MAE as metric that is evaluated on the
validation set

- We changed the augmentation tecnique
- We added a pre-processing step (division by the images’
means)

There are two aspects of the implementation provided by [63]
that differ from the setting described in [5] which we did not
change:

- the learning rate, because we empirically found it was
better the one reported in [5]

- age is predicted as a continuous variable, with mean
squared error as loss, instead of using a discretization
in 40 classes and the KL-divergence as loss. [We kept
this setting since it was reported to give the same results
as with age binning.]

We then adapted the code to perform gender prediction, by
using a sigmoid as activation function in the final layer of the
network, and cross-entropy as loss function.

Regarding the RVoxM, we adapted the publicly available
implementation9 with the following changes:

- For age prediction, we parallelized part of the training
loop to obtain a more efficient implementation

- For gender prediction, the provided code was not robust
towards high dimensional input data, and we modified it
to handle whole brain scans as input.

Finally, the code for the proposed model will be released at
[address].

9https://sabuncu.engineering.cornell.edu/software-projects/relevance-voxel-
machine-rvoxm-code-release/
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