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Abstract

Almost four years after the appearance of Salvesen-Tuck-Faltinsen (STF ) strip theory [1], Salvesen in
1974 published his popular method for calculation of added resistance [2], [3]. His method is based on
an exact near-field formulation, however he applied the long-wave and the weak-scatterer assumptions
to present his approximate method using the integrated quantities (hydrodynamic and geometrical
coefficients). Considering the available computational powers in the 1970s, both of these assumptions
were absolutely justifiable. The intention of this paper is to disseminate the results of a recent study at
the Technical University of Denmark, whereby the Salvesen’s formulation has been revisited and the
added resistance is computed from the original exact equation without invoking the weak-scatterer or
the long-wave assumptions. This is performed using the solutions of the radiation and the scattering
problems, obtained by a low-order Boundary Element Method and the two-dimensional free-surface
Green function inside our in-house STF theory implementation [4]. The weak-scatterer assumption is
then removed through a direct calculation of the x-derivatives of the velocity potentials and the normal
vectors along the body. Knowing the velocity potentials over each panel, the long-wave assumption
is also avoided by a piece-wise analytical integration of sectional Kochin function [5]. The presented
results for 5 ship geometries testify that the correct treatment of the original equation is achieved only
after both of the above-mentioned assumptions are removed. Implemented in this manner, Salvesen’s
method proves to be relatively more accurate and robust than has been generally perceived during all
these years.
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1 Introduction

Alongside Computational Fluid Dynamics (CFD) [6, 7] and three-dimensional (3D) weakly or fully
nonlinear potential flow models [8, 9, 10, 11], state-of-the-art methods for calculation of second-order
wave drift force and added resistance also include Enhanced Unified Theory, [12, 13, 14, 15]. Con-
sidering the computational effort and accuracy of the results, this method which is based on Unified
Slender-Body Theory [16, 17, 18, 19, 20, 21, 22, 23], the Kochin function and Maruo’s method [24], [25],
is extremely efficient and mature. The Unified Slender-Body theory considers a pure two-dimensional
(2D) strip-theory solution, together with a solution which takes into account the interaction of the
adjacent two-dimensional sections in the vicinity of the body (so-called the inner field). This in-
teraction solution is calculated by a matching process between the solution in the inner-field and
a three-dimensional solution in the outer-field, where the Laplace equation is solved subject to the
free-surface and the radiation boundary conditions all in their 3D form. In fact this theory unifies ”or-
dinary” slender body theory at low limit of the encounter frequency where the Froude-Krylov exciting
forces are dominant, with strip theory which is applicable at high values of the encounter frequency.

Two popular and classic examples of the methods for calculation of wave drift force and added
resistance using strip theory are the method of Gerritsma-Beukelman [26], and the method of Salvesen
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[2], [3]. The method by Gerritsma-Beukelman [26] is based on the far-field approach where the
drift force is made proportional to the amplitude of the radiated waves (due to both body motion
and scattering) in the far field. According to this method, and based on their own strip theory
presented in [27], the far-field radiated energy can be calculated by a line integral over the length of
the vessel. As mentioned in the Abstract, the Salvesen’s method is formulated using the STF strip
theory. He derives the original 3D formulation for the hydrodynamic force starting from the near-field
pressure integration over the body surface. After some manipulation, the equation for the mean second
order force is expressed with respect to 2 terms. One is the Kochin Function and incorporates the
interaction of the incident wave with the disturbance waves, and the other is due to the interaction
of the disturbance waves with each other. He adopts the weak-scatterer assumption and neglects
the second part, but mentions that this assumption might lead to inaccurate results in zero-speed or
beam- and near-beam cases. The Kochin Function part of the equation is computed by the long-wave
approximations, and the formulation is derived in terms of the integrated quantities like added mass,
damping and some geometrical coefficients. In the late 1970’s there was also some research conducted
to improve the methodologies for force calculation by strip theories. For example the work presented
in [28] is an extension of the Gerritsma-Beukelman method to oblique seas. In other research, in 1976
Lin and Read in [29] aimed to complement Salvesen’s method by incorporating the body-generated
waves (disturbance waves). They derived another set of exact equation for calculation of mean second-
order forces, and presented the final formulations based on the Kochin Function inside of strip theory.
Unfortunately no calculations were presented in that paper. Lin and Read in [29] mentioned that the
results would be published in a follow-up paper, but to the knowledge of the author this has not taken
place. This fact has been noted also by Salvesen [3] and Loukakis [28].

Similar to the Enhanced Unified Theory, the Kochin Function and Maruo’s methodology can be
applied inside the STF strip theory to obtain the added resistance without the above-mentioned
assumptions. Clearly the results will not be as accurate as those from the Enhanced Unified Theory.
However it can be implemented with relative ease since for the strip theory no matching is required
between the inner-solutions and the outer-solution, and the added resistance can be expressed with
respect to the 2D sectional Kochin Function. The details of this implementation are presented in a
recent paper [30], where it is also shown how this methodology predicts the added resistance by STF
strip theory more accurately than the approximate Salvesen’s method in [2], [3].

In the present paper, and as an another step towards utilizing all capacities of strip theory for
calculation of wave drift force and added resistance, it is demonstrated that in fact Salvesen’s method
performs significantly better when evaluated based on its original exact formulation compared to
the widely used approximate form. An implementation of the STF theory is used, where both the
radiation and the scattering problems are solved based on a low-order Boundary Element Method and
the two-dimensional free-surface Green function [4]. The knowledge of the velocity potentials over
the sections allows us to avoid the weak-scatterer and the long-wave assumptions. The former by a
direct calculation of x-derivatives of the potentials and the normal vectors along the ship length, and
the latter through a piece-wise exact integration over the two-dimensional sections. Calculations are
then conducted for five ship geometries, and the results are compared with experiments and other
reference solutions. The results confirm that the weak-scatterer part of the equation should not be
neglected, even for a slender geometry like the classic Wigley hull. Moreover it is demonstrated that
the Kochin Function, which has been computed by Salvesen using the long-wave approximations,
should be calculated instead based on the direct integration of the velocity potentials over the 2D
sections. This is necessary as the long-wave approximations are not applicable in a majority of cases.
By adopting both of these strategies, it is shown that the original equation in its exact form is relatively
powerful in predicting the added resistance and wave drift forces accurately. It is important here to
mention two major contributions where Salvesen’s method has been considered without the long-wave
assumptions. Both of these works are due to Ming-Chung Fang in [31] and [32]. The first work is
based on strip theory, and the second is based on the 3D Boundary Element Method. In both cases the
disturbance velocity potentials are ignored, which means that he has also invoked the weak-scatterer
assumption. No attempt has been made in these studies to calculate the body potential terms, and
it is argued that they have no significant contribution to the final results. So the main novelty of the
present paper is the clear demonstration of the influence of the disturbance potential terms on the
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wave drift force and the added resistance.
In the coming sections, first the theory and the relevant formulations are introduced then the

numerical methods are described in some detail and finally the results, discussions and conclusions
are presented.

2 Theory

Adopting potential-flow theory, the total velocity potential describing the flow field is expressed as

Φ(x, y, z, t) = −Ux+ ℜ

{(
ϕ0 + ϕs +

6∑
k=2

ξkϕk

)
eiωt

}
. (2.1)

Here U is the forward speed, ω is the encounter frequency, ξk is the complex amplitude of the body
motion in the kth mode, and ϕk is the corresponding radiation velocity potential due to unit-amplitude
motion. Note that in STF theory, the surge mode is neglected. The scattering potential is denoted
by ϕs, and the velocity potential of the incident wave ϕ0 with amplitude A, heading angle β, wave
number in deep water K = ω2

0/g = 2π/λ, wave frequency ω0 and wave length λ is defined by

ϕ0 =
igA

ω0
eKze−iK(x cosβ+y sinβ). (2.2)

The acceleration due to gravity is shown as g. The relation between the wave frequency and the
encounter frequency ω is defined by ω0 = ω+KU cosβ. See also Figure 1 for further notations. Inside
the STF theory the 3D velocity potentials for the radiation modes are decomposed into speed-dependent
and speed-independent parts as ϕk = ϕ0k + U/(iω)ϕUk , with ϕUk = 0 for k = 2, 3, 4, ϕU5 = ϕ03 and
ϕU6 = −ϕ02. The corresponding 2D sectional potentials are defined by ψ2, ψ3, ψ4, ψ5 = ψ3 (−x+ U/(iω))
and ψ6 = ψ2 (x− U/(iω)). Therefore only 3 velocity potentials are unknown. All these velocity
potentials satisfy the Laplace equation ∇2ψk = 0 and the zero-speed free-surface condition

ω2ψk − g
∂ψk

∂z
= 0. (2.3)

x
ξ 1

y
ξ 2

z

ξ3

ξ 6

β

U

S d

S f

S∞

Sb

ξ5
ξ
4

Figure 1: The sketch of the moving body and the flow domain.
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The body boundary condition for the radiation potentials are

∂ψk

∂N
= iωNk + Umk, (2.4)

where

(N1, N2, N3) = N ,

(N4, N5, N6) = r × N ,

(m1,m2,m3) = (0, 0, 0),

(m4,m5,m6) = (0, N3,−N2).

Here r is the position vector and N is the 2D normal vector of points at the surface of the body Sb,
defined by

Nk = (0, N2, N3, (yN3 − zN2) ,−xN3, xN2) .

In addition, the sectional radiation velocity potentials should satisfy the radiation condition at the far
field in the y − z plane. In addition to the free-surface and the radiation conditions, the scattering
velocity potential satisfies the body boundary condition

∂ψs

∂N
= −∂ϕ0

∂N
. (2.5)

For further details on the STF theory refer to [1].
In Appendix 1 of [2], Salvesen derives the expression for the hydrodynamic force, which is initiated

by the near-field pressure integration over the body surface Sb. Invoking Gauss’s theorem for a volume
enclosed by Sb,Sf ,S∞, Salvesen presents the following equation as the basis for calculation of the
mean second-order wave forces

F (x, y, z, t) = ρ

∫∫
S∞

(
ΦB

∂

∂n
− ∂ΦB

∂n

)[
∇Φ0 +

1

2
∇ΦB

]
dS. (2.6)

Note that n denotes the 3D normal vector given by (n1, n2, n3). Here ΦB = ℜ
{
ϕBe

iωt
}
is the sum of

the unsteady potentials due to all disturbance waves (radiation and scattering), and Φ0 = ℜ
{
ϕ0e

iωt
}

is the unsteady potential due to the incident wave. ρ is the density of the fluid. This equation is
comprised of the second-order pressure terms due to the product of the first-order velocity potentials.
Typically each first-order quantity with harmonic time variation can be represented as Aj cos (ωt+ θj),
where the amplitude and the phase are denoted by Aj and θj respectively. In the frequency domain,
this quantity can be expressed by ℜ

{
Xje

iωt
}
in which Xj = Aje

iθj is the complex phasor. Therefore

the second-order term p(2) arising from the product of two first-order quantities can be written as

p(2) = [A0 cos(ωt+ θ0)] [A1 cos(ωt+ θ1)] = ℜ
{
X0e

iωt
}
ℜ
{
X1e

iωt
}

=

[
X0

2
eiωt +

X∗
0

2
e−iωt

] [
X1

2
eiωt +

X∗
1

2
e−iωt

]
=

1

4
[X0X

∗
1 +X1X

∗
0 ] +

1

4

(
X0X1e

2iωt +X∗
0X

∗
1e

−2iωt
)

=
1

4
[X0X

∗
1 +X1X

∗
0 ] +

1

2
ℜ
{
X0X1e

2iωt
}
.

Here the asterisks * denote the complex conjugate. The time average of this second-order quantity
over one wave period is then equal to

p̄(2) =
1

4
(X0X

∗
1 +X1X

∗
0 ) . (2.7)

This conclusion can be invoked, together with the complex phasors for the potentials of the disturbance
and the incident wave (ϕB and ϕ0), to calculate the added resistance as follows. First consider the
interaction between the incident and the disturbance waves, i.e. only the part containing ∇Φ0 on the
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right hand side of equation (2.6). Inserting the complex phasors of the velocity potentials, leads to
the mean second-order force as

F̄ϕ0 =
1

4
ρ

∫∫
S∞

{(
ϕB

∂

∂n
∇ϕ∗0 + ϕ∗B

∂

∂n
∇ϕ0

)
−
(
∇ϕ0

∂ϕ∗B
∂n

+∇ϕ∗0
∂ϕB
∂n

)}
dS

=
1

4
ρ

∫∫
S∞

{(
ϕB

∂

∂n
− ∂ϕB

∂n

)
∇ϕ∗0 +

(
ϕ∗B

∂

∂n
−
∂ϕ∗B
∂n

)
∇ϕ0

}
dS

=
1

2
ρℜ

{∫∫
S∞

(
ϕB

∂

∂n
− ∂ϕB

∂n

)
∇ϕ∗0 dS

}
. (2.8)

In the same manner for ∇ΦB on the right hand side of Equation (2.6), which in fact represents the
interaction between the disturbance waves, the mean second-order force can be expressed by

F̄ϕB
=

1

4
ρℜ

{∫∫
S∞

(
ϕB

∂

∂n
− ∂ϕB

∂n

)
∇ϕ∗B dS

}
. (2.9)

For any pair of harmonic potentials ϕi, ϕj (meaning ∇2ϕi,j = 0), which satisfy the free-surface condi-
tion, applying Green’s theorem leads to

I (ϕi, ϕj) ≡
∫∫

Sb

(
ϕi
∂ϕj
∂n

− ϕj
∂ϕi
∂n

)
dS = −

∫∫
S∞

(
ϕi
∂ϕj
∂n

− ϕj
∂ϕi
∂n

)
dS. (2.10)

Note also that if both potentials satisfy the radiation condition, then the integral over S∞ will vanish
[33]. In equation (2.8) or (2.9), the disturbance potentials ΦB satisfy all of the above-mentioned
conditions. Except for the radiation condition, the same statement is also true in the case of ∇Φ0 and
∇ϕ∗B. Therefore the mean force can be expressed instead as an integral over the body surface

F̄ϕ0 = −1

2
ρℜ

{∫∫
Sb

(
ϕB

∂

∂n
− ∂ϕB

∂n

)
∇ϕ∗0 dS

}
, (2.11)

F̄ϕB
= −1

4
ρℜ

{∫∫
Sb

(
ϕB

∂

∂n
− ∂ϕB

∂n

)
∇ϕ∗B dS

}
. (2.12)

It is important to mention that no strip theory assumptions are adopted in deriving the above equa-
tions, and they are expressed in their 3D form. Salvesen assumes that ΦB ≪ Φ0, and accordingly
neglects the second contribution F̄ϕB

, which is a weak-scatterer assumption. Considering only (2.11)
and inserting the incident wave potential he obtains

F̄ ϕ0
x = −ρAgk cosβ

2ω0
ℜ
{∫

L
eiKx cosβ

[∫
Cx

(
ψB

∂

∂N
− ∂ψB

∂N

)
eKzeiKy sinβdl

]
dx

}
, (2.13)

F̄ ϕ0
y = −ρAgk sinβ

2ω0
ℜ
{∫

L
eiKx cosβ

[∫
Cx

(
ψB

∂

∂N
− ∂ψB

∂N

)
eKzeiKy sinβdl

]
dx

}
, (2.14)

for the added resistance and the horizontal drift force respectively, within the STF strip theory. As
mentioned before these equations are in fact the Kochin Function [5]. Here ψB represents the sectional
velocity potentials of the disturbance waves, and the integration over a 2D section is denoted by Cx.
The body length is shown by L. In addition Salvesen adopts the following long-wave assumptions for
computation of the sectional integrals of the Kochin Functions in (2.13) and (2.14)

eKz ≈ e−Ksd, (2.15)

eiKy sinβ ≈ eiK(±
1
2
b)s sinβ, (2.16)

in which b is the sectional beam, d is the sectional draft, and s is the sectional area coefficient calculated
by normalizing the sectional area with bd. Adopting the Haskind relation, the added resistance and
the mean drift force then is expressed with respect to line integrals along the body comprising only
of the integrated quantities like sectional added mass, damping and the above-mentioned geometrical
coefficients. See the details of this derivation and the final approximate formulations in Section (3.1)
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of his paper [2]. In a quite recent paper by the author [30], using the long-wave assumptions (2.15)
and (2.16) the approximate relation for the Kochin Function are presented for calculation of the added
resistance and drift force inside STF theory using Maruo’s methodology [24], [25]. In that paper it is
shown that these long-wave assumptions are only valid for zero- and very low speeds, and therefore
for accurate results the Kochin Function should be computed directly based on the knowledge of
the sectional velocity potentials ψB. Therefore it sounds logical to investigate the impact of these
long-wave assumptions also on the approximate equations presented by Salvesen for calculation of
(2.13) or (2.14). As mentioned in the introduction section, an implementation of the STF strip
theory is performed where both the radiation and the scattering potentials are computed based on
the Boundary Element Method and the 2D free-surface Green Function. See [4] and [30] for more
details. This allows the Kochin Function in (2.13) or (2.14) to be computed directly, using a piece-
wise analytical integration over the two-dimensional section. As is shown in the results section, these
long-wave assumptions break down in forward-speed cases also here for the calculation of the added
resistance based on Salvesen’s approximate formulations for (2.13) or (2.14).

Next the disturbance potential part F̄ϕB
in (2.12) is treated. For the added resistance, the x

component of the force is

F̄ ϕB
x = −1

4
ρℜ

{∫∫
Sb

(
ϕB

∂

∂n
− ∂ϕB

∂n

)
∂ϕ∗B
∂x

dS

}
. (2.17)

Since the sectional velocity potentials are known, this part is computed using a direct calculation
of the x-derivatives of the velocity potentials and the normal vectors along the length of the body.
Inserting the potentials and the body boundary conditions from their 2D definitions in STF theory,
equation (2.17) in its expanded form is

F̄ ϕB
x = −1

4
ρℜ

{∫
L

(∫
Cx

[W (M −R)∗ −NQ∗] dl

)
dx

}
, (2.18)

in which

W = ψ3ξ3 + ψ3 (U/iω − x) ξ5 + ψs,

Q = ξ3ψ
x
3 + ξ5ψ

x
3 (U/iω − x)− ξ5ψ3 + ψx

s ,

N = iωξ3N3 + ξ5 (UN3 − iωxN3)−Kϕ0 (N3 − iN2 sinβ) ,

M = iωξ3N
x
3 + Uξ5N

x
3 − iωxξ5N

x
3 − iωξ5N3 −Kϕx0 (N3 − iN2 sinβ)−Kϕ0 (N

x
3 − iNx

2 sinβ) ,

R = Nx
2 [ξ3ψ

y
3 + ξ5ψ

y
3 (U/iω − x) + ψy

s ] +Nx
3 [ξ3ψ

z
3 + ξ5ψ

z
3 (U/iω − x) + ψz

s ] .

Here the superscript x denotes the x-derivative. The results shown in the next section confirm
that in fact the body disturbance term is an important part of Equation (2.6), and has a profound
effect on the added resistance. In the results section, it is demonstrated that a direct computation of
the Kochin Function in (2.13) is not enough to get accurate solutions. It is only after incorporating
Equation (2.18) and treating (2.6) as a whole that accurate results are achieved. The reason that
Salvesen’s approximate method provides reasonable results is that the errors introduced by the long-
wave assumption largely cancel the neglect of the disturbance potential terms. This behavior is also
shown in the result section.

3 Numerical Methods

In this section some details of the numerical methods are described. An in-house implementation of
the STF theory is used [4], whereby the solutions for the radiation and the scattering potentials are
provided for each two-dimensional section along the ship length. See [30] for further details.

3.1 Evaluation of the Kochin Function Term

According to the Boundary Element Method implemented for the STF strip theory in [4], ψB is
calculated and known. Having the geometry of each panel including N2, N3, and replacing the normal
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derivative of ψB with the body boundary condition from (2.4) or (2.5), the line integrals over Cx in
(2.13) or (2.14) can be computed. As the velocity potential and the normal vector are assumed to
be constant over each panel, these integrals can be evaluated easily by a series of piece-wise exact
integrations along all panels. So the part of the sectional integral related to the gradient of the
potentials can be calculated as

I1 =

Np−1∑
m=1

i

K (sin δ + i sinβ cos δ)

{
eKz+iKy sinβ

}m+1

m
, (3.1)

and the part related to the velocity potential can be calculated as

I2 =

Np−1∑
m=1

− cos δ + i sinβ sin δ

sin δ + i sinβ cos δ

{
eKz+iKy sinβ

}m+1

m
, (3.2)

in which δ is the angle of the normal vector to each panel (N2 = sin δ,N3 = − cos δ). Here the integrals
are evaluated for each panel extending between the two vertices at (ym, zm, ) and (ym+1, zm+1). The
number of panels on each 2D section is denoted by Np. Similarly the line integral over the vessel’s
length L is also computed using a piece-wise analytical integration procedure. In the present frame-
work, this integration is carried out simply by assuming a linear relation between the values of two
consecutive sectional integrals evaluated at xj and xj+1 as:

I3 =

Nx−1∑
j=1

∫ xj+1

xj

(c0x+ c1)e
iKx cosβdx, (3.3)

where Nx is number of 2D sections along the vessel length.

3.2 The Disturbance Potential Terms

The x-derivatives of the disturbance velocity potentials ψB and the normal vectors, which appear in
the terms Q and M in Equation (2.18), are computed by the method proposed by [34]. This scheme
applies a relation from differential geometry (see for example [35]) to express the Cartesian gradient
of the potential on the body surface as a combination of the surface gradient and the derivative in the
normal direction. Taking u and v as parametric coordinates in the longitudinal and vertical directions
along the hull surface, we write

∇ϕ = ∇sϕ+ n⃗
∂ϕ

∂n
, ∇s ≡

1

H2

[
x⃗u

(
G
∂

∂u
− F

∂

∂v

)
+ x⃗v

(
E
∂

∂v
− F

∂

∂u

)]
. (3.4)

Here the subscripts indicate partial differentiation with respect to the parametric variables, H =√
EG− F 2, n⃗ = (x⃗u × x⃗v)/H, and E,F,G are the coefficients of the first fundamental form of the

surface given by
E = x⃗u · x⃗u, F = x⃗u · x⃗v, G = x⃗v · x⃗v. (3.5)

For the velocity potentials, the normal derivatives are known from the body boundary conditions,
and for the normal vector these normal derivatives are simply zero. The parametric derivatives are
computed using fourth-order finite-difference schemes and the result converges quite fast with 20 to
30 two-dimensional sections along the body.

The sectional integrals over Cx in Equation (2.18) are calculated using simple summations along
the two-dimensional sections. The convergence of this integration is also quite fast and is achieved at
20 to 30 panels. In addition the line integral along the body is performed using the trapezoidal rule.

4 Results

According to the formulations introduced in Section 2, and for the purpose of comparison, results for
added resistance are presented for the following 3 cases:
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(a) Wigley Type I (b) Modified Wigley

(c) KVLCC2 (d) RIOS Bulk Carrier

(e) DTC Container Ship

Figure 2: The geometry of the ship hulls and the strip discretisations

1. The results based on only (2.13), together with the long-wave assumptions (2.15), (2.16). Note
this method is the one which has been introduced by Salvesen and is being used currently by the
community. In this paper these results are denoted by Salvesen (App.). Here “App.” indicates
the fact that the Kochin Function in (2.13) is calculated using the long-wave approximations.

2. The results based on only (2.13), when the related Kochin Function is calculated instead by
direct piece-wise analytical integration of the disturbance potentials over the sections. These
results are denoted by Salvesen (Dir.).

3. The results based on both (2.13) and (2.18), where the Kochin Function is computed by direct
piece-wise integration (as in case 2), and in addition the body disturbance term is taken in to
account by the direct calculation of the x derivative of the potentials and the normal vectors.
The results using this procedure are denoted simply as Salvesen (New).

The results according to above-mentioned three methods are presented for five geometries, all
shown in Figure 2. Wherever possible they are compared with experimental measurements or with
solutions based on other methods. The results using Maruo’s formulation inside the STF strip theory
[30], are denoted as STF-Maruo. For the wave drift force Fr = 0, the solution by WAMIT [36] is
also shown. Note also for the results here, only the heave and pitch modes are included.
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Figure 3: The wave drift force and the added resistances of the Wigley hull (I).

4.1 Geometry 1 - Wigley Hull Type I

Figure 3 presents the results for the wave drift force (Fr = 0) and the added resistance (Fr = 0.2, 0.3),
for the Wigley hull Type I. The results based on the 3D Boundary Element Method by by Shao &
Faltinsen in [37] is shown for Fr = 0.2. For Fr = 0.3, the added resistance calculated using the 3D
finite-difference model of Amini-Afshar & Bingham (OWD3D-Seakeeping) [38, 39, 40] is also presented
for the comparison.
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Figure 4: The wave drift force and the added resistances of the modified Wigley hull.

4.2 Geometry 2 - Modified Wigley

The results for the Modified Wigley hull are shown in Figure 4, for a range of Froude numbers
Fr = 0, 0.1, 0.15, 0.2. The geometry, the experimental measurements and the solutions based on
Enhanced Unified Theory EUT are all from Kashiwagi et al. in [12].
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Figure 5: The wave drift force and the added resistance of the KVLCC2 hull.

4.3 Geometry 3 - KVLCC2

The well-known geometry of KVLCC2 is also considered. In figure 5 the wave drift force (Fr = 0)
and the added resistance at Fr = 0.18 are shown. The experimental data and the CFD calculations
are from the results of the SHOPERA project in [41, 42].
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Figure 6: The wave drift force and the added resistance for the RIOS bulk carrier.

4.4 Geometry 4 - RIOS Bulk Carrier

The results for the RIOS bulk carrier [43] are presented in Figure 6, for the wave drift force Fr = 0
and the added resistance at Fr = 0.18. The experimental measurements in the plot are denoted as
Kashiwagi (2012), Kashiwagi (2016) and Kashiwagi (2017), see [44]. The most recent experimental
data which is based on a novel approach and uses the unsteady pressure measurement technique, are
due to Kashiwagi in [45].
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4.5 Geometry 5 - DTC Container

Next the Duisburg Test Case (DTC) container ship is considered [46]. The dimensions of the container
ship in this case are L = 355 m, B = 51.0 m and the design draft d = 14.5 m. The results are for
Fr = 0.05, Fr = 0.11 and Fr = 0.20. See Figure 2e for the shape and the strip discretisation of this
vessel. The measurements and the CFD calculations are by Sigmund & el Moctar from [47].
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Figure 7: The wave drift force and the added resistance of the DTC container ship.
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4.6 Discussion

First note that in order to find the contribution of the disturbance potential term, the results denoted
by Salvesen (Dir.) and Salvesen (New) should be compared. In addition, to find the validity of
the long-wave assumption, the results named Salvesen (App.) should be compared with the results
denoted as Salvesen (Dir.).

The results presented for these five geometries all depict the same picture about the essence of
the terms in Equation (2.6). As mentioned before, and can be observed from the plots, the long-wave
assumptions are generally valid only for the zero-speed case in the head-seas condition. This is why the
head-seas drift forces calculated based on Salvesen (Dir.) and Salvesen (App.) are more or less the
same, though both tend to dramatically over-predict the force compared with the reference solution
from WAMIT. In addition, as shown in the case of the Wigley Hull for Fr = 0, β = 140◦, the long-wave
assumption also breaks down for zero-speed problems if the heading angle is other than 180◦. For all of
these zero-speed cases, the computation based on the exact implementation i.e. Salvesen (New) are
remarkably closer to the WAMIT or other reference solutions. Moreover, a comparison between the
results from Salvesen (Dir.) and Salvesen (New), reveals that the body disturbance term (2.17)
has a significant contribution to the final zero-speed results. For the forward-speed cases (added
resistance), as also recently demonstrated by [30], the long-wave assumption is no longer valid. This
again can be seen by comparing the original results based on Salvesen’s method (denoted as Salvesen
(App.)) with the results using the direct computation of the Kochin Function in Equation (2.13), (i.e.
those denoted by Salvesen (Dir.)). The role of the body disturbance term is also important here
in order to be able to predict the added resistance accurately. Ignoring these body potential terms
leads to over-prediction of the results especially for the high-frequency ranges. The results based on
the complete form of Equation (2.6) with no long-wave or weak-scatterer assumptions (denoted as
Salvesen (New) in the plots), agree considerably better with the experimental measurements. As
is well known, the approximate Salvesen’s method over-predicts the zero-speed drift forces, while it
under-predicts the added resistance. It is shown in this paper that both of these shortcomings are
remedied by using the complete implementation of Salvesen’s original formulation. Moreover, as can
be seen from the figures, the Salvesen (New) results compare with the experiments even better than
those based on STF-Maruo from [30]. No experimental measurements were available to present here
for the added resistance of these geometries in beam- or near-beam seas conditions. But from the
figures it can be seen that neither the long-wave nor the weak-scatterer assumption are acceptable
also in these cases.

5 Conclusions

Salvesen in [2], [3], mentions that the neglect of the body disturbance term related to ∇ΦB would
lead to less accurate results in zero-speed and beam- or near-beam seas conditions, however no serious
question was raised about the validity of the long-wave assumptions (2.15) and (2.16) in computing
the wave drift forces and added resistance. In addition, to the knowledge of the author, no attempt
has been made to investigate the influence of the body potentials on the wave drift force and added
resistance. Therefore in this study the original equation derived by Salvesen in 1974 has been revisited.
The objective was to investigate the validity of both of these assumptions, in terms of the approximate
expressions for computing the second-order quantities. An implementation of STF strip theory using
a low-order Boundary Element Method and the free-surface Green function has been used. Using the
resultant solutions for the radiation and the scattering velocity potentials over the two-dimensional
sections along the body length, Equations (2.13) and (2.17) have been calculated in their original
form. The results confirm that neither the long-wave nor the weak-scatterer assumptions are generally
acceptable, and good agreement with measurements is achieved when the body disturbance part is
included and at the same time the Kochin Function is computed without a long-wave approximation.
In fact it is proved in this paper that the role of the body disturbance term is not a matter of relative
importance for some wave conditions or geometries. The body disturbance term related to ∇ΦB is
in reality a fundamental part of the equation for the added resistance (2.6), and regardless of the
geometry or the wave condition, the correct results are attained only after incorporating this part
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into the equation. More importantly Salvesen’s approximate relations provide reasonable results, only
because the long-wave assumption tends to partially correct for the neglect of the body disturbance
terms. If Salvesen had computed the Kochin Function in (2.13) without the long-wave assumptions,
he would have achieved the results denoted here by Salvesen (Dir.), which considerably over-predict
the forces, especially in the short-wave range.

The Kochin Function related to the horizontal drift force in (2.14) can also be calculated directly
and without the long-wave assumption. In addition, the related body disturbance term ∇ΦB can
be included by the direct computation of the y derivatives of the velocity potentials and the normal
vectors. A similar picture about the accuracy of the results for the horizontal drift force can be
expected. The exact equation for the mean second-order yaw moment has also been derived by
Salvesen in [2]. Based on the long-wave and weak-scatterer assumptions, he presented approximate
relations for computing also these second-order quantities. Therefore the same methodology shown in
this paper for the wave drift force and added resistance, can be adopted for accurate computation of
the mean second-order yaw moments.

Maruo’s formulation, as applied to STF theory in [30], requires multiple direct calculations of
the Kochin Function integral at each frequency, while the presented methodology in this paper needs
only one calculation. However it requires that the body disturbance terms are taken in to account
via a direct computation of the derivatives of the potentials and the normal vectors. This extra
computational burden is worth considering the influence of the disturbance velocity potentials on the
accuracy of the results denoted by Salvesen (New) in this paper.
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