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Abstract

The group of natural aromatic compounds known as phenylpropanoids has diverse
applications, but current methods of production which are largely based on synthesis
from petrochemicals or extraction from agricultural biomass are unsustainable.
Bioprocessing is a promising alternative, but improvements in production titers and
rates are required to make this method profitable. Here the recent advances in
genetic engineering and bioprocess concepts for the production of phenylpropa-
noids are presented for the purpose of identifying successful strategies, including
adaptive laboratory evolution, enzyme engineering, in-situ product removal, and
biocatalysis. The pros and cons of bacterial and yeast hosts for phenylpropanoid
production are discussed, also in the context of different phenylpropanoid targets
and bioprocess concepts. Finally, some broad recommendations are made regarding
targets for continued improvement and areas requiring specific attention from

researchers to further improve production titers and rates.
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extraction are considered natural, low yields make the method

unsustainable, and the extracts contain a variety of phenylpropanoids

Phenylpropanoids are a diverse group of aromatic compounds
naturally synthesized by plants from the amino acid phenylalanine.
They serve diverse functions in nature as structural components in
lignin, giving protection from microorganisms, attracting pollinators,
and scavenging free radicals. These chemicals are also valuable for
the production of polymers, as food ingredients, cosmetic ingredi-
ents, and health products, driving interest in efficient production
methods. Current production methods are based on chemical
synthesis, agricultural biomass extraction, and bioprocessing (Flourat
et al., 2020). Chemical synthesis often relies on petroleum-derived
starting materials and is neither sustainable nor considered natural

for use in consumer products. While some types of biomass

which may be difficult to separate from one another. This leaves
bioprocessing, which can be considered natural and potentially
sustainable depending on the feedstock, and with which it is possible
to increase yields and reduce by-product formation. The fermenta-
tion of phenylpropanoids from sugars relies on the shikimic acid and
aromatic amino acid pathways to produce L-phenylalanine and
L-tyrosine. Phenylalanine and tyrosine can be de-aminated by
phenylalanine/tyrosine ammonia lyase (PAL/TAL) to produce cin-
namic acid and p-coumaric acid, respectively, from which other
phenylpropanoids are derived. However, production can be limited
by the toxicity of phenylpropanoids towards the production hosts
(Lou et al., 2012; Vestergaard & Ingmer, 2019), as well as flux
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limitations through certain key reactions (Gu et al., 2020; Moore
et al., 2021). Genetic engineering strategies have been used to
improve tolerance of production hosts towards phenylpropanoids,
improve flux through rate-limiting steps, and increase the supply of
metabolic precursors and co-factors. Bioprocess concepts have also
been used with success to reduce phenylpropanoid toxicity and to
compensate for flux limitations. These efforts have led to an increase
in production metrics, and several heterologous pathways have been
established in microorganisms as proof-of-concept to expand the
diversity of target phenylpropanoids (J. Li et al, 2019; Yang
et al., 2020). Especially the combination of genetic engineering and
bioprocess concepts seems promising and maybe even necessary to
achieve commercial realization of phenylpropanoid production via

bioprocessing.

1.1 | Applications of phenylpropanoids

Phenylpropanoids as a group have many potential applications, and
we shall briefly review some of the individual phenylpropanoids and
their main applications. Styrene or 4-vinylphenol can undergo free
radical polymerization to create their respective polymers, poly-
styrene or poly(4-vinylphenol) (Barclay et al., 1998). Polystyrene is
one of the most widely used plastics in the world with uses including
packaging, insulation, and more familiarly disposable laboratory
products. Poly(4-vinylphenol) is used mainly in electronics (I. Y. Lee
et al., 2014), but also has applications in photoresist materials and
antimicrobial coatings. While it has not itself been polymerized,
zosteric acid can be incorporated into surface coatings to prevent
biofilm formation (Newby et al., 2006), with promising applications in
the maritime industry.

Many phenylpropanoids are active ingredients in traditional
medicines and herbal supplements, as well as precursors to modern
drugs. The flavonoid baicalein is approved as traditional medicine in
Japan, and acts as an allosteric modulator of the GABA, receptor (De
Carvalho et al., 2011). Mandelic acid is a precursor to various drugs
including the cough suppressant homatropine, and bioprocessing is
attractive to produce optically pure mandelic acid, rather than the
racemic mixtures produced by chemical synthesis. Taxifolin and
coniferyl alcohol can be combined to produce silybin and its'
steroisomers, drugs which are used to treat liver disease (Saller
et al., 2008). The flavonoids naringenin and apignein are being
studied for the treatment of Alzheimer's disease (Ghofrani et al., 2015;
Salehi et al., 2019), as well as for antimicrobial and antiviral activity,
including against SARS-CoV-2 (Clementi et al., 2021). The stilbenoid
resveratrol is commonly found in red wine, and is a popular
supplement, while its' derivative pterostilbene exhibits increased
bioavailability (Z. B. Yan et al., 2021).

Several phenylpropanoids are flavor compounds that can be used
as food additives or in cosmetics. Vanillin is the primary flavor
compound in vanilla, and bioprocessing is attractive for producing
natural vanillin since the demand for vanilla flavor is greater than the

supply of vanilla beans (Dignum et al., 2007). Likewise for raspberry

ketone, the primary aroma compound of raspberries, since the
extraction vyields are only a few milligram per kilogram of fruit
(Beekwilder et al., 2007). Cinnamyl acetate is yet another flavor
compound used as a food additive, and also in cosmetics. Curcumin
and rosmarinic acid are most commonly used as dietary supplements,
but they can also be used as a food coloring and a flavoring

respectively.

1.2 | Economics of phenylpropanoid production

Titer, rate, and yield (TRY) are widely used metrics to characterize
and compare the economics of different bioprocesses. The titer
determines the cost of downstream processing, the production rate
determines the capital costs related to the production equipment,
while the yield determines the raw material costs (Krémer et al., 2020).
Examples of TRY reported in recent years for the production of
phenylpropanoids are listed in Table 1.

While bioprocessing may in principle be more sustainable than
chemical synthesis or agricultural biomass extraction, it must also be
profitable to be a viable alternative. As an example we give styrene,
which costs around US$ 1.3/kg in bulk. Considering that glucose
costs around US$ 0.25/kg, and downstream processing typically
costs at least US$ 0.5/kg product, a styrene bioprocess would need
to yield more than 0.31kg styrene/kg glucose to make any profit,
while actual yields were 0.21kg/kg (Liang et al., 2020). Low
downstream processing costs are contingent on a high titer, say
100g/L (Van Dien, 2013), while fermentation titers have only
reached 5.3 g/L styrene (K. Lee et al., 2019). Capturing just 1% of
the approximately 26 million tons/year global styrene market
(Dickson & Mitrajit, 2012; Market Data Forecast, 2022) via a
production plant consisting of 10 aerobic 250 m® fermenters would
require production rates of about 13 g/L*h, while actual rates were
less by two orders of magnitude (K. Lee et al., 2019; Liang et al., 2020).
Even with additional research and development, bioprocessing is
unlikely to reach the target metrics to be competitive with chemical
synthesis specifically for styrene production. Generally bulk chemical
(<US$ 10/kg) phenylpropanoids are difficult targets, because the titer
is limited by product toxicity, (Lou et al, 2012; Vestergaard &
Ingmer, 2019), the rate is limited by PAL/TAL (Jendresen et al., 2015;
Saez-Saez et al., 2020), and the vyield is reduced from the theoretical
yield through byproduct and biomass formation. Borderline cases
include p-coumaric acid, ferulic acid, and so forth, which are not
easily chemically synthesized, but which can be extracted from a
variety of agricultural biomass waste streams in yields of grams per
kilogram via direct extraction or alkaline hydrolysis (J. Zhao
et al., 2011; S. Zhao et al., 2014). Alkaline hydrolysis is effective
but considered nonnatural in the EU, and bulk preparations are of
limited purity due to the presence of multiple phenylpropanoids in
the raw materials. The main potential of bioprocessing is therefore in
the area of fine chemical phenylpropanoids (>US$ 10/kg), encom-
passing those that are difficult to chemically synthesize and are
naturally scarce. Even when a phenylpropanoid can be produced in
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bulk via chemical synthesis or alkaline hydrolysis, bioprocessing may
still be competitive for the market of natural flavors. ‘Natural flavor' is
a label regulated by the US Food and Drug Administration (2012) and
the European Commission (2008), which can therefore be used to
market value-added consumer products. The definition of natural
may also expand to products beyond flavors in the future (US Food
and Drug Administration, 2015), or it may be possible to market
products as natural even where the definition of the term is not

regulated.

2 | METABOLIC ENGINEERING OF THE
SHIKIMATE AND AROMATIC AMINO ACID
PATHWAYS

The production of phenylpropanoids first requires either phenylalanine
or tyrosine precursors (Figure 1). These come from the shikimic acid
pathway, which is made up of seven enzymatic reactions that
combine p-erythrose 4-phosphate (E4P) and phosphoenolpyruvate
(PEP) to make 3-deoxy-p-arabinoheptulosonate 7-phosphate (DAHP),
and modify DAHP to make chorismate. Chorismate can subsequently
be converted to the aromatic amino acids phenylalanine, tyrosine, and
tryptophan. A key aspect of metabolic engineering is to balance the
carbon flux towards E4P and PEP for DAHP synthase (aroF, aroG, and
ARO4). In yeasts the available pool of E4P is supposed to be at

least one order of magnitude lower than that of PEP, and so a

phosphoketalose-based pathway was introduced to divert carbon
from PEP towards E4P via fructose-6-phosphate (Gu et al., 2020;
Q. Liu et al.,, 2019). In Escherichia coli PEP is considered the limiting
precursor for aroF and aroG, because PEP is required for glucose
uptake via the phosphotransferase system (PTS). One approach to
avoid this is to delete and replace the PTS with an alternative
sugar transporter, such as the galactose:H* symporter (galP) (Choi
et al., 2019). A different option is to grow the cells on pentoses, which
are transported by ATP-driven permeases in E. coli. PEP is also a
substrate for pyruvate kinase, so deletion or downregulation of the
main pyruvate kinase (pykA, PYK1) has also been shown to increase
PEP availability in E. coli and yeasts (Choi et al., 2019; Gu et al., 2020;
Hassing et al., 2019).

Another focus of the metabolic engineering effort has been to
relieve bottlenecks through the shikimic acid pathway by deleting
negative regulators and overexpressing gene variants that are
resistant to feedback inhibition (fbr). Expressing aroG™ has been
shown to increase flux through the shikimic acid pathway in E. coli,
Pseudomonas taiwanensis and Yarrowia lipolytica (Choi et al., 2019; Gu
et al., 2020; Otto et al., 2019), as has expressing aro4™" in yeasts
(Kumokita et al., 2022; Larroude et al., 2021; Q. Liu et al,, 2019; Lv
et al., 2021; Sdez-Saez et al., 2020). Dynamically regulating shikimate
kinase (aroK) in E. coli prevented excessive metabolic flux through the
shikimic acid pathway during the growth phase and increased flux
during the stationary phase, thereby increasing titer and yield (J. Wu
et al., 2019). Expressing fbr chorismate mutase (tyrA™", pheA™, and
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FIGURE 1 Engineering targets under review for phenylalanine and tyrosine overproduction. Purple text, genes expressed in yeasts; red text,
genes expressed in Escherichia coli. Ac-CoA, acetyl-CoA; ADP, adenosine diphosphate; aroF, aroG, aroH, ARO3, ARO4, DAHP synthase; aroB,
3-dehydroquinate synthase; aro7, chorismate mutase; aroD, 3-dehydroquinate dehydratase; aroE, ydiB, dehydroshikimate reductase; aroK, aroL,
shikimate kinase 1 and 2; aroA, 5-enolpyruvylshikimate 3-phosphate synthase; aroC, ARO2, chorismate synthase; ARO8, ARO9, aromatic
aminotransferase | and Il; ARO1, pentafunctional AROM polypeptide; ATP, adenosine triphosphate; E4P, D-erythrose 4-phosphate; DAHP,
3-deoxy-D-arabino-heptulosonate-7-phosphate; DHS, 3-dehydroshikimate; Fé6P, fructose-6-phosphate; G6P, glucose-6-phosphate; G3P,
glyceraldehde-3-phosphate; galP, galactose:H* symporter; PEP, phosphoenolpyruvate; pheA, chorismate mutase/prephenate dehydratase, tyrA,
chorismate mutase/prephenate dehydrogenase; PHA2, prephenate dehydratase; ppsA, phosphoenolpyruvate synthase; pykA, PYK1, pyruvate
kinase 1; pta, phosphotransacetylase; ptsG, major glucose transporter; Pyr, pyruvate; R5P, ribose-5-phosphate; S7P, sedoheptulose-7-
phosphate; SA; shikimic acid; S3P, shikimate-3-phosphate; trpE, TRP2, anthranilate synthetase component I; trpD, TRP3, anthranilate synthetase
component Il; TYR1, prephenate dehydrogenase; tyrR, DNA-binding transcriptional dual regulator tyrB, tyrosine aminotransferase;

X5P, xylulose-5-phosphate; xfpk, phosphoketolase.
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ARO7™) also increases flux from chorismate towards tyrosine or
phenylalanine in both bacteria and yeasts (Gu et al., 2020; Kumokita
et al., 2022; Larroude et al., 2021; Q. Liu et al., 2019; Otto et al., 2019;
Sdez-Sdez et al, 2020; Xu et al., 2020). Notably, a superior
homolog of tyrA™" was found in tyrC from Zymomonas mobilis (Kim
et al., 2018).

Preventing the production of the two unwanted aromatic amino
acids is another strategy for increasing flux towards the desired
aromatic amino acid, but the auxotrophs grow at a reduced rate and
require media supplementation. In E. coli a knockout of trpD reduced
the titers of tyrosine (Xu et al., 2020), and in Y. lipolytica TRP2 and
TRP3 deletion increased the titer but reduced growth (Gu et al., 2020),
indicating that these targets may also benefit from dynamic
regulation. TyrR is a regulator of genes essential for aromatic amino
acid production and transport in E. coli (Figure 1), where it typically
functions as a repressor of gene expression (Pittard et al., 2005).
Deletion of TyrR is thus a common strategy of relieving negative
feedback inhibition, but TyrR can also function as an activator for the
expression of the tyrosine and tryptophan transporters TyrP and mtr
respectively. Overproduction of tyrosine was achieved with a
knockout of TyrP instead of TyrR (Kim et al., 2018), indicating that
a TyrR knockout is not essential. Remarkably, the best phenylalanine-
producing E. coli strain reported to date also did not have a TyrR
knockout, but rather a point mutation in the domain responsible for
negative feedback inhibition (Y. Liu et al., 2018). Flux analyses of
existing E. coli overproducing strains in combination with systems-
based metabolic engineering offers to identify bottlenecks and
byproducts, which may be relieved or reduced when targeted with
enzyme engineering and dynamic regulation. This could still yield
significant cumulative benefits but with diminishing returns, also
considering that tyrosine titers are already limited by foaming rather
than insufficient metabolic flux (Patnaik et al., 2008). While precursor
supply is rarely a limiting factor for phenylpropanoid production in
bacteria, optimizing it can still be relevant for use in processes that
decouple precursor production and phenylpropanoid production
between two different hosts.

Yeasts are not serious contenders for bulk amino acid produc-
tion, and thus less research has been invested in this area. However,
the interest in yeasts as hosts for phenylpropanoid production has
sparked interest in improving their aromatic amino acid precursor
supply (Larroude et al., 2021; VY. Li et al., 2020; Y. Wu et al., 2020).
The most common metabolic engineering strategies in yeasts have
been to try and copy the strategies which were successful in E. coli,
although this does not always pan out. For one thing, the carbon
metabolism of yeasts supplies different ratios of PEP and E4P than E.
coli (Q. Liu et al.,, 2019). For another, the regulation of amino acid
biosynthesis and transport by the global transcription factor Gen4
(Natarajan et al., 2001), is arguably more complex than in E. coli.
Supplementation of amino acid precursors often drastically increases
the production of phenylpropanoids in yeasts (J. Li et al., 2019), and
the best-performing strains were designed to improve amino acid
supply (Q. Liu et al., 2019; Saez-Saez et al., 2020), indicating that this
is typically the limiting factor for TRY.
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2.1 | Sustainable feedstocks for phenylpropanoid
production

Substantial improvements in phenylpropanoid production could also
come through the utilization of cheaper and more sustainable feed-
stocks, such as lignocellulosic hydrolysate. E. coli is notable in its' ability
to efficiently metabolize all of the sugars in lignocellulose; glucose,
xylose, arabinose, galactose, arabinose, and mannose. The sugars are
consumed stepwise rather than simultaneously, which may actually be a
benefit in terms of aromatic amino acid production, by triggering a two-
stage fermentation. First glucose is transported through ptsG and
consumed to produce biomass, and then the remaining sugars are
transported through GalP or ATP-driven permeases, allowing for PEP
accumulation and product formation (K. Li & Frost, 1999). In
comparison, Corynebacterium glutamicum and most yeasts cannot
naturally metabolize xylose, making them poor choices for the
valorization of lignocellulosic biomass. The main drawback of using E.
coli for metabolizing lignocellulose-derived sugars is its' low tolerance
towards the inhibitors in these feedstocks (Lou et al., 2012; Rau
et al, 2016), but this is also an issue for other hosts such as C.
glutamicum (X. Wang et al., 2018) and yeasts (Konzock et al., 2021;
Unrean et al., 2018). Crude glycerol from biodiesel production is also a
potentially sustainable feedstock for production, which was recently
used to produce phenylpropanoids in Pichia pastoris (Kumokita
et al., 2022).

3 | GENETIC ENGINEERING FOR
PHENYLPROPANOID PRODUCTION

Phenylalanine or tyrosine need to be converted via PAL/TAL to
produce cinammic acid or p-coumaric acid respectively, from which
other phenylpropanoids derive (Figure 2). PAL/TAL is often rate-limiting
for phenylpropanoid production due to its' low turnover number (ks
under physiological conditions, so increasing its' activity has been the
subject of much research. Also, improving the substrate specificity of
PAL/TAL towards either tyrosine or phenylalanine is of interest to
prevent byproduct formation. Bioinformatic screening and characteriza-
tion of genes with sequence homology to known TAL genes has yielded
TAL variants with higher substrate affinity (Ky) and specificity than
previously characterized variants (Jendresen et al., 2015). A directed
evolution approach was developed for Anabaena variabilis PAL, relying
on the ammonia released by PAL from phenylalanine to serve as the
sole nitrogen source, and screening for improved growth (Mays
et al., 2020). This approach revealed 12 mutational hot spots, which
through different molecular mechanisms increased k., twofold, reduced
Kwm, and reduced product inhibition (Trivedi et al., 2022). Historically, the
catalytic efficiency (keat/Km) of Rhodotorula glutinis PAL was also shifted
in favor of tyrosine via directed evolution, by selecting for the reverse
reaction TAL activity in a tyrosine auxotroph grown on minimal media
containing p-coumaric acid (Gatenby et al., 2002). Beyond PAL/TAL,
comparisons have been made to help identify superior natural homologs
within sulfotransferases (Jendresen & Nielsen, 2019) and stilbene
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FIGURE 2 Production of phenylpropanoids in the period under review. ADP, adenosine diphosphate; AldO, alditol oxidase; AlkJ, alcohol
dehydrogenase; ALDH, aldehyde dehydrogenase; ATP, adenosine triphosphate; ATR2, cytochrome P450 reductase; ATF1, alcohol
acetyltransferase; BAS, benzalacetone synthase; BAR, benzalacetone reductase; CAR, carboxylic acid reductase; COMT, caffeic acid O-
methyltransferase; CoA, coenzyme A PAL/TAL, phenylalanine/tyrosine ammonia lyase; C4H, cinnamic acid hydroxylase; 4CL, 4-coumaryl CoA-
ligase; C3H, p-coumaric acid 3-hydroxylase; 4CL, feruloyl-CoA synthetase; CAD, cinnamyl alcohol dehydrogenase; CHI, chalcone isomerase;
CCR, cinnamoyl-CoA reductase; CHS, chalcone synthase; CPR, cytochrome P450 reductase; CURS, curcumin synthase; CYB5, cytochrome B5
reductase; CYP98A14, 4-coumaroyl-4'-hydroxyphenyllactate 3/3'-hydroxylase; DCS, diketide-CoA synthase; ECH, enoyl-CoA aldolase; F3'H,
flavonoid 3’-monooxygenase; F3H, flavanone 3-hydroxylase; FAD, flavin adenine dinucleotide; FNS, flavone synthase; F6H, flavone C-6
hydroxylase; FDC, ferulic acid decarboxylase; HST, hydroxycinnamate-CoA shikimate transferase; HQT, hydroxycinnamate-CoA quinate
transferase; NAD, Nicotinamide adenine dinucleotide; PAPS, 3'-Phosphoadenosine-5'-phosphosulfate; PAD, phenolic acid decarboxylase; RAS,
rosmarinic acid synthase; ROMT, resveratrol O-methyltransferase; Sfp, phosphopantetheinyl transferase S; SMO, styrene monooxygenase;
STS, stilbene synthase; YjgB, aldehyde reductase; SULT1A1, sulfotransferase 1A1.

synthases (Villa-Ruano et al., 2020). Finally, there have been campaigns
to optimize expression of the genes specific to phenylpropanoid
biosynthesis via their copy numbers or promoters. Increasing the
integrated copy numbers of the resveratrol pathway from 1 to 6
increased the titer fivefold (Sidez-Sdez et al., 2020), and the optimal
combination of plasmid copy numbers produced fourfold more
raspberry ketone than the worst combination in a dual-plasmid
expression system (C. Wang et al., 2019). A high-throughput screen
of a library containing different promoter combinations driving
naringenin biosynthesis improved the titer fivefold in S. cerevisiae (Gao
et al., 2020), and a similar strategy improved the naringenin titer
threefold in E. coli (Hwang et al., 2021).

3.1 | Co-factor supply and additional substrates for
derivative phenylpropanoids

Apart from the supply of phenylalanine and/or tyrosine, many
phenylpropanoids require additional substrates and co-factors to

supply the enzymes. One of the enzymes most commonly required is
4-coumarate ligase (4CL), which uses ATP to activate the cinnamic
acids with coenzyme A (CoA) to form p-coumaroyl-CoA, caffeoyl-
CoA, and so forth before inter- or intramolecular reactions catalyzed
by synthases. Malonyl-CoA is another common substrate required for
the production of many phenylpropanoids including the stilbenoids,
curcuminoids, flavonoids, and raspberry ketone. While several hosts
and strategies have been attempted for stilbenoid production, the
highest reported resveratrol titer to date was produced using the
oleaginous yeast Y. lipolytica, which naturally has a large metabolic
flux towards malonyl-CoA (Sdez-Saez et al., 2020). Furthermore, Y.
lipolytica was engineered to improve its' malonyl-CoA supply for the
production of naringenin (Palmer et al., 2020).

The hydroxylation of phenylpropanoids in plants requires
cytochrome P450 (CYP) enzymes using a heme prosthetic group,
while some of the same hydroxylations are catalyzed by flavin-
dependent monooxygenases (FMQOs) in prokaryotes (Di Gennaro
et al,, 2011). As both groups of enzymes ultimately require NADPH
as an electron donor, the more practical distinction is that the plant
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CYPs are membrane bound and poorly soluble when expressed in
bacteria, while the prokaryotic FMOs are soluble in the bacterial
cytosol. A successful alternative to pheA deletion for p-coumaric acid
production in Saccharomyces cerevisiae was to convert cinnamic acid
to p-coumaric acid via a cinnamic acid hydroxylase, (C4H), cyto-
chrome B5 reductase (CYB5), and cytochrome P450 reductase
(ATR2) (Q. Liu et al., 2019), which mimics the native pathway of
plants. This strategy is attractive because the PAL k.,; is higher than
the TAL kc,: for most PAL/TAL enzymes, and this also removes the
need for phenylalanine supplementation in the growth media
otherwise required by phenylalanine auxotrophs. Another common
modification is the methylation of hydroxyl groups, which require
o-methyl transferases (OMTs) and S-adenosyl methionine (SAM) as a
co-factor. Finally, reductases and dehydrogenases catalyze the
formation of phenylpropanoid aldehydes, alcohols, and ketones using
the electron acceptors NAD* or FAD. In an example of co-factor
engineering, increasing the NADPH/NADP" ratio by 46% in S.
cerevisiae improved the cinnamic acid titer by 45%, and engineering
SAM metabolism improved the ferulic acid titer by 180% (Chen
et al., 2022). An NADPH-dependent mutant of 2,3-butanediol
dehydrogenase was used as an engine for NADPH recycling in S.
cerevisiae, which improved the efficiency of flavanone 3-hydroxylase
(F3H) and flavonoid 3'-monooxygenase (F3'H) for the production of
taxifolin (Yang et al., 2020).

3.2 | Genetic engineering for improved
host tolerance

Product toxicity tends to be the limiting factor for high phenylpro-
panoid titers in fermentations with bacteria. Meanwhile, yeasts have
attained higher titers of phenylpropanoids in fermentations than
bacteria (Q. Liu et al., 2019; Saez-Saez et al., 2020), indicating that
yeasts have a relatively higher tolerance towards these compounds.
Yet yeasts still suffer reduced growth rates at elevated phenylpro-
panoid concentrations (Konzock et al., 2021; Pereira et al., 2020),
contributing to low production rates. Here it should be noted that the
solubility of many phenylpropanoids in water tends to be quite low at
acidic pH near their isoelectric points (Ji et al., 2016), so that product
toxicity will plateau as the solubility limit is reached. Product toxicity
can be mitigated by using hosts which are natively tolerant to
phenylpropanoids, and by improving host tolerance to phenylpropa-
noids. Host tolerance can be improved through adaptive laboratory
evolution or semi-rational strain engineering, such as engineering
efflux pumps with increased specificity and activity (Fisher
et al., 2014).

S. cerervisiae evolved in the presence of p-coumaric acid or ferulic
acid at low pH increased its' tolerance to either chemical fivefold by
overexpressing an exporter, and reconstructing the phenotype in a
p-coumaric acid production strain increased the titer by 47% (Pereira
et al., 2020). It is important to test for tolerance in production strains,
as an increased tolerance to extracellular phenylpropanoids does not

necessarily correlate with an increase in titer. E. coli evolved in the
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presence of p-coumaric acid increased its' tolerance to the chemical
fourfold, around half of which could be reconstructed by introducing
causative knockouts in three regulatory genes, although the mecha-
nism of increased tolerance could not be explained (Lennen
et al,, 2019). When a targeted mutant library of E. coli transcriptional
regulators was selected for styrene tolerance, isolates were
consistently enriched with mutations in four genes regulating the
stress response, and the styrene titer also increased by 31% in the
best mutant (Liang et al., 2020). E. coli evolved in the presence of
vanillin showed a twofold increase in cell density after 6 h of growth
in 10 mM vanillin, and all four evolved replicates had mutants of
citrate synthase with increased activity, implicating the enzyme in
supporting vanillin tolerance (Pattrick et al., 2019). Pseudomonas
putida KT2440 has been shown to tolerate approximately double the
concentration of p-coumaric acid compared to E. coli (Calero
et al., 2018), making it an interesting candidate for phenylpropanoid
production. P. putida KT2440 evolved in the presence of p-coumaric
or ferulic acid yielded a decrease in lag phase in the former and an
increase in growth rate in the latter, and one of the key genes found
to be mutated was an aromatic transporter (Mohamed et al., 2020).
As a side note, improving the general stress response and tolerance
towards phenylpropanoids is likely to have the added benefit of
improving tolerance towards inhibitors in lignocellulose-derived

feedstocks or crude glycerol.

4 | BIOPROCESS CONCEPTS FOR
PHENYLPROPANOID PRODUCTION

41 | In-situ product removal for phenylpropanoid
production

Bioprocess concepts can also offer improvements to the TRY of
phenylpropanoids and precursors, by mitigating product toxicty,
increasing biocatalyst loading, and through biocatalyst recycling. For
example, repeated batch fermentations increased the rate and yield
of tyrosine by 44% and 74% compared with a single fed-batch
fermentation (G. Li et al., 2020). A novel differential centrifugation
bioreactor set-up building on this concept was developed, which
separates tyrosine crystals and biomass to integrate product recovery
with repeated batch fermentations (G. Li et al., 2021), also offering a
possible solution to low tyrosine titers caused by foaming. Another
technology which might perform the same function is high frequency
untrasound separation (Juliano et al., 2017), although this has not
been tested. In situ product removal (ISPR) is a viable strategy for
mitigating product toxicity and product inhibition, but many
phenylpropanoids are amphipathic, poorly soluble in water due to
their hydrophobic phenyl groups (Alevizou & Voutsas, 2013; Ji
et al., 2016), as well as in nonpolar organic solvents due to their
hydrophilic groups (Combes, Clavijo Rivera, et al., 2021). ISPR
methods based on extraction with medium-low polarity solvents,
adsorption, or crystallization are therefore expected to be generally
favored (Salas-Villalobos et al., 2021). When 10 polar solvents were
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compared for in-situ p-coumaric acid extraction, oleyl alcohol, butyl
acetate, and hexyl acetate were found to be biocompatible with S.
cerevisiae and able to extract p-coumaric acid at acidic conditions
(Combes, Clavijo Rivera, et al., 2021). However, when oleyl alcohol
was implemented in a biphasic fermentation, the titer of p-coumaric
acid did not increase compared to the control without ISPR,
presumably because the engineered strain did not produce inhibitory
levels of product (Combes, Imatoukene, et al., 2021). (R)-Mandelic
acid was produced from glycerol in E. coli, and a biphasic system using
n-hexadecane increased the titer threefold by reducing the toxicity of
the intermediates styrene and (S)-styrene oxide (Lukito et al., 2019).
A high titer of 4-vinylphenol was produced from p-coumaric acid in C.
glutamicum expressing phenolic acid decarboxylase (PAD) and
combined with solvent extraction (Rodriguez et al., 2021). Styrene
was also produced from glucose in E. coli by the expression of PAL
and ferulic acid decarboxylase (FDC), and combined with solvent

extraction and/or gas stripping (K. Lee et al., 2019; Liang et al., 2020).

4.2 | Decoupling phenylpropanoid production

Decoupling microbial growth from phenylpropanoid production can
have several advantages, including mitigating product toxicity and
increasing biocatalyst loading. To illustrate the former, the minimum
inhibitory concentration (MIC) of vanillin against E. coli was found to
be 2.2g/L, but the effect was merely bacteriostatic, and some
metabolic activity was maintained at the maximum tested concentra-
tion of 7.6 g/L (Fitzgerald et al., 2004). Indeed, 4.3 g/L vanillin was
produced from ferulic acid in resting cells of E. coli expressing 4CL
and enoyl-CoA aldolase (ECH) (Luziatelli et al., 2019). This demon-
strates that resting cells may still be able to regenerate co-factors and
catalyze phenylpropanoid biosynthesis, even when their growth is
inhibited. Going a step further in terms of decoupling growth,
rosmarinic acid was produced from caffeic acid and danshensu using
a cell-free system, including 4CL and rosmarinic acid synthase (RAS)
together with a double regeneration system for ATP and CoA (Y. Yan
et al., 2019). As for biocatalyst loading, increasing the concentration
of a whole-cell E. coli StsTAL biocatalyst tenfold led to an almost
sevenfold increase in the volumetric rate (Cui et al., 2020). Decou-
pling phenylpropanoid production can also improve the reaction rate
not only through increasing biocatalyst loading, but also by optimizing
the process conditions in terms of pH, temperature, and substrate
loading. For example, PAL/TAL and benzalacetone synthase enzymes
have much higher activity at alkaline pH (Abe et al., 2007; Jendresen
et al., 2015), and thermostable PAL/TAL variants can maintain higher
activities at elevated temperatures (Xue et al., 2007). Historically,
DuPont developed a two-stage bioprocess for sequential tyrosine
fermentation and p-coumaric acid biocatalysis which greatly out-
competed the best one-stage p-coumaric acid fermentation process
reported to date in TRY (Q. Liu et al, 2019; Patnaik et al., 2008;
Trotman et al., 2007). However, this direct comparison is somewhat
unfair, as it does not take into account the extra steps involving

recovery of tyrosine or production of the immobilized whole-cell TAL

biocatalyst. Even so, it may be desirable to extend such a two-stage
bioprocess to other phenylpropanoids via biocatalytic cascades,
rather than introducing more stages and increasing process complex-
ity. This approach does require compromises in terms of the process
conditions, so that they are compatible with all the enzymes in the
cascade. A high titer of enantiopure (S)-mandelic acid was produced
from phenylalanine by expressing a four-enzyme cascade of PAL,
PAD, styrene monooxygenase (SMO), epoxide hydrolase (EH) and
alditol oxidase (AldO) (Lukito et al., 2019). A similar enzyme cascade
was used for (R)-mandelic production, and it was demonstrated that a
bioprocess decoupling phenylalanine fermentation and the enzyme
cascade in two stages improved the titer more than threefold
compared to using a single strain (Lukito et al., 2021). Coculturing has
also been attempted to decouple the biosynthetic pathways for the
production of resveratrol, curcumin, and eriodictyol from glucose,
and while Coculturing was superior to mono-culturing, the TRY were
still relatively modest (Rodrigues et al., 2020; Thuan et al., 2022; Yuan
et al., 2020). Coculturing can be used to improve the supply of
aromatic amino acids via a bacterial host in combination with
functional CYP expression in a yeast host, but it does little to
mitigate product toxicity. In theory the toxicity towards the bacteria
is somewhat mitigated in a bacterial/yeast coculture compared to a
bacterial monoculture, if the phenylpropanoids are not produced
intracellularly in the bacteria.

The development of robust hosts which can tolerate high
concentrations of phenylpropanoids and extreme process conditions
is also required for whole-cell biocatalysis to be economical,
especially when co-factor regeneration is required. When E. coli,
C. glutamicum, and Bacillus subtilis were compared as PAD
whole-cell biocatalysts, C. glutamicum produced the highest titer of
4-vinylphenol (Rodriguez et al, 2021). C. glutamicum was also
successfully used as a PAL whole-cell biocatalyst for the production
of cinnamic acid, where it remained catalytically active for 12 h at
alkaline pH and elevated temperature (Son et al., 2021). Beyond
these conventional hosts, the use of extremophiles as hosts in
biocatalysis for phenylpropanoids would be an interesting avenue of
research. Finally, whole-cell immobilization such as in calcium-
alginate beads can be used to increase the lifetime of the biocatalysts
(Trotman et al., 2007). The implementation of bioprocess concepts

for phenylpropanoid production is illustrated in Figure 3.

4.3 | Choice of bioprocess

The preferred bioprocess will depend on several factors including the
target phenylpropanoid. For relatively nontoxic products such as
zosteric acid, fermentation with bacterial hosts may be preferred.
Yeast fermentation may be sufficient for some moderately toxic
products, especially if an effective method of ISPR can be developed.
However, it is probably not economical to produce either phenyl-
alanine or tyrosine directly in yeasts, when they can be produced
much more efficiently in bacteria and supplied through a coculture or
two-stage process with biocatalysis. For highly toxic products,
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FIGURE 3 Implementing bioprocess concepts for phenylpropanoid production.
TABhLE 2| Com[)jrlsor; of .bloprocesses Bacterial Yeast Bacterial/yeast
for phenylpropanoid production fermentation fermentation coculture Biocatalysis
Aromatic amino High Low Moderate High
acids
Product toxicity High Moderate Moderate Low
Catalytic activity Moderate Low Moderate High
Co-factor High Moderate Moderate Low
regeneration
Functional CYP Low High High Host-dependent
expression
Process complexity Low Low Moderate High

biocatalysis may be necessary to fully decouple growth and
production. Whole-cell catalytic activity should be greater in bacteria
than in yeasts, due to generally higher levels of recombinant protein
expression and better metabolic control. On the other hand, yeasts
may compensate with better supply of key precursors like malonyl-
CoA, and their ability to express functional CYP enzymes. While all
the products discussed in this review can be produced without CYP

enzymes, CYP enzymes may provide higher rates, and allow for the
use of phenylalanine rather than tyrosine as a precursor. Phenyl-
alanine is more soluble and easier to overproduce (and cheaper to
purchase) than tyrosine, making it the more attractive precursor for
biocatalysis. Added process complexity is the major drawback of
these bioprocesses, because it entails increased capital costs. The
different bioprocesses discussed here are compared in Table 2.
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5 | CLOSING REMARKS

The two general problems facing phenylpropanoid production
through bioprocessing are the toxicity of phenylpropanoids towards
microorganisms and the poor reaction rate of PAL/TAL and other
enzymes in the biosynthetic pathways, which limit the production
titers and rates, respectively. Development of ISPR methods and
improved host tolerance will likely be aided by technology transfer
from lignocellulosic biomass detoxification and fermentation, as the
toxic compounds in lignocellulosic biomass are related to phenylpro-
panoid products (Bhatia et al., 2020). At the same time, general
advances in genomics, protein engineering, and biofoundries will
make it easier to improve PAL/TAL and other rate-limiting enzymes
in phenylpropanoid production. The strategy which requires specific
attention is that of decoupling phenylpropanoid production, particu-
larly the development of biocatalytic cascades and robust whole-cell
biocatalysts. Bioprocessing is the only method which promises to
meet the increasing industry and consumer demands for a variety of
pure, sustainable, and natural phenylpropanoids. Combining genetic
engineering and bioprocess concepts is a promising approach to
overcoming the challenges facing phenylpropanoid production

through bioprocessing, while making the method profitable.

6 | METHODOLOGY

The approximate cost of specific chemicals was estimated by
searching their names and/or CAS numbers on Alibaba.com and
assessing the relevant search results. The titers, rates, and yields
presented in Table 1 are presented as given in the original
publications. When any of the TRY metrics were not given directly
in the original publications, they were calculated from the data, in

some cases approximately in plots.
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