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Preface
This thesis is submitted in fulfillment of the requirements for the degree of Doctor
of Philosophy (PhD) at the Technical University of Denmark (DTU). The project
has been carried out in the Structured Electromagnetic Materials group at DTU
Electro, from September 2019 to November 2022, under the supervision of Assoc. Prof.
Nicolas Leitherer-Stenger, Assoc. Prof. Martijn Wubs and Assoc. Prof. Sanshui
Xiao. The research has been financed by DTU Electro and the Danish National
Research Foundation within the Center for Nanostructured Graphene (CNG, project
DNRF103).

The research activities of CNG focus on two-dimensional materials and the control
of their electrical, thermal and optical properties. In this PhD thesis, we investigate
the near-field properties of surface plasmon polaritons propagating at the interface
between air and monocrystalline gold. This project was carried out in collaboration
with Dr. Korbinian J. Kaltenecker, from Attocube Systems AG. We then study the
interaction of the surface plasmons with excitons in tungsten diselenide thin films.

Kongens Lyngby, 30th November 2022

Laura N. Casses
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Abstract
The subwavelength confinement of light is a key requirement for future nanophotonic
devices. As such, the subwavelength field confinement of polaritons, such as surface
plasmon polaritons (SPPs) or exciton polaritons, makes them attractive for various
applications such as nanocircuits, sensing, light generation and solar energy conver-
sion. Due to their subwavelength confinement, these polaritons are however difficult
to characterize directly with conventional microscopes. Near-field optical microscopy
allows the visualization of strongly confined polaritons.

In this PhD work, we first study the near-field amplitude and phase of SPPs on
a monocrystalline gold platelet, in the visible spectral range and with a near-field
microscope in a reflection configuration. Due to the moderate confinement of these
SPPs compared to SPPs in materials such as graphene, the full quantitative charac-
terization of the wavelength and propagation length of these polaritons is challenging.
Indeed, multiple excitation pathways of these polaritons lead to complex interference
patterns. We measure the near-field amplitude and phase for six different angles be-
tween the incident light and the edge of the platelet. We find that the signals from
the SPPs excited at an atomic force microscope tip are best isolated from the signals
coming from the other excitation pathways at grazing incident angle. Moreover, we
introduce a simple model to describe the amplitude and phase profiles. This model
explains the π/2 phase shift observed between these profiles. Using this model, the
wavelength and propagation length of the tip-launched plasmons are retrieved by iso-
lating and fitting the profiles far from the platelets’ edges. Our experimental results
are in excellent agreement with theoretical models using gold refractive index values
from the literature.

With this acquired knowledge, we study the coupling between the previously char-
acterized SPPs and excitons in a van der Waals material transferred on a gold platelet.
The chosen material is tungsten diselenide (WSe2). As WSe2 is a uniaxial anisotropic
crystal, we derive 2×2 transmission and propagation matrices to calculate the dis-
persion relation of polaritons on this multilayered structure. A slightly lower con-
finement and coupling between the excitons and the SPPs is predicted when the
anisotropy of WSe2 is taken into account, compared to the case where WSe2 is con-
sidered as isotropic. The theoretical dispersion relation is compared to measurements
of the experimental dispersion relation reconstructed from near-field measurements
of polaritons at several consecutive excitation energies. A small back-bending of the
experimental dispersion relation is observed.
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The presented methods to fully characterize the SPP complex wavevector could
enable the quantitative analysis of moderately confined polaritons occurring in differ-
ent materials in a reflection configuration and at visible wavelengths.



Resumé
Rumlig begrænsning af lys langt under størrelsen på en optisk bølgelængde er et
nøglekrav for fremtidige nanofotoniske enheder. Det medfører at den rumlige feltbe-
grænsning ved polaritoner, såsom overfladeplasmonpolaritoner (SPP’er) eller exciton-
polaritoner, gør dem attraktive til forskellige anvendelser såsom nanokredsløb, sens-
ing, lysgenerering og solenergikonvertering. Medført deres rumlige feltbegrænsning,
langt under størrelsen på optiske bølgelængder, er disse polaritoner dog vanskelige
at karakterisere direkte med konventionelle mikroskoper. Optisk nærfeltsmikroskopi
gør det muligt at visualisere stærkt begrænsede polaritoner.

I dette ph.d.-arbejde studerer vi først nærfelts amplitude og fase af SPP’er på en
monokrystallinsk guldplade, i det synlige spektralområde og med et nærfeltsmikroskop
i en reflektionskonfiguration. På grund af den moderate rumlige begrænsning af
disse SPP’er sammenlignet med SPP’er i materialer som grafen, er den fulde kvan-
titative karakterisering af bølgelængden og udbredelseslængden af disse polaritoner
udfordrende. Naturligt, fører flere excitationsveje for disse polaritoner til komplekse
interferensmønstre. Vi måler nærfeltets amplitude og fase for seks forskellige vin-
kler mellem det indfaldende lys og kanten af guldpladen. Det findes, at signalerne
fra SPP’erne exciteret ved en atomar kraftmikroskops-spids er bedst isoleret fra sig-
nalerne, der kommer fra de andre excitationsveje ved komplementær-indfaldsvinklen.
Desuden introducerer vi en simpel model til at beskrive amplitude- og faseprofil-
erne. Denne model forklarer π/2 faseforskydningen observeret mellem disse profiler.
Ved hjælp af denne model hentes bølgelængden og udbredelseslængden af de spids-
udsendte plasmoner ved at isolere og tilpasse profilerne langt fra guldpladernes kanter.
Vores eksperimentelle resultater er i fremragende overensstemmelse med teoretiske
modeller, der bruger guld brydningsindeksværdier fra litteraturen.

Med denne erhvervede viden studerer vi koblingen mellem de tidligere karakteris-
erede SPP’er og excitoner i et van der Waals materiale overført på en guldplade.
Det valgte materiale er wolframdiselenid (WSe2). Da WSe2 er en enakset anisotrop
krystal, udleder vi 2×2 transmissions- og udbredelsesmatricer for at beregne spred-
ningsforholdet mellem polaritoner på denne flerlagsstruktur. En lidt mindre feltbe-
grænsning og kobling mellem excitonerne og SPP’erne forudsiges, når anisotropien af
WSe2 tages i betragtning, sammenlignet med tilfældet, hvor WSe2 betragtes som
isotropisk. Den teoretiske spredningsrelation sammenlignes med målinger af den
eksperimentelle spredningsrelation rekonstrueret ud fra nærfeltsmålinger af polari-
toner ved flere fortløbende excitationsenergier. En lille tilbagebøjning af den eksperi-
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mentelle dispersionsrelation observeres.
De præsenterede metoder til komplet karakterisering af den komplekse bølgevek-

tor for SPP’er, kunne muliggøre den kvantitative analyse af moderat feltbegrænsede
polaritoner, der forekommer i forskellige materialer i en reflektionskonfiguration og
ved synlige bølgelængder.
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Introduction
The invention of the optical microscope, at the end of the 16th century, led to fun-
damental discoveries, such as the first observation of cells and bacteria [1]. In the
following centuries, the spatial resolution of microscopes has been greatly improved,
but an important limit was reached: the diffraction limit.

The diffraction limit is a consequence of two effects [2]. To understand these effects,
let us consider the case of two point sources that radiate light. As these sources are
points, they have infinite spatial frequencies. However, some of the light spatial
frequencies are bound to the source and do not propagate towards the image. These
components are called the evanescent waves, or near field. The propagation of light
thus induces an effective low-pass filtering of the spatial frequencies. Furthermore, an
optical microscope collects light at a limited angle given by the numerical aperture
(NA), leading to an even stronger filtering. Thus, the image of each point source has
a finite size defined by the Airy disk. In Abbe’s formulation of the diffraction limit [2],
the minimum distance between distinguishable images of two point sources is defined
as the radius of the Airy disk

rAbbe = 0.6098λ

NA , (1)

where λ is the wavelength of the light.
Can we break the diffraction limit with an optical microscope? In 1928, Synge

proposed that placing a small metallic aperture close to an illuminated object results
in sub-diffraction imaging [3]. His idea was first implemented in the optical regime
in 1983 by Pohl et al. [4], using a metal-coated quartz tip as a near-field probe. A
spatial resolution of λ/20, well below the diffraction limit, was demonstrated. In the
1990s, the first aperture-less scanning optical microscopes, or scattering-type scanning
optical microscopes (s-SNOMs), based on atomic force microscopes (AFMs) were de-
veloped [5, 6]. Since then, s-SNOMs enabled to study many materials in the near
field [7], ranging from metallic structures [8–10] to dielectrics [11, 12]. The develop-
ment of interferometric detection techniques allowed to record both the amplitude
and phase of the near field [13, 14], as well as removing the far-field background [14].
Furthermore, hyperspectral imaging in the near field was achieved by developing
nano-Fourier transform infrared spectroscopy (nano-FTIR) [15], and allowed the full
spacial and temporal [16] and spectral [17] characterization of surface waves. Today,
s-SNOM is a versatile optical microscope that can be used for imaging in both trans-
mission and reflection configurations. In the transmission configuration, the light
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source is placed below the sample, while top-illumination is used in the reflection con-
figuration. Hence, only the reflection configuration allow measurements of samples
with non-transparent substrates.

Surface plasmon polaritons (SPPs) have the ability to confine light far beyond
the diffraction limit. SPPs are collective excitations of the electronic cloud and prop-
agate at the interface between a dielectric (such as air) and a metal [18]. As such,
their electric field is evanescent out of this interface’s plane. The light confinement
is important for applications such as plasmonic nanocircuits [8, 19], sensing [20, 21],
light harvesting [22] and light generation [23, 24]. For several of these applications,
the distance over which SPPs can propagate along the interface, i.e. the propaga-
tion length, is critical. However, high losses in metals [25] hinder long propagation
lengths. The direct characterization of plasmonic structures can help assessing their
near-field characteristics. For gold structures, s-SNOM enabled the characterization
of the wavelength and propagation length of plasmonic slot waveguides [8], and of the
resonance of the guided modes on metasurfaces [9]. The use of near-field measure-
ments was also highlighted as a way to provide feedback to the design and fabrication
of metasurfaces [26].

Losses in metals are partly attributed to the electron scattering at grain bound-
aries [27, 28]. Large monocrystalline gold platelets [29, 30] have therefore attracted
a lot of attention because of their potential to reduce the electron scattering losses.
These platelets were indeed reported to have better plasmonic resonances and to host
SPPs with longer propagation lengths in plasmonic nanocircuits [31], particularly in
the regime where Ohmic losses are predominant [32]. In addition, the efficiency of
gap plasmon based metasurfaces could be increased by the use of monocrystalline
gold [33]. The direct characterization of SPPs on monocrystalline gold platelets with
s-SNOM can help assessing the quality of these platelets. Using a s-SNOM in a
transmission configuration, the wavelength and propagation length of plasmonic slot
waveguides made out of monocrystalline gold was characterized [32], and non-local
effects in highly confined gap plasmon modes were identified [34]. In the reflection
configuration, the analysis of the near-field signal is more demanding because the
SPPs can be excited through several pathways, leading to complex interference pat-
terns [35, 36]. In a previous study [36], the means to extract the wavelength of the
SPPs excited at the tip - i.e. the tip-launched SPPs - has been demonstrated. How-
ever, the propagation length on a monocrystalline gold platelets using a s-SNOM in
the reflection configuration and in the visible could not be retrieved.

Plasmonics can be used to enhance the optical properties of light emitters, such
as excitons in transition metal dichalcogenides (TMDCs). TMDCs are part of the
van der Waals materials, which are characterized by a layered structure with strong
covalent bounds within a layer, but weak van der Waals forces between the layers [37].
TMDCs are well-known for their strong interaction with light [37], which can be
used in applications such as nano-lasers [38], light detection [39] and solar energy
conversion [40]. Indeed, thin layers of these materials host strong excitons at room
temperature, with resonances in the visible and near-infrared range [41, 42]. Due
to their layered structure, TMDCs are highly anisotropic [43], a property that was
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recently highlighted as having potential for future-generation photonic devices [44,45].
Moreover, as they are naturally passivated, they can easily be integrated with other
photonic structures [37]. In the case of plasmonic structures, excitons in TMDCs
can interact with the plasmons to create plasmon-exciton polaritons. Due to the
subwavelength scale of these polaritons, the direct measurement of their wavelength
and propagation length requires near-field techniques.

The near-field study and characterization of polaritons in van der Waals materials
has been performed in many studies, across the optical spectrum [16,17,46–52]. In the
mid-infrared wavelength range, s-SNOM allowed to directly observe highly confined
plasmons in graphene [47, 48] and to show that graphene-boron nitride structures
improve the propagation length of these plasmons [49]. In the same spectral range,
in-plane anisotropic propagation of phonon polaritons in α-MoO3 [50] has been char-
acterized, revealing a high confinement and very low losses of these polaritons. In the
close near-infrared to visible range, the dispersion relation of exciton-polaritons in
MoSe2 [51] and in WSe2 [52] has been retrieved from s-SNOM measurements. How-
ever, to the best of our knowledge, no full near-field characterization of the coupling
between monocrystalline gold platelets and excitons in TMDCs in the visible range
had been performed at the beginning of this PhD work.

The main objective of this thesis is to study, in a quantitative way, the plasmon-
exciton polaritons arising from the coupling of SPPs on monocrystalline gold and
excitons in TMDCs. Thus, we want to characterize their wavelength and propagation
length - as it is directly related to to their confinement and their losses - as a function
of the excitation energy.

In Chapter 1, the basic principles of s-SNOM techniques are presented. This
includes the principles of AFM, the effect of tip illumination, the retrieval of the
near field from the far-field background, pseudo-heterodyne (PsHet) detection and
nano-FTIR. Lastly, the experimental setup used in this thesis is described.

In Chapter 2, the optical properties of metals are introduced. The Drude model
and its limitations to describe the properties of metals are explained, and the SPPs
characteristics are presented.

In Chapter 3, the characterization of SPPs on monocrystalline gold platelets
is described. The different SPP excitation channels are presented and the means
to isolate the signal relevant for the characterization is described. In particular,
the importance of the angle between the edge of the platelet and the in-plane light
incidence is highlighted. The derivation of a model for the near-field amplitude and
phase obtained with a s-SNOM in a reflection configuration is presented, and is used
to retrieve the wavelength and the propagation length of the SPPs on gold.

In Chapter 4, the basic properties of TMDCs and their dielectric constants are
presented. The different possible forms of coupling between excitons and SPPs are ex-
plained. Furthermore, the transfer matrix method (TMM) is introduced to calculate
the dispersion relation of excitons in WSe2 interacting with SPPs on monocrystalline
gold. As WSe2 is an anisotropic materials, an anisotropic TMM, taking into account
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the two dielectric constants of WSe2, is derived and its predictions are compared to
predictions made with the usual TMM that neglects anisotropy.

In Chapter 5, preliminary results showing the reconstruction of the dispersion
relation of polaritons on a fabricated sample composed of WSe2 on a monocrystalline
gold platelet are discussed. As the laser used for the near-field measurements is
changed to make these experiments, the dispersion relation is first measured on bare
gold to check the quality of the data. Thereafter, the near-field measurements of WSe2
on gold are described, and the dispersion relation retrieved from these measurements
is analyzed.



CHAPTER1
Near-field and s-SNOM

techniques
s-SNOMs have proven to be powerful tools for the study of various materials at a
scale of a few tens of nanometers and across the optical spectrum [47,48,52–54].

In this chapter, the basics of the s-SNOM techniques used in this thesis are pre-
sented. First, the working principle of a s-SNOM setup is explained. Models describ-
ing the tip-sample interaction are shortly introduced, and the methods for retrieving
the near-field signal out of the background are derived. Additional detection meth-
ods for complete background suppression and for spectroscopy are then presented.
Finally, the experimental setup used in this thesis is described.

1.1 Working principle of s-SNOM
To be able to operate properly, the simplest version of a s-SNOM needs at least an
AFM-based setup, a laser focused on the probing tip, and a background removal
scheme. These three elements are described in the following sections.

1.1.1 Atomic force microscopy
A s-SNOM is typically based on an AFM setup [55]. An AFM uses the forces acting on
an object placed close to a surface to keep a probe (called tip in the following because
of the pointed shape of its extremity) at an established position above the sample
of interest. Thus, when scanning a sample, a change in the height of the sample is
directly translated in a change of the tip height. In this section, the fundamental
principles of atomic force microscopy are described, with the help of the concepts
described in the book Atomic Force Microscopy by P. Eaton and P. West [56].

An AFM has two main operation modes to measure the topography of a sample:
the contact mode and the oscillating mode. In the contact mode, the AFM probing
tip is kept at a constant distance from the sample. This is done by measuring the
deflection of the tip cantilever caused by the interaction with the surface, and using
a feedback loop to correct for the changes in deflection. In contrast, in the oscillating
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mode, the changes in the tip oscillation amplitude are detected and corrected for
with the feedback loop. s-SNOMs are usually driven in the intermittent contact - or
tapping - mode. This sub-category of oscillating mode facilitates the detection of the
near-field optical signals, as is shown in section 1.1.3.

A sketch of the generalized operation principle of an AFM in intermittent contact
mode, in the specific case of our setup, is presented in Figure 1.1a. The cantilever -
holding the tip - is driven by a piezoelectric transducer (piezo) at its resonant oscil-
lation frequency. To detect the resulting tip oscillations, a deflection laser is pointed
at the back end of the cantilever, where it is reflected towards a four quadrant photo-
diode (PD). The four quadrant PD detects the movements of the tip in the vertical
and horizontal directions continuously during the scan. For each PD measurement, a
feedback loop compares the expected output oscillations amplitude - corresponding to
a certain height above the sample - with the real output. The difference between the
expected output and the real output corresponds to an error in the height above the
sample. Using a proportional–integral–derivative (PID) controller, the height of the
tip is adjusted to correct for the errors. The tip height at each point of the scanned
region gives the topography of the sample.

Figure 1.1b shows a generic force-distance curve for a tip oscillating above a sample
surface. Far from the surface, there is no interaction force between the tip and sample
surface (i.e. Force = 0 nN). When approaching the surface, the tip first experiences
the attractive van der Waals forces (Force < 0 nN). When approaching even closer,
the interaction forces become repulsive (Force > 0 nN) due to Pauli repulsion. In
the oscillating mode, coming closer to the sample surface results in a damping of the
cantilever oscillations, and thus a reduction of the oscillation amplitude.

Despite having a lot of similarities with an AFM, a s-SNOM setup differs from
it on a few points. First and foremost, light coming from a second laser is focused
on the tip apex at each position of the scan. Thus for practical reasons, the sample
is moved in x-, y- and z-directions during the scan instead of the tip and the light
focus [57]. Second, the tip apexes are usually larger than the AFM ones and often

Oscillation piezo

Output signal

AFM cantilever
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Position-sensitive 
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Figure 1.1. AFM principles. a) AFM setup operating in tapping mode. b) Generic force-
distance curve for a tip oscillating above a surface.
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coated with a metal like platinum. While the precision on the topography is thereby
reduced, having a larger tip apex allows to have a higher scattering cross-section at
the apex, and thus more near-field signal [58].

The effect of the laser focused on the tip apex and the extraction of the near field
are explained in the next section.

1.1.2 Tip illumination and interaction with the sample

Contrary to an AFM, in a s-SNOM setup an additional light source is focused on
the tip apex [7, 58, 59]. This - typically polarized - light induces a polarization of
the tip, which becomes an oscillating dipole and scatters the light in all directions.
As such, the sharp tip apex behaves as an optical antenna: it confines the incident
light and converts it into a localized field through scattering [2]. The field amplitudes
resulting from this effect in the case of p-polarization and s-polarization are simulated
in Figures 1.2a and 1.2b, respectively. The figures are taken from [52] and simulated
for visible wavelengths. This simulation has been done using 3D COMSOL models
for a standard-shape tip (ARROW-NCPt from Nanoworld) above a multilayer of
WSe2 [52]. The nano-focusing effect [19] due to the tip - leading to a resolution far
beyond the diffraction limit - can be seen in particular in the case of the p-polarization.

A simple model to obtain a qualitative understanding of the tip-sample interaction
consists in approximating the tip apex as a polarizable sphere, thereby neglecting the
influence of the tip shaft. This model is referred to as the point dipole model [11,58,59].
A representation of the point dipole model with p- and s-polarizations is shown in
Figures 1.2c and 1.2d), respectively. The following paragraphs summarize the model.

A sphere of radius R and dielectric constant ϵtip, at a distance H from the sample

E

k

c)

E

k

H

2R

d)

2R+2H

a)

b)

tiptip

surfsurf

Figure 1.2. Tip nano-focusing and point dipole model. a) COMSOL calculations of the field
distribution for a realistic tip shape and p-polarization of the light. The scale bar corresponds
to 500 nm. Reprinted figure with permission from Ref. [52]. Copyright 2022 by the American
Physical Society. b) Same simulation in the case of s-polarization. c) Point dipole model in
the case of p-polarization. d) Point dipole model in the case of s-polarization.
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surface has a polarizability that can be expressed as [7, 58,60]:

α = 4πR3 ϵtip − 1
ϵtip + 2

(1.1)

The sample is considered to be a semi-infinite, homogeneous and isotropic material
with a relative permittivity ϵsurf. As the tip dipole is very close to the surface, it
changes the surface charge distribution, effectively creating an image dipole at a
distance H + R under the surface. The image dipole has a relative strength β =
(ϵsurf − 1)/(ϵsurf + 1). As depicted in Figures 1.2b and 1.2c, the polarization of the
image dipole is aligned with the polarization of the tip dipole. The image dipole and
the tip dipole interact with each other and thus lead to the effective polarizability of
both dipoles [7, 58]:

αeff,p = α(1 + β)
1− αβ

16π(R+H)3

(1.2)

for the p-polarization, and

αeff,s = α(1 + β)
1− αβ

32π(R+H)3

(1.3)

for the s-polarization.
The scattering cross-section - proportional to the effective polarizability - is there-

fore higher with a p-polarization of the electric field than with a s-polarization. This
enhancement along the tip direction normal to the sample is even more pronounced
when considering the longitudinal shape of the tip, as can be done using the finite
dipole model [61]. While the point dipole model gives a qualitative understanding of
the tip-sample interactions, the finite dipole model has been shown to give a better
quantitative understanding of the tip-sample interactions, allowing more quantitative
analysis of material properties at the nanoscale [61–63]. A detailed description of the
finite dipole model can be found in Ref. [60].

1.1.3 Non-interferometric detection of the near field

In a s-SNOM system, the generally weak near-field signal is hidden in a large back-
ground coming from the diffraction-limited spot directly back-scattered from the sam-
ple. To detect the near field, s-SNOMs exploit the modulation of the AFM tip in the
intermittent contact mode. This modulation scheme is introduced in details in this
section. Its advantages and limits are presented, and the necessity to use additional
detection schemes to recover the near field are discussed.

In the simplest version of a s-SNOM setup, the discrimination between the near
field and the background field is done by modulation of the tip height and demodula-
tion of the signal by a lock-in amplifier on the detection side [7]. The tip oscillation
amplitude h is typically of the order of a few tens of nanometers [36,58,64–66]. The
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movement of the tip apex can be approximated as a harmonic oscillator [7, 67] and
the tip-sample distance H can thus be described as

H(t) = h(1 + cos(Ωt)) (1.4)

with Ω the tip oscillation (or tapping) frequency. Over the distance h, the variations
of the background field EB are very little compared to the near field ENF which
presents an exponential-like decay. Since higher harmonics correspond to the faster-
varying field contributions, the near-field signal can be isolated using lock-in detection
at higher orders of the tapping frequency. In the following, an expression for the
modulated intensity of the detected light is derived. The derivation is mainly based on
the work from Ocelic et al. [14], the thesis from N. Ocelic [60] and some considerations
in the review from J. M. Atkin [7]. Additional considerations on a specific expression
for the background and on background artefacts can be found in Ref. [60].

Figure 1.3 shows the fields involved in the demodulation scheme. The electric field
coming onto the PD, ES, is composed of the near field and signal of interest ENF and
the far-field background EB:

ES = ENF + EB. (1.5)

These fields are varying periodically, with a period Ω, due to the periodic tip oscilla-

EIn

ES = EB + E
NF 

EB + ENF

EIn

45°

BS Sample 

AFM cantilever

P
D

Figure 1.3. Sketch of a s-SNOM setup showing the different field contributions involved in the
s-SNOM demodulation. The incident light Ein is focused on the AFM tip oscillating at a
frequency Ω. Part of the light coming from the near field of the sample ENF and the far-field
background light EB is then backscattered and directed by a beam splitter (BS) towards a
PD.
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tions. Thus, they can be decomposed in the form of Fourier series:

ES =
n=+∞∑
n=−∞

Es,n exp(inΩt), (1.6)

ENF =
n=+∞∑
n=−∞

Enf,n exp(inΩt), (1.7)

EB =
n=+∞∑
n=−∞

Eb,n exp(inΩt), (1.8)

where Ej,n = |Ej,n|eiϕj,n , j = {s, nf, b} includes the amplitude and the phase of the
fields.

The detector displays the signal in the form of an output voltage proportional
to the intensity ID that is collected by the parabolic mirror (see Figure 1.3). This
intensity is proportional to the electric field ES such as

ID ∝ |ES|2 = ESE∗
S, (1.9)

meaning that

ID ∝ |ENF|2 + |EB|2 + ENFE∗
B + E∗

NFEB. (1.10)

The Fourier components of ID are thus (see Appendix A.1 for more details on the
multiplication of the Fourier components):

Id,n ∝
∑

k

Enf,kE∗
nf,k−n +

∑
k

Eb,kE∗
b,k−n +

∑
k

Enf,kE∗
b,k−n +

∑
k

Eb,kE∗
nf,k−n.

(1.11)

Considering the relative strengths and variations of the fields [7,13,60], a few assump-
tions can be made:

1. The background field at the 0th order is dominating compared to the background
field at any other order: |Eb,0| ≫ |Eb,n|, n ∈ Z∗.

2. The background field at the 0th order is dominating compared to the near field at
any order: |Eb,0| ≫ |Enf,n|, n ∈ Z. As a consequence: Es,0 = Enf,0+Eb,0 ≈ Eb,0.

3. For an intensity Id,n, |n| > |n0|, the near field at any nth order is dominating
compared to the background at the same order: |Eb,n| ≪ |Enf,n|, |n| ≥ |n0|.
Usually for the visible n0 ∼ 3.

Assumptions 1. and 3. are a direct consequence of the slow variations of the back-
ground field. Assumption 2. comes from considerations on the difference between
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the scattering cross-section of the near field compared to the far field. The signal
coming from the near field is indeed restricted to a small (few tens of nanometers)
area around the tip apex. By contrast, the signal from the background can come
from the whole region illuminated by the diffraction limited incident light, meaning
the tip shaft and the sample surface. Assumption 2. is generally true as long as the
near field is sufficiently weak.

Assumptions 1. and 2. mean that all the terms that do not contain |Eb,0| can be
neglected. In addition, with Assumption 3., for n > n0 sufficiently big and taking κ
as the proportionality constant, we obtain

Id,n ≈ κ
(
E∗
b,0Enf,n + Eb,0E∗

nf,n
)

. (1.12)

Then by expressing the fields as a function of their amplitude and phase, the intensity
can finally be written as

Id,n ≈ 2κ|Eb,0||Enf,n| cos(Φnf,n − Φb,0) . (1.13)

The spectrum associated with the different intensity orders is given approximately in
Figure 1.4a. The near-field information is mainly contained in the higher orders (3Ω
and above), but these orders are also having a smaller amplitude than the lower orders.
This spectrum is to compare to the spectrum in Figure 1.6, with pseudo-heterodyne
detection. Experimentally, the evolution of the intensity Id,n as a function of the tip
and illumination to sample distance can be measured. This evolution is presented in
Figure 1.4b for the first four orders. The higher orders present the exponential-like
decay characteristic of the near field.

The relative near-field amplitude can thus be retrieved by the use of lock-in de-
tection at higher orders of the tapping frequency. However, the background is not
completely removed in this case. Instead, a field proportional to the near-field am-
plitude can be obtained as long as |Eb,0| is a constant. If this assumption is true,

Frequency
0 1 2 3 4

a) b)

Figure 1.4. The different intensity orders. a) Schematic of the spectrum of the detector
output signal, in the case of non-interferometric detection. b) Approach curve measured
experimentally with our setup.
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the background can be used as an advantage as it can enhance the signal from the
near field [13]. However, the phase term Φb,0 cannot be generally considered as a
constant [60], so that the phase information Φnf,n is lost in the process. To obtain
the phase information and completely exclude the multiplicative background |Eb,0|,
interferometric schemes such as the pseudo-heterodyne detection have to be used.

1.2 Additional detection schemes

Because of the lack of control on the background amplitude |Eb,0| and phase Φb,0,
additional detection schemes have been implemented in s-SNOM to remove the back-
ground. For example, in a homodyne detection scheme, an additional reference field
of same wavelength as the s-SNOM light source is added to the detected signal [7].
This controlled reference field is set to be much stronger than the background field.
Thus, it dominates the signal and the uncontrolled terms in Equation 1.13 are re-
placed with the ones from the known reference field. In contrast, in the heterodyne
detection scheme, a reference field beating at a shifted frequency compared to the
incident field is added to the detected signal [13]. Lock-in detection at a frequency
different than the tapping frequency can thus be used to detect a background-free
signal. More recently, PsHet detection [14] has been implemented. This technique
combines the advantage of a background-free signal with a setup that is simpler and
applicable to a broad spectral range [14]. Furthermore, the interference with a refer-
ence field in the case of a broadband light source allows to do nano-Fourier transform
spectroscopy (nano-FTS).

In this section, the pseudo-heterodyne detection scheme is presented in details, as
well as the basics of the technique allowing to do nano-FTS.

1.2.1 Pseudo-heterodyne detection

In the PsHet detection scheme, a reference field is added using an additional mirror,
as sketched in Fig. 1.5. This new signal does not depend on the tip modulation,
but since the mirror itself is oscillating, the reference field has a sinusoidal phase
modulation. The reference field can be described as [14]

ER = ρ exp(iγ sin(Mt) + iΦR), (1.14)

with ρ and ΦR its amplitude and phase, respectively, M its mirror oscillation fre-
quency and γ its mirror oscillation amplitude. M is taken as much smaller than the
tip oscillation frequency Ω. The Fourier decomposition of this reference field gives [14]

ER =
m=+∞∑
m=−∞

Er,m exp(imMt) with Er,m = ρJm(γ) exp(iΦR + imπ/2) (1.15)
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Figure 1.5. Sketch of a s-SNOM setup with pseudoheterodyne detection, showing the different
field contributions. The beam path corresponds to the one from the setup used in this thesis.
Compared to Figure 1.3, a reference mirror oscillating at a frequency M ≪ Ω has been added.
This mirror provides the field contribution ER.

where Jm is the Bessel function of the first kind and mth order. We thus now have a
total frequency:

EPH
S = ENF + EB + ER (1.16)

The total intensity sent to the detector ID ∝ EPH
S EPH*

S thus contains 6 additional
components due to the interference with the reference field. However, ER is indepen-
dent from the modulation at frequency Ω and is thus suppressed by demodulation at
nΩ, for n ̸= 0. Assumption 1. and 3. mentioned in section 1.1.3 are also still valid,
so that the terms |ER|2 and |EB|2 and EBE∗

R + E∗
BER can be discarded due to the

demodulation at nΩ, and ID can be expressed as

ID ∝ |ENF|2 + ENFE∗
R + E∗

NFER + ENFE∗
B + E∗

NFEB. (1.17)

Second, the near field and background field are independent from the reference mirror
oscillations, so that demodulation at the frequency nΩ+mM , with n, m ∈ Z∗, discards
the terms |ENF|2 and ENFE∗

B + E∗
NFEB. The equation thus finally becomes

ID ∝ ENFE∗
R + E∗

NFER. (1.18)

As the mirror oscillation frequency M is much lower than the tip oscillation frequency
Ω, the decomposition of ID in its n Fourier components can be carried out first. The
intensity Fourier series component at the nth order thus have the form:

Id,n ∝ Enf,nE∗
R + E∗

nf,nER (1.19)

After decomposing the reference field ER into its m Fourier components, the expres-
sion of the intensity becomes

Id,n ∝ 2|Enf,n|
∑
m

|Er,m| cos(mMt + Φr,m − Φnf,n), (1.20)
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where Φr,m = ΦR+mπ/2. Thus, as long as the reference modulation M is lower than
the tip vibration frequency Ω, each of the scattered signal harmonics with frequency
nΩ splits into sidebands with frequency fn,m = nΩ + mM . Figure 1.6 presents a
schematic view of the corresponding spectrum.

At the frequency fn,m and taking κ′ as the proportionality constant, the intensity
Fourier component In,m have the form:

In,m = 2κ′|Enf,n|ρJm(γ) cos(ΦR + mπ/2− Φnf,n) (1.21)

This equation gives rise to two cases. For m even, the Fourier components of the
intensity In,m are proportional to a cosine. For m odd, the Fourier components
of In,m are proportional to a sine. This means that by adding the odd and even
terms divided by their respective Bessel term Jm(γ), the near field Enf,n can be
reconstructed.

In the particular case where m = 1 for the imaginary part and m = 2 for the
real part, and using the suitable choice γ = 2.63 so that J1(γ) = J2(γ) ≈ 1/2.16, the
expression can be further simplified as

Enf,n = 2.16C [In,2 + iIn,1] with C = exp(iΦR)
2κ′ρ

. (1.22)

The near-field amplitude and phase can thus be retrieved using the relations

|Eexp
nf,n| = 2.16|C|

√
I2

n,2 + I2
n,1 (1.23)

Φexp
nf,n + Φexp

R = arctan
(

In,1

In,2

)
(1.24)

A back-check of these formula are given in appendix. It should be noted that the
near-field phase can only be reconstructed up to the additive constant ΦR.

Frequency

0 1 2 3 4

1 +1M

3 -1M

3 +1M

3 +3M

Figure 1.6. Schematic of the spectrum of the detector output signal, in the case of PsHet
detection. The relative heights between the peaks do not aim to accurately describe the
experimental ones. Figure inspired from [14].
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As mentioned previously, this relation can be used at the condition of adjust-
ing the mirror oscillation amplitude γ such that J1(γ) = J2(γ), meaning γ = 2.63.
Experimentally, this phase modulation amplitude corresponds to a mirror length
modulation amplitude of [7]

∆l = γλ/(2.2π) ≈ 0.21λ, (1.25)

with λ the wavelength of the incident light. This means that the the PsHet scheme
should be adjusted to the excitation wavelength.

1.2.2 Fourier-transform spectroscopy
Fourier-transform infrared (FTIR) spectroscopy is a well-established interferometric
method [68] to obtain the spectrum of a sample under study. More recently, this
method has been combined with nanoimaging [15, 69] to do hyperspectral imaging
at the nanometer-scale [70]. This method is referred to as nano-FTIR spectroscopy.
As the acronyms suggests, this method is widely used to obtain infrared spectra.
However, it is applicable to other spectral ranges as well and is more generally referred
as Fourier-transform spectroscopy (FTS) in this thesis. In this section, the basic
principles of FTS and nano-FTS are explained. The concepts are based on the book
Fourier Transform Infrared Spectrometry from P.R. Griffiths and J.A. de Haseth [68]
and the PhD thesis of F. Huth [71].

The main principles and setup of FTS can be explained using a conventional
Michelson interferometer, as sketched in Figure 1.7a. In a Michelson setup, a beam
is separated by a 50/50 BS in two arms directed towards a fixed mirror (at a distance
D from the BS) and a reference mirror (at a variable distance D+d from the BS).

BS

Detector

Light source

D

D+d

Fixed mirror

Reference 
mirror

BS

Detector

D

D+d
Reference 

mirror

Sample

Broadband 
source

a) b)

Figure 1.7. Principles of FTS. a) Sketch of a conventional Michelson interferometer. The beam
coming from the light source is separated by a BS in two arms directed respectively towards
a fixed mirror and a reference mirror that can be moved. The beams reflected from these
two mirrors then recombine at the detector. b) Setup in the case of FTS in reflection. The
fixed mirror is replaced with the sample to be analyzed, and the light source is a broadband
source.
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The light reflected from the two mirrors recombine at the BS, leading to a detected
intensity that in the case of a single wavelength source takes the form [68]

I(d, λ) = 0.5I0(λ)(1 + cos(2πd/λ)) (1.26)

where I0 is the intensity of the incident light and λ is the wavelength of the light
source. Moving the position of the reference mirror thus induces sinusoidal oscillations
at the detector. The period of these sinusoidal oscillations gives information about
the wavelength λ. The recording of the intensity of the light as a function of the
reference mirror distance d is called an interferogram.

In the case of FTS in reflection, the light source is a broadband source, and the
fixed mirror is replaced with a sample. Contrary to the fixed mirror, the sample can
absorb, transmit and/or reflect parts of the spectrum of the broadband source.

FT

a)

FT

b)

0 0

0 0

Figure 1.8. Examples of interferograms and spectra . a) Interferogram and its Fourier trans-
form in the case of 2 wavelengths components. b) Interferogram and its Fourier transform
in the case of a broadband source.

The advantage of the broadband source is that it probes all the wavelength com-
ponents at the same time. However, the interferogram is also more complex and the
intensity contribution of each wavelength cannot be extracted directly. To get the
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wavelength contribution, a Fourier transform (FT) has to be applied. As shown for
clarity in Figure 1.8a in the case of two wavelengths, the FT converts the interfero-
gram into the relative intensity of its wavelengths components, namely the spectrum.
The same process happens in the case of a broadband source having a continuum of
wavelength contributions, as shown in Figure 1.8b.

Sample 

nano-FTS

BS

PD

Broadband
source

AFM cantilever

Figure 1.9. Sketch of a s-SNOM setup for Fourier-transform spectroscopy. The beam path
corresponds to the one from the setup used in this thesis. As for the case of conventional FTS,
the beam from a broadband source is separated in two arms directed towards a reference
mirror and the sample, respectively. The beams reflected from the reference mirror and
scattered from the tip and sample then recombine at the BS and are directed towards a PD.

In the case of a near-field setup, the aforementioned principles remain the same.
Figure 1.9 shows the setup in the case of nano-FTS. The sample, which is in this case
under the AFM tip, is illuminated by a broadband source. The light scattered from
the tip and the sample is then recombined with the light reflected from the moving
reference mirror at the BS. The interference of these two beams is detected at the
PD.

In the case of nano-FTS spectroscopy, the background is not completely sup-
pressed. Indeed, following the same arguments as in Sections 1.1.3 and 1.2.1, the
total signal at the detector can be described as [71]

Id,n ≈ 2κ|Eb,0||Enf,n| cos(Φnf,n − Φb,0) + 2κ|ERef||Enf,n| cos(Φnf,n − ΦRef), (1.27)

where |ERef| and ΦRef are in this case the amplitude and phase of the nano-FTS
reference mirror. Typically, |EB| ≪ |ERef|. Thus, it can usually be discarded from
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the total signal.

1.3 Experimental setup

Figure 1.10 shows a sketch of the setup used in this thesis. All the optics inside
the neaSNOM box has been purchased from Neaspec GmbH (now Attocube systems
AG). For simplification, the deflection laser and other components associated with
the AFM feedback loop and the s-SNOM lock-in detection are not represented. In
our setup, the deflection laser has a wavelength of 790 ± 10 nm. The beam path of
the sources used for the tip illumination can be changed with the help of flip mirrors
(mirrors with rounded arrows around them). The incident light from a continuous
wave or pulsed laser can therewith be directed either towards the right or left entrance
of the s-SNOM. In both cases, light is then separated in two beams by a 50/50 BS.
Half of it is focused downwards by a parabolic mirror (NA=0.37) onto an AFM tip
oscillating in intermittent contact mode while scanning the sample. The tip used is a
commercially available platinum-coated silicon tip (ARROW-NCPt from Nanoworld).
It is oscillating at about 250-300 kHz and usually with a peak-to-peak amplitude of
50-70 nm. The light is then scattered in all directions. A small part of it is reaching
the parabolic mirror and directed by reflection at the BS towards a one pixel PD
(2051/2053 from Newport).

When using a continuous wave laser, the PsHet module (mirrors on the left side of
the neaSNOM) with a reference mirror oscillating at a frequency of 300 MHz and with
an amplitude of about 21% of the laser wavelength can be used. As seen in section
1.2.1, PsHet detection allows to strongly suppress the background coming from direct
scattering from the sample, and retrieve the amplitude and phase of the signal.

When using a broadband laser, the nano-FTS module (mirrors on the right side of
the neaSNOM) can be used. In such case, the reference mirror is swept through the
coherence range of the laser. Using the nano-FTS allows to recreate the spectrum of
the sample under study. However, as has been seen in section 1.2.2, the background
is not completely suppressed.

At the beginning of this PhD work, the setup was consisting of the neaSNOM
with the nano-FTS module and the permanently available illumination sources were
a helium-neon (HeNe) laser and a green laser diode (522 nm). Since the nano-FTS
module is optimized for broadband spectroscopy, it couldn’t be used with continuous
wave sources so the measurements were mostly done using the simplest form of s-
SNOM as presented in section 1.1.3. During the project, a PsHet module has been
installed, as well as two femtosecond lasers (pulse width of about 10 and 100 fs) in
the wavelength range of 800 nm, enabling a proper use of the nano-FTS and PsHet
modules. Furthermore, the setup has been built such that new lasers or other optical
components could be quickly added to the beam path. Additional elements such as a
tunable near-infrared laser, polarizers and half-wave plates have thus been used when
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Figure 1.10. Experimental setup. The red beams represent the continuous wave laser path,
the brown beams the broadband laser path, and orange the paths where both always travel
through. The eventual back-reflections reaching the laser are stopped by optical isolators
(OI). Flip mirrors bring the incident laser either towards the left or right side of the neaS-
NOM. The laser beam is focused by a parabolic mirror on the oscillating tip of the AFM
cantilever. The light that is backscattered in the same direction as the beam path is then
recollected and directed towards a photodiode. Depending on the type of laser, either the
PsHet or the nanoFTIR can be used to help the signal detection.

needed. The presence of such an element is mentioned in the thesis when applicable.
More information about the laser sources and detectors can be found in Appendix B.
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CHAPTER2
Optical properties of

metals
Metals have been used for centuries, either by making use of their mechanical prop-
erties to make weapons and armors, high reflectivity to make mirrors and jewelry, or
more recently electronic transport properties to make modern electronics.

In this chapter, the basic optical properties of metals are described, with a focus
on gold properties. The Drude model and the deviations from this model due to
interband transitions are explained, and the fundamental properties of wave traveling
at their surface - the SPPs - are presented. This chapter is based on the books Optical
Properties of Solids from M. Fox [72] and Plasmonics, Fundamentals and Applications
from S.A. Maier [18].

2.1 The Drude model
Metals are characterized by having one or several of their most energetic electrons -
the free electrons - per atom that can move in the crystal lattice. In the Drude model,
the movement of these free electrons is considered as a gas of particles moving in a
medium with positive ions. Their movement is damped through collisions occurring
at a characteristic time τ , leading to a damping of the electrons’ movement γ = 1/τ .
Applying Newton’s second law to an electron of mass me, of position x(t) and driven
by an electric field E leads to the equation

me
d2x
dt2 + meγ

dx
dt

= −eE, (2.1)

where e the elementary charge of a single electron.
Furthermore, the driving electric field can be expressed as E(t) = E0e−iωt. As-

suming that the electron has the same harmonic time dependence and calculating
the dielectric displacement D for a number of electrons per unit volume N gives the
equation

D = ε0εd(ω)E = ε0

(
1−

ω2
p

ω2 + iγω

)
E, with ωp =

√
Ne2

ε0me
(2.2)
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where ε0 is the electric permittivity in vacuum. Thus, the expression of the dielectric
function as described by the Drude model is [18, 72]

εd(ω) = 1−
ω2
p

ω2 + iγω
. (2.3)

Figure 2.1a presents the real and imaginary part of dielectric function for a Drude
metal of plasma frequency ωp = 1.37 1016 Hz and damping γ = 1.05 1014 Hz ,
as described by the Drude model. In the Drude model, the real part is negative -
Re(εd) = −20 for a wavelength 633 nm - and until reaching the plasma frequency
ωp, for which it becomes zero. It then continues to increase, taking positive values.
The imaginary part is positive at low frequencies and decreases towards zero at high
frequencies. For a wavelength of 633 nm, Im(εd) = 0.7.

The reflectivity R of metals can then be calculated using the relation [72]

R =
∣∣∣∣√εd − 1
√

εd + 1

∣∣∣∣2 . (2.4)

Figure 2.1b shows the reflectivity of a typical Drude metal as a function of the fre-
quency normalized to ωp. For frequencies below ωp, the reflectivity is equal to 1, while
for frequencies above ωp, the reflectivity drops to zero. Thus, the Drude model ex-
plains the high reflectivity of metals at low energies such as the microwave or infrared
regime, and the transparency of metals in the ultraviolet range [72]. The transition
from high to low reflectivity is sharp when the damping are neglected. The addition
of damping γ slightly reduces the reflectivity close to ωp and makes the transition
smoother, while keeping the general shape.

a) b)

Figure 2.1. Metal in the Drude model. a) Real and imaginary part of the dielectric function
as a function of the angular frequency normalized to the plasma frequency, with plasma
frequency ωp = 1.37 1016 Hz and damping γ = 1.05 1014 Hz. b) Reflectivity of the same
metal as a function of the normalized angular frequency, without and with damping.
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However, the Drude model fails to accurately represent the optical properties of
metals in the case of metals such as gold or copper. The reasons for the discrepancies
between this model and the experiments are presented in the next section.

2.2 Refractive index of gold
When comparing real metals such as gold with their Drude model, some extensive dis-
crepancies can be seen. Figure 2.2 present the comparison between real and imaginary
part of the dielectric function of a Drude metal of same plasma frequency and damp-
ing as gold (εD) and as measured by the Johnson and Christy [73] (εJ&C). Compared
to the Drude model, Re(εJ&C) reached values close to zero for lower frequencies than
ωp and Im(εJ&C) doesn’t asymptotically decays to zero. The difference is significant
in the visible range, where for example at a wavelength of 633 nm, Re(εJ&C) = -11.8
instead of -20 and Im(εJ&C) = 1.25 instead of 0.7.

The reason for these discrepancies are the interbands transitions in gold [72, 74].
Electrons can indeed be excited from occupied to unoccupied states of the gold elec-
tronic band structure, leading to absorption that is not taken into account in the
Drude model. In the case of gold, the electrons lying in the 5d band states can be
excited to the 6sp states [74].

These additional transitions can be taken into account by using the Drude-Lorentz
model [75], which adds Lorentzian resonances to the dielectric function. However, this
model does not follow very well experimental values of the gold dielectric function
in the visible range [75]. Therefore, in this thesis, we take the values measured in
previous studies [73,76,77] as reference for our experiments.

a) b)

Figure 2.2. Comparison between the dielectric functions of a Drude metal of plasma frequency
ωp = 1.37 1016 Hz and of damping γ = 1.05 1014 Hz (εD) and gold (εJ&C). a) Real part of
the dielectric function as a function of ω/ωp. b) Imaginary part of the dielectric function as
a function of ω/ωp.
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2.3 Surface plasmon polaritons
SPPs are collective oscillations of the electronic cloud traveling at the interface be-
tween two materials. In the simplest geometry, the interface is a dielectric material of
dielectric function εd and a metal of dielectric function εm, as sketched in Figure 2.3.
In this geometry, the SPPs are p-polarized, meaning that their electric field vector is
in a plane normal to the interface. They are bound to the interface, meaning that
their field exponentially decays in the z-direction (direction normal to the interface,
see Figure 2.3), but they can propagate in the (x,y)-directions. As such, they qualify
as evanescent fields in the z-direction.

The condition for the existence of SPPs in the case of a single interface can be
deduced from the boundary conditions and Maxwell’s equations, and can be expressed
as [18,72]

kd
z

km
z

= − εd
εm

, (2.5)

where kd
z > 0 and km

z > 0 are the components of the wavevector normal to the inter-
face for the dielectric material and the metal, respectively. Equation 2.5 highlights
that the dielectric constants εd and εm must have opposite sign for the SPPs to exist.

The dispersion relation of the SPPs can be expressed as [18,72]

q = ω

c

√
εmεd

εm + εd
, (2.6)

where q is the in-plane wavevector (i.e. wavevector parallel the the dielectric/metal
interface) and c is the speed of light in vacuum. Thus, the SPPs are able to propagate
in the region where the real part of εm, Re(εm), is negative and εm + εd < 0.

The wavelength of SPPs is then expressed as

λSPP = 2π

Re{q}
, (2.7)

x

d

m

z

Figure 2.3. Simplest geometry for the propagation of SPPs at the interface between a metal
of dielectric function εm and a dielectric of dielectric function εd.
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a) b)

Figure 2.4. Dispersion relation of SPPs. a) SPP propagating at the interface between a Drude
metal of plasmon frequency ωp = 1.37 1016 Hz and air, without damping and with a damping
of γ = 1.05 1014 Hz. b) SPP propagating at the interface between gold and air. The data
for the gold dielectric function is taken from Johnson and Christy (J&C) [73] and McPeak
et al. (McPeak) [77].

and the propagation length for the SPP intensity is

LSPP
p = 1

2 Im{q}
. (2.8)

Figure 2.4a displays the dispersion relation of SPPs traveling at the interface
between air and a generic metal following the Drude model, with ωp = 1.37 1016

Hz and γ = 1.05 1014 Hz. As SPPs are bound to the surface, their energy range
corresponds to the portion of the curve lying to the right of the light line, defined as
the dispersion relation in free space. As light propagation in air follows the light line,
SPPs cannot be excited directly by plane waves (PWs). Specific techniques using
prisms, gratings, or sharp probes must be used to bridge the wavevector gap between
the light line and the dispersion relation of the SPPs. For the same reason, SPPs
cannot be directly imaged with a conventional microscope. It is however possible to
directly map the SPPs using the subwavelength resolution and the sharp tip of the
s-SNOM.

In a lossless metal, the wavevector q of the SPPs tends towards infinity, for the
surface plasmon frequency ωsp = ωp/(εd + 1). It would imply that at this frequency,
the wavelength λSPP and the group velocity of the SPPs tend to zero. Metals are
however lossy, which limits q to a finite value, as can be seen in the case of damping
in Figure 2.4a in the case with damping.

Figure 2.4b shows the comparison between the dispersion relation of SPPs on
gold, based on the values of the gold dielectric function measured by Johnson and
Christy [73] and the ones measured by McPeak et al. [77]. McPeak et al. use template
stripping with an improved recipe to obtain very smooth gold surfaces [77]. In the
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case of gold, the losses due to the interband transitions are particularly important
compared to what can be seen for silver, for example. The confinement of the SPPs
is therefore not as strong as on silver but the chemical stability of gold makes it an
interesting platform for long-terms studies.

The dispersion relations plotted in Figure 2.4b are different depending on the
experimental values for the SPPs. Notably, it seems that the plasmonic properties
are slightly better for the values of McPeak et al. around 2-2.5 eV, probably due to
their improved recipe. These values could thus be compared to the values obtained by
direct measurement of SPPs on monocrystalline gold, as is shown in the next chapter.



CHAPTER3
Characterization of

surface plasmon
polaritons (SPPs)

Near-field characterization of surface waves has been realized for a wide range of polari-
tons across the optical spectrum, from plasmons in graphene in the mid-infrared [49]
to excitonic waveguides [51] in the visible range. Many of these works used a s-SNOM
in a reflection configuration such as ours. In this configuration, interference patterns
due to SPPs excited through several excitation channels on an air/gold interface have
been studied [35,36], and a method was found to isolate the SPPs launched by the tip
- i.e. the tip-launched SPPs - and to extract their wavelength in the visible range [36].
Yet, the full characterization of both wavelength and the propagation length of SPPs
at in the visible range were not achieved with a s-SNOM in reflection before our work.
The characterization of SPPs for this interface is nevertheless relevant, as the many
tabulated values of the dielectric functions available in the literature [73, 76, 77] pre-
dict different wavelengths and propagation lengths of the SPPs. It is thus important
to experimentally determine the value of the complex wavevector of our gold platelets
before studying its coupling with other materials in a quantitative way. The synthe-
sis of monocrystalline gold platelets [29, 31, 78], having a very low surface roughness,
provides an opportunity to do so.

In this chapter, the different excitation channels for the SPPs are explained and
a method to isolate the pure tip-launched SPPs is demonstrated. The tip-launched
SPPs should indeed be easier to characterize fully, as the incident laser beam is al-
ways following the tip, and the characterization of the other types of SPPs involves
the precise knowledge of the incident angles [35, 79]. Furthermore, an expression
for the amplitude and the phase of the near-field signal is derived. With these ex-
pressions the wavelength and propagation length of the SPPs are retrieved for an
excitation wavelength of 633 nm. This chapter is based on our study “Quantita-
tive near-field characterization of surface plasmon polaritons on monocrystalline gold
platelets”, published in Optics Express [66].
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3.1 The different excitation channels of SPPs
As mentioned in Section 2.3, the dispersion relation of the SPPs propagating at the
interface between gold and air is close to the light line compared to SPPs at the
air/silver interface [18] or in graphene [47, 49, 80], for example. The SPPs can thus
be excited at the tip, but also at the edges of the gold platelets. The different ways
to excite SPPs on gold are presented here.

3.1.1 Tip-launched SPPs
The tip-launched SPPs are defined as the SPPs excited directly by the tip. Thus,
in a s-SNOM measurement in reflection, at each position of the scan, a tip-launched
SPP wave is launched by the tip, propagates towards the edge of the gold platelet, is
reflected at the edge, propagates back towards the tip, and finally is scattered by the
tip towards the detector. These processes are labeled as 1 to 4 in Figure 3.1a.
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Figure 3.1. Tip-launched SPPs. a) Sketch of the tip-launched SPP path, indicated by the red
arrows. The black arrow represents the movement of the tip from one position to another,
∆x. b) Equivalent path in which the “excitation” and “detection” functions of the tip have
been separated. The former position of the edge is highlighted by the dotted line. From one
measurement point to the other, the “excitation tip” and “detector tip” move towards each
other by a total distance 2∆x.

In the measurements of tip-launched SPPs, the tip is at the same time acting as
the emitter of the tip-launched plasmons and as the receiver. The distance the SPP
has traveled is thus at all point of the scan twice the distance that is recorded in
the measurement [49]. The tip-launched SPPs can thus be measured as long as their
propagation length is larger than two times the distance between the tip and the edge,
supposing no additional losses due to the reflection at the edge. Furthermore, each
step ∆x from one position of the tip to another corresponds to a reduction of the
distance traveled by the tip-launched SPPs of 2∆x, as highlighted by Figure 3.1b.

Therefore, two sets of coordinates are needed when talking about the tip-launched
SPPs in our s-SNOM measurements:
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• A coordinate system corresponding to the coordinates of the near-field maps,
(x, y, z). It is associated with a field from the tip-launched plasmons of the form

Etl = A√
x

e−Γtlxei(Ktlx−ϕp). (3.1)

• A coordinate system corresponding to the hypothetical situation where the re-
ceiving part is fixed and only the tip is moving, (x′, y′, z′). It is associated with
a SPP field of the form

ESPP = A√
x′

e−ΓSPPx′
ei(KSPPx′−ϕp). (3.2)

This second set of coordinates corresponds to the distance that the SPPs have
really traveled.

The two coordinates are related through the transformation x′ = 2x, for all position
coordinates x′ and x.

The relationship between the characteristic constants is thus:

Ktl = 2KSPP and Γtl = 2ΓSPP (3.3)

Defining the field propagation length as Ltl
p = 1/Γtl and LSPP

p = 1/ΓSPP, this also
means:

Ltl
p =

LSPP
p
2

(3.4)

and, as the wavelength of the SPPs is defined as Λtl = 2π/Ktl, the tip-launched
wavelength is given by

Λtl = λSPP
2

= λ0

2 Re(ñ)
, (3.5)

where λSPP is the SPP wavelength, λ0 is the laser wavelength in free space, and Re(ñ)
is the real part of the SPP effective refractive index, defined as ñ =

√
εmεd

εm+εd
. The

factor 2 between the real SPP wavelength λSPP and the measured wavelength Λtl due
to the tip-launched SPP path has been mentioned in several works [17,36,49,50].

In the following, the variable K is be used when plotting the wavevector in
the coordinates (x, y, z) of the near-field map, while the variable q is used
whenever the SPP wavevector in the coordinates (x′, y′, z′) is plotted.

3.1.2 Edge-launched and tip-reflected edge-launched SPPs
As mentioned in Section 2.3, the SPPs on gold are not particularly confined. They
can therefore be excited not only by the s-SNOM tip, but also at the sharp edges of
the monocrystalline gold platelets. Furthermore, the incident laser is focused on the
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tip with a parabolic mirror of numerical aperture NA = 0.37. Thus, the diffraction-
limited laser spot has a diameter of ϕ = 2.1 µm at the focal point of the parabolic
mirror. In addition, the light is focused on the tip at an incident polar angle of
θ = 60◦. The size of the spot on the gold surface is thus not a disk, but rather an
ellipse of minor axis ϕ and of major axis about 8.5 µm, which is much larger than the
tip apex radius of about 25 nm.

Hence, when the tip comes closer to the edge of the platelet, the laser beam starts
to cover the sharp edge of the platelet, which means that SPPs can also be launched
and scattered from the edge. These SPPs are called edge SPPs in the following.
They can be separated in different categories depending on their optical paths. These
categories are presented in Figure 3.2. They have been observed and studied using a
s-SNOM setup without interferometric detection (as in Figure 1.3), mainly by Walla
et al. [35] and Kaltenecker et al [36].

The first category (see Figure 3.2a) is the edge-launched SPPs [35]. These SPPs
are excited at the edge, propagate towards the tip and are scattered by the tip towards
the detector, where they interfere with the rest of the signal. The wavelength corre-
sponding to the interference between these edge-launched SPPs and the background
field EB (as defined in Section 1.1.3) has been calculated [35] as

Λel1(θ, φ) = λ0

− sin(θ) sin(φ) +
√

sin2(θ) sin2(φ)− sin2(θ) + Re(ñ)2
, (3.6)

where θ is the polar angle of the incident light, and φ is the azimuthal angle between
the edge and the incident light (see Figure 3.2a).
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Figure 3.2. Sketch of the optical paths for the different types of edge SPPs. a) Path for the
first type of edge-launched SPP interference leading to a signal of wavelength Λel1. The
inset shows a top view of the gold and highlights the angle φ between the platelet edge and
the incident light. b) Path for the second type of edge-launched SPP interference leading
to a signal of wavelength Λel2. c) Path for the tip-reflected edge-launched SPPs interference
leading to a signal of wavelength Λtrel.

Another category of edge-launched SPP interference has been identified by Kalte-
necker et al. [36] (see Figure 3.2b). These SPPs are also excited at the edge and
propagate towards the tip, but interfere with the light that is scattered back directly
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at the edge. As these SPPs are launched the same way as the edge-launched SPPs,
they are referred to as the second type of edge-launched SPPs. The wavelength corre-
sponding to the interference between these SPPs and the background field has been
calculated to be [36]

Λel2(θ, φ) = λ0

+ sin(θ) sin(φ) +
√

sin2(θ) sin2(φ)− sin2(θ) + Re(ñ)2
, (3.7)

which means that Λel2(θ, φ) = Λel1(θ,−φ). Note that inverting the arrows in Figures
3.2a and 3.2b leads also to the detection of SPP patterns, scattered from the edge
instead of being launched at the edge. As these SPPs have the same optical path
as the edge-launched SPPs, they lead to the same wavelengths and thus cannot be
differentiated from the edge-launched SPPs.

As the beam spot does not cover only the tip apex but also the tip shaft, a third
category of edge SPPs arises from the light reflected at the tip shaft towards the edge
(see Figure 3.2c). The SPPs are then again excited at the edge, propagate towards
the tip, and are scattered by the tip towards the detector, where they interfere with
the rest of the signal. These SPPs are called the tip-reflected edge-launched SPPs. As
the angle of incidence at the edge here strongly depends on the geometry of the tip,
the wavelength corresponding to the interference of these SPPs with the background
field is usually estimated with the expression [35,36]

Λtrel = Λel1(θ′, φ), (3.8)

where θ′ is a fitting parameter corresponding to the polar angle between the light
reflected at the tip and the surface of the platelet [35].

It should be noted that all these wavelengths correspond to the interference be-
tween the SPPs and the large background field EB due to the direct back-scattering
of the laser light towards the detector [36]. The SPPs can also interfere with each
other, but since the strength of their signal is low compared to the background field,
the interferences between SPPs are considered as second-order effects having little in-
fluence on the total signal. Furthermore, the PsHet detection is supposed to remove
the background field. The validity of Equations 3.7, 3.7 and 3.8 should thus be tested
when characterizing the edge SPPs with s-SNOM and PsHet detection.

3.2 Isolation of the tip-launched SPPs
As mentioned in Section 3.1, the measurement of SPPs on gold with s-SNOM involves
several excitation channels, which leads to complex interference patterns close to the
edge of the platelet. In our previous study [36], a method was developed to isolate and
extract the wavelength of the tip-launched SPPs on a monocrystalline gold platelet.
However, the propagation length could not be characterized. The platelets were
indeed too small for the propagation length of SPPs on gold, such that in most
cases the tip-launched SPPs reflected from different edges would influence each other.
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Moreover, the initial approximation of the tip-launched SPPs as PWs - instead of
circular waves (CWs) - was shown to not describe these SPPs properly.

This section presents the experimental details and study of the incident angle
dependence from our work [66], leading to the the isolation of a clear tip-launched
signal.

3.2.1 Experimental details
Figure 3.3a shows an optical image from the sample used to measure the SPPs on gold.
It consists in a monocrystalline gold platelet covered with aluminum oxide (Al2O3)
and deposited on a chip made of silicon on which a 300-nm silicon oxide (SiO2) layer
was thermally grown. The sketch of the sample cross section in the inset highlights
these different layers (the silicon is not represented for simplification).
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Figure 3.3. Sample and experimental setup. a) Optical image of the sample. The red arrow
represents the incident light, impinging of the sample with an azimuthal angle φ. The
region of interest (ROI) is highlighted by the violet rectangle. The inset shows a sketch of
the substrate and sample cross-section. b) Sketch of the s-SNOM setup (same configuration
as in Figure 1.5). Figures from [66]. ©2022 Optica Publishing Group under the terms of the
Open Access Publishing Agreement.

The sample was purchased from Nanostruct GmbH. The gold platelets were grown
by a wet-chemical synthesis process [81], which creates crystals with a high aspect
ratio and a typical root-mean-square (RMS) roughness of 200 pm (value given by the
supplier and confirmed in [36]). The platelet is about 200 µm large and about 90
nm thin. The 2-nm layer of Al2O3 has been deposited by atomic layer deposition to
protect the gold surface from impurities. It is also used as a spacer between the gold
platelet and the van der Waals material in Chapter 5.

The darker branching trace in the middle of the platelet corresponds to a fold
that has likely been created during the deposition on the substrate. This fold is -
at worst - about 50 µm away from the region of interest (ROI). Knowing that the
typical propagation length of SPPs is predicted to be about 10-14 µm [73,77], eventual
SPPs launched or reflected at this fold should not interfere with the measurement.
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Following the same logic, the SPPs launched or reflected from other edges of the
platelet do not influence the measurement either, as the ROI is far from the platelet’s
corners.

Figure 3.3b represents the s-SNOM configuration used in the experiments. A
stabilized HeNe laser (HRS015 from Thorlabs GmbH) has been used to focus light
of wavelength 633 nm onto a platinum-coated s-SNOM tip (nominal apex radius: 25
nm). The polar angle between the light incidence and the normal to the surface is
θ = 60◦. PsHet detection was used to suppress the background field and retrieve the
amplitude and phase of the near field, as explained in Section 1.2.1. The 3rd harmonic
of the tip oscillation frequency has been used to obtain the near-field amplitude and
phase. The resulting maps - made with a scanning step size of 30 nm and a step
integration time of 6.6 ms - are described and analyzed in the following sections.

3.2.2 Amplitude and phase profiles
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Figure 3.4. Measurement results. a) Near-field amplitude, b) near-field phase, and c) topog-
raphy of the ROI for an incidence angle of φ = −3◦. The respective profiles are displayed
above the maps, and the origin of the x-axis is chosen to be at the platelet’s edge. Figures
from [66]. ©2022 Optica Publishing Group under the terms of the Open Access Publishing
Agreement.

Figure 3.4 displays the maps of the near-field amplitude (Figure 3.4a), near-field
phase (Figure 3.4b) and topography (Figure 3.4c) of the ROI. The scales of the
near-field amplitude and phase are adjusted and the map of initial width 36 µm has



34 3 Characterization of surface plasmon polaritons (SPPs)

been cropped to highlight the interference patterns on the gold. These interference
patterns are due to the edge SPPs and tip-launched SPPs. Moreover, the position
of the origin of the x-axis has been chosen at the edge of the platelet. The sample
thickness of about 90 nm is confirmed by the topography. The gold platelet is thus
thick enough to avoid hybridization between the SPPs at the air/gold and the SPPs
at the gold/SiO2 interfaces [36,82]. Furthermore, the topography confirms the sharp
and defect-less edge of the gold platelet. This property is important, as a small defect
at the edge could act as a local scatterer that launches SPPs and thus perturb the
interference patterns of the near-field amplitude and phase.

For all the measured maps, the scanning area is rotated such that the maps always
have the edge in the vertical direction (along y). These maps are invariant along
the y-direction and profiles can be made by averaging 200 pixels in the y-direction,
without loss of information. These profiles are shown above each amplitude, phase
and topography map, respectively, and highlight that the interference patterns on the
gold are superimposed with an offset. A change in this offset can be seen, especially
in the amplitude profile, at the boundary between the silicon (x < 0) and the gold
(x > 0). Note that, on the gold, the offset of the near-field amplitude is much larger
than the SPP oscillations. This characteristic is used in Section 3.3, and the nature
of the offset is discussed in the same section.

3.2.3 Influence of the incident angle

Figure 3.5 presents the near-field amplitude profiles of the SPPs on gold from measure-
ments at six different azimuthal angles φ between the incident light and the platelet’s
edge. To highlight the interference patterns, the constant offset has been subtracted
and the amplitude profiles have been normalized. The respective Fourier transforms
are presented below each profile. The insets depict a top view of the sample, with
the approximate direction of the light indicated by the red arrow.

Two regions can be distinguished in the amplitude profiles. The region closest
to the edge (white area) shows interference patterns with either long wavelengths
compared to the wavelength of the expected tip-launched SPPs, or complex inter-
ference patterns. This region is characterized by the interference contributions from
the edge-launched SPPs and the tip-reflected edge-launched SPPs in addition to the
tip-launched SPPs. By contrast, a few micrometers away from the edge (red area
starting at xb), the edge SPPs cannot contribute anymore to the signal, as the in-
cident light does not cover the edges anymore. Thus, only the tip-launched SPP
oscillations remain.

The different SPP contributions at each angle φ can be recognized in the FT of
each profile (black curves in the lower panel of Figures 3.5a-f). The FT was applied
to the profiles by applying the fast Fourier transform (FFT) algorithm from Matlab®.
Table 3.1 summarizes the predicted wavelength of the edge SPPs for each angle φ.
This angle is calculated using the nominal value of 45◦ for the incidence light, the
rotation angle of the scanning direction, and the measure of the angle between the
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edge and the vertical in the maps. The angle θ is taken as 60◦ (nominal value) for
the edge-launched SPPs and 35◦ for the tip-reflected edge-launched SPPs. We use
the dielectric function from Aguilar-Gama et al. [83] for the Al2O3 and the one from
McPeak et al. [77] for the gold to calculate in-plane wavevector q of the multilayer
structure [18] and deduce the refractive index as ñ = q/(ω/c). Thereby, we find a
value of Re(ñ) = 1.045. The vertical lines indicate the predicted position of the edge
SPP wavelengths, calculated using Equations 3.6, 3.7 and 3.8.

φ (◦) Λel1 (µm) Λel2 (µm) Λtrel (µm)
-3 1.0 1.2 0.71

43.1 2.6 0.44 1.1
87.2 3.5 0.33 1.3
178.5 1.1 1.0 0.73
-136 0.44 2.7 0.47
-93 0.33 3.5 0.39

Table 3.1. Predicted values for the edge SPPs as a function of the azimuthal angle φ, calcu-
lated from Equations 3.6, 3.7 and 3.8

For angles φ equal to 43.1◦ and 87.2◦, a large contribution probably coming from
the tip-reflected edge-launched SPPs can be recognized. By contrast, for angles of
-136◦ and -93◦, the first type of edge-launched SPPs are prominent. For the same
angles, Λtrel is calculated to be very close to Λel1, but since the tip-reflected edge-
launched SPPs are created by reflection at the tip towards the edge (recall Figure
3.2c), they are unlikely to be excited in a configuration where the edge is behind
the tip. Furthermore, no clear effect from the second type of edge-launched SPPs,
of wavelength Λel2, can be seen for any of the studied angles, contrary to what has
been reported in Ref. [36]. As this type of SPPs is interfering with the light directly
back-scattered at the edge, which is part of the background light, the absence of clear
peak at Λel2 gives an indication that the PsHet detection is effective in suppressing
the background.

For angles φ of -3◦ and 178.5◦, i.e. at grazing incidence angle, the tip-launched
SPP peak at the predicted wavelength of Λtl = 0.303 µm is much more pronounced
than for the other angles. This effect is particularly visible for φ = −3◦. Several
reasons can induce this effect. First, all the wavelengths of the edge SPPs are further
away from Λtl than for the other angles. The peak at Λtl is thus not hidden behind
another, more prominent peak. Second, the excitation of SPPs at the edges could be
less effective at grazing incidence angle. Moreover, the projection of the laser spot size
on the sample is smaller at grazing incident angle, which means that the interference
patterns from the edge SPPs cover a smaller portion of the profile (see the different
positions of xb depending on the angle). Finally, the tip itself could excite more
efficiently SPPs at specific angles. A previous study [35] has indeed highlighted that,
since s-SNOM tips are not circularly symmetric, the excitation of SPPs is anisotropic.
This anisotropic excitation could thus explain why the tip-launched SPPs seem more
pronounced at an angle of -3◦ compared to 178.5◦.
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Figure 3.5. Amplitude profiles and respective Fourier transforms (FT) for an incident
azimuthal angle of a) φ = −3◦, b) φ = 43.1◦, c) φ = 87.2◦, d) φ = 178.5◦, e) φ = −136◦ and
φ = −93◦. The spectra are plotted as a function of the fringe spacing Λ = 2π/K. The profile
truncated at xb is highlighted by the red area and the corresponding FT is displayed as the
red spectrum. The vertical lines highlight the predicted position of the tip-launched and
edge SPPs’ wavelength, calculated using Equations 3.5, 3.6, 3.7 and 3.8. The insets depict
a top view of the sample, where the red arrows represent the directions of the incident
light. Figures from [66]. ©2022 Optica Publishing Group under the terms of the Open Access
Publishing Agreement.
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the green spectrum. The vertical lines highlight the positions of the tip-launched and edge-
launched SPPs. The insets depict a top view of the sample, where the red arrows represent
the directions of the incident light.
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The prominence of the tip-launched peak directly influences the characterization
of the tip-launched SPPs. To highlight this point, the FT of the truncated profile
lying in the red region, starting at xb, is plotted (red spectra of Figure 3.5). For
all the resulting spectra, the peak from the tip-launched SPPs is made clearer, such
that the wavelength of the tip-launched SPPs can be measured. However, most of
the peaks are still too noisy for a proper characterisation of the propagation length,
related to the width of the peaks. By contrast, the peak of the truncated profile
in Figure 3.5a (φ = −3◦) shows a much lower noise floor and can thus be used to
measure the tip-launched SPP propagation length.

Figure 3.6 presents the near-field phase profiles from the same measurements as
in Figure 3.5. The phase profiles present the same type of oscillations, and the
corresponding spectra show similar peaks, where the same types of edge SPPs and
tip-launched SPPs can be recognized. The phase profiles thus seem to contain the
same information as the amplitude profiles.

Intuitively, it could be argued that, if the PsHet detection removes the background
- which was the previous reason for the SPP interferences - then the pure SPP signal
should be retrieved by the s-SNOM. In this scenario, in the region further from the
edge where only the tip-launched SPPs are left, the near-field amplitude would be a
decaying exponential and the near-field phase would be varying from −π to π, as a
non-interfering field reconstructed using the inverse tangent function [84]. As none
of the aforementioned profiles show these characteristics, a further understanding of
and the derivation of expressions for the near-field amplitude and phase are needed.

3.3 Derivation of expressions for the near-field profiles
The PsHet detection suppresses the background coming from light back-scattered
directly towards the detector [14]. Since interference fringes in the near-field mea-
surements of the SPPs are still present, the SPPs must interfere with some other
signal coming from the near-field.

In this section, the derivation of the expression for the near-field amplitude and
near-field phase of the tip-launched SPPs is presented, based on the observation of the
experimental amplitude and phase profiles. The derivation follows the supplementary
information in Ref. [66]. Lastly, the limits to the approximations made in order to
get these expressions are tested.

3.3.1 Measurement profiles
Figures 3.7a and 3.7b present the full profile of the near-field amplitude and phase
from the measurement at φ = 3◦. Both these profiles are well-fitted with a CW
description - attributed to the tip-launched SPP contribution, as in Ref. [49] - super-
imposed with a constant offset. Far away from the edge (x > 30 µm), the oscillations
from the CW become negligible and only the offset remains. The amplitude offset is
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defined as |Eg| and the phase offset as ϕg. In the region where only the edge SPPs
are absent, the near field obtained with the s-SNOM can thus be expressed as

ENF = Etl + Eg with Etl = A√
x

e−Γtlxei(Ktlx−ϕp) and Eg = |Eg|eiϕg (3.9)

where Etl is the tip-launched SPP field defined as in Equation 3.1, and Eg is the field
corresponding to the offset.

a)

µ

µ

b)

Figure 3.7. Measurement profiles. a) Near-field amplitude and CW fit. b) Near-field phase
and CW.

In the literature treating s-SNOM measurement of SPPs with PsHet detection,
an article studying the origin of the interference patterns explains these patterns as
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the result of the interference between the SPPs (in this case only one type of edge-
launched SPPs) with the incident light and its direct reflection at the gold surface [85].
However, if the PsHet detection removes the far-field background as mentioned in Sec-
tion 1.2.1, then the origin of the offset should be purely near-field. Indeed, in the
work from Woessner et al. [49], the interference pattern of the graphene plasmons is
interpreted as coming from the interference with the “local response”, meaning the
near-field response of the scanned surface due to the coupling to the AFM tip. The
same interpretation is given in the work from Barnett et al. [79], where the constant
is mentioned as the near-field contrast of the material in the absence of surface waves.
This “local response” is depending on the evanescent reflection coefficient of the sur-
face [49,53] and is thus constant throughout the scan, as long as the scanned material
or topography is not changed. In our view, this near-field interpretation of the offset
is much more convincing, especially because other works use this near-field response
to extract material parameters such as the dielectric function [53,86].

3.3.2 Amplitude
The amplitude squared of the total field is

|ENF|2 = |Etl + Eg|2 (3.10)
= |Etl|2 + |Eg|2 + E∗

tlEg + EtlE
∗
g (3.11)

= A2

x
e−2Γtlx + |Eg|2 + 2

A|Eg|√
x

e−Γtlx cos(Ktlx− ϕp − ϕg) (3.12)

When fitting the near-field amplitude with Equation 3.10, we obtain: |Eg| = 5.1
mV, A = 0.13 mV.√µm. Furthermore, x is in the interval [3 µm, 30 µm]. Thus,
in the interval where the tip-launched SPPs are present, the maximum value of the
dimensionless quantity A

|Eg|
√

x
is A

|Eg|
√

x
= 0.13

5.1
√

3 = 0.015.
At the first-order Taylor approximation in the variable A

|Eg|
√

x
, the first term of

Equation 3.12 can be neglected and the expression becomes

|ENF|2 ≈ |Eg|2
(

1 + 2 A

|Eg|
√

x
e−Γtlx cos(Ktlx− ϕp − ϕg)

)
. (3.13)

Thus, the amplitude can be expressed as

|ENF| = |Eg|

√
1 + 2 A

|Eg|
√

x
e−Γtlx cos(Ktlx− ϕp − ϕg), (3.14)

and using again the first-order Taylor approximation, we end up with the final ex-
pression for the near-field amplitude profile

|ENF| ≈ |Eg|+
A√
x

e−Γtlx cos(Ktlx− ϕ) (3.15)
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with ϕ = ϕp + ϕg.
The information that can be accessed in the amplitude fit is thus |Eg|, A, ϕ, and

the SPP characterization constants Ktl and Γtl.
As only the total phase ϕ = ϕp+ϕg can be accessed in the amplitude measurement,

the phase information should be expressed in the same way in the following section,
to capture a possible global phase shift.

3.3.3 Phase
As seen in Section 1.2.1, when using the PsHet detection, the near-field phase ΦNF
can only be reconstructed up to the additive constant ΦR related to the reference
field. The near-field phase can thus be expressed as

ΦNF = arctan
(

Im(Etl + Eg)
Re(Etl + Eg)

)
− ΦR, (3.16)

where “Im(...)” represent the imaginary part and “Re(...)” the real part. Note that to
obtain this expression we supposed Re(Eg) > 0, meaning that - with relatively small
oscillations from Etl - the phase ΦNF + ΦR has values always between −π/2 and π/2.
Having Re(Eg) < 0 would only change the result by an additional constant π, so the
analysis would be the same.

In this section, we derive the phase profile expression for two different cases:

• for Re(Eg) not small compared to |Eg|. This means Re(Eg) ≫ Im(Eg) (hence
Re(Eg) ≈ |Eg|) or Re(Eg) ≈ Im(Eg) (hence Re(Eg) ≈ |Eg|/

√
2).

• for Re(Eg) small compared to |Eg|, meaning Re(Eg)≪ Im(Eg).

Case where Re(Eg) is not small compared to |Eg|.
To simplify the expressions, we calculate the quantity F = tan(ΦNF ) = Im(Etl+Eg)

Re(Etl+Eg) .
F can be expressed as

F =
Im(Eg) + |Ep| sin(Ktlx− ϕp)
Re(Eg) + |Ep| cos(Ktlx− ϕp)

(3.17)

= 1
Re(Eg)

Im(Eg) + |Ep| sin(Ktlx− ϕp)
1 + |Ep|/ Re(Eg) cos(Ktlx− ϕp)

, (3.18)

with |Ep| = A√
x

e−Γtlx.

Since |Ep|/ Re(Eg) = A
Re(Eg)

√
x

e−Γtlx ≪ 1, we can make the first-order Taylor
approximation

F ≈ 1
Re(Eg)

[Im(Eg) + |Ep| sin(Ktlx− ϕp)][1− |Ep|/ Re(Eg) cos(Ktlx− ϕp)] (3.19)

≈ Im(Eg)
Re(Eg)

+ |Ep|
Re(Eg)

sin(Ktlx− ϕp)− Im(Eg)
Re(Eg)2 |Ep| cos(Ktlx− ϕp). (3.20)
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Using the polar representation Eg = |Eg|eiϕg , one can rearrange the terms and find

F = 1
Re(Eg)2 [Im(Eg) Re(Eg) + |Eg||Ep| sin(Ktlx− ϕp − ϕg)] (3.21)

= 1
Re(Eg)2

[
Im(Eg) Re(Eg) + |Eg|

A√
x

e−Γtlx sin(Ktlx− ϕ)
]

. (3.22)

This means that the phase ΦNF can be expressed as

ΦNF ≈ arctan
(

Im(Eg)
Re(Eg)

+ |Eg|
A

Re(Eg)2√x
e−Γtlx sin(Ktlx− ϕ)

)
− ΦR. (3.23)

The first-order Taylor approximation of arctan(a + X) in the variable X can the be
used for X ≪ 1 and a = Im(Eg)

Re(Eg) ,

arctan(a + X) ≈ arctan(a) + X

1 + a2 (3.24)

to obtain from Equation 3.23 the expression

ΦNF ≈ arctan
(

Im(Eg)
Re(Eg)

)
− ΦR + |Eg|

Re(Eg)2
(

1 + Im(Eg)2

Re(Eg)2

) A√
x

e−Γx sin(Ktlx− ϕ).

(3.25)
As a result, the phase can be expressed as

ΦNF ≈ arctan
(

Im(Eg)
Re(Eg)

)
− ΦR + A

|Eg|
√

x
e−Γx sin(Ktlx− ϕ). (3.26)

Case where Re(Eg) is small compared to |Eg|.
For this case, the relationship arctan

( 1
x

)
= ±π

2 − arctan(x) can be used, where
the “+” corresponds to x > 0 and “−” to x < 0. By using this relationship, we can
get back to the same starting point as in Equation 3.18, with the imaginary parts
being replaced by the real parts and inversely:

G = 1
F

= 1
Im(Eg)

Re(Eg) + |Ep| cos(Ktlx− ϕp)
1 + |Ep|/ Im(Eg) sin(Ktlx− ϕp)

. (3.27)

Thus, this leads to a similar derivation as in the first case, leading to the expression

G = 1
Im(Eg)2

[
Re(Eg) Im(Eg) + |Eg|

A√
x

e−Γtlx sin(ϕ−Ktlx)
]

. (3.28)

This means that in this last case the phase ΦNF can be expressed as

ΦNF ≈ ±
π

2
− arctan

(
Re(Eg)
Im(Eg)

− |Eg|
A

Im(Eg)2√x
e−Γtlx sin(Ktlx− ϕ)

)
− ΦR (3.29)
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and by using again Equation 3.24 with a = Re(Eg)
Im(Eg) , it becomes

ΦNF ≈ ±
π

2
− arctan

(
Im(Eg)
Re(Eg)

)
+ A

|Eg|
√

x
e−Γtlx sin(Ktl − ϕ)− ΦR, (3.30)

which can be reduced to

ΦNF = arctan
(

Re(Eg)
Im(Eg)

)
− ΦR + A

|Eg|
√

x
e−Γtlx sin(Ktl − ϕ). (3.31)

In summary, in both cases, the near-field phase can be expressed as

ΦNF ≈ ϕg − ΦR + A

|Eg|
√

x
e−Γtlx sin(Ktl − ϕ). (3.32)

3.3.4 Perspectives and limits
It should be highlighted that Equations 3.15 and 3.32, while being derived in the
context of SPPs on gold, are valid for a much broader range of surface waves. Essen-
tially, any kind of CW (and even PW if the factor 1/

√
x is dropped) interfering with

a constant field, with sufficiently small oscillations compared to the constant field,
can be approximated by these equations. In the literature, an expression for the
amplitude of edge-launched SPPs has been derived [51]. Furthermore, the sinusoidal
behaviour of tip-launched SPPs, due to the interference with a constant field, has
been assumed [17,50] to characterize different types of polaritons. The expression of
the amplitude of the tip-launched SPPs for a s-SNOM without PsHet detection has
also been derived [36]. However, to the best of our knowledge, the expression of the
phase of the tip-launched SPPs in the case of a s-SNOM in reflection and with PsHet
detection, i.e. Equation 3.32, has not been derived before this work. The derivation
of the amplitude and phase provides a better understanding of the s-SNOM signals
with PsHet detection and highlights that the dielectric function of the measured ma-
terial can be deduced both from the measurement of Ktl and Ltl

p , and possibly also
from the measurement of the constant offset as in Refs. [53, 86].
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Figure 3.8. Comparison between the exact expressions from Equations 3.10 (plotted in red)
and 3.16 (plotted in green), and Equations 3.15 and 3.32 (both plotted as dotted curves) for
the amplitude and phase, respectively. For simplification, ΦR = 0 and ϕp = 0. From left to
right, all plots in a column have ϕg = 0, 0, and 2 rad. From top to bottom, all plots in a
row have a ratio A

|Eg| = 0.025 (experimental values), A
|Eg| = 0.1, 1, and 10.
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Figure 3.8 illustrates what is meant by “sufficiently small” oscillations. The exact
expression of the amplitude (in red) and phase (in green) is plotted for different
values of the ratio A

|Eg| and, in the case of the phase, for two different values of the
constant phase, ϕg = 0 and ϕg = 2. The exact expression is compared to the derived
expressions (dashed black curves) of Equations 3.15 and 3.32, for the amplitude and
phase respectively. The position x is larger than 3 µm, as the tip-launched SPPs
can experimentally isolated from this approximate position. The variables are taken
as ΦR = 0, ϕp = 0, |Eg| = 5.1 mV, Ltl

p = 13.5 µm, Ktl = 0.6 µm−1, and ϕg and
A are varied. The first line of plots uses a ratio of A

|Eg| = 0.025 √µm (A about 40
times smaller than |Eg|), reflecting the experimental values. No difference can be seen
between the exact and approximated expression, which validates the use of Equations
3.15 and 3.32 for our experiments. The second line of plots uses a ratio A

|Eg| = 0.1
√µm. In this case too, no difference can be seen between the exact and approximated
values. It is only for A

|Eg| = 1 √µm that the differences starts to be visible. For
A

|Eg| = 10 √µm (last line), the approximated expressions do not hold anymore, and
the amplitude and phase start to look more like the amplitude and phase without
interference. In such case, the constant ϕg cannot be translated directly in a constant
phase offset anymore, as can be seen from the difference between ϕg = 0 rad (center
figure) and ϕg = 2 rad (right-hand side figure) in the last line. In conclusion, from
x = 3 µm and up until a ratio A

|Eg| = 1, Equations 3.15 and 3.32 can be used for the
determination of the wavelength and propagation length of surface waves measured
with a s-SNOM in reflection.

As long as Equations 3.15 and 3.32 hold, both the near-field amplitude and the
near-field phase have a sinusoidal behaviour, with a π/2 phase shift between these
two signals. This behaviour is verified in the next section.

3.4 Retrieval of the wavelength and propagation
length of SPPs

In the previous sections, a clear tip-launched signal has been isolated, and expressions
for the corresponding amplitude and phase signals have been derived. In this section,
the retrieved information is used to determine the wavelength and propagation length
of SPPs on gold.

3.4.1 Analysis of the tip-launched SPP profiles on gold
Figure 3.9a presents a zoomed-in version of the normalized profiles from Figures
3.5a and 3.6a. Both profiles present the sinusoidal oscillation seen in Section 3.3.1.
Furthermore, the phase profile seems to have its oscillations peaks about one fourth
of a wavelength later than the amplitude profile. There is thus a phase-shift between
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the two profiles of about π/2. The value of this phase shift, as well as the similarities
between the amplitude and phase profiles, are confirmed when shifting the phase
profile by −π/2, as shown in Figure 3.9b. The π/2 phase-shift predicted by the
theoretical expressions of Equations 3.15 and 3.32, and mentioned in a previous study
[85], is thus confirmed.

a)

µ

b)

Figure 3.9. Near-field amplitude and phase profiles at grazing incidence angle (φ = −3◦).
a) Comparison between the amplitude and phase profiles. b) Same profiles, with the phase
shifted by −π/2. Figures from [66]. ©2022 Optica Publishing Group under the terms of the
Open Access Publishing Agreement.

Table 3.2 presents the results from fitting the amplitude profile (AP) and phase
profile (PP) with Equations 3.15 and 3.32, respectively. The uncertainties correspond
to the 95% confidence bound given by the fit. The values of r2 given by the fit
indicate that these equations describe well the experimental profiles. The slightly
lower values of r2 for the phase profile compared to the amplitude profile is attributed
to a slight modification of the phase offset at the end of the profile (around x = 33
µm). Moreover, all constants retrieved from the fit of the amplitude and phase profiles
agree with each other, which gives one more indication that the derived expressions
describe the experiment well.

In addition, with the simple expressions derived in Section 3.3, it would be worth
considering if the FT of the profiles could also be fitted.
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|Eg| (mV) A (mV.√µm) A
|Eg| (√µm) Ktl (µm−1) Ltl

p (µm) ϕ ϕg − ΦR r2

AP 5.0941± 8 10−5 0.126± 0.02 20.662± 0.003 12.5± 0.4 −2.97± 0.02 0.99
PP 0.025± 0.002 20.674± 0.009 11.9± 0.3 −2.92± 0.08 1.501± 8 10−5 0.73

Table 3.2. Values of the constants defined for Equations 3.15 and 3.32, obtained by fit-
ting the amplitude profile (AP) and phase profile (PP), respectively, for a starting value
xb = 4.02 µm.

3.4.2 Fourier transform of plane and circular waves
Applying the FT to the amplitude and phase profiles has the advantage of displaying
the same information as a function of the spatial frequency - here the wavevector
K - instead of the position x. This allows to filter out eventual noise, or slowly-
varying offset, at other frequencies than the tip-launched peak frequency. Moreover,
the resulting tip-launched peak is then displayed in a concise manner, through a
single resonance. For PWs, the maximum of the Lorentzian peak can be directly
related to the wavelength of the PW, and the width of the peak can be related to the
propagation length. In our case, tip-launched plasmons are however CWs. Thus, we
consider if it would be possible to do the same for CWs.

There is no exact expression for the one-dimensional FT of a CW expressed as in
Equation 3.1, as the CW is diverging like 1/

√
x at x → 0 µm. However, relatively

simple expressions can be found using the Mathematica program (from Wolfram
Research Inc.), and has been used to find the SPP wavelength on gold in a previous
work [87]. For the simplified amplitude profile |ES

NF|

|ES
NF| =

1√
x

e−Γtlx cos(Ktlx), (3.33)

the FT is expressed as

FT{S3}(K) =

√
π
2

√
1 +

√
1− K2

tl
Ltl2

p

(i+Ltl
p K)2√

1
Ltl

p
− iK

√
1− K2

tl
Ltl2

p

(i+Ltl
p K)2

. (3.34)

This expression is plotted in Figure 3.10a and compared with the discrete Fourier
transform of |ES

NF|, with x starting at 0.1 µm (dashed curve). Both curves overlap
well, and without the necessary truncation of our experimental profiles at xb, Equation
3.34 could be used as the fitting function of the amplitude peak. However, the tip-
launched profiles are truncated at least from x ≈ 2−3 µm. Because more slow-varying
components are present at the beginning of a CW profile, the analytical FT expression
is different depending on the truncation starting position xb. The discrete FT of |ES

NF|
with x starting at 3 µm is plotted in Figure 3.10b to illustrate this point. This discrete
FT of a truncated CW profile has a peak width smaller than the FT of a CW, but
still larger than the FT of a PW. Furthermore, like for the CW FT - and unlike the
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Lorentzian shape - the discrete FT of the truncated profile does not fall quickly to
zero far from the resonance.
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Figure 3.10. Comparison between the analytical expression of the Fourier transform (FT) and
the discrete Fourier transform of a CW, calculated with Mathematica. a) Analytical CW
FT and discrete CW FT truncated at 0.1 µm. b) Analytical CW FT and discrete CW FT,
where the profile in real space has been truncated at 3 µm. The Analytical FT of a PW
has been plotted as a comparison. For all the plots, the values of Ktl = 20.75 µm−1 and
Ltl

p = 13.65 µm have been used.

The analytical expression of the FT of the truncated profile of a CW is complicated.
Thus, the relation between the peak width and the propagation length is probably
not simple. Furthermore, this expression depends on the truncation starting value
xb. Therefore, the fitting of the experimental profiles in Fourier space are done
numerically, using the FT of a CW profile, of parameters Ktl and Ltl

p to determine.
To make the fitting in k-space of the amplitude and phase profiles, the constant

in Equations 3.15 and 3.32 are first subtracted, with the values obtained from the
real-space fitting. Then, as the FFT algorithm calculates (here spatial) spectra with
a resolution limited by the length of the position range: ∆K = 2π/(xmax−xmin), the
profile is zero-padded, meaning that a vector of zeros is added at the end of the profile
vector. The zero padding enables an accurate estimate of the peak heights [88]. As
the signal at the end of the amplitude and phase profiles - with the offset subtracted -
is negligible compared to the noise, no further information is added when making the
profile vector bigger. The FT is then applied to the experimental profile truncated at
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xb. The resulted curve is fitted using the FT of a CW, also truncated at xb. A small
offset accounting for the experimental noise is also added to the fit function.

3.4.3 Wavelength and propagation length on gold
Figure 3.10 presents the CW fit of the tip-launched SPP amplitude (Figure 3.10a)
and phase (Figure 3.10b) peaks of the spectra presented in the spectra of Figures 3.5
and 3.6, respectively. In this case, the amplitude and phase profiles were truncated
at a value xb = 4.02 µm. The CW fit is compared with the FT of the tip-launched
SPP profiles calculated using the dielectric function values from McPeak et al. [77]
and Aguilar-Gamma [83] (dashed curve). This theoretical curve overlaps well with
the experimental values and the fit.

KtlKtl

µ µ

CW model (McPeak) CW model (McPeak)

a) b)

Figure 3.11. Fit of the tip-launched SPP in Fourier space. a) Fit of the amplitude peak visible
in the spectrum from Figure 3.5a. b) Fit of the phase peak visible in the spectrum from
Figure 3.6a. The “CW model” curve refers to the FT of a CW where the dielectric functions
from McPeak et al. [77] and Aguilar-Gama et al. [83] have been used for the gold flake and
the Al2O3 film, respectively. Figures from [66]. ©2022 Optica Publishing Group under the
terms of the Open Access Publishing Agreement.

For a more quantitative comparison, the values of the wavevector Ktl and propa-
gation length Ltl

p extracted from the fit are compared with the theoretical ones. These
values are presented in Table 3.3. All the extracted values of Ktl and Ltl

p agree with
each other. Ktl has however a slightly smaller value than determined with the values
from McPeak et al., and the propagation length is slightly shorter.

One possible reason for this discrepancy could be that the fit is slightly unstable
with regards to the choice of xb. It could be that the noise at xb influences the
estimation of the starting amplitude of the oscillations, and thus the determination of
the propagation length, in particular. To verify that the fit is stable, the same fitting
procedure is applied for 30 different values of xb, from xb = 3.42 µm to xb = 4.32 µm.
These values of xb have been chosen to be sufficiently far from the platelet’s edge so
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Amplitude profile Phase profile McPeak et al.
k-space Real space k-space Real space

Ktl (µm−1) 20.658± 0.009 20.662± 0.003 20.674± 0.007 20.674± 0.009 20.75
Ltl
p (µm) 12± 1 12.5± 0.4 12± 1 11.9± 0.3 13.65

Table 3.3. Comparison of values for the wavevector Ktl = 2π/Λtl and propagation length Ltl
p ,

as obtained in real space and in Fourier space, for one starting value xb. Table from [66].
©2022 Optica Publishing Group under the terms of the Open Access Publishing Agreement.

that the tip-launched signal is isolated, but also sufficiently close to the edge to have
enough tip-launched signal for a precise fit. The average values and 95% confidence
bounds are calculated for all the fits, and summarized in Table 3.4. As the values
remain the same, we conclude that the fitting is stable with regards to the choice of
xb.

Amplitude profile Phase profile Theory
k-space Real space k-space Real space

Ktl (µm−1) 20.65± 0.01 20.662± 0.003 20.67± 0.01 20.67± 0.01 20.75
Ltl
p (µm) 11.3± 0.8 12.5± 0.7 11.6± 0.7 12.1± 0.7 13.65

Table 3.4. Comparison of values for the wavevector and propagation length, as obtained in
real space and in Fourier space, for an average of 30 different starting values. Table from [66].
©2022 Optica Publishing Group under the terms of the Open Access Publishing Agreement.

Another possible reason could be that the tabulated values taken to compare with
the experiments are different from the experimental dielectric function. This could
be the case with the Al2O3, for which the values of dielectric function is taken from a
layer of 50 nm deposited by ALD [83]. The same study highlights that the dielectric
function for such thin layers depend of the thickness of Al2O3.

It should also be highlighted here that the values of the uncertainties associated
with Ktl and Ltl

p are the uncertainties of the fit, and do not correspond to a global
uncertainty of any experimental characterization of the tip-launched SPPs. A possible
additional source of uncertainty - not taken into account in Tables 3.3 and 3.4 - could
actually come from the AFM positioning itself. Two additional measurements - made
on the same gold platelet eight months after the measurement presented in this section
- are provided in Appendix C. These measurements give values of Ktl and Ltl

p that are
consistent with the values presented in Tables 3.3 and 3.4. There are however some
slight differences that seem to confirm that some larger uncertainties, probably due
to the AFM positioning, are involved. An evaluation of the global uncertainty can
be made by calculating the variance over many different measurements on the same
gold platelet.
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3.5 Summary
In this Chapter we have demonstrated that selecting the near-field amplitude and
phase information far from the edges of a monocrystalline gold platelet and with
a grazing angle between the incident light and the edge enables to isolate the tip-
launched SPPs in a clear manner. This method works well, as long as the propagation
length Ltl

p is longer than two times the region where the edge SPPs are dominant. We
derived expressions for the resulting amplitude and phase of the tip-launched SPPs
interfering with the light directly reflected from the gold towards the tip. These
expressions describe the experimental profiles well and are consistent with the π/2
phase-shift between the amplitude and phase. With these expressions, we retrieved
for the first time to our knowledge both the wavelength Λtl = 304.0 nm and the
propagation length Ltl

p = 12 µm, with a s-SNOM in a reflection configuration. The
SPP wavelength has thus been determined to be ΛSPP = 608.0 nm, and the field
propagation length LSPP

p = 24 µm. Among the different values of the gold dielectric
function, it has been found that the values from McPeak et al. seem to correspond
better to our experimental values than other tabulated values of the dielectric function
do [73, 76], even though it is polycrystalline gold. For this reason, a recent work [10]
suggested that the ultimate limit for losses in gold has been reached. These values
were found to be stable in time, as measurements of the same gold platelet eight
months after the presented experiment (see Appendix C) gave the same results.

With these tools in hand, we could in principle characterize the wavevector of
any kind of polaritons in the visible range. This could be particularly interesting in
the case of some van der Waals materials such as transition metal dichalcogenides
(TMDCs), which host strong excitons in the visible range and could thus show SPP
to exciton coupling. In the following chapters, TMDCs materials placed on top of
the gold platelets are therefore studied both theoretically and experimentally.
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CHAPTER4
Coupling between
excitons and SPPs

Van der Waals materials are layered materials where each layer is held together by
covalent bonds, but the different layers are held by weak van der Waals forces. This
family of materials attracted a lot of interest with the exfoliation of graphene with
scotch tape in 2004 [89]. Soon after, a large number of other materials with new
properties were synthesized, and many more are expected to be stable in their 2D
form [90, 91]. In particular, the TMDCs host strong excitons that can interact with
cavities, waveguides, and other structures. In this work, we focus on coupling with
SPPs propagating at the surface of the gold platelets studied in Chapter 3.

In this chapter, the optical properties of excitons in TMDCs are presented in
Section 4.1. These properties are well-described by the optical dielectric function
which is introduced in the Section 4.2. The dielectric function is used in light-matter
interaction models that can assess the coupling between an emitter and a cavity. In
Section 4.3, the different coupling regimes are described, with a focus on the SPP-
TMDC coupling. The theoretical dispersion relation for the SPP-TMDC coupling is
then calculated with the help of the TMM and described in Section 4.4. A correction
to the calculation of the TMM taking into account the anisotropy of the TMDCs is
then introduced, and the resulting dispersion relation is presented in Section 4.5.

4.1 Excitons in transition metal dichalcogenides

TMDCs are a group of layered crystals composed of transition metal and chalcogen
atoms. These materials have been studied for a long time in their layered form [92–94].
Monolayers of these materials can be exfoliated in the same way as graphene [89].
Indeed, just like graphite, TMDCs are part of the van der Waals materials: the
atoms in each layer are held together by covalent bonds, but the different layers are
held by weak van der Waals forces. This property makes them easy to separate by
exfoliation. Furthermore, the absence of covalent bonds between the layers means
that they are naturally passivated, which makes them easy to integrate with other
photonic structures [37].
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TMDCs are most often found in the form MX2, where M is the metal and X is
the chalcogen. To date, the most studied ones have M = Mo or W and X = S, Se
or Te [37,41,42,53,95–98]. Their thermodynamically most stable crystal structure is
the trigonal prismatic (2H) phase. In a monolayer of the 2H structure seen from the
top, the M and X atoms are alternated to form a hexagonal lattice (see Figure 4.1a).
Seen from the side, the M atom is sandwiched between two layers of chalcogens X,
with the X atoms on top of each other, as represented in Figure 4.1b. In the case of
a bilayer, the second layer is rotated by 180◦ and the M atom is placed on top of the
X atom, as shown in Figure 4.1b.

a) b)

Figure 4.1. Atomic structure of the 2H phase of a generic TMDC. a) Top view. b) Side view.
The structures are taken from the C2DB database [90,91].

Among other interesting properties, TMDCs are famous for hosting excitons at
room temperature [37]. Excitons are quasi-particles formed after excitation of an
electron from the valence band (VB) to the conduction band (CB) of a semiconductor
material. The formation process of excitons in a generic direct-bandgap material is
shown in Figure 4.2a. The electron e− is first excited with an energy higher than the
bandgap energy Eg, leaving a hole h+ in the VB (process 1 in the figure). The electron
and hole then relax at the bottom of the CB and the top of the VB, respectively
(process 2). The electron and hole have opposite charges and are formed at the
same position in the crystal lattice. This means they can bind through Coulomb
interaction and form an exciton [72], thus effectively lowering the energy Eexc of the
bound electron-hole pair (process 3).

Excitons can be separated in two categories. The Frenkel excitons are tightly
bound to specific atoms or molecules in the lattice and have binding energies of 0.1-
1 eV [72]. Because of their high binding energy, they are not easily destroyed by
collisions with thermally excited phonons of energy of the order of kBT ≈ 0.026 eV,
where kB is the Boltzmann’s constant and T ≈ 300 K is the room temperature.
By contrast, the Wannier-Mott excitons are delocalized and typically have binding
energies lower than kBT in bulk materials and at room temperature. However, the 2D
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nature of TMDCs has the effect of reducing the electronic screening of the interaction
between the electron and the hole [41] (see Figure 4.2b). Thus, strong excitons can be
formed at room temperature, and even their excited states can influence the optical
properties of TMDCs [41,42].
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Figure 4.2. Excitons in TMDCs. a) Excitonic states and exciton formation in the two-level
model. b) Environment of the excitons in a bulk material (left) compared to an atomically
thin structure such as TMDCs (right). The dashed lines represent the Coulomb interaction
field lines. Because the dielectric function in the material is higher than outside the material,
screening between the electron and the hole is reduced. c) Bandgap of WS2 for a monolayer
(left) and a bilayer (right). The dashed double arrow highlights the direct (left) and indirect
(right) bandgap. Figure from Ref. [95].

The band diagram of a typical monolayer and bilayer of a TMDC (in this case
WS2) is presented in Figure 4.2c. As the diagram shows, TMDCs are semiconductors,
with a bandgap energy of about 1-2 eV at the K-point. For a monolayer, the bandgap
is direct. However, as soon as a second layer is added, the bandgap becomes indirect
(see Figure 4.2c). This effect has drastic consequences on the photoluminescence
properties of the TMDCs, as the photoluminescence intensity of TMDCs can be one
to two orders of magnitude smaller for a bilayer than for a monolayer [95]. The reason
for this effect is that the luminescent process in an indirect bandgap needs to be a
phonon-assisted process to conserve the momentum of the initial and final states [72].

The splitting of the VB at the K-point has been shown to correspond to the effect
of the spin-orbit coupling [95]. The transitions associated with the higher band at
the K-point corresponds to the A-exciton, while the one associated with the lower
band corresponds to the B-exciton. The excitons associated with the higher energies
follow the alphabetic order [99].
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The excitonic optical properties of the TMDCs can be described by the dielectric
function of the TMDCs, as is explained in the next section.

4.2 Optical dielectric functions of transition metal
dichalcogenides

The relative permittivity, here called optical dielectric function, efficiently describes
the absorption and transmission processes of light when interacting with matter [72].
The precise characterization of the dielectric function is therefore crucial, as it deter-
mines the way materials interact with light.

For dielectric and semiconductor materials, the dielectric function can be described
by the Lorentz model

εT MDC(E) = ε∞ +
N∑

i=1

fi

E2
i − E2 − iγiE

, (4.1)

where ε∞ is the dielectric function at energies higher than the measurement window,
fi is the oscillator strength of the resonance i (i ∈ [1, N ]), Ei is the resonance energy
and γi is the resonance’s damping factor.

Figure 4.3. Measured real (ε1) and imaginary (ε2) parts of the dielectric function of WSe2,
for in-plane field polarization (i.e. s-polarisation) and for a monolayer (1L) and a multilayer
(MultL) of several hundreds of nanometer thickness. Data taken from [100] for the monolayer
and [43] for the multilayer.



4.2 Optical dielectric functions of transition metal dichalcogenides 57

The in-plane dielectric function of TMDCs has been measured as early as 2014
for monolayer TMDCs [100]. Figure 4.3 shows the aforementioned dielectric function
in the case of WSe2. A resonance at 1.65 eV corresponding to the A-exciton can be
seen. Since then, researchers have investigated new ways to determine the dielectric
function without a priori knowledge of electronic transitions outside of the spectral
range of the measurement [101]. The influence of the number of layers on the dielectric
function of TMDCs has also been studied, experimentally and theoretically [99, 102].
According to these works, the A-exciton is red-shifted when increasing the number of
layers. This effect has been attributed to the mutual contractions of the CBs and the
VBs as WSe2 becomes thicker [99]. The same behaviour can be seen when comparing
the monolayer dielectric function from Li et al. [100] with the multilayer dielectric
function from Munkhbat et al. [43].

Recently, even near-field methods have been used to determine the dielectric func-
tion of monolayer WSe2 and MoSe2 and their heterostructures [53].

a) b)

Figure 4.4. Measured real (ε1) and imaginary (ε2) parts of WSe2 for a) in-plane and b)
out-of-plane polarizations. Data taken from Ref. [43].

However, due to the intrinsic anisotropy of these layered van der Waals materials,
the in-plane and out-of-plane dielectric functions are different. This property has
been acknowledged from the first measurements of the dielectric function [99–101].
However, at first, the out-of-plane dielectric functions was not measured because of
the experimental configuration did not allow to access it [100]. Later, it was argued
that the effect of anisotropy could be resolved only when the layer thickness exceeded
a few tens of nanometers [103,104].

Measurements of in-plane and out-of-plane dielectric functions by using nano-
FTIR spectroscopy were reported in 2020 for WSe2 in the mid-infrared, revealing a
strong anisotropy of this TMDC [105]. In 2021, ellipsometry measurements reaching
the visible range were performed for thin-film MoS2 and highlighted the anisotropy
of this material [44, 104]. This strong anisotropy was corroborated by s-SNOM mea-
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surements on MoS2 [44] and on WS2 [106]. These findings were confirmed by an
extensive study of both in-plane and out-of-plane components for ten different mul-
tilayer TMDCs which has been recently carried out for a wide spectral range by
ellipsometry [43]. The results for the case of WSe2 are presented in Figure 4.4. The
anisotropy can clearly be seen by comparing the in-plane dielectric function in Figure
4.4a and out-of-plane dielectric function in 4.4b. Indeed, the real part of the dielectric
function is about twice larger in-plane than out of plane, and the imaginary part is
practically vanishing for the out-of plane dielectric function, while taking values up
to 20 at 3 eV for the in-plane one.

Following the available data and the thin-layer argument, some predictions seem to
have only taken the in-plane dielectric function into account when calculating the light-
TMDCs interactions [52, 107–109]. However, while the anisotropy in TMDCs such
as WSe2 is likely not important when working with s-polarized light, it potentially
becomes important for excitation with p-polarization and coupling with SPPs, and in
the case of thicker layers of TMDCs. The magnitude of this inaccuracy is investigated
in Section 4.5.

4.3 Light-matter coupling and the coupled-oscillator
model

The previous sections highlighted the optical properties of the TMDCs. These prop-
erties can be modified by changing the environment around it.

Modifications of emitters’ properties through their environment was first formal-
ized in the framework of cavity quantum electrodynamics (QED) [110]. In this frame-
work, an emitter can optically couple with a cavity if these two components spatially
and spectrally overlap. In such a case, the behavior of the coupled system does not
only depend on the individual properties of the emitter and cavity, but also on their
coupling.

The optical response of the emitter-cavity system can take different forms de-
pending on the value of the coupling strength g. Two main coupling regimes can
be distinguished: the weak- and the strong-coupling regime. In the weak-coupling
regime, the emission rate of the emitter can be modified. Depending on the position
and direction of the emitter with regards to the cavity, the rate can be decreased
or increased, leading to an enhancement or reduction of the emitter luminescence,
respectively [2]. The magnitude of this effect is typically quantified with the ratio
between the decay rate of the emitter in the cavity and the decay rate in free space, i.e.
the Purcell factor. In the strong-coupling regime, the cavity and the emitter interact
so strongly that the emitted photon can be reabsorbed before escaping the cavity. In
such a case, the emitter and photon populations oscillate in time until the photon
leaves the cavity. There is a coherent exchange of energy between the emitter and the
cavity at a rate defined as the Rabi oscillation frequency ΩR. This effect leads to two
new hybrid modes characterized by an energy splitting of ℏΩR. The strong coupling
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can theoretically be described by considering the coupling between two harmonic os-
cillators and by using a framework than can be either classical, semi-classical, or fully
quantum mechanical [111]. All models give the same prediction for the size of the
splitting. In this thesis, only the classical approach has been considered.

In this work, we are considering the coupling between propagating SPPs and ex-
citons in TMDCs. The coupling between these two entities can be described with
the coupled-oscillator model (COM). In this model, the coupling between a classical
field and a Lorentzian oscillator is considered, in a frequency range close to the reso-
nance frequency of the Lorentzian oscillator and far from the SPP plasma frequency.
Within the COM framework, and if damping is neglected, the frequencies of the two
hybrid modes can be described as [107,111]

ω±(q) = ωspp(q) + Ωexc
2

± 1
2

√
(ωspp(q)− Ωexc)2 + Ω2

R (4.2)

where q is the in-plane wavevector, ωspp(q) is the frequency of the SPP dispersion
without the emitter’s resonance, ℏΩexc is the exciton energy and ℏΩR is the energy
of the splitting, called Rabi splitting energy.

Experimentally, it is considered that the strong-coupling regime starts when the
energy splitting ℏΩR is larger than the average full widths at half maximum of the
emitter and cavity,

ℏΩR >
1
2

(Γspp + Γexc), (4.3)

where Γspp and Γexc are the losses from the SPPs and from the excitons, respectively.
Gonçalves et al. [107] predicted that the transition towards strong coupling be-

tween excitons and SPPs could be observed for a TMDC (in their case a monolayer
of WS2) placed on top of a gold surface. However, the splitting could be visible only
if a material with high dielectric function were placed above the TMDC. In this work,
we decided to use the TMDC itself as the material with high dielectric function to
place directly on top of the platelets studied in Chapter 3. For a thin layer of TMDC,
the confinement of the SPPs might be lower than for the semi-infinite layer of dielec-
tric material considered in Ref. [107]. However, the signal from the plasmon-exciton
polaritons is thereby easier to obtain, as the tip can scan directly above the TMDC.

The multilayer structure to be considered is thus composed of (from top to bottom)
air, TMDC, aluminum oxide, and gold. As, to our knowledge, there is no analytical
expression for the coupling strength of such a multilayer structure, we here character-
ized the coupling by calculating numerically the dispersion relation of the structure
by using the transfer matrix method. In our framework, the excitonic resonance is
treated through the dielectric function of the TMDCs.
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4.4 Theoretical dispersion relation with
plasmon-exciton coupling

As mentioned in the previous section, the structure considered in this work is a
stratified structured composed not only of a gold platelet hosting the SPPs and of a
TMDC hosting the excitons. Indeed, there is also a 2-nm layer of aluminum oxide
between the gold platelet and the TMDC, and air, as the experiments take place in
ambient conditions.

In this section, the transfer matrix method is derived and is used to predict the
dispersion relation of excitons in WSe2 interacting with SPPs on monocrystalline gold
platelets.

4.4.1 The transfer matrix method

The transfer matrix method (TMM) relates the field components at two different
positions of a stratified medium, by using a matrix formalism. It has proven to be
a powerful and flexible method for the calculation of light propagation in different
layered structures [112,113].

The main idea of the TMM is to describe the stratified medium by elementary ma-
trices that can be separately calculated and multiplied to give the total reflected and
transmitted fields as a function of a given incident field. In this section, the derivation
of the TMM in the case of p-polarized light is presented, as it is corresponding to
the polarization of SPPs at an air/metal interface. The derivation is based on refer-
ences [112] and [114]. As a note, any homogeneous layer of the stratified medium is
considered as isotropic in this derivation. The anisotropic case is presented in Section
4.5.2.
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Figure 4.5. Geometries of the structures for which the TMM can be used. a) Case of a single
interface. A field impinges at an interface between two materials of dielectric function ε1
and ε2. b) Case of several interfaces. A field impinges on a structure made of several layers
having each thickness di and a dielectric function εi (i ∈ N∗). Ai and Bi represent the field
components in medium i.
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To understand where the elementary matrices come from, we first consider the
interface between two materials of dielectric functions ε1 and ε2 (that is called media
1 and 2 for simplification). The structure and the associated field components are
represented in Figure 4.5a. For p-polarization, the magnetic field along y can be
expressed as

H1y = (A1eik1zz + B1e−ik1zz)eiqxe−iωt, z < 0 (4.4a)
H2y = (A2eik2zz + B2e−ik2zz)eiqxe−iωt, z > 0 (4.4b)

where Ai, Bi(i ∈ {1, 2}) are the magnetic field components for the forward and back-
ward propagating fields, respectively, in media 1 and 2. q(kiz) are the x(z) compo-
nents of the wavevector ki = √εiω/c.

In the absence of current distributions at the surface, the boundary conditions for
the magnetic field Hi and electric field Ei at z = 0 can be written as [112,114]

n̂ × (H2 −H1) = 0 (4.5)
n̂ × (E2 −E1) = 0 (4.6)

where n̂ is the unit vector normal to the surface. This means that in the case of
p-polarization, H1y = H2y and E1x = E2x. Using these boundary conditions and the
Maxwell’s equation

∇× Hi = ε0εi
∂Ei

∂t
(4.7)

gives the equations

A1 + B1 = A2 + B2, (4.8)
k1z

ε1
(A1 −B1) = k2z

ε2
(A2 −B2), (4.9)

Hence, in the case of p-polarized light and at the interface between the isotropic media
1 and 2, the relationship between the field components can be described as(

A1
B1

)
= D12

(
A2
B2

)
, (4.10)

where the transmission matrix D12 is

D12 = 1
2

(
1 + ε1k2z

ε2k1z
1− ε1k2z

ε2k1z

1− ε1k2z

ε2k1z
1 + ε1k2z

ε2k1z

)
. (4.11)

In addition, when considering a homogeneous and isotropic medium of dielectric
function εi, the relationship between the amplitude coefficients at a distance z and
at a distance z + di can be written as(

Ai(z)
Bi(z)

)
= Pi

(
Ai(z + di)
Bi(z + di)

)
, (4.12)



62 4 Coupling between excitons and SPPs

with the propagation matrix Pi defined as

Pi =
(

e−ikizdi 0
0 eikizdi

)
, with kiz =

√
εi

ω2

c2 − q2. (4.13)

If we now consider n interfaces, as represented in Figure 4.5b, the relationship be-
tween the input and output fields can be calculated through the elementary matrices
using the total matrix M , with(

A1
B1

)
= M

(
An

Bn

)
, and M = D12P2D23P3D34P4...Pn−1D(n−1)n. (4.14)

The associated reflection and transmission coefficients can be deduced using the
relations

r1n = B1

A1

∣∣∣∣
Bn=0

= M21

M11
(4.15)

and
t1n = An

A1

∣∣∣∣
Bn=0

= 1
M11

(4.16)

where Mij({i, j} ∈ {1, 2}) are the elements of M and |Bn=0 means that that the field
component Bn is set to zero (recall Figure 4.5b).

It should be noted that the amplitude coefficients Ai and Bi are the coefficients
associated with the magnetic field Hi (i ∈ N∗). To retrieve the reflection and trans-
mission coefficients for the electric field, the duality principle can be used [114, p. 176].
This principle connects the values of the electric and the magnetic fields through the
impedance in medium i, Zi, such as

k̂i × Ei = ZiHi with Zi =
√

µ0µi

ε0εi
, (4.17)

where k̂i is the unit vector in the same direction as the wavevector ki in the medium
i. From Equation 4.17, it can be deduced that the reflection coefficient for the electric
field remains the same as Equation 4.15. However, the transmission coefficient for the
electric field tE

1n relating the input electric field component AE
1 and the transmitted

electric field component AE
n becomes

tE
1n = AE

n

AE
1

∣∣∣∣
BE

n =0
= 1

M11

Zn

Z1
. (4.18)

The TMM thus provides a simple way to decompose an initially complex problem
into elementary bricks and obtain physical coefficients out of it. In the particular case
of evanescent fields such as SPPs, the condition for their existence can be derived by
finding the poles of the reflection coefficient [112].
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4.4.2 Theoretical dispersion relation for evanescent waves in a
multilayer structure

1

2

3

4

d2

d3
z

x

Air

WSe2

Al2O3

Au

Figure 4.6. Sketch of the multilayer structure used in the experiments and for which the
theoretical dispersion relation is calculated. From top to bottom, there is air of dielectric
function ε1 = 1, WSe2 of dielectric function ε2 = 25 + 1.6i at 800 nm and thickness d2,
Al2O3 of dielectric function ε3 = 2.59 and thickness d3 = 2 nm, and gold (Au) of dielectric
function ε4 = −27 + 1.1i at 800 nm.

The structure that is used in the near-field measurements of SPPs interacting with
the excitons in WSe2 is represented in Figure 4.6. The bottom layer (Au) is consisting
of the monocrystalline gold platelets studied in Chapter 3. It is considered as semi-
infinite, as the platelets are thick enough to neglect hybridization with a SPP mode
propagating at the substrate/gold interface (not shown in the Figure 4.6), and it has
a complex dielectric function ε4. The gold platelets are covered with a thin layer of
aluminum oxide (Al2O3) of dielectric function ε3 and of fixed thickness d3 = 2 nm,
also present in the structures from Chapter 3. On top of the Al2O3 is WSe2, of
dielectric function ε2 and of thickness d2. As the sample and s-SNOM are in air, the
top semi-infinite layer has a dielectric function ε1 = 1.

The Matlab programs used to calculate the dispersion relation are given in Ap-
pendix D. In a nutshell, the goal of the programs is to find the in-plane wavevector
q that satisfies the condition for the existence of evanescent fields for a given photon
energy E. To do so, it uses the dielectric functions found in the literature for ε2 [43],
fitted with 10 Lorentz oscillators, ε3 [83] (taken as a constant equal to 2.59) and
ε4 [77] and the thickness d2 and d3 to calculate the total matrix

M(q) = D12(q)P2(q)D23(q)P3(q)D34(q). (4.19)
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Then, the condition for the existence of evanescent waves can be found by calculating
the poles of the reflection coefficient, with the equation

M11(q) = 0. (4.20)

This equation is numerically solved for each value of the energy E in a range from
1.5 to 1.7 eV. The dispersion relation is then plotted as the (q, E) pair found for each
photon energy E.

It should be noted that finding the solutions to Equation 4.20 is not an easy
task, even numerically. Indeed, the full complex values for the dielectric functions
are needed here, meaning that the solution q is also to be found in the complex
plane. To help the calculations, one can notice that the out-of-plane component of
the wavevector kiz is purely imaginary, as k2

iz = εi
ω2

c2 − q2 is negative in the case of
evanescent fields such as SPPs. To help the program calculate, we can thus define:

k′
iz = kiz/i =

√
q2 − εi

ω2

c2 (4.21)

meaning also that Pi is consequently modified such as

P ′
i =

(
ek′

izdi 0
0 e−k′

izdi

)
. (4.22)

Furthermore, following the continuity principle, once the solution for q is found for
the first energy (1.5 eV), the initial guess for the next value of q is the solution from
the previous iteration.

a) b)

µ µ

Figure 4.7. Calculated dispersion relation for the structure presented in Figure 4.6, with a)
d2 = 0 nm of WSe2 and d3 = 0 nm of Al2O3 and b) d2 = 0 nm of WSe2 and d3 = 2 nm of
Al2O3.

To benchmark the limiting behaviour of the model, the dispersion relation is
plotted for a thickness of WSe2 of d2 = 0 nm and a thickness of Al2O3 of d3 = 0 nm
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(see Figure 4.7a). The result is compared with the dispersion relation of the air/gold
interface (dashed green line in Figure 4.7a). The two curves overlap perfectly, so the
model has the correct limiting behaviour. Moreover, the effect of the 2-nm layer of
Al2O3, still without WSe2, is tested is Figure 4.7b. A slightly higher confinement can
be seen Figure 4.7b compared to Figure 4.7a, due to the addition of the Al2O3 layer.

a) b)

c)

µ µ

µ

d2 = 5 nm d2 = 10 nm

d2 = 15 nm

Figure 4.8. Calculated dispersion relation for the structure presented in Figure 4.6, when
considering WSe2 as an isotropic material. The thickness of WSe2 is varied and takes the
values a) d2 = 5 nm, b) d2 = 10 nm and c) d2 = 15 nm. The horizontal dotted lines represent
the A-exciton resonance energy.

The results of the calculation of the dispersion relation, for different thicknesses
d2=5, 10 and 15 nm, is presented in Figure 4.8. For a thickness of 5 nm, the dispersion
relation differs little from the one of the air/gold interface. The main difference comes
from the higher confinement of the SPPs due to the high refractive index of WSe2.
For a thickness of 10 nm, the coupling of the SPPs to the excitons - having in this case
a resonance at 1.62 eV - starts to be visible through a characteristic back-bending.
As the thickness of WSe2 increases, the total field is also more confined which is
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reflected in the higher q values. This trend continues in the case of a thickness of 15
nm. The stronger confinement and back-bending with increasing WSe2 thickness d2
are in agreement with the intuition that the effective dielectric function felt by the
SPPs becomes larger as d2 increases.

It should be noted that in the case of d2 = 15 nm, the dispersion relation is even
crossing the light line in air. For the corresponding energies, the resulting wave is
thus not bound to the interface and becomes leaky [18].

However, until now, WSe2 has been considered as an isotropic material, with the
same refractive index containing the characteristic resonances from the excitons in all
directions. As discussed in Section 4.2, WSe2 has different in-plane and out-of-plane
refractive indices. This material is thus anisotropic and not taking this property
into account in the calculation of the dispersion relation could lead to errors such as
overestimation of the coupling.

4.5 Theoretical dispersion relation with anisotropy
As has been highlighted in recent articles [43,44,104–106], WSe2 and similar multilay-
ered materials have a different refractive index in the z-direction compared to the x-
and y-directions. The anisotropy of these materials has thus to be taken into account.
In this section, the basic properties of uniaxial anisotropic materials are presented,
and a TMM adapted to these materials is derived.

4.5.1 Uniaxial anisotropic materials
For anisotropic materials with principal dielectric axes along the (x, y, z)-directions,
the dielectric function can be described as [113,115]

←→ε =

εx 0 0
0 εy 0
0 0 εz

 . (4.23)

In the case of uniaxial crystals such as WSe2 [43], two of the dielectric functions are
equal. The two equal dielectric functions are named ordinary dielectric function εord

and the remaining one is the extraordinary dielectric function εe [113]. The dielectric
function of the uniaxial crystal can thus be expressed as

←→ε =

εord 0 0
0 εord 0
0 0 εe

 . (4.24)

For plane waves in a homogeneous anisotropic medium, the electric field should satisfy
the wave equation [113]

k × (k × E) + ω2

c2
←→ε E = 0. (4.25)
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Solving this wave equation in the case of a uniaxial crystal leads to a relation between
ω and the components of the wavevector k satisfying [113,115](

k2
x + k2

y

εe
+ k2

z

εord
− ω2

c2

)(
k2

εord
− ω2

c2

)
= 0. (4.26)

Equation 4.26 has two solution, corresponding respectively to the leftmost and the
rightmost factor being zero. The leftmost factor being zero is equivalent to the
equation of an ellipsoid of revolution, while the rightmost factor corresponds to the
equation of a sphere [115]. Both these surfaces determine the k-components depend-
ing on the refractive indices nord = √εord and ne = √εe and the wavelength of the
incident light. They are usually called k-surfaces [115]. Due to the circular symmetry
around the z-axis, both k-surfaces can be represented in the (x,z)-plane without loss
of generality, as sketched in Figure 4.9a.
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k1/k0

k2o/k0

k2e/k0
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a) b)

Figure 4.9. Anisotropy and the k-surfaces in the case of the uniaxial crystal WSe2. a) Sketch
of the k-surfaces for WSe2 projected on the (x,z)-plane. In this sketch, nord = √

εord and
ne = √

εe are respectively the ordinary and extraordinary refractive indices of WSe2. b)
Refraction at the air/WSe2 interface for s- and p-polarized light. In each medium, half of
the corresponding k-surface is drawn. The in-plane wavevector q remains the same in both
media. The intersections of the normal to the surface determined by q (black dotted lines)
and the k-surfaces correspond to the wavevector. The s-polarized light becomes the ordinary
ray, while the p-polarized light becomes the extraordinary ray.

When a combination of s- and p-polarized light travels from an isotropic medium
(characterized by a constant ε1) to a uniaxial anisotropic medium (characterized by
a constant ε2), the k-surfaces can be used to predict the direction and magnitude of
the k-vector of the s- and p-polarized light, depending on the incident direction. The
method to do so in the case of a uniaxial crystal such as WSe2 is sketched in Figure
4.9b. As we are in the (x,z)-plane, we can consider that ky = 0 and define an in-plane
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component of the wavevector kx = q. This in-plane wavevector q remains constant in
both media. The direction and magnitude of the wavevector(s) in the second medium
is thus determined by the intersection between the normal to the air/WSe2 interface
- positioned by q - (black dotted lines in Figure 4.9b) and the k-surfaces. As the
p-polarization has a component along the z-direction, it is governed by the ellipsoid.
On the other hand, the s-polarization is governed by the sphere [115]. The light is
thus split in a p-polarized extraordinary ray and a s-polarized ordinary ray.

Thus, it follows that for the p-polarization, the out-of-plane component of the
wavevector can be described as:

kz =

√
εord

(
ω2

c2 −
q2

εe

)
(4.27)

More information about the optics of anisotropic materials can be found in refer-
ences [113] and [115].

4.5.2 Anisotropic transfer matrix method
As TMDCs are uniaxial anisotropic crystals, the TMM should be adapted to the case
of uniaxial crystals. To do so, instead of isotropic materials, we consider uniaxial
crystals with a dielectric function ←→ε given by Equation 4.24. In the following, as for
Section 4.4.1, only the case of p-polarization is considered.

At the interface between two uniaxial crystals, Equations 4.4a and 4.4b, as well
as the continuity equations 4.5 and 4.6 are still valid. The modifications to the usual
TMM derivation starts at Equation 4.7. With the values for the dielectric function
being different depending on the direction, Equation 4.7 becomes

− ∂Hiy

∂z
x̂ + ∂Hiy

∂x
ẑ = ε0εiord

∂Eix

∂t
x̂ + ε0εie

∂Eiz

∂t
ẑ. (4.28)

in a medium characterized by ←→εi and where x̂(ẑ) are the unit vectors of the x(z)
directions. The projection of Equation 4.28 along the x-direction gives

− ikiz(A1 −B1)eiqxe−iωt = −iωε0εiordEix (4.29)

and the continuity of Ex at z = 0 therefore leads to
k1z

ε1ord
(A1 −B1) = k2z

ε2ord
(A2 −B2). (4.30)

Equation 4.9 is thus replaced with Equation 4.30. In addition, the continuity of Hiy

at the interface being still valid means that Equation 4.8 is verified in the anisotropic
case. This means that for p-polarized light and in the case of a uniaxial material with
principal axes along the (x, y, z)-directions, the transmission matrix D12 becomes

D12 = 1
2

(
1 + ε1ordk2z

ε2ordk1z
1− ε1ordk2z

ε2ordk1z

1− ε1ordk2z

ε2ordk1z
1 + ε1ordk2z

ε2ordk1z

)
. (4.31)
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Additionally, the form of the propagation matrix Pi remains the same in the
anisotropic case. However, as mentioned in Section 4.5.1, the form of kiz in an
anisotropic medium i and for p-polarization is different. Pi thus becomes

Pi =
(

e−ikizdi 0
0 eikizdi

)
, with kiz =

√
εiord

(
ω2

c2 −
q2

εie

)
. (4.32)

with di the thickness of the layer i. The two new matrices in Equations 4.31 and
4.32 can be multiplied the same way as the usual TMM, leading to the same type
of relationships as Equations 4.15 and 4.18 to find the reflection and transmission
coefficients. The derivation of the impedance coefficients for the anisotropic case is
given in Appendix D.

The transmission and propagation matrices were derived in this PhD work inde-
pendently from the work of Majerus et al. [116] and Hammid et al. [117], and we
arrived at the same matrices as Ref. [116] in the case of p-polarization.

As a remark, one could notice that the derivation of the TMM in the anisotropic
case remains fairly simple mainly because the principal axes of the anisotropic mate-
rial(s) are aligned with the x-,y- and z-directions. If this were not the case, a general-
ized 4x4 matrix method taking into account the mixing of the s- and p-polarizations
should be used [113,118].

4.5.3 Theoretical dispersion relation with anisotropic WSe2

The studied structure and the main principle and explanations of the Matlab program
used to calculate the dispersion relation is the same as the one presented in Section
4.4.2. The main differences to adapt to the anisotropic case lie in the expression of the
transmission matrix Di(i+1), which is defined as Equation 4.31, and the expression of
the propagation matrix defined as

P ′
i =

(
ek′

izdi 0
0 e−k′

izdi

)
, with k′

iz =

√
εiord

(
q2

εie
− ω2

c2

)
. (4.33)

Figure 4.10 displays the calculated dispersion relation for the thicknesses d2 = 5, 10
and 15 nm. The isotropic solution is also shown in black dotted lines for comparison.
The anisotropic solution shows a dispersion relation closer to the light line, meaning
that the confinement of the polaritons is smaller. Furthermore, the splitting of the
modes - related to the coupling strength - is also slightly reduced. These two effects
arise from the difference between the out-of-plane dielectric function εe and the in-
plane dielectric function εord of the WSe2. As εe is more than two times smaller than
εord (recall Figure 4.4) and the isotropic solution was only taking εord into account,
the isotropic solution was overestimating the “mean” dielectric function.

The difference is however smaller than what could be expected from a p-polarized
wave such as SPPs, especially for smaller thicknesses. The only modification com-
pared to the isotropic case is indeed coming from the propagation matrix, and not
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from the transmission matrix. As a consequence, as was argued in previous works
[103,104], the effect of the anisotropy becomes significant only above a thickness of a
few tens of nanometers (about 15 nm in the case of WSe2). Furthermore, the thicker
the layer, the more important the effect of the anisotropy is. A similar conclusion
on the effect of the thickness on the differences between the anisotropic and isotropic
model was reached in Ref. [116].

µ

a) b)

c)

d2 = 5 nm d2 = 10 nm

d2 = 15 nm

µ

µ

Figure 4.10. Calculated dispersion relation for the 4-layer structure, when taking into account
that WSe2 is an anisotropic material. The thickness of WSe2 is varied and takes the values
a) d2 = 5 nm, b) d2 = 10 nm and c) d2 = 15 nm. The horizontal dashed lines represent the
A-exciton resonance energy.

The anisotropy has thus been taken into account in the derivation of the TMM
and this new model has been compared with the commonly used TMM, taking into
account isotropic materials. To our knowledge, it the first time that the dispersion
relation has been calculated for a TMDC on gold using the 2×2 anisotropic TMM.
A comparison with experiments is therefore needed to verify if this model turns out
to be more accurate than the isotropic TMM.



CHAPTER5
s-SNOM

measurements of the
coupled system

Chapter 4 presented the theory and models behind the coupling between excitons in
TMDCs and SPPs on gold. The thickness from which a splitting could be resolved
is about 10-15 nm. In this chapter, preliminary experiments aiming to measure the
coupling between excitons in multilayer WSe2 with near-field methods are presented.

The fabrication of the sample with WSe2 on gold is first be described. The
dispersion relation is first reconstructed for a gold surface without TMDC, by using a
tunable laser and measure the SPPs wavelength for each consecutive excitation energy.
This step enables a comparison with the experiments from Chapter 3. Thereafter,
near-field measurements of the sample with WSe2 are described and analyzed.

5.1 Sample fabrication
The fabrication of the stratified structure involves the fabrication of a sample of
about 10-15 nm thickness. The fabrication process involves the exfoliation of the
bulk TMDC and the transfer of the desired flake onto a gold platelet. Both the
exfoliation and transfer were carried out by Qiaoling Lin, PhD student.

5.1.1 Exfoliation of TMDs
Since the discovery of graphene in 2004 [89], the preferred method to obtain the
highest quality of 2D materials has been the mechanical exfoliation of the origin 3D
crystal.

Here, the substrate for the exfoliation was Polydimethylsiloxane (PDMS, here PF-
40/17-X4 from Gel-pak®) deposited on a glass slide. The tape used for the exfoliation
was the light blue tape from SPS Ltd. (1007R), as it has the advantage of leaving
few residues on the substrate compared to the regular office scotch tape. The bulk
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crystal was WSe2 from HQ graphene. A representative example of the bulk crystal
is presented in Figure 5.1a.

10 µm5 mm

a) b)

Figure 5.1. WSe2 crystal. a) Picture of a bulk crystal of WSe2. b) Picture of an exfoliated
sample, made with an optical microscope with 100X magnification. The same sample is then
transferred and measured in the following sections.

The exfoliation was carried in a similar way to the guide from Ossila LTD [119].
The bulk crystal was first deposited on a small piece of blue tape, such that only a
thin layer of WSe2 is left. The blue tape was then covered with a second piece of
tape. After applying some pressure, the two tapes were pealed off. This process was
repeated to cover a larger surface of the PDMS. The tape was then pressed on the
PDMS substrate and pealed off. An example of the resulting flakes is shown in Figure
5.1b.

5.1.2 Dry transfer on gold

The flake shown in Figure 5.1b was transferred using the dry transfer method [120].
This method uses the viscoelastic properties of the PDMS stamp to transfer the
WSe2 onto the gold surface. As the Al2O3 layer deposited on the monocrystalline
gold platelet have a low roughness, the WSe2 flakes adhere well to the gold surface,
which leads to a high yield of the transfer.

Figure 5.2a shows a bright field microscope picture of three WSe2 flakes transferred
on a 100-nm thick monocrystalline gold platelet covered with 2 nm of aluminum oxide,
like the one studied in Chapter 3. The flake shown in Figure 5.1b has been transferred
on the bottom right side of the gold platelet. The crystal slightly broke during the
transfer process, but a large area without cracks is still measurable close to the bottom
right edge.
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Figure 5.2b presents a dark field microscope picture of the same sample. The dark
field microscope reveals the scattered light, by blocking the direct reflection from the
surfaces. While the WSe2 surface seems mostly flat in the bright field picture, the
dark field image highlights a number of bubbles, coming from air trapped between the
TMDC and gold surfaces during the transfer. These bubbles can potentially disturb
the near-field measurements by generating SPPs if they are small, or suppressing the
contact between the TMDCs and the gold if they are large. They should thus be
avoided as much as possible in the near-field measurements.

10 µm 10 µm

a) b)

b)c)

Figure 5.2. Sample after transfer. a) Picture of the sample after transfer, made with an optical
microscope with 100X magnification used in bright field, and b) dark field. c) Topography
of the area highlighted by the red box in a).

The thicknesses of the resulting flakes were determined using the topography given
by the s-SNOM. The topography of the region marked by the red box in Figure 5.2b is
presented in 5.2c. Apart from the gold substrate on the left, four different areas with
four different thicknesses can be distinguished. The height of the different thicknesses
was estimated using the Terraces function of Gwyddion1. From left to right, it was
1Parameters: step detection kernel of 3%, step detection threshold of 2.8%, broadening of 1 pixel,
minimum terrace area of 0.5% and background fitted with a polynomial of degree 8.
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found with this function that the different areas have thicknesses of 10.5 ± 0.4 nm,
10.6±0.4 nm, 11.7±0.4 nm, and 12, 3±0.4 nm. As one layer of WSe2 has a thickness of
0.7 nm, the actual thicknesses are more likely 9.8 nm (14 layers), 10.5 nm (15 layers),
11.9 nm (17 layers) and 12.6 nm (18 layers). The fitted thicknesses are however be
used in the following.

5.2 Experimental details for the near-field
measurements

The procedures follows the same idea as in Chapter 3, with sometimes a few additional
steps to retrieve the relevant signal. The setup used for the near-field measurements is
corresponding to Figure 1.3 from Section 1.1.3. The laser used for the measurements is
a femtosecond Tsunami laser, and the laser power is attenuated to 15 mW by placing
a half-wave plate and a polarizer in front of the neaSNOM box (see Appendix B).
Assoc. Prof. Binbin Zhou gave substantial help with the installation and alignment
of the laser. The laser was used in continuous mode (i.e. not mode-locked), as in
Refs. [51, 52, 108], and tuned from a wavelength of about 730 nm to about 810 nm.
The wavelength of the laser was measured with a spectrometer (USB4000 from Ocean
Insight Inc.).

For each wavelength of the laser, a near-field map was made, in the configuration
as in Chapter 3. Due to laser instabilities, the PsHet detection could not be used.
Thus, the nature of the resulting signal is different: as the PsHet could not be used,
the measured signal corresponds to the intensity expressed in Equation 1.13. As
the linewidth of the laser is larger than a HeNe laser, an uncertainty of ±1 nm -
corresponding to the full-width half-maximum of the laser spectrum - is taken (see
spectrum in Appendix B).

In the following sections, the resulting maps, linescans and their analysis to make
the dispersion relation are presented.

5.3 Near-field measurements: dispersion relation on
gold

To measure the dispersion relation of the sample of interest, the wavevector associated
with each energy of the incident light (in the interesting energy range) needs to be
probed. In the two following sections, the characterization of the wavevector is made
by scanning the surface of the sample and retrieving the interesting wavevector from
the resulting maps.

To benchmark the effect of the change of laser and compare the theoretical dis-
persion relation with the experimental dispersion relation from a familiar sample, the
dispersion relation was first measured on gold, without transfer of WSe2.
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5.3.1 The different field contributions

The characterization of the complex wavevector was made on gold once again on the
same gold platelet as in Chapter 3. The laser makes in this case an angle of 3◦ with
the platelet edge. A map was made for five wavelengths from 731 nm to 811 nm.
Figure 5.3 presents two near-field intensity maps representative of the five near-field
intensity maps made to measure the dispersion relation on gold. The wavelength used
is λlaser = 731 nm in Figure 5.3a and λlaser = 811 nm in Figure 5.3b. The raw data
is shown on the left-hand side. Some plasmonic oscillations can be distinguished,
but high variations of the mean value of the near-field intensity from one line to
the other can also be seen. These variations can be attributed to instabilities of
the Tsunami laser used as a CW laser. Moreover, the far-field background is not
completely suppressed, as the PsHet is not used in this case, and could thus lead to
some changes in the signal.
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Figure 5.3. Normalized near-field intensity maps on gold for a wavelength of a) 731 nm and
b) 811 nm. The raw data is on the left-hand side, and the post-processed data on the
right-hand side.

To remove these unwanted variations, all the rows of the near-field map are set
to the mean value of the map. The result of this treatment is shown on the right-
hand side. The vertical variations are not totally suppressed, but less present and
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the plasmonic oscillations are much easier to distinguish. Thus, these instabilities do
not seem to perturb the SPP wavefront.

The profiles extracted from these maps were made in the same manner as in
Chapter 3, i.e. by calculating the mean value of all the lines from each map. The
resulting profiles for λlaser = 731 nm and λlaser = 811 nm are presented in Figures
5.4a and 5.4b, respectively. Compared to the profiles in Chapter 3, the profiles do no
have a constant mean value. We interpret this effect as the influence of the far-field
background. The corresponding spectra for the total profile and from the selected red
region is presented below each profile. The spectra are normalized to the tip-launched
peak.

The tip-launched SPPs are still predominant at grazing angle, and the tip-reflected
edge-launched SPPs are barely seen. However, another peak close to the tip-launched
SPP wavelength can also be observed in the spectrum, in particular in the case of
λlaser = 731. This peak could correspond to second order effects such as interference
between tip-launched and edge SPPs, and disappears when the region further from
the edge is selected (see red spectra).

a) b)

tl
trel el2el1

tl
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el2
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laser = 731 nm  
laser = 811 nm

µ µ

µ µ

Figure 5.4. Normalized near-field intensity profiles and respective spectra on gold for a wave-
length of a) 731 nm and b) 811 nm. The Fourier transform is plotted as a function of the
fringe spacing Λ = 2π/K.

The dispersion relation could thus be retrieved simply by measuring the maximum
value of the tip-launched peak. A more consistent method though would be to fit the
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profiles or the tip-launched peaks itself, as in Chapter 3. However, as the oscillations
from the tip-launched SPPs are superimposed with low frequency variations, the
fitting of the profiles with expressions of the same form as derived in Chapter 3 is
difficult.

5.3.2 Fourier filtering
As seen in Figure 5.4, the plasmonic oscillations are superimposed with some low
frequency variations that make the fitting in real space difficult. These low frequency
variations can be filtered out by Fourier filtering. The idea of Fourier filtering is to
suppress some frequency components in the spectrum, such that the corresponding
variations are suppressed in the real space [121].

In practice, the spectrum is multiplied with a normalized filtering function, called
a window function. The window function should not be abrupt, to avoid creating
high frequency components that were not previously part of the signal.

Figure 5.5a shows the full view of the spectrum presented in Figure 5.4 - here
as a function of the wavevector q - and the window function. In this case, we use
a Tukey (or tapered cosine) window [122] with cosine fraction of r = 0.1, meaning
a rectangular window with the first and last r/2 percent of the wavevector range
equal to the ascending and descending parts of a cosine, respectively. This window
function has the advantage of being flat up to the region around 10 µm−1, where the
tip-launched peak is, so that this peak remains unchanged.

Figure 5.5b shows the product of the two functions presented in Figure 5.5a. The
frequencies lower than 9.1 µm−1 are attenuated, with the lowest frequencies being
totally removed. As can be seen when comparing the original profile in Figure 5.5c
and filtered profile in 5.5d, this process is suppressing the low frequency background.
Thereby, it facilitates the fitting of the profile and thus the retrieval of the wavelength
and propagation length of the SPPs. However, one should keep in mind that, as seen
in Section 3.4.2, the Fourier transform of a circular wave has non-zero frequency
componant at K = 0, even when cropped. The suppression of the low frequency
components could thus influence the estimation of the propagation length.
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Figure 5.5. Fourier filtering. a) FFT of the profile showed in Figure 5.4b and Tuckey window.
b) Product of the FFT and Tuckey window. c) Unfiltered profile and corresponding fit. d)
Filtered profile and corresponding fit.

5.3.3 Dispersion relation and comparison with the theory

The tip-launched wavevector Ktl, the corresponding SPP wavelength λSPP and the
tip-launched propagation length Ltl

p resulting from the circular wave fit are presented
in Table 5.1 for each laser wavelength λlaser. In some cases, the propagation length
was not converging to a value, and in such case the value of Ltl

p is not given. The
uncertainty on the laser wavelength λlaser corresponds to the full-width half maximum
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of the laser spectrum see by the spectrometer.
The wavevector values are close to the theoretical ones and follow the same be-

haviour, but out of the 95% confidence range from the fit. However, as mentioned in
Section 3.4.3, additional sources of uncertainty can come from the AFM positioning.

Concerning the propagation length, the difficulties to accurately determine Ltl
p

and the discrepancies between the experimental and theoretical values are attributed
to the Fourier filtering.

λlaser (nm) Ktl (µm−1) λSPP (nm) Kth
tl (µm−1) Ltl

p (µm) Ltl,th
p (µm)

731 ± 1 17.430± 0.006 720.8± 0.3 17.7 31± 6 50.4
749 ± 1 17.032± 0.005 737.8± 0.2 17.2 57.4
772 ± 1 16.486± 0.002 762.24± 0.04 16.7 65.3
790 ± 1 16.086± 0.006 781.2± 0.1 16.3 73.3
811 ± 1 15.677± 0.006 801.6± 0.2 15.8 84± 40 81.1

Table 5.1. Wavevector Ktl, propagation length Ltl
p and SPP wavelength λSPP for the different

laser wavelengths λlaser, resulting from the real space fit. The uncertainties here correspond
to the 95% confidence bound given by the fit.

Figure 5.6 presents the comparison between the theoretical dispersion relation
and the experimental one recreated from the 5 measurement points. The theoretical
curve is calculated using the TMM presented in Section 4.4.1 and the code presented in
Section 4.4.2, with 0 nm of WSe2. The refractive index values are taken from McPeak
et al. [77] for the gold and Tulio Aguilar-Gama et al. [83] for Al2O3. The experimental
points are corresponding to the SPP wavevector defined as KSPP = Ktl/2. The
errorbars in the vertical direction correspond to the experimental uncertainties on
the excitation energy, which correspond to an uncertainty on the laser of ±1 nm.

The measurements points are close to the the theory. They are however all to the
left of the theoretical curve. There could be different reasons for these discrepancies.
First, there could be a systematic error on the wavelength in the spectrometer, due
to some error in the spectrometer calibration. To check this potential bias, the wave-
length of the stabilized HeNe laser has been measured with the same spectrometer.
No noticeable deviation from 633 nm has been seen. A second possibility would be
an systematic error on the calibration of the AFM. However, the calibration of the
AFM has been checked with a test grating (TGQ1 from Spectrum Instruments), and
no bias from the AFM has been found. These systematic errors have therefore been
ruled out.

As the systematic experimental errors have been excluded, the remaining reasons
are either an underestimation of the experimental errors or differences between the
theoretical model and the experiment. Concerning the second point, the TMM does
not take into account the influence of the tip, and is a model that considered plane
waves. As the tip is here only used for launching and detecting the SPPs, it shouldn’t
influence the wavelength of the SPPs. Furthermore, the refractive index or thickness
of the aluminum oxide could be over- or under-estimated, respectively.
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µ

Figure 5.6. Dispersion relation of the SPPs on gold, covered with 2 nm of Al2O3. The theoret-
ical curve has been calculated using the TMM, with the refractive index values from McPeak
et al. [77] for the gold and Tulio Aguilar-Gama et al. [83] for Al2O3. The experimental points
are half of the value of Ktl from Table 5.1.

In summary, the dispersion relation on gold determined experimentally follow the
same tendency as the theory, but the experimental SPPs seem a bit less confined. The
experiments with WSe2 on gold could thus also give a slightly smaller experimental
wavevector compared to the theory.

5.4 Near-field measurements of WSe2 on gold

The measurement and analysis of one sample of WSe2 on gold and the retrieval of
the dispersion relation is presented.

5.4.1 The different field contributions
Figure 5.7 shows the topography and near-field maps of three out of 7 maps made
in a wavelength range from 735 nm to 800 nm. On the topography from Figure 5.7a,
four areas - highlighted with the red dotted lines - with four different thicknesses of
WSe2 can be distinguished. The area of thickness 10.5 nm is too thin and adjacent to
the bare gold surface. It is therefore not studied in the following. As seen in Section
5.1.2, the three other areas have a WSe2 thickness of 10.6 nm, 11.7 nm and 12.3
nm. Some bubbles can also be seen in the topography. These bubbles modify the
near-field signal locally, but do not launch additional polaritons, which means that,
provided that the bubble areas are avoided, the rest of the map can be analyzed.
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Figure 5.7. Near-field measurements of the WSe2. a) Topography of the sample, and near-
field intensity maps on a thin layer WSe2 for a wavelength of b) 735 nm and c) 768 nm and
d) 800 nm. The red arrow on the lower left corner of the topography represents the incident
light.

Oscillations due to polaritons propagating at the interface(s) and parallel to the
edge can be seen in the near-field intensity maps from Figures 5.7b, 5.7c and 5.7d.
The longer the excitation wavelength, the longer their propagation length is. The
propagation lengths are however much shorter than on bare gold, as expected from
the higher confinement due to the high refractive index of WSe2. It should also be
noted that the oscillations parallel to the edge are also interfering with oscillations
coming from the upper right corner of the map. This effect is particularly visible
for a laser wavelength of 800 nm, where the propagation length is the longest. These
additional polaritons are probably launched at the edge of the WSe2 flake itself. Thus,
the analysis could be influenced the interference with these additional oscillations,
especially at longer excitation wavelengths.

Figure 5.8 shows the profiles as spectra obtained from the averaging of 100 lines
of the maps at the position where the thickness of WSe2 is equal to 11.7 nm. The
vertical lines correspond to the wavelengths calculated for gold, without any WSe2,
according to Equations 3.6, 3.7 and 3.8. A number of peaks, probably coming from
the tip-launched, edge-launched and tip-reflected edge-launched polaritons, can be
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seen in the spectrum of the full profile. Furthermore, the tip-launched wave if more
confined than the corresponding tip-launched SPP without WSe2, which confirms the
higher confinement of the polaritons due to WSe2.

a) b) c)laser = 735 nm laser = 768 nm laser = 800 nm

tl
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Figure 5.8. Normalized near-field intensity profiles and respective spectra from 11.7 nm of
WSe2 deposited on gold, for a wavelength of a) 735 nm and b) 768 nm and c) 800 nm.

Isolating the tip-launched polaritons is however difficult, especially at shorter
wavelengths, due to a lack of clear oscillations away from the edge - probably due
to shorter propagation length. As such, it is also difficult to fit the tip-launched
signal, in real space and in Fourier space. The determination of the wavelength of
these polaritons for the different laser excitations has thus here been implemented
by taking the value of the tip-launched tip maximum, as has been done in previous
works [51,52,108].

5.4.2 Dispersion relations and comparison with the theory
Figure 5.9a presents the comparison between the theoretical dispersion relation and
the experimental one recreated from the 7 measurement points. The experimental
wavevectors were determined by taking the maximum of the tip-launched peak in the
spectrum of the total profiles (black spectra in Figure 5.8). For better precision on
the determination of the maximum, the profiles were zero-padded with 7 times their
total length before applying the Fourier transform. The theoretical curve is calculated
using the anisotropic version of the TMM presented in Section 4.5.2 and the code
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presented in Section 4.5.3, with 11.7 nm of WSe2. The refractive index values are
taken from McPeak et al. [77] for the gold, Tulio Aguilar-Gama et al. [83] for Al2O3,
and Munkbhat et al. [43] for WSe2. The experimental points are corresponding to
the measured SPP wavevector defined as KSPP = Ktl/2. The errorbars are calculated
in the same way as in Section 5.3.3.

µ

a) b)

Figure 5.9. Dispersion relation of the polaritons on WSe2 and gold a) for a WSe2 thickness of
11.7 nm and b) for all the considered thicknesses. The theoretical curve has been calculated
using the TMM, with the refractive index values from McPeak et al. [77] for the gold,
Tulio Aguilar-Gama et al. [83] for the 2 nm Al2O3 layer, and Munkbhat et al. [43]. The
experimental points are half of the value extracted from the spectra. The horizontal dashed
lines represent the A-exciton resonance energy.

A back-bending can be observed from the dispersion relation at around 1.6 eV,
which corresponds to the energy of the A-exciton in WSe2. The back-bending is how-
ever smaller than the theory, and the experimental values are, as in Section 5.3.3, to
the left of the theory curve, and generally not overlapping with the theory. Further-
more, the back-bending is not as clear for the other thicknesses, as can be seen in
Figure 5.9b.

The difference between theory and experiment could have several reasons. First, as
mentioned in the previous section, the oscillations from the polaritons are not as clear
as the one from the bare gold surface. Indeed, at shorter wavelengths, the propagation
length of the polaritons is shorter, thus it is difficult to disentangle them from the
edge-launched polaritons. By contrast, at longer wavelengths, the absorption is lower
and the propagation length is longer, but the tip-launched polaritons are interfering
with oscillations coming from other edges. The measurement of the tip-launched
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wavelength could thus be influenced by this additional contribution. Furthermore, as
mentioned in Section 5.3.3, the theory seems to slightly overestimate the confinement
of the polaritons. A possible explanation could be the difference of treatment between
the PW and the CW. Indeed, the derived TMM considers PWs, while the tip-launched
SPPs are CWs. Thus, the additional geometrical losses could eventually influence the
coupling. A more likely explanation could be that the dielectric function of our WSe2
is different from the one of Munkhbat et al. [43], used for the theoretical predictions.
The dielectric function measurements were performed on a silicon substrate in the
case of Ref. [43], while our WSe2 is on a gold substrate. A measurement of the
reflection of our sample (WSe2 on gold) has been made and compared to the same
WSe2 flake on the SiO2/silicon substrate (substrate on which the gold lies). These two
measurements are normalized by the intensity reflected by the bare monocrystalline
gold platelet surface, as plotted in Figure 5.10. The substrate seems to influence the
optical properties of the A-exciton, marked by the dip around 1.6-1.65 eV.
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Figure 5.10. Reflection of the WSe2 flake with 12.3 nm thickness on a SiO2/silicon (SiO2/Si)
substrate compared to the monocrystalline gold substrate. The intensity reflected at the
WSe2 is normalized to the intensity reflected from the bare gold surface, considered as a
perfect mirror in this spectral range.

In future works, some improvement to the analysis and the experiment could
be implemented. On the analysis side, Fourier filtering of the maps (i.e. 2D Fourier
filtering) could be done to remove the influence from the polaritons coming from other
directions. The determination of the wavelength of the tip-launched polaritons could
thereby be facilitated. Furthermore, the dielectric function from our sample (WSe2
on gold) should be used in the TMM calculations. The in-plane dielectric function
can be deduced from the reflection measurements, as has been done in Ref. [100].
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On the experimental side, more s-SNOM measurements should be done to obtain
clearer oscillations from the polaritons. The measurement of a larger WSe2 area of
constant thickness would avoid the interference with polaritons coming from other
edges. Additionally, the stability of the laser should be increased. A workaround
could be to get mode-locking with a small bandwidth, but could not be achieved in
the present case at all wavelengths. Moreover, as the near-field signal is increased
when the tip apex radius is increased, a larger tip apex radius could be used. We
could also try to characterize the edge-launched polaritons instead of the tip-launched
polaritons [16,51,52,79]. This would however require to defocus the laser, as has been
done in a previous study [8], as the gaussian laser beam always moves with the tip.
We could also deposit the WSe2 flake in the middle of the gold and use its edge to
launch the polaritons, as in Ref. [108].

In summary, these preliminary experiments show some influence from the excitons
in WSe2, with a slight back-bending at the A-exciton resonance frequency for a thick-
ness of 11.7 nm, which indicates that the strong coupling is approached. However,
more work has to be done to understand the behaviour of the resulting polaritons
in a quantitative way. In particular, more experiments have to be made with larger
areas in the same thickness range to confirm the observed tendencies.

Finally, a recent work was recently published [108] on the measurement of exciton-
polaritons for WSe2 on gold, just like our structure. The thicknesses used in this work
are however much larger than in our work. This allows for a predicted splitting and a
confinement of the polaritons which are much larger than ours. However, the upper
polariton couldn’t be measured in this study, while we have a chance to measure it
with our structure. Furthermore, it seems that this study didn’t take into account the
anisotropy of WSe2, which is likely to become important for higher thicknesses. It
would thus be interesting to compare the theories with a sample of the same thickness
as in Ref. [108]. Finally, to the best of our knowledge, the propagation length of these
polaritons remains to be characterized.



86



Conclusion and
outlook

In this thesis, we used a s-SNOM in a reflection configuration to quantitatively char-
acterize the wavelength and the propagation length of SPPs on monocrystalline gold
platelets, for an excitation wavelength of 633 nm. We then applied the gathered
knowledge to study the interaction between these SPPs and excitons in WSe2, by
recreating the dispersion relation around the A-exciton resonance energy of WSe2.

SPPs on monocrystalline gold platelets
We measured the near-field amplitude and phase of SPPs on a monocrystalline

gold platelet, for six different azimuthal angles between the edge of the platelet and
the incident light. Among these angles, we found that the grazing incidence angle
is the best configuration to isolate the tip-launched SPPs from the edge SPPs. The
isolation of the tip-launched SPPs could be achieved by selecting a region far from
the edges of the platelet, as described in Ref. [36].

As a clear tip-launched signal could be retrieved, we derived a simple model to
describe the amplitude and phase of the near-field profiles. This model considers the
interference between the tip-launched SPPs and an offset coming from the near-field
light that is directly back-scattered from the sample towards the s-SNOM tip. This
model highlights a sinusoidal shape of both the near-field amplitude and the near-field
phase, with a π/2 phase shift between these profiles. Both these descriptions are in
agreement with the experimental profiles. Additionally, this model was found to be
valid for a fairly large amplitude of the SPP oscillations compared to the amplitude
of the offset.

As the tip-launched SPPs could be isolated and a model for the amplitude and
phase of their near-field could be derived, the wavelength and propagation length of
SPPs on monocrystalline gold platelets could be retrieved. We found a SPP wave-
length of 608 nm and a SPP field propagation length of 24 µm, corresponding to a
propagation length in intensity of 12 µm. These values were found to be consistent
between the near-field amplitude and phase and not to be sensitively dependent on
the choice of interval chosen for the fit. Furthermore, these values correspond well
with the values calculated from the dielectric function of high-quality polycrystalline
gold from McPeak et al. [77], as also highlighted in a recent work [10].
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Moreover, with the Al2O3 protection layer, the high stability of the sample was
shown by reproducing the same experiment after eight months.

These results could be used to characterize the dielectric function of other gold
surfaces or other metals, as the wavelength and propagation length of SPPs is linked
to the dielectric function. Furthermore, the change in the SPP propagation on metals
having good plasmonic properties but degrading with time, such as silver, could be
directly studied. The effect of the deposition of a protection layer could then be
evaluated in a direct measurement. More generally, the method to retrieve the tip-
launched signal and the model can be used for the study with PsHet detection of any
kind of polaritons, across the optical spectrum. We also believe that the study of the
angle between the incident light and the sample edge is relevant to other materials
that face challenges such as the efficiency of the excitation of surface waves with the
s-SNOM tip or interference with unwanted signals.

Coupling between excitons in WSe2 and SPPs

We first calculated theoretically the dispersion relation for a sample made of thin-
layered WSe2 on top of the previously studied gold platelets. We derived a 2×2 TMM
taking into account the anisotropy of WSe2, and we obtained the same results as in a
previous study of uniaxial van der Waals crystals [116]. We calculated the dispersion
relation of the multilayer sample based on this anisotropic TMM. For comparison,
we also calculated the dispersion relation in the case of the usual (isotropic) TMM,
where only the in-plane dielectric function of WSe2 is used. We found a slightly lower
confinement and lower coupling between the excitons and the SPPs in the dispersion
relation calculated using the anisotropic TMM. The difference in confinement and
coupling becomes larger as the thickness of the WSe2 layer is increased.

The 2×2 anisotropic TMM used in this thesis is applicable to any uniaxial crystal
across the visible spectrum, both for far-field and near-field studies. As it is less
computationally heavy than the 4×4 TMM, we believe it should be advertised for
calculations on stratified structures with uniaxial crystals.

Using a tunable laser, we made preliminary measurements first on a bare monocrys-
talline gold platelet, and then on a sample with a WSe2 flake - with thicknesses ranging
from 10.5 nm to 12.3 nm - on a gold platelet. The Al2O3 layer was thereby used as a
spacer between the gold and the WSe2. We used the grazing angle configuration to
extract the wavevector of the tip-launched polaritons for different excitation energies
around the energy of the A-exciton of WSe2. With this information, we reconstructed
the dispersion relation of polaritons on this sample.

The experimental dispersion relation for SPPs on the bare gold platelet was found
to be in fairly good agreement with the theoretical one. In the case of the sample
with WSe2, a small back-bending at the resonance energy of the A-excitons of WSe2
was observed, showing that the strong-coupling interaction regime between the SPPs
and the excitons was approached.

With these results, we are one step closer towards the full quantitative charac-
terization of the wavelength and propagation length of plasmon-exciton polaritons
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in TMDCs. Further work should be done on the far-field characterization of the di-
electric function of WSe2 flakes on gold, to insure a proper value for the theoretical
calculations. Furthermore, these preliminary measurements show the importance of
having clean and large WSe2 flakes to avoid interference with additional polaritons
excited at other edges or at defects.

Applicability to other structures and near-field techniques

The methods developed in this thesis are applicable to the characterization of
polaritons in other structures involving surface waves and TMDCs, for a s-SNOM in
a reflection configuration. The characterization of these plane samples could serve as
a baseline for more elaborate structures, such as waveguides and cavities, made out
of the same materials. Such structures could then be characterized with s-SNOM, as
we have done for example in the case of newly developed dielectric nano-cavities [123],
to help their development and improve their design.

Furthermore, the same procedure to extract the wavelength and propagation
length of tip-launched polaritons could be applied in the case of measurements made
with a nano-FTS and a broadband source. Using the nano-FTS could enable the
retrieval of the dispersion relation in one measurement, and to visualize the time-
dependence of the polaritons.
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APPENDIXA
Pseudo-heterodyne
detection - detailed

calculations
A.1 Fourier components and multiplication

Let us calculate the Fourier decomposition of one of the conjugated terms in Eq. 1.10:

EC = ENF E∗
B =

∑
n

Ec,n exp{inΩt}

EC =

(∑
n

Enf,n exp(inΩt)

)(∑
n

E∗
b,n exp(−inΩt)

)
EC =

∑
n

∑
k

Enf,nE∗
b,k exp(i(n− k)Ωt) (n→ k)

=
∑

n

∑
j

Enf,nE∗
b,n−j exp(i(j)Ωt) (k → j = n− k)

∑
j

Ec,n exp(ijΩt) ∝
∑

j

∑
n

Enf,nE∗
b,n−j exp(ijΩt)

Meaning:

Ec,j =
∑

n

Enf,nE∗
b,n−j

=
∑

k

Enf,kE∗
b,k−j (n→ k)

Ec,n =
∑

k

Enf,kE∗
b,k−n (j → n)

The same principle goes for all the other terms in Eq. 1.10.



94 Appendix A Pseudo-heterodyne detection - detailed calculations

A.2 Back-check of equations 1.23 and 1.24
Let us try to find back |Enf,n| from |Eexp

nf,n| and Φnf,n from Φexp
nf,n.

For the amplitude:

|Eexp
nf,n| = 2.16|C|

√
I2

n,2 + I2
n,1

= 2.16|C|2κ|Enf,n|ρ
√

[J2(2.63) cos(ΦR − Φnf,n)]2 + [J1(2.63) sin(ΦR − Φnf,n)]2

Knowing that J2(2.63) = J1(2.63) = 1/2.16 and |C| = 1/(2κρ)

|Eexp
nf,n| =

2.162κρ

2.162κρ
|Enf,n|

|Eexp
nf,n| = |Enf,n|

For the phase:

Φexp
nf,n = arctan

(
In,1

In,2

)
= arctan

(
2κ|Enf,n|ρJ1(2.63) sin(ΦR − Φnf,n)
−2κ|Enf,n|ρJ2(2.63) cos(ΦR − Φnf,n)

)
= − arctan

(
sin(ΦR − Φnf,n)
cos(ΦR − Φnf,n)

)
Φexp
nf,n = Φnf,n − ΦR



APPENDIXB
Sources and detectors
B.1 Sources
The sources permanently available for this setup are summarized in Table B.1.

Laser Wavelength range (nm) Pulse duration (fs) Max output power (mW)
HeNe 632.991 - 4

Green diode 521.6 - 28
Fusion 750 - 850 10 300

Tsunami 700 - 1000 100 300

Table B.1. Overview of the permanently available lasers sources

The most used laser source is a CW stabilized red HeNe laser (HRS015, Thorlabs
GmbH). It is used for general alignment procedures as well as for measurements. For
this laser, the manufacturer guaranties a wavelength of 632.991 nm and an output
power of 4 mW has been measured.

Some experiments have used a green diode laser (Matchbox 0520L-15A-NI-PT-NF,
Integrated Optics UAB). The manufacturer guaranties a wavelength of 521.6± 0.5 nm
for this laser, and output powers from 0 to 28 mW can be set by changing the laser
current.

The Fusion laser (Fusion Pro, FEMTOLASERS Produktions GmbH) is a fem-
tosecond laser with a center wavelength at 800 nm and a pulse duration of about
10 fs. Thus, a wavelength range of 750 nm to 850 nm can potentially be probed in
one measurement by using the nano-FTIR module. The repetition rate of this laser
is 80 MHz.

The Tsunami laser (Tsunami, from Spectra-Physics Lasers Inc.) is a tunable
femtosecond laser with a center wavelength that can be tuned from about 700 nm to
about 1000 nm, and a pulse duration below 100 fs when mode-locked. It is pumped
by a green laser (Millenia Pro, from Spectra-Physics Lasers Inc.). The Tsunami laser
laser is most stable when it is mode-locked. It is however used in continuous wave
mode in this thesis. The measured spectrum from this laser in continuous wave mode
is plotted in Figure B.1. The repetition rate of this laser is 80 MHz.

It has to be noted that due to the number of mirrors involved in the beam path, the
power at the output of the lasers is the not necessarily the same as the power entering
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the s-SNOM. Typically about 50% of the power would be lost, mainly after the beam
expander. However, when the output power is still too high for the s-SNOM tip, a
half-wave plate (AHWP10M-580, from Thorlabs GmbH) associated with a polarizer
(LPNIR100-MP2, from Thorlabs GmbH) are used to attenuate the power at the input
of the s-SNOM.
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Figure B.1. Spectrum of the Tsunami laser in continuous mode, measured with the Ocean
Optics spectrometer (USB4000 from Ocean Insight Inc.).

B.2 Detectors
The detector used in this thesis is a one-pixel 10-MHz adjustable photodiode (2051,
from Newport Corp.).



APPENDIXC
Additional

measurements of SPPs
at grazing angle

This appendix shows the additional measurements of SPPs on monocrystalline gold
platelets. The same platelet and same experimental configuration as for the results
shown in Section 3.4.3 has been used. Both measurements were made 8 months after
the measurement shown in Section 3.4.3. The figures and tables are the same as in
the supplementary information from Ref. [66].

C.1 First additional measurement: φ = −1.4◦

a b

Figure C.1. Fit of amplitude and phase at grazing angle (φ = −1.4◦), for a starting value
xb = 3 µm. (a) Fit of the tip-launched SPPs’ amplitude peak. (b) Fit of the corresponding
phase data.
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Amplitude Phase Theory
k-space real space k-space real space -

Ktl (µm−1) 20.752± 0.007 20.75± 0.01 20.736± 0.004 20.743± 0.008 20.75
Ltl

p (µm) 11.8± 1 14± 2 10.6± 1 11.4± 0.1 13.65

Table C.1. Comparison of values for the wave-vector and propagation length, as obtained in
real space and in Fourier space, for one starting value xb = 3 µm.

Amplitude Phase Theory
k-space real space k-space real space -

Ktl (µm−1) 20.752± 0.006 20.754± 0.004 20.740± 0.008 20.745± 0.004 20.75
Ltl

p (µm) 11.7± 0.3 13.6± 0.8 10.7± 0.2 11.3± 0.4 13.65

Table C.2. Comparison of values for the wave-vector and propagation length, as obtained in
real space and in Fourier space, for an average of 30 different starting values.

C.2 Second additional measurement: φ = −0.4◦

a b

Figure C.2. Fit of amplitude and phase at grazing angle (φ = −0.4◦), for a starting value
xb = 3 µm. (a) Fit of the tip-launched SPPs’ amplitude peak. (b) Fit of the corresponding
phase data.

Amplitude Phase Theory
k-space real space k-space real space -

Ktl (µm−1) 20.757± 0.005 20.76± 0.01 20.754± 0.008 20.76± 0.01 20.75
Ltl

p (µm) 12.0± 0.9 13.2± 0.3 12.7± 1 14.4± 3 13.65

Table C.3. Comparison of values for the wave-vector and propagation length, as obtained in
real space and in Fourier space, for one starting value xb = 3 µm.
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Amplitude Phase Theory
k-space real space k-space real space -

Ktl (µm−1) 20.758± 0.007 20.759± 0.007 20.758± 0.007 20.758± 0.003 20.75
Ltl

p (µm) 12.4± 0.5 14.8± 0.9 12.0± 0.6 13.0± 0.4 13.65

Table C.4. Comparison of values for the wave-vector and propagation length, as obtained in
real space and in Fourier space, for an average of 30 different starting values.

The additional measurements are in agreement with the results presented in Chapter 3.
The averaging over different starting values xb results in values of Ktl and Ltl

p close
to the values found for a fixed starting value xb. Thus, the fit is stable with regards
to the choice of xb.
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APPENDIXD
Transfer matrix method
D.1 Matlab code used to calculated the dispersion

relation in the case of the isotropic TMM

D.1.1 Main code

1 % Author: Laura N. Casses - 17.06.2022
2
3 close all
4 clear
5 clc
6
7 %% Constants
8
9 c= 299792458; % m/s

10 hbar=1.0546*10^-34; % in J.s
11 e=1.6022*10^-19; % C
12
13 %% Choice of TMDC parameters for eps
14
15 load('Lorentz_param_TMDC_220412')
16
17 %% CONSTANTS THAT CAN BE CHANGED
18
19 % ENERGY
20 EeV = linspace(1.5,1.7,50);
21
22 % eps TMDC
23 epsTMDC = 4.4*ones(1,length(EeV));
24 j=1;
25 for i=1:10
26 epsTMDC = epsTMDC + cf(j)./(cf(j+1)^2 -EeV.^2 -1i*cf(j+2).*EeV);
27 j=j+3;
28 end
29
30 % eps dielectric materials
31 epsD=1; % vacuum or air
32 epsAlO = (1.61)^2;
33
34 % eps Gold
35 [E_JC,E_N,E_MoS2,E_WS2,E_WSe2,E_MoSe2,eps_AuJC,eps_AuN,eps_MoS2,eps_WS2 ,...
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36 eps_WSe2,eps_MoSe2] = ImportData(); % All energies are in J.
37 E_N = E_N/e;
38 i_beg = find(E_N>1.49 & E_N<1.51);
39 i_end = find(E_N<1.81 & E_N>1.79);
40
41 epsAu = interp1(E_N(i_beg:i_end),eps_AuN(i_beg:i_end),EeV,'spline');
42
43 % Thickness of materials used
44 d_TMDC = 15E-9; % Effective thickness of WSe2, in m
45 d_AlO = 2E-9; % Effective thickness of AlOx, in m
46
47 %% Solve for q with TMM
48
49 omega = EeV*e/hbar; % in m^{-1}
50 sigma = 0;
51
52 Solution=zeros(length(EeV),1);
53 MatrixSol = zeros(length(EeV),1);
54
55 for i=1:length(EeV)
56 syms q
57 M = Mmatrix_4L_V02(epsD,epsTMDC(i),epsAlO,epsAu(i),d_TMDC,d_AlO,...
58 omega(i),sigma,q);
59
60 eqn = M(1,1)==0;
61 if i ==1 || Solution(i-1)==0
62 sol = 0;
63 count =1;
64 while sol == 0 && count <4
65 Q=vpasolve(eqn,q,[sqrt(1).*EeV(i)*e/hbar/c+1i*7E4 ...
66 sqrt(3).*EeV(i)*e/hbar/c+1i*5E5],'Random',true); %in m^{-1}
67 s=isempty(Q);
68 if s==0
69 sol = 1;
70 disp('Solution!')
71 else
72 fprintf('No solution... i= %3d\n',i)
73 count = count +1;
74 end
75 end
76 else
77 Q=vpasolve(eqn,q,Solution(i-1));
78 end
79
80 s=isempty(Q);
81 if s==1
82 Solution(i)=0;
83 else
84 Solution(i)=Q(1,1);
85 Matrix= Mmatrix_4L_V02(epsD,epsTMDC(i),epsAlO,epsAu(i),d_TMDC ,...
86 d_AlO,omega(i),sigma,Solution(i));
87 MatrixSol(i) = Matrix(1,1);
88 end
89 end
90
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91 %% Comparison with Goncalves formula
92
93 omegaDc = EeV*e/hbar/c; % omega(s^-1)/c
94
95 sigma = 0;
96
97 Solution2=zeros(length(EeV),1);
98 for i=1:length(EeV)
99 syms q

100 eqn1 = real(q)>0;
101 eqn2 = imag(q)>0;
102 eqn = epsD./sqrt(q.^2-epsD*omegaDc(i)^2)+epsAu(i)./sqrt(q.^2-...
103 epsAu(i)*omegaDc(i)^2)==0;
104 eqns = [eqn1 eqn2 eqn];
105 Q=solve(eqns,q);
106 s=isempty(Q);
107 if s==1
108 Solution2(i,:)=0;
109 else
110 Solution2(i,:)=Q(1,1);
111 end
112 end
113
114 Solution2 = double(Solution2);
115
116 %% Save data
117
118 % save('DispRel_Air11.65nmTMDCAlOAu.mat','Solution')
119 % save('DispRel_AirAu.mat','Solution2 ')
120
121 %% Plot result
122
123 yaxis=EeV;
124 xaxis=real(Solution)*10^-6; % in um^-1
125 xaxis2=real(Solution2)*10^-6; % in um^-1
126 q_light = sqrt(epsD).*EeV*e/hbar/c*10^-6;
127
128 %Plot
129 figure;
130 hold on
131 plot(xaxis,yaxis,'k')
132 plot(xaxis2,yaxis,'g--')
133
134 % light line
135 plot(q_light,yaxis,'r--') % plot light line (in vacuum!)
136 hold off
137
138 xlabel('q (µm^{-1})')
139 ylabel('Energy (eV)')
140 legend('Dispersion relation','Air/gold interface','Light line',...
141 'Location','northwest')
142
143
144 ylim([1.5 1.7])
145 axis([7.5 10.5 1.5 1.7]) % Select the axes boundaries
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146 set(gcf, 'Position', [100,100, 460, 370])
147 % title('Dispersion relation - 10 nm WSe_2 with A exciton')

SC_Disp_4L_V07.m

D.1.2 Total matrix function

1 function M = Mmatrix_4L_V02(epsD,epsTMDC,epsAlO,epsAu,d_TMDC,d_AlO,omega,
sigma,q)

2 %UNTITLED13 Summary of this function goes here
3 % Detailed explanation goes here
4 D12p = TransmissionMatrixP_V02(q,omega,epsD,epsTMDC,sigma);
5 P2 = PropagationMatrix_V02(q,omega,epsTMDC,d_TMDC);
6 D23p = TransmissionMatrixP_V02(q,omega,epsTMDC,epsAlO,sigma);
7 P3 = PropagationMatrix_V02(q,omega,epsAlO,d_AlO);
8 D34p = TransmissionMatrixP_V02(q,omega,epsAlO,epsAu,sigma);
9

10 M= D12p*P2*D23p*P3*D34p; % Total transfer matrix
11 end

Mmatrix_4L_V02.m

D.1.3 Transmission matrix function

1 function Dp = TransmissionMatrixP_V02(q_var,omega,eps1,eps2,sigma)
2 % TransmissionMatrix: Calculates the transmission matrix through an

interface,
3 % from medum 1 to medium 2, with 2D material in

between - or not.
4 % INPUT:
5 % - q_var: in plane wavevector (real vector)
6 % - omega: oscillating frequency of the light
7 % - eps1, eps2: dielectric of media 1 and 2, respectively (number)
8 % - sigma: conductivity at the interface (number)
9 % OUTPUT: Calculated transmission matrix Dp, for p polarization

10
11 %% Universal constants
12
13 epsilon_0 = 8.85*10^-12;
14 c= 299792458;
15
16 %% Other constants
17 k1z = sqrt(q_var.^2-eps1*omega^2/c^2);
18 k2z = sqrt(q_var.^2-eps2*omega^2/c^2);
19
20 xi_p = 1i*sigma*k2z./(epsilon_0*eps2*omega); % doesn't matter for our bulk

case because sigma=0 (no boundary material)
21 eta_p = eps1*k2z./(eps2*k1z);
22
23 %% Matrix
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24
25 Dp = sym(zeros(2,2,length(q_var)));
26
27 for i=1:length(q_var)
28 Dp(1,1,i)=(1+eta_p(i)+xi_p(i))/2;
29 Dp(1,2,i)=(1-eta_p(i)-xi_p(i))/2;
30 Dp(2,1,i)=(1-eta_p(i)+xi_p(i))/2;
31 Dp(2,2,i)=(1+eta_p(i)-xi_p(i))/2;
32 end
33
34 end

TransmissionMatrixP_V02.m

D.1.4 Propagation matrix function

1 function P = PropagationMatrix_V02(q_var,omega,eps,d)
2 % TransmissionMatrix: Calculates the propagation matrix in a medium,
3 % INPUT:
4 % - q_var: in plane wavevector (real vector)
5 % - omega: oscillating frequency of the light
6 % - eps: dielectric of the medium
7 % - d: thickness of the medium layer
8 % OUTPUT: Calculated propagation matrix P, for any polarization
9

10 %% Universal constants
11
12 c= 299792458;
13
14 %% Other constants
15 kz = sqrt(q_var.^2-eps*omega^2/c^2);
16
17 %% Matrix
18
19 P = sym(zeros(2,2,length(q_var)));
20
21 for i=1:length(q_var)
22 P(1,1,i) = exp(kz(i)*d);
23 P(2,2,i) = exp(-kz(i)*d);
24 end
25
26 end

PropagationMatrix_V02.m
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D.2 Derivation of the impedance coefficients for
uniaxial anisotropic crystals

For a plane wave without source currents, the Maxwell’s equation ∇× H = j + ∂D
∂t

leads to
k × H = −ωε0

←→ε E (D.1)

In the case of a uniaxial anisotropic crystal and p-polarization, this leads to the
equation {

kzHy = ωε0εordEx

qHy = −ωε0εeEz

, (D.2)

with all notation being the same as in Chapter 4. This means the electric field
components can be expressed as{

Ex = kz

ωε0εord
Hy

Ez = − q
ωε0εe

Hy

. (D.3)

Now, we have to find the anisotropic impedance ZA that satisfies the equation
k̂ × E = ZAH, where k̂ is the unitary vector in the same direction as k. Knowing
that k̂ = k/||k|| (where ||k|| =

√
q2 + k2

z is the norm of k) and k × E = ωB = ωµ0H,
we get

1
||k|| (ωµ0H) = ZAH. (D.4)

Thus, the anisotropic impedance can be expressed as

ZA = ωµ0

||k|| . (D.5)

Finally, we can use the relation ω = c
√

q2

εe
+ k2

z

εord
, valid in the case of p-polarization,

to get:

ZA =
√

µ0

ε0

√
1

q2 + k2
z

(
q2

εe
+ k2

z

εord

)
. (D.6)

This expression can be reduced to the isotropic impedance Zi of medium i (see
Equation 4.17), in the case of εord = εe. Note that in this derivation we have consid-
ered that the relative permittivity of medium i, µi, is equal to 1.
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