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Abstract. The CryoGrid community model is a flexible tool-
box for simulating the ground thermal regime and the ice–
water balance for permafrost and glaciers, extending a well-
established suite of permafrost models (CryoGrid 1, 2, and
3). The CryoGrid community model can accommodate a
wide variety of application scenarios, which is achieved by
fully modular structures through object-oriented program-
ming. Different model components, characterized by their
process representations and parameterizations, are realized
as classes (i.e., objects) in CryoGrid. Standardized commu-
nication protocols between these classes ensure that they can
be stacked vertically. For example, the CryoGrid commu-
nity model features several classes with different complex-
ity for the seasonal snow cover, which can be flexibly com-
bined with a range of classes representing subsurface mate-
rials, each with their own set of process representations (e.g.,
soil with and without water balance, glacier ice).

We present the CryoGrid architecture as well as the
model physics and defining equations for the different model
classes, focusing on one-dimensional model configurations

which can also interact with external heat and water reser-
voirs. We illustrate the wide variety of simulation capabili-
ties for a site on Svalbard, with point-scale permafrost sim-
ulations using, e.g., different soil freezing characteristics,
drainage regimes, and snow representations, as well as sim-
ulations for glacier mass balance and a shallow water body.
The CryoGrid community model is not intended as a static
model framework but aims to provide developers with a flex-
ible platform for efficient model development. In this study,
we document both basic and advanced model functionalities
to provide a baseline for the future development of novel
cryosphere models.

1 Introduction

The terrestrial cryosphere is currently undergoing unprece-
dented changes, including thawing of permafrost, melting of
glaciers and ice sheets, and changes in snow cover extent.
In the last decade, permafrost temperatures have warmed
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almost everywhere in the circum-Arctic (Biskaborn et al.,
2019), and the melting of excess ground ice can accelerate
thawing in a positive feedback loop, leading to the fast trans-
formation of permafrost landscapes through thermokarst
(Farquharson et al., 2019; Nitzbon et al., 2020; Turetsky
et al., 2019). Glaciers worldwide have been retreating at in-
creasing rates (e.g., Hugonnet et al., 2021; Huss and Hock,
2018) and are important contributors to global sea-level rise.
On regional scales, glacier retreat can affect, e.g., freshwa-
ter availability, infrastructure, and wildlife (e.g., Kaser et al.,
2010).

Cryosphere land surface models are important tools to
investigate the sensitivity of the terrestrial cryosphere un-
der complex environmental and climatic conditions. In par-
ticular, the models allow us to project climate change im-
pacts and thus answer urgent questions on the future of the
cryosphere. As an example, glacier mass balance models are
important tools for estimating the response of ice masses to
a changing climate. They aid the investigation of the cur-
rent state of the cryosphere in areas where in situ observa-
tions are hard to obtain and can be used to estimate the past
and future evolution of glaciers (e.g., Mankoff et al., 2021;
Schmidt et al., 2020; van Pelt et al., 2021). Similarly, numer-
ical models are highly important to investigate the current
state of permafrost, in particular since permafrost is usually
not visible at the Earth’s surface and only a limited number of
measurement sites exist. Permafrost models provide insights
into the evolution of Arctic landscapes and help us under-
stand how these fragile ecosystems respond to natural and
human-caused disturbances.

The purpose of land surface models is to describe nature in
an adequate way, which means that the models must repro-
duce observations of the targeted physical parameters. This
can be achieved by models of different complexity, from sim-
ple semi-empirical models trained by observations to phys-
ically based schemes which run independently of observa-
tions. Examples of semi-empirical models are degree day
melt models for glacier mass balance (Gabbi et al., 2014;
Reveillet et al., 2017) and the top of the permafrost table
(TTOP) equilibrium model to estimate permafrost temper-
atures (Smith and Riseborough, 1996), which are both de-
signed for a certain application. In contrast, physically based
land surface models can simulate both glacier mass balance
and the permafrost thermal regime with the same model
framework, relying on universal formulations, such as the
surface energy balance and Fourier’s law of heat conduction.
Over the past decades, land surface models have grown in
complexity to incorporate a wide range of processes from
various disciplines, such as biophysics, biogeochemistry, hy-
drology, and ecology (Fisher and Koven, 2020). In theory,
continuous improvements over time could eventually lead to
a unified “land surface model of everywhere, everything and
all times” (Blair et al., 2019), which can reproduce and ex-
plain observations of all land surface variables, irrespective
of their spatial and temporal scales. In reality, however, com-

plex land surface models feature a large number of model
parameters whose variations in space and time are poorly
constrained. This severely compromises their advantage over
simpler model approaches in many use scenarios, in addi-
tion to strongly increased computation demands. Therefore,
simple, less process-rich models have significant advantages
in many practical applications and are typically employed
for high-resolution (e.g., Obu et al., 2019), long-timescale,
and/or large-ensemble simulations.

The CryoGrid suite of permafrost models have provided
three model categories with an increasing level of complex-
ity to conduct a wide range of permafrost studies. CryoGrid
1 is an equilibrium model to compute mean annual ground
temperatures at the top of the permafrost table (TTOP) as the
only output (Gisnås et al., 2013), which in particular makes
it possible to infer the presence or absence of permafrost. It
relies on surface or air temperatures as input, in addition to
n-factors to parameterize the effects of snow cover and ac-
tive layer properties on the seasonal heat exchange. While
CryoGrid 1 was used for fine-scale process studies (Gisnås
et al., 2014, 2016), its main use was for large-scale mapping
of permafrost extent and temperatures, e.g., the generation
of a permafrost map for Scandinavia (Gisnås et al., 2017).
By using globally available remote sensing and reanalysis
data (MODIS land surface temperature, ERA reanalysis) to
force CryoGrid 1, permafrost maps on the continental scale
could be produced (Westermann et al., 2015). Later, this pro-
cessing chain was extended to produce 1 km resolution per-
mafrost maps of the Northern Hemisphere (Obu et al., 2019)
and Antarctica (Obu et al., 2020). Due to a low number of pa-
rameters and an efficient and simple implementation, Cryo-
Grid 1 allowed for large-scale ensemble simulations at 1 km
grid cell size so that the effect of small-scale spatial vari-
ability of snow depths and ground properties on the thermal
regime could be represented statistically. Similar modeling
approaches building on analytical formulations for ground
temperature and active layer thickness have also been applied
at regional scales (e.g., GIPL1 in Alaska, Sazonova and Ro-
manovsky, 2003).

Being an equilibrium model, CryoGrid 1 is generally not
well suited for climate change simulations, missing transient
processes. For instance, changes of the model forcing impact
ground temperatures without time delay in the equilibrium
model, when in reality subsurface processes like ground ice
melt delay the response of ground temperature. Therefore,
the transient model CryoGrid 2 is employed for mapping cli-
mate change impacts using similar spatially distributed forc-
ing datasets as CryoGrid 1 (Czekirda et al., 2019; Wester-
mann et al., 2013, 2017). Similar to the GIPL2 model (Ja-
farov et al., 2012), CryoGrid 2 computes ground tempera-
tures from conductive heat transfer through the ground and
the snowpack, validated in permafrost regions of northern
Siberia and Norway (Beermann et al., 2017; Langer et al.,
2013; Westermann et al., 2011). Furthermore, CryoGrid 2
can be used to compute ground temperatures in deeper lay-
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ers from field measurements of near-surface ground tem-
peratures (Peter et al., 2023). Due to its relative computa-
tional efficiency, CryoGrid 2 has also been adapted to sim-
ulate multi-millennial paleo-permafrost evolution, for exam-
ple during deglaciation on Iceland (Etzelmüller et al., 2020).
CryoGrid 2 was also used to model the evolution of per-
mafrost beneath the circum-Arctic continental shelves (Over-
duin et al., 2019) with model forcing computed for the last
450 kyr from model reconstructions of glaciation, sea level,
and air temperature. The implementation of coupled heat and
salt diffusion equations in offshore sediments showed miti-
gation of seabed seasonal freezing and enhancement of the
subsea permafrost degradation rate because of the presence
of salt (Angelopoulos et al., 2019). Further applications of
the model to thermokarst lagoon and coastal settings demon-
strated how brine rejection lowers sediment freezing tem-
perature and slows the refreezing of thawed sediments (An-
gelopoulos et al., 2020, 2021).

CryoGrid 3 is a land surface model that accounts for
land–atmosphere coupling by simulating the surface energy
balance, similar to the COUP (e.g., Marmy et al., 2013),
GEOtop (Rigon et al., 2006; Endrizzi et al., 2014), and SUR-
FEX (Barrere et al., 2017) models. CryoGrid 3 features a rep-
resentation of excess ground ice so that ground subsidence
and thermokarst pond formation upon thaw can be simu-
lated (Westermann et al., 2016). Furthermore, it was used
to simulate heat transport in water bodies as well as their
impact on the thermal regime and the thaw threshold of the
permafrost below (Langer et al., 2016). The implementation
of the state-of-the-art snow scheme Crocus (Vionnet et al.,
2012) into CryoGrid 3 allowed for transient representation
of internal snow properties as well as wind redistribution of
snow, which was key to realistically simulate local ground
temperature dynamics in snow-rich regions (Zweigel et al.,
2021). As about 55 % of permafrost area is covered by bo-
real forest, CryoGrid 3 was extended by a multi-layer veg-
etation scheme (Bonan et al., 2018) for the modeling of the
thermal and hydrological permafrost conditions under boreal
forest cover (Stuenzi et al., 2021a, b). CryoGrid 3 was fur-
ther extended by a bucket hydrology scheme for unfrozen
conditions, as well as lateral transport of water, heat, and
snow; this version has been evaluated and applied for dif-
ferent permafrost ecosystems (Martin et al., 2019; Nitzbon
et al., 2019). Nitzbon et al. (2020), Nitzbon et al. (2021),
and Martin et al. (2021) further demonstrated the applica-
bility of CryoGrid 3 to simulate complex permafrost land-
scape evolution over a range of spatial (plot to landscape)
and temporal (years to centuries) scales. Such spatially dis-
tributed realizations of CryoGrid 3 (denoted as “laterally
coupled tiles”) aim for a three-dimensional representation
of permafrost hydrology, similar to cold-region hydrological
models, such as WASIM (Debolskiy et al., 2021), TopoFlow
(Schramm et al., 2007), SUTRA-Ice (McKenzie et al., 2007),
permaFoam (Orgogozo et al., 2023), PFLOTRAN-Ice (Karra

et al., 2014), and Amanzi-ATS (Painter et al., 2016; Jan et al.,
2018).

While CryoGrid 1, 2, and 3 are partly based on the same
model formulations and process parameterizations, they are
essentially different models regarding numerics and code
structure. Furthermore, they have been adapted for many dif-
ferent use cases, creating numerous derivatives of slightly
different model versions that are not necessarily compatible.

In this study, we present the architecture of a new Cryo-
Grid community model, which comprises most of the func-
tionalities demonstrated in CryoGrid 1–3, while going be-
yond in many aspects. In particular, the CryoGrid commu-
nity model is not a single model, but a modular collection of
models with different functionalities which can be combined
with each other to fit the requirements of a variety of applica-
tions. We describe key aspects of the model physics for one-
dimensional simulations, especially when going beyond the
capabilities of previously documented CryoGrid 1–3. An ex-
ample is a new glacier mass balance module which extends
the capabilities of the CryoGrid community model beyond
permafrost. We showcase the possibilities of this new sim-
ulation tool with point simulations for Svalbard, as well as
benchmark simulations against analytical solutions and ref-
erence experiments.

2 CryoGrid community model description

2.1 Architecture and setup

2.1.1 Model concept – modularity through
object-oriented programming

The CryoGrid community model is based on an object-
oriented programming paradigm implemented in the pro-
gramming language MATLAB in which “objects” are re-
ferred to as “classes”. A class is a defined structure, which
consists of a class-specific set of variables, as well as class-
specific functions to modify these variables. A variable
within a class can once again be a class (more precisely a
pointer to another class), typically of a different type, which
makes it possible to create a tree-like structure with different
hierarchical levels (Fig. 1). Hereby, each class at a given hier-
archy level contains pointers to the lower-level classes, with
different levels representing different functionalities within
the simulation system. In CryoGrid, each functionality level
is represented by specific class types for which typically sev-
eral options (i.e., different classes) are available, allowing
customizing and adapting the model setup. Classes of a given
type feature mandatory variables and functions with stan-
dardized inputs and outputs so that they become interchange-
able building blocks of a modular simulation system with in-
trinsic compatibility. For each class type, the best-fitting class
for the particular use case must be selected by the user. Fur-
thermore, each class has specific parameters which must be
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Figure 1. Hierarchy (left to right) of the different types of CryoGrid classes required for multi-physics simulations within the CryoGrid
community model, as described in this study. Arrows represent pointers to classes employed in the hierarchical level below. Other hierar-
chies, potentially comprising additional and different types of classes, are fully possible within the CryoGrid community model and can
be implemented in the future, e.g., a set of classes for spatially distributed applications with less customizable, but computationally more
efficient, simulation tools (Sect. 4.7). See text. The CryoGrid stratigraphy is depicted in more detail in Fig. 2.

set by the user and further control the behavior of the model
system. A description of all available CryoGrid classes em-
ployed in this study is presented in Sect. S2.

Figure 1 depicts the class types and associated hierarchy
that are employed to realize the multi-physics simulations
described in the remainder of this study. However, it is pos-
sible to implement other configurations (e.g., with differ-
ent class types and hierarchies) within the CryoGrid com-
munity model (see Sect. 4.7 for a discussion of such possi-
bilities). The RUN_INFO class is the only mandatory class
type, which represents the uppermost level of any class hi-
erarchy. For the multi-physics simulations described in this
work, the second level in the class hierarchy uses the class
type TILE (Fig. 1). The purpose of a TILE class is to per-
form a classic one-dimensional model simulation over a pre-
defined time period with a pre-defined forcing dataset (as in,
e.g., CryoGrid 2 and 3). RUN_INFO classes, on the other
hand, organize the model simulations. Depending on which
RUN_INFO class is selected, they can, for example, launch
only a single TILE class or several TILE classes (e.g., several
independent simulations, representing grid cells or ensem-
ble members) either sequentially or in parallel. Additionally,
model spin-up can be implemented by sequentially simulat-
ing a number of TILE classes. For example, one TILE class
can be used for the spin-up phase and another for the target
period of the simulations, which is initialized by the model
state of the spin-up TILE class (see Sect. 3.1.4 for an acceler-
ated spin-up procedure using a sequence of TILE classes). A
description of all RUN_INFO classes employed in this study
is provided in Sect. S2.

The multi-physics simulations described in this work all
employ the TILE class TILE_1D_standard (see Sect. S2 for
more details) that performs a full model simulation, from
model initialization to the generation of the model out-

put. For this purpose, a range of specialized class types is
employed (hierarchy level 3 in Fig. 1), which control dif-
ferent aspects of the simulation, such as the initialization
of model state variables (STRAT_STATVAR classes), the
model forcing (FORCING classes), and the model output
(OUT classes). We do not describe the entire functionality of
these class types here (see Sect. S2 for details), but only pro-
vide a few examples showcasing the modularity. FORCING
classes, once again adhering to the strict protocol of manda-
tory variables and internal functions, are designed to provide
the required model forcing at a specific time step. Different
FORCING classes are available: for example, a class sim-
ply interpolating the raw model forcing and a class repro-
jecting the radiative components of the raw model forcing
based on slope and aspect. The choice of the OUT class de-
termines what kind of and how model output is stored. For
development and testing, a class storing the entire variable
space can be used, while users may want to design a purpose-
built OUT class which only stores their model variables of
interest. There is also an OUT class storing the full model
state after the final simulation time step, which can be used
to start a new simulation based on that state (i.e., initialize
a new TILE class). STRAT_STATVAR classes (abbreviation
for “stratigraphy of state variables”, not shown in Fig. 1) are
employed to calculate depth profiles of model variables to
define the initial state on the model grid. Depending on the
class, these can be provided as layers with constant values or
by interpolation between values at defined depths.

The backbone of the modularity within
TILE_1D_standard is the possibility to define a verti-
cal stack of classes, each employing different model physics
and parameterizations within layers of the model domain
(see Fig. 2, Sect. 2.1.2, 2.2). In the following, we refer to this
vertical stack of classes as “CryoGrid stratigraphy” and the
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Figure 2. Example of a CryoGrid stratigraphy in the tile class
TILE_1D_standard, showing the different classes connected by
pointers (symbolized by arrows). The CryoGrid stratigraphy con-
sists of stratigraphy classes 1 to 3 coupled by interaction (IA)
classes that specify the exchange of heat and mass between pairs
of stratigraphy classes. The stratigraphy is realized as a linked list
with pointers between classes and interaction classes, and the top
and bottom of the list are represented by a dedicated TOP and BOT-
TOM class (which have no other functionality).

classes within this stack, which encode the model physics,
as “stratigraphy classes”. The vertical domain covered by
each of the stratigraphy classes (i.e., the stratigraphy of
these classes) is again assigned via a purpose-built class
(STRAT_CLASSES, denoted as STRATIGRAPHY in
Fig. 1). Finally, TILE_1D_standard features a class type
controlling lateral interactions with an external environment
(denoted as LATERAL in Fig. 1). These LATERAL classes
are described in Sect. 2.3.

2.1.2 Multi-physics representation with stratigraphy
classes

A one-dimensional model simulation (in
TILE_1D_standard, see above) is realized by vertically
stacking different stratigraphy classes (Fig. 2) which are
each defined by their specific model physics and state vari-
ables. Examples of stratigraphy classes are ground columns
with and without water balance, water bodies, glaciers,
and snow with different levels of process representation
(see Sect. 2.2 for details). Each class occupies a certain
vertical domain, with the boundary conditions applied to the
uppermost and lowermost class (Fig. 3).

Figure 3. Example of a CryoGrid stratigraphy in the tile class
TILE_1D_standard with two stratigraphy classes. Each stratigra-
phy class has its own state variables and model grid, and energy
and water are exchanged between stratigraphy classes (as coded in
the interaction class, Fig. 2). At the upper boundary, energy and wa-
ter are exchanged according to the model forcing in a class-specific
way (see Sect. 2.2.2), while a heat flux is typically applied at the
lower boundary. Note that water fluxes only occur between stratig-
raphy classes which account for soil hydrology, i.e., for the transient
evolution of soil water contents (see Sect. 2.2.4).

Within each stratigraphy class, CryoGrid computes the
time evolution for state variables, such as ground tempera-
ture and water–ice contents. We distinguish between prog-
nostic state variables, for which a time derivative is calcu-
lated and which are then integrated in time to advance to
the next time step, and diagnostic state variables which are
not time-integrated. For the prognostic state variables, Cryo-
Grid uses the simple time integration scheme “first-order for-
ward Euler”; i.e., the new model state is computed as the old
model state plus time derivatives times the model time step
(see Sect. 2.2.9 for details). When the new model state of the
prognostic state variables is obtained, diagnostic state vari-
ables are calculated from the prognostic variable by consti-
tutional relationships. This calculation is instantaneous, i.e.,
does not depend on the employed time step. It is possible
that a physical property (e.g., temperature) is a prognostic
variable in some stratigraphy classes and diagnostic in oth-
ers. Stability and accuracy of the time integration are en-
sured by automatically selecting an appropriate time step.
The calculation of a suitable time step is not accomplished by
well-known stability criteria for the first-order forward Euler
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scheme, but explicitly takes the physics represented by the
individual stratigraphy classes into account to ensure both a
stable and accurate simulation (see Sect. 2.2.9).

Interactions between stratigraphy classes are realized by
interaction classes (Fig. 2) that compute fluxes across the
boundaries between pairs of stratigraphy classes (Fig. 3).
Thus, compatibility of two stratigraphy classes (i.e., if they
can border each other in the CryoGrid stratigraphy) can be
ensured by providing a dedicated interaction class. Note that
the compatibility depends on the order of the two classes
in the stratigraphy. In particular, interaction classes compute
fluxes across boundaries between stratigraphy classes which
are required for computing time derivatives of state variables
in the prognostic step of the time integration. For example, if
two stratigraphy classes have temperature as state variables
and the two modules are connected through heat conduction,
the interaction class computes the conductive heat flux be-
tween the adjacent grid cells of the classes. If two stratigra-
phy classes feature different state variables, the interaction
class must contain the necessary code to compute the correct
fluxes for both involved classes. For example, if only one of
the classes is hydrologically active, while the sum of water
and ice contents is static for the other class (see Sect. 2.2),
the interaction class must provide a zero water flux boundary
condition for the hydrologically active class to reflect the fact
that water flow through the boundary is not possible. During
initialization of the CryoGrid stratigraphy, the correct inter-
action class is automatically selected for each pair of stratig-
raphy classes.

2.1.3 Dynamic behavior with stratigraphy class
triggers

An important feature of stratigraphy classes is their ability
to modify or rearrange the CryoGrid stratigraphy itself if a
certain condition (referred to as a “trigger”) is met. In partic-
ular, a class can remove itself from the CryoGrid stratigraphy
or insert a new stratigraphy class above its own position. As
an example, a dynamic representation of ponds (using water
body and excess ice classes, see Sect. 2.2) can be achieved by
such triggers which modify the CryoGrid stratigraphy. When
surface water pooling up over initially dry ground reaches a
user-defined threshold, a water body class representing the
physics of energy transfer within a water body is created and
inserted in the CryoGrid stratigraphy. Likewise, if the water
depth of a water body drops below that threshold, the wa-
ter body class is automatically removed. In this process, all
state variables are automatically adjusted to ensure mass and
energy conservation.

A special situation is the representation of the seasonal
snow cover, which again is handled by stratigraphy class trig-
gers creating a snow class (Sect. 2.2.6) upon initial snow-
fall and removing it when all snow has melted. For the nu-
merical scheme, handling a very shallow initial snow cover
poses significant problems, as this results in a small grid cell

Algorithm 1 Pseudocode for applying the upper boundary
condition to the stratigraphy class “class1” in Fig. 4, for
the case when then ground is entirely snow-free and for the
case when the snow cover is in the CHILD phase (Fig. 4,
left side). Stratigraphy class “class1” represents a snow-free
ground column, while stratigraphy class “snowclass” repre-
sents a snow column. “class1” has a variable CHILD, with
class1.CHILD= snowclass (pointer to class “snowclass”)
if snow is in the CHILD phase, and class1.CHILD= 0 if
no snow is present. Both “class1” and “snowclass” have a
function get_upper_boundary_condition() which applies the
class-specific upper boundary condition (e.g., using a differ-
ent albedo for “snowclass” than for “class1”). The total area
of the model domain is A [m2].

if class1.CHILD = 0 then
– apply get_upper_boundary_condition() to “class1”, using
the full area A

else
– assign fractional area fsnow to “snowclass” stored in
“ground.CHILD”
and fractional area fground to “class1”, so that fsnow+
fground = 1
– apply get_upper_boundary_condition() to “class1”, using
area fgroundA
– apply get_upper_boundary_condition() to “snowclass”
stored in “class1.CHILD”, using area fsnowA

end if

size and thus very small time steps. Therefore, snow classes
are attached and detached in two stages in the CryoGrid
community model. After the first snowfall, the snow class
is added as a so-called CHILD to the uppermost stratigra-
phy class (Fig. 4 left); i.e., it is not part of the CryoGrid
stratigraphy, but evolves as part of the uppermost stratigra-
phy class. In this CHILD state, the snow does not grow ver-
tically, but is assigned a fixed water equivalent in the vertical
direction, while at the same time covering only a fraction
of the uppermost stratigraphy class. This way, the snow vol-
ume is correct, but it is possible to assign the snow cover
a sufficient thickness to prevent numerical problems. Algo-
rithm 1 shows how the upper boundary condition is applied
to both the uppermost stratigraphy class (“class1”) and the
class representing the snow cover (“snowclass”). Most im-
portantly, this procedure allows for a complete separation be-
tween these two classes: class1 does not contain any informa-
tion about snowclass, which applies its class-specific upper
boundary condition, while snowclass does not contain any
class-specific knowledge on class1 (which also applies its
class-specific upper boundary condition). This scheme works
for any compatible pair of snowclass–class1 so that, for ex-
ample, the whole range of stratigraphy classes for ground
material (Sect. 2.2.2–2.2.5) can be combined with the differ-
ent stratigraphy classes representing snow (see Sect. 2.2.6).
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Figure 4. Schematic representation of the CryoGrid stratigraphy when a snow cover is present (represented by dedicated snow classes,
Sect. 2.2.6). (a) Snow is initially added as a so-called CHILD to the uppermost subsurface class (class 1); i.e., it is not part of the regular
stratigraphy, but is addressed by specific pointers. In the CHILD phase, the snow is assumed to only cover part of the surface area; e.g., the
surface energy balance is calculated as a mix of snow-covered and snow-free ground (see Algorithm 1 for details). (b) When the snow water
equivalent exceeds a user-defined threshold, the stratigraphy is rearranged and the snow class becomes the uppermost class of the regular
stratigraphy. The process is reversed when the snow melts.

As more snow accumulates, the snow class simply ex-
pands its aerial coverage until the amount of snow is suf-
ficient to be handled without numerical problems. Then, the
snow class and the associated interaction class are rearranged
so that the snow class becomes part of the normal CryoGrid
stratigraphy (Fig. 4 right) and thus covers its full area. The
procedure is mirrored upon snowmelt, with the snow class
first becoming a CHILD and finally being removed com-
pletely upon completion of melt. The threshold in snow water
equivalent at which the snow class becomes a normal part of
the CryoGrid stratigraphy should generally be chosen to be
small enough that the CHILD phase does not last longer than
a few days, thus only having a negligible effect on model
results on timescales longer than a few weeks.

2.1.4 Model operation

All CryoGrid simulations are controlled by a parameter file
which defines all aspects of the run, such as the definition of
the CryoGrid stratigraphy and lateral interactions, the forcing
data, the model grid, and the model output format. At this
point, the parameter file can either be set up as a spreadsheet
(MS Excel or compatible programs) or as a text file in YAML
format.

In the parameter files, all classes required for the simula-
tion are defined, in no particular order. Each class is identi-

fied by its name and a unique index, which makes it possible
to define the same class several times with different parame-
ters. Furthermore, all mandatory parameters specific to each
of the classes must be specified. In the hierarchy of the Cryo-
Grid classes (Fig. 1), the classes on the following level are
defined as parameters in the classes of the previous level.
Upon initialization, the uppermost hierarchy level (defined
as the RUN_INFO class with index 1) is read first, which
provides the information for reading the classes in the sec-
ond level, and so on. In this process, the class connections
by pointers are established. Note that the standardized class
structure with mandatory variables and functions facilitates
a generalized initialization routine which does not make use
of specific knowledge of the involved CryoGrid classes and
their hierarchy.

2.2 Physics and defining equations of stratigraphy
classes

At present, there are around 10 stratigraphy classes, each
with different defining equations and model physics which
generally contain additional parameters and options to cus-
tomize its behavior. However, the classes share many com-
mon parts and features. In the following, we describe the
defining equations and parameterizations of the different
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model components and categories. A description of each
stratigraphy class is provided in Sect. S2.

2.2.1 State variables and model grid

All stratigraphy classes (except the equilibrium TTOP model
class, Sect. 2.2.2) feature variables for the subsurface proper-
ties volumetric mineral content θm, volumetric organic con-
tent θo, volumetric water content θw, and volumetric ice con-
tent θi. A depth stratigraphy of mineral and organic con-
tents is generally provided by the user, which also defines the
porosity as φ = 1−θm−θo. In some stratigraphy classes, the
sum of water and ice contents θwi = θw+ θi is constant and
provided by the user, while it evolves dynamically in others,
driven by precipitation, evapotranspiration (Sect. 2.2.4), and
potentially lateral runoff (Sect. 2.3.2). Finally, there is an air
phase θa defined by θa+ θwi = φ. Each model grid cell has
an enthalpy state, e [Jm−3], which is composed of a sensible
and a latent part:

e(T ,θw)= cT −L
vol
sl (θwi− θw), (1)

where c [JK−1 m−3] is the volumetric heat capacity, T [◦C]
the temperature, and Lvol

sl the volumetric latent heat of water
freezing [Jm−3]. The zero point of the enthalpy is thus de-
fined as T = 0 ◦C and θi = 0; i.e., the grid cell is at 0 ◦C, but
all water is unfrozen. While Lvol

sl is a constant, c is computed
from θm, θo, and θwi and the specific volumetric heat capaci-
ties of the mineral, organic, water and ice phases (cm, co, cw,
ci) as follows.

c =

{
θmcm+ θoco+ θwici for T < 0 ◦C

θmcm+ θoco+ θwicw for T ≥ 0 ◦C
(2)

Note that the heat capacity of a potential air phase is ne-
glected. While these state variables are employed in the
stratigraphy classes described in this study, their use is not
mandatory within the CryoGrid community model, and fully
valid stratigraphy classes with different sets of state vari-
ables can be created. The compatibility with existing stratig-
raphy classes is ensured by appropriate interaction classes
(Sect. 2.1.2), which compute fluxes between classes and, if
necessary, convert between different sets of state variables.

The model grid is defined by the user, again using a ded-
icated GRID class. At present, only one grid class is imple-
mented, in which constant grid cell sizes are specified within
a sequence of layers. Typically, the smallest grid cell size is
defined for the top layer and the largest for the bottom layer.
Other grid classes, e.g., with grid cell sizes increasing loga-
rithmically with depth, could be implemented in a straight-
forward way.

2.2.2 Coupling to model forcing and boundary
conditions of model domain

At the uppermost stratigraphy class of the CryoGrid stratigra-
phy (Fig. 2), the upper boundary condition is applied, which

simulates the coupling to the model forcing. Three different
schemes are implemented at this point, broadly providing the
functionality of the CryoGrid 1, 2, and 3 models.

Equilibrium TTOP approach. Used within CryoGrid 1, the
TTOP approach offers an efficient way to estimate mean an-
nual ground temperature (MAGT) directly from the model
forcing. For this purpose, freezing and thawing degree days
at the surface (FDDs and TDDs) are calculated from the tem-
perature forcing (often using air temperature to approximate
surface temperature) and semi-empirical n-factors, which
phenomenologically simulate the asymmetry of heat transfer
in the ground between freezing and thawing periods:

MAGT=



1
τ
(nfFDDs+ rkntTDDs)

for nfFDDs+ rkntTDDs ≤ 0

1
τ
( 1
rk
nfFDDs+ ntTDDs)

for nfFDDs+ rkntTDDs > 0 ,

(3)

with τ the number of days in the period for which the TTOP
model is applied. Setting nf and nt unlike unity causes a tem-
perature offset between the model forcing and the ground
surface related to processes during the frozen season (in par-
ticular caused by the insulating snow cover) and the thawed
season (e.g., caused by incoming radiation modified by slope
and aspect). In the same fashion, rk causes a temperature
offset between the ground surface and the top of the per-
mafrost due to differences in active layer thermal conductiv-
ities and thus heat transfer between summer and winter. De-
tailed derivations of the TTOP equation (Eq. 3) are presented
in Romanovsky and Osterkamp (1995) and Westermann et al.
(2015). The TTOP approach calculates the ground tempera-
ture in equilibrium with the applied model forcing, i.e., the
ground temperature that would eventually be reached if the
model forcing was repeatedly applied for an infinite time pe-
riod. The approach is not suited to capture ground tempera-
tures during periods of rapid change, especially when an in-
sulating top layer and ground ice delay the penetration of the
surface temperature signal into the ground. For this reason,
the TTOP approach should preferably be applied to longer
time periods, e.g., for one or several decades of model forc-
ing. Moreover, only a single temperature value is delivered
without specifying a depth, or even a depth profile of ground
temperatures. However, the TTOP model class can be ver-
tically coupled to stratigraphy classes simulating heat con-
duction into the ground (Sect. 2.2.3), effectively providing a
modified temperature boundary condition (see below) which
accounts for temperature offsets caused by the snow cover,
active layer dynamics, or exposition. Such model setups are
particularly useful for simulating temperature dynamics in
deeper layers for long timescales, as they do not need to re-
solve the seasonal freeze–thaw cycle, making them very effi-
cient computationally.

Temperature boundary condition. Transient simulations
with heat-conduction-based models (Sect. 2.2.3) require
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specification of boundary conditions, which can be either
time (t) series of temperature, Tub(t), or time series of the en-
ergy flux into the first model grid cell, Fub(t) [Wm−2]. In the
CryoGrid community model, it is possible to specify a tem-
perature boundary condition (as in the CryoGrid 2), which
for each time t is translated to a heat flux into the first model
grid cell as

Fub(t)=Kh,1(t)
Tub(t)− T1(t)

1z1
, (4)

where Kh,1 [Wm−1 K−1] denotes the thermal conductivity
(Sect. 2.2.3), T1 the temperature, and 1z1 the thickness of
the uppermost model grid cell. Note that Eq. (4) assumes
that Tub(t) is assigned to a virtual grid cell of thickness 1z1
above the uppermost grid cell. Air temperatures are most
commonly used for Tub(t), but this can be adapted by select-
ing (and if necessary modifying) an appropriate FORCING
class (Sect. 2.1.1) for the simulations.

Surface energy balance. The energy flux into the first
model grid cell, Fub(t), can also be calculated from the
surface energy balance (SEB), largely similar to the imple-
mentation in CryoGrid 3. The required forcing data include
incoming shortwave and longwave radiation (Sin and Lin)
[Wm−2], precipitation (Ps, solid and Pl , liquid) [mmd−1],
and air pressure p [Pa], as well as air temperature Tair, wind
speed U [ms−1], and specific humidity qair [kg water vapor
kg−1 air] at height above ground h [m] (e.g., Westermann
et al., 2016). Fub is then calculated from the surface energy
balance equation:

Fub(t)= Sin(t)− Sout(t)+Lin(t)−Lout(t)

−Qh(t)−Qe(t), (5)

where Sout and Lout denote outgoing shortwave and long-
wave radiation (both defined positive), and Qh and Qe de-
note the sensible and latent heat flux (both defined positive
when cooling the surface). Note that the ground heat fluxQg
is not explicitly represented, but becomes manifest in both
an enthalpy change of the uppermost grid cell and a conduc-
tive heat flux between the two uppermost grid cells. It can be
calculated by the user as Qg = Fub (assuming the same sign
convention as for sensible and latent heat flux). The outgoing
shortwave radiation is computed with the surface albedo αs.

Sout = αsSin (6)

In most classes, a single broadband (i.e., spectrally averaged)
albedo is employed, but some classes resolve several spectral
bands for which the albedo can vary. Furthermore, a con-
stant albedo is provided by the user in some classes, while
the albedo is parameterized as a function of model state vari-
ables in others. The outgoing longwave radiation is computed
from Stefan–Boltzmann and Kirchhoff’s law as

Lout = εσsb(T + Tmfw)
4
+ (1− ε)Lin, (7)

with σsb the Stefan–Boltzmann constant [kgm−2 K−4],
Tmfw = 273.15 K the freezing temperature of free water, and
ε [–] the surface emissivity.

The sensible heat flux is computed from air temperature at
a defined height above ground h and the temperature of the
first grid cell as

Qh =−
ρaircp

ra
(Tair− T1), (8)

with ρair air density [kgm−2] and cp the air heat capacity
[Jkg−1 K−1] at constant pressure. The aerodynamic resis-
tance ra is calculated from Monin–Obukhov similarity theory
(Monin and Obukhov, 1954), as in CryoGrid 3, with

ra =
1
κ2U

(
ln
h

z0
−ψM

(
h

L∗
,
z0

L∗

))
·

(
ln
h

z0
−ψH,W

(
h

L∗
,
z0

L∗

))
. (9)

Here, U is the wind speed at height h above ground, κ = 0.4
the von Kármán constant, z0 [m] the roughness length (as-
sumed to be equal for heat, water, and momentum), and ψM
and ψH,W integrated atmospheric stability functions equal to
the ones used in CryoGrid 3 (Westermann et al., 2016). The
Obukhov length L∗ [m] is calculated from the sensible and
latent heat flux values in the same way as CryoGrid 3 us-
ing the flux values computed for the previous time step (see
Westermann et al., 2016).

The latent heat flux is calculated as

Qe =−ρairLlg,sg
f

re
(qair− q1), (10)

where Llg,sg [Jkg−1] represents the latent heat of evaporation
(lg) and sublimation (sg), which are employed for T1 ≥ 0 ◦C
and T1 < 0 ◦C, respectively. Depending on the subsurface
class used, different formulations for the reduction factor f
[–], the resistance re [sm−2], and the specific humidity above
the surface q1 are employed. Four schemes can be broadly
distinguished.

1. For subsurface classes with unlimited surface water or
ice supply (e.g., classes representing snow cover or a
water body), re = ra, f = 1, and q1 = qsat(T1), i.e., the
specific humidity at saturation for the temperature of the
uppermost grid cell, calculated with the Magnus equa-
tion. The evaporation thus corresponds to the potential
evaporation.

2. For subsurface classes without water balance (i.e., water
plus ice content constant in time), f = 1, q1 = qsat(T1),
and re = ra+ rs, with rs [sm−1] a user-defined surface
resistance to evaporation (see Westermann et al., 2016).

3. For subsurface classes with a bucket water scheme
(Sect. 2.2.4), the potential evapotranspiration (i.e., re =
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ra and q1 = qsat(T1)) is multiplied by the reduction fac-
tor f taking soil water availability into account. For un-
frozen ground, f is calculated from the water availabil-
ity coefficients of soil grid cells i, αθi , as

f = ftr
∑
i

αθi 1zie
−di/dtr/

∑
i

1zie
−di/dtr

+ fev
∑
i

αθi 1zie
−di/dev/

∑
i

1zie
−di/dev , (11)

which allows the user to specify the partitioning in
transpiration (fraction ftr) and evaporation (fraction
fev = 1−ftr) with different characteristic depth dtr and
dev. Both evaporation and transpiration are assumed
to decay exponentially with depth di below the sur-
face (taken positive). Furthermore, the weighting of
each grid cell depends on the thickness of grid cell i,
1zi , and the water availability coefficient calculated
with the user-defined field capacity θfc,i [–] as αθi =
0.25(1− cos(πθw,i/θfc,i))

2 for θfc,i ≥ θw,i and αθi = 1
for θfc,i < θw,i . When the ground is frozen, sublimation
is set to zero (i.e., f = 0), which in most real-world
cases is not a limitation, as snow cover builds up for
which sublimation according to scheme 1 (see above)
can occur.

4. In subsurface classes in which soil moisture is gov-
erned by the Richards equation, water can flow up-
wards to compensate for evaporative losses and all evap-
orated water is hence drawn from the uppermost grid
cell. Similar to scheme 3, f is set to f = 0.25(1−
cos(πθw,1/θfc,1))

2, while re = ra is assumed and the
specific humidity is set to

q1 = exp
(

ψ1g

Rwv(T1+ Tmfw)

)
qsat(T1) (12)

(Philip, 1957), where Rwv is the gas constant for wa-
ter vapor [Jkg−1 K−1], g is the gravitational accelera-
tion [ms−2], and ψ1 [m] the matric potential of the up-
permost grid cell (Sect. 2.2.3). Note that this scheme
can only represent evaporation and should be combined
with a dedicated vegetation module, such as the one
demonstrated in Stuenzi et al. (2021a), to also represent
transpiration.

Lower boundary. The lower boundary condition is applied
to the lowermost class in the stratigraphy. In all classes de-
scribed in this study, a user-defined constant heat flux Flb
[Wm−2] is added to the lowermost grid cell which corre-
sponds to the geothermal heat flux, Qgeo [Wm−2], for suffi-
ciently deep model domains. Although not yet implemented,
it is possible to create classes with temperature boundary
conditions similar to the upper boundary (see above).

2.2.3 Subsurface heat transfer and temperature
calculation

Heat conduction. Depending on the selected stratigraphy
class, CryoGrid considers heat conduction as well as heat ad-
vection as the dominant modes of heat transport in the sub-
surface. Thus, the change of enthalpy e (see Sect. 2.2.1) is
given by the continuity equation

∂e

∂t
=−

∂jhc

∂z
−
∂jhw

∂z
, (13)

with z [m] the vertical coordinate, jhc the flux due to heat
conduction, and jhw the flux due to heat advected by water.
Heat conduction is calculated from Fourier’s law as

jhc =−Kh
∂T (e)

∂z
, (14)

with Kh [Wm−1 K−1] the thermal conductivity and temper-
ature T as a function of e (see “Soil freezing characteristics”
below). The flux from heat advection with water flow is cal-
culated as

jhw = cwT (e)jw, (15)

with cw [JK−1 m−3] the volumetric heat capacity of liquid
water and jw [ms−1] the water flux, which consists of a
term for vertical advection and a term for evapotranspira-
tion (Sect. 2.2.4). For the thermal conductivity Kh, differ-
ent parameterizations in terms of the volumetric contents of
water, ice, minerals, organics, and air can be selected by the
user. For soil material, the parameterization by Cosenza et al.
(2003) implemented in CryoGrid 2 and 3 is available, as is
the parameterization used in the Community Land Model
(CLM) 4.5 (Oleson et al., 2013). While the former treats all
soil constituents as equal and thus functions for single-phase
materials, e.g., pure ice or rock, the latter is strictly focused
on soils with reasonable porosity values. It first computes
thermal conductivities for dry and saturated soil, which are
then weighted with the Kersten number to yield the final con-
ductivity value (Johansen, 1973). For snow, the thermal con-
ductivity is computed as a function of snow density, with two
parameterizations available, namely the exponential relation-
ship described in Yen (1981) and the quadratic relationship
from Sturm et al. (1997).

Soil freezing characteristics. The soil freezing character-
istics is a constitutive relationship between soil temperature
and the unfrozen water content. In the CryoGrid community
model, we generalize this concept to derive soil temperature
T and water content θw from enthalpy e and water plus ice
content θwi in the diagnostic step (Sect. 2.1.2). Depending on
the subsurface class, either the “free water” freezing charac-
teristic or the soil freezing characteristic described in Painter
and Karra (2014) is implemented. In the free water case, the
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phase change of water occurs at 0 ◦C, i.e.,

T =


e/c for e ≥ 0

0 for −Lvol
sl θwi ≤ e < 0

(e+Lvol
sl θwi)/c for e <−Lvol

sl θwi

(16)

and

θw =


θwi for e ≥ 0
θwi(1+ e/(Lvol

sl θwi)) for −Lvol
sl θwi ≤ e < 0

0 for e <−Lvol
sl θwi.

(17)

Here, Lvol
sl denotes the volumetric latent heat of freezing

[Jm−3] and θwi the sum of the volumetric water and ice con-
tents.

For the soil freezing characteristic by Painter and Karra
(2014), the free water case functions are employed for e ≥ 0.
For e < 0, unique functions θw(T ,θwi) relating liquid wa-
ter content to T and θwi exist, which we use to calculate
e(T ,θwi) according to Eq. (1). For e(T ,θwi), lookup tables
are compiled, which allow efficiently evaluating the inverse
function T (e,θwi) (and θw(e,θwi), combining T (e,θwi) and
θw(T ,θwi)) in each time step, thus computing the diagnos-
tic variables temperature and volumetric water content from
the prognostic variable enthalpy. θw(T ,θwi) is calculated us-
ing the matric potential ψ [m], which also governs water
flow in subsurface classes based on the Richards equation
(see Sect. 2.2.4). First, the matric potential in unfrozen state,
ψ0, is evaluated with the van Genuchten–Mualem model
(van Genuchten, 1980) as

ψ0 =−1/α
(
(θwi/φ)

−1/m
− 1

)1/n
, (18)

with α [m−1] and n [–] soil-type-specific parameters, m=
1− 1/n, and assuming no residual water. While ψ = ψ0 for
unfrozen soil (T ≥ 0 ◦C), the matric potential for freezing
soil (T < 0 ◦C) is calculated as

ψ = ψ0+β
Lvol

sl
gρw

T − Tmfw

Tmfw
. (19)

Here, T is in Kelvin, g [ms−2] is the gravitational accelera-
tion, ρw is water density [kgm−3], and β is the ratio of ice–
liquid to liquid–air surface tensions for non-colloidal soil, set
to 2.2 as suggested in Painter and Karra (2014). The water
content is finally calculated as

θw = φ(1+ (−αψ)n)−m. (20)

The values of α and n are determined by the soil type, and
users can define an unlimited number of layers with differ-
ent soil types (limited by the vertical resolution of the model
grid). However, only a limited number of different soil types
is possible within a stratigraphy class due to the need for
lookup tables, which are specific for combinations of α and
n. Currently, four soil types (sand, silt, clay, peat) are imple-
mented to provide users with a convenient interface, but it is
possible to change the α and n values associated with each
of them so that other soil types can also be realized.

2.2.4 Water balance

In the CryoGrid community model, three schemes to com-
pute the time dynamics of soil water contents are available,
namely (1) no flow (i.e., constant water plus ice contents),
(2) a “bucket” scheme with only downward vertical water
flow driven by gravity, and (3) vertical water flow governed
by the Richards equation. For schemes 2 and 3, the hydrolog-
ical boundary conditions at the top of the soil column, such as
rainfall input Pl , snowmelt, and evapotranspiration (related
to the latent heat fluxes, Sect. 2.2.2), drive the time dynamics
of the soil water content. Therefore, these only work in con-
junction with the surface energy balance as the upper bound-
ary condition (Sect. 2.2), while scheme 1 can be applied for
both temperature and surface energy balance boundary con-
ditions, as in CryoGrid 2 (Westermann et al., 2013) and the
initial version of CryoGrid 3 (as in Westermann et al., 2016).
Within the soil domain, the time dynamics of the sum of wa-
ter and ice contents is governed by water fluxes jw according
to the continuity equation:

∂θwi

∂t
=−

∂jw

∂z
. (21)

The three water balance schemes differ in their representa-
tion of jw, which generally consists of vertical water fluxes
jv

w and fluxes due to evapotranspiration jET
w (or evaporation

jE
w and transpiration jT

w).

1. For the no flow scheme, jw = 0; i.e., the sum of wa-
ter and ice contents is fixed for each grid cell (and thus
only determined by the initialization) and not affected
by rainfall, snowmelt, and evaporation. The no flow
scheme therefore needs to be combined with either the
temperature boundary condition or the surface energy
balance with scheme 2 for evaporation (Sect. 2.2.2).

2. In the bucket scheme, the water in a grid cell is either
immobile and bound to the soil matrix, or it flows down-
wards driven by gravity. The threshold between the two
regimes is the user-defined field capacity, θfc. In the un-
saturated domain, the vertical water flux is hence given
by

jv
w =

{
−Kw for θw > θfc

0 for θw ≤ θfc,
(22)

with Kw the hydraulic conductivity [ms−1]. It is not
the goal of the bucket scheme to reproduce the ex-
act time dynamics of the infiltration event, and the hy-
draulic conductivity is broadly set to Kw =Kw,satθw/φ,
with Kw,sat [ms−1] the saturated hydraulic conductiv-
ity specified by the user. This in particular prevents
or slows infiltration in ice-saturated ground in spring,
when the water content is low. No vertical water flux
occurs in the saturated domain unless water losses due
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to evapotranspiration must be compensated for, i.e.,
jv

w =max(−Kw,j
ET
w ). In subsurface classes represent-

ing soil, the bucket scheme is combined with scheme 3
for evapotranspiration (Sect. 2.2.2). The water flux due
to evapotranspiration from grid cell i is calculated from
the latent heat flux Qe as

jET
w,i =−

fi∑
ifi

Qe

Llgρw
, (23)

with fi calculated from the water availability coeffi-
cients αθi (see scheme 3 in Sect. 2.2.2 for the other vari-
ables) as

fi = ftrα
θ
i 1zie

−di/dtr + fevα
θ
i 1zie

−di/dev . (24)

In essence, this ensures that a water flux corresponding
to the weight of a grid cell in the calculation of the la-
tent heat flux is extracted, taking water availability and
exponential damping with depth into account. Note that
CryoGrid 3 features a different bucket scheme, which
does not treat soil water as a prognostic variable but
redistributes water in the bucket after each time step
(Nitzbon et al., 2019). As an example, a rain event leads
to an instant increase of the water level in CryoGrid 3,
while an infiltration front penetrating downwards with
time is simulated by the subsurface classes available in
the CryoGrid community model.

3. For water flow governed by the Richards equation
(Richards, 1931), movement of water in unsaturated
soils through vertical gradients of the matric and grav-
itational potentials is accounted for, in addition to
gravity-driven flow in the saturated domain. In this wa-
ter balance representation in the CryoGrid community
model, evaporation is drawn from the uppermost grid
cell, i.e., jE

w,1 =Qe/(Llgρw). If transpiration is consid-
ered (e.g., by the canopy scheme described in Stuenzi
et al., 2021a), a grid cell weighting similar to Eq. (23)
is used to compute the transpiration flux from each cell.
The vertical water fluxes are calculated according to the
Richards equation,

jv
w =−Kw

(
∂ψ

∂z
+ 1

)
, (25)

using the matric potential ψ , which also accounts for
soil freezing (see Sect. 2.2.3). For the hydraulic conduc-
tivity, we use the classic formulation by van Genuchten
(1980),

Kw =Kw,sat Iice(θw/φ)
0.5

·

(
1−

(
1− (θw/φ)

n/(n+1)
)(n−1)/n

)2

, (26)

with an additional ice impedance factor Iice =

10−�θi/θwi (defined as in Hansson et al., 2004) to ac-
count for the blocking of water-filled pores by ice (see

Sect. 3.1.3). In some subsurface classes, the permeabil-
ity of the subsurface material, kw [m2], needs to be
specified instead of the saturated hydraulic conductivity,
which is calculated according to Kw,sat = kw/(ηwρwg).
Here, ηw is the temperature-dependent dynamic viscos-
ity of water derived as ηw = Aexp(B/T +CT +DT 2),
with T in Kelvin and coefficients A,B,C, and D as de-
fined in Reid et al. (1987).

2.2.5 Excess ground ice

The CryoGrid community model comprises a subsurface
class to simulate melting of excess ground ice, which results
in the subsidence of the ground surface. It is based on the
bucket water scheme with a freezing characteristic and sur-
face energy balance (Sect. 2.2.2 to 2.2.4), and in most re-
spects it is similar to the CryoGrid 3 excess scheme (Wester-
mann et al., 2016) based on Lee et al. (2014). However, freez-
ing and melting of excess water–ice are treated differently
than pore water–ice that is contained in the sediment matrix.
While the pore water–ice freezes and melts according to the
soil freezing characteristic, the excess water–ice portion is
always treated as free water; i.e., it undergoes phase change
at T = 0 ◦C (see Sect. 2.2.3). Two additional state variables
θχ i and θχw denote the volumetric fractions of excess ice and
water so that θm+θo+θw+θi+θχ i+θχw+θa = 1. The initial
excess ice content is specified by the user, and the excess ice
fraction in a grid cell is unchanged (i.e., neither increases nor
decreases) as long as its temperature is below 0 ◦C.

Once excess ice melts, the excess water is mobilized and
transported by the hydrology scheme, with an additional ver-
tical water flux term jv

χw =Kw directed upwards. This ex-
cess water is first routed between the excess water variables
of adjacent grid cells, with grid cell thickness changing ac-
cordingly (i.e., shrinking for net outflow, expanding for net
inflow). If excess water exists in an unsaturated grid cell (i.e.,
it contains a nonzero air content), water is moved from the
excess water to the water phase, reducing the air content and
leading to the grid cell thickness shrinking. In the uppermost
grid cell, the excess water variable can be regarded as wa-
ter pooling up above the surface, either due to melted excess
ice routed upwards or from rainfall and melted snow. This
excess water can either evaporate, be routed away laterally
(Sect. 2.3), or evolve into a pond or lake represented by a
water body class (see Sect. 2.2.7). The latter two depend on
the user-defined model setup, which specifies what happens
when the excess water in the first grid cell exceeds a thresh-
old depth.

In the user interface, the amount of excess ice in a sub-
surface grid cell is specified as a fraction (χ ) relative to the
amount of soil without excess ice; i.e., χ = 1 corresponds to
a cell consisting of 50 % soil and 50 % excess ice.
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2.2.6 Snow cover

Three stratigraphy classes representing snow are currently
available in the CryoGrid community model, which all em-
ploy heat conduction and the free water freezing characteris-
tic (Sect. 2.2.3) to calculate snow temperatures. New snow is
added to the first grid cell, which is split into two cells when
the “ice depth” (defined as θi1z, equivalent to snow water
equivalent for dry snow) exceeds 1.5 times a user-defined tar-
get value (with the lower cell containing the target ice depth
and the upper cell the remaining part). When the ice depth
in a grid cell decreases below half the target ice depth, it is
merged with the grid cell below. Meltwater becomes mobile
when the volumetric water content exceeds a user-defined
field capacity (provided as a fraction of the porosity of the ice
matrix, 1−θi) and can flow downwards, but also laterally if a
corresponding lateral interaction class (Sect. 2.3) is selected.
The dynamic interaction of snow classes with other stratig-
raphy classes, including their creation upon snowfall and re-
moval when all snow has melted, is described in Sect. 2.1.3.
Of the three snow classes, class (a) can be combined with
subsurface classes with temperature boundary condition and
classes (b) and (c) with subsurface classes with surface en-
ergy balance (Sect. 2.2.2).

(a) Constant snow density, temperature boundary condi-
tion, and degree-day-based melt model. In this snow
class, new snow is added with a user-defined constant
density, which could, for example, be derived from
field observations. Temperature calculations inside the
snowpack rely on a temperature boundary condition,
heat conduction, and the free water freeze curve. For
snowmelt, a degree-day-based melt model is employed
using a melt factor calculated from latitude and day of
year (as in Obu et al., 2019). The product of day length
and solar culmination angle (i.e., the highest sun angle
above the horizon on a given day of year) is used as a
measure of snowmelt activity, which scales the degree
day melt factor between confining values of 0.002 and
0.012 m (◦Cd)−1 water equivalent. The snowmelt is as-
signed to the uppermost grid cell from which meltwater
is removed once it exceeds the pore space, without in-
filtrating the snowpack.

(b) Constant snow density, surface energy balance, and
snow hydrology (bucket scheme). This snow class
largely follows the snow parameterization of the Cryo-
Grid 3 model, as described in detail in Westermann et al.
(2016). As for (a), snowfall is added with prescribed
density, but the surface energy balance is used as the
upper boundary condition with a transient albedo that
decreases from a maximum value for fresh snow to a
minimum value for old snow, with decrease rates de-
pending on whether the snow is dry or wet (as inferred
from the liquid water content of the first snow grid cell,
see Sect. 2.2.3). Furthermore, shortwave radiation pen-

etrates the snowpack following de Beer’s law with a de-
fined extinction coefficient, and sublimation or resub-
limation derived from the latent heat flux is extracted
from or added to the uppermost grid cell. The snow
hydrology follows the bucket scheme (Sect. 2.2.4),
with water from both rainfall and snowmelt percolating
downwards when the water content exceeds the field ca-
pacity. In the simple snow cover module, refreezing of
meltwater is the only process that can alter the density
of a snow layer.

(c) Snow microphysics, surface energy balance, and snow
hydrology (bucket scheme). Introduced within Cryo-
Grid 3 by Zweigel et al. (2021), this snow class is based
on the Crocus snow scheme (Vionnet et al., 2012), in-
cluding transient snow grain property and density evolu-
tion. The defining equations and parameterizations are
largely identical to the ones described in Vionnet et al.
(2012), so we only provide a brief description, concen-
trating on aspects treated differently. As for the pre-
vious class, the energy transfer at the upper boundary
is prescribed according to the surface energy balance,
but relies on spectrally resolved calculation of albedo
and shortwave penetration and absorption in each grid
cell. Snowfall is added with properties (density, grain
size, dendricity, and sphericity) derived from air tem-
perature and wind speed, and the snow within each grid
cell evolves and metamorphoses based on internal tem-
perature gradient and water content. In particular, snow
compaction due to the weight of overlying snowpack
is derived by computing the snow viscosity, which is
computed for each snow layer, parameterized as a func-
tion of snow density, temperature, liquid water content,
and snow grain size. The class also accounts for the im-
pact of wind drift on snow grain properties and density,
which in particular leads to compaction and density in-
crease of the uppermost snow layers. If the uppermost
snow grid cell features liquid water, both evaporation
and sublimation are calculated and their fractions lin-
early interpolated between θw = 0 (all sublimation) and
θw = θ

snow
evap (all evaporation). The threshold θw = θ

snow
evap

is set to twice the field capacity, but this should be revis-
ited in future studies. For evaporation, the correspond-
ing amount of water is extracted, while the same hap-
pens for the ice phase for sublimation. The original Cro-
cus setup described in Vionnet et al. (2012) is associ-
ated with a variety of model parameters, some of which
Royer et al. (2021) suggested revising to better repro-
duce snowpack characteristics in the Arctic. These are
in particular related to the wind speed dependence of
the new snow density and the compaction dynamics due
to wind drift, as well as parameterization of the snow
thermal conductivity. In the snow class, it is possible to
choose between the parameter sets for the original (ac-
cording to Vionnet et al., 2012) and the “Arctic Crocus”
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(according to Royer et al., 2021) or to independently
adjust the parameters in question. With this, the perfor-
mance of either scheme within the CryoGrid commu-
nity model can be evaluated against observations (see
Sect. 3.2).

While the most process-rich scheme (c) is generally expected
to deliver a superior performance, it is also more sensitive to
biases in the model forcing, especially the wind speed, which
strongly impacts snow density. In some cases, it is therefore
preferable to employ the simpler schemes (a) or (b), espe-
cially if field measurements constraining the snow density
are available.

2.2.7 Water bodies

In water bodies, heat transfer from the surface is strongly
different between the ice-free and ice-covered seasons. The
key characteristics of this seasonal asymmetry were concep-
tualized in CryoGrid 3 (see Westermann et al., 2016) for the
highly relevant case of shallow water bodies. During the ice-
free season, the water column is assumed to be fully mixed
due to wind action, while a stable, temperature-driven strat-
ification forms below an ice cover, with water at 0 ◦C at the
ice interface less dense than the warmer water at deeper lay-
ers. Within this water column, heat conduction is the main
pathway of energy transfer with the relatively small thermal
conductivity of water (Kh,w = 0.57 Wm−1 K−1) severely re-
stricting energy losses of the ground below the water column.
The CryoGrid community model provides a water body class
based on the CryoGrid 3 model physics. In fact, the two sea-
sonal regimes are implemented as two separate stratigraphy
classes, which mutually create and destroy each other upon
defined conditions (see below). In the “ice-free class”, the
entire water column is simply represented by a single grid
cell which assumes well-mixed conditions. The surface en-
ergy balance is applied at the upper boundary, and short-
wave radiation penetrates the water column with a bulk (i.e.,
not spectrally resolved) absorption coefficient. Both rain and
snowfall are added to this grid cell with their respective en-
thalpy e, leading to a change in both temperature and the
grid cell thickness (and thus the water level). When the en-
thalpy reaches e = 0 (which is ensured by the time-stepping
scheme, Sect. 2.2.9), an ice cover forms and the ice-free class
is exchanged by the ice-covered class. In this process, all
state variables are split to the pre-defined model grid so that
the surface energy balance is now applied to the uppermost
grid cell, which can subsequently freeze according to the free
water freezing characteristics. While energy transfer in the
water and ice column is by means of heat conduction, grid
cells are reordered after each time step, with fully frozen cells
(i.e., the ice cover) always on top and the unfrozen cells ar-
ranged by their temperature-dependent densities (according
to Kell, 1975). When all ice has melted, i.e., e ≥ 0 for all
grid cells, the grid cells are merged into a single grid cell and
the ice-free class resumes. Note that the FLake water body

scheme presented in CryoGrid 3 (Langer et al., 2016) is not
yet available in the CryoGrid community model, but will be
implemented in the future as an additional stratigraphy class.

2.2.8 Glaciers

The CryoGrid community model contains a glacier class,
which consists of layers of pure ice (using the free wa-
ter freezing characteristic) with a user-defined constant ice
thickness. Energy transfer is governed by heat conduction,
with the surface energy balance as the upper boundary con-
dition. The scheme is usually coupled to snow scheme (b)
or (c) (Sect. 2.2.5), which allows the buildup of a seasonal
snow layer for simulations of the ablation area or, if run over
longer periods, the buildup of a firn layer for simulations of
the accumulation zone. The densification scheme in Crocus
(Vionnet et al., 2012, Sect. 2.2.5) has been implemented into
several models for simulations of snow and firn densifica-
tion on glaciers (e.g., Cullather et al., 2016; Langen et al.,
2017; Verjans et al., 2019), which have been successfully ap-
plied for, e.g., the Greenland ice sheet, Antarctica, and Ice-
landic glaciers (e.g., Agosta et al., 2019; Fettweis et al., 2017;
Schmidt et al., 2017). Similar applications are conceivable in
the CryoGrid community model, with the glacier class repre-
senting ice and the Crocus-based snow class firn and seasonal
snow cover.

Water cannot infiltrate the ice, so any water which does
not refreeze during the time step will run off instantaneously
if there is no snow on the glacier surface. Likewise, if snow
is present, liquid water in the snow class will build up above
the glacier ice, where it can eventually refreeze or run off,
depending on the selected lateral interaction class.

If additional ice is added to the surface grid cell, either
from refreezing of rainwater or deposition, mass is advected
downwards to ensure constant water equivalent water thick-
ness. Similarly, if mass is removed from the module by
runoff, evaporation, or sublimation, mass is advected up,
with the lowest model layer receiving additional mass from
an infinite ice reservoir below the model domain. This reser-
voir is assumed to have the same temperature as the lowest
model layer. The movement of mass within the model col-
umn is accompanied by a vertical transfer of sensible heat.
A similar approach has previously been used in other glacier
models which do not account for glacier flow (e.g., Langen
et al., 2017) in order to prevent glacier areas with highly neg-
ative mass balance from disappearing during spin-up. How-
ever, the glacier class can also be employed without this
option and coupled to a subsurface class representing sub-
glacial sediments. In this case, the glacier can completely
melt away, exposing the ground below, which, for example,
offers the possibility to study glacier–permafrost interactions
(Sect. 4.6).
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2.2.9 Numerical implementation

For prognostic variables like enthalpy and water content, we
use the integral form of the respective continuity equations
(Eqs. 13 for heat and 21 for water). For a scalar volume-
normalized quantity s (e.g., e for enthalpy and θw for water
contents), the time change within a volume V is explained by
fluxes j s across surface �V of V , with normal vector n:∫
V

∂s

∂t
dV +

∮
�V

j s ·nd�V = 0. (27)

The numerical implementation is based on finite differences
with grid cells (index i increasing downwards, vertical thick-
ness 1z [m], and area A [m2]) within which s is con-
sidered constant. Furthermore, for one-dimensional simula-
tions, only vertical fluxes through the upper and lower bound-
ary of the grid cell have to be considered so that the continu-
ity equation for grid cell i simplifies to

∂

∂t
Si :=

∂

∂t
(A1zisi)=−j

i−1↔i
s + j i↔i+1

s , (28)

i.e., the time derivative of the bulk quantity Si is simply
obtained from the fluxes j i−1↔i

s (defined positive when di-
rected upwards) across the interfaces between grid cells
i− 1/i and i/i+ 1. For the numerical implementation in the
CryoGrid community model, it is therefore of practical ad-
vantage to use the extensive bulk quantities as state vari-
ables and not the volume-normalized quantities (which are
employed as direct model state variables in, e.g., CryoGrid
2 and 3) for which the defining differential equations in
the previous sections are provided. In the CryoGrid commu-
nity model, each stratigraphy class covers an explicit area A
[m2], and the model state variables for mineral, organic, wa-
ter, and ice contents become volumes: φm = A1zθm [m3],
φo = A1zθo [m3], φw = A1zθw [m3], φi = A1zθi [m3].
Likewise, the bulk value for the enthalpy for each grid cell is
used,E = A1ze [J]. For time integration of Eq. (28), we use
a simple first-order forward Euler scheme as in CryoGrid 3
(Westermann et al., 2016), i.e.,

Si(t +1t)= Si(t)+1t (−j
i−1↔i
s + j i↔i+1

s ). (29)

Stability and accuracy are guaranteed by selecting small
enough time steps with conditions specifically designed for
each state variable, the particular requirements of the model
physics of each stratigraphy class, and the typical orders of
magnitude (and timescales of change) of model forcing and
parameters. For enthalpy, for example, a maximum change of
volume-normalized enthalpy e between grid cells is defined
by the user, and time steps 1t are adjusted to not exceed
this value for any grid cell. Therefore, small time steps are
generally required if large fluxes occur, slowing down com-
putation. In a similar manner, changes in soil water content
between time steps can be limited, while it is also possible

to prevent “overfilling” of a grid cell (so that the water con-
tent exceeds the pore space) by limiting the time step accord-
ingly. Another example is the water body class (Sect. 2.2.7)
for which the time step calculation guarantees that the con-
dition e = 0 (which triggers the switch between ice-free and
ice-covered water body classes, Sect. 2.2.7) is exactly met. In
addition, a maximum time step can be defined to satisfy the
CFL (Courant–Friedrichs–Lewy) condition (Courant et al.,
1928) for the parameters (e.g., thermal conductivities and
heat capacities) and grid cell sizes of the simulation setup.
The fluxes of both heat and water have the general form

js =−κs(z)
∂σ (z)

∂z
. (30)

Conductivities κs are defined for individual grid cells, while
js in the finite-difference scheme is expressed in terms of
fluxes between grid cells i−1 and i, j i−1↔i

s . For this reason,
the effective conductivities governing the flux between grid
cells are calculated as series of the resistances 1/κs,i−1 and
1/κs,i using half of the grid cell thicknesses 1z:

j i−1↔i
s =

2κs,i−1κs,i

κs,i−11zi + κs,i1zi−1
(σi − σi−1). (31)

In the uppermost and lowermost grid cells of the CryoGrid
stratigraphy (which are in different stratigraphy classes if the
stratigraphy consists of more than one class), the fluxes de-
rived at the upper and lower boundaries (e.g., Fub and Flb
for heat) are added. To connect adjacent stratigraphy classes,
corresponding fluxes jNu↔1l

s are calculated by the interac-
tion class (Sect. 2.1.2), with grid cell Nu being the lower-
most grid cell of the upper stratigraphy class, while grid cell
1l is the uppermost grid cell of the lower stratigraphy class.
j
Nu↔1l
s depends on the state variables and model physics of

both classes involved. It can be of the same form as Eq. (31),
but also jNu↔1l

s = 0, for example the water flux between a
stratigraphy class with water balance and one without water
balance.

2.3 Lateral interactions with an external environment

With CryoGrid 3, several studies were presented that sim-
ulate lateral exchange of energy and matter (heat, water or
snow), either with external reservoirs for single-tile simula-
tions (Martin et al., 2019; Langer et al., 2016) or between dif-
ferent CryoGrid stratigraphies for three-dimensional multi-
tile configurations (Martin et al., 2021; Nitzbon et al.,
2019, 2020, 2021; Zweigel et al., 2021). In the CryoGrid
community model, we extend these possibilities by provid-
ing a standardized interface to implement a variety of lateral
interactions, which are compatible with the CryoGrid stratig-
raphy consisting of a stack of classes (Fig. 5). This function-
ality is accomplished by two further types of classes, “lat-
eral classes” and “lateral interaction classes”, both of which
are selected in the TILE_1D_standard class. The choice of
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the lateral class determines whether the CryoGrid stratig-
raphy interacts with external (and static) reservoirs (LAT-
ERAL_1D) or whether several CryoGrid stratigraphies in-
teract with each other (LATERAL_3D), which corresponds
to the “laterally coupled tiling” demonstrated in CryoGrid 3.
In this study, we focus on interactions with external reser-
voirs, while laterally coupled tiling with LATERAL_3D will
be described in a separate study in the future. Other than
for the time integration in the vertical CryoGrid stratigra-
phy, lateral fluxes are added or subtracted after a fixed, user-
determined interaction time step (which is a parameter in
the lateral class), so they are not part of the time integra-
tion scheme of the regular stratigraphy. This is largely due
to the computation-related requirements of laterally coupled
tiling (which requires parallel computing, see Nitzbon et al.,
2019), but constant time steps 1t lat are also employed for
one-dimensional simulations with external reservoirs to en-
sure consistency. In general, lateral fluxes exchanged with
external reservoirs should be small compared to the corre-
sponding vertical fluxes within the CryoGrid stratigraphies,
which means that interaction time steps can be significantly
longer than the typical time steps required for the vertical in-
tegration. The lateral interaction time step must be selected
by the user, seeking a balance between runtime and model
accuracy and stability. Typical lateral time steps for the ap-
plications presented in Sect. 3.2 are between half an hour and
6 h.

The lateral class sets up the environment for the lateral in-
teraction classes, which represent the actual model physics
of the lateral interactions with external reservoirs. Lateral in-
teraction classes can be combined with each other, with the
lateral class calling them one after the other in the order pro-
vided by the user (as a list in TILE_1D_standard).

2.3.1 Lateral coupling to heat reservoir

The CryoGrid stratigraphy can be laterally coupled to an
external heat reservoir, which can be used to mimic the
thermal impact of infrastructure, water bodies (similar to
Langer et al., 2016), or more general adjacent areas with
strongly different ground thermal regimes, e.g., at the edge
of a permafrost-underlain peat plateau (Martin et al., 2021).
The heat reservoir is characterized by a user-defined, con-
stant temperature T lat and lateral distance d lat [m] from the
CryoGrid stratigraphy. Furthermore, a lower and an upper el-
evation for the heat reservoir must be provided, which makes
it possible to confine the effect of the heat reservoir to a part
of the stratigraphy. Furthermore, several heat reservoirs with
different temperatures as well as upper and lower elevations
can be combined, which achieves a similar effect as the cou-
pling to a temperature stratigraphy (Langer et al., 2016). If a
grid cell i is located between the lower and upper bounds of
the heat reservoir, the lateral heat flux is calculated as

j lat
hc,i =−Kh,i

Ti − T
lat

d lat , (32)

Figure 5. Schematic representation of CryoGrid stratigraphy (for
the example of fully developed snow cover) interacting with a lat-
eral interaction (IA) class (see text). Note that it is specific to each
stratigraphy class if and how it is modified by the lateral interaction
class. In this example, stratigraphy class 2 is unaffected, while the
snow class and class 1 are modified by the lateral interaction class.

with Kh,i the thermal conductivity of grid cell i and Ti its
temperature. The change in bulk enthalpy in grid cell i over
time step 1t lat is given by

1Ei =1t
lat1zi l

lat
c j

lat
hc,i, (33)

with llat
c [m] the lateral contact length and llat

c 1zi [m2] the
cross section through which the lateral heat flux occurs.

2.3.2 Lateral water transport

Surface water removal. When snow melts or rain falls on a
saturated soil column, water will either pool up on the surface
or be lost as surface runoff. The exact way to treat this surface
water depends on the particular stratigraphy class, with most
classes removing surface water (but storing it in a state vari-
able), while, for example, the excess ice class (Sect. 2.2.5)
can explicitly represent a surface water pool. The CryoGrid
community model provides a lateral interaction class that
constantly removes any surface water and stores the accu-
mulated surface runoff, irrespective of the way surface water
is treated in the uppermost stratigraphy class. This in partic-
ular makes it possible to generate an unbroken time series
of surface runoff, which comprises both snow classes (i.e.,
snowmelt runoff) and subsurface classes during the snow-
free season.

Overland flow. For the excess ice class (Sect. 2.2.5), stand-
ing surface water can be represented as excess water in the
uppermost grid cell, with water depth given as dw = θχw1z
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[m]. Instead of removing surface water like with the previ-
ous interaction class, surface water can also be removed by
overland flow governed by the Gauckler–Manning equation
(Gauckler, 1867; Manning, 1891) as

j lat
w,1 =−Gd

2/3
w (δlat)1/2, (34)

with G [m1/3] the Gauckler–Manning coefficient and δlat [–]
the local gradient which drives the surface flow. The change
in bulk water content in grid cell 1 over time step 1t lat is
given by

12w,1 =1t
latdwl

lat
c j

lat
w,1, (35)

with llat
c dw [m2] the cross section through which the lateral

water flux occurs (llat
c is the lateral contact length, see above).

Accordingly, the change in bulk enthalpy due to water advec-
tion is given by

1E1 =1t
latdwl

lat
c j

lat
w,1cwT1. (36)

Seepage face. For stratigraphy classes with water balance
(Sect. 2.2.4, schemes 2 and 3), a seepage face lateral bound-
ary condition is implemented as a lateral interaction class,
leading to drainage in the saturated domain of the soil col-
umn. The lateral interaction class first determines the eleva-
tion of the water table, zwt, and then removes a lateral water
flux,

j lat
w,i =−Kw,i

zwt− zi

d lat , (37)

for grid cells i with elevations zi < zwt. Here,Kw,i is the hy-
draulic conductivity and dlat the lateral distance to the seep-
age face, which determines the strength of the drainage. In
unsaturated grid cells, no outflow occurs. Note that the wa-
ter table elevation is tracked across stratigraphy classes; e.g.,
when the water table is located in a water body class, it also
governs the outflow from the subsurface class below. The
seepage face always leads to outflow, and it is possible to
define the upper and lower elevations for the domain through
which outflow occurs. The change in bulk water content in
grid cell i over time step 1t lat is given by

12w,i =1t
lat1zi l

lat
c j

lat
w,i, (38)

with llat
c 1zi [m2] the cross section through which the lateral

water flux occurs. Accordingly, the change in bulk enthalpy
due to water advection is given by

1Ei =1t
lat1zi l

lat
c j

lat
w,icwTi . (39)

Water reservoir. Similar to seepage flow, hydrological
coupling to an external water reservoir is possible, located
at elevation zlat and lateral distance d lat. The lateral water
flux is calculated as

j lat
w,i =−Kw,i

zi − z
lat

d lat , (40)

with parameters as described above. As for seepage flow, wa-
ter flow is restricted to the saturated zone, but inflow can oc-
cur if zi < zlat. This lateral interaction class can therefore be
used to keep the soil water table at a certain level, with in-
and outflow depending on rainfall and evapotranspiration.
While outflowing water has the temperature of the respec-
tive grid cell, inflowing water can optionally be assigned a
(constant) reservoir temperature T lat, which is taken into ac-
count in terms of heat advection through water. In this case,
the change in bulk enthalpy is given by

1Ei =1t
lat1zi l

lat
c j

lat
w,icwT

lat, (41)

while the change in bulk water content 2w,i is the same as
for the seepage face (see Eq. 38).

3 Results

3.1 Benchmarking of selected model components

3.1.1 Step change in upper boundary temperature

To document the basic numerical performance of the model
framework, we model the temperature response of an infi-
nite half-space to a step change in temperature at the upper
boundary. An analytical solution to this problem is available
(Carslaw and Jaeger, 1959) and is given by

T (x, t)= Tinit+ (Tub− Tinit) erfc

√ c x2

4Kht

 , (42)

where T (x, t) [◦C] is the temperature at time t [s] and depth
x [m] below the surface, and Tinit [◦C] and Tub [◦C] are the
initial domain temperature and temperature applied at the up-
per boundary, respectively. c and Kh are the heat capacity
[Jm−3 K−1] and thermal conductivity [Wm−1 K−1] of the
medium, and erfc is the complementary error function. The
formulation is valid for a homogenous material with no vari-
ation in thermal properties in space and time, as well as with-
out phase change.

In CryoGrid we simulate the response using a stratigraphy
class with zero heat flux at the lower boundary and tempera-
ture boundary condition (Sect. 2.2.2) at the upper boundary.
A 100 m deep model domain is selected, discretized with a
spacing of 0.1 m and initialized with a constant temperature
of Tinit = 1 ◦C. At t = 0, an upper boundary temperature of
10 ◦C is applied, and the simulation is allowed to run for 5
years.

Figure 6 shows the model and analytical responses for se-
lected time steps. Using a maximum change in internal en-
ergy per time step of 50 kJm−3 (which is the default Cryo-
Grid setting used in all following simulations), the maxi-
mum absolute difference between the analytical and numeri-
cal simulations is less than 0.003 ◦C. The maximum error is
reduced to less than 0.0003 ◦C by decreasing the maximum
energy step to 10 kJm−3.
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Figure 6. Comparison of analytical and numerical simulations of a
step change in temperature at the upper boundary of a homogeneous
half-space. Results are shown for the initial condition (t = 0 s) and
for 24 h, 100 d, and 1, 2, and 5 years after the step change. Numeri-
cal results are plotted for every fourth grid cell.

3.1.2 Stefan problem

In 1889, the Slovene physicist Josef Stefan published an ana-
lytical solution to the one-sided freezing problem and applied
it to sea-ice formation in the Arctic Ocean (Stefan, 1891).
The solution was reformulated and adapted for modeling the
thawing of frozen soils by Nixon and McRoberts (1973).
To obtain an analytical solution, the following simplifying
assumptions were introduced: (1) the heat capacity of the
medium is neglected, (2) the temperature in the medium be-
low the freezing front does not affect the rate of thaw, (3) the
temperature distribution in the thawed medium is linear, and
(4) a constant surface temperature is applied. With these as-
sumptions, the thaw depth as a function of time is given by
(Nixon and McRoberts, 1973)

dthaw =

√
2KhTub

Lvol
sl θwi

√
t , (43)

where dthaw [m] is the thaw depth at time t [s], Kh
[Wm−1 K−1] the thermal conductivity of the medium (con-
sidered constant with temperature), Tub [◦C] the upper
boundary temperature, Lvol

sl [Jm−3] the volumetric latent
heat of fusion, and θwi [–] the initial volumetric water (for
freezing) or ice (for thawing) contents.

This analytical solution to the problem of top-down thaw-
ing of frozen soils, which is often referred to as the Stefan so-
lution, has been used here to benchmark the CryoGrid model
for a situation with phase change. We used a stratigraphy
class (GROUND_freeW_ubT) with a free water soil freez-
ing characteristic (Sect. 2.2.3), temperature boundary con-
dition (Sect. 2.2.2), and zero heat flux at the lower bound-

Figure 7. Comparison of analytical and numerical simulations of
one-sided thawing of a frozen soil column. The soil temperature is
initialized at −0.02 ◦C, and an upper boundary temperature of 1 ◦C
is applied for a period of 5 years. The domain shown is discretized
with a node spacing of 0.01 m.

ary. The domain was initialized with an initial temperature
of −0.02 ◦C, which is a good approximation to satisfy as-
sumption 2. The volumetric ice content was chosen to be 0.3
and the mineral content 0.7. The upper boundary temperature
was fixed at 1 ◦C to minimize the effect of the heat capacity
of the medium (to align with assumption 3). The domain was
discretized with a grid spacing of 0.01 m from the surface to
3 m depth and 0.1 from 3 m depth to the lower boundary at
100 m depth. The model was run with a constant surface tem-
perature for 5 years, and the numerical and analytical results
are compared in Fig. 7.

The numerical and analytical solutions are nearly identi-
cal, with the numerically derived thaw depths slightly shal-
lower than the ones derived from the analytical solution. The
fact that the numerical formulation accounts for the heat ca-
pacity of the medium and thus storage of sensible heat, while
the analytical solution does not, accounts for the very small
offset observed towards the end of the period.

3.1.3 Mizoguchi (1990) experiment on cryosuction

The Mizoguchi (1990) experiment is a classic model bench-
mark for cryosuction, i.e., the redistribution of soil water
during soil freezing. A number of unfrozen, 0.2 m long soil
columns with constant soil water content are exposed to one-
sided freezing, while the other side is kept insulated. After
12, 24, and 50 h, the combined content of water and ice is
determined gravimetrically for one of the columns so that
the water redistribution over time can be followed. The ex-
perimental conditions including suggestions for model setup
are presented in detail in Hansson et al. (2004). We modi-
fied the upper and lower boundary conditions of the subsur-

Geosci. Model Dev., 16, 2607–2647, 2023 https://doi.org/10.5194/gmd-16-2607-2023



S. Westermann et al.: The CryoGrid community model 2625

face class with water balance according to Richards equation
(Sect. 2.2.4) accordingly, setting the heat flux at the lower
boundary (0.2 m) to zero. The heat flux at the upper bound-
ary is set proportional to the temperature difference between
the first grid cell and the coolant (at −6 ◦C). As in Hansson
et al. (2004), we tried two settings for the proportionality co-
efficient (i.e., the convective heat transfer coefficient), one
constant at 28 Wm−2 K−1 (denoted as the “linear heat trans-
fer scenario”) and one decreasing nonlinearly from 40 (above
0 ◦C) to 10 Wm−2 K−1 (below −4 ◦C) as a function of the
first grid cell temperature squared (denoted as the “nonlinear
heat transfer scenario”). The soil porosity was set to 0.535
with zero organic content, and we use an initial water content
of 0.345 to match the initial state (0 h, see Fig. 8) depicted
in Hansson et al. (2004). Similar to Painter (2011), the soil
permeability is set to 3.25× 10−13 m2, which corresponds
to a saturated hydrological conductivity of 3.2× 10−6 ms−1

(Hansson et al., 2004) for a water viscosity at room temper-
ature. For the silty soil employed in the experiment, we used
the van Genuchten parameters α = 1.11 m−1 and n= 1.48
(Hansson et al., 2004). For the thermal conductivity, we use
the parameterization of Cosenza et al. (2003), with a thermal
conductivity of the mineral fraction of 2.0 Wm−1 K−1. This
roughly reproduces the measured frozen and thawed thermal
conductivities for volumetric water contents of 0.4 and 0.3,
while thermal conductivities for lower water and ice contents
are overestimated (note that such low water contents are not
reached in the simulation).

Figure 8 shows the best fit to the measurements, which
is achieved with the nonlinear heat transfer scenario. Except
for small deviations near the freeze front for the 12 and 24 h
states, CryoGrid manages to reproduce the measurements
very well. Using the linear heat transfer scenario (Sect. S3,
Fig. S1) leads to only small changes in the results, with an
almost equally good fit. Likewise, changing the thermal con-
ductivity parameterization to the one used in CLM4.5 mod-
ified the results only marginally (not shown). Most impor-
tantly, the parameterization of the hydrological conductiv-
ity had a pronounced influence on the results, especially the
choice of the additional ice impedance factor Iice (Sect. 2.2.4,
Eq. 26). The best fit (Fig. 8) is achieved for �= 5 (i.e., the
hydrological conductivity is decreased by a factor of 10−5

when water contents approach zero). With the default fac-
tor of �= 7 (Dall’Amico et al., 2011), water redistribution
is considerably weaker, resulting in a notably worse fit to the
measurements (Sect. S3, Fig. S2). While this should be inves-
tigated in more detail, we have set �= 5 in all simulations
with the Richards equation in this study.

3.1.4 Accelerated spin-up to reach steady-state
temperature profile

In most real-world examples of thermal simulations, the ini-
tial temperature profile is not known and must be estimated
by a model spin-up, i.e., by running the model for a certain

time period (denoted the spin-up period) until the simulated
temperature profile becomes independent of the initial pro-
file (i.e., it is only determined by the model forcing applied
at the upper and lower boundaries). While this state is usually
reached within a few years in the uppermost meters, it takes
much longer for deeper layers. For climate change simula-
tions at a centennial timescale with a typical model domain
depth of 100 m (e.g., Westermann et al., 2016), a spin-up of
several hundred years can be necessary, thus requiring signif-
icant additional computation time. However, reliable spin-up
model forcing this long back in time is often not available,
so it is approximated by repeatedly looping a shorter period,
often the first part of the regular model forcing. For this prac-
tically relevant case, the CryoGrid community model offers
the possibility to considerably accelerate model spin-up by
estimating the equilibrium temperature profile for the spin-
up period, broadly following the procedure outlined in West-
ermann et al. (2013, 2017) for the CryoGrid 2 model:

1. use the TTOP model (Sect. 2.2.2) to obtain a first es-
timate for the temperature at the top of the permafrost
and bottom of the seasonally frozen layer, TTOP,1;

2. estimate a plausible maximum thaw depth (or maximum
freeze depth in case of seasonally frozen ground), ap-
ply TTOP,1 above, and compute a steady-state temper-
ature profile below with the lower boundary heat flux
and thermal conductivities computed for the respective
temperatures;

3. run the model twice for the selected spin-up period and
store freezing and thawing degree days (FDD and TDD)
for each model grid cell for the second iteration;

4. determine the maximum thaw depth (freeze depth in
case of seasonally frozen ground), as well as the tem-
perature at the top of the permafrost (top of permanently
unfrozen layer for seasonally frozen ground), TTOP,2,
from FDD and TDD;

5. repeat step 2 with TTOP,2 and the maximum thaw depth
(maximum depth of seasonal frost) calculated in the pre-
vious step;

6. run the model once for the selected spin-up period prior
to starting the regular simulations.

As only steps 3 and 6 require significant computation, the
total runtime of the accelerated spin-up approximately corre-
sponds to 3 times the normal model runtime for the spin-up
period. Figure 9 displays an example of the accelerated spin-
up procedure using a period of 10 years. For comparison, a
classic spin-up is performed, starting with a constant initial
temperature of −8 ◦C throughout the entire profile (which is
clearly too cold, considering the model forcing). While the
classic spin-up takes 200 to 400 years (i.e., 20 to 40 iter-
ations of the 10-year period) to reach a reasonable approxi-
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Figure 8. Simulated sum of volumetric water and ice content (blue lines) vs. measurements (crosses, digitized from Hansson et al., 2004)
for the Mizoguchi (1990) experiment for 0, 12, 24, and 50 h freezing time; nonlinear heat transfer scenario, ice impedance factor calculated
with �= 5 (see Eq. 26).

mation of the targeted equilibrium state, the accelerated spin-
up requires only 30 model years (three iterations of spin-up
period) to reach a similar performance. Figure 9 shows that
the accelerated spin-up is not exact, with the temperature at
100 m depth about 0.1 ◦C warmer than the classic spin-up af-
ter 400 years, which is still cooling slightly at this point. The
reason for this is that the thermal conductivity in the upper-
most permafrost layers still fluctuates annually with temper-
atures, giving rise to a small additional thermal offset (Ro-
manovsky and Osterkamp, 1995). However, this small devi-
ation of the accelerated spin-up is not relevant for real-world
applications, as the true temperature profile does not corre-
spond to the equilibrium state for the spin-up period anyway,
but is determined by the real climate conditions in the past.
Therefore, the accelerated spin-up procedure in the CryoGrid
community model provides a compromise between compu-
tation time and initialization accuracy that is fully sufficient
for many applications.

3.2 Example simulations for Svalbard

To demonstrate different configurations of modular Cryo-
Grid stratigraphies, we perform simulations for the well-
studied Bayelva permafrost research site outside Ny-
Ålesund, Svalbard (Boike et al., 2018). A soil and cli-
mate monitoring station established in 1998 provides records
of active layer temperatures, meteorological variables, and
snow depth. The Bayelva site is situated on top of a hill,
within a short distance (ca. 1 km) to the Brøggerbreen glacier.
The unglaciated coastal areas are underlain with continuous
permafrost extending to depths of about 100 m and with ac-
tive layer depths of 1–2 m. The landscape is characterized

Figure 9. Comparison of accelerated and classic spin-up for a 10-
year period from 31 July 1980 to 31 July 1990; simulated temper-
ature profile on 31 July for accelerated spin-up (black, achieved
with 30 simulation years) and classic spin-up (blue) after 0, 30,
100, 200, and 400 simulation years. Setting: Svalbard forcing (see
Sect. 3.2) and ground stratigraphy, Crocus-based snow class, 100 m
deep model domain with geothermal heat flux of 50 mWm−2 at the
lower boundary.

by patterned permafrost ground and sparse vegetation cover-
age. The soils on the hill range from silty loam to silty clay,
while there is coarser-grained material (silty sands to gravel)
in the surrounding area. The site includes a 9 m deep bore-
hole with hourly measurements of permafrost temperatures
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dating back to 2009, featuring a mean permafrost tempera-
ture of −2.8 ◦C. In the active layer and in the top of per-
mafrost the annual mean temperatures increased by 1.8 ◦C
per decade for the period 1998–2017 (Boike et al., 2018).
The soil and air temperature trends show the largest tem-
perature increase in winter (Maturilli et al., 2015). At the
Bayelva site, the snow cover buildup starts in September–
October and maximum snow depths can reach up to 1.5 m.
The timing of spring snowmelt can vary by several weeks
and typically starts between May and June. Data from the
Bayelva site have been used for validation of various Earth
system modeling studies (Chadburn et al., 2017; Ekici et al.,
2014, 2015).

We prepare a common forcing time series for all simula-
tions by downscaling surface fields from the ERA-5 reanaly-
sis (Hersbach et al., 2018; closest model grid cell) using the
Bayelva measurements as a reference. For each day of year,
a linear regression is computed between reanalysis data and
available measurements within a window of 20 d before and
after each day of the year. This linear regression is subse-
quently employed to correct the reanalysis data. This proce-
dure is in particular able to account for a potential season-
ality of the bias of the reanalysis data, but relies on a suffi-
cient correlation between the two time series (Westermann
et al., 2015, 2016). The downscaling is applied to air temper-
ature and incoming longwave radiation for which the reanal-
ysis is strongly cold-biased during the summer period. The
specific humidity is corrected accordingly for the change in
temperature. Incoming shortwave radiation and wind speed
are used without downscaling, as their average values gen-
erally agree well with measurements, while the correlation
was lower due to their strong dependence on the timing of
synoptic events, which is poorly captured by the reanalysis.
Furthermore, precipitation is not corrected as there are no
reliable measurements, especially for snowfall. Instead, we
perform simulations for different multiplication factors for
snowfall to evaluate the sensitivity to this important variable.
All simulations are performed for the period 1981 to 2018
using the accelerated spin-up procedure (Sect. 3.1.4) for the
first 10 years to initialize the ground temperature profile.

In the following, we first establish a model baseline con-
figuration that can reproduce measurements reasonably well
(Sect. 3.2.1) and then change one model component at a time,
while the others are kept as in the reference (Sect. 3.2.2). We
emphasize that only the model parameters of the reference
simulation are optimized to match the measurements, while
better-fitting configurations likely exist for the other simula-
tions.

3.2.1 Reference simulations

We use the model setup of Zweigel et al. (2021) for the wider
area around the Bayelva station as a starting point to opti-
mize model settings specific for the location of the measure-
ment station. A stratigraphy class with surface energy bal-

ance (Sect. 2.2.2), the soil freezing characteristic (Sect. 2.2.3)
for soil type silt and bucket water balance (Sect. 2.2.4) is used
to represent sediments in the uppermost 5 m. Bedrock is as-
sumed below, represented by a less process-rich stratigraphy
class with the free water freezing characteristic (Sect. 2.2.3)
and constant sum of soil water and ice contents (Sect. 2.2.4).
As the Bayelva station is located on a small hill, lateral
drainage with the lateral interaction class representing a seep-
age face (Sect. 2.3.2) is assumed. The seasonal snow is rep-
resented by the Crocus-based snow class (described under
(c) in Sect. 2.2.6), with parameters for wind compaction, ini-
tial snow density, and shortwave albedo adapted to fit mea-
sured ground surface temperatures, snow depths, and pre-
melt snow densities of 300–350 kgm−3 which is a rough
average for measurements conducted in 2011 to 2015. Fig-
ure 10 shows simulated annual average temperatures at 1.3 m
depth for snowfall multiplication factors of 0.9, 1.0, and 1.1.
For the majority of the years, the measurements fall within
this range, which indicates that at least the general magni-
tude of snowfall is captured well by the model forcing. Fig-
ures 11 and 12 display the full time series of ground tempera-
tures near the ground surface and at 1.3 m depth for the mea-
surements and the simulations with a snowfall multiplication
factor of 1.1. The simulations can describe the seasonality of
measured temperatures well for most of the years, but win-
ter temperatures are considerably too warm for some years,
e.g., 2000–2001, 2002–2003, and 2009–2010. In these years,
however, the measured snow depths at the Bayelva station
are lower than in the simulations for most of the snow sea-
son (Fig. 13), which is the likely reason for the overestimated
ground temperatures. In general, simulated snow depths in-
crease smoothly throughout the winter season in the simu-
lations, while the measurements bear evidence of individual
snowfall events which lead to strong increases in snow depth.

3.2.2 Simulations with different CryoGrid
stratigraphies

We use the warmest reference simulation with 110 % snow-
fall as a baseline for which simulated ground temperatures
are close to the thaw threshold in some years. In all model
configurations displayed in this section, snowfall is hence
increased to 110 % as well. We then exchange one model
aspect at a time, leaving all others unchanged so that dif-
ferences in simulation results can be attributed to the model
aspect in question. This is either accomplished by selecting
a different stratigraphy class or by changing model parame-
ters. It is important to note that a poor performance in repro-
ducing measurements cannot necessarily be attributed to the
investigated model aspect, as only the reference simulation
is optimized for all model parts together. We also empha-
size that the results of the model comparison are specific to
the particular conditions at the Bayelva site and cannot nec-
essarily be generalized. Therefore, the main purpose of this
comparison is to showcase the effect of various setups within
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Figure 10. Simulated (lines) and measured (crosses) annual average
temperatures at 1.3 m depth for the reference simulation (see text).
Years with measurements available for less than 90 % of the time
are not shown. Black line: 100 % snowfall; broken blue line: 90 %
snowfall; solid blue line: 110 % snowfall (used as a comparison to
other model configurations, Sect. 3.2.2).

the modular CryoGrid community model and not to evaluate
their performance at the Bayelva site in a strict sense.

Subsurface representation and water balance. Figure 14
displays simulated ground temperatures for different soil
freezing characteristics, from silt for the reference simulation
to sand and finally free water freezing for which the phase
change of water occurs at 0 ◦C. The differences in simulated
ground temperatures are relatively small, which suggests that
the choice of the soil freezing characteristic is not critical. At
least in some situations, it is therefore possible to speed up
simulations by using free water freezing instead of the com-
putationally more demanding simulations with the soil water
freezing characteristic.

Secondly, we investigate the effect of different lateral
drainage conditions when using the bucket water scheme,
with the reference simulation representing well-drained
ground conditions due to the applied seepage face (Fig. 15),
while excess water pooling up at the surface is removed in-
stantly. The same configuration is also simulated with the
excess ice class (Sect. 2.2.5), which allows water to pool
up at the surface (and potentially refreeze), being removed
laterally by overland flow (Sect. 2.3.2). Note that no excess
ground ice is added to the ground itself, so model physics and
parameters are identical to the reference simulation, except
for the representation of surface water. While the differences
to the reference simulation are generally small, the simulated
ground temperatures are both warmer and colder in individ-
ual years. The main reason for the differences is the repre-
sentations of surface ice layers, which regularly occur in fall
and early winter in W Svalbard. If the ground is frozen but
snow-free during a rain event (and saturated with ice and/or

water), the rainwater is instantly removed in the reference
simulation, while it can freeze and form a surface ice layer in
the excess ice class. This not only changes the freeze–thaw
dynamics of the uppermost ground layer, but also delays the
onset of thawing in spring, as the melting surface ice layer
confines the temperature of the uppermost grid cell to 0 ◦C.
The impact on the ground thermal regime of these two effects
strongly depends on the conditions of the individual year,
which explains the both negative and positive differences in
the simulated mean annual ground temperatures. The third
model configuration is once again based on the exact setup
of the reference simulation, but without lateral inflow or out-
flow of water, representing a classic, one-dimensional sim-
ulation without interactions with external reservoirs. In the
fourth configuration (denoted “wet”), inflow of water from
a reservoir at the height of the ground surface ensures per-
manently wet ground conditions, mimicking a wetland lo-
cated in a depression. While there is little difference between
the one-dimensional and the wet simulation case, they are
both significantly warmer than the well-drained reference
simulation (Fig. 15), and a partly unfrozen zone above the
permafrost develops in some of the years after 2006, corre-
sponding to permafrost degradation. This can be explained
by the higher soil water and thus latent heat content of the
soil, which prevents complete freeze-back before an insulat-
ing winter snow cover forms. The small differences between
the 1D and the wet simulation case are explained by the gen-
erally high summer precipitation at the Bayelva site, which
often exceeds evapotranspiration, thus keeping the ground
wet. Furthermore, in the bucket scheme employed for this
comparison, water is not accessible to evapotranspiration be-
low a certain depth, which is determined by the parameters
evaporation and transpiration depth in the model. While this
generally does not occur for a shallow active layer, a perma-
nently saturated layer forms for the deep active layer in the
Bayelva simulations, which requires a long time to freeze in
fall and winter. When lateral drainage is applied, as in the ref-
erence simulations, the soil water content is held at field ca-
pacity instead so that the freeze-back occurs faster, thus also
leading to colder ground temperatures and stable permafrost
after 2006.

The simulations not only deliver ground temperatures like
the CryoGrid 2 and 3 models, but it is also possible to eval-
uate the components of the water balance, consisting of pre-
cipitation P , evapotranspiration ET, runoff (both from sur-
face and subsurface) R, and storage S in the form of snow
and soil water–ice, i.e., P = ET+R+S. In particular, Cryo-
Grid stratigraphies which allow for standing surface water
and removal by overland flow are well suited for this task, as
all lateral runoff is handled in a physically based way (and
not simply by removing excess water instantly). Figure 16
displays the accumulated water balance for 3 example years
for this model configuration (dashed blue line in Fig. 15),
showing the seasonality of the storage term corresponding to
the winter snow cover, which is largely converted to runoff
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Figure 11. Simulated (black) and measured (red) ground temperatures at 4 cm depth for the Bayelva soil and climate station, Ny-Ålesund,
Svalbard (data from Boike et al., 2018). Reference simulations with 110 % snowfall; see text. The model setup uses the surface energy balance
as upper boundary, a subsurface module with soil freezing characteristic and lateral drainage with seepage face, and the Crocus-based snow
model with optimized parameters.

Figure 12. Simulated (black) vs. measured (red) ground temperatures at 133 cm depth for the Bayelva soil and climate station, Ny-Ålesund,
Svalbard (data from Boike et al., 2018). Reference simulations with 110 % snowfall; see text. The model setup uses the surface energy balance
as upper boundary, a subsurface module with soil freezing characteristic and lateral drainage with seepage face, and the Crocus-based snow
model with optimized parameters.

during and after snowmelt. At the same time, evapotranspi-
ration is largest in July, corresponding to snow-free surface
conditions and large amounts of incoming radiation. Smaller
amounts of water equivalent are lost to sublimation during
the snow-covered season, which is clearly visible during the
first winter of 2009–2010. Note that there are also smaller

changes in storage during the snow-free season, which cor-
responds to changes in soil water storage.

We further investigate the influence of the soil water bal-
ance on simulation results by considering different model
representations (Fig. 17). The reference simulation with the
bucket water scheme is first compared to a simulation with
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Figure 13. Simulated (black) and measured (red) snow depths at the Bayelva soil and climate station, Ny-Ålesund, Svalbard (data from
Boike et al., 2018). Reference simulations with 110 % snowfall. See text.

Figure 14. Simulated annual average temperatures at 1.3 m depth.
Blue, crosses: reference simulation; green (line only): as the refer-
ence simulation, but with the soil freezing characteristic for sand
instead of silt; red, triangles: soil water freezing as free water.

constant soil water content set to the field capacity of the
reference simulation, with evapotranspiration calculated in-
dependently of the soil water content by setting a constant
model parameter for the “surface resistance against evapo-
transpiration” (as in the scheme used for Westermann et al.,
2016). The simulated soil temperatures are very similar to the
reference simulation, which reflects the overall similar wa-
ter contents within the active layer. In addition, the reference
simulation is compared to the hydrological scheme driven
by the Richards equation, including redistribution of soil wa-

Figure 15. Simulated annual average temperatures at 1.3 m depth.
Blue, solid line, crosses: reference simulation for drained soil con-
ditions; blue, dashed line (line only): as the reference simulation,
but representing surface water and ice (with excess ice module,
Sect. 2.2.5) and lateral overland flow (Sect. 2.3.2); green (line only):
no drainage; red, triangles: wet soil with influx of water.

ter during the freezing process. While this results in slightly
higher ground temperatures, they are still reasonably simi-
lar to the reference simulation (Fig. 17). Figure 18 displays
the simulated volumetric water contents for the three differ-
ent model representations of the soil water balance, show-
ing significant differences during the unfrozen season. While
the soil water content does not change in the “constant water
content” case (middle panel), approximately the upper half-
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Figure 16. Simulations of accumulated water balance for simula-
tions with surface water representation (i.e., excess ice class), lateral
drainage by a seepage face and overland flow, and 110 % snowfall
(dashed blue in Fig. 15) for 3 example years. P (thick black line):
precipitation (sum of rainfall and snowfall); ET: evapotranspiration;
R: runoff (sum of surface and subsurface runoff); S: storage (soil
and snow).

meter (controlled by the user-defined characteristic depths of
evaporation and transpiration, Sect. 2.2.4) dries out as a re-
sult of evapotranspiration for the bucket water scheme (left
panel), while strong rainfall events periodically reset the wa-
ter content to the field capacity. At the same time, water accu-
mulates near the bottom of the active layer, which is removed
laterally by the applied seepage face module. Finally, the en-
tire active layer remains unsaturated in the simulations with
the Richards equation, as water is redistributed upwards to
compensate for evaporation (right panel) during most of the
summer season. For this reason, no lateral subsurface runoff
occurs (see Sect. 2.3.2), although the soil water content is
overall higher than in the reference simulation, especially in
fall. The simulated thaw depths are more or less equal for the
bucket water and the Richards equation schemes, while they
are slightly deeper for the scheme with constant soil water
contents. We point out that the simulations with the Richards
equation yield a different assessment of permafrost stabil-
ity in the wider Bayelva area, despite the relatively similar
ground temperatures: while permafrost in the reference sim-
ulation is only stable when lateral drainage occurs (Fig. 15),
it is also stable for the one-dimensional case if the soil water
balance is governed by the Richards equation.

An example of the effect of cryosuction in the Richards
equation scheme is displayed in Fig. 19, which shows the
sum of the volumetric water and ice contents, θwi, for 1 ex-
ample year. The accumulation of ground ice below and above
the freeze front is clearly visible in this year; this in par-
ticular leads to an ice-rich layer at the bottom of the active

Figure 17. Simulated annual average temperatures at 1.3 m depth.
Blue, crosses: reference simulation (bucket scheme for water, in-
cluding lateral subsurface drainage); green (line only): constant soil
water plus ice content; red, triangles: Richards equation (no lateral
subsurface drainage occurs).

layer, which can modify thaw behavior in the following years
(Schuh et al., 2017). Furthermore, cryosuction can replenish
ground ice that has melted during summers with deep active
layers and is lost to the surface due to evaporation (Fig. 18,
right panel). The previous maximum of the active layer thick-
ness is clearly visible in Fig. 19, and ice accumulation over
several years with a shallower active layer could replenish
the lost ground ice at least partly. In the Bayelva simulations,
this does not really happen as the active layer is overall deep-
ening during the simulation period so that ground ice formed
at the bottom of the active layer due to cryosuction eventually
melts out.

Snow cover representation. Figure 20 displays the simu-
lation results for different snow cover classes, in particular
the class with snow microphysics representation (following
the Crocus-based snow model) and the snow class with a
constant snow density (as in the classic CryoGrid 2 and 3
models). Both snow classes feature a bucket scheme for wa-
ter infiltration, including refreezing of meltwater percolating
through the snowpack. While the parameters in the Crocus-
based snow class are specifically adapted for the reference
simulation, two of the parameter settings presented in the lit-
erature produce ground temperatures that are too high and
permafrost that is not thermally stable. These are the origi-
nal Crocus parameter set (Vionnet et al., 2012), which pro-
duces snow densities that are too low and thus too much in-
sulation of the ground, and the “Arctic” setting (Royer et al.,
2021). This produces reasonable snow densities, but the em-
ployed parameterization for the snow thermal conductivity
(after Sturm et al., 1997) yields significantly lower values
than in the original Crocus configuration (using the param-
eterization after Yen, 1981). As a result, the simulated tem-
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Figure 18. Simulated profiles of volumetric water contents for 2 example years for the three water balance schemes used in Fig. 17. (a) Ref-
erence simulation (bucket scheme for water, including lateral drainage); (b) constant soil water plus ice content; (c) Richards equation (no
lateral subsurface drainage occurs).

Figure 19. Simulated sum of volumetric water and ice contents us-
ing the Richards equation for a 1-year period in 2000–2001 (red
in Fig. 17); white line: freeze front. Cryosuction upon soil freez-
ing leads to ice accumulation above and below the freeze front, as
marked by the two orange arrows. In this example period, the ef-
fect of cryosuction is particularly pronounced, while it is of smaller
magnitude in other periods.

peratures are relatively similar for the two settings, despite
significant differences in the simulated snow densities and
thus snow depths. Note that the reference simulation uses the
parameter set of the “Arctic” configuration, but the Yen pa-
rameterization for the snow thermal conductivity. We point
out that snow accumulation at the Bayelva site is subject to
strong wind redistribution of snow, which likely also changes
over time, as the measurement site is located on a hill and
thus exposed to snow ablation, but is also surrounded by a
protective fence providing wind resistance and thus promot-
ing deposition. The results must therefore be regarded with
caution and should not be generalized unless backed up by
simulations from other sites.

The simulations with constant snow densities are generally
colder than in the reference, although overall low snow den-
sities of 250 and 275 kgm−3 were used (compared to end-of-
season measurements of 300–350 kgm−3), which represent

Figure 20. Simulated annual average temperatures at 1.3 m depth.
Blue, crosses: reference simulation (Crocus-based snow scheme
with adapted parameters); green solid (line only): constant den-
sity snow scheme with initial density of 250 kgm−3; green dashed
(line only): constant density snow scheme with initial density of
275 kgm−3; red solid, triangles: Crocus-based snow scheme with
original parameters from Vionnet et al. (2012); red dotted (line
only): Crocus-based snow scheme with the “Arctic” configuration
(Royer et al., 2021).

a seasonal and depth average for the entire snowpack. In fall
and early winter this likely overestimates the snow density
and thus thermal conductivity of the fresh snowpack so that
the ground can refreeze faster. In the annual balance, this off-
sets the overly strong insulation in the later parts of the win-
ter, when the true snow densities are higher in the majority
of the snowpack.

Model type and upper boundary condition. In the refer-
ence simulation, energy exchange at the upper boundary is
driven by the surface energy balance, similar to the original
CryoGrid 3 model. While most stratigraphy classes in the
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CryoGrid community model employ the surface energy bal-
ance, simpler approaches, such as a temperature boundary
condition (as in CryoGrid 2) and the semi-empirical TTOP
model (as in CryoGrid 1), are also available. Figure 21 shows
a comparison of different model types, with a CryoGrid 2-
like model setup with air temperature as the upper bound-
ary condition for both the ground and the snow surface, as
well as snow ablation derived from a degree-day melt model
(Sect. 2.2.6). While the model does not account for the wa-
ter balance and is generally a much less process-rich ap-
proach compared to the reference simulation, it delivers a
similar representation of annual average temperatures for the
Bayelva site. Interestingly, even the simple TTOP approach
can capture some of the warming trend observed in the last
2 decades, although the n-factors are not adapted to repre-
sent interannual differences of snow depths. However, as a
stand-alone, this equilibrium approach should strictly speak-
ing only be applied to longer time periods (dashed green
line in Fig. 21), as it cannot account for the time lag of
ground temperature changes due to heat conduction and pos-
sibly ice melt. This problem can be partly overcome by us-
ing the TTOP model as the upper boundary condition for a
stratigraphy class simulating heat conduction (dotted green
line in Fig. 21). In this example application, the TTOP model
computes mean annual ground temperatures for annual time
slices, which is used as temperature boundary condition for
the heat conduction model (Sect. 2.2.2). While the active
layer dynamics is not resolved, this hybrid approach can ef-
ficiently simulate the temperature dynamics in deeper layers
(similar to Myhra et al., 2017), which is particularly inter-
esting to speed up centennial- and millennial-scale simula-
tions. Although the TTOP model is a simplistic approach as-
sociated with significant uncertainty, it is straightforward to
train and validate with more process-rich model setups in the
CryoGrid community model.

Glaciers and water bodies. The CryoGrid community
model provides stratigraphy classes for land surface types
other than ground and snow, in particular glaciers and wa-
ter bodies. Figure 22 displays simulated ground temperatures
for a glacier and a shallow (0.8 m deep) water body when
driven with the same forcing data as the reference simula-
tion. The water body simulations clearly show that average
ground temperatures are positive throughout the entire time,
which is due to the asymmetry of heat transfer between sum-
mer and winter (Westermann et al., 2016). This suggests that
there is a permafrost-free zone below water bodies of that
depth around Ny-Ålesund, with the water body not freezing
to the bottom in winter. Figure 23 shows the simulated lake
ice dynamics for 2 example years, with significantly thicker
ice cover during a year with low overall low snow depths.
However, even in this year, the water body does not freeze
to the bottom, which explains the high ground temperatures
and permafrost-free conditions. Conversely, annual average
temperatures are significantly lower for the glacier than for
the reference simulation, as the energy input during summer

Figure 21. Simulated annual average temperatures at 1.3 m depth.
Blue, crosses: reference simulation (upper boundary condition sur-
face energy balance); red, triangles: temperature boundary condi-
tion model (air temperature as upper boundary condition, degree-
day-based snowmelt model); green (lines only): TTOP model with
time-constant n-factors nf = 0.5, nt = 1, rk = 0.8 (dashed: entire
period; solid: 2-year intervals; dotted: 1-year interval as the upper
boundary condition for CryoGrid stratigraphy as in the reference
simulation).

is consumed by ice melt, rather than warming of the sub-
surface material. Furthermore, the summer meltwater fully
drains so that freezing temperatures in fall and early winter
instantly penetrate the subsurface, other than for soil freezing
whereby the water in the active layer must first refreeze, be-
fore the ground below can cool out further. For the employed
stratigraphy class, the annual ice melt is automatically com-
pensated for by mass from an infinite ice layer below the
model domain. Figure 24 shows the annual ice melt for a
theoretical glacier located at the Bayelva site. The ice melt
follows the observed mass balance from nearby glaciers Aus-
tre Brøggerbreen and Midtre Lovènbreen well, which have
an increasingly negative mass balance trend since the 1980s
with the highest mass loss year in 2016.

Figure 25 displays a comparison of the runtimes of the
model configurations presented in this section, which are be-
tween 150 and 300 s per model year for most of the cases.
The largest differences in runtime are caused by the bound-
ary condition and/or model type, with simulations of the sur-
face energy balance requiring a considerably longer runtime
compared to simulations in which a temperature boundary
condition is applied. The shortest runtimes are achieved by
the even simpler TTOP model configurations which do not
simulate heat conduction at all and only compute a single
equilibrium temperature. Among the model configurations
using the surface energy balance as the upper boundary con-
dition, schemes with simpler model physics (e.g., constant
water plus ice contents, constant snow density) have shorter
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Figure 22. Simulated annual average temperatures at 1.3 m depth.
Blue, crosses: reference simulation for soil material; red, triangles:
0.8 m deep water body overlaying soil material (as for the reference
simulation); green (line only): glacier.

runtimes than the more process-rich model configurations,
but not by a large margin.

4 Discussion and outlook

The modular concept of the CryoGrid community model was
designed to unlock added value of model development con-
ducted in several research projects with a strongly different
research focus, such as Nunataryuk, PermaRisk, and ESA
Permafrost_CCI. Instead of building specialized model tools
for a narrow set of applications, the community model aims
for a library of different model parts that can be flexibly com-
bined by users, while providing developers with an advanced
starting point to design new model functionalities. As such,
the goal of the CryoGrid community model is to become a
dynamic platform for continued model development, not a
static model applied by its user community to solve the same
classes of problems.

4.1 Differences to CryoGrid 1–3 model
implementations

CryoGrid 1. The same TTOP equilibrium model that forms
the core of CryoGrid 1 is implemented by a dedicated stratig-
raphy class in the CryoGrid community model. However,
most CryoGrid 1 applications relied on additional parameter-
izations for the model parameters. In particular, the winter n-
factor (Eq. 3) has been calculated from snow depth (e.g., Gis-
nås et al., 2013), snowfall (Westermann et al., 2015), or snow
depth and winter temperature (Obu et al., 2019). While it is
straightforward to add these parameterizations to the Cryo-
Grid community model, they have all been developed and
adapted for specific input datasets. We therefore leave it to

concrete future applications to complement the “raw” TTOP
model currently implemented with additional parameteriza-
tions for its model parameters.

CryoGrid 2. The main features of CryoGrid 2 are a temper-
ature boundary condition, a simple snow model with constant
snow density, and a numerical scheme optimized for compu-
tational efficiency. The first two features are retained in the
corresponding stratigraphy classes of the community model,
but the numerical scheme has been changed to the simple
first-order forward Euler scheme with adaptive time step,
which is not as computationally efficient as previous Cryo-
Grid 2 implementations. In the future, computationally more
efficient implementations of CryoGrid 2 could be added by
means of further TILE classes which support different nu-
merical schemes (see also Sect. 4.7).

CryoGrid 3. While most stratigraphy classes in the com-
munity model follow the general design of CryoGrid 3, there
are some notable differences: in CryoGrid 3, the main prog-
nostic variable integrated in time is the intensive variable
temperature, while extensive variables, such as enthalpy, are
employed in the community model. This has several advan-
tageous aspects, in particular that extensive quantities are in-
trinsically conserved when integrated in time. For the same
reason, it is straightforward to combine and split grid cells
when extensive variables are used as state variables. Using
enthalpy as state variable is particularly convenient as both
the apparent heat capacity and the thermal conductivity be-
have smoothly as functions of enthalpy, while the apparent
heat capacity has a significant discontinuity at the freezing
point of water when expressed as a function of temperature.
For numerical integration, this is a challenging aspect, so
using enthalpy as state variable is especially favorable for
the simple time integration scheme employed in the commu-
nity model. Another difference between CryoGrid 3 and the
stratigraphy classes of the community model is that soil wa-
ter is treated as a prognostic variable (i.e., time derivatives are
calculated to advance the variable in time). In CryoGrid 3,
an instantaneous bucket scheme is employed instead, which
computes the steady-state soil water profile after each time
step, i.e., the water profile that would eventually be reached
for the particular amounts of water added or extracted during
the time step (which means that soil water is treated as a di-
agnostic variable). The time dynamics of an infiltration event
are therefore only captured in the community model. We em-
phasize that this is not a hard-coded feature of the commu-
nity model, but only applies to the stratigraphy classes de-
scribed in this study. A final difference between the two mod-
els is the use of a different parameterization for the soil freez-
ing characteristic in the community model (see Sect. 2.2.3).
For most thermal simulations, we expect the impact of this
change to be small (see Sect. 3.2.2 on the effect of different
freezing characteristics), but the parameterization employed
in the community model in particular offers a better perfor-
mance for combined thermal and hydrological simulations
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Figure 23. Simulated ice dynamics (volumetric ice content) for the water body simulation (red in Fig. 22) for a winter with low and high
snow depths. As snowmelt water is assumed to pass through the water body ice in the model, the ice rises in elevation during the melt period,
which is particularly evident in 2008–2009.

Figure 24. Simulated annual net ice melt (in meters of water equiv-
alent) with the glacier module for the Bayelva forcing dataset.

with the Richards equation. The interested reader is referred
to the discussion in Painter and Karra (2014) on this topic.

4.2 CryoGrid 1–3 functionalities lacking in the
community model

The CryoGrid community model provides the majority of the
simulation capabilities that have been demonstrated within
the CryoGrid 1 to 3 models, while at the same time pro-
viding modularity and a joint operation framework that
makes additional functionality, such as the accelerated spin-
up (Sect. 3.1.4), available to all model configurations. How-
ever, there are a few simulation tools published within the
CryoGrid 1–3 models that are at this point not available
within the CryoGrid community model. Firstly, this concerns
the two-dimensional heat conduction model CryoGrid2D

(Myhra et al., 2017) for which a temperature boundary condi-
tion must be specified at a number of nodes at the edge of the
model domain, which is not possible with the currently avail-
able FORCING classes. Moreover, it is not directly compat-
ible with the inherently one-dimensional stratigraphy classes
described in this work. Nevertheless, the general framework
of the CryoGrid community model in its present form con-
tains structures by which CryoGrid2D could be incorpo-
rated. The most direct way is to implement dedicated TILE,
FORCING, and OUT classes (see Fig. 1) that are geared
to the requirements of two-dimensional simulations. While
not directly compatible with the simulation tools presented
in this work, functionalities enabled at the RUN_INFO level
(Fig. 1), e.g., the accelerated spin-up procedure, could di-
rectly be employed.

A second functionality lacking in the community model is
the FLake water body model (Mironov et al., 2005), which
has been demonstrated within CryoGrid 3 (Langer et al.,
2016). Most notably, FLake computes a wind-speed- and
temperature-dependent stratification of the unfrozen water
column, while the currently implemented stratigraphy class
assumes completely mixed conditions (i.e., the entire water
body has the same temperature) at all times, similar to the
water body representation in Westermann et al. (2016). It
is clear that the simple representation is only adequate for
shallow water bodies, while FLake must be implemented
to simulate a realistic stratification of the water column in
deeper water bodies. While the simple water body represen-
tation appears to be a sufficient approximation for many per-
mafrost applications with shallow ponds and lakes (Wester-
mann et al., 2016), it is exactly the purpose of the modu-
lar community model that such assumptions, though seem-
ingly logical, can be verified by comparing to simulations
with a more process-rich scheme. Therefore, implementing a
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Figure 25. Comparison of runtimes for the different CryoGrid configurations presented in Sect. 3.2, all using a single core of an AMD EPYC
7742 64-core processor (2.25 GHz base frequency). Bold font: setting for the reference run; the color coding and line properties are as in the
individual figures. Note that the runtime includes the computational overhead for model initialization and preprocessing of model forcing,
which in particular for “TTOP 2 years” and “TTOP full period” dominate the overall runtime.

stratigraphy class based on FLake in the community model
should become a priority for future model development.

Finally, freezing of saline ground, including diffusion of
salt driven by gradients in brine concentrations (Angelopou-
los et al., 2019), is a model functionality demonstrated within
CryoGrid 2 but not yet included in the community model.
Being a one-dimensional setup, it can be implemented in the
community model as a stratigraphy class in a straightforward
way. Coupling to existing stratigraphy classes can be facili-
tated by dedicated interaction classes that compute the fluxes
of energy, water, and salt between the class interfaces. We
point out that freezing of saline ground in CryoGrid 2 so
far has only been demonstrated for saturated conditions and
without salt advection due to water flow. Within the com-
munity model, these limitations can likely be overcome, as
a stratigraphy class for saline ground can be built on top of
existing stratigraphy classes with water balance representa-
tions. In a similar fashion, the existing water body class could
be supplemented with a salinity representation so that freez-
ing of saline water bodies can be simulated. Due to the possi-
bility to vertically connect classes, simulations of subaquatic
permafrost below saline lagoons (e.g., Angelopoulos et al.,
2020) and shallow nearshore zones could be accomplished
within a single model framework which simulates ice forma-
tion and brine exclusion in the water column in conjunction

with salt diffusion and ground freezing in the ground column
below.

4.3 Lateral interactions

The CryoGrid community model offers a standardized way
to implement lateral interactions of a one-dimensional model
column with its environment, which makes it possible to ac-
count for the influence of topography and terrain heterogene-
ity at least in a phenomenological way. This is first and fore-
most useful to drive the water balance in point-scale simu-
lations to reality. Many wetlands, for example, are located
in terrain depressions and receive inflow from surrounding
areas, which is the very reason for their existence. Model
schemes with one-dimensional water balance cannot repro-
duce soil moisture conditions in such ecosystems, which
can be a significant problem, for example, in carbon cycle
simulations. In the CryoGrid community model, lateral in-
flow can be realized through a dedicated lateral interaction
class which connects the model column to a water reser-
voir at a defined elevation. Likewise, continuous drainage
of locations on slopes and hills can be simulated by using
lateral interaction classes, which simulate drainage through
either a seepage face or a lower-lying water reservoir. The
Bayelva simulations for different drainage regimes (Fig. 15)
clearly demonstrate the large impact of the drainage regime
on ground temperatures, with permafrost thermally stable
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when water can drain, but degrading when the ground is held
wet through inflow of water. In addition to the water balance,
lateral fluxes of heat may play a role in permafrost areas,
for example by thermally stabilizing permafrost below water
bodies (Langer et al., 2016) or destabilizing permafrost in the
vicinity of infrastructure elements (Schneider von Deimling
et al., 2021). To simulate such effects, a lateral interaction
class can be applied in the community model to connect the
CryoGrid stratigraphy to an external heat reservoir, following
the same standardized way of operation as for lateral water
fluxes.

A major asset of the CryoGrid 3 model is the possibility
to simulate lateral interactions between different 1D model
columns (denoted “tiles”, corresponding to a TILE class
in the community model), which facilitated simulations of
complicated landscape evolution in ice-rich permafrost ar-
eas (Martin et al., 2021; Nitzbon et al., 2019, 2020, 2021).
As of now, the CryoGrid community model offers the same
possibilities, which will be described in detail in a future
study. In short, three-dimensional lateral interaction classes
are used, which rely on exactly the same structures as the
one-dimensional interaction classes presented in this study.
Users can therefore first conduct one-dimensional simula-
tions coupled to a static environment, e.g., a water reservoir,
which can reveal many of the effects of lateral fluxes in a
semi-quantitative way. Such simulations subsequently offer
an excellent starting point to set up more complicated, three-
dimensional simulations with laterally coupled tiles, simply
by adding information on the type of interaction and the rel-
ative positions of the different tiles to the parameter files,
while the properties and model parameters related to the one-
dimensional CryoGrid stratigraphies, such as ground proper-
ties and forcing data, can remain unchanged.

4.4 Model structure and computational aspects

The CryoGrid community model generally follows the con-
cept of “loose coupling”, keeping the degree of knowledge
that each class has of the others at a minimum. Lateral inter-
action classes, for example, are not specifically assembled for
a certain stratigraphy class but work for a number of different
stratigraphy classes. Therefore, the lateral interaction classes
do not contain any code representing specific knowledge of
the stratigraphy classes that they can be used with. Instead,
each stratigraphy class first processes its internal information
to a defined common interface format that is then passed to
and processed by the lateral interaction class. This concept is
applied throughout the entire model framework; while new
code needs to comply with the established interfaces, it can
immediately exploit much of the existing functionality. Fur-
thermore, code additions can be made without modifying the
source code of the existing classes, which is important to fa-
cilitate parallel model development by several independent
developers without interference. Thus, the CryoGrid commu-
nity model provides an integrated platform that is designed to

accelerate and simplify the development of new simulation
tools for the terrestrial cryosphere. As an example, its mod-
ular setup provides a clear pathway for the development of
new stratigraphy classes, with several defined steps that can
be implemented, verified, and tested independently of one
another.

1. Implement the stratigraphy class itself and test it with
simulations of a CryoGrid stratigraphy consisting only
of this one class.

2. Implement interaction classes between the new stratig-
raphy class and existing stratigraphy classes that the
new class shall be compatible with; test with simula-
tions of CryoGrid stratigraphies consisting of all sup-
ported class combinations.

3. Implement lateral interaction classes that the new
stratigraphy class shall be compatible with; this can
mean the implementation of an entirely new lateral
interaction class or implementing the functionality to
make existing lateral interaction classes compatible
with the new stratigraphy class.

This procedure accelerates the development of complex
model configurations, as developers in the first step can fully
concentrate on the novel model physics, while the capacities
of the new model functionality are amplified in the second
and third steps by interfacing to already existing stratigraphy
and lateral interaction classes.

In land surface modeling, such modular approaches are in-
creasingly adopted to deal with the increasing process com-
plexity (Fisher and Koven, 2020). As an example, the ver-
sion 5.0 of the Community Land Model (CLM) offers the
possibility to exchange several model components and pa-
rameterizations (Lawrence et al., 2019), in particular the
soil hydrology scheme and the snow model. As CLM is de-
signed as the land component of Earth system models, e.g.,
CESM2 (Danabasoglu et al., 2020) and NorESM (Seland
et al., 2020), all model setups feature full land–atmosphere
coupling, while “simple” schemes without surface energy
balance are not provided. The CryoGrid community model,
on the other hand, is more used as a stand-alone tool with
broader application focus and therefore includes such sim-
ple options, in particular the TTOP equilibrium model and
heat conduction models with temperature boundary condi-
tion, which are largely inherited from CryoGrid 1 and 2.

The time integration in the CryoGrid community model
(see Sect. 2.2.9) does not rely on an established partial dif-
ferential equation solver (as CryoGrid 2, Westermann et al.,
2013), but rather employs a simple forward Euler solver with
explicit time step control. A main reason for this is to keep
the code more readable, with the goal to lower the barriers for
further model development, also by non-expert users. More-
over, many established solver packages require the model
grids to be static, and retaining full control over time integra-
tion makes it easier to include processes requiring constant
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changes to the model grid, such as excess ice melt and com-
paction of the seasonal snow cover. An obvious disadvan-
tage of the simple time integration scheme is the relatively
slow computation (see Fig. 25 for runtimes), which may be
prohibitive for some applications. Another limiting factor for
runtime is the use of MATLAB, which is an interpreter lan-
guage leading to slower runtimes. In the future, it may be
possible to use automatic code translators available within
MATLAB (MATLAB coder) or provided by independent de-
velopers (e.g., Paulsen et al., 2016) to produce a faster C++
version of CryoGrid, in particular since C++ objects feature
many similarities with the MATLAB classes employed in the
community model.

4.5 Multi-model simulations

While evaluations of multi-model ensembles are increasingly
common in cryospheric studies (e.g., van Pelt et al., 2021),
most applications assume a fixed model structure. In this typ-
ical case, the evaluation of the uncertainty of simulation re-
sults is hampered by the fact that the structural uncertainty
(i.e., due to imperfect model physics) tends to be lumped
together with the parametric uncertainty (i.e., due to poorly
constrained model parameters). As demonstrated in Sect. 3.2,
a number of different model schemes can be efficiently sim-
ulated in the CryoGrid community model, which allows for
a more thorough qualitative and quantitative assessment of
model uncertainty. In this study, we have restricted ourselves
to a comparison of ground temperatures simulated with dif-
ferent model configurations, but we have not attempted to
identify which model configurations best explain the field
measurements. In the following sections, we discuss tech-
niques to evaluate both parametric and structural model un-
certainty from observations, which could be implemented in
the CryoGrid community model in the future.

To quantify parametric uncertainty in a model with fixed
structure, one typically assumes that the impact of unknown
model parameters, including the uncertainties due to model
forcing and initial conditions, can be represented by para-
metric error models. This is commonly achieved probabilisti-
cally through the framework of Bayesian inference (Berliner,
2003). The goal then becomes to estimate the “posterior” dis-
tribution of the parameters, which quantifies parametric un-
certainty in the model after accounting for the likelihood of
the data under various plausible parameter settings (Wikle
and Berliner, 2007). Since analytical forms of the posterior
are not usually available, it is typically calculated approxi-
mately using numerical sampling methods (Berliner, 2003;
Gelman et al., 1995). In the setting of geoscientific model-
ing, wherein each forward evaluation of the model is often
computationally demanding, approximate inference is com-
monly performed using data assimilation (DA) methods that
efficiently fuse uncertain information from physical models
with observations (Carrassi et al., 2018). These methods al-
low physical models to be fitted to observations (correspond-

ing to a model calibration), while evaluating the uncertainty
through a probabilistic inversion that corresponds to the first
level of inference in the Bayesian hierarchy (MacKay, 2003).
For cryospheric applications, ensemble-based data assimila-
tion schemes based on the particle and ensemble Kalman fil-
ter (Carrassi et al., 2018) have been shown to be especially
promising (e.g., Aalstad et al., 2018; Fiddes et al., 2019;
Alonso-González et al., 2021).

One potential issue with this kind of model fitting is that
all uncertainty is attributed to the model parameters, while
one effectively assumes the model structure itself to be per-
fect. Since all models are ”wrong” to some degree (Box,
1976), this assumption is never completely justified, poten-
tially resulting in biases in the fitted model parameters that
compensate for the imperfect model. An example of this
dilemma is the Bayelva simulations for different water bal-
ance schemes and drainage conditions (Figs. 15, 17): if only
the bucket scheme with lateral drainage was available, one
could, for example, adjust the strength of the lateral drainage
to fit the temperature observations at the Bayelva station and
conclude that permafrost is only thermally stable for well-
drained conditions (Fig. 15). Likewise, one would infer from
this model configuration that permafrost may have already
started to degrade in areas with poor drainage for which no
observations are available (the Bayelva station is located on
a hill where good drainage can indeed be expected). How-
ever, the simulations with the Richards equation suggest that
permafrost could also be stable if no lateral drainage occurs
(Fig. 17), which provides a qualitatively different assessment
of permafrost stability in the wider area around the Bayelva
station. In principle, these ambiguities can be resolved by
considering additional observations, for example soil water
contents (Boike et al., 2018). In this study, we have not ex-
plored and resolved this issue in further detail, but the exam-
ple from the Bayelva area showcases a problem inherent in
many cryospheric simulations.

Running multiple models with different representations of
physical processes alongside one another can help to identify
potential ambiguities arising from this structural uncertainty.
With the CryoGrid community model, adopting such a multi-
physics ensemble of models becomes relatively straightfor-
ward in practice due to the common interface (e.g., for the
model forcing). Furthermore, differences in simulation re-
sults can be attributed to a specific stratigraphy class or
model parameterization, as it is possible to exchange stratig-
raphy classes one by one and keep the rest of the stratigraphy
unchanged (Sect. 3.2). In the future, the CryoGrid commu-
nity model could also be used to compare different models
objectively and quantitatively, which corresponds to the sec-
ond level of inference in the Bayesian hierarchy (MacKay,
2003). Here, the key quantity is the “model evidence” (also
called marginal likelihood), which is the probability of the
observations, given a particular model. The model evidence
serves as a normalizing constant when fitting a model at the
first level of inference. At the second level of inference, the
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model evidence is used as a likelihood in Bayes’ rule to
update the prior probabilities of each model so as to effec-
tively constrain model structural uncertainty using the avail-
able data. As such, the model evidence framework can be
used for both Bayesian model selection and averaging. This
framework is widely used in physics (Feroz et al., 2009) and
machine learning (MacKay, 2003), and it is slowly gaining
traction in geoscience (Schöniger et al., 2014). Recent work
has shown that ensemble-based data assimilation schemes
are also well suited for obtaining robust estimates of the
model evidence (Carrassi et al., 2017). As such, a promis-
ing future avenue in CryoGrid will be the implementation of
ensemble-based data assimilation for both cryospheric model
fitting (e.g., Aalstad et al., 2018; Alonso-González et al.,
2021; Fiddes et al., 2019) and model comparison (Carrassi
et al., 2017).

The modular structure of the CryoGrid community model
offers the possibility to estimate effective parameters in sim-
plified model schemes by assimilating results from high-
fidelity models with richer process representations. This vi-
sion is in line with the new Earth system modeling blueprint
presented by Schneider et al. (2017), which proposes using
ensemble-based data assimilation to let coarse-scale mod-
els learn from both observations and targeted high-resolution
models. For example, transient heat-conduction-based mod-
els could be used to compile climate-dependent parameteri-
zations for n-factors in the simple TTOP model, which can
then be used to map large areas at a lower computational
cost. In such a scheme, the simple model is essentially used
to spatially extrapolate the output of the more sophisticated
model in a quasi-physical fashion. Similar schemes could be
devised to achieve long-term (e.g., multi-millennial) simula-
tions, e.g., by parameterizing the net effect of the surface en-
ergy balance and the seasonal snow cover so as to force the
heat conduction model by monthly or even annual averages
(as in Overduin et al., 2019; Etzelmüller et al., 2020, 2022).
The application of machine-learning-based emulators also
opens up the possibility for full-fledged Bayesian inference
of the (emulated) posterior via traditional sampling methods,
which could provide a more robust and scalable framework
for inverse problems (Cleary et al., 2021), thereby unifying
machine learning and data assimilation under the Bayesian
framework (Geer, 2021).

4.6 Possible applications of the CryoGrid community
model

The CryoGrid community model is designed first and fore-
most for the same applications as the CryoGrid 1–3 mod-
els, which were mainly focused on the permafrost thermal
regime. In addition, the community model offers the possi-
bility to control the lateral drainage regime of the model do-
main (Sects. 2.3, 4.3), a capability essential for hydrological
applications that is rather limited in conventional 1D models.
In particular, this allows conducting simulations with a cou-

pled energy and water balance for situations in which a one-
dimensional representation, especially of the water balance,
is not appropriate. On the one hand, this concerns permafrost
in wetlands that receive net inflow of water from surround-
ing areas, which also impacts the ground thermal regime (red
line Fig. 15). Although one-dimensional model configura-
tions cannot fully capture the time dynamics of the inflow,
scenario runs with different strengths of the inflow (e.g., by
modifying the distance to the water reservoir, Sect. 2.3.2)
could be conducted to evaluate the resilience of wetland per-
mafrost in a changing climate in a semi-quantitative way.

On the other hand, net outflow of water typically occurs
for permafrost in sloping terrain or on top of hills, which
influences both the thermal regime (blue line Fig. 15) and
the water balance (Fig. 16) of the ground. This provides new
applications, especially in mountain environments where the
complex topography with strong elevation gradients and high
spatial variability of the surface energy balance impacts the
ground thermo-hydrological regime and thus permafrost dis-
tribution (Haeberli et al., 2010; Haeberli, 2013). Mountain
permafrost has gained increasing interest in recent years,
with emphasis on permafrost degradation and its impact on
rock-wall stability (e.g., Gruber and Haeberli, 2007), as well
as hydrology (Gao et al., 2021; Yang et al., 2019). Previous
studies have used CryoGrid 2 and 3 to simulate thermal pro-
cesses in steep rock walls (Legay et al., 2021; Magnin et al.,
2017; Schmidt et al., 2021), and such applications are also
possible with the CryoGrid community model. In addition,
thanks to its representations of the surface energy balance,
snow cover dynamics, and lateral drainage, the CryoGrid
community model is an efficient tool to capture the effect
of local topographic controls on the ground thermal regime,
making it applicable in most mountain permafrost settings.

These capacities can be combined with simulations of
massive ice bodies, such as glaciers and ice patches, with
a glacier class (Sect. 2.2.8) implemented in the CryoGrid
community model. In mountain environments, this offers
the possibility to simulate the complex climate-driven in-
teractions between glaciers and permafrost, for example
the development of permafrost upon glacier retreat. While
not explicitly simulating the transition, the thermal simula-
tions for Ny-Ålesund (Sect. 3.2.2) showcase the expected
changes in the ground thermal regime. Despite the strong
net ice melt (Fig. 24), the simulated mean annual tem-
perature of the glacier is much colder than for the per-
mafrost ground (Fig. 22), suggesting that glacier tongues at
this location at least partly feature cold-based ice, so the
area would directly transition to a permafrost setting upon
glacier retreat. Combined with stratigraphy classes represent-
ing relevant ground materials (especially with excess ice,
Sect. 2.2.7), the climate-driven evolution of features asso-
ciated with glacier–permafrost transitions, such as debris-
covered glaciers, buried glacial ice, ice-cored moraines, and
ice-rich frozen debris bodies, could be simulated. The rapidly
changing elements of the mountain cryosphere are in partic-
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ular expected to have profound impacts on stream flow, water
resources, and ecosystems, which not only affect the glacial
and periglacial realms, but also adjacent valley and lowland
areas. With the possibility to jointly evaluate ground thermal
regime and water balance, the CryoGrid community model
can thus provide simulation capacities for a variety of cli-
mate change impact studies in mountain environments.

4.7 Directions and priorities for future model
development

In general, the future directions of development of the Cryo-
Grid community model are decided by the users and de-
velopers in a bottom-up approach. Here, we identify a few
priorities and ideas that are motivated by the results of this
work (Sect. 3) and previous modeling efforts with Cryo-
Grid 1–3. Firstly, the sensitivity experiments with different
snow schemes (Sect. 3.2) show that the snow representa-
tions within CryoGrid need to be improved, as this is one
of the most important sources of uncertainty in simulating
the ground thermal regime (Fig. 20). With a starting point
in the snow class based on the Crocus snow model (Vion-
net et al., 2012), both simpler and more process-rich rep-
resentations are conceivable. In the currently implemented
Crocus-based snow class, the snow density, which is the
critical control for heat flow through the snowpack, has a
strong dependence on wind speed, which can be heavily bi-
ased in model forcing datasets, especially in complex ter-
rain (e.g., Delhasse et al., 2020). Therefore, a snow stratigra-
phy class in which both initial snow density and the strength
of wind compaction are controlled by time-invariant empir-
ical parameters (and not by wind speed) could be useful for
many applications, as they may provide an improved perfor-
mance compared to snow schemes with constant snow den-
sity (Sect. 2.2.6, Fig. 20) if the quality of the model forcing is
poor. The Crocus snow model is undergoing continuous de-
velopment (e.g., Royer et al., 2021), and many improvements
can be ported to CryoGrid. We see two areas in which the
CryoGrid community model itself could be a useful tool to
catalyze snow model improvements. First, the impact of dif-
ferent near-surface temperature regimes on snow properties
could be investigated with relative ease; the drainage regime,
for example, changes the dynamics of ground freezing dur-
ing winter (Fig. 15), which in turn modifies the thermal gra-
dients and thus snow microphysics in the snowpack. Further-
more, the snowpack on Arctic water bodies is remarkably
different from surrounding land areas (e.g., Langer et al.,
2016), which again can be simulated with relative ease in
CryoGrid by selecting a stratigraphy class for water bodies.
A comparison with observations of snowpack properties for
areas with different subsurface properties can therefore re-
veal shortcomings of model parameterizations and eventu-
ally contribute to improvements. Secondly, explicit redistri-
bution of snow between CryoGrid tiles due to wind drift has
been demonstrated by Zweigel et al. (2021), which also has

pronounced effects on the stratigraphy of snowpack proper-
ties. While lateral interactions between tiles will be described
in a later study, ablation of snow from exposed locations due
to wind drift could be implemented as a lateral interaction
class (Sect. 4.3) through the scheme proposed by Zweigel
et al. (2021). Such simulations could again be compared to
observations of snowpack properties and to the dynamics of
ablation events at wind-exposed locations, such as small hills
and ridges, so that both model parameters and (if necessary)
the parameterizations for wind drift can be modified.

A second priority for model development is including rep-
resentations for vegetated surfaces, which is currently a key
shortcoming in the CryoGrid community model. A multi-
layer canopy model presented in Stuenzi et al. (2021a, b)
is already available as a stratigraphy class, but this is de-
signed to represent forests and not short vegetation, such as
mosses, sedges, and shrubs. An intermediate-complexity rep-
resentation of vegetation, e.g., following a big-leaf approach
(e.g., Sellers et al., 1992), has significant potential to im-
prove the surface energy and water balance in simulations
for vegetated tundra areas. Further development could focus
on the interplay between the snow cover and different vege-
tation types, which has the potential to improve simulations
of the ground thermal regime in areas experiencing shrubi-
fication (e.g., Sturm et al., 2001). Another focus is the im-
plementation of carbon cycling schemes of different levels
of complexity, from dedicated peatland models (e.g., Chaud-
hary et al., 2020; Frolking et al., 2010) to novel biogeochem-
istry schemes with explicit representations of microbial pop-
ulation dynamics (e.g., Chadburn et al., 2020). Here, it is de-
sirable to retain the modular concept of the CryoGrid com-
munity model so that it is possible to select and test differ-
ent carbon cycle schemes that can be flexibly combined with
stratigraphy classes. To be able to simulate the buildup of
organic soils, stratigraphy classes must be amended with an
adaptive grid, which would also facilitate including sedimen-
tation, erosion, and possibly weathering in CryoGrid simula-
tions.

At this point, most of the simulation tools in the CryoGrid
community model are designed for process-scale simula-
tions, as their computational runtime can be substantial when
simulating many grid cells. A conservative benchmark for
simulation runtimes (Fig. 25) is about 200 simulated years in
24 h of computation (i.e., wall-clock time), although this can
vary to some extent depending on the employed stratigraphy
classes and model forcing. To conduct a 1900 to 2100 cli-
mate change simulation for the entire permafrost region at 1◦

resolution would require about 50 000 to 100 000 CPU hours,
which is perfectly feasible on modern high performance clus-
ters, but requires significant organizational and possibly fi-
nancial efforts. It is therefore desirable to implement more
efficient simulation tools so that regional-, continental-, and
global-scale simulations become more routine tasks.

Clustering techniques provide excellent possibilities to
achieve such speedups by determining “typical representa-
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tions”, given the variability of model parameters. The simu-
lations are then only performed for these typical representa-
tions and their output is assigned to all grid cells with similar
model parameters, which is justified in the light of model
uncertainty. Using k-means clustering, Fiddes and Gruber
(2012), Fiddes et al. (2019), and Fiddes et al. (2022) achieved
a runtime speedup of 3 to 4 orders of magnitude for simu-
lations in complex topography by clustering for terrain pa-
rameters, such as slope, aspect, and elevation. This concept
could be extended to land cover maps, which are one of
the input layers to model-based permafrost maps (e.g., Obu
et al., 2019). Furthermore, clustering could be applied to the
model forcing itself so that grid cells with similar forcing are
simulated by a single representation. Such clustering would
be fully compatible with the modular structure of the Cryo-
Grid stratigraphy and could be integrated on the RUN_INFO
level. With a runtime speedup of a factor of 100, for exam-
ple, global climate change simulations at 1◦ resolution would
only require 500 to 1000 CPU hours, which would make
them much more accessible to many users compared to a
simulation without clustering.

Secondly, the runtime of the simulation tools could be
reduced to facilitate application to many grid cells and/or
over long timeframes. This can be achieved by simplifying
the model physics, optimizing the model code, and/or using
more efficient numerical integration schemes, e.g., Runge–
Kutta schemes as employed in some of the CryoGrid 2 real-
izations (e.g., Etzelmüller et al., 2020). The latter two con-
flict with the modular setup of the CryoGrid stratigraphy in
the TILE_1D_standard class, which is based on a common
numerical integration scheme and standardized model struc-
tures to facilitate modularity. Therefore, we suggest adding
further TILE classes (Fig. 1) custom-made to accommo-
date one or several efficient model tools. While these would
not offer modularity and thus not be compatible with the
stratigraphy classes presented in this study, there is ample
opportunity for interplay and thus added value. On the one
hand, faster models can obviously use parameterizations and
model parts described in Sect. 2, even if they need to be op-
timized for speed. On the other hand, standardized frame-
works could be implemented that allow training fast mod-
els with semi-empirical elements or unresolved processes on
the process-rich but slow models of the modular CryoGrid
stratigraphy (see Sect. 4.5). This could be achieved through
ensemble-based data assimilation (Aalstad et al., 2018; Fid-
des et al., 2019; Alonso-González et al., 2021), machine
learning-based emulators (Fer et al., 2018; Dagon et al.,
2020), or perhaps most promisingly a combination thereof
(Bocquet et al., 2020; Brajard et al., 2020).

Code availability. The current version of the model is avail-
able at https://github.com/CryoGrid/CryoGridCommunity_run (last
access: 1 April 2023). The exact version of the model
used to produce the results in this paper, including input

data and scripts to run the model, is archived on Zenodo
(https://doi.org/10.5281/zenodo.6522424, Westermann, 2022). See
Sect. S1 for instructions for download and running the CryoGrid
community model.
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