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Abstract: We revisit two recent methodologies based on Monin–Obukhov Similarity Theory (MOST),
the 2D method and Hybrid-Wind (HW), which are aimed at estimation of the Obukhov length,
friction velocity and kinematic heat flux within the surface layer. Both methods use wind-speed
profile measurements only and their comparative performance requires assessment. Synthetic and
observational data are used for their quantitative assessment. We also present a procedure to generate
synthetic noise-corrupted wind profiles based on estimation of the probability density functions for
MOST-related variables (e.g., friction velocity) and the statistics of the noise-corrupting perturbational
amplitude found during an 82-day IJmuiden observational campaign. In the observational part of
the study, 2D and HW parameter retrievals from floating Doppler wind lidar measurements are
compared against those from a reference mast. Overall, the 2D algorithm outperformed the HW in
the estimation of all the three parameters above. For instance, when assessing the friction-velocity
retrieval performance with reference to sonic anemometers, determination coefficients of ρ2

2D = 0.77
and ρ2

HW = 0.33 were found under unstable atmospheric stability conditions, and ρ2
2D = 0.81 and

ρ2
HW = 0.07 under stable conditions, which suggests the 2D algorithm as a prominent method for

estimating the above-mentioned surface-layer parameters.

Keywords: Obukhov length; friction velocity; heat flux; wind energy; floating lidar; Doppler wind lidar

1. Introduction

Wind energy is one of the most cost-efficient renewable power-generation technologies
nowadays. Accordingly, the amount of onshore and offshore wind farm being installed
worldwide has greatly increased over the last years [1]. Nevertheless, the onshore sector
has become comparatively less attractive in terms of wind conditions and capacity factor
as well as it has faced resistance by populations from potential deployment areas that may
be affected by the farm installation and operation. Hence, the industry development has
been moving towards offshore [2,3]. However, despite the abundant wind resource that
can be found over the seas, offshore wind farm harvesting remains more expensive than its
onshore counterpart. Additionally, the site’s feasibility still relies on offshore meteorological
masts (metmasts), which are very expensive to install and maintain [4].

During the last decade, floating Doppler wind lidars (FDWLs) have emerged as the
wind-energy-industry preferred solution to replace the metmast because of their accuracy
and attractive cost-benefit of installation and maintenance. Many studies have shown that
10 min averaged wind-speed measurements from FDWLs are numerically equivalent to
reference observations from anemometers or fixed Doppler wind lidar (DWL) [4–6]. How-
ever, FDWLs cannot measure a number of the atmospheric parameters that instruments
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mounted on meteorological masts can, which restrains commercial acceptance of FDWLs
as stand-alone sensing instrument.

The surface layer is the lowest part of the atmospheric boundary layer (ABL) where
turbulent fluxes vary by less than 10% of their magnitude [7]. A measure of atmospheric
stability is the Obukhov length, which has been used to extend the logarithmic wind profile to
account for atmospheric stability conditions [8]. The Obukhov length is directly related and
very sensitive to the friction velocity. The latter is a fundamental velocity scale of atmospheric
flow and can also be used to estimate the wind-speed standard deviation, which determines,
together with the mean wind speed, turbulence intensity [9]. The role of the Obukhov
length and friction velocity has been investigated in different wind-energy studies related
to wind-turbine wake modelling [10], power production [11], and structural loading (e.g.,
wind-turbine aeroelastic design) [12]. It is worth noting that the eddy-covariance method,
from which one can derive the friction velocity and heat flux is currently the most accurate
way to derive the Obukhov length [7,13]. Estimations, however, can be alternatively
performed using, e.g., the Richardson number [14].

Multiple sensors, such as sonic anemometers installed on metmasts, provide high-
frequency measurements, which can be used to derive turbulent fluxes. Other sensors
can provide air-pressure and air-humidity observations. However, alternative methods
are needed in scenarios with limited instrumentation [5,15–20]. A good number of these
methods use Monin–Obukhov similarity theory (MOST).

The MOST wind-profile model can be understood as a generalisation of the log-law
model, and accordingly, it also implies a wind-speed profile that monotonically increases
with height [13,15]. However, differently from the log-law model, which is only valid under
neutral conditions, the MOST model takes into account the atmospheric stability influence
over the profile [13]. However, MOST is not exempt from limitations. Thus, the MOST wind-
profile model is valid within the surface layer only. Therefore, it can normally be used to
predict wind speeds up to approximately 100 m [8,21]. Moreover, different authors [22,23]
have shown that the traditional MOST is not applicable to swell-dominated seas. Swell
waves (often referred to as surface gravity waves) consist of wind-generated waves over a
fetch of water that are not greatly affected by the local wind at that time and that are usually
characterised by a relatively long wavelength. Jiang [24] also showed that the swell impact
on wind profiles is more pronounced under neutral or stable boundary-layer conditions
and low winds, and less so under unstable (convective) conditions.

The methods for estimation of surface fluxes of momentum and heat (i.e., surface-layer
parameters) by [16,20] require both temperature and wind-speed measurements, and that
by Klug [17] the aerodynamic roughness length in addition. When looking for studies
utilising only wind-speed measurements as a feasible alternative to be applied using FDWL
observations, the number of surface-layer-retrieval methods are limited to four [5,15,18,19].
Nevertheless, the reliability of the optimisation method proposed by Lo [19] can be con-
sidered questionable because of different mathematical issues reported by Zhang [25].
Of the remaining three methods, the recent one by Basu [15] (2019)–the so-called Hybrid-
Wind (HW) method–is an enhanced version of the Swinbank [18] (1964), in which the
surface-layer wind profile follows an exponential profile instead of MOST [5,8,26–28]. HW
estimates the Obukhov length from three levels of wind speed measurements. Once the
Obukhov length is obtained, the friction velocity and surface heat flux can be derived.
In contrast to HW, the 2D method by Araújo da Silva et al. [5] (2022) enables a simultane-
ously retrieval of the Obukhov length and friction velocity by using a two-dimensional (2D)
parametric-solver algorithm. Moreover, the 2D algorithm can be extended to any number
of measurement heights describing the wind profile.

In the present work, we aim at assessing the performance for retrieval of surface-layer
parameters of both the 2D and HW methods. Aligned with this aim is to identify the
most reliable method relying on FDWL observations only, which is to foster commercial
acceptance of the FDWL as the wind-energy-industry preferred solution to replace the
offshore metmast. Performance evaluation is twofold: First, we use reference synthetic
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noise-corrupted wind-profile realizations with characteristic parameters inherited from
FDWL observational datasets. Second, we use sonic-anemometer estimates from the
IJmuiden metmast. Focus is also given to the stand-alone capability of these methods for
atmospheric stability estimates.

This paper is structured as follows. Section 2 presents the observational campaign at
the IJmuiden site. Section 3 reviews MOST and revisits the 2D and HW retrieval algorithms.
Section 4 studies the comparative performance of both the 2D and HW methods as a
function of the noise-corrupting intensity and stability condition with reference to synthetic
and observational data. Section 5 provides concluding remarks.

2. Materials

The IJmuiden observational campaign was carried out in the Dutch North Sea (52.848°N,
3.436°E) over 82 days from April to June 2015, aimed at validating the EOLOSTM FDWL
against the IJmuiden metmast [5]. Figure 1 shows the IJmuiden’s mast and FDWL geo-
graphical positions in the North Sea. The FDWL was collocated 200 m next to the mast and
85 km from the Netherlands coast. A ZephIRTM 300 focusable continuous-wave Doppler
lidar installed at the FDWL buoy measured wind speed profiles at four levels, 25, 38, 56,
and 83 m above the Lowest Astronomical Tide (LAT). Hereafter, all height values will be
assumed as height above LAT. Reference wind profiles were provided by the sonic and cup
anemometers installed at 27, 58.5, and 85 m in the IJmuiden mast.

52°N
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56°N
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 100 km 

IJmuiden
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52°50'50"N
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NETHERLANDS
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Figure 1. Map showing the locations of the IJmuiden metmast in the North sea. The zoom plot in the
upper part of the map shows the FDWL location at IJmuiden.

3. Methods
3.1. MOST Wind Profile

According to MOST, the diabatic wind profile (i.e., under non-neutral conditions)
within the surface layer is expressed as

UMOST(z) =
u∗
κ

[
ln
(

z
z0

)
−Ψm

( z
L

)]
, (1)
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where z is the height [m], u∗ is the friction velocity [m/s], κ ≈ 0.4 is the Von Kármán
constant, z0 is the roughness length, L is the Obukhov length, and Ψm

( z
L
)

is a stability-
correction function [13,29]:

Ψm

( z
L

)
=


−β z

L
z
L > 0 (stable)

0 z
L = 0 (neutral)

2 ln( 1+x
2 ) + ln( 1+x2

2 )− 2 arctan(x) + π
2

z
L < 0 (unstable)

, (2)

where x =
[
1− γz

L
]1/4, and β = 6.0 and γ = 19.3 are empirical constants suggested by

Högström [30], which where already validated by [5,8] for the IJmuiden site.
The Obukhov length is a scaling parameter that is proportional to the height above

the surface layer at which buoyant factors first dominate over mechanical production of
turbulence [13]. The Obukhov length can be computed from:

L =
−θvu3

∗
κg(w′θ′v)s

, (3)

where θv is the virtual potential temperature, w is the vertical wind component, (w′θ′v)s
is the surface-layer virtual kinematic heat flux, and g = 9.8 m/s2 is the gravitational
acceleration. The overbar indicates average over time (normally 10 min). The “prime” in
w′ and θ′v denotes the fluctuating part of these components, i.e., the deviations from their
respective mean values.

Offshore, the roughness length can be modelled through the Charnock’s relationship
as [31]

z0 = αc
u2
∗

g
, (4)

where α = 0.012 is the Charnock’s constant and g = 9.81 [m/s2] is the gravitational
acceleration [8,32]. By inserting Equation (4) into Equation (1), the latter equation can be
written as a function of only the variables Obukhov length and friction velocity as

U(z, L, u∗) =
u∗
κ

ln

 z

αc
u2∗
g

−Ψm

( z
L

). (5)

Despite the simplicity of Charnock’s model (Equation (4)), this model has the advan-
tage of only depending on one of the variables that are being searched for (u∗). Physically,
because of the overall low roughness over water, the sensitivity of any retrieval method to
the roughness length per se is very small (and hence to the Charnock’s constant).

Figure 2 revisits MOST, i.e., Equation (1), for different stability conditions and sensitiv-
ity analysis in these two variables. Figure 2a shows that the wind profile in neutral stability
conditions appears as a straight line with logarithmic height. In stable conditions the wind
profile is concave downwards, while in unstable conditions is concave upwards. Note that
MOST models wind profiles in which the wind speed monotonically increases with height,
i.e., the wind profile has positive gradients at all heights [15,33]. Figure 2b,c show that the
wind profile is much more sensitive to friction velocity u∗ than to the Obukhov length L.
The wind profile is virtually insensitive to perturbations in the sea roughness length.
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Figure 2. MOST wind profiles (Equation (1)) and numerical sensitivity. (a) MOST model for different
stability conditions. (u) is unstable, (n) is neutral and (s) is stable. (b) Sensitivity to the friction
velocity, u∗. (c) Sensitivity to the Obukhov length, L. (All panels) Simulation parameters: z0 = 0.01 m,
u∗ = 0.45 m/s and L = −200, 10, 000, and 200 m (see legends). Error bars computed by applying a
10% perturbation to the nominal value of the variable under study.

3.2. Surface-Layer Parameter Retrieval Methods Based Solely on Wind Speed Profiles
3.2.1. The 2D Method

The 2D parametric solver algorithm simultaneously estimates the friction velocity,
u∗, and Obukhov length, L, relying on MOST and wind-profile measurements only [5].
The algorithm estimates model parameters (L,u∗) by minimising the norm of residuals
between the model vector ~UMOST(L, u∗), Equation (5), and the observed wind-profile
vector ~Uobs, via constrained least-squares optimisation. Thereby, the optimisation problem
is formulated as

(L̂, û∗) = arg min
L,u∗

||~Uobs − ~UMOST(L, u∗)||2. (6)

Two optimisation branches, one for Ψm
( z

L
)
> 0 and another for Ψm

( z
L
)
< 0, are

considered for enhancing the sensitivity of the algorithm and avoiding the asymptotic
discontinuity, |Ψm

( z
L
)
| → 0. The branch that yields the smallest residual norm is chosen as

the solution. Once L and u∗ are obtained, the heat flux is estimated from the definition of L
(Equation (3)) as

wθ = − θ0u3
∗

κgL
, (7)

where θ0 = 300 K is assumed as the reference potential temperature. Following [33],
Equation (7) is just a plausible approximation of the surface-layer heat flux (w′θ′v)s in
Equation (3) when temperature measurements are not available as is the case of relying
solely on wind-speed (e.g., FDWL) measurements.

3.2.2. The Hybrid-Wind Method

The HW method is a MOST-based algorithm that primarily retrieves the Obukhov
length from three height levels of a horizontal wind speed (HWS) profile [33]. Given the
Obukhov length and MOST profile Equation (1), the friction velocity and heat flux are also
obtained. Because the HW method is also reliant on MOST, the assumption of monotonic
wind behaviour is inherent to the method (Section 3.1).

The HW reduces the number of MOST wind-profile parameters from three, namely,
Obukhov length (L), friction velocity (u∗) and roughness length (z0), to one primary param-
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eter, the Obukhov length (L), by resorting to the ratio of the vertical wind-speed differences,
which are formulated as [33]

∆U21 = U(z2)−U(z1) =
u∗
κ

[
ln
(

z2

z1

)
−Ψm

( z2

L

)
+ Ψm

( z1

L

)]
, (8a)

∆U31 = U(z3)−U(z1) =
u∗
κ

[
ln
(

z3

z1

)
−Ψm

( z3

L

)
+ Ψm

( z1

L

)]
, (8b)

where U(zi) is the HWS at the height zi. Then, the ratio of wind speed differences is
defined as

R(L) =
∆U31

∆U21
=

ln
(

z3
z1

)
−Ψm

( z3
L
)
+ Ψm

( z1
L
)

ln
(

z2
z1

)
−Ψm

( z2
L
)
+ Ψm

( z1
L
) . (9)

The ratio R(L) is only function of Obukhov length L, which is retrieved via a non-
linear least squares that fits the observed to the modelled vertical wind-speed ratio. Thus,
the optimisation problem for the HW method is formulated as

(L̂) = arg min
L

||Robs − R(L)||2, (10)

where Robs is the observed vertical wind-speed ratio and R(L) is the modelled one given
by Equation (10).

Eventually, this retrieved Obukhov length L̂ is used to solve friction velocity û∗ from
the formulation of HWS differences ∆U31(u∗, L) and ∆U21(u∗, L) expressed in Equation (8)
above via ordinary linear least squares. After estimating L and u∗ the heat flux can also be
estimated via Equation (7). This procedure is identical for the 2D method once L and u∗
are known.

3.3. Observational Reference Retrievals

Ten-minute averages of the observations from the IJmuiden metmast are used to
determine the reference data as:

(i) Reference Richardson-number-estimated Obukhov length, LRi.—Because high-frequency
temperature data from the sonic anemometers were not stored, the Obukhov length
was estimated via bulk Richardson number using the methodology proposed by [14].
LRi was computed as described in [5] (Section 3.4, pp. 7–9) and summarised here in
Appendix A.

(ii) Reference friction velocity.—The sonic anemometers were installed at 85 m in height,
which may well lie above the surface layer. Therefore, two approximate reference
friction-velocity values were computed:

(a) The local friction velocity at 85 m via the sonic-anemometer measurements as [7]:

u∗sonic =
(

u′w′
2
+ v′w′

2
)1/4

, (11)

where u, v and w denote the longitudinal, lateral and vertical wind compo-
nents, respectively.

(b) The so-called 1D friction velocity, denoted u∗1D . The 1D friction velocity was nu-
merically derived by solving Equation (5) for u∗ given the Richardson-number-
estimated Obukhov length (LRi, refer to Appendix A) and the measured
wind-speed at 27 m, which is the lowest height available from the metmast.
Accordingly, u∗ becomes the only unknown in Equation (5) (hence the one-
dimensional (1D) suffix used), which is solved via least-squares optimisation.
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3.4. Synthetic Data Generation

As mentioned in Section 3.3 our observational references are not exempt from lim-
itations. Thus, in spite of the large number of measurement records available in IJ-
muiden, the campaign was limited to estimates of the Obukhov length computed using the
Richardson-number approximation as a proxy, and subject to MOST-perturbational noise
levels within a given amplitude span (to be computed) specific of this campaign. Therefore,
the motivation to employ synthetic data is double: (i) to have “truth” wind profiles by
which to numerically assess the performance of the 2D and HW methods under the MOST
assumption, and (ii) to benefit from a much wider perturbational noise-level span (from
virtually 0 to 100%, to be formulated next) than the specific one of IJmuiden.

The numerical simulations were performed using the High Performance Computing
environment CALCULA. CALCULA uses as a basis the resource management system
Slurm Workload Manager, a scheduler of open source tasks widely used in supercom-
puting environments, and the system of GlusterFS distributed files for data management.
Furthermore, 2D and HW retrieval accuracies were examined by using random sets of
synthetic wind profiles, Usyn(z), generated for different atmospheric conditions. Monte-
Carlo simulation was used to generate synthetic pairs (usyn

∗ , Lsyn) compliant with MOST
(Equation (1)). This is explained next:

3.4.1. Generation of Obukhov Length and Friction Velocity Random Pairs

The variables Obukhov length and friction velocity are physically related via Equa-
tion (3). Consequently, random sets for these variables cannot be created using the custom-
ary assumption of independent Gaussian random variables. To circumvent this problem,
in Equation (3) we recognise that L is proportional to the cube of the friction velocity and
the ratio θv/(w′θ′v)s, which is denoted factor c in what follows. Hence, Equation (3) can be
rewritten as

L = − c
kg

u∗3. (12)

From Equation (12) above, it follows that Obukhov length L is unambiguously defined
by friction velocity u∗ and factor c or, equivalently, that random values for u∗ and c must be
generated from the Probability Density Functions (PDFs) of independent random variables
U∗ and C, respectively. Here upper-case letters denote random variables and lower-case
letters denote the values for these variables. Because the PDFs for random variable friction
velocity U∗ and random variable C-factor are a priori unknown, they have to be estimated.
This was done from the whole set of IJmuiden metmast measurements recorded during the
campaign (8263 records, hereafter “the statistical sample”) as follows: the PDF for U∗ was
approximated by that of local friction velocity U∗sonic computed via Equation (11) over the
statistical sample. The PDF for C was derived from the estimates of this variable computed
as C ≈ − kgLRi

U∗sonic
3 over the statistical sample, where LRi is the Richardson-number-estimated

Obukhov length (Appendix A).
Different PDFs models were experimentally fitted to the estimated friction velocity U∗

and factor-C distributions in order to obtain the PDFs that best described the observations.
As a result, it could be observed that both U∗ and C followed a log-normal distribution
or the combination of a log-normal with a folded version of it. The log-normal PDF for a
random variable X is formulated as

fX(x) =
1

σX
√

2π
e
− [ln(x)−µX ]2

2σ2
X , x > 0, (13)

where µX and σX are the PDF constitutive parameters.
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Because the log-normal PDF is positive defined, it becomes an appropriate distribution
to describe the friction velocity PDF, denoted fU∗(u∗). In contrast, because variable C can
have positive and negative values, its PDF is defined log-normal piecewise as

fC(c) =

{
fCp(cp), cp = c, i f c > 0,
fCn(cn), cn = −c, i f c < 0,

(14)

where fCp(cp) and fCn(cn) are the log-normal (X = Cp, Equation (13)) and folded log-
normal (X = Cn) PDFs associated to positive and negative values of C, denoted cp and cn,
respectively. As mentioned, upper-case letters denote random variables and lower-case
letters denote values for these variables. In what follows, this notation formality is skipped
unless otherwise necessary for understanding.

By fitting: (i) Equation (13) PDF with X = U∗ to the statistical sample of local friction-
velocity values measured at 85 m (U∗sonic , Section 3.3), and (ii) Equation (14) PDF to the
C-factor sample computed as C ≈ − kgLRi

U∗sonic
3 , then PDF characteristic parameters, µX = µu∗

and σX = σu∗ for fU∗(u∗), and µX = µC,p, µC,n and σX = σC,p, σC,n for fC(c) can be
estimated. Once PDFs fU∗(u∗) and fC(c) are characterised, random values usyn

∗ and csyn can
be generated computationally. Most data-processing software packages provide built-in
algorithms able to generate log-normal-distributed random values. Alternatively, log-
normal distributions can be obtained by transforming uniformly distributed random
values through the inverse log-normal cumulative distribution function. Thus, log-normal
distributed values y can be obtained using the transformation [34]

y = eµ+
√

2σ2er f−1(2x−1), (15)

where x are random values from a uniformly distributed random variable, and er f−1 is the
inverse Gauss error function. Once random values usyn

∗ and csyn have been generated, Lsyn

values can readily be computed from Equation (12).

3.4.2. Generation of Synthetic Wind Profiles

Model wind profiles, UMOST(z), can be generated from the pairs (usyn
∗ , Lsyn) via MOST

(Equation (1)). However, model profiles are noiseless and, in practice, there are always
deviations from the MOST profile. In order to emulate these deviations, height-independent
zero-mean Gaussian-noise realizations are added to the noiseless model profiles. This can
be expressed as

Usyn(zi) = UMOST(zi) + σnν(zi), i = 1 . . . N, (16)

where Usyn is the noise-corrupted wind profile (hereafter, the synthetic wind profile), UMOST
is the MOST profile (Equation (1)), ν is zero-mean, unit-standard-deviation Gaussian noise,
zi is the i-th metmast anemometer-measurement height (zi = 27, 58.5, 85 m, Section 2),
and N is the number of measurements heights.

We quantify the intensity of these perturbations by means of the normalised root-mean-
squared error (NRMSE, hereafter, the normalised noise level), which is defined in percentage
units as

NRMSE = 100× 1
Umast

√√√√ 1
N

N

∑
i=1

[UMOST(zi)−Umast(zi)]2, (17)

where Umast is the measured wind profile from the metmast anemometers at height zi.
The noise-corrupting amplitude is defined as the standard deviation,

σn =
NRMSEUmast

100
, (18)

where the overbar indicates average over the measurement heights 27, 58.5 and 85 m.
From Equation (18), it follows that the normalised noise level (Equation (17)) quantifying the
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noise-corrupting perturbational amplitude in synthetic wind profiles can also be rewritten
as NRMSE = σn

Umast
100[%].

The block diagram in Figure 3 summarizes the procedure for synthetic wind-profile
generation. First, random pairs (usyn

∗ , csyn) are generated from PDFs fU∗(u∗) and fC(c) as
described in Section 3.4.1. Then, Lsyn values are computed from usyn

∗ and csyn values via
Equation (12). Next, each “seed” pair (usyn

∗ , Lsyn) is used to produce a noiseless MOST
profile, UMOST(z), via Equation (1). Finally, zero-mean, σn-standard-deviation Gaussian
noise ν(z) (Equation (18)) is added to the model wind profile UMOST(z) in order to yield
noise-corrupted wind profile Usyn(z).

Figure 3. Block diagram summarising the procedure to generate synthetic pairs (usyn
∗ , Lsyn) and

corresponding noise-corrupted wind profiles, Usyn(z).

The absolute relative error between the estimated and the synthetic friction velocity,
the latter taken as reference, is computed as:

εu∗ =
|û∗ − usyn

∗ |
usyn
∗

(19)

where û∗ is the estimated friction velocity and usyn
∗ is the synthetic one.

4. Results and Discussion

We study the comparative performance of 2D and HW methods as a function of the
noise level and atmospheric stability conditions. First, Section 4.1 shows the synthetic
generation of the friction-velocity-to-Obukhov-length distribution proxy for the IJmuiden
dataset, which becomes our synthetic “truth” reference for comparison. Sections 4.2 and 4.3
evaluate the performance of the 2D and HW methods with reference to synthetic and
observational data, respectively.

4.1. On the Generation of Synthetic Wind Profiles

In order to assure realistic synthetic data generation, we considered the measurements
from IJmuiden campaign. The IJmuiden campaign consisted of 8263 measurement records
after outlier rejection (refer to [5], pp. 10–11 for details; in short, rejected measurements were:
(i) FDWL-measured HWS values lower than 2 m/s and higher than 80 m/s, and (ii) FDWL-
measured spatial variation values higher than 0.055).

Retrieval of PDF characteristic parameters.—First, the PDFs for the friction velocity,
fU∗(u∗), and C-factor, fC(c), were inferred from the measured distributions of the sonics-
derived friction velocity (U∗sonic ) and Richardson-number-estimated Obukhov length (LRi)
as described in Section 3.4. When fitting model PDF Equations (13) and (14) to the measured
friction-velocity and C factor, characteristic parameters of U∗ and C-factor distributions
were obtained. Once fU∗(u∗) and fC(c) were found, random pairs (usyn

∗ , Lsyn) could be
generated. Please refer to Appendix B for further details and quality assurance of the
retrieved characteristic parameters.

Estimation of the noise level distribution.—In Section 3.4.2 we found that the normalised
noise level (NRMSE, Equation (17)) could be understood as an indicator of the average
noise level in the wind profile. In order to estimate typical values for this normalised
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wind-perturbance intensity indicator, we computed the normalised RMSE between the
MOST-predicted and metmast-measured wind profiles.

The MOST-predicted wind profile was computed through the 1D friction velocity, u∗1D ,
and Richardson-number-derived Obukhov length, LRi, in Equation (1) (refer to Section 3.3
and Appendix A). Figure 4 compares the MOST-predicted to the metmast-measured wind
speed at the three measurement heights (Figure 4a–c) and derives the resulting normalised
RMSE distribution (Figure 4d). The virtually ideal 1:1 regression line obtained at 27-m
height (Figure 4a) is because u∗1D was numerically retrieved using the metmast-measured
wind-speed at this same height. It could be observed experimentally that the MOST model
uncertainty increases with height demonstrating MOST limitations above the surface
layer, which is evidenced by decreasing linear regression indicators. By merging all the
measurement samples from Figures 4a–c into Equation (17), the histogram bar chart for the
normalised RMSE could be derived (Figure 4d). The normalised RMSE observed spanned
from 0 to 60% and its mean and median values were, NRMSE = 12% and 8%, respectively,
which is descriptive of the statistical noise levels found in real practice in IJmuiden.

0 5 10 15 20 25 30

U
mast

 (27 m) [m/s]

0

5

10

15

20

25

30

U
M

O
S

T
 (

27
 m

) 
[m

/s
]

1.002x -0.047
 2 =1.000
RMSE = 0.061

0 5 10 15 20 25 30

U
mast

 (58.5 m) [m/s]

0

5

10

15

20

25

30

U
M

O
S

T
 (

58
.5

 m
) 

[m
/s

]

0.903x +0.149
 2 =0.969
RMSE = 1.146

0 5 10 15 20 25 30

U
mast

 (85 m) [m/s]

0

5

10

15

20

25

30

U
M

O
S

T
 (

85
 m

) 
[m

/s
]

0.827x +0.459
 2 =0.930
RMSE = 1.863

0 20 40 60
NRMSE [%]

0

500

1000

1500

2000

2500

C
ou

nt
s

mean = 12%

median = 8%

(a) (b)

(c) (d)

Figure 4. Estimation of normalised noise level NRMSE from metmast observations. (a–c) Comparison
between the MOST-predicted (Equation (1)) and mast-measured wind speed at the three measurement
heights. Dashed green line is the ideal 1:1 line. Red line is the linear regression line. (d) Distribution
of normalised noise level NRMSE (Equation (17)), computed between predicted and reference wind-
speed profiles for the whole observational campaign.

4.1.1. Generated Synthetic Data Outlook

To begin with, a dataset consisted of 5000 randomly-generated samples, where each
sample stands for one pair friction velocity and Obukhov length, (usyn

∗ , Lsyn), and its re-
spective noisy wind profile. MOST profiles were generated using the same measurement
heights as for the FDWL (i.e., 25, 38, 56, and 85 m, see Section 2). To obtain a sam-
ple noisy wind profile, a noise realization with noise level NRMSE was added to the
MOST profile (Equation (16)). Based on the measured distribution of the normalised
noise level (NRMSE) shown in Figure 4d, in our simulations, we considered 20 noise levels
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(Equations (17) and (18)) spanning from NRMSE = 0 to 60%. For each of these 20 noise
levels, a noise realization was added to each of the 50 5000-sample datasets in order to
ensure statistical significance. Therefore, the total number of generated samples was:
20 noise levels 50 dataset

noise level 5000 samples
dataset = 5,000,000 samples.

Outlier rejection criteria.—The following outlier rejection criteria are considered for the
synthetic data:

(i) Because MOST inherently assumes that wind speed monotonically increases with
height, synthetic noisy wind profiles that did not fulfil this assumption were excluded.

(ii) Obukhov-length values in the −50 m < L < 50 m interval were rejected as outliers
in order to avoid Equation (2) singularity when L→ 0 m [5,21,35].

Although some authors [5,21] propose the −50 m < L < 10 m interval, our choice [35]
enables symmetrical rejection of samples from the stable and unstable regimes. In addition,
when the −50 m < L < 50 m rejection interval is expressed in inverse form (|1/L| >
0.02 [1/m]), this interval approximately corresponds to the 5th and 95th percentiles of
the inverse Obukhov-length distribution, in which statistically less representative values
occur (see Figure A1b). As a result from the outlier rejection criteria, the number of
valid statistical samples for each dataset became smaller than the nominal simulation
value of 5000. Thus, Figure 5 depicts the number of valid samples as a function of noise
level NRMSE. Valid samples were counted from all the 50 datasets generated for a given
perturbational noise level. For both the 2D and HW methods, the number of valid samples
decreased with increasing noise level because the higher this level was, the higher the
likelihood of occurrence of a non-monotonic wind profile was. Moreover, the reduction in
the number of valid samples was larger for the unstable condition (L < 0 m) on account of
the fact that unstable wind profiles have lower wind shear (i.e., lower vertical wind-speed
gradients) as compared to stable ones (L > 0 m). As a result, unstable profiles are more
sensitive to noise perturbations and prone to turn non-monotonic. In addition, the HW
had fewer valid samples than the 2D because a larger number of HW Obukhov-length
estimates fell in the outlier interval −50 m < L < 50 m.

10
-2

10
-1

10
0

10
1

10
2

Perturbational noise level, N
RMSE

 [%]

0

500

1000

1500

2000

N
u

m
b

e
r 

o
f 

a
v
a

ila
b

le
 s

a
m

p
le

s

2D (L > 0 m)

HW (L > 0 m)

2D (L < 0 m)

HW (L < 0 m)

Figure 5. Distribution of the number of valid samples (i.e., after rejecting outliers) from all 50 datasets
for a given noise level as a function of perturbational noise level NRMSE (Equation (17)). Symbols
indicate median levels. Lower and upper error bars depict 25th and 75th percentiles, respectively.
Blue and red lines respectively correspond to the median (8%) and mean (12%) noise levels shown in
Figure 4d.

4.2. 2D and HW Performances with Reference to Synthetic Data
4.2.1. Sensitivity to Friction Velocity

Figure 6 shows the retrieval error (Equation (19)) associated to the 2D- and HW-
retrieved friction-velocity estimates (û2D

∗ and ûHW
∗ , respectively) as a function of reference
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synthetic friction velocity usyn
∗ for two noise levels, NRMSE = 10% (high intensity) and

NRMSE = 2% (low). Because of the inherently stochastic nature of the perturbational noise,
large dispersion in the error estimates (Equation (19)) is evidenced. To alleviate this issue,
median error (50th percentile) lines are also plotted.

Prominently, it emerges that 2D retrievals consistently exhibited lower errors than
HW ones for all friction velocities and noise levels. Thus, 2D estimates (Figure 6a) showed
median (peak) errors of '5%(30%) for usyn

∗ = 0.1 m/s, whereas HW estimates (Figure 6b)
yielded median (peak) errors as high as '200%(1000%). When regarding the absolute
relative error versus noise level, the higher the noise level was, the higher the error was,
as expected. Comparatively, the 2D median error at NRMSE = 2% lay between 0.5% and 1%,
and at NRMSE = 10% between 2% up to 5%, whereas the HW median error at NRMSE = 2%
and NRMSE = 10% lay between 30% and 150%, and 40% and 200%, respectively. The worse
performance of the HW is due to the fact that this algorithm does a two-step estimation:
first, L is estimated from the ratio of wind speed differences (Equation (9)) and, second,
u∗ is retrieved from the previously estimated Obukhov length (Equation (8)). As a result,
the error incurred in the estimation of the Obukhov length propagates down to the friction
velocity estimate. In contrast, the 2D algorithm retrieves both variables at once using a
single multi-variate optimization process (Equation (10)), which does not propagate error
between them.

Figure 6. Absolute relative error between the estimated and reference synthetic friction velocity
(Equation (19)) for two different noise levels (see legends). (a) 2D method. (b) HW method. (Blue
trace) Median error at noise level NRMSE = 2%. (Black trace) Median error at NRMSE = 10%.
N stands for number of samples.

Furthermore, for both algorithms, the error reduced with increasing friction velocity.
This is in accordance with the study by Basu [15] (p. 37, Figure 4), who previously studied
the sensitivity of the HW method to friction velocity under four different noise cases.
In that study, case-4 scenario consisted of a multivariate Gaussian noise distribution with
standard deviation σ = 0.05 m/s and the assumption of noise-correlated heights with
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correlation coefficient ρ = 0.5. That standard deviation (σ = 0.05 m/s) is equivalent to
our noise level NRMSE = 2% representing HWS deviations from MOST up to ±0.2 m/s.
Quantitative results are as follows: On one hand, Figure 4 in Basu [15] reported median
errors between ≈50% and 8% for friction velocities between 0.1 and 1 m/s. On the other
hand, we found (Figure 6b) that the HW method attained median errors between 150% and
30% for NRMSE = 2% within the same range of friction velocities. Therefore, both Basu [15]
and our study yield similar quantitative results, albeit a factor three higher error in our
simulations due to the conservative assumption of uncorrelated noise.

4.2.2. Sensitivity to the Perturbational Noise Level

Numerical analysis was used to assess 2D and HW algorithm performances for friction
velocity, Obukhov length, and heat flux estimation. Towards this purpose, both algorithms
computed these three parameters from each of the 50 datasets generated for each noise
level (Section 4.1). The coefficient of determination (ρ2) enabled us to calculate the degree of
correlation between each of the estimated parameters and their corresponding synthetic ref-
erence in each dataset. As a result, for each parameter and noise level a set of 50 coefficients
of determination was obtained.

Figure 7 shows ρ2 as function of noise level for the three parameters above. It can be
observed that both the 2D and HW algorithms exhibited ideal performance (ρ2 = 1) in
the absence of noise (NRMSE → 0) for all three parameters. As expected, the coefficients of
determination decreased with increasing noise, being the 2D method more robust to noise
perturbations as shown by ρ2 values higher than those from the HW algorithm.
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Figure 7. Performance statistics as a function of perturbational noise level NRMSE. (a) Inverse of
Obukhov length, 1/L. (b) Friction velocity, u∗. (c) Kinematic heat flux, wθ. Symbols and error bars:
Same format as in Figure 5. ρ2 is the coefficient of determination.

Friction velocity (Figure 7b) became the least sensitive parameter to noise as evidenced
by much higher coefficients of determination than those obtained for the Obukhov length
and heat flux. This is because friction velocity is proportional to the mean wind speed.
As found in Section 4.2.1, 2D friction-velocity estimates were more accurate than HW ones.
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Thus, the 2D method yielded coefficients of determination ρ2 > 0.75 for all simulated
noise levels, whereas the HW dropped below 0.5 for noise levels higher than NRMSE = 5%.
Two-dimensional friction-velocity estimates were unaffected by atmospheric stability, as ev-
idenced by the stable-condition trace (L > 0 m, black solid) overlapping the unstable
one (L < 0 m, grey dashed). On the other hand, HW friction-velocity exhibited higher
performances in unstable conditions.

With regards to the Obukhov length (actually to its inverse 1/L, Figure 7a), the 2D algo-
rithm was able to acceptably estimate of the Obukhov length in stable regimes (L > 0 m),
yielding ρ2 ' 0.8 at NRMSE = 8% (which is the mean noise level, NRMSE, found during the
IJmuiden campaign, Figure 4d). At this same noise level, the HW method showed ρ2 ≈ 0.
The higher accuracy of the 2D algorithm in stable conditions was already reported by
Araújo da Silva et al. [5]. On the other hand, none of the methods was able to successfully
estimate the Obukhov length in unstable conditions (L < 0 m). Quantitatively, ρ2 values
were virtually zero for NRMSE > 4%.

As far as the heat flux is concerned (Figure 7c), the coefficients of determination
obtained were similar to those for the Obukhov length in Figure 7a, because the heat flux
is a secondary parameter derived from u∗ and L through Equation (7). ρ2 values were
slightly higher for the Obukhov length than for the heat-flux retrievals when using the
2D algorithm, particularly, for high noise levels (NRMSE > 5%). A suitable explanation
for that is propagation of the Obukhov-length estimation error to heat-flux estimates via
Equation (7).

4.3. 2D- and HW-Algorithm Performances with Reference to Observational Data

Performance of the two surface-layer retrieval algorithms was also evaluated with
reference to metmast observational data gathered during the IJmuiden campaign (Section 2).
A total of 8263 10-min FDWL-measured wind profiles were used as the sole input for the
2D and HW methods after prior removal of high spatial-variation data, and HWS values
outside the range 2–80 m/s (refer to [5] for detailed FDWL outlier-filtering procedure).
We verified that the coefficients of determination were higher than ρ2 = 0.996 between
the FDWL and anemometer measurements for the three metmast reference heights closest
to the lidar (27, 58.5 and 85 m Section 2). After this verification step, the observational
data collection was submitted to the same outlier rejection criteria as the ones applied over
synthetic data (Section 4.1.1).

The first part of our analysis consisted of testing the capabilities of the 2D and HW
algorithms for typing the observational wind profiles into three main atmospheric stability
classes (Table 1) [35,36]: unstable (u), neutral (n), and stable (s). The L values used for the
classification were the corresponding 2D- and HW-retrieved Obukhov lengths, denoted
L2D and LHW , respectively.

Table 1. Relationship between atmospheric stability classes and the Obukhov length (refer to
Section 4.1.1 (ii)).

Category L Range [m]

Stable (s) 50 < L < 500
Neutral (n) |L| > 500

Unstable (u) −500 < L < −50

Figure 8 plots the measured median normalized wind-speed profiles (normalized
the wind speed at the lowest height, U(z1)) for cluster categories u, n, and s derived
from the 2D- and HW-retrieved Obukhov lengths (L2D and LHW , respectively) over the
whole campaign. As observed, both 2D and HW algorithms were able to discern among
the different stability types. The 2D algorithm enabled clearer discrimination among the
three stability types and showed narrower non-overlapping error bars as compared to the
HW. Further, the median wind-speed profiles in Figure 8 (i.e., he profiles resulting from
computing the median speed at each measuring height of the lidar and for each stability
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class) follow MOST. This is also in agreement with the results found by other authors
who also used MOST (e.g., Figure 4 in [21] and Figure 3 in [33]). For the 2D algorithm the
behaviour of the wind shear is clearly different for the number of stability classes.

The second part of our analysis tackled numerical evaluation of the 2D and HW retrieval
performances through direct comparison with reference metmast retrievals. The Richardson-
number-based Obukhov-length, LRi (Appendix A), numerically-solved friction velocity,
u∗1D (see Section 3.3), and heat flux, wθ, computed through Equation (7) using LRi and
u∗1D, were the references used in this study (Section 3.3).
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Figure 8. (Observational data, Section 4.3, part I) 2D and HW atmospheric stability typing per-
formance (82-day time resolution): median wind-speed profiles measured by the FDWL during
IJmuiden campaign clustered by stability classes (Table 1). Panels (a) and (b) show classifications
based on the 2D- and HW-retrieved Obukhov lengths, L2D and LHW , respectively. (u) stands for
unstable, (n) for neutral and (s) for stable. Error bars depict 40th-to-60th percentiles at each height (note
that median is the 50th percentile in the very middle of the error bar).

Scatter plots comparing 2D- and HW-retrievals to the mast-derived reference estimates
are shown in Figure 9. Aimed at limiting linear regression (LR) analysis to the most mean-
ingful samples, an additional de-noising filtering procedure named histogrammed filtering
was applied as follows: the range for X-axis data (reference reciprocal-Obukhov-length
range, −0.05 [1/m] < 1/LRi < 0.05 [1/m]) in Figure 9a,d was divided into 0.002 [1/m]-
width bins and, in each bin, the corresponding Y-values (estimated reciprocal-Obukhov-
length values 1/L2D in Figure 9a, or 1/LHW in Figure 9d) outside the 15th-to-85th-percentile
interval were rejected as outliers, therefore, excluded from the LR. At this point we note
that the 15th-to-85th percentile is approximately one standard deviation of the mean in
a normal distribution. For consistency, rejected samples in the Obukhov-length estimates
(grey dots in Figure 9a,d) were also rejected in the friction-velocity and heat-flux estimates
(Figure 9b,c and Figure 9e,f, respectively).

After histogrammed filtering, the 2D method remained with N = 2426 and N = 1230 sam-
ples for the stable (1/L2D > 0 [1/m]) and unstable (1/L2D < 0 [1/m]) classes, respectively
(see legends in Figure 9) whereas the HW remained with 1118 (1/LHW > 0 [1/m]) and
441 (1/LHW < 0 [1/m]) samples, respectively. Overall, the results of Figure 9 agree with
those previously found in Figure 7 using synthetic data and show that the 2D outperforms
the HW algorithm. Thus, the 2D-derived friction velocity, u∗2D , outperformed all other
retrievals regardless of the atmospheric stability condition (Figure 9b using observational
data and Figure 7b using synthetic data), and the HW-estimated friction velocity, u∗HW ,
yielded coefficients of determination ρ2 = 0.47 and 0.15 (ρ2 = 0.39 and 0.12 without his-
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togrammed filtering) for unstable and stable cases (Figure 9e) in rough agreement with the
1D friction velocity results of Figure 7b, in which coefficients ρ2 = 0.25–0 were respectively
found at NRMSE = 8% (the observational median noise level, Figure 4d).

Figure 9. (Observational data, Section 4.3, part II) 2D and HW quantitative retrieval performances
(10 min resolution): estimated reciprocal Obukhov length, friction velocity and heat flux against
reference metmast retrievals. (a–c) 2D-algorithm performance. (d–f) HW-algorithm performance.
(Red and blue dots) Colour-coded reference Obukhov length as 1/LRi > 0 [1/m] and 1/LRi < 0 [1/m],
respectively. (Red and blue lines) Corresponding regression lines. (Black-dashed line) 1:1 ideal
reference line. (Grey dots) Outlier samples. ρ2 is the coefficient of determination. N stands for
number of samples used in the linear regression. RMSE stands for root-mean-squared error.

Finally, in the third part of our study we compared the 2D and HW friction-velocity
estimates (u∗2D and u∗HW ) against the corresponding sonic-anemometer measurements
(u∗sonic ), Figure 10. For consistency, histogrammed outliers identified in Figure 9a,d were
also excluded in Figure 10. Similar to the results found in Section 4.2, the 2D algorithm
attained the best numerical indicators in both the stable and unstable atmospheric regimes,
whereas the HW algorithm could only assess the friction velocity in the unstable one. With-
out histogrammed filtering, the HW-retrieved friction velocity results yielded coefficients
of determination of ρ2 = 0.26 and ρ2 = 0.1 for the unstable and stable types, respectively,
which are virtually the same results as those found with synthetic data at 8% noise level
(observational median noise level) in Figure 7b (ρ2 = 0.25 and ρ2 = 0.0, respectively).
Note that u∗sonic is the local friction velocity at 85 m, which might be different from the
surface-layer value (Section 3.3). Therefore, reference sonic-anemometer retrievals closer to
the surface would be necessary to increase the validity of our findings.
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Figure 10. (Observational data, Section 4.3, part III) 2D and HW friction-velocity estimates versus
reference sonic-anemometer ones (10 min resolution, Equation (11)). (a) 2D estimates. (b) HW
estimates. Same format as in Figure 9.

5. Conclusions

Two retrieval algorithms aimed at estimating surface-layer parameters from solely
wind profiles, namely, the 2D and the Hybrid-Wind methods, were compared. Their per-
formances for estimating the Obukhov length, friction velocity and heat flux were assessed by
means of synthetic data and observational data gathered at the IJmuiden meteorological site.

In order to assess 2D and HW performances with reference to synthetic data, a method
to computationally generate surface-layer parameters was devised. By modelling the
so-called c-factor (i.e., the proportionality factor between the Obukhov length and the cube
of the friction velocity, Equation (12)) and the friction velocity as random variables with
log-normal-like PDFs, statistically meaningful Obukhov-length and friction-velocity pairs
were reproduced (Figure A1). Synthetic noisy wind profiles were generated from these
pairs via MOST and the addition of Gaussian perturbational noise to the theoretical MOST
profiles. For algorithm intercomparison, 5,000,000 synthetic wind profiles with 20 noise
levels ranging from NRMSE ' 0.01% to NRMSE = 60% were generated.

As for the assessment of 2D and HW performances with reference to observational data,
FDWL-measured wind profiles were used as the only input to the algorithms. Reference
parameters were retrieved from the metmast instrumentation (Section 3.3).

Retrieval performance of the 2D and HW methods as a function of the noise level was studied
by using both synthetic and observational data. It was found that:

(i) Regarding synthetic data, performance results obtained are summarised in
Figures 6 and 7. For noise-free synthetic profiles (NRMSE → 0), the 2D and the HW per-
formed equally. Out of this idealised condition, 2D and HW friction-velocity retrievals
were more accurate than Obukhov-length and heat-flux ones (Figure 7). Moreover, nei-
ther the 2D nor the HW were able to satisfactorily estimate the Obukhov length (L) or
the kinematic heat flux (ωθ) in unstable regimes (Figure 7a,c). Conversely, under stable
conditions, the 2D was the only method able to retrieve meaningful Obukhov-length and
heat-flux estimates. Overall, the 2D outperformed the HW for the three surface-layer
parameters considered.

From a numerical perspective, the smaller errors obtained in the retrieval of the friction
velocity by both algorithms (Figure 2) are due to the fact that the MOST model (Equation (1))
is very sensitive to the friction velocity. Concerning the HW, there are two key reasons
accounting for its poorer performance: First, the HW is a two-step processing algorithm
itself, in which a variable Obukhov length is first estimated and, subsequently, a variable
friction velocity from the previous Obukhov-length estimate, hence propagating errors.
Second, the HW algorithm relies on the MOST assumption of nearly constant momentum
and heat fluxes within the surface layer [13], which is used to compute the ratio of the
wind-speed differences and, eventually, to estimate the Obukhov length from this ratio
(Equation (9)). Instead, the 2D algorithm directly fits the MOST wind-profile model to
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the measured profile, which is equivalent to extrapolating the model up to the highest
measurement height.

(ii) Regarding cross-examination with observational data, Figures 9 and 10 were in
agreement with the results derived from synthetic data (Figure 7), hence validating the
representativeness of the latter. Thus, at NRMSE = 8%, which was the observational median
noise level in IJmuiden campaign, 2D friction-velocity retrievals from either observational
or synthetic data showed ρ2 > 0.9 under stable and unstable atmospheric conditions
(Figure 7b). In contrast, HW friction-velocity retrievals from observational data yielded
coefficients of determination of ρ2 = 0.1 (stable) and ρ2 = 0.26 (unstable) [ρ2 = 0.15 (s) and
ρ2 = 0.47 (u) with histogrammed filtering, Figure 9e] versus ρ2 = 0.0 (s) and ρ2 = 0.25 (u)
from synthetic data (Figure 7b). As for the Obukhov-length and heat-flux estimates, the 2D
was the only method able to achieve acceptable performance in stable regimes (ρ2 ' 0.8).
Furthermore, the 2D also prevailed over the HW when comparing their estimates against
reference sonic anemometer measurements or derived Richardson-number approximations
(Appendix A) from the sonics (Figure 10 and Figure 9, respectively).

When addressing 2D and HW atmospheric stability typing performance, our results are
two-fold: On the long time scale (82-day average, i.e., the IJmuiden campaign duration)
observational data showed that both methods output similar median wind-speed profiles
for each stability class (Figure 8), the 2D exhibiting narrower error bars. On the short time
scale (10-min estimates), observational data (Figure 9a) showed that the 2D method was
the only one able to achieve acceptable performance in stable regimes (see point (ii) above).

As far as data availability is concerned, it is important to highlight that the 2D method
can fit a lidar wind profile with any number of measurement heights whereas the HW is
limited to about three. Because of MOST implicit assumption that wind speeds monotoni-
cally increase with height, the larger the number of heights, the more likely measurement
samples break the monotonicity requirement, therefore, risking to run out of valid MOST-
compliant samples.

All in all, we highlight the 2D algorithm as an attractive method for estimating the
Obukhov length, friction velocity and turbulent fluxes utilizing only wind-speed profile
measurements in and close to the surface layer (25 to 85 m in this work). As further steps,
comparisons against momentum and heat flux at lower altitudes (i.e., below 25 m) would
be advisable.
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Abbreviations
The following abbreviations are used in this manuscript:

1D One-dimensional
2D Two-dimensional
ABL Atmospheric boundary layer
ABLH ABL height
DWL Doppler wind lidar
FDWL Floating Doppler wind lidar
HW Hybrid Wind
HWS Horizontal wind speed
MOST Monin–Obukhov similarity theory
NRMSE Normalised root-mean-squared error
PDF Probability density function
RMSE Root-mean-squared error

Appendix A. Derivation of Obukhov Length from Richardson Number

The bulk-Richardson number approximates local gradients in an atmospheric layer
by means of measurements at different discrete heights. The bulk-Richardson number is
defined as [13]

Ri =
g∆θv∆z
θv∆U2 , z ∈ [zbottom, ztop], (A1)

where ∆z = ztop − zbottom is the difference between the top layer height, ztop, and the
bottom layer height, zbottom, and ∆θv = θv(ztop)− θv(zbottom) is the mean virtual potential
temperature difference between ztop and zbottom. θv is the mean virtual potential tempera-
ture within the layer and ∆U = U(ztop)−U(zbottom) is the HWS difference between the
10-min mean HWS measured at ztop and zbottom.

The virtual potential temperature can be estimated as [13]

θv(z) = T(z)
[

P0

P(z)

] R
Cp
[1 + 0.61r(z)], (A2)

where T [K] is the temperature, P0 = 1000 hPa is the pressure at the sea surface, P is the
measured air pressure, R ' 287 J/(K·kg) is the gas constant of air, Cp ' 1004 J/(K·kg) is the
specific heat capacity at a constant pressure for air, and r is the mixing ratio. The mixing
ratio was computed via Equations (4.1a), (4.4) and (4.14a), pp. 88, 91–92 [7].

From the bulk-Richardson number, the dimensionless stability parameter ζ = z/L can
be computed as

ζ =

{
10Ri Ri ≥ 0

10Ri
1−5Ri 0 < Ri < 0.2.

(A3)

Finally, the Obukhov length can be derived from the dimensionless stability as

LRi(z′) =
z′

ζ ′
, (A4)

where z′ is a reference height ensuring the validity of the bulk-Richardson model within
the layer [zbottom, ztop].

Here, we follow the same procedure as in [5] to derive the Obukhov length from the
bulk-Richardson number. We consider ztop = 21 m and zbottom = 0 m above the Lowest
Astronomical Tide (LAT). U(ztop) is measured by the metmast anemometers at 21 m above
LAT (see Section 2) and U(zbottom) = 0 m/s is assumed. Regarding the virtual potential
temperature, θv(ztop) is obtained from the mast temperature, pressure, and humidity
sensors at 21 m. θv(zbottom) is computed from the wave-buoy-measured water temperature,
and the pressure and relative humidity at zbottom = 0 m are extrapolated from the mast
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pressure and humidity profiles measured by the sensors at 90 m and 21 m down to 0 m.
Reference height z′ in Equation (A4) is taken as z′ = 15.5 m (refer to [5] for further details).

Appendix B. Quality Assurance of “Seed” PDF Characteristic Parameters

For the IJmuiden campaign, friction velocity PDFs parameters of µu∗ = −1.36 and
σu∗ = 0.52 were obtained. Analogously, µC,p = 10.29 and σC,p = 0.52, and µC,n = 10.96
and σC,n = 1.11 parameters were obtained for the C-factor PDF.

Concerning quality assurance, in order to ensure trustworthy synthetic datasets in
comparison to the observational ones gathered at IJmuiden, we generated 8263 (usyn

∗ , Lsyn)
pairs and compared the usyn

∗ -to-1/Lsyn (i.e., the friction-velocity-to-reciprocal-Obukhov-
length) distribution to the u∗sonic -to-1/LRi distribution measured at IJmuiden. The outcome
of this exercise is depicted in Figure A1. As can be observed in Figure A1a, the distribution
of the synthetic pairs (red dots) virtually overlaps that of the measured pairs (black dots),
which validates the synthetic generation method described in Section 3.4.2. In addition,
Figure A1b shows the histogram of the reciprocal of the Obukhov length distribution for
both the synthetic and measured datasets, which are virtually identical.

Figure A1. Synthetic data quality assurance. (a) Comparison between synthetic (red dots) and
measured (black dots) distributions of friction-velocity and Obukhov-length as (usyn

∗ , 1/Lsyn) pairs.
(b) Obukhov-length histograms for the measured and synthetic pairs. X-axis plots reciprocal
Obukhov length in 0.005 m−1-width bins. (Dashed vertical lines) Outlier-rejection interval bounds,
(−0.02 < 1/L < 0.02) 1/m.
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