
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 10, 2024

Extensive 3D mapping of dislocation structures in bulk aluminum

Yildirim, Can; Poulsen, Henning F.; Winther, Grethe; Detlefs, Carsten; Huang, Pin H.; Dresselhaus-
Marais, Leora E.

Published in:
Scientific Reports

Link to article, DOI:
10.1038/s41598-023-30767-w

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Yildirim, C., Poulsen, H. F., Winther, G., Detlefs, C., Huang, P. H., & Dresselhaus-Marais, L. E. (2023).
Extensive 3D mapping of dislocation structures in bulk aluminum. Scientific Reports, 13(1), Article 3834.
https://doi.org/10.1038/s41598-023-30767-w

https://doi.org/10.1038/s41598-023-30767-w
https://orbit.dtu.dk/en/publications/92983eee-9ae4-462d-9301-4aa626143963
https://doi.org/10.1038/s41598-023-30767-w


1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3834  | https://doi.org/10.1038/s41598-023-30767-w

www.nature.com/scientificreports

Extensive 3D mapping 
of dislocation structures in bulk 
aluminum
Can Yildirim 1,7*, Henning F. Poulsen 2, Grethe Winther 3, Carsten Detlefs 1, Pin H. Huang 4,5 & 
Leora E. Dresselhaus‑Marais 4,5,6,7

Thermomechanical processing such as annealing is one of the main methods to tailor the mechanical 
properties of materials, however, much is unknown about the reorganization of dislocation structures 
deep inside macroscopic crystals that give rise to those changes. Here, we demonstrate the self‑
organization of dislocation structures upon high‑temperature annealing in a mm‑sized single crystal 
of aluminum. We map a large embedded 3D volume ( 100× 300× 300 µm3 ) of dislocation structures 
using dark field X‑ray microscopy (DFXM), a diffraction‑based imaging technique. Over the wide field 
of view, DFXM’s high angular resolution allows us to identify subgrains, separated by dislocation 
boundaries, which we identify and characterize down to the single‑dislocation level using computer‑
vision methods. We demonstrate how even after long annealing times at high temperatures, the 
remaining low density of dislocations still pack into well‑defined, straight dislocation boundaries 
(DBs) that lie on specific crystallographic planes. In contrast to conventional grain growth models, our 
results show that the dihedral angles at the triple junctions are not the predicted 120◦ , suggesting 
additional complexities in the boundary stabilization mechanisms. Mapping the local misorientation 
and lattice strain around these boundaries shows that the observed strain is shear, imparting an 
average misorientation around the DB of ≈ 0.003 to 0.006◦.

Since dislocations were first postulated as the lattice defects responsible for the plastic deformation and workabil-
ity of  metals1–3, their behavior has been an active field of  research4. Extensive work has resolved that dislocations 
spatially organize (a.k.a. pattern) during plastic deformation into hierarchical networks. Dislocation networks 
pack into 3D structures that comprise grain and domain boundaries that separate nearly dislocation-free cells 
in the crystal; these networks define the microstructure and affect a metal’s mechanical properties. Transmission 
electron microscopy (TEM) studies have formulated trends for how dislocations pack to distort the structure 
of materials, including scaling laws that relate the distribution of the distances between  boundaries5 to the 
crystallographic misorientation they  accommodate6. Empirical relations have related the misorientation across 
their boundaries, the morphology of each dislocation that comprises the boundaries, and their Burgers vec-
tors and glide planes to determine the selection rules that govern how dislocations can pattern during crystal 
 deformation7,8. In a limited number of cases, the characters of the dislocation networks in the  boundaries9–11 
have been determined. Despite this progress in characterization, the mechanisms governing the dynamics in 
this patterning are still poorly understood.

Until recently, the prevalent technique used to study dislocation patterning has been TEM, which resolves 
dislocations by imaging through thin foils ( ∼ 200 nm thick). Studies of foils are not necessarily representative 
of the bulk because the dislocations’ attraction to surfaces can alter their  interactions12,13. Deformation-induced 
planar boundaries typically form along nearly parallel planes and extend over several tens of micrometers. More 
importantly, the spacing between these boundaries is often much larger than the foil thickness, meaning that 
patterning is only clearly observable when the foil is cut along a plane nearly orthogonal to the normal vectors 
of the boundaries. As such, the low dislocation density structures present in annealed single crystals are virtually 
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impossible to capture and characterize in thin TEM foils, even though they are essential for understanding how 
and why dislocations pack into their lowest energy structures.

By contrast, Dark-Field X-ray Microscopy (DFXM) is a new, synchrotron-based imaging technique that is 
conceptually similar to dark-field TEM but with a deeper penetration and a higher angular resolution that is 
afforded by the X-ray objective, which is placed along the diffracted  beam14,15. With a field of view of several 
hundreds of micrometers, 3D characterization of large volumes can be achieved by scanning and stacking adja-
cent layers, in a “section-DFXM” scan. The application of X-rays to study dislocations is not new. Conventional 
 topography16 and synchrotron based methods such as topo-tomography17 and  laminography18 can also provide 
a large field of view. With a spatial resolution of 2–10 µ m, these methods are well suited for semiconductor 
single crystals. In comparison to these methods, DFXM achieves a substantially higher spatial resolution of the 
microstructure, as the objective both magnifies the image and separates the angular- and direct-space informa-
tion. The resulting images can thus identify 3D dislocation boundaries with high resolution in both strain and 
grain orientation.

Initial DFXM studies have focused on the evolution of the microstructure in metals during recovery and 
 recrystallization14,19–21, as well as domain evolution in  ferroelectrics22, and martensitic phase  transformations23. 
In 2019, DFXM-based methods were presented to map individual dislocations—and demonstrated on examples 
including threading dislocations in SrTiO3 and misfit dislocations in a BiFeO3  film24,25. As is often described 
in  TEM26, Jakobsen et al. demonstrated with DFXM how weak-beam contrast describes images collected with 
the sample oriented to diffract only at the most highly-deformed regions of the material (i.e. images recorded 
at the tails of the rocking curve), namely, those surrounding a defect core. Their work demonstrated the utility 
of weak-beam contrast in capturing dislocation lines with high specificity and spatial clarity, giving a clear 2D 
view of the projected dislocation structures.

In this paper, we present a spatially 3D representation of dislocation boundaries over a large volume. We 
use the novel technique, DFXM (Fig. 1), to study the deeply-embedded 3D dislocation boundaries that form 
under the lowest-energy configurations. We characterize the assembly of dislocation boundaries by measuring 
the structures formed from high-temperature annealing in initially undeformed crystals. Under these condi-
tions, the dislocations are free to self-organize into their preferred configurations, without being restricted by the 
kinetic or spatial features present in the higher dislocation-density systems studied  previously27. With DFXM, 
we map dislocations over a large 3D volume ( 100× 300× 300 µm3 ) of a single-crystal of aluminum, annealed at 
a temperature close to the melting point ( 0.92Tm ), as shown schematically in Fig. 2. While this system is related 
to the previous studies on deformed and annealed  polycrystals5, the dislocations in the single crystals presented 
in this work are distinct: they are not hindered by stacked dislocation or grain boundaries, affording long mean 
free paths that facilitate motion. Our different but related view of dislocation organization provides key insights 
into the energy landscape of the reorganization process. Using DFXM, we resolve the individual dislocations 
in each boundary and demonstrate how the boundaries pack over long length-scales. Based on the low-energy 
configurations, we show how localized distortions instill preferential patterning and organization to stabilize 
locally irregular defects.

Figure 1.  Schematic showing the DFXM experiment and how it captures each image in our 3D reconstruction, 
as plotted in the laboratory coordinate system. This study focuses on dislocation structures observed by 
diffraction contrast from the (002) Bragg reflection, with a corresponding diffraction angle of 2θ = 20.77

◦ . To 
obtain 3D information, DFXM images were collected for 2D layers using a line-focused beam ( 200× 0.6µm

2 
(FWHM) in the y and z directions), scanning the sample in the vertical direction, z, to resolve variation along 
the height of the crystal (as shown in Fig. 1a). The observation plane for each image shown by the orange plane 
that slices through the cube showing the dislocations we observed in our single crystal. The direction of the 
scattering vector Q can be varied by the two tilts, φ and χ . The length of the scattering vector can be varied by 
a combined 2θ − φ scan. The figure is made using the MATLAB code in the link https:// github. com/ leora dm/ 
Dislo catio n3DAn alysis. git.

https://github.com/leoradm/Dislocation3DAnalysis.git
https://github.com/leoradm/Dislocation3DAnalysis.git
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Results
We begin by showing results from a classical DFXM scan of the misorientation of the crystal for a single 2D slice 
through the crystal. Fig. 2a presents the φ rotation COM (center-of-mass) map (i.e. rocking curve COM  map28). 
In this COM map, we see three primary subgrains (orange, yellow, and blue) that are separated by boundaries, 
each of which appear as nearly vertical lines that discontinuously change the local orientation. By comparing 
the COM image in Fig. 2a to a single image from the same layer that satisfies the weak-beam condition from the 
( φ,χ ) scan in Fig. 2b, we see that the orientational shifts across the boundaries correspond to apparently dotted 
lines in the raw image. The dotted lines shown with the yellow arrow indicating an array of discrete dislocations 
whose line vectors are steeply inclined with respect to the observation  plane29. The COM map shows that all three 
subgrains have rather homogeneous angular spreads, except in locations that have internal dislocations within 
the cell, as indicated in Fig. 2a,b by the yellow circle. These are localized areas of strong intensity, characteristic 
of the strain field of isolated dislocations. We focus on the row of dislocations with an overlaid yellow dashed 
line that separates the yellow and orange subgrains. For this boundary, we demonstrate the spacing between the 
dislocations by plotting the intensity-trace depicted by the yellow line in Fig. 2b as a plot in Fig. 2c. The average 
distance between the dislocations along the boundary is D = 4.1 µ m. This misorientation across the boundary 
as determined from the COM map is �φ = 0.004◦ , while the Burgers vector has a magnitude of b =2.86 Å.

We note that classical dislocation theory predicts a misorientation of �φ = b/D for a dislocation boundary of 
Burgers vector, b, and spacing, D30. Our measurement of the crystal misorientation across the boundary and the 
corresponding dislocation spacing we measure from our weak-beam image fit this model precisely. At present, 
dislocations with spacing as low as 150 nm can be resolved, corresponding (in Al) to small-angle grain boundaries 
with 0.109◦ misorientation. See the Supp. Mat. for more on the resolution of the instrument.

From the 1D illumination in Fig. 2b, the small dots for each dislocation indicate that each dislocation line 
slices through the 2D observation plane defined by the 1D X-ray line-beam illumination. As demonstrated in 
Supplementary Material, the 3D position of dislocation lines cannot be traced simply by making the incident 
beam larger. Instead, we compile a spatial 3D map of dislocations by stacking the weak-beam image from each 
layer that are analogous to Fig. 2b.

The resulting 3D dislocation structures resolved with our section-DFXM approach are shown in Fig. 3 for 
the full volume probed at the highest magnification. Fig. 3 shows that dislocations in the probed 3D volume 
self organize into preferential structures. The map comprises clearly defined lines that are analogous to those 
seen via dark-field TEM at smaller scales: they represent the dislocation lines, as measured by the locally high 
strain and orientation components that become asymptotic immediately surrounding the core  structure29. The 
dislocations identified in this volume clearly pack in hierarchical structures: a large collection of dislocations is 
present, and furthermore, in some cases, the dislocations pack into long-range boundary structures (e.g. those 
on the right) that separate different subgrains of the crystal. To understand the mechanics of a crystal at the 
mesoscale, we explore different types of dislocation packing arrangements in the crystal, interpreting key details 
of the boundaries at the scale of the boundary planes and the component dislocations.

We show an annotated version of the 3D dislocations from Fig. 3 in Fig. 4 to present in detail the structure 
within five crystalline regions (identified by five colored boxes) that are characteristic sections of each well-
defined dislocation boundary (DB) we describe in this work. A clear picture now emerges on the self-organization 
of the dislocation structures in the probed volume. We observe that dislocations pack along well-defined planes 
within 3D, even after long annealing times at temperatures close to melting. From a first glance, the dihedral 
angles of the triple junctions are far from 120◦, in contrast to what conventional growth models predict. Below, 
we zoom in on individual boundaries shown in Fig. 4 and analyze in detail to extract more information on the 

Figure 2.  (a) Computed center of mass map of sample rotation in φ of a selected slice through the thickness, 
with colors defined by the colormap to the right. A full movie showing the φ − χ mosaicity map over 40 µ m 
in z direction with 2 µ m steps is presented in Supp. Mat. (b) Weak-beam contrast of the same slice showing 
dislocation boundaries as the pink dotted lines, like the one circled in yellow, for clarity. (c) The intensity profile 
of the dashed-line trace in (b), showing peaks that describe the positions of each dislocation in the boundary 
(B1 in Fig. 4). The figure is made using the MATLAB code in the link https:// github. com/ leora dm/ Dislo catio 
n3DAn alysis. git.

https://github.com/leoradm/Dislocation3DAnalysis.git
https://github.com/leoradm/Dislocation3DAnalysis.git
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self-organization process. Inlays in Fig. 4 obtained from zooming in on each separate low-angle boundary plane 
demonstrate that we can resolve full structures. In particular, we can resolve the defect plane that separates sub-
domains of the crystal, and by projecting each boundary along different vectors we can identify the relevant 
in-plane and out-of-plane directions crystallographically. As described above, this allowed us to solve for the 
zone axes for the 5 primary boundaries in this structure, as labeled in Fig. 4. To further refine our assignments, 
we then isolated each DB and viewed each one along the possible zone-axis vectors, verifying that the appropri-
ate vector corresponds to the one with the largest spatial extent within our view, and two normal vectors that 
constrain the plane to linear features. Table  1 show the results for all of the boundaries in Fig. 4.

Characterization of triple junction: B1–B1′−B1′′. Boundary B1 (red) is the primary boundary that 
slices down the middle of the characterized volume; the hkl = [110] normal vector defines the B1 plane. The 
inlay in Fig. 4 shows that B1 is comprised of clearly defined, straight linear features that indicate the direction of 
the dislocation lines in the boundary.

A closer look at the bottom of Fig. 5a shows that B1 forms a triple-junction with boundaries B1 ′  and B1′′ . The 
boundary dislocations in B1 and B1 ′  bend around the junction point, making both become curved planes over 
a region. B1 ′  discretely changes at a “kink point” that makes the boundary flatten into a planar boundary that 
is normal to the [012] vector with straight dislocations that point along the �t = [021̄] vector. The dislocations in 
B1′′ gradually bend onto the new (120) plane (with dislocation line vectors that primarily point along [021̄] , and 
have some possible kinks). Based on the angle between the vectors normal to the planes, the angle at the triple-
junction is 37◦ immediately surrounding the B1 ′  and B1′′ junction, but the bend of the B1′′ plane ultimately shifts 
the long-range boundary angle to 48◦ as measured further away from the junction.

The curvature of the boundaries near the triple junction suggests that the stabilizing force usually predicted 
from triple junctions may not be valid in this system. Instead, we interpret that the curvature surrounding this 
junction may arise from a localized impurity that pinned a single dislocation during the annealing process, then 
was stabilized by the three surrounding boundaries, B1, B1 ′  and B1′′ . The curvature in these boundaries near 

Figure 3.  3D map of dislocation structures over a 100×300×300 µm3 volume. All dislocation features are shown 
by the grayscale surfaces, with the crystallographic coordinate axes inserted in the top right of the plot. Each 
voxel in the map is 125× 45× 1000 nm3 . The orange plane represents the 2D slice shown in Fig. 2. Note that 
the χ position of the scan shown in Fig. 2 is 0.02◦ different than Fig. 3. The figure is made using the MATLAB 
code in the link https:// github. com/ leora dm/ Dislo catio n3DAn alysis. git.

Table 1.  Summary of the fitted boundary plane normal vectors ( �n ), the calculated Burgers vectors ( �b ), and 
the measured dislocation line vectors ( �t ) for each boundary plane, denoted with the same labels from Fig. 4. 
The mean error ( δzerr ) from the plane fitting is also given. γ is the average misorientation angle ( �φ ) measured 
across the boundary (extracted from the measured φ scans).

Boundary �n (hkl) �t  (hkl) �b (hkl ) δzerr ( µm) γ ( ×10−3)

B1 [110] [22̄1] [1̄1̄0] 2.3006 0.0418◦

B1′ [012] [22̄1] [6̄1̄2̄] 1.9808 0.2370◦

B1′′ [120] [32̄1] [1̄2̄0] 1.2041 0.2332◦

B2 [2̄01] [12̄2] [2̄01] 1.7356 – 0.0284◦

B3 [112̄] [1̄10] [1̄1̄2] 1.7089 0.2493◦

https://github.com/leoradm/Dislocation3DAnalysis.git
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the junction suggests the innermost dislocation has the highest energy, thereby distorting the topology of the 
boundary planes at that site.

Boundary identification. Beyond B1 and B1 ′  , Fig. 5 shows two other boundaries that are clearly defined 
in the high-z regions of the dislocation structures. Another boundary, B2 (green), intersects B1 in the upper ∼
50 µ m z region of the volume, intersecting at an angle of 129◦ (Fig. 5a). B2’s plane is defined by its [2̄01] normal 

Figure 4.  Labels showing the five primary dislocation structures shown in Fig. 3, each labeled and outlined in a 
different color. Shown as inlets are zoom-ins on each boundary to demonstrate its orientation, and demonstrate 
with the “zoomed-in” view how the single dislocations in that boundary are packed. Mean error values from the 
MSAC fitting are listed for each plane in the respective plots. The figure is made using the MATLAB code in the 
link https:// github. com/ leora dm/ Dislo catio n3DAn alysis. git.

Figure 5.  (a) Projection of the 3D dislocation structures shown in Fig. 4 along the crystallographic [11̄0] 
vector, showing the angles between each boundary plane. With this perspective, the space between B3 and the 
intersection of B1 and B2 is clearer, as well as the curvature of the boundaries when B1 and B1 ′  split, near the 
bottom. (b) A zoomed-in and rotated perspective of the junction between B1 and B1′  , showing the triple-
junction formed by the two planes adjoining. Angle between planes is labeled. (c) Projection of the boundary 
off-crystallographic axis, showing the curvature and discontinuity of B1′  and the component dislocations. The 
figure is made using the MATLAB code in the link https:// github. com/ leora dm/ Dislo catio n3DAn alysis. git.

https://github.com/leoradm/Dislocation3DAnalysis.git
https://github.com/leoradm/Dislocation3DAnalysis.git
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vector, with dislocations that pack significantly closer together, as observed in the inlay, packed along the [12̄2] 
vector. Near the region where the B1 and B2 planes intersect, a third boundary—B3 (cyan)—nears the edge of 
the dislocation structures, with a normal vector along [112̄] . The spacing between the �t = [1̄10] dislocations in 
B3 is the smallest of all five boundary structures, imposing the highest misorientation angle. As corroborated by 
the COM map shown for the top layer in Fig. 2a, the ∼ 0.015◦ misorientation across the boundary, indicating a 
∼ 780 nm spacing that makes the dislocations difficult to differentiate based on the thresholds used in our seg-
mentation methods. We note that with higher precision afforded by Bayesian inference, future implementations 
of this method could improve the resolution  significantly31. From Fig. 5, the projected image along the [11̄0] axis 
shows that B3 never intersects boundaries B1 and B2. Note that some of the dislocations shown in Fig. 2b do not 
appear in these volumes as they only satisfy the Bragg condition, thus become visible, at certain χ tilts. These 3D 
maps generated from the 4D scans ( x, y, z,φ ) are measured at a fixed χ value.

Going beyond the well-formed boundaries, we also note that this weak-beam 3D DFXM scan allows us to 
map the isolated (lone) dislocations quite effectively as well. Figures 3 and  5 show an interesting and complex 
dislocation structure between B1 and B3. This structure includes curved dislocations that appear to form a 
complex boundary shape with significant curvature. It is possible that this dislocation structure connects to B1 
and B2, forming another triple junction. The irregular character of this dislocation structure indicates DFXM’s 
ability to characterize structures with complexity beyond a classical boundary. For example, one of the disloca-
tions in this structure stretches down ≈100 µ m along [002̄] direction before it truncates in a partial loop centered 
around (x, y, z) = (40, 40, 40) . While a precise analysis of this unusual dislocation tangle is beyond the scope of 
this work, we note that Section-DFXM provides a new approach to characterize these complex structures using 
the 3D image segmentation techniques to resolve a deeper view of complex topologies.

Analysis of individual boundaries. If a boundary is not associated with long-range stresses and is 
thus a low-energy-dislocation structure, the dislocation arrangement in the boundary should fulfill the Frank 
 equation32:

where ρi and �ti are are the density and line direction of the dislocation with Burgers vector �bi . The boundary 
plane normal and misorientation axis are �n and �a , respectively. �r is an arbitrary vector that lies in the boundary 
plane. The Frank equation relates the net Burgers vector content of the boundary free of long-range stresses to 
the crystallographic misorientation between the domains separated by the boundary.

All of the boundaries in the observation volume (Fig. 3) have straight parallel dislocation lines as the domi-
nant feature. Some indications of crossing dislocation lines may be seen but their densities are low. A boundary 
consisting of dislocations of only one Burgers vector must lie on the plane with the Burgers vector as the  normal32. 
In fcc this implies boundary planes of the {110} family. As seen in Table 1 this is the case for boundary B1. The 
classical boundary of this type is a tilt boundary consisting of edge dislocations with dislocation line along <112̄
>, which enter the boundary by glide. By contrast, the dislocation line for B1 is [22̄1], which does not lie in any 
slip plane. It can be inferred that the dislocations did not enter the boundary by slip and that climb enabled by 
the high temperature was involved in its  formation30,33.

For the rest of the boundaries, the parallel dislocations must have different Burgers vectors to fulfill the 
Frank equation. The Burgers vectors of each dislocation cannot be identified at present, though Table 1 shows 
the average Burgers vectors for all boundaries. For B3, the boundary plane and dislocation line directions are 
consistent with the Frank equation as a tilt boundary, with equal densities of dislocations with Burgers vectors 
of [101̄ ] and [011̄].

For the remaining boundaries, B1 ′  , B1′′ and B2, the boundary planes and dislocation line directions are 
symmetrically equivalent with planes of {012} and line directions of <221> to <321>. With the ( ̄201) plane of 
boundary B2 as an example, the Frank equation was employed to establish that a boundary on the ( ̄502) plane 
consisting of two sets of parallel dislocation lines along [14̄ 5] with Burgers vectors [ ̄101] and [011̄ ] fulfills the 
equation if the density of the first Burgers vector is larger than the density of the other by a factor of about 2.3. 
The angle between the experimentally observed boundary plane and the one obtained using the Frank equation 
is 5◦ and the theoretical dislocation line lies in between those determined experimentally for the three symmetric 
boundaries. These deviations may be due to the presence of a small density of additional dislocations. Analogous 
analyses for B1 ′  and B1′′ can be made.

Discussion
Upon closer examination, our 3D map generated from DFXM data resolves the dislocation lines that comprise 
the boundary planes. The boundary dislocations are relatively straight across the entire spatial extent of the 
boundary we resolve, suggesting a high level of stability across the  300-µ m length scale. This detailed view of 
dislocation packing suggests that the boundaries manifest the lowest energy structures that may form under the 
high-temperature processing  conditions34.

The DFXM map reveals the self-organization of dislocations upon high-temperature annealing into well-
defined planar boundaries. These boundaries are only identifiable due to the large field of view and high angular 
resolution afforded by DFXM. The high dislocation mobility in aluminum, especially at temperatures so near Tm , 
the long mean free paths of motion owing to the low dislocation density, and the long duration of the temperature 
treatment implies that the patterns formed under these conditions are the most stable, preferred configura-
tions for this sample. As demonstrated in the analysis above, the observed boundaries are in agreement with 
low-energy dislocation  structures35. We confirm these low-energy configurations by two other DFXM mapping 

(1)�ρi�bi{(�n×�ti) · �r} = 2 sin(γ /2)(�r × �a),
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modalities (computed COM maps for lattice tilt and axial strain) over a larger field of view (using a 2 × optical 
objective at the detector) to compare the strain and orientational populations surrounding the boundaries. 
To identify the stability of these boundaries, we evaluated their misorientation to the lattice and nearby local-
ized strain fields. Our measured misorientation (Fig. 6a) corroborates the boundary spacings that we observe. 
Furthermore, our observed axial strain fields over the same region (Fig. 6b) did not show apparent distortions, 
implying that they alleviate the long-range stresses previously present along the probed crystallographic direction 
(correlation shown in Fig. 6c). From this analysis, we conclude that these boundaries are low-energy structures, 
obeying Frank’s  relation32,34,36. Note that even if the sample was annealed at such high temperatures, the total 
measured dislocation density is ≈ 2× 109m−2 with ≈ 85% contribution from the dislocations in the boundaries 
and the remaining from the discrete dislocations. The measured dislocation density is less than in an annealed 
AA110 alloy but higher than an ultra high-purity Al (99.99999%)37,38. We argue that the dislocation boundaries 
in the sample have a relatively lower mobility than that of ultra high-purity Al due to the  impurities20, thus hav-
ing a relatively higher dislocation density even after annealing.

For the DB’s analyzed in this work, each boundary appears to consist of one or two parallel sets of dominant 
dislocations with only small densities of dislocations of other line directions (and presumably Burgers vectors). 
This is in contrast to typical findings after plastic deformation where boundaries typically consist of crossing 
 dislocations9–11. The preference for parallel dislocation lines after high-temperature annealing is likely to originate 
from a higher mobility of such boundaries compared to dislocations in a grid.

A second important difference from deformation-induced planar dislocation  boundaries39 is that we do not 
see a large number of parallel boundaries with a spacing of the order of micrometers. Here, we observe only a 
few boundaries in a volume spanning hundreds of micrometers, with arrangements that are not parallel. This 
is evidence that assembly into a single boundary is energetically favorable compared to the accumulation of 
dislocations into two similar boundaries with lower dislocation densities and misorientation, which is also 
the theoretical  expectation40. This phenomenon is again enabled by the high dislocation mobility and the long 
free paths of motion. The differences between the present well-annealed low dislocation density observations 
and those in deformed materials form important input to the ongoing research in the field of modeling crystal 
deformation at the mesoscale using dislocation  dynamics41–43.

Comparing the presently observed structures to the boundaries formed in well-annealed polycrystals, it is 
observed that the boundaries do not adjoin into a classical triple-junction with 120◦ between the boundaries. 
The 120◦ angle is the equilibrium value for boundaries with equal energies and isotropic energies according to 
the Herring  relation44,45. As the dislocation densities in the presently observed adjoining dislocation boundaries 
in the triple junction B1, B1 ′  , and B1′′ are roughly the same, the preference for boundaries in which the disloca-
tions mutually screen each other’s stress fields must control the energy and thus the triple junction angles. This 
is also in agreement with the findings above that the planar boundaries fulfil the Frank equation. The observed 
change from a planar boundary to a curved one near the triple-junction, however, also indicates an energetically 
favorable process induced by the junction itself. Interestingly, the boundaries at the triple junction separate along 
a direction nearly aligned with the dislocation line vectors, as shown in Fig. 5c. This may arise from various 
reasons such as the interaction of dislocations having dissimilar strain fields (i.e. line tension of certain disloca-
tions), different size of dislocation cores or crystal  anisotropy34,35.

Considering beyond the scale of the individual dislocations observed in this work, it is important to note 
that for this type of low-energy dislocation structure persist after 10 hours of annealing at 0.92Tm , there must 
be additional high-energy immobilizing defects inside the sample that immobilize some of the dislocations, 

Figure 6.  Computed COM maps of φ rotation (i.e. rocking curve COM map) (a) and relative axial strain (b) 
of (002) reflection. The color key shows the φ − 2θ angular distribution in the scanned range around the local 
intensity maxima for the respective axes (c). These maps show the projections from a volume illuminated by 
box-shaped beam having a size of 400× 400 µm

2 , rather than a line focused beam (See Supp. Mat. for more 
details). The measured strain is rather homogeneous having values below 10−4 , in spite of the clear boundaries 
that are visible in the φ COM map. The figure is made using the MATLAB code in the link https:// github. com/ 
leora dm/ Dislo catio n3DAn alysis. git and https:// gitlab. esrf. fr/ julia. garri ga/ darfix.

https://github.com/leoradm/Dislocation3DAnalysis.git
https://github.com/leoradm/Dislocation3DAnalysis.git
https://gitlab.esrf.fr/julia.garriga/darfix
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causing the energy for annihilation to be higher than 65 meV ( kBT at 590 ◦C). These sub-resolution high-energy 
structures likely originate from impurities or interstitials that pin individual dislocations, causing the remaining 
ones to organize into the most stable packing configuration to minimize the strain energy (via stress screening). 
As such, this work demonstrates the hierarchical structures that are key to understanding the overall structure 
of the system, even including defects below our resolution and contrast mechanism. One example of this is the 
the long dislocation that spans from the midsection down to an almost completely formed loop at (40, 40, 40) 
(Fig. 3, which is far beyond the initial curved boundary).

Conclusions
The present study demonstrates the dislocation structures that persist in a bulk single crystal of aluminum after 
high-temperature annealing. Using dimensional-reduction algorithms on a 4D DFXM dataset (2D scans), we 
measure the hierarchies of dislocations that span boundaries over hundreds of micrometers within a volume of 
100× 300× 300 µm3 , resolving the boundary planes and vectors of the component dislocations. Our results 
indicate the self-organization of dislocations into well-defined planar boundaries that separate sub-grains, whose 
mean dislocation spacings match the misorientations between subdomains that were measured independently 
with mosaicity maps, despite the heterogeneity.

Based on the high-dislocation mobility afforded by the high annealing temperature that gave rise to this struc-
ture, we conclude that the few but long dislocation boundaries that persist indicate that forming single boundaries 
is energetically favored as compared to forming two boundaries with lower dislocation densities. It was further 
concluded that the dislocation configuration in the boundaries is in agreement with theoretical low-energy 
dislocation structures free of long-range stresses and that triple junction angles are strongly influenced by the 
resulting anisotropy of the boundary energy. Our results provide unprecedented information about dislocation 
patterning in bulk volumes, opening up new avenues not only for potential future experiments to study crystal 
plasticity but also for new input parameters for modelling such as geometrical boundary conditions, direction 
of dislocation lines, misorientation angles and strain fields. The dynamical evolution of these strain fields can 
also be mapped upon the application of a stimulus such as temperature or load. As a first result, individual dis-
locations were identified and tracked in 2D during high temperature annealing of Al by comparison to forward 
models and elastic  theory46. Work based on 3D movies are currently in progress. Furthermore, full strain and 
orientation tensors of individual dislocations in the boundaries can be determined by mapping multiple Bragg 
reflections. Our work in this direction is in progress.

Methods
Samples. The sample used in this work was a single crystal of industrially-pure aluminum (99.99%), pur-
chased from the Surface Preparation Laboratory, with dimensions 0.7× 0.7× 10mm3 , oriented with the long 
[11̄0] axis perpendicular to the scattering plane. Prior to the experiment, the sample was annealed for 10 h at 590 
◦ C in atmospheric air, then slowly cooled in the furnace.

DFXM. Our DFXM experiments were conducted at Beamline ID06-HXM at the European Synchrotron 
Radiation Facility (ESRF)47. We used 17keV photons, selected by a Si (111) Bragg–Bragg double crystal mono-
chromator, with a bandwidth of �E/E = 10−4 . The beam was focused in the vertical direction using a Com-
pound Refractive Lens (CRL) comprised of 58 1D Be lenslets with an R=100 µm radius of curvature, yielding an 
effective focal length of 72 cm. The beam profile on the sample was approximately 200× 0.6µm2 (FWHM) in 
the horizontal and vertical directions, respectively. The horizontal line beam illuminated a single plane that sliced 
through the depth of the crystal, defining the microscope’s observation plane, as shown in Fig. 1. A near-field 
alignment camera was placed 40 mm behind the sample, and used to orient the crystal into the Bragg condition. 
Following alignment, the near-field camera was removed and the image was magnified by an X-ray objective lens 
comprised of 88 Be parabolic lenslets (2D focusing optics), each with a R=50 µ m radii of curvature. The entry 
plane of the imaging CRL was positioned 281 mm from the sample along the diffracted beam, and aligned to 
the beam using a far-field detector. The objective projected a magnified image of the diffracting sample onto the 
far-field detector, with an X-ray magnification of Mx = 17.9 ×.

Our far-field imaging detector used an indirect X-ray detection scheme, using an zoom to impart additional 
magnification. This detector was comprised of a scintillator crystal, a visible microscope and a 2160× 2560 pixel 
PCO.edge sCMOS camera. It was positioned 5010 mm from the sample. The visible optics inside the far-field 
detector could switch between 10× and 2× objectives to achieve an effective pixel size of 0.75 µm or 3.75 µ m, 
respectively. This paper focuses on analysis from the highest-magnification 10× magnification images (total 
magnification of Mt = 179×).

Three types of scans were performed in this work: rocking scans, mosaicity scans, and axial strain scans. The 
rocking scans acquired images while scanning the tilt angle φ , see Fig. 1, over a range of �φ = 0.12◦ in 30 steps 
(i.e. δφ = 0.004◦ per step). These 1D “scans of the rocking-curve” map components of the displacement gradient 
tensor field (i.e. strain and misorientation) to indicate the local variation in structure that is relevant to visualize 
 dislocations29. We collected this type of data for a total of 301 layers, with 1 µ m steps between the layers. The 
resulting information in four dimensions (x, y, z,φ) was imported into Matlab for subsequent processing and 
feature identification.

Additional supporting scans were collected to more thoroughly sample the mosaicity for selected layers, by 
measuring distortions along the two orthogonal tilts χ and φ , cf. Fig. 1. The χ-range and step size was �χ = 0.24◦ 
and δχ = 0.024◦ , respectively, while the φ-range and step size was the same as for the rocking scans. With this 
data, each voxel can be associated with a subset of a (002) pole figure, allowing us to generate Center of Mass 
(COM) maps to describe the average direction of the (002) orientation for each voxel in the  layer28. We note that 



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3834  | https://doi.org/10.1038/s41598-023-30767-w

www.nature.com/scientificreports/

the angular resolution in the COM maps is substantially better than the step size. Finally, axial strain scans were 
collected by keeping all orientations fixed, while scanning the 2θ axis to resolve the axial strain component ε33 , 
then reconstructed into the same COM map to quantify the residual strain in each voxel.

Data analysis methods. All dislocations were identified from the zℓ-resolved stack ( {xℓ, yℓ, zℓ} in the labo-
ratory coordinate system) of φ-resolved rocking scans using thresholding and a fiber-texturing methods for 
reconstruction. We first reduced the 4D ( x, y, z,φ ) dataset into an entirely spatial (x, y, z) 3D dataset by manually 
identifying the φ position characteristic of the weak-beam condition for each 2D layer (i.e. with the brightest 
and most sharply-defined spots for dislocations). The ideal φ orientation changed only slightly over the course 
of overnight scans – likely because of drift in the microscope or continuous rotation of the grain’s orientation 
(i.e. bending). For the 3D image stack, intensities below a defined noise-floor were set to the threshold value of 
Imin = 110 , and the edge 10 pixels were also set to I = 110 to avoid deleterious edge effects from the detector. 
The resulting stack of raw 2D images (i.e. Fig. 2b) captures the features that appear in the weak-beam condition 
and set a uniform distribution of pixel intensities for each image when compared to the other layers, enabling 
for subsequent 3D processing. Each (x,  y) image was then 2 × 2 binned before being saved into a 3D image 
cube (binning was necessary to reduce memory usage). The image cube was then input into the fibermet-
ric() function in Matlab to connect the diffuse intensity corresponding to linear dislocation lines. This func-
tion filters the image by identifying the voxels that are characteristic of bright linear features in the 3D image 
arrays, based on a gradient method (set to a Structure Sensitivity of 5). The resulting map was plotted using the 
PATCH_3Darray() surface visualization  method48.

After defining the regions characteristic of each boundary, we indexed the dislocation boundary planes by 
defining all relevant points characteristic of each plane as a pointCloud object. For each boundary, we identi-
fied the local normal vectors that are characteristic of each voxel based on the ten nearest neighbors, using the 
pcNormals()  function49. The estimates from this pointCloud were then input to the pcfitplane() 
method in Matlab, which uses an M-estimator SAmple Consensus (MSAC) to find the plane (related to the RAN-
dom SAmple Consensus, RANSAC approach), which excludes outlier points and outputs a mean uncertainty 
 value50. The resulting plane fits gave mathematical uncertainty quantification, based on the mean error in µ m 
that points lie beyond the boundary place, δzerr . We input the Cartesian vectors estimated by MSAC to a trans-
formation matrix to converts the vectors described in detector-frame into our coordinate system that takes into 
account the crystallographic basis vectors (i.e. �a1 , �a2 , �a3 ). Because θ = 10.38◦ , our transform matrix multiplied the 
crystal’s native orientation vectors by the θ rotation about the y axis in the detector plane (i.e. vertical diffraction) 
to account for the angle between the observation plane that defines each image and the (002) diffraction plane 
that sets the contrast mechanism. We then transformed the [x, y, z] vectors into their associated [uvw] vectors 
in the lattice system, then inverted them to solve for the [hkl] vectors necessary for our interpretation. After 
rounding the appropriate values, we re-plotted the normal vectors and associated planes to verify the accuracy, 
as described fully in the Supplementary Material. We note that since MSAC is a random-sampling function, the 
method does not give a deterministic output; as such, we monitored the output many times until converging on 
a solution that fit the points accurately even after rounding errors.

Dimensional reduction was then performed a second time to identify the line vectors that were characteristic 
of each dislocation. Using the newly defined boundary plane normal, two orthonormal vectors were identified 
that lie within the DB, and an affine transform was defined to convert the boundary points from the {xℓ, yℓ, zℓ} 
laboratory coordinate system into the newly defined {xbp, ybp, zbp} boundary plane coordinate system. In this 
system, ẑbp was defined as the unit vector describing plane normal, allowing all points to be reduced from their 
3D representations in IRℓ to their 2D representations in IRbp . The 2D points were then rotated via a new affine 
transform to express the boundary as a 1D system showing the position of each dislocation, i.e. the dislocation 
system IRd . To identify the appropriate angle to convert the 2D boundary plane system into the 1D dislocation 
system, a sequence of 180 candidate transformations were assembled by scanning the rotation matrix through all 
unique 180◦ angles, then compiling the rotated points into a histogram of counts vs xdi . The Fourier transform 
from each trace was plotted as a function of angle, and the “aligned” angle was identified as the point for which 
the number of spatial frequencies required to describe the 1D function was most sharply defined (as opposed 
to the scattered and diffuse frequency components required to describe the misaligned ones). All assignments 
were confirmed graphically, as demonstrated in the Supplemental Information.

We include the Matlab scripts and functions used in this work in the Github folder available at https:// github. 
com/ leora dm/ Dislo catio n3DAn alysis. git.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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