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Abstract 

The project “Digital twins for large-scale heat pump and refrigeration systems” aims to develop 

adaptable, modular and reusable models for advanced system monitoring, fault detection and diagnosis 

and operation optimization. In this context, this report aims to provide a review of the state-of-the-art 

for digital solutions for heat pump and refrigeration systems. The focus of the review is on numerical 

models applied for system monitoring, fault detection and diagnosis as well as operation optimization. 

Three types of model-based approaches are characterized and described, namely white-box or physics-

derived models, black-box or data-driven models and grey-box models, which combine the two other 

model types. It is distinguished that white-box models can provide detailed information about a system, 

which can be applied to monitor, characterize faults and optimize the operation of heat pump and 

refrigeration systems. Black-box models can also be used for such applications but unlike white-box 

models, they lack interpretability. The integration of white-box models with black-box approaches can 

be used to reduce data requirements compared to white-box models and increase its adaptability to 

different system configurations and operating conditions. From the reviewed studies, it is noted that 

further research is required where black-box and grey-box models for fault detection and diagnosis 

models are studied in operating heat pump and refrigeration systems. 
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1 Introduction 

Incentives in sustainable energy systems can contribute to reduce greenhouse gas emissions and meet 

the goal of limiting global warming to not exceed 2 °C increase compared to 1990, as defined in the 

Paris Agreement [1]. Heat pumps can contribute to decarbonize district heating systems by recovering 

excess heat from industrial processes and increasing heat generation from renewable energy sources. A 

report from the International Energy Agency [2] stated that around 50 % of the European heating 

demand for buildings can be supplied by district heating. In this context, heat pumps can provide 

approximately 25 % to 30 % of the heat supplied in district heating networks.     

The performance of heat pumps can be influenced by factors like electricity prices, operating costs, 

weather, operating duration and control strategies used [3]. Monitoring the operation of heat pump and 

refrigeration systems in real-time may contribute to increase their efficiency and reduce the need of 

active intervention over the system [4]. Moreover, optimizing the performance of heat pump and 

refrigeration systems requires selection of appropriate sets of manipulated inputs and controlled outputs 

[5] as well as definition of optimal control strategies [6].   

The presence of faults and unexpected variations in the heating and cooling loads can have a negative 

impact on the system performance and availability [7]–[9]. A number of operational challenges in heat 

pumps may originate from the heat sources utilized. For instance, air-source heat pumps can be affected 

by excessive frost formation in the evaporator [10], biological fouling can be present in sewage water 

source heat pumps [11] and ground source heat pumps can be exposed to corrosion originating from 

minerals [12]. Several studies have investigated the applicability of fault detection and diagnosis (FDD) 

methods in chillers [13]–[22] as well as heat pumps integrated in heating, ventilation and air-

conditioning (HVAC) systems [23]–[26]. However, only a limited number of studies [27]–[33] 

proposed FDD methods in heat pumps used for district heating and industrial applications. 

Advances in communication and information technologies in the twenty-first century have enabled 

development of advanced control and monitoring systems based on data-driven methods. Data-driven 

modelling methods allow definition relationships between inputs and outputs of complex systems from 

observed data, providing predictions about the future behaviour of a system. Data-driven modelling can 

be complemented with white-box models to incorporate physics-derived relationships, so called grey-

box models. Grey-box models leverage physics-based models with data-driven approaches to provide 

generalizable and adaptable representations of complex physical processes. Moreover, grey-box and 

data-driven models can be integrated with digital communication technologies to develop virtual 

representations of physical systems or digital twins [34]. The digital twin technology has been applied 

in manufacturing applications [35]–[37] and thermal energy systems [38], [39]. However, only a limited 

number of studies have applied digital twins for heat pumps and refrigeration systems, where the focus 

has been mainly on HVAC systems [40], [41]. 

The project “Digital twins for large-scale heat pump and refrigeration systems” aims to develop 

adaptable, modular and reusable models for specific services. Within this frame of reference, the 

purpose of the present report is to provide a review of state-of-the-art for digital solutions for heat pump 

and refrigeration systems regarding system monitoring, fault detection and diagnosis as well as 

operation optimization.    

2 Methods 

The state-of-the-art review presented in this report was compiled through a search in digital libraries, 

web search engines and journal websites, including Scopus, Web of Science, Google Scholar, Science 

Direct, FRIDOC database from the International Institute of Refrigeration and the database from the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The strategy 

“reference by reference” was also applied to find relevant studies. The literature search focused on 
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scientific publications and technical reports. However, industrial applications were also included in the 

review. The keywords applied were: “heat pump”, “refrigeration”, “chiller”, “fault” or “failure”  

(standalone or in combination with “monitoring”, “detection”, “identification”), “monitoring” 

(standalone or in combination with  “system”, “performance”),  “optimization” (standalone or in 

combination with “operation”, “control”, “set point”), “model” (standalone or in combination with 

“numerical”, “physical”, “data-driven”, “dynamic”, “steady-state”, “white-box”, “black-box”, “grey-

box”). 

The procedure applied throughout the review was based on four steps shown in Figure 1. First, 

numerical modelling methods were characterized, considering the classification white-box, black-box 

and grey-box models. Then, a literature search was performed to identify studies that applied digital 

solutions for heat pump and refrigeration systems related to FDD, system monitoring and operation 

optimization. Later, the frameworks used in those studies based on numerical modelling were 

categorized into white-box, black-box and grey-box. Finally, the frameworks applied in different case 

studies were described, comparing their characteristics regarding the provision of digital services for 

heat pump and refrigeration systems.       

 

Figure 1: Four-step method applied in the literature review. 

3 Results 

3.1 Numerical modelling 

This section provides a description of numerical modelling techniques used for the provision of digital 

services in heat pump and refrigeration systems. As seen in Figure 2, numerical modelling is classified 

into three categories, namely black-box, white-box and grey-box frameworks. The description includes 

numerical modelling frameworks that may be applied for system monitoring, operation optimization 

and fault detection and diagnosis.  

 

Figure 2: Scheme of the digital services using numerical modelling for heat pump and refrigeration systems based 

on numerical modelling.  
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3.1.1 White-box modelling 

Physics-based or white-box models apply a comprehensive theoretical knowledge about the physical 

system they represent. In heat pump and refrigeration systems, physics-derived relationships include 

mass, momentum, energy balances, equations for describing component functionality and system 

equations. However, physics-based postulates can be partially or completely derived from measured 

data (e.g. equations of state). Bohlin and Græbe [42] suggested that the discrepancies between physics-

based models and experimental data can be mainly attributed to output noise such as measurement 

uncertainties and modelling errors.  

A number of modelling software tools have been applied to simulate the operation of heat pumps and 

refrigeration systems under steady state and dynamic conditions. Examples of simulation software used 

in such applications are Engineering Equation Solver (EES) [43], Matlab [44], Modelica [45] and 

Python [46]. These simulation tools may also be complemented with software libraries that include 

empirical and theoretical models of the thermophysical properties of working fluids. Coolprop [47] and 

Refprop [48] are examples of thermophysical property libraries applied to simulate refrigeration and 

heat pump systems. TIL Suite [49], [50] is an advanced Modelica component library for thermodynamic 

systems for steady-state and transient simulation of complex fluid systems such as heat pump, air 

conditioning, refrigeration or cooling systems. With the included substance property library TILMedia, 

system simulation with various mediums can be performed.  

Steady-state simulation models are useful to represent systems whose behaviour can be considered fixed 

over time. This type of simulation is useful for the design, analysis and optimization of heat pump and 

refrigeration systems, characterizing their operation under different boundary conditions. However, 

steady-state simulations do not focus on the analysis of time-dependent processes in a system describing 

transient behaviour between operating points.        

As opposed to steady-state models, dynamic models enable analysis of the time-dependent behaviour 

of heat pumps and refrigeration systems. Dynamic models can be applied to design, optimize and 

analyse the dynamic response of heat pump and refrigeration systems exposed to varying boundary 

conditions. Physics-based dynamic models are typically more complex than steady-state models, 

leading to larger simulation time. According to Rasmussen and Shenoy [51], the complexity of dynamic 

models of vapour compression systems often resides in the two-phase heat exchangers, where the 

thermal dynamics are generally slower than the mechanical dynamics.  

A model can also combine steady-state and dynamic physical expressions simultaneously in different 

components. This applies when the dynamic operation of one or several components of interest in a 

vapour compression system is not significantly affected by the time-dependent behaviour of the 

remaining components. Thereby, the operation of the latter can be defined under steady-state conditions 

to simplify the numerical model of the system and reduce the simulation time.     

3.1.2 Black-box modelling 

Data-driven or black-box approaches describe a physical process or system by means of observations 

about its behaviour, without describing the fundamentals behind its operation. Mirnaghi and Haghighat 

[52] suggested that data-driven methods can provide accurate predictions about reality, adapt to 

different operating conditions and leverage existing sensing devices. Here, a distinction is made 

between statistical methods, machine learning and other data-driven methods.  

3.1.2.1 Statistical methods 

Statistical methods allow collection, organization, analysis and interpretation of data [53]. Methods that 

are based on statistics that focus on learning from data are considered within the scope of machine 

learning [54]. Several statistical approaches have been included in frameworks for monitoring, FDD 
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and operation optimization of heat pump and refrigeration systems. Examples of this are principal 

component analysis (PCA), Kalman filtering, moving averages and autoregressive algorithms. 

PCA is a multi-variate statistical analysis method in which a group of correlated variables are converted 

into a new group of variables, which are uncorrelated or orthogonal to each other [55]. This technique 

allows capturing the variability of the data using fewer variables and thereby simplifying data analysis. 

PCA can be used as a complement of FDD methods or for system monitoring. The dimensional 

reduction performed by PCA allows identification of variables that are responsible for the variability of 

a certain output, for example due to a fault or performance degradation [56]. Other simpler statistical 

techniques such as correlograms (or charts of correlation statistical indicators) can also be used to 

identify the degree of interconnection between input and output variables.   

Discrete time dynamical models of the ARMAX type can be used to model linear time invariant (LTI) 

systems. Such models are actually stochastic difference equation models. The AR is the Auto-

Regressive part, where the system output is a linear function of previous system output values. The MA 

is the Moving Average part and it is a function of the previous error values. This is the stochastic part, 

which enables a description of the noise entering through the system from inputs, referred to as the 

system noise. Finally, the X is the model part with the exogenous input, which comprises input variables 

driving the system output. ARMAX models are able to describe the output of a dynamic process 

assuming that it depends linearly on its previous values and certain stochastic terms of interest [57]. 

The parameters in such models are not directly interpretable from a physical point of view and thereby 

they are usually referred to as black-box models. However, they are excellent for performance 

prediction and FDD, providing to some extent interpretable results, such as stationary gains and time 

constants. They can be extended into being time adaptive and non-linear with non-parametric modelling 

techniques, e.g. basis splines.      

Kalman filtering is a method that enables estimation of unknown dynamic variables from imprecise 

measurements observed over time by estimating a joint probability distribution [57]. ARMAX models 

can be implemented as a Kalman filter. As a potential application, a Kalman filter can be used for 

similar applications as ARMAX models, mainly prediction and parameter tracking, the latter is often 

used for FDD by comparing real operating data from a heat pump or refrigeration system with a physics-

derived model, highlighting periods when the model does not match the measured data, as result from 

a fault.   

3.1.2.2 Machine learning methods 

Machine learning corresponds to the study of algorithms that can automatically learn about certain 

phenomena based on observations. According to Herlau et al. [54], machine learning can be divided 

into three main categories, namely supervised learning, reinforcement learning and un-supervised 

learning.  

Supervised learning algorithms identify connections between inputs and outputs of a process based on 

a group of data used as example, so called training data. For instance, this type of algorithm can be 

applied to detect a fault or performance reduction in a refrigeration system by identifying an abnormal 

behaviour in one or several of its operational variables. Examples of supervised learning methods are 

regression algorithms, support vector machines (SVM), neural networks, Bayesian networks and 

decision trees.  

Reinforcement learning algorithms analyse the relationship between a learning agent, the environment 

where it operates and the reward resulting from its interaction with the environment [54]. Unlike 

supervised learning, reinforcement learning methods are not provided with training data. Instead, such 

methods assess the consequences of every agent-environment interaction, finding the most rewarding 

set of decisions to reach a certain goal. Monte-Carlo and Q-learning methods are two examples of 

reinforcement learning algorithms. For example, a reinforcement learning algorithm could be applied 
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to identify the optimal operation schedule of a heat pump considering constrains such as electricity price 

and heating demand.  

Finally, unsupervised learning algorithms aim to find patterns in the data without previously defined 

labels [54]. Clustering algorithms are an example of unsupervised methods. For instance, such 

algorithms could be applied to group (or cluster) a number of faults that occurred in a refrigeration 

system in a year, finding associations that were not identified before. Some of the resulting clusters 

could include faults that are more likely to happen after the refrigeration system is serviced or when an 

abnormal parameter variation occurs. 

3.1.2.3 Other data-driven methods 

This section briefly describes other data-driven methods than those using statistics and/or machine 

learning that are used in numerical modelling methods for heat pump and refrigeration systems.  

Fuzzy logic is a multivalued logical system adopted to express imprecise and qualitative information in 

mathematical terms [58]. As opposed to Boolean logic where a value can be either 1 or 0, in fuzzy logic 

a value can be 1, 0 or any fraction (or percentage) in between. The multivalued property of fuzzy logic 

allows classification of imprecise information. For instance, 60 % of the thermostats in a building are 

adjusted within the range that corresponds to a “cold” environment. Then, fuzzy logic can be applied to 

construct a rule-based scheme between imprecise and qualitative inputs with precise numerical outputs. 

A potential application for such a structure is to define automatic control strategies for heat pump and 

refrigeration systems. Considering the previous example, if 60 % of the thermostats in a building are 

adjusted in the category “cold”, then the heat pump is operated at a specific heating capacity (e.g. 40 % 

of the nominal heating capacity). Fuzzy logic can also be used for system monitoring and FDD in 

combination with thresholds derived from expert knowledge.        

Diagnosis tables are another method used for system monitoring and FDD that can be used to formalize 

expert knowledge [14]. This model-free method uses heuristically acquired information to identify 

operational variables affected by faults. Diagnosis tables also allow definition of thresholds over which 

those operational variables are expected to vary under faulty operating conditions. The fundamental 

process behind diagnosis tables is based on a rule-based structure.     

3.1.3 Grey-box modelling 

A grey-box model is a physics-based model with data-driven terms to account for uncertainties 

regarding model formulation and measured values. Bohlin and Græbe [42] suggested that grey-box 

models incorporate the available knowledge about a system or a process, without requiring that such 

information is complete or reliable. Sohlberg and Jacobsen [59] distinguished five grey-box modelling 

branches shown in Figure 3.  

 

Figure 3: Scheme of the grey-box modelling branches proposed by Sohlberg and Jacobsen [59]. 
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The structure of the grey-box branches depends on how the physical information known a-priori is 

applied in the model, which is described as follows:  

 Constrained black-box identification: uses data-driven models that include parameters constrained 

by physical relations. For instance, this could be applied to detect fouling in a heat exchanger. A 

data-driven model could identify abnormal variations of the mass flow rate of the heat exchanger 

over time that can be attributed to fouling. Here, previously known variations of the mass flow rate 

associated to the operation of a pump can be included in the model as constrain.   

 Semi physical modelling: applies physical relationships to represent the non-linear behaviour of 

measured data, which are complemented with linear data-driven models. Considering the previous 

example, the heat transfer performance of a heat exchanger can be represented by a physics-derived 

parameter such as the UA-value. This indicator could be used as an input for a data-driven model 

to identify when its variability may be associated to fouling.      

 Mechanical modelling: applies a model that was initially described using physical derivations but 

its structure was refined based on measured data. For example, a model of the pressure loss across 

a heat exchanger could have been initially defined using a physics-derived friction factor model 

(e.g. Blasius correlation). However, overtime this model may not provide an accurate description 

of the pressure drop in a heat exchanger due to corrosion or other fault mechanisms affecting its 

surface. In this context, a data-driven model could be developed to describe the friction factor under 

the current operating conditions.        

 Hybrid modelling: uses physics-based and data-driven models as two separated components that 

complement each other in series or in parallel. As an example of this approach, a physics-based 

model of a vapour compression system can be used to represent the overall performance of the 

system and the relationship between components. This could be complemented with an independent 

data-driven model that allows identifying the performance degradation of the isentropic efficiency 

of the compressor over time.    

 Distributed parameter modelling: enables identification of the optimal spatial discretization of a 

physical element by using data-driven methods to find the integration of a physics-derived 

discretization that minimizes modelling errors. For instance, this approach could allow developing 

an optimal discretized model of a heat exchanger. Discrete components may include 

thermodynamic and fluid dynamic expressions to represent the heat transfer and pressure loss across 

the heat exchanger. The optimal number of discrete elements to minimize modelling errors may be 

found by using a data-driven model based on measured data. 

Grey-box models based on stochastic differential equations (SDEs) allow describing the dynamic 

behaviour of real systems, using a combination of physical and statistical modelling [57]. SDEs 

integrate deterministic expressions derived from physics with stochastic models to account for the 

disturbances entering a real system. For example, a physical model can represent the structure of a 

system and statistical methods can be applied for validation and parameter estimation (e.g. heat transfer 

and pressure loss coefficients). Bohlin and Graebe [42] suggested that stochastic grey-box models rely 

on the person designing the model to adjust its structure. The authors indicated that this model 

adjustment is often performed as an iterative process where the model designer proposes and tests 

different tentative model structures. As an alternative to this human-dependant process, a number of 

model adjustment methods were developed [60], which can automatically identify model structures 

based on prediction performances. 

3.2 System monitoring 

This section summarizes digital solutions applied to monitor the operation of heat pump and 

refrigeration systems. Monitoring is regarded as the process of obtaining information about the 

operation of a system, verifying whether its performance is within expected values. For the given 

system, the heating or cooling rate provided and the power consumed are relevant examples of 
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quantitities to monitor. These are further connected into coefficient of performance (COP) which shows 

the ratio between the energy service provided and the cost of providing it. Tsutsui and Kamimura [61] 

suggested that model-based monitoring approaches provide a better description of the operation of the 

system than only determining the COP, since the latter is highly sensitive to weather conditions. Model-

based approaches enable monitoring of the relationships between input and output system variables as 

well as predicting their future behaviour. Model-based approaches can be physics-derived (white-box), 

data-driven (black-box) or a combination of the latter (grey-box). This review included model-based 

frameworks for real-time monitoring considering steady-state and/or dynamic operating conditions.  

3.2.1 White-box frameworks  

The operation of heat pump and refrigeration systems can be monitored by using thermodynamic 

simulation models validated with measurement data to identify daily and seasonal performance indices. 

Naicker and Rees [62] monitored the performance of a geothermal heat pump system with an installed 

heating capacity of 440 kW by means of measured data and a steady state thermodynamic model. The 

real system was monitored over a period of three years of operation using temperature and flow rate 

sensors independent from those of the existing control system. Other control-related variables such as 

valve positions and compressor speed were obtained from the central control system of the heat pump. 

The framework from Naicker and Rees was capable of calculating the COP and the seasonal 

performance of the heat pump, identifying how the existing control approaches affect the overall 

performance of the system. Gordon et al. [63] developed steady-state thermodynamic models to monitor 

the performance of two centrifugal chillers with 352 kW of cooling capacity each. The data to adjust 

the numerical models was obtained on a 30-minute interval from both chillers. Their model-based 

framework was used to monitor the COP of the system under full- and part-load conditions, 

characterizing its operation before and after maintenance was provided. Noel et al. [64] proposed a non-

invasive method to assess the performance of heat pumps based on defining an energy balance of the 

compressor. This method was validated on a residential air source heat pump, in which the COP was 

calculated under steady-state conditions.  

System monitoring methods for heat pumps based on thermodynamic models are included in services 

available in the market. The Energy Machines Verification Tool (EMV) [65] provides performance 

monitoring and predictive maintenance by means of smart sensors and thermodynamic simulation 

models of heat pumps. This tool uses temperature and pressure measurements from different points in 

the refrigerant loop as well as the compressor power uptake to determine performance indicators such 

as COP, compressor efficiency and heating/cooling capacities.   

3.2.2 Black-box frameworks 

One of the simplest data-driven system monitoring approaches apply regression algorithms that relate 

the COP or power uptake from a heat pump with temperatures from the sink and/or source streams. The 

method from Okuno et al. [66] included a relationship between the COP of a sewage water source heat 

pump with the heat source water inlet temperature. This approach was applied to monitor the 

performance of the system and its variation resulting from the presence of fouling in the evaporator. 

Other studies [67], [68] proposed polynomial regressions to estimate the power uptake from ground 

source heat pumps based on the temperatures of the source and sink streams and/or the heating capacity 

of the heat pump unit. Zou et al. [69] used linear and polynomial regressions to model the dynamic 

behaviour of the COP of a lake water source heat pump with a heating capacity of 1244 kW. The 

proposed COP model was defined as a function of the daily average temperature of the lake water. This 

model was able to predict the daily and seasonal var9iations of the real COP of the system. 

More advanced data-driven frameworks for system monitoring included machine learning techniques. 

The framework proposed by Yan et al. [70] applied several machine learning algorithms to monitor the 

performance of a ground source heat pump system with 670 kW of heating capacity. The algorithms 
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included neural networks, classification and regression trees as well as support vector machines. Those 

algorithms were trained with real-time measured data from the system, which did not include state point 

measurements of the refrigerant cycle. This framework was capable of estimating the short-term and 

long-term performance indicators of a system operating under dynamic conditions. Cirera et al. [71] 

applied a data-driven method using a self-organizing map (a type of artificial neural network) and PCA 

to monitor the COP of chillers. This approach was able to recognize the implications of different control 

strategies and at the same time identify anomalies in the operation of the system. The proposed 

framework integrated online and offline modules. In the offline part, the method was trained based on 

historical data, which was then updated in the online module using real-time measured data. 

3.2.3 Grey-box frameworks        

A number of studies [72], [73] have combined physics-derived models with data-driven methods to 

monitor the performance of heat pumps and refrigeration systems. Tardif et al. [72] applied Functional 

Muck-up Units (FMU) to combine the dynamic model of a heat pump and a building made in TRNSYS 

with the electricity grid domain developed in Python. The aim of their study was to analyse the 

interaction between the electricity grid and the power load represented by the heat pump, evaluating the 

flexibility potential of such system configuration. Green et al. [73] investigated how to operate 

supermarket refrigeration systems optimally based on an accurate monitoring of a variable cooling load. 

The authors focused on the problem of adjusting the operation of refrigeration systems with multiple 

compressors with different capacities considering that the cooling load could be directly estimated. 

They proposed a monitoring approach based on measured data and thermodynamic simulation models 

to indirectly calculate cooling loads and to estimate the COP of the system in real-time. The calibration 

of a thermodynamic model is often performed manually by adjusting parameters of the model so that 

its output matches measured variables of interest. Data-driven methods can be used for the calibration 

of physics-derived models, increasing the level of automation in the modelling process. Mehrfeld et al. 

[74] developed a framework to calibrate the dynamic physical simulation model of an air-source heat 

pump. Their framework included a thermodynamic model developed in Modelica with an optimization 

algorithm implemented in Python, where the minimization of a scalar objective function was performed. 

The optimization applied the heating circuit flow temperature and electrical power uptake of the heat 

pump as target variables, achieving a root mean square error of approximately 1.6 % between simulated 

and measured values.               

3.3 Fault detection and diagnosis  

This section provides a review of fault detection and diagnosis (FDD) methods applied to large-scale 

vapour compression systems. Large-scale systems are considered as those with heating or cooling 

capacities equal or above 200 kW. This classification was also used in a related study [75] to categorize 

large-scale heat pump systems. Previous studies also investigated the performance and application of 

FDD techniques for HVAC systems and small-scale heat pump applications, as summarized in [9], [52], 

[76]. However, the scope of the present section was limited to large-scale systems.  

In this report, the term fault is regarded as the state of an item characterised by its inability to perform 

an expected function, which can be total or partial [77]. FDD are procedures that aim to determine 

whether a fault has occurred and identify the characteristics of a fault (e.g. type of fault, location, 

magnitude and time of occurrence) [56]. The faults presented in Table 1 were investigated in previous 

studies that applied FDD methods in large-scale vapour compression systems. The FDD methods used 

in such studies are summarized in Table 2. Among all the 26 studies found in the literature, seven studies 

focused on large-scale heat pump systems, all of which applied physical models for FDD. The other 

studies focused on FDD for chillers, where the largest fraction of them applied experimental data 

developed by ASHRAE RP-1043 [13]. Katipamula and Brambley [78] proposed that FDD methods can 

be categorized based on their structure, namely model-based methods and process history based, as 

shown in Figure 4. The authors defined model-based methods as those that apply information of the 
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system known a-priori, which is in agreement with the definition of white-box frameworks used in the 

present report. Process history based models correspond to those that use observations rather than a 

fundamental insights about the system, analogous to black-box frameworks. Grey-box frameworks 

were also regarded as process history based methods since they are partially defined based on 

observations. Quantitative model-based methods apply detailed or simplified physical models (e.g. 

thermodynamic model of a heat pump system or hydrodynamic model of the pressure drop across a 

pipeline) to identify and characterize faults. Physics-based models may also be applied in qualitative 

model-based methods, but here the output is nonnumeric. In this type of methods it is possible to identify 

the presence of a fault and its potential causes but not the mathematical expressions that allow 

characterizing them. Moreover, qualitative model-based FDD comprise rule-based methods, which can 

use knowledge based on experience, first principles and specific thresholds. Model-based and process 

history based methods may analyse the inconsistencies between measured and expected outputs, 

referred to as residuals. This type of FDD methods take measurements from the system as inputs and 

produces a residual as output, where a residual signal equal to zero refers to a non-faulty operation.  

Table 1: Faults targeted in FDD methods for large-scale vapour compression systems 

Fault Abbreviation 

Condensation in the suction line CS 

Condenser fouling CO 

Defective expansion valve DE 

Defective sensors (temperature, mass flow and power uptake) DS 

Evaporator fouling EF 

Excessive oil EO 

Low mass flow in the sink stream LMC 

Low mass flow in the source stream LME 

Oil leakage OL 

Non-condensables in the refrigerant NC 

Reduced compressor efficiency CE 

Refrigerant leakage RL 

Refrigerant overcharge RO 

Rotor wear RW 

 

Figure 4: Classification of fault detection and diagnosis methods according to Katipamula and Brambley [78].  

3.3.1 White-box frameworks 

The white-box FDD methods presented in Table 2 used quantitative rule-based approaches based on 

first principles, considering the classification scheme shown in Figure 4. Pelet and Favrat [31] identified 
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a dynamic increase of the pinch-point temperature difference in the evaporator of a heat pump, which 

was attributed to the presence of fouling. The existence of fouling was also detected in [29], [32], [33], 

by observing an increase of the thermal resistance of the evaporator and/or a COP and capacity 

reduction. Meesenburg et al. [30] identified condensation in the suction line of an ammonia heat pump 

by using a dynamic simulation model and physical principles. They observed that the wall temperature 

of the suction pipeline was below the saturation temperature of ammonia during fast ramp-down 

operation. This may lead to refrigerant condensation that can have a negative impact over the 

compressor. Chamoun et al. [27] used a dynamic simulation model to evaluate the effect of an air-purge 

during the start-up of a large-scale heat pump using water as refrigerant. Here, the existence of non-

condensables was observed from the differences between the dynamic behaviour of measured and 

simulated operational variables (e.g. condensation and evaporation temperatures and pressures).     

A number of companies have proposed products and/or services for FDD in heat pumps and 

refrigeration systems based on physics-based models. Wronski and Jonsson [79] developed a remote 

FDD system for container refrigeration units applied in shipping applications. Their framework applied 

a generic steady-state simulation model to evaluate simultaneously the operation of multiple 

refrigeration units using measured data that was obtained remotely. This approach was able to improve 

the energy efficiency of the refrigeration units by optimizing maintenance actions.          

3.3.2 Black-box frameworks 

All the studies found in the literature that used black-box methods for FDD in large-scale vapour 

compression systems focused on chillers (see Table 2). Moreover, in all those studies experimental data 

was obtained under steady-state conditions. The only exceptions for this were the studies from Bailey 

and Kreider [88] and Yan et al. [97] that developed FDD methods for a dynamic system operation. The 

black-box FDD methods found in the literature were the following: 

 Supervised machine learning methods: neural networks, Bayesian networks, support vector 

machines (SVM), associative classifier, k-nearest neighbours (KNN), linear discriminant 

analysis, as well as linear and polynomial regressions. 

 Unsupervised or semi-supervised machine learning methods: support vector data description 

(SVDD), Density-based spatial clustering of applications with noise (DBSCAN), and principal 

component analysis (PCA). 

 Learning methods based on fuzzy logic 

 Time series models: autoregressive model with exogenous inputs (ARX) 

 Discretization algorithms: decision table, entropy-based discretization, equal-width 

discretization, and equal-frequency discretization [100]. 

Principal component analysis (PCA) was the most frequently used black-box FDD approach in the 

reviewed studies, as shown in Table 2. According to Russel et al. [56], the dimensional reduction of a 

dataset performed by PCA allows identification of the variables responsible for a fault and/or the 

variables that are most affected by a fault. Other machine learning methods such as Bayesian networks 

and support vector machines (SVM) were also commonly used in the literature as stand-alone methods 

or together with PCA. 
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Table 2: FDD methods applied in large-scale vapour compression systems. 

Ref. 
Source 

FDD Method 
Type of 
FDD 

Faults 
System type / Compressor / 
Refrigerant / Nominal capacity [MW] 

Type of Data 

[18] ARX; ARMAX; Box-Jenkins + 
Correlogram + Decision table 
+ Simplified physical model 

Grey-box LME; LMC; RL; 
NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[80] Associative classifier Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[17] Bayesian networks Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[16] Bayesian networks Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[81] Bayesian networks + 
Discretization algorithms 

Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[82] Bayesian networks + PCA Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[83] DBSCAN + Simplified physical 
model 

Grey-box LME; LMC; RL Chiller / Screw / R-22 / 0.4 Experimental 

[84] Decision tree + Simplified 
physical model 

Grey-box LME; LMC; RL Chiller / Screw / R-22 / 0.4 Experimental 

[27] Detailed physical model White-box NC HP / Screw / R-718 / 0.4 Experimental / 
Simulated 

[29] Detailed physical model White-box EF HP / Screw / R-134a / 0.8 Observational 

[30] Detailed physical model White-box CS HP / Reciprocating / R-717 / 0.8 Observational / 
Simulated 

[31] Detailed physical model White-box RW; EF HP / Screw / R-717 / 3.9 Observational 

[32] Detailed physical model White-box EF HP / Screw / NS / 0.7 Simulated 

[33] Detailed physical model White-box EF HP / NS / R-717 / 2.4 Observational 

[85] EWMA + Simplified physical 
model 

Grey-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[21] GAN Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[86] Linear discriminant analysis Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[63] Linear regression + Detailed 
physical model 

Grey-box EF Chiller / Centrifugal / R-11 / 0.7 Observational 

[87] Linear regression + Fuzzy 
logic + Expert knowledge 

Black-box LME; LMC; DE; 
CE 

Chiller / Reciprocating / R-22 / 0.3  Experimental 

[28] Linear regression + Simplified 
physical model 

Grey-box LME; EF HP / NS / R-134a / 0.4 Observational 

[88] Neural networks Black-box RL; RO; OL; 
EO; LMC; CF 

Chiller / Screw / R-22 / 0.2 Experimental 

[89] Neural networks + Fuzzy logic Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[90] Neural networks Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[91] PCA Black-box LME; RL; LMC; 
CE 

Chiller / Centrifugal and Screw / R-
134a / 0.2  

Experimental 

[92] PCA Black-box DS Chiller / Screw / NS / 1.4  Experimental 
[19] PCA Black-box RO; EO; NC; 

CF; EF 
*Chiller / Centrifugal / R-134a / 0.3 
and 5.0 

Experimental / 
Observational 

[93] PCA + SVM + KNN Black-box RL; RO Chiller / Screw / R-134a / 0.4 and 
0.7 

Experimental 

[14] PCA; FDD Table; Multiple 
Linear regression; Linear 
discriminant analysis + 
Simplified physical model 

Grey-box LME; LMC; RL; 
RO; EO; NC; 
CF; EF 

*Chiller / Centrifugal / R-134a / 0.3  Experimental / 
Simulated 

[94] PCA; SVDD Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[95] Polynomial regression + 
Relative sensitivity 

Black-box LME; LMC; RL; 
RO; EO 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[22] Polynomial regression + 
Simplified physical model 

Grey-box LME; RL; EO; 
NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 
and 5.0 

Experimental / 
Observational 

[96] SVDD Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[97] SVM + ARX Black-box LME; LMC; RL; 
NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[98] SVM Black-box LME; LMC; RL; 
RO; EO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

[99] SVM + EWMA + Simplified 
physical model 

Grey-box LME; LMC; RL; 
RO; NC; CF 

*Chiller / Centrifugal / R-134a / 0.3 Experimental 

* Experimental data from ASHRAE RP-1043 
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3.3.3 Grey-box frameworks 

The study from Gordon et al. [63] was the only one shown in Table 2 that applied a detailed physical 

model and a data-driven method for FDD. This framework was based on a thermodynamic model of a 

chiller complemented with a linear regression to identify the existence of fouling in the evaporator. The 

other grey-box FDD frameworks for large-scale systems found in the literature were based on simplified 

physical models. As shown in Table 2, several studies using the ASHRAE RP-1043 database [14], [18], 

[85], [99], [101] applied grey-box models as a combination of data-driven methods and simplified 

physical models. The simplified physical models in such studies corresponded to a combination of 

direct measurements, calculated variables and control variables, defined as characteristic variables and 

parameters in ASHRAE RP-1043 [13]. Examples of characteristic variables and parameters are the UA-

value of heat exchangers, the super heating and the COP of the system. Previous studies [13], [14], 

[102] suggested that using characteristic variables and parameters for FDD provide more robust and 

sensitive estimations than using direct measurements.  

3.4 Optimization of system operation 

Control strategies for heat pump and refrigeration systems often relies on conventional control 

techniques such as ON/OFF controllers, proportional-integral (PI) controllers and proportional–

integral–derivative (PID) controllers [103]. The operation of heat pumps and refrigeration systems 

depends on the non-linear thermal and mechanical behaviour of the system and its interaction with 

source and sink streams. Conventional control strategies can only operate reactively to that behaviour. 

To overcome this limitation, advanced control strategies such as model predictive control are applied 

in different thermal energy systems [104]. Model predictive control is a framework that relies on 

dynamic models of a system and its forecasted behaviour to provide real-time control optimization. 

Such a control strategy enables optimizing the operation of complex systems considering multiple 

constrains from inputs (sensors) and outputs (actuators) [105]. Data-driven modelling methods may 

also be included in model predictive control strategies to optimize the operation of heat pumps and 

refrigeration systems by adapting their structure using measured data [106]. 

Control strategies for vapour compression systems include SISO (Single Input Single Output) control, 

MIMO (Multiple Input Multiple Output) control. Karjalainen [6] performed a simulation-based study 

to compare different capacity control strategies for heat pumps, evaluating their potential use in online 

set point optimization frameworks. This study suggested that a MIMO control strategy to adjust the 

expansion valve and compressor speed could reach a higher COP than the other strategies like SISO, 

considering superheat control and heat exchanger pump operation. However, using MIMO increased 

the complexity to define optimal operation points of the system compared to the other control strategies 

analysed. 

3.4.1 White-box frameworks 

Model predictive control frameworks based on physics-derived models to optimize heat pump operation 

were studied in [107]–[109]. Kajgaard et al. [107] integrated a simplified physics-based model of a 

house and a heat pump into an MPC framework. Similarly, Weeratunge et al. [108] included physics-

derived models in an MPC to optimize the operation of a solar assisted ground-source heat pump with 

thermal energy storage for space heating. The MPC proposed by Antonov et al. [109] also focused on 

the optimization of a ground-source heat pump, which was coupled with auxiliary boilers and passive 

heating systems. The three MPC frameworks [107]–[109] aimed to minimize costs related to space 

heating by optimizing the operation schedule of the heat pumps subject to electricity price variations 

and capacity constraints. The physical derivations used in those frameworks were limited to a static 

COP model of a heat pump without considering the thermal or mechanical dynamics present in real 

systems.  
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A number of studies proposed self-optimizing set point frameworks for heat pumps considering steady-

state operating conditions [5], [110] and dynamic conditions [111]–[113]. Hu et al. [111] and Wang et 

al. [112], [113] applied extremum seeking control algorithms to solve real-time set point optimization 

problems on Modelica-based simulation models. As defined in [114], extremum seeking control is a 

real-time adaptive control method that can adjust to the unknown dynamics of a system. In general 

terms, this control strategy adjusts the function being optimized (i.e. objective function) according to 

artificially induced perturbations in the system. Extremum seeking control has been applied to optimize 

the operation of dynamic heat pump models since it can search for an optimal input in real-time 

considering non-linear relationships between variables. 

3.4.2 Black-box frameworks 

The MPC framework proposed by Burns et al. [115] was able to optimize the operation of vapour 

compression systems with different configurations by using an adaptable data-driven structure. The 

proposed MPC could activate or deactivate individual evaporators, where a single control algorithm 

could be used for different system configurations. According to Burns et al, such a MPC may lead to a 

lower computational complexity and computational storage requirement compared to other system-

specific MPC approaches.      

3.4.3 Grey-box frameworks 

Peirelinck et al. [116] developed a set point optimization algorithm based on reinforcement learning to 

adjust the operation of a simulated heat pump for building space heating supply. In their study, the heat 

pump, building components and HVAC systems were simulated with Modelica under dynamic 

operational conditions. The reinforcement learning framework was implemented using the Keras 

Python library [117]. Another grey-box set point optimization method was proposed by Green et al. 

[118], who studied the optimization of supermarket refrigeration systems with a compressor rack. In 

this study, a simplified thermodynamic model was complemented with an optimization method named 

invasive weed optimization. The proposed framework was capable of searching for optimal set points 

for local controllers in the refrigeration system under steady state and dynamic operating conditions.     

Laferriere and Cimmino [119] developed an MPC to optimize the operation of a ground-source 

residential heat pump. The case study heat pump was provided with an electrical heating device in the 

source stream outlet to increase the temperature of the injection and thereby assisting the heat pump 

when required. The operation of a physics-derived model of the heat pump and the electric heating 

device implemented in Modelica was adjusted based on measured data from the case study using a 

Kalman filter. 

4 Discussion 

Physics-derived simulation models allow simulation for analysis of design and operation of heat pump 

and refrigeration systems under different system configurations and boundary conditions. Several 

white-box frameworks for monitoring, FDD and operation optimization presented in the review 

required the development of thermodynamic models of the real system. Thermodynamic models can 

provide comprehensive information about the operation of the system and they may provide insights 

about the root cause of faults. However, the development of thermodynamic models requires enough 

operational data for the validation process. These measured data can be obtained using portable sensing 

devices and/or existing sensors, actuators and software parameters incorporated in the plant supervisory 

control and data acquisition system (or SCADA system). As suggested by Venkatasubramanian et al. 

[120], historical data from a system is not always available from its SCADA interface since only a few 

data patterns may be present, covering only fractions of the period of interest. Rasmussen and Shenoy 

[121], described challenges faced when developing dynamic models of vapour compression systems. 

The highlighted challenges included using different time scales within the same dynamic model, 
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reducing the simulation time of complex systems to perform real-time analysis, performing a detailed 

validation of dynamic models and the simulation of hard transients (e.g. system start-up or shutdown).  

Grey-box models leverage the advantages of physics-based and black-box modelling approaches. 

Complementing physics-based dynamic models with data-driven methods has the potential to reduce 

the required data for modelling, improve model reproducibility and improve its ability to adapt to 

different system configurations and operating conditions. As proposed by Sohlberg and Jacobsen [59], 

the combination between a physics-derived models and black-box models can be achieved with 

different model structures. The grey-box monitoring frameworks proposed by [72], [73] applied 

physical models to describe the components of vapour compression systems, whereas black-box models 

were applied to represent systems that can be directly described by deterministic expressions (e.g. 

electricity prices and cooling loads). The share of the black-box component in a grey-box model 

depends on the availability of a priori knowledge about the system and the discrepancies between the 

model and the real system.  

MIMO control strategies for vapour compression systems may reach higher COP values than SISO [6]. 

However, optimizing such control strategies may lead to more complex optimization problems and 

thereby longer calculation times compared to simpler control methods like SISO. The optimal control 

strategy for vapour compression systems often depends on the specific characteristics of the system and 

its boundary conditions. In several studies [28], [62], [91], either a physics-based, black-box models or 

a combination of both was used to evaluate the system behaviour resulting from different control 

strategies. This approach allows estimating which control strategies and set points achieve the highest 

performance indicators. As indicated in [7], a period of several months is often required to adjust the 

control system of large-scale heat pumps after they were installed. A method to evaluate potential 

adjustments in the control system with model-based methods could be implemented to reduce the fine-

tuning period of heat pump control systems during the start-up phase.  

Model-based FDD methods, whether white-box, black-box or grey-box, can reduce the requirement for 

redundant sensors to identify and characterize faults. Numerical models implemented in digital 

platforms enable assessment of analytical redundancies between the real system and the model, e.g. by 

using residual analysis. Thereby, the abnormal operation of a system can be identified without the need 

to install additional sensing devices, which is associated with extra cost and space requirements. 

However, model-based approaches often simplify uncertainties associated with data collection (e.g. 

measurement uncertainty, state estimations) [120]. According to Willsky [122], the more complex the 

real system is, the more the FDD method depends on the model and the more important the robustness 

of the FDD method becomes. Here, robustness is interpreted as the capacity of the FDD method to 

provide accurate results regardless of the noise and uncertainties involved in the data collection process. 

Another challenge to consider in FDD is to model the nonlinear relationships between system variables, 

which is the case for heat pumps and refrigeration systems. Therefore, simple FDD methods such as 

linear regressions, may not reach the expected prediction performance. In particular, this may apply 

when attempting to identify multiple faults occurring simultaneously. Several studies [15], [123], [124] 

have developed FDD methods for multiple-simultaneous faults in vapour compression systems by using 

virtual sensors. Virtual sensors combine physics-based models with data analysis methods using 

measurements from low-cost sensors, to isolate specific variable behaviour associated with a certain 

fault.  

The outcome from FDD methods often changes with varying conditions of a process, as described in a 

number of studies [92], [120], [125]. The performance of a heat pump and refrigeration systems may 

degrade over time due to component wear or changes in its boundary conditions (e.g. weather, 

electricity prices, heating/cooling load). Detecting performance degradation besides identifying 

particular faults may prevent the occurrence of severe failures. Therefore, system monitoring 

frameworks could be coupled with FDD methods to alert about potential failures in the system, e.g. due 



18 

 

to aging of the components. For instance, Staino et al. [126] analysed experimentally the performance 

degradation of a refrigeration compressor. The information obtained experimentally was used to 

develop a framework for system monitoring and FDD that was later applied continuously in a real 

refrigeration system. This study relied on a thermodynamic model of the system validated with 

experimental data to define the admissible limits of operation in which faults were not expected. Other 

approaches that characterised performance degradation focused on the detection and diagnosis of 

fouling in heat exchangers [127]–[129], which used empirical models of material deposition.   

A number of studies applied black-box and grey-box approaches for FDD in experimental setups (see  

Table 2). However, only a fraction of those studies was based on observational data from case studies. 

Moreover, there is a lack of standardized criteria for further implementation of data-driven frameworks 

in heat pumps and refrigeration systems. For example, no standardized document provides guidelines 

about which machine learning methods are better suited for FDD or for system monitoring, or how such 

methods should be implemented in real applications. Defining standardized criteria for data-driven 

frameworks may allow improving their description and prediction performance, accelerating their 

integration in existing monitoring and control systems, as well as enabling the interoperability across 

different services they provide. 

5 Conclusions 

The present report provided a review of digital solutions for heat pump and refrigeration systems. The 

review focused on services such as system monitoring, fault detection and diagnosis as well as operation 

optimization, considering numerical models integrated in digital platforms. Physics-based or white-box 

models were described to provide comprehensive insights related to the operation of real systems in 

real-time, which can be used to analyse potential unexpected operation of a system. Integrating physics-

derived models with data-driven methods may reduce the requirement for measured data, increase the 

reproducibility of the model and improve its ability to adapt to different system configurations and 

operating conditions. It was noted that system monitoring could be integrated with fault detection and 

diagnosis methods to distinguish performance degradation that may later lead to severe faults. 

Moreover, the selection of suitable model-based fault detection and diagnosis methods should consider 

aspects such as model adaptability, robustness and prediction performance. From the reviewed studies, 

it was identified that further research is needed regarding the analysis of black-box and grey-box fault 

detection and diagnosis models for heat pump and refrigeration in operation.  
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