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Abstract
This tutorial details the use of topology optimization (TopOpt) for the inverse design of
electromagnetic mode-converters. First, the design problem under consideration is stated.
Second, suitable models for the geometry and physics are formulated and third the TopOpt
method is outlined. Then follows three increasingly advanced design examples. In the first, the
mode converter is allowed to consist of a non-physically-realizable material distribution, leading
to a design exhibiting near perfect conversion from the input mode i to the output mode o in
terms of power conversion (Po,B/Pi,A > 0.99), providing a performance benchmark. Then
follows two examples demonstrating the imposition of relevant restrictions on the design, first
ensuring a physically realizable device blueprint, and second introducing feature-size control
and ensuring device connectivity. These examples demonstrate how TopOpt can be used to
design device blueprints that only require a minimum of post-processing prior to fabrication,
which only incur a minor reduction of performance compared to the initial unconstrained
design. A software tool is provided for reproducing the first design example. This tool may be
extended to implement the other design examples in the paper, to explore other device
configurations or, given sufficient computational resources, to design 3D devices.

Supplementary material for this article is available online
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1. Introduction

This paper provides a tutorial for the application of density-
based topology optimization (TopOpt) [1–3] to the design
of optical mode converters [4, 5]. Three design examples of
increasing complexity are provided, demonstrating that device
blueprints supporting near perfect mode conversion, designed
to adhere to fabrication limitations, may be created using
TopOpt. Although only considering examples of conversion
of optical modes between waveguides, the method is general
and may be applied to a wide range of mode-conversion prob-
lems by adjusting relevant details in the tutorial appropriately.

While having been proven capable of solving a wide
range of electromagnetic design problems [6, 7], TopOpt in
undeniably a non-trivial method to apply, potentially barring
researchers, scientists and engineers alike from utilizing the
tool for their applications. This work serves to lower any such
barriers, and to this end a software tool, based on COMSOL
Multiphysics [8], is provided along with this text, allowing
the reader to reproduce the first design example without any
implementation work required.

TopOpt, and other related inverse design methods, have
experienced rapidly growing interest in recent years for a vari-
ety of electromagnetics applications, ranging from its early
adaptation for design of photonic-crystal-based devices [9]
over photonic cavity design [10–12], the design of optical
lenses [13] and concentrators [14], throughmore exotic applic-
ations such as designing topological insulators [15, 16] to the
design of optical multiplexer and mode-converters [17, 18] to
name but a few. The latter being most directly relevant to this
paper.

While the basics of the TopOpt method are presented in
the following, not all aspects are explained in detail for brev-
ity. The interested reader is instead recommended to explore
these details by consulting prior works, such as tutorials on
the basics of the TopOpt method in the context of photonics
[3, 19] and/or the review paper by Jensen and Sigmund [6]
and references therein.

In brief, the density-based TopOpt method is a widely
applicable, large-scale (in terms of design degrees of freedom)
[20] inverse design method utilizing gradient-based optimiza-
tion and adjoint sensitivity analysis [21] for efficient gradient
calculations. It relies on a differentiable model for the design
problem (geometry and physics) in question, most often a set
of partial differential equations along with appropriate bound-
ary conditions defined and solved on a particular modeling
domain; on a mathematical field, discretized using a (high)
number of design variables, that controls the geometry of the
device under design; on a set of auxiliary tools used to con-
strain and modify the mathematical field prior to interpolating
device geometry, using said field to ensure physical realizabil-
ity, device fabricability etc for the optimized design. Different
realizations of the method, with more-or-less functionality,
have been implemented across a variety of research, open-
source, and commercial codebases.

As outlined above, TopOpt may be used for a wide class of
photonics device design problems. That being said, the goal
of this tutorial is to demonstrate how TopOpt may be used

specifically to design optical mode converters. The proced-
ure explained in this work may however be adapted to other
photonic device design problems by adjusting the individual
steps appropriately.

To limit the computational costs associated with the design
examples, thus allowing readers to reproduce results on a
standard laptop/desktop computer, the examples are restricted
to two spatial dimensions. The procedure detailed in the fol-
lowing is however directly applicable for design problems in
both one, two and three spatial dimensions. Thus an interested
reader, with access to sufficient computational resources, will
be able to extend the examples to three spatial dimensions by
making the appropriate minor modifications.

2. Methods

2.1. Design problem example

The mode-converter design problem (MCDP) considered as
the example in the following is,

MCDP: Given an optical waveguide A sup-
porting the propagating mode i at the angular
frequency ω, and an optical waveguide B sup-
porting the propagating mode o at ω, sketched
in figures 1(C) and (D) respectively: Design a
device which, when inserted between A and B
as sketched in figure 1(E), converts from mode
i in A to mode o in B.

A point-by-point procedure for solving MCDP using
simulation-based design tools may be stated as,

1. Formulate suitable models for the geometry (section 2.3)
and physics (section 2.2) and select related parameter val-
ues.

2. Calculate the field profile and propagation constant for
mode i in waveguide A (panel A of figure 1).

3. Calculate the field profile and propagation constant for
mode o in waveguide B (panel B of figure 1).

4. Excite the input waveguide in the mode-converter design
model problem (at ΓP,in in panel E of figure 1) using the
field profile of mode i calculated in step 2, and compute the
resulting electromagnetic field, EC , in the model domain
ΩC .

5. Using a suitable measure, calculate the overlap between
the electromagnetic field propagating along the output
waveguideB found in step 4, and the field profile for mode
o calculated in step 3.

6. Systematically adjust the mode-converter design (situated
in Ωd in figure 1(E)), to improve the overlap calculated in
step 5.

7. Repeat steps 4 through 7 until a stopping criterion is
reached.

To solve MCDP using TopOpt, the design problem must
be recast as a continuous optimization problem based on the
models for the geometry and physics as detailed in the follow-
ing sections.
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Figure 1. Sketches of model geometries. Panels (A)–(E) show the geometries used in the computations of (A) the mode i and associated
propagation constant, (B) the mode o and associated propagation constant, (C) mode i propagating along the waveguide A, (D) mode o
propagating along the waveguide B and panel (E) the mode-converter design problem. Panels (F)–(H) sketch the design domain containing
the mode converter showing (F) the initial guess for the design field ξ, (G) the smoothed initial design field ξ̃ and (H) the smoothed and

thresholded initial design field ¯̃
ξ along with markings of the boundary conditions used for the connectivity constraint in the example in

section 2.11.

2.2. Model geometries

The model geometries employed in the solution of MCDP
are sketched in figure 1 panels A–E. These are used in the
computation and analysis of the input mode i (panels A–B),
the output mode o (panels C–D) and the field resulting from
the input mode propagating from waveguide A, through the
mode converter under design, to waveguide B (panel E). The

model domain in panel A(B), labeled ΩP,A(ΩP,B), consists of
a one-dimensional cross-section of waveguide A(B) of width
hA,wg(hB,wg) embedded in a background of width hA,d(hB,d).
The cross-section is infinitely extruded along the z-direction.
This domain is used in the calculations of the profile and
propagation constant for mode i(mode o). The model domain
in panel C(D), labeled ΩA(ΩB), have width wB,d(wA,d) and
height hA,d(hB,d). Waveguide A(B), colored green(blue), has

3
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height hA,wg(hB,wg) and extends along the x-direction through
ΩA(ΩB), centered along the y-direction. A port, at whichmode
i(mode o) is coupled into the waveguide, is located at the
center of the domain, oriented normal to the waveguide. The
model domain in panel E, labeled ΩC , consists of a cent-
ral region of width wMCDP and height hMCDP bounded to
the left(right) by a light green(blue) region of width wPML,
labeled ΩPML. The domain contains the input waveguide A
(green) of height hA,wg, connected to a design domain Ωd

where the mode converter is situated, which in turn is con-
nected to the output waveguide B (blue) of height hB,wg.
The design domain is surrounded on all sides by a narrow
region (transparent light gray) employed in the inverse design
procedure as outlined in section 2.6. The port at which the
input(output) mode is excited(recorded) is placed δPort from
the left(right) edge of the center domain. The parameters
required to setup the five model geometries, and the values
assumed in the design examples, are given in table 1

2.3. Physics models

The electromagnetic field is modeled using Maxwell’s
equations [22], assuming linear, static, homogeneous, iso-
tropic, non-dispersive, non-magnetic materials as well as time-
harmonic electromagnetic field behavior, i.e. E = Ee−iωt and
H=He−iωt, where E(H) is the spatial distribution of the elec-
tric(magnetic) field, i is the imaginary unit, ω is angular fre-
quency and t is time.

First the input(output) mode i(mode o) in waveguide A(B)
is computed along with the associated propagation constant.
This is done by solving an eigenvalue problem, with appro-
priate boundary conditions, on a waveguide cross-section
embedded in a sufficiently large region of surrounding back-
ground material to avoid significant boundary effects, as
sketched in panel A(B) of figure 1. For the two-dimensional
problem considered in the following, the waveguide cross-
section is one dimensional and is infinitely extruded in the z-
direction by employing periodic boundary conditions, labeled
Γperiodic,1(2), and truncated using perfect electric conductors in
the y-direction, labeled ΓPEC. The solution to the eigenvalue
problem will be a set of modes and propagation constants,
from which the appropriate mode and constant is selected and
stored.

For the geometries in panels C and D of figure 1, periodic
boundary conditions are imposed between the left and right
boundaries, labeled Γperiodic,1(2). First-order scattering bound-
ary conditions are imposed on the top and bottom bound-
aries, labeled ΓScatt. A port boundary condition is imposed
along the green(blue) line at the center of the domain, labeled
ΓP,A(ΓP,B), at which the mode i(mode o) computed in the
previous step is introduced. Note that it is not necessary to
compute the electromagnetic field in ΩA(ΩB), as only the
boundary mode profile along ΓP,A(ΓP,B) for mode i(mode o)
is required in the design of the mode converter. However, cal-
culating the electromagnetic field in ΩA(ΩB) serves as a tool
for visualizing and investigating the propagating mode thus
ensuring that the model is correctly implemented.

For the model geometry in panel E, a first order scatter-
ing boundary condition is imposed along all outer boundaries,
labeled ΓScatt. A perfectly matched layer [23] is introduced in
the light green/blue regions, labeledΩPML, to minimize reflec-
tions from the termination of the waveguides. The input mode
i is excited at the port boundary condition (dark green line)
labeled ΓP,in, and the output mode o is evaluated at the port
(dark blue line), labeled ΓP,out.

The physics model equations solved to obtain the profiles
for mode i and mode o, and to compute the electromagnetic
field distribution in the domains ΩA, ΩB and ΩC, are,

Eigenvalue problem solved to compute the cross-section of
mode i in waveguideA yieldingEA,i(r) = ẼA,i(y)e−βi x,r ∈
ΓP,A and βi(ω):

∇×∇× ẼA,i(y,z)−
ω2

c2
εr(y,z)ẼA,i(y,z) = 0,

(y,z) ∈ ΩP,A ⊂ R2,

ẼA,i(y,z1) = ẼA,i(y,z2), H̃A,i(y,z1) = H̃A,i(y,z2),

(y,z) ∈ Γperiodic,1(2),

n× ẼA,i = 0, (y,z) ∈ ΓPEC. (1)

Eigenvalue problem solved to compute the cross-
section of mode o in waveguide B yielding EB,o(r) =
ẼB,o(y)e−βox,r ∈ ΓP,B and βo(ω):

∇×∇× ẼB,o(y,z)−
ω2

c2
εr(y,z)ẼB,o(y,z) = 0,

(y,z) ∈ ΩP,B ⊂ R2,

ẼA,o(y,z1) = ẼA,o(y,z2), H̃A,o(y,z1) = H̃A,o(y,z2),

(y,z) ∈ Γperiodic,1(2),

n× ẼB,o = 0, (y,z) ∈ ΓPEC. (2)

Transmission problem modeling mode i propagating along
waveguide A yielding EA(r),r ∈ ΩA at βi(ω), ω, εr(r):

∇×∇×EA(r)−
ω2

c2
εr(r)EA(r) = 0, r ∈ΩA ⊂ R2,

n× (∇×EA(r))− iβin× (EA(r)×n) =−2iβiEA,i(r),

r ∈ ΓP,A,

EA(x1,y) = EA(x2,y), HA(x1,y) =HA(x2,y),

(x,y) ∈ Γperiodic,1(2),

n× (∇×EA(r))− i
ω

c
εr(r)n× (EA(r)×n) = 0,

r ∈ ΓScatt. (3)

Transmission problem modeling mode i propagating along
waveguide B yielding EB(r),r ∈ ΩB at βo(ω), ω, εr(r):

∇×∇×EB(r)−
ω2

c2
εr(r)EB(r) = 0, r ∈ΩB ⊂ R2,

n× (∇×EB(r))− iβon× (EB(r)×n) =−2iβoEB,o(r),

r ∈ ΓP,B,

4
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Table 1. Parameters used to set up the model geometries in panels A–C of figure 1 and values used in the design examples.

Parameter Name wA,d hA,d hA,wg wB,d hB,d hB,wg wMCDP hMCDP he,d we,d wd hd wPML δPort

Unit (µm) (µm) (nm) (µm) (µm) (nm) (µm) (µm) (nm) (nm) (nm) (nm) (nm) (nm)
Value 12.00 7.75 500 12.00 7.75 900 12.00 7.75 2435 2435 2275 2275 1550 1000

Table 2. Parameter values for the physics models assumed in the examples.

Parameter Name ω c nSi nvacuum κSi κvacuum βi βo

Unit (rad s−1) (m s−1) (−) (−) (−) (−) (radm−1) (radm−1)
Value 2πc/1550 (nm) 2.9979 · 108 3.48 1.00 0.0 0.0 1.2712 · 107 1.2319 · 107

EB(x1,y) = EB(x2,y), HB(x1,y) =HB(x2,y),

(x,y) ∈ Γperiodic,1(2),

n× (∇×EB(r))− i
ω

c
εr(r)n× (EB(r)×n) = 0,

r ∈ ΓScatt. (4)

Transmission problem modeling the field propagation in ΩC
yielding EC(r),r ∈ ΩC at βi(ω), βo(ω), ω, εr(r):

∇×∇×EC(r)−
ω2

c2
εr(r)EC(r) = 0, r ∈ΩC ⊂ R2,

n× (∇×EC(r))− iβin× (EC(r)×n) =−2iβiEi(r),

r ∈ ΓP,in,

n× (∇×EC(r))− iβon× (EC(r)×n) = 0, r ∈ ΓP,out

n× (∇×EC(r))− i
ω

c
εr(r)n× (EC(r)×n) = 0,

r ∈ ΓScatt,

Perfectly Matched Layers for r ∈ ΩPML. (5)

Here, n is the surface normal, r is the spatial coordinate,
β∗ are modal propagation constants, c is the speed of light
in vacuum and εr ∈ {εr,wg,εr,bg} is the relative electric per-
mittivity for the waveguides and mode converter and for the
background medium, respectively. Note that when solving the
design problem using TopOpt the relative permittivity is actu-
ally computed from the refractive index, n, and extinction
cross-section, κ, using equation (17). The magnetic field, H,
is computed from the electric field as,

H=
i

µ0ω
∇×E, (6)

where µ0 is the vacuum permeability. For the design examples,
it is assumed that the waveguides and mode converter consist
of silicon and that the background material is air (vacuum).
The list of parameter values used when solving the physics
model problems is given in table 2

2.4. The waveguide (Eigen)modes

To solve MCDP the electric- and magnetic-field profiles
of mode i and mode o and the associated propagation con-
stants must be known. As outlined in section 2.3, these are

calculated by solving the eigenvalue problems in equations (1)
and (2). In all design examples, the lowest order TE mode in
waveguide A and the first higher order TE mode in wave-
guide B are selected as mode i and mode o. These modes
are visualized propagating along waveguideA and B by solv-
ing the time-harmonic model problems stated in equations (3)
and (4), using the previously computed mode profiles as the
excitation at the port boundaries. The resulting electric field
magnitude for EA(r) and EB(r) in ΩA and ΩB are presen-
ted in panels A and B of figure 2 on a max-normalized
colormap.

2.5. The objective function—mode conversion

With the design problem stated (section 2.1) and the geometry
and physicsmodels defined (sections 2.2 and 2.3), the next step
is to recast the design problem as a mathematical optimization
problem, which in turn may be solved using a gradient-based
optimization algorithm. To this end, the objective function to
be optimized is selected as follows.

Given the model problem in equation (5), an optimal solu-
tion to MCDP consists of a device, which when intro-
duced into Ωd in panel E of figure 1, losslessly converts
mode i propagating in waveguide A to mode o propagat-
ing in waveguide B. Another way of stating this is, that all
power propagating in mode i in waveguide A (introduced
in the model through the port condition at ΓP,in), is trans-
ferred through the device in Ωd to mode o in waveguide
B. Labeling the time-averaged power flow coupled in to the
domain through the port at ΓP,in as Pin and the resulting time-
averaged power flow in mode o in waveguide B as Po,B one
can define the figure of merit (FOM),

Φ =
Po,B
Pin

∈ [0,1], (7)

which equals unity for the perfect transmission of power from
the external input to the desired output mode o in waveguide
B.3 If power is lost to scattering or absorption, or if power is
coupled to another mode in waveguide B, Φ will take a value
between zero and one.

3 When disregarding numerical errors.

5
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Figure 2. Panel A(B) show the electric field amplitude using a max-normalized colormap for waveguide mode i(mode o) propagating along
the waveguide A(B) in the domain ΩA(ΩB) sketched in panel C(D) of figure 1.

The FOM in equation (7) can now be used to formulate
the objective function for the TopOpt problem through the
following steps. First, recall that the time-averaged power
flow through a surface Γ, is computed from the time-averaged
Poynting vector as,

P=

ˆ
⟨S(r)⟩ · dΓ=

1
2
ℜ
(ˆ

E(r)×H∗(r) · dΓ
)
, (8)

where ℜ denotes the real part and •∗ the complex conjug-
ate. Thus, to compute the power flow through a given sur-
face, one needs to know the electric and magnetic fields at said
surface. Second, under normal circumstances an electromag-
netic field propagating along a waveguide can be expanded in
an infinite series of orthogonal modes, Ek(Hk), k ∈ {1,2, . . .},
[24, p 214] i.e.

E=
∞∑
k=1

ekEk, H=
∞∑
k=1

hkHk. (9)

where the modal coefficients ek and hk may be computed as,

ek =

´
E×H∗

k · dΓ´
Ek×H∗

k · dΓ
, h∗k =

´
Ek×H∗ · dΓ´
Ek×H∗

k · dΓ
, (10)

withΓ being a plane intersecting the waveguide. Note, in prac-
tice a truncation using a finite number of terms is sufficient to
expand the field to sufficient accuracy.

Utilizing the modal decomposition4, and exploiting the
orthogonality of the modes, the time-averaged power flow of
the electromagnetic field may be written as a sum of the indi-
vidual modal contributions,

P=
∞∑
k=1

Pk, (11)

with the power flow in mode k calculated as,

Pk =
1
2
ℜ
(
ekh

∗
k

ˆ
Ek×H∗

k · dΓ
)
. (12)

4 Assuming that the electromagnetic field is sufficiently accurately captured
by a finite number of terms in the expansion ensuring interchangeability of
the modal sum and power flow integral.

Inserting equation (10) into equation (12) and assuming that
the power coupled into waveguideA is coupled perfectly into
mode i, Pin = Pi,A, one may write the FOM in equation (7) as,

Φ =
Po,B
Pin

= ℜ
(´

EC ×H∗
o,B · dΓP,out

´
Eo,B ×H∗

C · dΓP,out´
Eo,B ×H∗

o,B · dΓP,out

)
× 1

ℜ
(´

Ei,A ×H∗
i,A · dΓP,in

) . (13)

Here EC(HC) is the electric(magnetic) field obtained by
solving the model problem stated in equation (5). Ei,A(Hi,A)
is the electric(magnetic) field of mode i at ΓP,in in waveguide
A and Eo,B(Ho,B) is the electric(magnetic) field of mode o at
ΓP,out in waveguide B.

Now, if EC = Eo,B and HC =Ho,B at ΓP,in (only the
desired mode is excited in waveguide B) the expression in
equation (13) reduces to the ratio of the power in mode o at
ΓP,out to the power in mode i at ΓP,in. Hence if these powers
are equal, then no scattering or absorption occur and perfect
mode conversion is achieved.

The expression in equation (13) can be evaluated based on
the solution to the physics model problems (section 2.3). It is
taken as the objective function for the TopOpt problem.

2.6. The basic TopOpt problem

To solveMCDP using TopOpt [3], the problem is recast and
solved as a mathematical optimization problems of the form,

max
ξ

Φ(ξ), Φ : [0,1]Ωd → R,

s.t. ce,k(ξ) = 0, ce,k : [0,1]
Ωd → R, k ∈ {0,1, . . . ,Ni},

Nk ∈ N0

ci,l(ξ)< 0, ci,l : [0,1]
Ωd → R, l ∈ {0,1, . . . ,Nl},

Nl ∈ N0. (14)

Here, the scalar field ξ(r) constitutes the optimizable quantity
(the design field), that is used to control the material layout
in Ωd. That is ξ controls the geometry of the mode converter,
with ξ= 1 corresponding to the device material and ξ= 0 to
the background material. The functions ce,k and ci,l are used to

6
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impose a set of, problem dependent, equality and in-equality
constraints on the optimization problem.

In short, the problem of determining the geometry of the
mode converter is recast as the problem of maximizing a
function Φ (equation (13)) through iterative and systematic
modification of ξ, while respecting all constraints imposed
on the problem. Note that, crucially to the efficiency of the
TopOpt method, ξ is allowed to vary continuously between
zero and one. This choice enables the use of efficient gradient-
based optimization algorithms in the solution of equation (14).
The main challenge that this choice introduces, which will be
demonstrated in the first design example, is that the optim-
ized values of ξ(r) likely consists of large areas of interme-
diate, and thus non-physically meaningful values. A suite of
tools has been developed to eliminate the problem of interme-
diate design field values, as will be demonstrated in the second
design example.

A standard filtering procedure [25] is applied to the design
field ξ to limit rapid spatial oscillations using the equation,

−
(

rf
2
√
3

)2

∇ξ̃(r)+ ξ̃(r) = ξ(r), r ∈ Ωd,e. (15)

where rf is the filter radius. Note that the filtering procedure
is carried out over Ωd,e to enable feature-size control along the
edges of the design domainΩd (see section 2.11. The filter step
is followed by the application of a smoothed approximation of
a threshold operator [26], one of the tools used to eliminate
troublesome intermediate ξ-values,

¯̃
ξ =

tanh(β · η)+ tanh(β · (ξ̃− η))

tanh(β · η)+ tanh(β · (1− η))
. (16)

Here β is the threshold strength and η the threshold level.
By applying the threshold operation, along with a gradual
increase of β during the iterative solution of the optimiza-
tion problem, it is possible to recover a design field consist-

ing solely of device and background materials
(
¯̃
ξ ∈ {0,1}

)
.

Panels F-H of figure 1 illustrate the effect of applying of the
filter operation in equation (15) (panel G) and the threshold
operation in equation (16) (panel H) to the design field
(panel F).

For the design examples in the following sections, the initial
guess for the design field is taken to be ξ(r) = 0.5 in Ωd and
fixed values of either ξ(r) = 1 or ξ(r) = 0 are assigned inΩd,e,
as sketched in panel F of figure 1.

The filtered and thresholded design field ¯̃
ξ is coupled to the

physics model via the material interpolation [27],

ε(
¯̃
ξ) =

(
n( ¯̃ξ)2 −κ(

¯̃
ξ)2
)
− i
(
2n( ¯̃ξ)κ( ¯̃ξ)

)
,

n( ¯̃ξ) = nbg +
¯̃
ξ(nwg − nbg),

κ(
¯̃
ξ) = κbg +

¯̃
ξ(κwg −κbg). (17)

Through the steps outlined above ξ(r) controls the geo-
metry of the mode converter, and thus any change to the design
field will cause a change in the mode-converter layout.

The parameters related to solving the optimization problem
and the values used in the examples are listed in table 3

Table 3. Parameters used in the filter and threshold procedure
applied to the design field for the optimization problem. The
number of design iterations used to solve the problem is denoted nit.

Parameter Name η β rf nit

Unit (−) (−) (nm) (−)
Value 0.5 5 40 200

2.6.1. Non-convex design problems. Note that TopOpt is
almost always employed to solve design problems that, when
recast as optimization problems, are non-convex [28]. This
has, among others, the two implications that there is no guar-
antee that the solution identified by TopOpt will constitute
the globally optimal solution, and that the final design geo-
metry is often found to be sensitive to the initial guess. In
fact, in practice one will almost never discover the global
optimum for the design problem. For sufficiently geomet-
rically sensitive photonic design problems, exhibiting mul-
tiple local extrema with significantly varying FOM-values,
examples being grating [29] or cavity design [10], a care-
fully chosen starting guess, or a large number of starting
guesses may be required to attain satisfactory device perform-
ance when applying TopOpt. That being said, in practice it
is authors experience that even for such difficult problems,
most often only a few different initial guesses are needed to
achieve satisfactory performance. For less sensitive photonic
design problems, such as coupler design [30], metalens design
[31] beam-splitter design [32] and the present case of mode-
converter design, a simple uniform initial guess is often suf-
ficient to achieve (near) optimal device performance. In cases
where one already has a working device geometry for the prob-
lem at hand, this can also be used as the initial guess for the
optimization, however this risk getting the inverse design pro-
cess stuck in a local optimum as the working device geometry
might already be (nearly) ‘locally’ optimal. The fact that the
design problems are generally non-convex means that solv-
ing them using different initial guesses are likely to result in
different optimized geometries. That being said, for the three
design examples considered in the following, only a single ini-
tial guess was employed and near perfect mode conversion
achieved.

2.6.2. Practical implementation. The numerical implement-
ation of the physics models (sections 2.2 and 2.3) was
achieved using the finite element method [33]. The optim-
ization problem (section 2.6) was implemented based on
the discretized physics model and was solved using the
gradient-based optimization algorithm, the method of moving
asymptotes [34]. The gradients of the objective function and
constraints were computed using adjoint sensitivity analysis
[21] carried out based on the discretized physics model (see
appendix for an outline of the approach.). For the examples in
the following the mode-converter design domain was discret-
ized using square elements with a side length of 20 nm, first
order basis functions and nodal design variables.

The tutorial software supplied with this work is implemen-
ted in COMSOL Multiphysics [8] in a similar style to the
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tutorial software provided for the more basic TopOpt tutorial
in [3]. Readers interested in the details of the underlying finite-
element implementation of the model and TopOpt problems,
are recommended to consult [19] and associated software.
Here an electromagnetic metalens design problem is solved
using a freely available 200 line MATLAB code.

2.6.3. Use of software. The provided software tool is set up
to reproduce the first example in section 2.7. This is done by
opening the COMSOLMultiphysics model (v6.1) and execut-
ing the study named Study—Designing Mode Converter - 2D.
The electric and magnetic fields for mode profiles for the input
mode i and output mode o have already been precomputed
using the studies named Study—Calculating Input Modes -
2D and Study—Calculating Output Modes - 2D and stored in
the files, one of which is named BoundaryMode_I_Efield.txt
and preloaded into the model using interpolations, one of
which is named Input Mode E-field (ReEx_In, ImEx_In, . . .).
Visualization of mode i and mode o, propagating along wave-
guide A and waveguide B is achieved by executing studies
Study—Evaluating Input Mode Propagation - 2D and Study—
Evaluating Output Mode Propagation - 2D, respectively. In
order to evaluate the binarized version of the optimized design
the study Study—Evaluating Final Binarized Design - 2D is
executed. Computation of various quantities for the optimized
design is done using theDerived Values node under theResults
node. All fields are visualized using pre-configured plot groups
found under the Results node.

2.7. Example 1 - the naive approach

As the first design example,MCDP is solved using the mod-
els and procedure presented in sections 2.2–2.6, with the para-
meters in tables 1–3. This results in the design presented in
panel A of figure 3 showing the input waveguide (black) to
the left, the mode converter (gray-scale) in the middle, and the
output waveguide (black) to the right. The optimized mater-
ial distribution in Ωd clearly consists of a non-physical mix-
ture (gray) of air (white) and silicon (black). The presence of
large regions of gray-scale means that the device blueprint is
not physically realizable, outside perhaps further development
and application of non-standard fabrication techniques, such
as gradient index direct laser writing [35].

Setting a side for a moment the issue of realizing the design.
Visual inspection of panels B-C, showing |EC(r)| and the y-
component of EC(r) respectively, suggests near perfect mode
conversion from the input to the output waveguide. Computing
the reflectance and transmittance for the device, one obtains
R≈ 0.000025 and T ≈ 0.999 with a modal overlap between
the targeted mode o and the input mode i, measured in terms
of the power flow, of Po,B/Pi,A ≈ 0.996. That is, nearly all
power flowing through the mode converter to waveguide B is
transmitted into mode o as requested in MCDP .

Returning to the realizability of the design, naively binariz-
ing the design blueprint in panel A of figure 3 by threshold-
ing it around the mean value of ¯̃

ξ = 0.5, result in a poorly
performing design as illustrated in panels D–F of figure 3.

Panel D shows the binarized design, which is now seen to
consist solely of air (white) and silicon (black). Panels E
and F show |E(r)| and the Ey(r)-component of the electric
field, respectively. It is immediately obvious from these pan-
els that the device no longer functions as an efficient mode
converter. Indeed, computing reflectance, transmittance and
mode-conversion efficiency one obtains, R≈ 0.23, T ≈ 0.58
and Po,B/Pi,A ≈ 0.017. Clearly, a naive binarization does not
result in the design of high-performance devices for MCDP .
Fortunately a suite of TopOpt tools, which ensure physically
realizable (pure black and white) designs with high perform-
ance, have been developed. The application of a subset of these
tools resolve the binarization issue, as will be demonstrated
next.

2.8. Continuation and pamping

When solving transmission-dependent design problems, like
MCDP , a combination of penalization through damping (or
pamping) [36] and continuation of the threshold strength [26]
result in physically realizable designs with high performance.

In brief, pamping consists of introducing artificial attenu-
ation in the physics model for intermediate value of ¯̃ξ. For the
design problem at hand, this is done by modifying the material
interpolation scheme (equation (17)) as,

ε(
¯̃
ξ) =

(
n( ¯̃ξ)2 −κ(

¯̃
ξ)2
)
− i
(
2n( ¯̃ξ)κ( ¯̃ξ)

)
,

n( ¯̃ξ) = nbg +
¯̃
ξ(nwg − nbg),

κ(
¯̃
ξ) = κbg +

¯̃
ξ(κwg −κbg)+αi

¯̃
ξ
(
1− ¯̃

ξ
)
, (18)

where αi (=0.01 in the following) is a coefficient controlling
the magnitude of the attenuation introduced when ¯̃

ξ takes val-
ues other than 0 or 1.

Continuation of the threshold strength in equation (16) is
implemented by increasing β every nβ design iterations from
an initial value βini to a final value βfinal. The ideal rate at which
β is increased along with the values of βini and βfinal are design
problem dependent. In the following β is increased every nβ =
50 design iterations in five increments with an increase of β by
50% per increment starting at βini = 5.

2.9. Example 2 - obtaining a physically realizable design

For the second design example, the TopOpt tool is modified
by replacing the material interpolation in equation (17) by
equation (18) and by using the continuation procedure for
the threshold operation. Otherwise the solution of MCDP
is unchanged from the previous example. This results in the
optimized design presented in panel A of figure 4, which is
seen to consist solely of air (white) and silicon (black).

Panel B shows |EC(r)| and panel C the y-component
of EC(r) for the design in panel A. Studying these fields,
the design appears to achieve near-perfect mode conversion.
Corroborating this qualitative observation are the reflectance,
transmittance and mode-conversion efficiency, which are cal-
culated to R≈ 0.000025, T ≈ 0.999 and Po,B/Pi,A ≈ 0.999,
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Figure 3. Results from the first design example (section 2.7). Panel (A) shows the material distribution, εr(r), for the optimized
mode-converter design. Panel B(C) show |EC(r)|(EC,y(r)) when the geometry is excited by mode i at the input port ΓP,in. Panel (D) show
the binarized material distribution for the optimized mode-converter design and panel E(F) the associated |EC(r)|(EC,y(r)) fields.

respectively. Thus, employing pamping and continuation in
the TopOpt procedure had near-zero influence on the device
performance, while their use resulted in a design blueprint that
is now physically realizable. That being said, closer inspec-
tion of the design reveals other potential challenges to the
fabrication of the device. Firstly, a number of fine details
are observed in the design blueprint, which might not be
amenable to reliable and accurate fabrication. Secondly, the
device contains a disconnected island of silicon towards its
lower left corner. If the mode converter is to be realized as
a silicon-on-insulator device, ‘free floating’ islands of mater-
ial are permissible as they will rest on a substrate. However,
if the device is to be membranized, such islands cannot be
realized.

These observations are manifestations of issues inherent to
the TopOpt tool presented thus far. That is, there is nothing in
the current formulation of the method that prohibits discon-
nected islands of material, nor that ensures a minimum size
of individual features. Both of which may prohibit accurate
fabrication. Next, it is explained and demonstrated how these
issues are resolved.

2.10. Feature-size control and solid-feature connectivity

Different fabrication tools have different limits to the design
features they can accurately manufacture. Therefore, the abil-
ity to specify and control the length-scales of a device directly
in the design process is of great value. A useful measure of
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Figure 4. Results from the second design example (section 2.9). Panel (A) shows the material distribution, εr(r), constituting the mode
converter. Panel (B) shows the |EC(r)|-field propagating through the design. Panel (C) shows the y-component of EC(r)).

feature-size is the maximum radius of the brush (ball), with
which it is possible to accurately ‘paint’ the feature. To demon-
strate feature-size control using TopOpt, the method proposed
by Zhou et al [37] is employed in the third design example.
This method has, among others, proven useful for fabrication
of optimized designs by electron beam lithography [12]. The
method uses the indicator functions Is and Iv to define two
integrals, which measure if the solid(void) parts of a design
contain features smaller than the specified brush (ball) radius.
The indicator functions and integrals may be written as,

Is = ¯̃
ξ(r)exp

(
−cLS|∇ξ̃(r)|2

)
,

Iv =
(
1− ¯̃

ξ(r)
)
exp
(
−cLS|∇ξ̃(r)|2

)
, (19)

gs =
1´

Ωd,e
dr

ˆ
Ωd,e

Is ·
[
min{

(
ξ̃− ηe

)
,0}
]2
dr,

gv =
1´

Ωd,e
dr

ˆ
Ωd,e

Iv ·
[
min{

(
ηd − ξ̃

)
,0}
]2
dr. (20)
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Here ηe and ηd, together with the radius, rf , of the filter
operation (equation (15)), are used to determine the minimum
feature-sizes on the solid(void) features as detailed in [38]. The
constant cLS is a tuning parameter, the value of which is selec-
ted to make the indicator functions numerically well-behaved,
as detailed in [37]. The integrands in equation (20) are strictly
non-negative and hence the value of the integrals is zero if and
only if no feature in a given design is below the specified min-
imum feature-size. Hence, one may specify the constraints,

gs < ϵs, gv < ϵv (21)

where ϵs > 0 and ϵv > 0 are introduced to relax the constraints,
which enable gradually imposing the constraints during the
iterative design process allowing for the design to initially
develop without having to adhere to the constraints. Further,
the relaxation allow for unavoidable numerical errors in the
evaluation of the integrals. In the third example ϵs and ϵv

are gradually, monotonically decreased from 1 (inactive con-
straints) to 10−5 over the course of 10 continuation steps with
50 design iterations per step.

The minimum feature-size imposed on the final design for
the third example is 50 nm. This is achieved by changing the
filter-radius to rf = 100 nm and selecting ηe = 0.75 and ηd =
0.25. Note that in the example the integrals in equation (20)
are evaluated over the extended design domain,Ωd,e, while the
design is only free to change inside the design domain, Ωd.
This ensures that the specified minimum feature-sizes are also
respected along the edges of Ωd, which would otherwise not
be the case.

When designing suspended [12] multilayered [14] or fully
three-dimensional devices, physics dictates that no solid fea-
tures are allowed to be disconnected from the rest of the
device, since free-floating members are not possible to real-
ize. The way of prohibit free-floating islands of material, when
designing a device using TopOpt, is to impose a connectivity
constraint as part of the optimization problem. In this work
the connectivity constraint is formulated using a heat-transfer
problem. Conceptually the constraint may be understood as
follows. Consider any (sufficiently) solid material in Ωd,e as a
heat source which is also highly conductive, and consider any
background material as being insulating. Next, define bound-
aries to which the solid material must be connected as perfect
heat sinks and all other boundaries as perfect insulators. Now,
if a solid feature is connected to a heat sink, (nearly) all heat
generated by said feature will be conducted to the sink. Thus,
if all solid features are connected to heat sinks the temperat-
ure everywhere in the device will be low. On the contrary, if
any solid feature is disconnected from the heat sinks, it will
generate heat that cannot be conducted away, as the surround-
ing background material insulate it, hereby creating a region
of high temperature. Thus, by integrating the temperature field
over Ωd,e one obtains a measure of connectivity. If the integ-
rated temperature is below a certain threshold value all solid
features will be connected, while if one or more solid features
are completely disconnected from the rest of the design, the
integrated temperature will exceed the threshold.

In practice the constraint is implemented using the follow-
ing system of equations defined on Ωd,e,

∇·
(
− cCF

(
HCF

(
¯̃
ξ(r),βCF ,ηCF

))
∇CF(r)

)
= fS

(
HS

(
¯̃
ξ(r),βS,ηS

))
, r ∈ Ωd,e

CF = 0 ∀ r ∈ ΓD,

n ·∇CF = 0 ∀ r ∈ ΓN,

fS(x) = S0 +(S1 − S0)x,

cCF(x) = c0 +(c1 − c0)x,

H(x,β,η) =
tanh(β · η)+ tanh(β · (x− η))

tanh(β · η)+ tanh(β · (1− η))
,

MC =

ˆ
Ωd,e

CF dr.

Here CF denotes the artificial temperature (or connectivity)
field. The constants c0(=10−6),c1(=1010) denote the artificial
conductivity of the background and design material, respect-
ively. The constants S0(=0),S1(=1020) denote the artificial
heat generated by the background and designmaterial, respect-
ively. βCF = βS = 50 and ηCF = ηS = 0.55 are the threshold
strength and threshold level used to determine what parts of
the developing design, ¯̃ξ, that is counted as solid material for
the evaluation of the constraint. Imposing the constraint that,

MC < ϵC, (22)

where ϵC is a sufficiently small number, ensures that all solid
material (silicon) is connected to the boundaries ΓD where
the heat sinks are situated. A detailed explanation of the
connectivity constraint and its implementation may be found
in [39].

In the following design example, the constraint ensure that
all solid features are connected to waveguide A or waveguide
B. To achieve this the heat sink (zero Dirichlet) and insulator
(zeroNeumann) boundary conditions, are imposed as sketched
in panel H of figure 1.

2.11. Example 3 - ensuring a fabricable design

Imposing the feature-size constraints (equation (21) and the
connectivity constraint (equation (22)) alongwith using pamp-
ing and threshold continuation as in the second design
example, the design problem MCDP is solved for a third
time. This results in the optimized design presented in panel
A of figure 5. The design again consists solely of air (white)
and silicon (black). Further, it is now observed that all silicon
features are connected and that the specified feature-sizes are
respected (illustrated using the red and orange discs).

Panels B and C of figure 5 show |EC(r)| and the
y-component of EC(r), respectively. Again (near) per-
fect mode conversion seemingly occur from waveguide
A to waveguide B. The reflectance, transmittance and
mode-conversion efficiency are computed to R≈ 0.0001,
T ≈ 0.995 and Po,B/Pi,A ≈ 0.995, respectively. Thus, the per-
formance dropped by less than half a percent in order to
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Figure 5. Results from solving the third design example (section 2.11). Panel (A) shows the material distribution, εr(r), constituting the
mode converter. Panel (B) shows the |EC(r)|-field propagating through the design. Panel (C) shows the y-component of EC(r)).

ensure that the design blueprint is physically realizable and
adheres to the specified feature-size and connectivity limita-
tions. Notably without changing any other parameters in the
model, such as the size of the design domain or the initial
guess.

3. Conclusion

A step-by-step tutorial for how TopOpt can be applied as
a tool for the inverse design of optical mode converters
was provided. It was demonstrated that TopOpt is capable
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of designing high-performance mode-converters, which are
physically realizable, respect specified feature-sizes and
ensuring that the device geometry is connected. All examples
are kept two-dimensional to reduce the required computational
effort, allowing readers to reproduce the examples in a few
hours on a standard laptop. However, given sufficient compu-
tational resources it is straight-forward to extend all examples,
and the provided tutorial software, to full three-dimensional
problems by modifying the model geometries and physics
problems appropriately. Treating the full 3D problem it may
not be possible to achieve as extreme performance as the 2D
examples in this work, since light can then be lost through
out-of-plane scattering. Further, it is straight-forward to adapt
the approach outlined here to other mode-conversion systems,
such as metasurface-based mode-converters, also by adjusting
the geometry and physics models accordingly. Finally, addi-
tional constraints can be imposed on the design problem, such
as requiring a specific reflectance back into the input wave-
guide, or designing mode-converters that operate across spe-
cified bandwidths.
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Appendix. Discrete adjoint sensitivity analysis

Being able to efficiently compute the change in the FOM and
constraints with respect to design perturbations, i.e. the gradi-
ent with respect to the design variables, is essential for solv-
ing the inverse design problem efficiently using a gradient-
based optimization algorithm. To this end, the TopOpt method
employs adjoint sensitivity analysis [21]. Adjoint sensitiv-
ity analysis may be performed either directly on the model
equations before numerical discretization (differentiate then
discretize), or on the discretized model equations (discretize
then differentiate). In this work the latter approach is taken, as
illustrated with an example in the following.

The design field, ξ, is discretized using a set of coef-
ficients (design variables) along with a set of basis
functions as,

ξ =
∑
j

ξjMj(r), ξj ∈ [0,1]. (23)

The system of model equations in equation (5) is discret-
ized using the finite element method [33]. The resulting linear
system of equations may be written as,

S(ξ)E = F (24)

where S is the design dependent system matrix and E(F) is a
vector of degrees of freedom for the electric field(forcing).

In the discretizedmodel, the FOMmay bewritten as a func-
tion of the electric field vector, Φ(E). Using the technique for
integration of composite functions (the chain rule), and for the
sake of simplicity assuming that no operations (smoothing,
thresholding etc) are applied to the design field, the gradient
of the FOM with respect to design variable j is computed as,

dΦ
dξj

=
∂Φ

∂Eℜ
∂Eℜ
∂ξj

+
∂Φ

∂Eℑ
∂Eℑ
∂ξj

, (25)

where Eℜ(Eℑ) denotes the real(imaginary) part of the electric
field vector. The gradient in equation (25) is rewritten as fol-
lows. First, zero is added to the FOM twice,

Φ̃ = Φ +λT (S(ξ)E −F)+λ† (S(ξ)E −F)
∗ (26)

where λ is a vector of complex values unknowns (Lagrange
multipliers), also called adjoint variables. Then, one takes the
derivative of Φ̃ with respect to ξj, exploiting that neither λ nor
F depend on ξj. This yields,

dΦ̃
dξj

=
∂Φ

∂Eℜ
∂Eℜ
∂ξj

+
∂Φ

∂Eℑ
∂Eℑ
∂ξj

+λT
(
∂S
dξj

E +S
(
∂Eℜ
∂ξj

+ i
∂Eℑ
∂ξj

))
+λ†

(
∂S∗

∂ξj
E∗ +S∗

(
∂Eℜ
∂ξj

− i
∂Eℑ
∂ξj

))
.

Next, collecting the terms including ∂Eℜ
∂ξj

and ∂Eℑ
∂ξj

and redu-
cing the expression yields,

dΦ̃
dξj

=
∂Eℜ
∂ξj

(
∂Φ

∂Eℜ
+λTS +λ†S∗

)
+

∂Eℑ
∂ξj

(
∂Φ

∂Eℑ
+ iλTS − iλ†S∗

)
+ 2 ℜ

(
λT ∂S

∂ξj
E
)
. (27)

The first two terms in equation (27), containing the expens-
ive to compute derivates ∂Eℜ

∂ξj
and ∂Eℑ

∂ξj
, may be eliminated by

requiring that,
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∂Φ

∂Eℜ
+λTS +λ†S∗ = 0,

∂Φ

∂Eℑ
+ iλTS − iλ†S∗ = 0, (28)

multiplying the second equation by i, subtracting it from the
first equation and transposing the result yields,

∂Φ

∂Eℜ
−i

∂Φ

∂Eℑ
+ 2λTS=0 ⇔ STλ=−1

2

(
∂Φ

∂Eℜ
− i

∂Φ

∂Eℑ

)T

.

(29)

Requiring that equation (29) is satisfied, the expression in
equation (27) reduces to,

dΦ̃
dξj

= 2 ℜ
(
λT ∂S

∂ξj
E
)
. (30)

Thus, all that is needed to compute the gradient of the FOM
with respect to the design field is to calculate the right hand
side in equation (29) and solve this equation system once, inde-
pendent on the number of design variables.

An example of the derivation of the right hand side in
equation (29) follows here. For simplicity in this example, a
transverse electric polarization is assumed for the 2D phys-
ics model, resulting in the electric and magnetic fields being
given as,

E=

 0
0
Ez

 , H=
i

µ0ω

 ▽yEz
−▽x Ez

0

 ,

S= E×H∗ =
i

µ0ω

(▽xEz)
∗Ez

(▽yEz)
∗Ez

0

 . (31)

For a given discretization, the z-component of the electric
field at any point in the model domain may be computed from
the following expansion,

Ez(r) =
∑
k

EkNk(r) =
∑
k

(Ek,ℜ + iEk,ℑ)Nk(r), (32)

where the Ek’s denote the degrees of freedom stored in E with
Ek,ℜ(Ek,ℑ) denoting the real(imaginary) part and Nk(r) denote
the set of finite element basis functions used in the discretiza-
tion of the physics model.

Further, assuming that the input(output) ports are oriented
along the y-direction, the FOM in equation (13) may bewritten
as,

Φ(E) = Po,B
Pin

= ℜ

(´
ΓP,B

(▽xEz,o,B)
∗Ez dy

´
ΓP,B

(▽xEz)
∗Ez,o,B dy´

ΓP,B
(▽xEz,o,B)

∗Ez,o,B dy

)

× 1

ℜ
(´

ΓP,A
(▽xEz,i,A)

∗Ez,i,A dy
) , (33)

where Ez,i,A(Ez,o,B) denotes the coefficients in the discretiza-
tion of the input(output) mode. The derivative▽xEz,∗ is com-
puted as,

▽xEz,• =
∑
k

Ek,• (▽xNk) =
∑
k

(Ek,•,ℜ + iEk,•,ℑ)(▽xNk) .

(34)

Finally, the derivative of the FOM with respect to the k
′
th

degree of freedom (entry) in the electric field vector E , is
given as,

∂Φ

∂Ek
= ℜ

(´
ΓP,B

(▽xEz,o,B)
∗Nk dy

´
ΓP,B

(▽xNk)
∗Ez,o,B dy´

ΓP,B
(▽xEz,o,B)

∗Ez,o,B dy

)

× 1

ℜ
(´

ΓP,A
(▽xEz,i,A)

∗Ez,i,A dy
) . (35)
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