
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Quantum repeater using two-mode squeezed states and atomic noiseless amplifiers

Bjerrum, Anders J.E.; Brask, Jonatan B.; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

Published in:
Physical Review A

Link to article, DOI:
10.1103/PhysRevA.107.042606

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bjerrum, A. J. E., Brask, J. B., Neergaard-Nielsen, J. S., & Andersen, U. L. (2023). Quantum repeater using two-
mode squeezed states and atomic noiseless amplifiers. Physical Review A, 107(4), Article 042606.
https://doi.org/10.1103/PhysRevA.107.042606

https://doi.org/10.1103/PhysRevA.107.042606
https://orbit.dtu.dk/en/publications/eff64d0a-daa3-4215-a62d-69cbe91246f9
https://doi.org/10.1103/PhysRevA.107.042606


PHYSICAL REVIEW A 107, 042606 (2023)

Quantum repeater using two-mode squeezed states and atomic noiseless amplifiers

Anders J. E. Bjerrum,* Jonatan B. Brask , Jonas S. Neergaard-Nielsen , and Ulrik L. Andersen
Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

(Received 29 November 2022; accepted 13 March 2023; published 12 April 2023)

We perform a theoretical investigation into how a two-mode squeezed vacuum state, which has undergone
photon loss, can be stored and purified using noiseless amplification with a collection of solid-state qubits. The
proposed method may be used to probabilistically increase the entanglement between the two parties sharing the
state. The proposed amplification step is similar in structure to a set of quantum scissors. However, in this work
the amplification step is realized by a state transfer from an optical mode to a set of solid-state qubits, which act
as a quantum memory. We explore two different applications, the generation of entangled many-qubit registers
and the construction of quantum repeaters for long-distance quantum key distribution.

DOI: 10.1103/PhysRevA.107.042606

I. INTRODUCTION

Quantum communication is the act of distributing quan-
tum states in a network [1]. It enables the generation of
secret encryption keys [2] and perhaps the establishment of
a fully fault-tolerant quantum internet [3,4]. The different
nodes of the network are usually connected by photonic
communication channels owing to the weak influence of the
environment on the coherence of optical photons. However,
photons suffer from propagation loss with the probabil-
ity of successful transmission decaying exponentially with
distance.

The exponential scaling can be mitigated using quan-
tum repeater nodes between the sender and receiver stations
leading to polynomial [5,6] or even constant-rate scaling
[7] for schemes based on error correction. We consider a
quantum repeater architecture with two-way classical commu-
nication and without error correction, as originally envisioned
[5,6]. In this scheme, entanglement between parties is es-
tablished by first distributing and purifying entangled states
over shorter segments. These entangled segments then un-
dergo a series of entanglement swaps, ultimately generating
entanglement between the parties [see Fig. 1(a)]. However,
due to the probabilistic nature of the purification protocol,
quantum memories must be placed at each repeater node.
Many different platforms have been considered for memo-
ries in quantum repeaters including atomic ensembles [8],
trapped ions [9], solid-state systems [10], and mechanical
resonators [11]. The basic structure of all quantum repeaters
is largely independent of the type of memory employed
however.

One intriguing approach for the probabilistic purification
of a quantum state is the protocol of noiseless linear amplifi-
cation [12]. It has mainly been applied in continuous-variable
(CV) quantum repeater schemes to enable long-distance
distribution of quadrature and photon-number entanglement

*Corresponding author: ajebje@dtu.dk

[13–19] (see also [20] for a different approach). In its sim-
plest form, the noiseless linear amplifier consists of a single
quantum scissor scheme [21] illustrated in Fig. 1(b). A single
photon is split on a beam splitter to form an entangled state
which is subsequently used to purify an input state ρin via
quantum teleportation in a truncated two-dimensional Hilbert
space. The achieved purification can be understood intuitively
through the fact that the projective measurement of the photon
detectors lowers the entropy of the system, while the effec-
tuated quantum teleportation preserves the coherences of the
input state. By combining quantum scissor operations with
quantum memories and entanglement swapping via Bell mea-
surements, a quantum repeater network can be established.
In previous CV quantum repeater protocols, the quantum
scissors, the quantum memories, and the Bell measurements
were typically considered as being individual and independent
physical elements.

In the present work we show that by using light-matter
entangled states (generated, for example, by nitrogen-vacancy
centers in diamond [22–24]), it is possible to perform noise-
less linear amplification and storage of the quantum state in
a single operation. In Sec. II we introduce the operation of
noiseless linear amplification based on a photoactive qubit.
We first consider the case with a single qubit, similar to a
single quantum scissor operation, and subsequently generalize
it to multiple qubits to explore the effect of noiseless linear
amplification in a larger Hilbert space. In Sec. III we investi-
gate the entanglement generated by our protocol and measure
it using the negativity. In Sec. IV we introduce the structure of
the quantum repeater scheme, including entanglement swap-
ping. In Sec. V we present the results in terms of secret key
rates and Bell inequality violations. We summarize in Sec. VI.

II. ANALYSIS OF A SINGLE REPEATER SEGMENT

We start by presenting the repeater segment that forms
the core of the quantum repeater protocol. It corresponds
to the part of the repeater array enclosed by a green dot-
ted box in Fig. 1(a) and is schematically shown in Fig. 2
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FIG. 1. (a) Repeater scheme with entanglement swaps (meters)
acting on sets of quantum memories (QM) separated by lossy chan-
nels. A single repeater segment is enclosed by a green dashed box
and will include a purification step. (b) Layout of a quantum scissor.
The left beam splitter is balanced (50:50) and the right beam splitter
is tunable with transmission cos(θ )2. The transmission may be tuned
to purify the state ρin at the single-photon level.

with a single solid-state qubit (diamond) in each register.
Our repeater scheme is based on the distribution of two-
mode squeezed vacuum states followed by noiseless linear
amplification and memorization by means of a photoactive
three-level atomic system. The basic idea is that the atomic
systems produce spin-photon entanglement to be used as the
resource for heralded noiseless amplification similar to the
all-optical approach in Fig. 1(b), where single-photon entan-
glement is used as the resource. However, in contrast to the
pure optical approach in Fig. 1(b), where the state is tele-
ported onto another optical mode, in our scheme the state is
teleported (and truncated) into a spin degree of freedom of the
atomic system and thus directly memorized after purification.
While the atomic system could be realized by many different
physical systems, here we focus on the nitrogen-vacancy (NV)
center. In this case the information is stored in the electronic
spin degree of freedom of the NV center but it can also be
swapped to a nearby (and very long-lived) 13C nuclear spin
[23]. In addition to extending the lifetime, the swap also frees
up the electronic spin for a subsequent entangling round and it
allows for entanglement swapping to be carried through Bell

FIG. 2. Layout of the entanglement-sharing scheme, with a
single qubit in each register (quantum memory). Here e is an environ-
mental mode that couples to the fiber. The drawn setup corresponds
to a repeater segment (the green dotted box in Fig. 1).

measurements between the electronic and nuclear spins (as
discussed in Sec. IV).

A two-mode squeezed vacuum (TMSV) state shares
quadrature and photon-number correlations between the left
(L) and right (R) registers. The TMSV state is expressed in
the photon-number basis as

|TMSV〉 =
∞∑

n=0

cn|n, n〉, (1)

where the amplitudes cn are the Fock-state amplitudes

cn = (−eiφ )n

√
〈n〉n

(1 + 〈n〉)n+1
, (2)

〈n〉 is average photon number in each of the two modes, and
φ is the phase.

The register qubits have a dark state |0〉q and a bright state
|1〉q. The bright state emits a single photon into the optical
mode f when excited by some external mechanism, such as a
driving laser, whereas the dark state never emits a photon. We
initialize the qubit q and optical mode f in the state

|q, f 〉 = cos(θ )|0〉q|0〉 f + sin(θ )|1〉q|0〉 f , (3)

with |0〉 f the optical vacuum state. Then we assume we can
excite the qubit such that it emits a photon if it is in the bright
state, thereby preparing the state

cos(θ )|0〉q|0〉 f + sin(θ )|1〉q|1〉 f. (4)

States such as this one were produced experimentally using
a NV center in Ref. [25]. We assume that the photons of the
TMSV field are indistinguishable from the photons emitted
by the qubits. Realistically, this may be a challenge to achieve,
but can in principle be done with proper light source engineer-
ing and filtering. At each register the TMSV field is mixed
with the field emitted by the register qubit on a balanced
beam splitter. Two photon-number-resolving (PNR) detectors
measure the outputs of the beam splitter, and events where
exactly one photon is detected at each register are considered
successful. If we assume no loss in channels chL and chR, then
the qubit registers are projected into the entangled state

|ψ〉 = 1
2 c1 cos(θL ) cos(θR)|00〉
+ 1

2 c0 sin(θL ) sin(θR)|11〉, (5)

where θL and θR are the superposition angles given in Eq. (3)
for the left and right qubits, respectively. We note that 4〈ψ |ψ〉
will correspond to the probability that the projective measure-
ments (photon detection) in registers L and R succeed. The
factor of 4 originates from the fact that the projective measure-
ment can succeed in two different ways at both registers, i.e.,
either the top (T ) or bottom (B) detector can register a single
photon. We note that whether the bottom or top detector clicks
will influence the phase of the quantum state and we assume
that this is corrected for.

We then set the transmission of channel chR, connecting
the TMSV source and register R, to ηR. We will for now
assume that the channel chL is lossless. We find that under
these conditions, the density matrix describing registers L and
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FIG. 3. Layout of the entanglement-sharing scheme investigated in this work. Entanglement is distributed to the atomic qubits constituting
registers R and L via a two-mode squeezed vacuum state.

R is given by

ρ = K1

4

⎛
⎜⎜⎜⎜⎜⎝

|c1|2ηRc2
Lc2

R 0 0 c1c∗
0
√

ηRsRsLcRcL

0 |c1|2(1 − ηR)c2
Ls2

R 0 0

0 0 0 0

c∗
1c0

√
ηRsRsLcRcL 0 0 |c0|2s2

Ls2
R

⎞
⎟⎟⎟⎟⎟⎠, (6)

where sL = sin(θL ), sR = sin(θR), cL = cos(θL ), and cR =
cos(θR). A derivation of this result can be found in Ap-
pendix A. The basis vectors describing the state are |0〉L|0〉R,
|0〉L|1〉R, |1〉L|0〉R, and |1〉L|1〉R, e.g., the matrix element
ρ22 = K1

4 |c1|2(1 − ηR) cos(θL )2 sin(θR)2 corresponds to the
state |0〉L|1〉R〈0|L〈1|R. Here K1 is the normalization and 4/K1

is the probability that the projective measurements in registers
L and R succeed.

The diagonal term ρ22 describes the situation where a pho-
ton is lost in the right channel. Suppose that the TMSV source
emits a single photon into both chL and chR and that the pho-
ton is lost from channel chR. Then a successful measurement
at registers R and L implies that the qubit in register L is in the
dark state |0〉L and that the qubit in register R is in the bright
state |1〉R.

In Sec. III we show that tuning of the angles θL and θR can
increase (or decrease) the entanglement shared between the
two registers, in a similar fashion a pair of quantum scissors
would.

In the architecture discussed above and illustrated in Fig. 2,
the amount of distributed and purified entanglement is limited
due to the restricted four-dimensional Hilbert space spanned
by the two qubits. To circumvent this limitation we consider
an expanded version of the two registers where every register
now comprises several qubits and thus enlarges the dimen-
sionality of the quantum memory. The setup can be seen in
Fig. 3. At the left register the TMSV state is split evenly into
the N arms of the register. Concurrently with this splitting of
the TMSV, we excite the qubits such that they will emit a
photon if they are in the bright state. Again, PNR detectors
measure on the output and events where exactly one photon
is detected in each of the N register arms are considered
successful. Conditioned on all the measurements succeeding,
we obtain correlations between the number of bright-state

qubits in the left register and the number of photons in the
right part of the TMSV state. Repeating the procedure at the
right register ultimately creates entanglement between the two
registers.

Our analysis, given in Appendix A, reveals that the quan-
tum state of the two many-qubit registers, when assuming no
loss in the connecting channel, is given by

|α〉 = NN

N∑
n=0

cn�(n, θL )�(n, θR)|IN−n〉L|IN−n〉R. (7)

The subscript L, R indicates whether we are referring to the
qubits in the left (L) or right (R) register. The superposition
angle θR,L is assumed to be the same for all qubits in the
same register. The vectors |IN−n〉 are even superpositions of
all states containing N − n bright state qubits and n dark state
qubits

|IN−n〉 =
(

N

n

)−1/2 ∑
iN−n

|iN−n〉, (8)

where the sum runs over binary lists iN−n of length N with
N − n ones. Here NN is the normalization, given by

N−2
N =

N∑
m=0

|cm|2|�(m, θL )|2|�(m, θR)|2. (9)

The value of N−2
N reflects the probability that the entangle-

ment sharing scheme succeeds. The amplitude �(n, θ ) is

�(n, θ ) =
√

N!

2N Nn(N − n)!
β(n, θ ), (10)
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where β(n, θ ) is

β(n, θ ) = cos(θ )n sin(θ )N−n. (11)

When including loss in both channels, we find the density
matrix describing the two registers to be

ρ =
∞∑

n,m=0

min(n,m)∑
l,r=0


(n, m, l, r)

× |IN−n+l〉L〈IN−m+l | ⊗ |IN−n+r〉R〈IN−m+r |. (12)

This density matrix is not normalized and the norm should
be interpreted as the probability that entanglement sharing
succeeds. The matrix elements are given by


(n, m, l, r) = cnc∗
mεR(n, r)εL(n, l )εR(m, r)∗εL(m, l )∗

× �(n − l, θL )�(n − r, θR)�(m − l, θL )∗

× �(m − r, θR)∗�(N + l − n)�(N + r − n)

× �(N + l − m)�(N + r − m), (13)

where �(x) is the step function

�(x) =
{

1 if x � 0
0 if x < 0

(14)

and ε(n, l ) is related to the transmission of the channel ηR,L

(for chL and chR) through the relation

εR,L(n, l ) =
√(

n

n − l

)
η

(n−l )/2
R,L (1 − ηR,L )l/2. (15)

III. ENTANGLEMENT OF THE REGISTERS

Based on the above analysis, we now evaluate the amount
of entanglement between the two registers using negativity
as the measure of entanglement. The negativity is defined as
the absolute value of the sum of negative eigenvalues of the
partial transpose of the density matrix and can be shown to
be an entanglement monotone [26]. If we have the density
matrix ρ, then the partial transpose with respect to Alice’s
subsystem ρTA has the matrix elements 〈iA, jB|ρTA |kA, lB〉 =
〈kA, jB|ρ|iA, lB〉. Given that ρTA has the negative eigenvalues
μi, then the negativity of the state ρ is defined as

N(ρ) =
∣∣∣∣∣
∑

i

μi

∣∣∣∣∣. (16)

The negativity is the same regardless of which party is
transposed, since (ρTA )T = ρTB . We first assume the channels
to be loss-free, in which case the superposition angles θR and
θL are set to the same value due to symmetry. The average
number of photons 〈n〉 per party in the TMSV state is fixed
at 0.5. In Fig. 4 we plot the negativity as a function of the
angle θR = θL for a different number of atomic qubits at each
register. We clearly observe a strong dependence on the super-
position angle.

We then fix θL at the value corresponding to the largest
negativity, as inferred from Fig. 4, and lower the transmission

FIG. 4. Negativity of the two registers as a function of the su-
perposition angle θ = θR = θL . The different plots correspond to
different number of qubits in the registers. The average number of
photons 〈n〉 emitted by the TMSV source into each channel is fixed
at 0.5. The superposition angle θ is shown along the x axis in units
of π/4.

of the right channel chR. We allow θR to change and find
the angle that maximizes the negativity at different transmis-
sions. The result can be seen in Fig. 5(a). We find that as
the channel transmission ηR is reduced, the angle θR must be
changed to maximize the negativity. This can be understood
from the fact that a low transmission reduces the probability
that photons arrive at the right register. This in turn implies
that a successful measurement outcome at the photodetectors
is entirely due to light emitted from bright state qubits at
the register. This lowers the negativity of the two registers
since they approach a separable state. However, this effect can
be counteracted by lowering the probability that the qubits
are in the bright state, which is exactly what is done by
lowering θR.

The probability that the measurement outcomes at the pho-
todetectors correspond to successful entanglement sharing at
the optimal value of θR is shown Fig. 5(b). We observe that
the probability of success decreases exponentially with the
number of qubits in the registers and superexponentially for
decreasing transmission. The superexponential decrease in the
probability of success is caused by the scheme compensating
for a low ηR by lowering θR. This implies that our entan-
glement sharing scheme will be practically infeasible at low
transmissions and for registers with many qubits. In Fig. 6 we
show how the negativity of the state shared by the registers
depends on the transmission of channel chR. The negativity is
computed at the optimal value of θR. For reference we plot the
negativity of the TMSV state used to share entanglement be-
tween the registers. We observe that for low transmission, the
registers have a higher negativity than the TMSV state. This is
caused by the noiseless amplification process. Of course, this
comes at a cost of probability, with experiments performed
at low transmissions ηR having a very low probability of
success. On the other hand, when the transmission is high and
the registers comprise only one or two qubits, the negativity
is in fact decreased by the noiseless amplification process.
This is due to the truncation of the Hilbert space and this
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FIG. 5. (a) Choice of θR (in radians) that maximizes the negativity of the two registers for a given loss in channel chR. We have fixed 〈n〉
at 0.5. The legend indicates the number of qubits in each register. (b) Probability of the measurements at all the photodetectors succeeding, at
the optimal value of θR. The legend indicates the number of qubits in each register.

effect is mitigated by increasing the number of qubits in the
registers.

IV. CONNECTING THE SEGMENTS VIA DETERMINISTIC
ENTANGLEMENT SWAPPING

Having established that the superposition angle θ can be
used to increase the negativity between registers, we inves-
tigate the possibility of using these registers as a memory
unit in a quantum repeater. We focus our analysis on the
case of one qubit per register. This case is the most relevant
considering current technological limitations. We now show
how entanglement swapping between single-qubit registers
is performed. Suppose we have four registers, as shown in
Fig. 7, pairwise entangled in the state ρ given by Eq. (12)
with N = 1. The total state � is then a product of two such
states � = ρ ⊗ ρ. We label the registers as L1, R1, L2, and

FIG. 6. We plot how the negativity depends on the transmission
of the channel connecting the registers. The negativity is computed
at the optimal value of θR shown in Fig. 5(a). The average number
of photons emitted by the TMSV source 〈n〉 into each channel is
fixed at 0.5. The legend indicates the number of qubits in each
register.

R2. We assume we can perform a deterministic Bell measure-
ment on the registers R1 and L2. We may join several pairs
of registers in series to form a repeater array as shown in
Fig. 8(a).

We propose that a repeater node, e.g., R1 and L2, could
consist of two closely situated (coupled) NV centers, on which
we can perform a joint Bell measurement, and we analyze the
repeater based on this assumption. However, we note that the
qubits making up a repeater node could also be realized as
the electronic spin of a NV center and the spin of a nearby
13C atom coupled to the NV center. In this case, the repeater
protocol would have to be realized stepwise. For example,
referring to Fig. 8(a), repeater segment 1 would establish
entanglement between the NV centers at Alice and node 1,
and the entangled state would then be transferred to 13C atoms
at Alice and node 1. These nuclear qubits make up L1 and
R1. Simultaneously with this, entanglement would be gener-
ated between 13C atoms at node 2 and at Bob using repeater
segment 3. These nuclear qubits would in turn make up L3

and R3. Entanglement is then shared between NV centers at
node 1 and node 2 using repeater segment 2, these electronic
qubits make up L2 and R2. A swap is then performed on
the NV center and 13C nuclear spin at both nodes 1 and 2,
thereby generating an entangled state between Alice’s and
Bob’s 13C nuclear spins. The idea is sketched for a longer
repeater in Fig. 8(b). State transfer between the electronic spin
and a coupled 13C nuclear spin was experimentally demon-
strated in [27]. Their protocol realizes a rotation of either
the electronic or nuclear spin, controlled by the state of the

FIG. 7. We generate two pair of entangled registers and label
them as L1, R1, L2, and R2. We assume we can perform a joint
measurement on registers R1 and L2.
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ANDERS J. E. BJERRUM et al. PHYSICAL REVIEW A 107, 042606 (2023)

FIG. 8. (a) We refer to a pair of registers connected by a TMSV state as a repeater segment. Pairs of registers capable of undergoing an
entanglement swap form a repeater node. We may combine repeater segments sequentially to form a repeater, here shown with three repeater
segments connecting Alice and Bob. Segments are highlighted with an enveloping green dashed box and nodes are indicated with a blue dotted
box. (b) If we interpret the two qubits in a given node as a NV center and a nearby coupled 13C nuclear spin, then the repeater chain must run
stepwise as sketched. The involved steps are separated by a dotted line and an arrow, moving from top to bottom. Entanglement between two
qubits is indicated by an enveloping loop. We highlight two repeater segments with a green dashed box and a node in a blue dotted box. In the
final step, entanglement swapping is performed at all the nodes, generating an entangled state between Alice and Bob.

other spin. This enables a controlled-NOT gate and combined
with the ability to rotate the spins facilitates a state transfer
between the spins (see also [28,29]). The same operations

enable the realization of a Bell measurement on the two spins,
which was experimentally realized with a 14N nuclear spin
in [30].

Performing entanglement swapping at all the nodes, we find the normalized density matrix after s swaps:

ρs = [2 + (s + 1)(η−1 − 1) tan(θR)2]−1

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 (−eiφ )s+1

0 (s + 1)(η−1 − 1) tan(θR)2 0 0

0 0 0 0

(−e−iφ )s+1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (17)

Here we assume that all s Bell measurements are pro-
jected onto the state |ψ〉 = 1√

2
(|0Rn 0Ln+1〉 + |1Rn 1Ln+1〉). The

derivation can be found in Appendix A. We note that the ma-
trix element corresponding to loss, (s + 1)(η−1 − 1) tan(θR)2,
grows linearly in the number of swaps and will dominate after
many swaps. Of course, Bell measurement outcomes other
than the one considered here will occur. In our reported results
we sample swaps fairly according to the probability at which
they occur.

V. PERFORMANCE OF THE QUANTUM REPEATER

Having described the construction of the entire quantum
repeater scheme, we will now discuss its performance in terms
of its ability to generate a secret key between two parties.
We will assume that Alice is the reconciliator. We will also
analyze the possibility of violating a Bell inequality, which
will enable device-independent quantum key distribution (DI-
QKD). As is derived in Appendix A, when we decrease θR

we increase the purity of the state shared by the single-qubit
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FIG. 9. Plot of the secret key rate obtained with one qubit per
register against the distance between the two participants attempting
to share a secret key. Alice is the reconciliator. The secret key rate
is computed for different numbers of allowed attempts A (legend).
We assume a loss of 0.2 dB/km. Each curve is an average over
15 calculations, where each calculation might differ due to the Bell
measurement outcomes realized at each swap. The separation of two
registers, forming a repeater segment, is 10 km. For reference we plot
the PLOB bound [31] as a black dotted line.

registers; however, this comes at a cost of a lower probability
of success. In a realistic scenario, the experimenter has a finite
number of attempts to set up their repeater channel. If the
scheme has not succeeded within this number of attempts
it might be impractical to use the scheme for sharing secret
keys, due to the long waiting time. We take this into account
by defining some number of attempts available to the experi-
menter, A. Mathematically, we impose the constraint that the
average experiment succeeds in A attempts.

Let p be the probability that each pair of registers Ln, Rn

successfully generates the shared state given in Eq. (12). In
order for the whole repeater array to succeed in A attempts
on average, then p must necessarily be related to A. The
exact relation is given in Eq. (C5). We determine p numer-
ically from A and insert it into Eq. (A44) so that we may
determine the optimal values of θR, θL, and 〈n〉. We then
compute the secret key rate for various values of A. An ex-
pression for the secret key rate is derived in Appendixes B
and C and given by Eq. (C6). The secret key rate can be
seen in Fig. 9 as a function of distance (assuming a fiber
loss rate of 0.2 dB/km). Our calculations imply that the pro-
posed setup, under the assumed idealizations, might beat the
point-to-point capacity bound [also known as the Pirandola-
Laurenza-Ottaviani-Banchi (PLOB) bound [31]] at roughly
130 km. However, one should keep in mind that the repeater
requires extensive two-way classical communication between
segments and key exchange is expected to be slow.

In order to compute the key rates presented in Fig. 9,
we numerically optimize a number of repeater parameters,
including the length of a single segment, the mean photon
number of the TMSV, and the angles θL and θR. The length
of a repeater segment is set to 10 km. This distance is found
to be optimal as revealed by the scans shown in Appendix D
in Fig. 13. Note that the performance only varies weakly with

the segment length. The optimal value of 〈n〉 as a function of
the distance is shown in Appendix D in Fig. 14. The optimal
values of θL and θR are also shown in Appendix D, in Figs. 15
and 16, respectively.

A. Bell inequality violation and device-independent QKD

Device independence represents an ultimate level of secu-
rity where minimal trust is placed in the implementation of
the QKD protocol. A prerequisite for a device-independent
proof of security is that Alice and Bob (the end points of
the repeater) can violate a Bell inequality with their shared
two-qubit state and that the violation coincides with what they
expect based on the quality of the channel in use [32,33].
We follow the device-independent protocol presented in [34].
We note that Alice is the reconciliator in our scheme. Alice
measures one of the operators

M (1)
A = σx,

M (2)
A = σz, (18)

whereas Bob measures one of the operators

M (0)
B = σx,

M (1)
B = (σx + σz )/

√
2,

M (2)
B = (σx − σz )/

√
2. (19)

A key can be extracted when Alice happens to measure
M (1)

A and Bob happens to measure M (0)
B . If Bob measures

either M (1)
B or M (2)

B , then these measurement outcomes are an-
nounced and compared with Alice’s measurement outcomes.
From this comparison one can compute the value of the
Clauser-Horne-Shimony-Holt (CHSH) inequality

S = 〈
M (1)

A M (1)
B

〉 + 〈
M (1)

A M (2)
B

〉
+ 〈

M (2)
A M (1)

B

〉 − 〈
M (2)

A M (2)
B

〉
� 2. (20)

A requirement for violating the CHSH inequality, and ex-
tracting a secret key, is that Alice and Bob keep track of
what swaps occur in the repeater and perform appropriate
corrections to the shared quantum state. In Fig. 10(a) we plot
the CHSH value S against the distance between Alice and
Bob. We note that the critical distance, where S drops below
the classical bound of 2, is similar to the distance at which the
secret key rate (Fig. 9) vanishes for the same value of A. To
investigate this connection further, we determine the distance
at which the secret key rate vanishes for various values of A
and compare it with the distance at which the CHSH value
drops below 2. The two resulting curves are shown as a func-
tion of A in Fig. 10(b). We note that both curves exhibit a
nearly linear dependence on A and that the two curves nearly
coincide.

We compute the device-independent secret key as [34]

r � 1 − h(Q) − h

(
1 +

√
(S/2)2 − 1

2

)
(21)

and normalize by the required number of attempts to set up the
repeater. The rate in Eq. (21), while first derived for collective
attacks, by entropy accumulation also holds asymptotically
for coherent attacks [35]. The quantum bit error rate Q is
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FIG. 10. (a) Plot of the CHSH value against the distance between the end points of the repeater. A CHSH value above 2 is inconsistent
with a local model. The CHSH value is computed for different numbers of allowed attempts A (legend). Each curve is an average over 15
calculations. (b) Plot of the critical distance at which the secret key rate vanishes and the distance at which the CHSH value is equal to 2
against the number of allowed attempts A. We observe a nearly linear dependence on A and the curves are nearly identical.

defined as the probability that Alice and Bob get measurement
outcomes that are in disagreement with what they expect,
given that they measure M (1)

A and M (0)
B . For example, they

might obtain differing outcomes when they expect the same
outcomes, as inferred from the shared quantum state. We
have introduced the binary entropy function h(x). The com-
puted device-independent key rate can be seen in Fig. 11(a).
In Fig. 11(b) we show the corresponding values of Q. The
device-independent key rate appears to be more sensitive to
loss than the regular key rate (Fig. 9) and as a result vanishes
at shorter distances.

B. Robustness of the scheme

We then investigate the robustness of the scheme toward
various sources of error. We consider the following four er-
rors: loss in the left channel (chL), loss when coupling the
emission of the NV center to a fiber (channels f ), dark counts
at the detectors T and B, and loss in the detectors T and B.

It is difficult to obtain an analytic expression for the state
when including these errors, due to the large number of sums
involved. Therefore, we turn to a numerical simulation using
a custom PYTHON module given in [36]. We find that when
including these errors in our model it is advantageous to
increase the distance of a repeater segment to 60 km while
also increasing A to 500. By increasing the length of a repeater
segment, we decrease the required number of segments and
therefore the number of errors. Note that A will vary slightly
as we change the error rates and all key rates are normalized
appropriately. The secret key rates obtained from our simu-
lation can be seen in Fig. 12, from which one can gauge the
sensitivity of the repeater toward various sources of error. Our
calculations indicate that in order to beat the PLOB bound,
loss in channel chL should be kept below about 1%. Likewise,
coupling loss from the NV center to the fiber should also be
kept below about 1%. The loss in the detectors should be
less than 0.5% and the probability of a dark count during a
measurement should be less than 0.5 × 10−4 (0.5 × 10−2%).

FIG. 11. (a) Device-independent secret key rate against the distance between the end points of the repeater. The rate is computed using
Eq. (21). The PLOB bound is drawn as a black dotted line. (b) Quantum bit error rate Q against the distance. The quantum bit error rate is in
our case defined as the probability that Alice and Bob get different outcomes given that they measure M (1)

A and M (0)
B , that is, Q = P(a �= b|10).

The legend indicates the value of A.
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FIG. 12. Plot of the secret key rate with varying imperfections in the repeater. The distance between repeater nodes is 60 km and A (the
expected number of attempts) is close to 500 for all plots. The plots are jagged due to the length of a repeater segment being 60 km. The PLOB
bound is drawn as a black dotted line. (a) We vary the transmission of the left channel (chL). The assumed transmission of chL is shown in the
legend. (b) We vary the transmission when coupling the emission of the NV center to a fiber. The assumed transmission is shown in the legend.
(c) We vary the probability of a dark count at the detectors T and B. The assumed probability is shown in the legend. (d) We vary the loss of
detectors T and B. The assumed fraction of light collected by the detectors is shown in the legend.

We will not in the present work investigate the robustness
of the scheme against noise and decoherence in the qubit
memories. However, we expect that the probability of a bit
flip must be kept below 1%. We base this expectation on the
fact that coupling loss and loss in the channel chL has an effect
on the quantum state which strongly resemble a bit-flip error.
Another potential source of error is phase noise in the fibers
connecting the repeater nodes. Phase noise will reduce the
entanglement of a repeater segment, since the state shared by
the registers becomes a mixture. We expect that the standard
deviation of the phase noise in the state shared by Alice and
Bob after entanglement swapping will scale as

√
M, where

M is the number of repeater segments. Hence, the tolerated
phase noise per repeater segment will be δ/

√
M, where δ is

the tolerated phase noise for a repeater consisting of a single
segment. The δ is inferred from the particular QKD proto-
col in use; we estimate that δ = 200 mrad corresponds to a
quantum bit error rate of roughly 1%, when the phase noise is
normally distributed with standard deviation δ, the details can
be found in Appendix E. Finally, we estimate that in order to
beat the PLOB bound, the average number of thermal photons
in the generated TMSV states must not be much higher than

10−3. This is around two orders of magnitude smaller than the
expected number of nonthermal photons, which is set to be on
the order of 0.1. The details of the calculation can be found in
Appendix E.

VI. CONCLUSION

We have analyzed a protocol for generating entanglement
between a pair of multiqubit registers, where entanglement
is shared by distributing two-mode squeezed vacuum states
followed by noiseless amplification using quantum scissor
operations with atomic qubits. Underlying our analysis is the
assumption that the qubits can occupy a bright and a dark
state. With this in mind, we propose that these registers could
be physically realized using NV centers in diamond. We found
that entanglement can be increased between the registers by
purifying the shared state via tuning of the angles θL and θR,
with sin(θL ) [sin(θR)] the amplitude corresponding to qubits in
the left (right) register in the bright state. We found that with
a single qubit per register it is possible to use the proposed
protocol in a repeater, capable of beating the PLOB bound
at around 130 km, under ideal conditions. We then gauged
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the sensitivity of the scheme to various sources of error. We
found that in order to beat the PLOB bound, loss of emission
from the NV centers should be kept below 1% and loss in
the channel chL should likewise be below 1%. Loss in the
detectors should be kept below 0.5% and the probability of
a dark count during a measurement should be kept below
0.5 × 10−2%. We computed the value of the CHSH inequality
for the analyzed setup and found that at the distance where
the secret key rate vanishes it is also possible to construct a
local hidden-variable model for the measurement outcomes.
Finally, using the computed CHSH value and the quantum bit
error rate, we bounded the device-independent secret key rate
of the repeater for a particular protocol.
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APPENDIX A: GENERATING ENTANGLED REGISTERS

We initialize the optical channels chL and chR into a TMSV
state

|ψ〉 =
∞∑

n=0

cn|n〉L|n〉R. (A1)

The subscripts L and R indicate whether we are referring to
the left part of the state or the right part. The amplitudes are
given by

cn = (−eiφ )n

√
〈n〉n

(1 + 〈n〉)n+1
, (A2)

where 〈n〉 is the average number of photons in each arm of
the TMSV state. In this work we consider the case where the
phase φ is set to 0. We focus on the left side of Fig. 3. We split
up the optical mode on N beam splitters. We intend to split the
optical field evenly among the N modes; to do this we use the
transmission and reflection coefficients

t j =
√

j − 1

j
, r j =

√
1

j
, (A3)

where j is the number of the arm, starting from 1 at the
leftmost arm. As a result, the amplitude operator for the left
part of the TMSV, aL, splits into the N arms as

aL →
√

1

N

N∑
k=1

ak . (A4)

Then |ψ〉 transforms as

|ψ〉 =
∞∑

n=0

cn
(a†

L )n

√
n!

|0〉L|n〉R

→
∞∑

n=0

cn
1√
n!

(√
1

N

)n

(a†
1 + a†

2 + · · · + a†
N )n|0〉l |n〉R.

(A5)

Note that we also propagated |0〉L to |0〉l with the latter being
the empty l modes at the left register. Using the multinomial
theorem, we may rewrite the ladder operator product as

(a†
1 + a†

2 + · · · + a†
N )n|0〉l

=
∑

j1+ j2+···+ jN =n

n!

j1! j2! · · · jN !
(a†

1) j1 (a†
2) j2 · · · (a†

N ) jN |0〉l

=
∑

j1+ j2+···+ jN =n

n!
√

j1!
√

j2! · · · √ jN !

j1! j2! · · · jN !
| j1, j2, · · · , jN 〉l

=
∑

jn

�jn |jn〉l , (A6)

where the final sum
∑

jn
runs over unique strings jn =

( j1, j2, . . . , jN ) such that j1 + j2 + · · · + jN = n. For exam-
ple, if n = 2 and N = 2, then the sum runs over the states
|j2〉 ∈ {|2, 0〉, |1, 1〉, |0, 2〉}. Here �jn is the prefactor given by

�jn = n!√
j1!

√
j2! · · ·√ jN !

. (A7)

Using this notation, we then write |ψ〉 as

|ψ〉 =
∞∑

n=0

cn
1√
n!

(√
1

N

)n ∑
jn

�jn |jn〉l |n〉R. (A8)

Meanwhile, we initialize the left registry in the state

|L〉 =
N∏

k=1

[
cos(θL )|0〉qk

|0〉 fk
+ sin(θL )|1〉qk

|1〉 fk

]
, (A9)

where the notation |0〉qk
|0〉 fk

indicates that for arm k the qubit
qk is in the state 0 and the fiber fk coupled to the qubit is
occupied by zero photons. We may then write |L〉 as

|L〉 =
∑

a1={0,1}

∑
a2={0,1}

· · ·
∑

aN ={0,1}
cos(θL )(1−a1 ) sin(θL )a1 · · ·

× cos(θL )(1−aN ) sin(θL )aN |a1〉q1
|a1〉 f1

· · · |aN 〉qN
|aN 〉 fN

=
∑

a

β(a, θL )|a〉q|a〉 f , (A10)

where we have introduced a sum over binary lists
∑

a leaving
the registry in a superposition of binary states |a〉q|a〉 f =
|a1〉q1

|a1〉 f1
· · · |aN 〉qN

|aN 〉 fN
. We have also introduced the pa-

rameter β(a, θL ) to take the angle θL into account. We interact
|ψ〉 and |L〉 using N beam splitters acting on the l and f
modes; we then measure on these modes using the photon
resolving detectors T and B for each arm. We assume a partic-
ular measurement outcome (tk, bk )k , indicating that tk photons
are going to detector Tk and bk photons are going to detector
Bk in arm k. Subject to this measurement, the state transforms
as

|ψ〉|L〉 → 〈t1|T1
〈b1|B1

U1〈t2|T2
〈b2|B2

U2 · · ·
× 〈tN |TN

〈bN |BN
UN |ψ〉|L〉, (A11)

where Uk is the beam splitter in arm k. The bra acting from the
left then indicates the projective action of the photon resolving
detectors.

The right part of the TMSV state is entangled with the left
registry qubit k if tk + bk = 1 since the photon could then have
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come from either the TMSV state or the bright state of the
qubit. Other measurement outcomes tend to yield information
about the state of the registry and the TMSV state and are
expected to lower the entanglement, though this assumption
could be explored further. In this work we will only accept
measurement outcomes where tk + bk = 1 for all N arms of
the registers.

To evaluate the above expression, we let the beam splitters
act on the bra. For example, we examine

〈tk|Tk
〈bk|Bk

Uk = (
U †

k |tk〉Tk
|bk〉Bk

)†
. (A12)

First we let tk = 1 and bk = 0 and we assume balanced beam
splitters

U †
k |1〉Tk

|0〉Bk
= 1√

2

(|0〉 fk
|1〉lk + |1〉 fk

|0〉lk

)
. (A13)

When we let tk = 0 and bk = 1, we get

U †
k |0〉Tk

|1〉Bk
= 1√

2

(|0〉 fk
|1〉lk − |1〉 fk

|0〉lk

)
, (A14)

as required by the reciprocity relations of the beam splitter.
Evidently, measuring tk = 0 and bk = 1 phase shifts registry

qubit k by π if it is in the bright state (since the mode fk is
then occupied). We will assume that this phase shift can be
corrected experimentally. For simplicity, we examine the sit-
uation where for all arms we obtain the measurements tk = 1
and bk = 0. The measurement described by Eq. (A11) then
transforms the state as

|ψ〉|L〉 →
(

1√
2

)N N∏
k=1

(〈0| fk
〈1|lk + 〈1| fk

〈0|lk
)|ψ〉|L〉.

(A15)

Note that we have not renormalized and the norm of the state
has been reduced.

Evidently, if mode lk contains one photon, then mode fk

is vacant and the qubit state must be |0〉qk
(dark) and vice

versa if mode lk contains no photons. We rewrite the projective
measurement as

N∏
k=1

(〈0| fk
〈1|lk + 〈1| fk

〈0|lk
) =

∑
m

〈¬m| f 〈m|l , (A16)

where m is any binary list of length N ; ¬m should be un-
derstood as the negation (not) of m. Using Eqs. (A8), (A10),
(A15), and (A16), the result of the measurement is

|ψ〉|L〉 → |α〉 =
(

1√
2

)N ∞∑
n=0

∑
jn

∑
a

∑
m

cn
1√
n!

(
1√
N

)n

β(a, θL )�jn〈¬m| f |a〉 f |a〉q〈m|l |jn〉l |n〉R. (A17)

Since m is a binary list, the overlap 〈m|l |jn〉l is only nonzero
when the optical input from the TMSV state jn is also binary.
This implies that

�jn = n!. (A18)

Conditioned on the overlap 〈m|l |jn〉l being nonzero, we see
that a must be the negation of jn so that 〈¬m| f |a〉 f is also
nonzero. This implies that the state shared between the right
TMSV and the left registry after measurement is

|α〉 =
(

1√
2

)N N∑
n=0

∑
in

cn

(
1√
N

)n

× β(n, θL )
√

n!|¬in〉L|n〉R, (A19)

where |¬in〉L is the state of the qubits in the left register and
the sum runs over binary lists in of length N . Here in contains n
ones and N − n zeros; in corresponds to the binary distribution
of photons in the lk modes prior to a successful measurement.
The sum over n has been terminated at N , since no binary
string in exists for n > N . We have also used the fact that

β(a, θL ) = β(¬in, θL ) = β(n, θL ) = cos(θL )n sin(θL )N−n.

(A20)

We may perform the sum over in by introducing the vector

∑
in

|¬in〉L =
(

N

n

)1/2

|IN−n〉L, (A21)

where |IN−n〉L is normalized and is an even superposition of
all binary states containing N − n bright state qubits and n

dark state qubits. In terms of these vectors, we find that we
may express |α〉 as

|α〉 =
(

1√
2

)N N∑
n=0

cn

(
1√
N

)n

β(n, θL )

×
√

n!

(
N

n

)1/2

|IN−n〉L|n〉R. (A22)

Comparing with the original TMSV state, we see that the left
register transforms a Fock state as

|n〉 →
(

1√
2

)N(
1√
N

)n

β(n, θL )
√

n!

(
N

n

)1/2

|IN−n〉

= �(n, θL )|IN−n〉, (A23)

where

�(n, θL ) =
(

1√
2

)N(
N

n

)1/2( 1√
N

)n√
n!β(n, θL ). (A24)

Using this transform and assuming no loss in the fiber, we
may infer that storing the right part of the TMSV in the right
register (see Fig. 3) results in the state

|α〉 =
N∑

n=0

cn�(n, θL )�(n, θR)|IN−n〉L|IN−n〉R. (A25)
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We may then compute the norm of the state of the two regis-
ters

〈α|α〉 =
N∑

m=0

|cm|2|�(m, θL )|2|�(m, θR)|2. (A26)

The probability of successful entanglement sharing between
the two registries is then this norm multiplied by the number
of measurements that would yield an equivalent state. For
each arm we have two detector outcomes (0,1) or (1,0) that
would yield a state equivalent to the one described above. The
probability of successful entanglement sharing is then

Ps = 2N 2N 〈α|α〉 = 4N 〈α|α〉. (A27)

1. Performance with loss

We initialize the optical channel in a TMSV state

|ψ〉 =
∞∑

n=0

cn|n〉L|n〉R. (A28)

We send the right part of the TMSV through a lossy channel
modeled by a beam splitter with transmission amplitude

√
ηR.

The transmission of the fiber is then given by ηR. Likewise, we
send the left part of the TMSV state through a lossy channel

of transmission ηL. The channel transforms the state as

|ψ〉 →
∞∑

n=0

n∑
lR,lL=0

εR(n, lR)εL(n, lL )cn

× |n − lL〉L|n − lR〉R|lL〉eL
|lR〉eR

, (A29)

where eR is a loss channel. The loss amplitude is given as

εR,L(n, lR,L ) =
√(

n

n − lR,L

)
η

(n−lR,L )/2
R,L (1 − ηR,L )lR,L/2. (A30)

Inserting the Fock-state transform (A23), we arrive at the
register state

|α〉 =
∞∑

n=0

n∑
lL=0

n∑
lR=0

cnεL(n, lL )εR(n, lR)�(n − lL, θL )

× �(n − lR, θR)�(N + lL − n)�(N + lR − n)

× |IN−n+lL 〉L|IN−n+lR〉R|lL〉eL
|lR〉eR

, (A31)

where we have introduced the step function

�(x) =
{

1 if x � 0
0 if x < 0.

(A32)

The step function takes into account that when more than
N photons reach either registers, the projective measurement
fails.

The corresponding density matrix is

σ =
∞∑

n=0

∞∑
m=0

n∑
lL=0

m∑
kL=0

n∑
lR=0

m∑
kR=0

cnc∗
mεR(n, lR)εL(n, lL )εR(m, kR)∗εL(m, kL )∗�(n − lL, θL )�(n − lR, θR)

× �(m − kL, θL )∗�(m − kR, θR)∗�(N + lL − n)�(N + lR − n)�(N + kL − m)�(N + kR − m)

× |IN−n+lL 〉L〈IN−m+kL |L|IN−n+lR〉R〈IN−m+kR |R|lL〉eL
〈kL|eL

|lR〉eR
〈kR|eR

. (A33)

We then trace out the loss channels, giving the state

ρ = Treσ =
∞∑

n=0

∞∑
m=0

min(n,m)∑
l=0

min(n,m)∑
r=0

cnc∗
mεR(n, r)εL(n, l )εR(m, r)∗εL(m, l )∗�(n − l, θL )�(n − r, θR)

× �(m − l, θL )∗�(m − r, θR)∗�(N + l − n)�(N + r − n)�(N + l − m)�(N + r − m)

× |IN−n+l〉L〈IN−m+l |L|IN−n+r〉R〈IN−m+r |R. (A34)

We define the matrix elements


(n, m, l, r) = cnc∗
mεR(n, r)εL(n, l )εR(m, r)∗εL(m, l )∗�(n − l, θL )�(n − r, θR)�(m − l, θL )∗

× �(m − r, θR)∗�(N + l − n)�(N + r − n)�(N + l − m)�(N + r − m) (A35)

such that we may write the state as

ρ =
∞∑

n=0

∞∑
m=0

min(n,m)∑
l=0

min(n,m)∑
r=0


(n, m, l, r)|IN−n+l〉L〈IN−m+l |L|IN−n+r〉R〈IN−m+r |R. (A36)
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2. One qubit per register

In the following we will analyze the case of one-sided loss. Loss is assumed to only occur between the TMSV source and the
right register. If N = 1 then we have the density matrix

ρ = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

|c1|2η cos(θL )2 cos(θR)2 0 0 c1c∗
0
√

η sin(θR) sin(θL ) cos(θR) cos(θL )

0 |c1|2(1 − η) cos(θL )2 sin(θR)2 0 0

0 0 0 0

c∗
1c0

√
η sin(θR) sin(θL ) cos(θR) cos(θL ) 0 0 |c0|2 sin(θL )2 sin(θR)2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A37)

If we use the above state for entanglement swapping via Bell measurements, there is an advantage in keeping the matrix
elements ρ11 and ρ44 identical. If this is not the case, series of swaps will tend to make the state more separable and thereby
diminish entanglement. This constraint implies that

|c1|2η cos(θL )2 cos(θR)2 = |c0|2 sin(θL )2 sin(θR)2. (A38)

This implies a bond between θR and θL,

tan(θL )2 = tan(θR)−2η
|c1|2
|c0|2 . (A39)

Utilizing the bond in Eq. (A39), we may rewrite the density matrix as

ρ = 1

4

sin(θR)2|c1|2|c0|2η
tan(θR)2|c0|2 + η|c1|2

⎛
⎜⎜⎜⎜⎝

1 0 0 −eiφ

0 (η−1 − 1) tan(θR)2 0 0

0 0 0 0

−e−iφ 0 0 1

⎞
⎟⎟⎟⎟⎠. (A40)

We now want to choose the superposition angle θR such
that the state is as entangled as possible. Evidently we have
that if we suppress the loss term, corresponding to matrix
element ρ22, then the state of the qubits is a maximally en-
tangled state. This suggests that we should make tan(θR)2 as
small as possible. However, there is one more condition to
consider: the probability of the measurements at the photode-
tectors succeeding, which goes to zero in this limit where
θR → 0. The probability of success is given by the trace
of ρ,

P(θR, 〈n〉; η) = sin(θR)2|c1|2|c0|2 2η + (1 − η) tan(θR)2

tan(θR)2|c0|2 + η|c1|2 ,

(A41)

where we take into account that the measurements at the
photodetectors can succeed in four ways. The optimal choice
of θR is then the choice that minimizes tan(θR)2 subject to the
condition that

P(θR, 〈n〉; η) � p, (A42)

where p is the minimum probability of success tolerated by
the experimental setup. We may maximize P(θR, 〈n〉; η) in 〈n〉
for a given θR and η by choosing the squeezing of the TMSV
source such that we have the equality

〈n〉 =
√

1 − η

η + tan(θR)2
. (A43)

Inserting the optimal choice of 〈n〉 into P(θR, 〈n〉; η), we
obtain the probability P(θR; η). From numerical investiga-

tion we find that this probability depends on the angle θR

in a complicated manner. However, for values of |θR| below
approximately 0.66 we have that P(θR; η) decreases monoton-
ically in |θR| for any value of η. In order to minimize tan(θR)2

we require low values of θR and so we expect to be below this
angle. With this consideration, we may infer that the optimal
choice of θR is obtained when

P(θR; η) = p, (A44)

which can be rewritten as a quartic polynomial equation in

z =
√

1 − η

η+tan(θR )2 ,

p + 2pz + η(p − 2)z2 + p(2η − 2)z3

+ [−p + (1 + p)η + η2]z4 = 0, (A45)

which can be solved efficiently numerically and from which
we can find θR.

Given that we have made the optimal choice of θR, we can
investigate how the state evolves under a sequence of swaps.
Suppose we have four registers, as shown in Fig. 7, pairwise
entangled in the state ρ given by Eq. (A40). The total state
� is then a product of two such states � = ρ ⊗ ρ. Obtaining
the particular Bell measurement outcome corresponding to the
ket |ψ〉 = 1√

2
(|0R1 0L2〉 + |1R1 1L2〉) on registers R1 and L2, we

obtain the state

ρ1 = 1
2

(〈
0R1 0L2

∣∣ + 〈
1R1 1L2

∣∣)�(∣∣0R1 0L2

〉 + ∣∣1R1 1L2

〉)
. (A46)
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We may evaluate ρ1 by inserting ρ from Eq. (A40). We obtain the unnormalized state

ρ1 = 1

2

(
1

4

sin(θR)2|c1|2|c0|2η
tan(θR)2|c0|2 + η|c1|2

)2

⎛
⎜⎜⎜⎜⎝

1 0 0 (−eiφ )2

0 2(η−1 − 1) tan(θR)2 0 0

0 0 0 0

(−e−iφ )2 0 0 1

⎞
⎟⎟⎟⎟⎠. (A47)

Clearly the state is similar in structure to the original state, with the loss term having doubled in size relative to the other matrix
elements. Continuing this, then after s swaps we obtain the unnormalized density matrix

ρs =
(

1

2

)s(1

4

sin(θR)2|c1|2|c0|2η
tan(θR)2|c0|2 + η|c1|2

)s+1

⎛
⎜⎜⎜⎜⎝

1 0 0 (−eiφ )s+1

0 (s + 1)(η−1 − 1) tan(θR)2 0 0

0 0 0 0

(−e−iφ )s+1 0 0 1

⎞
⎟⎟⎟⎟⎠. (A48)

Of course, Bell measurement outcomes other than the one considered here will occur. We will numerically simulate swaps by
drawing fairly from the four Bell measurement outcomes.

APPENDIX B: SECRET KEY RATE

Having established entanglement between registers, we are
interested in computing how large a shared secret key might
be to be extractable from the density matrix. We will assume
that Eve can perform a collective attack [37]. Given that
Alice and Bob each measure their registry qubit, the secret
information is then simply the mutual information between
the observed outcomes (a and b) minus the information an
eavesdropper might have of the outcome obtained by the
reconciliator x (Alice or Bob) [38]. The secret information is
given by the Devetak-Winter formula [39]

K = βI (a : b) − S(x : E ), (B1)

where β is the reconciliation efficiency, that is, how large a
part of the mutual information that can be distilled into a
shared key. The mutual information between the measurement
outcomes obtained by Alice and Bob is simply [40]

I (a : b) =
∑
a,b

P(a, b) log2

(
P(a, b)

P(a)P(b)

)
, (B2)

where P(a, b) is the probability of obtaining outcomes a and
b, whereas P(a) and P(b) are the marginal probabilities of
obtaining outcomes a and b, respectively. In addition, S(x : E )
is the Holevo information which upper bounds the information
Eve can obtain about the variable x given her measurement e
[41],

I (x : e) � S(x : E ), (B3)

with the capital E indicating the state on which Eve has not
yet measured. We will assume that Alice is the reconciliator
x = a. The Holevo value is given by

S(a : E ) = S(ρE ) −
∑

a

P(a)S
(
ρa

E

)
, (B4)

where ρa
E is the state held by Eve subject to the condition that

Alice measures a. Since Bob purifies the state ρa
E , we have

that

S
(
ρa

E

) = S
(
ρa

B

)
. (B5)

Furthermore, since Alice and Bob purify the state held by Eve,

S(ρE ) = S(ρAB). (B6)

So we may compute the Holevo value simply by knowing the
state shared by Alice and Bob

S(a : E ) = S(ρAB) −
∑

a

P(a)S
(
ρa

B

)
. (B7)

To obtain a secret key rate, we normalize K by the number
of channel uses necessary to generate that secret key. The
number of channel uses necessary will be established in Ap-
pendix C. We will be assuming a reconciliation efficiency β

of 1 and that Alice and Bob measure either σx or σz, e.g.,
they could use the BB84 protocol. They can then extract a
secret key from measurement rounds where their choice of
basis coincides.

APPENDIX C: TRIALS NEEDED BEFORE M
REPEATER SEGMENTS SUCCEED

In Appendixes A–B we analyzed a single pair of registers
L1 and R1 and found the probability p with which we suc-
cessfully generate the state ρ given in Eq. (A36), with p given
by 4N Trρ. Given p, we will assume that the probability of
successfully generating ρ after exactly n attempts follows a
geometric distribution, with probability mass function

PMF(n) = p(1 − p)n−1. (C1)

The corresponding cumulative distribution function, which
should be interpreted as the probability that ρ has been es-
tablished in less than or exactly n attempts, is given by

CDF(n) = 1 − (1 − p)n. (C2)

Now we will assume that we have a collection of M repeater
segments, each repeater segment being a pair of registers,
as shown in Fig. 8(a). We now want to compute how many
attempts are necessary before all M repeater segments suc-
cessfully generate the state ρ. The cumulative distribution for
M repeaters attempting in parallel is simply the product

CDFM (n) = [1 − (1 − p)n]M . (C3)
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FIG. 13. (a) Plot of the distance where no Bell inequality can be violated for various register separations with one qubit per register. (b) Plot
of the distance where the secret key rate vanishes for various register separations with one qubit per register. The legend indicates the expected
number of attempts A.

The probability of all repeaters having succeeded after exactly
n attempts is then

PDFM (n) = CDFM (n) − CDFM (n − 1)

= [1 − (1 − p)n]M − [1 − (1 − p)n−1]M

=
M∑

s=0

(
M

s

)
(1 − p)n·s[1 − (1 − p)−s]. (C4)

A similar formula may be found in [42]. We then fix p by
demanding that the relation

A =
∞∑

n=1

n PDFM (n) (C5)

is satisfied, implying that the average experiment succeeds in
A attempts. Assuming that a state ρM is generated from M − 1
deterministic entanglement swaps using M repeater segments
and that a secret key KM can be extracted from this state, we
normalize this key by the number of attempts necessary to

FIG. 14. Optimal value of 〈n〉 for different number of allowed
attempts A (legend) against the distance between the end points of
the repeater. The length of a repeater segment is set at 10 km.

generate ρM . This gives us the secret key rate KM ,

KM =
∞∑

n=1

KM

n
PDFM (n) = KM

∞∑
n=1

PDFM (n)

n
, (C6)

where KM is computed from Eq. (B1).

APPENDIX D: OPTIMAL PARAMETERS:
ONE QUBIT PER REGISTER

In Fig. 13(b) we plot the critical distance at which the secret
key rate vanishes against the separation between registers
making up a repeater segment. In Fig. 13(a) we likewise show
the critical distance at which the CHSH inequality is no longer
broken, also against the separation between registers making
up a repeater segment.

We then give the optimal average photon number, the op-
timal values of θL, and the optimal values of θR against the
distance between the end points of the repeater. These are
shown in Figs. 14–16, respectively. Note that the length of
a repeater segment was set to 10 km.

FIG. 15. Optimal value of θL for different number of allowed
attempts A (legend) against the distance between the end points of
the repeater. The length of a repeater segment is set at 10 km.
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FIG. 16. Optimal value of θR for different numbers of allowed
attempts A (legend) against the distance between the end points of
the repeater. The length of a repeater segment is set at 10 km.

APPENDIX E: PHASE AND THERMAL NOISE

Phase noise in the optical fibers results in the optical TMSV
state

|ψ〉 =
∞∑

n=0

cneiγ n|n〉L|n〉R, (E1)

where γ is a stochastic phase shift of the state. Here γ is the
combined phase shift arising from phase noise in both arms of
the TMSV state; γ can be absorbed into cn, and in the case
of one qubit in each register, we obtain the density matrix
describing the registers from Eq. (A40),

ρ = 1

2

⎛
⎜⎜⎜⎝

1 0 0 −ei(φ+γ )

0 0 0 0
0 0 0 0

−e−i(φ+γ ) 0 0 1

⎞
⎟⎟⎟⎠ = |γ 〉〈γ |, (E2)

where we have assumed no loss (η = 1) and

|γ 〉 = 1√
2

(|00〉 − e−i(φ+γ )|11〉). (E3)

Assuming that the phase error γ is normally distributed with
variance δ2, then the ensemble arising from this stochastic
phase error is described by the density matrix

ρδ = 1√
2πδ

∫ ∞

−∞
dγ e−γ 2/2δ2 |γ 〉〈γ |. (E4)

Picking φ = π , we compute the quantum bit error rate as

Q = 〈+|〈−|ρδ|+〉|−〉 + 〈−|〈+|ρδ|−〉|+〉

= 1 − e−δ2/2

2
. (E5)

For Q = 0.01 we find δ = 200 mrad.

FIG. 17. We vary the expected number of thermal photons nT

in both arms of the TMSV state. The value of nT is annotated to
each curve. A is close to 500 for all plots. The length of a repeater
segment is 60 km. We observe that at nT = 5 × 10−3, the repeater
can no longer beat the PLOB bound.

Given two copies of |γ 〉 with different stochastic phase
shifts γ1 and γ2, we have

|γ1〉 = 1√
2

(|0〉11|0〉12 − e−i(φ+γ1 )|1〉11|1〉12),

|γ2〉 = 1√
2

(|0〉21|0〉22 − e−i(φ+γ2 )|1〉21|1〉22). (E6)

We perform a Bell measurement on qubits 12 and 21 to enact
an entanglement swap

1√
2

(〈0|12〈0|21 + 〈1|12〈1|21)|γ1〉|γ2〉

∝ |0〉11|0〉22 + e−i(2φ+γ1+γ2 )|1〉11|1〉22, (E7)

where we assumed a particular Bell measurement outcome.
However, independently of what Bell measurement outcome
occurred, we find that the stochastic phase angle is a sum
or difference of γ1 and γ2. We may then deduce that after s
swaps, the accumulated phase error will be a sum of s + 1 in-
dependent random phases. If each independent random phase
γk is normally distributed with variance δ2, then the accumu-
lated random phase obtained from a repeater with M segments
will be normally distributed with variance Mδ2.

Allowing for the possibility of thermal noise in the re-
peater, we consider the presence of thermal photons in the
generated TMSV states. The thermal TMSV states are ob-
tained by two-mode squeezing two thermal states, each with
average photon number nT . In Fig. 17 we show how the secret
key rate changes as we vary the expected number of thermal
photons nT .
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