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A B S T R A C T

The heat sector accounts for almost half of the world’s energy consumption, making it a crucial component
in meeting decarbonization targets. One of the biggest challenges of heat energy decarbonization arises at
the household level, which collectively has a substantial impact on decarbonization. Individual households
commonly rely on decentralized heat sources (DHS). Different technologies can be used as a DHS, each
of which leads to different overall (Capex and Opex) costs and carbon emissions. Households choose their
DHS technologies freely, though typically influenced by the recommendations from their local city planners
who use historical data and analyze the respective economical and environmental consequences. Therefore,
developing a decision support system (DSS) that guides individuals in their DHS investment choices is a high
priority for city planners as it can help evaluate the role of different policies in aligning economical and
environmental concerns. This is becoming more important as both the economical and environmental concerns
are increasing, respectively, due to recent energy price spikes and the growing urgency of decarbonization.
However, developing such a comprehensive DSS is challenging due to the complexity of accounting for all
DHS constraints and the uncertainties in demand, prices, and policies. In this study, we present a reliable
and comprehensive DSS that provides a range of optimal strategies including the most cost-efficient and the
most environmentally friendly ones. These strategies identify the optimal type, installed capacity, and year
of investment of DHS technologies, as well as the expected yearly heat generation of each technology. Our
DSS accounts for the uncertainties of heat demand, fuel prices, investment, and operation and maintenance
costs. We apply our DSS to a typical household in the municipality of Lyngby-Taarbæk under different policy
scenarios. We show that between the most environmentally friendly and most cost-efficient solution only a gap
of 9%–15% in cost needs to be bridged. We also demonstrate that current energy taxation policies in Denmark
do not provide a level playing field between different heat technologies. Under different policy scenarios, we
show that heat pumps integrated with PV have the highest potential for minimizing CO2 emissions for a Danish
household.
1. Introduction

According to Ref. [1], global carbon emissions are expected to
increase significantly by 2050, primarily due to economic growth and
increasing energy demand, which outweigh future improvements in
energy efficiency. To combat this, reducing greenhouse gas emissions,
especially carbon dioxide, has become a clear policy goal for many
countries over the past decade. As a result, all energy sectors worldwide
are taking steady steps toward decarbonization to reduce their carbon
footprint, promote the renewable-based generation, and create an en-
vironmentally friendly system. In 2021, the building sector accounted
for 37% of energy-related CO2 emissions globally [2], with residential
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buildings accounting for 75% of this total [3]. Since most residential en-
ergy consumption is due to heat consumption, decarbonizing individual
heat consumption is a crucial step in meeting national or international
carbon emission reduction targets [4].

City planners play a pivotal role in decarbonizing the heat sector
by developing sustainable and efficient heating strategies that reduce
greenhouse gas emissions, integrate energy efficiency measures, and
support the uptake of renewable energy resources (RES) [5–9]. One
clear pathway for decarbonization that city planners can take is imple-
menting district heating (DH) systems, which generate the heat supply
vailable online 26 June 2023
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centrally and then distribute it through hot water to individuals for
their hot water and space heating needs. DH is an ideal pathway for
decarbonizing heat demand and a critical tool for achieving significant
carbon emissions reductions. However, legal or geographical restric-
tions often hinder building new DH stations for the purpose of heating
urban districts, or in some cases, the connection cost might be too high,
making DH economically infeasible.

Districts without current or future access to district heating (DH)
rely on small-scale decentralized heating sources (DHS) for thermal
energy. There is a wide range of DHS technologies that vary in costs,
emissions, and operational restrictions. To serve their heat demand,
households freely choose their DHS technology, but they may pri-
oritize economic concerns over environmental ones without a clear
understanding of the consequences. This is due to the wide range of
DHS types and fuels, as well as the difficulty of predicting future heat
demand and supply matching. As a result, households often seek advice
from city planners on the economic and environmental impacts of each
DHS. Depending on household preferences and existing and future reg-
ulations, solutions could range from the most cost-effective to the most
environmentally friendly. This difference is becoming more crucial as
energy prices become volatile and sustainability goals become more
critical. City planners can act as smart agents by providing informed
decision support to guide households towards economical, low-carbon
heating solutions. Thus, they actively seek reliable and comprehensive
Decision Support Systems (DSS) to bridge the gap between their sus-
tainability goals and the households’ need for a reliable and efficient
heat supply. Policymakers can also use such a DSS to investigate the
impact of different policies on the long-term sustainability of the heat
supply.

While there is a dire need for a reliable and comprehensive DSS for
city planners, this is currently missing in practice because of multiple
sources of complexity. Firstly, DHSs are composed of various types of
technologies with different operational and physical restrictions, invest-
ment costs, fuel types, carbon footprints, and lifetimes. Incorporating
all of these diversities in an inclusive DSS is complex. Secondly, the de-
sirable DSS should account for multiple and often conflicting objectives,
such as minimizing the overall carbon emissions and minimizing the
energy investment and operation costs for the individual. Thirdly, the
DSS should factor in several stochastic processes (such as heat demand,
solar power, fuel and electricity prices, taxes, etc.) and their projections
for the future. Fourthly, the decision support model must be flexible
and extensible to other local or district areas, reflecting their local
regulatory framework conditions and energy orientations. Lastly, the
DSS should be generalizable and applicable to a wide range of heat
supply technologies, different sustainability targets, heat demand and
price profiles, regulatory projections, etc. Our study aims to develop a
DSS that can address all of these challenges successfully.

This study addresses a growing need for city planners to promote the
heat energy transition of citizens in areas where DH solutions are not
available. Additionally, it helps policymakers investigate the impact of
various policy scenarios on DHS choices and the collective heat energy
transition. Our work falls into the category of model-driven decision
support systems that focus on quantitative mathematical modeling as
the main component [10], while still using some limited data to tune
the model to particular cases [10–12].

Our proposed DSS addresses four key aspects that have not been
studied simultaneously before. First, we account for a vast number of
uncertainties (e.g., supply, demand, and price) in the optimization cal-
culation and include detailed operational restrictions of the underlying
DHS technologies to achieve robust, inclusive, and practical solutions.
Second, we use an extended time frame that accounts for the entire
lifetime of technologies, allowing us to define the optimal DHS mix on
a yearly basis and anticipate heating equipment replacement. Third,
we incorporate important policy and restriction scenarios to enable
examining their impact on the DHS choice for households. Finally,
2

we subject all of the above parameters to a multi-objective function
that minimizes both heating cost and carbon emissions. This approach
explores and informs on the trade-offs between the least cost and least
carbon emissions and allows us to strike the optimal balance between
private budgetary and societal environmental objectives. To the best
of our knowledge, this study enhances the existing state-of-the-art
DSS models for optimal DHS investments and planning by consider-
ing multiple technologies, accounting for demand uncertainties, and
representing regulatory risks over an extended period.

We apply our proposed DSS to a practical Danish case. Denmark
has a long tradition of involving municipal actors in the choice of
heating infrastructure – and mix – at the city level. A large share of
the population (63% in 2022) is connected to DH and 15% to natural
gas networks. The rest of the heating demand is historically supplied by
oil and gas furnaces. The Danish political agreement on heating targets
a phaseout of 120,000–170,000 (out of 350,000) gas boilers by 2030
and targets a progressive complete phasing out of oil and gas boilers, re-
placed by rolling out district heating and clean heating equipment such
as heat pumps [13]. Projections indicate that 30%–50% of households
will have district heating by 2028 and 20% of households will have
heat pumps by 2030, creating a gap in fossil fuel heating replacement
in the announced time frame [14]. This discrepancy, combined with
the rising prices of hydrocarbons since 2022, puts increasing pressure
on municipalities, which are the main actors in guiding households’
energy choices until they are connected to district heating. Therefore
municipalities are in need to obtain a concrete assessment of the
situation to be able to inform and encourage households who do not
have direct access to DH in the transient time, to efficiently choose
their heating technology. We, particularly, focus on the municipality
of Lyngby–Taarbæk as a representative of many other municipalities
that face the challenge to cope with expanding urban development
and carbon emissions mitigation requirements. Lyngby–Taarbæk has
set a target of a minimum of 20% reduction in carbon emissions
during the forthcoming decade. Additionally, the municipality’s climate
partnership with the Danish Society for Nature Conservation requires
2% carbon emissions reduction yearly from the building sector. These
goals cannot be achieved without steering the DHS in a sustainable
way (as it accounts for 48% of the overall demand in the municipality)
and this cannot happen without having an efficient DSS. Applying our
DSS model to this case, we have provided them with some interesting
observations and new insights.

Our key contributions can be summarized as follows:

1. Theoretical/Methodological contribution: To the best of our
knowledge, the model we developed for our DSS stands out from
the existing ones, in terms of comprehensiveness, inclusiveness,
and generalizability. Moreover, this DSS allows a comparison of
the impacts of a selection of policy and regulatory factors on
households’ possible choices of technologies.

2. Real-world data and an actual case: By applying our model
to real-world data and the case of Lyngby–Taarbæk in Den-
mark, we gain valuable insights into the optimal choices of DHS
technologies and how they are influenced by underlying policies.

3. Policy/Managerial implications: Our DSS can be used by the
city planners and policymakers which can, respectively, affect
individual heat decarbonization and recognize the impact of dif-
ferent policies on heat decarbonization. Our results also provide
insights into the effectiveness of existing policies. For example,
we demonstrate how some policies and regulations may overlap,
reinforce, cancel each other out, or have a limited impact.

The paper is organized as follows: In the next section, we provide a
review of the relevant literature. We present our DSS model formulation
in Section 3. Section 4 outlines the details of the case study for our
numerical investigations. In Section 5, we show the results and provide
new insights. We conclude the paper and discuss the limitations of the

work in Section 6.
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2. Related literature

Decision support systems for long-term planning of heating systems
have gained much attention among industry and researchers in recent
years. Ref. [15] provides a comprehensive review of different modeling
approaches for energy systems at the district level. Ref. [16] reviews ur-
ban energy system modeling approaches, challenges, and opportunities
in five key practice areas: technology design, building design, urban
climate, systems design, and policy assessment.

Most studies use Mixed-Integer Linear Programming (MILP) while
modeling single- or multi-objective functions. A large share of prior
literature focuses on single-objective optimizations, only considering ei-
ther cost minimization or carbon emission minimization [17,18]. Some
others only consider the minimization of investment cost, but include
the taxation of carbon emissions [19–22]. Indeed, long-term planning
requires multi-objective optimization to offer some balance between
cost and carbon emission minimization. Only a few studies have ac-
counted for such a multi-objective design. Morvaj et al. use a mixed
integer linear programming model to minimize total cost and carbon
emissions [23]. Their model considers 288 time steps representing one
day per month for a single year. Karmellos et al. present two multi-
objective models with the aim of designing distributed energy systems
to satisfy the heat demand [24]. Their multi-objective MILP framework
compares two main approaches for design when minimizing the total
cost and carbon emissions as objective functions. They consider a single
year for planning considering six periods per day for three typical days
for every season in the year. In another work, Testi et al. provide a
model that incorporates a multi-objective stochastic optimization of the
expected performance of the system and the risk index measured to
achieve a low percentile of the annualized cost-saving percentage [25].
Their model incorporates demand and fuel costs uncertainties and
makes a simplifying assumption that all technologies have the same
lifetime (20 years). Another multi-objective framework aiming to bal-
ance cost and emission minimization is presented in [26]. The authors
focus on household-scale systems to promote green technologies such
as solar heat collectors and heat pumps. The model considers a one-
year planning horizon in a deterministic setting. In another work, Moret
et al. use a simple model for demand uncertainty to propose a DSS
for long-term strategic planning for the choice of technology in energy
systems using robust optimization [27].

There are also some studies that focus on the role of regulations
in decarbonizing heating sources and equipment. At the electricity–
heat interface, two recent studies [28,29] list the regulatory barriers
in detail, distinguishing at which stage of the project life cycle each
obstacle occurs and describing its level of origin. Essentially, tax exemp-
tions and the tariff structure for electricity transmission are identified as
two fundamental barriers affecting the competitiveness of some green
technologies (e.g., biomass) and electricity for heating [28,30–34].
These studies also indicate that the generalized omission of network
tariffs in the calculation of the marginal cost for electricity – or gas –
tends to achieve results often too optimistic regarding the future invest-
ment of electricity-based heating, often at the benefit of biomass-based
heating [33]. Although most of these studies focus on district heating,
the substitution effects triggered by these regulations can be found in
individual heating. Concerning individual heating in dwellings, past
studies assess and demonstrate that subsidies for the replacement of
heating equipment are a powerful driver to accelerate the technological
shift, especially from gas or fuel boilers to heat pumps or wood stoves
[35–37]. Krützfeldt et al. reveal that the costs linked to regulation are
often missing from studies using similar MILP approaches, which tend
to drift results away from the optimum [38]. Other studies [39,40]
include grid tariffs and taxes in their respective cost estimate, allowing
more policy-oriented recommendations. These studies highlight the gap
between the socio-economic optimum (where only the operating and
apital costs are considered), and the political optimum (which also
3

incorporates subsidies associated with energy solutions).
While these prior studies shed light on the optimal decisions for the
heating sector decision, a reliable and comprehensive DSS for individ-
ual heating is still missing for multiple reasons. First of all, most existing
models consider a single objective function, which is mainly cost mini-
mization, and factors in carbon emissions as carbon taxes. This simple
model cannot capture the trade-off between cost and sustainability,
which are often conflicting objectives. Secondly, most previous work
has limited time horizons for planning, for example taking sample days
for the planning of a single year. This limitation prohibits the realistic
consideration of the actual lifetime of the technologies being invested
in and used, which leads to an inaccurate or incorrect recommendation.
Consequently, previous literature that considered longer planning time
frames, up to 10 or 20 years, rarely offers insight into the optimal year
in which investments should take place. Thirdly, existing studies fall
short in accounting for uncertainties in long-term planning. It is evident
that there are multiple uncertain factors, such as heat demand, fuel
prices, and investment costs that have a direct impact on the optimal
results and strategies. Fourthly, the effects of policy and regulation
on energy technologies, cost, carbon footprint, and ultimately, heating
technology choice are often disregarded. Finally, because of the fun-
damental differences in the operational restrictions of different heat
technologies, prior studies mostly build their model for a specific choice
of technology. In this study, we fill this gap by providing a reliable and
comprehensive DSS that accounts for all of these shortcomings.

3. Decision support system

In this section, we elaborate on the optimization formulation and
the solution approach used in the proposed decision support system
(DSS) for long-term strategic planning of distributed heating sources.
We formulate a multi-objective optimization and cast it as a mixed-
integer linear programming (MILP) problem. The first objective func-
tion concerns the minimization of the total DHS investment and op-
erational cost. The second objective function focuses on minimizing
the carbon emissions from the invested DHS. Considering both ob-
jectives allows us to investigate the trade-off between the cost and
carbon emission minimization, which leads to a range of potential
long-term planning strategies extending from the least total invest-
ment and operational cost (cost-optimal) to the least carbon emissions
(environmental-optimal) portfolios.

Fig. 1 summarizes the inputs and the outputs of the proposed
decision support model. The DSS takes as input the desired planning
horizon, all costs related to investment, operation, and fuel for all
considered DHS technologies, the lifetime of such technologies, and
their carbon emission factors. The output is a range of potential long-
term strategies that is illustrated as a Pareto front, where every point on
the Pareto front on the graph represents a different optimal strategy at
a given carbon emission target. Every strategy produces a different set
of decision variables values: (1) the optimal types of DHS technologies
to be purchased; (2) the optimal size and yearly heat generation of each
DHS, and (3) the optimal year at which every DHS investment should
take place. Our model ensures the total heat demand of the individual
is served and the peak heat consumption does not violate the available
heat supply capacity of the operational DHSs.

The proposed DSS is designed for long-term planning, (e.g., 10–
30 years ahead), and accounts for the uncertainty of key parameters
such as heat demand development, and costs for investment, operation,
and fuel (see Section 3.2). A unique feature of the proposed DSS is its
generalizability. The DSS can be used in different settings, technologies,
jurisdictions, and even scales. While our focus is on the household level,
the DSS can also be used for district-level decision-making, treating the
district as one large individual. This offers valuable insights to policy-
makers to better understand the impact of new policies on society. In

the following, we explain the detail of the model.
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Fig. 1. The inputs and outputs of our proposed DSS.
3.1. Multi-objective optimization problem

We consider a discrete-time model for the planning of the next 𝑌
years, where new investments can only happen at the beginning of
each year. A monthly time granularity for capacity sizing is modeled
since yearly calculations cannot capture seasonal variations. To be more
precise, each year 𝑦 (where 1 ≤ 𝑦 ≤ 𝑌 ) is subdivided into 12 months
denoted by 𝑚 (where 1 ≤ 𝑚 ≤ 12). Our model ensures that the monthly
peak heat demand does not violate the heat supply capacity. We further
use the notation 𝑇 to represent the set of all feasible DHS technologies
and 𝑡 (∈ 𝑇 ) to refer to any technology in the feasible set. Refer to
Table 3 for the nomenclature of all parameters and variables.

3.1.1. Objective function
We consider two objective functions for the DSS and we separately

formulate them. The first objective function, denoted 𝛩 in Eq. (1),
aims to minimize the total cost of the mix of DHS used at any time
and summed over the entire long-term planning horizon. The total
cost of each technology 𝑡 ∈ 𝑇 consists of three main components; the
investment cost 𝐼𝑦𝑡 , the operation and maintenance costs (O&M) 𝑂𝑀𝑦

𝑡 ,
and the fuel price with grid tariff 𝛿𝑦𝑡 , and taxes 𝜏𝑦𝑡 . The investment
cost 𝐼𝑦𝑡 of a technology 𝑡 ∈ 𝑇 purchased at the beginning of year 𝑦
is a function of the installed capacity of the DHS, denoted by 𝐶𝑦

𝑡 . The
operation and maintenance 𝑂𝑀𝑦

𝑡 cost for any technology 𝑡 ∈ 𝑇 in each
year 𝑦, denoted by 𝑂𝑀𝑦

𝑡 . Both cost components, 𝐼𝑦𝑡 and 𝑂𝑀𝑦
𝑡 , linearly

scale with the installed capacity 𝐶𝑦
𝑡 . The fuel prices with grid tariff 𝛿𝑦𝑡 ,

and the taxes 𝜏𝑦𝑡 linearly scale with the total amount of heat energy
generated by each technology 𝑡 in every month 𝑚 in year 𝑦, denoted
𝑄𝑦,𝑚

𝑡 .
Some DHS technologies rely on the electricity grid to generate

heat. For these technologies, additional rooftop solar photovoltaic (PV)
panels can be used to serve part of the electricity need, thus saving
cost and carbon emission. For example, heat pumps can be integrated
with PV panels to help reduce the cost and/or emission of their heat
generation. In this case, both technologies will be invested in at the
same time. Therefore, for every technology 𝑡 ∈ 𝑇 , we use subscript
𝑡, 𝑝𝑣 to refer to the supplementary solar panel installations. As such, a
DHS technology can further invest to buy a total capacity of 𝐶𝑦

𝑡,𝑝𝑣 in
year 𝑦, which costs 𝐼𝑦𝑡,𝑝𝑣 per unit of capacity, but this can cover part
of the heat energy demand, reducing fuel (electricity) costs and carbon
emission. Solar PV panels have negligible O&M costs thus it is neglected
in Eq. (1).
4

Since the proposed DSS focuses on long-term planning, we assume
that investment decisions can only occur at the beginning of each
year, i.e. 𝑚 = 1. Furthermore, we incorporate the discounted rate
of 𝑑 throughout the lifespan of the DHS technologies. Combining all
the above notation, the first objective, which is the total cost of heat
investment and generation, is expressed as

𝛩 =
𝑦
∑

𝑦=1

1
(1 + 𝑑)𝑦

[ 𝑀
∑

𝑚=1

∑

𝑡∈𝑇
(𝐼𝑦𝑡 + 𝑂𝑀𝑦

𝑡 )𝐶
𝑦
𝑡 + (𝛿𝑦𝑡 + 𝜏𝑦𝑡 )𝑄

𝑦,𝑚
𝑡 + 𝐼𝑦𝑡,𝑝𝑣𝐶

𝑦
𝑡,𝑝𝑣

]

(1)

The second objective function formulates the total carbon emission,
denoted 𝛷. Let 𝜆𝑡 denote the carbon emission factor per unit of heat
generation from any given technology 𝑡. The amount of electricity
procured from the grid to supply DHS technologies that rely on the
electricity grid is denoted 𝑃 𝑦,𝑚

𝑔𝑟𝑖𝑑 . Then, the second objective function
can be expressed as

𝛷 =
𝑌
∑

𝑦=1

𝑀
∑

𝑚=1

∑

𝑡∈𝑇
𝜆𝑦𝑡𝑄

𝑦,𝑚
𝑡 + 𝜆𝑦𝑡 𝑃

𝑦,𝑚
𝑔𝑟𝑖𝑑 (2)

Accounting for both objective functions forms our multi-objective
optimization problem. In order to solve this problem, the 𝜖-constraint
method, adopted from Ref. [41], is used. In this method, the opti-
mization problem is solved by minimizing a primary objective, while
formulating the secondary objective function as an upper bound con-
straint that is limited to a value 𝜖 ≥ 0. This method produces a
non-dominated set of feasible solutions, namely called trade-off so-
lutions, that collectively form a Pareto front. The primary objective
function is the cost function 𝛩 described in Eq. (1), while the secondary
objective function is the emission function 𝛷 in Eq. (2). The latter can
be considered as the carbon emission allowance set by the municipality,
where the optimal technologies identified by 𝛩 should meet. Thus,
we can write 𝜖 ≤ 𝛷 ≤ 𝜖, where 𝜖 is the maximum allowable carbon
emission, or mathematically expressed as

min𝛩 (3)

𝑠.𝑡., 0 ≤ 𝛷 ≤ 𝜖 (4)

This means that at different carbon emissions limits, the optimization
model produces a set of different optimal investment strategy plans.
This set of feasible solutions ranges from the minimum possible carbon
emissions at the maximum total cost, to the maximum possible carbon
emissions at the minimum feasible total cost.
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3.1.2. Optimization constraints
In the following, the underlying constraints for both optimization

functions are explained.
∙ Heat demand balance: The sum of all heat generated from all

DHS technologies must satisfy the expected demand throughout the
planning horizon. In long-term planning, and because of the typical
form of data availability in the heat sector, we consider a monthly time
resolution for heat demand and supply matching in order to account for
the seasonality of heat demand over the year. Let us denote the heat
demand during month 𝑚 of year 𝑦 by 𝑄𝑦,𝑚

𝐷 . To balance the heat supply
nd demand during that month, we must have

𝑡∈𝑇
(𝑄𝑦,𝑚

𝑡 +𝑄𝑦,𝑚
𝑡,𝑝𝑣) = 𝑄𝑦,𝑚

𝐷 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (5)

esides balancing the heat supply and demand, the sum of all DHS
apacities must be sufficient to meet any future peaks. Given the
ssumption that new capacity investments take place at the beginning
f each year, capacity constraints only need to be examined on an
nnual basis. Let us denote by 𝐾𝑦

𝐷, the peak heat demand over the
ntire year 𝑦. Then, the following constraint ensures that the sum of
ll installed capacities is larger than the peak demand,

𝑡∈𝑇
(𝐶𝑦

𝑡 + 𝐶𝑦
𝑡,𝑝𝑣) ≥ 𝜂𝑠𝑦𝑠𝐾

𝑦
𝐷 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (6)

here 𝜂𝑠𝑦𝑠 > 1 is the over-sizing margin factor to account for potential
eat losses in the system.
∙ Capacity and heat generation bounds: For any given tech-

ology 𝑡, the installed capacity 𝐶𝑦
𝑡 , and amount of heat generation

𝑦,𝑚
𝑡 are bounded between maximum and minimum limits. This is
athematically expressed as

𝑣𝑦𝑡𝐶 𝑡 ≤ 𝐶𝑦
𝑡 ≤ 𝑣𝑦𝑡𝐶 𝑡 ∀ 1 ≤ 𝑦 ≤ 𝑌 (7)

0 ≤ 𝐶𝑦
𝑡,𝑝𝑣 ≤ 𝑣𝑦𝑡𝐶 𝑡,𝑝𝑣 ∀ 1 ≤ 𝑦 ≤ 𝑌 (8)

𝑢𝑦𝑡𝑄𝑡
≤ 𝑄𝑦,𝑚

𝑡 ≤ 𝑢𝑦𝑡𝑄𝑡 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (9)

here we have used two binary variables: 𝑣𝑡 and 𝑢𝑡, which are referred
o as the capacity variable and the operation variable, respectively.
he capacity variable indicates 1 if a given technology is invested in,
nd 0 otherwise. Similarly, the operation binary variable gives 1 if the
echnology is committed to generation during a specific month 𝑚 and
ear 𝑦, and gives 0 otherwise. Note that the superscript 𝑚 is only used

with heat generation and not installed capacity, since the former can
have different values during the months of the operational years, while
the latter can only have a single value during its lifetime of operation.

The amount of heat generation for every technology is also bounded
by its installed capacity. This is formulated as

0 ≤ 𝑄𝑦,𝑚
𝑡 ≤ 𝛼𝑦,𝑚𝑡 𝐶𝑦

𝑡 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (10)

≤ 𝑄𝑦,𝑚
𝑡,𝑝𝑣 ≤ 𝛼𝑦,𝑚𝑡,𝑝𝑣𝐶

𝑦
𝑡,𝑝𝑣 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (11)

hese constraints ensure that the maximum heat generation coming
rom every DHS technology is linearly proportional to the installed
apacity of that technology. The multiplying factor 𝛼𝑦,𝑚𝑡 for a technol-
gy 𝑡 is dependent on the efficiency of the energy that technology is
enerating. For the case of solar PV panels, the multiplying factor 𝛼𝑦,𝑚𝑡,𝑝𝑣
s a random variable per month that apart from the efficiency of the
echnology, also incorporates the solar energy availability during that
onth. Note that since every technology can be invested in once, it is

ital that the optimization model only accounts for the investment cost
nly once when the technology is selected. Therefore, the amount of
eat generation in Eq. (10) is bounded by the vector sum of all 𝐶𝑦

𝑡 (see
q. (15) which bounds the capacity variable to a maximum of 1, thus
here can be only a single value in that vector).

∙ DHS lifetime: A unique feature of the proposed optimization is
eing able to identify the optimal year in which the optimally selected
echnologies should be purchased, accounting for the lifetime of each
5

echnology. This is done by means of establishing a relation between
he investment and operation binary variables. To give an example,
n investment in technology 𝑡 in year 𝑦 with a lifetime of two years
nly, then 𝑣𝑦𝑡 = 1 and 𝑣𝑘𝑡 = 0 for any 𝑘 ≠ 𝑦, while 𝑢𝑦𝑡 = 𝑢𝑦+1𝑡 = 1 and
𝑘
𝑡 = 0 for any 𝑘 ≠ 𝑦 or 𝑘 ≠ 𝑦 + 1. Using these two binary variables, we
an incorporate the lifetime of DHS technologies through the following
onstraints:
+𝐿𝑡−1
∑

𝑖=𝑦
𝑢𝑖𝑡 ≥ 𝑣𝑦𝑡𝐿𝑡 ∀𝑦 ∈ {1,… , 𝑌 − 𝐿𝑡 + 1},∀𝑡 ∈ 𝑇 (12)

𝐿𝑇
∑

𝑖=𝑦
𝑢𝑖𝑡 ≥ 𝑣𝑦𝑡𝐿𝑡 ∀𝑘 ∈ {𝑌 − 𝐿𝑡 + 2,… , 𝑌 },∀𝑡 ∈ 𝑇 (13)

𝑌
∑

𝑖=1
𝑢𝑖𝑡 ≤ 𝐿𝑡 ∀𝑡 ∈ 𝑇 (14)

𝑌
∑

𝑖=1
𝑣𝑖𝑡 ≤ 1 ∀𝑡 ∈ 𝑇 (15)

where Eq. (12) ensures that an investment in a specific technology 𝑡
in year 𝑦 will consequently allow the operation of such technology
until the end of its lifetime. Eq. (13) ensures that no investment takes
place in which its lifetime extends beyond the time planning horizon
𝑌 . Furthermore, the operation duration of any technology is restricted
to its corresponding lifetime as modeled in Eq. (14). Finally, Eq. (15)
ensures that every technology can be purchased only once during the
next 𝑌 years.

∙ Rooftop area: Technologies such as solar thermal collectors or
solar PV panels occupy space on households’ rooftops. However, these
rooftop areas are limited, thus it is key to account for the permissible
rooftop area when on capacity sizing and investments in such tech-
nologies. Let us denote by 𝐴𝑦

𝑡 and 𝐴𝑦
𝑡,𝑝𝑣, respectively, the total rooftop

area occupied by technology 𝑡 and its supplementary rooftop solar PV
panels (if any) in year 𝑦. If a technology is not installed on the rooftop
in year 𝑦, then 𝐴𝑦

𝑡 = 0. Similarly, if there are no PV panels needed
for technology 𝑡 in year 𝑦, then 𝐴𝑦

𝑡,𝑝𝑣 = 0. If 𝐴𝑟𝑜𝑜𝑓 represents the total
rooftop area, then we have the following constraints
∑

𝑡∈𝑇

[

𝐴𝑦
𝑡 + 𝐴𝑦

𝑡,𝑝𝑣

]

≤ 𝐴𝑟𝑜𝑜𝑓 (16)

The total area occupied on the rooftop by each technology is typically
proportional to the capacity of the technology. This means that

𝐴𝑦
𝑡 = 𝛽𝑡𝐶

𝑦
𝑡 (17)

𝐴𝑦
𝑡,𝑝𝑣 = 𝛽𝑡,𝑝𝑣𝐶

𝑦
𝑡,𝑝𝑣 (18)

for some technology-dependent multiplier 𝛽𝑡 ≥ 0 and 𝛽𝑡,𝑝𝑣 ≥ 0. The
special case that a technology does not need any space on the rooftop,
we have 𝛽𝑡 = 𝛽𝑡,𝑝𝑣 = 0.

3.2. Parameters uncertainty

Long-term strategic planning must properly account for the time
evolution of the underlying parameters and variables. In our setting, we
deal with multiple of such variables: solar energy production in month
𝑚 in year 𝑦 for each technology 𝑡 (reflected in 𝛼𝑦,𝑚𝑡,𝑝𝑣), investment costs in
year 𝑦 for technology 𝑡 (𝐼𝑦𝑡 ), O&M costs in year 𝑦 for each technology 𝑡
(𝑂𝑀𝑦

𝑡 ), fuel prices in year 𝑦 used by technology 𝑡 (𝛿𝑦𝑡 ), the heat demand
in month 𝑚 in year 𝑦 (𝑄𝑦,𝑚

𝐷 ), the peak demand in year 𝑦 (𝐾𝑦
𝐷), fuel costs

for technology 𝑡 in year 𝑦 (𝛿𝑦𝑡 ), and the tax values applied to technology
𝑡 in year 𝑦 (𝜏𝑦𝑡 ).

To account for the uncertainty in projected values of these variables,
we create several time-series trajectories per variable, according to an
autoregressive model [42]. To be more precise, we assume we are
given the values for these variables (for each month) of the year before
the start of the long-term decision-making. We use these values to
create the projected values for (each month of) the upcoming years,

𝑚,𝑦
recursively as follows. For a given random variable 𝑥 for the month
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Table 1
Parameters of DHS technologies.

DHS 𝐶 𝑡 𝐶 𝑡 𝐶 𝑡,𝑝𝑣 𝑄
𝑡

𝑄𝑡 𝛼𝑦,𝑚
𝑡 𝛽𝑡 𝛽𝑡,𝑝𝑣

b 0 𝐶𝑏 𝐶𝑏,𝑝𝑣 0 ∞ 𝜂𝑏𝑟
𝑦,𝑚
𝑏 0 0

h 0 𝐶ℎ 𝐶ℎ,𝑝𝑣 0 ∞ 𝑟𝑦,𝑚ℎ 0 1
𝜂𝑝𝑣

s 0 𝐶𝑠 0 0 𝛾𝑦ℎ𝑜𝑡𝑄
𝑦
𝐷 𝛼𝑦,𝑚

𝑡
1
𝜂𝑠

0

b: Heat boiler, h: Heat pump w/wo PV, s: Solar thermal collector.

𝑚 in year 𝑦, we generate the value of 𝑥 for the same month in the next
year (𝑦 + 1), according to

𝑥𝑚,𝑦+1 = 𝜙𝑥𝑥
𝑚,𝑦(1 + 𝜃𝑚,𝑦𝑥 ), (19)

where 𝜙𝑥 ∈ R reflects the level at which random variable 𝑥 is attenu-
ated or amplified compared to its value in the last year. The values of
the parameter 𝜙𝑥 are pre-determined and are functions of the random
variable 𝑥. The other term, 𝜃𝑚,𝑦𝑥 , is the multiplicative noise with a
runcated normal distribution with zero mean, standard deviation 𝜎𝑥,
nd larger than −1 (to ensure 𝑥𝑚,𝑦+1 is non-negative), mathematically
xpressed as  (0, 𝜎𝑥,−1,∞), where 𝜎𝑥 reflects the variability of the
ealized value of 𝑥 with respect to its average forecast.

For random variables that we only need their annual values (such as
he investment costs 𝐼𝑦𝑡 and the annual peak demand 𝐾𝑦

𝐷), we remove
he month index in Eq. (19). Moreover, if we have reliable forecast
alues for a variable f (such as fuel costs 𝛿𝑦𝑡 and tax 𝜏𝑦𝑡 ), we replace
𝑥𝑥𝑚,𝑦 in Eq. (19) with the forecast values in year 𝑦 + 1 and keep 𝜃𝑦+1

o still account for forecast errors.
In our problem formulation, we have several random variables,

hich we group into a single set, . To generate multiple realizations
or each random variable, we use Eq. (19). We assign a realization
ndex, 𝜔, to refer to one instance of the bundled trajectories of all
andom variables in . These trajectories for a given 𝜔 are created
andomly and mutually but independently. We use 𝜔 to represent the
et of the trajectories of all random variables for the specific realization
ndex 𝜔; i.e., 𝜔 = {𝛼𝑦,𝑚𝑡,𝑝𝑣,𝜔, 𝐼

𝑦
𝑡,𝜔, 𝑂𝑀𝑦

𝑡,𝜔, 𝛿
𝑦
𝑡,𝜔, 𝑄

𝑦,𝑚
𝐷,𝜔, 𝐾

𝑦
𝐷,𝜔, 𝛿

𝑦
𝑡,𝜔, 𝜏

𝑦
𝑡,𝜔}. To

olve the optimization problem, we use a Monte Carlo simulation con-
idering multiple realizations 𝜔. For each realization 𝜔, we determine
he optimal solution of the optimization problem deterministically.
fter obtaining all solutions, we average the objective function across
ll the solutions, assuming that all scenarios are equiprobable.

.3. Applying the model to common DHS technologies

This section outlines technology-specific constraints for a selected
et of widely-used technologies. We specify the parameter values of
ur DSS for each technology and this is also summarized in Table 1.
ote that more existing and future technologies can be included in our
roposed DSS, by similarly specifying the model parameters to those
echnologies.

∙ Heat boilers: Heat boilers heat up the water in a boiler for space
eating and hot water consumption. They rely on different energy
ources to generate heat, natural gas boilers being the most common
ype. There are also other common types of boilers such as green-source
e.g., biomass and biomethane) boilers as well as electric boilers. We
enote any heat boiler technology with the index 𝑏. For non-electric
oilers, PV panels cannot help 𝐶𝑏,𝑝𝑣 = 0, while the electric ones can

be equipped with PV panels of capacity 𝐶𝑏,𝑝𝑣 > 0. There is no physical
upper bound on heat supply 𝑄𝑏 = ∞, apart from the one imposed by
the installed capacity of the boiler

0 ≤ 𝑄𝑦,𝑚
𝑏 ≤ 𝜂𝑏𝑟

𝑦,𝑚
𝑏 𝐶𝑦

𝑏 (20)

where 𝜂𝑏 is the operation efficiency of the boiler and 𝑟𝑦,𝑚𝑏 is the number
of hours during month 𝑚 of year 𝑦 that the boiler is operating. Compar-
ing Eq. (20) with Eq. (10), we find that 𝛼𝑦,𝑚𝑡 = 𝜂𝑏𝑟

𝑦,𝑚
𝑏 . Finally, boilers are

ypically not installed on the rooftop, therefore, 𝛽 = 𝛽 = 0, which
6

𝑏 𝑏,𝑝𝑣
nforces that the occupied roof area by the technology becomes zero
.e., 𝐴𝑏 = 𝐴𝑏,𝑝𝑣 = 0.

While formulation can be extended to any type of heat boiler, in
this study, we consider four of the most widely-used types of boilers:
Biomass wood boiler (BWM), Natural Gas Boiler (NGB), Biomethane
Gas Boiler (BMB), and Electric Boiler (EB). The costs and emission
characteristics of these technologies are listed in Table C.4.

∙ Heat pumps with/without solar photovoltaic panels: Heat
pumps are known for low primary energy consumption compared to
boilers or traditional electrical heating. Heat pumps are denoted by the
index ℎ.

The amount of heat that can be generated from heat pumps depends
on the so-called coefficient of performance (COP), denoted 𝐶𝑂𝑃ℎ, and
the amount of electricity consumed by the heat pump, denoted 𝑃 𝑦,𝑚

ℎ .
The COP describes the efficiency of the source, which is the ratio
between the electricity input and the useful heat output. Thus, we can
describe 𝑄𝑦,𝑚

ℎ as in Eq. (21). Furthermore, the heat generation that can
be obtained from heat pumps is restricted by the installed capacity of
the heat pump and the number of monthly hours 𝑟𝑦,𝑚ℎ , which is given
in Eq. (22). Comparing Eq. (22) with Eq. (10), we find 𝛼𝑦,𝑚𝑡 = 𝑟𝑦,𝑚ℎ .

𝑄𝑦,𝑚
ℎ = 𝑃 𝑦,𝑚

ℎ 𝐶𝑂𝑃ℎ ∀𝑦 ∈ 𝑌 ,∀𝑚 ∈ 𝑀 (21)

𝑄𝑦,𝑚
ℎ ≤ 𝑟𝑦,𝑚𝐶𝑦

ℎ ∀𝑦 ∈ 𝑌 ,∀𝑚 ∈ 𝑀 (22)

Since primarily heat pumps are connected to the electricity grid, we
can write 𝑃 𝑦,𝑚

ℎ = 𝑃 𝑦,𝑚
𝑔𝑟𝑖𝑑 , where 𝑃 𝑦,𝑚

𝑔𝑟𝑖𝑑 is the total electricity consumed
rom the grid. As a result, the calculation of the running electricity cost
or heat pumps in the objective function in Eq. (1) can be written as
𝛿𝑦ℎ + 𝜏𝑦ℎ)𝑃

𝑦,𝑚
𝑔𝑟𝑖𝑑 to reflect the cost of procuring energy from the grid to

un the heat pump.
Heat pumps are commonly complemented with solar PV panels

o reduce their electricity consumption and carbon emissions. Let us
enote 𝑃 𝑦,𝑚

𝑝𝑣 the energy generated from the PV panels, thus we can write

𝑦,𝑚
ℎ = 𝑃 𝑦,𝑚

𝑝𝑣 + 𝑃 𝑦,𝑚
𝑔𝑟𝑖𝑑 ∀𝑦 ∈ 𝑌 ,∀𝑚 ∈ 𝑀 (23)

hich ensures that the total electricity consumed by the heat pump is
he sum of the electricity generated by the PV panels and the electricity
rocured from the grid.

The amount of electricity that can be generated from the PV panels
𝑦,𝑚
𝑝𝑣 is calculated as

𝑦,𝑚
𝑝𝑣 ≤ 𝜂𝑝𝑣𝐴𝑝𝑣𝜌

𝑦,𝑚 ∀𝑦 ∈ 𝑌 ,∀𝑚 ∈ 𝑀 (24)

here 𝜂𝑝𝑣 is the efficiency of the PV panels, 𝐴𝑝𝑣 is the panel size in m2,
nd 𝜌𝑦,𝑚 is the monthly sum of solar radiation energy hitting 1 m2 of
PV panel, measured in kWh. Finally, Eq. (25) computes the installed

apacity for the PV panel system.
𝑦
ℎ,𝑝𝑣 = 𝜂𝑝𝑣𝐴𝑝𝑣 ∀𝑦 ∈ 𝑌 (25)

omparing Eq. (25) with Eq. (18), we find 𝛽𝑡,𝑝𝑣 = 1
𝜂𝑝𝑣

. Heat pumps can
also have different types. In this study, we consider a widely-used type
of heat pump: air-to-air heat pump with and without solar photovoltaic
panels (PV), respectively, referred to as HP/PV and HP. The costs and
emission characteristics of these technologies are listed in Table C.4.

∙ Solar Thermal Collectors: Solar heating collectors for dwellings
use solar radiation to heat water to supply the hot water demand during
the summer period. However, they are rarely used for space heating
due to their low efficiency. Given the index 𝑠, their capacity is linearly
proportional to the area of thermal collectors; here denoted by 𝐴𝑠. The
efficiency factor 𝜂𝑠 reflects how much of the solar radiation energy
hitting 1 m2 is converted to heat. Combining all, the solar thermal
collector capacity can be expressed as

𝐶𝑦
𝑠 = 𝜂𝑠𝐴

𝑦
𝑠 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (26)

Comparing Eq. (26) with Eq. (18), we find 𝛽 = 1 .
𝑠 𝜂𝑠
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Fig. 2. Heat supply map for Lyngby–Taarbæk [43].
Given the capacity of the solar thermal collector, the amount of heat
generation of this technology in month 𝑚 of year 𝑦 is constrained by

0 ≤ 𝑄𝑦,𝑚
𝑠 ≤ 𝜌𝑦,𝑚𝐶𝑦

𝑠 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (27)

Comparing Eq. (27) with Eq. (10), we find that 𝛼𝑦,𝑚𝑡,𝑝𝑣 = 𝜌𝑦,𝑚.
Following practical reasons, we assume solar collectors are only

used for hot water demand. We denote 𝛾ℎ𝑜𝑡 as the ratio of the hot
water demand to the total heat demand. Then, the following constraint
ensures that the amount of heat generated by the solar thermal collector
supplies only the hot water demand

0 ≤ 𝑄𝑦,𝑚
𝑠 ≤ 𝑢𝑠𝛾

𝑦
ℎ𝑜𝑡𝑄

𝑦
𝐷 ∀ 1 ≤ 𝑦 ≤ 𝑌 ,∀ 1 ≤ 𝑚 ≤ 𝑀 (28)

Comparing Eq. (28) with Eq. (9), we find that 𝑄
𝑡
= 0 and 𝑄𝑡 = 𝛾𝑦ℎ𝑜𝑡𝑄

𝑦
𝐷.

The costs and emission characteristics of the solar thermal collector
(ST) are listed in Table C.4.

4. Case study

In this section, the proposed DSS model is used for a practical case in
the municipality of Lyngby–Taarbæk in Denmark. The objective of this
case study is to (1) demonstrate how our decision support system can
help city planners offer consumers a range of long-term strategies for
investing in DHS technologies, and (2) show how the DSS can be used to
evaluate the impact of different policies on the choices of technologies
on the long run. The solution helps individuals to have a solid under-
standing of their investment decisions and their consequences. It also
helps city planners to plan their strategies according to the underlying
policies they are subject to. Finally, it informs policymakers on the
impacts of policies and regulation packages to incentivize consumers’
choices and steer them in favor of environmental concerns. Below, we
describe the case, the policies under study, and the data.

The proposed DSS is implemented using MATLAB software [44],
with the ‘intlinprog’ solver. The model consists of 3818 continuous
variables and 2732 integer variables. For the Monte Carlo simulation,
we generate 1,000,000 independent realizations 𝜔. For each realiza-
tion, we generate trajectories of all underlying random variables in 𝜔,
as described in Section 3.2, where 𝜔 = 𝛼𝑦,𝑚𝑡,𝑝𝑣,𝜔, 𝐼

𝑦
𝑡,𝜔, 𝑂𝑀𝑦

𝑡,𝜔, 𝛿
𝑦
𝑡,𝜔, 𝑄

𝑦,𝑚
𝐷,𝜔,

𝐾𝑦
𝐷,𝜔, 𝛿

𝑦
𝑡,𝜔, 𝜏

𝑦
𝑡,𝜔. With these specifications, the DSS takes approximately

2400 s to run and produce the output.
7

4.1. Lyngby–Taarbæk municipality

The municipality of Lyngby–Taarbæk is situated in the northern
suburbs of Copenhagen in Denmark. With 55,500 inhabitants, the mu-
nicipality is obligated to reduce CO2 emissions by 20% at least during
the coming 10 years, and even more in 30 years. In efforts to realize
these sustainability goals, Lyngby–Taarbæk has signed the climate part-
nership of the Danish Society for Nature Conservation, which obligates
them to reduce the CO2 emissions of its own buildings by 2% per year.
In Lyngby–Taarbæk, there is a high reliance on waste incineration-
based district heating as the main heat supply source covering almost
52% of the total heat demand as illustrated in Fig. 2. The remaining
areas rely on individual heating solutions, mainly natural gas boilers.
Therefore, the outcomes of the optimization may support action in the
areas marked in yellow in Fig. 2.

The ongoing new urban development in some areas of Lyngby–
Taarbæk is exerting pressure on the municipality to offer the best
decision support to the new household owners concerning their heat
supply. Furthermore, households are prohibited from investing in nat-
ural gas boilers, or any other type of fossil fuel-based heating system,
from 2030 according to the Danish Climate Agreement of 2020 [7].
Therefore, to meet its sustainability goals, the municipality is encour-
aged to offer the new consumer tailor-made long-term investment plans
for sustainable and efficient DHS technologies.

4.2. Policy/taxation scenarios

We use our DSS to investigate the impacts of multiple policies on
the availability of heating equipment in Lyngby–Taarbæk, their relative
cost, and competitiveness. These policy scenarios are selected based
on the likelihood of occurrence, determined by cross-referencing three
types of sources, the legal corpus that constitutes the climate agree-
ment enacted in 2020 [7], empirical studies reviewing the long-term
strategic energy plans implemented in several Danish cities, and direct
exchanges with the city planners in Lyngby–Taarbæk municipality. We
elaborate on these scenarios one by one below and summarize them in
Table 2.

∙ Socio-economic case: The socio-economic case includes all the
technology and fuel costs plus the costs related to electricity and gas
grid tariffs but in the absence of taxes and additional policies. In doing
so, we introduce all the costs affecting the marginal cost of electricity
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Table 2
Overview of investigated policy/taxation scenarios.

Socio-economic case Policy case

Typical Scenario 1 Scenario 2 Scenario 3

Technology cost (𝐼𝑦
𝑡 &𝑂𝑀𝑦

𝑡 ) ✓ ✓ ✓ ✓ ✓

Grid Tariff (𝛿𝑦𝑡 ) ✓ ✓ ✓ ✓ ✓

Taxes (𝜏𝑦𝑡 ) – ✓ ✓ ✓ ✓

Additional regulation – – Biomass ban Biomass ban & Biomethane price increase Biomass ban & Heat pumps subsidy
w

and gas, which is relevant when investigating substitution effects be-
tween heating technologies. Thus, the socio-economic scenario leaves
aside the regulatory factors affecting consumers’ choices.

∙ Typical policy case: In this case, the taxes associated with differ-
ent heating technologies are added to the socio-economic case (see Ta-
ble C.6). Therefore, the difference between the socio-economic scenario
and the policy scenario illustrates how energy taxes distort consumers’
decisions from the optimal allocative efficiency reached with the socio-
economic case. As this case only includes the most typical form of
energy taxes and excludes any other type of taxation and regulation,
we call this the typical policy case, which also serves as the benchmark
for other policy scenarios that have additional taxation or regulation.

∙ Scenario 1 – Biomass boilers ban: In this scenario, a biomass ban
regulation is added on top of the typical policy scenario. Despite the
fact that there is no clear indication that a ban on biomass energy for
heating in individual households will be implemented, several factors
indicate that biomass, mainly biomass wood, will decrease in individual
heating. Dyhr-Mikkelsen et al. [45] present 14 strategic energy plan
projects carried out in 6 large Danish municipalities and 8 smaller
partnerships, biomass is considered a transition energy solution for
households to migrate from fossil fuel-based heating to electric heat-
ing. Besides, biomass energy is subject to sustainability requirements
defined in the Climate Agreement [7] that specifies that security of
supply and renewal of wood should be considered in the long-term use
of the resource, as confirmed in [46]. Finally, several municipalities are
raising concerns about the rising particle emissions associated with the
multiplication of wood stoves in densely populated areas. Due to the
aforementioned factors, the study includes a scenario where biomass
energy is banned, which allows us to observe how other energy sources
substitute it.

∙ Scenario 2 – Biomass boilers ban and increase in biomethane
price: In this scenario, apart from the energy taxation introduced in
the typical policy scenario and the biomass boiler ban, introduced in
Scenario 1, we also raise the biomethane fuel price by 10% to represent
stronger competition from other sources. This is to account for the
fact that future biomethane prices face significant uncertainties [47].
Due to increased sector coupling, prices are increasingly dependent on,
e.g., the transport or industrial sector. Therefore, this scenario raises
the biomethane fuel price by 10% to represent stronger competition
from other sources.

∙ Scenario 3 – Subsidies on heat pumps: In this scenario, apart
rom the energy taxation introduced in the typical policy scenario,
e also introduce a 30% subsidy on the investment cost of heat
umps. This subsidy scheme runs along with the decommissioning of
as-heated homes and is a stepping stone in the Danish policy to sup-
ort electricity-based heating outside district heating areas. The policy
ramework provides a financial subsidy scheme aiming at covering a
hird of heat pump costs and allocates DKK 20 million per year between
021–2024 [46], to be renegotiated in the next period. A recent Danish
urvey showed that already 83% of the households who expect to
eplace their gas boiler in the coming years would convert to another
orm of heating, and 42% of the consumers willing to replace their
nstallation within the next two years plan to apply for the financial
8

ubsidy scheme [48].
4.3. Data

We use real-world data and documented industry-based projected
values for solar power, heat demand, energy prices, taxes, and stochas-
tic scenarios. For some cases where this information is not available, we
use well-justified data traces based on practical assumptions. A detailed
description of all data used for the case study is elaborated in the
Appendix.

5. Results

In this section, we apply our proposed DSS to the case of Lyngby–
Taarbæk (see Section 4) to gain some insights into the optimum long-
term heating mix and the impact of different policy scenarios, described
in Section 4.2. We include the set of all technologies discussed in Sec-
tion 3.3 as possible choices: biomass wood boiler (BWM), natural gas
boiler (NGB), biomethane gas boiler (BMB), electric boiler (EB), air-to-
air heat pump with and without solar photovoltaic panels, respectively,
referred to as (HP/PV) and (HP), and solar thermal collector (ST).
As discussed in Section 3.2, there are multiple sources of uncertainty,
and we use a Monte–Carlo simulation to account for them. While we
primarily focus on the average result over all realizations, it is also
important to examine how results might vary for different realizations.
As such, we present the results under three different projections, called
the average, high, and low realizations, respectively, referring to the
optimal average across all realizations, the 95% highest, and the 95%
lowest solution across all realizations.

5.1. The trade-off between the cost and carbon emission

To study the trade-off between the cost and carbon emission, we
consider the range between two extreme cases; the zero-emission bud-
get (𝜖 = 0) and the unrestricted carbon emission budget (𝜖 = ∞),

hich we refer to as the environmental-optimal and the cost-optimal
strategies, respectively. This range forms a Pareto front, which presents
the minimum cost configuration (𝛩; 𝑌 -axis) for each given maximum
allowable carbon emission budget (𝛷; 𝑋-axis). Focusing on the city
planner perspective, in this section, we only include the socio-economic
and the typical policy cases. Fig. 3 illustrates the Pareto front for
the socio-economic case (left figure) and the typical policy case (right
figure).

An observation from Fig. 3 is that the Pareto front in this example
has only a limited feasible region in terms of long-term solutions.
This is due to the current high share of renewable energy in the
electricity mix in Denmark, which makes electricity-based technologies
such as HP relatively green. Additionally, Denmark has set a hard
target to reach 100% renewable electricity by 2030 [49]. Apart from
the electricity decarbonization targets, fossil fuel-based heating systems
are also prohibited for households from 2030 according to the Danish
Climate Agreement of 2020 [7]. This means that all fuels will be carbon
neutral by 2030 even in the cost-optimal scenario. Thus, the cost-
optimal strategy should still guarantee carbon neutrality after 2030 and
hence, cannot deviate substantially from the environmental-optimal
strategy. As a result, the DSS outcome does not offer a wide range of
optimal solutions in this case. It is, however, important to note that the

Pareto front graph differs per case and could lead to a large range of



Applied Energy 347 (2023) 121442A. Esmat et al.
Fig. 3. Pareto front: Socio-economic case (left), typical policy case (right).
solutions where the share of renewables is low and there are no hard
restrictions on decarbonization.

According to Fig. 3, in the socio-economic case for the
environmental-optimal strategy, the minimum total cost ranges be-
tween e8.66k and e13.21k, accounting respectively, for the high and
low realizations. Similarly, for the cost-optimal strategy, the mini-
mum total cost ranges between e7.72k and e11.90k, and the total
expected carbon emission ranges between 0.88tCO2 and 1.3tC02. The
typical policy case shows a slightly higher range of total cost for the
environmental-optimal scenario than the socio-economic one. With
taxes included, the total cost ranges between 8.89ke and e14.60k for
the low and high realizations. The cost-optimal case produces a range
of emissions between 0.88tCO2 and 1.03tC02 and a total cost between
e7.51k and e12.56k, respectively, for the high and low realizations.
An interesting observation is that compared to the cost-optimal case,
the environmental-optimal strategy increases the total cost by only
9% to 15% depending on the statistical realizations. This means that
households can opt for an entirely carbon-neutral investment strategy
with a slight increase in their investment and operation costs over the
30 year horizon. We emphasize again that this might not be the case for
other places where the share of renewables is not as high as Denmark
or there is no hard restriction on decarbonization.

5.2. The optimal technology investments

In this section, we investigate the optimal choices of technologies
over the planning horizon for the statistical average solution. For this
experiment, we consider the socio-economic case (for both cost-optimal
and environmental-optimal scenarios) to exclude the impact of policies,
i.e., creating a level playing field between different technologies. In
all experiments and as also indicated in Fig. 4, we identify three non-
overlapping phases, namely the initial phase, the decision phase, and the
end phase. The initial phase commences at the beginning of the planning
horizon in 2021 and continues until the year when the customers
decide to invest in new technologies. The decision phase starts when
the customers choose to invest/add a new technology while the initial
technologies are still operational. Finally, the end phase starts when
all of the initial technologies reach their lifetimes. The end phase
continues until the end of the planning horizon, i.e. 2050. For the sake
of simplicity of presentation and to facilitate gaining insights, in the
rest of this section, we will represent the choices of technologies per
phase (instead of a year) over the planning horizon.
9

Fig. 4 shows the optimal installed capacity per technology and
the year in which these technologies are invested and operated. This
figure also allows a comparison between the long-term solutions of
the environmental-optimal (top figure) and the cost-optimal (bottom
figure) strategies. The environmental-optimal strategy relies heavily on
the HP/PV during the initial and the decision phases along with the
biomethane boiler to cover peak loads. The biomass wood boiler is
invested in during the decision phase, which is then complemented
with a regular HP during the final phase of planning. Since Denmark
is planning a 100% renewable electricity generation by 2030, then
investing in HPs only, without PVs, will be a carbon-neutral solution.
The cost-optimal solution follows a similar strategy to the latter, with
the difference of pushing forward the BMB investment during the
end phase of planning instead of the HP since BMBs have a lower
investment cost compared to HPs.

Fig. 5 further expands the experiment in Fig. 4 to the statistically
high and low realizations to examine the impact of different realizations
of random variables. Figs. 4 and 5 collectively show that the forefront
technologies in all optimal strategies are hybrid HP combined with PV,
biomass wood boilers, and biomethane boilers. The HP only appears on
two occasions. A common observation for the high and low realizations
is the secondary technology invested in besides the hybrid HP/PV. The
cost-optimal scenario for both high and low realizations shows that
the optimal technologies within the initial phase are the hybrid HP/PV
alongside the biomass wood boiler or the biomethane boiler. This is
because BWB and BMB have zero carbon emissions, which is essential
in the environmental-optimal strategy. On the other hand, the cost-
optimal strategy in both low and high realizations solely relies on the
HP/PV solution since it has the highest efficiency. The environmental-
optimal scenario results in early investment in biomethane boilers,
while this investment is deferred if the carbon constraint is relaxed.
Finally, applying a solid carbon policy tends to promote the com-
petitiveness of heat pumps against biomethane boilers in the long
term.

The figures also indicate that natural gas boilers, electric heating,
and solar thermal heating, are the three technologies never invested
in. This can be attributed to the following reasons: (1) According to
Denmark’s carbon-neutral target by 2030, natural gas for households
is expected to phase out by then. As a result, it is not economical
or carbon-efficient to invest in a new gas boiler that will eventually
phase out. (2) Electric boilers have high investment costs. (3) Solar
thermal heaters can only supply hot water demand, which is a small
percentage of the total household demand. Besides, solar heaters have
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Fig. 4. Installed capacity of optimal technologies in the socio-economic case for the environmental-optimal (top figure) and the cost-optimal (bottom figure) strategies.
Fig. 5. Installed capacity of optimal technologies per decision phase in the socio-economic case for the environmental-optimal and cost-optimal strategies for the high and low
statistical realizations.
low efficiency, which makes them an economically inefficient solution
for households. Finally, Denmark is not a sunny country, thus, the total
solar energy collected through solar thermal heating might not justify
its overall cost.

5.3. The role of policy and regulation

In this section, we investigate the role of policy and regulations
on optimal investment decisions. We start by comparing the typical
policy case with the socio-economic case. This comparison reflects the
extent to which current energy taxes affect the optimal investment
choice. We make this comparison through Fig. 6, which shows the
10
percentage change in installed capacity induced by the energy taxes
in the typical policy case compared to the socio-economic case. A
positive (negative) percentage indicates an increase (decrease) in the
installed capacity in the policy case compared to the socio-economic
case. This figure suggests that despite a limited impact in the initial
phase, current energy taxes are likely to move investment choices
away from the optimum during the decision phase and end phase.
Biomass boilers benefit the most from the existing tax framework with
an investment increase of up to 20%, regardless of the CO2 budget.
Conversely, HPs and biomethane gas boilers are negatively affected
by existing taxes, especially and respectively, in the environmental-
optimal and the cost-optimal strategies. Note that all technologies do



Applied Energy 347 (2023) 121442A. Esmat et al.
Fig. 6. Percentage change in capacity between the socio-economic case and the policy case for the environmental-optimal and cost-optimal strategies.
Fig. 7. Optimal technologies/capacities: Policy case, planning/end phases, environmental-optimal strategy.
Fig. 8. Optimal technologies/capacities: Policy case, planning/end phases, cost-optimal strategy.
not appear in Fig. 6, which indicates that the energy taxes did not affect
the optimal investment. Thus, policymakers have to take into account
the skewed tax framework represented by the differences between our
socio-economic and policy cases that does not provide a level playing
field between biomass wood versus electricity even though lower tax
rates have already been applied for HPs.

Figs. 7 and 8 summarize how the regulatory scenarios affect the
investment choice made in the typical policy case in the low and high
statistical realizations for the cost-optimal and environmental-optimal
strategies. The primary trend in the environmental-optimal strategy
in Fig. 7 indicates that all regulatory framework conditions lead to
relatively identical changes in investment decisions in the initial phase
of planning; hybrid heat pumps with PV replace biomass wood boilers.
The decision and end phases overlap for all policy scenarios except
for the typical scenario. Thus, these phases show a more apparent
distinction between the effect of the biomass ban on the one hand and
the increase in the price of biomethane and the heat pump subsidy,
11
on the other hand. Banning biomass benefits heat pumps and disfavors
biomass boilers.

Fig. 8 illustrates the impact on investment decisions under the cost-
optimal strategy. Hybrid heat pumps with PV are the only optimal
technology choice in the initial phase, although the tested regulatory
frameworks result in a slight 2%–3% decline in installed capacity. In
the end phase, the results show a complete shift in all tested policy sce-
narios from hybrid heat pumps with PV to heat pumps, supplemented
again by biomethane gas boilers.

In summary, hybrid heat pumps with PV appear to be the optimal
technology in the 2035 time frame to minimize CO2 emissions at a low
cost to the household, regardless of the case tested and the sensitivities
analyzed. This makes it the most feasible investment choice for house-
holds in Denmark. Energy taxes and regulatory framework conditions
have the main effect of further improving the investment conditions
for this technology and disfavoring investment in biomass boilers. The
only difference in impact between the regulations tested in the policy
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scenarios appears from 2035 onward, where the increase in biomethane
price and the implementation of the heat pump subsidy reach the
same results in terms of technology choice and investment magnitude.
In such a case, the optimal technology choice is shared at 25%–75%
between biomethane gas boilers and hybrid heat pumps with PV. The
CO2 allowance combined with the regulatory framework conditions is
a boost for heat pumps, but only in the long term. Assuming a growing
demand results in opening up prospects for biomethane boilers both in
the short and long term.

6. Discussion and conclusions

6.1. Concluding remarks

This work is motivated by the heat energy transition challenges. In
particular, households choose their distributed heat supply technologies
without a full understanding of the future economical consequences
and often with disregard for the environmental consequences. Thus,
city planners are in need of a decision support system that assists
households in their future heat energy development while providing
solutions that are both economic and sustainable. Policymakers also
need to know the impact of their policies on the collective long-term
heat decarbonizations of households.

In this paper, we used a model-driven decision support approach to
show how relevant data and proper analysis can help in this direction.
We developed a decision support system (DSS) that is inclusive by in-
corporating a large range of distributed heat supply technologies (DHS).
It is comprehensive by implementing the operational details, physical
constraints, data projections, etc. It is also generalizable in the sense
that it can be used for any municipality and even at a community level
instead of an individual level. Our DSS can also be used by regulators to
ex-ante evaluate the impact of regulations and taxation on heat energy
decarbonization. This in turn provides leeway for municipalities and
households to anticipate the effects of such policies and regulations and
adopt the best-suited solution.

We use our DSS for the municipality of Lyngby–Taarbæk in Den-
mark as a case to show how this DSS can be useful for both city
planners as well as regulators. In terms of aligning cost-optimal and
environmental-optimal solutions, we found that the difference between
these two objectives is not significant in a country like Denmark with
an ambitious electricity and heat decarbonization strategy. Compared
to the cost-optimal case, the environmental-optimal strategy increases
the total cost only by 9% to 15% depending on the projected head
demand. This means that households can opt for an entirely carbon-
neutral investment strategy with a slight increase in their investment
and operation costs over the 30 year horizon.

In terms of optimal choices of DHS technologies, we made several
interesting observations for the Lyngby–Taarbæk case. We found that
some technologies are more favorable. The forefront technologies in
all optimal strategies are hybrid HP combined with PV, biomass wood
boilers, and biomethane boilers. Conversely, some other technologies
are not attractive under any scenario. This includes natural gas boilers,
electric heating, and solar thermal heating. This indicates that these
technologies cannot beat others in either cost-effusiveness or CO2
mission, at least in the case of Lyngby–Taarbæk.

In terms of the impact of policies and regulations, we investigated
olicy scenarios and regulations, which correspond to the primary mea-
ures currently in place in Denmark or likely to be implemented. Our
esults show that energy taxes induce a sharp increase in investment
n biomass boilers from 2031 until 2050. This outcome is consistent
ith the past research results on the DHS technology mix, especially

n the Nordic region. The results also indicate that, despite the special
ax regime that heat pumps benefit from until 2024, the tax exemption
as a marginal impact on the uptake of heat pumps with PV, which
ndicates that this measure alone will not bring about the massive
12

eplacement of oil and gas boilers desired. Energy taxes penalize both
Table 3
Nomenclature.

Notation Indices

𝑏 Heat boiler
ℎ Heat pump
𝑚, 𝑦 Index of month and year
𝑝𝑣 Photovoltaic solar panel
𝑠 Solar thermal collector
𝜔 A realization of random variables

Notation Abbreviations

𝐵𝑊𝐵 Biomass wood boiler
𝐵𝑀𝐵 Biomethane Boiler
𝐸𝐵 Electric Boiler
𝐻𝑃 Electric Heat pump (air-to-air)
𝑁𝐺𝐵 Natural Gas boiler
𝑃𝑉 Photovoltaic Panels
𝑆𝑇 Solar thermal collector

Notation Sets

𝑀 Number of months per every year in the planning horizon, i.e. 12.
𝑇 Set containing all DHS technologies considered within the planning

horizon
𝑌 Number of years in the planning horizon
𝜔 Set of trajectories of all random variables for the realization 𝜔

Notation Parameters

𝐴𝑟𝑜𝑜𝑓 Rooftop area size for household (m2)
𝐶 𝑡 , 𝐶 𝑡 Lower and upper limit for installed capacity size for technology 𝑇 (kW)
𝐶𝑂𝑃ℎ Coefficient of performance for heat pumps: (electricity input/useful

heat output)
𝑑 Discount rate (%)
𝐼𝑦
𝑡 Capital cost for investing in any technology 𝑇 in year 𝑦 (e/kW)
𝐾𝑦

𝐷 Peak heat demand of entire year 𝑌 (kW)
𝐿𝑇 Lifetime in years for a given technology 𝑇
𝑂𝑀𝑦

𝑡 Operation & maintenance cost for any technology 𝑇 in year 𝑦 (e/kW)
𝑄𝑦,𝑚

𝐷 Heat demand during every month in 𝑀 of year 𝑌 (kWh)
𝑄

𝑡
, 𝑄𝑡 Lower and upper limit for heat generation for technology 𝑇 (kWh)

 Set of bundled trajectories for random variables
𝑟𝑦,𝑚𝑡 Number of hours that technology 𝑡 can operate in month 𝑚 during its

lifetime (hrs)
𝛾ℎ𝑜𝑡 Ratio of the hot water demand to the total heat demand (%)
𝛿𝑦𝑡 Fuel price with grid tariff for any technology 𝑇 in year 𝑦 (e/kWh)
𝛿𝑦𝑡 Taxes for any technology 𝑇 in year 𝑦 (e/kWh)
𝜂𝑠𝑦𝑠 Over-sizing factor to account for system losses (%)
𝜂𝑇 Operation efficiency of technology 𝑇 (%)
𝜆𝑡 Carbon emission factor per unit of heat generation from any given

technology 𝑇 (ton/CO2)
𝜌𝑙,𝑚 Monthly sum of solar radiation energy hitting 1 m2 of a PV panel (kWh)

Notation Variables

𝐴𝑦
𝑡,𝑝𝑣 Optimal PV panel area size (𝑚2)

𝐴𝑠 Optimal solar thermal heating area size (𝑚2)
𝐶𝑦
𝑡 Optimal installed Capacity for any technology 𝑇 in year 𝑦 (kW)

𝑃 𝑦
𝑡 Amount of electricity consumed from the grid (kWh)

𝑃 𝑦,𝑚
ℎ Total amount of electricity consumed by the heat pump (kWh)

𝑃 𝑦,𝑚
𝑝𝑣 Amount of electricity generated from PV panels to supply the heat

pump (kWh)
𝑃 𝑦,𝑚
𝑔𝑟𝑖𝑑 Amount of electricity bought from the grid to supply the heat pump

(kWh)
𝑄𝑦,𝑚

𝑡 Optimal heat generation energy for every technology 𝑇 in month 𝑚 in
year 𝑦 (kWh)

𝑢𝑡 Operational binary variable: 1 if technology 𝑡 is operating, and 0
otherwise

𝑣𝑡 Capacity binary variable, 1 if technology 𝑡 is invested in, and 0
otherwise

biomethane boilers and heat pumps. In this study, the effect of the
tax exemption on heat pump demand beyond 2024 is not tested to
be in line with the current regulatory framework. The decision by
parliament to prolong this measure could affect our results and lead
to more investment in heat pumps in the two latter phases. The results
show the reinforcing effect between energy tax exemption and carbon
restrictions for heat pumps with PV in the first phase and the beneficial
effect of CO2 restrictions on heat pumps over the long term. By coun-
terbalancing effect, CO emissions restrictions limit biomass boilers
2
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investment in the medium and long term and therefore exacerbate the
substitution effect between the two technologies and, to some extent,
between biomass and biomethane. Finally, it is important to point out
that the policies and regulations only have a marginal effect on the
heating mix. All policy scenarios reach the relatively same impact in
terms of technological choice leading to a mix based on heat pumps
and biomethane and showing growth potential for biomethane along
with demand growth. Ultimately these outcomes create knowledge to
refine the use of regulatory packages, both in their nature and in their
temporal scope.

6.2. Limitations and future work

The presented work has some limitations, which provide directions
for future research. Firstly, the long-term planning of energy systems
is inherently uncertain and can be impacted by unforeseen distur-
bances such as wars. While the proposed model accounts for statistical
changes, long-term patterns, and policy scenarios, it does not address
disturbances. To accommodate such disruptions, the proposed DSS can
be periodically updated with current information or revisited after a
disturbance. Secondly, the model does not consider factors such as
reselling second-hand heat technologies, decommissioning decisions, or
decommissioning costs. We assume that technologies invested within
the planning horizon must run their lifetime before the end of the
planning horizon and can be disposed of without cost. Future work
could investigate the impact of including these factors. For example,
exploring the potential role of reselling opportunities in the future or
considering decommissioning costs. Another limitation of this study
relates to the time resolution of the analysis, which is monthly in
this work. Indeed, in this paper, we decouple long-term planning
and investment decisions from short-term operational decisions and
focused on the latter. Dealing with inter-hourly operational decisions
is equally interesting but not the main focus of this study. These types
of operational decisions can be optimized with, for example, short-term
heat/electricity storage devices. Therefore, an interesting extension of
this study is to optimize the short-term operational decisions, given
the long-term planning decisions (or even concurrently), choosing (sub-
)hourly time resolutions and considering the inclusion of heat/electrical
storage systems. Finally, while we assume a fixed efficiency factor for
heat pumps and solar panels throughout the year, future models can
improve accuracy by accounting for the impact of ambient temperature
on these factors.
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