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Self-bridging metamaterials surpassing the
theoretical limit of Poisson’s ratios

Jinhao Zhang1, Mi Xiao 1 , Liang Gao 1 , Andrea Alù 2 & Fengwen Wang3

A hallmark of mechanical metamaterials has been the realization of negative
Poisson’s ratios, associated with auxeticity. However, natural and engineered
Poisson’s ratios obey fundamental bounds determined by stability, linearity
and thermodynamics. Overcoming these limits may substantially extend the
range of Poisson’s ratios realizable in mechanical systems, of great interest for
medical stents and soft robots. Here, we demonstrate freeform self-bridging
metamaterials that synthesize multi-mode microscale levers, realizing Pois-
son’s ratios surpassing the values allowed by thermodynamics in linear
materials. Bridging slits between microstructures via self-contacts yields
multiple rotation behaviors of microscale levers, which break the symmetry
and invariance of the constitutive tensors under different load scenarios,
enabling inaccessible deformation patterns. Basedon these features, we unveil
a bulk mode that breaks static reciprocity, providing an explicit and pro-
grammable way to manipulate the non-reciprocal transmission of displace-
ment fields in static mechanics. Besides non-reciprocal Poisson’s ratios, we
also realize ultra-large and step-like values, which make metamaterials exhibit
orthogonally bidirectional displacement amplification, and expansion under
both tension and compression, respectively.

Microstructured metamaterials have been enabling the realization of
exotic mechanical responses and deformation functionalities,
including negative stiffness1, negative compressibility2,3, shape
morphing4–6, and twist modes7. In terms of the fundamental metric
determiningmechanical deformations, Poisson’s ratio,metamaterials
have been realized to support negative values based on auxetic
deformation patterns, via bendable or buckled ligaments8–12, or
rotatable nodes13–15. The range of admissible Poisson’s ratios for iso-
tropic materials is [−1, 0.5]. Anisotropy may expand this range, but
basedon the orthotropic constitutive law, thermodynamics predicts a
general bound on Poisson’s ratios in the linear and stable elastic
regime16, namely 0 ≤ vijvji < 1 (Fig. 1f), where vij and vji are Poisson’s
ratios in two orthogonal directions (i = 1, 2, 3; j = 1, 2, 3; i ≠ j) and
micropolar elasticity is not considered17. This bound includes positive
Poisson’s ratios (Fig. 1a) in ordinary materials and negative Poisson’s
ratios (Fig. 1b) in auxetic metamaterials, but there is a large range of

unexplored space out of this bound (Fig. 1f). Designing Poisson’s
ratios surpassing the thermodynamic limit may realize extraordinary
deformation patterns and substantially extend the functional appli-
cations of modern mechanical devices, such as soft robots18 and
biomedical equipment19. For instance, the Poisson’s ratios v12v21 < 0
(Fig. 1c) break the symmetry of constitutive tensors that originates
from Maxwell–Betti reciprocity theorem20,21, which predicts non-
reciprocal transmission of the displacement field (Supplementary
Note 1). Reciprocity stems from microscopic reversibility and time-
reversal symmetry, which is a fundamental property in many physical
systems, including electromagnetic22, acoustic23, elastodynamics24,
and elasticity25. Breaking static reciprocity associated with Poisson’s
ratios surpassing the thermodynamic limit may offer brand new
opportunities to enrich the functionalities of mechanical systems,
in the same way as acoustic nonreciprocity has enabled the creation
of modern acoustic devices, including one-way mirrors and
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circulators23,26. The thermodynamic limit is derived from the linear
elastic regime with the assumption of infinitesimally small strain,
yet the introduction of nonlinearities has so far failed to produce
Poisson’s ratios surpassing the limit27,28.

Like a single-mode lever with one fixed fulcrum (Fig. 1g), the
thermodynamic limit (0≤ vijvji < 1) only allows displacement amplifi-
cation in one direction with a Poisson’s ratio larger than 1. However, a
multi-mode lever with two detachable fulcrums can overcome this
limit and realize bidirectional displacement amplification by changing
rotation modes via different fulcrums (Fig. 1g). In terms of internal
connectivity, the lever system is reconfigured due to the transition
between the connection and separation states of the fulcrums and the
lever, and then the lever shows different rotation modes.

In this work, inspired by the opportunities stemming from the
topological reconfiguration of detachable fulcrums,we use predefined
slits in the continuum to mimic detachable fulcrums. We develop a
powerful inverse design framework that combines predefined slits
and topology optimization, realizing self-bridging mechanical meta-
materials that synthesize multi-mode microscale levers and exhibit
Poisson’s ratios surpassing the thermodynamic limit. In terms of
internal connectivity, the designedmechanicalmetamaterials respond
to different loads with changed topological configurations induced by
the self-bridging of predefined slits via self-contacts. The rotation
behaviors of microscale levers in the metamaterials are then changed,
and effective constitutive tensors of themetamaterials no longer obey

the symmetry and invariance under different load scenarios. We can
therefore achieve self-bridging metamaterials with Poisson’s ratios
surpassing the conventional limits, enabling inaccessible deformation
patterns, including one-way displacement amplification with broken
static reciprocity (non-reciprocal Poisson’s ratios, vijvji <0, in Fig. 1c, f),
orthogonally bidirectional displacement amplification (ultra-large
Poisson’s ratios, vijvji > 1, in Fig. 1d, f), and transverse expansion under
both longitudinal tension and compression (step-like Poisson’s ratios,
compressive vij> 0 and tensile vij <0, in Fig. 1e, f). Particularly, the
nonlinearity of self-contacts that is stronger than geometric and
material nonlinearities can be active under small strains by setting zero
initial distance between self-contact surfaces. Thus, the aforemen-
tioned deformation patterns can be activated by small strains and
maintained under finite strains.

Results
Design, simulations, and experiments
We developed an inverse design framework to generate the freeform
microstructural configurations of self-bridging mechanical metama-
terials with target Poisson’s ratios surpassing the thermodynamic
limit (see Methods section “Design method of self-bridging meta-
materials”). In this framework, the design problem is described by the
optimization problem in Eq. (7), where the target Poisson’s ratios are
realized by constraining the error between actual and prescribed
values. Slits are predefined in the unit cell (Fig. 2a, b), and then the
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Fig. 1 | Deformation patterns associated with different Poisson’s ratios and
tailored microstructures. a, b Traditional deformation patterns of positive and
negative Poisson’s ratios. The graydashedboxes indicateundeformed structures of
length L. The blue and red arrows represent the load directions, and u1 and u2 are
displacements in the x1 and x2 directions, respectively. c–e Unusual deformation
patterns associated with non-reciprocal, ultra-large, and step-like Poisson’s ratios,
respectively (Supplementary Notes 1–3). u2→1 (u1→2) is the output displacement in
the x1 (x2) direction under the load F2 (F1). f Comparison between ultra-large, non-

reciprocal Poisson’s ratios and the thermodynamic limit 0 ≤ vijvji < 1, and compar-
ison between step-like Poisson’s ratios and invariant vij under compression or
tension in the linear elastic regime. g Displacement amplification of two different
levers. The single-mode lever with one fulcrum can only amplify the input dis-
placement on the left, namely,u1→2 > u1 and u2→1 < u2. Themulti-mode leverwith two
detachable fulcrums can amplify the input displacements on both the left and right
by changing different fulcrums, namely, u1→2 > u1 and u2→1 > u2.
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topological configuration of each mechanical metamaterial is inde-
pendently designed by setting target Poisson’s ratios in the optimi-
zation formulation. In the developed approach, elemental density
variables are introduced to describe thematerial distribution29–35. The
independently designed region in the approach is indicated in gray,
and orange “F” is used to indicate the symmetry in the cell (Fig. 2b).
The cell has four-fold rotational symmetry in the entire domain, and
mirror symmetry exists in its quarter at each corner. The slits are
distributed along the axis ofmirror symmetry. Two slits (c2 and c4) are
predefined for the design of non-reciprocal Poisson’s ratios, while
four slits (c1, c2, c3, and c4) are predefined for the design of ultra-large
and step-like Poisson’s ratios. The geometrical parameters of the slits
are provided in Supplementary Fig. 1. Figure 2c–e show the designed
microstructures with target Poisson’s ratios v*21 = 1:4 and v*12 = � 0:5,
v*21 = v

*
12 = 3, and tensile v*12 = � 0:8 and compressive v*12 = 0:8,

respectively. The locally enlarged views of the slits in the designed
metamaterials are shown in Supplementary Fig. 1. The distributions of
self-contacts induced by predefined slits and the topology of the
microstructures are significantly different from those in other design
frameworks using self-contacts6,11, which are built for different prop-
erties. Numerical simulations with 2 × 2 unit cells (Fig. 2c–e) were
performed to evaluate Poisson’s ratios using finite-element models
with periodic boundary conditions (Supplementary Fig. 2) and zero
initial distance between self-contact surfaces in COMSOL Multi-
physics 6.0. In this work, periodic boundary conditions are con-
structed based on orthotropy. More general periodic boundary
conditions can be found in the studies36–38. We arranged the designed
unit cells periodically and fabricated hyperelastic samples bymolding
(see Methods section “Measurement”). Poisson’s ratios of these

samples are evaluated by uniaxial compression and tension tests
(Supplementary Fig. 3).

Non-reciprocal Poisson’s ratios
Themetamaterial in Fig. 2c expands and contracts under transverse and
longitudinal compressions (strains of −10%), respectively, which results
in positive and negative Poisson’s ratios (Fig. 3a), respectively. In the
numerical simulations, all microstructural slits open under transverse
compression. However, when the microstructure is longitudinally
compressed, the self-bridging of slits at c2 and c4 reconfigures the
microstructural topology with a change in internal connectivity. Then,
the microscale levers show two different rotation modes: (1) for trans-
verse compression, the microstructure rotates about two fulcrums; (2)
for longitudinal compression, the arms at c2 and c4 drive the rotation of
the microstructure. These two different rotation behaviors result in
positive and negative Poisson’s ratios, v21 > 0 and v12 < 0, respectively
(Fig. 3a). We found the experimental deformation patterns (Fig. 4a) and
Poisson’s ratios (Fig. 3a) agree well with the simulated ones. These
Poisson’s ratios violate the lower bound of the thermodynamic limit
(vijvji≥0) that is derived from static reciprocity (Supplementary Note 1).
With positive elasticmoduli (E1 > 0 and E2 > 0 in Fig. 3b), E2v21 > 0 > E1v12
(Fig. 3c), which demonstrates that the designed metamaterial breaks
the symmetry of its constitutive tensors (Ejvj= Eivij), stemming from
static reciprocity. Hence, we can predict the emergence of a static non-
reciprocal bulk mode (F1u2→1 > 0 > F2u1→2), different from the one in
“fishbone” metamaterials designed by breaking geometrical symmetry
and introducing geometrical nonlinearity25. The Poisson’s ratios v21 > 1
and 0> v12 > −1 (Fig. 3a) predict that the metamaterial can amplify the
input displacement field unidirectionally. Owing to the tiny slits and
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Eachmicrostructure consists of 2 × 2 unit cells with lattice constant a, one of which
is boxed by red dashed lines. Prescribed slits are labeled c1, c2, c3, and c4. Each color
bar shows the output displacement field in the x1 or x2 direction. The rotation
modes and fulcrums are denoted by arrows and balls, respectively.
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strongnonlinearityof self-contacts, a hugedifferencebetweenE2v21 and
E1v12 emerges under small strains, as shown in Fig. 3c. Hence, small
strains may activate the non-reciprocal transmission of displacement
fields in the designed metamaterial.

To interpret the relation between the self-bridging feature and
broken static reciprocity, we built two equivalent models in Supple-
mentary Fig. 4a, b, where the slits closed under compression are
replacedby solid connections. Eachequivalentmodel is only valid for a
special load case indicated by a gray arrow, which is determined by the
mimicked metamaterial under the same load case (Supplementary
Fig. 4). The internal connectivities of the equivalent models are dif-
ferent owing to the additional solid connections. The equivalent
modelswere numerically simulatedwithout defining self-contacts. The
Poisson’s ratios and elasticmoduli of the equivalentmodels are almost
the same as those of the designed metamaterial (Fig. 3a, b). Thus, the
designedmetamaterial (Fig. 2c) can be substituted by these equivalent
models. To explicitly distinguish these equivalent models, we calcu-
lated the effective compliance matrix of each equivalent model using
the representative volume element method (Supplementary Note 4)39

based on the linear orthotropic constitutive law. The evaluated effec-
tive compliance matrices of our equivalent model are significantly
different (Supplementary Equations (13, 14)), demonstrating topolo-
gical reconfiguration of the metamaterial induced by self-bridging
slits. Thus, the self-bridging feature of the metamaterial enables the
variation of constitutive tensors under different load scenarios, which
breaks the symmetry Ejvji = Eivij in static reciprocity and enables sur-
passing the lower bound (vijvji ≥0). In mechanical systems under small
strains, general geometric andmaterial nonlinearitiesmayvanish25, but
self-contacts can occur via zero initial distance between self-contact
surfaces. The effective Poisson’s ratios and elastic moduli of the
equivalent models agree well with those of the designed metamaterial

under small strains (Fig. 3a, b), which demonstrates that the designed
self-bridgingmetamaterial can break the static reciprocity under small
strains.

The broken static reciprocity associated with Poisson’s ratios was
tested in the designed metamaterial (Fig. 4d). Figure 4d shows the
experimentally observed non-reciprocal deformation patterns of the
metamaterial, which was supported by rollers to create sliding
boundary conditions, and a force F1 = − 60N (F2 = − 60N) was applied
at its right (top) side. Under the same force, u1→2 > 0 > u2→1, and |u1→2| is
an order of magnitude greater than |u2→1|, as shown in Fig. 4d, which is
evidence of non-reciprocal transmission of the displacement fields. In
addition, the output displacement |u1→2| is large than the input dis-
placement |u1|, while the output displacement |u2→1| is smaller than the
input displacement |u2|. Thus, there is a unidirectionally amplified non-
reciprocal displacement field, and the amplification performance well
fits the prediction of designed Poisson’s ratios. Poisson’s ratio is a
fundamental property that directly quantifies the relation between
input (ui) and output (ui→j) displacement. Hence, our designed self-
bridgingmetamaterialmayprovide an explicit and programmableway
to manipulate non-reciprocal transmission of the displacement field
via designing Poisson’s ratios.

Ultra-large Poisson’s ratios
The metamaterial in Fig. 2d shows large expansibility under com-
pressions (strains of −15%) in both orthogonal directions. The output
displacement ismuch larger than the input, which results in ultra-large
Poisson’s ratios (with a maximum value of approximately 3) in both
orthogonal directions (Fig. 3e). The product of Poisson’s ratios in two
orthogonal directions ismuch larger than 1, namely v12v21>1. We found
the experimental deformation patterns (Fig. 4b) and Poisson’s ratios
(Fig. 3e) agree well with the simulated ones. Hence, this metamaterial
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achieves stable and ultra-large Poisson’s ratios surpassing the ther-
modynamic limit (vijvji<1) (Supplementary Note 2). In the numerical
simulations, the locations of rotation fulcrums (self-contacts) under
transverse compression are c1 and c3, while the locations change to c2
and c4 under longitudinal compression (Fig. 2d). In terms of internal
connectivity, different locations of self-contacts make the micro-
structure exhibit different topological configuration. The length of
microscale levers between two fulcrums increases under compression,
which amplifies the input displacement, and then the changed rotation
fulcrums lead to amplification in both orthogonal directions. The
bidirectional displacement amplification mechanism of the metama-
terial is similar to a multi-mode lever with two detachable fulcrums,
where input displacements on both the left and right can be amplified
by changing the fulcrum (Fig. 1g).

The observed ultra-large Poisson’s ratios are analyzed by effective
material parameters. We built two equivalent models (Supplementary
Fig. 4c, d) to mimic the metamaterial (Fig. 2d) under different load
scenarios, which have different internal connectivities owing to the
additional solid connections. The Poisson’s ratios of the equivalent
models are almost the same as those of the designed metamaterial
(Fig. 3e). Thus, the designed metamaterial can be well substituted by
these equivalent models. The upper bound vijvji < 1 is deduced by
assuming an invariant positive-definite matrix to ensure a positive
strain energydensity. However, in the effective compliancematrices of
these two equivalent models (Supplementary Equations (15, 16)), the
values of the first and second elements on the principal diagonal are
swapped, which demonstrates that the microstructural topology of
the metamaterial is reconfigured as the locations of the self-bridging
slits change. The constitutive tensors of the designed metamaterial

vary under different load cases, and thus the upper bound can be
violated by the self-bridging metamaterial.

Step-like Poisson’s ratios
The metamaterial in Fig. 2e expands transversely under both long-
itudinal tension (a strain of 15%) and compression (a strain of −15%),
which results in step-like Poisson’s ratios (compressive v12 > 0 and
tensile v12 < 0, Fig. 3f). Such Poisson’s ratios are inaccessible for
materials in the linear elastic regime owing to the assumption of
invariance of the constitutive tensors (Supplementary Note 3). The
metamaterial is designed in the continuum instead of a discrete rigid
body15, and it realizes the expansibility under both tension and com-
pression, different from the contractility induced by bending
beams40,41. In the numerical simulation under compression, in terms of
internal connectivity, the microstructural topology is reconfigured by
self-bridging slits at c2 and c4 in the microstructure (Fig. 2e). Then, the
microscale levers show different rotationmodes: (1) Under tension, all
slits are pulled apart, and themicrostructure rotateswith anti-chirality;
(2) Under compression, c1 and c3 open while c2 and c4 close, and the
microstructure rotates about fulcrums at c2 and c4. Only the first
rotation mode activates the auxeticity, and thus the metamaterial
exhibits step-like Poisson’s ratios. We found the simulated deforma-
tion patterns agree well with the experimental ones (Fig. 4c).

We built two equivalent models (Supplementary Fig. 4e, f) to
mimic the metamaterial (Fig. 2e) under different load scenarios. The
Poisson’s ratios of the equivalent models are almost the same as those
of the designed metamaterial (Fig. 3f). Thus, these equivalent models
can accurately describe the metamaterial. The calculated effective
compliance matrices of these two equivalent models are significantly
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Fig. 4 | Experiments. a–c Samples of designedmetamaterials and snapshots of the
deformation patterns for non-reciprocal (Supplementary Video 1), ultra-large
(Supplementary Video 2), and step-like (Supplementary Video 3) Poisson’s ratios,
respectively. d Experiments about non-reciprocity under transverse and

longitudinal loads. The structure is supported by rollers that are compressed using
an aluminum alloy plate. In Fig. a–c, undeformed samples have the same scale bar
of 50mm, and the deformed samples have the same scale bar of 20mm. In Fig. 4d,
the scale bar of 20mm applies to all structures.
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different (Supplementary Equations (17, 18)). Because the constitutive
tensors of the designed metamaterial are no longer invariant under
different loads, the self-bridging metamaterial can show different
Poisson ratios under different loads.

Customization
These unusual Poisson ratios can be tailored by adjusting the target
values in the inverse design framework. More designed metamaterials
and corresponding deformation patterns are shown in Supplementary
Fig. 5. These metamaterials are designed based on the target non-
reciprocal Poisson’s ratios v*21 = 1:8 and v*12 = � 0:5, ultra-large Pois-
son’s ratios v*21 = v

*
12 = 2, and step-like Poisson’s ratios v*12 = � 0:4 under

tension and v*12 = 0:4 under compression (Supplementary Fig. 6),
respectively. This shows that the realized deformation patterns can be
customized by designing purely passive microstructures.

Discussion
Mechanical metamaterials surpassing the thermodynamic limit of
Poisson’s ratios were designed and realized through inverse
design based on predefined slits for self-contacts and topology
optimization. Symmetry and invariance of constitutive tensors
are basic assumptions for the theoretical limit of Poisson’s ratios
in the linear elastic regime. In terms of internal connectivity, the
microstructural topologies of the designed mechanical metama-
terials are reconfigured by the self-bridging slits, driving different
rotation behaviors of microscale levers. Then, under different
loads, the constitutive tensors of the self-bridging metamaterials
no longer obey symmetry and invariance, enabling Poisson’s
ratios that surpass the conventional limits.

These metamaterials possess inaccessible deformation patterns,
including one-way displacement amplification with broken static
reciprocity, orthogonally bidirectional displacement amplification,
and transverse expansion under both longitudinal tension and com-
pression. These deformation patterns are active under both large and
small strains by setting zero initial distance between self-contact sur-
faces, and can be tailored by the topological design of purely passive
microstructure. Based on non-reciprocal Poisson’s ratios, we demon-
strate the emergence of a bulk mode that breaks static reciprocity,
which opens new avenues to manipulate non-reciprocal transmission
of the displacement field via designing Poisson’s ratios. Our workmay
substantially extend the applications of Poisson’s ratios in modern
devices, for example, mechanical energy harvesters42 with oneway
amplified displacement field, strain sensors43 with bidirectional ultra-
large displacement amplification, civil protection equipment44, and
biomedical stents45 with expansibility of tension and compression, and
soft robots18 with flexible structural deformation.

Methods
Design method of self-bridging metamaterials
The strain energy densityWM of the two-termMooney–Rivlinmodel is
expressed as

WM =A10ðI1 � 3Þ+A01ðI2 � 3Þ ð1Þ

where I1 and I2 are the first and second invariants of the right
Cauchy–Green deformation tensor, respectively. A10 and A01 can be
determined by fitting the relation between engineering strain and
stress in uniaxial tension tests of the base material (Supplemen-
tary Fig. 7).

A design method with density-based topology optimization is
built to design the unit cell, in which a set of element-wise design
variables, ξ 2 ½0, 1�, is introduced to describe thematerial distribution.
The unit cell is constrained by periodic boundary conditions (Sup-
plementary Fig. 2). To avoid a checkerboard pattern and enhance
boundary discreteness, the design variables are first filtered with the

Helmholtz filter24 and then projected using the tanh function25 via

� rf
2

ffiffiffi

3
p

� �2

∇~ξðrÞ+ ~ξðrÞ= ξðrÞ, rf >0, r= x1,x2

� �

, r 2 ΩD ð2Þ

�ξ =
tanh βηð Þ+ tanh βð~ξ � ηÞ

� �

tanhðβηÞ+ tanh βð1� ηÞð Þ
ð3Þ

where rf denotes the desired spatial filtering radius, rf =0:05a in this
work. ξ is a continuous representation of the unfiltered design field. ~ξ
and �ξ denote the filtered and projected design variables, respectively.
β increases with iteration to enhance boundary discreteness. SIMP
interpolation24 is used to establish the relation between the projected
variables and material parameters:

A00
10ð�ξÞ=A0

10 +
�ξ
3ðA10 � A0

10Þ ð4Þ

A00
01ð�ξÞ=A0

01 +
�ξ
3ðA01 � A0

01Þ ð5Þ

where A0
10 = 10

�9A10 and A0
01 = 10

�9A01 Then, in Eq. (1), A10 and A01 are
replaced by A00

10 and A00
01, respectively.

For accessible feature size in fabrication, a three-case robust
formulation25 is used in which eroded, normal, and dilated manu-
facturing processes are mimicked with η= ηe, ηi, and ηd , respectively.
ηe, ηi, and ηd are set to 0.55, 0.5, and 0.45, respectively.

To enhance numerical stability under large compression strain,
we adopt the energy interpolation form26

W =WMðγuÞ+ ð1� γ2ÞWLðuÞ ð6Þ

where WL is the strain energy density of the linear elastic model in
small-deformation theory, u is the displacement field, and γ is the
interpolation factor.

The stiffness of themetamaterial ismaximized using a formulated
density-based topology optimization model

max
ξ

min
η

W �ξ ,η,εt1
	 


s:t: max
εtj

v �ξ ,ηi,ε
t
j

� �

� v* εtj

� �� �2
� �

< ζ , j = 1, :::,n

sT�ξ ðξ ,ηd Þ
a2 ≤ s*

0≤ ξ ≤ 1

ð7Þ

where v and v* are the actual and prescribed properties for a given
target strain εtj , respectively; n is the total number of target strains; ζ is
used to relax the constraint on the Poisson’s ratio,which is set to 0.052.
a2 is the area of the unit cell; s is the elemental area vector; the pre-
scribed area fraction is s* = 0:5. Themethod of moving asymptotes27 is
the optimizer used to solve the model, where the gradient of the
objective and constraints are calculated via the adjoint method28. The
update processes of the microstructural topologies are presented in
Supplementary Fig. 8.

Sample fabrication
The samples with non-reciprocal, ultra-large, and step-like Poisson’s
ratios consisted of 3 × 3, 6 × 6, and 6×8 unit cells with lattice constant
a= 25mm, as shown in Fig. 4a–c, respectively. The lattice constant was
chosen according to the manufacturing limit. The samples of the
designed unit cells were fabricated by molding. Before molding, all slits
were connectedwith a solid. Because of the complexity of the shapes of
the designed unit cells, the designed unit cell prototypes for molding
were fabricated with a light-curing 3D printer (iSLA660). The processed
prototypeswere coveredwith a silica gel solution in boxes, and the air in
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the liquid silica gel was eliminated with vacuum equipment. The molds
were obtained after prototypes were removed from the cured silica gel
solution. Then, the molds were placed into a vacuum pouring machine
(HZK1000) and injectedwithmixed polyurethane rawmaterial (T0387).
Themolds were removed to obtain the polyurethane samples when the
material was cured. In postprocessing, the samples were knifed to
recover the slits. For the material, A10 and A01 of the two-term
Mooney–Rivlin model were −0.17 and 2.5MPa, respectively, which
were obtained by least-squares fitting of the relation between engi-
neering strain andstress in auniaxial tension test (SupplementaryFig. 7).

Measurement
Tension and compression tests were performed using a HANDPI
machine with a 500N loading cell. For non-reciprocal Poisson’s ratios,
the sample in Fig. 4a was tested via transverse and longitudinal uniaxial
compression, where the sample was supported by rollers to create
sliding boundary conditions (Supplementary Fig. 3a). The thickness of
the sample in Fig. 4a was 25mm, which was chosen to avoid out-of-
plane buckling. For ultra-large Poisson’s ratios, the sample in Fig. 4bwas
tested via transverse and longitudinal uniaxial compression. For step-
like Poisson’s ratios, the sample in Fig. 4c was tested via longitudinal
uniaxial tension (Supplementary Fig. 3b) and compression (Supple-
mentary Fig. 3c). The thickness of the samples in Fig. 4b, c was 10mm.
Under compressions, the samples in Fig. 4b, c were held vertically
between twopolymethylmethacrylate sheets,whichwereheld 10.5mm
apart (Supplementary Fig. 3b). Under tension, the top and bottom 1×6
unit cells of the sample in Fig. 4c were fastened between two aluminum
alloy plates (Supplementary Fig. 3c). We repeated all experiments five
times for evaluating Poisson’s ratios. The tests were monitored using a
camera (EOS M6 Mark II) with 3840×2160 pixels. The videos were
analyzed with MATLAB Image Processing Toolbox. We obtained Pois-
son’s ratios for different strains by tracking the displacement vectors of
red markers on the samples (Supplementary Fig. 3d). The Poisson’s
ratios were approximated as ~v12 = �u1=�u2 and ~v21 = �u2=�u1, where �u1 (�u2) is
the average displacement difference between two columns of vertical
red markers (two rows of horizontal markers).

Data availability
The data of effective compliance matrixes are provided in Supple-
mentary Note 4. All other data that support the plots within this paper
and other findings of this study are available from the corresponding
authors upon request.

Code availability
The optimization algorithms necessary to perform the inverse design
are described in the main text, Methods, and Supplementary Infor-
mation. All other codes that support the plots within this paper and
other findings of this study are available from the corresponding
authors upon request.
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