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Proposal for a long-distance nonlocality test with entanglement swapping
and displacement-based measurements
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We analyze an all-optical setup which enables Bell-inequality violation over long distances by exploiting prob-
abilistic entanglement swapping. The setup involves only two-mode squeezers, displacements, beamsplitters, and
on-off detectors. We describe how events must be arranged to close both the detection and locality loopholes. We
analyze a scenario with dichotomic inputs and outputs, and check the robustness of the Bell inequality violation
for up to six parties, with respect to phase, amplitude, and dark count noise, as well as loss.
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I. INTRODUCTION

As pointed out already by Boole in his work on probability
theory, logical relations between observable events imply in-
equalities for the probabilities of their occurrence [1,2]. Bell
later demonstrated that the inequalities implied by a local
causal realist description of nature can be violated within
quantum mechanics [3,4], implying that quantum mechanics
cannot be recast as a local causal realist theory. Subse-
quent experimental investigations by Clauser, Aspect, and
their collaborators [5–7] confirmed the nonlocal predictions
of quantum mechanics, and nonlocality gradually became
accepted as an aspect of nature. These early experiments
were, however, not loophole-free, and while loophole-free
violations have since been realized [8–11], it still remains ex-
perimentally challenging, with loss and detector inefficiencies
being some of the main obstacles [12].

Loopholes constitute ways in which nature, or an eaves-
dropper, can arrange experimental outcomes, such that an
experiment appears nonlocal, while in reality it is not. The
detection loophole is relevant when inconclusive measure-
ments are discarded from the experimental data [13]. Such
inconclusive measurements typically occur due to losses dur-
ing transmission of the particles or nonunit efficiency of the
detectors. It has been demonstrated that discarding inconclu-
sive measurement rounds renders it possible to violate a Bell
inequality using classical optics [14]. The locality loophole is
present if measurements are performed such that a subluminal
signal can transfer information between measurement stations
during a measurement sequence. Such a sequence includes
the act of choosing a measurement basis and performing
the measurement in this basis. The locality loophole can be
closed by separating the measurement stations and keeping
the duration of the measurement sequence short. However,
this separation tends to induce losses and noise in the state
shared by the participants of the experiment, and these losses

*Corresponding author: ajebje@dtu.dk

tend to make the shared quantum state local, i.e., it cannot be
used to demonstrate a Bell inequality violation.

In spite of these difficulties, the utilization of nonlocality
is now moving from fundamental science towards practical
applications, where the provable nonlocality of a quantum
state is used in device-independent protocols to certify the
security of a cryptographic key [15–20]. Crucial to the re-
alization of device-independent quantum key distribution is
the ability to close relevant loopholes, and to demonstrate
the violation of Bell inequalities across distances relevant for
telecommunication.

In this work we propose an experiment capable of violating
a Bell inequality when the parties are separated by channels of
low transmission. Our experiment is designed to be capable
of closing the detection and locality loopholes, and invokes
only standard quantum optics tools, such as two-mode squeez-
ers, displacements, and click detectors (on-off detectors). A
sketch of the setup with N parties is shown in Fig. 1. The
proposed experiment is inspired by the setup in [21], in which
displacement-based measurements are used to demonstrate a
Bell inequality violation. In our protocol, two-mode squeezers
generate weakly squeezed two-mode squeezed vacuum states
with half of each state sent a short distance to an on-off
detector, and the other half sent to a distant interferometer
B. The left-going modes in Fig. 1 are labeled pn, and the
right-going modes are labeled sn; we group them into two
sets P = {p1, p2, . . . , pN } and S = {s1, s2, . . . , sN }. We use
the same label for a mode and the corresponding detector.
Each of the N detectors in P is considered as a party, with
the possible measurement outcomes, click or no click, corre-
sponding to whether any light arrives at the detector or not.
The interferometer B mixes the modes S, so that a photon
arriving at one of the input ports of B has an equal probability
of triggering each of the detectors in S. We then require that
only detector sN clicks, and that the remaining detectors in S
do not click. Hence our protocol is similar to an event-ready
scheme [8,11,22] based on optical entanglement swapping
[23–26], but without the need for quantum memories. Upon
obtaining the correct measurement outcome at S, the mea-
surement outcomes at the detectors in P are approximately
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the same as if the detectors measured the single-photon state
1√
N

(|1, 0, . . . , 0〉 + |0, 1, . . . , 0〉 + · · · + |0, 0, . . . , 1〉), in the
limit of vanishing squeezing. However, due to the presence
of dark counts at the detectors it is not optimal to operate the
experiment in the limit of vanishing squeezing, and the ana-
lyzed state will only be similar to a W state. The nonlocality of
the W state was analyzed in [21,27–29], and we expect to see
similar results for the state analyzed in this work. However,
it is worth noting that the study in [28] focuses on single-run
violations of locality, as opposed to the statistical violation
analysed in this work. Moreover the measurements in [28]
involved general qubit measurements, while we assume the
more feasible displacement-based measurements.

Our work also differs in key aspects from the protocols
in [21,27,29]. The purification step proposed in the present
work is part of the state preparation, i.e., obtaining the correct
measurement outcomes at S will mitigate loss incurred in the
channels chs for suitable values of the squeezing parameters,
while at the same time preparing a N-partite entangled state.
In [27,29] the authors do not introduce a heralded step to mit-
igate loss, limiting the distance over which nonlocality can be
demonstrated. In [21] loss is mitigated by each party filtering
their part of the state using a quantum scissor [30]. However,
quantum scissors require single-photon sources making the
idea increasingly less practical as we increase the number
of parties. Our purification step does not involve quantum
scissors, hence no single-photon sources are required for our
scheme.

Note that the state preparation in our scheme generates a
N-partite entangled state after the N parties have measured
on their parts of the shared state. This implies that the parties
must discard obtained measurement outcomes if the subse-
quent heralding measurement at S fails, and this opens the
door for the detection loophole. However, as we will show in
the following, it turns out to be possible to arrange the events
of the protocol such that the detection loophole is closed.

Prior to each detector in P, either of two different dis-
placements (D in Fig. 1) is applied to the field. These
displacements make up the two different measurement set-
tings. We write the displacement applied on mode p ∈ P

as X
(np)
p = (x(np)

p y
(np)
p )

T
, with np ∈ (0, 1) labeling which

of two possible displacements is implemented (measurement
setting). We assume that all parties are choosing between the
same two displacements when the phases of the N two-mode
squeezers are the same. This assumption is invoked to sim-
plify our analysis, and we found no advantage when deviating
from it. The displacement operator for mode p is defined as

Dp
(
X

(np)
p

) = exp
[
i
(
q̂p y

(np)
p − p̂p x

(np)
p
)]

, (1)

where q̂p and p̂p are the quadrature operators for mode p. We
follow the convention [q̂k, p̂l ] = 2iδkl . From the quadrature
operators we obtain the annihilation operator, âp = 1

2 (q̂p +
i p̂p). The coherent state generated by the displacement X

(np)
p ,

i.e., the state, |X (np)
p 〉 = Dp(X (np)

p )|0〉, is centered on the co-
ordinates (qp pp) = (2x

(np)
p 2y

(np)
p ) in phase space. We

associate a click at a detector with the value 1, and no click

with the value −1. The observable associated with detector p
is then given by

Mp = (Ip − |0〉p〈0|) − |0〉p〈0| (2)

= Ip − 2|0〉p〈0|, (3)

where Ip is the identity operator associated with mode p. We
may transfer the displacement applied prior to detector p onto
the observable to obtain

M
(np)
p = Ip − 2

∣∣−X
(np)
p

〉
p

〈−X
(np)
p

∣∣. (4)

We attempt to violate the W3ZB (Werner-Wolf-Weinfurter-
Żukowski-Brukner) inequality [31–33],

2−N
∑

b

∣∣∣∣∣∑
n

(−1)〈b,n〉〈M (n)〉
∣∣∣∣∣ � 1. (5)

b and n are binary lists of length N , and the sums run over
all possible binary lists. 〈b, n〉 is the dot product between b
and n. The entries of n label the measurement settings of the
involved parties. 〈M (n)〉 is the correlator given by the product
〈M (n)〉 = 〈∏p M

(np)
p 〉. We will refer to the left side of Eq. (5) as

the Bell value of the W3ZB inequality. The maximal violation
of the W3ZB inequality increases with the number of parties
[34]. We therefore expect that when some loss and noise do
not scale with the number of parties, then a violation of a
W3ZB inequality with more parties is more robust against this
loss and noise, as compared to a W3ZB inequality with fewer
parties.

To close both the locality and detection loophole with two
parties, p1 and p2, we require that the events of the experi-
ment are positioned as shown in the space-time diagram in
Fig. 2. The events Tp1 and Tp2 correspond to the generation
of two-mode squeezed vacuum for party p1 and party p2, re-
spectively. These events occur along a temporal (vertical) line,
since the light emitted from the source has a finite duration
τ . For this reason there exists at each position x a duration
of time where we expect the light to arrive with very high
probability, this is marked with a darker shaded area. The mea-
surements by p1 and p2 are labeled Mp1 and Mp2 respectively.
Ms corresponds to the event where s1 and s2 measure. The
choosing of measurement setting is labeled Cp1 and Cp2 . The
measurements Mp1 and Mp2 collapse the temporal width of the
pulses, as illustrated in the figure by an ×. The swap Ms occurs
with very high probability along the vertical black line inside
the central black and yellow dashed diamond. The backwards
light cone for a swapping event will then typically be bounded
by the dashed backwards light cone.

To close the detection loophole, p1 and p2 must choose
their measurement settings at a time and place such that
information about their choices cannot influence the swapping
measurement Ms via a subluminal signal. If the experiment is
executed in this way, then we anticipate that an eavesdropper
cannot tamper with the swap to falsify nonlocal correlations
[35]. Most swapping events will obey this requirement if Cp1

and Cp2 are outside the dotted backward time cone shown in
Fig. 2. The critical distance dc, which is the characteristic
distance the event Cp2 must be separated from the two-
mode squeezer Tp2 , can be found by geometric arguments as
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FIG. 1. Sketch of the analyzed setup with N parties. The left-going modes are labeled pn, and the right-going modes are labeled sn. A
detector associated with a mode is given the same label as that mode. The measurement performed by the detectors in S effectively swaps the
N bipartite entangled states, from the two-mode squeezers, into an N-mode entangled state. “ch” abbreviates channel.

dc = (1/2)cτ , and is associated with a waiting time tc =
(1/2)τ . Ideally p2 could make her choice of measurement
setting at a distance dc from Tp2 , at a time tc after the light
started to be emitted from the squeezer. Then her choice would
most likely not be able to influence the swap Ms, while at
the same time ensuring that the light pulse has not passed
by her yet.

The experimental constraints discussed above generalize
to the scenario where N parties attempt to obtain a Bell
inequality violation, while closing the detection and locality
loophole. That is, the parties should ensure that the events Cpn

are outside the backward timecone for the swapping event
Ms. However, one should also ensure that the parties are
sufficiently distant from each other, so that information on
the choice of measurement setting and outcome cannot travel
between parties during a measurement sequence.

II. MODEL

We now give an outline of how we model the optical field,
and how we include experimental imperfections in our analy-

sis. A full description can be found in Appendix A1. The fields
generated by the two-mode squeezers are distributed in time
and space according to some mode functions [36]. The am-
plitudes of these modes are quantum uncertain with Gaussian
statistics described by a covariance matrix σ with elements
σkl = 1/2〈{Qk, Ql}〉 − 〈Qk〉〈Ql〉, where {., .} denotes the anti-
commutator and Q = QP ⊕ QS , where QP = ⊕

p∈P (q̂p p̂p)
with QS = ⊕

s∈S (q̂s p̂s) [37]. The corresponding density
matrix, also describing the statistics of the field, is denoted
ρ. We denote the squeezing parameter of the N squeezers as
r and introduce the symbols, a = sinh(2r) and v = cosh(2r).
The covariance matrix of the 2N modes can be written as

σ =
(

vI Rφ

Rφ vI

)
, (6)

where I is the identity matrix of dimension 2N and Rφ is the
block diagonal matrix,

Rφ =
⊕

p

(
a cos(φp) −a sin(φp)

−a sin(φp) −a cos(φp)

)
, (7)

FIG. 2. Space-time diagram of a loophole-free experiment with two parties, showing the space-time ordering of important events (marked
by ×). The events Tp1 and Tp2 correspond to the generation of two-mode squeezed vacuum. Cp1 and Cp2 are the events where p1 and p2 decide
their measurement settings. Mp1 and Mp2 correspond to events where p1 and p2 measure. Ms correspond to the event where s1 and s2 measure.
At the bottom we sketch the experimental setup (compare with Fig. 1), where S corresponds to the swap following the interferometer B.
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where φp is the phase angle of the squeezer for party p. The
expectation value of the field amplitude is assumed zero. The
Wigner characteristic function corresponding to ρ is given
by χρ (�) = exp[−(1/2)�T 	σ	T �] where � is a vector
of conjugate quadratures (the Fourier transform dual to the
quadratures) for the modes P and S, i.e., � = �P ⊕ �S ,
where �P = ⊕

p∈P �p and �S = ⊕
s∈S �s. The conjugate

quadrature for mode k is a vector �k = (λkx λky)T . We have
also introduced the symplectic form 	 = ⊕2N

k=1 ω, where ω is
the antisymmetric matrix,

ω =
(

0 1

−1 0

)
. (8)

The modes S are then mixed on the interferometer B,
and we assume that the corresponding mode functions are
identical and have a high overlap at the beamsplitters making
up the interferometer. Let âs be the amplitude operator for a
mode s ∈ S, and the interferometer B is assumed to generate
the Bogoliubov transformation,⎛⎜⎜⎜⎜⎜⎜⎝

âs1

âs2

âs3

...

âsN

⎞⎟⎟⎟⎟⎟⎟⎠→ 1√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ei 2π
N ei2 2π

N . . . ei(N−1) 2π
N

1 ei2 2π
N ei4 2π

N . . . ei2(N−1) 2π
N

1 ei3 2π
N ei6 2π

N . . . ei3(N−1) 2π
N

...
...

...
. . .

...

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
âs1

âs2

âs3

...

âsN

⎞⎟⎟⎟⎟⎟⎟⎠.

(9)

We condition the state on obtaining a click at detector sN and
no clicks at the remaining detectors, thereby heralding the
conditional state ρc of modes P. The projector corresponding
to this event is ̂c = (

∏
s∈S̄ |0〉s〈0|)(IsN − |0〉sN

〈0|), where S̄ is
the set S̄ = S\{sN }. The conditional state is obtained as ρc =
TrS[ρ̂c]/P(C), where P(C) is the normalization, i.e., the
probability of obtaining the measurement outcomes heralding
a successful swap. ̂c has the characteristic function,

χc(�S ) = Tr[̂cDS (�S )]

= E (�S̄ )[πδ(2)(�sN ) − E (�sN )], (10)

where

E (� j ) = exp
(− 1

2�T
j � j

)
, (11)

and δ(2)(� j ) is a delta function. We obtain the characteristic
function of the conditional state through integration,

χρc (�P ) = 1

πN P(C)

∫
R2N

χρ (�)χc(−�S ) d2N�S. (12)

We then compute the Bell value of the W3ZB inequality by
evaluating the expectation values 〈M (n)〉 = 〈∏p∈P M

(np)
p 〉, for

each setting n. This is done via the integral [38],〈∏
p∈P

M
(np)
p

〉
= Tr

⎧⎨⎩ρc

∏
p∈P

M
(np)
p

⎫⎬⎭
= 1

πN

∫
R2N

χρc (−�P )χM (�P, XP )d2N�P, (13)

where χM (�P, XP ) is the characteristic function associated
with the observable

∏
p∈P M

(np)
p . XP is a vector of the dis-

placements applied prior to the detectors, XP = ⊕
p∈P X

(np)
p .

A closed form expression for 〈∏p∈P M
(np)
p 〉 can be found in

Appendix A1.

A. Noise model

We now outline how we describe noise relevant to the ex-
periment. We will include dark counts in the detectors, loss in
the channels, phase noise in the channels and measurements,
and, finally, amplitude noise in the measurements. Amplitude
and phase noise during measurement are expected to arise if
imperfect displacements are applied.

We include dark counts in our measurement model by
adding a noise term to the observable. Given that pd is the
probability of getting a dark count at a given detector, then we
measure the observable,

M
(np)
p = (1 − pd )

[
Ip − 2

∣∣−X
(np)
p

〉
p

〈−X
(np)
p

∣∣]+ pd Ip

= Ip − 2(1 − pd )
∣∣−X

(np)
p

〉
p

〈−X
(np)
p

∣∣. (14)

If a given detector in S is triggered by a dark count with
probability pd , then the swap results in the transformation (see
Appendix A1)

ρ → ρc = 1

P(C)
TrS[ρ̃c]. (15)

We have introduced the operator ̃c,

̃c = (1 − pd )N−1

(∏
s∈S̄

|0〉s〈0|
)

(IsN − (1 − pd )|0〉sN
〈0|).

(16)

We now describe how channel loss and detector efficiency are
included in our model. Given that channel chpn has transmis-
sion ηpn and channel chsk has transmission ηsk , we model loss
by a Gaussian map acting on the covariance matrix σ as [38],

σ → G1/2
η σG1/2

η + (I − Gη ), (17)

with the diagonal matrix Gη = GηP ⊕ GηS , where GηP =
Diag[

⊕
p∈P (ηp ηp)] and GηS = Diag[

⊕
s∈S (ηs ηs)]. We

will assume that ηpn equals ηP, i.e., the channels chP =
{chp1 , chp2 , . . . , chpN } have the same transmission. Likewise
we assume that ηsk equals ηS . ηd is the efficiency of a detector,
and 1 − ηd is the loss of the detector. Given that ηd is the
same for all detectors in S, detector loss can then be commuted
through B and absorbed into the transmission of the channels
chS = {chs1 , chs2 , . . . , chsN }. Likewise, the detector loss in P
can be shifted to be prior to the displacements, if we attenuate
the magnitude of the displacements by the factor

√
ηd .

We now turn to the problem of how to model phase noise.
A phase perturbation of the state ρ, e.g., caused by environ-
mental disturbance, can be modeled as a stochastic rotation in
phase space,

ρ =
∫

dNθP(θ)R(θ)ρ0R(−θ), (18)
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TABLE I. Standard settings for noise parameters. ηP is the trans-
mission of the channels chP (chp1

, chp2
, etc.). ηS is the transmission

of channels chS. σA is the standard deviation of the relative amplitude
distribution (σ 2

A = VA). σθ is the standard deviation of the phase angle
distribution (σ 2

θ = Vθ ). pd is the probability of getting a dark count
at a given detector (e.g., pn or sn) during the measurement interval
(which is assumed to be τ in our analysis).

ηP ηS σA σθ pd

0.9 0.2 3/100 100 mrad 1/10 000

where ρ0 is the unperturbed state, and θ is a vector of stochas-
tic rotation angles θp for p ∈ P, each being a perturbation
on the phase of the corresponding mode. Note that phase
noise acting on channels chS is shifted to act on channels
chP instead. R(θ) is the rotation operator R(θ) = ∏

p∈P Rp(θp).
Rpn (θpn ) is applied just prior to the displacement operation on
mode pn and includes phase noise resulting from propagation
in the channels chpn

and chsn , and also the phase noise in the
subsequent displacement operation. We make the assumption
that the angles θ are uncorrelated and model the probability
density P(θ) as a product of normal distributions for each
angle θp. The variance of θp is labeled as Vθ , and is the same
for all modes. The correlated phase noise resulting from the
interferometer B cannot be entirely captured by this simple
model, but we expect that our model is sufficiently close to
reality to indicate the sensitivity of the experiment toward
phase noise. We furthermore assume that the angles θp are
small, allowing us to approximate the rotation of a coherent
state by a small linear translation in phase space.

Finally, we describe how we model amplitude noise. Am-
plitude noise arises from an imperfect displacement and is
modeled similarly to phase noise, with the rotation operator in
Eq. (18) replaced by a displacement operator. The stochastic
displacement on mode p is given relative to the displacement
X

(np)
p applied on mode p, i.e., for mode p we obtain the

stochastic displacement εpX
(np)
p , where εp is referred to as

the relative amplitude. We assume that the relative amplitudes
εp are normal, independent, and identically distributed, with
variance VA. A more detailed description of the noise model
can be found in Appendix A1.

III. RESULTS AND DISCUSSION

We compute Bell values under varying experimental condi-
tions. In order to obtain realistic values we must include in the
model reasonable experimental errors. We choose the noise
parameters shown in Table I. Unless otherwise stated, these
are the values used for the noise parameters throughout our
analysis. For instance, if we vary ηP, as is done in Fig. 6, then
the remaining noise parameters are set at the values listed in
Table I.

We maximize the violation of the W3ZB inequality in
the squeezing parameter r. The Bell value as a function of
r, for the optimal choice of measurement settings, is shown
in Fig. 3. We clearly observe that there exists an optimal
squeezing value for which the Bell value is maximized, and
that the optimal squeezing depends on the number of parties.

FIG. 3. Bell value of the W3ZB inequality against the squeezing
parameter r for different number of parties. The annotation and
legend give the number of parties. The Bell value is computed for
the optimal measurement settings at the given value of r. We observe
a maximum in the Bell value at a particular squeezing. Next to the
legend we list the probability P(C) that an experiment succeeds with
that number of parties, at the corresponding optimal value of r (the
value of r giving the largest Bell value).

We also observe that the maximal Bell value increases for
more parties, until six parties, at which point the maximal
Bell value decreases for more parties. While the correlations
between all parties lead to a violation of the W3ZB inequality
at the optimal squeezing, we find that, for up to four parties,
the marginal outcome probabilities describing any subgroup
of parties are inside the Bell polytope, with the used measure-
ment settings. This was evidenced by a linear program (see
Appendix A2) and indicates that in these cases nonlocality
results from correlations between all parties. An exception can
occur for five parties if ηP is above 97%, and for six parties if
ηP is above 91%, with the used measurement settings. In these
cases a Bell inequality can be broken with a subgroup of four
and five parties, respectively.

We find the optimal displacements (measurement settings)
at the optimal squeezing for which the violation is maximized.
The optimal displacement for party p1 and another party
pn are shown in Fig. 4. The phase angles of the two-mode
squeezers belonging to p1 and pn respectively, are labeled as
φp1 and φpn . m(p1 )

0 and m(p1 )
1 are the displacements used by

party p1, whereas m(pn )
0 and m(pn )

1 are the displacements used
by party pn. m(p1 )

0 and m(pn )
0 have the same magnitude, but the

displacements are directed along different quadrature axes at
an angle φp1 − φpn , and likewise for m(p1 )

1 and m(pn )
1 . So the

displacements used by a given party pn will be determined

TABLE II. Magnitudes of the optimal displacements shown in
Fig. 4 for the optimal value of r. If the detector transmission is ηd ,
then the magnitudes should be multiplied by 1/

√
ηd .

No. of parties m0 m1

2 0.59 −0.18
3 0.47 −0.20
4 0.41 −0.19
5 0.37 −0.18
6 0.33 −0.17
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FIG. 4. The orientation of the optimal displacements (measure-
ment settings) that the parties p1 and pn should use to obtain a
maximal violation of the W 3ZB inequality. m(p1 )

0 and m(p1 )
1 are the

displacements used by party p1, whereas m(pn )
0 and m(pn )

1 are the
displacements used by party pn (any party). p′

ns displacements should
be at the angle φp1 − φpn relative to p′

1s displacements, where φp1 and
φpn are the phase angles of the two-mode squeezers belonging to p1

and pn. The magnitudes of m(pn )
0 and m(pn )

1 depend on the number of
parties and are listed in Table II.

by the phase angle of their squeezer φpn . The magnitudes
of m(pn )

0 and m(pn )
1 depend on the number of parties and are

listed in Table II. The overall orientation of the quadrature
axes is arbitrary, i.e., we can freely rotate Fig. 4, as long as
the angle between displacements remain unchanged. In this
sense, the displacements used by party p1 serve as a reference
from which we can define the displacements to be used by the
remaining parties.

We note that the optimum in squeezing, seen in Fig. 3,
is the result of a competition between the dark count rate
and the multiphoton generation rate. A dark count would
render the measurements by the parties uncorrelated, thereby
lowering the Bell value. This indicates that it is preferable to
have high squeezing, so that photons from the optical field
outnumber the dark counts. However, the click detectors in S
cannot distinguish between one or more photons. Multipho-
ton emission from the two-mode squeezers therefore creates
mixedness in the conditional state generated by the swap, and

this mixedness weakens the correlations between the measure-
ment outcomes obtained by the parties. This mixedness can
be avoided by lowering the degree of squeezing, so that on
average less than one photon reaches the detectors in S. As a
result, there is some amount of squeezing where the combined
detrimental effect of dark counts and multiphoton generation
is minimized. As we increase the number of parties, the pres-
ence of dark counts becomes more detrimental due to the
increased number of detectors and the lower probability of
a successful swap P(C). This is the cause of the decrease in
maximal Bell value for seven and eight parties, as compared
to the case with six parties.

We investigate the sensitivity of the experiment toward the
probability of a dark count at a given detector in S, and the
result can be seen in Fig. 5 (left) for different number of par-
ties. The probability of a dark count at a given detector in P is
fixed at 0.01%. A dark count at detector sN would mistakenly
herald nonlocal correlations between the detectors in P, when
no such correlations actually exists. This erroneous heralding
significantly lowers the calculated Bell value. The Bell value
is found to rapidly decrease around 0.02%. At this point, the
probability of getting a dark count is no longer insignificant
compared with the probability of generating the conditional
state, which is in the range 0.2% to 0.5%, depending on the
number of parties (see Fig. 3). For the case of two parties,
the decrease in Bell value proceeds a bit slower; however, the
lower initial Bell value (1.09) results in the curve reaching
the classical limit of 1 at smaller dark count probabilities.
The drop in Bell value for increasing probability of a dark
count is in part due to the squeezing no longer being optimal.
However, our calculations indicate that if pd exceeds 0.05%,
then the experiment cannot be used to violate the W3ZB
inequality, given the remaining errors (Table I), even at the
corresponding optimal squeezing and measurement settings,
and for any number of parties.

We also analyze the robustness of the Bell inequality viola-
tion against the probability of a dark count at a given detector
in P, while the probability of a dark count at a given detector
in S is fixed at 0.01%. A plot of this is shown in Fig. 5 (right)

FIG. 5. Left: Bell value of the W3ZB inequality against the probability of a dark count at a given detector in S during the measurement
interval. The annotation indicates the number of parties. Right: Bell value of the W3ZB inequality against the probability of a dark count at a
given detector in P during the measurement interval.
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FIG. 6. Plot of how the Bell value of the W3ZB inequality
depends on the transmission of the channels chP, connecting the
two-mode squeezers to the detectors in P. The annotation indicates
the number of parties.

and clearly illustrates that the violation is highly robust against
this probability.

The impact of loss on the Bell value of the W3ZB inequal-
ity is shown in Figs. 6 and 7. In Fig. 6 we vary the transmission
ηP and show how the Bell value changes. The transmission at
which the Bell value drop below one lowers as we increase
the number of parties. This indicates that a demonstration of
nonlocality might be easier to realize when using more parties.
In Fig. 7 we show the dependence of the Bell value on the
transmission ηS . We observe that the Bell value is only weakly
dependent on this transmission until a critical point around
a transmission of 10%. The probability P(C) of successfully
generating the conditional state, heralded by detector sN click-

FIG. 7. Plot of how the Bell value of the W3ZB inequality
depends on the transmission of the channels chS , connecting the
two-mode squeezers to the swapping detectors S. The annotation
indicates the number of parties. The solid curves correspond to
Bell values and match the left y axis. The dashed curves are the
corresponding probabilities of generating the conditional state P(C);
these drop as we lower the transmission ηS .

ing and the remaining detectors in S staying silent, is seen
to drop linearly for decreasing transmission. If we assume a
fiber loss of 0.3 dB/km, we find that a transmission of 10%
corresponds to approximately 30 km. The maximal achievable
separation between two parties will then be around 60 km.

We then check the sensitivity of the experiment against
phase and amplitude noise. The result is shown in Fig. 8.
In Fig. 8 (left) we plot the Bell value against the standard
deviation of the relative amplitude distribution, σA. In Fig. 8
(right) we plot the Bell value against the standard deviation
of the phase distribution, σθ . We observe that the Bell value
is not very sensitive to amplitude and phase noise. This im-
plies that the optimal displacements, shown in Table II and
Fig. 4, are not so strict, and that slight deviations from these
displacements are acceptable.

IV. CONCLUSION

We have proposed an experiment for demonstrating non-
locality with multiple parties separated by a set of lossy
channels. The experiment utilizes only standard quantum
optical elements, including on-off detectors, beamsplitters,
two-mode squeezers, and displacements. We have given a
detailed account of how loss impacts the experiment, and
identified critical values for channel transmissions, required
for a Bell inequality violation with dichotomic inputs and
outputs. We found that the experiment is very robust against
loss in the channels connecting the parties (chS), allowing for
transmissions as low as 10%. On the other hand, our calcula-
tions indicate that the nonlocality of the experiment is strongly
impacted by loss in the channels connecting the two-mode
squeezer of each party to the detector associated with that
party (channels chP). However, we found that the experiment
could be made more robust against loss in channels chP if the
number of parties is increased. With four parties we found
that the W3ZB inequality could be violated for transmissions
of channels chP as low as 82%. For an experiment with four or
fewer parties, we found that the marginal outcome probabili-
ties for all possible subgroups were inside the Bell polytope,
with the used measurement settings.

Due to the heralded nature of the experiment, it is very
sensitive toward dark counts at the heralding detector. Our
calculations indicate that the probability of a dark count at a
given detector during a measurement must not be much higher
than 1 in 10 000, or the experiment fails. We then examined
the influence of amplitude and phase noise, and found that the
experiment is quite robust against these noise sources. The
phase noise could be as high as several hundred milliradians,
and the relative amplitude noise could be in excess of 25%.
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FIG. 8. Left: Plot of how the Bell value of the W3ZB inequality depends on amplitude noise (σA). The annotation indicates the number of
parties. Right: Plot of how the Bell value depends on the phase noise (σθ ).

APPENDIX

1. A1

The state ρ is generated by N two-mode squeezers and
occupies the modes S and P. The characteristic function of
ρ is given by χρ (�) = exp[−(1/2)�T 	σ	T �] where � is
a vector of conjugate quadratures for the modes in S and P.
We introduce the following decomposition of the covariance
matrix of ρ:

σ =

⎛⎜⎝ σP KS̄ KsN

KT
S̄ σS̄ C

KT
sN

CT σsN

⎞⎟⎠. (A1)

We also introduce the matrices

KS = (
KS̄ KsN

)
, σS =

(
σS̄ C

CT σsN

)
. (A2)

The subscript refers to the modes described by the relevant
submatrix, i.e., σS̄ describes the marginal distribution of the
modes S̄ = S\{sN }.

The modes in S are mixed in the interferometer B, de-
scribed by the Bogoliubov transformation in Eq. (9). We then
condition the state on obtaining a click at detector sN and no
click at the remaining detectors in S (this is referred to as a
swap). If the detectors in S are triggered by a dark count with
probability pd , then the swap might herald success under three
different conditions,

(1) No dark counts occur. Light reaches detector sN and no
light reaches the remaining detectors in S. This event is asso-
ciated with the projector ̂1 = (

∏
s∈S̄ |0〉s〈0|)(IsN − |0〉sN

〈0|).
(2) A dark count occurs at detector sN . Light reaches

detector sN , and no light reaches the remaining detectors
in S. This event is associated with the projector ̂1 =
(
∏

s∈S̄ |0〉s〈0|)(IsN − |0〉sN
〈0|).

(3) A dark count occurs at detector sN . No light reaches
any detectors in S. This event is associated with the projector
̂2 = ∏

s∈S |0〉s〈0|.
Let P(̂n|C) be understood as the probability that the event

̂n occurs, given that detectors S herald a successful swap

C. P(̂n) = Tr[̂nρ] is the prior probability that the event
̂n occurs. The swap then transform the state ρ into the
conditional state ρc as

ρ → ρc

= TrS

[
P(̂1|C)

̂1ρ̂1

P(̂1)
+ P(̂2|C)

̂2ρ̂2

P(̂2)

]

= TrS

[
ρ

(
P(̂1|C)

̂1

P(̂1)
+ P(̂2|C)

̂2

P(̂2)

)]
. (A3)

By Bayes’ theorem we have

P(̂n|C)

P(̂n)
= P(C|̂n)

P(C)
, (A4)

which gives another expression for ρc,

ρc = TrS

[
ρ

(
P(C|̂1)

P(C)
̂1 + P(C|̂2)

P(C)
̂2

)]

= 1

P(C)
TrS[ρ̃c], (A5)

where we have introduced the operator ̃c,

̃c = P(C|̂1)̂1 + P(C|̂2)̂2. (A6)

The probability of the swap being heralded as successful,
given that the event ̂1 occurs, is given by P(C|̂1) =
(1 − pd )N + (1 − pd )N−1 pd , i.e., the swap will succeed as
long as no dark count triggers any detector other than sN .
If no light reaches any detectors in S, then the swap can be
heralded as successful only if a dark count triggers detector
sN , so P(C|̂2) = (1 − pd )N−1 pd . Then we have

̃c = (1 − pd )N̂1 + (1 − pd )N−1 pd (̂1 + ̂2)

= (1 − pd )N−1

⎛⎝∏
s∈S̄

|0〉s〈0|
⎞⎠[IsN − (1 − pd )|0〉sN

〈0|].
(A7)
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A different number of photons could in principle be distin-
guishable by the detector, even if the experimenter cannot
distinguish the detector states sufficiently well to obtain this
information. We define a projector onto Fock states, ̂(n) =
(
∏

s∈S̄ |0〉s〈0|)|n〉sN
〈n|. If different Fock states are in principle

distinguishable, then the transformation of ρ, conditioned on
the swap, ought to be

ρ → TrS

[ ∞∑
n=0

P(̂(n)|C)
̂(n)ρ̂(n)

P(̂(n) )

]

= TrS

[
ρ

∞∑
n=0

P(̂(n)|C)

P(̂(n) )
̂(n)

]
. (A8)

Using Bayes’ theorem we have

= 1

P(C)
TrS

[
ρ

∞∑
n=0

P(C|̂(n) )̂(n)

]

= 1

P(C)
TrS[ρ̃′

c]. (A9)

We then make the assumption that

P(C|̂(n) ) =
{

(1 − pd )N + (1 − pd )N−1 pd , if n > 0

(1 − pd )N−1 pd , if n = 0
.

(A10)

Under this assumption one can show that ̃′
c = ̃c, and it

doesn’t matter whether we use the transformation in Eq. (A3)
or in Eq. (A8).

The characteristic function of ̃c is given by

χc(�S ) = TrS[̃cDS (�S )] = (1 − pd )N−1E (�S̄ )
[
πδ(2)(�sN )

− (1 − pd )E
(
�sN

)]
. (A11)

Then we have that

ρc = 1

P(C)
TrS[ρ̃c] = 1

P(C)

∫
R4N

DP(−�P )

χρ (�P,�S )χc(−�S )
d4N�

π2N
. (A12)

In evaluating the above expression we have used Glauber’s
formula [38] to express ρ and ̃c in terms of their character-
istic functions (χρ and χc),

Ô =
∫
R2n

d2nB

πn
χO(B)D†(B), (A13)

where n is the number of modes. We also used the facts

Tri[D(�i )] = πδ(2)(�i), (A14)

D(�i )D(� j ) = D(�i + � j ) exp
[− i�T

i ω� j
]
. (A15)

From Eq. (A12) we may read off the characteristic function of
the conditional state ρc,

χρc (�P ) = 1

πN P(C)

∫
R2N

χρ (�P,�S )χc(−�S )d2N�S.

(A16)

Inserting the expressions for χρ and χc, we may evaluate the
conditional state as

χρc (�P ) = (1 − pd )N−1

P(C)
[χS̄ (�P ) − (1 − pd )χS (�P )].

(A17)

χS̄ and χS are Gaussian and, respectively, given by

χS̄ (�P ) = 1

πN

∫
R2N

χρ (�P,�S )E (�S̄ )πδ(2)
(
�sN

)
d2N�S

= 2N−1||γS̄||−1/2E [VS̄, 0](�P ), (A18)

χS (�P ) = 1

πN

∫
R2N

χρ (�P,�S )E (�S )d2N�S

= 2N ||γS||−1/2E [VS, 0](�P ). (A19)

Here the brackets ||.|| refer to the determinant and

E [V, x̄](B) = exp
[− 1

2 BT 	V 	T B − i(	x̄)T B
]
,

γS̄ = σS̄ + I, γS = σS + I,

VS̄ = σP − KS̄ γ −1
S̄

KT
S̄ ,

VS = σP − KS γ −1
S KT

S . (A20)

The normalization P(C) can be obtained by demanding that
χρc (�P = 0) = 1. E [V, x̄](B) is the characteristic function of
a Gaussian state with covariance matrix V and centered on
position x̄ in phase space.

We now derive a closed-form expression for the correlator
〈∏p∈P M

(np)
p 〉, describing correlations between the measure-

ment outcomes obtained by the N parties. The characteristic
function of the observable

∏
p∈P M

(np)
p is given by

χM (�, XP )

=
∏
p∈P

{
πδ(2)(�p) − 2(1 − pd )E

[
I,−2X

(np)
p

]
(�p)

}
.

(A21)

As we will show in the next section, when amplitude or phase
noise is present, then we should instead use the characteristic
function

χM (�P, XP )

=
∏
p∈P

{
πδ(2)(�p) − 2(1 − pd )E

[
�

(np)
p ,−2X

(np)
p

]
(�p)

}
,

(A22)

where �
(np)
p is the covariance matrix describing a noisy dis-

placement for party p. We form the covariance matrix �P,
describing the statistics of the noisy displacements for all N
modes. We assume no correlation between noise in different
modes, and �P is therefore block diagonal. The above product
is rewritten as a sum over products,

χM (�P, XP ) =
∑

d

[−2(1 − pd )]|d| ∏
p∈P

K
(dp)
p , (A23)

where the sum runs over all binary lists d =
(dp1 , dp2 , . . . , dpN ). |d| is the sum of d , i.e., the number

of ones in the list. K
(dp)
p is the piecewise characteristic
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function defined as

K
(dp)
p =

{
πδ2(�p) if dp = 0

E
[
�

(np)
p ,−2X

(np)
p

]
(�p) if dp = 1

. (A24)

Given a Gaussian state ρG with characteristic function
E [σG, 0](�P ), we evaluate the expectation value of the ob-
servable,

f (σG, XP ) = Tr

⎧⎨⎩ρG

∏
p∈P

M
(np)
p

⎫⎬⎭
= 1

πN

∫
R2N

E [σG, 0](−�P )χM (�P, XP )d2N�P

=
∑

d

[−8π (1 − pd )]|d|G
[
σ

(d )
G + �

(d )
P , 0

](
2X (d )

P

)
.

(A25)

σ
(d )
G is the submatrix of σG containing all the modes

where d is 1; i.e., if d = (1, 0, 1, 1), then we extract the
covariance matrix describing the marginal distribution of
modes p1, p3, and p4. Likewise, we have for the present
example �

(d )
P = Diag(�

(np1 )
p1 ,�

(np3 )
p3 ,�

(np4 )
p4 ) and X (d )

P =
X

(np1 )
p1

⊕
X

(np3 )
p3

⊕
X

(np4 )
p4 . We have also defined the normal

distribution, G[V, x̄](X ) = [(2π )D‖V ‖]−1/2e− 1
2 (X−x̄)T V −1(X−x̄),

where D is the dimension of V . Applying this result to the
conditional state, which is a sum of two Gaussians, we obtain〈∏

p∈P

M
(np)
p

〉
= Tr

⎧⎨⎩ρc

∏
p∈P

M
(np)
p

⎫⎬⎭
= (1 − pd )N−1

P(C)
[2N−1‖γS̄‖− 1

2 f (VS̄, XP )

− 2N (1 − pd )‖γS‖− 1
2 f (VS, XP )]. (A26)

This is a closed-form expression for the correlator of the
measurements.

a. Loss

A Gaussian transformation transforms the quadrature op-
erators as Q → SQ + d , where S is a symplectic matrix, i.e.,
S	ST = 	, and d is a displacement [37,38]. Correspondingly,
one can show that under a Gaussian transformation, the char-
acteristic function transforms as

χ (�) → exp(idT 	�)χ (S−1�). (A27)

We note that S−1 = 	T ST 	. We model loss, acting on the op-
tical modes of the system, by mixing said modes with a set of
empty (ground-state) environmental modes, and subsequently
trace out the environmental modes. Let the modes be ordered
as � = �P ⊕ �S ⊕ �E , where �E are the conjugate quadra-
tures for the environmental modes. We assume there is one
environmental mode for each system mode (S, P). The system
modes and environmental modes are mixed using beamsplitter
interactions, described by the symplectic matrix Uη,

Uη =
(

G1/2
η −√I − Gη√

I − Gη G1/2
η

)
. (A28)

By using Eq. (A13), Eq. (A27), and Uη, we obtain the map
corresponding to loss acting on the system modes. This map
transforms the characteristic function as

χ (�) → χ
(
G1/2

η �
)

exp
[− 1

2�T (I − Gη )�
]
. (A29)

Equation (17) can be derived from this mapping, and it can
also be used to show that detector loss can be commuted
through the interferometer B, given that all detectors have the
same efficiency.

b. Phase and amplitude noise

We now evaluate the effect of phase and amplitude
noise on the computed correlators. Given that the opti-
cal state ρ is perturbed in phase by the environment, we
model this by stochastic rotations in phase space ρ =∫

dNθP(θ)R(θ)ρ0R(−θ), where ρ0 is the unperturbed state,
θ = (θp1θp2 . . . θpN ) is a vector of stochastic rotation angles,
and R(θ) is the rotation operator R(θ) = ∏

p∈P Rp(θp). We
shift this stochastic rotation from the state onto the observable:

〈∏
p∈P

M
(np)
p

〉
= Tr

⎧⎨⎩∏
p∈P

M
(np)
p ρ

⎫⎬⎭ = Tr

⎧⎨⎩∏
p∈P

M
(np)
p

∫
dNθP(θ)R(θ)ρ0R(−θ)

⎫⎬⎭ = Tr

⎧⎨⎩
∫

dNθP(θ)R(−θ)
∏
p∈P

M
(np)
p R(θ)ρ0

⎫⎬⎭
= Tr

⎧⎨⎩∏
p∈P

∫
dθpP(θp)Rp(−θp)M (np)

p Rp(θp)ρ0

⎫⎬⎭ = Tr

⎧⎨⎩∏
p∈P

M̃
(np)
p ρ0

⎫⎬⎭, (A30)

where M̃
(np)
p is the noisy observable. By factorizing the probability as P(θ) = ∏

p∈P P(θp), we have tacitly assumed that there is

no correlation in the phase noise acting on different modes. Inserting the expression for the observable M
(np)
p , we have

Rp(−θp)M (np)
p Rp(θp) = Ip − 2(1 − pd )Rp(−θp)

∣∣− X
(np)
p

〉
p

〈− X
(np)
p

∣∣Rp(θp). (A31)

For a coherent state |−X
(np)
p 〉, we have that a small rotation is identical to a displacement acting orthogonal to the amplitude

vector −X
(np)
p . An orthogonal vector can be constructed by acting with the symplectic form: −ω(−X

(np)
p ). With this in mind, we
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make the substitution

Rp(θp) → Dp
(
θpωX

(np)
p

)
. (A32)

Imprecision in the measurement process, such as a noisy displacement, might lead to noise in the amplitude. We include this by
also applying a stochastic displacement along the amplitude vector X

(np)
p . This stochastic displacement is given as a fraction εp

of the amplitude vector X
(np)
p , i.e., the stochastic displacement is εpX

(np)
p . εp is referred to as the relative amplitude. The noisy

observable for party p is then given as

M̃
(np)
p =

∫
dθpdεpP(θp, εp)Dp

(−θpωX
(np)
p

)
Dp
(−εpX

(np)
p

)
M

(np)
p Dp

(
εpX

(np)
p

)
Dp
(
θpωX

(np)
p

)
= I − 2(1 − pd )

∫
P(θp, εp)

∣∣−(1 + εp + θpω)X (np)
p

〉〈−(1 + εp + θpω)X (np)
p

∣∣dθp dεp = I − 2(1 − pd )β (np)
p . (A33)

P(θp, εp) is the distribution over displacements, and we have introduced the state

β
(np)
p =

∫
P(θp, εp)

∣∣−(1 + εp + θpω)X (np)
p

〉〈−(1 + εp + θpω)X (np)
p

∣∣dθp dεp. (A34)

We model P(θp, εp) as a Gaussian, given by

P(θp, εp) = [
(2π )2‖�p‖

]−1/2
exp

[
−1

2
(εp θp)�−1

p

(
εp

θp

)]
. (A35)

The covariance matrix is chosen to be diagonal,

�p =
(

VA 0

0 Vθ

)
. (A36)

VA and Vθ are the relative amplitude and phase angle variances, respectively. β
(np)
p has a characteristic function given by

χ
β

(np )
p

= Tr
{
β

(np)
p Dp(�p)

} =
∫

P(θp, εp)E
[
I,−(1 + εp + θpω)2X

(np)
p

]
(�p)dθp dεp

= E
[
I + VA

(
2X

(np)
p

)⊗ (
2X

(np)
p

)T + Vθ

(
ωT 2X

(np)
p

)⊗ (
ωT 2X

(np)
p

)T
,−2X

(np)
p

]
(�p). (A37)

So the effect of amplitude and phase noise is to broaden the phase space distribution of β
(np)
p along 2X

(np)
p and ωT 2X

(np)
p . We

define the covariance matrix of the state β
(np)
p as �

(np)
p ,

�
(np)
p = I + VA

(
2X

(np)
p

)⊗ (
2X

(np)
p

)T + Vθ

(
ωT 2X

(np)
p

)⊗ (
ωT 2X

(np)
p

)T
. (A38)

2. A2

Let n be a binary list of measurement settings, and g a
binary list of measurement outcomes for the detectors in P,
where click corresponds to 1 and no click corresponds to 0.
We may then compute the probability of obtaining the out-
comes g using the characteristic function χρc . This probability
is given by the expression

PQ(g|n) = (1 − pd )N−1

P(C)

[
2N−1‖γS̄‖− 1

2 hg(VS̄ )

− 2N (1 − pd )‖γS‖− 1
2 hg(VS )

]
,

(A39)

where

hg(V ) = [4π (1 − pd )]|ḡ|
∑

b

[−4π (1 − pd )]|b|G
[
V (b+ḡ)

+ �
(b+ḡ)
P , 2X (b+ḡ)

P

]
. (A40)

ḡ is the negation of g, i.e., we replace 1 by 0 and vice
versa. The measurement settings n define the arrays �P

and XP. The sum runs over all binary lists b of length
N , satisfying the constraint that b takes the value zero in
positions where g takes the value zero. For example, if
g = (1, 0, 0, 1), then the sum would run over the lists b ∈
{(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1)}. V (b+ḡ) is the
submatrix of the covariance matrix V , containing all the
modes where the vector b + ḡ takes the value 1; e.g., if b +
ḡ = (0, 1, 1, 1) then the marginal covariance matrix describ-
ing modes p2, p3, and p4 is extracted. Marginal probabilities
for a subset of parties A can be extracted from PQ(g|n) by
summing over outcomes for the remaining parties B. The
measurement settings for subset B should be fixed during this
summation; however, the choice of settings for B is arbitrary
owing to the no-signalling property of quantum mechanics
[13].

We then want to determine whether the array PQ(g|n) can
be expressed as a convex sum of local response functions.
Let L(gp|np, λk ) be the local response function for party p,
determined by the hidden variables λk . The response function
gives the probability of party p obtaining a particular outcome
gp, given the measurement setting np and hidden variables λk .
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We determine whether there exists a set of coefficients ck such
that [13]

PQ(g|n) =
∑

k

ck

∏
p∈P

L(gp|np, λk ),
∑

k

ck = 1, ck � 0.

(A41)

ck is interpreted as the probability that the hidden variables λk

are shared by the parties in a given measurement round. We
use the set of deterministic response functions, i.e., each re-
sponse function can be written as a Kronecker delta function,

L(gp|np, λk ) = δ(gp, gnp,λk ). (A42)

gp is a potential outcome for party p, and gnp,λk is the out-
come that is actually obtained, given the hidden variables
λk and the setting np. Whether the set of requirements in
Eq. (A41) allows for a solution or not, is determined using
the linprog module of the SciPy 1.8.1 package in Python.
When no solution is present, we know that the array of prob-
abilities PQ(g|n), determined by the quantum state, does not
admit a local hidden variable model. In this case PQ(g|n)
lies outside the Bell polytope. However, when a solution
is present we know that the system can be described by a
local hidden variable model, and no Bell inequality can be
violated.
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[22] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert,
“Event-ready-detectors” Bell experiment via entanglement
swapping, Phys. Rev. Lett. 71, 4287 (1993).

[23] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-
distance quantum communication with atomic ensembles and
linear optics, Nature (London) 414, 413 (2001).

[24] U. L. Andersen and T. C. Ralph, High-Fidelity Teleportation of
Continuous-Variable Quantum States Using Delocalized Single
Photons, Phys. Rev. Lett. 111, 050504 (2013).

[25] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,
and W. K. Wootters, Teleporting an Unknown Quantum State
via Dual Classical and Einstein-Podolsky-Rosen Channels,
Phys. Rev. Lett. 70, 1895 (1993).

[26] S. L. Braunstein and A. Mann, Measurement of the Bell opera-
tor and quantum teleportation, Phys. Rev. A 51, R1727 (1995).

[27] J. B. Brask, R. Chaves, and N. Brunner, Testing nonlocality of
a single photon without a shared reference frame, Phys. Rev. A
88, 012111 (2013).

[28] A. Laghaout, G. Björk, and U. L. Andersen, Realistic limits
on the nonlocality of an N-partite single-photon superposition,
Phys. Rev. A 84, 062127 (2011).

[29] R. Chaves and J. B. Brask, Feasibility of loophole-free non-
locality tests with a single photon, Phys. Rev. A 84, 062110
(2011).

[30] T. Ralph and A. Lund, Nondeterministic noiseless linear ampli-
fication of quantum systems, AIP Conf. Proc. 1110, 155 (2009).

052611-12

https://doi.org/10.1093/bjps/45.1.95
https://doi.org/10.1088/1751-8113/43/38/385303
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.49.91
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.119.010402
https://doi.org/10.1103/PhysRevA.78.032116
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.107.170404
https://doi.org/10.1038/s41586-022-04891-y
https://doi.org/10.1088/1367-2630/11/4/045021
https://doi.org/10.1103/PhysRevLett.97.120405
https://doi.org/10.1038/s41467-017-02307-4
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.113.140501
https://doi.org/10.1103/PhysRevA.86.010103
https://doi.org/10.1103/PhysRevLett.71.4287
https://doi.org/10.1038/35106500
https://doi.org/10.1103/PhysRevLett.111.050504
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevA.51.R1727
https://doi.org/10.1103/PhysRevA.88.012111
https://doi.org/10.1103/PhysRevA.84.062127
https://doi.org/10.1103/PhysRevA.84.062110
https://doi.org/10.1063/1.3131295


PROPOSAL FOR A LONG-DISTANCE NONLOCALITY TEST … PHYSICAL REVIEW A 107, 052611 (2023)

[31] R. F. Werner and M. M. Wolf, All-multipartite Bell-correlation
inequalities for two dichotomic observables per site, Phys. Rev.
A 64, 032112 (2001).
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