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About this preprint

This is a preprint version of the textbook Stochastic Differential Equa-
tions for Science and Engineering by Uffe Høgsbro Thygesen. The textbook
was published by CRC Press/Taylor & Francis on June 15, 2023. Please
see https://uffe-h-thygesen.github.io/SDEbook/ for more information
about the book, including links to the publisher and to bookstores.

This preprint differs from the published version in the following respects:

• This preprint has been formatted using generic LATEXstyles. As a re-
sult, page numbers etc. will differ somewhat.

• Certain edits made by CRC Press during the proofreading process
have not been included in this preprint.

• Certain typos in the printed version have been corrected in this version.

• Solutions to exercises are included at the end of this preprint.



Preface

This book has grown from a set of lecture notes written for a course on Dif-
fusion and Stochastic Differential Equations, offered at the Technical Uni-
versity of Denmark. This 5 ECTS course is primarily aimed at students in
the M.Sc.&Eng. programme, and therefore the book has the same intended
audience. These students have a broad background in applied mathematics,
science and technology, and although most of them are ultimately motivated
by applications, they are well aware that nothing is more practical than a
good theory (to paraphrase Kurt Lewin).

Therefore, the book aims to describe the mathematical construction of
stochastic differential equations with a fair level of detail, but not with com-
plete rigor, while also describing applications and giving examples. Com-
putational aspects are important, so the book is accompanied by a reposi-
tory on GitHub which contains a toolbox in R which implements algorithms
described in the book, code that regenerates all figures, and solutions to
exercises. See https://uffe-h-thygesen.github.io/.

The book assumes that the reader is familiar with ordinary differen-
tial equations, is operational in “elementary” probability (i.e., not measure-
theoretic), and has been exposed to partial differential equations and to
stochastic processes, for example, in the form of Markov chains or time se-
ries analysis.

Many students and colleagues have provided feedback and corrections
to earlier versions. I am grateful for all of these, which have improved the
manuscript. Any remaining errors, of which I am sure there are some, remain
my responsibility.

Uffe Høgsbro Thygesen
Lundtofte, October 2022
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Chapter 1

Introduction

Ars longa, vita brevis.
Hippocrates, c. 400 BC

A stochastic differential equation can, informally, be viewed as a differential
equation in which a stochastic “noise” term appears:

dXt

dt
= f(Xt) + g(Xt) ξt, X0 = x. (1.1)

Here, Xt is the state of a dynamic system at time t, and X0 = x is the
initial state. Typically we want to “solve for Xt” or describe the stochastic
process {Xt : t ≥ 0}. The function f describes the dynamics of the system
without noise, {ξt : t ≥ 0} is white noise, which we will define later in detail,
and the function g describes how sensitive the state dynamics is to noise.

In this introductory chapter, we will outline what the equation means,
which questions of analysis we are interested in, and how we go about an-
swering them. A reasonable first question is why we would want to include
white noise terms in differential equations. There can be (at least) three
reasons:

Analysis: We may want to examine how noise, or uncertain source terms,
affect the system. Consider, for example, a wind turbine (Figure 1.1). The
wind exerts a force on the turbine, and the strength of this force fluctuates
unpredictably. We may model these fluctuations as noise, and ask how they
cause the construction to vibrate. To answer this question, we must have a
model of how the noise enters the system, i.e., g, as well as how the system
dynamics respond, i.e., f . Figure 1.1 shows a simulation from a model with
three state variables, i.e., Xt is a 3-vector containing force on the turbine
and the position and velocity of the hub. The figure compares a stochastic
simulation with a noise-free simulation. Based on such a simulation, or a
mathematical analysis of the model, we can get statistics of force, position
and velocity. These statistics are important to assess the wear and tear on

1



CHAPTER 1. INTRODUCTION 2

the turbine, and also affect the regularity of the electrical power which is
generated by the turbine.

Time series analysis: We may have a time series of measurements taken
from the system. Based on these measurements, we may want to estimate
parameters in the differential equation, i.e., in f ; we may want to know how
large loads the structure has been exposed to, and we may want to predict
the future production of electrical power. To answer these questions, we must
perform a statistical analysis on the time series. When we base time series
analysis on stochastic differential equations, we can use insight in the system
dynamics to fix the structure of f and maybe of g. The framework lets us
treat statistical errors correctly when estimating unknown parameters and
when assessing the accuracy with which we can estimate and predict.

Optimization and control: We may want to design a control system that
dampens the fluctuations that come from the wind. On the larger scale of
the electrical grid, we may want a control system to ensure that the power
supply meets the demand and so that voltages and frequencies are kept at
the correct values. To design such control systems optimally, we need to take
into account the nature of the disturbances that the control system should
compensate for.

Motion of a Particle Embedded in a Fluid Flow

Let us examine in some more detail the origin and form of the noise term
ξt in (1.1). Figure 1.2 displays water flowing in two dimensions around a
cylinder.1 In absence of diffusion, water molecules will follow the streamlines.
A small particle will largely follow the same streamlines, but is also subject
to diffusion, i.e., random collisions with neighboring molecules which cause
it to deviate from the streamlines. Collisions are frequent but each cause
only a small displacement, so the resulting path is erratic.

In absence of diffusion, we can find the trajectory of the particle by
solving the ordinary differential equation

dXt

dt
= f(Xt).

Here, Xt ∈ R2 is the position in the plane of the particle at time t. The
function f(·) is the flow field, so that f(x) is a vector in the plane indicating
the speed and direction of the water flow at position x. To obtain a unique
solution, this equation needs an initial condition such as X0 = x0 where x0
is the known position at time 0. The trajectory {Xt : t ∈ R} is exactly a
streamline.

1The flow used here is irrotational, i.e., potential flow. Mathematically, this is conve-
nient even if physically, it may not be the most meaningful choice.
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Figure 1.1: A wind turbine is affected by fluctuations in wind speed which
causes it to oscillate. We model the fluctuations as low-pass filtered noise
and the response of the construction as a linear mass-spring-damper system.
Solid lines: Simulated force, position and velocity from a stochastic simu-
lation of a dimensionless model. Dashed lines: Noise-free simulation. The
details of this model are given in Exercise 5.5. Photo credit: CC BY-SA 4.0.
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Figure 1.2: A small particle embedded in the two-dimensional flow around
a cylinder. The thin lines are streamlines, i.e., the paths a water molecule
follows, neglecting diffusion. The thick black line is a simulated random
trajectory of a particle, which is transported with the flow, but at the same
time subjected to molecular diffusion.

To take the molecular diffusion into account, i.e., the seemingly random
motion of a particle due to collisions with fluid molecules, we add “white
noise” ξt to the equation

dXt

dt
= f(Xt) + g ξt. (1.2)

Here, g is the (constant) noise intensity, and ξt is a two-vector. The
trajectory in Figure 1.2 has been simulated as follows: We discretize time.
At each time step, we first advect the particle in the direction of a streamline,
then we shift it randomly by adding a perturbation which is sampled from
a bivariate Gaussian where each component has mean 0 and variance g2h.
Specifically,

Xt+h = Xt + f(Xt) h+ g ξ
(h)
t where ξ(h)

t ∼ N(0, hI).

Here, h is the time step and the superscript in ξ
(h)
t indicates that the

noise term depends on the time step, while I is a 2-by-2 identity matrix.
If we let the particle start at a fixed position X0, the resulting positions
{Xh, X2h, X3h, . . .} will each be a random variable, so together they con-
stitute a stochastic process. This algorithm does not resolve the position
between time steps; when we plot the trajectory, we interpolate linearly.
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We hope that the position Xt at a given time t will not depend too much
on the time step h as long as h is small enough. This turns out to be the
case, if we choose the noise term in a specific way, viz.

ξ
(h)
t = Bt+h −Bt,

where {Bt} is a particular stochastic process, namely Brownian motion.
Thus, we should start by simulating the Brownian motion, and next compute
the noise terms ξ(h)

t from the Brownian motion; we will detail exactly how to
do this later. Brownian motion is key in the theory of stochastic differential
equations for two reasons: First, it solves the simplest stochastic differential
equation, dXt/dt = ξt, and second, we use it to represent the noise term in
any stochastic differential equation. With this choice of noise ξ(h)

t , we can
rewrite the recursion with the shorthand

∆Xt = f(Xt) ∆t+ g ∆Bt (1.3)

and since this turns out to converge as the time step h = ∆t goes to zero,
we use the notation

dXt = f(Xt) dt+ g dBt (1.4)
for the limit. This is our preferred notation for a stochastic differential equa-
tion. In turn, (1.3) is an Euler-type numerical method for the differential
equation (1.4), known as the Euler-Maruyama method.

If the particle starts at a given position X0 = x0, its position at a later
time t will be random, and we would like to know the probability density
of the position φ(x, t). It turns out that this probability density φ(x, t) is
governed by a partial differential equation of advection-diffusion type, viz.

∂φ

∂t
= −∇ · (fφ− 1

2g
2∇φ)

with appropriate boundary conditions. This is the same equation that gov-
erns the concentration of particles, if a large number of particles is released
and move independently of each other. This equation is at the core of the
theory of transport by advection and diffusion, and now also a key result in
the theory of stochastic differential equations.

We can also ask, what is the probability that the particle hits the cylin-
der, depending on its initial position. This is governed by a related (specifi-
cally, adjoint) partial differential equation.

There is a deep and rich connection between stochastic differential equa-
tions and partial differential equations involving diffusion terms. This con-
nection explains why we, in general, use the term diffusion processes for
solutions to stochastic differential equations. From a practical point of view,
we can analyze PDE’s by simulating SDE’s, or we can learn about the behav-
ior of specific diffusion processes by solving associated PDE’s analytically
or numerically.
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Figure 1.3: Two simulated sample paths (solid and dotted erratic curves)
of the stochastic logistic growth model (1.5) with g(x) = σx of a bacterial
population with g(x) = σx. A noise-free simulation is included (thin black
line). Parameters are r = K = 1, σ = 0.1, X0 = 0.01. The computational
time step used is 0.001.

Population Growth and State-Dependent Noise

In the two previous examples, the wind turbine and the dispersing molecule,
the noise intensity g(x) in (1.1) was a constant function of the state x.
If all models had that feature, this book would be considerably shorter;
some intricacies of the theory only arise when the noise intensity is state-
dependent. State-dependent noise intensities arise naturally in population
biology, for example. A model for the growth of an isolated bacterial colony
could be:

dXt = rXt(1 −Xt/K) dt+ g(Xt) dBt. (1.5)
Here, r > 0 is the specific growth rate at low abundance, while K > 0 is

the carrying capacity. Without noise, i.e., with g(x) ≡ 0, this is the logistic
growth model; see Figure 1.3. Dynamics of biological systems is notoriously
noisy, so we have included a noise term g(Xt) dBt and obtained a stochastic
logistic growth model. Here, it is critical that the noise intensity g(x) depends
on the abundance x; otherwise, we can get negative abundances Xt! To
avoid this, we must require that the noise intensity g(x) vanishes at the
origin, g(0) = 0, so that a dead colony stays dead. Figure 1.3 includes
two realizations of the solution {Xt} with the choice g(x) = σx. For this
situation, the theory allows us to answer the following questions:

1. How is the state Xt distributed, in particular as time t → ∞? Again,
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we can pose partial differential equations of advection-diffusion type to
answer this, and the steady-state distribution can be found in closed
form. For example, we can determine the mean and variance.

2. What is the temporal pattern of fluctuations in {Xt}? We shall see
that {Xt} is a Markov process, which allows us to characterize these
fluctuations. We can assess their time scale through their stochastic
Lyapunov exponent, which for this example leads to a time scale of
1/(r − σ2/2), when the noise is weak and the process is in stochastic
steady state.

3. Does a small colony risk extinction? For this particular model with
these particular parameters, it turns out that the answer is “no”. With
other parameters, the answer is that the colony is doomed to extinc-
tion, and for other noise structures, the answer is that there is a cer-
tain probability of extinction, which depends on the initial size of the
colony. These questions are answered by stochastic stability theory as
well as by the theory of boundary behavior and classification.

However, before we can reach these conclusions, we must consider the
equation (1.5) carefully. We call it a stochastic differential equation, but it
should be clear from Figure 1.3 that the solutions are nowhere differentiable
functions of time. This means that we should not take results from standard
calculus for granted. Rather, we must develop a stochastic calculus which
applies to diffusion processes. In doing so, we follow in the footsteps of Kiyosi
Itô, who took as starting point an integral version of the equation (1.5), in
order to circumvent the problem that stochastic differential equations have
non-differentiable solutions. The resulting Itô calculus differs from standard
calculus, most notably in its chain rule, which includes second order terms.

Overview of the Book

This book is in three parts. The core is Itô’s stochastic calculus in part 2:
It describes stochastic integrals, stochastic calculus, stochastic differential
equations, and the Markov characterization of their solutions.

Before embarking on this construction, part 1 builds the basis. We first
consider molecular diffusion as a transport processes (Chapter 2); this gives a
physical reference for the mathematics. We then give a quick introduction to
measure-theoretic probability (Chapter 3) after which we study Brownian
motion as a stochastic process (Chapter 4). Chapter 5 concerns the very
tractable special case of linear systems such as the wind turbine (Figure
1.1). At this point we are ready for the Itô calculus in part 2.

Finally, part 3 contains four chapters which each gives an introduction
to an area of application. This concerns estimation and time series analysis
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(Chapter 10), quantifying expectations to the future (Chapter 11), stability
theory (Chapter 12) and finally optimal control (Chapter 13).

Exercises, Solutions, and Software

In science and engineering, what justifies mathematical theory is that it
lets us explain existing real-world systems and build new ones. The un-
derstanding of mathematical constructions must go hand in hand with
problem-solving and computational skills. Therefore, this book contains ex-
ercises of different kinds: Some fill in gaps in the theory and rehearse the
ability to argue mathematically. Others contain pen-and-paper exercises
while yet others require numerical analysis on a computer. Solutions are
provided at https://github.com/Uffe-H-Thygesen/SDEbook. There, also
code which reproduces all figures is available. The computations use a tool-
box, SDEtools for R, which is available at https://github.com/Uffe-H-
Thygesen/SDEtools. See also
https://uffe-h-thygesen.github.io/.

There is no doubt that stochastic differential equations are becoming
more widely applied in many fields of science and engineering, and this by
itself justifies their study. From a modeler’s perspective, it is attractive that
our understanding of processes and dynamics can be summarized in the drift
term f in (1.1), while the noise term ξt (or Bt) manifests that our models
are always incomplete descriptions of actual systems. The mathematical
theory ties together several branches of mathematics - ordinary and partial
differential equations, measure and probability, statistics, and optimization.
As you develop an intuition for stochastic differential equations, you will
establish interesting links between subjects that may at first seem unrelated,
such as physical transport processes and propagation of noise. I have found
it immensely rewarding to study these equations and their solutions. My
hope is that you will, too.



Part I

Fundamentals

9



Chapter 2

Diffusive Transport and
Random Walks

The theory of stochastic differential equations uses a fair amount of math-
ematical abstraction. If you are interested in applying the theory to science
and technology, it may make the theory more accessible to first consider
a physical phenomenon, which the theory aims to describe. One such phe-
nomenon is molecular diffusion, which was historically a key motivation for
the theory of stochastic differential equations.

Molecular diffusion is a transport process in fluids like air and water
and even in solids. It is caused by the erratic and unpredictable motion
of molecules which collide with other molecules. The phenomenon can be
viewed at a microscale, where we follow the individual molecule, or at a
macroscale, where it moves material from regions with high concentration
to regions with low concentration (Figure 2.1).

The macroscale description of diffusion involves the concentration C =
C(x, t) of a substance and how it evolves in time. Here, x is the spatial posi-
tion while t is time; the concentration measures how many molecules there
are in a given region. In this chapter, we derive and analyze the advection-
diffusion equation which governs the concentration:

∂C

∂t
= −∇ · (uC −D∇C).

In contrast, the microscale description of diffusion is that each single
molecule moves according to a stochastic process, which is governed by a
stochastic differential equation. It turns out that we can use the advection-
diffusion equation to compute the statistics of this process. In turn, we
can simulate the random motion of the molecule, which leads to Monte
Carlo methods for analyzing the advection-diffusion equation. That is, there
is a precise coupling between the microscale and the macroscale; between
stochastic differential equations and partial differential equations.

10
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Figure 2.1: Diffusion in a container in two dimensions. Top panels: Concen-
tration fields. Bottom panels: Position of 100 molecules. Left panels: Initially,
the solute is concentrated at the center. Right panels: After some time, the
solute is less concentrated. The bottom right panel also includes the trajec-
tory of one molecule; notice its irregular appearance.

2.1 Diffusive Transport

In this section, we model how a substance spreads in space due to molecular
diffusion. Think of smoke in still air, or dye in still water. The substance is
distributed over a one-dimensional space R. Let µt([a, b]) denote the amount
of material present in the interval [a, b] at time t. Mathematically, this µt is
a measure. We may measure the substance in terms of number of molecules
or moles, or in terms of mass, but we choose to let µt be dimensionless. We
assume that µt admits a density, which is the concentration C(·, t) of the
substance, so that the amount of material present in any interval [a, b] can
be found as the integral of the concentration over the interval:

µt([a, b]) =
∫ b

a
C(x, t) dx.

The density has unit per length; if the underlying space had been two or
three dimensional, then C would have unit per length squared or cubed,
i.e., per area or per volume. The objective of this section is to pose a partial
differential equation, the diffusion equation (2.3), which governs the time
evolution of this concentration C.
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2.1.1 The Conservation Equation

We first establish the conservation equation

∂C

∂t
+ ∂J

∂x
= 0, (2.1)

which expresses that mass is redistributed in space by continuous move-
ments, but neither created, lost, nor teleported instantaneously between
separated regions in space. To see that this equation holds, note that trans-
port may then be quantified with a flux J(x, t), which is the net amount
of material that crosses the point x per unit time, from left to right. The
flux has physical dimension “per time”. Then, the amount of material in the
interval [a, b] is only changed by the net influx at the two endpoints, i.e.,

d

dt
µt([a, b]) = J(a, t) − J(b, t).

See Figure 2.2. Assume that the flux J is differentiable in x, then

C

xa b

µ

Ja

Jb

Figure 2.2: Conservation in one dimension. The total mass in the interval
[a, b] is µt([a, b]) =

∫ b
a C(x, t) dx, corresponding to the area of the shaded

region. The net flow into the interval [a, b] is J(a) − J(b).

J(a, t) − J(b, t) = −
∫ b

a

∂J

∂x
(x, t) dx.

On the other hand, since µt is given as an integral, we can use the Leibniz
integral rule to find the rate of change by differentiating under the integral
sign:

d

dt
µt([a, b]) =

∫ b

a

∂C

∂t
(x, t) dx.

Here, we assume that C is smooth so that the Leibniz integral rule applies.
Combining these two expressions for the rate of change of material in [a, b],
we obtain: ∫ b

a

[
∂C

∂t
(x, t) + ∂J

∂x
(x, t)

]
dx = 0.
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Since the interval [a, b] is arbitrary, we can conclude that the integrand is
identically 0, or

∂C

∂t
(x, t) + ∂J

∂x
(x, t) = 0.

This is known as the conservation equation. To obtain a more compact no-
tation, we often omit the arguments (x, t), and we use a dot (as in Ċ) for
time derivative and a prime (as in J ′) for spatial derivative. Thus, we can
state the conservation equation compactly as

Ċ + J ′ = 0.

2.1.2 Fick’s Laws

Fick’s first law for diffusion states that the diffusive flux is proportional to
the concentration gradient:

J(x, t) = −D∂C
∂x

(x, t) or simply J = −DC ′. (2.2)

This means that the diffusion will move matter from regions of high concen-
tration to regions of low concentration. The constant of proportionality, D,
is termed the diffusivity and has dimensions area per time (also when the
underlying space has more than one dimension). The diffusivity depends on
the diffusing substance, the background material it is diffusing in, and the
temperature. See Table 2.1 for examples of diffusivities.

Table 2.1: Examples of Diffusivities
Process Diffusivity [m2/s]

Smoke particle in air at room temperature 2 × 10−5

Salt ions in water at room temperature 1 × 10−9

Carbon atoms in iron at 1250 K 2 × 10−11

Fick’s first law (2.2) is empirical but consistent with a microscopic model
of molecule motion, as we will soon see. Combining Fick’s first law with the
conservation equation (2.1) gives Fick’s second law, the diffusion equation:

Ċ = (DC ′)′. (2.3)

This law predicts, for example, that the concentration will decrease at a
peak, i.e., where C ′ = 0 and C ′′ < 0. In many physical situations, the
diffusivity D is constant in space. In this case, we may write Fick’s second
law as

Ċ = DC ′′ when D is constant in space, (2.4)
i.e., the rate of increase of concentration is proportional to the spatial curva-
ture of the concentration. However, constant diffusivity is a special situation,
and the general form of the diffusion equation is (2.3).
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Biography: Adolph Eugen Fick (1829–1901)
A German pioneer in biophysics with a background
in mathematics, physics, and medicine. Interested
in transport in muscle tissue, he used transport
of salt in water as a convenient model system. In
a sequence of papers around 1855, he reported on
experiments as well as a theoretical model of trans-
port, namely Fick’s laws, which were derived as an
analogy to the conduction of heat.

Exercise 2.1: For the situation in Figure 2.2, will the amount of material
in the interval [a, b] increase or decrease in time? Assume that (2.4) applies,
i.e., the transport is diffusive and the diffusivity D is constant in space.

For the diffusion equation to admit a unique solution, we need an ini-
tial condition C(x, 0) and spatial boundary conditions. Typical boundary
conditions either fix the concentration C at the boundary, i.e., Dirichlet
conditions, or the flux J . In the latter case, since the flux J = uC − D∇C
involves both the concentration C and its gradient ∇C, the resulting condi-
tion is of Robin type. In many situations, the domain is unbounded so that
the boundary condition concerns the limit |x| → ∞.

2.1.3 Diffusive Spread of a Point Source

We now turn to an important situation where the diffusion equation admits
a simple solution in closed form: We take the spatial domain to be the entire
real line R, we consider a diffusivity D which is constant in space and time,
and we assume that the fluxes vanish in the limit |x| → ∞. Consider the
initial condition that one unit of material is located at position x0, i.e.,

C(x, 0) = δ(x− x0),

where δ is the Dirac delta. The solution is then a Gaussian bell curve:

C(x, t) = 1√
2Dt

φ

(
x− x0√

2Dt

)
. (2.5)

Here, φ(·) is the probability density function (p.d.f.) of a standard Gaussian
variable,

φ(x) = 1√
2π

exp(−1
2x

2). (2.6)

Thus, the substance is distributed according to a Gaussian distribution with
mean x0 and standard deviation

√
2Dt; see Figure 2.3. This standard devia-

tion is a characteristic length scale of the concentration field which measures
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Figure 2.3: Diffusive spread. The concentration field at times t = 1, 5, 10 s
with diffusivity D = 1 m2/s and a unit amount of material, which initially
is located at the point x = 0 m.
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Figure 2.4: Square root relationship between time and diffusive length scale.

(half the) width of the plume; recall also that for a Gaussian, the standard
deviation is the distance from the mean to inflection point. We see that
length scales with the square root of time, or equivalently, time scales with
length squared (Figure 2.4). This scaling implies that molecular diffusion is
often to be considered a small-scale process: on longer time scales or larger
spatial scales, other phenomena may take over and be more important. We
will return to this point later, in Section 2.4.

Exercise 2.2: Insert the solution (2.5) into the diffusion equation and
verify that it satisfies the equation. In which sense does the solution also
satisfy the initial condition?

Exercise 2.3: Compute the diffusive length scale for smoke in air, and
for salt in water, for various time scales between 1 second and 1 day.
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Solution (2.5) is a fundamental solution (or Green’s function) with which
we may construct also the solution for general initial conditions. To see this,
let H(x, x0, t) denote the solution C(x, t) corresponding to the initial condi-
tion C(x, 0) = δ(x− x0), i.e., (2.5). Since the diffusion equation is linear, a
linear combination of initial conditions results in the same linear combina-
tion of solutions. In particular, we may write a general initial condition as
a linear combination of Dirac deltas:

C(x, 0) =
∫ +∞

−∞
C(x0, 0) · δ(x− x0) dx0.

We can then determine the response at time t from each of the deltas, and
integrate the responses up:

C(x, t) =
∫ +∞

−∞
C(x0, 0) ·H(x, x0, t) dx0. (2.7)

Note that here we did not use the specific form of the fundamental solution;
only linearity of the diffusion equation and existence of the fundamental
solution. In fact, this technique works also when diffusivity varies in space
and when advection is effective in addition to diffusion, as well as for a much
larger class of problems. However, when the diffusivity is constant in space,
we get a very explicit result, namely that the solution is the convolution of
the initial condition with the fundamental solution:

C(x, t) =
∫ +∞

−∞

1
(4πDt)1/2 exp

(
−1

2
|x− x0|2

2Dt

)
C(x0, 0) dx0.

2.1.4 Diffusive Attenuation of Waves

Another important situation which admits solutions in closed form is the
diffusion equation (2.4) with the initial condition

C(x, 0) = sin kx,

where k is a wave number, related to the wavelength L by the formula
kL = 2π. In this case, the solution is

C(x, t) = exp(−λt) sin kx with λ = Dk2. (2.8)

Exercise 2.4: Verify this solution.
Thus, harmonic waves are eigenfunctions of the diffusion operator; that

is, they are attenuated exponentially while preserving their shape. Note that
the decay rate λ (i.e., minus the eigenvalue) is quadratic in the wave number
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Figure 2.5: Attenuation of spatial waves by diffusion. Here the diffusivity
is D = 1 and the terminal time is T = 0.01. Solid lines: At time 0, the
amplitude is 1. Dashed lines: At time T , the wave is attenuated – how
much depends on the wave number. Left panel: A long wave is attenuated
slowly. Right panel: A shorter wave is attenuated more quickly.

k. Another way of expressing the same scaling is that the half-time of the
attenuation is

T1/2 = 1
λ

log 2 = log 2
4π2

L2

D
,

i.e., the half time is quadratic in the wave length: Twice as long waves persist
four times longer. See Figure 2.5. We recognize the square root/quadratic
relationship between temporal and spatial scales from Figure 2.4.

Recall that we used the fundamental solution (2.5) to obtain the response
of a general initial condition. We can do similarly with the harmonic solution
(2.8), although we need to add the cosines or, more conveniently, use complex
exponentials. Specifically, if the initial condition is square integrable, then
it can be decomposed into harmonics as

C(x, 0) = 1
2π

∫ +∞

−∞
C̃(k, 0) eikx dk,

where C̃(k, 0) is the (spatial) Fourier transform

C̃(k, 0) =
∫ +∞

−∞
C(x, 0) e−ikx dx.

Note that different authors use slightly different definitions of the
Fourier transform. Now, each wave component exp(ikx) is attenuated to
exp(−Dk2t+ ikx), so the Fourier transform of C(x, t) is

C̃(k, t) = C̃(k, 0) e−Dk2t.
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We can now find the solution C(x, t) by the inverse Fourier transform:

C(x, t) = 1
2π

∫ +∞

−∞
C̃(k, 0) e−Dk2t+ikx dk.

One interpretation of this result is that short-wave fluctuations (large |k|) in
the initial condition are smoothed out rapidly while long-wave fluctuations
(small |k|) persist longer; the solution is increasingly dominated by longer
and longer waves which decay slowly as the short waves disappear.

2.2 Advective and Diffusive Transport

In many physical situations, diffusion is not the sole transport mechanism: A
particle with higher density than the surrounding fluid will have a movement
with a downwards bias. If the fluid is flowing, then the particle will have a
tendency to follow the flow (Figure 2.6). These situations both amount to a
directional bias in the movement, so we focus on the latter.
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Figure 2.6: A fluid flow in one dimension which transports a substance. The
plume is advected to the right with the flow; at the same time it diffuses
out. The diffusivity is D = 1, the advection is u = 2.5, and the terminal
time is T = 4.

Let the flow field be u(x, t). If we use Xt to denote the position of a fluid
element at time t, then Xt satisfies the differential equation

d

dt
Xt = u(Xt, t).

Consider again a solute which is present in the fluid, and as before let C(x, t)
denote the concentration of the solute at position x and time t. If the material
is a perfectly passive tracer (i.e., material is conserved and transported with
the bulk motion of the fluid), then the flux of material is the advective flux:

JA(x, t) = u(x, t) C(x, t).
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If in addition molecular diffusion is in effect, then according to Fick’s first
law (2.2) this gives rise to a diffusive flux JD = −DC ′. We may assume that
these two transport mechanisms operate independently, so that the total
flux is the sum of the advective and diffusive fluxes:

J(x, t) = u(x, t) C(x, t) −D(x)∂C
∂x

(x, t),

or simply J = uC−DC ′. Inserting this into the conservation equation (2.1),
we obtain the advection-diffusion equation for the concentration field:

Ċ = −(uC −DC ′)′ . (2.9)

A simple case is when u and D are constant, the initial condition is a Dirac
delta, C(x, 0) = δ(x − x0), where x0 is a parameter, and the flux vanishes
as |x| → ∞. Then the solution is:

C(x, t) = 1√
4πDt

exp
(

−(x− ut− x0)2

4Dt

)
, (2.10)

which is the probability density function of a Gaussian random variable with
mean x0 + ut and variance 2Dt. Advection shifts the mean with constant
rate, as if there had been no diffusion, and diffusion gives rise to a linearly
growing variance while preserving the Gaussian shape, as in the case of pure
diffusion (i.e., diffusion without advection). This solution is important, but
also a very special case: In general, when the flow is not constant, it will
affect the variance, and the diffusion will affect the mean.

Exercise 2.5:

1. Verify the solution (2.10).

2. Solve the advection-diffusion equation (2.9) on the real line with con-
stant u and D with the initial condition C(x, 0) = sin(kx) or, if you
prefer, C(x, 0) = exp(ikx).

2.3 Diffusion in More Than One Dimension

Consider again the one-dimensional situation in Figure 2.2. In n dimensions,
the interval [a, b] is replaced by a region V ⊂ Rn. Let µt(V ) denote the
amount of the substance present in this region. This measure can be written
in terms of a volume integral of the density C:

µt(V ) =
∫

V
C(x, t) dx.

Here x = (x1, . . . , xn) ∈ Rn and dx is the volume of an infinitesimal volume
element. The concentration C has physical dimension “per volume”, i.e.,
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SI unit m−n, since µt(V ) should still be dimensionless. The flux J(x, t) is
a vector field, i.e., a vector-valued function of space and time; in terms of
coordinates, we have J = (J1, . . . , Jn). The defining property of the flux J
is that the net rate of exchange of matter through a surface ∂V is∫

∂V
J(x, t) · ds(x).

Here, ds is the surface element at x ∈ ∂V , a vector normal to the surface.
The flux J has SI unit m−n+1s−1. Conservation of mass now means that the
rate of change in the amount of matter present inside V is exactly balanced
by the rate of transport over the boundary ∂V :∫

V
Ċ(x, t) dx+

∫
∂V
J(x, t) · ds(x) = 0, (2.11)

where ds is directed outward. This balance equation compares a volume
integral with a surface integral. We convert the surface integral to another
volume integral, using the divergence theorem (the Gauss theorem), which
equals the flow out of the control volume with the integrated divergence.
Specifically, ∫

V
∇ · J dx =

∫
∂V
J · ds.

In terms of coordinates, the divergence is ∇ · J = ∂J1/∂x1 + · · · + ∂Jn/∂xn.
Substituting the surface integral in (2.11) with a volume integral, we obtain∫

V

[
Ċ(x, t) + ∇ · J(x, t)

]
dx = 0.

Since the control volume V is arbitrary, we get

Ċ + ∇ · J = 0, (2.12)

which is the conservation equation in n dimensions, in differential form.
Fick’s first law in n dimensions relates the diffusive flux to the gradient

of the concentration field:
J = −D∇C,

where the gradient ∇C has coordinates (∂C/∂x1, . . . , ∂C/∂xn). Often, the
diffusivity D is a scalar material constant, so that the relationship between
concentration gradient and diffusive flux is invariant under rotations. We
then say that the diffusion is isotropic. However, in general D is a matrix
(or a tensor, if we do not make explicit reference to the underlying coor-
dinate system). Then, the diffusive flux is not necessarily parallel to the
gradient, and its strength depends on the direction of the gradient. These
situations can arise when the diffusion takes place in an anisotropic material,
or when the diffusion is not molecular but caused by other mechanisms such
as turbulence. Anisotropic diffusion is also the standard situation when the
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diffusion model does not describe transport in a physical space, but rather
stochastic dynamics in a general state space of a dynamic system.

Fick’s second law can now be written as

Ċ = ∇ · (D∇C).

When the diffusivity is constant and isotropic, this reduces to Ċ = D∇2C.
Here ∇2 is the Laplacian ∇2 = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

, a measure of curvature.
To take advection into account, we assume a flow field u with coordi-

nates (u1, . . . , un). The advective flux is now uC and the advection-diffusion
equation is

Ċ = −∇ · (uC −D∇C). (2.13)

2.4 Relative Importance of Advection and Diffu-
sion

We have now introduced two transport processes, advection and diffusion,
which may be in effect simultaneously. It is useful to assess the relative
importance of the two.

Consider the solution (2.10) corresponding to constant advection u, con-
stant diffusion D, and the initial condition C(x, 0) = δ(x − xo). At time t,
the advection has moved the center of the plume a distance |u|t, while the
diffusive length scale - the half width of the plume - is

√
2Dt. These length

scales are shown in Figure 2.7 as functions of the time scale. Notice that
initially, when time t is sufficiently small, the diffusive length scale is larger
than the advective length scale, while for sufficiently large time t the advec-
tive length scale dominates. This justifies our earlier claim that diffusion is
most powerful at small scales. The two length scales are equal when

t = 2D
u2 .

In stead of fixing time and computing associated length scales, one may
fix a certain length scale L and ask about the corresponding time scales
associated with advective and diffusive transport: The advective time scale
is L/u while the diffusive time scale is L2/2D. We define the Péclet number
as the ratio between the two:

Pe = 2 Diffusive time scale
Advective time scale = Lu

D
.

It is common to include the factor 2 in order to obtain a simpler final expres-
sion, but note that different authors may include different factors. Regardless
of the precise numerical value, a large Péclet number means that the dif-
fusive time scale is larger than the advective time scale. In this situation,
advection is a more effective transport mechanism than diffusion at the given
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Figure 2.7: Advective (dashed) and diffusive (solid) length scale as function
of time scale for the dimensionless model with u = D = 1.

length scale; that is, the transport is dominated by advection. Conversely, if
the Péclet number is near 0, diffusion is more effective than advection at the
given length scale. Such considerations may suggest to simplify the model
by omitting the least significant term, and when done cautiously, this can
be a good idea.

The analysis in this section has assumed that u and D were constant.
When this is not the case, it is customary to use “typical” values of u and D
to compute the Péclet number. This can be seen as a useful heuristic, but can
also be justified by the non-dimensional versions of the transport equations,
where the Péclet number enters. Of course, exactly which “typical values”
are used for u and D can be a matter of debate, but this debate most often
affects digits and not orders of magnitude. Even the order of magnitude of
the Péclet number is a useful indicator if the transport phenomenon under
study is dominated by diffusion or advection.

Example 2.4.1 Consider the advection-diffusion equation (2.13) in two di-
mensions, where the flow u(x) is around a cylinder. We non-dimensionalize
space so that the cylinder is centered at the origin and has radius 1, and
non-dimensionalize time so that the flow velocity far from the cylinder is 1.
Then, the flow is, in polar coordinates (r, θ) with x = r cos θ, y = r sin θ,

ur(r, θ) = (1 − r−2) cos θ, uθ = −(1 + r−2) sin θ.

This is called irrotational flow in fluid mechanics (Batchelor, 1967). A unit
of material is released at time t = 0 at position x = −3, y = −0.5. We
solve the advection-diffusion equation for t ∈ [0, 2.5] for three values of the
diffusivity D: D = 1, D = 0.1, and D = 0.01, leading to the three Péclet
numbers 1, 10, and 100. Figure 2.8 shows the solution at time t = 2.5 for
the three Péclet numbers. Notice how higher Péclet numbers (lower diffusivity
D) imply a more narrow distribution of the material.
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Figure 2.8: Concentrations C(x, t = 2.5) from Example 2.4.1, for flow
around a cylinder with diffusivities leading to different Péclet numbers. Left
panel: Pe=1. Center panel: Pe=10. Right panel: Pe=100. In each panel, the
grayscale represents concentration relative to the maximum concentration.

2.5 The Motion of a Single Molecule

We can accept Fick’s first equation as an empirical fact, but we would like
to connect it to our microscopic understanding. In this section, we present a
caricature of a microscopic mechanism which can explain Fickian diffusion:
Each individual molecule moves in an erratic and unpredictable fashion, due
to the exceedingly large number of collisions with other molecules, so that
only a probabilistic description of its trajectory is feasible. This phenomenon
is called Brownian motion.
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Figure 2.9: A random walk model of molecular motion. Left: A close-up
where individual transitions are visible. Right: A zoom-out where the process
is indistinguishable from Brownian motion.

Let Xt ∈ R denote the position at time t of a molecule, e.g. smoke in
air, still considering one dimension only. At regularly spaced points of time,
a time step h apart, the molecule is hit by an air molecule which causes a
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Biography: Robert Brown (1773–1858)
A Scottish botanist who in 1827 studied pollen im-
mersed in water under a microscope, and observed
an erratic motion of the grains. Unexplained at
the time, we now attribute the motion to seem-
ingly random collision between the pollen and wa-
ter molecules. The physical phenomenon and its
mathematical model are named Brownian motion,
although many other experimentalists and theo-
reticians contributed to our modern understanding
of the phenomenon.

displacement ±k. This happens independently of what has happened previ-
ously (Figure 2.9). 1

In summary, the position {Xt : t ≥ 0} is a random walk :

Xt+h =


Xt + k w.p. (with probability) p,
Xt w.p. 1 − 2p,
Xt − k w.p. p.

.

Here, p ∈ (0, 1
2 ] is a parameter. The displacement in one time step, Xt+h−Xt,

has mean 0 and variance 2k2p. Displacements over different time steps are
independent, so the central limit theorem applies. After many time steps, the
probability distribution of the displacement Xnh will be well approximated
by a Gaussian with mean 0 and variance 2k2pn:

Xnh ∼ N(0, 2k2pn). (2.14)

That is, Xnh will (approximately) have the probability density function
1√

2k2pn
· φ(x/

√
2k2pn),

where φ is still the p.d.f. of a standard Gaussian variable from (2.6). Next,
assume that we release a large number N of molecules at the origin, and that
they move independently. According to the law of large numbers, the number
of molecules present between x1 and x2 at time nh will be approximately

N

∫ x2

x1

1√
2k2pn

· φ(x/
√

2k2pn) dx.

1Physically, collisions cause changes in velocity rather than position, but the simple
picture is more useful at this point. We can argue that the velocity decays to 0 due to vis-
cous friction and that the molecule drifts a certain distance during this decay. The simple
model was used by Einstein (1905); extensions that takes the velocity process into account
were the Langevin (1908) equation and the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930) (Section 5.10).
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Notice that this agrees with equation (2.5), assuming that we take N = 1,
D = k2p/h and t = nh.

We see that our cartoon model of molecular motion is consistent with
the results of the diffusion equation, if we assume that

1. molecules take many small jumps, i.e., h and k are small, so that the
Central Limit Theorem is applicable at any length and time scale that
our measuring devices can resolve, and

2. there is a large number of molecules present and they behave inde-
pendently, so that we can ignore that their number will necessarily be
integer, and ignore its variance.

Both of these assumptions are reasonable in many everyday situations
where molecular systems are observed on a macroscale, for example, when
breathing or making coffee.

To simulate the motion of a single molecule, if we only care about the
displacements after many collisions, we may apply the approximation (2.14)
recursively to get

Xt −Xs ∼ N(0, 2D(t− s)), when t > s.

Here we have assumed that the steps in time and space are consistent with
the diffusivity, i.e., D = k2p/h. This process {Xt} with independent and
stationary Gaussian increments is called (mathematical) Brownian motion.
Note that, physically, these properties should only hold when the time lag
t−s is large compared to the time h between molecular collisions, so mathe-
matical Brownian motion is only an appropriate model of physical Brownian
motion at coarse scale, i.e., for large time lags t−s. Mathematical Brownian
motion is a fundamental process. It is simple enough that many questions
regarding its properties can be given explicit and interesting answers, and
we shall see several of these later, in Chapter 4.

In many situations, we choose to work with standard Brownian motion,
where we take 2D = 1 so that the displacement Bt+h −Bt has variance equal
to the time step h. When time has the physical unit of seconds s, notice that
this means that Bt has the physical unit of

√
s!

2.6 Monte Carlo Simulation of Particle Motion

The previous section considered diffusion only. To add advection, the mi-
croscale picture is that each particle is advected with the fluid while sub-
ject to random collisions with other molecules which randomly perturb the
particle. Thus, each particle performs a biased random walk. When the dif-
fusivity D and the flow u are constant in space and time, the Gaussian
solution (2.10) to the advection-diffusion equation applies. Then, a random
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Biography: Albert Einstein (1879–1955)
In his Annus Mirabilis, Einstein (1905) published
not just on the photoelectric effect and on spe-
cial relativity, but also on Brownian motion as
the result of molecular collisions. His work con-
nected pressure and temperature with the motion
of molecules, gave credibility to statistical mechan-
ics, and estimated the size of atoms. Soon con-
firmed in experiments by Jean Perrin, this work
ended the debate whether atoms really exist.

walk model that is consistent with the advection-diffusion equation is that
the increments ∆X = Xt −Xs are sampled from a Gaussian distribution

∆X ∼ N(u · (t− s), 2D(t− s)).

Now what if the flow u = u(x, t) varies in space and time? To simulate the
trajectory of a single particle, it seems to be a reasonable heuristic to divide
the time interval [0, T ] into N subintervals

0 = t0, t1, . . . , tN = T.

We first sample X0 from the initial distribution C(·, 0). Then, we sample
the remaining trajectory recursively: At each sub-interval [ti, ti+1], we ap-
proximate the flow field with a constant, namely u(Xti , ti). This gives us:

Xti+1 ∼ N(Xti + u(Xti) · ∆ti, 2D · ∆ti), (2.15)

where ∆ti = ti+1 − ti. It seems plausible that, as the time step in this recur-
sion goes to 0, this approximation becomes more accurate so that the p.d.f.
of Xt will approach the solution C(·, t) to the advection-diffusion equation
(2.9). This turns out to be the case, although we are far from ready to prove
it.

Example 2.6.1 (Flow past a cylinder revisited) Example 2.4.1 and
Figure 2.8 present solutions of the advection-diffusion equation for the case
where the flow goes around a cylinder. In the introduction, Figure 1.2 show a
trajectory of a single molecule in the same flow. This trajectory is simulated
with the recursion (2.15), using a Péclet number of 200.

The Monte Carlo method, that we have just described, simulates the
motion of single molecules, chosen randomly from the ensemble. Monte Carlo
simulation can be used to compute properties of the concentration C, but
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can also answer questions that are not immediately formulated using partial
differential equations; for example, concerning the time a molecule spends in
a region. Monte Carlo methods are appealing in situations where analytical
solutions to the partial differential equations are not available, and when
numerical solutions are cumbersome, e.g., due to irregular geometries. Monte
Carlo methods can also be useful when other processes than transport are
active, for example, when chemical reactions take place on or between the
dispersing particles.

2.7 Conclusion

Diffusion is a transport mechanism, the mathematical model of which in-
volves the concentration field and the flux. Fick’s laws tell us how to compute
the flux for a given concentration field, which in turn specifies the tempo-
ral evolution of the concentration field. This is the classical approach to
diffusion, in the sense of 19th century physics.

A microscopic model of diffusion involves exceedingly many molecules
which each move erratically and unpredictably, due to collisions with other
molecules. This statistical mechanical image of molecular chaos is consistent
with the continuous fields of classical diffusion, but brings attention to the
motion of a single molecule, which we model as a stochastic process, a so-
called diffusion process. The probability density function associated with a
single molecule is advected with the flow while diffusing out due to unpre-
dictable collisions, in the same way the overall concentration of molecules
spreads.

We can simulate the trajectory of a diffusing molecule with a stochas-
tic recursion (Section 2.6). This provides a Monte Carlo particle tracking
approach to solving the diffusion equation, which is useful in science and en-
gineering: In each time step, the molecule is advected with the flow field but
perturbed randomly from the streamline, modeling intermolecular collisions.
This Monte Carlo method is particular useful in high-dimensional spaces or
complex geometries where numerical solution of partial differential equations
is difficult (and analytical solutions are unattainable).

Molecular diffusion is fascinating and relevant in its own right, but has
even greater applicability because it serves as a reference and an analogy
to other modes of dispersal; for example, of particles in turbulent flows,
or of animals which move unpredictably (Okubo and Levin, 2001). At an
even greater level of abstraction, a molecule moving randomly in physical
space is a archetypal example of a dynamic system moving randomly in
a general state space. When studying such general systems, the analogy
to molecular diffusion provides not just physical intuition, but also special
solutions, formulas and even software.

With the Monte Carlo approach to diffusion, the trajectory of the dif-
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Factbox: [The error function] The physics literature often prefers the
“error function” to the standard Gaussian cumulative distribution func-
tion. The error function is defined as

erf(x) = 2√
π

∫ x

0
e−s2

ds,

and the complementary error function is

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x
e−s2

ds.

These are related to the standard Gaussian distribution function Φ(x)
by

erfc(x) = 2 − 2Φ(
√

2x), Φ(x) = 1 − 1
2erfc(x/

√
2),

erf(x) = 2Φ(
√

2x) − 1, Φ(x) = 1
2 + 1

2erf(x/
√

2).

fusing molecule is the focal point, while the classical focal points (concen-
trations, fluxes, and the advection-diffusion equation that connect them)
become secondary, derived objects. This is the path that we follow from
now on. In the chapters to come, we will depart from the physical notion
of diffusion, in order to develop the mathematical theory of these random
paths. While going through this construction, it is useful to have Figure 2.1
and the image of a diffusing molecule in mind. If a certain piece of math-
ematical machinery seems abstract, it may be enlightening to consider the
question: How can this help describe the trajectory of a diffusing molecule?

2.8 Exercises

Exercise 2.6:

1. Solve the diffusion equation (2.4) on the real line with a ”Heaviside
step” initial condition

C(x, 0) =
{

0 when x < 0,
1 when x > 0. .

Use boundary conditions limx→+∞C(x, t) = 1 and limx→−∞C(x, t) =
0.
Hint: If you cannot guess the solution, use the formula (2.7) and
manipulate the integral into a form that resembles the definition of
the cumulative distribution function.
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2. Consider the diffusion equation (2.4) on the positive half-line x ≥ 0
with initial condition C(x, 0) = 0 and boundary conditions C(0, t) = 1,
C(∞, t) = 0. Hint: Utilize the solution of the previous question, and
the fact that in that question, C(0, t) = 1/2 for all t > 0.

Exercise 2.7: It is useful to have simple bounds on the tail probabilities
in the Gaussian distribution, such as (Karatzas and Shreve, 1997):

x

1 + x2φ(x) ≤ 1 − Φ(x) ≤ 1
x
φ(x).

which hold for x ≥ 0. Here, as always, Φ(·) is the c.d.f. of a standard Gaussian
variable X ∼ N(0, 1), so that 1 − Φ(x) = P(X ≥ x) =

∫∞
x φ(y) dy with φ(·)

being the density, φ(x) = 1√
2π
e− 1

2 x2 . A useful consequence is

1 − Φ(x) = φ(x) · (x−1 +O(x−3)).

1. Plot the tail probability 1−Φ(x) for 0 ≤ x ≤ 6. Include the upper and
lower bound. Repeat, in a semi-logarithmic plot.

2. Show that the bounds hold. Hint: Show that the bounds hold as x →
∞, and that the differential version of the inequality holds for x ≥ 0
with reversed inequality signs.

Exercise 2.8: Consider pure diffusion in n > 1 dimensions with a scalar
diffusion D, and a point initial condition C(x, 0) = δ(x−x0), where x ∈ Rn

and δ is the Dirac delta in n dimensions. Show that each coordinate can be
treated separately, and thus, that the solution is a Gaussian in n dimensions
corresponding to the n coordinates being independent, i.e.,

C(x, t) =
n∏

i=1

1√
2Dt

φ

(
ei · (x− x0)√

2Dt

)
= 1

(4πDt)n/2 exp
(

−1
2

|x− x0|2

2Dt

)

where ei is the ith unit vector.



Chapter 3

Stochastic Experiments and
Probability Spaces

To build the theory of stochastic differential equations, we need precise prob-
abilistic arguments, and these require an axiomatic foundation of probability
theory. This foundation is measure-theoretic and the topic of this chapter.

In science and engineering, probability is typically taught elementary,
i.e., without measure theory. This is good enough for many applications,
but it does not provide firm enough ground for more advanced topics like
stochastic differential equations. One symptom of this is the existence of
paradoxes in probability: Situations, or brain teasers, where different seem-
ingly valid arguments give different results. Another symptom is that many
elementary introductions to probability fail to give precise definitions, but
in stead only offer synonyms such as “a probability is a likelihood”.

The measure-theoretic approach to probability constructs a rigorous the-
ory by considering stochastic experiments and giving precise mathematical
definitions of the elements that make up such experiments: Sample spaces,
realizations, events, probabilities, random variables, and information. To
gain intuition, we consider simple experiments such as tossing coins or rolling
dice, but soon we see that the theory covers also more complex experiments
such as picking random functions.

At the end, we reach a construction which is consistent with the elemen-
tary approach, but covers more general settings. Therefore, there is no need
to “un-learn” the elementary approach. The measure theoretic approach
may seem abstract, but it gives precise mathematical meaning to concepts
that not many people find intuitive. Once one has become familiar with the
concepts, they can even seem natural, even if they are still technically chal-
lenging. A final argument in favor of the measure-theoretic approach is that
the mathematical literature on stochastic differential equations is written in
the language of measure theory, so the vocabulary is necessary for anyone
working in this field, even if one’s interest is applications rather than theory.

30
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Ω
A

ω

Figure 3.1: In a stochastic experiment, Chance picks an outcome ω from the
sample space Ω. An event A is a subset of Ω and occurs or is true if ω ∈ A.
For the outcome ω in the figure, the event A did not occur.

3.1 Stochastic Experiments

The most fundamental concept in probability theory is the stochastic ex-
periment. This is a mathematical model of real-world experiments such as
rolling a die and observing the number of eyes.

Mathematically, a stochastic experiment involves a set containing all
possible outcomes: The sample space Ω. We let ω denote an element in
Ω; we call ω an outcome or a realization. For the die experiment, we set
Ω = {1, 2, 3, 4, 5, 6}. The stochastic experiment is that some mechanism, or
the Goddess of Chance, selects one particular outcome ω from the sample
space Ω (Figure 3.1).

A few other examples:
Statistical models: Statistical methods for data analysis are justified

by postulating that the data has been produced by a stochastic experiment.
For example, we may weigh an object n times, obtaining measurements
y1, . . . , yn, and postulating yi = µ+ei. Here, µ is the (unknown) true weight
of the object and ei is the ith measurement error. We take the sample space
to be Ω = Rn and identify the outcome ω ∈ Ω with the measurement errors,
i.e., ω = (e1, . . . , en).

Monte Carlo simulation: In computer simulations of stochastic
experiments, we rely on a random number generator which, ideally, pro-
duces an infinite series of independent and identically distributed numbers
{Zi ∈ R : i ∈ N}. Hence, the sample space is the set of sequences of real
numbers, Ω = RN. If we take into account that computers only produce
pseudo-random numbers, we may identify the realization ω with the seed of
the random number generator; this allows to repeat the stochastic experi-
ment, picking the same realization ω.

Diffusion and Brownian motion: In Chapter 2, we considered the
experiment of releasing a large number of molecules; say, dye in water. A
stochastic experiment is to pick one random molecule and record how its
position changes in time. A mathematical model of this, in one dimension,
is Brownian motion (Chapter 4), where the sample space is Ω = C(R̄+,R),
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the set of continuous real-valued functions defined on [0,∞). We identify
the randomly chosen continuous function ω ∈ Ω with the trajectory of the
molecule {Bt : t ≥ 0}.

Once the sample space Ω is defined, we next need events. Events are
statements about the outcome, such as “The die showed an even number”
or “the molecule hits x = 1 before time t = 1”. Once the experiment has
been performed, the statement is either true or false. Mathematically, an
event A is a subset of Ω containing those outcomes for which the statement
is true. For example:

• For the die experiment, the statement “The die shows an even number”
is the event {2, 4, 6}.

• For the linear regression model, an event is a subset of Rn. One exam-
ple is the event “all the measurement errors are positive”, correspond-
ing to Rn

+.

This brings us to probabilities: The point of the stochastic model is to
assign probabilities to each event. For the die-tossing experiment, if the
die is fair, then P({2, 4, 6}) = 1/2, for example. This probability can be
interpreted in different ways. The frequentist view is that if we toss the die
repeatedly, we will eventually observe that the die has shown 2, 4 or 6 in
half the tosses. The subjective Bayesian view is that we subjectively believe
the event {2, 4, 6} to be as probable as the alternative, {1, 3, 5}, and aims
for consistency in such subjective beliefs. From an applied and pragmatic
point of view, in some situations the frequentist view is justified, while in
others the Bayesian view is more appropriate; even other interpretations
exist. Fortunately, the mathematical construction in the following applies
regardless of the interpretation.

Now the vocabulary is in place - sample space, outcomes, events, prob-
abilities - we need to specify the mathematical properties of these objects.
First, which events do we consider? For the example of the die, it is simple:
Any subset of Ω is allowed, including the empty set and Ω itself. Moreover,
if the die is fair, the probability of an event depends only on the number of
elements in it, P(A) = |A|/|Ω|.

For the statistical model, we could start by trying to make an event out
of each and every subset A of Rn. In an elementary course on probability
and statistics, we would maybe postulate a probability density function f(e)
for each measurement error and claim independence such that

P(A) =
∫

A
f(e1) · · · f(en) de1 · · · den.

Unfortunately, it turns out that there are subsets A of Rn that are so patho-
logical that this integral is not defined - even for n = 1 and regardless of
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how regular f is. You can accept this as a curious mathematical fact, or you
can look up the “Vitali set” in (Billingsley, 1995) or on Wikipedia. We need
to exclude such “non-measurable” subsets of Rn: They do not correspond
to events.

In elementary probability and statistics, we tend to ignore non-
measurable subsets of Rn, which have little relevance in applications. How-
ever, for more complicated sample spaces Ω, which appear in the study of
stochastic processes and in particular stochastic differential equations, this
difficulty cannot be ignored: Not all subsets of the sample space can be
events, and we often need careful analysis to determined which ones are.

When not every set A ⊂ Ω can be an event, which ones should be? Some
events are required for the theory to be useful. For example, in the scalar
case Ω = R, we want intervals to correspond to events, so that the statement
ω ∈ [a, b] is an event for any a and b. Moreover, it is imperative that our
machinery of logic works: If A is an event, then the complementary set Ac

must also be an event, so that the statement “not A” is valid. Next, if also
B is an event, then the intersection A ∩ B must also be an event, so that
the statement “A and B” is valid. More generally, in stochastic processes
we often consider infinite sequences of events, for instance when analyzing
convergence. So if {Ai : i ∈ N} is a sequence of events, then the statement
“for each integer i, the statement Ai holds” should be valid. In terms of
subsets of sample space Ω, this means that A1 ∩A2 ∩ . . . must be an event.

Let F denote the collection of events which we consider. Mathematically
speaking, the requirements on F that we have just argued for, means that
F is a σ-algebra:

Definition 3.1.1 (σ-algebra of events) Given a sample space Ω, a σ-
algebra F of events is a family of subsets of Ω for which:

1. The certain event is included, Ω ∈ F .

2. For each event A ∈ F , the complementary set Ac is also an event,
Ac ∈ F .

3. Given a sequence of events {Ai ∈ F : i ∈ N}, it is an event that all
Ai occur, i.e., ∩iAi ∈ F .

Given a sequence of events {Ai ∈ F : i ∈ N}, also the union ∪iAi is
an event. Exercise: Verify this!. We often say, for short, that σ-algebras
are characterized by being closed under countable operations of union and
intersection.

Example 3.1.1 (The Borel algebra) A specific σ-algebra which we will
encounter frequently in this book, is related to the case Ω = R. We previously
argued that the intervals [a, b] should be events for the theory to be useful
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in many situations. The smallest σ-algebra which contains the intervals is
called the Borel-algebra and denoted B(R) or simply B.

The Borel algebra contains all open sets and all closed sets, as well as
many others. This collection of sets is large enough to contain the sets one
encounters in practice, and the fact that the Vitali set and other non-Borel
sets exist is more an excitement to mathematicians than a nuisance to prac-
titioners.

In the case Ω = Rn, we require F to include (hyper)rectangles of the
form (a1, b1) × (a2, b2) × . . .× (an, bn), for ai, bi ∈ R and also use the name
Borel-algebra, B(Rn), for the smallest σ-algebra that contains these hyper-
rectangles. More generally, if Ω is a topological space (i.e., we have defined
a system of open subsets of Ω), then the Borel algebra on Ω is the smallest
σ-algebra of subsets of Ω that contain all the open sets.

It is important to notice that for a given sample space Ω, there can be
several systems of events F . In many applications there is an obvious choice,
but in general, to specify a stochastic experiment, we must state not only
what can happen (i.e., Ω) but also which questions we can ask (i.e., F).

Having outcomes and events in place, we need to assign a probability
P(A) to each event A ∈ F . The way we do this must be consistent:

Definition 3.1.2 (Probability measure) A measure P is a map F 7→
[0,∞] which is countably additive, i.e.: P(∪iAi) = ∑

i P(Ai) whenever
A1, A2, . . . are mutually exclusive events (Ai ∩ Aj = ∅ for i 6= j). A proba-
bility measure is a measure for which P(Ω) = 1.

This definition explains why we call the sets in F measurable: F consists
exactly of those sets, for which the measure P(A) is defined. Notice that
probability is additive only for countable collections of sets, just as the σ-
algebra F must only be closed under countable unions of sets.

An event with probability 0 is called a null event. Conversely, if an event
has probability 1, then we say that this event occurs almost surely (a.s.) or
with probability 1 (w.p. 1).
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Example 3.1.2 Consider the uniform distribution on [0, 1); i.e., Ω = [0, 1),
F is the Borel algebra on Ω, and probability corresponds to length, P([a, b]) =
b−a for 0 ≤ a ≤ b < 1. Now, the rational numbers form a countable set Q, so
the set A = Ω∩Q is measurable and has measure P (A) = 0: When sampling
a real number uniformly from [0, 1), the probability of getting a rational
number is 0. At the same time, the rationals are dense in [0, 1) (every real
number can be approximated with a rational number with arbitrary accuracy).
So almost no real numbers are rational, but every real number is almost
rational.

To summarize: Our mathematical model of a stochastic experiment in-
volves a sample space Ω, a family of events F , and a probability measure
P, which all satisfy the assumptions in the previous. Together, the triple
(Ω,F ,P) is called a probability space and constitutes the mathematical
model of a stochastic experiment.

3.2 Random Variables

A random variable is a quantity which depends on the outcome of the
stochastic experiment; mathematically, it is a function defined on Ω. In the
real-valued case, we have X : Ω 7→ R.

It is a great idea to define random variables as functions on sample
space: We are very familiar with functions and have a large toolbox for their
analysis, and now we can apply this machinery to random variables.

Just like there may be subsets of Ω which are not valid events, there may
be functions Ω 7→ R which are not valid random variables. For example, let
A be a non-measurable subset of Ω, i.e., A 6∈ F , and take X to be the
indicator function of A:

X(ω) = 1A(ω) = 1(ω ∈ A) =
{

1 if ω ∈ A,
0 else.

Then the statement X = 1 (which is shorthand for {ω ∈ Ω : X(ω) = 1})
is no event; we cannot assign a probability to it, zero or non-zero, in a
meaningful way. This X is a real-valued function on sample space, but does
not qualify to be a random variable.

To avoid such degenerate cases, we require that the statement “X ∈
[a, b]” corresponds to an event, for any a and b (Figure 3.2). Generalizing to
the multidimensional case:

Definition 3.2.1 (Random variable) A Rd-valued random variable is a
mapping X : Ω 7→ Rd such that

{ω ∈ Ω : X(ω) ∈ B} ∈ F

for any Borel set B ∈ B(Rd).
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Ω
X−1([a, b])

ω

RX(ω) a b

Figure 3.2: A real-valued random variable is a map X : Ω 7→ R such that
the preimage X−1([a, b]) of any interval [a, b] is an event, i.e., an element in
F .

We say that X is a measurable function from (Ω,F) to (Rd,B(Rd)). Notice
that this definition concerns not just the domain Ω and the codomain Rd,
but also the σ-algebras on these sets. When discussing measurable functions,
it is convenient to introduce the preimage:

Definition 3.2.2 (Preimage) Given a function X : Ω 7→ Rd, and a set
B ⊂ Rd, the preimage is

X−1(B) = {ω ∈ Ω : X(ω) ∈ B}.

Note that the preimage of a function is different from the inverse of a func-
tion, although we use the same notation: The preimage maps subsets of Rd

to subsets of Ω. In most cases in this book, X maps a high-dimensional sam-
ple space Ω to a low-dimensional space such as R, so the function X will
not be invertible. However, should the function X happen to be invertible,
then the preimage of a singleton {x} is a singleton {ω}.

With the notion of preimage, we can say that a function X from (Ω,F)
to (Rd,B(Rd)) is measurable if X−1(B) ∈ F for any B ∈ B(Rd).

We can now define objects which are familiar from elementary proba-
bility. The cumulative distribution function (c.d.f.) of a real-valued random
variable is

FX(x) = P{X ≤ x} = P{ω ∈ Ω : X(ω) ≤ x} = P{X−1((−∞, x])}.

Note again the notation, where we often omit the ω argument; {X ≤ x} is a
shorthand for {ω ∈ Ω : X(ω) ≤ x}. If FX is differentiable and its derivative
is continuous, then we define the probability density function fX(x) as this
derivative:1

fX(x) = dFX

dx
(x).

Once we have defined one random variable X, we can derive others from it.
For example, X2 is a random variable. In general, if g : R 7→ R is Borel

1FX does not have to be C1; absolute continuity suffices.
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Figure 3.3: Expectation as integrals over sample space Ω. Here, Ω = [0, 1].
A non-negative random variable X is bounded below by a simple random
variable Xs. If the probability measure is uniform, then expectation corre-
sponds to area under the curve; e.g., EXs corresponds to the gray area.

measurable, then g(X) is a random variable. Practically all the functions
g : R 7→ R we encounter in applications are Borel measurable; for example,
the piecewise continuous functions.

3.3 Expectation is Integration

Recall that in the elementary (non-measure theoretic) approach to prob-
ability, we define expectation EX of a continuous random variable as an
integral

∫
x fX(x) dx where fX is the probability density; in the case of

a discrete random variable, the integral is replaced with a sum. We now
present the measure-theoretic definition of expectation, which is consistent
with the elementary notion in both cases.

First, consider the case of a “simple” random variable Xs, i.e., one that
attains a finite number of possible values x1, . . . , xn. Then the elementary
definition of the expectation is

EXs =
n∑

i=1
xiP(Xs = xi)

and this definition is applicable in the measure-theoretic construction as well.
If Ω ⊂ R is an interval as in Figure 3.3, then the right hand side corresponds
to an area which can be seen as the integral over Ω of a piecewise constant
function Xs : Ω 7→ R, so we can write

EXs =
∫

Ω
Xs(ω) dP(ω).
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Importantly, we interpret this as an integral also when Ω is more complex
than Rn; e.g., when ω is a function or a sequence. Next, consider an arbitrary
non-negative random variable X. Then we may construct a simple random
variable Xs which is a lower bound on X, i.e., such that 0 ≤ Xs(ω) ≤ X(ω).
We require that EX satisfies EX ≥ EXs. Also, we require that if Xs is a
“good” approximation of X, then EXs is “near” EX. This leads us to define

EX = sup{EXs : Xs simple, 0 ≤ Xs ≤ X}.

Recall that the supremum (sup) is the smallest upper bound. Note that the
expectation EX is always defined and non-negative, but may equal +∞.

Exercise 3.1: Show that the set {EXs : Xs simple, 0 ≤ Xs ≤ X} can
be written as either [0, c) or [0, c] for some 0 ≤ c ≤ ∞.

This procedure, where we approximate a non-negative function from
below with simple functions, is also used in integration theory. The result
is the Lebesgue integral of X over the sample space Ω with respect to the
probability measure, so we can write:

EX =
∫

Ω
X(ω) dP(ω).

Finally, for a random variable X which attains both positive and negative
values, we define the positive part X+ = X ∨ 0 and the negative part X− =
(−X) ∨ 0 (here, ∨ is the maximum operator: a ∨ b = max(a, b)). Note that
X+ and X− are non-negative random variables and that X = X+ − X−.
We now define the expectation

EX = EX+ − EX− if EX+ < ∞, EX− < ∞.

We may state the condition that both positive and negative part have finite
expectation more compactly: We require that E|X| < ∞.

Notice that this construction of the integral of a function X over Ω does
not rely on partitioning the domain Ω into ever finer subdomains, as e.g.
the Riemann integral would do. This is crucial when outcomes ω ∈ Ω are
functions or sequences.

This definition of expectation has the nice properties we are used to from
elementary probability, and which we expect from integrals:

Theorem 3.3.1

1. (Linearity) Let a, b ∈ R and let X, Y be random variables with E|X| <
∞, E|Y | < ∞. Then E|aX+bY | < ∞ and E(aX+bY ) = aEX+bEY .

2. (Markov’s inequality) Let X be a non-negative random variable and
let c ≥ 0. Then EX ≥ c · P(X ≥ c).
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3. (Jensen’s inequality) Let X be a random variable with E|X| < ∞ and
let g : R 7→ [0,∞) be convex. Then Eg(X) ≥ g(EX).

4. (Fatou’s lemma) Let {Xn : n ∈ N} be a sequence of non-negative
random variables. Then E lim infn→∞Xn ≤ lim infn→∞ EXn.

Defining expectation as an integral has the convenience that it covers
both the discrete case where X(Ω) is a finite or countable set, and the
continuous case where e.g. X(Ω) = R, so there is no need to state every
result in both a continuous version and a discrete version. The definition is
also consistent with a Lebesgue-Stieltjes integral

EX =
∫ +∞

−∞
x dFX(x)

where we integrate, not over sample space Ω, but over the possible values
of X, i.e., the real axis. Also this definition covers both the continuous and
discrete case in one formula. A much more in-depth discussion of expecta-
tions and integrals over sample space can be found in e.g. (Williams, 1991)
or (Billingsley, 1995).

Exercise 3.2: Define Ω = (0, 1], F = B(Ω), and let P be the uniform
distribution on Ω. Let G : [0,∞) 7→ [0, 1] be a continuous strictly decreasing
function with G(0) = 1 and G(x) → 0 as x → ∞. Let X(ω) = G−1(ω).

1. Show that G is the complementary distribution function of X, i.e.,
P(X > x) = G(x). This result is useful for stochastic simulation: If we
can simulate a uniform random variable, and invert the complementary
distribution function, then we have a recipe for simulating a random
variable with that distribution.

2. Show geometrically that

EX =
∫

Ω
X(ω) P(dω) =

∫ ∞

0
G(x) dx

by showing that the two integrals describe the area of the same set in
the (x,G(x)) plane (or in the (X,ω) plane). This is a convenient way
of computing expectations in some situations.

3. Extend the result to the case where G is merely nonincreasing right
continuous and X(ω) = sup{x ∈ [0,∞) : G(x) ≥ ω}).

3.4 Information is a σ-Algebra

Consider an observer who has partial knowledge about the outcome of a
stochastic experiment. This is a very important situation in statistics as
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Figure 3.4: Information and conditional expectation when tossing two dice.
Left panel: Numbers indicate the outcome ω. Light gray regions illustrate
the information σ-algebra H generated by observing the maximum of the two
dice: The open dark gray ellipsis contains the event “The first die shows one’,
which is not contained in H. Right panel: Numbers indicate the conditional
probability that the first die shows 1, conditional on H.

well as in stochastic processes. We say that the observer can resolve a given
event A ∈ F , if the observation always lets her know if the event has occurred
or not.

For example, when tossing two dice, the sample space is Ω = {1, . . . , 6}2;
we will denote the outcomes 11, 12, . . . , 16, 21, . . . , 66. See Figure 3.4, left
panel. Now assume an observer does not see the dice, but is told the maxi-
mum of the two. Which events can she resolve? She will certainly know if the
event {11} is true; this will be the case iff (if and only if) the maximum is 1.
Similar, the maximum being 2 corresponds to the event {12, 21, 22}. Gener-
ally, she can resolve the event {1z, z1, 2z, z2, . . . , zz} for any z ∈ {1, . . . , 6}.
There are certainly events which she cannot resolve, for example, the event
that the first die shows 1: She will not generally know if this event is true;
only if she is told that the maximum is 1.

Using the symbol H for all the events that the observer can resolve, we
note that H will be a σ-algebra. For example, if she knows whether each
of the events A and B occurred, then she also knows if A ∩ B occurred.
The σ-algebra H will be contained in the original system of events F . In
summary:

The information available to an observer is described by a set of
events H, which is a sub-σ-algebra to F .

In most situations, the information H stems from observing a random
variable:

Definition 3.4.1 (Information generated by a random variable) Let



CHAPTER 3. STOCHASTIC EXPERIMENTS AND PROBABILITY SPACES41

X : Ω 7→ Rd be a random variable on a probability space (Ω,F ,P) and let
B(Rd) be the Borel algebra on Rd. The information generated by X is the
σ-algebra

σ(X) = {A ∈ F : A = X−1(B) for some B ∈ B(Rd)}.

A related question is if the observer who holds information H always
knows the realized value of a random variable X. This will be the case iff
the event X ∈ B is in H, for any Borel set B. In that case we say that X is
H-measurable.

We will often be in situations where two observers have different informa-
tion about a stochastic experiment. Then, we have two different σ-algebras G
and H, which are both sub-σ-algebras to F . An extreme situation is that one
observer’s information is contained in the others. Let’s say that one observer,
Gretel, has measured X and therefore holds information G = σ(X) while
another observer, Hans, has measured Y and holds information H = σ(Y ).
In which situations does Gretel know also Hans’ observation Y ? That will
be the case if Y is σ(X)-measurable, in which case σ(Y ) ⊂ σ(X). A lemma
due to Doob and Dynkin (see e.g. (Williams, 1991)) states that the first
observer will know the realized value of Y , if and only if it is possible to
compute Y from X. To be precise:

Lemma 3.4.1 (Doob-Dynkin) Let X : Ω 7→ Rm and Y : Ω 7→ Rn be
random variables on a probability space (Ω,F ,P). Then Y is measurable
w.r.t. σ(X) if and only if there exists a (Borel measurable) function g :
Rm 7→ Rn such that Y (ω) = g(X(ω)) for all ω ∈ Ω.

Maybe you think that this is unnecessary formalism; that a statement
such as “The observer has observed Y = y” is sufficient. In this case, consider
exercise 3.18, which is a slightly modified version of Borel’s paradox.

3.5 Conditional Expectations

What does an observer want to do with the obtained information? The
basic use of information is to compute conditional expectations of random
variables. We now aim to define conditional expectations, such as

E{X|H}

where X is a random variable on (Ω,F ,P) and H is a sub-σ-algebra to F ,
describing the information.

Figure 3.4 (right panel) illustrates the situation for the case of tossing two
dice and observing the maximum. In the figure, X is the indicator variable
which takes the value 1 when the first die shows 1, and 0 otherwise. Then,
E{X|H} is the conditional probability that the first die shows one.
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First, note that the conditional expectation E{X|H} is a random vari-
able: If we repeat the experiment, then the observer makes different obser-
vations and will therefore have a different expectation. In the figure, this
corresponds to E{X|H} being assigned a value for each outcome ω ∈ Ω.

Second, E{X|H} must depend only on the information available to the
observer. For example, the outcomes 12, 21, 22 all lead to an observed max-
imum of 2, so these three outcomes must lead to the same realized value
of E{X|H}. In general, E{X|H} must be measurable w.r.t. H. When the
information stems from a measurement of Y , i.e., H = σ(Y ), then the Doob-
Dynkin lemma tells us that there must exist some (measurable) function g
such that E{X|Y } = g(Y ): We must be able to compute the conditional ex-
pectation from the available data. Note that we allow the shorthand E{X|Y }
for E{X|σ(Y )}.

Third, we must specify the value of the random variable E{X|H} for
each ω. In Figure 3.4, we have used elementary probability. For example, if
we observe a maximum of 2, then there are three outcomes consistent with
that observation. In only one of these, the first die shows 1, and since the
distribution is uniform, we get a conditional probability of 1/3. In general,
when H = σ(Y ) and Y is discrete, we get

E{X|Y = yi} = E{X · 1(Y = yi)}
P{Y = yi}

.

The right hand side can be seen as averaging X only over that part of
the sample space which is consistent with the observation Y = yi. This
expression defines the random variable E{X|Y } on the entire sample space
Ω; it is constant on each event Y −1(yi). The expression only makes sense
because P{Y = yi} > 0, but if we multiply both sides with P{Y = yi}, we
obtain an “integral” version which holds trivially also when P{Y = yi} = 0.
Defining g(yi) as the right hand side, we use the identity g(yi) ·P{Y = yi} =
E{g(Y ) · 1(Y = yi)} to obtain a more appealing form:

E{g(Y ) · 1(Y = yi)} = E{X · 1(Y = yi)}.

This serves as our definition of conditional expectation with respect to any
information σ-algebra H:

Definition 3.5.1 If X is a random variable on (Ω,F ,P) such that E|X| <
∞, and H ⊂ F is an information sub-σ-algebra, then the conditional ex-
pectation of X w.r.t. H is the random variable Z = E{X|H} which is
measurable w.r.t. H, and for which

E{Z · 1H} = E{X · 1H} (3.1)

holds for any H ∈ H.
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Figure 3.5: Conditional expectation w.r.t. σ(Y ): Horizontal strips A =
Y −1([a, b]) = {ω = (x, y) : a ≤ y ≤ b} generate σ(Y ) and are the typical
elements in σ(Y ). The conditional expectation of X w.r.t. Y corresponds to
averaging X w.r.t. P over such a thin horizontal strip.

It follows that E{ZY } = E{XY } for any H-measurable random vari-
able Y such that E|XY | < ∞. Figure 3.5 illustrates the situation in the
continuous case Ω = R2 where ω = (x, y), X(ω) = x, Y (ω) = y, and when
the information H is obtained by observing Y : The conditional expectation
Z = E{X|Y } is a random variable, i.e., a function defined on the plane. It is
Y -measurable, i.e., constant along any horizontal line. Finally, the equation
(3.1) says the integrals of Z and X over the horizontal strip in Figure 3.5
must coincide. Thus, Z is X averaged over horizontal lines.

Definition 3.5.1 hides an implicit theorem, namely that the conditional
expectation is well defined in the sense that it exists and is unique. See
(Billingsley, 1995) or (Williams, 1991). The conditional expectation is only
“almost surely unique” since it is defined in terms of expectations, and there-
fore can be modified on a H-measurable set of P-measure 0 and still satisfy
the definition. So whenever we write an equation involving realizations of
the conditional expectation, we should really add the qualification “almost
surely”. We do not do this. If the information stems from measurements of
a continuous random variable Y such that H = σ(Y ), then there may exist
a continuous g such that E{X|H} = g(Y ); in this case, g is unique. This is
reassuring, since from a modeller’s perspective it would be worrying if con-
clusions depend discontinuously on an observed random variable, or are not
uniquely defined. We will assume that g is chosen to be continuous whenever
possible. This allows us to use the notation

E{X|Y = y}

meaning “g(y) where g(Y ) = E{X|Y } (w.p. 1) and g is taken to be contin-
uous”.

Exercise 3.3: Consider again the stochastic experiment of tossing two
dice and observing the maximum (Figure 3.4). Let Z be the conditional
expectation of the first die given H. Compute Z(ω) for each ω and display
the results in a two dimensional table similar to Figure 3.4.
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3.5.1 Properties of the Conditional Expectation

Some useful properties of conditional expectations are summarized in the
following theorem.

Theorem 3.5.1 Given a probability space (Ω,F ,P), a sub-σ-algebra H of
F , and random variables X and Y such that E|X| < ∞ and E|Y | < ∞.
Then:

1. E{aX + bY |H} = aE{X|H} + bE{Y |H} for a, b ∈ R (Linearity of
conditional expectation)

2. EE{X|H} = EX (The Law of Total Expectation).

3. Let G be a σ-algebra on Ω such that F ⊃ G ⊃ H. Then E[E{X|G}|H] =
E{X|H}. This “tower” property generalizes the law of total expecta-
tion.

4. E{X|H} = X if and only if X is H-measurable.

5. E{XY |H} = XE{Y |H} whenever X is H-measurable. (“Taking out
what is known”)

The tower property deserves an explanation. Assume that Fred conducts
a stochastic experiment and knows the outcome ω; his information is F . He
gives some information to both Hansel and Gretel, but also some information
to Gretel only. So Gretel’s information G contains Hansel’s information H,
F ⊃ G ⊃ H. Fred asks the two siblings to write down their expectations
of the random variable X; they write E{X|H} and E{X|G}, respectively.
Fred then asks Hansel what he expects that Gretel wrote. According to the
tower property, Hansel expects Gretel’s result to be the same as his own;
E[E{X|G}|H] = E{X|H}.

To show the tower property, define Z = E{X|G}. We claim that
E{Z|H} = E{X|H}. The only thing to show is that

E{Z1H} = E{X1H}

for H ∈ H. But since G ⊃ H, this H is also in G: Any question that
Hansel can answer, Gretel can also answer. So this equation follows from
the definition of E{X|G}.

The proofs of the other claims are fairly straightforward and a good
exercise.

3.5.2 Conditional Distributions and Variances

From the conditional expectation of a random variable we can define other
conditional statistics, such as
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1. The conditional probability of an event:

P(A|H) = E{1A|H}.

2. The conditional distribution function of a random variable

FX|H(x) = P(X ≤ x|H).

3. The conditional density of a random variable

fX|H(x) = d

dx
FX|H(x),

wherever it exists.

4. The conditional variance of a random variableX such that E|X|2 < ∞:

V{X|H} = E{(X − E[X|H])2|H} = E{X2|H} − (E{X|H})2.

These conditional statistics are all H-measurable random variables.
When H is generated by a random variable Y , each of these statistics will
be functions of Y , in which case we can write e.g. fX|Y (x, y) for the condi-
tional density of X at x given Y = y. When the involved distributions admit
densities, we have the important relationship

fX,Y (x, y) = fY (y)fX|Y (x, y)

between the joint density fX,Y , the marginal density fY , and the conditional
density fX|Y .

Exercise 3.4: Show that if X is H-measurable and E|X|2 < ∞, then
V{X|H} = 0.

It is useful to be able to manipulate conditional variances. Two fun-
damental formulas are the following: Let X and Y be random variables
such that E|X|2, E|Y |2 and E|XY |2 all are finite. If furthermore Y is H-
measurable, then we can “take out what is known”:

V{XY |H} = Y 2V{X|H}

and
V{X + Y |H} = V{X|H}.

These formulas generalize the well known formulas for V(aX) = a2VX,
V (a+X) = VX where a is a real constant. They can be understood in the
way that given the information in H, Y is known and can hence be treated
as if deterministic.
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We have a very useful decomposition formula for the variance, which is
also known as the Law of Total Variance:

VX = EV{X|H} + VE{X|H}. (3.2)

In the next section, we shall see that this decomposition can be interpreted
in terms of estimators and estimation errors. A generalization of this result
is derived in exercise 3.17.

Exercise 3.5: Verify the variance decomposition formula.

3.6 Independence and Conditional Independence

When random variables are independent, it is a great simplification.

Definition 3.6.1 (Independence) We say that events A,B ∈ F are in-
dependent if P(A∩B) = P(A) P(B). We say that two σ-algebras G,H ⊂ F
are independent if events G and H are independent whenever G ∈ G and
H ∈ H. We say that two random variables X,Y are independent if σ(X)
and σ(Y ) are independent.

Thus, X and Y are independent iff P{X ∈ A, Y ∈ B} = P{X ∈
A}P{Y ∈ B} for any Borel sets A,B. We use the symbol ⊥⊥ for indepen-
dence: A ⊥⊥ B, G ⊥⊥ H, X ⊥⊥ Y .

Theorem 3.6.1 Let two random variables X and Y be independent and
such that E|X| < ∞, E|Y | < ∞. Then EXY = EX EY . If also EX2 < ∞,
EY 2 < ∞, then V(X + Y ) = VX + VY .

Proof: We leave this as an exercise. To show the result for the mean,
start by assuming that X and Y are simple.

It is often possible to reach results swiftly using independence, in concert
with the rules of expectation and variance that we have established. The
following exercise is illustrative.

Exercise 3.6: Let {Xi : i ∈ N} be a collection of independent random
variables, each Gaussian distributed with mean µ = 1 and variance σ2 = 2.
Let N be a random variable, independent of all Xi, and Poisson distributed
with mean λ = 5. Finally, define Y = ∑N

i=1Xi. Determine the mean and
variance of Y .

Independence is often too much to ask for; stochastic processes is all
about dependence between random variables. Then, we can use the notion
of conditional independence.



CHAPTER 3. STOCHASTIC EXPERIMENTS AND PROBABILITY SPACES47

Definition 3.6.2 (Conditional independence) We say that two events
A,B ∈ F are conditionally independent given a σ-algebra G ⊂ F , if

P{A ∩B|G} = P{A|G} · P{B|G}

(almost surely). We say that two σ-algebras H, I ⊂ F are conditionally in-
dependent given G if any events A ∈ H, B ∈ I are conditionally independent
given G. We say that two random variables X and Y are conditionally in-
dependent given G, if σ(X) and σ(Y ) are conditionally independent given
G.

It is convenient to depict dependence structures between random vari-
ables in a probabilistic graphical model (Figure 3.6); among other benefits,
this can help establishing an overview of the random variables in a model.
In such a graph, each node represents a random variable, while different
conventions exist for the precise meaning of the edges. The graph may be
directed to indicate for which random variables the marginal distribution is
given, and for which random variables the conditional distribution is given.
A directed acyclic graph (also called a Bayesian network) corresponds di-
rectly to computer code that simulates the random variables: In Figure 3.6b,
Y is the result of a calculation that involves X (and a random number gen-
erator, if Y is not σ(X)-measurable). For such an acyclic graph, the joint
distribution of all variables can be computed readily. For example, in Figure
3.6c we have the joint density

fX,Y,Z(x, y, z) = fX(x) fY |X(x, y) fZ|Y (y, z) (3.3)

whenever the distributions admit densities. Bayes’ rule can be used to revert
the information flow in the graph, e.g.,

fX|Y (x, y) = fX,Y (x, y)
fY (y) =

fY |X(x, y) fX(x)
fY (y) . (3.4)

Thus, the joint density in Figure 3.6c can alternatively be written as

fX,Y,Z(x, y, z) = fY (y) fX|Y (x, y) fZ|Y (y, z). (3.5)

Mathematically, the two forms of fX,Y,Z , (3.3) and (3.5), are equivalent, but
they correspond to different directed graphs and thus different simulation
algorithms, differing in whether X or Y is considered the root node which
is simulated first.

Conditional independence simplifies estimation: In Figure 3.6 c, say that
we aim to estimate X based on Y and Z. Then we get the same result if we
base the estimation only on Y . That is, it holds that E{X|Y, Z} = E{X|Y }.
A slightly more general version of this statement is the following:
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a: X Y b: X Y c: X Y Z

Figure 3.6: Probabilistic graphical models. a: Two random variables X and
Y are independent. b: X and Y are not independent; the model specifies the
marginal distribution of X and the conditional distribution of Y given X.
c: X and Z are conditionally independent given Y .

Theorem 3.6.2 Let G, H, and I be sub-σ-algebras of F such that G and
I are conditionally independent given H. Let X be a G-measurable random
variable such that E|X| < ∞. Then E{X|H} = E{X|H, I}.

Proof: Define Z = E{X|H}; we aim to show that Z = E{X|H, I}.
Clearly Z is measurable w.r.t σ(H, I). To see that E{X1K} = E{Z1K}
holds for any K ∈ σ(H, I), note that it suffices to show this for a K of the
form K = H ∩ I where H ∈ H and I ∈ I. We get

E{X1H1I} = EE{X1H1I}|H}
= E (E{X|H} 1H P{I|H})
= E (Z1H1I ) .

Here, we have used first the law of total expecatation, then that X and I
are conditionally independent given H and that 1H is H-measurable, and
the final equality comes from the definition of P{I|H}, since Z1H is H-
measurable.

3.7 Linear Spaces of Random Variables

Since random variables are functions defined on sample space, many stan-
dard techniques and results from analysis of functions apply to random
variables.

Given a sample space Ω and a σ-algebra F , all the random variables
on (Ω,F) form a linear (vector) space. That is: If X1 and X2 are random
variables defined on (Ω,F) and c1 and c2 are real numbers, then also X :
Ω 7→ R given by

X(ω) = c1X1(ω) + c2X2(ω) for ω ∈ Ω

is a random variable. (See Exercise 3.10 for the measurability).
This linear space can be equipped with a norm. We focus on the Lp

norms for p > 0:

‖X‖p = (E|Xp|)1/p =
(∫

Ω
|X(ω)|p P(dω)

)1/p
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which each define Lp(Ω,F ,P), i.e., a linear space of those real-valued random
variables for which the norm is finite. Letting p → ∞, we obtain the L∞-
norm

‖X‖∞ = ess sup
ω∈Ω

|X(ω)|.

The “ess” stands for “essential” and indicates that X(ω) is allowed to exceed
‖X‖∞ on an event of probability 0.

Exercise 3.7: Show that if p > q > 0 and X ∈ Lp, then X ∈ Lq.
Moreover, ‖X‖q ≤ ‖X‖p. Give an example where ‖X‖q = ‖X‖p, and another
example where ‖X‖q � ‖X‖p.

Of particular interest is the L1-norm; i.e., mean abs:

‖X‖1 = E|X| =
∫

Ω
|X(ω)| P(dω)

and the L2-norm, i.e., root mean square:

‖X‖2 =
√

EX2 =
√∫

Ω
X2(ω)P(dω).

For X ∈ L2(Ω,F ,P), both the mean and the mean square is finite, so
L2(Ω,F ,P) consists of those variables which have finite variance, since

VX = EX2 − (EX)2.

In many applications, the space L2 is large enough to contain all variables of
interest, yet the space has many nice properties. Most importantly, the norm
can be written in terms of an inner product, i.e., ‖X‖2 =

√
〈X,X〉 where

〈X,Y 〉 = EXY . This means that many results from standard Euclidean
geometry applies, which is extremely powerful. For example, the Schwarz
inequality applies to random variables X,Y such that E|X|2 < ∞, E|Y |2 <
∞:

|EXY | ≤ E|XY | ≤
√

EX2 · EY 2

or, in L2 terminology, |〈X,Y 〉| ≤ 〈|X|, |Y |〉 ≤ ‖X‖2 · ‖Y ‖2. The Schwarz
inequality implies that the covariance of two L2-variables is finite:

Cov(X,Y ) = EXY − (EX)(EY ) = E[(X − EX)(Y − EY )]

and that the correlation coefficient Cov(X,Y )/
√

VX VY is always in the
interval [−1, 1]. An impressive use of this geometric view is in the following
result, which relates mean-square estimation, conditional expectation, and
orthogonal projection in L2:

Theorem 3.7.1 Let X be a random variable in L2(Ω,F ,P) and let H be
a sub-σ-algebra of F . Use the conditional expectation as an estimator of
X, i.e., define X̂ = E(X|H), and let X̃ = X − X̂ be the corresponding
estimation error. Then:
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1. The estimator is unbiased, i.e., EX̃ = 0 or equivalently EX̂ = EX.

2. The estimator and the estimation error are uncorrelated:

EX̃X̂ = 0.

3. The mean square (or variance) of X can be decomposed in a term
explained by H, and a term unexplained by H:

E|X|2 = E|X̂|2 + E|X̃|2, VX = VX̂ + VX̃.

4. X̂ is the least squares estimator of X, i.e., if Z is any L2 random
variable which is measurable w.r.t. H, then E(Z −X)2 ≥ E(X̂ −X)2.

Proof: That the estimator is unbiased follows directly from the tower
property:

EX̂ = EE{X|H} = EX.

To show that estimator and estimation error are uncorrelated:

EX̃X̂ = E(X − X̂)X̂
= EE{(X − X̂)X̂|H}

= E
[
X̂E{X − X̂|H}

]
= E

[
X̂ · 0

]
= 0

since E{X̂ − X|H} = X̂ − E{X|H} = 0. The decomposition of 2-norms
(or variance) follows directly from this orthogonality, and is essentially the
variance decomposition we established in the previous section. Finally, let
Z be H-measurable. Then

E(Z −X)2 = E((Z − X̂) + (X̂ −X))2

= E(Z − X̂)2 + E(X̂ −X)2 + 2E[(Z − X̂)(X̂ −X)].

Adding and subtracting the candidate solution X̂ is a standard trick, which
appears on several occasions when working in L2, also in filtering and opti-
mal control. Now, for the last term we have

E[(Z − X̂)(X̂ −X)] = EE{(Z − X̂)(X̂ −X)|H}

= E
[
(Z − X̂)E{X̂ −X|H}

]
= E

[
(Z − X̂) · 0

]
= 0,
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since Z and X̂ are H-measurable. It follows that

E(Z −X)2 = E(Z − X̂)2 + E(X̂ −X)2 ≥ E(X̂ −X)2

and we see that equality holds if and only if Z = X̂ w.p. 1.
This is a projection result in the following sense: The information H

defines a linear sub-space of L2, namely those random variables which are
H-measurable. The random variable X can now be decomposed into two
orthogonal terms: The one, X̂, resides in this linear sub-space, while the
other, X̃, resides in the orthogonal complement. So E{X|H} is the projection
of X on the linear space of H-measurable random variables.

The L2 theory of random variables is extremely powerful, and we will see
that is central in the construction of stochastic differential equations. It is
particularly operational in the case of multivariate Gaussian variables, where
all computations reduce to linear algebra (exercise 3.20). It is a great sim-
plification that in this case, zero correlation implies independence. A word
of caution is that some students forget that this hinges critically on the
assumption of joint Gaussianity. Therefore, the following exercise is worth-
while:

Exercise 3.8:

1. Give an example of two random variables X and Y which are each
standard Gaussian, such that X and Y are uncorrelated but not inde-
pendent.

2. Show that X and Y are uncorrelated whenever E{Y |X} is constant
and equal to EY . Next, show this condition is not necessary: Give an
example of two random variables X and Y which are uncorrelated,
but such that E{Y |X} is not constant and equal to EY .

3.8 Conclusion

In the teaching of probability in science and engineering, it is an on-going
debate when students should be introduced to measure theory, if at all.
The elementary approach, without measure theory, is sufficient for many
applications in statistics and in stochastic processes. The measure theoretic
language, and train of thought, takes time to get used to and even more
time to master! For most students in science and engineering, the time is
better spent with issues that relate more directly to applications.

However, for continuous-time continuous-space processes, and in partic-
ular stochastic differential equations, the elementary approach is not firm
enough. Here, we need the axioms and rigor of measure theory. Even stu-
dents who focus on applications will one day need to read a journal article
which uses the measure-theoretic language.
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When you first encounter measure-theoretic probability, the property of
measurability is often a source of confusion. In mathematical analysis, non-
measurable sets and functions are esoteric phenomena; few people outside
the mathematics departments know about them, and only few people inside
mathematics departments actually study them. Subsets of R which are not
Borel do not appear in applications. However, when partial information ex-
ists in the form of a sub-σ-algebra H, then non-measurable events or random
variables w.r.t. H are everyday phenomena. So, requiring a random variable
to be F-measurable is a technical condition which does not limit the ap-
plicability of the theory. On the other hand, if a given random variable X
is H-measurable, then this states that the observer who has access to the
information H is also able to determine the realized value of X.

Another confusion arises when random variables have infinite variance,
or the expectation is undefined because the mean-abs is infinite. From an
applied point of view, the typical situation is that these moments are well
defined and finite. There are notable exceptions; phenomena such as heavy
tails and long-range dependence give rise to infinite moments and appear
in turbulence, finance, and social sciences, just to name a few. It is useful
to build intuition about distributions where the moments diverge, such as
the Cauchy distribution and the Pareto distribution. However, it is not cen-
tral to this book, where the typical situation is that the random variables
we encounter have well defined mean and variance, even if it would be too
restrictive to require it throughout. In contrast, the machinery of the space
L2(Ω,F ,P) is central. For example, we will often first assume that all vari-
ances are well defined, carry through an argument using the L2 machinery,
and finally expand the applicability so that it covers also the rare situations
where variances are infinite.

In summary, for anyone working with stochastic differential equations,
or advanced applications of probability, the measure-theoretic approach is
fundemental. In this chapter, we have not constructed this foundation brick
by brick; that would have required the better part of a book and the better
part of a course. But at least we have introduced the language and out-
lined the principles, and this allows us to develop the theory of stochastic
differential equations using the standard terminology (Table 3.1), which is
measure-theoretic.

3.9 Notes and References

A seminal account of the material in this chapter is (Kolmogorov, 1933);
more modern and in-depth treatments are (Billingsley, 1995; Williams,
1991).
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Table 3.1: A summary of technical terms and their interpretation.
Technical term Interpretation

Basic σ-algebra F
All events, i.e., all statements about the out-
come of the stochastic experiment that we
consider.

Information σ-algebra
H ⊂ F

The information available to an observer; i.e.,
the “yes/no” questions that the observe can
answer.

X is H-measurable The information in H is enough to determine
the realized value of X.

H = σ(X) The information in H is (or could be) ob-
tained by observing X.

G ⊂ H Any question that can be answered with G
can also be answered with H.

X ∈ L1 X has finite mean.

X ∈ L2
X has finite mean square (and thus finite vari-
ance)

X ⊥ Y X and Y are (L2 and) uncorrelated.

X ⊥⊥ Y X and Y are independent.
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3.9.1 The Risk-Free Measure

In science and engineering, the frequentist and the Bayesian interpretations
of probabilities are the most common. In finance, an additional notion is
related to pricing: Markets are notoriously unpredictable and affected by
e.g. harvests, production of wind energy, and the success of research and
development projects. So it is natural to model markets as stochastic ex-
periments with a sample space Ω and a family F of events. For any event
A ∈ F , imagine a contract where the issuer after the experiment pays the
holder a fixed amount, say v, if event A occurs, and nothing else. What is
the fair price of such a contract before the experiment? Importantly, ideal
markets are arbitrage free, i.e., it is not possible to make a profit without
taking a risk. The implies that the price of such a contract should be vQ(A)
where Q is a probability measure on (Ω,F) - for example, if Q(A∪B) were
greater than Q(A) + Q(B) for disjoint events A,B, then one could make a
risk-free profit by selling a A ∪ B-contract and buying an A-contract and
a B-contract. Now, for a contract where the issuer pays the holder X(ω)
after the experiment, the fair price is EX where expectation is with respect
to Q. Since pricing involves only expectation and not e.g. the variance, we
say that the measure is risk-free. This measure Q is not identical to the
“real-world” measure P a frequentist or a Bayesian would consider: Market
prices are not expectations w.r.t. P, but typically reward taking risks.

3.9.2 Convergence for Sequences of Events

This section and the next concern convergence, which is of paramount im-
portance in the theory of stochastic differential equations. Questions of con-
vergence can be technically challenging, in particular when one is not yet
comfortable with the measure-theoretic apparatus. Here, we provide a col-
lection of results which will be useful in the following chapters.

Let A1 ⊂ A2 ⊂ · · · be an increasing sequence of events in F . Its limit is

lim
n→∞

An =
⋃

n∈N
An.

For a decreasing sequence of events A1 ⊃ A2 ⊃ · · · , we define the limit as
∩n∈NAn. These limits are both measurable since F is a σ-algebra.

Lemma 3.9.1 If {An : n ∈ N} is an increasing, or decreasing, sequence of
events, then

P( lim
n→∞

An) = lim
n→∞

P(An).

For any sequence of events {An : n ∈ N}, we can establish an increasing
sequence {In : n ∈ N}

In =
⋂
i≥n

Ai.
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We define the limit of {In} as the limit inferior of {An : n ∈ N}:

lim inf
n→∞

An =
⋃

n∈N
In =

⋃
n∈N

⋂
i≥n

Ai.

For a given outcome ω ∈ Ω, we say that the events {An} occur eventually
if ω ∈ lim infn→∞An. This will be the case if there exists an m such that
ω ∈ An for all n ≥ m.

Similarly, from {An : n ∈ N} we can define a decreasing sequence of
events

Un =
⋃
i≥n

Ai

and from this define the limit superior of {An}:

lim sup
n→∞

An =
⋂

n∈N
Un =

⋂
n∈N

⋃
i≥n

Ai.

For an outcome ω, we say that the events {An} occur infinitely often if
ω ∈ lim supn→∞An. This will hold iff, for any n ∈ N exists an i ≥ n such
that ω ∈ Ai.

Is it easy to see that lim infn→∞An ⊂ lim supn→∞An holds: Any out-
come that occurs eventually, also occurs infinitely often.

If it holds that lim infn→∞An = lim supn→∞An, then we say that the
sequence of events converges, and we define the limit

lim
n→∞

An = lim inf
n→∞

An = lim sup
n→∞

An.

Often, the event An is a “bad” event and we want to ensure that there
is probability 0 that the events An occur infinitely often. Equivalently, the
event Ac

n is “good” and we want to make sure that with probability 1 the
events {Ac

n} occur eventually. A first result is:

Lemma 3.9.2 If lim infn→∞ P(An) = 0, then P(lim infn→∞An) = 0.

Proof: Let Bm = ⋂
n≥mAn; then P(Bm) ≤ P(An) for all n ≥ m.

Since lim inf P(An) = 0 it follows that P(Bm) = 0 for all m. Hence also
P(⋃m∈NBm) = 0 from which the conclusion follows.

However, the conclusion here is that An occurs eventually with proba-
bility 0; the condition P(An) → 0 does not rule out that the events An may
occur infinitely often, i.e., that P(lim supn→∞An) > 0. A standard example
is:

Exercise 3.9: Let Ω = [0, 1), let F be the usual Borel algebra, and
let the measure P be Lebesgue measure, i.e., the length. Then consider the
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sequence {An : n ∈ N} given by

A1 = [0/1, 1/1),
A2 = [0/2, 1/2), A3 = [1/2, 2/2),
A4 = [0/4, 1/4), A5 = [1/4, 2/4), A6 = [3/4, 4/4), A7 = [3/4, 4/4),
· · ·

Show that for this sequence P(An) → 0 while P(lim supAn) = 1.
In stead, a useful result is the (first) Borel-Cantelli lemma:

Lemma 3.9.3 (Borel-Cantelli I) If
∑∞

n=1 P(An) < ∞, then P(lim supn→∞An) =
0.

Given this lemma, it is reasonable to ask what can be concluded if the
sum ∑∞

n=1 P(An) diverges. Without further assumptions, not much can be
said. Exercise: Construct an example of a sequence such that

∑
P(An) di-

verges and where lim infn→∞An = Ω, and one where lim supn→∞An = ∅.
However, if we add the requirement that the events are independent, then a
much stronger conclusion can be drawn:

Lemma 3.9.4 (Borel-Cantelli II) Let An be a sequence of independent
events such that

∑∞
n=1 P(An) = ∞. Then P(lim supn→∞An) = 1.

3.9.3 Convergence for Random Variables

Throughout this book, we will often consider sequences of random variables
and ask questions about their convergence. Since random variables are func-
tions on Ω, there are several modes of convergence for random variables.
The most common modes of convergence are given in the following:

Definition 3.9.1 Let random variables X and {Xi : i ∈ N} be defined on
a probability triple (Ω,F ,P) and take values in Rn. We say that, as i → ∞,

1. Xi → X almost surely (a.s.) if P{ω : Xi(ω) → X(ω)} = 1. We also
say Xi → X with probability 1 (w.p. 1).

2. Xi → X in Lp if ‖Xi−X‖p → 0. This is equivalent to E|Xi−X|p → 0,
provided that p < ∞. When p = 1 we use the term convergence in mean
and when p = 2 we say convergence in mean square. The cases p = 1,
p = 2 and p = ∞ are the most common.

3. Xi → X in probability if, for any ε > 0:

P(|Xi −X| > ε) → 0 as i → ∞.
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in probability

in L2

in L1

w.p.1

in distribution

Figure 3.7: Modes of convergence for random variables, illustrated by sets
of sequences. For example, a sequence which converges in probability also
converges in distribution.

4. Xi → X in distribution (or in law or weakly) if

P(Xi ∈ B) → P(X ∈ B)

for any Borel set B such that P(X ∈ ∂B) = 0.

Note that several of the definitions use the norm | · | in Rn; recall that
it does not matter which norm in Rn we use, since all norms on Rn are
equivalent. So in a given situation, we may choose the most convenient
norm. In most situations, this will either be the Euclidean 2-norm |x|2 =
|x2

1 + · · · + x2
n|1/2, the max norm |x|∞ = max{|x1|, . . . , |xn|}, or the sum

norm |x|1 = |x1| + · · · + |xn|.
Almost sure convergence corresponds to pointwise convergence, except

possibly on a set of measure 0. Note that there may be realizations ω for
which the convergence does not happen; there typically are.

Regarding convergence in distribution, the requirement that P(X ∈
∂B) = 0 cannot be disregarded: Consider for example the sequence {Xi}
with Xi ∼ N(0, i−2). Then P(Xi = 0) = 0 for all i but the weak limit
X has P(X = 0) = 1. For scalar random variables, the requirement is
that the distribution functions Fi(x) = P(Xi ≤ x) converge pointwise to
F (x) = P(X ≤ x) at any point x where F is continuous.

As the following theorem states, the different modes of convergence are
not completely independent (see also Figure 3.7).

Theorem 3.9.5 Given a sequence {Xi : i ∈ N} of random variables, and
a candidate limit X, on a probability space {Ω,F ,P} and taking values in
Rn.

1. If Xi → X in Lp and p ≥ q > 0, then Xi → X in Lq. In particular,
mean square (L2) convergence implies convergence in mean (in L1).
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2. If Xi → X in Lp for p > 0, then Xi → X in probability.

3. If Xi → X almost surely, then Xi → X in probability.

4. If Xi → X in probability, then Xi → X in distribution.

It is useful to think through situations where variables converge in one
sense but not in another, because it illuminates the difference between the
modes of convergence. For example:

Example 3.9.1

1. If Xi and X are all i.i.d, then Xi → X in distribution but in no other
sense - convergence in distribution concerns the distributions only and
not the random variables themselves.

2. Almost sure convergence does not in general imply convergence of mo-
ments: Consider a uniform distribution on [0, 1), i.e., Ω = [0, 1), F
the usual Borel algebra on [0, 1), and P(B) = |B| for B ∈ F . Now let
p > 0 and

Xi(ω) = i1/p · 1(ω ∈ [0, 1/i)) =
{
i when 0 ≤ ω ≤ 1

i
0 else.

Then Xi → 0 w.p. 1, but ‖Xi‖p = 1 for all i.
Another example, which concerns Brownian motion and is related to
stability theory, is the subject of Exercise 4.15.

3. In turn, convergence in moments does not in general imply almost sure
convergence. A standard counter-example involves the same probabil-
ity space and considers a sequence of random variables constructed as
indicator variables of the sets in Exercise 3.9:

X1 = 1[0, 1
1 ),

X2 = 1[0, 1
2 ), X3 = 1[ 1

2 , 2
2 ),

X4 = 1[0, 1
4 ], X5 = 1[ 1

4 , 2
4 ), X6 = 1[ 2

4 , 3
4 ), X7 = 1[ 3

4 , 4
4 ),

· · ·

Then Xi → 0 in Lp for 1 ≤ p < ∞ and hence also in probability, but
not with probability 1: For every ω and every n ∈ N, there exists an
i > n such that Xi(ω) = 1.
We will see another example of convergence in L2 but not w.p. 1 in
the following, when discussing the Law of the Iterated Logarithm for
Brownian motion (Theorem 4.3.4; page 76).

With extra assumptions, however, the converse statements hold:
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• If Xi converges weakly to a deterministic limit, i.e., Xi → X where X
is a constant function on Ω, then the convergence is also in probability.

• Monotone convergence: If {Xi(ω) : i ∈ N}, for each ω, is a non-
negative non-decreasing sequence which converges to X(ω), then either
EXi → ∞ and EX = ∞, or X ∈ L1 and Xi → X in L1.

• Dominated convergence: If there is a bound Y ∈ L1(Ω,F ,P) and ran-
dom variables such that |Xi(ω)| ≤ Y (ω) for each ω and each i, and
Xi → X almost surely, then X ∈ L1 and the convergence is in L1.
If Y is constant, then this theorem is called the bounded convergence
theorem.

• Fast convergence: If Xi → X in probability “fast enough”, then the
convergence is also almost sure. Specifically, if for all ε > 0

∞∑
i=1

P (|Xi −X| > ε) < ∞,

then Xi → X almost surely. This follows from the first Borel-Cantelli
lemma. This also implies that if Xi → X in Lp, 1 ≤ p < ∞, fast
enough so that ∑n

i=1 E|Xi −X|p < ∞, then Xi → X almost surely.

• Convergence of a subsequence: If Xi → X in probability, then there
exists an increasing subsequence {ni : i ∈ N} such that Xni → X con-
verges fast and hence also almost surely. For example, for the sequence
in example 3.9.1, item 3, the sequence {X2i : i ∈ N} converges to 0
almost surely.

Regarding convergence in Lp, a situation that appears frequently is that
we are faced with a sequence of random variables {Xn : n ∈ N} and aim to
show that it converges to some limit X which is unknown to us. A useful
property of the Lp spaces is that they are complete: If the sequence Xn has
the Cauchy property that the increments tend to zero, i.e.

sup
m,n>N

‖Xm −Xn‖p → 0 as N → ∞

then there exists a limit X ∈ Lp such that Xn → X as n → ∞. Recall (or
prove!) that a convergent series necessarily is Cauchy; the word “complete”
indicates that the spaces Lp include the limits of Cauchy sequences, so that
a sequence is Cauchy if and only if it converges.

Some classical theorems concern convergence for averages:

Theorem 3.9.6 (Central limit theorem of Lindeberg-Lévy) Let {Xi :
i ∈ N} be a sequence of independent and identically distributed random vari-
ables with mean µ and variance 0 < σ2 < ∞. Then

1
σ

√
n

n∑
i=1

(Xi − µ) → N(0, 1) in distribution, as n → ∞.



CHAPTER 3. STOCHASTIC EXPERIMENTS AND PROBABILITY SPACES60

Theorem 3.9.7 (Weak law of large numbers) Let {Xi : i ∈ N} be a
sequence of independent and identically distributed random variables with
mean µ. Then

1
n

n∑
i=1

Xi → µ in probability, as n → ∞.

Theorem 3.9.8 (Strong law of large numbers) Let {Xi : i ∈ N} be a
sequence of independent and identically distributed random variables with
mean µ and variance σ2 < ∞. Then

1
n

n∑
i=1

Xi → µ almost surely and in L2 as n → ∞.

3.10 Exercises

Fundamental Probability

Exercise 3.10: Consider the plane R2 with its Borel algebra B(R2). Show
that the set A = {(x, y) ∈ R2 : x + y ≤ c} is Borel, for any c ∈ R. Hint:
The Borel algebra is built from rectangular sets, so show that A can be
constructed from such rectangular sets using countably many operations.

Exercise 3.11 Independence vs. Pairwise Independence: Let
X and Y be independent and identically distributed Bernoulli variables
taking values on {−1, 1} and with probability parameter p = 1/2, i.e.,
P(X = −1) = P(X = 1) = 1/2. Let Z = XY . Show that X, Y and Z
are pairwise independent, but not all independent.

The Gaussian Distribution

Exercise 3.12 Simulation of Gaussian Variables: This is a clean
and easy way to simulate from the Gaussian distribution. Let Ω = (0, 1] ×
[0, 1), let F be the usual Borel algebra on Ω, and let P be the uniform
measure, i.e., area. For ω = (ω1, ω2), define Θ(ω) = 2πω2 and S(ω) =
−2 logω1.

1. Show that S is exponentially distributed with mean 2.

2. Define X =
√
S cos Θ, Y =

√
S sin Θ. Show that X and Y are in-

dependent and each are standard Gaussian. Hint: Brute force works;
write up the p.d.f. of (S,Θ) and derive from that the p.d.f. of (X,Y ).
Alternatively, show first that there is a one-to-one mapping between
the p.d.f. of (X,Y ) and that of (S,Θ). Then show that if (X,Y ) is i.i.d.
and standard Gaussian, then (S,Θ) distributed as in this construction.
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Note: There are (slightly) more computationally efficient ways to simulate
Gaussians.

Exercise 3.13 Moments in the Gaussian Distribution: Con-
sider a standard Gaussian variable, X ∼ N(0, 1). Show that the moments
of X are given by the following formula:

E|X|p =
√

2p/π Γ(p2 + 1
2)

Hint: Write up the integral defining the moments, use symmetry, and
substitute u = 1

2x
2. Recall the definition of the gamma function Γ(x) =∫∞

0 tx−1e−t dt.
In particular, show that E|X| =

√
2/π ≈ 0.798, E|X|2 = 1, E|X|3 =√

8/π, E|X|4 = 3, so that V(X2) = 2. Double-check these results by Monte
Carlo simulation.

Exercise 3.14 Probability That Two Gaussians Have The
Same Sign: Let X,Y be two scalar random variables, jointly Gaussian
distributed with mean 0, variances σ2

X , σ2
Y and covariance σXY . Show that

the probability that the two variables have the same sign is

P{XY > 0} = 1
2 + 1

π
arcsin σXY√

σ2
Xσ

2
Y

.

Hint: Write the vector (X,Y ) as a linear combination of two independent
standard Gaussian variables (U, V ), identify the set in the (u, v) plane for
which the condition is met, and compute the probability of this set using
rotational invariance.

Conditioning

Exercise 3.15 Conditional Expectation, Graphically: Consider
the probability space (Ω,F ,P) with Ω = [0, 1]2, F the usual Borel-algebra
on Ω, and P the Lebesgue measure, i.e., area.

For ω = (x, y) ∈ Ω, define X(ω) = x, Y (ω) = y, and Z(ω) = x+ y.

1. Sketch level sets (contour lines) for X, Y , Z, E{Z|X} and E{X|Z}.

2. Define and sketch (continuous) g and h such that E{Z|X} = g(X)
and E{X|Z} = h(Z).

Exercise 3.16 The Tower Property: Fred rolls a die and ob-
serves the outcome. He tells Gretel and Hansel if the number of eyes is odd
or even. He also tells Gretel if the number of eyes is greater or smaller than
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Ω

Y

A

B

Figure 3.8: Venn diagram illustrating conditional independence. Probability
corresponds to surface area. A and B are conditionally independent given
Y , but not conditionally independent given ¬Y .

3.5. He then asks Gretel and Hansel to estimate the number of eyes (us-
ing conditional expectation). For each outcome, what is Gretel’s estimate?
What is Hansel’s estimate? What is Hansel’s estimate of Gretel’s estimate?
What is Gretel’s estimate of Hansel’s estimate?

Exercise 3.17 A Variance Decomposition; More Informa-
tion Means Less Variance, on Average: Let X be a random variable
on (Ω,F ,P) such that VX < ∞, and let H ⊂ G be sub-σ-algebras of F .

1. Show that V{X|H} = E[V{X|G}|H] + V[E{X|G}|H].

2. Show that E[V{X|G}|H] ≤ V{X|H}.

3. Construct an example for which V{X|G} > V{X|H} is an event with
positive probability.

Exercise 3.18 Borel’s paradox: Continuing Exercise 3.12, show
that

E{S|Θ} = 2 and E{S|Y } = Y 2 + 1.

Conclude that E{S|Θ ∈ {0, π}} = 2 while E{S|Y = 0} = 1, even if the
event Θ ∈ {0, π} is the same as the event Y = 0. (Ignore the null event
S = 0.) Discuss: What is the conditional expectation of S given that the
point (X,Y ) is on the x-axis?

Exercise 3.19 Conditional Independence: First, consider the
Venn diagram in Figure 3.8. Show that A and B are conditionally indepen-
dent given Y . Then show that A and B are not conditionally independent
given ¬Y . Next, construct an example involving two events A and B which
are conditionally independent given a σ-algebra G, and where there is an
event G ∈ G such that A and B are not conditionally independent given G.
Hint: You may want to choose an example where G = Ω; i.e., conditional
independence does not imply unconditional independence.
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Exercise 3.20: Show the following result: Let X and Y be jointly
Gaussian distributed stochastic variables taking values in Rm and Rn with
mean µX and µY , respectively, and with

VX = Σxx, Cov(X,Y ) = Σxy, VY = Σyy.

Assume Σyy > 0. Then

E{X|Y } = µX + ΣxyΣ−1
yy (Y − µY )

and
V{X|Y } = Σxx − ΣxyΣ−1

yy Σyx.

Finally, the conditional distribution of X given Y is Gaussian.

Exercise 3.21 Conditional Expectations under Indepen-
dence: Let X be a random variable on a probability space (Ω,F ,P) and
let H be a sub-σ-algebra of F such that σ(X) and H are independent. Show
that E{X|H} = EX (Hint: Assume first that X is simple). Next, give an
example where E{X|H} = EX, but σ(X) and H are not independent.



Chapter 4

Brownian Motion

In Chapter 2, we considered the physics of Brownian motion and its re-
lationship to diffusion. In this chapter, we consider Brownian motion as a
stochastic process, using the notions of measure theory of Chapter 3, and
we describe its mathematical properties.

Brownian motion is a key process in the study of stochastic differential
equations: First, it is the solution of the simplest stochastic differential equa-
tion, and therefore serves as the main illustrative example. Second, we will
later use Brownian motion to generate noise that perturbs a general ordinary
differential equation; this combination characterizes exactly a stochastic dif-
ferential equation. These are two good reasons to study Brownian motion
in detail.

Brownian motion as a stochastic process has several remarkable proper-
ties. Most importantly, it has independent increments, which implies that the
variance of Brownian motion grows linearly with time. This humble state-
ment has profound consequences; for example, the sample paths of Brownian
motion are continuous everywhere but not differentiable at any point. The
detailed study of Brownian motion in this chapter will later allow us to de-
velop the stochastic calculus that concerns non-differentiable functions and
governs stochastic differential equations.

Even if Brownian motion is a rich phenomenon, it has many simplifying
properties. It is a Gaussian process, which means that many statistics can be
computed analytically in closed form. It is also a self-similar process, which
makes it is easier to analyze it. Perhaps even more importantly, Brownian
motion is the prime example of two central classes of processes: The mar-
tingales, which formalize unbiased random walks, and the Markov processes,
which are connected to the state space paradigm of dynamic systems. All
these properties become useful in the construction of stochastic differential
equations.

64
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4.1 Stochastic processes and random functions

A stochastic process is an indexed collection of random variables

{Xt : t ∈ T}

where t represents time and T is the time domain. We focus on the
continuous-time case where T is the set of reals R or an interval of re-
als, and where the stochastic process takes values in Rn. Thus, for each
time t ∈ T ⊂ R, we have a random variable Xt : Ω 7→ Rn.

Formulated differently, a stochastic process is a function which takes
values in Rn and has two arguments: The realization ω ∈ Ω, and the time
t ∈ T:

X : Ω × T 7→ Rn.

Thus, for fixed time t, we have the function ω 7→ Xt(ω), which by definition is
a random variable, i.e. measurable. Conversely, for fixed realization ω ∈ Ω,
we have the sample path t 7→ Xt(ω). So a stochastic process specifies a
way to sample randomly a function T 7→ Rn, including a σ-algebra and a
probability measure on the space of functions T 7→ Rn.

Continuous-time stochastic processes involve an infinite number of ran-
dom variables and therefore require a more complicated sample space Ω
than do e.g. statistical models with only a finite number of variables. The
sample space Ω may, for example, be a space of functions ω : T 7→ Rn. It is
the complexity of these sample spaces that require and justify the rigor and
precision of the measure-theoretic approach to probability.

4.2 Definition of Brownian motion

Recalling Brownian motion as described in Section 2.5, we define:

Definition 4.2.1 [Brownian motion] Let {Bt : t ≥ 0} be a stochastic pro-
cess on some probability space (Ω,F ,P). We say that {Bt} is Brownian
motion, if it satisfies the following properties:

1. The process starts at B0 = 0.

2. The increments of Bt are independent. That is to say, let time points
0 ≤ t0 < t1 < t2 < . . . < tn be given and let the corresponding incre-
ments be ∆Bi = Bti −Bti−1 where i = 1, . . . , n. Then these increments
∆B1, . . . ,∆Bn are independent.

3. The increments are Gaussian with mean 0 and variance equal to the
time lag:

Bt −Bs ∼ N(0, t− s)

whenever 0 ≤ s ≤ t.
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Biography: Norbert Wiener (1894–1964)

.

An American wonder kid who obtained his Ph.D. de-
gree at the age of 19. His work on Brownian motion
(1923) explains why this process is often referred to as
the “Wiener process”. During World War II, he worked
on automation of anti-aircraft guns; this work lead to
what is now known as the Wiener filter for noise re-
moval. He fathered the theory of “cybernetics” which
formalized the notion of feed-back, and stimulated work
on artificial intelligence. Photo ©ShutterStock.

4. For almost all realizations ω, the sample path t 7→ Bt(ω) is continuous.

Sometimes we also use the word Brownian motion to describe the shifted-
and-scaled process αBt +β for α, β ∈ R. In that case we call the case α = 1,
β = 0 standard Brownian motion. Similarly, if B0 = β 6= 0, then we speak
of Brownian motion starting at β.

Although we now know the defining properties of Brownian motion, it
is not yet clear if there actually exists a process with these properties. For-
tunately, we have the following theorem:

Theorem 4.2.1 Brownian motion exists. That is, there exists a probability
triple (Ω,F ,P) and a stochastic process {Bt : t ≥ 0} which together satisfy
the conditions in Definition 4.2.1.

In many situations, we do not need to know what the probability triple
is, but it can be illuminating. The standard choice is to take Ω to be the
space C([0,∞),R) of continuous real-valued functions R̄+ 7→ R, and to
identify the realization ω with the sample path of the Brownian motion,
i.e., Bt(ω) = ω(t). The σ-algebra F is the smallest σ-algebra which makes
Bt measurable for each t ≥ 0. In other words, the smallest σ-algebra such
that {ω : a ≤ ω(t) ≤ b} is an event, for any choice of a, b and t ≥ 0. The
probability measure P is fixed by the statistics of Brownian motion. This
construction is called canonical Brownian motion. The probability measure
P on C([0,∞)) is called Wiener measure, after Norbert Wiener.

This construction agrees with the interpretation we have offered earlier:
Imagine an infinite collection of Brownian particles released at the origin at
time 0. Each particle moves along a continuous trajectory; for each possible
continuous trajectory there is a particle which follows that trajectory. Now
pick one random of these particles. The statistical properties of Brownian
motion specify what we mean with a “random” particle.

There are also other constructions, where we can generate the initial
part of the sample path {Bt(ω) : 0 ≤ t ≤ 1} from a sequence of standard
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Gaussian variables {ξi(ω) : i = 1, 2, . . .}; for example, the Brownian bridge
(next section and Exercise 4.11) and the Wiener expansion (Exercise 4.13).

4.3 Properties of Brownian Motion

Physical Dimension and Unit of Brownian Motion

In the mathematical literature, we typically consider all variables dimen-
sionless. However, in science and engineering it is tremendously important
to keep track of dimensions and units, and sometimes a simple look at dimen-
sions can supply quick answers to complicated questions. Moreover, count-
less errors in computations, designs and constructions can be traced back to
wrong dimensions and units.

From our definition, the variance of standard Brownian motion equals
time. This means that the dimension of Brownian motion must equal the
square root of time. If we do computations in SI units, that means that the
unit of Bt is

√
s, the square root of a second. Of course, in some applications

we may prefer to measure time, e.g., in years, in which case the unit of Bt

is the square root of a year.
If we construct a model that involves a particular process {Xt}, and wish

to model this process as Brownian motion, then Xt typically comes with a
dimension. For example, Xt may be a distance. In that case, we can write
Xt = αBt where {Bt} is standard Brownian motion and the scale α has
dimension length per square root of time; in fact we saw in Chapter 2 that
α =

√
2D, where D is the diffusivity, measured in length squared per time.

Finite-Dimensional Distributions

A stochastic process involves an infinite number of random variables. To
characterize its distribution, one must restrict attention to a finite number of
variables. The so-called finite-dimensional distributions do exactly this. Take
an arbitrary natural number n and then n time points 0 ≤ t1 < t2 < · · · < tn,
then we must specify the joint distribution of the vector random variable

B̄ = (Bt1 , Bt2 , . . . , Btn)

For Brownian motion, the distribution of this vector is Gaussian with mean

EB̄ = (0, 0, . . . , 0)

and covariance

EB̄>B̄ =


t1 t1 · · · t1
t1 t2 · · · t2
... . . . . . . ...
t1 t2 · · · tn

 . (4.1)
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Bt1 Bt2 Bt3 Btn

Figure 4.1: Probabilistic graphical model of Brownian motion evaluated at
a set of time points 0 ≤ t1 < · · · < tn.

The expression for the covariance can be summarized with the statement
that Cov(Bs, Bt) = s whenever 0 ≤ s ≤ t; alternatively, EBsBt = s ∧ t =
min(s, t).

Exercise 4.1: Prove that this is the joint distribution of B̄.
Hint: Use the properties of the increments; show first that B̄ is Gaussian,
then find its mean, then the variance of each element, and finally the covari-
ance of two elements.

A probabilistic graphical model of Brownian motion, evaluated at time
points 0 < t1 < t2 < · · · < tn, is seen in Figure 4.1. Note that Bti is,
given its neighbors Bti−1 and Bti+1 , conditionally independent of the rest,
i.e. of {Btj : j = 1, . . . , i − 2, i + 2, . . . , n}. We will exploit this conditional
independence throughout.

When all finite-dimensional distributions are Gaussian, we say that the
process itself is Gaussian, so Brownian motion is a Gaussian process. Note
that this requires much more than just that Bt is Gaussian for each t.

The finite-dimensional distributions contain much information about a
process, even if not all (Exercise 4.22). A famous result is Kolmogorov’s
extension theorem, which says that if you prescribe the finite-dimensional
distributions, then it is possible to construct a stochastic process which has
exactly these finite-dimensional distributions.

Simulation

Simulation is a key tool in the study of stochastic processes. The following
R-code from SDEtools defines a function rBM which takes as input a vector of
time points, and returns a single sample path of Brownian motion, evaluated
at those time points.

rBM <− f unc t i on ( t )
cumsum( rnorm (n=length ( t ) ,

sd=sq r t ( d i f f ( c (0 , t ) ) ) ) )

Exercise 4.2: Test the function by simulating sufficiently many repli-
cates of (B0, B1/2, B3/2, B2) to verify the covariance of this vector, and the
distribution of B2.

This way of simulating sample paths is sufficient for most applications,
but sometimes it is useful to be able to refine the grid of time points. This can
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be done with the Brownian bridge, where we consider the law of Brownian
motion conditional on the end points. First, recall the formula for condi-
tioning in the Gaussian distribution (Exercise 3.20). This shows that, for
0 ≤ s ≤ t,

E{Bs|Bt} = Bt s/t, V{Bs|Bt} = s(1 − s/t).

That is, the conditional mean interpolates the two end points linearly, while
the conditional variance is a quadratic function of time with an absolute
slope of 1 at the two end points. This allows us to insert an additional time
point in the grid - note that independence of increments implies that we
only need to condition on the neighboring time points (Figure 4.1). Next,
we can repeat this recursively until we have obtained the desired resolution
in time. See also Exercise 4.11.

This construction has also theoretical implications: Since it allows us to
simulate Brownian motion with arbitrary accuracy, it also provides a prob-
ability space on which we can define Brownian motion, as an alternative to
the canonical construction involving the Wiener measure. To see this, re-
call (Chapter 3) that any Monte Carlo simulation model corresponds to a
stochastic experiment, in which the sample space Ω is the space of sequences
ω = (ω1, ω2, . . .) of real numbers. Indeed, when simulating the Brownian
bridge on t ∈ [0, 1], with a random end point B1 ∼ N(0, 1) and with increas-
ing resolution, one obtains a sequence of random processes which converges
in L2; the limit is Brownian motion.

Self-Similarity

Brownian motion is a self-similar process: if we rescale time, we can also
rescale the motion so that we recover the original process. Specifically, if Bt

is Brownian motion, then so is α−1Bα2t, for any α > 0. Exercise: Verify this
claim. This means that Brownian motion itself possesses no characteristic
time scales which makes it an attractive component in models. Notice that
the rescaling is linear in space and quadratic in time, in agreement with the
scaling properties of diffusion (Section 2.1.3 and, in particular, Figure 2.4).

A graphical signature of self-similarity is seen in Figure 4.2. The sample
paths themselves are not self-similar, i.e., they each appear differently under
the three magnifications. However, they are statistically indistinguishable. If
the axis scales had not been provided in the figure, it would not be possible
to infer the zoom factor from the panels.

A useful consequence of self-similarity is that the moments of Brownian
motion also scale with time:

E|Bt|p = E|
√
tB1|p = tp/2 · E|B1|p.

Numerical values can be found for these moments E|B1|p (Exercise 3.13),
but in many situations the scaling relationships E|Bt|p ∼ tp/2 are all that
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Figure 4.2: Self-similarity of Brownian motion. Three realizations of Brown-
ian motion shown at three different magnifications. The standard deviation
of Bt is included (thin dashed curves).

is needed. To remember these scaling relationships, keep in mind that the
physical dimension of Brownian motion is the square root of time, then the
scalings follow from dimensional analysis.

The Total and Quadratic Variation

The increments Bt+h −Bt are stationary (i.e., follow the same distribution
regardless of t ≥ 0 for fixed h ≥ 0), have mean 0, and are independent for
non-overlapping intervals. These properties are key in the analysis of Brow-
nian motion. They also imply that the sample paths of Brownian motion
are, although continuous, very erratic. This is evident from Figure 4.2. One
mathematical expression of this feature is that Brownian motion has un-
bounded total variation. To explain this, consider Brownian motion on the
interval [0, 1], and consider a partition of this interval:

Definition 4.3.1 (Partition of an Interval) Given an interval [S, T ],
we define a partition ∆ as an increasing sequence S = t0 < t1 < · · · < tn =
T . For a partition ∆, let #∆ be the number of sub-intervals, i.e., #∆ = n,
and let the mesh of the partition be the length of the largest sub-interval,
|∆| = max{ti − ti−1 : i = 1, . . . , n}.

Define the sum

V∆ =
#∆∑
i=1

|Bti −Bti−1 |. (4.2)

We call this a discretized total variation associated with the partition ∆.
We define the total variation of Brownian motion on the interval [0, 1] as
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Figure 4.3: Estimating the variation (left panel) and the quadratic variation
(right panel) of one sample path of Brownian motion on [0, 1] with dis-
cretization. Notice the logarithmic axis in the total variation. As the time
discretization becomes finer, the total variation diverges to infinity, while
the quadratic variation appears to converge to 1.

the limit in probability V = lim sup|∆|→0 Vn as the partition becomes finer
so that its mesh vanishes, whenever the limit exists. Then it can be shown
(Exercise 4.20) that V = ∞, w.p. 1, which agrees with the discrete time
simulation in Figure 4.3.

One consequence of the unbounded total variation is that the length of
the Brownian path is infinite. That is, a particle that performs Brownian
motion (in 1, 2, or more dimensions) will travel an infinite distance in finite
time, almost surely. A physicist would be concerned about this property:
It implies that a Brownian particle has infinite speed and infinite kinetic
energy. The explanation is that the path of a physical particle differs from
mathematical Brownian motion on the very fine scale. The difference may be
insignificant in a specific application such as finding out where the particle is
going, so that Brownian motion is a useful model, but the difference explains
that physical particles have finite speeds while Brownian particles do not.

In turn, Brownian motion has finite quadratic variation:

Definition 4.3.2 (Quadratic Variation) The quadratic variation of a
process {Xs : 0 ≤ s ≤ t} is the limit

[X]t = lim
|∆|→0

#∆∑
i=1

|Xti −Xti−1 |2 (limit in probability)

whenever it exists. Here, ∆ is a partition of the interval [0, t].
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Theorem 4.3.1 The quadratic variation of Brownian motion equals the
time, [B]t = t, for all t ≥ 0.

Proof: For each partition ∆ = {0 = t0, t1, . . . , tn = t} of the time
interval [0, t], define S∆ as

S∆ =
#∆∑
i=1

|∆Bi|2 where ∆Bi = Bti −Bti−1 .

Since ∆Bi is Gaussian with mean 0 and variance ∆ti = ti − ti−1, and since
the increments are independent, we have

ES∆ =
#∆∑
i=1

E|∆Bi|2 =
#∆∑
i=1

∆ti = t

and

VS∆ =
#∆∑
i=1

V|∆Bi|2 =
#∆∑
i=1

2(∆ti)2 ≤ 2|∆|
#∆∑
i=1

∆ti = 2|∆|t.

Thus, as |∆| → 0, S∆ converges to the deterministic limit t in L2 and
therefore also in probability.

To appreciate these results, notice that for a continuously differentiable
function f : R 7→ R, the total variation over the interval [0, 1] is finite, and in
fact equals

∫ 1
0 |f ′(t)| dt, while the quadratic variation is 0. We can therefore

conclude that the sample paths of Brownian are not differentiable (w.p. 1).
In fact, the sample paths of Brownian motion are nowhere differentiable,
w.p. 1.

Exercise 4.3: Show that Brownian motion is continuous in mean
square, but not differentiable in mean square, at any given point. That is,
show that the increments Bt+h −Bt converge to 0 in mean square as h → 0,
for any t ≥ 0, but that the difference quotients

1
h

(Bt+h −Bt)

do not have a mean square limit. Note: See also Exercise 4.6.
It is remarkable that the quadratic variation of Brownian motion is deter-

ministic. One consequence of this concerns statistical estimation: Let {Xt}
be scaled Brownian motion, Xt = αBt where {Bt} is standard Brownian
motion. Then the quadratic variation of {Xt} is [X]t = α2t. Now, consider
the situation where the scale α is unknown but we have observed a segment
of a sample path {Xt : 0 ≤ t ≤ T}. Then we can compute [X]T and from
that compute α =

√
[X]T /T , reaching the correct value, regardless of how

short the interval [0, T ] is. Thus, each sample path of {Xt} holds infinite
information about α in any finite time interval. In practice, of course, finite
sampling frequencies and measurement errors will introduce errors on the es-
timate. The quadratic variation of Brownian motion is central in stochastic
calculus, notably in Itô’s lemma (Section 7.3).
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Figure 4.4: The reflection argument used to derive the distribution of the
maximum St. When Bt (thick solid line) first hits the level x = 2, we cut
the trajectory and reflect the rest of the trajectory (thin dotted line).

The Maximum over a Finite Interval

How far to the right of the origin does Brownian motion move in a given
finite time interval [0, t]? Define the maximum

St = max{Bs : 0 ≤ s ≤ t}.

The following theorem shows a surprising connection between the distribu-
tion of St and the distribution of Bt:

Theorem 4.3.2 (Distribution of the maximum of Brownian motion)
For any t, x > 0, we have

P(St ≥ x) = 2P(Bt ≥ x) = 2Φ(−x/
√
t) (4.3)

where, as always, Φ is the cumulative distribution function of a standard
Gaussian variable.

Note that the maximum process {St : t ≥ 0} is also self-similar; for
example, α−1Sα2t has the same distribution as St whenever α > 0.

Proof: [Sketch] First, since the path of the Brownian motion is contin-
uous and the interval [0, t] is closed and bounded, the maximum is actually
attained, so St(ω) is well defined for each ω. Thanks to the monotone con-
vergence theorem, St is measurable. Next, notice that

P(St ≥ x) = P(St ≥ x,Bt ≤ x) + P(St ≥ x,Bt ≥ x) − P(St ≥ x,Bt = x)
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and for the last term we find

P(St ≥ x,Bt = x) ≤ P(Bt = x) = 0.

We now aim to show that P(St ≥ x,Bt ≤ x) = P(St ≥ x,Bt ≥ x) =
P(Bt ≥ x). Consider a realization ω for which Bt(ω) ≥ x. Let τ = τ(ω) be
the “hitting time”, a random variable defined by

τ(ω) = inf{s : Bs(ω) = x}.

This is the first, but definitely not the last, time we encounter such a hitting
time; see Section 4.5. Note that τ(ω) ≤ t since we assumed that Bt(ω) ≥
x > 0 = B0, and since the sample path is continuous. Define the reflected
trajectory (see Figure 4.4)

B(r)
s (ω) =

{
Bs(ω) for 0 ≤ s ≤ τ(ω),

2x−Bs(ω) for τ(ω) ≤ s ≤ t.

We see that each sample path with St ≥ x,Bt ≥ x corresponds in this way
to exactly one sample path with St ≥ x, Bt ≤ x. Moreover, the reflection op-
eration does not change the absolute values of the increments, and therefore
the original and the reflected sample path are equally likely realizations of
Brownian motion. This is the argument that works straightforwardly in the
case of a discrete-time random walk on Z (Grimmett and Stirzaker, 1992),
but for Brownian motion some care is needed to make the statement and the
argument precise. The key is to partition the time interval into ever finer
grids; see (Rogers and Williams, 1994a) or (Karatzas and Shreve, 1997).
Omitting the details of this step, we reach the conclusion

P(St ≥ x,Bt ≥ x) = P(St ≥ x,Bt ≤ x)

and therefore
P(St ≥ x) = 2P(St ≥ x,Bt ≥ x).

Now if the end point exceeds x, then obviously the process must have hit x,
so Bt ≥ x ⇒ St ≥ x. Hence

P(St ≥ x,Bt ≥ x) = P(Bt ≥ x)

and therefore
P(St ≥ x) = 2P(Bt ≥ x).

In many situations involving stochastic differential equations we need to
bound the effect of random permutations. It is therefore quite useful that
the maximum value of the Brownian motion follows a known distribution
with finite moments. However, our main motivation for including this result
is that it leads to hitting time distributions for Brownian motion, as the
next section shows.
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Brownian Motion is Null-Recurrent

Brownian motion in one dimension always hits any given point on the real
line, and always returns to the origin again, but the expected time until it
does so is infinite.

To state this property precisely, let x 6= 0 be an arbitrary point and
define again the hitting time τ(ω) to be the first time the sample path hits
x, i.e., τ = inf{t > 0 : Bt = x}. By convention the infimum over an empty
set is infinity, so τ = ∞ means that the sample path never hits x.

Theorem 4.3.3 The distribution of the hitting time τ = inf{t > 0 : Bt =
x} is given by

P{τ ≤ t} = 2Φ(−|x|/
√
t)

so τ has the probability density function

fτ (t) = dP(τ ≤ t)
dt

= xt−3/2φ(x/
√
t).

In particular, P(τ < ∞) = 1 and Eτ = ∞.

The p.d.f. of τ is plotted in Figure 4.5 for x = 1. Notice the heavy
power-law tail with a slope of −3/2.

Proof: Assume that x > 0; the case x < 0 follows using symmetry. Then,
recall from our discussion of the maximum St = max{Bs : 0 ≤ s ≤ t}, that
τ ≤ t ⇔ St ≥ x and in particular

P(τ ≤ t) = P(St ≥ x) = 2Φ(−x/
√
t).

Now it is clear that P(τ ≤ t) → 1 as t → ∞, so τ is finite w.p. 1. The
p.d.f. of τ is found by differentiating. The power law tail implies a divergent
expectation:

Eτ =
∫ ∞

0
tfτ (t) dt = ∞.

To see this, note that fτ (t) ≥ x
5 t

−3/2 whenever t ≥ x2. Hence

Eτ =
∫ ∞

0
tfτ (t) dt ≥

∫ ∞

x2

x

5 t
−1/2 dt = ∞.

Asymptotics and the Law of the Iterated Logarithm

We know that Brownian motion Bt scales with the square root of time in
the sense that Bt/

√
t is identically distributed for all t > 0; in fact follows

a standard Gaussian distribution, Bt/
√
t ∼ N(0, 1). We are now concerned

with the behavior of the sample path of Bt/
√
t in the limit t → ∞.
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Figure 4.5: The p.d.f. of the hitting time τ = inf{t : Bt = 1}. Left panel:
The initial part of the curve. Right panel: The tail of the curve. Notice the
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Theorem 4.3.4 (The Law of the Iterated Logarithm)

lim sup
t→∞

Bt

2
√
t log log t = 1,

with probability one.

This result states quite precisely how far from the origin the Brownian
motion will deviate, in the long run, and this can be used to derive asymp-
totic properties and bounds on more general diffusion processes.

Since Brownian motion is symmetric, if follows immediately that almost
surely

lim inf
t→∞

Bt

2
√
t log log t = −1.

Now, since the path of the Brownian motion is continuous and, loosely said,
makes never-ending excursions to ±2

√
t log log t, it also follows that the sam-

ple path almost always re-visits the origin: Almost surely there exists a
sequence tn(ω) such that tn → ∞ and Btn = 0.

Although the law of the iterated logarithm is simple to state and use, it
is a quite remarkable result. The scaled process Bt/(2

√
t log log t) converges

(slowly!) to 0 in L2 as t → ∞ (Exercise: Verify this!), but the sample path
will continue to make excursions away from 0, and the ultimate size of these
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Figure 4.6: Rescaled Brownian motion in logarithmic time. Included is also
the growing bounds from the Law of the Iterated Logarithm.

excursions are equal to 1, no more, no less. Stated in a different way, when
we normalize the Brownian motion, and view it in logarithmic time, we
reach the process {Xs : s ≥ 0} given by Xs = Bt/

√
t with t = exp(s) (we

will consider such time changes further in Section 7.7). This process {Xs} is
Gaussian stationary (compare Figure 4.6).1 Hence, it will eventually break
any bound, i.e., lim sups→∞Xs = ∞. But if the bounds grow slowly with
logarithmic time s as well, i.e., ±2

√
log s (compare Figure 4.6), then the

process will ultimately just touch the bound.
The proof of the law of the iterated logarithm is out of our scope; see

(Williams, 1991).

Exercise 4.4: Using the law of the iterated logarithm, show that (almost
surely) lim supt→∞ t−p Bt = 0 for p > 1/2, while lim supt→∞ t−p Bt = ∞
for 0 ≤ p ≤ 1/2.

Invariant under Time-Inversion

If {Bt : t ≥ 0} is Brownian motion, then also the process {Wt : t ≥ 0} given
by

W0 = 0 , Wt = tB1/t for t > 0,

is Brownian motion.

Exercise 4.5: Show that this {Wt} satisfies the conditions in the def-
inition of Brownian motion. Hint: To establish continuity of Wt at t = 0,

1You may want to verify the stationarity, i.e., that EXs, VXs and EXsXs+h do not
depend on time s. Here h ≥ 0 is a time lag. We will discuss stationary processes further
in Chapter 5.
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use the law of the iterated logarithm, in particular the results established in
Exercise 4.4.

This result is particularly useful, because it can be used to connect prop-
erties in the limit t → ∞ with properties in the limit t → 0. For example,
from the discussion of the law of the iterated logarithm we learned that
Brownian motion almost always revisits the origin in the long run. By time
inversion, it then follows that Brownian motion almost always revisits the
origin immediately after time 0. To be precise, with probability 1 there exists
a sequence tn such that tn → 0 and Btn = 0.

Exercise 4.6: Following up on Exercise 4.3, show that the sample paths
of Brownian motion are not differentiable at the origin, almost surely. Specif-
ically, show that

lim sup
t↘0

1
t
Bt = +∞, lim inf

t↘0

1
t
Bt = −∞

almost surely. Hint: Use time inversion and the law of the iterated logarithm,
in particular Exercise 4.4.

4.4 Filtrations and accumulation of information

Recall that we used a σ-algebra of events to model information. This is a
static concept, i.e., the information does not change with time. For stochas-
tic processes, we need to consider also the situation that information changes
with time, so that we obtain a family of σ-algebras, parametrized by time.
Our interest is accumulation of information obtained by new observations,
and not, for example, loss of information due to limited memory. We there-
fore define a filtration to be a family of σ-algebras, i.e., {F t : t ∈ R}, which
is increasing in the sense that

Fs ⊂ F t whenever s < t.

We can think of a filtration as the information available to an observer
who monitors an evolving stochastic experiment - as time progresses, this
observer is able to answer more and more questions about the stochastic
experiment. In our context, the information F t almost invariably comes
from observation of some stochastic process Xt, so that

F t = σ(Xs : 0 ≤ s ≤ t).

In this case, we say that the filtration {F t : t ≥ 0} is generated by the process
{Xt : t ≥ 0}. A related situation is that the information F t is sufficient to
determine Xt, for any t ≥ 0. If Xt is F t-measurable, for any t ≥ 0, then we
say that the process {Xt : t ≥ 0} is adapted to the filtration {F t : t ≥ 0}.
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Since a filtration is an increasing family of σ-algebras, it follows that also
earlier values of the stochastic process are measurable, i.e., Xs is measurable
with respect to F t whenever 0 ≤ s ≤ t. Of course, a process is adapted to
its own filtration, i.e., the filtration it generates.

The underlying probability space (Ω,F ,P) and a filtration {F t : t ≥ 0}
together constitute a filtered probability space. We will make frequent use
of filtrations throughout this book. Our first application of filtrations is to
describe a class of processes known as martingales.

4.5 The martingale property

Brownian motion is a prime of example of a class of stochastic processes
called martingales,2 which can be seen as unbiased random walks: The ex-
pected value of future increments is always 0. It turns out that this property
is tremendously important, for (at least) two reasons: First, from a mod-
eller’s perspective, the mean value of a stochastic process is obviously im-
portant, and therefore it is attractive to model the contribution from the
noise itself as a martingale. Second, a surprising number of conclusions can
be drawn from the martingale property, and therefore it is useful for the
analysis of a model to identify martingales that appear in connection to the
model.

Definition 4.5.1 Given a probability space (Ω,F ,P) with filtration {F t :
t ≥ 0}, a stochastic process {Mt : t ≥ 0} is a martingale (w.r.t. F t and P)
if

1. The process {Mt} is adapted to the filtration {F t}.

2. For all times t ≥ 0, E|Mt| < ∞.

3. E{Mt|Fs} = Ms whenever t ≥ s ≥ 0.

The first condition states that the σ-algebra F t contains enough infor-
mation to determine Mt, for each t ≥ 0. The second condition ensures that
the expectation in the third condition exists. The third condition, which is
referred to as “the martingale property”, expresses that {Mt} is an unbiased
random walk: At time s, the conditional expectation of the future increment
Mt −Ms is 0.

2The term martingale has an original meaning which is fairly far from its usage in
stochastic processes: A martingale can be a part of a horse’s harness, a piece of rigging on
a tall ship, or even a half belt on a coat; such martingales provide control and hold things
down. Gamblers in 18th century France used the term for a betting strategy where one
doubles the stake after a loss; if the name should indicate that this controls the losses,
then it is quite misleading. In turn, the accumulated winnings (or losses) in a fair game is
a canonical example of a stochastic process with the martingale property.



CHAPTER 4. BROWNIAN MOTION 80

Biography: Joseph Leo Doob (1910–2004)
An American mathematician and Harvard gradu-
ate, he spent the majority of his career at the Uni-
versity of Illinois. Doob was central in the devel-
opment of the theory of martingales (Doob, 1953).
Inspired by the seminal work of Kakutani, he con-
nected potential theory to the theory of stochastic
processes (Doob, 2001). Photo credit: CC BY-SA
2.0 DE.

The time argument t can be discrete (t ∈ N) or continuous (t ∈ R+);
our main interest is the continuous-time case. If we just say that {Mt} is
a martingale, and it is obvious from the context which probability measure
should be used to compute the expectations, then it is understood that the
filtration {F t :≥ 0} is the one generated by the process itself, i.e., F t =
σ(Ms : s ≤ t).

Exercise 4.7: Show that Brownian motion is a martingale w.r.t. its own
filtration.

In greater generality, let there be be given a filtered probability space
(Ω,F , {F t},P) and a process {Bt : t ≥ 0} with continuous sample paths.
We say that {Bt} is Brownian motion on (Ω,F , {F t},P), if B0 = 0, {Bt} is
adapted to {F t}, and the increment Bt −Bs is distributed as N(0, t−s) and
independent of Fs, for all 0 ≤ s ≤ t. We then also say that {Bt} is Brownian
motion w.r.t. {F t}. It follows that {Bt} is then also a martingale w.r.t.
{F t}. The filtration {F t} could be the one generated by {Bt}, but it can
also include other information about other random variables or stochastic
processes; the definition requires just that the filtration does not contain
information about the future increments.

Exercise 4.8: Let {Bt} be Brownian motion w.r.t. a filtration {F t}.
Show that the process {B2

t − t : t ≥ 0} is a martingale w.r.t. {F t}. Note:
The so-called Lévy characterization of Brownian motion says that a converse
result also holds: If {Mt} is a continuous martingale such that also {M2

t − t}
is a martingale, then {Mt} is Brownian motion.

Martingales play an important role in mathematical finance: Let Mt be
the (discounted) market price of an asset (e.g., a stock) at time t, and assume
that everybody in the market has access to the information Fs at time s.
Then the fair price of the asset at time s ∈ [0, t] must be Ms = E{Mt|Fs}
where expectation is w.r.t. the risk-free measure Q. I.e., the (discounted)
price {Mt} is a martingale w.r.t. Q and F t.

In the context of gambling, martingales are often said to characterize
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fair games: if Mt is the accumulated winnings of a gambler at time t, and
{Mt : t ≥ 0} is a martingale, then the game can be said to be fair. In this
context, an important result is that it is impossible to beat the house on
average, i.e., obtain a positive expected gain, by quitting the game early. To
present this, we must first define the admitted strategies for quitting. Let τ
be a random time, i.e., a random variable taking values in [0,∞], specifying
when some phenomenon happens. We allow the value τ = ∞ to indicate
that the phenomenon never occurs. An important distinction is if we always
know whether the phenomenon has occurred, or if we may be unaware that
it has occurred. We use the term Markov time, or stopping time, to describe
the first situation:

Definition 4.5.2 (Markov time, stopping time) A random variable τ
taking values in [0,∞] is denoted a Markov time (or a stopping time) (w.r.t.
F t) if the event

{ω : τ(ω) ≤ t}

is contained in F t for any t ≥ 0.

Probably the most important example of stopping times are hitting
times, which we have already encountered: If {Xt : t ≥ 0} is a stochas-
tic process taking values in Rn, {F t} is its filtration, and B ⊂ Rn is a Borel
set, then the time of first entrance

τ = inf{t ≥ 0 : Xt ∈ B}

is a stopping time (with respect to F t). Recall that by convention we take
the infimum of an empty set to be ∞. On the other hand, the time of last
exit

sup{t ≥ 0 : Xt ∈ B}

is not in general a stopping time, since we need to know the future in order
to tell if the process will ever enter B again.

In the context of gambling, a stopping time represents a strategy for
quitting the game. The following result states that you can’t expect to win
if you quit a fair game early.

Lemma 4.5.1 On a probability space (Ω,F ,P), let the process {Mt : t ≥ 0}
be a continuous martingale with respect to a filtration {F t : t ≥ 0}. Let τ be
a stopping time. Then the stopped process

{Mt∧τ : t ≥ 0}

is a martingale with respect to {F t : t ≥ 0}. In particular, E(Mt∧τ |F0) =
M0. Here, ∧ is the “min” symbol: a ∧ b = min(a, b).
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Proof:(Sketch) To see that Mt∧τ is F t-measurable, note that an observer
with acess to the information F t knows the value of t∧ τ and therefore also
Mt∧τ . For a rigorous proof, which uses the continuity of the sample paths
of {Mt}, see (Williams, 1991).

To verify that E|Mt∧τ | < ∞, consider first the case where τ is discrete,
i.e., takes value in an increasing deterministic sequence 0 = t0 < t1 < t2 <
· · · . Assume that E|Mti∧τ | < ∞, then

E|Mti+1∧τ | = E|1(τ ≤ ti)Mτ + 1(τ > ti)Mti+1 |
≤ E|1(τ ≤ ti)Mτ∧ti | + E|1(τ > ti)Mti+1 |
≤ E|Mτ∧ti | + E|Mti+1 |
< ∞.

It follows by iteration that E|Mti∧τ | < ∞ for all i. Similary,

E{Mti+1∧τ |F ti} = E{1(τ ≤ ti)Mti+1∧τ + 1(τ > ti)Mti+1∧τ |F ti}
= E{1(τ ≤ ti)Mτ + 1(τ > ti)Mti+1 |F ti}
= 1(τ ≤ ti)Mτ + 1(τ > ti)Mti

= Mτ∧ti

Again, by iteration, {Mti∧τ : i = 0, 1, 2, . . .} is a martingale.
We outline the argument for the general case where τ is not necessarily

discrete: We approximate τ with discrete stopping times {τn : n ∈ N}
which converge monotonically to τ , for each ω. For each approximation τn,
the stopped process Mt∧τn is a martingale, and in the limit n → ∞ we find,
with the monotone convergence theorem,

E{Mt∧τ |Fs} = lim
n→∞

E{Mt∧τn |Fs} = Ms

which shows that {Mt∧τ : t ≥ 0} is also a martingale.
Of course, it is crucial that τ is a stopping time, and not just any random

time: It is not allowed to sneak peek a future loss and stop before it occurs.
It is also important that the option is to quit the game early, i.e., the game
always ends no later than a fixed time t. Consider, for example, the stopping
time τ = inf{t : Bt ≥ 1} where Bt is Brownian motion. Then τ is finite
almost surely (since Brownian motion is recurrent, Section 4.3), and of course
Bτ = 1 so that, in particular, EBτ 6= B0. But this stopping time τ is not
bounded so stopping at τ is not a strategy to quit early. In contrast, if we
stop the Brownian motion whenever it hits 1, or at a fixed terminal time
t > 0, whichever happens first, we get the stopped process Bt∧τ for which
we now know that EBt∧τ = 0.

Although this result should seem fairly obvious - except perhaps to die-
hard gamblers - it has a somewhat surprising corollary: It bounds (in proba-
bility) the maximum value of the sample path of a non-negative martingale:
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Theorem 4.5.2 [The martingale inequality] Let {Mt : t ≥ 0} be a non-
negative continuous martingale. Then

P( max
s∈[0,t]

Ms ≥ c) ≤ EM0
c

.

This inequality is key in stochastic stability theory (chapter 12) where it
is used to obtain bounds on the solutions of stochastic differential equations.

Proof: Define the stopping time τ = inf{t : Mt ≥ c} and consider the
stopped process {Mt∧τ : t ≥ 0}. This is a martingale, and therefore

EM0 = EMt∧τ .

By Markov’s inequality,

EMt∧τ ≥ c P(Mt∧τ ≥ c).

Combining, we obtain EM0 ≥ c P(Mt∧τ ≥ c). Noting that Mt∧τ ≥ c if and
only if max{Ms : 0 ≤ s ≤ t} ≥ c, the conclusion follows.

Exercise 4.9: A gambler plays repeated rounds of a fair game. At each
round, he decides the stakes. He can never bet more than his current fortune,
and he can never lose more than he bets. His initial fortune is 1. Show that
the probability that he ever reaches a fortune of 100, is no greater than 1
%.

The definition of a martingale concerns only expectations, so a martin-
gale does not necessarily have finite variance. However, many things are
simpler if the variances do in fact exist, i.e., if E|Mt|2 < ∞ for all t ≥ 0.
In this case, we say that {Mt} is an L2 martingale. Brownian motion, for
example, is an L2 martingale. In the remainder of this section, {Mt} is an
L2 martingale.

Exercise 4.10: Show that if {Mt : t ≥ 0} is a martingale such that
E|Mt|2 < ∞ for all t, then the increments

Mt −Ms and Mv −Mu,

are uncorrelated, whenever 0 ≤ s ≤ t ≤ u ≤ v. (Hint: When computing the
covariance E(Mv − Mu)(Mt − Ms), condition on Fu.) Next, show that the
variance of increments is additive:

V(Mu −Ms) = V(Mu −Mt) + V(Mt −Ms).

Finally, show that the variance is increasing, i.e.

VMs ≤ VMt whenever 0 ≤ s ≤ t.
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This property of uncorrelated increments generalizes the independent
increments of Brownian motion.

Since the variance is increasing, an important characteristic of an L2
martingale is how fast and how far the variance increases. To illustrate this,
we may ask what happens as t → ∞. Clearly the variance must either
diverge to infinity, or converge to a limit, limt→∞ VMt < ∞. A very useful
result is that if the variance converges, then also the process itself converges.
Specifically:

Theorem 4.5.3 (Martingale Vonvergence, L2 Version) Let {Mt : t ≥
0} be a continuous martingale such that the variance {VMt : t ≥ 0} is
bounded. Then there exists a random variable M∞ such that Mt → M∞ in
L2 and w.p. 1.

Proof: Let 0 = t1 < t2 < · · · be an increasing divergent sequence of
time points, i.e., ti → ∞ as i → ∞. Then we claim that {Mtn : n ∈ N} is a
Cauchy sequence. To see this, let ε > 0 be given. We must show that there
exists an N such that for all n,m > N , ‖Mtn −Mtm‖2 < ε. But this is easy:
Choose N such that VMtN > limt→∞ VMt − δ where δ > 0 is yet to be
determined, and let n,m > N . Then

V(MtN −Mtn) ≤ δ

and therefore ‖MtN − Mtn‖2 ≤
√
δ. The same applies if we replace tn with

tm. The triangle inequality for the L2 norm then implies that

‖Mtn −Mtm‖2 ≤ ‖MtN −Mtn‖2 + ‖MtN −Mtm‖2 ≤ 2
√
δ.

So if we choose δ < ε2/4, we get ‖Mtn −Mtm‖2 < ε. Since {Mtn : n ∈ N} is
a Cauchy sequence and the space L2 is complete, there exists an M∞ ∈ L2
such that Mtn → M∞ in mean square. Moreover, it is easy to see that this
M∞ does not depend on the particular sequence {ti : i ∈ N}.

We omit the proof that the limit is also w.p. 1. This proof uses quite
different techniques; see (Williams, 1991).

4.6 Conclusion

A stochastic process is a family of random variables parameterized by time,
e.g. {Xt : t ≥ 0}. For fixed time t, we obtain a random variable Xt : Ω 7→ Rn.
For fixed realization ω, we obtain a sample path X·(ω) : R̄+ 7→ Rn, so the
theory of stochastic processes can be seen as a construction that allows us
to pick a random function of time.

Stochastic processes can be seen as evolving stochastic experiments.
They require a large sample space Ω, typically a function space, and a fil-
tration {F t : t ≥ 0} which describes how information is accumulated as the
experiment evolves.
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In this chapter, we have used Brownian motion as the recurring example
of a stochastic process, to make the general concepts more specific. Brownian
motion is a fundamental process in the study of diffusions and stochastic
differential equations, and it is useful to know its properties in detail. The
two most important properties arguably concern the expectation and the
variance: The expectation af any increment is 0, so Brownian motion is a
martingale. The variance grows linear with time, so that distance scales with
the square root of time.

When the Brownian motion is canonical, the sample space consists of
continuous functions which we identify with the sample path of Brownian
motion. Canonical Brownian motion therefore defines a probability measure
on the space of continuous functions; phrased differently, a stochastic exper-
iment consisting of picking a random continuous function. A side benefit is
that with this construction, all sample paths are continuous by construction.

However, Brownian motion is not differentiable; in contrast, it has infinite
total variation. In the following chapters, we shall see that this has profound
consequences when we include Brownian motion in differential equations.
Instead, it has a very simple quadratic variation: [B]t = t. Since the paths
are not differentiable, the quadratic variation is central in the stochastic
calculus that we will build, together with the martingale property.

4.7 Notes and references

Besides Brown, Einstein, and Wiener, early studies of Brownian motion
include the work of Louis Bechalier in 1900, whose interest was financial
markets, and the study of T.N. Thiele, whose 1880 paper concerned least
squares estimation. More in-depth treatments of Brownian motion can be
found in (Williams, 1991; Rogers and Williams, 1994a; Øksendal, 2010;
Karatzas and Shreve, 1997).

4.8 Exercises

Simulation of Brownian Motion

Exercise 4.11 The Brownian Bridge:

1. Write a code which takes Brownian motion Bt1 , Bt2 , . . . , Btn on the
time points 0 ≤ t1 < · · · < tn, and which returns a finer parti-
tion s1, . . . , s2n−1 along with simulated values of the Brownian motion
Bs1 , . . . , Bs2n−1 . Here, the finer partition includes all mid-points, i.e.

s1 = t1, s2 = t1 + t2
2 , s3 = t2, s4 = t2 + t3

2 , . . . , s2n−1 = tn.
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2. Use this function iteratively to simulate Brownian motion on the inter-
val [0, 1] in the following way: First, simulate B0 = 0 and B1 ∼ N(0, 1).
Then, conditional on this, simulate B0, B1/2, B1 using your function.
Then, conditionally on these, simulate B0, B1/4, B1/2, B3/4, B1. Con-
tinue in this fashion until you have simulated Brownian motion with
a temporal resolution of h = 1/512. Plot the resulting trajectory.

Exercise 4.12 The Brownian Bridge (again): Yet another way
of simulating a Brownian bridge uses a basic result regarding conditional
simulation in Gaussian distributions. For two jointly Gaussian random vari-
ables (X,Y ), we can simulate X from the conditional distribution given Y
as follows:

1. Compute the conditional mean, E{X|Y }.

2. Sample (X̄, Ȳ ) from the joint distribution of (X,Y ).

3. Return X̃ = E{X|Y } − E{X̄|Ȳ } + X̄.

Check that the conditional distribution of this X̃ given Y is identical to the
conditional distribution of X given Y .

Then write a function which inputs a partition 0 = t0 < t1 < · · · < tn =
T and a value of BT , and which returns a sample path of the Brownian
bridge B0, Bt1 , . . . , BT which connects the two end points. Test the function
by computing 1000 realizations of {Bnh : n ∈ N, nh ∈ [0, 2]} with h = 0.01
and for which B2 = 1 and plotting the mean and variance as function of
time.

Exercise 4.13 The Wiener Expansion: Here, we simulate
Brownian motion through frequency domain. First, we simulate harmon-
ics with random amplitude. Then, we add them to approximate white noise.
Finally we integrate to approximate Brownian motion. For compactness, we
use complex-valued Brownian motion {B(1)

t + iB
(2)
t : 0 ≤ t ≤ 2π}, where

{B(1)
t } and {B(1)

t } are independent standard Brownian motions.

1. Write a code that generates, for a given N ∈ N, 2N+1 complex-valued
random Gaussian variables {Vk : k = −N, . . . , N} such that the real
and imaginary parts are independent and standard Gaussians. Take
e.g. N = 16. Then generate an approximation to white noise as

Wt = 1√
2π

N∑
k=−N

Vke
ikt

Check by simulation that the real and imaginary parts of Wt are in-
dependent and distributed as N(0, (2N + 1)/(2π)). Here t ∈ [0, 2π] is
arbitrary; try a few different values. Visual verification suffices.
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Factbox: [The log-normal distribution] A random variable Y is said to
be log-normal (or log-Gaussian) distributed with location parameter µ
and scale parameter σ > 0, i.e.,

Y ∼ LN(µ, σ2)

if X = log Y is Gaussian with mean µ and variance σ2.

Property Expression
Mean EY exp(µ+ 1

2σ
2)

Variance VY (exp(σ2) − 1) exp(2µ+ σ2)
C.d.f. FY (y) Φ(σ−1(log(y) − µ))
mea P.d.f. fY (y) σ−1y−1φ(σ−1(log(y) − µ))
Median exp(µ)
Mode exp(µ− σ2)

2. Verify the claims of independence and distribution theoretically.

3. Evaluate Wt on a regular partition of the time interval [0, 2π] and
plot the empirical autocovariance function. Comment on the degree to
which it resembles a Dirac delta.

4. From the simulated noise signal {Wt}, compute a sample path of ap-
proximate Brownian motion by integration:

Bt =
∫ t

0
Ws ds.

The integration of each harmonic should preferably be done analyti-
cally, i.e.,∫ t

0
ei0s ds = t,

∫ t

0
eiks ds = 1

ik
(eikt − 1) for k 6= 0.

Plot the real part of the sample path.

5. Write a code which inputs N and some time points ti ∈ [0, 2π], and
which returns a sample of (real-valued) Brownian motion evaluated on
those time points, using the calculations above. Verify the function by
simulating 1,000 realizations of (B1, B1.5, B2, B5) and computing the
empirical mean and the empirical covariance matrix.
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Convergence

Exercise 4.14: Show that Brownian motion with drift diverges almost
surely, i.e. lim inft→∞(Bt + ut) = ∞ for u > 0. Hint: Use the law of the
iterated logarithm.

Exercise 4.15 Convergence w.p. 1, but not in L2: Let {Bt :
t ≥ 0} be Brownian motion and define, for t ≥ 0

Xt = exp(Bt − 1
2 t).

Show that Xt → 0 almost surely as t → ∞, but that E|Xt|2 → ∞. Note:
This process {Xt : t ≥ 0} is one example of geometric Brownian motion;
we will return to this process repeatedly. If the result puzzles you, you may
want to simulate a number of realizations of Xt and explain in words how
Xt can converge to 0 almost surely while diverging in L2.

Exercise 4.16 Continuity of Stochastic Processes:

1. Let {Nt : t ≥ 0} be a Poisson process with unit intensity, i.e., a Markov
process N0 = 0 and with transition probabilities given by Nt|Ns being
Poisson distributed with mean t − s for 0 ≤ s ≤ t. Show that {Nt}
is continuous in mean square but that almost no sample paths are
continuous.

2. Let V be a real-valued random variable such that E|V 2| = ∞ and
define the stochastic process {Xt : t ≥ 0} by Xt = V ·t. Show that {Xt}
has continuous sample paths but is not continuous in mean square.

Exercise 4.17 The Precision Matrix of Brownian Motion:
If X = (X1, X2, . . . , Xn) is a random variable taking values in Rn and

with variance-covariance matrix S > 0, then the precision matrix of X is
P = S−1 (Rue and Held, 2005). Now, let {Bt : t ≥ 0} be standard Brownian
motion.

1. Let Xi = Bti where 0 < t1 < · · · < tn. Show that the precision matrix
P is tridiagonal; specifically

Pij =



t2
t1(t2−t1) if i = j = 1,

1
tn−tn−1

if i = j = n,

ti+1−ti−1
(ti+1−ti)(ti−ti−1) if 1 < i = j < n,

− 1
|ti−tj | if i = j ± 1,
0 else.
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2. Assume that X is multivariate Gaussian with expectation µ. Show
that 1/Pii = V{Xi|X−i} and that E{Xi −µi|X−i} = ∑

j 6=i aj(Xj −µj)
where aj = −Pij/Pii. Here,X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn). Note:
Precision matrices are most useful in the Gaussian case but can be
generalized beyond this in different ways.

3. Combine the previous to show that this precision matrix agrees with
the probabilistic graphical model of Brownian motion in Figure 4.1,
and the statistics of the Brownian bridge, i.e.:

E{Bti |Bti−1 , Bti+1} = ti − ti−1
ti+1 − ti−1

Bti+1 + ti+1 − ti
ti+1 − ti−1

Bti−1 ,

V{Bti |Bti−1 , Bti+1} = (ti+1 − ti)(ti − ti−1)
ti+1 − ti−1

.

Martingales

Exercise 4.18 Martingales as Random Walks: Let Xi be indepen-
dent random variables for i = 1, 2, . . . such that E|Xi| < ∞ and EXi = 0.
Show that the process {Mi : i ∈ N} given by Mi = ∑i

j=1Xj is a martingale.

Exercise 4.19 Doob’s Martingale: Let X be a random variable
such that E|X| < ∞, and let {F t : t ≥ 0} be a filtration. Show that
the process {Mt : t ≥ 0} given by Mt = E{X|F t} is a martingale w.r.t.
{F t : t ≥ 0}.

Miscellaneous

Exercise 4.20: Let ∆ = {0, 1/n, 2/n, . . . , 1} be a partition of [0, 1], where
n ∈ N, and let V∆ be the discretized total variation as in (4.2).

1. Show that EV∆ ∼
√
n, (in fact, EV∆ =

√
2n/π) so that EV∆ → ∞ as

n → ∞.

2. Show that V∆ → ∞ w.p. 1 as n → ∞, using
n∑

i=1
|Bti −Bti−1 |2 ≤ max

i
{|Bti −Bti−1 |} ·

n∑
i=1

|Bti −Bti−1 |

as well as the quadratic variation and continuity of Brownian motion.
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Exercise 4.21 The (Second) Arcsine Law: Consider Brownian
motion on the time interval [0,1]. Define τ as the last time the process hits
0:

τ = sup{t ∈ [0, 1] : Bt = 0}

1. Show that
P{τ ≤ t} = 2

π
arcsin

√
t

for 0 ≤ t ≤ 1. Hint: Use reflection as in the proof of Theorem 4.3.2 to
relate probability that the process visits the origin in the interval (t, 1]
to the distribution of (Bt, B1). Then use the result from Exercise 3.14
about two Gaussians having different sign.

2. Estimate the distribution function of τ using Monte Carlo, simulating
N = 1, 000 sample paths of {Bt : t ∈ [0, 1]} and reporting the last time
the sign is changed. Use a time step of h = 0.001. Plot the empirical
distribution function and compare with the analytical expression.

Exercise 4.22: Let Ω = [0, 1], let F be the Borel algebra on this interval,
and let P be the Lebesgue measure on Ω. Consider the real-valued stochastic
processes {Xt : t ∈ [0, 1]} and {Yt : t ∈ [0, 1]} on this probability space:

Xt(ω) = 0, Yt(ω) =
{

1 when t = ω,
0 else.

Show that {Xt} and {Yt} have identical finite-dimensional distributions; we
say that {Xt} and {Yt} are versions of eachother. Note that the sample
paths of {Xt} are continuous w.p. 1, while those of {Yt} are discontinuous,
w.p. 1.



Chapter 5

Linear Dynamic Systems

Systems of linear differential equations with exogenous random inputs make
an important special case in the theory of stochastic processes. Linear mod-
els are important in practical applications, because they quickly give explicit
results, based on simple formulas for the mean and for the covariance struc-
ture. If a linear model is reasonable, or can be used as a first approximation,
then it is typically worthwhile to start the analysis there.

With increasingly strong computers and algorithms, the role of linear
systems is no longer as central in science and engineering curricula as it used
to be: While earlier generations were forced to simplify dynamic systems in
order to analyze them, and therefore often focused on linear models, we can
now conduct numerical simulations of larger and more complex systems.
As a result, the toolbox of linear systems is no longer rehearsed as eagerly.
However, in the case of stochastic systems, simulation is still cumbersome,
because we would need to simulate a large number of sample paths before
we could say anything about the system at hand with confidence. Then, the
analytical techniques of linear systems come to the rescue.

Linear systems can be analyzed in time domain or in frequency domain;
the Fourier transform connects to two domains by decomposing the fluctu-
ations of signals into contributions from different frequencies. Since linear
systems satisfy the superposition principle, we can consider each frequency
in isolation.

Frequency domain methods applied to linear systems also make it possi-
ble to give precise meaning to the notion of fast vs. slow signals and dynam-
ics. If a linear system is affected by a noise signal which is fast compared
both to the system itself and to the interest of the modeler, then it may be
reasonable to approximate the signal with white noise. Doing so, we obtain
the first example of a stochastic differential equation. We will see that it is
possible to analyse the solution of this equation and give very explicit results
for the mean, covariance structure, and spectrum.

91
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Figure 5.1: A mass-spring-damper system drive by an exogenous force is a
simple example of a linear system.

5.1 Linear Systems with Deterministic Inputs

Let us start by briefly recapitulating the basic theory of linear time-invariant
systems driven by additive inputs. A simple example of such a system is a
mass connected to a wall with a spring and a damper, and subject to an
external force, see Figure 5.1. The governing equations are

dQt

dt
= Vt, (5.1)

m
dVt

dt
= −kQt − cVt + Ut. (5.2)

Here, Qt is the position at time t while Vt is the velocity and Ut is the exter-
nal force. We use the symbol Ut since external driving inputs are typically
denoted Ut in the linear systems literature. The system parameters are the
mass m, the spring constant k and the viscous damping coefficient c. The
first equation is simply the definition of velocity, while the second equation
is Newton’s second law, where the total force has contributions from the
spring (−kQt, Hooke’s law) and the damper (−cVt, linear viscous damping)
in addition to the external force Ut.

State-space formalism is tremendously useful. There, we define the sys-
tem state Xt = (Qt, Vt)> and track the motion of the system in state space;
in this case, R2. The governing equation can be written in vector-matrix
notation:

Ẋt = AXt +GUt. (5.3)

Here, the system matrices are

A =
[

0 1
−k/m −c/m

]
and G =

[
0

1/m

]
. (5.4)

Writing the equation in state space form is algebraically convenient and a
concise shorthand, but also represents a fundamental paradigm to dynamic
systems: The state vector summarizes the entire pre-history of the system
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so that predictions about the future can be based solely on the current state
and future inputs, and need not take further elements from the past into
account. State space formalism is to dynamic systems what the Markov
property (Section 9.1) is to stochastic processes.

For such a linear system with exogenous input, a fundamental property
is the impulse response. This is the (fundamental) solution to the system
which is at rest before time t = 0, i.e., Xt = 0 for t < 0, and subject to
a Dirac delta input, Ut = δ(t). For the mass-spring-damper system, this
means that the mass is standing still before time t = 0, Qt = Vt = 0 for
t < 0. Then, a force of large magnitude is applied over a short time period
starting at time 0, effectively changing the momentum instantaneously from
0 to 1. Figure 5.2 shows the impulse response of the position; for correct
dimensions, the momentum is changed instantaneously from 0 to 1 Ns. In
general, the impulse response of the system (5.3) corresponding to the input
Ut = δ(t) is

h(t) =
{

0 for t < 0,
exp(At)G for t ≥ 0. (5.5)

The matrix exponential exp(At) is described in the fact box on page 97. For
the mass-spring-damper system, it is possible to write up the elements in
the matrix exponential in closed form, but this is not possible in general.
Rather, there exist powerful numerical algorithms for computing the matrix
exponential.

We can use the impulse response to obtain the solution to the linear
system (5.3) with the initial condition X0 = x0, for a general forcing {Ut :
t ≥ 0}:

Xt = eAtx0 +
∫ t

0
h(t− s) Us ds = eAtx0 +

∫ t

0
eA(t−s)GUs ds. (5.6)

This solution is termed the superposition principle: The response at time t
to the initial condition only is exp(At)x0 while the response to a Dirac delta
at time s and with strength Us is exp(A(t− s))Us. This solution establishes
that Xt arises as the linear combination of these responses. The solution can
be verified by first noting that the right hand side of (5.6) equals x0 when
t = 0, and next differentiating the right hand side, using the Leibniz integral
rule for differentiation of an integral:

d

dt
Xt = AeAtx0 + eA(t−t)GUt +

∫ t

0
AeA(t−s)GUs ds

= AXt +GUt,

as claimed.
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5.2 Linear Systems in the Frequency Domain

So far we have considered the linear system in the time domain, but fre-
quency domain methods are powerful. There, we decompose all signals into
harmonics (i.e., sine and cosine functions or, more conveniently, complex
exponentials) using the Fourier transform.

Assume that we apply a force of the form Ut = U0 cosωt to the mass-
spring-damper system, then there is a solution where the system responds
with a periodic motion Xt = U0a(ω) cos(ωt + φ(ω)). We will find this so-
lution shortly, in the general case. Note that the frequency of the response
is the same as that of the applied force, and that the amplitude U0a(ω) is
proportional to the magnitude of the applied force, with the constant of pro-
portionality a(ω) depending on the frequency ω. Also the phase shift φ(ω)
depends on frequency ω. It is convenient to write this as

Xt = U0Re [H(ω) exp(iωt)]

where H(ω) = a(ω) exp(iφ(ω)) is the complex-valued frequency response; i
is the imaginary unit.

To find the frequency response for the general linear system (5.3), simply
search for solutions of the form Ut = exp(iωt), Xt = H(ω) exp(iωt):

iωH(ω)eiωt = AH(ω)eiωt +Geiωt.

Then isolate H(ω):
H(ω) = (iω · I −A)−1G,

where I is a identity matrix of same dimensions as A. Next, notice that this
result coincides with the Fourier transform of the impulse response h(·):
Assume that A is stable, i.e., all eigenvalues of A have negative real part, so
that h(t) converges to 0 exponentially as t → 0. Then the Fourier transform
is

H(ω) =
∫ +∞

−∞
h(t)e−iωt dt =

∫ ∞

0
eAtGe−iωt dt = (iω · I −A)−1G. (5.7)

Thus, the frequency response H(·) contains the same information as the
impulse response h(·) from (5.5); the two are Fourier pairs.

Finally, if A admits the eigenvalue decomposition A = TΛT−1 where
Λ is diagonal, then H(ω) = T (iω · I − Λ)−1T−1G where the matrix being
inverted is diagonal. Therefore, we can view the frequency response as a
weighted sum of first-order responses, 1/(iω − λj).

The assumption that A is stable deserves a comment: The solution (5.6)
includes a response exp(At)x0 to the initial condition. When A is stable, this
element in the solution vanishes as t → ∞ so that the solution eventually
becomes independent of the initial condition, and then only the frequency
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Figure 5.2: Impulse and frequency response for the mass-spring-damper sys-
tem with parameters m = 1 kg, k = 1 N/m, and c = 0.4 Ns/m. The applied
impulse has magnitude 1 Ns. The amplitude response peaks near ω = 1
rad/s, corresponding to the damped oscillations with a period near 2π in
the impulse response. At slower frequencies, the response is in phase with
the excitation, while at faster frequencies, the response is lagging behind
and eventually in counterphase.

response remains. We can define the frequency response as (iω · I −A)−1G
even when A is not stable, but in that case the response to the initial condi-
tion will grow to dominate the solution, unless the initial condition is chosen
with mathematical precision so that its response is 0.

For small systems, or when the system matrix A has a particular struc-
ture, it is feasible to do the matrix inversion in (5.7) analytically. For the
mass-spring-damper system (5.4), we find

H(ω) = 1
k + icω −mω2

(
1
iω

)
.

Figure 5.2 shows the frequency response of the position, i.e., the top element
of this vector.

In the time domain, we could find the solution for a general forcing
{Ut : t ≥ 0} using the impulse response. The same applies in the frequency
domain. Here, it is convenient to consider inputs {Ut : t ∈ R} defined also
for negative times, instead of an initial condition on X0. If this input {Ut}
is square integrable, then its Fourier transform {U∗(ω) : ω ∈ R} exists,
so {Ut} can be decomposed into harmonics. If furthermore A is stable (all
eigenvalues have negative real parts), then also the response {Xt : t ∈ R}
will have a Fourier transform {X∗(ω) : ω ∈ R}. The two will be related by

X∗(ω) = H(ω) U∗(ω).
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This formula expresses that each angular frequency ω can be examined in-
dependently; this follows from the superposition principle of linear systems
that solutions can be added to form new solutions. The response X∗(ω) is
obtained by multiplying each frequency in the input U∗(ω) with H(ω), which
specifies the amplification and phase shift of an input with that frequency.

5.3 A Linear System Driven by Noise

Up to this point our models have been deterministic, but we now aim for
the situation where the driving input of a dynamic system is a stochastic
process. Figure 5.3 shows an example for the mass-spring-damper-system,
where the force {Ut : t ≥ 0} is the realization of a stochastic process; we
have simulated this force as well as the response of the mass-spring-damper
system (Qt, Vt). In this example, the driving force {Ut} is piecewise constant
and changes value at random points in time. These time points of change
constitute a Poisson process with mean interarrival time τ . At a point of
change, a new force is sampled from a Gaussian distribution with mean 0
and variance σ2, independently of all other variables.

To simulate this process {Ut}, we first simulated the interarrival times τi

for i = 1, 2, . . ., i.e., the time between two subsequent jumps. According to
the properties of the Poisson process, these τi are independently of eachother,
and each follows an exponential distribution with mean τ . We then computed
the arrival times Ti recursively by T0 = 0, Ti = Ti−1 +τi. Next, we simulated
the levels be F (i) ∼ N(0, σ2) for i = 0, 1, . . ., again independently of all
other variables. Knowing the time points Ti and the levels F (i), we can plot
the piecewise constant sample path {Ut(ω) : t ≥ 0} as in Figure 5.3. To
reach an expression for Ut at any point in time t ≥ 0, define the epoch
Nt = max{i ≥ 0 : Ti ≤ t} (i.e., the number of jumps that have occurred
before time t) and finally define the force process Ut = FNt .

The sample paths of {Ut} are piecewise constant, and therefore we can
solve the system dynamics (5.3) as an ordinary differential equation, for
each realization. In Figure 5.3, the mean time between jumps in the applied
force is 20 seconds, so in most cases the systems falls to rest before the force
changes again, and the step response of the system is clearly visible.

It is instructive to simulate a driving input and the response it causes,
but it is also cumbersome. We would like to have simpler and more general
analysis tools for computing the statistics of the response, without knowing
the realization of the force, but solely from the statistics of the force. In
the following sections, we develop these tools for the first and second order
statistics of the response, i.e., the mean value and the covariance structure.
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Factbox: [The matrix exponential] For a square matrix A ∈ Rn×n, the
homogeneous linear system Ẋt = AXt with initial condition X0 = x0 ∈
Rn has the unique solution Xt = exp(At)x0 where exp(At) is termed
the matrix exponential. Here, the matrix exponential P (t) = exp(At) is
itself the unique solution to the matrix differential equation

Ṗ (t) = AP (t), P (0) = I ∈ Rn×n.

The matrix exponential has the semigroup property: exp(A(s + t)) =
exp(As) exp(At) for s, t ∈ R.
In principle, the matrix exponential may be computed through its Taylor
series

exp(At) = I +At+ 1
2(At)2 + · · · =

∞∑
i=0

1
i! (At)

i

but the series converges slowly; it is only useful when t is small. Bet-
ter algorithms (Moler and Van Loan, 2003) are implemented in good
environments for scientific computing. Do not confuse the matrix expo-
nential with element-wise exponential; (eA)ij does not in general equal
eAij . In Matlab or R, compare the two functions exp and expm.
If A = TΛT−1, then

exp(At) = T exp(Λt)T−1

and if Λ is diagonal with diagonal elements λj , then exp(Λt) is a diagonal
matrix with diagonal elements exp(λjt). This may also be written as

exp(At) =
n∑

j=1
vje

λjtuj

where uj and vj are left and right eigenvectors of A, normalized so that
ujvj = 1: Avj = λjvj , ujA = λjuj . vj is a column in T while uj is a row
in T−1.
Similar results exist when A cannot be diagonalized, using the Jordan
canonical form. For example,

exp
([

λ 1
0 λ

]
t

)
=
[
eλt teλt

0 eλt

]
.

These formulas highlight the central importance of eigenvalues and
eigenvectors (including generalized eigenvectors) when solving linear sys-
tems of differential equations with constant coefficients.
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Figure 5.3: The response of the mass-spring-damper system to a force with
random steps. Parameters as in Figure 5.2; τ = 15 s. Top panel: Position
Q [m]. Middle panel: Velocity V [m/s]. Bottom panel: Force U [N].

5.4 Stationary Processes in Time Domain

It is a useful simplification to consider stationary stochastic inputs, so we
first describe such processes. A stationary stochastic process is one where
the statistics do not depend on time; note that this does not at all imply that
the sample paths are all constant functions of time. There are several notions
of stationarity, but for our purpose at this point we only need stationarity
of the first and second moment:

Definition 5.4.1 (Second-Order Stationary Process) A stochastic pro-
cess {Xt : t ≥ 0} taking values in Rn is said to be second-order stationary,
if E|Xt|2 < ∞ for all t ≥ 0, and

EXs = EXt, EXsX
>
s+k = EXtX

>
t+k

for all s, t, k ≥ 0.

Second-order stationarity is also referred to as weak stationarity or wide-
sense stationarity. For a second-order stationary process with mean x̄ =
EXt, the autocovariance depends only on the time lag k, so we define the
autocovariance function ρX : R 7→ Rn×n by

ρX(k) = E(Xt − x̄)(Xt+k − x̄)>.
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Here t may be chosen arbitrarily. Careful! The word “autocovariance func-
tion” can have slightly different meanings in the literature. When Xt =
(X(1)

t , . . . , X
(n)
t ) is a vector, i.e., when n > 1, the ith diagonal element of

ρX(k) is the autocovariance of {X(i)
t } while an (i, j) off-diagonal element in

ρX(k) is the covariance E(X(i)
t − x̄(i))(X(j)

t+k − x̄(j)).
We now set out to show that the force process {Ut : t ≥ 0}, described

in Section 5.3, is second-order stationary, and determine its autocovariance
function. To do this, we use a standard trick repeatedly: Include some in-
formation, which makes the conditional expectation easy, and then use the
tower property (or one of its variants, i.e., the law of total expectation or
variance). First, to find the mean and variance of Ut, let G be the σ-algebra
generated by {Ti : i ∈ N}. Then

E{Ut|G} = 0, V{Ut|G} = σ2,

from which we get

EUt = EE{Ut|G} = 0, VUt = EV{Ut|G} + VE{Ut|G} = Eσ2 + V0 = σ2.

To derive the autocovariance function ρU (h) = EUtUt+h for h ≥ 0, we
condition on F t, the σ-algebra generated by {Us : 0 ≤ s ≤ t}:

EUtUt+h = E(E{UtUt+h|F t}) = E(UtE{Ut+h|F t}).

Notice that this connects the problem of determining the autocovariance
with that of making predictions. To compute the conditional expectation
E{Ut+h|F t}, condition again on the arrival times, i.e., on G. If the force
does not change between time t and time t + h, then Ut+h = Ut. On the
other hand, if the force changes between time t and time t + h, then the
conditional expectation of Ut+h is 0. That is:

E{Ut+h|F t,G} =
{
Ut if {Ti} ∩ [t, t+ h] = ∅,
0 else.

Now, the probability that there are no jumps in the time interval is

P[{Ti} ∩ [t, t+ h] = ∅|F t] = exp(−h/τ),

since the time between events is exponentially distributed. This hinges on
the exponential distribution having no memory, i.e., when we stand at time
t and look for the next jump, we do not need to take into account how
long time has passed since the previous jump. Combining, we use the Tower
property to get

E{Ut+h|F t} = E[E{Ut+h|F t,G}|F t] = Ut exp(−h/τ),
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Figure 5.4: Autocovariance function and variance spectrum (in log scales) of
the piecewise constant force process {Ut : t ≥ 0}, for two values of the time
constant τ . The variance σ2 is chosen so that σ2τ = 1. Note, in the spec-
trum, that the cut-off frequency 1/τ marks a transition from low-frequency
behavior to high-frequency behavior.

and therefore,
EUtUt+h = σ2 exp(−|h|/τ) = ρU (h). (5.8)

Here we have used symmetry to obtain also autocovariance at negative lags.
Note that EUtUt+h does not depend on the time t, but only on the time lag
h, so the process {Ut} is second order stationary.

The form of the autocovariance is archetypal: It contains a variance,
σ2, and a time constant τ which measures the time scale over which the
autocovariance function decays and is therefore termed the decorrelation
time. See Figure 5.4 (left panel).

5.5 Stationary Processes in Frequency Domain

Just as frequency domain methods are useful for linear systems (Section 5.2),
they are also useful for stationary processes. If1 the autocovariance function
ρX is L2, we can define the variance spectrum SX as its Fourier transform:

SX(ω) =
∫ +∞

−∞
ρX(t) exp(−iωt) dt.

To justify the name variance spectrum, note that by the inverse Fourier
transform, we can compute the autocovariance function from the variance

1According to the Wiener-Khinchin theorem, this requirement can be relaxed.
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spetrum,
ρX(t) = 1

2π

∫ +∞

−∞
SX(ω) exp(iωt) dω

and in particular, with a time lag t = 0, we get

VXt = ρX(0) = 1
2π

∫ +∞

−∞
SX(ω) dω.

We see that the variance spectrum SX(ω) decomposes the variance of Xt

into contributions from cycles of different frequencies, which justifies the
name “variance spectrum”.

Remark 5.5.1 The literature does not agree on where to put the factor 2π.
Also, much of the physics and engineering literature measures frequencies
in cycles per time ν rather than radians per time ω; i.e., ω = 2πν. For a
scalar process, we can consider positive frequencies only, use dω = 2πdν,
and obtain

VXt = ρX(0) =
∫ +∞

0
2SX(2πν) dν.

In the scalar case, we may replace the complex exponential exp(−iωh) with
the cosine cos(ωh) since the autocorrelation function is even, and the spec-
trum is real-valued. This gives the simpler expression

SX(ω) =
∫ +∞

−∞
ρX(h) cos(ωh) dh. (5.9)

For the particular example of the driving force in Section 5.3, the auto-
covariance function (5.8) is L2, so we get the spectrum

SU (ω) =
∫ +∞

−∞
ρU (h) exp(−iωh) dh = 2σ2τ

1 + ω2τ2 (5.10)

as shown in Figure 5.4 (right panel). This form is archetypal: A low-
frequency asymptote 2σ2τ expresses the strength of slow oscillations present
in the force, and at high frequencies, there is a roll-off where the contribu-
tion of harmonics in the force decays with ω2. Between the two, there is a
cut-off frequency ω = 1/τ , corresponding to the decorrelation time τ , which
indicates the transition from slow to fast modes.

5.6 The Response to Noise

We now investigate how a linear system responds to a stochastic input {Ut}.
We consider the general linear system (5.3) where the initial condition

x0 ∈ Rn is deterministic, while the input {Ut : t ≥ 0} is a stochastic process
with mean ū(t) = EUt and autocovariance ρU (s, t) = E(Us − ū(s))(Ut −
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ū(t))>. We assume that {Ut : t ≥ 0} is so well-behaved that we can, for
each realization of {Ut : t ≥ 0}, compute the corresponding realization of
the solution {Xt : t ≥ 0} by means of the solution formula (5.6).

In this formula (5.6), we can take expectation on both sides. Fubini’s the-
orem allows us to commute expectation and time integration, so we obtain
for the mean value x̄(t) = EXt:

x̄(t) = eAtx0 +
∫ t

0
eA(t−s)Gū(s) ds.

Differentiating with respect to time, we obtain an ordinary differential equa-
tion governing the mean value:

d

dt
x̄(t) = Ax̄(t) +Gū(t). (5.11)

This equation can be solved uniquely for each initial condition x̄(0) = x0.
We see that we can obtain the governing ordinary differential equation for
the mean value simply by taking expectation in (5.3).

Next, we aim to obtain the covariance ρX(s, t) = E(Xs − x̄(s))(Xt −
x̄(t))>. Using Ũt = Ut − ū(t) and X̃t = Xt − x̄(t) for the deviations of the
processes from their mean values, we first write integral formulas for the
deviation at time s and t:

X̃s =
∫ s

0
eAvGŨs−v dv and X̃t =

∫ t

0
eAwGŨt−w dw.

Combining the two, and commuting the expectation and integration over
time, we obtain

ρX(s, t) = EX̃sX̃
>
t =

∫ s

0

∫ t

0
eAvGρU (s− v, t− w)G>eA>w dw dv. (5.12)

These integrals may not seem illuminating, but have patience - we will soon
see that they lead to a very tractable and explicit result in the frequency
domain. Focus on the special case where the input {Ut} is stationary and
the system is exponentially stable, i.e., all eigenvalues of A have negative
real part, so that the effect of the initial condition and old inputs vanishes
as time progresses. In this case, there exists a solution {Xt : t ≥ 0} which is
also wide-sense stationary.2 We focus on this solution.

Writing ρU (t− s) for ρU (s, t) and ρX(t− s) for ρX(s, t), we obtain

ρX(t− s) =
∫ s

0

∫ t

0
eAvGρU (t− s+ v − w)G>eA>w dw dv

and for s, t → ∞ with l = t− s fixed, this converges to

ρX(l) =
∫ ∞

0

∫ ∞

0
eAvGρU (l + v − w)G>eA>w dw dv. (5.13)

2There exist also non-stationary solutions, differing in the initial condition X0.
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since exp(Av) converges exponentially to zero as v → ∞, and since ρU (·) is
bounded by ρU (0).

Now we are ready to jump to frequency domain. Taking Fourier trans-
form of the autocovariance function ρX(·), we obtain the variance spectrum

SX(ω) =
∫ +∞

−∞
ρX(l) exp(−iωl) dl.

It is a standard result for Fourier transforms that convolutions in time do-
main, such as (5.13), correspond to multiplication in frequency domain. With
this, we obtain

SX(ω) = H(−ω) · SU (ω) ·H>(ω). (5.14)

Exercise 5.1: Verify the result (5.14).
In case where Xt and Ut are scalar, we get the simpler formula

SX(ω) = |H(ω)|2 · SU (ω).

In words, the contribution from a given frequency ω to the variance of Xt

depends on its presence in {Ut} and its magnification through system dy-
namics.

5.7 The White Noise Limit

For the example in Figures 5.2 and 5.3, the impulse response of the mass-
spring-damper system displayed damped oscillations with a period near 2π
s, since the eigenvalues have magnitude 1 s−1 and are near the imaginary
axis. In turn, the driving force was constant of periods of 15 s, on average.
In short, the driving force was slow compared to the system dynamics. The
stochastic differential equations we are interested in are characterized by the
opposite: The driving noise is fast compared to system dynamics. We can,
for example, consider the mass-spring-damper system subjected to random
forces from collisions with air molecules. The assumption is that there is a
separation of time scales where the system evolves on slow time scales, while
the force fluctuates on fast time scales. This separation of time scales allows
us to simplify the analysis.

Figure 5.5 shows spectra for the situation where the force applied to the
mass-spring-damper system is faster than the system dynamics. Specifically,
the resonance frequency is still 1 rad/s corresponding to a period of 2π s,
but now the mean time between force jumps is τ = 0.1 s.

In terms of the spectra, we see that in the frequency range up to, say, 5
rad/s, we can approximate the spectrum of the driving force with a constant
function

SU (ω) ≈ 2σ2τ for ω � 1/τ.
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Figure 5.5: Variance spectrum of position, velocity, and force for the mass-
spring-damper system. Lines are the analytical expressions. Dots are esti-
mated spectra based on simulation of the process. The average time between
jumps in the force is τ = 0.1 s.
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Moreover, we see that the total variance of the response Qt is not very
sensitive to the spectrum of the force F at frequencies larger than 5 rad/s,
since the frequency response of the system is small for such high frequencies.
Therefore we may as well ignore the details of the spectrum SU at high fre-
quencies, and approximate SU (ω) with the constant 2σ2τ for all frequencies
ω. This is called the white noise approximation.

Why do we call this white noise? Recall that when characterizing colors,
white light has the property that all colors of the rainbow (i.e., all frequencies
or wavelengths) are equally present. By analogy, a white noise signal is one
where all frequencies contribute equally to the variance or power. Scalar
white noise is characterized by one number, its intensity, which we take as
the constant value of the variance spectrum. In this example, we approximate
the force Ut with white noise with intensity 2σ2τ .

White noise signals are an idealization: Such a signal would have in-
finite variance, since its variance spectrum is not integrable. But it is a
useful approximation; when the force changes rapidly compared to the sys-
tem dynamics, we may approximate the force with a white noise signal.
The approximation is valid as long as we operate in the frequency range of
the system, i.e., at frequencies ω � 1/τ . We find that the spectrum of the
position is well approximated by

SQ(ω) ≈ 2σ2τ |H(ω)|2 for ω � 1/τ.

Approximating the force with white noise amounts to letting τ → 0, but at
the same time letting σ2 → ∞ so that the spectrum SU (0) = 2σ2τ remains
constant at frequency 0. At any other frequency ω, we have (pointwise)
convergence SU (ω) → SU (0) as τ → 0. In terms of the autocovariance
function of the driving force, which was

ρU (h) = σ2 exp(−|h|/τ),

we see that this corresponds to approximating the autocovariance function
with a Dirac delta:

ρU (h) → 2σ2τ · δ(h).

In the limit, ρU (h) vanishes for any non-zero h, and therefore the time-
domain characterization of white noise is independence, i.e., Us and Ut are
uncorrelated for any s 6= t.

5.8 Integrated White Noise is Brownian Motion

In this section, we show the connection between white noise and Brownian
motion: Brownian motion can, formally, be regarded as integrated white
noise. Stated differently, white noise can - formally - be seen as the derivative
of Brownian motion.
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First, we investigate the difference quotient of Brownian motion. Let
{Bt : t ≥ 0} be Brownian motion, let a time lag k be given, and define the
stochastic process {Xt : t ≥ 0} by

Xt = 1
k

(Bt+k −Bt).

This Xt is a difference quotient, and for small k we may think of {Xt : t ≥ 0}
as an approximation to the (non-existing) derivative of Brownian motion.

Exercise 5.2: Show that {Xt : t ≥ 0} is second order stationary, has
mean 0, and the following autocovariance function:

ρX(h) = k − |h|
k2 ∨ 0. (5.15)

(Recall our notation that a ∨ b = max(a, b))
The autocorrelation function (5.15) is shown in Figure 5.6. Note that as

the time lag k decreases towards 0, the a.c.f. approaches a Dirac delta.3 This
justifies the useful but imprecise statement that the derivative of Brownian
motion is delta-correlated.

Figure 5.6 displays also the spectrum of the difference quotient {Xt : t ≥
0}. The analytical expression for this spectrum is

SX(ω) =
{

21−cos ωk
ω2k2 for ω 6= 0,

1 for ω = 0.

Note that the spectrum at frequency 0 is SX(0) = 1 for any k, since the
a.c.f. integrates to 1 for any k. Note also that as k → 0, the spectrum SX(ω)
converges to the constant 1, for any frequency ω, in agreement with the a.c.f.
approaching a Dirac delta. So as the time lag vanishes, k → 0, the spectrum
of the difference quotient approaches that of white noise. This motivates
the statement “the derivative of Brownian motion is white noise”, which is
useful but should not be taken too literally since Brownian motion is not
differentiable.

Now, conversely, consider a white noise signal {Ut} with mean 0 and
autocovariance function ρU (h) = δ(h), which is to say that its variance
spectrum is SU (ω) = 1. The following derivation is purely formal, so try not
to be disturbed by the fact that such a signal does not exist! Instead, define
the integral process {Bt : t ≥ 0}

Bt =
∫ t

0
Us ds

3In the sense of weak convergence of measures, i.e.,
∫ +∞

−∞ f(h)ρX(h) dh ↓ f(0) as h ↓ 0
for any continuous function f .
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Figure 5.6: Autocorrelation function (left) and variance spectrum (right) of
the difference quotient of Brownian motion.

and consider the covariance structure of {Bt : t ≥ 0}. We can apply formula
(5.12) with A = 0, G = 1 to get

ρB(s, t) = EBsBt = s.

In particular, VBt = t. By stationarity, we get V(Bt − Bs) = t − s for
any 0 < s < t. Exercise: Show that the increments of {Bt : t ≥ 0} are
uncorrelated. That is, assume 0 < s < t < v < w, and show that E(Bt −
B − s)(Bw − Bv) = 0. We see that the mean and covariance structure of
{Bt : t ≥ 0} agrees with our definition 4.2.1 of Brownian motion. The
Gaussianity and continuity of {Bt} do not follow from this argument; there
we need more properties of the white noise signal {Ut}. Regardless, this
formal calculation justifies the statement “Brownian motion is integrated
white noise”. Again, this statement is useful but should not be taken too
literally since continuous time white noise does not exist as a stochastic
process in our sense.

5.9 Linear Systems Driven by White Noise

We now return to the linear system driven by noise

Ẋt = AXt +GUt. (5.16)

We are interested in the limiting case where Ut approaches white noise, cor-
responding to mass-spring-damper example when the mean time τ between
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jumps tends to 0. We will call this limit a linear stochastic differential equa-
tion in the narrow sense, because the drift term AXt is linear in the state,
and the noise term GUt is independent of the state. We say that the noise
enters additively. Here, we approach this limit indirectly since white noise
does not exist as a stochastic process. We first integrate the equation w.r.t.
dt to obtain

Xt −X0 =
∫ t

0
AXs ds+G

∫ t

0
Us ds.

Now, if {Ut} approximates white noise, the results of the previous section
show that the last integral will approximate Brownian motion

Xt −X0 =
∫ t

0
AXs ds+GBt. (5.17)

Since this equation involves Brownian motion and not white noise, it does
not suffer from the problem that white noise does not exist. We shall see,
in the following chapters, that it is the right starting point for a general
theory of stochastic differential equations; at that point we will re-write the
equation using the notation

dXt = AXt dt+G dBt. (5.18)

If the time t is small, we can approximate
∫ t

0 AXs ds ≈ AX0t, which leads
to

Xt ≈ X0 +AX0t+GBt.

This leads to an Euler-type method, known as the Euler-Maruyama method,
for solving the equation approximately recursively:

Xt+h = Xt +AXth+G(Bt+h −Bt). (5.19)

This algorithm allows us to simulate sample paths of {Xt}. This is the same
algorithm we pursued in Chapter 2 when simulating advective and diffusive
transport.

Note that if Xt is Gaussian, then so is Xt+h; in fact, the entire process
is Gaussian. Let us identify the mean and covariance structure of this Xt.
With x̄t = EXt, we get from (5.11)

x̄t = exp(At) x̄0.

For the covariance, we obtain from (5.12)

ρX(s, t) =
∫ s

0
eA(s−v)GG>eA>(t−v) dv,

using that the autocovariance function of the noise is ρU (v, w) = δ(v − w).
It is convenient to first look at the variance at time t, Σ(t) = ρ(t, t):

Σ(t) =
∫ t

0
eA(t−v)GG>eA>(t−v) dv. (5.20)
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Differentiating with respect to t, we obtain

d

dt
Σ(t) = AΣ(t) + Σ(t)A> +GG>. (5.21)

This is a linear matrix differential equation, known as the differential Lya-
punov equation. Together with the initial condition Σ(0) = 0 it determines
the variance function. See Exercise 5.7 for an alternative derivation, and
Exercise 5.8 for methods for finding the solution numerically. With Σ(·) in
hand, we can find the autocovariance function:

ρ(s, t) = EX̃sX̃
>
t (5.22)

= E(E{X̃sX̃
>
t |Xs}) (5.23)

= E(X̃sE{X>
t |Xs}) (5.24)

= E(X̃sX̃
>
s e

A>(t−s)) (5.25)

= Σ(s) · eA>(t−s). (5.26)

Here, we have used that the equation (5.11) for the mean also applies to
conditional expectations, so that E{Xt|Xs} = exp(A(t− s))Xs.

Of special interest are second-order stationary solutions where Σ(t) does
not depend on t, but satisfies the algebraic Lyapunov equation

AΣ + ΣA> +GG> = 0. (5.27)

This Σ is an equilibrium of the differential Lyapunov equation (5.21). It can
be shown that this linear matrix equation in Σ has a unique solution if A
contains no eigenvalues on the imaginary axis. See Exercise 5.8 for one way
to solve it. If A is exponentially stable (all eigenvalues in the open left half
plane), then the unique solution Σ is positive semidefinite, and the equation
expresses a balance between variance pumped into the system by noise (the
term GG>) and dissipated by the stable system dynamics A. In this case,
Σ(t) → Σ as t → ∞. This Σ will be positive definite if all linear combinations
of states in the system are affected by the noise. This will be the case if G
is square and invertible; a weaker and sufficient condition is that the pair
(A,G) is controllable (see Section 9.11.1).

To elaborate on the stability of A, consider the scalar equation dXt =
Xt dt+ dBt. The algebraic Lyapunov equation is 2Σ + 1 = 0 so Σ = −1/2!
The explanation is that the system is unstable, so Xt diverges to infinity,
and no steady-state exists.

In summary, in this common situation - a stable system all the dynamics
of which are excited by the noise - the process Xt will approach a stationary
Gaussian process. The stationary variance is Σ, the unique solution to the
algebraic Lyapunov equation (5.27), and the autocovariance function is

ρ(h) = Σ exp(A>h) for h ≥ 0. (5.28)
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Figure 5.7: A simulation of the Ornstein-Uhlenbeck process (solid) including
the expectation (dashed) and plus/minus one standard deviation (dotted).
Parameters are X0 = 1, λ = 1, σ = 1.

For h < 0, we use the relationship ρX(−h) = ρ>
X(h). Note that the matrix

exponential exp(At) determines both the impulse response (5.5) and the
autocovariance function of stationary fluctuations. This at the core of so-
called fluctuation-dissipation theory from statistical physics.

5.10 The Ornstein-Uhlenbeck Process

The simplest example of a linear system driven by white noise {Ut} arises
when the system is scalar:

Ẋt = −λXt + σUt

where λ, σ > 0. We take {Ut} to have unit intensity. This can alternatively
be written with the notation of (5.18) as

dXt = −λXt dt+ σ dBt.

This equation is referred to as the Langevin equation. A simulation of this
process is seen in Figure 5.7. Its expectation satisfies

x̄t = EXt = e−λtEX0.
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The variance Σ(t) = VXt, in turn, satisfies the differential Lyapunov equa-
tion Σ̇(t) = −2λΣ(t) + σ2, i.e.,

VXt = Σ(t) = σ2

2λ +
(

Σ(0) − σ2

2λ

)
e−2λt.

The stationary solution {Xt : t ≥ 0} to this equation is called the Ornstein-
Uhlenbeck process. Its mean is 0 and its variance satisfies the algebraic Lya-
punov equation −2λVXt + σ2 = 0 or VXt = σ2/(2λ), which gives the
autocovariance function

ρX(h) = σ2

2λe
−λ|h|.

Notice that the form of this a.c.f. coincides with that of the force {Ft}
from the mass-spring-damper system (equation (5.8) and Figure 5.4); i.e., a
two-sided exponential. So the variance spectrum of the Ornstein-Uhlenbeck
process has the form (5.10) and is seen in Figure 5.4. However, the Ornstein-
Uhlenbeck process is Gaussian while the force {Ft} from the mass-spring-
damper example was not. The Ornstein-Uhlenbeck process is also referred
to as low-pass filtered white noise, although this term can also be applied to
other processes. It is a fundamental building block in stochastic models in
more or less all areas of applications.

5.11 The Noisy Harmonic Oscillator

Another basic example of a linear system driven by white noise is the noisy
harmonic oscillator. This also serves as a fundamental building block in
stochastic models, when you need a stochastic process which is oscillatory
and dominated by a specific frequency. The mass-spring-damper system can
be seen as a noisy harmonic oscillator, when we subject it to a white noise
input. However, an alternative formulation which has a more symmetric
form is obtained with the linear stochastic differential equation

Ẋt = AXt + σ Ut, or dXt = AXt dt+ σ dBt.

Here, Xt ∈ R2. The noise process {Ut} is two-dimensional; its elements are
independent white noise with unit intensity. Correspondingly, {Bt : t ≥ 0}
is two-dimensional standard Brownian motion. The system matrix is

A =
[

−µ −k
k −µ

]
.

The parameter k specifies the dominating frequency, while µ specifies the
damping and σ scales the process and specifies the variance - see Exercise
5.3 to see exactly how. Simulations of this system are seen in Figure 5.8 for
two sets of parameters. In the one case, we take k = 1, µ = 0.05, and see
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quite persistent and regular oscillations. In the second case, k = 1, µ = 0.5,
the damping is higher, so the oscillations are more irregular. These patterns
are also visible in the autocovariance function and in the variance spectrum
- note that lower damping implies more sustained oscillations in the a.c.f.
and a more defined resonance peak in the variance spectrum.

Exercise 5.3:

1. Show that
exp(At) = e−µt

[
cos kt − sin kt
sin kt cos kt

]
.

2. Show that the stationary variance of {Xt} is

Σ = σ2

2µI.

3. Show that the a.c.f. is

ρX(t) = σ2

2µe
−µ|t|

[
cos kt − sin kt
sin kt cos kt

]
.

5.12 Conclusion

Linear systems of ordinary differential equations driven by random inputs
make a tractable class of stochastic dynamic systems. We can determine the
mean and autocovariance structure quite explicitly, and even if these two
statistics do not fully describe a stochastic process, they may be sufficient
for a given purpose. In the stationary case, where systems are stable and we
assume that the effect of a distant initial condition has decayed, we obtain
explicit formulas, most clearly in frequency domain (5.14): The spectrum of
the output is obtained by multiplying the spectrum of the input with the
squared frequency response.

When the noise fluctuates fast relative to system dynamics, it may be
an advantage to approximate it with white noise. In time domain, this cor-
responds to approximating the autocovariance function with a Dirac delta,
while in frequency domain, it corresponds to approximating the variance
spectrum with a constant function. It should be kept in mind that white
noise only exists as an idealization. Linear systems drive by white noise is
particularly simple to analyze with respect to variance structure; the Lya-
punov equation is a key element. Such linear systems are a simple special
case of stochastic differential equations. This theory is highly useful in prac-
tice.
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Figure 5.8: The noisy harmonic oscillator with k = 1. Left column: µ = 0.05,
σ2 = 10. Right column: µ = 0.5, σ2 = 1. Top row: Simulated sample paths
of {X(1)

t }. Middle row: The a.c.f. of {X(1)
t }. Bottom row: The variance

spectrum of {X(1)
t }.
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Frequency domain concepts and techniques are clear and powerful for
the case of linear systems, because each frequency can be analyzed in isola-
tion. For the nonlinear systems we study in the following chapters, frequency
domain techniques are less directly applicable, so our discussion will focus
on time domain. However, when modeling any dynamic system, it is good
practice to scrutinize which dynamics are active on which timescales, and
which timescales should be resolved by the model. This analysis will give
guidance to which dynamics should be considered “slow” and approximated
with constants, and which dynamics should be considered “fast” and repre-
sented by (possibly filtered) white noise. In this process, frequency domain
notions are very useful for framing the discussion, even if the overall model
contains nonlinear components.

From the point of view of constructing a theory, it is worth noting that
white noise presents a challenge, because it does not exist as a stochastic
process per se but rather represents a limit. However, we were able to cir-
cumvent this problem in two ways: First, we reformulated the differential
equation driven by white noise as an integral equation where Brownian mo-
tion appears. Next, we discretized time with the Euler-Maruyama method.
We shall see that these two techniques are also key for non-linear equations,
even if they need a bit more effort there.

5.13 Exercises

Exercise 5.4 Thermal Noise in an Electrical Circuit: In 1928,
John B. Johnson and Harry Nyquist found that random movements of elec-
trons in electrical components have the effect of an extra voltage supply,
which can be approximated by a white noise source. For the RC-circuit
(resistor-capacitor)

RQ̇t + Qt

C
= Vt

Vt R

C

where Qt is the charge in the capacitor, noise in the resistor acts as
an external voltage supply {Vt} which is white noise. Considering posi-
tive frequencies only, its spectrum is 4kBTR; with our notation, we have
SV (ω) = 2kBTR (compare remark 5.5.1). Here, kB = 1.4 ·10−23J K−1 is the
Boltzmann constant, T is the temperature, and R is the resistor.

1. Taking Vt = σ dBt/dt, where {Bt} is standard Brownian motion, find
σ. Find the numeric value of σ for T = 300 K, R = 1 kΩ, C = 1 nF.

2. Find a stochastic differential equation which governs Qt.
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3. Find the stationary mean, variance, a.c.f., and variance spectrum, of
the charge {Qt} and of the voltage {Qt/C} over the capacitor.

4. Find numerical values for the r.m.s. charge {Qt}, the voltage {Qt/C},
and their decorrelation time, for the parameters in question 1.

Exercise 5.5: This exercise reproduces Figure 1.1 on page 3 by posing
and solving differential equations for the motion in a wind turbine. The
equations are

Ḟt = −λ(f̄ − Ft) + σξt,

Ẋt = Vt

V̇t = −kXt − µVt + Ft

where Ft is the force from the wind on the turbine, Xt is the position, Vt

is the velocity, and {ξt} is white noise with unit intensity which drives the
force. All quantities are dimensionless; as parameters we take λ = 0.5, k = 1,
µ = 0.5, f̄ = 3, σ = 1, and the initial conditions are F0 = 0.5, X0 = V0 = 0.

1. Simulate the noise-free version of the system (Ut ≡ 0) for t ∈ [0, 30]
and plot the force, the position, and the velocity.

2. Include noise and simulate the system with the Euler-Maruyama
method. Construct a plot similar to Figure 1.1.

3. Extend the simulation to a longer period, for example, [0, 1000]. Com-
pute the empirical mean and variance-covariance matrix of force, posi-
tion, and velocity. Compute the same quantities analytically by solving
the algebraic Lyapunov equation (5.27) and compare.

Exercise 5.6: Consider the white noise limit of the wind turbine model
from the previous exercise, i.e.,

Ẋt = Vt, V̇t = −kXt − µVt + s ξt.

Here we have set the average force f̄ to 0; this corresponds to a shift of
origin for the position. Show that in stationarity, the position and velocity
are uncorrelated. Next, show that equipartioning of energy holds, i.e., the
average kinetic energy E1

2V
2

t equals the average potential energy E1
2kX

2
t .

Exercise 5.7 The Differential Lyapunov Equation Revisited:
An alternative derivation of the differential Lyapunov equation (5.21)

Σ̇(t) = AΣ(t) + Σ(t)A> +GG>
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is as follows: Assume that Σ(t) = VXt is given. We aim to find Σ(t+h). To
this end, use the Euler-Maruyama scheme

Xt+h = Xt +AXth+G(Bt+h −Bt).

Use this to find the variance Σ(t+ h) of Xt+h. Divide with h and let h → 0
to find a differential equation for Σ(t).

Exercise 5.8 Numerical Solution of the Differential Lya-
punov Equation: Consider again the differential Lyapunov equation
(5.21)

Σ̇(t) = AΣ(t) + Σ(t)A> +GG>, Σ(0) = Q = Q>,

governing the variance-covariance matrix for the linear system dXt =
AXt dt+G dBt. Here, A, Σ(t), GG> and Q are n-by-n matrices.

1. Show the following: If there exists a S = S> such that AS + SA> +
GG> = 0, then the solution can be written

Σ(t) = S − eAt(S −Q)eA>t

Note: If A is strictly stable, then S is guaranteed to exist, will be non-
negative definite, and is the steady-state variance-covariance matrix of
the process, i.e., Σ(t) → S as t → ∞.

2. Show that the differential Lyapunov equation can be written as

ṡt = Mst + g

where st is a column vector made from entries of Σ(t) by stacking
columns on top of each other, g is a column vector made from GG>

in the same way, and M is the n2- by- n2 matrix

M = A⊗ I + I ⊗A

where ⊗ is the Kronecker product, and I is an n-by-n identity matrix.

3. Show that the solution can be written as(
g
st

)
= eP t

(
g
s0

)
where

P =
[

0 0
I M

]
Hint: Show that (g, st) satisfies the linear ODE(

ġ
ṡt

)
=
(

0
g +Mst

)
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4. Now, let Σ(t;Q) be the solution of the differential Lyapunov condi-
tion with non-zero initial condition Σ(0) = Q. Show that Σ(t;Q) =
exp(At)Q exp(A>t)+S(t; 0); i.e., the variance of Xt has two elements:
One that stems from the variance of X0, and one that stems from the
noise in the interval [0, t].

These algorithms have been implemented in function dLinSDE in SDEtools.

Exercise 5.9 The Brownian Bridge: Let {Xt : 0 ≤ t ≤ T} be
the solution to the Itô equation

dXt = b−Xt

T − t
dt+ dWt

where {Wt} is standard Brownian motion. Show that Xt has the same statis-
tics as the Brownian bridge; i.e., show that EXt = E{Bt|BT = b} and that
VXt = V{Bt|BT = b} for 0 ≥ t ≥ T .

Exercise 5.10 Vibrating Pearls on a String: Consider n pearls
on a string vibrating according to the equation

dXt = Vt dt, dVt = −KXt dt− cVt dt+ σdBt

where Xt, Vt, Bt ∈ Rn. Here, K is the matrix

Kij =


2κ if i = j,
−κ if i = j ± 1,
0 else.

Show that in stationarity, Xt and Vt are uncorrelated, and that the station-
ary variance of Xt is related to K−1 while the stationary variance of Vt is a
constant times the identity matrix. Perform a stochastic simulation of the
system with n = 16, c = 0.1, κ = 2, σ = 1, t = 0, 1, 2, . . . , 900. Compare the
empirical variance with the theoretical. Plot the position of the pearls at a
few chosen time points.
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Chapter 6

Stochastic Integrals and the
Euler-Maruyama Method

In Chapter 5, we considered systems of linear differential equations driven
by white noise. We now extend this to non-linear systems:

dXt

dt
= f(Xt) + g(Xt)ξt.

Here, {ξt} is white noise, which we in the last chapter saw could be un-
derstood as the time derivative of Brownian motion, ξt = dBt/dt, if only
formally.

Unfortunately, when the noise intensity g(x) depends on the state x,
there is ambiguity in this equation: It can be understood in different ways.
So our first challenge is to define exactly how this equation should be un-
derstood. The root of the problem is that the white noise process {ξs} is not
a stochastic process in the classical sense, but represents a limit; details in
the limiting procedure affect the result.

To resolve this ambiguity, we will make use of the same two techniques
which we applied to linear systems: We integrate the equation to obtain
an integral equation in which Brownian motion appears. This introduces a
stochastic integral, which we need to define; the way we do this is motivated
by the Euler-Maruyama method.

The study of these stochastic integrals is technically challenging, be-
cause they hinge on small-scale fluctuations. It is useful to build intuition
by simulating the solutions of equations. Here, we give a number of such
examples.

119
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6.1 Ordinary Differential Equations Driven by
Noise

We now motivate our framework for stochastic differential equation and
stochastic integrals, skipping technicalities. Consider a non-linear ordinary
differential equation Ẋt = f(Xt) perturbed by a driving noise signal {ξt :
t ≥ 0}:

dXt

dt
= f(Xt, t) +Gξt, X0 = x, (6.1)

where G is a constant noise intensity. We assume that {ξt} is smooth enough
that this equation has a solution in the classical sense, for each realization.
Our interest is now the limit where {ξt} approaches white noise (see Section
5.8), but we have to approach this limit carefully, since white noise is not a
stochastic process in the classical sense. We first integrate the left and right
hand sides of the equation over the time interval [0, t], finding:

Xt −X0 =
∫ t

0
f(Xs, s) ds+G

∫ t

0
ξs ds.

As {ξt} approaches white noise, the last integral approaches Brownian mo-
tion, and the equation becomes

Xt −X0 =
∫ t

0
f(Xs, s) ds+GBt.

Now, the elusive white noise process no longer appears, and in stead we have
an integral equation in which Brownian motion {Bt} enters as a driving term.
This is a key observation, even if we at this point cannot say anything about
solving this integral equation.

Next, we turn to the more general case, where the noise intensity is
allowed to vary with the state and with time:

dXt

dt
= f(Xt, t) + g(Xt, t)ξt, X0 = x. (6.2)

Repeating the approach in the previous, integration with respect to time
leads to the term ∫ t

0
g(Xs, s)ξs ds

so we need to assign a meaning to this integral in the limit where {ξt} ap-
proaches white noise. One way forward is to pursue an Euler-type algorithm
for time discretization, the Euler-Maruyama scheme, for the equation (6.2):

Xt+h = Xt + f(Xt, t) h+ g(Xt, t)(Bt+h −Bt). (6.3)

To motivate this scheme, first notice that with no noise (g ≡ 0), this is
the explicit Euler method for the ordinary differential equation dXt/dt =
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f(Xt, t). Next, for the equation dXt/dt = ξt (f ≡ 0, g ≡ 1), the scheme leads
to Xt = X0 +Bt, which agrees with Brownian motion being integrated white
noise (Section 5.8). The scheme (6.3) generalizes the way we simulated the
motion of particles subject to advection and (constant) diffusion in Section
2.6. The scheme is explicit and therefore simple to implement and analyze.
Despite these arguments, we emphasize that the Euler-Maruyama scheme is
a choice and that there are alternatives; notably, the Stratonovich approach
which we will discuss in Section 6.8.

Now, partition the time interval [0, t] into subintervals, 0 = t0 < t1 <
· · · < tn = t. When we apply the Euler-Maruyama scheme (6.3) to each
subinterval, we find the state at the terminal time t:

Xt = X0 +
n−1∑
i=0

(Xti+1 −Xti)

= X0 +
n−1∑
i=0

f(Xti , ti) · (ti+1 − ti) +
n−1∑
i=0

g(Xti , ti)(Bti+1 −Bti). (6.4)

We can now consider the limit of small time steps. As before, we use the
notation |∆| = max{ti − ti−1 : i = 1, . . . , n}. With this notation, in the limit
|∆| → 0, the first sum converges to an integral:

n−1∑
i=0

f(Xti , ti) · (ti+1 − ti) →
∫ t

0
f(Xs, s) ds.

To deal with the second term,∑n−1
i=0 g(Xti , ti)(Bti+1 −Bti), which we have not

seen before, we definine the Itô integral with respect to Brownian motion:∫ t

0
g(Xs, s) dBs = lim

|∆|→0

n−1∑
i=0

g(Xti , ti)(Bti+1 −Bti). (6.5)

Then we obtain the solution Xt, in the limit of small time steps:

Xt = X0 +
∫ t

0
f(Xs, s) ds+

∫ t

0
g(Xs, s) dBs. (6.6)

It is customary to write this in differential form:

dXt = f(Xt, t) dt+ g(Xt, t) dBt. (6.7)

This can either be understood as a shorthand for the integral equation (6.6),
as an “infinitesimal version” of the Euler-Maruyama scheme (6.3), or simply
as the differential equation (6.2) where we have (formally) multiplied with
dt and used ξt = dBt/dt.

To summarize, a differential equation driven by white noise can be rewrit-
ten as an integral equation. Here, a new Itô integral appears that integrates
with respect to Brownian motion. The solution can be approximated using
the Euler-Maruyama discretization.
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Figure 6.1: Simulation of Brownian motion with drift with u = σ = 1. Left
panel: t ∈ [0, 0.01]. Right panel: t ∈ [0, 100].

6.2 Some Exemplary Equations

Before we go deep into the mathematical construction of the Itô integral and
the resulting stochastic differential equations, it is useful to explore some
simple models, primarily by means of simulation using the Euler-Maruyama
scheme (6.3). Together with the Ornstein-Uhlenbeck process (Section 5.10)
and the noisy harmonic oscillator (Section 5.11), the following examples give
an idea of the types of dynamics these models display.

6.2.1 Brownian Motion with Drift

The simplest stochastic differential equation which contains both drift and
noise, is:

dXt = u dt+ σ dBt.

For an initial condition X0 = x0, it is easy to see that process {Xt : t ≥ 0}
given by Xt = x0 + ut + σBt satisfies this equation; simply verify that it
satisfies the Euler-Maruyama scheme exactly, for any discretization of time.
This process corresponds to the solution (2.10) of the advection-diffusion
equation (2.9) with constant flow u and diffusivity D = σ2/2. A simulation
is seen in figure 6.1. Notice that depending on the time scale, the bias ut may
dominate over the random walk σ dBt, or vice versa (compare Section 2.4).
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Figure 6.2: Simulation of the double well model with r = 1, q = 1, σ = 0.5,
X0 = 0. The computational time step is 0.01.

6.2.2 The Double Well

Figure 6.2 shows a simulation of the process {Xt} given by the stochastic
differential equation

dXt = (rXt − qX3
t ) dt+ σ dBt. (6.8)

This process combines a nonlinear drift f(x) = rx−qx3 with additive noise,
g(x) = σ. When r, q and σ are positive parameters, as in the simulation,
this is called the double well model. The reason is that the drift, f(x) =
rx − qx3, can be seen as the negative derivative of a potential function
u(x) = 1

2rx
3 − 1

4qx
4, which has two “potential wells”, i.e., local minima,

at x = ±
√
r/q. The drift takes the process towards the nearest of these

potential wells, but the noise perturbs it away from the center of the wells,
and occasionally, the process transits from one well to the other. As long
as the process stays in one well, the sample paths look quite similar to
the Ornstein-Uhlenbeck process. There is no known analytical solution to
this stochastic differential equation. The model is an archetype of a bistable
system.

6.2.3 Geometric Brownian Motion

We now consider the simplest stochastic differential equation in which the
noise intensity g(x) actually varies with the state:

dXt = rXt dt+ σXt dBt, X0 = x.

This equation is called wide-sense linear and its solution {Xt : t ≥ 0} is
called Geometric Brownian motion. Figure 6.3 shows simulations obtained
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Figure 6.3: Simulation of geometric Brownian motion. Left panel: r = −0.5,
σ = 1. Right panel: r = 1, σ = 1.

with two sets of parameters; one that (loosely) leads to stochastic exponen-
tial decay, and another which leads to stochastic exponential growth.

In the next chapter, we will use stochastic calculus to verify that the
solution to this equation is

Xt = x exp
(
rt− 1

2σ
2t+ σBt

)
.

Notice that the solution is linear in the initial condition x. In particular,
if X0 = 0, then Xt = 0 for all t ≥ 0. This happens because both the drift
f(x) = rx and the noise intensity g(x) = σx vanish at the equilibrium point
x = 0.

Since geometric Brownian motion is the simplest case with state-varying
noise intensity, we will return to this process repeatedly, to illustrate the
theory. Geometric Brownian motion may be used in biology to describe
population growth, in finance to describe the dynamics of prices, and in
general in any domain where noisy exponential growth or decay is needed.

6.2.4 The Stochastic van der Pol Oscillator

As an example of two coupled stochastic differential equations, consider the
van der Pol oscillator with additive noise:

dXt = Vt dt, dVt = µ(1 −X2
t )Vt dt−Xt dt+ σ dBt. (6.9)
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Figure 6.4: The stochastic van der Pol oscillator with µ = 1, σ = 1/2. Left
panel: The position Xt vs. time. Right panel: Trajectories in the phase plane
(Xt, Vt).

Without noise, the van der Pol system is a reference example of a nonlinear
oscillator: When the position Xt is near 0, there is negative damping, so if
the process starts near the equilibrium at the origin, the state (Xt, Vt) will
spiral out. When the position |Xt| is outside the unit interval, the damping
becomes positive, so that oscillations remain bounded, and a limit cycle
appears. Here, we add noise in the simplest form, i.e., additive noise on the
velocity. A simulation is seen in figure 6.4 where we start at the origin. Noise
perturbs the state away from the equilibrium of the drift, and the state
quickly spirals out. It then approaches a limit cycle, but is continuously
perturbed from it.

6.3 The Itô Integral and its Properties

We now turn to the mathematical construction of the Itô integral (6.5). Let
(Ω,F , {F t : t ≥ 0},P) be a filtered probability space and let {Bt : t ≥ 0} be
Brownian motion on this space.

Theorem 6.3.1 (Itô Integral; L2 Version) Let 0 ≤ S ≤ T and let {Gt :
S ≤ t ≤ T} be a real-valued stochastic process, which has left-continuous
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∫Gt It

Bt

Figure 6.5: The Itô integral seen as an operator that, for each t ≥ 0, produces
It =

∫ t
0 Gs dBs, from {Gs : 0 ≤ s ≤ t} and {Bs : 0 ≤ s ≤ t}.

Biography: Kiyosi Itô (1915–2008)
Born in Japan, he held positions Princeton,
Aarhus, and Cornell, as well as at several Japanese
universities. He made fundamental contributions
to the theory of stochastic processes, besides his
seminal work on what we now call Itô calcu-
lus, where he focused on sample paths and the
stochastic differential equations they satisfy. Be-
tween 1938 and 1950 he developed the stochastic
integral and the associated calculus, inspired by
the work of Kolmogorov, Lévy, and Doob.

sample paths, which is adapted to {F t}, and for which
∫ T

S E|Gt|2 dt < ∞.
Then the limit

I = lim
|∆|→0

#∆∑
i=1

Gti−1(Bti −Bti−1) (limit in mean square) (6.10)

exists. Here ∆ = {S = t0 < t1 < t2 < · · · < tn = T} is a partition of [S, T ].
We say that {Gt} is L2 Itô integrable, and that I is the Itô integral:

I =
∫ T

S
Gt dBt.

We outline the proof of this theorem in Section 6.11.1. Notice that we
evaluate the integrand {Gt} at the left end of each sub-interval [ti−1, ti], in
agreement with the explicit Euler-Maruyama method of Section 6.1, and, in
particular, (6.5). The Itô integral can be seen as an operator that combines
the two inputs. the integrand {Gt} and the integrator {Bt}, to produce the
output, the Itô integral {It} where It =

∫ t
0 Gs dBt (Figure 6.5).

The definition suggests how to approximate an Itô integral numerically:
Fix the partition ∆ and compute the sum in the definition. The following
code from the package SDEtools assumes that {Gt} and {Bt} have been
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tabulated on time points t1, t2, . . . , tn. It then computes and returns the
integrals

∫ ti
t1
Gt dBt for i = 1, . . . , n, based on the approximation that the

integrand is piecewise constant.
i t o i n t e g r a l <− f unc t i on (G,B)

c (0 , cumsum( head (G, −1)∗ d i f f (B) ) )
Now we can state a number of properties of the Itô integral:

Theorem 6.3.2 Let 0 ≤ S ≤ T ≤ U ; let {Ft : 0 ≤ t ≤ U} and {Gt : 0 ≤
t ≤ U} be L2 Itô integrable on [0, U ] with respect to {Bt}. Then the following
holds:

1. Additivity:
∫ U

S Gt dBt =
∫ T

S Gt dBt +
∫ U

T Gt dBt.

2. Linearity:
∫ T

S aFt+bGt dBt = a
∫ T

S Ft dBt+b
∫ T

S Gt dBt when a, b ∈ R.

3. Measurability:
∫ T

S Gt dBt is FT -measurable.

4. Continuity: {It} is continuous in mean square and can be taken to
have continuous sample paths.

5. The martingale property: The process {It : 0 ≤ t ≤ U}, where It =∫ t
0 Gs dBs, is a martingale (w.r.t. {F t : t ≥ 0} and P).

6. The Itô isometry: E|
∫ T

S Gt dBt|2 =
∫ T

S E|Gt|2 dt.

Let us briefly discuss these properties: We would expect any integral to
be additive and linear; recall that (probability) measures and expectations
are (Chapter 3). We also expect the integral to depend continuously on the
upper limit. Measurability is natural from the point of view of information
flow: The device in figure 6.5 needs to know the signals {Gs : 0 ≤ s ≤ t} and
{Bs : 0 ≤ s ≤ t} in real time to compute It, and then knows the result of
this computation. That is, we assume that {Gt} and {Bt} are {F t}-adapted,
and conclude that the same applies to {It}.

What is left are the two most noticeable of these properties: The mar-
tingale property and the Itô isometry. The martingale property says that
the expected value of a future integral is always 0:

E
{∫ T

S
Gt dBt

∣∣∣∣∣FS

}
= 0.

In turn, the Itô isometry establishes the variance of this integral. These
two properties are specific to the Itô integral, so they represent a choice. A
major argument in favor of Itô’s way of defining the integral, is that it leads
to these two properties.

Proof: We outline the proof only; see e.g. (Øksendal, 2010). We derive
the mean and variance of the Itô integral under the additional assumption
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there is a K > 0 such that E|Gt|2 < K for all t; see Section 6.6.1 for how
to relax this assumption. Assume that {Gt} is Itô integrable on the interval
[S, T ]. Fix the partition ∆ = {S = t0 < t1 < · · · < tn = T} and consider the
sum in (6.10), i.e.,

I∆ =
n∑

i=1
Gti−1(Bti −Bti−1).

Each of the terms in this sum has expectation 0; to see this, first condition
on F ti−1 and then use the law of total expectation. Hence, EI∆ = 0.

Next, any two distinct terms in the sum are uncorrelated: Take i < j
and consider the conditional expectation :

E
{
Gti−1Gtj−1(Bti −Bti−1)(Btj −Btj−1)|F tj−1

}
.

Here, all terms are F tj−1-measurable, except the last Brownian increment,
so this conditional expectation equals 0. The law of total expectation then
implies that also the unconditional expectation is 0, so that the two terms
are indeed uncorrelated. Thus,

EI2
∆ =

n∑
i=1

EG2
ti−1(Bti −Bti−1)2

=
n∑

i=1
EE

{
G2

ti−1(Bti −Bti−1)2
∣∣∣F ti−1

}
=

n∑
i=1

EG2
ti−1(ti − ti−1).

Since I∆ → I in mean square by assumption, this shows that EI = 0 and
EI2 =

∫ T
S EG2

t dt.
Linearity follows from I∆ being linear in the integrand. For measurability,

note first that I∆ is obviously FT -measurable for each partitioning ∆. Now
write the limit I as a sum, say, I = X + Y , where X is FT -measurable and
Y is in the orthogonal complement. Then E(I∆ − I)2 = E(I∆ −X)2 + EY 2

so we conclude that I∆ → X in mean square and EY 2 = 0. To see that
additivity holds, notice that if {Gt} is Itô integrable on an interval [S,U ],
then the contributions from the subintervals [S, T ] and [T,U ] are orthogonal,
so that {Gt} is Itô integrable on subintervals.

This implies that It is defined for all t ∈ [0, U ]. To see that {It} is
a martingale, note first that IT is FT -measurable and that E|IT | < ∞.
Inspecting our previous argument regarding the sum in I∆, conditioning on
FS and using the tower property rather than the law of total expectation,
we see that E{

∫ T
S Gt dBt|FS} = 0. Since S and T are arbitrary, this implies

that {It} is a martingale with respect to {F t}.
Continuity of {It} in mean square follows from the Itô isometry: Note

that I = IT − IS ; now let T → S, then E|I|2 → 0. See (Øksendal, 2010) for
the proof that the sample paths of {It} can be taken to be continuous.
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6.4 A Cautionary Example: ∫ t0 Bs dBs

Itô integrals do not behave like Riemann integrals, and this has far-reaching
consequences. To demonstrate this with an example, consider integrating
Brownian motion with respect to itself, i.e.,∫ t

0
Bs dBs.

Following Theorem 6.3.1, we approximate this integral numerically by dis-
cretization, using a uniform partition of the time interval [0, t] with mesh
(time step) h > 0:

0 = t0 < t1 < t2 < · · · < tn = t with ti = ih, hn = t.

Let IL
t denote the approximation to the integral based on this partition:

IL
t =

n∑
i=1

Bti−1(Bti −Bti−1).

In Riemann integration, it does not matter where in the interval [ti−1, ti]
we evaluate the integrand, when we afterwards consider the fine time dis-
cretization limit h → 0. To see if this also applies to stochastic integrals, let
IR

t be the corresponding approximation using the right endpoint:

IR
t =

n∑
i=1

Bti(Bti −Bti−1).

Figure 6.6 shows the two approximations, as functions of t, and for two
values of h. Note that the difference between the two discretizations appears
to grow with time, but does not seem very sensitive to the time step h. In
fact, it is easy to see that

IR
t − IL

t =
n∑

i=1
(Bti −Bti−1)2. (6.11)

Taking expectation, and using that increments in Brownian motion satisfy
E(Bt − Bs)2 = |t − s|, we get that E(IR

t − IL
t ) = t. Moreover, as the dis-

cretization becomes finer, the difference between the two discretizations is
exactly the quadratic variation of Brownian motion: IR

t − IL
t → [B]t = t,

almost surely.
We conclude that the Itô integral is affected by our choice that we eval-

uate the integrand at the left side. This is contrast to Riemann integrals.
The difference is due to the small-scale fluctuations in Brownian motion, i.e.,
that the quadratic variation ∑n

i=1(Bti −Bti−1)2 does not vanish in the limit
of fine partitions, while the variation ∑n

i=1 |Bti − Bti−1 | diverges (Section
4.3).
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Figure 6.6: Top panel: A realization of Brownian motion Bt for t ∈ [0, 1]. Bot-
tom panel: Left hand (IL

t ) and right hand (IR
t ) approximations of

∫ t
0 Bs dBs.

Thick grey lines use a fine grid (h = 2−13) while thin black lines use a coarse
grid (h = 2−9). Included is also B2

t /2 (thick solid line).



CHAPTER 6. STOCHASTIC INTEGRALS 131

Moreover, if we try to apply the elementary calculus and solve the inte-
gral by substitution u = Bt, this would lead us to believe that

∫ t
0 Bs dBs =∫ Bt

0 u du = 1
2u

2
∣∣∣Bt

0
= 1

2B
2
t , using that B0 = 0. If you are uncomfortable with

this substitution, then go ahead and pretend that Bt is differentiable with
derivative ξt, rewrite the integral as

∫ t
0 Bsξs ds, and then do the substitution

u = Bt, du = ξt dt. This analytical “result” for the integral is also included
in figure 6.6. Note that it lies perfectly in between the two numerical approx-
imations. In fact, this analytical expression corresponds to the Stratonovich
integral (Section 6.8) where the integrand is evaluated at the midpoint.

Although we see that standard calculus does not agree with the numerical
discretization, it does provide a clue which we can exploit to evaluate the
approximation IL

t . Manipulating the sum, we find

IL
t =

n∑
i=1

Bti−1 · (Bti −Bti−1)

= 1
2

n∑
i=1

(Bti +Bti−1) · (Bti −Bti−1) − 1
2

n∑
i=1

(Bti −Bti−1) · (Bti −Bti−1)

= 1
2

n∑
i=1

(B2
ti

−B2
ti−1) − 1

2

n∑
i=1

(Bti −Bti−1)2

= 1
2B

2
t − 1

2

n∑
i=1

(Bti −Bti−1)2

Letting the mesh |∆| go to zero, and using the quadratic variation of Brow-
nian motion [B]t = t, we find∫ t

0
Bs dBs = lim

|∆|→0
IL

t = 1
2B

2
t − 1

2 t. (6.12)

It may seem like a painstaking effort needed to compute what should be
a simple integral; luckily, in Chapter 7 we will learn how to reach the re-
sult (6.12) using calculus, which is much more efficient.

Combining with (6.11) we find that IR
t → 1

2B
2
t + 1

2 t, so that the average
of the two approximations 1

2(IL
t + IR

t ) approaches 1
2B

2
t .

In summary: In the Itô integral, we choose to evaluate the integrand at
the left side of every sub-interval. This choice matters, in contrast to the
Riemann integral: If we evaluate the integrand differently, we get a different
integral. Moreover, when we evaluate the integrand in either of the end
points, we cannot solve the integral by substitution using the classical chain
rule of calculus. Therefore we need to develop a stochastic calculus (Chapter
7).
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6.5 Itô Processes and Solutions to SDEs

The Itô integral
∫ t

0 Gs dBs allows us to define what it means to add white
noise to a differential equation. We can now specify the class of processes
in which we search for solutions to stochastic differential equations: These
involve an Itô integral with respect to Brownian motion, as well as an integral
with respect to time.

Definition 6.5.1 (Itô process; L2 version) Given a filtered probability
space (Ω,F , {F t},P), we say that a process {Xt : t ≥ 0} given by

Xt = X0 +
∫ t

0
Fs ds+

∫ t

0
Gs dBs (6.13)

is an L2 Itô process, provided that the initial condition X0 is F0-measurable
(for example, deterministic), and that {Ft} and {Gt} are adapted and have
left-continuous sample paths and locally integrable variance.

We use the shorthand

dXt = Ft dt+Gt dBt

for such a process; this shorthand does not refer to the initial position X0,
which is required to fully specify the process. We call {Ft} the drift of the
process, and {Gt} the intensity.

Proposition 6.5.1 Let {Xt} be an L2 Itô process, then

EXt = EX0 +
∫ t

0
EFs ds

and the quadratic variation is

[X]t =
∫ t

0
|Gs|2 ds.

Proof: Assume first that Ft = F0 and Gt = G0 where F0 and G0 are
bounded F0-measurable random variables. Then Xt = X0 + F0t+G0Bt so
the expectation EXt is immediate. For the quadratic variation, consider a
partition ∆ of [0, t]; then

#∆∑
i=1

|Xti −Xti−1 |2 =
#∆∑
i=1

|F0(ti − ti−1) +G0(Bti −Bti−1)|2

= F 2
0

#∆∑
i=1

(ti − ti−1)2 +G2
0

#∆∑
i=1

(Bti −Bti−1)2

+ 2F0G0

#∆∑
i=1

(ti−1 − ti)(Bti −Bti−1).
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In the limit |∆| → 0, the first term involving F 2
0 vanishes. The second term

converges to G2
0[B]t = G2

0t. The third term, conditional on F0 and for a
fixed partition ∆, is Gaussian with mean 0 and variance 4F 2

0G
2
0
∑(∆ti)3, so

converges to 0 in mean square as |∆| → 0.
Next, the results hold also if {Ft} and {Gt} are elementary processes;

applying the previous to the each sub-interval where the integrands are
constant. Finally, we approximate {Ft} and {Gt} with elementary processes
and see that the results carry over to the limit.

If the time step h is small, and the integrands are continuous, then
the conditional distribution of Xt+h given F t is approximately normal with
mean and variance given by

E{Xt+h|F t} = Xt + Ft · h+ o(h), V{Xt+h|F t} ≈ |Gt|2 · h+ o(h).

Thus, Ft determines the incremental mean while Gt determines the incre-
mental variance.

Although Itô processes are not tied up to the application of particles
moving in fluids, it is useful to think of an Itô process as the position of
such a particle. In that case, {Ft} is the random “drift” term responsible for
the mean change in position of {Xt}, while {Gt} is the random intensity of
the unbiased random walk resulting from collisions with fluid molecules. 1

Our main motivation for defining Itô processes is that they serve as
solutions for stochastic differential equations:

Definition 6.5.2 (Solution of a stochastic differential equation) We
say that the stochastic process {Xt} satisfies the (Itô) stochastic differential
equation

dXt = f(Xt, t) dt+ g(Xt, t) dBt

where {Bt} is Brownian motion on a filtered probability space (Ω,F , {F t :
t ≥ 0},P) if {Xt} is an Itô process

dXt = Ft dt+Gt dBt

where Ft = f(Xt, t) and Gt = g(Xt, t). In that case we call {Xt} an Itô
diffusion.

The theory of stochastic differential equations operate also with other
definitions of solutions, and then, the one given here is denoted a strong
solution. We consider only such strong solutions.

1It is tempting to equate Ft with the bulk fluid flow at the position of the particle,
and relate Gt to the diffusivity at the particle, but this is only true when the diffusivity
in constant in space. We shall return to this issue later, in Section 9.5.
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6.6 Relaxing the L2 Constraint

Theorem 6.3.1, which established the Itô integral, assumed that the pro-
cess {Gt : t ≥ 0} had locally integrable variance,

∫ t
0 E|Gs|2 ds < ∞. This

assumption allowed us to use the machinery of L2 spaces when proving con-
vergence. Although this assumption holds in the majority of applications we
are interested in, it is somewhat restrictive and becomes tedious, because
we must constantly check the variance of the integrands. It turns out that
we can relax the assumption and only require that almost all sample paths
of {Gt} are square integrable:

P
(

∀t ≥ 0 :
∫ t

0
|Gs|2 ds < ∞

)
= 1. (6.14)

Notice that this holds if the sample paths of {Gt} are continuous. The Itô in-
tegral can be extended to cover also these integrands; see (Øksendal, 2010;
Karatzas and Shreve, 1997; Rogers and Williams, 1994b). The technique
is to approximate {Gt} with bounded processes {G(n)

t } given by G
(n)
t =

Gt1{|Gt| ≤ n}. Each of these {G(n)
t } are Itô integrable in the sense of Theo-

rem 6.3.1 and their Itô integrals I(n) =
∫ T

S G
(n)
s dBs converge in probability.

We define the Itô integral I =
∫ T

S Gs dBs as the limit.
The resulting Itô integral may not have a well-defined expectation, be-

cause tail contributions do not vanish. Consider for example the constant
integrand Gt ≡ G = exp(X2) where X is a standard Gaussian variable
which is F0-measurable (and therefore independent of the Brownian motion
{Bt}). Note that EG = ∞. We then get

It =
∫ t

0
Gs dBs = eX2

Bt.

and therefore E|It| = EG · E|Bt| = ∞. So EIt is not defined and the process
{It =

∫ t
0 Gs dBs} is not a martingale. Moreover, the Itô isometry only applies

in the sense that E|It|2 = ∞ =
∫ t

0 E|Gs|2 ds. To get an operational theory, we
localize the integral: We introduce an outer bound R > 0 and the stopping
time τR = inf{t ≥ 0 : |It| > R}. Then, the stopped process {It∧τR} is a
martingale and we say that {It} is a local martingale. This technique of
localization is then used throughout. This allows us to generalize also the
notion of Itô processes:

Definition 6.6.1 (Itô process; general version) With the setup in Def-
inition 6.5.1, we say that {Xt} is an Itô process, if X0 is F0-measurable,
{Ft} and {Gt} are adapted and have left-continuous sample paths.

Karatzas and Shreve (1997) relax the assumption of left-continuity even
further.
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6.7 Integration with Respect to Itô Processes

We introduced the notation

dXt = Ft dt+Gt dBt

for an Itô process as a shorthand for

Xt −X0 =
∫ t

0
Fs ds+

∫ t

0
Gs dBs.

However, the notation suggests that dXt, dt and dBt are objects belonging
to the same class. For example, provided Gt > 0, we can re-write formally

1
Gt

dXt − Ft

Gt
dt = dBt

which would then be a shorthand for∫ t

0

1
Gs

dXs −
∫ t

0

Fs

Gs
ds = Bt −B0.

This, however, requires that we can integrate not only with respect to time
t and Brownian motion {Bt : t ≥ 0}, but also with respect to an Itô process
{Xt : t ≥ 0}. It turns out that we can indeed extend the definition of the
Itô integral, so that we can also integrate with respect to Itô processes:

∫ t

0
Hs dXs = lim

|∆|→0

#∆∑
i=0

Hti(Xti+1 −Xti).

The limit needs only be in probability, but will often be in mean square.
The conclusion from this is that the stochastic differential equation dXt =
Ft dt+Gt dBt can be seen as an equation among integrators. One particular
Itô process, which we will repeatedly use as an integrator, is the quadratic
variation process [X]t.

It is possible to define Itô integrals with respect to a larger class of
processes known as semimartingales; see (Karatzas and Shreve, 1997) or
(Rogers and Williams, 1994b).

Exercise 6.1 Numerical integration w.r.t. an Itô process:
Choose your favorite drift term {Ft} and noise intensity {Gt}. Then, con-
struct numerically a sample path of the Itô process {Xt} with dXt =
Ft dt + Gt dBt. Then, reconstruct the driving Brownian motion numeri-
cally, i.e., solve dWt = (Gt)−1(dXt − Ft dt). Does {Wt} equal {Bt}?
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Biography: Ruslan Leontievich Stratonovich (1930–1997)
Stratonovich was born and lived in Moscow. His work focused on the
mathematics of noise in physics and engineering. Besides the stochastic
calculus which is centered around the Stratonovich integral, his most
important contribution was a general technique for filtering in non-linear
dynamic systems, which includes the Kalman-Bucy filter as a special
case.

6.8 The Stratonovich Integral

The Itô integral involves Riemann sums where the integrand is evaluated at
the left end-point of each sub-interval, and we saw in Section 6.4 that this
choice has an impact on the resulting integral. Therefore, we could define
an entire family of stochastic integrals, parametrized by where we choose to
evaluate the integrand. In this family, the most prominent member beside
the Itô integral is the Stratonovich integral, where we evaluate the integrand
at the mid-point, or equivalently use the trapezoidal rule

∫ t

0
Gs ◦ dBs = lim

|∆|→0

#∆∑
i=1

1
2
(
Gti−1 +Gti

) (
Bti −Bti−1

)
where ∆ = {0 = t0 < t1 < · · · < tn = t} is a partition of the interval [0, t]
and the limit is in mean square.

Example 6.8.1 With Gt = Bt, we get

∫ t

0
Bs ◦ dBs = lim

|∆|→0

#∆∑
i=1

1
2
(
Bti +Bti−1

) (
Bti −Bti−1

)
= lim

|∆|→0

#∆∑
i=1

1
2
(
B2

ti
−B2

ti−1

)
= 1

2B
2
t .

This example is interesting, because it suggests that Stratonovich inte-
grals obey the same rules of calculus as normal Riemann integrals. This is
indeed the case, as we will see in the next chapter.

Exercise 6.2 Numerical Stratonovich integration: Write a
function, which takes as input a time partition t0 < t1 < · · · < tn, as well
as the integrand {Gti : i = 0, . . . , n} and the Brownian motion {Bti : i =
0, . . . , n} sampled at these time points, and which returns (an approximation
to) the Stratonovich integral

∫ tn
t0
Gt ◦ dBt sampled at the same time points.



CHAPTER 6. STOCHASTIC INTEGRALS 137

Verify the function by computing the integral
∫ 1

0 Bt ◦ dBt and comparing it
to the theoretical result 1

2B
2
1 , as in figure 6.6.

How does the Stratonovich integral relate to the Itô integral? The dif-
ference between the two integrals originate from the different treatment of
fine-scale fluctuations in the two processes, the integrator {Bt} and the in-
tegrand {Gt}. To quantify this, we introduce:

Definition 6.8.1 (Cross-variation) Let {Xt} and {Yt} be two real-valued
stochastic processes. We define their cross-variation as the limit in probabil-
ity

〈X,Y 〉t = lim
|∆|→0

#∆∑
i=1

(Xti −Xti−1)(Yti − Yti−1)

whenever this limit exists.

Comparing the discrete-time approximations of the Itô and the
Stratonovich integral, we see that∫ t

0
Gs ◦ dBs −

∫ t

0
Gs dBs = 1

2 lim
|∆|→0

n∑
i=1

(Gti −Gti−1)(Bti −Bti−1)

= 1
2〈G,B〉t. (6.15)

For example, with Gt = Bt, we can compare Example 6.8.1 and Section 6.4
and find ∫ t

0
Bs ◦ dBs −

∫ t

0
Bs dBs = 1

2B
2
t −

(1
2B

2
t − 1

2 t
)

= 1
2 t

which agrees with 〈B,B〉t = [B]t = t.
If the integrand is of bounded total variation, then the cross-variation

vanishes, 〈G,B〉t = 0, and the Itô and Stratonovich integral are identical.
Our focus will be mostly on the Itô integral, primarily because of its

martingale property, which is connected to the explicit Euler-Maruyama
method (6.3). This property is key in the theoretical development. However,
there are two reasons why the Stratonovich integral is a popular alternative
to the Itô integral in applications, besides the perhaps natural and symmetric
choice of the mid-point:

1. As we shall see in Chapter 7, the stochastic calculus that results from
the Stratonovich integral appears simpler and closer to ordinary (de-
terministic) calculus. An example of this is the result in Example 6.8.1
that

∫ t
0 Bs ◦ dBs = B2

t /2, as we would expect from a naive application
of standard rules of calculus. This simplicity is a particular advantage
when the application involves many coordinate transformations. We
will also make use of the Stratonovich integral in some examples to
compare with deterministic results.
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2. When exogenous noise {ξt} drives an ordinary differential equation,
and this noise is band-limited but approximates white noise, then the
Stratonovich integral emerges as the limit. The following exercise gives
an example.

Exercise 6.3 The Stratonovich integral and band-limited
noise: For each N ∈ N, let {B(N)

t : t ≥ 0} be a stochastic process with
smooth sample paths, such that B(N)

t → Bt in mean square, for each t. For
example, {B(N)

t } may be the approximation of {Bt} based on frequencies
−N,−N + 1, . . . , N as in Exercise 4.13. Verify that∫ t

0
B(N)

s dB(N)
s →

∫ t

0
Bs ◦ dBs

in mean square, as N → ∞.

6.9 Calculus of Cross-Variations

We have seen that the properties of stochastic integrals hinge critically on the
small-scale fluctuations of the processes (the integrand and the integrator)
and how we treat them. Specifically, the quadratic variation of Brownian
motion is the reason the Riemann integral is insufficient (Section 6.4). Recall
the key result (Theorem 4.3.1) that the quadratic variation of Brownian
motion {Bt} is [B]t = t. Moreover, the difference between the Itô and the
Stratonovich integrals equals the cross-variation between the integrand and
the integrator (Section 6.8).

The two descriptors, the quadratic variation [X]t of a process {Xt},
and the cross-variation 〈X,Y 〉t between two processes {Xt} and {Yt}, both
quantify small-scale fluctuations, and they are tightly coupled: We have
〈X,X〉t = [X]t and, in turn, 〈X,Y 〉t = ([X + Y ]t − [X − Y ]t) /4, which can
be verified by simply writing out the terms for a given partition of [0, t].

Two basic results for cross-variations are given in the following exercises.

Exercise 6.4: Let {Tt} be the deterministic process with Tt = t. Show
that [T ]t = 〈T,B〉t = 0.

Exercise 6.5: Let {Bt : t ≥ 0} and {Wt : t ≥ 0} be independent Brown-
ian motions on the same filtered probability space. Show that 〈B,W 〉t = 0.

In stochastic calculus, we often end up integrating with respect to the
cross-variation of two Itô processes {Lt} and {Mt}, i.e., consider integrals of
the form

∫ t
0 Ht d〈L,M〉t. It is convenient to use the notational convention

dLt dMt = d〈L,M〉t.
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This notation also reflects how we would approximate the Itô integral when
discretizing time:∫ t

0
Ht d〈L,M〉t ≈

n∑
i=1

Hti−1(Lti − Lti−1)(Mti −Mti−1).

With this notation, Exercises 6.4 and 6.5 showed that

(dt)2 = 0, dt dBt = 0, (dBt)2 = dt, dBt dWt = 0. (6.16)

A reasonable question is if we ever need terms that are cubic in the incre-
ments. The answer is “no”:

Exercise 6.6: Show that ∑n
i=1(∆Bi)3 → 0 in mean square as |∆| → 0.

Here, as usual, 0 = t0 < t1 · · · < tn = t is a partition of [0, t], and ∆Bi =
Bti −Bti−1 .

One way to synthesize these results is through the scaling relationship
Bt ∼

√
t: The terms (dt)2, dt dBt, and (dBt)3 are all o(dt) and therefore

their sum vanish as the time step goes to zero.
We can now use these rules to simplify sums and products of increments:

Exercise 6.7: Let {Xt} and {Yt} be scalar Itô processes given by

dXt = Ft dt+Gt dBt, dYt = Kt dt+ Lt dBt.

Show that dXt dYt = GtLt dt, i.e., 〈X,Y 〉t =
∫ t

0 GsLs ds. You may assume,
for simplicity, that the integrands are bounded.

6.10 Conclusion

Stochastic differential equations are most easily understood in term of the
Euler-Maruyama scheme; the Itô integral appears in the limit of vanishing
time steps. The key feature of this integral, that we evaluate the integrand
at the left hand side of sub-intervals, is consistent with that the Euler-
Maruyama method is explicit.

The Euler-Maruyama method is a highly useful way of simulating so-
lutions to stochastic differential equations, even if it does not perform im-
pressively from the point of view of numerical analysis (as we shall see in
Chapter 8). It is also very useful in the process of constructing the theory.

In the Itô integral, we assume that the integrating device knows the
integrand {Gt} in real time and does not anticipate the Brownian motion.
Stated in the language of measure theory, {Gt} is adapted w.r.t. {F t} while
{Bt} is Brownian motion w.r.t. {F t}. As a result of these two assumptions,
the expected contribution to the integral over a small time step is zero:
EGti−1(Bti −Bti−1) = 0. This is the reason the Itô integral is a martingale,
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which is the key property of the integral. The fact that the Itô integral has
expectation 0, and a tractable variance which is given by the Itô isometry,
makes the integral attractive both from the point of view of modeling and
theory.

In turn, the Stratonovich interpretation has a natural symmetry which
may seem appealing, and as we shall see in the next chapter, this result of
this symmetry is that Stratonovich integrals gives rise to a simpler stochastic
calculus than the Itô calculus. However, the Stratonovich integral does not
have expectation 0.

We convert between Itô and Stratonovich integrals using the cross-
variation of the integrand and the integrator, which measure to which degree
small-scale fluctuations in the two processes are correlated. Cross-variations
also turn out to be central to the stochastic calculus that we develop in the
next chapter.

6.11 Notes and References

The Itô integral was introduced to the English-reading audience in (Itô,
1944). The Euler-Maruyama method was introduced by Gisiro Maruyama in
a brief report in 1953 and later in (Maruyama, 1955). Stratonovich published
his integral in English in (Stratonovich, 1966); the same integral appeared
in the thesis of D.L. Fisk in 1963. The exposition in this chapter is based on
(Karatzas and Shreve, 1997; Øksendal, 2010; Mao, 2008).

6.11.1 The Proof of Itô Integrability

Here, we outline the proof of Theorem 6.3.1; see (Karatzas and Shreve, 1997),
(Øksendal, 2010) or (Mao, 2008). We first consider a particularly simple
class of integrands, namely the elementary processes, which have bounded
and piecewise constant sample paths:

Definition 6.11.1 (Elementary process) A process {Gt : S ≤ t ≤ T} is
said to be elementary, if:

1. There exists a bound K > 0, such that |Gt| ≤ K for all t ∈ [S, T ].

2. There exists a deterministic sequence S = t0 < t1 < · · · < tn = T ,
such that the sample paths of Gt are constant on each interval [ti−1, ti).
Thus, there exists a sequence of random variables {γi : i = 1, . . . , n}
such that

Gt = γi when ti−1 ≤ t < ti.

Elementary processes play the same role in the theory of stochastic in-
tegrals as simple random variables do in the theory of expectation (Section
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3.3). First, elementary processes are clearly Itô integrable: If {Gt} is elemen-
tary as in the definition, then∫ T

S
Gt dBt =

n∑
i=1

Gti−1(Bti −Bti−1).

Next, we use elementary processes to approximate integrands in a much
larger class:

Definition 6.11.2 The real-valued stochastic process {Gt : t ≥ 0} is said to
be progressively measurable w.r.t. {F t} if G : [0, t] × Ω 7→ R is measurable
w.r.t. the product-σ-algebra of B([0, t]) and F t, for each t ≥ 0. Here B([0, t])
is the Borel algebra on [0, t].

This requirement guarantees, for example, that the integral
∫ t

0 |Gs|2 ds
is a well-defined random variables which is F t-measurable, i.e., its realized
value is known at time t. Progressively measurable processes are necessarily
adapted. Conversely, an adapted process with left-continuous sample paths
is progressiveluy measurable (Karatzas and Shreve, 1997).

Lemma 6.11.1 Let {Gt : S ≤ t ≤ T} be a progressively measurable stochas-
tic process such that

∫ T
S EG2

t dt < ∞. Then there exists a sequence {G(i)
t }

of elementary processes such that
∫ T

S E|G(i)
t −Gt|2 dt → 0 as i → ∞.

See (Karatzas and Shreve, 1997), (Øksendal, 2010) or (Mao, 2008) for the
proof of this lemma - first we approximate {Gt} with a bounded process, then
we approximate this bounded process with a Lipschitz continuous process,
and finally we approximate this continuous process with a piecewise constant
one, i.e., an elementary process.

Next, the Itô isometry says that the Itô integral depends continuously
on the integrand: When {G(i)

t } is a sequence of elementary processes that
converge to {Gt} in the sense of the lemma, then the Itô integrals

∫ T
S G

(i)
t dBt

converge in mean square. The limit is the integral
∫ T

S Gt dBt.

6.11.2 Weak Solutions to SDE’s

Our notion of solutions, as in Definition 6.5.2, is termed a strong solution:
We start with a probability space (Ω,F ,P), a filtration {F t}, Brownian
motion {Bt}, and seek an Itô process {Xt} so that the stochastic differential
equation is satisfied. The literature also operates with a weak notion of
solutions, where we are just given the functions f and g and asked to find
a filtered probability space as well as two adapted processes {Bt, Xt} which
satisfy the stochastic differential equation and such that {Bt} is Brownian
motion. See e.g. (Karatzas and Shreve, 1997).
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6.12 Exercises

Exercise 6.8: Give a probabilistic interpretation to the integral∫ ∞

0
t2 dFt with Ft = 1 − exp(−λt)

and state its value.

Exercise 6.9: Consider the Itô integral (compare Section 6.4)

It =
∫ t

0
Bs dBs = 1

2B
2
t − 1

2 t.

Use the properties of Gaussian variables (Exercise 3.13) to determine the
mean and variance of It, and verify that this agrees with the properties
of Itô integrals. Hint: Exercise 3.13 contains a result for the moments of
Gaussian variables.

Exercise 6.10 Stochastic resonance: Consider the double well
model (6.8) with periodic forcing

dXt = (Xt −X3
t +A cosωt) dt+ σ dBt.

Take A = 0.12, ω = 10−3, and σ = 0.25. Simulate the system using the
Euler-Maruyama method on the time interval [0, 104] using a time step of
0.01. Repeat with σ = 0.1 and σ = 0.5. Note: This phenomenon was observed
and analyzed by (Benzi et al., 1981).

Exercise 6.11: Let {Xt} be the Ornstein-Uhlenbeck process given by

dXt = −λXt dt+ λ dBt, X0 = 0,

and define {Yt} by
Yt =

∫ t

0
Xs ds.

1. Using λ = 100, simulate a sample path of {Bt}, {Xt} and {Yt} on the
time interval t ∈ [0, 10], using a time step of 0.001. Plot {Yt} and {Bt}.

2. Why is {Yt} so close to {Bt}? Show, for example, that Yt − Bt =
−Xt/λ, so that in stationarity, E(Yt −Bt)2 = 1/(2λ).

3. In a new window, plot the sample paths of the following Itô processes:∫ t

0
Bs dBs,

∫ t

0
Ys dYs,

∫ t

0
Bs ◦ dBs,

∫ t

0
Ys ◦ dYs.

Explain the findings.
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4. In a new window, plot∫ t

0
Ys dBs,

∫ t

0
Bs dYs,

∫ t

0
Ys ◦ dBs,

∫ t

0
Bs ◦ dYs.

Explain the findings.

Exercise 6.12 Mean and variance in the Cox-Ingersoll-Ross
process: Consider the Itô equation

dXt = λ(ξ −Xt) dt+ γ
√
Xt dBt, X0 = x > 0,

where {Bt} is standard Brownian and λ, ξ, γ are positive parameters. We
take for granted that a unique solution to this equation exists and can be
approximated with the Euler-Maruyama method; this {Xt} is the so-called
Cox-Ingersoll-Ross process. Write down difference equations for the mean
and variance of Xt and derive differential equations by passing to the limit
of small time steps. Conclude on the stationary mean, variance, and auto-
covariance function of {Xt}.



Chapter 7

The Stochastic Chain Rule

The Itô integral is the key component in the theory of diffusion processes
and stochastic differential equations, but we rarely compute Itô integrals
explicitly. In stead, we almost invariably use rules of calculus, just as we do
when analyzing deterministic models. However, since Brownian motion and
Itô processes are non-differentiable, the ordinary rules of calculus do not
apply, so in this chapter, we develop the corresponding stochastic calculus.
The most important element in this calculus is Itô’s lemma, a stochastic
version of the chain rule, which in its simplest form states that if {Xt : t ≥ 0}
is a scalar Itô process, and {Yt : t ≥ 0} is a new scalar stochastic process
defined by Yt = h(Xt), then {Yt} is again an Itô process. Although Itô’s
lemma generalizes the chain rule, it involves second order derivatives of h
as well as the quadratic variation of {Xt}; terms, which are unfamiliar to
ordinary calculus.

In this chapter, once we have stated Itô’s lemma, we give examples of
applications of the result. The main applications are:

• To solve stochastic differential equations analytically, in the few situ-
ations where this is possible.

• To change coordinates. For example, the equation may describe the
motion of a particle in Cartesian or polar coordinates.

• To find the dynamics of quantities that are derived from the state,
such as the energy of a particle.

Itô’s lemma tells us how to transform the dependent variable. We also
give formulas for how to transform the independent variable, i.e., change the
scale of time.

144
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7.1 The Chain Rule of Deterministic Calculus

Let us first recapitulate the well-known chain rule from ordinary (determin-
istic) calculus. Let {Xt : t ≥ 0} be a real-valued function with derivative
dXt
dt = Ẋt, and let h : R × R 7→ R be a differentiable function with partial

derivatives ḣ and h′. Define

Yt = h(t,Xt)

then, according to the chain rule, {Yt : t ≥ 0} is differentiable with derivative

Ẏt = ḣ(t,Xt) + h′(t,Xt) Ẋt.

Formally, we may multiply this with dt and obtain (omitting arguments)

dYt = ḣ dt+ h′ dXt.

We can rewrite these two equations in integral form:

Yt = Y0 +
∫ t

0

[
ḣ(s,Xs) + h′(s,Xs)Ẋs

]
ds

= Y0 +
∫ t

0
ḣ(s,Xs) ds+

∫ t

0
h′(s,Xs) dXs.

This is a slightly unusual way to write the chain rule, but for our purpose it
has the advantage that it is similar to the way we write stochastic differential
equations. This makes comparison easier.

7.2 Transformations of Random Variables

Since stochastic calculus concerns transformations of Itô processes, it is use-
ful to recap how scalar random variables and their statistics behave under
transformations. Let X be a scalar random variable and define Y = h(X)
where h : R 7→ R is smooth. Figure 7.1 displays an example.

Recall that the medians x̄ and ȳ of X and Y satisfy ȳ = h(x̄) whenever
h(·) is monotonic. For the expectations, the relationship is not as simple,
but textbooks on statistics use the following approximation, where µ, σ2,
and f are the mean, variance, and p.d.f. of X:

EY =
∫ +∞

−∞
f(x)h(x) dx

≈
∫ +∞

−∞
f(x)[h(µ) + h′(µ) · (x− µ) + 1

2h
′′(µ) · (x− µ)2] dx

= h(µ) + 1
2h

′′(µ) · σ2.
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Figure 7.1: Two random variables X ∼ N(0.6, 0.1) and Y = exp 4X. The
gray and shaded region displays the p.d.f. of X and Y , rescaled. Solid lines
indicate medians; the dashed line indicates EY .

Here, we have Taylor expanded h around µ, discarding cubic and higher
order terms, which is valid when f resembles a Gaussian on a region where
h resembles a parabola. Notice that the variance of X, in concert with the
curvature of h, together yield a contribution to the expectation of Y .

As for the deviations from the mean, we can use the linear approximation

Y − EY ≈ h′(µ) · (X − µ)

which, combined with the expression for EY , gives

Y ≈ h(µ) + 1
2h

′′(µ)σ2 + h′(µ) · (X − µ).

For stochastic processes, we shall now see that this approximation is pivotal,
when applied to the increments of the original and transformed processes.

7.3 Itô’s Lemma: The Stochastic Chain Rule

The deterministic chain rule of Section 7.1 required that {Xt} is smooth,
so it needs not apply when {Xt} is Brownian motion or an Itô process.
Indeed, Section 6.4 indicated that the chain rule failed to helps us compute∫ t

0 Bs dBs. In stead we have the following chain rule of stochastic calculus:

Theorem 7.3.1 (Itô’s lemma) Let {Xt : t ≥ 0} be an Itô process as in
Definition 6.6.1, taking values in Rn and given by

dXt = Ft dt+Gt dBt



CHAPTER 7. THE STOCHASTIC CHAIN RULE 147

where {Bt : t ≥ 0} is d-dimensional Brownian motion. Let h : Rn × R 7→ R
be differentiable w.r.t. time t and twice differentiable w.r.t. x, with continu-
ous derivatives and define Yt = h(Xt, t). Then {Yt} is an Itô process given
by

dYt = ḣ dt+ ∇h dXt + 1
2dX

>
t Hh dXt (7.1)

= ḣ dt+
(

∇h Ft + 1
2trG>

t Hh Gt

)
dt+ ∇h Gt dBt. (7.2)

Here, ḣ = ∂h/∂t(Xt, t) is the partial derivative with respect to time,
while ∇h is the spatial gradient and Hh = ∂2h/∂x2 is the Hessian matrix
containing double derivatives w.r.t. spatial coordinats. We omit the argu-
ments (Xt, t) for clarity. We view ∇h as a row vector, so that ∇h dXt is the
inner product.

Itô’s lemma gives two expressions for dYt: The first, (7.1) looks like (and
essentially is) a Taylor expansion of

Yt + dYt = h(Xt + dXt, t+ dt)

around the point (Xt, t), where we keep first order terms in dt and up to
second order terms in dXt. We need second order terms in dXt because dXt

generally scales with
√
dt, so that (dXt)2 scales as dt (proposition 6.5.1).

The second form follows from the first, using arithmetic for the incre-
ments and the crossvariation (Section 6.9): We insert dXt = Ft dt+Gt dBt

and dXtdX
>
t = GtG

>
t dt. We then use linear algebra: Recall that the trace

of an n-by-n matrix is trP = P11 + · · · + Pnn and that trPQ = trQP when
P ∈ Rn×m, Q ∈ Rm×n. So

dX>
t Hh dXt = tr[Hh GtG

>
t dt] = tr[G>

t Hh Gt] dt.

This form, (7.2), shows that the drift of {Yt} involves three terms: The
terms ḣ dt + ∇h Ft dt are what we would expect from the usual chain
rule (Section 7.1). The “extra” drift term tr(G>

t Hh Gt)/2 dt has the same
form as the approximation we considered in Section 7.2. In turn, the noise
intensity of {Yt}, i.e. ∇h Gt dBt, also has the form that is to be expected
from Section 7.2.

Proof: We outline the proof in the simple case where h does not depend
on time t and {Xt} is scalar. First, assume also that the triple derivative h′′′

is bounded, and that {Ft} and {Gt} are deterministic and constant, Ft = F ,
Gt = G. Let ∆ = (t0, t1, . . . , tn) be a partition of [0, t] and write

Yt = Y0 +
n−1∑
i=0

∆Yi with ∆Yi = Yti+1 − Yti



CHAPTER 7. THE STOCHASTIC CHAIN RULE 148

To evaluate the increment ∆Yi, Taylor expand the function h around Xti :

∆Yi = h′(Xti) ∆Xi + 1
2h

′′(Xti) (∆Xi)2 +Ri

where ∆Xi = Xti+1 − Xti and the residual Ri can be written in the mean
value (or Lagrange) form

Ri = 1
6h

′′′(ξi)(∆Xi)3.

Here, ξi is, for each i, a random variable between Xti−1 and Xti ]. Since h′′′(ξi)
is bounded, it follows from a minor extension of Exercise 6.6 that the sum
of these residuals vanish in mean square as |∆| → 0.

The sum h′(Xti) ∆Xi converges to the Itô integral
∫ t

0 h
′(Xs) dXs. As for

the sum of the terms 1
2h

′′(Xti) (∆Xi)2, it converges to the integral∫ t

0

1
2h

′′(Xs) d[X]s

where [X]t is the quadratic variation process of {Xt}. With the notation
(dXs)2 = d[X]s from Section 6.9, we get the first form (7.1):

Yt = Y0 +
∫ t

0
h′(Xs) dXs +

∫ t

0

1
2h

′′(Xs) (dXs)2.

With the rules for manipulating variations (Section 6.9, Exercise 6.7), we
can rewrite this as

Yt = Y0 +
∫ t

0
h′(Xs)Fs ds+

∫ t

0
h′(Xs)Gs dBs +

∫ t

0

1
2h

′′(Xs) G2
s dt,

i.e., the second form (7.2). Now relax the simplifying assumptions: First, the
argument holds also if F andG are random but F0-measurable and bounded.
Next, if {Ft} and {Gt} are elementary processes, then apply the previous
argument to each sub-interval where they are constant; then, the conclusion
still stands. Now, if {Ft} and {Gt} are as in the theorem, approximate
them with elementary processes to see that the conclusion remains. Finally,
if h′′′(x) is not bounded, then approximate h on a bounded domain with a
function with bounded triple derivative, and stop the process {Xt} upon exit
from this domain. Then, the conclusion remains for the stopped processes.
Let the bounded domain grow to cover the entire state space to see that the
conclusion stands. This only sketches the proof; see e.g. (Øksendal, 2010;
Mao, 2008).

Example 7.3.1 We confirm the result (6.12) that
∫ t

0 Bs dBs = (B2
t − t)/2:

Take Xt = Bt and Yt = h(Xt, t) with h(x, t) = (x2 − t)/2. Then ḣ = −1/2,
h′ = x, h′′ = 1, and

dYt = ḣ dt+ h′ dXt + 1
2h

′′ (dXt)2 = −dt/2 +Bt dBt + dt/2 = Bt dBt.

Since Y0 = 0, we conclude that Yt = (B2
t − t)/2 =

∫ t
0 Bs dBs.
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We have stated Itô’s lemma for a scalar-valued function h. When the
function h maps the state Xt to a vector Yt ∈ Rm, i.e., h : Rn × R 7→ Rm,
we may apply Itô’s lemma to each coordinate of Yt at a time. That is, we
apply the previous formula to Y (i)

t = hi(Xt, t), for i = 1, . . . ,m.

Example 7.3.2 Let {Xt : t ≥ 0} be a vector-valued Itô process given by
dXt = Ft dt+Gt dBt and let Yt = TXt where T is a matrix. Then

dYt = TFt dt+ TGt dBt.

Being even more specific, let {Xt} satisfy the linear SDE dXt = AXt dt +
G dBt and assume that T is square and invertible. Then {Yt} satisfies the
linear SDE

dYt = TAT−1Yt dt+ TG dBt.

Example 7.3.3 [A stochastic product rule] Let {Xt} and {Yt} be two scalar
Itô processes and define {Zt} by Zt = XtYt. We aim to write {Zt} as an Itô
process. To this end, introduce h(x, y) = xy, so that

∇h = [y x], Hh =
[

0 1
1 0

]
.

We get

dZt = ∇h ·
(
dXt

dYt

)
+
(
dXt

dYt

)> 1
2Hh

(
dXt

dYt

)
= Yt dXt +Xt dYt + dXt dYt

where, as usual, dXt dYt = d〈X,Y 〉t. I.e., we have the product rule

d(XtYt) = Xt dYt + Yt dXt + dXt dYt.

More specifically, assume that

dXt = Ft dt+Gt dBt, dYt = Kt dt+ Lt dBt

where {Bt} is multivariate Brownian motion; then dXt dYt = GtL
>
t dt and

d(XtYt) = (XtKt + YtFt +GtL
>
t ) dt+ (XtLt + YtGt) dBt.

7.4 Some SDE’s with Analytical Solutions

Itô’s lemma applies to transformations of and Itô process {Xt}, i.e., the inte-
grands {Ft} and {Gt} can be arbitrary stochastic processes, as long as they
satisfy the technical requirements. However, in most of the applications we
are interested in, the Itô process {Xt} is a solution to a stochastic differential
equation, i.e., an Itô diffusion:

dXt = f(Xt, t) dt+ g(Xt, t) dBt.
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In this case, Itô’s lemma has the form

dYt = ḣ dt+ ∇h f dt+ 1
2tr[gg>Hh] dt+ ∇h g dBt

when Yt = h(Xt, t); we assume that h is C2,1 and have again omitted the
arguments (Xt, t). The drift term is so important, and appears so frequently,
that we introduce a special symbol for it, namely the second order linear
differential operator L given by

Lh = ∇h f + 1
2tr[gg>Hh]

whenever h(·, t) is C2 for each t. This operator works along the spatial
coordinates x and can be applied both when h(x, t) depends on time, and
to a function h(x) which does not depend on time. We will later introduce
the name “backward Kolmogorov operator” for L.

An important application of Itô’s lemma is to find and verify analytical
solutions to stochastic differential equations. This is possible only for a small
class of equations, but these special cases play a prominent role due to their
tractability.

Exercise 7.1 Geometric Brownian Motion: In Section 6.2.3,
we claimed that the scalar stochastic differential equation

dYt = rYt dt+ σYt dBt, Y0 = y.

has the solution
Yt = y exp((r − 1

2σ
2)t+ σBt).

Show that this is true. Next, find the mean, mean square, and variance of
Yt, using the properties of the log-normal distribution. Hint: For example,
take Xt = (r−σ2/2)t+σBt and Yt = h(t,Xt) with h(t, x) = y exp(x). Note:
See Exercise 7.23 for a partial extension to the multivariate case.

Exercise 7.2: Show that Yt = tanhBt satisfies

dYt = −Yt(1 − Y 2
t ) dt+ (1 − Y 2

t ) dBt, Y0 = 0.

Exercise 7.3: Show that Yt = (y1/3 + 1
3Bt)3 satisfies

dYt = 1
3Y

1/3
t dt+ Y

2/3
t dBt, Y0 = y.



CHAPTER 7. THE STOCHASTIC CHAIN RULE 151

7.4.1 The Ornstein-Uhlenbeck Process

The narrow-sense linear stochastic differential equation

dXt = −λXt dt+ σ dBt, X0 = x, (7.3)

has the solution which would expected from ordinary calculus:

Xt = xe−λt +
∫ t

0
σe−λ(t−s)dBs. (7.4)

To verify this, we cannot use Itô’s lemma directly, because the integrand in
the Itô integral depends on the upper limit t. To circumvent this difficulty,
we introduce a transformed version of Xt, namely the process Yt given by

Yt = h(t,Xt) = eλtXt where h(t, x) = eλtx

Itô’s lemma assures that if Xt satisfies the original SDE (7.3), then {Yt}
satisfies

dYt = ḣ dt+ h′ dXt + 1
2h

′′ dX2
t

= λeλtXt dt+ eλt(−λXt dt+ σ dBt)
= eλtσ dBt.

This stochastic differential equation can easily be solved for Yt, using Y0 =
h(0, X0) = x:

Yt = x+
∫ t

0
eλsσdBs.

We can now back-transform to find the solution to the original equation:

Xt = e−λtYt = xe−λt +
∫ t

0
e−λ(t−s)σdBs

The solution (7.4) is called the Ornstein-Uhlenbeck process and was intro-
duced by Uhlenbeck and Ornstein in 1930 as a model for the velocity of a
molecule under diffusion. Compared to Brownian motion it has the advan-
tage that it predicts finite velocities! It is used frequently in applications,
whether in physics, engineering, biology or finance. The martingale property
of the Itô integral now gives the result for the mean from Section 5.10:

EXt = e−λtx.

To find the variance of Xt, we use the Itô isometry:

VXt = V
(∫ t

0
e−λ(t−s)σ dBs

)
=
∫ t

0
e−2λ(t−s) σ2 ds

=
{

σ2

2λ(1 − exp(−2λt)) if λ 6= 0,
σ2t if λ = 0.
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Figure 7.2: A realization of the Ornstein-Uhlenbeck process {Xt} given by
the SDE dXt = −λXt dt + σ dBt (7.3) (solid) with X0 = 0, λ = 1, σ = 1.
Included is also plus/minus the standard deviation of Xt (dashed).

This agrees with what we found studying the Lyapunov equation (Section
5.9 and Exercise 5.7). A realization of the integral is seen in Figure 7.2. Since
Xt arises as a linear combination of Gaussian random variables, Xt is also
Gaussian, so its distribution is determined by the mean and variance.

The Ornstein-Uhlenbeck process can be generalized to vector processes,
and to the case of time-varying parameters:

Exercise 7.4: Consider a vector process {Xt ∈ Rn : t ≥ 0} which
satisfies the narrow-sense linear SDE

dXt = (AXt + wt) dt+G dBt

with initial condition X0 = x, where the external input wt is deterministic
and of bounded variation. Show that Xt can be written as

Xt = eAtx+
∫ t

0
eA(t−s)(ws ds+GdBs).

State the mean, variance and distribution of Xt. Hint: Follow the reasoning
for the Ornstein-Uhlenbeck process in the previous, i.e., start by defining
Yt = h(t,Xt) with h(t, x) = exp(−At)x.

Exercise 7.5: Consider the scalar time-varying equation

dXt = λtXt dt+ σt dBt

with initial condition X0 = x, where {λt : t ≥ 0} and {σt : t ≥ 0} are
deterministic functions of bounded variation. Show that the solution is

Xt = eFtx+
∫ t

0
eFt−Fsσs dBs
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where
Ft =

∫ t

0
λs ds.

In summary, for linear stochastic differential equations, there is a unique
solution which has a closed-form expression.

7.5 Dynamics of Derived Quantities

A second common application of Itô’s lemma is the situation where a dy-
namic system evolves according to a stochastic differential equation, and we
are interested in some prescribed function of interest defined on state space.
We give two examples.

7.5.1 The Energy in a Position-Velocity System

Consider a physical system with a position {Xt} and a velocity {Vt}, which
satisfy two coupled stochastic differential equations

dXt = Vt dt, dVt = −u′(Xt) dt− µVt dt+ σ dBt.

Here, u(·) is a potential, so that −u′(x) is the (mass specific) force acting
on the system. There is linear dampling given by µ, and stochastic forces
σ dBt. This system generalizes the mass-spring-damper system of Chapter
5, where the potential was the energy in the spring, u(x) = kx2/(2m).

Define the potential, kinetic, and total energies in the system:

Ut = u(Xt), Tt = 1
2V

2
t Et = Ut + Tt.

Then with Itô’s lemma, these can be written as Itô processes

dUt = u′(X)Vt dt

dTt = Vt dVt + 1
2(dVt)2 =

[
−Vtu

′(Xt) − µV 2
t + 1

2σ
2
]
dt+ σVt dBt

dEt = dUt + dTt =
[1

2σ
2 − µV 2

t

]
dt+ σVt dBt.

The noise gives rise to fluctuations in the energy through the term
σVt dBt: The random impulse σ dBt increases the kinetic and total energy,
if it has the same sign as Vt; otherwise it decreases the energy. The presence
of noise also gives rise to an expected increase in total energy through the
term 1

2σ
2 dt. Thus, the stochastic forces pump energy into the system.

We now examine stationary solutions to these equations, i.e., the statis-
tics are invariant to time translations (Section 5.4). With an appeal to
physics we would expect stationary solutions to exist for some potentials
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u(·). We will later call such potentials confining; for now, we simply assume
stationarity. Then, the drift must have expectation 0. For the energy Et,
this implies

E
[1

2σ
2 − µV 2

t

]
= 0 ⇔ E1

2V
2

t = σ2

4µ
In stationarity, the expected kinetic energy is therefore σ2/(4µ) which ex-
presses a balance between what is supplied by the noise and what is dissi-
pated through friction. For quadratic potentials, we can show as in Exercise
5.6 that equipartitioning holds, i.e., the expected potential energy equals the
expected kinetic energy. We consider stationary processes further in Section
9.8.

7.5.2 The Cox-Ingersoll-Ross and Bessel Processes

Consider n ≥ 2 independent Ornstein-Uhlenbeck processes {X(i)
t : t ≥ 0},

for i = 1, . . . , n, which each satisfy

dX
(i)
t = −µX(i)

t dt+ σ dB
(i)
t

where Bt = (B(1)
t , . . . , B

(n)
t ) is n-dimensional standard Brownian motion.

Now form the sum of squares:

Yt =
n∑

i=1
|X(i)

t |2.

Then Itô’s lemma gives, since the processes {X(i)
t } are independent

dYt = 2
n∑

i=1
X

(i)
t dX

(i)
t +

n∑
i=1

|dX(i)
t |2 = (−2µYt + nσ2) dt+ 2σ

n∑
i=1

X
(i)
t dB

(i)
t .

This does not seem very tractable, due to the noise term, which couples
the n Brownian motions with the n state variables. However, we can make
progress by defining {Wt : t ≥ 0} by W0 = 0 and

√
Yt dWt =

n∑
i=1

X
(i)
t dB

(i)
t ,

then {Wt} is a continuous martingale with quadratic variation given by

Yt d[W ]t =
∑
i=1

|X(i)
t |2 dt

or simply d[W ]t = dt. Thus, {Wt} is Brownian motion. Here, we have ignored
the singularity where Yt = 0. To summarize,

dYt = (nσ2 − 2µYt) dt+ 2σ
√
Yt dWt .
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We see that we have arrived at an equation which governs the sum of squares,
which does not make reference to the individual states X(i)

t or the individ-
ual Brownian motions B(i)

t . The process {Yt} is referred to as the Cox-
Ingersoll-Ross process (Cox et al., 1985), even if it was considered earlier by
Feller (1951). A more general formulation of this process, when µ 6= 0, is the
Itô equation

dYt = λ(ξ − Yt) dt+ γ
√
Yt dWt (7.5)

and we can relate the two formulations by λ = 2µ, ξ = nσ2/λ, γ = 2σ. Note
that the more general formulation does not require n to be integer or greater
than or equal to 2. The Cox-Ingersoll-Ross process finds applications in sta-
tistical physics, where it can describe fluctuations in energy, in economy,
where it can describe fluctuations in interest rates, as well as in mathemat-
ical biology, where it can model fluctuations in abundances of populations.
Exercise 6.12 found the stationary mean, variance and autocovariance of
this process.

With µ = 0 we obtain the so-called squared Bessel process {Yt = σ2|Bt|2 :
t ≥ 0} given by

dYt = nσ2 dt+ 2σ
√
Yt dWt,

and taking the square root, we obtain the Bessel process {Zt =
√
Yt = σ|Bt| :

t ≥ 0}, which satisfies the SDE

dZt = n− 1
2

1
Zt
σ2 dt+ σ dWt.

Exercise 7.6: Derive the equation governing {Zt} using Itô’s lemma.
These processes earn their names because a Bessel function appears in

their transition probabilities. Notice that the squared Bessel process has a
singularity in its noise intensity at y = 0, while the Bessel process has a
singularity in its drift. Also these processes are meaningful when n is non-
integer, and when n < 2, but the singularity needs to be addressed.

7.6 Coordinate Transformations

A final frequent application of Itô’s lemma is to change coordinates in the
underlying state space. Arguably, we have used this already in Section 7.4,
when we established that geometric Brownian motion solves a wide-sense
linear stochastic differential equation: There, we changed coordinates from
natural to logarithmic (Exercise 7.1). We now give a few more examples.

7.6.1 Brownian Motion on the Circle

Brownian motion on the circle is a process taking values on the unit circle
in the plane. In polar coordinates (r, θ), the process is easy to describe: The
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radius r is constant and equal to 1, while the angle θ is Brownian motion,
Θt = Bt. Transforming to Cartesian coordinates, we find:

Xt = cos Θt = cosBt, Yt = sin Θt = sinBt.

Itô’s lemma yields that (Xt, Yt) = (cosBt, sinBt) satisfies(
dXt

dYt

)
=
(

− sinBt dBt − 1
2 cosBt dt

cosBt dBt − 1
2 sinBt dt

)

and substituting the cosBt = Xt, sinBt = Yt, we can rewrite this(
dXt

dYt

)
=
(

−Yt

Xt

)
dBt − 1

2

(
Xt

Yt

)
dt. (7.6)

This is a wide-sense linear Itô stochastic differential equation governing the
processes {(Xt, Yt) : t ≥ 0}, i.e., the motion in Cartesian coordinates. It is
useful to think about this geometrically: The dBt-term is orthogonal to the
position (Xt, Yt), as we would expect of motion along a tangent. However,
since the dBt-term is of order

√
dt, it acts to project the particle along the

tangent which would increase the radius. To balance this, dt-term contracts
the particle towards the origin.

Exercise 7.7: Use the stochastic differential equation to show that
E cosBt = exp(−t/2).

7.6.2 The Lamperti Transform

Coordinate transformations allow us to express system dynamics in different
coordinate systems, but we should obtain the same results regardless of the
choice of coordinate systems. This raises the question if some coordinate
system is more convenient for a given purpose. In the previous example,
an argument in favor of polar coordinates is that the diffusivity is constant
in this coordinate system. We say that the noise is additive. As we shall
see later, statistics and numerics are simpler in this additive case. We can
therefore ask if it is possible to change coordinates so that in the transformed
system, the noise is additive? If so, we say that the transformation is a
Lamperti transform. Consider the scalar stochastic differential equation

dXt = f(Xt) dt+ g(Xt) dBt

and assume that g(x) > 0 for all x. Then define the Lamperti transformed
process {Yt} by Yt = h(Xt) where

h(x) =
∫ x 1

g(v) dv. (7.7)
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The lower integration limit is arbitrary; h is any antiderivative. We get

h′(x) = 1
g(x) , h′′(x) = − g′(x)

g2(x) ,

and so Itô’s lemma yields

dYt = h′(Xt) dXt + 1
2h

′′(Xt) g2(Xt) dt

= f(Xt)
g(Xt)

dt+ dBt − 1
2g

′(Xt) dt

=
[
f(h−1(Yt))
g(h−1(Yt))

− 1
2g

′(h−1(Yt))
]
dt+ dBt.

Note that in the Lamperti transformed coordinate Yt, the noise is additive,
as required. Here, the noise intensity is 1. We will use the term “Lamperti
transform” as long as the noise is additive in the transformed system, even if
the intensity is not 1, because it is sometimes convenient to allow a variance
parameter.

Exercise 7.8 Geometric Brownian Motion: Consider the SDE

dXt = rXt dt+ σXt dBt.

Find a Lamperti transform and write the SDE in the transformed coordinate.

7.6.3 The Scale Function

For a scalar process, it is also possible to transform the coordinate so that
the transformed process is driftless, i.e., a martingale. Specifically, consider
again the general scalar Itô equation

dXt = f(Xt) dt+ g(Xt) dBt

where we assume, in addition to Lipschitz continuity, that g is bounded away
from 0, i.e., there exits an ε > 0 such that g(x) > ε for all x. Now, introduce
the transformed coordinate Yt = s(Xt) where we have yet to determine the
transform s. Then {Yt} is an Itô process with

dYt =
[
f(Xt)s′(Xt) + 1

2g
2(Xt)s′′(Xt)

]
dt+ s′(Xt)g(Xt) dBt.

We now aim to choose the transform s : R 7→ R so that the drift vanishes:

fs′ + 1
2g

2s′′ = 0.

Introduce φ = s′, then the equation in φ is

fφ+ 1
2g

2φ′ = 0
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which has the solution

φ(x) = exp
(

−
∫ x

x0

2f(y)
g2(y) dy

)
where the reference point x0 is arbitrary; i.e., log φ is any antiderivative of
−2f/g2. From φ we may then find the transformation s through

s(x) =
∫ x

x1
φ(y) dy

where also x1 is arbitrary. The two arbitrary constants x0 and x1 correspond
to every affine transformation Zt = aYt + b also being driftless.

The resulting s is known as the scale function; it appears also, for ex-
ample, in the analysis of boundary points. Transforming the state so that
the drift vanishes, i.e., so that the transformed process is a martingale, is in
some sense complementary to the Lamperti transform: The former simplifies
the drift term, while the latter simplifies the noise intensity term.

Exercise 7.9: Consider Brownian motion with drift, i.e., dXt = µ dt+
σ dBt. Determine the scale function s and the governing equation for the
transformed coordinate Yt, and explain in words how {Yt} can be driftless
when {Xt} has constant drift.

Exercise 7.10: Consider geometric Brownian motion {Xt} given by
the stochastic differential equation dXt = rXt dt+ σXt dBt. Show that the
scale function is

s(x) =
{

1
νx

ν when ν := 1 − 2r/σ2 6= 0,
log x when ν = 0. (7.8)

As a financial application of this scale function for geometric Brownian
motion, assume that Xt is the price of a stock at time t. For simplicity,
consider a situation where the discount rate is 0, so that money is borrowed
or lent without interest. Then a stock typically offers an expected positive
return (r > 0) to compensate for the risk of a loss. To explain this quanti-
tatively, assume that the utility of owning the stock to an investor is

Yt = s(Xt)

where s is the scale function of the process. Then, the utility {Yt} is a mar-
tingale. In particular, the expected future utility equals the current utility;
buying the stock is no better and no worse than hiding the money in the
mattress. Thus, the price is fair. With r > 0, the utility is an increasing
concave (decelerating) function of the price: The richer the investor is, the
happier she is, but the first euro brings more joy than the second. For a given
utility function, the model predicts that more volatile stocks (σ2 larger) have
higher average yields (r larger). In utility theory, the particular form (7.8)
is known as isoelastic or constant relative risk aversion.
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7.7 Time Change

Itô’s lemma allows us to change the coordinate system used to describe the
state space, i.e., the dependent variable. In some situations it is equally de-
sirable to change coordinates on the time axis, i.e., the independent variable.
In a deterministic setting, the chain rule applies to both situations, but this
is not so in the stochastic setting.

A first example is the simple task of rescaling time. Consider a stochastic
differential equation

dXt = f(Xt) dt+ g(Xt) dBt

and assume that we want to express this in rescaled time u = αt. To this
end, define first Yu = Xt = Xu/α. Next, we aim to define a new Brownian
motion {Wu : u ≤ 0} which is standard in rescaled time. Recall the scaling
of Brownian motion in Section 4.3 to find

Wu = α1/2Bu/α.

Now, VWu = αVBu/α = u, so {Wu} is standard. We then get

dYu = α−1f(Yu) du+ α−1/2g(Yu) dWu.

This can be used e.g. when changing units from hours to seconds; then we
would take α = 3600 s/hour. Another frequent use of this is to transform
between dimensional and non-dimensional models:

Example 7.7.1 (Dimensionless Stochastic Logistic Growth) Consider
the stochastic logistic growth equation from the introduction (page 6)

dXt = rXt(1 −Xt/K) dt+ σXt dBt (7.9)

where r, K and σ are positive parameters, as is the initial condition X0 = x.
All quantities have dimensions; e.g., we measure time in seconds and the
abundance Xt in grams. We rescale Xt to express it in units of K, and
rescale time to express it in units of 1/r, obtaining the process Yu given by

Yu =
Xu/r

K
.

The stochastic differential equation for {Yu} is obtained with Itô’s lemma -
which is simple here, because the map y = h(x) = x/K is linear - and with
the time change formula. We find

dYu = Yu(1 − Yu) du+ σ√
r
Yu dWu

where {Wu} is dimensionless standard Brownian motion with u being dimen-
sionless time. We see that the original model contains two scale parameters,
the carrying capacity K and the time scale 1/r of growth, and one dimen-
sionless parameter, the noise level σ/

√
r.
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Random Time Change

We now generalize to dynamic and random time change. For example, a
chemical or biological process may run with a speed which depends on tem-
perature, with the temperature evolving randomly, so we may wish to in-
troduce a clock that itself runs with a speed that depends on temperature.

To this end, define a new transformed time {Ut : t ≥ 0} by

dUt = Ht dt, U0 = 0

where {Ht : t ≥ 0} gives the speed ratio between new and old time. We
require that {Ht} is a continuous {F t}-adapted process which is positive
and bounded away from zero. Then t 7→ Ut defines an invertible map from
R̄+ onto itself, for each realization. Let Tu = inf{t ≥ 0 : Ut ≥ u} be the
inverse map, so that we can transform back and forth between original time
t and transformed time u, for each realization. Next, define the process
{Wu : u ≥ 0} by

Wu =
∫ Tu

0

√
Ht dBt =

∫ ∞

0
1(t ≤ Tu)

√
Ht dBt.

We now argue heuristically that {Wu : u ≥ 0} is standard Brownian motion
with respect to the filtration {Gu : u ≥ 0} where Gu = FTu : Assume 0 <
u < v and that v − u is small. Then

Wv −Wu ≈
√
HTu(BTv −BTu)

and Tv −Tu is approximately (v−u)/HTu . Conditional on Gu, this increment
is therefore Gaussian with mean 0 and variance v − u, which implies that
{Wu : u ≥ 0} is standard Brownian motion.

Now, let an Itô process {Xt : t ≥ 0} be given by dXt = Ft dt+Gt dBt,
then we consider the process {Yu : u ≥ 0} given by Yu = XTu , i.e., in trans-
formed time. This process satisfies the Itô stochastic differential equation

dYu = FTu

HTu

du+ GTu√
HTu

dWu.

Note that, as always, different rescalings in the time integral and the Itô
integral, due to the scaling properties of Brownian motion.

As an example, recall that we discussed rescaled Brownian motion in
logarithmic time in the context of the Law of the Iterated Logarithm (The-
orem 4.3.4). The following exercise establishes the properties of this process
using the method we just developed.

Exercise 7.11: Let {Bt : t ≥ 0} be standard Brownian motion and
define, for t > 0

Yu = 1√
t
Bt
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where t = exp(u). Show that {Yu : u ≥ 0} is governed by

dYu = −1
2Yu du+ dWu

i.e., {Yu : u ≥ 0} is an Ornstein-Uhlenbeck process. Show also that Y0 is
distributed according to the stationary distribution, i.e., {Yu} is stationary.

When the Itô process {Xt} is a solution of a stochastic differential equa-
tion, it may happen that the speed ratio Ht depends on the state Xt itself. So
consider a process {Xt : t ≥ 0} given by the stochastic differential equation

dXt = f(Xt) dt+ g(Xt) dBt

and consider the time change dUt = h(Xt) dt. Then the process {Yu : u ≥ 0}
satisfies the Itô stochastic differential equation

dYu = f(Yu)
h(Yu) du+ g(Yu)√

h(Yu)
dWu (7.10)

Example 7.7.2 (Kinesis) Given a spatially varying diffusivity D(x) > 0
(with x ∈ Rd) we can define a kinesis process {Xt : t ≥ 0} as the solution
to the equation

dXt =
√

2D(Xt) dBt

where {Bt : t ≥ 0} is d-dimensional standard Brownian motion. This process
Xt is unbiased (i.e., each coordinate is a martingale) but it will spend more
time in regions where the diffusivity is low. Define the time change dUt =
2D(Xt) dt, then we have

dYu =
√

2D(XTu)√
2D(XTu)

dWu = dWu

i.e., {Yu} is Brownian motion. In other words, the process {Xt} is a random
time change of Brownian motion: We can think of a Brownian particle that
carries a clock, which runs with a speed that depends on the position.

Exercise 7.12: Let {Xt} be given by the stochastic logistic growth
model

dXt = Xt(1 −Xt) dt+ σXt dBt

and define transformed time by dUt = Xt dt. Show that the time-
transformed process {Yu} satisfies

dYu = (1 − Yu) du+ σ
√
Yu dWu,

i.e., {Yu} is a Cox-Ingersoll-Ross process, at least as long as the process is
bounded away from the singularity at x = 0. (It may occur that Ut remains
bounded when t → ∞)
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Exercise 7.13: Consider a scalar diffusion process {Xt : t ≥ 0} given by
dXt = f(Xt) dt + g(Xt) dBt and let s(x) be the associated scale function.
Let {Yu : u ≥ 0} be a time-changed process given by dUt = h(Xt) dt. Show
that s(·) is also the scale function of {Yu}.

7.8 Stratonovich Calculus

Our emphasis is on the Itô integral and Itô’s interpretation of stochastic dif-
ferential equations, but we now briefly summarize the corresponding results
for the Stratonovich integral and the Stratonovich interpretation.

Theorem 7.8.1 (The Chain Rule of Stratonovich Calculus) Let {Xt :
t ≥ 0} be an Itô process given in terms of a Stratonovich integral:

dXt = Ft dt+Gt ◦ dBt

and consider the image of this process under a smooth map h:

Yt = h(t,Xt).

Then {Yt} is an Itô process given in terms of the Stratonovich integral:

dYt = ∂h

∂t
dt+ ∂h

∂x
◦ dXt

= ∂h

∂t
dt+ ∂h

∂x
Ft dt+ ∂h

∂x
Gt ◦ dBt.

Notice that this is what we would expect if we naively applied the chain
rule from deterministic calculus.

Proof: Aiming to write {Yt} in terms of a Stratonovich integral, we make
a detour over the Itô calculus. First, recall that a Stratonovich integral can
be written in terms of an equivalent Itô integral∫ t

0
Gs ◦ dBs =

∫ T

0
Gs dBs + 1

2〈G,B〉t

where 〈G,B〉t is the cross-variation between the processes {Gt} and {Bt}.
Therefore, we can rewrite {Xt} in the standard form of an Itô process:

dXt = Ft dt+Gt dBt + 1
2d〈G,B〉t.

Now Itô’s lemma yields:

dYt = ∂h

∂t
dt+ ∂h

∂x
dXt + 1

2
∂2h

∂x2 (dXt)2
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We rewrite the middle integral as a Stratonovich integral:

dYt = ∂h

∂t
dt+ ∂h

∂x
◦ dXt − 1

2d
〈
∂h

∂x
,X

〉
t
+ 1

2
∂2h

∂x2 (dXt)2. (7.11)

Exercise 7.18 shows that the two last terms cancel, so we reach the final
result:

dYt = ∂h

∂t
dt+ ∂h

∂x
◦ dXt.

The conversion between Itô integrals and Stratonovich integrals is not
very explicit, due to the term 〈G,B〉t. But in the case of stochastic differ-
ential equations, we can get more explicit results:

Proposition 7.8.2 Consider a process {Xt ∈ Rn : t ≥ 0} which satisfies
the Stratonovich stochastic differential equation

dXt = fS(Xt) dt+ g(Xt) ◦ dBt . (7.12)

Then this process also satisfies an Itô equation

dXt = fI(Xt) dt+ g(Xt) dBt (7.13)

with the same noise intensity g but different drift term fI . In the case of
scalar Brownian motion, the relationship between the Itô drift fI and the
Stratonovich drift fS is:

fI(x) = fS(x) + 1
2
∂g

∂x
(x) g(x) (7.14)

Here, ∂g/∂x is the Jacobian of g. In the case of m-dimensional Brownian
motion

dXt = fS(Xt) dt+
m∑

k=1
gk(Xt) ◦ dB(k)

t = fI(Xt) dt+
m∑

k=1
gk(Xt) dB(k)

t

we have the relationship between two drift terms:

fI(x) = fS(x) + 1
2

m∑
k=1

∂gk

∂x
(x) gk(x)

or, written out explicitly element-wise:

fI,i(x) = fS,i(x) + 1
2

m∑
k=1

n∑
j=1

∂gik

∂xj
(x) gjk(x).



CHAPTER 7. THE STOCHASTIC CHAIN RULE 164

Proof: We first rewrite Xt in terms of an Itô integral:

Xt = X0 +
∫ t

0
fS(Xt) dt+

m∑
k=1

gk(Xt) ◦ dB(k)
t

= X0 +
∫ t

0
fS(Xt) dt+

m∑
k=1

gk(Xt) dB(k)
t +

m∑
k=1

1
2〈gk(X), B(k)〉t

For the last term, we get

d〈gk(X), B(k)〉t = ∂gk

∂x
d〈X,B(k)〉t = ∂gk

∂x
gk dt.

Inserting this in the integral for Xt, we get

Xt = X0 +
∫ t

0
fS(Xt) dt+

m∑
k=1

g(Xt) dBt + 1
2
∂g(k)

∂x
(Xs)g(k)(Xs) ds

or

dXt =
[
fS(Xt) + 1

2

m∑
k=1

∂g(k)

∂x
(Xs)g(k)(Xs)

]
dt+ g(Xt) dBt

= fI(Xt) dt+ g(Xt) dBt

as claimed.

Example 7.8.1 Consider the process {Xt = expBt : t ≥ 0}. By the chain
rule of Stratonovich calculus, {Xt} satisifies the Stratonovich equation dXt =
Xt ◦ dBt. With proposition 7.8.2, we find fS(x) = 0, g(x) = x and thus
fI(x) = 1

2x, so {Xt} also satisfies the Itô equation dXt = 1
2Xt dt+Xt dBt.

This is, of course, in agreement with what we find by appplying Itô’s lemma.

With this formula, we can convert back and forth between Itô and
Stratonovich equations, i.e., for a given Itô equation, we can find a
Stratonovich equation which has the same solution, and conversely.

Since Itô equations and Stratonovich equations describe the same class of
processes, we could base the mathematical framework on either the Itô inte-
gral or the Stratonovich integral and then transform the results to also apply
to the other. In this exposition, we generally prefer the Itô intepretation, be-
cause the Itô integral is a martingale, and because the simplest numerical
method for simulating sample paths is the explicit Euler-Maruyama method
for Itô equations. Despite this choice, there are applications where you may
prefer the Stratonovich calculus. The simpler chain rule is a good reason to
choose Stratonovich calculus when many transformations will be done, e.g.,
when changing coordinates.
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A different question is if a modeler should prefer Itô or Stratonovich
equations to describe a given system. In many situations, we know the drift
term from physical laws, so that the starting point for the model is an
ordinary differential equation, dXt = f(Xt) dt. If we then want to add state-
dependent noise, should this be Itô noise, g(Xt) dBt, or Stratonovich noise,
g(Xt) ◦dBt? A main argument for choosing Itô noise in this situation, could
be that the instantaneous rate of change of the mean EXt is then given by
the original drift term f . On the other hand, the Stratonovich interpretation
has the nice property that it appears as the limit, when the noise is band-
limited with increasing band-width. This stems from the property that the
Stratonovich integral arises as the limit when we approximate the integrator,
Brownian motion, with its harmonic expansion (Exercise 6.3). Finally, in
some situations we would like the noise to mimic Fickian diffusion. This
neither leads directly to Itô or Stratonovich models; see Chapter 9. Of course,
if time series data is available for the system, then one can infer if the
Itô interpretation or the Stratonovich interpretation - or something third -
matches the statistics of the observations best.

Exercise 7.14: Consider again Brownian motion on the circle in Carte-
sian coordinates, i.e., Xt = cosBt, Yt = sinBt (compare Section 7.6). Derive
Stratonovich equations that govern (Xt, Yt).

Exercise 7.15 Lamperti Transforming a Stratonovich Equa-
tion: Consider the scalar Stratonovich equation

dXt = f(Xt) dt+ g(Xt) ◦ dBt

where g(x) > 0 for all x. Verify that to transform to coordinates where the
noise is additive, we must use the same Lamperti transform as in the Itô case,
i.e., (7.7). Next, write the Itô equation which governs {Xt}, and Lamperti
transform this equation. Do we arrive at the same resulting equation?

7.9 Conclusion

In this chapter, we have established the rules of calculus that apply to Itô
processes. Most importantly, Itô’s lemma states that when we map an Itô
process {Xt} to obtain Yt = h(t,Xt), the resulting image {Yt} is again an
Itô process and the lemma allows us to compute the drift and intensity of
{Yt}. Relative to standard calculus, Itô’s lemma contains a new term in the
drift for {Yt} which combines the curvature of h and the quadratic variation
of {Xt}. It is useful to memorize Itô’s lemma as a truncated Taylor series in
increments where we keep second order terms (dXt)2, since dXt in general
scales with

√
dt. We can then add and multiply increments according to the

rules of Section 6.9, in particular using the formulas (dt)2 = dt dBt = 0,
(dBt)2 = dt.



CHAPTER 7. THE STOCHASTIC CHAIN RULE 166

Itô’s lemma is the main workhorse when we analyze stochastic differential
equations. We have used it to verify analytical solutions of some stochas-
tic differential equations. Although analytical solutions are the expectation
rather than the rule, those models for which analytical solutions are known
play a predominant role in applications. We have also used Itô’s lemma to
perform coordinate transformations. From a modeler’s point of view, trans-
forming to logarithmic or polar coordinates is routine. In addition, we have
shown two coordinate transformations for scalar processes which have spe-
cial interest: The Lamperti transform, which makes the noise additive in the
transformed system, and the scale function, which makes the transformed
process a martingale, i.e., driftless. Some analysis questions are more easily
answered in these transformed coordinate systems.

We have also shown how to transform time. It is a routine task to change
the units of time, if one is explicit about the units and remembers that in
standard Brownian motion, variance equals time. The same scaling of the
two integrands appear also when time changes randomly, even if this occurs
less frequently in applications.

Finally, we have derived the chain rule of Stratonovich calculus, i.e. when
Stratonovich integrals are involved. This is a simpler chain rule than Itô’s
lemma, and closer to the chain rule for standard calculus. This can lead one
to prefer the Stratonovich framework in some situations, but the martin-
gale property of the Itô integral is a strong argument in favour of the Itô
framework.

7.10 Notes and References

Itô’s lemma appeared in (Itô, 1951a), although the special case of Brow-
nian motion was presented in (Itô, 1944), and in Japanese in 1942. When
Stratonovich (1966) introduced his interpretation of the integral, he also
developed the calculus, and his discussion of the pros and cons of the two
interpretations is still valid. Gard (1988) present more techniques for solving
stochastic differential equations analytically than what we have shown here.

7.11 Exercises

Exercise 7.16: Let {Xt} be geometric Brownian motion, dXt = rXt dt +
σXt dBt, with X0 = x > 0. Let Yt = h(Xt) where h(x) = xp, p ∈ R. Show
that {Yt} is also geometric Brownian motion and determine its parameters.

Exercise 7.17: Verify that Yt = sinhBt satisfies the Itô SDE

dYt = 1
2Yt dt+

√
1 + Y 2

t dBt.
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Next, verify through simulation: Simulate a path of Brownian motion and
solve for {Yt} using the Euler-Maruyama scheme. Plot the analytical solu-
tion, the Euler-Maruyama solution, and the two numerical integrals∫ t

0

1
2Yt dt+

∫ t

0

√
1 + Y 2

t dBt,

∫ t

0
coshBt dBt +

∫ t

0

1
2 sinhBt d[B]t,

in the same graph and compare.

Exercise 7.18: Let {Xt} and {Yt} be scalar Itô processes and set
Zt = h(Xt, t) where h : R × R 7→ R is smooth. Show that

d〈Z, Y 〉t = h′(Xt, t) dXt dYt

where h′ = ∂h/∂x.

Exercise 7.19: Using the product rule in Example 7.3.3, show that

tBt =
∫ t

0
s dBs +

∫ t

0
Bs ds.

Next, find the mean and variance of each of these two integrals, and their
covariance. Verify the result using Monte Carlo simulation.

Exercise 7.20: Show that

E
{∫ t

0
Bs ds|Bt

}
= E

{∫ t

0
s dBs|Bt

}
= 1

2 tBt

Hint: You may use the properties of the Brownian bridge, and the product
rule d(tBt) = Bt dt+ t dBt.

Exercise 7.21: Let {Xt} be geometric Brownian motion, i.e.,

dXt = rXt dt+ σXt dBt,

and introduce scaled time Ut with dUt = Xt dt. We ignore that the speed
ratio is not bounded away from 0. Let the process {Yu} be Xt in scaled time,
i.e., Yu = Xτu with τu = inf{t ≥ 0 : Ut ≥ u}. Show that {Yu} satisfies

dYu = r du+ σ
√
Yu dWu.

i.e., {Yu} is a squared Bessel process. Note: If Xt approaches the origin,
the rescaled time {Ut} slows down. In fact, when the drift is weak, r <
1
2σ

2, Xt converges to 0 as t → ∞ w.p. 1 (compare Exercise 7.1). Then Ut

remains bounded, and the process {Yu} is only defined up to it hits the
origin. Compare Exercise 7.12.

Exercise 7.22: To see what happens when mapping diffusions through
functions that diverge quickly, let {Bt} be standard Brownian motion.
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1. Define Xt = expB2
t . Show that EXt is well defined if and only if

t < 1/2.

2. Define Xt = exp expBt. Show that E|Xt| = ∞ for all t > 0.

The point of these examples is that {Xt} are Itô processes in both situations,
as guaranteed by Itô’s lemma, but not L2 Itô processes.

Exercise 7.23 A Multivariate Wide-Sense Linear Equation:
Show that Xt = exp(At+GBt)x satisfies the wide-sense linear equation

dXt = (A+ 1
2G

2)Xt dt+GXt dBt, X0 = x,

if matrices A and G commute. Here {Bt} is scalar. Note: An example of
such a system is Brownian motion on the circle; Section 7.6.1. In general,
multivariate wide-sense linear equations do not have known closed-form so-
lutions.

Exercise 7.24 Brownian Motion on the Sphere: Consider the
Stratonovich equation in n dimensions:

dXt = (I − 1
|Xt|2

XtX
>
t ) ◦ dBt, X0 = x 6= 0,

where Xt ∈ Rn and {Bt} is n-dimensional Brownian motion.

1. Show that |Xt|2 = |x|2, i.e. any sphere {x : |x| = r} is invariant for
r > 0.

2. Show that if {Xt} satisfies this equation and U is a rotation matrix
(U>U = UU> = I), then {UXt} satisfies the same equation but with
a different Brownian motion.

3. It can be shown that {Xt} satisfies the Itô equation

dXt = 1 − n

2|Xt|2
Xt dt+ (I − 1

|Xt|2
XtX

>
t ) dBt.

Verify that the drift term is correct in the sense that |Xt|2 is con-
stant along trajectories, if {Xt} satisfies this Itô equation. Then find
a differential equation which EXt satisfies and state the solution, i.e.,
write EXt as a function of EX0. Verify the result with a stochastic
simulation.

Exercise 7.25 An Exponential Martingale: Let {Bt} be stan-
dard Brownian motion as usual and let {Gt} be L2 Itô integrable. Define
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{Xt} by X0 = 0 and dXt = Gt dBt − 1
2G

2
t dt, and set Yt = expXt. Show

that
dYt = YtGt dBt.

Verify the result with numerical simulation of a sample path, using Gt =
sinBt + cos t. Note: Since {Yt} is an Itô integral, it is a local martingale. If
{Gt} satisfies Novikov’s condition that E exp(1

2
∫ t

0 G
2
s ds) < ∞ for all t ≥ 0,

then {Yt} is a martingale.



Chapter 8

Existence, Uniqueness, and
Numerics

At this point we can, at least in principle, verify if a given process {Xt :
t ≥ 0} satisfies a given stochastic differential equation dXt = f(t,Xt) dt +
g(t,Xt) dBt. In most applications, the problem is the inverse: We are given
the functions f, g in the model and the initial condition X0 = x, and we
aim to solve the stochastic differential equation, i.e., find {Xt}. Before we
attempt to solve the equation, whether analytically or numerically, we would
like to be assured that there does indeed exist a solution and that it is unique.
In this chapter we state existence and uniqueness theorems to this end.

Uniqueness can fail at singularities of f and g. Global existence of solu-
tions can fail through explosions, where the state Xt diverges to ∞ in finite
time. The existence and uniqueness theorems presented in this chapter work
by ruling out these phenomena.

Once we know that a unique solution exists, we often wish to find this
solution or at least characterize it. We typically cannot write up the solution
explicitly, so numerical simulation of sample paths is important. Even when
we can write up the solution explicitly, we may learn much about the system
by inspecting simulated sample paths. The basic algorithm for numerical
simulation of sample paths is the Euler-Maruyama method.

In this chapter, we analyze the performance of the Euler-Maruyama
scheme (which turns out to be not very impressive): This concerns how
fast individual simulated sample paths converge to the true sample paths,
as well as how fast the statistics of sample paths converge to the true ones.
These modes of convergence lead to the strong and weak order. We next
discuss some improvements: The Mil’shtein scheme and Heun’s method. We
finally discuss numerical stability, implicit methods, and design of simulation
experiments.

170
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8.1 The Initial Value Problem

In this chapter, we consider the initial value problem consisting of the Itô
stochastic differential equation

dXt = f(Xt, t) dt+ g(Xt, t) dBt (8.1)

and the initial condition
X0 = x. (8.2)

Here, not just the model (f, g) and the initial condition x is given, but
also the underlying filtered probability space (Ω,F , {F t},P), along with
{Bt : t ≥ 0} which is Brownian motion w.r.t. {F t} and P.

We then ask: Does there exist an Itô process {Xt} which satisfies this
stochastic differential equation and the initial condition? If so, is it unique?
Such an {Xt} is called a strong solution, and the notion of uniqueness is
called strong or pathwise. There is also a weak notion of solutions and unique-
ness, but we consider the strong notion only.

8.2 Uniqueness of Solutions

We prefer initial value problems with unique solutions, but are not always
so lucky. A counterexample from ordinary differential equations is:

8.2.1 Non-Uniqueness: The Falling Ball

A ball is held at rest in a gravity field in space at time t = 0. We use Xt to
denote its vertical position at time t; the axis is directed downwards. The
potential energy of the ball at time t is −mgXt where m is the mass of
the ball and g is the gravitational acceleration. The kinetic energy is 1

2mV
2

t

where Vt = dXt/dt is the vertical velocity downwards. Energy conservation
dictates

1
2mV

2
t −mgXt = 0.

We can isolate Vt to obtain

Vt = dXt

dt
=
√

2gXt (8.3)

where we have used physical reasoning to discard the negative solution. This
is a first order ordinary differential equation in {Xt}. We may write it in the
standard form:

Ẋt = f(Xt, t) where f(x, t) =
√

2gx.

With the initial condition X0 = 0, one solution is

Xt = 1
2gt

2.
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But this solution is not unique: Another solution is Xt = 0. In fact, for any
non-negative t0, we can construct a solution

Xt =
{

0 for t ≤ t0,
1
2g(t− t0)2 for t > t0.

The physical interpretation of these solutions is that we hold the ball until
time t0 and then let go. Note that for each parameter t0, this expression
defines a continuously differentiable function of time t, so it is a valid solution
in every mathematical sense. Uniqueness fails because when the particle is at
standstill, we may apply a force without doing work by holding the particle.
So energy conservation does not determine the force and hence the motion.

Mathematically, the problem is that the right hand side of the ODE,
f(x, t) =

√
2gx, has a singularity at x = 0: the derivative is

∂f

∂x
(x, t) =

√
g/2x

which approaches ∞ as x ↓ 0.
As the following exercise shows, the same phenomenon can occur in a

stochastic setting.

Exercise 8.1: Show that, given any deterministic T ≥ 0, the process

Xt =
{

0 for 0 ≤ t ≤ T
(Bt −BT )3 for t > T

satisfies the Stratonovich stochastic differential equation

dXt = 3|Xt|2/3 ◦ dBt, X0 = 0.

We use Stratonovich calculus to get a closer analogy to the deterministic
case. There is no straightforward physical interpretation of this example, but
mathematically, it contains a similar singularity at the origin: The function g
given by g(x) = 3|x|2/3 is non-differentiable at x = 0. The exercise considers
the non-uniqueness that appears when starting at the singularity, but notice
that we could also have started away from the singularity (say, X0 = 1), in
which non-uniqueness would arise when we hit the singularity.

8.2.2 Local Lipschitz Continuity Implies Uniqueness

Non-uniqueness of solutions should, in general, be avoided in the modeling
process. In order to rule out non-uniqueness that appears at singularities,
it is standard to require that the model is Lipschitz continuous (see Figure
8.1).
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Figure 8.1: Lipschitz continuity. The function x 7→ x+ sin x+ cos 2x is Lip-
schitz continuous with Lipschitz constant 4. For each point x, this restricts
the graph to a cone, indicated by light gray for the point x = −1; the dark
gray set is a “forbidden zone”.

Definition 8.2.1 (Lipschitz Continuity) Let f be a function from one
normed space X to another Y. We say that f is globally Lipschitz continuous
if there exists a constant K > 0, such that

|f(x1) − f(x2)| ≤ K|x1 − x2|

holds for any x1, x2 ∈ X. We say that f is locally Lipschitz continuous if
for each x ∈ X there exists a neighborhood A of x, such that the restriction
of f to A is Lipschitz continuous.

For brevity, we may skip the terms “globally” and “continuous” and just
say that a function is Lipschitz.

Our interest is in the finite-dimensional spaces Rn×m for natural n and
m. In this case, it does not matter which norm we choose, since they are
all equivalent (i.e., they can be bounded in terms of eachother). Also, note
that, a C1 function is necessarily locally Lipschitz, but globally Lipschitz if
and only if the derivative is bounded. However, a Lipschitz function does
not have to be differentiable; for example the function x 7→ |x| is Lipschitz
but not differentiable at 0.

For time-invariant systems, local Lipschitz continuity is enough to guar-
antee uniqueness of a solution. For time-varying systems, the requirement is
a little bit more elaborate:

Theorem 8.2.1 Let T > 0 and assume that for any R > 0 there exist
Kf > 0, Kg > 0, such that

|f(x, t) − f(y, t)| ≤ Kf · |x− y|, |g(x, t) − g(y, t)| ≤ Kg · |x− y|
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Factbox: [The Grönwall-Bellman inequality] This lemma states that
“linear bounds on dynamics imply exponential bounds on solutions”.
T.H. Grönwall considered a differentiable function v : [0,∞) 7→ R such
that

v′(t) ≤ a(t)v(t)

for all t ≥ 0, where a : [0,∞) 7→ R is continuous, and concluded that

v(t) ≤ v(0) exp
(∫ t

0
a(s) ds

)
holds for all t ≥ 0. To see this, write v′(t) = a(t)v(t) + f(t) where
f(t) ≤ 0. Then v(t) = v(0) exp

(∫ t
0 a(s) ds

)
+
∫ t

0 exp(
∫ t

s a(u) du)f(s) ds.
Now note that the second term is non-positive.
R. Bellman considered an integral form, so that v does not need to
be differentiable. One version assumes that a, b, v : [0,∞) 7→ R are
continuous functions, with a non-negative and b non-decreasing. If v
satisfies

v(t) ≤ b(t) +
∫ t

0
a(s)v(s) ds for all t ≥ 0,

then v also satisfies

v(t) ≤ b(t) exp
(∫ t

0
a(s) ds

)
for all t ≥ 0.

whenever 0 ≤ t ≤ T and |x|, |y| < R. Then there can exist at most one
Itô process {Xt : 0 ≤ t ≤ T} which satisfies the initial value problem (8.1),
(8.2). That is, if {Xt : t ≥ 0} and {Yt : t ≥ 0} are two Itô processes which
both satisfy the initial value problem, then Xt = Yt for all t, almost surely.

Proof: We first assume that f and g are bounded and globally Lipschitz
with constants Kf and Kg, using the Euclidean norm for the vectors x and
f and the Frobenius norm |g|2 = ∑

ij |gij |2 for the matrix g. Let {Xt} and
{Yt} be Itô processes which both satisfy the stochastic differential equation,
but not necessarily the initial condition. Define the processes

Dt = Xt − Yt

Ft = f(Xt, t) − f(Yt, t)
Gt = g(Xt, t) − g(Yt, t)
St = |Xt − Yt|2 = |Dt|2.

Then, by the Itô formula, {Dt} and {St} are Itô processes. We get:

dDt = Ft dt+Gt dBt
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and

dSt = 2D>
t dDt + |dDt|2

= 2D>
t Ft dt+ 2D>

t Gt dBt + tr[GtG
>
t ] dt.

If ESs is bounded for s ∈ [0, t], then the Itô integral is a martingale, so

ESt = S0 + E
∫ t

0

(
2 D>

s Fs + tr[GsG
>
s ]
)
ds.

Now, the Cauchy-Schwarz inequality |〈a, b〉| ≤ ‖a‖ ‖b‖ implies that
|D>

s Fs| ≤ |Ds||Fs|, and with the Lipschitz continuity of f we get |D>
s Fs| ≤

Kf |Ds|2. Similarly, tr[GsG
>
s ] = |Gs|2 ≤ K2

g |Ds|2. We therefore get

ESt ≤ S0 +
∫ t

0
(2 Kf +K2

g )ESs ds

and in turn the Grönwall-Bellman inequality implies that

ESt ≤ S0e
[2Kf +K2

g ]t.

I.e., trajectories diverge at most exponentially from each other with a rate
that depends on the Lipschitz constants Kf , Kg. Now, if the two initial
conditions coincide, X0 = Y0, then S0 = 0, and so ESt = 0 for all t. That
is, the solutions Xt and Yt agree w.p. 1 for each t. By continuity it follows
that the two solutions agree for all t, w.p. 1.

Now, if f and g are only locally Lipschitz continuous: For a given R,
modify f and g to get f̃ and g̃ given by

f̃(x) =
{

f(x) for |x| ≤ R
f(xR/|x|) for |x| > R

, g̃(x) =
{

g(x) for |x| ≤ R
g(xR/|x|) for |x| > R

.

Then f̃ and g̃ are bounded and globally Lipschitz continuous. Now Xt and
Yt satisfy the SDE dXt = f̃(Xt) dt+ g̃(Xt) dBt and St remains bounded up
to the stopping time τ = inf{t ≥ 0 : |Xt| > R ∨ |Yt| > R}, so it must hold
that Xt = Yt for t ≤ τ . Since R is arbitrary, we conclude that Xt = Yt as
long as |Xt| < ∞, |Yt| < ∞. But since {Xt} and {Yt} were assumed to be
Itô processes, this holds for all t.

8.3 Existence of Solutions

We now ask if the initial value problem (8.1), (8.2) is guaranteed to have a
solution. The most interesting reason this may fail, is that a solution exists
only up to some (random) point of time, where it explodes. It is instructive
to begin with a deterministic example:



CHAPTER 8. EXISTENCE, UNIQUENESS, AND NUMERICS 176

Example 8.3.1 (Explosion in an Ordinary Differential Equation) For

Ẋt = 1 +X2
t , X0 = 0,

there exists a (unique maximal) solution Xt = tan t which is defined for
0 ≤ t < π/2. An explosion occurs at t = π/2 where Xt → ∞.

Explosions can also occur in continuous-time Markov chains taking dis-
crete values: Consider the “birth” process {Xt ∈ N : t ≥ 0} where the
only state transitions are from one state x to x + 1, which happens with
rate x2. This can model population growth or a nuclear chain reaction.
Starting with X0 = 1, let τn be the time of arrival to state n ∈ N, i.e.,
τn = inf{t ≥ 0 : Xt = n}. The expected “sojourn time” (i.e., time spent)
in state x is 1/x2, so τn has expectation Eτn = ∑n−1

x=1 x
−2 which remains

bounded as n increases: Eτn → 1.077 as n → ∞, approximately. Now, define
τ = limn→∞ τn. We say that an explosion occurs in finite time if τ < ∞, and
see that Eτ ≈ 1.077. So an explosion occurs at a finite time, almost surely.

Combining these two examples of explosions, it is not surprising that
solutions to stochastic differential equations may explode:

Example 8.3.2 (Explosion in a Stratonovich SDE) The process {Xt =
tanBt} satisfies the Stratonovich SDE

dXt = (1 +X2
t ) ◦ dBt (8.4)

until the stopping time τ given by

τ = inf{t : |Bt| ≥ π

2 }.

The time τ is the (random) time of explosion. See Figure 8.2. Note: To
verify that {Xt} satisfies this SDE, we use the chain rule of Stratonovich
calculus. However, the chain rule assumes the process to be well defined
for all t ≥ 0. The way around this obstacle is again to localize: Introduce
the stopping time T = inf{t ≥ 0 : |Xt| ≥ R}; then the stopped process
{Xt∧T : t ≥ 0} is well-behaved, and XT = tanBT = R. Then let R → ∞.

8.3.1 Linear Bounds Rule out Explosions

In some applications, explosions are an important part of the dynamics, and
we may wish to know when and how the system explodes. However, at this
point we prefer our stochastic differential equations to have solutions defined
on the entire time axis, so we aim to rule out explosions. The following
theorem is broad enough to apply in many applications:
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Figure 8.2: Explosion at a random time. Three sample paths of the process
(8.4), up to the random time τ of explosion.

Theorem 8.3.1 Let the Itô process {Xt : 0 ≤ t ≤ T} satisfy the initial
value problem (8.1), (8.2) for t ∈ [0, T ] where T > 0. If (f, g) satisfy the
bound

x>f(x, t) ≤ C · (1 + |x|2) , |g(x, t)|2 ≤ C · (1 + |x|2)

for C > 0, all x ∈ Rn, and all t ∈ [0, T ], then

E|Xt|2 ≤ (x2
0 + 3Ct)e3Ct.

In particular, E|Xt|2 is finite and bounded on [0, T ].

Proof: Define St = |Xt|2. By Itô’s lemma, we have

dSt = 2X>
t dXt + |dXt|2

= 2X>
t f(Xt) dt+ tr[g>(Xt, t)g(Xt, t)] dt+ 2X>

t g(Xt) dBt.

We localize to ensure that the Itô integral is a martingale (skipping details)
and get

ESt = S0 + E
∫ t

0
2X>

s f(Xs) + tr[g>(Xs, s)g(Xs, s)] ds

and, with the bounds on the functions f and g,

ESt ≤ S0 +
∫ t

0
3C(1 + ESs) ds.

Now the claim follows from the Grönwall-Bellman inequality with v(t) =
ESt, b(t) = S0 + 3Ct, and a(s) = 3C.
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The condition x>f(x) ≤ C(1+|x|2) deserves an explanation. It holds if f
is globally Lipschitz continuous, but that would be too restrictive to require,
since many models of interest are not. For example, the ordinary differential
equation Ẋt = −X3

t is not globally Lipschitz, but the equation still admits
a solution which is defined for all t ≥ 0, for every initial condition X0 = x.
Indeed, this model satisfies the conditions of Theorem 8.3.1, since g(x) = 0
and xf(x) ≤ 0 hold for all x. The condition x>f(x) ≤ C(1+ |x|2) allows the
function f to contain superlinear growth terms, as long as these are directed
towards the origin.

Theorem 8.3.1 is not an existence theorem, because it assumes a solution
and then states a bound on that solution. However, it turns out that it is
exactly this bound that allows us to conclude that a solution exists:

Theorem 8.3.2 Consider the initial value problem (8.1), (8.2) and let T >
0. Assume that the functions (f, g) satisfies the local Lipschitz condition for
uniqueness in Theorem 8.2.1, and the linear growth bounds in Theorem 8.3.1
which rule out explosions. Then there exists a unique Itô process {Xt : 0 ≤
t ≤ T} which satisfies the initial value problem.

We omit the proof of this theorem; see, e.g., (Mao, 2008). Briefly, the
outline of the proof is as follows: First, we assume that the functions f , g are
globally Lipschitz. Then we use the method of successive approximations,
also known as Picard iteration, to construct the solution. This iteration
starts with X

(1)
t = x and employs the recursion

X
(n+1)
t = x+

∫ t

0
f(X(n)

s , s) ds+
∫ t

0
g(X(n)

s , s) dBs.

First, we use the bounds on f and g to show that each iterate remains
bounded in L2. Then, we show that the sequence is a Cauchy sequence,
hence convergent in L2. Finally, we show that the limit satisfies the stochas-
tic differential equations. If the model is not globally Lipschitz, then we
approximate the functions f , g with globally Lipschitz functions as in the
proof of Theorem 8.2.1. This implies that a solution exists until the stop-
ping time where it escapes any bounded sphere; i.e., up to explosion. But
Theorem 8.3.1 rules out such an explosion. We conclude that the solution is
defined at all times.

Exercise 8.2 Picard Iteration for the Wide-Sense Linear
Stratonovich Equation: Consider the Stratonovich SDE

dXt = rXt dt+ σXt ◦ dBt (8.5)

and the initial condition X0 = 1. Conduct the Picard iteration and show
that at each step in the iteration, the solution X(n)

t is the truncated Taylor
series of exp(rt+ σBt).
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8.4 Numerical Simulation of Sample Paths

We have already made use of the simplest algorithm for numerical simulation
of sample paths, viz. the Euler-Maruyama scheme. In this section, we analyze
the performance of this scheme and show two improvements, the Mil’shtein
scheme and the Heun scheme.

8.4.1 The Strong Order of the Euler-Maruyama Method for
Geometric Brownian Motion

We assess the performance of the Euler-Maruyama method through simula-
tion. Consider geometric Brownian motion given by the Itô equation:

dXt = rXt dt+ σXt dBt, X0 = x

for which the unique solution is Xt = x exp((r− 1
2σ

2)t+ σBt). We approxi-
mate it with the Euler-Maruyama method

X
(h)
t+h = X

(h)
t + rX

(h)
t h+ σX

(h)
t (Bt+h −Bt), X

(h)
0 = x.

We use the superscript X(h)
t to emphasize that the approximation of Xt

is based on the time step h. We fix the terminal time T and measure the
error XT − X

(h)
T , which is a random variable. Figure 8.3 (left panel) shows

one realization of geometric Brownian motion and its Euler-Maruyama dis-
cretization.

To assess the error, we first simulate a large number (N = 105) of real-
izations of Brownian motion on a fine temporal grid (h = 2−10). For each
realization, we compute the analytical solution, the Euler-Maruyama ap-
proximation, and the absolute error |XT − X

(h)
T |. Next, we sub-sample the

Brownian motion on a coarser grid, omitting every other time step, so in-
creasing the time step with a factor 2. We repeat the computations of the
Euler-Maruyama discretized solution and the error, and subsampling to ever
coarser grids. If the analytical solution had not been available, we would have
compared the coarser simulations with the finest one.

Figure 8.3 (right panel) shows the resulting mean absolute error plotted
against the time step. It is a double logarithmic plot, so that power relation-
ships display as straight lines. The line with a slope of 0.5 corresponds to a
square root scaling, which shows good agreement with experimental results:

E|XT −X
(h)
T | ∼

√
h.

In fact, as we will see in the following, this is the theoretical prediction. We
say that the Euler-Maruyama scheme, in general, has strong order 0.5.
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Figure 8.3: Geometric Brownian motion and its discretization. The param-
eters are r = 0.5, σ = 0.5, x = 1, T = 1. Left panel: A single sample
path of the analytical solution evaluated on a very fine time grid (grey),
and the Euler-Maruyama approximation with a coarse time step, h = 0.25.
Right panel: The mean absolute error of the Euler-Maruyama scheme, the
Mil’shtein scheme, and the Heun scheme, plotted against the time step h.
The errors are based on 100,000 realizations. Included are also straight lines
corresponding to strong orders of 0.5 and 1.0.

8.4.2 Errors in the Euler-Maruyama Scheme

Let us investigate how the errors in the Euler-Maruyama scheme arise and
accumulate. We consider a scalar SDE

Xt = X0 +
∫ t

0
f(Xs) ds+

∫ t

0
g(Xs) dBs, X0 = x,

governing the Itô diffusion {Xt}, and its Euler-Maruyama discretization
{X(h)

t } with time step h, where the first time step is given by

X
(h)
h = x+ f(x) h+ g(x) Bh.

The local error, introduced during the first time step [0, h], is:

Xh −X
(h)
h =

∫ h

0
f(Xs) − f(x) ds+

∫ h

0
g(Xs) − g(x) dBs.

Define {Fs = f(Xs) − f(x)} and {Gs = g(Xs) − g(x)} to be the two inte-
grands in this expression, then F0 = G0 = 0, and Itô’s lemma gives us:

dFs = f ′(Xs) dXs + 1
2f

′′(Xs) (dXs)2

= f ′(Xs)f(Xs) ds+ f ′(Xs)g(Xs) dBs + 1
2f

′′(Xs)g2(Xs) ds
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and

dGs = g′(Xs) dXs + 1
2g

′′(Xs) (dXs)2

= g′(Xs)f(Xs) ds+ g′(Xs)g(Xs) dBs + 1
2g

′′(Xs)g2(Xs) ds.

We can now make the following approximations for these processes {Fs} and
{Gs}:

Fs ≈ f ′(x)f(x)s+ f ′(x)g(x)Bs + 1
2f

′′(x)g2(x)s,

Gs ≈ g′(x)f(x)s+ g′(x)g(x)Bs + 1
2g

′′(x)g2(x)s.

Here, we have omitted the error terms and used the symbol ≈ to indicate
this. Inserting in the integrals for the error, we find

Xh −X
(h)
h ≈[f ′f + 1

2f
′′g2]

∫ h

0
s ds

+ f ′g

∫ h

0
Bs ds

+ [g′f + 1
2g

′′g2]
∫ h

0
s dBs

+ g′g

∫ h

0
Bs dBs

where we have omitted the argument x of f(x), f ′(x), etc. We can now assess
the size of each term. The first integral is deterministic,

∫ h
0 s ds = 1

2h
2. The

second,
∫ h

0 Bs ds is a Gaussian random variable with mean 0 and variance
h3/3, and the same applies to the third,

∫ h
0 s dBs (Exercise 7.19). Finally, for

the last integral, we have
∫ h

0 Bs dBs = (B2
h −h)/2 (compare equation (6.12))

which has expectation 0 and variance h2/2 (Exercise 3.13). Of these three
stochastic terms, when the time step h is small, the last term will dominate
since it has lower order, assuming that the coefficient g′g does not vanish.

Our next task is to assess how local errors, introduced during the first
time step and subsequent ones, propagate to the end of the simulation,
t = T . A thorough treatment can be found in (Kloeden and Platen, 1999;
Milstein and Tretyakov, 2004); here, we provide an outline. We focus on
the dominating term in the local error, g′g (B2

h − h)/2, which has mean
0 and variance O(h2). This term is amplified or attenuated over the time
interval [h, T ] by system dynamics; we established an upper bound for the
amplification when proving uniqueness (Theorem 8.2.1). Later local errors,
introduced in time intervals [h, 2h], [2h, 3h], etc, are uncorrelated. When the
entire simulation interval [0, T ] is divided into n = T/h subintervals, the
total error will therefore have a variance which scales as O(nh2) = O(h).
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The error itself is therefore O(h1/2), in agreement with the simulation in
Section 8.4.1: The Euler-Maruyama scheme has strong order 1/2.

Note that the error term we have considered includes the factor g′(x).
This implies that when the noise is additive (g(x) is a constant function of
x), this error term vanishes. The next term turns out to have order 1, as
in the Euler scheme for deterministic differential equations. This suggests
to apply the Euler-Maruyama scheme to a Lamperti-transformed version of
the equation. This is indeed a good idea, in general.

8.4.3 The Mil’shtein Scheme

This error analysis of the Euler-Maruyama scheme also immediately suggests
an improvement: Since the dominating term in the local error is g′g(B2

h −
h)/2, we can simply include this in the discrete approximation. This leads to
the Mil’shtein scheme for a scalar equation (Milstein and Tretyakov, 2004):

Xt+h = Xt + f(Xt) h+ g(Xt, t)∆B + 1
2g

′(Xt)g(Xt)
[
(∆B)2 − h

]
with ∆B = Bt+h − Bt. The last term can be seen as a correction term,
which has expectation zero and variance proportional to h2, conditional on
Xt. The strong order of the scheme is 1.

For a multivariate SDE with multiple noise terms,

dXt = f(Xt) dt+
m∑

k=1
gk(Xt) dB(k)

t ,

the Mil’shtein scheme can be generalized to

Xt+h = Xt + f h+
m∑

k=1
gk∆B(k) +

m∑
k,l=1

∇gk gl

∫ t+h

t
B(l)

s dB(k)
s . (8.6)

Here, ∇gk is the Jacobian of gk, i.e., a matrix with (i, j)-entry ∂gi/∂xj . All
functions f , g and ∇g are evaluated at Xt. The integrals of the different
Brownian motions w.r.t. each other complicate the implementation. How-
ever, when there is just a single noise term, or when the cross terms vanish
(e.g., diagonal or commutative noise; see Section 8.6.1), then it is easy to
implement the scheme, since we know

∫ t+h
t B

(l)
s dB

(l)
s from (6.12).

Example 8.4.1 Consider Brownian motion on the unit circle {(Xt, Yt)},
given by the Itô stochastic differential equation

dXt = −1
2Xt dt− Yt dBt, dYt = −1

2Yt dt+Xt dBt

for which the solution corresponding to X0 = 1, Y0 = 0 is

Xt = cosBt, Yt = sinBt.
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Figure 8.4: The Mil’shtein scheme (left) and the Heun scheme (right) for
Brownian motion on the unit circle. One step is shown, starting at position
(Xt, Yt) = (1, 0). Note that the schemes return a point on the supporting
parabola (dashed).

To construct the Mil’shtein scheme for this process, we first identify ∇g:

∇g =
[

0 −1
1 0

]

and thus (∇g)g = (−x,−y). The Mil’shtein scheme is then(
Xt+h

Yt+h

)
=
(
Xt

Yt

)
− 1

2

(
Xt

Yt

)
h+

(
−Yt

Xt

)
∆B − 1

2

(
Xt

Yt

)
((∆B)2 − h)

=
(
Xt

Yt

)
+
(

−Yt

Xt

)
∆B − 1

2

(
Xt

Yt

)
(∆B)2

See figure 8.4. Replacing the last term involving (∆B)2 with its expectation,
we are back at the Euler-Maruyama scheme, which would return the point
(1 − h/2,∆B).

8.4.4 The Stochastic Heun Method

The Heun method is a predictor-corrector scheme for ordinary differential
equations. It may be generalized to stochastic differential equations, most
conveniently in the Stratonovich case. So consider the Stratonovich equation

dXt = f(Xt, t) dt+ g(Xt, t) ◦ dBt. (8.7)
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First we form the predictor with an Euler-Maruyama step:
Zt+h = Xt + f(Xt, t)h+ g(Xt, t)(Bt+h −Bt)

and note that since the Euler-Maruyama step is consistent with the Itô
interpretation, this Zt+h is not a good (i.e., consistent) approximation of
Xt+h. Undeterred, we modify our estimates of drift and diffusion with this
predictor:

f̄ = 1
2(f(Xt, t) + f(Zt+h, t+ h)), ḡ = 1

2(g(Xt, t) + g(Zt+h, t+ h)).

Then we use this modified estimate of drift and diffusion for the final update:
Xt+h = Xt + f̄ h+ ḡ (Bt+h −Bt).

The Heun method is strongly consistent with the Stratonovich equation (8.7)
and has strong order 1 when the Brownian motion is scalar, or when the
Brownian motion is multidimensional but the noise structure is commutative
(Section 8.6.1) (Rümelin, 1982). In the deterministic case g = 0, the Heun
method has second-order global error. This is an indication that the scheme
is likely to perform substantially better than the Euler-Maruyama method
and the Mil’shtein method, when the noise g is weak. When the noise is
additive, so that the Itô and Stratonovich interpretation is the same, there
is generally no reason to use the Euler-Maruyama method rather than the
Heun method.

Example 8.4.2 We consider again Brownian motion on the unit circle,
now described with the Stratonovich equation

d

(
Xt

Yt

)
=
(

−Yt

Xt

)
◦ dBt.

The predictor step returns the point Zt+h

Zt+h =
(
Xt − Yt∆B
Yt +Xt∆B

)
.

The diffusion term evaluated at Zt+h is

g(Zt+h)∆B =
(

−Yt −Xt∆B
Xt − Yt∆B

)
∆B

so that the corrected update is(
Xt+h

Yt+h

)
=
(
Xt − Yt∆B − 1

2Xt(∆B)2

Yt +Xt∆B − 1
2Yt(∆B)2

)
.

Note that this exactly agrees with the Mil’shtein scheme for the corresponding
Itô equation, which we examined in Example 8.4.1.

An advantage of the scheme is that it allows to assess the local error at
each time step by comparing the drift f and noise intensity g evaluated at
(Xt, t) and at (Zt+h, t+h). This can be used for adaptive time step control.
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Figure 8.5: The weak error of the Euler-Maruyama, Mil’shtein, and Heun
schemes for geometric Brownian motion, and of the Richardson extrapola-
tion of the Heun approximation. Parameters and realizations as in Figure
8.3. For reference, a straight line with slope 1, indicating weak order 1.

8.4.5 The Weak Order

In many situations, the individual sample path is not of interest, only statis-
tics over many realizations. For example, we may use Monte Carlo to com-
pute the distribution ofXT or some other “analytical” property of the model.
Then, the strong error is an overly harsh measure of the performance of a
scheme. In this section, we consider an alternative, the weak order, which
measures the speed of convergence in distribution as the time step tends to
0.

To this end, it is practical to assume that the objective of the simulation
study is to determine

Ek(XT )

for a given function k. This test function k could be a low-order polynomial
if we are interested in the moments of XT , or an indicator function of some
set if we are interested in transition probabilities.

We say that the scheme has weak order p with respect to a family of
test functions, if for each test function k in the class there exists a constant
C > 0, such that ∣∣∣Ek(X(h)

T ) − Ek(XT )
∣∣∣ ≤ Chp

holds. Notice that the weak order is concerned only with the statistics of the
solution; the actual sample paths may be different, and it is not required
that X(h)

T → XT in any stronger sense than convergence in distribution.
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Figure 8.5 shows results of the same experiment as in figure 8.3. Here
we have used the test function k(x) = x; the simulations are divided into
10 batches in order to reduce statistical fluctuations. Note that the results
are consistent with a weak order of 1, for all schemes. Notice also that the
Euler-Maruyama and Mi’lshtein schemes have roughly the same weak error,
while the Heun method has lower error, for each time step.

Comparing with figure 8.3, we notice that the weak order is never smaller
than the strong order, for all schemes. This holds in general, as long as
the test functions are locally Lipschitz continuous (e.g., smooth) and the
solutions are bounded (Kloeden and Platen, 1999).

Figure 8.5 also includes the error obtained with the so-called Richardson
extrapolation applied to the Heun method. This extrapolation, which is a
general technique in numerical analysis, combines results obtained with two
different time steps in order to extrapolate to the limit of vanishing time
steps. Let k̂(h) be the estimate of Ek(XT ) obtained with a time step h; then
the Richardson extrapolation combines k̂(h) and k̂(2h) to get

k̂(0;h, 2h) = 2nk̂(h) − k̂(2h)
2n − 1 .

Here, k̂(0;h, 2h) indicates that we estimate k̂(0) using information obtained
with step sizes h and 2h. n is the weak order of the scheme; in this case,
n = 1. We see that Richardson extrapolation yields a very substantial im-
provement. With the Mil’shtein scheme we obtain comparable results, which
are left out of the plot in order to avoid clutter. The estimates obtained
with the Euler-Maruyama method, however, need even more samples for
the Richardson extrapolation to offer significant improvements.

8.4.6 A Bias/Variance Trade-Off in Monte Carlo Methods

When estimating a quantity such as Ek(XT ) through simulation, a trade-off
arises between the accuracy of the individual sample path and the number
of sample paths. Here, we illustrate this trade-off with the example of esti-
mating the mean in geometric Brownian motion

dXt = λXt dt+ σXt dBt, X0 = 1

using the Euler-Maruyama discretization

X
(h)
t+h = X

(h)
t + λX

(h)
t h+ σX

(h)
t (Bt+h −Bt).

The purpose of the simulation experiment is to estimate µ = EXT , knowing
that the true result is EXT = eλT . We use the crude Monte Carlo estimator

µ̂ = 1
N

N∑
i=1

X
(h,i)
T



CHAPTER 8. EXISTENCE, UNIQUENESS, AND NUMERICS 187

where N is the number of replicates (sample paths) and X
(h,i)
T , for i =

1, . . . , N , are independent samples obtained with the Euler-Maruyama
method using a step size of h. Taking expectation in Euler-Maruyama
method, we obtain, for each i

EX(h,i)
T = (1 + λh)T/h = eλT (1 − 1

2Tλ
2h+ o(h))

where the last equality follows from differentiating w.r.t. h and letting h → 0.
We see that the Euler-Maruyama method has a bias of −eλT 1

2Tλ
2h, to lowest

order in h. The variance of XT , in turn, is known from the properties of
geometric Brownian motion (Exercise 7.1):

VXT = (eσ2T − 1)e(2λ+σ2)T .

When the time step is small, the variance of X(h)
T is roughly equal to that of

XT , and therefore we get the following mean-square error on the estimate
µ̂:

E|µ̂− µ|2 = |Eµ̂− µ|2 + 1
N

VXT

= 1
4T

2λ4h2e2λT + 1
N

(eσ2T − 1)e(2λ+σ2)T . (8.8)

To reduce the first term originating from the bias, we need small time steps
h. To reduce the second term originating from statistical error, we need
many sample paths N . With limited computational effort available, we need
to choose between these two conflicting objectives. So assume that the com-
putational effort E depends on number of replicates N and the step size h
as E = N/h. We then face the problem

min
N,h

ah2 + b/N subject to the constraint E = N/h,

where a and b are the coefficients in mean square error (8.8):

a = 1
4T

2λ4e2λT , b = (eσ2T − 1)e(2λ+σ2)T .

The solution to this optimization problem is found by substituting N = Eh
and differentiating w.r.t. h, yielding:

h =
(
b

2a

)1/3
E−1/3, N =

(
b

2a

)1/3
E2/3.

Thus, if the available effort E increases with a factor 1000, then we should
reduce the step size with a factor 10 and increase the number of samples with
a factor 100, and this reduces the r.m.s. error with a factor 10. Moreover,
the prefactor

b

2a = 2(eσ2T − 1)eσ2T

λ4T 2
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says, for example, that if the noise level σ is increased, then we should
increase the step size h and the number N of samples in order to reduce the
statistical uncertainty, even at the cost of greater error on the individual
sample.

We were able to carry through this analysis because we know the prop-
erties of geometric Brownian motion, so that Monte Carlo estimation is
unnecessary. In a real application, the qualitative conclusions still stands,
even if one would have to assess the statistical error and the discretization
error by numeric experiments.

8.4.7 Stability and Implicit Schemes

Recall the motivation for implicit schemes in the numerical solution of ordi-
nary (deterministic) differential equations: Consider the first order equation

dXt = −λXt dt

where λ > 0, and the explicit Euler scheme X
(h)
t+h = (1 − λh)X(h)

t . We
now ask how the error X(h)

t − Xt depends on t ∈ {0, h, 2h, . . .} for a given
time step h. When λh > 1, the numeric approximation X

(h)
t becomes an

oscillatory function of t, and when λh > 2, the numerical approximation
becomes unstable, so that |X(h)

t | → ∞ as t → ∞. The conclusion is that the
Euler scheme should never be used with time steps larger than 2/λ; if the
sign is important, then the bound on the time step is h < 1/λ.

Consider next the two-dimensional system

dXt =
[

−1 0
0 −λ

]
Xt dt (8.9)

where λ is large and positive. For stability, we must use a time step smaller
than 2/λ. The slow dynamics has a time scale of 1, so we need λ/2 time
steps to resolve the slow dynamics. If λ is on the order of, say, 106, the Euler
method is prohibitively inefficient.

This system is the simplest example of a so-called stiff system, i.e., one
which contains both fast and slow dynamics (numerically large and small
eigenvalues). Many real-world systems are stiff in this sense, such as a gui-
tar string which has higher harmonics. Stiff models arise when discretizing
partial differential equations, and we shall see this later when discussing
transition probabilities (Section 9.11.5). In contrast to the trivial example
(8.9), it may not be easy to separate the fast dynamics from the slow dy-
namics, so we need numerical methods which can handle stiff systems.

The simplest method for stiff systems is the implicit Euler method. For
the general nonlinear system in Rn

dXt = f(Xt) dt
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we evaluate the drift at X(h)
t+h and get

X
(h)
t+h −X

(h)
t = f(X(h)

t+h) h.

This equation must be solved for X(h)
t+h at each time step, which is the down-

side of the scheme. The advantage is that the scheme has nice stability
properties. To see this, consider the linear case f(x) = Ax where x is an
n-vector and A is an n-by-n matrix; we then get

(I −Ah)X(h)
t+h = X

(h)
t or X(h)

t+h = (I −Ah)−1X
(h)
t

We see that the discrete-time system is stable whenever A is, regardless
of h > 0. Exercise: Verify this by finding the eigenvalues of (I − Ah)−1,
assuming you know the eigenvalues of A, and that 1/h is not an eigenvalue
of A. Even if we cannot reach quite such a strong conclusion for the general
nonlinear system, the implicit Euler method still has much more favorable
stability properties than the explicit scheme.

For stochastic differential equations, the motivation for implicit schemes
is the same, but the situation is complicated by the stochastic integral and
the need for consistency with the Itô interpretation. The most common
solution is to update implicitly with respect to the drift but explicitly with
respect to the noise. For the general Itô equation, we obtain the semi-implicit
scheme:

X
(h)
t+h = X

(h)
t + f(X(h)

t+h) h+ g(X(h)
t )(Bt+h −Bt),

which is solved for X(h)
t+h at each time step. This solves issues of stiffness that

arise from the drift f , but not those that origin from g. A (trivial) example
where stiffness arises from g is the two-dimensional system

dXt = Xt dBt, dYt = εYt dBt.

Discussion of implicit schemes, that also address systems like this, can be
found in (Kloeden and Platen, 1999; Higham, 2001; Burrage et al., 2004).

8.5 Conclusion

Few people in science and engineering are concerned with questions of ex-
istence and uniqueness, when working with ordinary differential equations.
For stochastic differential equations, most standard models in the literature
have a unique solution (in the strong sense). However, if you aim to build a
novel model of a new system or phenomenon, you may inadvertently specify
a model which fails to have a unique solution. It may be difficult to diagnose
the problem; for example, numerical simulation may give unclear results,
where fundamental flaws in the model can be obscured by discretization ef-
fects or confused with coding errors. Therefore, it is worthwhile to be familiar
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with theorems for existence and uniqueness and work within the confines of
these. The theorems presented in this chapter are the most commonly used,
but there are many different variants in the literature.

You would often reject a model where solutions are not unique. In con-
trast, there are situations where the model should capture the possibility of
explosions, so that global solutions do not exist. Indeed, an objective of the
analysis could be to examine if, when and how the solution explodes. In this
exposition, however, we prefer to work with processes that are defined at
all times, so we prefer to ensure against explosions. An explosion requires a
superlinearity that takes the state away from the origin (Theorem 8.3.1).

Both the existence and uniqueness theorems employ a general principle
that linear bounds on the dynamics imply exponential bounds on trajecto-
ries; a principle which is made precise by the Grönwall-Bellman lemma. In
the case of uniqueness, the reasoning is that two nearby trajectories cannot
diverge faster than exponentially from each other, if the model is locally
Lipschitz continuous. In the case of existence, the reasoning is that a trajec-
tory cannot diverge faster than exponentially from the origin, if the model
satisfies a linear growth bound. These questions, and the analysis in this
chapter that addresses them, foreshadow the more general stability analysis
in Chapter 12.

Numerical simulation of sample paths is often a main method of model
analysis. Unfortunately, high-performance numerical algorithms are not as
readily available for stochastic differential equations as they are for determin-
istic ordinary differential equations. The algorithms are substantially more
complicated than their deterministic counterparts, and although software
libraries exist and are improving, they are not as developed. Also, stochas-
tic simulation experiments often include extra elements such as handling of
stopping times, which make it more complicated to design general-purpose
simulation algorithms. In practice, many still rely on their own low-level
implementations.

The Euler-Maruyama method is often preferred due to its simplicity, but
its performance is not impressive, as indicated by the strong order 0.5. The
Mil’shtein scheme is a useful extension which improves the strong order, and
easy to implement when the noise is commutative and the derivatives ∇g are
available. The Heun method for Stratonovich equations can lead to substan-
tial improvements over the Euler-Maruyama method for the corresponding
Itô equation. Performing the simulation in a Lamperti transformed domain
can be recommended, when possible.

In many applications, the objective of the stochastic simulation is to
investigate some statistical property of the solution. In this case, the weak
order may be more relevant than the strong order. However, sensitivity stud-
ies are often most effectively performed on individual sample paths, to block
the effect of the realization. In such situations, it is the strong order of the
scheme which is more relevant.
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It is good practice to assess the discretization error, e.g. repeating the
simulation on a coarser grid. This is a form of sensitivity analysis, so it is
most effective when done strongly, i.e., using the same realizations of Brow-
nian motion, to block chance. Then, statistics collected with the different
time steps can be combined, e.g. using Richardson extrapolation.

While the order of a scheme is an important characteristic, it should be
kept in mind that our ultimate interest is the trade-off between effort and
accuracy. This trade-off involves not just the order, but also the constant
multiplier in the error term, stability bounds, and the number of replicates
used to reduce statistical uncertainty.

In summary, numerical analysis of stochastic differential equations is a
vast technical topic. Here, we have presented fundamental algorithms and
discussed fundamental issues that serve as a useful starting point. Some
further notes are given in the following.

8.6 Notes and References

Itô (1950) proved existence using the Picard iteration, and again in (Itô,
1951b) under slightly weaker assumptions. Has’minsǩi (1980) give even
weaker assumptions to rule out explosions, using Lyapunov functions (see
Section 12.9), and also presents a similar approach to guarantee unique-
ness. When Maruyama (1955) introduced the Euler-Maruyama scheme, he
also proved existence and uniqueness by showing that the solutions of the
discretized equations converge in the limit of small time steps.

A standard reference for numerical solution of stochastic differential
equations is (Kloeden and Platen, 1999), which also contains an extensive
bibliography and further references. Many different schemes and techniques
exist; useful overviews are found in (Iacus, 2008; Särkkä and Solin, 2019)
and include leapfrog methods and approximations based on linearization.
Some domains of applications have developed specialized algorithms that
address issues of particular importance in that field.

Variance reduction techniques can improve the accuracy obtained with
simulation experiments, which little extra effort (Kloeden and Platen, 1999;
Milstein and Tretyakov, 2004; Iacus, 2008), extending the analysis in Section
8.4.6. Step size control is possible, although not used as widely as in the
deterministic case (Lamba, 2003; Iacus, 2008). Results with different time
steps can be combined in more sophisticated ways than the Richardson
extrapolation; for example so-called multilevel Monte Carlo (Giles, 2008).

8.6.1 Commutative Noise

We have mentioned that the Mil’shtein scheme simplified in the case of
commutative noise.
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Definition 8.6.1 We say that the two scalar noise terms in the Itô equation

dXt = f(Xt) dt+ g1(Xt) dB(1)
t + g2(Xt) dB(2)

t .

commute if the differential operators L1 and L2 commute, where Lih =
∇h · gi for a (smooth) function h : X 7→ R.

Recall that two operators commute if L1L2h = L2L1h for all V . Eval-
uating these expressions and simplifying, we see that the two noise terms
commute when the identity

∇g1 g2 = ∇g2 g1

holds on the entire state space. This implies, loosely, that we could apply the
noise terms one at a time in the Euler-Maruyama scheme and the ordering
of the noise terms would not matter. The noise is commutative, for example,
when it is diagonal, i.e. the k’th Brownian motion only affects state variable
number k and with an intensity which depends only on this state variable.
In the case of commutative noise, the Mil’shtein scheme simplifies:

Xt+h =Xt + f h+
m∑

k=1
gk∆B(k) +

m∑
k=1

∇gk gk ((∆B(k))2 − h)

+
∑

1≤k<l≤m

∇gk gl (∆B(k))(∆B(l)).

where ∆B(k) = B
(k)
t+h −B(k)

t . Commutative noise simplifies also other numer-
ical schemes (Kloeden and Platen, 1999) and also relates to the question if
there exists an invariant manifold in state space (Section 9.11.1); there, we
re-state the property of commuting noise in terms of a so-called Lie bracket.

8.7 Exercises

Exercise 8.3 Existence and Uniqueness: Consider the double well
system in Section 6.2.2 with q > 0. Show that the model satisfies the con-
ditions in Theorem 8.3.2 for existence and uniqueness of a solution. Then
do the same for the stochastic van der Pol oscillator in Section 6.2.4 with
µ > 0.

Exercise 8.4: Consider stochastic logistic growth as in Example 7.7.1
with initial condition X0 = x > 0. Show that existence and uniqueness is
guaranteed.
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Exercise 8.5: Consider (again) the Cox-Ingersoll-Ross process given
by the stochastic differential equation (7.5) with positive parameters λ, ξ, γ.
Show that existence and uniqueness is guaranteed as long as Xt > 0. Note: A
theorem in (Karatzas and Shreve, 1997) shows existence and uniqueness even
if the process hits 0. Heuristically, if this happens, then the noise vanishes
and the drift will reflect the process back into the domain x > 0.

Exercise 8.6 Non-Commutative Noise: Consider the scalar
equation dXt = dB

(1)
t + Xt dB

(2)
t . Show that the noise terms do not com-

mute.

Exercise 8.7 The Brownian Unicycle: Consider the Brownian
unicycle, which is a process taking values in R3:

dΘt = dB
(1)
t , dXt = cos Θt dB

(2)
t , dYt = sin Θt dB

(2)
t .

Here, Θ2 is the current heading and (Xt, Yt) is the position in the plane.
Show that the noise terms do not commute.

Exercise 8.8: Consider geometric Brownian motion given by the
Stratonovich equation

dXt = rXt dt+ σXt ◦ dBt,

and its Heun discretization. Show that the update can be written

Xt+h = Xt(1 + (rh+ σ∆B) + 1
2(rh+ σ∆B)2);

i.e., the analytical solution

Xt+h = Xt exp(rh+ σ∆B)

written as a Taylor series in rh+ σ∆B and truncated to second order.



Chapter 9

Transition Probabilities and
the Kolmogorov Equations

In the previous chapters, we have considered the sample paths of Itô diffu-
sions, and how they can be determined (also numerically) from the sample
paths of Brownian motion. In this chapter, we ask how the solution Xt is
distributed at a given time t. In many cases, the distribution of Xt will have
a probability density function, so our task is to determine this density.

As we will show, the probability density function of Xt evolves in time ac-
cording to a partial differential equation; specifically, an advection-diffusion
equation of the same type we considered in Chapter 2. At the end of this
chapter, we will therefore have connected Itô’s stochastic calculus, which
centers on the sample path, with the notion of diffusive transport, which de-
scribes how probability spreads over the state space. We previewed this con-
nection already in Chapter 2 when we considered particle tracking schemes
to explore diffusive transport.

The key property that allows this connection, is that Itô diffusions are
Markov processes: Given the present state, future states are independent of
past states. This means that their statistics (e.g., their finite-dimensional
distribution) can be determined from their transition probabilities.

The resulting partial differential equations are known as the Kolmogorov
equations (although also under other names). They exist in two versions, a
forward equation which described how probability is redistributed as time
marches forward, and an adjoint backward equation which describes how the
transition density depends on the initial state.

The Kolmogorov equations let us find the stationary distribution of the
state (when it exists). The equations can only be solved analytically in spe-
cial cases; in other situations, approximate or numerical methods can be
used.

194



CHAPTER 9. THE KOLMOGOROV EQUATIONS 195

Biography: Andrei Andreyevich Markov (1856–1922)
A Russian mathematician who in 1906 introduced
the class of stochastic processes that we know as
Markov chains today. His purpose was to show that
a weak law of large numbers could hold, even if the
random variables were not independent. Markov
lived and worked in St. Petersburg, and was in-
fluenced by Pafnuty Chebyshev, who taught him
probability theory.

9.1 Brownian Motion is a Markov Process

The Markov property is loosely formulated as “given the present, the future
is independent of the past”. To make this precise, we use a filtration {F t :
t ≥ 0} of the probability space (Ω,F ,P) to denote the information available
at time t ≥ 0 about the past and the present. Then, to make predictions
about the future, we use an arbitrary test function h : Rn 7→ R and consider
predictions of h(Xt).

Definition 9.1.1 (Markov Process) A process {Xt ∈ Rn : t ≥ 0} is said
to be a Markov process w.r.t. the filtration {F t} if:

1. {Xt} is adapted to {F t}, and

2. for any bounded and Borel-measurable test function h : Rn 7→ R, and
any t ≥ s ≥ 0, it holds almost surely that

E{h(Xt)|Fs} = E{h(Xt)|Xs}.

Since the test function is arbitrary, the definition requires that the condi-
tional distribution of Xt given Fs is identical to the conditional distribution
of Xt given Xs. In other words, the current state Xs is a sufficient statistic
of the history Fs for the purpose of predicting the future state Xt. Note that
the definition involves not just the process {Xt}, but also the filtration {F t}.
If we just say that a stochastic process Xs is Markov without specifying the
filtration, then we take the filtration to be the one generated by the process
itself, F t = σ({Xs : 0 ≤ s ≤ t}).

For a Markov process, the future state Xt is conditionally independent
of any Fs-measurable random variable, given the state Xs. This implies that
the variables Xt1 , . . . , Xtn have a dependence structure as depicted in Figure
9.1, for any set of time points 0 ≤ t1 < t2 < · · · < tn.

Theorem 9.1.1 Let {Bt : t ≥ 0} be Brownian motion w.r.t. a filtration
{F t : t ≥ 0}. Then {Bt} is a Markov process with respect to {F t}.
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Xt1 Xt2 Xt3 Xtn

Figure 9.1: Probabilistic graphical model of a Markov process (w.r.t. its
own filtration) evaluated at a set of time points 0 ≤ t1 < · · · < tn. The
Markov property implies, for example, that Xt3 and Xt1 are conditionally
independent given Xt2 , so there is no arrow from Xt1 to Xt3 .

Proof: The case s = t is trivial, so let 0 ≤ s < t. Write Bt = Bs + X
where X = Bt − Bs is the increment; note that Bs is Fs-measurable while
the increment X is independent of Fs and Gaussian with expectation 0 and
variance t− s. Let h be a test function as in Definition 9.1.1. We get:

E{h(Bt)|Fs} = E{h(Bs +X)|Fs}

=
∫ +∞

−∞
h(x+Bs) 1√

2π(t− s)
e− 1

2
x2

t−s dx.

The same calculation applies if we condition on Bs in stead of Fs, since X
and Bs are independent. The result follows.

Note that the proof does not rely on the increments being Gaussian, but
just that they are independent, so the theorem holds for any process with
independent increments.

Remark 9.1.1 (Markov Processes and State Space Systems) The Markov
property is tightly coupled to the notion of a state space model in system the-
ory. But while it is universally agreed what the Markov property is, the term
“state space model” is used slightly differently in different bodies of literature,
in particular when there is noise and external inputs present. See (Kalman,
1963a) for one definition, relevant to deterministic systems with external in-
puts. Loosely, the state of a system is a set of variables which are sufficient
statistics of the history of the system, so that any prediction about the future
can be stated using only the current values of the state variables.

9.2 Diffusions are Markov Processes

Theorem 9.2.1 Let {Xt ∈ Rn : t ≥ 0} be the unique solution to the
stochastic differential equation

dXt = f(Xt, t) dt+ g(Xt, t) dBt

where {Bt : t ≥ 0} is Brownian motion with respect to a filtered probability
space (Ω,F ,P, {F t}), the initial condition X0 is F0-measurable, and f and
g satisfy the sufficient conditions for existence and uniqueness in Theorem
8.3.2. Then the process {Xt : t ≥ 0} is Markov with respect to {F t} as well
as with respect to its own filtration.
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X0 Xs Xt

Bs
0 Bt

s

Figure 9.2: The Markov structure of solutions to stochastic differential equa-
tions. Here, Bs

0 is shorthand for {Bu : 0 ≤ u ≤ s} while Bt
s is shorthand for

{Bu −Bs : s ≤ u ≤ t}.

Proof: We provide an outline; see e.g. (Øksendal, 2010) for a rigorous
proof. The theorem states that the probabilistic graphical model in Figure
9.2 applies: Conditional on Xs, Xt is independent of X0 and {Bu : 0 ≤ u ≤
u}. Therefore, Theorem 3.6.2 applies and gives the result.

The graphical model applies because existence and uniqueness holds:
Define the state transition map Y (t; s, x, ω) for 0 ≤ s ≤ t, x ∈ Rn,
and ω ∈ Ω, which returns the unique solution Xt(ω) to the stochas-
tic differential equation with initial condition Xs(ω) = x. Note that
Y (t; 0, x, ω) = Y (t; s, Y (s; 0, x, ω), ω). For given t, x, s, the random variable
ω 7→ Y (t; s, x, ω) depends only on the increments of the Brownian motion
between times s and t, i.e., it is measurable w.r.t. the σ-algebra generated
by Bu −Bs for u ∈ [s, t]. This σ-algebra is included in F t and independent
of Fs.

This state transition map allows us to construct the graphical model in
Figure 9.2: First, X0, Bs

0 and Bt
s are all independent. Next, we have Xs(ω) =

Y (s; 0, X0(ω), ω) and Xt(ω) = Y (t; s,Xs(ω), ω). Thus, the graphical model
applies. Theorem 3.6.2 then allows us to conclude that E{h(Xt)|Fs} is Xs-
measurable.

To see that {Xt} is also Markov with respect to its own filtration {Gt},
note that Gt ⊂ F t. Since the extra information in Fs beyond Xs does not
improve predictions of Xt, neither can the information in Gs.

In fact, for an Itô diffusion {Xt}, the Markov property 9.1.1 holds also
when then initial time s replaced with a Markov time τ and the terminal
time is replaced by τ + t where t > 0 is deterministic. We say that Itô
diffusions have the strong Markov property. See (Øksendal, 2010).

9.3 Transition Probabilities and Densities

Since diffusions are Markov processes, a key to their description is the tran-
sition probabilities

PXs=x(Xt ∈ A) for s ≤ t, x ∈ X, A ⊂ X,
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i.e., if the process starts with Xs = x, what is the probability that at a later
time t ≥ s, the state Xt will reside in a given Borel set A?

We will for the moment assume that the probability distribution of Xt

admits a density 1 p(s, x, t, y) so that

PXs=x(Xt ∈ A) =
∫

A
p(s, x, t, y) dy.

This function p is called the transition density. To see the central role of
transition probabilities and densities, note that the finite-dimensional dis-
tributions of a Markov process can be found from the transition probabilities.
Consider Figure 9.1 and assume that X0 = x0 is fixed; then the joint density
of Xt1 , Xt2 , . . . , Xtn , evaluated at a point (x1, x2, . . . , xn) ∈ Xn is

n∏
i=1

p(ti−1, xti−1 , ti, xti). (9.1)

A similar expression holds even if the transition probabilities do not admit
densities. Being a function of four variables, the transition density p is a
quite complex object. To simplify, we may fix the initial condition (s, x) and
get the density φ of Xt:

φ(t, y) = p(s, x, t, y).

On the other hand, if we fix the terminal condition (t, y), we get

ψ(s, x) = p(s, x, t, y)

which determines the probability of ending near the target state y, seen as a
function of the initial condition Xs = x. We can think of ψ as the likelihood
function of the initial condition, in case the initial condition is unknown
but the terminal position Xt has been measured. Note that ψ(s, ·) does not
necessarily integrate to one; ψ(s, ·) is not a probability density of the initial
state Xs.

When the dynamics (f, g) are time invariant, the transition densities
p will depend on s and t only through the time lag t − s. It is however
convenient to keep all four arguments.

In rare situations we can determine the transition probabilities analyt-
ically; we will see a few examples shortly. However, this is not possible in
general. The transition probabilities can be determined numerically with
ease in one spatial dimension, if the model is relatively well-behaved; with
more effort also in two or three dimensions (see Section 9.11.5). Figure 9.3
shows the transition probabilities for a specific double well model (compare
Section 6.2.2)

dXt = 10Xt(1 −X2
t ) dt+ dBt.

1Examples where densities fail to exist include the case g ≡ 0 as well as - more inter-
estingly - Brownian motion on the circle (page 155). See Section 9.11.1.
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Both the p.d.f. φ(t, y), and the likelihood ψ(s, x), are typically badly scaled
which is a challenge for graphical visualization. The figure shows two ways
to circumvent this: For the p.d.f. φ(t, y), we transform to the function

π(t, y) =
∫

{x:φ(t,x)≤φ(t,y)}
φ(t, x) dx.

We can use the function π to form credible regions for Xt, so we will call π
the credibility. For each time t, higher p.d.f. φ(t, y) implies higher credibility
π(t, y), and because the credibilities are between 0 and 1 for all t, they are
easier to visualize. For the likelihood ψ(s, x), we log-transform and truncate.
Both of these graphical techniques help highlighting the region around the
maximum, for each time s or t.

For the forward view (Figure 9.3, left panel) we see that the distribution
spreads out, then gravitates to the closest well (y = 1). Then, on a much
slower time scale, the distribution equilibrates between the two wells, and
eventually a stationary probability density is reached. For the backward
view (same figure, center panel), we see that when s is near t, the likelihood
effectively vanishes unless x is near y. Then, on an intermediate time scale,
then likelihood is constant in the one well and effectively vanishes in the
other well. On this time scale, the process mixes inside the well, so that all
initial positions inside the well are roughly equally likely, but the process
does not mix between wells, so initial positions in the other well are very
unlikely. Then, eventually and on a much larger time scale, the process mixes
between the two wells so that all initial conditions are equally likely.

Finally, we can fix the initial time s and the terminal time t, and show
the transition density p(s, x, t, y) as a function of x and y. Figure 9.3 (right
panel) does this for the double well model for t = 0.1. A vertical line in the
plot shows the probability density function of the terminal state, while a
horizontal lines corresponds to the likelihood of the initial state. The white
curve in the graph shows the state transition map for the corresponding
deterministic model; specifically, a point (x = X0, y = Xt) on this line is
the endpoints of a trajectory {Xs : 0 ≤ u ≤ t} obtained with Bu ≡ 0. For a
short transition time t = 0.1, where it is improbable that the noise pushes
the trajectory from one well to another, the stochastic trajectories can be
seen as small perturbations of the deterministic model, and the transition
densities are concentrated near the deterministic state transition map.

Only in simple and very special situations, can we write down analytical
expressions for the transition probabilities.

Example 9.3.1 If Xt is Brownian motion in one dimension, then

p(s, x, t, y) = 1√
2π(t− s)

exp
(

−1
2

(x− y)2

t− s

)
.
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Figure 9.3: Transition probabilities for the double well model. Note the log-
scale of the time axis. Left panel: The distribution of Xt, graphed using the
credibilities π(t, y). Center panel: The log-likelihood logψ(s, x), truncated
at −3. Right panel: The transition probability densities p(0, x, t, y) as func-
tion of x and y for a time interval of t = 0.1; the black line is the state
transition map for the noise-free model.

9.3.1 The Narrow-Sense Linear System

For the narrow-sense linear SDE in Rn

dXt = (AXt + wt) dt+G dBt

where wt is deterministic, we have previously established an integral ex-
pression for the solution (Exercise 7.4). For given initial condition Xs = x,
Xt is Gaussian with a mean value µ(t) and a variance Σ(t), which can be
determined from their governing ordinary differential equations:

dµ

dt
= Aµ(t) + wt, µ(s) = x

i.e.
µ(t) = exp(A(t− s))x+

∫ t

s
exp(A(t− u))wu du

For the variance Σ(t), we found in Section 5.9 the differential Lyapunov
equation

d

dt
Σ(t) = AΣ(t) + Σ(t)A> +GG>

with the initial condition Σ(0) = 0 (see also Exercise 5.8). If the variance
Σ(t) is positive definite, then Xt admits a density (see Section 9.11.1 for
a discussion of when this is the case). This is the well-known density of a
multivariate Gaussian distribution, which evaluates at y to

p(s, x, t, y) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(y − µ)>Σ−1(y − µ)
)
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Biography: Andrei Nikolaevich Kolmogorov (1903–1987)
One of the most prominent mathematicians of the
20th century, he contributed to the foundations of
probability theory and stochastic processes, to filter-
ing and prediction, and to the description of turbu-
lence. His approach to diffusion processes was to con-
sider continuous-time, continuous-space Markov pro-
cesses for which the transition probabilities are gov-
erned by advection-diffusion equations. Photo credit:
CC BY-SA 2.0 de.

where µ = µ(t) and Σ = Σ(t) are as in the previous.

9.4 The Backward Kolmogorov Equation

In the examples given so far, we have found the transition probabilities
using knowledge about the solution of the stochastic differential equation.
This will not work for the majority of stochastic differential equation, where
we can say very little about the solution. In stead, our objective of this
chapter is to derive partial differential equations which govern these transi-
tion probabilities. We shall see that they are second order equations of the
advection-diffusion type, known as the Kolmogorov equations.

We establish the Kolmogorov equations as follows: First, we find the
backward equation which governs ψ(s, x) = p(s, x, t, y), i.e., the transition
densities as a function of the initial condition Xs = x for fixed terminal
condition Xt = y. Then, we obtain the forward equation governing the p.d.f.
φ(y, t) using a duality argument. To follow this programme, we have to take
into consideration that the transition probabilities can be concentrated on
subsets of measure zero so that the densities do not exist. Therefore, consider
again the Itô diffusion {Xt : t ≥ 0} from Theorem 9.2.1, stop the process
at a fixed (deterministic) time t, and evaluate the function h at Xt. Here, h
is a bounded C2 test function on state space such that also ∇h is bounded.
We now define the process {Ys : 0 ≤ s ≤ t} given by

Ys = E{h(Xt) | Fs},

i.e., the expected terminal reward, conditional on the information obtained
by observing the Brownian motion up to time s. The objective of introduc-
ing the test function h is that Ys is always well defined, even if transition
densities are not. To recover the transition densities, think of h as an ap-
proximation of the indicator function of a small set containing y; then Ys is
the probability of ending near y, conditional on Fs.
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First, notice that {Ys} must be a Doob’s martingale w.r.t. {Fs} (Exer-
cise 4.19). To repeat the argument and be explicit, for 0 ≤ s ≤ u ≤ t we
have

E{Yu | Fs} = E{E[h(Xt) | Fu] | Fs}
= E{h(Xt) | Fs}
= Ys.

Here we have used that the information available at time s is also available
at time u, i.e., Fs ⊂ Fu, which allows us to use the Tower property of
conditional expectations. Exercise: Verify that {Ys} also possesses the other
defining properties of a martingale (Definition 4.5.1 on page 79).

Next, the Markov property of the process {Xs : s ≥ 0} implies that Ys

can only depend on Fs through Xs, i.e., Ys is Xs-measurable. Therefore, by
the Doob-Dynkin lemma, there must exist a function k(s, x) such that

Ys = k(s,Xs) where k(s, x) = E{h(Xt)|Xs = x}.

By existence and uniqueness, this conditional expectation must agree with
the expectation of h(Xt), if {Xt} solves the stochastic differential equation
with initial condition Xs = x. We write

EXs=xh(Xt)

for this expectation. It can be shown (Øksendal, 2010) that k is smooth, so
according to Itô’s lemma, {Ys} is an Itô process satisfying

dYs = k̇ ds+ ∇k dXs + 1
2dX

>
s Hk dXs

= (k̇ + Lk) ds+ ∇k g dBs.

Here, we have omitted the arguments (Xs, s), and we have introduced the
differential operator L given by

(Lk)(s, x) = ∇k(x, s)f(x, s) + 1
2tr

[
g(x, s)g>(x, s)Hk(s, x)

]
defined for functions k(s, x) which are twice differentiable in x. This is the
operator that appears in Itô’s lemma. Now, since {Ys} is a martingale, its
drift term must vanish, so k must satisfy the partial differential equation

∂k

∂s
+ Lk = 0,

which is Kolmogorov’s backward equation. Finally, assume that the densities
p(s, x, t, y) exist. Then we have

k(s, x) =
∫

X
p(s, x, t, y)h(y) dy

and we therefore find that the densities satisfy the same linear partial dif-
ferential equation as k. We summarize the findings:



CHAPTER 9. THE KOLMOGOROV EQUATIONS 203

Theorem 9.4.1 (Kolmogorov’s backward equation) Let h : Rn 7→ R
be C2 with bounded support; let t > 0. Then the function k(s, x), given by

k(s, x) = EXs=xh(Xt) (9.2)

for 0 ≤ s ≤ t, satisfies the backward Kolmogorov equation

∂k

∂s
+ Lk = 0, k(t, x) = h(x). (9.3)

Moreover, a bounded solution to the backward Kolmogorov equation (9.3) has
the characterization (9.2). Finally, assume that the transition probabilities
admit a density p(s, x, t, y). Fix the terminal condition (t, y) arbitrarily and
define ψ(s, x) = p(s, x, t, y). Then

∂ψ

∂s
+ Lψ = 0

for 0 ≤ s < t.

Remark 9.4.1 If the densities p(s, x, t, y) do not exist in the classical sense,
i.e., as continuous functions of y, then they can still be defined in a sense
of distributions, and they still satisfy the Kolmogorov backward equation in
a weak sense. The requirement that h has bounded support is a quick way to
exclude examples such as dXt = dBt, h(x) = exp(x2), where the expectations
diverge (Exercise 7.22).

Example 9.4.2 (Likelihood Estimation of the Initial Condition) If we
have observed y = Xt(ω) for some t > 0 and want to estimate the initial
condition X0 = x, then the likelihood function is

Λ(x) = p(0, x, t, y)

assuming that the transition probabilities admit a density p. To determine
this likelihood, we solve the Kolmogorov backward equation k̇ + Lk = 0 for
s ∈ [0, t], with terminal conditional k(t, x) = δ(x− y), a Dirac delta. Then,
Λ(x) = k(0, x). Following the Maximum Likelihood paradigm for statistical
estimation (Pawitan, 2001), we would estimate the initial condition as x̂ =
Arg maxx Λ(x) and derive confidence regions etc. from Λ(·). More generally,
we may have only an imprecise measurement of Xt, or indirect information
about Xt obtained at time t or later. This information can be summarized
in the function h(y), which we view as a likelihood function of Xt = y
applicable at time t. To estimate the initial condition X0 = x, we solve
the Kolmogorov backward equation k̇ + Lk = 0 for s ∈ [0, t], with terminal
conditional k(t, y) = h(y). Then, the likelihood function of X0 = x is Λ(x) =
k(0, x). Thus, Kolmogorov’s backward equation pulls likelihoods backward in
time.
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Example 9.4.3 [What is the fair price of an option?] We consider an
option which gives the owner the right (but not the obligation) to buy a
certain stock at an “expiry” time t for a “strike” price of K. The fair price
of such an option at time s < t is

Ys = er(s−t)E{(Xt −K)+|Fs}

where Xt denotes the price of the stock at time t, r is the discount rate, x+ =
max{0, x}, and Fs is the information available at time s. Here, we assume
risk neutrality, i.e., the current value equals the discounted expected future
value. We see that the fair price of the option can be found with a backward
Kolmogorov equation, if a stochastic differential equation is posed for the
price {Xt} of the stock. In their seminal work, Black and Scholes (1973)
assumed geometric Brownian motion:

dXs = Xs(r ds+ σ dBs)

where {Bs} is standard Brownian motion w.r.t. {Fs}, so that

Ys = er(s−t)k(s,Xs) where k̇ + rxk′ + 1
2σ

2x2k′′ = 0.

The terminal condition is k(t, x) = h(x) = (x − K)+. For this particular
case, Black and Scholes (1973) established an analytical solution (Exercise
9.4).

9.5 The Forward Kolmogorov Equation

We now turn to the forward equations, i.e., partial differential equations
that govern the transition probabilities φ(t, y) = p(s, x, t, y) as functions of
the end point t, y, for a given initial condition Xs = x. These equations will
also govern the probability density of the state Xt as a function of time,
when the initial condition is a random variable.

Theorem 9.5.1 Under the same assumptions as in Theorem 9.2.1, assume
additionally that the distribution of Xt admits a probability density for all t >
s and use φ(t, y) to denote this density at y. Then the forward Kolmogorov
equation

φ̇ = −∇ · (fφ) + ∇ · ∇(Dφ)

holds for all t > s and for all y ∈ Rn. Here, all functions are evaluated at
t, y, and the diffusivity matrix is

D(y, t) = 1
2g(y, t)g>(y, t)
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Here, ∇ · ∇(Dφ) can be written explicitly as ∑n
i=1

∑n
j=1

∂2

∂yi∂yj
(Dijφ).

Note that we here use y for the spatial coordinate, for a consistent notation
where we use x for the initial position and y for the terminal position. If
the forward equation is considered in isolation, and not in concert with the
backward equation, then we usually use x for the spatial coordinate.

Proof: Let Ys = k(s,Xs) = E{h(Xt)|Fs} as in the previous Section,
then we can compute EYs by integration over state space:

EYs =
∫

X
φ(s, x)k(s, x) dx

Since {Ys} is a martingale, this expectation is independent of time s. Dif-
ferentiating with respect to time s, we obtain:∫

X
φ̇k − φLk dx = 0 (9.4)

where we have omitted arguments and used k̇ = −Lk. First note (omitting
technicalities) that this equation may be written 〈φ̇, k〉 − 〈φ,Lk〉 = 0, where
〈·, ·〉 denotes the inner product defined through the integral. Then rewrite
this as 〈φ̇, k〉 − 〈L∗φ, k〉, where L∗ is the formal adjoint operator of L. Since
this must hold for all k, we conclude that φ̇ = L∗φ. We now repeat this
argument, filling in the specifics of the formal adjoint operator. Consider
the term

∫
X φLk dx:∫

X
φLk dx =

∫
X
φ · (∇k f + tr[DHk]) dx

For the first term, we find∫
X
φf · ∇k dx = −

∫
X
k∇ · (fφ) dx

using the divergence theorem on the vector field kφf , and the product rule
∇ · (kφf) = k∇ · (fφ) +φf · ∇k. Here we have used that the boundary term
is zero at |x| = ∞: There can be no flow to infinity, since the process cannot
escape to infinity in finite time. For the second term, we find∫

X
φtr[DHk] dx = −

∫
X

∇(φD) · ∇k dx

using the divergence theorem on the vector field φD∇k, and omitting bound-
ary terms. Here, ∇(φD) is the vector field with elements

∇(φD)i =
∑

j

∂(φDij)
∂xj

.
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Repeating, now using the divergence theorem on the vector field k∇(φD),
we can summarize the steps in∫

X
φtr[DHk] dx = −

∫
X

∇(φD) · ∇k dx =
∫

X
k∇ · ∇(φD) dx.

Inserting this in equation (9.4), we obtain∫
X

(φ̇+ ∇ · (fφ) − ∇ · ∇(φD))k dx = 0

Since the test function h is arbitrary and s is arbitrary, k can be arbitrary,
so we conclude that

φ̇+ ∇ · (fφ) − ∇ · ∇(Dφ) = 0

which is the result we pursued.

9.6 Different Forms of the Kolmogorov Equations

We summarize the different forms in which the forward and backward Kol-
mogorov can be written. In the scalar case, we have:

The forward Kolmogorov equation: φ̇ = −(fφ)′ + (Dφ)′′,

The backward Kolmogorov equation: −ψ̇ = ψ′f +Dψ′′

where the diffusivity is D = 1
2g

2. In the multivariate case, the vector calculus
is often a source of confusion. We have

φ̇ = −∇ · (fφ) + ∇ · ∇(Dφ), −ψ̇ = ∇ψ · f + tr(DHψ).

Here, D = 1
2gg

> while Hψ is the Hessian of ψ, i.e.

(Hψ)ij = ∂2ψ

∂xi∂xj
.

In turn, ∇ · ∇(Dφ) is the divergence of the vector field ∇(Dφ), which is

(∇(Dφ))i =
∑

j

∂(Dijφ)
∂xj

so ∇ · ∇(Dφ) =
∑
i,j

∂2(Dijφ)
∂xi∂xj

.

The equations can also be written in advection-diffusion form

φ̇ = −∇ · (uφ−D∇φ), −ψ̇ = ∇ψ · u+ ∇ · (D∇ψ).

Here, we have introduced the advective field

u = f − ∇D where (∇D)i =
∑

j

∂Dij

∂xj
.
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This formulation of the forward equation expresses how probability is redis-
tributed in space while being conserved, so this is also termed the conserva-
tive form. Specifically, the local increase is balanced by the local net export,
which is the divergence of the flux J = uφ − D∇φ. This flux J has an ad-
vective contribution uφ and a diffusive contribution −D∇φ, as in Chapter
2.

It is convenient to also use a shorthand “operator” form

φ̇ = L∗φ, −ψ̇ = Lψ

which emphasizes that the forward operator L∗ and the backward operator
L are formally adjoint. It allows us to use the compact notation for the
solution (in the case where the dynamics are time invariant)

φt = eL∗(t−s)φs, ψs = eL(t−s)ψt.

Here, {exp(Lt) : t ≥ 0} can be accepted as a convenient notation for the
operation of solving the backward Kolmogorov equation for a given termi-
nal value. However, it can also be understood in the framework of func-
tional analysis, and we briefly sketch this. As usual, we let L∞(X,R) de-
note the space of bounded measurable real-valued functions on state space
equipped with the supremum norm. For t ≥ 0, define the linear operator
Pt : L∞(X,R) 7→ L∞(X,R) by

(Ptk)(x) = Exk(Xt)

for t ≥ 0 and k ∈ L∞(X,R). Here, we use the shorthand Ex for EX0=x.
Then it is easy to see that ‖Ptk‖ ≤ ‖k‖; e.g. if |k(x)| ≤ 1 for all x, then
also |Exk(Xt)| ≤ 1 for all x. We say that Pt is a contraction, ‖Pt‖ ≤ 1. The
Markov property of {Xt} and the law of total expectation gives Pt(Psk) =
Pt+sk, which implies that the family {Pt : t ≥ 0} of operators has the
structure of a semigroup. This semigroup is right continuous in the sense
that Ptk → k as t → 0, at least when k is smooth and has bounded support.
We say that {Pt} forms a weak Feller semigroup and that diffusions are
Feller processes. The semigroup is generated by L in the sense that Lk =
limt→0(Ptk − k)/t, at least if k is smooth and has bounded support. We
can therefore write Pt = exp(Lt). Next, since Pt is a bounded operator, it
has an adjoint P ∗

t , which acts on the dual space L1(X,R) (alternatively, on
the space of finite measures on X). This operator P ∗

t propagates an initial
distribution φ on state space forward in time, and the family {P ∗

t : t ≥ 0}
is a semigroup which is generated by L∗. This formalism is useful, not just
because it is compact, but also because it highlights the parallels between
the Kolmogorov equations for diffusions and for Markov chains on finite
state spaces, where the generator L is a matrix and Pt = exp(Lt) is the
matrix exponential.
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9.7 Drift, Noise Intensity, Advection, and Diffu-
sion

The relationships D = 1
2gg

> and f = u + ∇D between drift f , advection
u, noise intensity g and and diffusivity D, are important. The following is
an elementary way to establish these relationships, i.e. without Itô calculus
- for simplicity, in one dimension, and skipping technicalities. Start with an
advection-diffusion equation governing the density C(x, t) of some particles:

Ċ = −(uC −DC ′)′ with no-flux boundary conditions at |x| = ∞.

Choose a random particle; its position is Xt, so its expected position is

µ(t) = EXt =
∫ +∞

−∞
x C(x, t) dx

and therefore the expected position changes with time as

µ̇(t) =
∫ +∞

−∞
x Ċ(x, t) dx = −

∫ +∞

−∞
x(uC −DC ′)′ dx.

Integrate twice by parts to find

µ̇(t) =
∫ +∞

−∞
uC −DC ′ dx =

∫ +∞

−∞
(u+D′)C dx = E(u(Xt) +D′(Xt)).

In particular, if the particle is found at a position x0 at time 0, i.e. the initial
concentration is C(x, 0) = δ(x−x0), then initially the mean grows with rate
u(x0) +D′(x0). Note that this is exactly the drift:

f(x0) = u(x0) +D′(x0).

Next, for the variance Σ(t) = EX2
t − (EXt)2, we have

Σ(t) =
∫ +∞

−∞
x2 C(x, t) dx− µ2(t)

and therefore

Σ̇(t) =
∫ +∞

−∞
−x2 (uC −DC ′)′ dx− 2µ(t)µ̇(t)

=
∫ +∞

−∞
2x (uC −DC ′) dx− 2µ(t)µ̇(t)

=
∫ +∞

−∞
2x (u+D′)C + 2DC dx− 2µ(t)µ̇(t)

= 2E(f(Xt)Xt) + 2ED(Xt) − 2EXt Ef(Xt)
= 2Cov(f(Xt), Xt) + 2ED(Xt).
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Here, we have used integration by parts twice; the second time using∫
2xDC ′ dx = −

∫
(2xD)′C dx = −

∫
(2D + 2xD′)C dx. The last step fol-

lows from the definition of covariance. Notice the conclusion: The variance
changes with time due to two mechanisms. First, diffusion pumps variance
into the system with rate 2ED(Xt). Next, system dynamics amplify or dis-
sipate variance with rate 2Cov(f(Xt), Xt) - for example, if f(x) is an in-
creasing function of x, then system dynamics will amplify variance, whereas
if f(x) is decreasing function of x, then system dynamics dissipate variance.

Now let us focus on the initial growth of variance: If the concentration
at time t = 0 is a Dirac delta at x0, we find

Σ̇(0) = 2D(x0).

Notice that this agrees with the relationship between diffusivity and noise
intensity, D = g2/2, and the incremental variance in Itô processes.

The multivariate extensions of these formulas are

µ̇(t) = Ef(Xt), Σ̇(t) = Cov(f(Xt), Xt) + Cov(Xt, f(Xt)) + 2ED(Xt)

where

f(x) = u(x) + ∇D(x), still with (∇D)i =
∑

j

∂Dij(x)
∂xj

.

You should check that if the system is linear, f(x) = Ax, g(x) = G, then
these formulas agree with what we found for linear systems; in particular
the Lyapunov equation (5.21) for the variance.

9.8 Stationary Sistributions

Often, when the functions f, g do not depend on time, the forward Kol-
mogorov equation admits a stationary density ρ(x), which by definition sat-
isfies

L∗ρ = −∇ · (uρ−D∇ρ) = 0. (9.5)

If the initial condition X0 is sampled from the stationary distribution, then
Xt will also follow the stationary distribution, for any t > 0. Then, the
Markov property assures that all statistics of the process are independent
of time, and the process is stationary. If the stationary distribution has a
finite variance, then the process will be weakly stationary in the sense of
Section 5.4. Stationary distributions are as important for stochastic differ-
ential equations as equilibria are for ordinary differential equations; in many
applications the main concern is the stationary distribution.

In general, there may not be a unique stationary density: There can
be many stationary distributions, a single unique one, or none at all. For
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Brownian motion, the only non-negative stationary solutions to the forward
Kolmogorov equation are the constant ones, which cannot be normalized to a
probability density. Equilibrium points correspond to atomic stationary dis-
tributions which do not admits densities. For Brownian motion on the circle
(7.6), any circle is invariant, so there is a family of stationary distributions
and they do not all admit densities (see also Exercise 7.24). Despite these
many possibilities, a common situation is that there is a unique stationary
distribution which admits a density. In the following, we give a number of
examples.

Example 9.8.1 (The General Scalar SDE) Consider the scalar equa-
tion

dXt = f(Xt) dt+ g(Xt) dBt

with g(x) > 0. The stationary forward Kolmogorov equation is

−(ρf)′ + 1
2(g2ρ)′′ = 0

which we rewrite in advection-diffusion form:

−(ρu−Dρ′)′ = 0

with D(x) = 1
2g

2(x), u(x) = f(x) −D′(x). Integrate once to obtain

uρ−Dρ′ = j

where the integration constant j is the flux of probability:

d

dt
P(Xt > x) = j

for any x ∈ R. If the process {Xt : t ≥ 0} is stationary, then this flux must
equal 0. We elaborate on this point in Section 9.9. Proceeding, we find

ρ(x) = 1
Z

exp
(∫ x

x0

u(y)
D(y) dy

)
(9.6)

where x0 and Z are arbitrary. If Z can be chosen so that ρ integrates to 1,
then this ρ is a stationary probability density function.

The stationary distribution can also be written in terms (f, g):

ρ(x) = 2
Z̄g2(x)

exp
(∫ x

x0

2f(y)
g2(y) dy

)
. (9.7)

Exercise 9.1: Verify the form (9.7) for the stationary density.
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Example 9.8.2 (Stochastic Logistic Growth) Consider the Itô equa-
tion (compare the introduction; page 6, and example 7.7.1)

dXt = rXt(1 −Xt/K) dt+ σXt dBt with X0 = x > 0,

where r,K, σ > 0. We expect that the solution will eventually fluctuate
around the carrying capacity K > 0. If the stationary density exists, it is

ρ(x) = 1
Zσ2x2 exp

(∫ x

K

2ry(1 − y/K)
σ2y2 dy

)
= 1
Z̄

(x/K)2r/σ2−2 exp
(

− 2r
σ2

x

K

)
where Z and Z̄ are normalization constants. This is a Gamma distribution
with scale parameter θ = σ2K/(2r) and shape parameter k = 2r/σ2 − 1, so

ρ(x) = 1
Γ(k)θk

xk−1e−x/θ.

Recall that the Gamma distribution is only defined for k > 0, i.e., we re-
quire that σ2 < 2r. If k ≤ 0, the distribution cannot be normalized. The
shape parameter k depends only on the non-dimensional noise level σ/

√
r

(compare Example 7.7.1). From the properties of the Gamma distribution,
the stationary expectation is EXt = θk = K(1 − σ2/(2r)). Thus, for low
noise levels (σ2 � 2r) we have EXt ≈ K, but noise reduces the expectation
(see Exercise 9.3 for an alternative derivation). As the noise is increased to
σ2 = 2r, the expectation approaches 0 and then the stationary distribution
becomes an atom at the origin. At this point, the population collapses and
goes extinct; we will return to this condition when discussing stability in
Chapter 12.

Exercise 9.2 The Cox-Ingersoll-Ross Process: Consider the
Cox-Ingersoll-Ross process

dXt = λ(ξ −Xt) dt+ γ
√
Xt dBt

with λ, ξ, γ > 0 and for x ≥ 0. Show that in stationarity, Xt is Gamma dis-
tributed with rate parameter ω = 2λ/γ2 and shape parameter ν = 2λξ/γ2,
i.e., density

ρ(x) = ων

Γ(ν)x
ν−1e−ωx ,

provided ν > 0. Derive the mean and variance in stationarity and compare
with the results of Exercise 8.5. Note: Also the transition probabilities are
available in closed form; see Exercise 9.8.
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Example 9.8.3 (The Linear SDE) Consider the linear SDE in Rn

dXt = AXt dt+G dBt.

Section 5.9 shows that the stationary distribution exists if A is exponentially
stable; then it is Gaussian with mean 0 and variance Σ which is the unique
solution to the algebraic Lyapunov equation

AΣ + ΣA> +GG> = 0.

It can be shown that this Gaussian distribution satisfies the forward Kol-
mogorov equation, but the method of Section 5.9 is less laborious.

Example 9.8.4 (Kinesis) With the stochastic differential equation in Rn

dXt =
√

2D(Xt) dBt

where {Bt : t ≥ 0} is Brownian motion in Rn and D : Rn → R is smooth
and non-negative, a candidate stationary distribution is

ρ(x) = 1
Z

1
D(x)

where Z is a normalization constant. If Z can be chosen so that ρ integrates
to 1, then ρ is in fact a stationary distribution. To see this, note that the
forward Kolmogorov equation is

ρ̇ = ∇2(D ρ).

Note that the process accumulates where the diffusivity is low. This {Xt :
t ≥ 0} is a martingale, i.e., an unbiased random walk, but it is not pure
Fickian diffusion, since pure Fickian diffusion has a uniform steady-state.

Example 9.8.5 (The van der Pol Oscillator) For the system in Sec-
tion 6.2.4, we compute the stationary density numerically using the methods
in Section 9.11.5. The result is seen in Figure 9.4. We use the same param-
eters as in the simulation in Section 6.2.4, so the density can be compared
visually with the trajectories in Figure 6.4.

9.9 Detailed Balance and Reversibility

We have seen that a density ρ is stationary for the forward Kolmogorov
equation, if and only if the flux J := uρ−D∇ρ is divergence free. A sufficient
condition for this is that the flux J vanishes everywhere:
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Figure 9.4: The stationary density for the van der Pol oscillator (6.9) with
parameters µ = 1, σ = 1/2. Compare with Figure 6.4.

Definition 9.9.1 (Detailed Balance) Let {Xt} be a stationary Itô dif-
fusion with advective flow field u and diffusivity D and stationary prob-
ability density ρ. We say that ρ (or {Xt}) satisfies detailed balance if
J := uρ−D∇ρ = 0 everywhere.

Detailed balance is a first order equation in ρ and therefore easier than
the second-order equation ∇ · (uρ − D∇ρ) = 0 that expresses stationarity.
We used this when we identified the general expression for the stationary
density of a scalar diffusion process (example 9.8.1): In the scalar case, a
divergence-free flux must be constant in space. If this constant flux is non-
zero, then particles must be absorbed at the right boundary and re-emerge
at the left boundary (or vice versa). Since we have not introduced such exotic
boundary behavior, we conclude:

Proposition 9.9.1 Let {Xt} be a scalar stationary Itô diffusion. Then
{Xt} satisfies detailed balance.

The corresponding result for Markov chains is that a stationary process
on an acyclic graph must satisfy detailed balance (Grimmett and Stirzaker,
1992). In two dimensions or more, we cannot expect stationary distribution
to satisfy detailed balance.

Detailed balance is important because it implies that the stationary pro-
cess is time reversible; i.e., it has the same statistics as its time reversed
version. This remarkable property of reversibility is central in equilibrium
thermodynamics and statistical physics. To see why such a result should



CHAPTER 9. THE KOLMOGOROV EQUATIONS 214

hold, note that detailed balance implies the net flow of probability over any
surface is zero. This, in turn, means that the probability that a given par-
ticle moves from one region A to another region B in a specified time t,
exactly equals the probability that this particle moves from B to A in the
same time. More precisely, we have the following result:

Theorem 9.9.2 Assume that {Xt} is stationary and that its probability
density ρ satisfies detailed balance. Let functions k, h be real-valued functions
on state space such that Ek2(X0) < ∞, Eh2(X0) < ∞, and let t ≥ 0. Then
Eh(X0)k(Xt) = Ek(X0)h(Xt).

For example, if h and k are indicator functions of sets A and B, then the
theorem states that transitions A → B happen as frequently as transitions
B → A. This, together with the Markov property, implies that the statistics
of the process are preserved if we change the direction of time.

Proof: We conduct the proof under the additional assumption that
E|Lh(Xt)|2 < ∞, E|Lk(Xt)|2 < ∞. Define the weighted inner product
〈h, k〉ρ =

∫
X h(x)ρ(x)k(x) dx, then

〈h,Lk〉ρ =
∫
hρ(∇k · u+ ∇ · (D∇k)) dx (The definition of L)

=
∫
hρ∇k · u− ∇(ρh) ·D∇k dx (Divergence theorem)

=
∫
hρ∇k · u− ρ∇h ·D∇k − h∇ρ ·D∇k dx (Product rule)

=
∫

−ρ∇h ·D∇k dx. (Detailed balance)

Since this end result is symmetric in (h, k), we see that 〈h,Lk〉ρ = 〈Lh, k〉ρ.
Thus, L is formally self-adjoint under the weighted inner product 〈·, ·〉ρ.
Then also the semigroup exp(Lt) generated by L is self-adjoint, i.e.,

〈h, eLtk〉ρ = 〈eLth, k〉ρ.

Recall that the Kolmogorov’s backward equation states that (eLtk)(x) =
Exk(Xt), so the probabilistic interpretation of the left hand side is

〈h, eLtk〉ρ = E [h(X0)E{k(Xt)|X0}] = Eh(X0)k(Xt)

and with a similar interpretation of 〈eLth, k〉ρ we conclude that
Eh(X0)k(Xt) = Ek(X0)h(Xt).

Example 9.9.1 (Gibbs’ Canonical Distribution) Consider diffusive mo-
tion in a potential given by

dXt = −∇U(Xt) dt+ σ dBt.
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where Xt ∈ Rn, U : Rn 7→ R is a smooth potential and σ is a scalar con-
stant; {Bt : t ≥ 0} is n-dimensional Brownian motion. The Gibbs canonical
distribution is given by the density

ρ(x) = 1
Z

exp(−U(x)/D)

where D = σ2/2 and Z > 0 is a constant. Then ρ is stationary under the
forward Kolmogorov equation. To see this, compute the flux:

J = uρ−D∇ρ = −ρ∇U −D(−ρ/D · ∇U) = 0

i.e., ρ satisfies detailed balance and is therefore stationary. If ρ is integrable,
then we say that the potential is confining, and we choose Z as the partition
function so that ρ integrates to 1. Then, the stochastic differential equation
admits a stationary solution {Xt} which is time reversible. This may appear
counter-intuitive, considering the drift f(x) = −∇U(x): Say that {Xt} is
stationary and that we observe Xt = x, then

E{Xt+h|Xt = x} = E{Xt−h|Xt = x},

and both of these expectations equal x− h · ∇U(x) + o(h) for h > 0, by the
Euler-Maruyama scheme.

Example 9.9.2 (The Ornstein-Uhlenbeck Process) Here, {Xt} is given
by

dXt = −λXt dt+ σ dBt

with λ > 0, σ > 0, and has as stationary distribution a Gaussian with
mean 0 and variance σ2/(2λ). Since the process is scalar, this stationary
distribution must satisfy detailed balance, which can be confirmed by direct
calculation: We have

ρ(x) = s−1φ(x/s)
where s =

√
σ2/(2λ) is the stationary standard deviation and φ(·), as usual,

is the standard Gaussian probability density function. Therefore, the station-
ary flux at x is

J(x) = −λxρ(x) − 1
2σ

2ρ′(x).

The gradient is

ρ′(x) = s−2φ′(x/s) = −s−2xφ(x/s) = −s−1xρ(x)

so J(x) = (−λx+σ2/(2s)ρ(x) = 0, as claimed. Note that we could also shown
that detailed balance holds by using Example 9.9.1, since the flow x 7→ −λx
is potential flow (or gradient flow), −λx = −U ′(x) with U(x) = λx2/2. It
follows that the stationary Ornstein-Uhlenbeck process {Xt} is reversible.

For diffusions in higher dimensions, there is a generalized concept of de-
tailed balance where we allow some state variables, e.g. velocities, to change
sign as we reverse time. See (Gardiner, 1985).
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9.10 Conclusion

We have seen that Itô diffusion processes, the solutions to stochastic dif-
ferential equations, are Markov processes and their transition probabilities
are governed by partial differential equations of the advection-diffusion type.
The link is quite natural, bearing in mind our initial motivation of following
a diffusing molecule in fluid flow, and is anticipated by using the name “Itô
diffusion” for solutions of stochastic differential equations.

We have seen that there are two Kolmogorov equations, which both
govern the transition densities: The forward equation, which describes how
the probability density evolves as time marches forward, and the backward
equation, which describe how the likelihood of the initial condition varies as
the initial time is pulled backward. Importantly, the backward and forward
equations are formally adjoint, so they contain the same information. Most
students find it easier to develop intuition for the forward equation, but the
backward equation is equally important: it governs expectations to the fu-
ture which is key in stability analysis, performance evaluation, and dynamic
optimization.

For mathematical models, it is well defined if a process is Markov or not,
but for a real-world system, it is not trivial which variables constitute the
state and can be assumed to have the Markov property. For simple physical
systems, the answer is often given by the laws of physics. For a Newtonian
particle moving in a potential, the position itself is not a Markov process:
To predict future positions, we need also the current velocity; these two
variables together form a state vector. In practical models, we may end up
with both smaller and larger states spaces. The potential may evolve over
time and we need one or more states to describe this. On the other hand,
if the particle is small and embedded in a fluid, we may be uninterested in
the small-scale velocity fluctuations, so we approximate the position with a
Markov process and disregard the velocity.

For complex systems (a human body seen as a physiological system, an
ocean seen as an ecosystem, or a nation seen as an economic system), it is
less clear how many and which state variables are needed, and the answer
typically requires some simplification which is justified by the limits in the
intended use of the model.

One great advantage of the Markov property, and state space models in
greater generality, is that a large number of analysis questions can be reduced
to analysis on state space, rather than sample space. For Markov chains
with a finite number of states, this means that computations are done in
terms of vectors, representing probability distributions or functions on state
space, and linear operators on these, i.e., matrices. For stochastic differential
equations and diffusion processes, the main computational tool is partial
differential equations which govern probability densities and functions on
state space. Applied mathematicians have developed a large suite of methods
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for partial differential equations of advection-diffusion type - both analytical
and numerical - and we can now put all this to work to study stochastic
differential equations.

The solutions to Kolmogorov’s equation can only be written up explicitly
in special cases, even if these special cases are over-represented in applica-
tions due to their tractability. Approximate methods and numerical methods
are important; in the notes following this chapter we will discuss numerics.
There, we will also discuss boundaries and boundary conditions.

9.11 Notes and References

We refer to the two key equations in this chapter as the “backward and
forward Kolmogorov equations” due to work of Kolmogorov (1931), who
called them the first and second differential equations. He considered only
scalar diffusion processes, but also Markov processes on finite and countable
state spaces. The forward equation was previously derived by Adrian Fokker
in 1914 and by Max Planck in 1917, so it is also referred to as the Fokker-
Planck equation. Kolmogorov (1937) considered time reversibility and found,
among other results, that particles diffusing stationarily in potentials have
time-reversible trajectories (Example 9.9.1).

9.11.1 Do the Transition Probabilities Admit Densities?

The transition probabilities may be degenerate in the sense that all proba-
bility is concentrated on a point, a line, or in general on a manifold in state
space with (Lebesgue) measure 0; this manifold could evolve in time. Then,
the transition probabilities do not admit densities. A trivial example is when
g(x) ≡ 0; a more interesting one is Brownian motion on the n-dimensional
sphere (Exercise 7.24): The sphere with radius r > 0, S = {ξ : |ξ| = r}, is
invariant for all r > 0 so if the initial condition X0 = x is on the sphere,
then PX0=x{Xt ∈ S} = 1 for any t > 0, despite S having Lebesgue measure
0.

A sufficient condition for transition densities to exist is that g(x)g>(x) >
0 at each x; i.e., diffusion acts in all directions. But this condition is not
necessary. An example is the system of two linear equations

dXt = Vt dt, dVt = dBt,

i.e., the position of a particle the velocity of which is Brownian motion.
Here, diffusion is singular since it acts only in the v-direction. Nevertheless,
(Xt, Vt) follows a bivariate Gaussian distributed for all t > 0 with non-
singular covariance matrix, and so admits a density.

For linear time-invariant systems, the transition probabilities are Gaus-
sian, and therefore a density will exist if and only if the covariance matrix
is non-singular. We have the following result:



CHAPTER 9. THE KOLMOGOROV EQUATIONS 218

Theorem 9.11.1 Consider the linear stochastic differential equation

dXt = AXt dt+G dBt, X0 = x ∈ Rn.

Let Σ(t) be the covariance matrix of Xt. Then the following are equivalent:

1. There exists a time t > 0 such that Σ(t) > 0.

2. For all times t > 0 it holds that Σ(t) > 0.

3. For all left eigenvectors p 6= 0 of A, pG 6= 0.

4. The “controllability matrix” [G,AG,A2G, . . . , An−1G] has full row
rank.

If these hold, we say that the pair (A,G) is controllable.

See e.g. (Zhou et al., 1996) for the proof, the idea of which is as follows: If
a left eigenvector p 6= 0 exists such that pG = 0, then the projection Yt = pXt

satisfies a deterministic differential equation, so that the covariance matrix
Σ(t) must be singular for all t. Also, in this case p[G,AG,A2G, . . . , An−1G] =
0, so that the controllability cannot have full row rank. Finally, the image
of the controllability matrix equals the image of {exp(At)G : t ≥ 0} (due to
the Taylor expansion of exp(At) and the Cayley-Hamilton theorem that the
matrix A satisfies its own characteristic equation). The integral form (5.20)
for the covariance Σ(t) then establishes the connection between full rank of
the controllability matrix and of the covariance matrix.

The conclusion from this theorem is that the transition densities exist
if and only if the pair (A,G) is controllable, which is a weaker requirement
than the diffusivity D = 1

2GG
T being non-singular.

In the nonlinear case, with Xt ∈ Rn and Bt ∈ Rm,

dXt = f(Xt) dt+
m∑

i=1
gi(Xt) dB(i)

t

there is the complication that the different noise channels can interact to
perturb the state in other directions than those spun by {gi(Xt)}, even with-
out drift. This phenomenon is also considered by the geometric approach
to non-linear control theory, which in turn builds on differential geometry:
Two noise channels g1 and g2 can perturb the state not only in the di-
rections g1 and g2, but also in the direction [g1, g2] = (∇g1)g2 − (∇g2)g1;
here, [·, ·] is termed the Lie bracket. This connection between control the-
ory and stochastic analysis manifests itself in the so-called Support Theorem
of Stroock and Varadhan, which equates the support the distribution of
Xt with those states, which are reachable in the sense of control theory.
This generalizes the result for linear systems which we stated in the previ-
ous. In the linear case, those directions in state space which are affected by



CHAPTER 9. THE KOLMOGOROV EQUATIONS 219

noise is the image of the controllability matrix; a theorem due to Hörman-
der generalizes this to the nonlinear case through a Lie algebra, formed
by iteratively taking Lie brackets. The conclusions is that transition den-
sities exist if this Lie algebra has full rank for each x. So-called Malliavin
calculus makes these statements precise; see (Rogers and Williams, 1994b;
Pavliotis, 2014) and the example of the Brownian unicycle in Exercise 8.7.

9.11.2 Eigenfunctions, Mixing, and Ergodicity

Often, when a unique invariant density ρ exists, the stationary process {Xt}
mixes in the sense that Exh(Xt) → Eh(X0) = 〈ρ, h〉 as t → ∞, for any
function h such that the expectations exists; the convergence is often even
exponential. This is related to the spectrum (eigenvalues) of the Kolmogorov
operators L and L∗: In this situation, these operators have a discrete spec-
trum (i.e., countably many eigenvalues) with a unique eigenvalue at 0, and
so that the remaining eigenvalues all have negative real parts, which are
bounded away from 0. Then, we can think of L as an infinite-dimensional
matrix and L∗ as its transpose, and we can extract useful information from
the eigenvalues and the eigenfunctions.

Exercise 9.5 goes through the example of the Ornstein-Uhlenbeck pro-
cess, where the eigenvalues and eigenfunctions can be found analytically.
Exercise 9.7 covers the example of biased random walks on the circle, lead-
ing to the so-called von Mises distribution, where the analysis is done nu-
merically. In these exercises, and in most applications, we focus on the first
few eigenfunctions of L∗, i.e., those with the numerically smallest eigenval-
ues. These slow modes, which correspond to large-scale fluctuations in state
space, determine the transients and fluctuations of the stationary process.
For example, for the Ornstein-Uhlenbeck process, the two slowest modes
describe how the expectation and variance of Xt converges to stationary
values.

A number of technicalities are necessary to complete this picture; this is
outside our scope, but let us briefly mention them. First, we must require
that the solutions of the stochastic differential equation do not diverge to
infinity, but return to a “central part” of the state space, which in Markov
terminology is positively recurrent. See Section 12.9. We must also require
that there are no invariant subsets of state space, which is related to whether
the transition densities exist, and holds e.g. if the diffusivity is bounded
away from 0 (Section 9.11.1). Next, the operator L is unbounded because
short waves are attenuated very quickly; we address by considering the so-
called resolvent operator Rα = (α − L)−1 for α > 0 which has the same
eigenfunctions as L, but bounded eigenvalues.

Now, assume that a unique stationary distribution exists and has density
ρ(·), and consider a function h(·) on state space for which E|h(X0)|2 <
∞. This defines a second-order stationary process {Yt = h(Xt)}, i.e., the



CHAPTER 9. THE KOLMOGOROV EQUATIONS 220

expectation EYt = µY is constant and the autocovariance rY (·) depends
only on the time lag (Section 5.4):

E(Yt − µY )Ys = E(Yt−s − µY )Y0 = rY (t− s) for 0 ≤ s ≤ t.

Exercise 9.6 demonstrates how to find the autocovariance function rY . Now
assume exponential mixing, then the autocovariance function is bounded by
a two-sided exponential:

|rY (t)| ≤ Ce−λ|t| for some C, λ > 0

and so the variance spectrum SY (ω) is well defined (Section 5.5).
This has implications for the so-called ergodic properties of {Yt}, i.e.,

whether we can estimate statistics of {Yt} based on a single realization of
the stationary process {Xt}. To see this, consider the time average

h̄ = 1
T

∫ T

0
Yt dt.

Then h̄ is a random variable with expectation Eh̄ = µY and variance

Vh̄ = 1
T 2

∫ T

0

∫ T

0
rY (t− s) ds dt.

As T → ∞, the exponential bounds on the autocovariance function imply
that we can approximate the double integral:∫ T

0

∫ T

0
rY (t− s) ds dt = T SY (0) +O(1).

Here, SY (0) =
∫+∞

−∞ rY (t) dt and O(1) means a term which is bounded as
T → ∞. We conclude that the variance Vh̄ vanishes as fast as 1/T , as
T → ∞:

Vh̄ = 1
T
SY (0) +O(T−2)

The result which we have just outlined is contained in the ergodic theorem
of von Neumann, which states that the time average h̄ converges to the
expectation µY = Eh(Xt) in mean square. This allows us, for example,
to estimate ensemble averages (i.e., expectations) from a single very long
simulation.

9.11.3 Reflecting Boundaries

In some applications the diffusion process {Xt} evolves inside a domain W
and is reflected if it approaches the boundary ∂W . For example, consider a
gas molecule in a metal container: The molecule diffuses in the interior of
the container, but once it hits the metal, it bounces back into the interior.
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Such reflecting boundaries are most easily described in terms of the forward
Kolmogorov equation governing the density φ, where we may impose a “no
flux” boundary condition:

(uφ−D∇φ) · n = 0 for x ∈ ∂W. (9.8)

Here, n is a normal vector to the boundary ∂W at x, directed outwards.
This condition ensures that the flux of probability across the boundary is
0. In terms of the backward Kolmogorov equation governing the likelihood
function ψ, the corresponding (or dual) boundary condition is

(D∇ψ) n = 0 for x ∈ ∂W. (9.9)

This can be shown by repeating the duality argument from Section 9.5 and
including boundary terms, found by the divergence theorem:

〈φ,Lψ〉 =
∫

W
φ (∇ψ · u+ ∇ · (D∇ψ)) dx

=
∫

W
ψ [−∇ · (uφ−D∇φ)] dx+

∫
∂W

ψ(uφ−D∇φ) + φD∇ψ dn(x)

= 〈L∗φ, ψ〉

provided the boundary terms vanish, which they do if φ satisfies the no-flux
condition (9.8) and ψ satisfies the homogeneous Neumann condition (9.9).

Once we have established boundary conditions for the Kolmogorov equa-
tions, we can ask what the corresponding sample paths look like. Here, we
outline this construction, skipping details. Consider first a scalar diffusion
dXt = f(Xt) dt + g(Xt) dBt; we aim to impose a reflecting boundary at
x = 0. To this end, add an extra drift term to obtain:

dXt = [f(Xt) − U ′(Xt/ε)] dt+ g(Xt) dBt.

Here, U(x) is a smooth potential defined for x 6= 0 such that limx→0 U(x) =
∞ and U(x) = 0 for |x| > ε. The parameter ε controls the width of the
“repulsion zone”. For each ε > 0 and each initial condition, there is a unique
solution, and this solution never hits x = 0 (see Section 11.7). As ε → 0, the
process converges to a limit which satisfies

dXt = f(Xt) dt+ dLt + g(Xt) dBt

where dLt is a monotone process, which increases when the process hits
the boundary from the right, and which is constant on time intervals dur-
ing which the process does not hit the boundary. Think of Lt as the
cumulated repulsion force that acts on the particle in the interval [0, t];
dLt ≈ −U ′(Xt/ε) dt. In terms of Euler-Maruyama simulation, a simple ap-
proach is to simulate sample paths using reflection as follows (for the case
Xt > 0):

Xt+h = |Xt + f(Xt)h+ g(Xt)(Bt+h −Bt)|.
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In summary, it is easy to include reflecting boundaries in the Kolmogorov
equations. Next, it is possible but more difficult to modify the Itô stochas-
tic differential equation to include reflection at the boundary, while it is
straightforward to simulate reflected sample paths.

Example 9.11.1 (Reflected Brownian Motion with Drift) Consider Brow-
nian motion with negative drift, starting at X0 > 0, and reflected at x = 0:

dXt = −u dt+ dLt + σ dBt

with u > 0; define D = 1
2σ

2. The forward Kolmogorov equation is φ̇ =
uφ′ + Dφ′′ with boundary condition uφ(0) + Dφ′(0) = 0. The stationary
p.d.f. is φ(x) = Z−1 exp(−ux/D) with Z = D/u.

The analysis extends relatively straightforward to higher dimensions,
provided that the diffusivity matrix D(x) is nonsingular at the boundary
point x and that the normal vector n is an eigenvector of D(x). Without
these assumptions, both modeling, analysis, and simulation must be done
with care.

Example 9.11.2 (Reflection with a Position/Velocity System) Con-
sider the coupled equations

dXt = Vt dt, dVt = −λVt dt+ s dBt

and aim to reflect Xt at x = 0. If this is a model of a gas molecule in a
container, then the most obvious way to model this reflection is by including
a short-range repulsive potential, which modifies the equation governing {Vt}
to

dVt = −[λVt + U ′(Xt/ε)] dt+ s dBt

When ε → 0, this corresponds to the particle colliding elastically with the
boundary at x = 0. At this collision, the particle instantaneously changes
its velocity from Vt to −Vt. Since this implies that {Vt} is discontinuous,
the process {(Xt, Vt)} is an Itô diffusion for ε > 0 but the limit as ε → 0
is not an Itô process. However, it is still a Markov process, the transition
probabilities of which are governed by the forward Kolmogorov equation with
the boundary condition

φ(0,−v, t) = φ(0, v, t).

9.11.4 Girsanov’s Theorem

We now ask how the law of an Itô diffusion {Xt} changes when we change
the drift term in the governing stochastic differential equation. The answer
is given by a theorem due to Girsanov, which we now derive in a simplified
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version. Let T > 0 and consider a scalar Itô diffusion {Xt : 0 ≤ t ≤ T} given
by the driftless Itô equation

dXt = g(Xt, t) dBt, X0 = x,

where g 6= 0; {Bt} is Brownian motion w.r.t. {F t} and P. We aim to compare
the law of this {Xt} with that arising from the same equation with drift,
but with {Bt} replaced by a new process {Wt}:

dXt = f(Xt, t) dt+ g(Xt, t) dWt, X0 = x. (9.10)

We do not change the random variables Xt as functions on sample space, but
we change their distribution by changing the probability measure. Specifi-
cally, we aim to construct a new probability measure Q on the same sample
space, so that {Wt} defined by (9.10) is Brownian motion w.r.t. {F t} and
Q. As we will see, this can be done with a process {Lt} which we call a
likelihood:

Lt = exp
(∫ t

0

f(Xs, s)
g(Xs, s)

dBs − 1
2

∫ t

0

f2(Xs, s)
g2(Xs, s)

ds

)
.

This process can be written as an Itô integral (compare Exercise 7.25) so it
is a local martingale; we assume that it is in fact a martingale. We can then
define a probability measure Q on (Ω,F) by

Q(A) =
∫

A
LT (ω) dP(ω) for A ∈ F . (9.11)

Note that Q(Ω) = 1 since {Lt} is a martingale. This probability measure Q
has the same null sets as P, and the random variable LT can be thought of
as the density of Q w.r.t. P; we call LT the Radon-Nikodyn derivative of Q
w.r.t. P, LT = dQ/dP. For (conditional) expectation of a random variable
Z w.r.t. Q, we write

QZ = E{LTZ}, Q{Z|G} = E{LTZ|G}/E{LT |G},

while E still denotes expectation w.r.t. P.
Now, the process {Wt} given by (9.10) is a martingale w.r.t. Q: Let

0 ≤ s ≤ t ≤ T , then the martingale property of {Lt} and the tower property
of conditional expectations show that Q{Wt|Fs} = E{WtLt|Fs}/Ls. In
turn, Itô’s lemma shows that {WtLt} is an Itô integral w.r.t. {Bt} (which
we assume is a martingale). Therefore, {Wt} is a Q-martingale.

Next, the quadratic variation of {Wt} is [W ]t = t almost surely w.r.t.
P and therefore also w.r.t. Q, so Lévy’s characterization (Exercise 4.8) tells
us that {Wt} is Brownian motion on (Ω,F , {F t},Q). This is Girsanov’s
theorem. We have therefore succeeded in changing the measure to Q so as
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to include drift: The process {Xt} satisfies the Itô equation (9.10) where
{Wt} is Brownian motion w.r.t. Q.

Note that LT can be computed from the sample path of {Xt}:

Lt = exp
(∫ t

0

f(Xs, s)
g2(Xs, s)

dXs − 1
2

∫ t

0

f2(Xs, s)
g2(Xs, s)

ds

)
. (9.12)

Girsanov’s theorem appears in many different and more general forms; see
(Øksendal, 2010). We now sketch a number of applications of this result:

Model Analysis: Exercise 9.14 shows how to compute the hitting time
distributions for Brownian motion with drift, by exploiting that we know
these distributions for Brownian motion without drift (Section 4.3) and
combining with Girsanov’s theorem. So Girsanov’s theorem lets us solve
a “tricky” analysis problem by transforming it to a simpler model, where
the answer is available, and then map the result back to the original.

Likelihood Estimation of the Drift: If the drift function f is un-
known but assumed to belong to some family Φ, and we have observed a
state trajectory {Xt : 0 ≤ t ≤ T}, then we can estimate f by maximizing
the likelihood dQ/dP w.r.t. f over Φ using (9.12). If the family Φ is a linear
space, then this maximization problem is a weighted least squares problem.
Exercise 9.15 gives an example.

Importance Sampling: The context is here to use Monte Carlo to
estimate the probability Q(A) of some rare event A; e.g., a transition in a
double well system. Direct Monte Carlo is ineffective, because it would take
many realizations to observe the event A. Then, we can simulate trajectories
from a process with a different drift, chosen to make the event A more
probable, and estimating Q(A) using weights as in (9.11). See, for example,
(Milstein and Tretyakov, 2004).

Mathematical Finance: Here, we operate with two probability mea-
sures as explained in Section 3.9.1: The “real-world” measure which governs
observed dynamics in the market, and the “risk-free” measure which governs
the pricing of assets. Girsanov’s theorem allows us to convert between these
two measures.

9.11.5 Numerical Computation of Transition Probabilities

The transition probabilities can only be found analytically in special cases.
In up to three dimensions, say, we may compute the transition probabili-
ties numerically by discretizing the Kolmogorov equations. There are many
software packages for numerical analysis of PDEs, ranging from commer-
cial industrial-grade packages (e.g., Comsol, Ansys, Fluent) to community-
driven open source projects (ReacTrans for R; FEniCS for python). Many
packages and methods are designed for problems in fluid mechanics or ther-
modynamics, but can be applied to stochastic differential equations due to
the similarity of the governing equations. Yet, for the newcomer, progress
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can be slow because these software packages typically have steep learning
curves and are designed for different applications. While the vast topic of nu-
merical analysis of partial differential equations largely is outside our scope,
we provide here simple numerical methods for simple problems, focusing
on the one-dimensional case. The methods are implemented in the toolbox
SDEtools; in particular the functions fvade for scalar problems and fvade2d
for the two-dimensional case.

It is convenient to first keep time continuous while space is discretized.
This is called the method of lines. Thus, the forward Kolmogorov equation
governing the evolution of the probability density function φ is discretized
as a system of ordinary differential equations:

φ̇ = L∗φ 7→ ˙̄φ = φ̄G. (9.13)

From now on we focus on the operator L∗ and its discretization G. We
therefore consider the time t fixed and omit it, in order to obtain a simpler
notation. The continuous object φ(·), which is a smooth function defined on
state space, is replaced by a vector φ̄ ∈ RN . The linear partial differential
operator L∗, in turn, is replaced by a matrix G ∈ RN×N . The corresponding
discretization of the backward Kolmogorov equation is

−ψ̇ = Lψ 7→ − ˙̄ψ = Gψ̄. (9.14)

Note that we view the discretization of the probability density function φ(·)
as a row vector φ̄ while the discretization of the likelihood function ψ(·) is a
column vector ψ̄. This convention reflects that φ and ψ are dual objects, as
are φ̄ and ψ̄. Since L∗ and L are adjoint operators, it is the same matrix G
that appears in the discrete version of two equations; the backward equation
is obtained by multiplying ψ̄ on G from the right, while the forward equation
is obtained by multiplying φ̄ on G from the left.

In the following we focus on a discretization technique which ensures
that G is the generator of a continuous-time Markov chain with state space
{1, . . . , N}. This process approximates the original diffusion process, and the
equations in (9.13) and (9.14) are the forward and backward Kolmogorov
equations for the original diffusion process and for its approximating Markov
chain, respectively.

The discretization method is a finite volume method which uses a second
order central scheme for the diffusion and a first order upwind scheme for
the advection. We present the scalar case; see (Versteeg and Malalasekera,
1995) for an elaborate treatment and generalizations to higher dimensions.
We truncate the real axis so that the computational domain is [a, b] and
partition the domain into N grid cells {Ii : i = 1, . . . , N}. We let xi be
the center point in each grid cell and we use xi−1/2 and xi+1/2 for the left
and right interfaces; thus xi = (xi−1/2 +xi+1/2)/2 and |Ii| = xi+1/2 −xi−1/2.
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Now, consider the forward Kolmogorov equation in advection diffusion form:

φ̇ = L∗φ = −∇ · (uφ−D∇).

The discretized version considers only the total probability in each grid cell,
so that the i’th element of φ̄ is

φ̄i ≈
∫ xi+1/2

xi−1/2

φ(x) dx.

The diffusive fluxes between cells i and i+ 1 is approximated by evaluating
the diffusivity D(x) at the interface, and assume that the concentration
profile is linear over the two cells i and i+ 1. We get

JD(xi+1/2) = −D(xi+1/2)φ′(xi+1/2) ≈ −D(xi+1/2) φ̄i+1/|Ii+1| − φ̄i/|Ii|
xi+1 − xi

.

Now assume that the state is in cell i so that φ̄i = 1, φ̄i+1 = 0. For the
approximating Markov chain, this diffusive flux corresponds to a jump rate
GD

i(i+1), which must therefore equal

GD
i(i+1) =

D(xi+1/2)
|Ii|(xi+1 − xi)

.

Similarly, diffusion gives rise to a jump rate from cell i+ 1 to cell i, which is

GD
(i+1)i =

D(xi+1/2)
|Ii+1|(xi+1 − xi)

.

The diffusion operator φ 7→ ∇ · (D∇φ) is therefore discretized as a matrix
GD which is tridiagonal and has these elements in the first off-diagonals.

Next, we approximate the advective flux between cells Ii and Ii+1 as

u(xi+1/2)φ(xi+1/2) ≈
{

u(xi+1/2)φ̄i/|Ii| when u(xi+1/2) > 0,
u(xi+1/2)φ̄i+1/|Ii+1| when u(xi+1/2) < 0.

Note that we approximate the probability density at the interface with the
average density in the cell where the flow comes from. This is the upwind
principle. These fluxes correspond to jump rates:

GA
i(i+1) =

{
u(xi+1/2)/|Ii| when u(xi+1/2) > 0,

0 else,

and
GA

(i+1)i =
{

−u(xi+1/2)/|Ii+1| when u(xi+1/2) < 0,
0 else.

Here, GA is the matrix representation of the advective operator φ 7→ −∇ ·
(uφ). To take both advection and diffusion into account, we simply add the
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two generators, i.e., G = GA +GD. So far we haven’t discussed the diagonal,
but we know that it is negative and ensures that row sums are 0:

Gii = −Gi(i+1) −Gi(i−1).

We have derived these formulas assuming that the interface is interior,
so it remains to specify what to do at the left and right boundaries. There
are three common situations:

1. No-Flux Boundaries. Compare Section 9.11.3. We set J1/2 = JN+1/2 =
0, so that a particle reflects when hitting the boundary as in Section
9.11.3. In this case the particle can only leave cell 1 to go to cell 2,
and the rate with which this happens is as before.

2. Periodic Boundaries. We identify the left boundary point x = x1−1/2
with the right one, x = xN+1/2. Thus, we set J(x1/2) = J(xN+1/2) so
what moves out of the left exterior boundary enters through the right.
We compute this flux according to the same formulas as for interior
cells. This leads to jump rates between cells 1 and N as in the previous.
Specifically, the diffusive jump rate from cell 1 to N is

GD
1N =

D(x1/2)
|I1|(x1 − x1/2 + xN+1/2 − xN ) .

and the advective jump rate from cell 1 to N is,

GA
1N = −u(x1/2)/|I1| if u(x1/2) < 0 and 0 else.

with a similar expression for GA
N1.

3. Absorbing Boundaries. We compute the fluxes J1/2 and JN+1/2 using
the same formulas as for interior cells, and assume that there are two
absorbing boundary cells, one to the left of cell 1 and one to the right
of cell N . Here, an absorbing cell is one which is never left, so that
the corresponding row in the generator G is all zeros. These boundary
cells can be included, in which case we keep track of the probability of
absorption at each boundary, or omitted, in which case we only keep
track of the probability of the interior, which is then not conserved. In
the terminology of partial differential equations, absorbing boundaries
correspond to a homogeneous Dirichlet condition for the forward Kol-
mogorov equation and a (possible inhomogeneous) Dirichlet condition
for the backward Kolmogorov equation. We discuss problems that lead
to absorption further in Chapter 11.
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Solution of the Discretized Equations

With the matrix G in hand, which discretizes the operators L∗ and L, it
remains to solve the ODE systems (9.13) and (9.14).

For time invariant systems with not too many grid cells (say, up to a few
hundred), we can use the matrix exponential. For the forward equation:

φt = φ0e
Gt.

When G changes with time, the matrix exponential does not apply (except
when the matrices {Gt : t ≥ 0} commute). Then, and for large computa-
tional grids, time stepping can be used. Standard methods apply, for ex-
ample, Runge-Kutta schemes as implemented in ode for R. However, the
structure of the equations should be preserved, i.e., that they are sparse,
stable (all eigenvalues have non-positive real part), positive (exp(Gt) has all
non-negative elements; often even positive for t > 0), and conservative (row
sums of G are zero, except with absorbing boundaries). Moreover, the equa-
tions are typically stiff, i.e., some eigenvalues have very negative real parts,
corresponding to short spatial fluctuations disappearing fast. This suggests
implicit methods, such as the implicit Euler method:

φt(I −Gt) = φ0

which is solved for φt. Solvers may exploit that I −Gt is sparse; often even
tridiagonal. The implicit Euler method is unconditionally stable, conserves
probability, and is positive in the sense that all elements of φt are non-
negative whenever those of φ0 are.

A common task is to identify the stationary distribution, i.e., find φ such
that φG = 0 while φe = 1 where e is a column vector of all ones. We expand
the system with an extra scalar unknown, δ, and solve the system

[φ δ]
[
G e
e> 0

]
= [0 1]

for [φ δ]. If the diffusivity is bounded away from 0, G is the generator of
an irreducible Markov chain (i.e., any state can be reached from any other
state), and then this system is non-singular and uniquely defines φ.

The eigenvalues of G gives useful information about how fast the distri-
bution converges to the stationary one (compare Section 9.11.2). To compute
eigenvalues except for small grids, it is worthwhile to use a sparse eigenvalue
solver (e.g. RSpectra for R), and only compute the slowest modes, as it saves
computations and the fast modes are sensitive to the discretization. See Ex-
ercises 9.5 and 9.7 for examples.

9.12 Exercises
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Exercise 9.3 Stationary Moments in Logistic Growth: Some-
times we can find the stationary moments without finding the entire sta-
tionary distribution. To do this, note that if {Xt} is stationary, then
ELh(Xt) = 0 for any test function h such that the expectation exists. Now,
consider stochastic logistic growth (Example 9.8.2) and assume stationarity.

1. Take as test function h(x) = log x. Show that EXt = K(1 − σ2/(2r)).

2. Take as test function h(x) = x. Show that EX2
t = KEXt so that

VXt = K2(1 − Σ)Σ where Σ = σ2/(2r).

3. Show that, for given K, the variance is no greater than K2/4, and
that this is attained with σ2 = r. Explain why maximum variance is
obtained with intermediate noise intensity.

Exercise 9.4 Black-Scholes Option Pricing: As in Example
9.4.3, let the price of a stock evolve according to dXs = Xs(r ds + σ dBs)
and let

k(s, x) = EXs=x(Xt −K)+

be the undiscounted fair price at time s of an option to buy the stock at
time t for a price of K, if the stock price is Xs = x. Show that

k(0, x) = ertxΦ(d+ σ
√
t) −KΦ(d)

where
d =

log(x/K) + (r − 1
2σ

2)t
σ

√
t

,

so that the discounted price is

e−rtk(0, x) = xΦ(d+ σ
√
t) − e−rtKΦ(d).

Hint: Either use the backward Kolmogorov equation - in that case, symbolic
software like Maple is useful - or use that the transition probabilities of {Xt}
are known. Finally, graph the discounted fair price as a function of t ∈ [0, T ]
and x ∈ [0, 2K], for parameters r = 0.05, σ = 0.02, K = 1, T = 10.

Exercise 9.5 Eigenmodes in the O-U Process: Consider the
(rescaled) Ornstein-Uhlenbeck process

dXt = −Xt dt+
√

2 dBt.

1. Write up the forward and backward Kolmogorov operators.

2. Verify that the functions

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x

are eigenfunctions for the backward Kolmogorov operators and com-
pute the corresponding eigenvalues. Note: These are the first four of
the (probabilistic) Hermite polynomials.
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3. For the case of H1 and H2, show that these eigenmodes are consistent
with what we know from Section 7.4.1 about the evolution of the mean
ExXt and the variance VxXt for the Ornstein-Uhlenbeck process.

4. Show that if a stationary density ρ for an Itô diffusion satisfying de-
tailed balance and ψ is an eigenfunction of the backward Kolmogorov
operator, then φ = ρψ is an eigenfunction of the forward Kolmogorov
operator. Hint: In Section 9.9, we showed that in this case, L is self-
adjoint under the inner product 〈h, k〉ρ =

∫
hρk dx.

5. Compute and plot the corresponding eigenfunctions for the forward
Kolmogorov operator, for the Ornstein-Uhlenbeck process.

6. Compare the analytical results with a numerical computation of eigen-
values and -vectors, discretizing the interval x ∈ [−4, 4] with e.g. 800
grid cells and imposing reflection at the boundaries.

Exercise 9.6 The Autocovariance Function: Let {Xt} be a
stationary solution to a stochastic differential equation with generator L.
Let ρ be the stationary density, and let h(·) be a scalar function on state
space such that Eh2(Xt) < ∞. Show that

E[h(X0)h(Xt)] =
∫

X
ρ(x)h(x)[eLth](x) dx.

This is the autocovariance function of {h(Xt)} if Eh(X0) = 0; otherwise, we
first remove the bias. Next, verify that this formula is consistent with what
we already know about the Ornstein-Uhlenbeck process (Lh = −λxh′+Dh′′)
when h(x) = x. Finally, how does this autocovariance function look if h is
a (real) eigenfunction of L? Note: The next exercise includes a numerical
analysis of this formula.

Exercise 9.7 Random Directions and the von Mises Distri-
bution: Consider the Itô stochastic differential equation

dXt = − sinXt dt+ σ dBt,

which can be viewed as a random walk on the circle which is biased towards
Xt = 2nπ for n ∈ N. This is a popular model for random reorientations,
when there is a preferred direction.

1. Write up the forward Kolmogorov equation and show that a stationary
solution is the so-called von Mises (or Tikhonov) distribution ρ(x) =
Z−1 exp(κ cosx), where κ = 2/σ2. Here, Z is a normalization constant
so that ρ integrates to 1 over an interval of length 2π; i.e., we consider
the state Xt an angle which is only well defined up to adding a multiple
of 2π.
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2. Take σ = 1. Simulate the process {Xt} starting at x = 0 over the time
interval t ∈ [0, 100]. Plot the trajectory and the histogram of the state.
Compare the histogram with the stationary distribution.

3. Discretize the generator on x ∈ [−π, π] using periodic boundary con-
ditions. Determine the stationary distribution numerically from the
generator and compare it, graphically, with the results from the previ-
ous question. Note: Unless the spatial grid is very fine, some numerical
diffusion stemming from the discretization will affect the numerical so-
lution.

4. Estimate the autocovariance function of {sinXt} from the time series
(using a built-in routine in your favorite software environment) and
plot it. Use a sufficient large number of lags until you can see how long
it takes for the process to decorrelate.

5. Compute the aucovariance function numerically from the following
formula (compare Exercise 9.6):

E[(h(X0) − µ)h(Xt)] =
∫

X
ρ(x)(h(x) − µ)[eLth](x) dx.

Here, we take h = sin and define µ = Eh(X0) =
∫

X ρ(x)h(x) dx. Add
this autocovariance to the empirical plot from the previous.

6. Compute the slowest 3 eigenmodes of L from the numerical discretiza-
tion. Add to the plot of the autocovariance an exponentially decaying
function e−λtV sinX0 where λ is the largest non-zero eigenvalue of L.
Comment on the agreement. Then, in a different plot, plot the slowest
3 eigenfunctions of L as well as of L∗ and describe their role.

Exercise 9.8 The Cox-Ingersoll-Ross Process: Consider
(again) the Cox-Ingersoll-Ross process, given by the Itô equation

dYt = λ(ξ − Yt) dt+ γ
√
Yt dWt

where {Wt} is Brownian motion.
1. Write up the forward Kolmogorov equation for the process.

2. Using the interpretation that Xt can be written as the sum-of-squares
of Ornstein-Uhlenbeck processes (Section 7.5.2) for certain parameter
combinations, argue verbally that the transition distribution of Xt is
a re-scaled non-central chi-squared distribution.

3. Make the argument precise and find the transition densities in CIR
process. Specifically, show that given Y0 = y0, Yt has density at y

P(Yt ∈ dy|Y0 = y0) = ce(−2cy+ν)/2
(2cy
ν

)n/4−1/2
In/2−1(

√
2cνy) dy
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where I is a modified Bessel function of the first kind, and

c = 2λ
γ2(1 − e−λt) , ν = 2cy0e

−λt.

Exercise 9.9 Monte Carlo Solution of Advection-Diffusion
Equations: Consider the advection-diffusion equation governing C(x, t)
with x ∈ Rd

Ċ = −∇ · (uC −D∇C)

where u = u(x, t) and D = D(x, t). The initial condition C(·, 0) is given.
Consider next the following Monte Carlo method for solving this equation:
Sample the trajectory of a single particle, i.e., the stochastic process {Xt :
t ≥ 0} for i = 1, . . . , N}. The initial condition X0 is sampled from C(·, 0),
and the process {Xt} satisfies

dXt = f(Xt) dt+ g(Xt) dBt

where {Bt} are independent Brownian motions. Find f and g such that
the probability density of each Xt equals C(·, t). Then write the Euler-
Maruyama scheme for each of these SDEs.

Exercise 9.10 The Density of a Time-Changed Process: Let
{Xt} be a stationary Itô diffusion satisfying dXt = f(Xt) dt + g(Xt) dBt

with density φ(·). Let {Yu : u ≥ 0} be a time-changed process as in Section
7.7, Yu = XTu where dTu = h−1(Yu) du; we assume that h is bounded away
from 0 and above. Show that an un-normalized stationary density of Yu is
φ(y) h(y).

Exercise 9.11 Detailed Balance in Linear Systems: Consider
the stationary distribution of the narrow-sense linear system dXt = AXt dt+
G dBt in n dimensions. Show that this distribution satisfies detailed balance
iff AΣ = ΣA>, where Σ is the stationary variance. Assume Σ > 0. Give an
example of a linear system where this is satisfied, and one where it is not.

Exercise 9.12 The Backward Equation for Linear Systems:
Consider again the linear system dXt = AXt dt+G dBt.

1. Write up the generator L for this process - first, for a general function
h(x) on state space, and next, for a constant-quadratic function h(x) =
x>Qx+ q, where Q = Q>.

2. Consider the backward Kolmogorov k̇+Lk = 0 with terminal condition
k(t, x) = h(x) where again h(x) = x>Qx+ q. Guess that the solution
is also constant-quadratic, k(t, x) = x>Ptx+pt, and write up ordinary
differential equations for the coefficients Pt and pt
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The point to notice from this exercise is that for linear systems, the family
of constant-quadratic functions is closed under the backward operator, so
that evaluating expectations of quadratic functions can be done with matrix
algebra (or analysis) in stead of partial differential equations.

Exercise 9.13 Densities of the Brownian Unicycle: Consider
again the unicycle in Exercise 8.7.

1. Confirm that at each point z = (θ, x, y) in state space, the three vectors
g1(z), g2(z) and [g1, g2](z) together span R3. Here, [g1, g2] = (∇g1)g2−
(∇g2)g1 is the Lie bracket.

2. This tells us that the transition densities exist. Conduct a numerical
experiment, simulate 1000 sample paths starting at z = 0 on the time
interval [0, 0.1] with a time step of 0.001, to verify this.

Exercise 9.14 Hitting Times for Brownian Motion with
Drift: Let Xt = Bt where {Bt} is Brownian motion under P and de-
fine τ = inf{t : Xt ≥ 1}; the p.d.f. of τ is given by Theorem 4.3.3. Now pose
an alternative model, viz. Xt = ut + Wt where {Wt} is Brownian motion
w.r.t. Q. We pursue the distribution of τ under Q; i.e., the hitting times
distribution for Brownian motion with drift. Proceed as follows:

1. Let ω be a sample path such that τ = t. Find the Radon-Nikodyn
derivative dQ/dP(ω).

2. Verify that the p.d.f. of τ under Q is

Q{τ ∈ [t, t+ dt]} = t−3/2φ(1/
√
t)eu−u2t/2 dt.

3. Verify the result with stochastic simulation.

4. Verify, for example using numerical integration with a couple of values
for u, that Q{τ < ∞} = 1 when u > 0, and that in this case, Qτ =
1/u. Then verify that Q{τ < ∞} = exp(1/(2u)) when u < 0. (We will
establish this last result in Exercise 11.7 using different methods.)

Exercise 9.15 Likelihood Estimation using Girsanov’s The-
orem: We perform a simulation-reestimation experiment, using the biased
random walk on the circle of Exercise 9.7, but now with two parameters:

dXt = as sin(θs −Xt) dt+ σ dBt.

1. Simulate a sample path from the model. Take as = 1, θs = 0, σ = 1.
Use a time step of 0.1 and simulate up to time T = 100.
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2. We now reestimate as and θs from the time series. Using Girsanov’s
theorem, write down the likelihood function dQ/dP(ω) = L(a, θ),
where the reference P-model is given by dXt = σ dBt and the al-
ternative Q-model is given by f(x) = a sin(θ − x).

3. Show that, for a given value of θ, the likelihood is maximized w.r.t. a
by

â(θ) =
(∫ T

0
sin2(θ −Xt) dt

)−1 ∫ T

0
sin(θ −Xt) dXt

and that the log-likelihood there is

max
a

logL(a, θ) = 1
2σ2

(∫ T
0 sin(θ −Xt) dXt

)2

∫ T
0 sin2(θ −Xt) dt

.

4. For 1000 values of θ in the interval [−π, π], tabulate and plot the profile
log-likelihood maxa logL(a, θ). Identify the maximizing argument θ̂
and the corresponding estimate â(θ̂). Compare with the true values.
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Chapter 10

State Estimation

This chapter considers the problem of inference, or estimation, in stochastic
differential equations based on observed time series. There are many different
variants of this problem; the most fundamental is that of real-time state
estimation: If we have taken a sequence of measurements on the system at
different points in time, how should we estimate the state of the system at
the time of the last measurement? The problem of state estimation arises in
many applications, for example, in decision and control: If we have to decide
on an action that affects the future dynamics, we need to first estimate the
current state.

In this chapter, we focus on a recursive solution to this problem, where
we process the measurements one at a time. This solution combines a time
update, which involves Kolmogorov’s forward equation, with a data update,
which involves Bayes’ rule. These recursions are easy to write up but, in
general, difficult to implement. In the special case of linear stochastic differ-
ential equations with Gaussian measurement errors, the recursions simplify
to algebraic equations for the conditional mean and variances; this is the cel-
ebrated Kalman filter. For the nonlinear systems in one or two dimensions,
brute-force numerical solution is feasible.

We will also see different but related versions of the estimation problem:
In forecasting or hindcasting, we aim to estimate future or past values of
the state. Also, we consider estimation of unknown parameters in the model
rather than states, using likelihood methods. These problems build on and
expand the theory of state estimation.

The approach of recursive filtering has many advantages, conceptually
and computationally. We also present an alternative formulation, which casts
the problem as a statistical mixed-effects problem. This approach has become
feasible in recent years thanks to powerful computational methods for mixed-
effects problems.

236
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Gti

X0 Xt1 · · · Xti Xti+1 · · · XT

Y1 · · · Yi Yi+1 · · · YN

Figure 10.1: Probabilistic graphical model of the random variables in the
filtering problem. The measurement equation specifies the conditional dis-
tribution of Yi given Xti , and the stochastic differential equation specifies
the conditional distribution of Xti+1 given Xti . The shaded region contains
the measurements in Gti , i.e., those which are used for the state estimate ψi

and the state prediction φi+1

10.1 Recursive Filtering

We consider the following problem (see Figure 10.1): We have a diffusion
process {Xt : t ≥ 0} governed by a general, possibly non-linear and time-
varying, Itô equation

dXt = f(Xt, t) dt+ g(Xt, t) dBt. (10.1)

We envision an observer who, at certain points of time 0 ≤ t1 < · · · < tN = T
takes measurements Y1, Y2, . . . , YN . These are random variables; we assume
that each measurement Yi depends on the state Xti of the system at the
time of the measurement, but is (conditionally) independent of everything
else. The information available to this observer at time t is measurements
taken no later than time t, i.e., the σ-algebra

Gt = σ({Yi : ti ≤ t})

Note that {Gt : t ≥ 0} is a filtration. The problem of state estimation is to
determine the conditional distribution of Xt given Gt.

A graphical model of the situation is seen in Figure 10.1. The graphic
illustrates that our problem is one of inference in a Hidden Markov Model
(Zucchini and MacDonald, 2009): The state process {Xt : t ≥ 0}, sub-
sampled at the times {t0 = 0, t1, . . . , tN = T}, constitute a discrete-time
Markov process {Xti : i = 0, . . . , N}. The states are unobserved or “hidden”,
but we aim to infer them indirectly from measurements {Yi : i = 1, . . . , N}.

State estimation in stochastic differential equations, using this Hidden
Markov Model approach, involves the following steps:

1. Specification of the model: The stochastic differential equation that
propagates the state, and the conditional distribution of observations
given the state.
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2. A recursive filter, which runs forward in time and processes one mea-
surement at a time. This filter can run on-line in real time, i.e., process
measurements as they become available, although it is probably most
often used in off-line studies. This filter consists of a time update, which
addresses the link between state Xti−1 and state Xti in Figure 10.1,
and a data update, which addresses the link between state Xti and
observation Yi.

3. This filter yields state estimates, such as E{Xti |Gti}, and state one-step
predictions E{Xti+1 |Gti}. Along with these conditional means come
variances and, more generally, the entire conditional distributions.

4. With the filter in hand, we are able to evaluate the likelihood of any un-
known underlying parameters in the stochastic differential equation, or
in the measurement process, and therefore estimate these parameters.

5. A second recursion improves the state estimates to include also infor-
mation based on future observations, i.e., form conditional expecta-
tions such as E{Xti |GT }. This is the smoothing filter. It is most useful
in off-line studies where past values of the state are hindcasted.

6. Finally, one may be interested in not just the marginal conditional
distribution of Xti given GT , but in the entire joint distribution of
{Xt : 0 ≤ t ≤ T} given GT . It is possible to draw samples from this
distribution, i.e., to simulate typical tracks, and to identify the mode
of the distribution, i.e., the most probable track.

In the following we address these steps one at a time. To make the
presentation more specific, we will use a running example, namely state
estimation in the Cox-Ingersoll-Ross process. Specifically, we consider the
process

dXt = (1 −Xt) dt+
√
Xt dBt. (10.2)

where we interpret Xt as the abundance of bacteria. Figure 10.2 displays
the simulation of the process. In the following sections, we assume that this
trajectory is unobserved but aim to estimate it from available data, which
consists of bacteria counts in samples.

10.2 Observation Models and the State Likelihood

We now focus on the observations Yi. These are random variables; the model
specifies their distribution by means of the conditional density of Yi given
Xti , i.e., fYi|Xti

(y|x). Ultimately, we aim to apply Bayes’ rule to find the
conditional distribution of Xti given the measurement Yi. For example, if
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Figure 10.2: Solid line: Simulation of the Cox-Ingersoll-Ross process (10.2).
We assume that this trajectory is not available to the observer, who only
has access to the observed time series {Yi} (open circles). The objective is
to estimate the state trajectory based on the measurements.

we take a single measurement Yi(ω) = yi, and have no other information,
then we find the conditional density of Xti as

fXti |Yi
(x|yi) = 1

c
fXti

(x)fYi|Xti
(yi|x)

where fXti
(x) is the prior density of the state Xti at the point x. Here c is

the normalization constant fYi(yi) =
∫
fXti

(x)fYi|Xti
(yi|x) dx. This precise

formulation assumes that the joint distribution of Xti and Yi is continuous;
similar expressions exist when e.g. Yi is discrete.

We see from this example that information in the measurement Yi about
the state Xti is quantified by the function fYi|Xti

(yi|x). We introduce the
term state likelihood function, and the symbol li(x), for this function:

li(x) = fYi|Xti
(yi|x)

Note that to the observer, yi = Yi(ω) is a known quantity at time ti and
thereafter, so li(x) is known, for each value of the state x, at time ti. In other
words, li(x) is a Gti-measurable random variable ω 7→ fYi|Xti

(Yi(ω)|x), for
each x.

Let us give a few specific examples of how li(x) can arise. A common
situation is that the measurements Yi are noisy observations of some function
of the state Xti . For example, we may have

Yi = c(Xi) + s(Xi)ξi
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Figure 10.3: Three examples of state likelihood functions: To the left, an
observation Y = 3 with Y ∼ N(X, 1/2). In the middle, an observation
Y = 3 with Y ∼ Poisson(X). To the right, an observation Y = 3 with
Y being X rounded to the nearest integer. Note that these are likelihood
functions of the state X and not probability density functions of X.

where the function c(x) specifies the quantity which is measured, and where
{ξi} are Gaussian measurement errors with mean 0 and variance 1, which
are independent of each other and of the Brownian motion {Bt : t ≥ 0}. In
this situation, the state likelihood functions are

li(x) = 1√
2πs(x)

exp
(

−1
2

(yi − c(x))2

s(x)2

)
.

Note that this is not a probability density function of Xti . For example, it
does not in general integrate to 1 - although it does when c(x) ≡ x and s(x)
is a constant function of x.

As another example, the random variable Yi given Xti may be condition-
ally Poisson distributed with a mean which depends on Xti , i.e.,

li(x) = (µ(x))yi

yi!
e−µ(x)

where the function µ : X 7→ R describes how the conditional mean of Yi

depends on Xti . As yet another example, we can have observed whether Xti

is in some region A of state space or not:

li(x) =
{

1(x ∈ A) if yi = 1,
1(x 6∈ A) if yi = 0.
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Regardless of the specific way measurements Yi are taken, we see that this
information is condensed to a state likelihood function li(x), which describes
the information about the state Xti which is acquired at time ti. In agree-
ment with Figure 10.1 we also assume likelihood independence, i.e., the joint
likelihood of all unobserved states Xti is the product of the li’s.

For our example of the Cox-Ingersoll-Ross process (10.2), we assume
that the state is measured at regular time intervals ti = ih with a sampling
interval h = 0.1. At each sampling time, a random variable Yi is observed
where

Yi|Xti ∼ Poisson(Xti).

The interpretation is that we count the number of organisms in a volume;
we have rescaled the process so that this volume is 1. Figure 10.2 shows the
simulated data set {Yi}, overlaid with the true states {Xt}. Note that the
individual observation contains very little information about the state; in
order to estimate the states, it is important to take the state dynamics into
account so that the stateXti is estimated not just from the single observation
Yi, but from all available observations, giving most weight to measurements
taken at nearby times.

10.3 The Recursions: Time Update and Data Up-
date

We now combine the process model, the Itô stochastic differential equation
(10.1) governingXt, and the observation model, the state likelihood functions
li(·), to obtain estimates of the state Xti based on the information Gti . The
approach is to process or “filter” the measurements one at a time. This
recursive approach to estimation allows us to run the filter on-line, i.e., do
the processing in real time as the measurements are taken.

To this end, we introduce two conditional distributions of the state Xti ,
which differ in how many observations are available to estimate of Xti . First,

the predicted distribution φi(x)

is the p.d.f. of Xti given Gti−1 , i.e., all measurements taken strictly prior to
time ti. Similarly,

the estimated distribution ψi(x)

is the p.d.f. of Xti given Gti , i.e., all measurements taken no later than time
ti.

The principle is to tie the predictions {φi} and the estimates {ψi} to-
gether in a recursion. At each step in the recursion, we perform a time update
and a data update.
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The Time Update: This step connects the estimate ψi and the predic-
tion φi+1. Notice that these are both based on observations available at time
ti. In the time interval [ti, ti+1], the process {Xt} evolves according to the
stochastic differential equation. Using the Markov property of the process
{Xt}, we let ρ(x, t) be the p.d.f. of Xt, conditional on Gti , and evaluated at
point x. Then, for t ≥ ti, ρ is governed by the forward Kolmogorov equation

ρ̇ = −∇ · (uρ−D∇ρ), (10.3)

where we have used the advection-diffusion form of the forward Kol-
mogorov equation, with (as always) D(x, t) = 1

2g(x, t)g>(x, t) and u(x, t) =
f(x, t) − ∇D(x, t). We solve this equation for t ∈ [ti, ti+1] subject to the
initial condition ρ(x, ti) = ψi(x). Then, we find the next state prediction
as φi+1(x) = ρ(x, ti+1). This is the time update, which changes the time
index of the estimated state without changing the information on which the
estimation is based.

In the important special case of a time-invariant stochastic differential
equation, i.e., when the drift term f and noise term g in (10.1) do not depend
on time t, we can write

φi+1 = eL∗(ti+1−ti)ψi

where L∗ is the forward Kolmogorov operator.
The Data Update: At the time ti+1 the new observation Yi+1(ω) =

yi+1 becomes available to the observer. This causes us to modify the distri-
bution of the state, using Bayes’ rule (3.4):

ψi+1(x) = 1
ci+1

φi+1(x)li+1(x). (10.4)

Here, ci+1 is the normalization constant

ci+1 =
∫

X
φi+1(x)li+1(x) dx

which is the probability density of the next observation Yi+1, conditional on
current information Gti , and evaluated at the actual measurement yi+1.

We summarize the algorithm:

1. Start at t0 = 0 with ψ0(·). Set i = 0.

2. Time update: Solve the forward Kolmogorov equation (10.3) on t ∈
[ti, ti+1] with initial condition ρ(x, ti) = ψi(x). Advance time to ti+1
and set φi+1(x) equal to the solution ρ(x, ti+1).

3. Data update: Compute ψi+1(·) from Bayes’ rule (10.4).

4. Advance i := i+ 1 and go to step 2.
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Figure 10.4: The time update (left panel) and the data update (right panel)
for the Cox-Ingersoll-Ross process, illustrated for a single time step where
the estimated state is low but a positive measurement Yi = 1 arrives.

Figure 10.4 illustrates the time update and the data update for the Cox-
Ingersoll-Ross model. Here, we have discretized the state space and solved
the equations numerically. The core of the code, written in R, is listed in
listing 10.1.

P <− expm(G∗dt ) # G d i s c r e t i z e s the genera tor L

f o r ( i in 2 : l ength (tm) )
{

phi [ i , ] <− p s i [ i −1 ,] %∗% P # Time update
p s i [ i , ] <− phi [ i , ] ∗ l t ab [ , i ] # Data update
p s i [ i , ] <− p s i [ i , ] / sum( p s i [ i , ] ) # Normal izat ion

}

Listing 10.1: R code for implementing the recursive filter. Simplified extract
from the function HMMfilterSDE in the SDEtools package.

In the left panel, we see the time update from a time point ti to ti+1. In
this illustration, the estimated distribution ψi is concentrated at lower states
than the stationary mean x = 1, so the time update shifts the distribution
slightly to the right towards the stationary distribution, and also widens it.
The time step 0.1 is small relative to the decorrelation time 1 of the process,
so the effects of the time update is slight, but nevertheless still important. To
the right we see the effect of the data update. At time ti+1, a measurement
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Figure 10.5: Estimated (solid) and true (dashed) state trajectory for the
Cox-Ingersoll-Ross process. The estimate is the mean in the estimated dis-
tribution ψi. Included is also 67 % confidence intervals, derived from the
estimated distribution ψi.

Yi+1 = 1 is made available. Since Yi+1 is conditionally Poisson distributed
with mean Xti+1 , the maximum of the state likelihood is obtained at x = 1.
This is larger than the mean in the predicted distribution φi+1, so the data
update shifts the distribution even further to the right.

Figure 10.5 displays the estimated state, defined as the mean in the
estimated distribution ψi, as a function of time. Included is also the true
state {Xt} as well as lower and upper confidence limits on Xti , derived as
16.6 % and 83.3 % percentiles in the distribution ψi, respectively. Notice
that the estimated state follows the true state reasonably accurately, and in
particular that the true state is within the confidence intervals most of the
time. Notice also that the estimated state appears to lag a bit behind the true
state. This is because the estimated state is based on past measurements.

While this recursive Bayes algorithm in principle solves the filtering prob-
lem, it remains to be described how in practice to solve the forward Kol-
mogorov equation, and how to do the Bayes update. When the state space
has low dimension (up to two or three, say, depending on our stamina) we
can solve the equations directly using numerical discretization such as a fi-
nite volume method, as we described in Section 9.11.5. This is the approach
we use in our example with the Cox-Ingersoll-Ross process. Depending on
the specifics of the model, there may be other techniques for solving these
equations:

1. The case of linear stochastic differential equations with linear obser-
vations and Gaussian noise. Here, the conditional distributions of the
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state given the observation is also Gaussian. The time update reduces
to linear ordinary differential equations in the mean and covariance
matrix, and the data update reduces to matrix algebra. This leads to
the Kalman filter which we describe in Section 10.7.

2. In other situations we can approximate the solutions with Gaussians.
This holds if the system is close to linear, i.e., if the non-linearities
are weak at the scale given by the variance of the state estimate. The
resulting algorithm is the Extended Kalman filter or variants, e.g., the
unscented Kalman filter, or filters which include higher-order correc-
tions.

3. In some situations it is convenient to use Monte Carlo to estimate the
solutions. This leads to the particle filter.

Also hybrid techniques are possible (Simon, 2006).
With the state estimate ψi in hand, it is (in principle) straightforward

to predict future values of the state, also beyond the one-step predictions.
We can do this by solving the forward Kolmogorov equation for t ≥ ti with
initial condition ψi; in the time-invariant case, the conditional p.d.f. of Xt

given Gti is exp(L∗(t− ti))ψi for t ≥ ti. Alternatively, we can draw a random
sample Xti from ψi and simulate a trajectory starting at Xti .

10.4 The Smoothing Filter

We now consider the offline situation, where we want to hindcast the process;
i.e., we pursue estimates of Xti conditional on all measurements GT . We
obtain these with the means of the so-called smoothing filter, which improves
on the densities φi and ψi by including also information from observations
taken after time ti.

With the state estimate ψi(·) in hand, the way to include future measure-
ments is the following: We consider ψi the prior density of Xti while we let
πi(·) denote the posterior, which conditions also on all information obtained
after time ti. To derive the posterior πi(·) from the prior ψi(·), we apply
Bayes’ rule. This requires the likelihood µi(·) of all future measurements,
seen as a function of the realized value of Xti :

µi(x) = fYi+1,Yi+2,...,YN |Xti
(yi+1, yi+2, . . . , yN , x).

To compute these likelihood functions, we perform a recursion over time. To
this end, let λi(x) denote the likelihood of all measurements taken at ti or
later

λi(x) = fYi,Yi+1,...,YN |Xti
(yi, yi+1, . . . , yN , x).



CHAPTER 10. STATE ESTIMATION 246

First, if we have computed µi(x), then we can compute also λi(x) by includ-
ing the likelihood of the measurement taken at time ti−1:

λi(x) = µi(x) · li(x).

This is the analogy of the data update in the predictive filter. Next, with
λi(·) in hand we need to compute µi−1(·). Now, by the properties of the
conditional expectation we have

µi−1(x) = E{λi(Xti) | Xti−1 = x}.

This means that we can find µi−1 by solving the backward Kolmogorov
equation

−ḣ = u · ∇h+ ∇ · (D∇h)

for t ≤ ti together with the terminal condition h(x, ti) = λi(x). The inter-
pretation of this function h is in fact the likelihood of measurements taken
at time ti or later, viewing Xt = x as the initial condition. Then

µi−1(x) = h(x, ti−1)

This is the analogy of the time update in the predictive filter. In the im-
portant special case of a time-invariant stochastic differential equation, we
have

µi−1(x) = eL(ti−ti−1)λi(x)

These two steps, the time update and the data update, are iterated backward
in time, starting with

λN (x) = lN (x)

Having completed the recursion, we find the posterior distribution

πi(x) = 1
ki
ψi(x)µi(x)

which is the conditional distribution of Xti given all measurements, past,
present, and future. Here ki is a normalization constant ensuring that πi

integrates to 1. (Of course we could equally well have used φi(x)λi(x) after
normalization).

Figure 10.6 displays the smoothed estimate for the Cox-Ingersoll-Ross
process. For comparison, we have also included the estimate from Figure
10.5. Comparing the two figures, we see that in this example the uncertainty
only reduces slightly when including also future observations. On the other
hand, the smoothed estimate does not display the lagging that the estimate
has.
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Figure 10.6: Estimated (dashed) and smoothed (solid) state trajectory for
the Cox-Ingersoll-Ross process. Included is also 67 % confidence intervals,
derived from the smoothed distribution πi.

10.5 Sampling Typical Tracks

The smoothing filter provides us with the conditional distribution of Xti

given all measurements. These distributions are marginal in time; for exam-
ple, they do not specify the joint conditional distribution of Xti and Xti+1 .

Ultimately, we would like to know the conditional law of the stochastic
process {Xt : t ∈ [0, T ]} given all measurements, but on the other hand this
is too complicated an object to operate with. The notable exception to this
rule is the linear-Gaussian case, where the conditional law is given by the
estimate µt|T and the autocovariance structure of the estimation error. For
general, non-linear models, we have to be satisfied with the ability to sample
“typical” tracks (X0, Xt1 , . . . , XT ) from the posterior distribution. Such sim-
ulated trajectories are often very useful for communicating the results of the
filtering problem, in particular to non-specialists. They can also be used to
make Monte Carlo estimates of statistics that are otherwise difficult to com-
pute, for example the distribution of the maximum max{X0, Xt1 , . . . , XT },
conditional on measurements.

An algorithm for this is as follows:

1. First, sample ξT from πN (·).

2. Next, for each i ∈ {N − 1, N − 2, . . . , 0}, do

(a) Compute the conditional distribution of ξti given measurements
and Xti+1 = ξti+1 . Unnormalized, this distribution has density
at x

ψi(x) · p(ti, x, ti+1, ξti+1)
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where p are the transition probabilities, which are most conve-
niently found by solving Kolmogorov’s backward equation gov-
erning p(s, x, ti+1, ξti+1) as a terminal value problem, with the
terminal condition p(ti+1, x, ti+1, ξti+1) = δ(x− ξti+1).

(b) Sample ξti from this distribution.

In additional to the marginal distribution of the state at each time, and to
the sampled trajectories, it is useful to compute the mode of the joint distri-
bution of X0, Xt1 , . . . , XT conditional on measurements. This is called the
most probable track. Maximizing the posterior distribution over all possible
trajectories is a (deterministic) dynamic optimization problem which can be
solved with dynamic programming, and the resulting algorithm is known as
the Viterbi algorithm (Zucchini and MacDonald, 2009).

10.6 Likelihood Inference

If the underlying model of system dynamics, or the measurement process,
includes unknown parameters, then we can use the filter to estimate these
parameters. In fact, maximum likelihood estimation of unknown parame-
ters corresponds to “tuning” the predictive filter in the sense of adjusting
parameters to make the predictive filter perform optimally.

To make this precise, assume that the parameters f and g in the stochas-
tic differential equation (10.1) depend on some unknown parameter vector θ.
This parameter may also enter in the state likelihood functions li(x); for ex-
ample, controlling the variance of measurement errors. Now, the likelihood
function Λ(θ) is the joint probability density function of the observation
variables Y1, . . . , YN , evaluated at the measured values y1, . . . , yN , and for
the given parameter θ:

Λ(θ) = fY1,...,YN
(y1, . . . , yN ; θ).

This joint p.d.f. can be written in terms of the conditional densities, using
the general result fX,Y (x, y) = fX(x)fY |X(x, y). First, we single out the first
measurement:

Λ(θ) = fY1(y1; θ)fY2,...,YN |Y1(y1, . . . , yN ; θ).

Next, in the second term we single out Y2:

Λ(θ) = fY1(y1; θ)fY2|Y1(y1, y2; θ)fY3,...,YN |Y1,Y2(y1, . . . , yN ; θ)

and continuing this recursion we get

Λ(θ) =
N∏

i=1
fYi|Y1,...,Yi−1(y1, . . . , yi; θ).
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Figure 10.7: The log-likelihood log Λ(ξ) of the Cox-Ingersoll-Ross model.
The curve displays the log-likelihood log Λ(ξ). The vertical line indicates the
“true” value used to generate the simulated data set. The point indicates
the maximum, corresponding to the maximum likelihood estimate. The gray
region indicates a 95 % confidence interval.

The terms in this product are exactly the normalization constants ci+1 in
the data update of the filter (10.4). Thus, the likelihood of the unknown
parameter can be written

Λ(θ) =
N−1∏
i=0

ci+1(θ) (10.5)

where we have stressed that the normalization constants depend on θ be-
cause the predictions and/or the state likelihood functions li(x) do. Thus,
maximizing the likelihood function corresponds to tuning the predictive fil-
ter so that it predicts the next measurement optimally in an average sense
made precise by this product.

Figure 10.7 displays the likelihood function for the Cox-Ingersoll-Ross
model. Here, we have rewritten the model (10.2) as

dXt = (ξ −Xt) dt+
√
Xt dBt

and assumed that the mean parameter ξ is unknown. Based on the same
data set as in Figure 10.2, we run the filter with different values of this
parameter ξ, and compute the likelihood (10.5) for each value of ξ. The
result is seen in Figure 10.7. We find the maximum likelihood estimate

ξ̂ = Arg max
ξ

Λ(ξ)
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and compute an approximate 95 % confidence interval as

{ξ : 2 log Λ(ξ) ≥ 2 log Λ(ξ̂) − χ2
1(0.95)}.

Here, χ2
1(0.95) indicates the 95 % quantile in the χ2-distribution with 1

degree of freedom. This way of generating confidence intervals is standard
in statistics (Pawitan, 2001). We obtain the estimate ξ̂ = 1.11 and the
confidence interval [0.71, 1.56]. We see that the “true” value, ξ = 1, is
well within the confidence interval. The confidence interval is fairly wide,
reflecting that the time series is quite short for this purpose. This indicates
that the data set is not informative enough to estimate ξ with high fidelity;
the more positive formulation is that the filter performs reasonably well even
if it is based on an inaccurate parameter ξ.

This technique is only feasible for models with few states - so that we can
implement the filter - and few parameters, so that optimization is feasible.
From a modeling perspective, it is appealing that we can formulate the model
based on domain knowledge. A disadvantage is that we can, in general, not
say much about the structure of the likelihood function and the properties
of the estimator. For example, is the likelihood function concave so that
there is a unique maximum which we can find with standard optimization
algorithms? There is a large specialized literature on alternative approaches
to parameter estimation which lead to simpler algorithms and/or analysis.
An important word of caution is that the Maximum Likelihood estimator
may not be very robust. Specifically, when the actual data-generating system
does not belong to the class of models considered, the estimated model may
not be the one we would think of as being “closest” to the actual system.
Since model families are often gross simplifications of true data generating
systems, it is important to make a careful model validation after estimating
parameters.

10.7 The Kalman Filter

We now apply the general theory to the multivariate linear system

dXt = (AXt + ut) dt+G dBt (10.6)

where {ut} is a deterministic function of time; A and G are matrices. At
times {ti : i = 1, . . . , N} we take the measurements

Yi = CXi +DVi

where C and D are matrices. {Vi} is a sequence of Gaussian variables with
mean 0 and unit variance matrix, independent of each other and of the
Brownian motion {Bt : t ≥ 0}. As before, we let Gt be the information
available at time t, i.e., the σ-algebra generated by Yi for ti ≤ t.
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Biography: Rudolf Emil Kalman (1930-2016)
Born in Hungary, his family emigrated to the United
States in 1943. A pioneer of “Modern Control The-
ory”, he developed the “Kalman” filter around 1960.
Other important contributions are the “Kalman ax-
ioms” for dynamic systems, realization theory for lin-
ear systems, and the recognition that classical and
analytical mechanics would be useful in systems the-
ory (Lyapunov stability, Hamilton-Jacobi formalism
for calculus of variations). Photo credit: National
Academy of Engineering and Alexander Benz.

To perform the time update, assume that conditionally on Gti , Xti is
Gaussian with mean µti|ti

= E{Xti |Gti} and variance Σti|ti
= V{Xti |Gti}.

Then conditional on the same information, the distribution of Xt remains
Gaussian for t ∈ [ti, ti+1] (since the transition probabilities for a linear sys-
tem are Gaussian) with a conditional mean given by the vector ordinary
differential equation

d

dt
µt|ti

= Aµt|ti
+ ut

and a conditional variance given by the matrix ODE

d

dt
Σt|ti

= AΣt|ti
+ Σt|ti

A> +GG>.

By advancing these ODE’s to time ti+1, we have completed the time update.
Recall that Exercise 5.8 discussed the numerical solution of the variance
equation.

For the data update, we use a standard result about conditioning in mul-
tivariate Gaussians (Exercise 3.20). To this end, note first that conditional
on Gti , Xti+1 and Yi+1 are joint normal with mean

E
{(

Xti+1

Yi+1

) ∣∣Gti

}
=
(
µti+1|ti

Cµti+1|ti

)

and covariance matrix

V
{(

Xti+1

Yi+1

) ∣∣Gti

}
=

 Σti+1|ti
Σti+1|ti

C>

CΣti+1|ti
CΣti+1|ti

C> +DD>

 .
To ensure that the conditional distribution of Yi+1 is regular, we assume that
DD> > 0, i.e., all measurements are subject to noise. We can now summarize
the Kalman filter for linear systems with discrete-time measurements:
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1. Time update: Advance time from ti to ti+1 by solving the equations

d

dt
µt|ti

= Aµt|ti
+ ut

d

dt
Σt|ti

= AΣt|ti
+ Σt|ti

A> +GG>

for t ∈ [ti, ti+1] with initial conditions µti|ti
and Σti|ti

.

2. Data update: Compute the so-called Kalman gain, i.e., the matrix

Ki+1 = Σti+1|ti
C>(CΣti+1|ti

C> +DD>)−1

and then include information at time ti+1 as follows:

µti+1|ti+1 = µti+1|ti
+Ki+1(yi+1 − Cµti+1|ti

)
Σti+1|ti+1 = Σti+1|ti

−Ki+1CΣti+1|ti
.

Remark 10.7.1 When the sampling interval h = ti+1 − ti is constant, the
time update can be done more efficiently as follows: First, before the itera-
tion starts, compute the matrix exponential exp(Ah) and solve the Lyapunov
matrix ODE

d

dt
S(t) = AS(t) + S(t)A> +GG>

with initial condition S(0) = 0, for t ∈ [0, h]. See Exercise 5.8 for how to do
this. Then

Σti+1|ti
= eAhΣti|ti

eA>h + S(h).

To see this, use the general rule VXti+1 = EV{Xti+1 | Xti} +
VE{Xti+1 | Xti} where expectation and variance are conditional on Gti.
Thus we can advance the variance matrix without solving a matrix ODE
at each time step; matrix multiplication suffices. Depending on the driving
term ut, the same may be possible for the mean value. For example, if A is
invertible and ut is constant and equal to u over each time step (ti, ti+1),
then

µti+1|ti
= eAhµti|ti

+A−1(eAh − I)u

so also the vector ODE for µt|ti
needs not be solved numerically; rather the

computations reduce to matrix algebra.

The theory of Kalman filtering for linear systems is quite complete and
addresses many other issues than deriving the basic algorithm as we have just
done. Just to give a few examples, there are matrix algebraic formulations
of the smoothing step, conditions under which the forward filter converges
to a steady state, the special case of periodic systems has been investigated,
as have the robustness of the filter to various types of model errors.
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10.7.1 Fast Sampling and Sontinuous-Time Filtering

So far we have discussed the Kalman filter with measurements that are taken
at discrete points of time. In the early days of Kalman filtering, the filter
would sometimes be implemented with analog electric circuits, so truly oper-
ating in continuous time. Nowadays, even if the filter runs in discrete time on
digital hardware, the sampling rate may be so fast that the filter effectively
runs in continuous time. In other situations we have not yet determined the
sampling time, but start by examining the continuous-time filter and later
choose the sampling frequency to be “fast enough”. For these reasons we
now investigate the Kalman filter when the measurements are available in
continuous time.

In this situation, we need also a model of continuous-time measurement
errors. A simple and useful model is that the measurements are subject to
additive measurement noise, i.e.,

Zt = CXt +Dwt

and we wish to estimate Xt based on observations of Zs for s ≤ t. Here, {wt}
is the measurement noise signal, and the model must specify the statistical
properties of this process. The simplest structure is that {wt} is white noise
of unit spectral density. To make this model fit into our general framework,
we replace it with its integrated version

dYt = Zt dt = CXt dt+D dWt (10.7)

where {Wt} is Brownian motion and we have allowed the informal equation
wt dt = dWt; i.e., Brownian motion is integrated white noise.

To estimate Xt based on Gt = σ({Ys : 0 ≤ s ≤ t}) we consider first
a discretized version, obtained by sampling Yt at regular intervals nh for
n ∈ N where h > 0 is the sampling time. We solve this discretized problem
with the material of the previous section. Then we let the sampling time h
tend to 0. To this end, assume that we at time t = nh have access to the
measurements

Yh, Y2h, . . . , Ynh

and based on this information, Xt has conditional mean µt|t and variance
Σt|t. Performing the time update as in the previous, we get

µt+h|t = µt|t +Aµt|th+ uth+ o(h)

and
Σt+h|t = Σt|t +

(
AΣt|t + Σt|tA

> +GG>
)
h+ o(h).

We now turn to the data update. At time t+h the new information is Yt+h,
but since we already know Yt, we can also say that the new information is

∆Yt = (Yt+h − Yt) = CXth+D(Wt+h −Wt) + o(h).
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This agrees with the form in the previous section except for the covariance
of the measurement error (Wt+h −Wt) which is h · I rather than I. Making
the obvious rescaling, and neglecting higher order terms, the data update is
given by a Kalman gain

Kt = Σt+h|tC
>h(CΣt+h|tC

>h2 +DD>h)−1.

We now make the assumption that DD> > 0, so that all measurements are
noisy, which implies that the Kalman gain has a well-defined limit as h ↘ 0:

Kt = Σt|tC
>(DD>)−1 +O(h).

With this Kalman gain, the data update for the mean becomes

µt+h|t+h = µt+h|t +Kt(∆Yn − Chµt+h|t + o(h))

and for the variance

Σt+h|t+h = Σt+h|t −KtC
>hΣt+h|t + o(h).

Combining with the time update, we get

µt+h|t+h = µt|t +Aµt|th+ uth+Kt(∆Yn − Chµt|t + o(h))

and

Σt+h|t+h = Σt|t +
(
AΣt|t + Σt|tA

> +GG> −KnC
>Σt|t)

)
h+ o(h).

Letting the time step h tend to zero, we can summarize the analysis:

Theorem 10.7.1 Consider the filtering problem consisting of the state
equation (10.6) and the continuous-time observation equation (10.7) with
DD> > 0. In the limit h ↘ 0, the state estimate satisfies the Itô stochastic
differential equation

dµt|t = (Aµt|t + ut) dt+Kt(dYt − Cµt|tdt).

Here, the Kalman gain is

Kt = Σt|tC
>(DD>)−1.

The variance of the estimation error satisfies the so-called Riccati equation,
an ordinary differential matrix equation

d

dt
Σt|t = AΣt|t + Σt|tA

> +GG> − Σt|tC
>(DD>)−1C>Σt|t.
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The technique of replacing measurements with their integrated version is
useful also in other situations. For example, it allows simulation experiments
that compare filter performance for different choices of the sample time: By
fixing the Brownian motions {Bt} and {Wt} and discretizing with different
time steps, we can obtain simulations that correspond to the same realization
but different sample times. It also highlights that when the sampling is fast,
the important property of the measurement noise is its spectral density,
i.e., DD>h: Accuracy can be improved by decreasing the variance DD>

or the sampling interval h. The technique can be applied also when the
state dynamics are governed by non-linear stochastic differential equations,
and with other types of measurement noise. For example, for the Poisson
measurements in Figure 10.2, we can consider a continuous-time limit where
we measure more and more frequently, but count bacteria in smaller and
smaller volumes. In the limit, the information becomes a train of Dirac
deltas indicating the arrival times of individual bacteria. Phrased differently,
we observe a Poisson process in real time.

10.7.2 The Stationary Filter

If the system parameters A, G, C, D are constant in time, then we can
characterize the asymptotic behavior of the Kalman gain Kt, the variance
Σt|t, and the estimation error X̃t := Xt −µt|t. For simplicity, we assume that
the pair (A,C) is observable:

Definition 10.7.1 Consider the matrix pair (C,A) where A ∈ Rn×n and
C ∈ Rm×n. The pair is said to be observable, if the following two equivalent
conditions hold:

1. All right eigenvectors v 6= 0 of A satisfy Cv 6= 0.

2. The so-called observability matrix
C
CA
CA2

...
CAn−1


is injective (i.e., has full column rank).

The observability condition says that all eigenmodes of the system are
visible in the output Yt; this means that in the absence of noise we would be
able to reconstruct the state perfectly using continuous-time measurements
Yt over any interval t ∈ [0, T ]. When noise is present, it is sufficient to prevent
the variance from growing beyond bounds. In fact, under this condition, it
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can be shown that the estimation variance Σt|t = EX̃tX̃
>
t converges to an

asymptotic value Σ, which solves the algebraic Riccati equation (ARE)

AΣ + ΣA> +GG> − ΣC>(DD>)−1CΣ = 0.

Next, we further assume that the pair (A,G) is controllable. Recall the defi-
nition in Theorem 9.11.1 and note that (A,G) is controllable iff (G>, A>) is
observable; these are dual properties. Controllability implies that all dynam-
ics of the system are excited by the noise {Bt}. Since also all measurements
are noisy (DD> > 0), the variance Σt|t of the estimation error will be posi-
tive definite for any t > 0, and also the limiting variance Σ = limt→∞ Σt|t is
positive definite.

Theorem 10.7.2 Consider the filtering problem (10.6), (10.7) with
DD> > 0, (C,A) observable and (A,G) controllable. Then the steady-state
variance on the estimation error Σ exists and is positive definite. Moreover,
it is the maximal solution to the algebraic Riccati equation in P

AP + PA> +GG> − PC>(DD>)−1C>P = 0 (10.8)

i.e., any P that satisfies this equation has P ≤ Σ. Finally, Σ is the unique
stabilizing solution, i.e., the only solution P to this equation such that A−
PC(DD>)−1 is asymptotically stable.

The estimation error X̃t = Xt − µt|t satisfies the stochastic differential
equation

dX̃t = (A−KC)X̃t dt+G dBt +K dWt

and has a stationary distribution with mean 0 and variance Σ.

Note that the dynamics of the estimation error, i.e., its autocorrelation
function and its decorrelation time, depends on A−KC. In particular, the
eigenvalues of this matrix contains useful information on how fast the error
decorrelates.

10.7.3 Sampling Typical Tracks

We now consider the problem of sampling typical tracks {Xt : 0 ≤ t ≤
T} in the linear Kalman filter, conditional on all measurements {Yti : i =
1, . . . , N}. Of course, one can use the general approach described in Section
10.5. However, the linear structure allows an algorithm that is simpler in
the sense that it requires almost no extra implementation, just a re-use of
the existing code.

To show this, recall the general technique for sampling in conditional
Gaussian distributions (Exercise 4.12): If we can simulate all variables in the
model, and compute conditional expectations, then we can combine these
two to obtain conditional simulations. This general result for linear-Gaussian
models applies to the Kalman filter to yield the following algorithm:
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1. Construct the smoothed estimates X̂t|T using the smoothing filter.

2. Simulate a random state trajectory X̄t and measurements Ȳi from the
model.

3. Construct smoothed estimates ˆ̄Xt|T of the simulated state trajectory
{X̄t} by passing the simulated measurements Ȳi through the smooth-
ing filter.

4. Construct a sample as Xt = X̂t|T + X̄t − ˆ̄Xt|T .

To reiterate the discussion from Section 10.5, these tracks can be used
for visualization and for communicating the results. They can also be used
for Monte Carlo computation of statistics that do not follow readily from
the Gaussian distributions, such as the conditional probability that the state
ever enters a given critical region.

10.8 Estimating States and Parameters as a
Mixed-Effects Model

An entirely different approach to state estimation is to formulate the model
as a general statistical model where the unobserved states {Xti} are con-
sidered random effects (i.e., unobserved random variables; latent variables),
and use general numerical methods for inference in this model. One benefit
of this approach is that it becomes a minor extension to estimate states
and system parameters in one sweep. This approach has become feasible in
recent years thanks to the availability of powerful software for such mixed-
effects models. Here, we use the R package Template Model Builder (TMB)
by (Kristensen et al., 2016) which combines numerical optimization of the
likelihood function with the so-called Laplace approximation.

Let us illustrate this approach with the same example of state estimation
in the Cox-Ingersoll-Ross process (10.2), now written as

dXt = λ(ξ −Xt) dt+ γ
√
Xt dBt.

Let θ = (λ, ξ, log γ) be the system parameter vector. Let

φ(xt0 , xt1 , . . . , xT , y1, . . . , yN ; θ)

denote the joint probability density of all states and observations, for a given
set of system parameters θ. This can be written as

φ = ψ0(xt0) ·
N∏

i=1
p(ti−1, xti−1 , ti, xti) · li(xti) (10.9)
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Factbox: [The Laplace approximation] Starting in one dimension, our
objective is to approximate an integral

I =
∫ +∞

−∞
f(x) dx

where f is C2, takes positive values, and has a unique maximum.
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Figure 10.8: The function f(x) and
its approximation f̂(x).

The idea is to approximate f(x)
with a Gaussian bell f̂(x), which
resembles the original function
f(x) around the maximum point,
since this region presumably has
the greatest contribution to the
integral. We choose f̂ such that
the mode x̂ of f and f̂ coincide, so
that f(x̂) = f̂(x̂), and so that the
curvatures agree, f ′′(x̂) = f̂ ′′(x̂).
See Figure 10.8 where log f(x) =
−1

2(x−1)2+ 1
6(x−1)3− 1

16(x−1)4.
Thus

log f̂(x) = log f(x̂) − 1
2H · (x− x̂)2

where
x̂ = arg max

x
f(x), H = −d2(log f)

dx2 (x̂).

Now, we know the area under Gaussian bells. Specifically,∫ +∞

−∞
(H/(2π))1/2 exp(−1

2H · (x− x̂)2) dx = 1

since the integrand is the probability density of a Gaussian variable with
mean x̂ and variance H−1. Therefore

I ≈
∫ +∞

−∞
f̂(x) dx = (2π/H)1/2f(x̂).

This is the Laplace approximation of the integral I. It replaces the oper-
ation of integration with two simpler operations: First maximization of
log f and next computation of the double derivative of log f . In higher
dimensions, we get

I ≈ f(x̂) ·
∣∣∣∣ 1
2πH

∣∣∣∣−1/2

where x̂ is the maximum point, H is the Hessian of log f evaluated at
x̂, and | · | denotes determinant.
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where we have omitted the arguments of φ and the dependence on parame-
ters θ.

Our first task is to estimate the system parameters θ. For a given set
of observations y1, . . . , yN , the likelihood of θ is obtained by integrating out
the unobserved states {Xti}, using the law of total probability:

Λ(θ) =
∫

X
· · ·
∫

X
φ(xt0 , xt1 , . . . , xT , y1, . . . , yN ; θ) dxt0 · · · dxtT (10.10)

and the maximum likelihood estimate of the system parameters is

θ̂ = arg max
θ

Λ(θ).

We pursue a direct computation of this estimate through numerical op-
timization. This requires also a numerical method for evaluating the likeli-
hood function, in particular integrating out the unobserved states. This is a
challenging problem, since the integral in (10.10) can be over a very high-
dimensional space. The method we employ is the Laplace approximation; see
the fact box. In this approximation, we first estimate the unobserved states
{Xti}, given the data {Yi} and a guess on parameters θ, using the modes in
the conditional distribution as estimates {X̂ti(θ) : i = 0, . . . , N}. Note that
the mode can be found by optimizing φ numerically over the states {xti}.
Next, we approximate the integral in the likelihood function (10.10) with
the integral of the approximating Gaussian bell; this corresponds to approx-
imating the posterior distribution of the states with a multivariate Gaussian.
The integral of this Gaussian can be found from the Hessian matrix of the
log-density evaluated at the mode. This means that the computationally in-
tractable task of integration in a very high-dimensional space is simplified to
maximization, computation of derivatives, and matrix algebra. This yields a
numerical approximation to the likelihood function, which we can maximize
using standard methods for numerical optimization, to find the maximum
likelihood estimate θ̂ and the corresponding state estimates {X̂ti(θ̂)}. These
steps have all been implemented in TMB, so our only task is to specify the
joint density of states and observations, i.e., the function φ in (10.9).

For our running example of estimation in the CIR process, the transition
densities are available in closed form (Exercise 9.8). However, since this is
not always the case, we have used a technique that does not require them:
The model estimates the state at time points 0 = t0 < t1 < · · · < tn =
T , which includes those points in time where observations are taken, but
also additional time points inserted between the times of observations. The
mesh ti − ti−1 is sufficiently fine that we can approximate the transition
probabilities on this finer grid with the Euler-Maruyama scheme. The states
are estimated in the Lamperti domain, i.e., the latent variables are

√
Xti , for

improved performance of the Euler-Maruyama scheme, and for consistency.
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Table 10.1: Parameter estimation in the Cox-Ingersoll-Ross model. For each
parameter, the table displays the “true” value used in the simulation, the
maximum likelihood estimate, and the standard deviation on that estimate
as derived from the Fisher information.

Parameter True value Estimate ± s.d.
λ 1.0 1.2 ± 0.6
ξ 1.0 1.1 ± 0.2

log γ 0.0 0.0 ± 0.3
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Figure 10.9: Comparison of state estimates with Template Model Builder
(thick solid line) and the Hidden Markov Model method (thin solid line).
For the HMM method, we show the mean in the smoothed distribution.

Table 10.1 shows the results of the parameter estimation. The true val-
ues of parameters are within the confidence limits, and the estimate of the
parameter ξ agrees reasonably well with what we found in Section 10.6, as
does the confidence interval.

Figure 10.9 shows the estimated states from TMB and, for comparison,
the estimates from the HMM method employed in the previous sections. The
two approaches, TMB and HMM, give fairly consistent results. TMB makes
use of a Gaussian approximation of the conditional distribution of the states,
so there is no distinction between expectation, mode and median in TMB (in
the Lamperti domain). This is in contrast to the HMM method, where we
find the full posterior distribution (discretized) and can distinguish between
these statistics. Here, we show the mean; for this example, the mode and
median generally lie below the mean and closer to the TMB estimate.
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10.9 Conclusion

An important area of application of stochastic differential equations is sta-
tistical analysis of time series. Here, mechanistic understanding of system
dynamics is represented in the model function (f, g), while the measurement
uncertainty is taken into account so that data is processed optimally.

We have emphasized the “recursive filtering” approach to this analysis.
Discretizing the diffusion processes to a discrete Markov model, correspond-
ing to numerical solution of Kolmogorov’s equations, means that we approx-
imate the filtering problem for the diffusion process with a Hidden Markov
Model. The resulting numerical algorithms are very direct translations of the
mathematical formulas. This “brute force” approach is instructive, but only
feasible for low-dimensional problems: One dimension is straightforward, two
dimensions require a bit of work, three dimensions are challenging both for
the modeller and for the computer, and higher dimensions are prohibitively
laborious.

State estimation with very high-dimensional state spaces is only feasible
in the linear paradigm; the Kalman filter can be implemented routinely
with hundreds of states and, with some attention to implementation, even
much higher number of dimensions. The Kalman filter is restricted to linear
problems, or to problems that can be approximated with linear ones as in
the extended Kalman filter or similar. In applications, it is a great advantage
that linear-Gaussian models are tractable and easy to implement, so it is
often a good idea to start with a filter based on a linear model, even if the
original model contains nonlinearities.

These recursive filtering approaches to estimation in diffusion models
have been well established since the 1960’s. The alternative approach, that
of treating the problem as a general mixed-effect model, is more recent, and
it is not yet entirely clear which algorithms are applicable or most efficient in
which situations. Markov Chain methods apply in principle to any problem,
but they may be very tricky to get to work in practice, and often lead to
excessive computing times. Numerical optimization of likelihood functions,
using the Laplace approximation, is powerful but limited to situations where
the posterior distributions are well approximated with Gaussian ones. This
could imply that this approach is useful for the same problems as extended
Kalman filters, in which case the choice between the two methods is primar-
ily a matter of the time it takes for the modeler to implement the model
and for the computer to conduct the computations.

Estimation in diffusion processes is a large and active research area,
and there are several established text-books on the matter, and a steadily
increasing number of journal papers both on methods and applications. This
chapter serves only as a first introduction to the topic.
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10.10 Notes and References

Kalman published the filter that now bears his name in (Kalman, 1960)
for the discrete-time case. Kalman and Bucy (1961) together published the
continuous-time version after discovering that they had been working in
parallel. This work differed from earlier work by Wiener by exploiting a
state space formalism, that encompassed also non-stationary time series.
Stratonovich published similar ideas, in a non-linear setting, around the
same time in the Soviet literature.

The theory of Kalman filtering is now covered in numerous textbooks,
e.g. (Harvey, 1989), and is a fundamental technique in time series analy-
sis (Madsen, 2007). There are several extensions of the Kalman filter to
non-linear systems. Many of these are covered in (Simon, 2006); a classical
reference is (Jazwinski, 1970).

10.11 Exercises

Exercise 10.1 Kalman Filtering in the OU-Process: Let dXt =
−λXt dt + σ dBt, and consider continuous-time measurements, dYt =
cXt dt+d dWt. Write up the algebraic Riccati equation (10.8) governing the
stationary filter and identify the maximal solution. For each of the param-
eters in the model, check if the stationary variance increases or decreases
with that parameter. Next, do the same for the Kalman gain K, and finally
for eigenvalue A−KC which governs the estimation error. Assume that c,
d and σ are all positive. Investigate the limits d → 0 and d → ∞ (possibly
numerically, taking λ = ±1, σ = 1, c = 1).

Exercise 10.2 Filtering in a Linear Mass-Spring-Damper
System: Consider an object with position Qt and velocity Vt which evolve
according to the system

dQt = Vt dt, dVt = [−cVt − kQt] dt+ σ dBt

and say that we measure the position with regular intervals ti = ih for i ∈ N,
where h > 0 is the sample interval:

Yi = Qih + s

h
(Wih −W(i−1)h).

Here, {Bt} and {Wt} are independent Brownian motions.

1. Simulate the system and the measurements over the time interval t ∈
[0, 100]. Take parameters k = 1, c = 0.1, σ = 0.1, s = 1, h = 0.1. Plot
the true position and the measured position in one plot, and the true
velocity in another.
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2. Implement the Kalman filter. Plot the true position and the estimated
position (with confidence intervals) in one plot, and the true velocity
and estimated velocty (with confidence intervals) in another.

3. Compute the variance-covariance matrix of the estimation error. Com-
pare with the matrix ΣT |T as computed by the Kalman filter.

4. Repeat with a different sample interval, e.g., h = 0.2 or h = 0.05. Ver-
ify that the estimation error has (approximately) the same variance.

Exercise 10.3 The Kalman Filter as an Optimal Luenberger
Observer: An alternative to the stationary Kalman filter for continuous-
time measurements is the so-called Luenberger observer, where we use the
same filter equation as in theorem 10.7.2, which we rewrite as

dX̂t = (A−KC)X̂t dt+ ut dt+K(dYt − CX̂t dt),

but now we view the gain K as a design parameter.

1. Show that the estimation error X̃t = Xt − X̂t satisfies

dX̃t = (A−KC)X̃t +G dBt +KCD dWt,

provided the system dynamics (10.6) and the measurement equation
(10.7) hold.

2. Pose the algebraic Lyapunov equation that governs the steady-state
variance Σ of X̃t, for a given value of K.

3. For the optimal Luenberger filter, we aim to minimize tr(ΣQ) w.r.t. Σ
and K subject to the constraint from the last question. Here, Q > 0
is an arbitrary weight matrix. Show that at the optimum, K must
have the form from Theorem 10.7.1, and Σ must satisfy the algebraic
Riccati equation (10.8).

Note: In many applications, the noise characteristics G and D are poorly
known, and then these parameters can be viewed as a convenient way of
parametrizing Luenberger observers. This alternative view adds to our un-
derstanding of the problem and its solution, but allows us also to add addi-
tional design objectives and constraints.

Exercise 10.4 A Diffusion Bridge: Consider the double well
system dXt = Xt(1 −X2

t ) dt+σ dBt with σ = 1/2, where we have observed
X0 = −1 and XT = +1 with T = 100. Compute numerically the conditional
c.d.f. of Xt for t = 0, 1, 2, . . . , 100 and plot it as a pseudocolor image. Include
the conditional expectation plus/minus the conditional standard deviation.



Chapter 11

Expectations to the Future

In this chapter, we consider problems that involve computing expectations to
the future, as functions of the current state. One example of such problems is
the backward Kolmogorov equation; here, we extend this result by replacing
the terminal time T in the backward Kolmogorov equation with a random
stopping time. For example, we consider diffusions that evolve in a bounded
domain, and stop the process when the process reaches the boundary. We
then ask where and when we expect the process to exit. We will see that
these expectations to the future are governed by boundary value problems,
which involve the backward Kolmogorov operator.

Such “exit problems” appear in many different applications: In molecular
dynamics, we may ask when a molecule reaches a surface where it may
undergo a reaction, or when two molecules meet, or when the vibrations
of one molecule are so violent that the molecule breaks apart. In control
systems, we may ask when the controlled system reaches its target so that
the mission can be terminated, or conversely, if we should be concerned that
it may leave a safe operating domain. In finance, we may have decided to
sell a stock when it reaches a target price, and ask when that happens.

We also consider the present-day value of future rewards, when their
value is discounted with a rate that depends on the state trajectory between
now and the time the reward is given. Discounting is standard in finance,
where a euro is worth more today than in a year from now, but we do not
yet know exactly how much more. Discounting also appears in evolution-
ary ecology, when the risk of dying needs to be included when computing
the Darwinian fitness of animals. Discounting adds an extra term to the
backward Kolmogorov equation, and results in the so-called Feynman-Kac
formula.

In summary, this chapter connects expectations to the future with partial
differential equations that involve the backward Kolmogorov operator.

264
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11.1 Dynkin’s Formula

We start by establishing a seemingly simple lemma, due to Dynkin, which
is pivotal in the rest of the chapter. We consider an Itô diffusion {Xt} in Rn

given by the Itô equation dXt = f(Xt) dt+g(Xt) dBt, where f and g satisfy
the usual conditions for existence and uniqueness of a solution (theorem
8.3.2), and where {Bt} is Brownian motion on a filtered probability space
(Ω,F , {F t},P). We let L be the backward Kolmogorov operator given by
Lh = ∇h · f + tr[gg>Hh]/2.

Theorem 11.1.1 (Dynkin’s Formula) Let h ∈ C2
0 (Rn) and let τ be a

stopping time such that Exτ < ∞. Then

Exh(Xτ ) = h(x) + Ex
∫ τ

0
Lh(Xs) ds.

Recall that the superscript in Ex means that the initial condition is X0 =
x. Note that τ is finite w.p. 1 (since Exτ < ∞) so h(Xτ ) is well defined w.p.
1. Dynkin’s formula can be seen as a stochastic version of the fundamental
theorem of calculus, combined with the chain rule: In the deterministic case
we would have h(x(t)) = h(x(0)) +

∫ t
0 h

′(x(s)) x′(s) ds for 0 < t, whenever
the involved derivatives exist.

Proof: Define Zt = h(Xt) −
∫ t

0 Lh(Xs) ds, then {Zt : t ≥ 0} is an Itô
process which satisfies

dZt = Lh(Xt) dt+ ∂h

∂x
g dBt − Lh(Xt) dt = ∂h

∂x
g dBt

Since h ∈ C2
0 , ∂h

∂xg is bounded, so the Itô integral {Zt} is a martingale
(Theorem 6.3.2 on page 127). Let T > 0; then it follows that ExZτ∧T =
Z0 = h(x) (lemma 4.5.1 on page 81), which can be restated as

Exh(Xτ∧T ) = h(x) + Ex
∫ τ∧T

0
Lh(Xs)ds. (11.1)

Thus, Dynkin’s formula holds when τ is bounded. Now let T → ∞. Since h
is bounded (say, |h(x)| ≤ K), we have

|Exh(Xτ ) − Exh(Xτ∧T )| ≤ Ex|h(Xτ ) − h(Xτ∧T )| ≤ 2KPx{τ > T}

which vanishes as T → ∞. Similarly, Lh is bounded (say, |Lh(x)| ≤ C), so

Ex

∣∣∣∣∣
∫ τ

0
Lh(Xs) ds−

∫ τ∧T

0
Lh(Xs) ds

∣∣∣∣∣ ≤ Ex
∫ τ

τ∧T
C ds ≤ CEx(τ − (τ ∧ T ))

which also vanishes as T → ∞, because Exτ ≤ ∞. Letting T → ∞ in (11.1),
we therefore obtain Dynkin’s formula.

The requirement that h has bounded support is quite harsh and can
be relaxed; it serves to ensure that the Itô integral {Zt} in the proof is
a martingale, and to assist with the limit T → ∞, and this can also be
obtained with other assumptions. However, see Exercise 11.6.
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Biography: Eugene Borisovich Dynkin (1924–2014)
Dynkin was a Soviet mathematician who worked in
Moscow until he emigrated to the USA and Cornell
University in 1976. His early contributions were within
Lie algebra. Having Kolmogorov as his Ph.D. advi-
sor, he is considered one of the founders of modern
Markov theory, which he laid out in his 1959 text-
book in Russian and later in (Dynkin, 1965). Photo-
graph reprinted with the permission of the Institute
of Mathematical Statistics.

11.2 Expected Exit Times from Bounded Domains

In the following sections, we consider a diffusion {Xt : t ≥ 0} on Rn which
starts inside or at the boundary of a domain Ω ⊂ Rn. This domain is a
bounded, open, and connected subset of the state space; do not confuse
it with the sample space Ω! We investigate when (and, in a later section,
where) the process first reaches the boundary of Ω. Throughout the section,
we let τ denote the time of first exit, τ = inf{t ≥ 0 : Xt 6∈ Ω}.

Theorem 11.2.1 Let h : Ω̄ 7→ R be C2 and such that

Lh(x) + 1 = 0 for x ∈ Ω, and h(x) = 0 for x ∈ ∂Ω. (11.2)

Then h(x) = Exτ .

Proof: We first show that τ has finite expectation: Let x ∈ Ω̄ and T > 0
be arbitrary, then τ ∧ T = min(τ, T ) is bounded and therefore Dynkin’s
formula gives

Exh(Xτ∧T ) = h(x) − Ex(τ ∧ T ).
Since the domain is bounded and h is continuous, the left side is bounded.
This implies that Ex(τ ∧ T ) is a bounded function of T , and since it also
monotone, it must converge as T → ∞. This implies that Exτ < ∞ and
therefore Dynkin’s formula gives

0 = Exh(Xτ ) = h(x) + Ex
∫ τ

0
Lh(Xs) ds = h(x) − Exτ

as claimed.

11.2.1 Exit Time of Brownian Motion with Drift on the Line

Consider Brownian motion with drift, dXt = u dt + σ dBt, on the domain
Ω = (0, l), where l, u and σ are positive constants. For given initial condition
X0 = x, what is the expected time to exit of the domain?
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The expected time of exit, h(x) = Exτ , is governed by the equation

uh′ +Dh′′ + 1 = 0 for x ∈ [0, l],

and the boundary condition h(0) = h(l) = 0. Here, the diffusivity is D =
σ2/2, as usual. We find the general solution

h(x) = −x

u
− c1D

u
exp(−xu/D) + c2

where we determine c1 and c2 from the boundary conditions:

h(x) = l

u

(
1 − x

l
−

exp(−x
l Pe) − exp(−Pe)

1 − exp(−Pe)

)
.

Here, we use the Péclet number Pe = ul/D to write the solution in terms of
Pe, the non-dimensional position x/l, and the advective time scale l/u.

This solution is shown in Figure 11.1 (right panel). The first term,
l/u (1 − x/l), is the time it takes a particle to travel from position x to
position l when moving with constant speed u. This straight line is visible
in the figure and approximates the solution for high Péclet numbers. The
second term involving exponentials is a correction, effective in the diffusive
boundary layer, which takes into account that the process may exit quickly
to the left rather than traversing the domain and exiting to the right. Rel-
ative to pure advection, diffusion lowers the time to exit, in particular near
the left boundary.

11.2.2 Exit Time from a Sphere, and the Diffusive Time
Scale

How long time does it take for pure diffusion in Rn to travel a given distance?
To answer this question, let Xt = σBt where Bt is Brownian motion in
Rn, and let the domain be the R-sphere, i.e., Ω = {x ∈ Rn : |x| < R}.
The expected time of exit, h(x) = Exτ , is governed by the boundary value
problem

D∇2h(x) + 1 = 0 for |x| < R, h(x) = 0 for |x| = R

with D = σ2/2. The solution to this boundary value problem is

h(x) = R2 − |x|2

2nD .

To see this, recall that ∇2|x|2 = 2n. In particular, when starting at X0 =
x = 0:

E0τ = h(0) = R2/2nD.
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Figure 11.1: Exit behavior for Brownian motion with drift, for various Péclet
numbers. Left panel: The probability of exiting to the right, as a function
of the dimensionless initial position x/l. Right panel: The expected time to
exit, as a function x/l, and measured in units of the advective time scale
l/u.

This is the “diffusive time scale” corresponding to the length scale R, i.e., the
expected time it takes to move a distance R from the starting point. Note
that E0|Xt|2 = 2nDt (Sections 2.1.3 and 4.3), and with t = E0τ = R2/2nD
we get E0|Xt|2 = R2 which is a noteworthy consistency. The scaling E0τ ∼
R2/D also follows from a dimensional analysis.

11.2.3 Exit Times in the Ornstein-Uhlenbeck Process

We consider the scalar Ornstein-Uhlenbeck process

dXt = −Xt dt+
√

2 dBt.

The stationary distribution is a standard Gaussian N(0, 1), and the decor-
relation time is 1, so both time and space has been rescaled. We aim to find
the expected time until the process leaves the domain Ω = (−l, l) where
l > 0. This time Exτ = h(x) is governed by the equation

h′′(x) − xh′(x) + 1 = 0

with boundary conditions h(l) = h(−l) = 0. To solve this equation, we first
reduce it to a first order equation. Define k = h′, then

k′(x) − xk(x) + 1 = 0

and using symmetry k(0) = 0, we find

k(x) = −
∫ x

0
ex2/2−y2/2 dy = −

√
2πex2/2

(
Φ(x) − 1

2

)
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Figure 11.2: Expected time for an Ornstein-Uhlenbeck process to exit the
domain [−l, l], as a function of the domain size l. Left panel: The expected
time for low values of l. Right panel: The expected time for higher values
of l. Note the log scale. In this panel, the approximation (11.3) would be
indistinguishable from the full expression.

where Φ(x) is the c.d.f. of a standard Gaussian random variable. We there-
fore get

h(x) = h(0) −
√

2π
∫ x

0
ey2/2

(
Φ(y) − 1

2

)
dy.

We now use the boundary condition h(l) = 0, and focus on the expected
time to exit, given that we start in the center:

h(0) = E0τ =
√

2π
∫ l

0
ey2/2

(
Φ(y) − 1

2

)
dy.

Figure 11.2 shows this expected exit time as a function of the threshold l,
computed numerically. In the left panel, we see the result for low values of
l where the expected exit time is comparable to the decorrelation time. In
the right panel, we see that as the domain grows, the expected time to exit
grows exceedingly fast. In fact, for large values of l, the approximation

E0τ = h(0) ≈
√
π

2
1
l
el2/2 (11.3)

is useful. This approximation follows from the asymptotic expansion∫ l
0 exp(y2/2) dy = exp(l2/2) · (l−1 + O(l−3)), using that 1 − Φ(l) ≈ l−1φ(l)

(Exercise 2.7), which implies that we can approximate Φ(y) ≈ 1 when eval-
uating the integral in the expression for h(0).
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Exercise 11.1: Repeat the derivation for the dimensional model dXt =
−λXt dt+ σ dBt, to show that the expression in that case is

E0τ ≈ σ
√
π

2lλ3/2 e
l2λ/σ2

.

This result has implications for the reaction rate of chemical and biolog-
ical processes, as demonstrated by Kramers (1940), who used a somewhat
different but essentially equivalent approach. Consider, for example, a com-
plex molecule such as a protein that vibrates due to thermal noise and can
break apart when deflections become too large. We can think of the po-
tential U(x) = λx2/2 as a measure of the energy in the system when it
is in a given state x. Then, Ea := U(l) = λl2/2 is an “activation” energy
at the threshold x = l, while the average energy, i.e., the temperature, is
T := EU(Xt) = σ2/4. Formulated in terms of these quantities, the expected
lifetime is

Eτ =
√
T

Ea

√
π/2
λ

eEa/4T

and thus, the rate with which the molecules desintegrate, is proportional to√
Ea

T
λe−Ea/4T .

Thus this model is consistent with the (modified) Arrhenius equation which
quantifies how chemical processes run faster at higher temperatures.

11.2.4 Regular Diffusions Exit Bounded Domains in Finite
Time

Recall that we assumed that the domain Ω is bounded, but even so, it does
not hold in general that the expected time to exit is finite. For example,
Brownian motion on the sphere never exits a larger, enclosing sphere. A
useful result is the following:

Theorem 11.2.2 Let the diffusion {Xt : t ≥ 0} be regular in the sense that
there exists a d > 0 such that

1
2g(x)g>(x) > dI

for all x ∈ Ω. As before, let τ = inf{t ≥ 0 : Xt 6∈ Ω} be the time of first
exit. Then Exτ < ∞ for all x ∈ Ω.

One reason the result is useful is that it allows us to apply Dynkin’s
lemma, which requires that Exτ < ∞. The proof of the theorem establishes
a bound on Exτ , using an inequality version of the result (11.2):
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Lemma 11.2.3 Let h : Ω̄ 7→ R be a smooth function such that

h(x) ≥ 0, Lh(x) + 1 ≤ 0 for x ∈ Ω.

Let τ = inf{t ≥ 0 : Xt 6∈ Ω}. Then Exτ ≤ h(x) for x ∈ Ω.

Proof: Let T > 0, then Dynkin’s formula gives

0 ≤ Exh(Xτ∧T ) = h(x) +
∫ τ∧T

0
Lh(Xt) dt ≤ h(x) − Ex(τ ∧ T ),

i.e., Ex(τ ∧ T ) ≤ h(x). Letting T → ∞, we obtain the conclusion.
Aiming to find such a bounding function h, we take a worst-case view

and first consider the scalar version:

Exercise 11.2: Consider a biased random walk dXt = −u dt + σ dBt

on (0, R) which is reflected at x = 0. Let τ = inf{t ≥ 0 : Xt ≥ R} be the
time of first exit at x = R. Show that

Exτ = x−R

u
+ D

u2

(
euR/D − eux/D

)
for x ∈ (0, R).

This scalar result allows us to guess a bounding function h, with which
we can prove Theorem 11.2.2:

Proof: It suffices to consider the case where the domain Ω is the R-
sphere for some R > 0, i.e., Ω = {x ∈ Rn : |x| < R}. First, we bound the
drift and the diffusion: Let d be as in the theorem and let u > 0 be such
that |f(x)| ≤ u for |x| ≤ R. Then define

ψ(r) = exp(r) − r, h(x) = d

u2 (ψ(uR/d) − ψ(u|x|/d)) .

Note that
ψ′(r) = er − 1, ψ′′(r) = er,

so that ψ is convex and increasing for r ≥ 0. We have

∇h(x) = − 1
u
ψ′(u|x|/d) ∇|x| = − 1

u
ψ′(u|x|/d) x

|x|
.

and

Hh(x) = −1
d
ψ′′(u|x|/d)xx

>

|x|2
− 1
u
ψ′(u|x|/d)H|x| ≤ −1

d
ψ′′(u|x|/d)xx

>

|x|2
≤ 0.

We now bound Lh, using the bounds on drift and diffusivity:

Lh(x) = ∇h · f + trDHh

≤ |∇h|u+ dtrHh

≤ ψ′(u|x|/d) − ψ′′(u|x|/d)
= −1.
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We therefore get Exτ ≤ h(x). Note that the bound can be written

Exτ ≤ R2

2d
ePe − Pe − 1

Pe2/2

where the Péclet number is Pe = uR/d. The first term is the diffusive time
scale in one dimension (Section 11.2.2), and the second term is a correction,
greater than 1, which takes the drift into account.

Note also that the proof establishes that the expected time to exit Exτ
vanishes as the initial point approaches the boundary, |x| → R. This should
come as no surprise, considering the regularity of the diffusion.

11.3 Absorbing Boundaries

We now consider the stopped process {Yt = Xt∧τ : t ≥ 0}. The setting is as
in subSection 11.2.4: The domain Ω is an open bounded connected subset
of Rn, the diffusion is regular, and we stop the process upon exit, i.e., at
τ = inf{t ≥ 0 : Xt 6∈ Ω}. Thus, the boundary is absorbing: Once the process
{Xt} hits the boundary, the stopped process {Yt} remains there.

We aim to characterize the transition probabilities of the stopped process
{Yt}. As we will see in the following, they satisfy the usual Kolmogorov equa-
tions on the domain, with Dirichlet boundary conditions. Consider first the
backward Kolmogorov equation. Following Section 9.4, we pose a terminal
reward h(Yt), where h is a smooth function on Ω̄, and define

k(x, s) = EYs=xh(Yt).

Arguing as in Section 9.4, we find that k satisfies the same backward Kol-
mogorov equation

∂k

∂s
+ Lk = 0 for x ∈ Ω,

with the terminal condition k(x, t) = h(x) and the Dirichlet boundary con-
dition

k(x, s) = h(x) for x ∈ ∂Ω.

This holds because Ys = x ∈ ∂Ω implies that s = τ and Yt = x. It can
be shown that k is continuous also at the boundary since the diffusion is
regular.

We next turn to the forward Kolmogorov equation. Ys = Xs∧τ will be
distributed over Ω as well as over its boundary ∂Ω. We first pursue the
distribution over the interior, assuming that it admits a density φ(x, s) so
that

P{Ys ∈ A} =
∫

A
φ(x, s) dx for A ⊂ Ω.
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If the terminal reward function h vanishes on the boundary, then

Eh(Yt) = EE{h(Yt|Fs} = Ek(Ys, s) =
∫

Ω
φ(x, s)k(x, s) dx

since k(x, s) vanishes on the boundary, so there are no contributions from
the boundary to the expectation. As in Section 9.5, we differentiate w.r.t. s
to find ∫

Ω
φ̇k + φk̇ dx = 0.

We now use k̇ + Lk = 0, and apply the divergence theorem twice, retaining
the boundary terms:∫

Ω
k
(
φ̇+ ∇ · (uφ−D∇φ)

)
dx+

∫
∂Ω

[kD∇φ− kuφ− φD∇k] · dn(x) = 0.

Here, we have used the advection-diffusion characterization of {Xt}; n is
a normal to the boundary ∂Ω at x, directed outward. Since this equation
holds for all k which vanish on the boundary, we see that φ must satisfy the
usual forward Kolmogorov equation on the interior, i.e.

φ̇ = −∇ · (uφ−D∇φ) on Ω,

as well as the homogeneous Dirichlet boundary condition

φ = 0 on ∂Ω.

The intuition behind this boundary condition is that the absorbing boundary
voids its neighborhood, since the diffusion is regular: There are almost no
particles near the boundary, because they have already been absorbed.

In summary, absorbing boundaries correspond to Dirichlet boundary
conditions on the forward and backward Kolmogorov equations. For the
forward equation, the Dirichlet boundary condition is homogeneous, φ = 0.

We have not described how Yt is distributed on the boundary ∂Ω. From
the probability density φ(x, t) on Ω, we can find the flux of probability onto
the boundary at a boundary point x ∈ ∂Ω:

(uφ−D∇φ) · n.

The probability distribution of the stopped process on the boundary can
therefore be found from this flux, integrating over time. Explicit expressions
for these distributions are rare; in low dimensions, numerical analysis is
feasible.

What about stationary solutions to the forward Kolmogorov equation?
As time t → ∞, the stopped process Yt = Xt∧τ will be distributed only
on the boundary ∂Ω: Eτ < ∞ implies that P{τ ≤ t} → 1 and therefore
P{Yt ∈ ∂Ω} → 1. So the stationary density is trivial: φ(·, t) → 0 as t → ∞.
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Instead, we may search for a quasi-stationary density ρ(x), corresponding
to an eigensolution of the forward Kolmogorov equation:

φ(x, t) = ρ(x)e−λt.

Here, λ > 0 is the decay rate, and the eigenvalue problem is

λρ = ∇ · (uρ−D∇ρ) on Ω, ρ = 0 on ∂Ω.

The quasi-stationary density ρ is the principal eigenfunction, which is pos-
itive on Ω and can be normalized to a probability density function on Ω,
i.e.,

∫
Ω ρ(x) dx = 1. If the initial condition X0 is random and distributed

according to ρ, then the time to absorption is exponentially distributed with
rate parameter λ:

P{τ > t} =
∫

Ω
φ(x, t) dx = e−λt.

The conditional distribution of Yt, given that t < τ , is time invariant:

P{Yt ∈ dx|τ > t} = φ(x, t) dx
P{τ > t}

= e−λtρ(x) dx
e−λt

= ρ(x) dx.

If the initial condition X0 is not distributed according to ρ, faster modes will
be present in the density φ(x, t) but will die out as t → ∞. Thus, the tail
of the distribution of the time to absorption will approach the exponential
distribution, and the conditional density of Yt, conditional on not being
absorbed, will approach the quasi-stationary distribution. This justifies the
interest in the quasi-stationary distribution.

Example 11.3.1 Consider standard Brownian motion Xt = Bt on Ω =
(0, 1). The forward Kolmogorov equation is

φ̇ = 1
2φ

′′, φ(0) = φ(1) = 0.

The eigenvalue problem governing the quasi-stationary density ρ is

λρ = −1
2ρ

′′, ρ(0) = ρ(1) = 0.

Eigenfunctions are sinnπx for n ∈ N, corresponding to the eigenvalues
−n2π2/2. The principal mode is given by n = 1, i.e., the slowest mode,
and the only mode with a positive eigenfunction. Thus, the (unnormalized)
quasistationary density is ρ(x) = sin πx, corresponding to the decay rate
λ = π2/2.
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11.4 The Expected Point of Exit

We now consider how the absorbed process Yt will be distributed on the
boundary as t → ∞. The setting is a diffusion {Xt} governed by the Itô
SDE dXt = f(Xt) dt + g(Xt) dBt with the initial condition X0 = x ∈ Ω̄,
where Ω ∈ Rn is an open and bounded domain. We stop the process at τ
when it hits the boundary ∂Ω. To describe the distribution on the boundary,
we define a reward function c(x) on the boundary, and aim to evaluate

Exc(Xτ ) where τ = inf{t : Xt 6∈ Ω}.

This reward function c(x) can be seen as a vehicle for determining the dis-
tribution on the boundary of Xτ . However, there are also applications where
it is a quantity of direct interest; for example, for a control mission, τ could
indicate that the mission has been completed, and c(Xτ ) could be a measure
of how well the mission went.

Theorem 11.4.1 Assume that a function h : Ω̄ 7→ R is C2 and satisfies

Lh(x) = 0 for x ∈ Ω, and h(x) = c(x) for x ∈ ∂Ω.

Assume further that Exτ < ∞ for all x ∈ Ω. Then

h(x) = Exc(Xτ ).

The proof is a straightforward application of Dynkin’s formula. Note
that we explicitly assume that Exτ < ∞; we know from Section 11.2.4 that
a sufficient condition is that the diffusion is regular, g(x)g>(x) > dI > 0.

11.4.1 Does a Scalar Diffusion Exit Right or Left?

Consider Brownian motion with drift, as in Section 11.2.1, i.e., dXt = u dt+
σ dBt where Xt ∈ R and u and σ are positive constants. Let the domain be
Ω = (0, l). As usual, let τ = inf{t : Xt 6∈ (0, l)} be the time of exit; we know
from Section 11.2.4 that Exτ < ∞ for all x ∈ Ω̄. We aim to determine the
probability that the process exits to the right, i.e., find

h(x) = Px{Xτ = l}.

According to the Dynkin formula, this probability is governed by the bound-
ary value problem

uh′(x) +Dh′′(x) = 0 for x ∈ (0, l), h(0) = 0, h(l) = 1 (11.4)

where the diffusivity is D = σ2/2: If h satisfies this boundary value problem,
then h(x) = Exh(Xτ ) = Px{Xτ = l}. The solution of this second order
linear ordinary differential equation is

h(x) = 1 − exp(−ux/D)
1 − exp(−ul/D) .
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We can once again introduce the Péclet number Pe = ul/D; then the solution
can be written in terms of Pe and non-dimensional position x/l as

h(x) = 1 − exp(−Pe x/l)
1 − exp(−Pe) (11.5)

Note the exponentially decaying term exp(−Pe x/l). For large Péclet num-
bers, i.e., when D/u � l, a verbal characterization of the solution is a
diffusive boundary layer around x = 0 in which there is a significant proba-
bility of exiting to the left. This boundary layer occupies a fraction 1/Pe of
the domain, i.e., it has the width l/Pe = D/u. Outside the boundary layer,
the process is nearly certain to exit the right. See Figure 11.1 (left panel),
where the solution is plotted for various Péclet numbers.

We now aim to generalize this example to any scalar diffusion process
{Xt}. Assume that the process starts in an interval Ω̄ = [0, l] such that g
vanishes nowhere in this interval. Defining, as before, the time of exit

τ = inf{t : Xt 6= (0, l)}

we aim to find h(x) = Px(Xτ = l). This h is governed by the boundary
value problem

Lh(x) = h′f + 1
2g

2h′′ = 0 on (0, l), h(0) = 0, h(l) = 1 .

We have previously, in Section 7.6.3, studied this equation, and found that
the full solution could be written

h(x) = c1s(x) + c2

where c1 and c2 are arbitrary real constants. Here, s is a scale function

s(x) =
∫ x

x0
φ(y) dy

where
φ(x) = exp

(∫ x

x0

−2f(y)
g2(y) dy

)
.

Here, the lower limit x0 of the integration is arbitrary. We fix the coefficients
c1 and c2 through the boundary conditions h(0) = 0, h(l) = 1, and find

h(x) = s(x) − s(0)
s(l) − s(0) .

The following exercises give a few examples.

Exercise 11.3: Consider an unbiased random walk on the interval Ω̄ =
[0, l] with spatially varying diffusivity, i.e., f = 0 while g > 0 is not constant.
Determine the function h(x) = Px(Xτ = l).
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Exercise 11.4: Consider pure diffusion dXt = D′(Xt) dt+
√

2D(Xt) dBt

on the interval Ω̄ = [0, l] with a diffusivity D(x) which is positive and
increases with x. Consider h(l/2), the probability of exit to the right, given
that the process starts in the center. Is this probability greater or smaller
than 1/2?

11.5 Recurrence of Brownian Motion

Recall from Section 4.3 that Brownian motion in one dimension is recurrent:
With probability 1, it will reach any given point in space at some point of
time. We now ask if a similar property holds for n-dimensional Brownian
motion. Let {Xt} be a diffusion in Rn and let A ⊂ Rn be an arbitrary
subset. Let τ be the time of first entry into A, i.e., τ = inf{t : Xt ∈ A};
recall our convention that τ = inf ∅ = ∞ if the process never enters A. We
then say that A is recurrent if P{τ < ∞|X0 = x} = 1 for any x ∈ Rn; i.e.,
regardless of the initial condition, we are certain to enter A at some point.
Otherwise A is transient. The process itself is said to be recurrent, if any set
A with non-empty interior is recurrent.

Now let {Xt} be Brownian motion in Rn with n ≥ 2. We first investigate
if the sphere {x : |x| ≤ r} is recurrent for given r > 0. To this end, stop
the process when it either hits the “inner” sphere {x : |x| ≤ r} or leaves an
“outer” sphere {x : |x| ≤ R} for given R > r; later we let R → ∞. Thus, let
the domain be Ω = {x ∈ Rd : r < |x| < R}. Define the following exit times:

τr = inf{t : |Xt| ≤ r},
τR = inf{t : |Xt| ≥ R},
τ = inf{t : Xt 6∈ Ω} = min{τr, τR}.

Define the probability of hitting the inner sphere first:

h(x) = Px{|Xτ | = r} = Px{τr < τR}.

Noting that Exτ < ∞, Dynkin’s formula allows us to determine h by solving
the governing equation

∇2h = 0

with boundary conditions h(x) = 1 on the inner sphere {x : |x| = r} and
h(x) = 0 on the outer sphere {x : |x| = R}. Due to spherical symmetry h
can be a function of |x| only; with an abuse of notation, we write h = h(|x|).
Writing the Laplacian in spherical coordinates, h must satisfy

h′′(|x|) + d− 1
|x|

h′(|x|) = 0 for |x| ∈ (r,R)
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along with boundary conditions h(r) = 1, h(R) = 0. Linear independent
solutions to this equation are h ≡ 1 and

h(|x|) =
{

log |x| for n = 2,
|x|2−n for n ≥ 3.

We obtain the solution to the boundary value problem as a linear combina-
tion of these solutions, determining the coefficients so as to satisfy boundary
conditions. In two dimensions, n = 2, we find

h(|x|) = log(R/r) − log(|x|/r)
log(R/r)

while in higher dimensions, n ≥ 3, we find

h(|x|) = R2−n − |x|2−n

R2−n − r2−n
.

These expressions hold when we start between the inner and outer sphere,
i.e., for an initial condition x such that r ≤ |x| ≤ R. We can now, for fixed
|x| and r, let R → ∞. In n = 2 dimensions, we get

h(|x|) = log(R/r) − log(|x|/r)
log(R/r) = 1 − log(|x|/r)

log(R/r) → 1 as R → ∞.

As the outer sphere goes to infinity, we are certain to hit the inner sphere
first. Hence, we are certain to hit the inner sphere at some point:

Px{τr < ∞} ≥ Px{τr < τR} → 1 as R → ∞.

We conclude that in two dimensions, the disk {x : |x| ≤ r} is recurrent.
Now let A be any set with non-empty interior, then A contains a disk. By
invariance under translations, this disk is recurrent; thus also A recurrent.
Since A was arbitrary, we conclude that Brownian motion in two dimensions
is recurrent.

In more than two dimensions, n ≥ 3, we get

h(|x|) = R2−n − |x|2−n

R2−n − r2−n
→
(
r

|x|

)n−2
as R → ∞.

Therefore, in three dimensions or more, there is a non-zero probability of
never hitting the inner sphere, provided that we start outside it:

Px{τr < ∞} = lim
R→∞

Px{τr < τR} = (r/|x|)n−2.

Here we have used that τR → ∞ in probability as R → ∞ for fixed x. We
conclude that the inner sphere is transient and thus Brownian motion is
itself transient, in three dimensions or higher. Thus, Brownian motion, and
diffusion in general, behaves quite differently in 3 or more dimensions than
in 1 or 2 dimensions.
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11.6 The Poisson Equation

So far, we have been concerned with two questions: The time of exit τ , and
the expectation of a reward c(Xτ ) which depends on the point of exit. Now,
we consider also rewards that are accumulated until exit. Such accumulated
rewards occur in many applications: For example, in finance, there may
be running dividends or profits, while in control systems, the “reward” is
typically negative and specifies a penalty for poor performance or for cost
of operation.

With the same setting as in Section 11.4, we have the following result:

Theorem 11.6.1 Assume that a C2 function h : Ω̄ 7→ R satisfies the Pois-
son equation

Lh(x) + r(x) = 0 for x ∈ Ω

with Dirichlet boundary conditions

h(x) = c(x) for x ∈ ∂Ω.

Assume further that Exτ < ∞ for all x ∈ Ω. Then

h(x) = Ex
[
c(Xτ ) +

∫ τ

0
r(Xt) dt

]
.

Also this theorem is a straightforward application of Dynkin’s lemma,
and it generalizes our previous result, where r(x) ≡ 0 or r(x) ≡ 1. Once again
we assume explicitly that Exτ < ∞, knowing that a sufficient condition for
this is that the diffusion is regular, g(x)g>(x) > dI > 0.

With this result in mind, a reasonable question to ask if the expected
reward always satisfies the Poisson/Dirichlet problem. To answer this ques-
tion, a more lengthy discussion is needed; see e.g. (Øksendal, 2010). One of
the complicating factors is that the expected reward may not be smooth or
even continuous, when the diffusion is not regular.

11.7 Analysis of a Singular Boundary Point

We continue the analysis of whether a scalar diffusion process exits right or
left. Consider the squared Bessel process {Xt} given by the Itô SDE

dXt = µ dt+ σ
√
Xt dBt. (11.6)

Here, the point x = 0 is a singularity in the sense that the noise intensity
vanishes, g(0) = 0. To study this singularity, we approach it carefully, first
taking the domain to be the interval Ω = (a, b) with 0 < a < b. Since a > 0,
Theorem 8.3.2 guarantees existence and uniqueness of a solution up to exit
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Figure 11.3: The probability of exit to the right of (a, 1) for the squared
Bessel process (11.6), as function of the initial condition x, for b = 1 and
different values of a. Left panel: With µ = 1, σ2 = 1, the probability ap-
proaches 1 as a → 0. Right panel: With µ = 0.25, σ2 = 1, the probability of
exit to the right approaches

√
x as a → 0.

from the interval (a, b), when the initial condition X0 = x is in that interval.
The scale function is

s(x) =
∫ x

exp
(∫ y

− 2µ
σ2z

dz

)
dy

=
∫ x

exp
(

−2µ
σ2 log y

)
dy

=
∫ x

y−2µ/σ2
dy

= 1
ν
xν when ν := 1 − 2µ/σ2 6= 0.

So the probability of exit at b before at a is

h(x) = Px{Xτ = b} = xν − aν

bν − aν

when starting at X0 = x.
We now ask what happens when a → 0, so that the domain approaches

the singularity. Figure 11.3 shows the function h(x; a) = P(Xτ = b|X0 = x))
for b = 1, different values of a and for two sets of system parameters. In the
left panel, we have µ = 1, σ2 = 1 and therefore ν = −1. We see that
P(Xτ = 1|X0 = x) → 1 as a → 0, for any value of 0 < x < 1. The
interpretation is that when the drift away from the singular point x = 0 is
stronger than the noise, the singular point will never be reached; when a is
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very close to the singular point, we are almost certain to exit at 1 rather
than at a. From the expression for h, we see that this will be the case when
ν < 0, i.e., when µ > 1

2σ
2.

In contrast, in the right panel we have µ = 1/4, σ2 = 1, and thus
ν = 1 − 2µ/σ2 = 1/2. We see that P(Xτ = 1|X0 = x) →

√
x when a → 0.

With a slight jump to the conclusion, this implies that with a = 0, there is
a probability of

√
x of exiting at the right end 1, and a probability of 1−

√
x

of exiting to the left, at the singular point. The interpretation is now that
the drift is relatively weak and random fluctuations due to the noise may
cause the state to actually hit the singular point at the origin.

For completeness, we treat also the threshold case ν = 0, which is ob-
tained, for example, with σ = 1, µ = 1/2. We then get the scale function
s(x) = log x which has a singularity at x = 0, so that the origin is not
attainable. Specifically, we get h(x; a) = log(x/a)/ log(b/a) and h(x; a) → 1
as a → 0, for any 0 < x < b.

To interpret these results, recall from Section 7.5.2 that the squared
Bessel process arises as the sum of squares of n = 4µ/σ2 Brownian motions,
when this n is integer. In this parametrization, we get ν = 1 − n/2, and we
see that the origin is attainable when n < 2.

This example was tractable because the drift and noise terms are suffi-
ciently simple that the scale function can be given in closed form. But we see
that the conclusion follows from a local analysis of the scale function s near a
singular point x0. Specifically, if the scale function diverges as x → x0, then
the singular point is repelling in the sense that as a → x0, the probability
of reaching a vanishes. Conversely, if the scale function has a finite limit as
x → x0, then the singular point x0 is attainable in the sense that there is a
positive probability of sample paths which converge to x0 in finite or infinite
time. Moreover, the behaviour of the scale function near the singular point
depends only on the local behaviour of f and g near x0. Let us illustrate
with a couple of examples.

Example 11.7.1 (The Cox-Ingersoll-Ross process) With

dXt = λ(ξ −Xt) dt+ γ
√
Xt dBt

the origin x = 0 is a singular point. Near x = 0, the behaviour of the scale
function is identical to that of equation (11.6) with µ = λξ, σ = γ. We see
that the origin x = 0 is attainable if and only if λξ < 1

2γ
2. Viewing the CIR

process as the sum of squares of n = 4λξ/γ2 Ornstein-Uhlenbeck processes
(Section 7.5.2), we see that the origin is attainable when n < 2; i.e., the
same result as for the squared Bessel process.

Example 11.7.2 (Geometric Brownian Motion) With

dXt = rXt dt+ σXt dBt
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the scale function agrees with that of (11.6) with µ = r, σ = σ. So we find
the same conclusion: The origin is attainable if r < 1

2σ
2. The two models,

geometric Brownian motion and the squared Bessel process (11.6), have the
same scale function because the two models are time changes of eachother
(compare exercise 7.21).

Example 11.7.3 (Exponential Growth with Demographic Noise) Here,

dXt = rXt dt+ σ
√
Xt dBt

models the population dynamics of a bacterial colony, for example. We use
the term “demographic noise” to describe this structure where g(x) ∼

√
x,

because the variance of the increment is proportional to the state, which is
consistent with a view that births and deaths occur randomly and indepen-
dently at the individual level. We get

φ(x) = exp
(∫ x

0

−2ry
σ2y

dy

)
= exp(−2rx/σ2)

so that the scale function is

s(x) = exp(−2rx/σ2).

Since the scale function has no singularity at 0, the singularity x = 0 is
attainable: With r > 0, s(x) is the probability that the point x = 0 is reached
at some point. The scale function coincides with that of Brownian motion
with drift: These two processes are random time changes of each other.

Example 11.7.4 (Logistic growth with demographic noise) Expand the
previous model by adding a carrying capacity at x = K, as in logistic growth:

dXt = rXt(1 −Xt/K) dt+ σ
√
Xt dBt with r > 0.

The carrying capacity K does not affect the scale function near x = 0, so the
origin is still attainable. However, now the process cannot diverge to x → ∞,
so it will revisit the region near x = 0 until eventually absorbed at x = 0.
This process does not admit a stationary distribution on (0,∞) that can be
normalized to integrate to 1, so the stationary distribution is a Dirac delta
at x = 0. In summary, a population following stochastic logistic growth with
demographic noise will eventually go extinct, almost surely.

What we have seen is basic notion of boundary classification due to
Feller, i.e. the study of the natural boundaries that arise at singularities.
See (Gard, 1988) for precise statements and elaboration, also concerning
the time it takes to reach an attainable boundary point.
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Biography: William (Vilibald) Feller (1906–1970)
Born in Croatia, he worked in Germany, briefly in Denmark, then Swe-
den, before emigrating to the United States in 1939, where he worked
at Brown, Cornell and from 1950 at Princeton. His work in probabil-
ity took offset in the measure-theoretic foundation due to Kolmogorov.
Like Kolmogorov, his approach to diffusion processes was based on the
semigroup structure of the transition probabilities. His legacy is evident
in the notions of Feller continuity, Feller processes, and Feller boundary
classification.

11.8 Discounting and the Feynman-Kac Formula

We now turn to an extension of Kolmogorov’s backward equation and
Dynkin’s formula, which allows to include exponential weights. These
weights can be used to discount the value of future gains and losses, which
finds direct applications in economy, but can also be used in ecology where
animals need to take into account the risk of dying.

As before, we let {Xt ∈ Rn} be an Itô diffusion which satisfies the
stochastic differential equation dXt = f(Xt) dt + g(Xt) dBt, and we let
L be the backward Kolmogorov operator. We assume that a discount rate
µ : Rn 7→ [0,∞) is defined on state space; we consider only non-negative
discounting. We also assume that µ is smooth, but in this section we will
largely ignore such technical conditions.

We now consider terminal value problems in h = h(x, t) where x ∈ Rn,
0 ≤ t ≤ T :

ḣ+ Lh− µh = 0, h(x, T ) = k(x). (11.7)

The combined operator h 7→ Lh − µh is sometimes referred to as the sub-
generator. As for the backward Kolmogorov equation, we allow the notation

h(x, t) =
[
e(L−µ)(T −t)k

]
(x)

for the solution to such a terminal value problem. The main result, the
Feynman-Kac formula, is that a solution v to such a terminal value problem
has a stochastic interpretation, viz:

h(x, t) = EXt=x
{
e−
∫ T

t
µ(Xs) dsk(XT )

}
. (11.8)

Thus, h can be interpreted as a “present day value”, i.e., an expected dis-
counted terminal reward, given the initial condition Xt = x, where the
terminal reward k(XT ) depends on the terminal state, and the reward is
discounted along the trajectory with rate µ(Xs).
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To see the connection between the discounted expectation in (11.8) and
the terminal value problem (11.7), assume that h satisfies the terminal value
problem. Then define the process {Rt} which measures the discounting and
is given by

dRt = −µ(Xt)Rt dt

so that
Rt = Rs exp

(
−
∫ t

s
µ(Xu) du

)
for 0 ≤ s ≤ t ≤ T . Next, define the process {Yt} by Yt = Rth(Xt, t), for
t ∈ [0, T ]. Then Itô’s lemma gives

dYt = Rt

[
ḣ+ Lh− µh

]
dt+Rt∇v g dBt = Rt∇v g dBt

where we have omitted the arguments (Xt and t) for brevity. Hence, {Yt} is
an Itô integral. Now assume that the integrand is well behaved so that {Yt}
is a martingale, then

Yt = Rth(Xt, t)
= E{YT |F t}
= E{RTh(XT , T )|F t}

= RtE{e−
∫ T

t
µ(Xs) dsk(XT )|F t}.

Thus,
h(Xt, t) = E{e−

∫ T

t
µ(Xs) dsk(XT )|F t}

i.e.,
h(x, t) = EXt=x{e−

∫ T

t
µ(Xs) dsk(XT )}.

While this establishes the connection between the discounted expectation
in (11.8) and the terminal value problem (11.7), we have jumped to the
conclusion in that we simply assumed that the Itô integral {Yt} is a mar-
tingale. Clearly, some technical requirements are needed for this to hold.
Øksendal (2010) assumes that the solution h to the terminal value prob-
lem is bounded and concludes that it has the interpretation (11.8); conver-
sly, if the terminal value k is smooth and has bounded support, then the
expecation (11.8) satisfies the terminal value problem. The bounded sup-
port ensures that tail contribuions to the expectation vanish; Karatzas and
Shreve (1997) and Rogers and Williams (1994a) user milder requirements.
In the following examples, we ignore these issues of regularity and assume
that the equivalence between (11.8) and (11.7) holds.
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11.8.1 Pricing of Bonds

As an application of the Feynman-Kac formula, we turn to mathematical
finance. Here, modeling of interest rates is important; among other reasons,
because it allows pricing of bonds. Consider a so-called zero-coupon bond,
where the issuer pays the holder a fixed sum K of money at the time of
maturity T , and no payments are made before that. If the interest rate
{Xt} were known in advance as a function of time, the fair price of such a
bond at time t < T would be

Ke−
∫ T

t
Xs ds,

because the holder could, instead of buying the bond at time t, put the
money K exp(−

∫ T
t Xs ds) in the bank and let it earn interest - in either

case, the holder’s portfolio would be worth K at time T . When the interest
rate {Xs} evolves stochastically between times t and T , the fair price at
time t is

E
{
Ke−

∫ T

t
Xs ds|F t

}
where F t is the information available to the market at time t and expectation
is with respect to P, the risk neutral measure (Hull, 2014). To evaluate this
expectation, a common model for the evolution of interest rates is the Cox-
Ingersoll-Ross process

dXt = λ(ξ −Xt) dt+ γ
√
Xt dBt

where {Bt} is Brownian motion w.r.t. P and {F t}. Since {Xt} is Markov,
the fair price depends on the current interest rate only, i.e.,

h(Xt, t) = E{Ke−
∫ T

t
Xs ds|F t}.

It then follows from the Feynman-Kac formula that h is governed by the
equation

ḣ+ λ(ξ − x)h′ + 1
2γ

2xh′′ − xh = 0, x ≥ 0, t < T, (11.9)

with terminal condition h(x, T ) = K. It is possible to solve this partial dif-
ferential equation analytically (Hull, 2014) but here we solve it numerically
using the methods from Section 9.11.5; see Figure 11.4. We see that the price
of the bond is greater, the closer we are to the time of maturity, and always
smaller than K = 1 since rates can never be negative in the Cox-Ingersoll-
Ross model. At any given time t, the price is a decreasing function of the
current spot rate: If the current spot rate is high, then we expect it to remain
high for some time, and therefore the price is discounted much. Conversely,
when the current spot rate is nearer 0, we expect less discounting until the
time of maturity, and therefore the fair price of the bond is higher.
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Figure 11.4: Price h(x, s − T ) of a zero-coupon bond as a function of time
s − T relative to maturity and current spot rate Xs = x. From (11.9) with
K = 1, λ = 0.1, ξ = 0.025 and γ = 5 · 10−5.

11.8.2 Darwinian Fitness and Killing

As another application of the Feynman-Kac formula, we turn to behavioral
ecology. Here, we model the internal state of an individual animal, and
aim to assess its Darwinian fitness; that is, its expected number of future
descendants. When computing this expectation, we need to take into account
the possibility that the animal dies before producing offspring; this leads to
a discounting as in (11.8), as we will see in the following.

We consider an animal the state of which is {Xt}; our interest is the
time interval t ∈ [0, T ], where T is a fixed time of breeding. If the animal
survives to time T , we let k(XT ) denote the number of its offspring, but if
the animal dies before time T , it produces no offspring. We define the fitness
h(x, t) as the expected number of offspring, given that the animal is alive
at time t and in state Xt = x. To make the connection to the discounted
expectation in (11.8), we assume that death occurs with a state-dependent
mortality rate µ(Xt), and define the cumulated mortality

Mt =
∫ t

0
µ(Xs) ds.

Then, the discount factor Rt = exp(−Mt) is the probability that the animal
is still alive at time t, conditional on the internal state {Xs : 0 ≤ s ≤ t}.
For example, with constant mortality µ(x) ≡ m, the probability that the
animal survives to time t is exp(−mt); i.e., the lifetime is exponentially
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distributed with rate parameter m. When the mortality is not constant, we
take a random variable U , uniformly distributed on (0, 1) and independent
of the filtration {F t}. We now define the time of death τ implicitly through
the equation

Mτ = − logU. (11.10)

One interpretation of this is that the animal is assigned a random number
− logU of life points at time 0. The mortality gradually eats up these life
points; the animal dies if and when it runs out of life points. We then have

P{τ > t} = P{− logU > Mt} = P{U < exp(−Mt)} = E exp(−Mt).

We can now give a precise characterization of the fitness h(x, t) of an animal,
which is alive at time t and in state Xt = x:

h(x, t) = E{k(XT )1(τ > T )|Xt = x, τ > t}.

To evaluate this expectation, we first condition also on FT , i.e. the state
trajectory of the animal, so that the only source of randomness is U . We
use (11.10) to substitute τ > T with MT < − logU , and find:

E{k(XT )1(MT < − logU)|FT ,Mt < − logU}
= k(XT )P{e−MT > U |FT , e

−Mt > U}
= k(XT )eMt−MT

= k(XT )e−
∫ T

t
µ(Xs) ds.

Thus, using the Tower property, we obtain

h(x, t) = EXt=x
[
k(XT )e−

∫ T

t
µ(Xs) ds

]
,

and therefore the Feynman-Kac formula gives us that the fitness h satisfies
the terminal value problem (11.7), which we restate:

ḣ+ Lh− µh = 0, h(x, T ) = k(x).

Notice that fitness h spreads in state space according to the usual backward
Kolmogorov equation, but in addition is lost with rate µh as time goes back-
wards: The closer the time t is to the terminal time T , the smaller is the
probability that the animal dies in the time interval [t, T ], so the greater
is the fitness. This equation allows us to assess the fitness of animals, for
different states and for different state dynamics. We can therefore identify
desirable and undesirable states, investigate the trade-offs that animals face,
and evaluate if one behavioral strategy holds an evolutionary advantage over
another. We shall see an example of this shortly (Section 11.8.4) and elabo-
rate further in Chapter 13, where we identify optimal behavioral strategies.
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At this point, it is illuminating to look at the (formal) adjoint of the
sub-generator L− µ, i.e., the forward equation in φ = φ(x, t)

φ̇ = L∗φ− µφ.

This equation describes how probability is redistributed in space through
advection and diffusion, and lost with rate µ(x)φ(x, t). Thus, the solution
φ(x, t) governs the probability that the animal is alive at time t and near
state x.

11.8.3 Cumulated Rewards

So far, we have considered rewards issued at a fixed terminal time T , but
in many situations the rewards are cumulated over time (compare Sec-
tion 11.6). In the ecological example, many animals may produce offspring
at any point in time; similarly, bonds may have coupons and pay interest un-
til the time of maturity. Both situations lead us to consider value functions
such as

h(x, t) = E
{∫ T

t
e−
∫ s

t
µ(Xu) dur(Xs) ds

∣∣∣∣∣Xt = x

}
. (11.11)

In the following we show that this expected cumulated and discounted
reward h is governed by the partial differential equation

ḣ+ Lh− µh+ r = 0, h(x, T ) = 0 (11.12)

for x ∈ Rn, t ∈ [0, T ]. In our discussion, we interpret this as the fitness of
an animal with a state-dependent fecundity r(x), i.e. the rate with which
offspring are produced. Let an animal be alive at time t and in a random state
Xt which has probability density φ(x, t). Then we can compute the expected
number (say, J) of offspring produced in the interval [t, T ] by conditioning
on the position at time t:

J :=
∫

Rn
φ(x, t)h(x, t) dx.

An alternative “forward” view is to use the distribution φ(x, s) to find the
expected fecundity at time s, and then integrate over s ∈ [t, T ]. This yields:

J =
∫ T

t

∫
Rn

φ(x, s)r(x) dx ds

These two expressions for J must agree. Differentiating w.r.t. t, we get

−
∫

Rn
φ(x, t)r(x) dx =

∫
Rn

[φ̇(x, t)h(x, t) + φ(x, t)ḣ(x, t)] dx.
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Using φ̇ = L∗φ− µφ and the duality
∫

[h L∗φ− φ Lh] dx = 0, we get∫
Rn

φ [ḣ+ Lh− µh+ r] dx = 0.

Since φ(·, t) can be chosen arbitrarily, the expected cumulated and dis-
counted reward h given by (11.11) must satisfy the terminal value prob-
lem (11.12).

In many applications, the problem does not specify the terminal T ;
rather, our interest is in the “infinite horizon” situation where T − t → ∞.
In that case, we pursue an equilibrium for this backward equation, viz.

Lh− µh+ r = 0,

in the hope that such an equilibrium h(x) would have the characterization

h(x) = EX0=x
[∫ ∞

0
e−
∫ t

0 µ(Xs) dsr(Xt) dt
]
.

Of course, technical requirements are needed for this equivalence to hold,
e.g. that µ is bounded away from 0 and r is bounded.

Exercise 11.5: Consider the linear-quadratic version of these equations
with system dynanics dXt = AXt dt+G dBt, a running reward r(x) = x>Qx
and a constant mortality/discount rate, µ(x) = m > 0. Find the stationary
equation for h(x), using the Ansatz h(x) = x>Px + p. Here Q and P are
symmetric. When does the stationary equation have a solution which equals
the expected discounted reward over an infinite horizon?

11.8.4 Vertical Motion of Zooplankton

We now consider a specific example: Diel vertical movements of zooplankton,
i.e., small animals in the ocean. We assume that the animal moves vertically
according to pure diffusion {Xt} with a diffusivity of 5000 m2/day, driven
by the random movements of the animal as well as of the water. The animal
is reflected at the surface x = 0 and at the bottom at x = H = 100 m. The
animal harvests more energy closer to the surface, i.e. we have a harvest rate

r(x) = 1
1 + exp((x− ȳ)/w) [1/day].

The maximum harvest rate of 1 per day is arbitrary. ȳ = 50 m marks the
nutricline, i.e., the extent of nutrient-rich surface waters, and w = 10 m
governs the width of the transition zone. The animals are hunted by fish
which rely on vision and therefore light, so we have

µ(x, t) = µ1e
−kx

1 + exp(A cos(2πt/T )) + µ0.
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Here, µ1 = 0.5 per day is the peak predation mortality, which occurs at
noon (t = T/2) and at the surface (x = 0). k = 0.05 m−1 is the absorption
coefficient of light, so that deep waters are dark and safe. T = 1 day is the
period, and A = 13 controls the difference between light levels at day and
at night. The base mortality µ0 = 0.01 per day is independent of light.

Note that the mortality depends explicitly on time, while the previous
sections considered time invariant dynamics only. Going through the argu-
ments, we see that time-varying dynamics can be included straightforwardly.

Figure 11.5 shows the harvest rate r and the mortality µ, as well as
model results: the fitness h found with the Feynman-Kac formula, and the
quasi-stationary distribution of the animals. We have found the periodic
solution numerically (Section 9.11.5), adding time as a state variable. To
interpret the fitness, recall that the maximum energy harvest r(x) is 1 per
day, so a fitness of 8 corresponds to 8 days of harvest at the surface. Notice
that the fitness varies with depth in a way that itself depends on time. This
gives the animal an incentive to move vertically, aiming to track the fitness
maximum. We will explore this in Section 13.10, where we derive fitness
optimizing movement strategies. For the quasi-stationary distribution, we
see that fluctuations in the density are small, but that the density is lowest
at the surface and in particular at dusk, where the day’s mortality has taken
its toll.

11.9 Conclusion

Between the forward and backward Kolmogorov equations, the forward one
probably seems most accessible and intuitive at first glance, even if the two
equations represent dual views on the same phenomenon - namely, transition
probabilities - and therefore two sides of the same coin. In this chapter, we
have seen a number of applications that involve the backward operator. The
familiarity we have gained with the backward operator will be useful in the
next chapters concerning stability analysis and control.

The theme of “exit problems” has been recurrent, i.e., the idea of stop-
ping a process upon exit from a given domain and then asking where and
when the process exits. We have seen that these statistics are governed by
partial differential equations which involve the backward operator.

We next used this technique to explore singularities in the model, i.e.,
points where the diffusion vanishes. In many applications, these singularities
are at the origin. In the scalar case, we saw that the scale function can be
used to determine if the process will ever hit such a singularity; it is possible
to extend this analysis to also determine if the process reaches the singular-
ity in finite or infinite time. It is important to be aware of singularities in
one’s model, and their properties. Numerical analysis can be sensitive and
give misleading results, if one implicitly makes wrong assumptions about
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Figure 11.5: Diel vertical migration of zooplankton. Top left: The energy
harvest h(x) plotted against depth. Top right: Mortality µ(x, t) as a func-
tion of time and depth. Middle: Resulting fitness V (x, t). Bottom: Quasi-
stationary distribution ρ(x, t).
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the qualitative nature of singularities; for example, by searching for smooth
solutions to the Poisson equation. So when models contain singularities, the
toolbox for analyzing such singularities is critical.

When we discussed discounting and the Feynman-Kac formula, we took
the terminal time to be fixed. We could have combined these two concepts:
Stopping a process upon exit, and discounting along the path. This would
lead to boundary value problems which involve the sub-generator L− µ. It
is possible to form other combinations of the elements we have introduced;
for example, stopping processes either upon exit or at a fixed terminal time,
whichever happens first. Some of these extensions are presented in the fol-
lowing exercises, without technicalities.

11.10 Notes and References

A seminal study that connected partial differential equations and expecta-
tions to the future was done by Shizuo Kakutani in 1944 where he studied the
Poisson equation with Dirichlet boundary conditions. This motivated Doob
to pursue the connection between classical potential theory and stochastic
analysis (Doob, 2001).

Dynkin’s lemma appeared in (Dynkin, 1965, p. 133).
The study of singularities of their classification was initiated by Feller for

scalar processes in 1952 and further in 1957; extensions to the multivariate
case was considered by Venttsel (sometimes spelled Wentzell) in 1959.

In this chapter, we have considered classical solutions to the partial differ-
ential equations (or inequalities), and their interpretation in terms of expec-
tations to the future. We have not discussed converse statements, i.e., when
these expectations to the future satisfy the partial differential equations.
See (Doob, 2001) and (Øksendal, 2010). Things are simple when domains
are bounded and diffusions are regular (so that the expected time exit is
also bounded). Beyond this, technicalities become more challenging beyond
this; in particular, the notion of viscosity solutions (Crandall et al., 1992)
becomes central.

11.11 Exercises

Exercise 11.6: Consider shifted Brownian motion dXt = dBt, X0 = x, and
the first time τ = inf{t : Xt ≥ 1} the process exceeds 1. With h(x) = x, show
that Exh(Xτ ) = x∧1 = min(x, 1). Next show that h(x)+Ex

∫ τ
0 Lh(Xt) dt =

x. Why does Dynkin’s formula does not apply here?

Exercise 11.7: Let {Xt : t ≥ 0} be Brownian motion with drift,
dXt = u dt + σ dBt where u and σ are positive constants, and with
X0 = x > 0. Let τ = inf{t : Xt ≤ 0}. Show that P{τ < ∞} = exp(−ux/D)
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with D = σ2/2. Then define S = sup{x − Xt : t ≥ 0}. Show that S is
exponentially distributed with mean D/u. Note: Compare with the hitting
time distribution from exercise 9.14.

Exercise 11.8 Numerical Analysis of Scalar Backward
Equations: The backward equations are posed as boundary value prob-
lems. Here, we consider the scalar case where we can recast them as initial
value problems. The motivation for this is that we have more numerical
solvers available for initial value problems.

1. Consider the exit point of Brownian motion with drift as in Section
11.4.1. Take l = 2, u = 3, D = 4. Solve the boundary value prob-
lem (11.4) numerically as follows: Replace the boundary conditions
with h(0) = 0, h′(0) = 1. Solve this equation numerically on the inter-
val [0, l], rewriting it as two coupled first order equations. Denote the
solution h̄(x). Then, rescale the solution, i.e., set h(x) = h̄(x)/h̄(1).
Compare with the analytical solution.

2. Repeat for the time to exit: First solve the initial value problem uh′ +
Dh′′+1 = 0, h(0) = 0, h′(0) = 1. Then shift the obtained solution with
the scale function found in the previous question to obtain a solution
to the original boundary value problem.

3. Consider the process leading to the von Mises distribution (Exercise
9.7): dXt = − sin(x) dt+σ dBt. For X0 = 0 and τ = inf{t : |Xt| ≥ 2π},
find Eτ numerically for σ ∈ {2, 1, 1/2, 1/4}. Hint: Use symmetry to
only consider the problem for x ∈ [0, 2π]. You may want to first verify
your code by applying it to the Ornstein-Uhlenbeck process (Section
11.2.3).

Exercise 11.9 The Expected Exit Point for Unbiased Ran-
dom Walks: Consider the process dXt = g(Xt) dBt in a bounded domain
Ω ⊂ Rn with g(x)g>(x) > dI > 0 on Ω̄ and let τ be the time of exit. For a
given vector c ∈ Rn, show that

ExcXτ = cx.

Exercise 11.10 The Mean-Square Exit Time: Consider a reg-
ular diffusion {Xt} on a domain Ω, as in Section 11.2.4, and let h(x) = Exτ
be the expected time to exit, which satisfies Lh + 1 = 0 on Ω and h = 0
on the boundary. Let k : Ω 7→ R satisfy Lk + 2h = 0 on Ω and k = 0 on
∂Ω. Show that Exτ2 = k(x). Note: This can be extended to moments of
arbitrary order; see (Gihman and Skorohod, 1972).

Exercise 11.11 Expected Lifetime in a Growing Population:
Consider the stochastic logistic growth model from Example 7.7.1, viz.
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dXt = Xt(1 − Xt) dt + σXt dBt. Assume that the mortality of an indi-
vidual animal depends on the abundance of the population, i.e., we have
µ(x) > 0.

1. Let h(x) be the expected remaining lifetime of an individual which is
alive when the population abundance is X0 = x. Show that this h is
governed by the equation

x(1 − x)h′(x) + 1
2σ

2x2h′′(x) − µ(x) h(x) + 1 = 0.

2. Solve the equation numerically for µ(x) = µ0 ·(1+x), using parameters
σ = 0.5, µ0 = 0.5. Truncate the domain to (0, 6) and use grid cells of
width 0.01. Use reflection at the boundaries. Plot the result.

3. To investigate the effect of µ0, plot the normalized lifetime µ0h(x) for
µ0 ∈ {0.01, 0.1, 0.5, 1, 10, 100} and comment. Include for reference the
function 1/µ(x).



Chapter 12

Stochastic Stability Theory

Stability theory concerns the sensitivity of a model: If we change the model
slightly, will it give markedly different predictions? The simplest change
to a model is a perturbation of the initial conditions, and stability theory
addresses the qualitative effects of such a perturbation.

For ordinary differential equations, stability towards perturbed initial
conditions has far-reaching consequences: It implies that exogenous pertur-
bations have bounded effect, as will a slight change in system dynamics.
Stability analysis also describes qualitatively the long-term behavior of the
system: Whether it comes to rest at an equilibrium, cycles periodically, dis-
plays chaotic fluctuations, or diverges to infinity. These connections explain
the central position of stability theory in the field of deterministic dynamic
systems.

Here, we describe stability analysis for stochastic differential equations.
As we will see, some of the deterministic theory generalizes nicely to the
stochastic case, even if the technicalities become more demanding. For ex-
ample, stochastic Lyapunov exponents measure how fast nearby trajectories
converge or diverge, on average, and stochastic Lyapunov functions can be
used to guarantee stochastic stability.

For stochastic systems, stability can be understood in several different
ways, just as can convergence of random variables. A system may be stable
in one sense and unstable in another, and noise may act stabilizing in one
sense and one system and destabilizing in others. These contradicting re-
sults emphasizes that we must be careful about which notion of stability is
relevant in a given situation. Also, equilibrium solutions are less common in
stochastic systems than in their noise-free counterparts, so stability analysis
of equilibria plays a less pivotal role in the stochastic theory.

Therefore, we also discuss other qualitative properties, such as bounded-
ness, which can be studied using similar techniques, and which give impor-
tant insight into the qualitative behavior of a stochastic dynamic system.

295
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x

U(x)

Figure 12.1: Stability for a rolling ball with friction. The hilltop forms an
unstable equilibrium, while the bottom forms a stable one. Almost all solu-
tions are stable and converge to the bottom.

12.1 The Stability Problem

Let us first recap the motivation for the stability problem, and the central
concepts, in the deterministic context. For a mathematical model of a real-
world system, a crucial question is to which degree the predictions from the
model agree with the behavior of the real-world system. One of the most
basic predictions from dynamic models concern their equilibria: If the initial
condition is at an equilibrium, then the state remains there. For a dynamic
model, the first thing we ask is typically: What are the equilibria?

Consider a ball moving on a surface subject to gravity and friction (Fig-
ure 12.1). A mathematical model of this system has two coupled ordinary
differential equations in position Xt and velocity Vt:

Ẋt = Vt , V̇t = −U ′(Xt) − λVt. (12.1)

Here, U(x) is the mass-specific potential while λ describes friction. Equilibria
in this model are points (x, v) in state space where v = 0 and where x is
a stationary point for the potential, i.e., U ′(x) = 0. Most importantly, the
ball may stay at rest at the hilltop, or at the bottom of the valley.

However, it is a fragile prediction that the ball may lie at the hilltop:
If the initial condition is “close” to the top, then the ball does not remain
“close”. Even if the ball is at rest there, then a little push from the wind can
cause it to roll away. Also, if we place the ball where the map says there is a
hilltop, but the map is a little off, then we may lose the ball. In contrast, it
is robust prediction that the ball may be at rest at the bottom: If we place
the ball close to the bottom, then the ball stays close, and wind or map error
will only shift the ball slightly. We say that the top equilibrium is unstable,
while the bottom is stable. Note that stability concerns sensitivity to the
initial condition, but has implications also for the sensitivity to exogenous
perturbations (the wind) and errors in the model (the map).

Stability analysis often focuses on equilibria, but we can also ask non-
equilibrium solutions would look radically different, if we changed the initial



CHAPTER 12. STOCHASTIC STABILITY THEORY 297

Biography: Aleksandr Mikhailovich Lyapunov (1857–1918)
Born in present-day Ukraine; then Russia. Lyapunov
studied mathematics and mechanics at the university
of St. Petersburg, with Markov and initially under the
guidance of Chebyshev. His pioneering contributions
to stability theory were part of his doctorate thesis,
which he defended in 1892. Among his other contribu-
tions was a proof of the Central Limit Theorem based
on characteristic functions. Lyapunov ended his life in
1918 after his wife had died from tuberculosis.

condition slightly. In our example, if a solution eventually comes to rest at
a local minimum, then that solution is stable.

In applications, the stability of equilibria is often of pivotal importance:
Civil engineering constructions are mostly designed to stay at equilibrium,
and lack of stability can be disastrous. The collapse in 1940 of the Tacoma
Narrows bridge (which is thoroughly documented on the internet) belongs to
the common reference frame of engineers. For a chemical production plant,
the stability of the operating point is critical. For any biological species living
in isolation, an equilibrium is that the species is extinct. If this equilibrium
is stable, then a small number of individuals are doomed to extinction, but if
the equilibrium is unstable, then these individuals may be able to establish
a thriving population. If the species consist of bacteria infecting a human, or
virus spreading among human hosts, then the stability problem is relevant
to the humans as well.

12.2 The Sensitivity Equations

We now aim to quantify how sensitive the trajectories are to perturbations
in the initial condition. Consider the stochastic differential equation

dXt = f(Xt, t) dt+ g(Xt, t) dBt. (12.2)

where Xt ∈ Rn and Bt ∈ Rm. In this chapter, we assume that the conditions
for existence and uniqueness hold (Theorem 8.3.2), unless stated explicitly.
We introduce the state transition map

Φt(x)

which allows us to examine the dependence on initial conditions. For each
initial condition x, {Φt(x)} is a stochastic process which gives the solution
Xt, i.e.,

dΦt(x) = f(Φt(x), t) dt+ g(Φt(x), t) dBt, Φ0(x) = x. (12.3)
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Define the sensitivity St(x) ∈ Rn×n:

St(x) = ∂Φt(x)
∂x

,

assuming that Φt(x) is differentiable in x - see (Has’minsǩi, 1980) for a dis-
cussion of this point. An infinitesimal perturbation δx of the initial condition
will perturb the solution to Φt(x+ δx) ≈ Φt(x) +St(x) δx. The sensitivities
{St} satisfies the sensitivity equations

dSt(x) = ∇f(Φt(x), t) · St(x) dt+
m∑

i=1
∇gi(Φt(x), t) · St(x) dB(i)

t , (12.4)

with the initial condition S0(x) = I, the identity, where gi is the i’th column
in the matrix g. To see that these equations hold, differentiate each term in
(12.3) and use the chain rule. Alternatively, write up the integral formulation
of (12.3), consider the two equations for Φt(x) and Φt(y) and let y → x.

Note that the sensitivity equations are a linear system of stochastic dif-
ferential equations, in which the nominal solution Xt = Φt(x) determines
the coefficients.

Example 12.2.1 (The Sensitivities for a Narrow-Sense Linear System)
Consider again the narrow-sense linear system

dXt = AXt dt+G dBt, X0 = x.

The sensitivity equation is
dSt = ASt dt

for all X0 = x. With S0 = I, we find St = exp(At). This could also have
been found directly from the solution (Exercise 7.4). Note that the sensitivity
St is deterministic and independent of the initial condition x.

Example 12.2.2 (Sensitivity of a Wide-Sense Linear System) With

dXt = AXt dt+
m∑

i=i

GiXt dB
(i)
t , X0 = x,

where Bt ∈ Rm, the sensitivity equations are:

dSt = ASt dt+
m∑

i=i

GiSt dB
(i)
t , S0 = I,

i.e., the same equations except that {St} is a matrix-valued process. St is
stochastic but independent of x, and Φt(x) = Stx. We do not have explicit
solutions for the sensitivities, expect in the scalar case, or when the matrices
commute (compare exercise 7.23). In general, the sensitivity equations must
be solved numerically by simulation.
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Example 12.2.3 (Sensitivity of an Equilibrium Solution) If x∗ is an
equilibrium of a time-invariant stochastic differential equation (12.2), i.e.,
f(x∗) = 0, g(x∗) = 0, then the sensitivity equations are

dSt(x∗) = ASt(x∗) dt+
n∑

i=1
GiSt(x∗) dB(i)

t

where
A = ∂f

∂x
(x∗), Gi = ∂gi

∂x
(x∗).

These are the same equations as in the previous example.

In numerical analysis, it is convenient to solve the sensitivity equations
simultaneously with the nominal system. To do this, we would create an
extended state vector Xe

t , which contains both Φt(x) and (the columns of)
St(x), after which we could use our usual numerical solver.

Example 12.2.4 (Sensitivity of Stochastic Logistic Growth) With

dXt = rXt(1 −Xt/K) dt+ σXt dBt, X0 = x, (12.5)

the sensitivity equation is

dSt = r(1 − 2Xt/K)St dt+ σSt dBt. (12.6)

The state and sensitivity combine to an extended state (Xt, St) which satisfies(
dXt

dSt

)
=
(
rXt(1 −Xt/K)
r(1 − 2Xt/K)St

)
dt+ σ

(
Xt

St

)
dBt.

Figure 12.2 shows a realization of the solution Xt and the sensitivity St for
x = 0.01, σ = 0.25, r = 1, K = 1, found using the Euler-Maruyama method.
Initially, the sensitivity St grows exponentially with the population Xt. Then,
once the state Xt approaches the carrying capacity K, the sensitivity decays,
and after 15 time units, the state has all but forgotten where it began, and
the current position follows the stationary distribution and is determined by
the recent history of the driving noise.

It is also possible to obtain the sensitivities automatically, i.e., without
solving the sensitivity equations, using the technique of automatic differen-
tiation when simulating the trajectory.
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Figure 12.2: Left panel: A realization of logistic growth; compare equation
(12.5). Right panel: The sensitivity St - note the log scale.

12.3 Stochastic Lyapunov Exponents

For multivariate states x, we summarize the matrix St with a single num-
ber, taking a worst-case view: If we allow the perturbation δx to have any
direction in space, what is its largest amplification? Thus, we are interested
in

sup
δx 6=0

‖St(x) δx‖
‖δx‖

.

With ‖ · ‖ being the Euclidean norm, the answer to this worst-case question
is given by the largest singular value σ̄(St(x)), i.e. the spectral norm, which
equals the square root of the largest eigenvalue of S>

t St. We define the
stochastic finite-time Lyapunov exponent as

λt = 1
t

log σ̄(St(x)),

i.e., λt is the average specific growth rate of σ̄(St(x)) on the time interval
[0, t]. In general, λt is stochastic and depends on the initial condition x.

Consider again Figure 12.2 (right panel). Notice that the sensitivity ap-
pears to approach a linear asymptote in the log-domain, i.e., eventually
decays exponentially. Then, the finite-time stochastic Lyapunov exponent
would converge to the slope of this line, as the time tends to infinity. This
leads us to define:

Definition 12.3.1 (Stochastic Lyapunov exponent) With the setup
just described, we define the stochastic Lyapunov exponent

λ̄ = lim sup
t→∞

λt (almost sure limit).
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Although λ̄ is certain to be well defined, it is in general a random variable
which may also depend on the initial condition x of the nominal solution. In
many situations λ̄ is deterministic in the sense that it attains the same value
for almost all realizations, and also independent of the initial condition x.
This question belongs to the topic of ergodic theory (Section 9.11.2) and we
will not go further into it.

Definition 12.3.2 (Stochastic Stability from Lyapunov Exponents)
We say that the nominal solution {Xt} is

1. stable, if λ̄ < 0 w.p. 1,

2. unstable, if λ̄ > 0 w.p. 1,

3. marginally stable, if λ̄ = 0 w.p. 1.

Example 12.3.1 (The Narrow-Sense Linear System) With

dXt = AXt dt+G dBt, X0 = x,

where the sensitivity is St = exp(At) (Example 12.2.1), it follows from some
matrix analysis that the stochastic Lyapunov exponent is λ̄ = maxi Reλi

where {λi} are the eigenvalues of A. See exercise 12.1. So all solutions are
stable if all eigenvalues of A have negative real parts.

Example 12.3.2 (Geometric Brownian Motion) With

dXt = rXt dt+ σXt dBt, X0 = x,

the solution is Xt = Stx where the sensitivity is St = exp((r−σ2/2)t+σBt).
The finite-time stochastic Lyapunov exponent is therefore

λt = r − 1
2σ

2 + σ
1
t
Bt.

Applying the Law of the Iterated Logarithm (Theorem 4.3.4), i.e., using that
Brownian motion scales with the square root of time, we obtain

λ̄ = r − 1
2σ

2, w.p. 1.

The Lyapunov exponent λ̄ is a decreasing function of the noise intensity σ,
and the zero solution is stable when r < σ2/2. In particular, when r > 0, the
individual sample paths diverge to infinity for small σ and converge to 0 for
large σ. This may seem counter-intuitive from a technical perspective, where
we typically think of noise as a destabilizing factor. Then, let Xt be the size of
a bacterial colony: If the noise σ is strong enough, then random fluctuations
will eradicate the colony. We will elaborate on this example in Section 12.6;
see also Exercise 12.2 for the corresponding Stratonovich equation.
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Example 12.3.3 (Stochastic Logistic Growth) We first examine the
trivial solution Xt ≡ 0 of (12.5). The sensitivity equation (12.6) becomes
dSt = rSt dt + σSt dBt; i.e., the linearization at the equilibrium. So,
from the previous Example 12.3.2, a small population will go extinct iff
λ̄ = r − σ2/2 < 0.

Now assume that λ̄ = r − σ2/2 > 0 and that x > 0. We rewrite the
sensitivity equation with Itô’s lemma:

d logSt = r(1 − 2Xt/K) dt− σ2/2 dt+ σ dBt

so that
logSt = (r − σ2/2)t− 2r

K

∫ t

0
Xt dt+ σBt.

As t → ∞, Xt will converge in distribution to a Gamma distribution with
mean K(1 − σ2/2r) (Example 9.8.2), and {Xt} will be ergodic so that

1
t

logSt → r − 1
2σ

2 − 2r
K

EXt = −r + 1
2σ

2, w.p. 1.

This was negative by the assumption r − σ2/2 > 0. Thus, the population is
stable, and the ultimate Lyapunov exponent λ̄ equals minus that of the trivial
solution. Compare with the symmetry in Figure 12.2 (right panel).

12.3.1 Lyapunov Exponent for a Particle in a Potential

Consider the scalar system

dXt = −U ′(Xt) dt+ σ dBt, X0 = x,

where U : R 7→ R is a smooth potential. The sensitivity equation is

dSt = −U ′′(Xt)St dt, S0 = 1,

which has the solution

St = exp
(

−
∫ t

0
U ′′(Xs) ds

)
and therefore the Lyapunov exponent is

λ = − lim inf
t→∞

1
t

∫ t

0
U ′′(Xs) ds.

For non-quadratic U , we typically cannot find the Lyapunov exponent in
closed form, but if U is strictly convex, then the Lyapunov exponent is neg-
ative, while strictly concave potentials lead to positive Lyapunov exponents.
This is consistent with the ball moving in a potential (Section 12.1).
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Consider now the case where the potential U(x) is not necessarily convex,
but a stationary distribution exists, viz. the canonical distribution

φ(x) = Z−1 exp(−U(x)/D) with D = σ2/2

where Z =
∫+∞

−∞ exp(−U(x)/D) dx is the partition function. Replace the
time average in the Lyapunov exponent with an expectation:

λ = − lim inf
t→∞

1
t

∫ t

0
U ′′(Xs) ds = −

∫ +∞

−∞
φ(x)U ′′(x) dx, (12.7)

almost surely, using ergodicity. The stationary distribution φ puts more
weight on states with low potential where the curvature U ′′(x) is positive,
so this integral is positive and the Lyapunov exponent is negative. To see
this:

λ = −
∫ +∞

−∞
φ(x)U ′′(x) dx

=
∫ +∞

−∞
φ′(x)U ′(x) dx

=
∫ +∞

−∞
−φ(x) |U ′(x)|2

D
dx

< 0,

almost surely. Here we first use integration by parts and next detailed bal-
ance, i.e., U ′φ + Dφ′ = 0 (Section 9.9). So when a stationary distribution
exists, the Lyapunov exponent is negative, and the solution is stable.

Compare this with deterministic systems, where maxima of the potential
correspond to unstable equilibria, and almost all non-equilibrium solutions
are stable. For stochastic systems, the equilibrium solutions do not exist,
and almost all solutions are stable, even if there are local potential maxima.
So local maxima of the potential do not give rise to unstable solutions, but
to local minima of the stationary distribution.

12.4 Extrema of the Stationary Distribution

To explore the connection between equilibria, stability and extrema further,
consider the double well model given by the Itô equation

dXt = (µXt −X3
t ) dt+ σ dBt. (12.8)

Without noise, i.e., σ = 0, the stability analysis of the system is as follows:
For µ ≤ 0, the system has a single equilibrium at x = 0, which is stable. For
µ > 0, the system has three equilibria: An unstable one at x = 0 and two
stable ones at x = ±√

µ. The qualitative change at µ = 0 is the standard
example of a pitchfork bifurcation.
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With noise σ > 0, there are no equilibria, and all solutions have nega-
tive Lyapunov exponents, regardless of µ and the initial condition (Section
12.3.1). In stead, the qualitative change that occurs at µ = 0 is that the
stationary distribution changes from being unimodal to being bimodal. See
Figure 12.3. For µ > 0, the stationary behavior of the system is to fluctuate
in one well and occasionally make the transition to the other well.

Consider now equilibria for the drift, and extrema for the stationary
distribution, in the scalar equation

dXt = f(Xt) dt+ g(x) dBt

where g(x) > 0 for all x. If the stationary density φ(x) exists, then it satisfies
detailed balance: uφ − Dφ′ = 0, with diffusivity D = g2/2 and advection
u = f−D′ (Sections 9.7 and 9.9). Thus, stationary points x∗ of the stationary
distribution (i.e., with φ′(x∗) = 0) are those where the advection vanishes,
u(x∗) = 0. Moreover, the stationary forward Kolmogorov equation is

(uφ−Dφ′)′ = u′φ−Dφ′′ + (u−D′)φ′ = 0

so that at a stationary point x∗, we have

u′(x∗)φ(x∗) = D(x∗)φ′′(x∗).

Thus, a stationary point x∗ is a strict local maximum for the stationary
density φ, i.e., φ′′(x∗) < 0, if and only if it is a stable equilibrium for the flow
(i.e., u′(x∗) < 0). Conversely, unstable equilibria for the flow have u′(x∗) > 0
and correspond to local minima for the stationary density, i.e., φ′′(x∗) > 0.
Keep in mind that these results depend on the choice of coordinate system;
neither equilibria for the drift, or modes of the stationary distribution, are
preserved under coordinate transformations.

In the multivariate case, if the stationary distribution satisfies detailed
balance uφ − D∇φ = 0, then stationary points ∇φ(x∗) = 0 are still those
where the advective flow vanishes, u(x∗) = 0. Without detailed balance,
there is no such result: Stationary densities often have extrema at points
where the flow does not vanish. Also the connection between stability
properties of the flow field u, and extrema of the stationary density φ, is
weaker, but a simple observation is as follows: The stationary density satis-
fies ∇ · (uφ − D∇φ) = 0, and evaluated at a stationary point ∇φ(x∗) = 0,
this simplifies to

φ∇ · u− tr(DHφ) = 0,

where Hφ is the Hessian of φ. So the sign of ∇·u equals the sign of tr(DHφ).
For example, if x∗ is a local maximum point of φ, then ∇·u < 0 must hold at
x∗, i.e., the flow is convergent at x∗. However, the flow needs not vanish at
x∗, and even if it does, x∗ needs not be a stable node. The following section
will illustrate this with an example.
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Figure 12.3: A pitchfork bifurcation in the double well model (12.8) with
σ = 1/2. Left panels: The drift f(x). Stable equilibria of f are marked with
solid circles and unstable equilibria are marked with open circles. Middle
panels: Simulations starting at X0 = 0; the same realization of Brownian
motion is used in the three panels. Right panels: The stationary probability
density. Upper panels: µ = −1. Middle panels: µ = 0. Lower panels: µ = 1.



CHAPTER 12. STOCHASTIC STABILITY THEORY 306

12.5 A Worked Example: A Stochastic Predator-
Prey Model

We now demonstrate a stability analysis, using as an example a predator-
prey system consisting of two coupled stochastic differential equations

dNt = rNt(1 −Nt/K) dt− cNtPt

Nt + N̄
dt+ σNNt dB

(1)
t , (12.9)

dPt = ε
cNtPt

Nt + N̄
dt− µPt dt+ σPPt dB

(2)
t . (12.10)

Here, Nt is the prey abundance and Pt is the predator abundance. All pa-
rameters r, K, N̄ , c, ε, µ, σN , σP are positive.

The objective of the stability analysis is to examine the three qualita-
tively different classes of solutions: The trivial solutions where Nt = Pt = 0,
the prey-only solutions where Nt > 0 but Pt = 0, and the co-existence so-
lutions where Nt > 0, Pt > 0. For which values of the parameters will the
different classes of solutions be prominent?

Let us first discuss the model structure. Without predators (Pt = 0),
the prey display stochastic logistic growth (Example 12.2.4). The noise-
free model is the Rosenzweig-MacArthur model from ecology, which is an
elaboration of the Lotka-Volterra predator-prey model. The term cNt/(Nt +
N̄) determines the consumption of prey per predator; this is known as a
Holling type II functional response in ecology. At low prey densities, the
consumption is linear in the prey with slope c/N̄ , but at high prey densities,
it saturates at c, the maximum consumption per predator. An efficiency ε
determines how prey biomass is converted to predator biomass, and finally
the predators suffer a constant mortality µ. The noise is multiplicative and
diagonal, so it models rapid unpredictable environmental fluctuations that
affect the two species independently. This choice is mostly for simplicity.

With the state Xt = (Nt, Pt), we can write the system in standard form

dXt = f(Xt) dt+ g1(Xt) dB(1)
t + g2(Xt) dB(2)

t

with

f(x) =
(
rn(1 − n/K) − cnp

n+N̄

ε cnp
n+N̄

− µp

)
, g1(x) =

(
σNn

0

)
, g2(x) =

(
0
σP p

)
.

The sensitivity equations are given by the Jacobians

∇f(n, p) =
[
r(1 − 2n/K) − pγ′(n) −γ(n)

εγ′(n)p εγ(n) − µ

]

with the shorthand γ(n) = cn/(n+ N̄), and

∇g1(n, p) =
[
σN 0
0 0

]
, ∇g2(n, p) =

[
0 0
0 σP

]
.



CHAPTER 12. STOCHASTIC STABILITY THEORY 307

Sensitivity of the Trivial Solution

For the trivial solution Nt ≡ 0, Pt ≡ 0, the sensitivity equations are

dSt =
[
r 0
0 −µ

]
St dt+

[
σN 0
0 0

]
St dB

(1)
t +

[
0 0
0 σP

]
St dB

(2)
t .

With the initial condition S0 = I, the off-diagonal elements remain 0, and
the two diagonal elements evolve independently as geometric Brownian mo-
tion:

St =
[

exp((r − 1
2σ

2
N )t+ σNB

(1)
t ) 0

0 exp(−(µ+ 1
2σ

2
P )t+ σPB

(2)
t )

]
.

Therefore, the origin is stable if and only if r− σ2
N/2 < 0 (Example 12.3.2).

Thus, the stability of the origin depends only on the prey: If the noise σN

is sufficiently large, it will drive the prey population to extinction, and the
origin is stable. If the noise is weak so that r−σ2

N/2 > 0, the prey population
will grow, and the origin is unstable. At the origin, the predator population
will die out in absence of prey, so the predators cannot destabilize the origin.

Sensitivity of Prey-Only Solutions

Now assuming r − σ2
N/2 > 0, we turn to a prey-only solution with initial

condition N0 = n > 0, P0 = 0. Then, the sensitivity equations are

dSt =
[
r(1 − 2Nt/K) −γ(Nt)

0 εγ(Nt) − µ

]
St dt

+
[
σN 0
0 0

]
St dB

(1)
t +

[
0 0
0 σP

]
St dB

(2)
t .

The sensitivity St remains upper tridiagonal: If the (2, 1) element in St is 0,
then also the (2, 1) element in dSt is 0. The explanation is that a perturbation
in the initial prey population cannot create predators out of the blue. The
(1,1) element of the sensitivity matrix evolves on its own:

dS
(1,1)
t = r(1 − 2Nt/K)S(1,1)

t dt+ σNS
(1,1)
t dB

(1)
t .

This is the sensitivity equation for logistic growth (compare Figure 12.2
and Examples 12.2.4 and 12.3.3). Thus, the prey population in itself has a
stochastic Lyapunov exponent −r + σ2

N/2 < 0 and is stable by assumption.
We proceed to the (1,2)-element of St, which satisfies the equation

dS
(1,2)
t = r(1 − 2Nt/K)S(1,2)

t dt− γ(Nt)S(2,2)
t dt+ σNS

(1,2)
t dB

(1)
t .

This is the same linear equation as for the S(1,1)
t element, except for the

source term −γ(Nt)S(2,2)
t dt. We know that this equation is stable, so if the
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source vanishes, S(2,2)
t → 0, then also S(1,2)

t → 0 w.p. 1. This should not be
surprising: If a small predator population dies out, then it will not have a
large and lasting effect on the prey population.

Thus any instability in the system must come from the (2,2)-element of
St. This element satisfies the equation

dS
(2,2)
t = (εγ(Nt) − µ)S(2,2)

t dt+ σPS
(2,2) dB

(2)
t

and using Itô’s lemma, we find

d logS(2,2)
t = (εγ(Nt) − µ− 1

2σ
2
P ) dt+ σP dB

(2)
t .

Using ergodicity of {Nt}, the solution is unstable if and only if

λP := εEγ(Nt) − µ− 1
2σ

2
P > 0, (12.11)

where Nt is sampled from the stationary Gamma distribution (Exam-
ple 9.8.2). Thus, the expected growth rate of the predators determine their
stability. The expression for Eγ(Nt) is long and hardly useful, but can be
written

Eγ(Nt) = cη(N̄/K, σN/
√
r)

where η is a non-dimensional function of the two non-dimensional param-
eters N̄/K and σN/

√
r. The function η describes the feeding level of the

predators, i.e., their uptake relative to their maximal uptake c (Figure 12.4).
This lets us determine the Lyapunov exponent λP and identify bifurcations
when the dimensionless parameters are varied. For example, assume that
ε = 0.25, c = 1, and µ + σ2

P /2 = 0.1. From (12.11), we see that predators
can invade the system provided their feeding level is high enough, η > 0.4,
and the bifurcation curve η = 0.4 can be identified in Figure 12.4. In absence
of noise on the prey, σN = 0, the predators must be close enough to satiation
at the carrying capacity: N̄/K < 1.5. With positive prey noise σN > 0, the
average prey population decreases below K, so that the predators must be
closer to satiation at K, i.e. lower N̄/K. At σN =

√
2r, the prey population

collapses so that predators are unable to invade regardless of their feeding
efficiency.

Coexistence Solutions and their Lyapunov Exponents

It remains to examine coexistence solutions where both species are present,
i.e., Nt > 0 and Pt > 0. Figure 12.5 shows one sample path obtained with
parameters r = 1, K = 1, c = 1, N̄ = 0.6, ε = 0.5, µ = 0.1, and σN = σP =
0.02, for which the prey-only solution is unstable. The noise-free system has
an equilibrium at

N∗ = N̄
εc
µ − 1 , P ∗ = εN̄

r

µ

cε
µ − 1 − N̄

K

( cε
µ − 1)2
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Figure 12.4: Contour plot of the non-dimensional function η( N̄
K ,

σ√
r
) which

determines the expected feeding rate of a predator.

which is positive and unstable with these specific parameters; a small pertur-
bation away from the equilibrium would grow with rate 0.01 while oscillating
with period 24, until it approached a limit cycle. Here, including noise, we
initialize the system right at the unstable equilibrium. Figure 12.5 shows
the first part of the trajectory, up to time t = 1, 000, in the phase plane, as
well as the finite-time stochastic Lyapunov exponent λ̄t up to time 10,000.
The limit cycle is clearly visible, even if blurred by noise. The finite-time
Lyapunov exponent initially fluctuates substantially, but seems to be well
approximated by the deterministic prediction 0.01. However, when the sys-
tem settles down in the stochastic steady state, the sensitivity decreases,
and the stochastic Lyapunov exponent, i.e., the limit as t → ∞, appears to
be near -0.005. The convergence is very slow and requires at least 100 cycles,
i.e., 2,400 time units.

In conclusion, the stochastic Lyapunov exponent is quite tractable for the
trivial solution and with a little effort also for the prey-only solution, and for
these situations the Lyapunov exponent gives useful information about when
the system can be invaded. For the coexistence solution, starting where the
drift f vanishes in a region where the advective flow is divergent, the finite-
time Lyapunov exponent initially grows, as the solution is pushed away from
the stationary point by noise and spirals out. Then, the sensitivity decreases,
as the trajectory follows the limit cycle and eventually forgets its starting
point. If we aim to diagnose the initial instability, we need the finite-time
stochastic Lyapunov exponent, while the (infinite-time) stochastic Lyapunov
exponent indicates the mixing time along the limit cycle.
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Figure 12.5: Left panel: Simulation of the stochastic Rosenzweig-MacArthur
model starting at the unstable equilibrium of the noise-free system. Right
panel: The finite-time Lyapunov exponent λ̄t vs. time.

Stationary Solutions

Finally, we examine the stationary behavior of the coexistence solution for
the situation where the prey-only solution is unstable. Figure 12.6 shows
stationary probability density as well as a sample path, for different values
of the efficiency ε. The other parameters are r = 1, K = 1, c = 1, µ = 0.15,
N̄ = 1/4, σ2

N = σ2
P = 0.002. For these parameters, the predators are able to

invade the system if ε ≥ 0.19, roughly. With ε = 0.2, the two species coexist
and display negatively correlated fluctuations. With ε = 0.22, we begin to
see the first appearance of predator-prey cycles. With ε = 0.25, these cycles
are clear, but they are still irregular. With ε = 0.3, the limit cycle is obvious
even if perturbed by noise, and the stationary density displays a marked
local minimum inside the limit cycle. The bifurcation structure from the
deterministic system is visible although obscured by noise.

12.6 Geometric Brownian Motion Revisited

Stochastic stability analysis has an extra layer of complexity compared to
deterministic analysis, which is not revealed by the stochastic Lyapunov
exponents. Recall Example 12.3.2 concerning geometric Brownian motion
Xt = x exp((r − 1

2σ
2)t + σBt) and its governing equation dXt = rXt dt +

σXt dBt, X0 = x: There, we found a stochastic Lyapunov exponent λ̄ =
r − σ2/2.
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Figure 12.6: Behavior of the stochastic Rosenzweigh-MacArthur model for
different values of the efficiency ε. Left panels: The stationary joint proba-
bility density of prey and predators. Center panels: A simulated trajectory
in the phase plane. Right panels: The simulated trajectory as time series.
First row: ε = 0.20. Second row: ε = 0.22. Third row: ε = 0.25. Fourth
row: ε = 0.3.
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We now turn to the moments of {Xt} which are (Exercise 7.1):

EXt = xert, EX2
t = x2e(2r+σ2)t, so:

1. EXt → 0 iff r < 0; we say that the zero solution is stable in mean.

2. EX2
t → 0 iff r + σ2/2 < 0; we say that the zero solution is stable in

mean square.

The threshold between stability and instability is therefore r − σ2/2, if we
focus on sample paths; r = 0, if we focus on the mean, or r + σ2/2 = 0, if
we focus on the mean square. If r < 0 but r + σ2/2 > 0, then the mean is
stable but the mean square is unstable. Similarly, if r > 0 but r− σ2/2 < 0,
then sample paths converges to 0 (w.p. 1) but the mean diverges. In the
stochastic case, even for a linear time-invariant system, we have (at least)
3 notions of stability, differing in the mode of convergence in the statement
Xt → 0.

For fixed r, we see that the mean is insensitive to the noise level σ,
but that the variance grows with σ, and indeed diverges to +∞ as t → ∞
when σ2 > −2r. To summarize, for geometric Brownian motion, Itô noise
stabilizes sample paths, does not affect the mean, and destabilizes the mean
square.

If your intuition objects to sample paths that converge to 0 while mo-
ments diverge to infinity, consider (again) exercise 4.15. Also, Figure 12.7 dis-
plays 5 sample paths of geometric Brownian motion with parameters r = 1,
σ = 2, X0 = x = 1, for which r − σ2/2 = −1, so trajectories converge to 0.
However, the sample paths display wild fluctuations before converging. The
figure suggests that EXt grows on the interval t ∈ [0, 1] which agrees with
r > 0. To see that it continues to grow on the interval t ∈ [0, 10], we would
need a lot more than 5 sample paths, because the continued growth of the
mean relies on fewer and fewer realizations. To characterize the magnitude
of the transient fluctuations, we can use that the maximum max{Yt : t ≥ 0}
is exponentially distributed with mean 1/(1 − 2r/σ2) = 2 (Exercise 11.7).

This example demonstrates the different notions of stability in the con-
text of stochastic differential equations. If one wishes to do a stability anal-
ysis for a given application, one needs to consider carefully which notion of
stability is relevant. In the given situation, would behavior such as in Figure
12.7 be considered stable or unstable?

12.7 Stochastic Lyapunov Functions

A different approach to stochastic stability employs auxiliary functions on
state space, called Lyapunov functions. For many deterministic mechanical
systems, think of the Lyapunov function as the mechanical energy: If there
is no external energy supply, then the mechanical energy cannot increase in
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Figure 12.7: 5 sample paths of Geometric Brownian Motion starting at X0 =
1. The parameters are r = 1 and σ = 2, for which the system is stochastically
stable but unstable in mean and in mean square.

time - energy cannot be created, but friction can convert mechanical energy
to thermal energy. Therefore trajectories must be confined to a region in
state space, where the mechanical energy is no greater than the initial energy.
This simple observation turns out to be immensely powerful.

For stochastic systems, there is the complication that the noise typically
supplies energy so that the energy in the system is no longer a non-increasing
function of time. As a result, we can only bound the trajectories in proba-
bility. A basic and central result, which assumes that the energy decreases
on average and yields a bound on the probability of escape, is the following:

Theorem 12.7.1 Let x∗ be an equilibrium point of the stochastic differen-
tial equation (12.2), i.e., f(x∗) = 0, g(x∗) = 0. Assume that there exists a
function V (x) defined on a domain D containing x∗, such that:

1. V is C2 on D\{x∗}.

2. There exist continuous strictly increasing functions a and b with a(0) =
b(0) = 0, such that a(|x− x∗|) ≤ V (x) ≤ b(|x− x∗|).

3. LV (x) ≤ 0 for x ∈ D\{x∗}.

Here L is the backward Kolmogorov operator, as usual. Then

lim
x→x∗

Px{sup
t≥0

|Xt − x∗| ≥ ε} = 0

for any ε > 0.

We call V (·) a stochastic Lyapunov function. Let us first explain the
conclusion: Let ε > 0 be given, then the set {ξ : |ξ − x∗| ≤ ε} is a “permit-
ted region” in state space containing the equilibrium point. For each initial
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condition x, there is a probability Px{supt≥0 |Xt −x∗| > ε} that the process
ever leaves the permitted region. For x = x∗ this probability is obviously 0.
The conclusion says that this probability is a continuous function of x at x∗:
A small perturbation from equilibrium implies a small probability of escape.

The theorem gives a sufficient condition in terms of existence of a Lya-
punov function. In many cases, we aim to establish stability, and therefore
aim to find a Lyapunov function. The condition is necessary under regularity
conditions; if x∗ is stable then V (x) := Px{supt≥0 |Xt − x∗| ≥ ε} is a can-
didate Lyapunov function. There are also converse theorems (Has’minsǩi,
1980).

Now let us examine the sufficient condition in the theorem. Condition
2 implies that we can bound |x − x∗| in terms of V (x) and conversely. In
absence of noise, the third condition LV ≤ 0 implies that the “energy”
V (Xt) is a non-increasing function of time. In the stochastic case, random
fluctuations may inject energy into the system, but the energy will decrease
on average. To capture this property, we introduce a new class of processes,
which are similar to martingales but have decreasing expectation:

Definition 12.7.1 (Supermartingale) We say that a process {Mt : t ≥
0} is a supermartingale with respect to an underlying probability measure P
and filtration {F t : t ≥ 0}, if the following three conditions hold:

1. The process {Mt : t ≥ 0} is adapted to the filtration {F t : t ≥ 0}.

2. E|Mt| < ∞ for all t ≥ 0.

3. E{Mt|Fs} ≤ Ms, almost surely, whenever 0 ≤ s ≤ t.

Compared to martingales (Definition 4.5.1), the only difference is the
inequality in the third property. Our primary interest is supermartingales
that generalize the idea of energy decreasing with time, so we focus on
non-negative supermartingales which have continuous sample paths. Such
supermartingales satisfy probabilistic bounds:

Theorem 12.7.2 (Supermartingale Inequality) Let {Mt : t ≥ 0} be a
non-negative supermartingale with continuous sample paths. Then

P{ sup
0≤s≤t

Ms ≥ c} ≤ M0
c

holds for all t ≥ 0 and all c > 0.

Proof: The argument is analogous to the proof of the martingale in-
equality (Theorem 4.5.2). With the stopping time τ = inf{t > 0 : Mt ≥ c},
we have

EMt∧τ ≥ c · P(Mt∧τ = c) = c · P( sup
0≤s≤t

Ms ≥ c).
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As in Lemma 4.5.1, we may show that the stopped process Mt∧τ is also a
supermartingale, so EMt∧τ ≤ M0. Combining, we get

c · P( sup
0≤s≤t

Ms ≥ c) ≤ M0

which was to be shown.
We now have the ingredients necessary to prove Theorem 12.7.1.
Proof: Without loss of generality, take x∗ = 0. Define the stopping time

τ = inf{t : Xt ∈ D} and Yt = V (Xt), then {Yt∧τ } is a supermartingale since
LV ≤ 0 on D\{0}. Here, we are neglecting the possible singularity at 0; this
can be dealt with by stopping the process if it gets too close to 0. With the
supermartingale inequality (Theorem 12.7.2), we conclude that

Px{sup
0≤tτ

Yt ≥ c} ≤ ExYt

c
≤ Y0

c
for any c > 0.

Let ε be small enough that the set {ξ : |ξ| ≤ ε} is contained in D. Next,
|x| ≥ ε implies that V (x) ≥ a(|x|) ≥ a(ε), and so

Px{sup
t≥0

|Xt| ≥ ε} ≤ Px{sup
t≥0

Yt ≥ a(ε)} ≤ Y0
a(ε) ≤ b(|x|)

a(|ε|) .

Thus, x → 0 implies that Px{supt≥0 |Xt| ≥ ε} → 0.

Example 12.7.1 (Geometric Brownian Motion (Again)) Consider again
geometric Brownian motion {Xt : t ≥ 0} given by the Itô equation

dXt = r Xt dt+ σXt dBt.

To analyse stability of the equilibrium Xt ≡ 0, we try a Lyapunov function

V (x) = |x|p where p > 0.

This candidate satisfies all requirements from Theorem 12.7.1 except possibly
LV ≤ 0. We find LV (x) = p(r + σ2(p − 1)/2)|x|p. So V is a Lyapunov
function if r+ σ2(p− 1)/2 ≤ 0, or equivalently p ≤ 1 − 2r/σ2. Such a p > 0
exists iff 1−2r/σ2 > 0, which is therefore a sufficient condition for stochastic
stability in the sense of Theorem 12.7.1. Note that this is equivalent to the
Lyapunov exponent being negative (Example 12.3.2 and Section 12.6), and
that we may need p < 1 to show stability; i.e., V is not differentiable at
x = 0.

12.8 Stability in Mean Square

Stability in mean square aims to bound the variance of perturbations. Next
to negative Lyapunov exponents, it is probably the most used notion of sta-
bility. We briefly mentioned this mode of stability when discussing geometric
Brownian motion (Section 12.7.1); the general definition is:
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Definition 12.8.1 Let x∗ be an equilibrium point of the stochastic differ-
ential equation (12.2), i.e., f(x∗) = 0, g(x∗) = 0. We say that x∗ is ex-
ponentially stable in mean square, if there exist constants C, λ > 0, such
that

Ex|Xt − x∗|2 ≤ C|x− x∗|2 exp(−λt)

for all t ≥ 0 and all x.

The following theorem gives a sufficient condition in terms of a Lyapunov
function:

Theorem 12.8.1 If there exists a C2 Lyapunov function V such that

∀x : k1|x− x∗|2 ≤ V (x) ≤ k2|x− x∗|2 and LV (x) ≤ −k3|x− x∗|2

where k1, k2, k3 > 0, then x∗ is exponentially stable in mean square.

Proof: Without loss of generality, assume x∗ = 0. By the properties of
V ,

k1Ex|Xt|2 ≤ ExV (Xt) ≤ k2|x|2 − k3

∫ t

0
E|Xs|2 ds

and by existence and uniqueness, these are all finite. By Dynkin’s formula,
ExV (Xt) = V (x) + Ex

∫ t
0 LV (Xs) ds. Here, we are omitting the step of

localization; i.e., first we stop the process upon exist of an R-sphere, and
then we let R → ∞. Define at = Ex|Xt|2, then this reads

k1at ≤ k2a0 − k3

∫ t

0
as ds.

By Gronwall’s inequality, we find that at ≤ k2
k1
a0 exp

(
−k3t

k1

)
. Inserting at

and a0, this is the exponentially decaying bound on Ex|Xt|2.

Example 12.8.1 (Geometric Brownian Motion) Consider again the
equation dXt = rXt dt+ σXt dBt. As candidate Lyapunov function, take

V (x) = 1
2x

2 so that LV (x) = (r + 1
2σ

2)x2.

We see that this Lyapunov function proves exponential stability in mean
square, if and only if r + σ2/2 < 0. This is, of course, consistent with our
previous analysis of geometric Brownian motion (Section 12.6).

Example 12.8.2 (The Multivariate Wide-Sense Linear System) With

dXt = AXt dt+
m∑

i=1
GiXtdB

(i)
t
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where Xt ∈ Rn and (B(1)
t , . . . , B

(m)
t ) is m-dimensional standard Brownian

motion, take as candidate Lyapunov function

V (x) = x′Px

where P > 0 is a symmetric positive definite n-by-n matrix. We find

LV (x) = x′
(
PA+A′P +

m∑
i=1

G′
iPGi

)
x.

There are (at least) two ways to search for such a V . First, the set {P ∈
Rn×n : P = P ′, P > 0} is a convex cone, as is the set {P ∈ Rn×n : P =
P ′, PA + A′P + ∑m

i=1G
′
iPGi < 0}. So convex search may identify a point

in the intersection of these two cones, or establish that they are disjoint. A
benefit of this approach is that additional (convex) constraints on P can be
included. Convex search and optimization are important computational tools
in systems and control theory (Boyd et al., 1994).

Alternatively, if the system is exponentially stable in mean square, then a
quadratic Lyapunov function V (x) = x′Px exists such that LV (x)+|x|2 = 0.
This Lyapunov function is in fact

V (x) = Ex
∫ ∞

0
|Xt|2 dt

which must be finite if the system is exponentially stable in mean square, and
a quadratic function of x due to linearity of system dynamics. Therefore, we
may solve the linear algebraic matrix equation

A′P + PA′ +
m∑

i=1
G′

iPGi + I = 0

in the unknown symmetric P . A solution P > 0 establishes a Lyapunov
function and that the system is exponentially stable. If there is no such
solution, the system is not exponentially stable in mean square. This includes
the situation where there is a unique solution P with at least one negative
eigenvalue, as well as the situation where there is no solution P . In the scalar
case of geometric Brownian motion (A = r, G = σ), these two possibilities
correspond to r + σ2/2 > 0 and r + σ2/2 = 0, respectively.

Notice that exponential stability in mean square is a global property: The
mean square Ex|Xt|2 depends on system dynamics in the entire state space.
So exponential stability in mean square can not be verified from the lin-
earization of the system dynamics around the equilibrium, and a Lyapunov
function V on a bounded domain only shows local stability in a certain
sense.
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Example 12.8.3 (A System With a Stabilizing Non-Linearity) With

dXt = −(Xt +X3
t ) dt+Xt dBt

the linearization around x = 0 is dXt = −Xt dt+Xt dBt which is exponen-
tially stable in mean square. To see that the non-linearity −X3

t is stabilizing,
take as Lyapunov function V (x) = x2:

LV (x) = −2x(x+ x3) + x2 = −x2 − 2x4 ≤ −x2

which shows that the zero solution of the nonlinear equation is exponentially
stable in mean square.

12.9 Stochastic Boundedness

Equilibrium solutions are less common in stochastic differential equations
than in their deterministic counterparts. For non-equilibrium solutions, sta-
bility to perturbations in initial conditions is more difficult to analyse -
linear systems in the wide or narrow sense make the notable exceptions to
this rule (Examples 12.2.1 and 12.2.2). Stability is also less crucial, because
the driving noise perturbs the trajectory, too. Therefore, this section focuses
on the more modest ambition of bounding the trajectories in different ways.
Due to noise, bounds are typically only probabilistic, and it is typically the
qualitative result that is most interesting, i.e., that a bound exists, rather
than what the specific bound is.

The results use a Lyapunov-type function V (x) which generalizes energy,
and we aim to show that the process {Xt} spends most of the time in states
where V (x) is low, and that very high-energy states constitute rare events.
This turns out to be the case if the expected energy decreases initially,
when the process starts in a high-energy state. To illustrate this, think of
the Ornstein-Uhlenbeck process dXt = −λXt dt+ σ dBt, with λ > 0 and a
quadratic Lyapunov function V (x) = x2. Then

LV (x) = −2λx2 + σ2.

Note that LV (x) ≤ 0 iff V (x) ≥ σ2/(2λ): In low-energy states, close to
the equilibrium x = 0 of the drift −λx, the noise pumps energy into the
system, so the system will never come to rest there. But far from equilibrium,
dissipation dominates, which will bring the system towards the equilibrium.
The result is persistent fluctuations around the equilibrium. Any bound will
be broken, eventually, but the process will still be concentrated in low-energy
states.

To generalize this example, consider the stochastic differential equation

dXt = f(Xt) dt+ g(Xt) dBt with Xt ∈ Rn (12.12)
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with backward Kolmogorov operator L. In the following, we assume that
Lyapunov functions V : Rn → R are C2 and proper, i.e., the preimage
V −1([a, b]) of any bounded interval is bounded. This means that we can
bound the energy V (x) in terms of the state |x| and vise versa. A first result
is:

Lemma 12.9.1 Let {Xt} satisfy (12.12) and let the Lyapunov function V
be proper, C2 and such that

LV (x) ≤ 0 for all x such that V (x) ≥ K.

Let M > K and define τ = inf{t : V (Xt) 6∈ [K,M ]}. Then, for V (x) ≥ K

Px[sup{V (Xt) : 0 ≤ t ≤ τ} = M ] ≤ V (x) −K

M −K
.

The lemma bounds the energy V (Xt) in the stochastic sense that as the
upper threshold M is increased, it becomes more probable that we reach
the lower threshold K first. Keep the Ornstein-Uhlenbeck example in mind:
After time τ , if V (Xτ ) = K, energy may be injected back into the system.

Proof: Define Yt = V (Xt) − K. Then, for V (x) ≥ K, Yt∧τ is a non-
negative continuous supermartingale. It follows from the supermartingale
inequality (Theorem 12.7.2) that

P[sup{Yt : 0 ≤ t ≤ τ} ≥ M −K] ≤ Y0
M −K

which can be re-written as in the theorem.

Remark 12.9.1 We may not be interested in the Lyapunov function V (Xt)
per se, but use it to bound the state |Xt|. This is possible, since V is proper:
Define a(r) = inf{V (x) : |x| ≥ r} and b(r) = sup{V (x) : |x| ≤ r}. Then a
and b are continuous non-decreasing functions with a(|x|) ≤ V (x) ≤ b(|x|).
Moreover, a(|x|) → ∞ when |x| → ∞, because V is proper. Now, assume
that there is an inner sphere with radius ξ > 0 such that LV (x) ≤ 0 holds
whenever |x| ≥ ξ. Take an outer sphere with radius χ > ξ and stop when we
reach either of the spheres, i.e., at τ = inf{t : |Xt| 6∈ [ξ, χ]}. Then

Px[sup{|Xt| : 0 ≤ t ≤ τ} ≥ χ] ≤ b(|x|) − a(ξ)
a(χ) − a(ξ) .

The bound may be conservative, but note that this probability vanishes as
χ → ∞. We say that sample paths are stochastically bounded (Gard, 1988).

With a stronger assumption, we can bound the expected time it takes
for the system to move from an initial high-energy state to the low-energy
region:
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Theorem 12.9.2 With the setting as in Lemma 12.9.1, assume that there
is a λ > 0 such that LV (x) + λ ≤ 0 holds whenever V (x) ≥ K. Let τ =
inf{t : V (Xt) ≤ K}. Then, for V (x) ≥ K:

Exτ ≤ λ−1(V (x) −K).

Proof: This follows from Dynkin’s formula, but to ensure that the as-
sumptions for Dynkin’s formula are met, we first localize: Let M > 0 and
define τM = inf{t : V (Xt) ≥ M}. Then, using the bounds and Dynkin’s
formula,

K ≤ ExV (Xt∧τ∧τM )

= V (x) + Ex
∫ t∧τ∧τM

0
LV (Xs) ds

≤ V (x) − λEx(t ∧ τ ∧ τM ).

Now let M → ∞, then Px{τM < t} → 0, so Ex(t∧ τ ∧ τM ) → Ex(t∧ τ), and

K ≤ V (x) − λEx(t ∧ τ).

Now let t → ∞ to see that K ≤ V (x) − λExτ .
More interesting than the specific bound Exτ is often simply that

Exτ < ∞. In the terminology of Markov processes, the low-energy
states {x : V (x) ≤ K} are positively (or non-null) recurrent. This is a
key step in ensuring that a stationary distribution exists and therefore
in ergodic theory for stochastic differential equations (Has’minsǩi, 1980;
Rey-Bellet, 2006).

We now sketch a couple of other applications of this machinery. First,
a fundamental way to bound solutions is to ensure that explosions do not
occur in finite time. Recall that Theorem 8.3.1 assumed a linear growth
bound on the dynamics, and that this ruled out explosions in finite time.
A way to obtain similar results using Lyapunov function is to first assume
that f, g are locally Lipschitz continuous, which guarantees uniqueness and
existence up to a possible explosion. Next, if there exists Lyapunov function
V which is C2, proper, positive and satisfies

LV (x) ≤ λV (x)

where λ ≥ 0, then ExV (Xt) can grow at most exponentially in time, which
rules out explosions. See (Has’minsǩi, 1980; Gard, 1988) for precise state-
ments. The criterion from Theorem 8.3.1 can be seen in this light; it guar-
antees that a Lyapunov function in the form V (x) = |x2| + 1 applies, with
λ = 3C. This technique can be refined to concern escape from bounded sets
also: Exercise 12.7 shows that the stochastic logistic growth process {Xt}
(Example 12.2.4) remains positive if X0 > 0, i.e. neither hits 0 or ∞ in finite
time.
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As a final application of Lyapunov-type arguments, assume that V
is proper and that LV (x) ≤ −λV (x) holds for some λ > 0, whenever
V (x) > K. That is, energy dissipates exponentially while in the high-energy
region. If the diffusion is regular, this implies that the probability density
converges exponentially to the unique stationary density (Rey-Bellet, 2006),
i.e., the process mixes exponentially and is therefore ergodic. Moreover, since
ELV (X) = 0 when X is sampled from the stationary distribution, we have
EV (X) ≤ γ/λ where γ is such that γ ≥ LV (x) + λV (x) everywhere. Even
if we only hint these results, they illustrate the versatility of the technique
of Lyapunov functions.

12.10 Conclusion

If you have a background in deterministic dynamical systems, you will be
well aware of the central importance of stability in that field. It is then
obvious to examine which notions of stability are relevant in the stochastic
case, and which techniques are applicable. Here, we have shown how classical
deterministic Lyapunov theory can be extended to stochastic differential
equations.

For deterministic systems, it is a standard exercise to identify equilibria,
linearize the dynamics around them, and compute eigenvalues to conclude
on stability. The stochastic situation is less straightforward, even if stochas-
tic Lyapunov exponents can be defined analogously: Equilibrium solutions
are rare, and Lyapunov exponents for non-equilibrirum solutions generally
depend on the entire global dynamics. The framework is perhaps most op-
erational and relevant when analyzing the stability of equilibria and, more
generally, invariant low-dimensional manifolds. The predator-prey system
(Section 12.5) is a typical example: The stability analysis of the equilibrium
n = p = 0, and also of the prey-only solution n > 0, p = 0, is illuminating.
However, linearizing the dynamics around equilibria gives rise to wide-sense
linear sensitivity equations, which - in the general multivariate case - cannot
be analyzed in terms of linear algebra.

The machinery of Lyapunov functions also generalizes to the stochastic
case. A bottleneck is actually finding Lyapunov functions. Quadratic Lya-
punov functions for mean-square stability of wide-sense linear systems are
tractable. Beyond this, the structural properties of the system may provide a
hint, such as energy considerations or that the system consists of interacting
subcomponents which can be analyzed one at a time.

In the stochastic case, there are several definitions of stability, and one
must carefully specify which notion is relevant for the study at hand. The
different definitions may very well lead to different conclusions. For exam-
ple, the noise in geometric Brownian motion is stabilizing in the sense that
trajectories converge to zero, if the noise is strong enough, but destabilizing
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in the sense that the mean square diverges, if the noise is strong enough.
The results for other models are different (Exercise 12.4), and also for the
corresponding Stratonovich equation (Exercise 12.2).

For real-world stochastic systems, it is hard to envision experiments
where we perturb the initial conditions but subject the system to the same
realization of noise. That means that the real-world relevance of stability to
initial conditions is greatest when the nominal trajectory is insensitive to
noise, e.g., an equilibrium. In general, the sensitivity to the noise is of equal
importance, e.g., the magnitude of fluctuations around an equilibrium of the
drift. Recall the double well (Section 12.4), where we showed that the Lya-
punov exponent is always negative; this Lyapunov exponent describes the
mixing time within wells, at least when diffusivity is low. One can imagine
applications where this time scale is less important than the stationary dis-
tribution and the rate of transition between wells. So the stability analysis
rarely stands alone but is accompanied by other analysis.

A strength of the machinery of stochastic Lyapunov functions is that
they address not just stability, but also boundedness, and the existence
and properties of a stationary distribution, without actually finding this
stationary distribution. This is feasible because the Lyapunov functions are
only required to satisfy inequalities. We have seen basic results to this end.

In summary, stability analysis of stochastic differential equations is a
rich field, where several notions and approaches coexist. We must carefully
consider which questions to ask about a given system, giving thought both to
what is relevant in the situation at hand, and which analyses are tractable.

12.11 Notes and References

Stability theory for stochastic differential equation was developed in the
1960’s; classical references are (Kushner, 1967) and (Has’minsǩi, 1980); see
also (Gard, 1988).

12.12 Exercises

Exercise 12.1: Let A be a matrix and define St = exp(At). Show that
the largest singular value σ̄(St) of St can be approximated with expλt as
t → ∞, where λ = maxi Reλi and {λi} are the eigenvalues of A. More
precisely, show that 1

t log σ̄(St) → λ.

Exercise 12.2: For the Stratonovich equation dXt = rXt dt+σXt ◦dBt

with initial condition X0 = x, for which parameters (r, σ2) does it hold that
1. the mean EXt stays bounded as t → ∞?

2. the mean square EX2
t stays bounded as t → ∞?
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3. the individual sample path Xt stays bounded as t → ∞, w.p. 1?

Exercise 12.3: Let {Xt} be geometric Brownian motion given by the
Itô equation dXt = rXt dt + σXt dBt with the initial condition X0 = 1.
Assume that the parameters are such that Xt → 0 as t → ∞, w.p. 1. Find
the distribution of S := sup{Xt : t ≥ 0}. Hint: Recall the result of 11.7
regarding the extremum of Brownian motion with drift. Next, confirm the
result with stochastic simulation for suitably chosen parameters.

Exercise 12.4: Consider the two-dimensional wide-sense linear equation
driven by scalar Brownian motion (Mao, 2008)

dXt = −Xt dt+GXt dBt with G =
[

0 −2
2 0

]
.

Show that the stochastic Lyapunov exponent is λ = 1, using the solution
(Exercise 7.23). Note: We see that Itô noise is not always stabilizing.

Exercise 12.5 Lyapunov Exponents for the Double Well
System: For the parameters in Figure 12.3, compute the Lyapunov ex-
ponent in two ways: First, by integration over state space using (12.7), and
next, by stochastic simulation.

Exercise 12.6 Lyapunov Exponents of the van der Pol Os-
cillator: For the van der Pol system of Section 6.2.4, write up the sensitivity
equations. Solve the system and the sensitivity equations numerically on the
time interval [0,100] with initial condition X0 = V0 = 0. Plot the finite-time
Lyapuov exponent on this time interval.

Exercise 12.7 Stochastic Logistic Growth: With equation
(12.5)

dXt = Xt(1 −Xt) dt+ σXt dBt with X0 = x > 0,

consider the candidate Lyapunov function V (x) = x2 − log x defined for
x > 0.

1. Show that V is proper, that V (x) > 0 and that LV (x) is bounded
above, for x > 0.

2. Find δ > 0 such that LV (x) ≤ V (x) + δ holds for all x > 0.

3. Show that {Yt = [V (Xt) + δ] exp(−t)} is a supermartingale.

4. Show that ExV (Xt) < ∞ for all t. In particular, the solution does not
diverge to 0 or to ∞ in finite time.
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5. Assume that σ2 < 2. Show that LV (x) is negative for x > 0 sufficiently
close to 0, or sufficiently large. Conclude that there exists an interval
[a, b] with 0 < a < b which is positively recurrent.

6. With σ2 < 2, show that the candidate Lyapunov function V (x) =
− log x can be used to assess the time it takes the time for the pop-
ulation to recover from a near-extinction (x � 1). Hint: Show that
there exist γ, a > 0 such that LV (x) + γ ≤ 0 for 0 < x < a. Then use
V (x) to bound the expected time τ it takes to travel from X0 = x to
Xτ = a.

7. With σ2 < 2, consider the candidate Lyapunov function V (x) = xp.
Show that, with p = 2, LV (x)/V (x) is negative for x sufficiently large.
Then show, with p = (1 − 2/s2)/2, LV (x)/V (x) is negative for x > 0
sufficiently close to 0. Then, with this p, use V (x) = x2 + xp to show
that the distribution of Xt converges exponentially to the stationary
distribution.

Exercise 12.8 The Stochastic Rosenzweig-MacArthur Model:
Consider (12.9)-(12.10). We take for granted that the positive quadrant
(0,∞)2 is invariant. Let V (n, p) = εn + p. Show that LV (n, p) = rn(1 −
n/K) − µp and sketch the region in state space where LV ≤ 0. Conclude
that the system is stochastically sample path bounded and that for some
v > 0, the region given by V (x) ≤ v is positively recurrent.



Chapter 13

Dynamic Optimization

One application for stochastic differential equations is stochastic control,
also known as stochastic dynamic optimization.

There are numerous examples of these problems, across all domains of ap-
plication: Control engineers build feedback control systems to reduce harm-
ful oscillations in the blades of wind turbines. Process engineers design chem-
ical plants to operate with maximum output without jeopardizing the plant.
In quantitative finance, investors continuously manage portfolios to obtain
a high expected income and a low risk. Every living organism, from bacteria
to humans, has been selected through evolution to maximize the ability to
generate offspring, which explains the traits and behaviors we observe. In
summary, the theory of dynamic optimization helps us to take decisions,
design new systems, as well as to analyze the behavior of existing systems
and decision makers.

The approach in this chapter is based on the so-called value function,
which depends on the state and on time. This value function quantifies the
expected future performance of the controlled process, under the assumption
that the control is optimal. This value function generalizes the expectations
to the future that we studied earlier in Chapter 11, and satisfies the so-called
Hamilton-Jacobi-Bellman equation, a “backward” partial differential equa-
tion which generalizes the backward Kolmogorov equation. This approach
to optimization is called dynamic programming.

In stochastic dynamic optimization, some technicalities become critical.
These concern if the value function is smooth, if an optimal decision exists
or only near-optimal ones, and whether the decisions depend smoothly on
state and time. These technicalities may overshadow the conceptual sim-
plicity of the approach. To avoid this, we first consider a discrete Markov
Decision Problem where these technicalities do not appear. This illuminates
the structure of the solution. Thereafter, we apply this structure to our orig-
inal problem of dynamic optimization for stochastic differential equations.

325
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X1 X2 · · · Xt Xt+1 · · · XT

U1 U2 · · · Ut · · · UT −1

Figure 13.1: Probabilistic graphical model illustrating the interdependence
between the random variables in the Markov Decision Problem.

13.1 Markov Decision Problems

It is perfectly true, as the philosophers say, that life must be
understood backwards. But they forget the other proposition,
that it must be lived forwards.

- Søren Kierkegaard, Journals IV A 164 (1843).

The simplest case of stochastic dynamic optimization is when time is
discrete, and the state space is discrete and finite. The resulting problem of
dynamic optimization is commonly referred to as a Markov decision problem
(Puterman, 2014), and lets us focus on the core in the problem and its solu-
tion, rather than the technicalities of diffusions. Also, dynamic optimization
problems for diffusions can be discretized to Markov decision problems (Sec-
tion 13.12.2), so an understanding of these discrete problems are helpful for
numerical algorithms.

Consider a stochastic process {Xt : t ∈ T} with state space X =
{1, . . . , N} and in discrete time, T = {1, 2, . . . , T}. At each time t we choose
a decision variable Ut ∈ U. We require that the set U of permissible con-
trols is compact; e.g., a finite set or an interval of reals. We must choose
Ut based on the current state, i.e., Ut = µ(Xt, t) for some control strategy
µ : X × T 7→ U.

The initial state X1 has a prescribed distribution. Conditional on the
current state and control, the next state is random with probabilities

P{Xt+1 = j | Xt = i, Ut = u} = P u
ij

and independent of past states and controls Xs and Us for s = 1, . . . , t− 1.
We assume that these transition probabilities P u

ij are continuous functions
of u ∈ U, for each i, j (when U is continuous). The interaction between the
random variables is illustrated in Figure 13.1.

We next turn to the control objective: A reward is issued at each time
t ∈ T, which depends on the state Xt and the control Ut and on time t itself.
That is, we assume a reward function

h : X × U × T 7→ R
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Biography: Richard Ernest Bellman (1920–1984)
An American applied mathematician who was cen-
tral to the rise of “modern control theory”, i.e.,
state space methods in systems and control. His
most celebrated contribution is dynamic program-
ming and the principle of optimality, which both
concern dividing complex decision-making prob-
lems into more, but simpler, sub-problems. A
Ph.D. from Princeton, he spend the majority of his
career at RAND corporation. Photograph ©Shut-
terStock.

which is continuous in u ∈ U everywhere, such that the total reward is∑
t∈T

h(Xt, Ut, t).

The objective is to maximize the expected reward, i.e., we aim to identify

max
µ

Eµ
∑
t∈T

h(Xt, Ut, t) (13.1)

and the maximizing argument µ. Here the superscript in Eµ indicates that
the distribution of Xt and Ut depends on µ. The maximum is over all func-
tions µ : X × T 7→ U. This is a compact set, and the expected reward is a
continuous function of µ, so the maximum is guaranteed to exist.

The difficulty in the Markov decision problem (13.1) is that the space
of controls µ : X × T 7→ U can be very large. The celebrated dynamic
programming solution, due to Richard Bellman, tackles this difficulty with
an iteration that breaks the large problem (13.1) into smaller sub-problems:
We first consider the problem with s = T , and then let the initial time
s march backward, ending at s = 1. At each step s in this iteration, the
optimization problem is tractable, given the solution to the previous problem
s+ 1.

To see this, let the value V (x, s) be the highest expected reward, when
starting in state x ∈ X at time s ∈ T; that is:

V (x, s) = max
µ

Eµ,Xs=x
T∑

t=s

h(Xt, Ut, t). (13.2)

Theorem 13.1.1 (Dynamic programming) The value function V is the
unique solution to the recursion

V (x, s) = max
u∈U

EXs=x,Us=u [h(x, u, s) + V (Xs+1, s+ 1)] . (13.3)
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with the terminal condition

V (x, T ) = max
u∈U

h(x, u, T ) , (13.4)

The optimal value V (x, 1) is obtained with any strategy µ such that

µ(x, s) ∈ arg max
u∈U

EXs=x,Us=u [h(x, u, s) + V (Xs+1, s+ 1)] .

In terms of the transition probabilities, the dynamic program (13.3) is:

V (x, s) = max
u∈U

[
h(x, u, s) +

∑
y∈X

P u
xyV (y, s+ 1)

]
. (13.5)

The dynamic programming equation (13.3) contains two critical statements:
First, when an optimal decision maker is at state Xs = x, their decision
does not depend on how they got there. That is, we maintain a Markov
structure: Given the present, the optimal decision which affects the future is
independent of the past. Second, if they know the value function at time s+1,
then they do not need to look further into the future: The optimal decision
at time s is a trade-off between immediate gains (maximizing h(x, u, s)) and
moving into favorable regions in state space (maximizing EuV (Xs+1, s+1)).
This trade-off determines the value function at time s. It is easy to solve
the Dynamic Programming equation (13.3) numerically as a terminal value
problem, if we at each state x and time s can maximize over u. The solution
provides us with the value V of the Markov Decision Problem (13.1) and
the optimal control strategy µ.

Proof: Let W : X × T → R be the solution to the recursion given in
the theorem. We claim that W = V where V is given by (13.2). Clearly this
holds for s = T due to the terminal value (13.4). So assume that W = V on
X × {s+ 1}; we aim to show that W = V on X × {s}. Write

Eµ,Xs=x
T∑

t=s

h(Xt, Ut, t) = h(x, u, s) + Eµ,Xs=x
T∑

t=s+1
h(Xt, Ut, t)

where u = µ(x, s). Condition on Xs+1 and use the Law of Total Expectation:

Eµ,Xs=x
T∑

t=s+1
h(Xt, Ut, t) = EUs=u,Xs=xEµT

s+1

[
T∑

t=s+1
h(Xt, Ut, t)

∣∣∣∣∣Xs+1

]

The notation EµT
s+1 indicates that the conditional expectation only depends

on the restriction of µ to X×{s+1, . . . , T} and is independent of the initial
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condition Xs = x, due to the Markov property and conditioning on Xs+1.
So:

V (x, s) = max
u,µT

s+1

(
h(x, u, s) + EUs=u,Xs=xEµT

s+1

[
T∑

t=s+1
h(Xt, Ut, t)

∣∣∣∣∣Xs+1

])

= max
u

(
h(x, u, s) + EUs=u,Xs=x max

µT
s+1

EµT
s+1

[
T∑

t=s+1
h(Xt, Ut, t)

∣∣∣∣∣Xs+1

])

= max
u

(
h(x, u, s) + EUs=u,Xs=xV (Xs+1, s+ 1)

)
= max

u

(
h(x, u, s) + EUs=u,Xs=xW (Xs+1, s+ 1)

)
= W (x, s)

as claimed. So V = W on X × {s} and, by iteration, on X × T.

13.2 Controlled Diffusions and Performance Ob-
jectives

We now return to diffusion processes, aiming to pose a dynamic optimiza-
tion problem similar to the Markov decision problem, and to determine
the solution using dynamic programing. We consider a controlled diffusion
{Xt : 0 ≤ t ≤ T} taking values in X = Rn and with a finite terminal time
T > 0, given by

dXt = f(Xt, Ut) dt+ g(Xt, Ut) dBt

with initial condition X0 = x. Here {Bt : 0 ≤ t ≤ T} is multivariate standard
Brownian motion, and {Ut : 0 ≤ t ≤ T} is the control signal, which we
consider a decision variable: At each time t ∈ [0, T ] we must choose Ut from
some specified set U of permissible controls. We restrict attention to state
feedback controls

Ut = µ(Xt, t)

where the function µ : X × [0, T ] 7→ U is such that the closed-loop system

dXt = f(Xt, µ(Xt, t)) dt+ g(Xt, µ(Xt, t)) dBt (13.6)

satisfies the conditions in Chapter 8 for existence and uniqueness of a solu-
tion {Xt}. This solution will then be a Markov process, so another name for
state feedback controls Ut = µ(Xt, t) is Markov controls.

The controlled system terminates when the state exits a set G ⊂ X, or
when the time reaches T , i.e., we have a stopping time

τ = min{T, inf{t ∈ [0, T ] : Xt 6∈ G}}
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At this point a reward is issued

k(Xτ , τ) +
∫ τ

0
h(Xt, Ut, t) dt

The first term, k(Xτ , τ), the terminal reward, while the integrand is the
running reward, which is accumulated along the trajectory until termination.

For a given Markov control strategy {Ut = µ(Xt, t) : 0 ≤ t ≤ T}, and
a given initial condition Xs = x, we can assess the performance objective
given by

J(x, µ, s) = Eµ,Xs=x
[
k(Xτ , τ) +

∫ τ

s
h(Xt, Ut, t) dt

]
The control problem we consider is to maximize J(x, µ, s) w.r.t. the control
signal {Ut}, or equivalently w.r.t. the control strategy µ. Our original interest
is the initial time zero, s = 0, but we include the initial time s as a parameter
to prepare for a dynamic programming solution.

Instrumental in the solution is the generator of the controlled diffusion.
For a fixed control u ∈ U, define the generator Lu as

(LuV )(x) = ∂V

∂x
(x) · f(x, u) + 1

2tr
[
gT (x, u)∂

2V

∂x2 (x)g(x, u)
]

while for a control strategy µ : X 7→ U, define the “closed-loop” generator
Lµ:

(LµV )(x) = ∂V

∂x
(x) · f(x, µ(x)) + 1

2tr
[
gT (x, µ(x))∂

2V

∂x2 (x)g(x, µ(x))
]
.

Finally, let hµ be the resulting running reward; that is:

hµ(x, t) = h(x, µ(x), t).

13.3 Verification and the Hamilton-Jacobi-Bellman
Equation

We now state the verification theorem which lets us conclude that we have
solved the optimization problem, if we have found a solution to the dynamic
programming equation.

Theorem 13.3.1 Let the domain G be open and bounded, let V : G ×
[0, T ] 7→ R be C2,1 and satisfy the Hamilton-Jacobi-Bellman equation

∂V

∂t
+ sup

u∈U
[LuV + h] = 0 (13.7)
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on G× [0, T ], along with boundary and terminal conditions

V = k on ∂(G× [0, T ])

Let µ∗ : G× [0, T ] 7→ U be such that

sup
u∈U

[LuV + h] = Lµ∗
V + h

on G × [0, T ], and assume that with this µ∗, the closed-loop system (13.6)
satisfies the conditions in Theorem 8.3.2. Then, for all x ∈ G and all s ∈
[0, T ]

V (x, s) = sup
µ
J(x, µ, s) = J(x, µ∗, s)

so that µ∗ is the optimal strategy.

This theorem provides a strategy for solving stochastic dynamic opti-
mization problems: First, try to solve the Hamilton-Jacobi-Bellman equa-
tion, and in doing so, identify the optimal control strategy µ∗. If this suc-
ceeds, then the theorem states that we have solved the optimization problem.
Because the solution involves a terminal value problem governing the value
function, just as was the case for the Markov Decision Problem of section
13.1, we refer to the solution provided by Theorem 13.3.1 as a dynamic
programming solution.

We have required that G is bounded for simplicity, so that the proof
that we are about to give can use Dynkin’s formula. This condition can
be relaxed; see (Øksendal, 2010; Touzi, 2013) and the example in the next
section.

Proof: Let µ : X × [0, T ] 7→ U be a given control strategy such that the
closed loop dynamics (13.6) satisfy the conditions for existence and unique-
ness in Theorem 8.3.2. Let V : X × [0, T ] 7→ R be C2,1 and satisfy

∂V

∂t
+ LµV + h(x, µ(x, t), t) = 0 for (x, t) ∈ G× [0, T ] (13.8)

along with the boundary condition V = k on ∂(G× [0, T ]). Then Dynkin’s
lemma, Theorem 11.1.1, states that

Eµ,Xt=xV (Xτ , τ) = V (x, t) + Eµ,Xt=x
∫ τ

0

∂V

∂t
+ LµV dt

and therefore, using the PDE (13.8) and the associated boundary condition,
we get

V (x, t) = Eµ,Xt=x
∫ τ

t
h(Xs, Us, s) ds+ k(Xτ , τ).

In particular, let µ be the control µ∗ in the verification Theorem 13.3.1 and
let V be the value function. Then V is the expected pay-off with the control
µ∗.
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Now, let µ1 be any other control strategy such that the closed loop
system satisfies the usual assumptions. Then the HJB equation ensures that

∂V

∂s
+ Lµ1V + h(x, µ1(x, s), s) ≤ 0

By Dynkin’s lemma, it follows that

Eµ1,Xs=x
∫ τ

s
h(Xt, Ut, t) dt+ k(Xτ , τ) ≤ V (x, s)

It follows that this control strategy µ1 results in an expected pay-off which
is no greater than what is obtained with the strategy µ∗. We conclude that
the strategy µ∗ is optimal.

13.4 Portfolio Selection

Dynamic optimization is widespread in mathematical finance. A simpli-
fied portfolio selection problem (Merton, 1969) considers an investor whose
wealth at time t is Wt. She invests a fraction Pt of this in a stock, the price
Xt of which is geometric Brownian motion given by

dXt = αXt dt+ σXt dBt,

where {Bt} is standard Brownian motion. The rest of her wealth, (1−Pt)Wt,
she invests in a risk-less asset which earns a steady interest with rate r. Her
objective is to maximize her utility at a fixed time T > 0, specifically

k(WT ) where k(w) = w1−γ

1 − γ
.

Here, γ > 0, γ 6= 1, is a measure of risk aversion. Recall that this specific
utility is called iso-elastic or constant relative risk aversion.

To frame this problem in our standard formulation, we could let the state
at time t be (Xt,Wt) while the control is Pt. In an infinitesimal time interval
dt, the return from the risky asset is PtWt(α dt + σ dBt), while the return
from the riskless asset is (1 − Pt)Wtr dt, so Wt evolves as

dWt = Wt(r + Pt(α− r)) dt+ σPtWt dBt.

Note that this equation does not involve Xt, so we can exclude Xt from the
state vector; then Wt is the state. We therefore seek a value function V (w, t)
which satisifies the Hamilton-Jacobi-Bellman equation, i.e.,

V̇ + sup
p

[
V ′w(r + p(α− r)) + 1

2σ
2p2w2V ′′

]
= 0, V (w, T ) = k(w).
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A qualified guess is that V is itself a power function of w at each time t, i.e.

V (w, t) = b(t)w
1−γ

1 − γ
where b(t) > 0.

With this, the terminal condition is b(T ) = 1 and, after division with w1−γ ,

1
1 − γ

ḃ+ b sup
p

[
(r + p(α− r)) − 1

2σ
2p2γ

]
= 0.

The bracket is concave in p and does not involve time or the state, so the
optimal policy has Pt = p constant and is found as a stationary point:

α− r − σ2pγ or Pt ≡ p = α− r

γσ2 .

The investor should constantly buy or sell stock to maintain the constant
fraction p. This fraction p depends on parameters: It increases with the extra
return α− r of the risky asset and decreases with volatility σ2 and with the
risk aversion γ. If α > r (a reasonable assumption), then p > 0. If the risky
asset is very attractive or the risk aversion γ is small, we may find find p > 1,
so that our investor borrows money to invest in the stock. If we require that
Pt ∈ [0, 1], then the optimal strategy is Pt ≡ 1 when (α− r) > γσ2.

We can now solve for b(t):

b(t) = eλ(t−T ) where λ = (1 − γ)
(
r + 1

2
(α− r)2

γσ2

)
.

This establishes a solution to the Hamilton-Jacobi-Bellman equation. To
address that the domain in this case is unbounded, assume that the investor
retires if her wealth ever reaches w̄ and then receives a reward V (w̄, τ) where
τ = inf{t : Wt ≥ w̄}. Then, the verification Theorem 13.3.1 assures us that
the strategy {Pt} maximizes the expected reward. Now let w̄ → ∞; then
early retirement happens with probability 0, so we have verified that the
optimal value and strategy also applies on this unbounded domain.

13.5 Multivariate Linear-Quadratic Control

An important special case of control problems is the linear-quadratic regu-
lator (LQR) problem, where system dynamics are linear

dXt = AXt dt+ FUt dt+G dBt (13.9)

while the control objective is to minimize the quadratic functional

J(x,U) = Ex
∫ T

0

1
2X

>
t QXt + 1

2U
>
t RUt dt+ 1

2X
>
T PXT . (13.10)
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Factbox: [Maximization vs. minimization] Optimization problems can
concern maximization, i.e., maxx f(x) or supx f(x), or minimization, i.e.,
minx f(x) or infx f(x). We can shift between the two; for example:

min
x∈X

f(x) = − max
x∈X

[−f(x)].

Convexity is important in optimization: A convex minimization problem
is to minimize a convex function f over a convex set X. This is equivalent
to maximizing a concave function −f over a convex set.

Here, Xt ∈ Rn, Ut ∈ Rm, while {Bt : t ≥ 0} is l-dimensional standard
Brownian motion. The terminal time T > 0 is fixed. The matrix dimensions
are A ∈ Rn×n, F ∈ Rn×m, G ∈ Rn×l, Q ∈ Rn×n, P ∈ Rn×n, R ∈ Rm×m.
We assume Q ≥ 0, R > 0, P ≥ 0.

We guess that the value function is quadratic in the state:

V (x, t) = 1
2x

>Wtx+ wt

where Wt ∈ Rn×n, Wt ≥ 0, while wt is scalar. The HJB equation then reads

1
2x

>Ẇtx+ẇt+inf
u

[
x>Wt(Ax+ Fu) + 1

2trG>WtG+ 1
2x

>Qx+ 1
2u

>Ru

]
= 0

The bracket is convex in u, so the minimizing u is found as a stationary
point:

x>WtF + u>R = 0

i.e., the optimal control signal is

u∗ = −R−1F>Wtx

where we have used that R = R> and Wt = W>
t . This optimal control u∗

depends linearly on the state x, with a gain −R−1F>Wt which depends on
the value function, i.e., on Wt. Inserting in the HJB equation and collecting
terms, we get

1
2x

>
[
Ẇt + 2Wt(A− FR−1F>Wt) +Q+WtF

>R−1FWt

]
x+

ẇt + 1
2trG>WtG = 0

while the terminal condition is
1
2x

>Px = 1
2x

>WTx+ wT .
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Now notice that x>2WtAx = x>(WtA + A>Wt)x, where the matrix in the
bracket is symmetric. Then, recall that if two quadratic forms x>S1x and
x>S2x agree for all x, and S1 and S2 are symmetric, then S1 = S2. We see
that the HJB equation is satisfied for all x, t iff the following two hold:

1. The matrix function {Wt : 0 ≤ t ≤ T} satisfies

Ẇt +WtA+A>Wt −WtFR
−1F>Wt +Q = 0 (13.11)

along with the terminal condition WT = P . This matrix differential
equation is termed the Riccati equation.

2. The off-set {wt : 0 ≤ t ≤ T} satisfies the scalar ordinary differential
equation

ẇt + 1
2trG>WtG = 0

along with the terminal condition wT = 0.

We summarize the result:

Theorem 13.5.1 (LQR Control) The LQR problem of minimizing the
quadratic cost (13.10) w.r.t. the control strategy {Ut : 0 ≤ t ≤ T}, subject to
system dynamics (13.9), is solved by the linear static state feedback control

Ut = µ(Xt, t) = −R−1F>WtXt

where {Wt : 0 ≤ t ≤ T} is governed by the Riccati equation (13.11), with
terminal condition WT = P . The associated cost is

Φ(x) = x>W0x+ w0

where {wt : 0 ≤ t ≤ T} is found by

wt =
∫ T

t

1
2trG>WsG ds.

Notice that the Riccati equation (13.11) does not involve the noise inten-
sity G. So the optimal control strategy is independent of the noise intensity,
but the noise determines the optimal cost through wt.

The advantage of the linear quadratic framework is that the problem
reduces to the Riccati matrix differential equation (13.11). So instead of a
partial differential equation on Rn×[0, T ], we face n(n+1)/2 scalar ordinary
differential equations; here we have used the symmetry of Wt and solve only
for, say, the upper triangular part of Wt. This reduction from a PDE to a
set of ODE’s allows one to include a large number of states in the problem:
Solving the Hamilton-Jacobi-Bellman partial differential equation (13.7) for
a general nonlinear problem becomes numerically challenging even in three
dimensions, but an LQR problem can have hundreds of states.
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13.6 Steady-State Control Problems

In many practical applications, the control horizon T is exceedingly large
compared to the time constants of the controlled system. In that case, we
may pursue the limit T → ∞. This situation is called “infinite horizon
control problems”. If also the system dynamics f, g and the running pay-
off h are independent of time t, they often give rise to steady-state control
strategies in which the optimal control strategy µ does not depend on time.

This situation can come in two flavors: Transient control problems and
stationary control problems. In a transient control problem, the control mis-
sion ends when the state exits the region G of the state space, and in the
infinite horizon case we assume that this takes place before time runs out
at t = T . For example, for an autopilot that lands an aircraft, the mission
ends when the aircraft is at standstill on the runway, and not at a specified
time. In this situation, we seek a value function V : X 7→ R which satisfies

sup
u∈U

[LuV + h] = 0 for x ∈ G, V = k on ∂G.

Example 13.6.1 (Swim Left or Right?) A swimmer in a river is taken
randomly left or right by currents, so that his position is a controlled diffu-
sion

dXt = Ut dt+ dBt

on the domain Xt ∈ G = (−H,H). Here, Ut is his swimming velocity.
He aims to get ashore as quickly as possible but with limited effort, i.e., to
minimize ∫ τ

0

1
2 + 1

2U
2
t dt

where τ = inf{t : Xt 6∈ G} and w > 0. This reflects a trade-off between
time (the constant 1/2) and effort (the term U2

t /2). The Hamilton-Jacobi-
Bellman equation is

inf
u

[
uV ′ + 1

2V
′′ + 1

2 + 1
2u

2
]

= 0

with boundary conditions V (−H) = V (H) = 0. The optimal control strategy
is u = µ∗(x) = −V ′(x), and the HJB equation becomes

1
2V

′′ − 1
2(V ′)2 + 1

2 = 0 for x ∈ (−H,H).

The derivative W := V ′ satisfies W ′ = W 2 − 1, so V ′(x) = − tanh x. The
optimal control strategy is u = µ∗(x) = tanh x and the value function is

V (x) = log coshH
cosh x .
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Figure 13.2: Value function (left) and optimal strategy (right) for the “swim
left or right” Example 13.6.1.

See Figure 13.2. In the middle of the river, the swimmer stays calm (u = 0),
waiting to see if random currents take him left or right. He then swims
towards the nearest bank, with a determination that grows as he approaches
the bank, confident that random currents will not take him back to the center
again. Far from the center, the noise is irrelevant; the optimal swimming
speed approaches 1 for x = H → ∞, which would be the result if there was
no noise.

In the stationary control problem, on the other hand, the closed loop
system (13.6) with the time-invariant control strategy Ut = µ(Xt) admits
a stationary solution {Xt : t ≥ 0}, and the assumption is that the process
mixes sufficiently fast compared to the terminal time T , so that the optimiza-
tion problem concerns this stationary process. In this case, the boundary ∂G
should never be reached; if the domain G is bounded, we may ensure that
the boundary is repelling (Section 11.7), or replace the absorbing boundary
∂G with a reflecting one (Section 9.11.3). The terminal pay-off k becomes
irrelevant. Then, we search for solutions to the HJB equation (13.7) of the
form

V (x, t) = V0(x) − γ · t

where γ ∈ R is the expected running payoff of the stationary process, while
the off-set V0(x) indicates whether a state x is more or less favorable than
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average. Inserting this particular form into the HJB equation (13.7), we see
that this off-set V0 : X 7→ R must satisfy

sup
u∈U

[LuV0 + h] = γ. (13.12)

We seek a matching pair (V0, γ). In general, there can be many such pairs,
and we seek the maximal γ. This equation specifies V0 at best up to an
additive constant; so we may require that V0 has maximum 0, or that V0(X)
has expectation 0 under the stationary distribution of {Xt}.

13.6.1 Stationary LQR Control

We consider the stationary version of the linear quadratic regulator problem
(compare Section 13.5), starting in the scalar case. Let the controlled scalar
diffusion {Xt : t ≥ 0} be given by the linear SDE

dXt = (aXt + fUt) dt+ g dBt

with f, g 6= 0, where the performance objective is to minimize∫ T

0

1
2qX

2
t + 1

2U
2
t dt

with q > 0. We pursue the limit T → ∞. We guess a solution V0(x) = 1
2Sx

2

to the stationary HJB equation (13.12), which then reads

min
u

[
xS(ax+ fu) + 1

2g
2S + 1

2qx
2 + 1

2u
2
]

= γ.

Minimizing w.r.t. u, inserting this optimal u, and collecting terms which are
independent of and quadratic in x, we find

u = −Sfx, γ = 1
2g

2S, Sa− 1
2S

2f2 + 1
2q = 0. (13.13)

The last equation is quadratic in S. It is termed the algebraic Riccati equa-
tion. It admits two solutions:

S1 = a−
√
a2 + f2q

f2 , S2 = a+
√
a2 + f2q

f2

For each of these two solutions, we can compute the corresponding station-
ary running cost γ. Note that S1 is negative, regardless of parameters, which
should correspond to a negative stationary expected running cost γ. This
clearly cannot be the case, since the running cost is non-negative by defini-
tion. The reason for this is that the closed-loop system corresponding to S1
is

dXt = (a− S1f
2)Xt dt+ g dBt =

√
a2 + f2qXt dt+ g dBt.
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This system is unstable and therefore does not admit a stationary solution
{Xt}. So the solution S1 does not help us with the stationary control problem
(even if it has relevance for other problems, e.g. finite-time problems of
driving the system away from its equilibrium). In turn, inserting the solution
S2, we find a positive expected stationary running cost γ, and closed-loop
dynamics

dXt = (a− S2f
2)Xt dt+ g dBt = −

√
a2 + f2qXt dt+ g dBt

which are stable. To summarize, the stationary HJB equation has more
than one solution, and the relevant one is the maximal one, which is also the
unique one which leads to stable closed-loop dynamics, and thus a stationary
controlled process.

The following theorem generalizes this example.

Theorem 13.6.1 Consider the LQR problem (13.9), (13.10) and let T →
∞. Assume that the pair (A,Q) is detectable and that the pair (A,F ) is
stabilizable, i.e., for any eigenvalue λ of A with Reλ ≥ 0, it holds that the
corresponding right eigenvector v satisfies Qv 6= 0 and the left eigenvector p
satisfies pF 6= 0. Then, the optimal state feedback is

Ut = µ(Xt) = −R−1F>SXt

where S is the unique positive semidefinite solution to the Algebraic Riccati
equation

SA+A>S − SFR−1F>S +Q = 0 (13.14)

with the property that A−FR−1F>S is stable. This solution is also maximal
in the sense that any other symmetric solution S1 to the algebraic Riccati
equation has S1 ≤ S. The associated time-averaged running cost is

1
2trG>SG.

See e.g. (Doyle et al., 1989). The importance of stabilizability is that any
unstable mode (λ, v, p) is affected by the control, so it can be stabilized. The
importance of detectability is that such an unstable mode must be stabilized:
If not, the state and the cost will diverge to infinity. Combined, these two
requirements assure that the optimal controller results in a stable system.
The theory of linear-quadratic control is very complete, both theoretically
and numerically, and has been applied to a large suite of real-world problems.
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13.7 Designing an Autopilot

Consider designing an autopilot for a ship, i.e., a control system that main-
tains the desired course by controlling the rudder. The model is

dωt = (kφt − cωt + τt)dt, dθ̃t = ωt dt, dIt = θ̃t dt.

Here, ωt is the speed of rotation of the ship at time t. The control signal is
φt, the angle of the rudder, while τt is an exogenous torque on the ship from
wind and waves. The constants k and c determine the dynamics of rotation:
With no exogenous torque (τt ≡ 0), a constant rudder angle φt will result
in a constant speed of rotation ωt = kφt/c. If the ship is turning and the
rudder is set midships (neutral, φt = 0), then the ship will gradually stop
rotating over a time scale of 1/c.

The course of the ship is θt, which we aim to keep constant at θREF, and
the error is θ̃t = θt − θREF. It is the integrated error; we will discuss the
logic behind this term later, after having designed the controller.

The state vector is Xt = (ωt, θ̃t, It). We model the exogenous force τt

as white noise with intensity g, and define the control signal Ut = φt. The
system dynamics can then be written in the standard form

dXt = AXt dt+ FUt dt+G dBt

with

A =

 −c 0 0
1 0 0
0 1 0

 , F =

 k
0
0

 , G =

 g
0
0

 .
We seek a stationary controller which minimizes the steady-state expectation

E1
2X

>
t QXt + 1

2R|Ut|2.

We take R = 1 and Q to be a diagonal matrix with entries q11, q22
and q33. Figure 13.3 shows a simulation where the system has been non-
dimensionalized and all parameters taken to be 1, except q33 which is 0.1. In
the beginning, the desired course is θREF = 0 and the ship starts at θ0 = 10,
but the controller achieves the correct course in about 10 time units. Mid-
way during the simulation, the desired course changes, and the autopilot
again completes the turn in, again, roughly 10 time units.

For this case, the optimal feedback strategy is

Ut = µ(Xt) ≈ −1.6ωt − 2.5θ̃t − 1It.

This structure, where the control signal is a linear combination of the
error signal θ̃t itself as well as its derivative ωt and its integral It, is termed
a PID controller in control engineering, for proportional-integral-derivative.
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Figure 13.3: Simulation of an autopilot for a ship. The noise signal in the sim-
ulation is biased, i.e., the Brownian motion has a drift of 5. Top panel: The
heading θt of the ship. Included is also the desired heading θREF (dashed),
which changes during the simulation. Bottom panel: The rudder angle φt,
i.e., the control signal.
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The proportional part says that if you are too far to the right (e.g., at time
0 in the simulation), turn the rudder left. The derivative, i.e., the turning
rate, acts as a damping: As the ship begins to turn left, the rudder action
is decreased. This prevents an excessive overshoot.

The integral term It makes sure that the expected error vanishes in
steady state, Eθ̃t = 0, even if the exogenous torque τt is biased, i.e., even if
the Brownian motion has a drift. In the simulation, the torque has a positive
bias of +5, so the rudder fluctuates around EUt = −5 to compensate for this
torque. It is custom in control engineering to include such integrated error
terms to compensate for biased noise and achieve robustness towards model
errors. An alternative would be to include the bias of the torque in the model
and compensate for it, but the integral is popular due to its simplicity. A
disadvantage of the integral term is that it leads to some overshoot (figure
13.3, around times 5 and 55): Since the controller is stabilizing, the integral
It would converge to 0 as t → ∞ in absence of noise. This implies that
an initial positive error must be balanced by a negative error later, i.e., an
overshoot.

A relevant question is how to choose the weights in Q and R. Ideally,
they could be determined from higher level objectives, e.g., to make the
ship reach its destination as quickly as possible. With deviations from the
desired course, the ship follows a less direct and therefore longer route, but
excessive rudder action slows the ship down. However, in practice it is not
always feasible to deduce the weights Q and R. Then, they can be seen as
tuning parameters that we adjust until we are satisfied with the resulting
control system. An advantage of tuning the controller through the weights Q
and R, rather than, say, the feedback policy µ, is that the controlled system
is guaranteed to be stable for any choice of weights.

13.8 Designing a Fisheries Management System

We now turn to an economic problem: How to design an optimal fishing
policy. Consider a fish stock where the biomass displays stochastic logistic
growth:

dXt = [Xt(1 −Xt) − Ut] dt+ σXt dBt

where {Xt : t ≥ 0} is the biomass, {Ut : t ≥ 0} is the catch rate, which is
our decision variable, {Bt : t ≥ 0} is standard Brownian motion, and σ is
the level of noise in the population dynamics. This is a non-dimensionalized
model; compare Example 7.7.1. We assume that σ2 < 2 so that in absence
of fishing, the zero solution is unstable; compare Example 12.3.3.

First, the management objective is to maximize the long-term expected
catch Ut. The steady-state Hamilton-Jacobi-Bellman equation governing V0
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is
sup
u≥0

[
(x(1 − x) − u)V ′

0 + 1
2σ

2x2V ′′
0 + u

]
= γ.

We maximize over only non-negative u, because we cannot unfish. Then, an
optimal strategy must satisfy

u =
{

0 when V ′
0(x) > 1

∞ when V ′
0(x) < 1.

When V ′
0(x) = 1, any u is optimal. In words, we should either not fish at

all, or fish as hard as possible, depending on V ′
0(x). Such a strategy, where

the control variable Ut switches discontinuously between the extremes of the
permissible values, is termed a bang-bang control strategy. They arise when
the instantaneous maximization problem in the HJB equation is linear in u,
so that optimal controls u always exist on the boundary of U - in this case,
0 and ∞. Bang-bang control are often problematic: Mathematically, there
is no Markov strategy which satisfies this and at the same time satisfies
the assumptions for existence and uniqueness of solutions (Theorem 8.3.2).
More practically, they are difficult to implement, and they may drive the
system to an extreme where the mathematical model is no longer a valid
representation of reality, for example because they excite non-linearities or
fast unmodelled dynamics. In the context of fisheries management, most
managers will typically deem them unacceptable.

We conclude that our problem formulation was too simplistic, so we try
again. We argue that exceedingly large catches u will flood the market and
reduce the price, and take this into account by assuming that the cumulated
profit is ∫ T

0

√
Ut dt.

It is important that
√
u is an increasing concave function of u ≥ 0, but the

specific choice of a square root is rather arbitrary. With this performance
criterion, the HJB equation becomes

sup
u≥0

[
(x(1 − x) − u)V ′

0 + 1
2σ

2x2V ′′
0 +

√
u

]
= γ. (13.15)

Now, the optimal control is, whenever V ′
0(x) > 0,

u = µ∗(x) = 1
4(V ′

0(x))2 (13.16)

It is easy to verify that a solution to this equation is

V0(x) = 1
2 log x, u = µ∗(x) = x2, γ = 1

2(1 − 1
2σ

2).
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With this strategy, the biomass satisfies the logistic growth equation

dXt = Xt(1 − 2Xt) dt+ σXt dBt

and will therefore approach a Gamma-distributed steady state (Example
9.8.2). In absence of noise, the biomass will approach the equilibrium state
x = 1/2. This is the point in state space where the surplus production
x(1 − x) is maximized, so this point allows the maximum sustainable yield
(Schaefer, 1957). The noise will perturb the system away from this state,
but the optimal control attempts to bring the system back to this state.

A simulation of the system is shown in Figure 13.4. The simulation starts
at the unexploited equilibrium, X0 = 1. In addition to the optimal policy
Ut = X2

t , the figure includes two simpler policies: First, the constant catch
policy Ut = 1/4. Without any noise in the system, this policy would be able
to maintain Maximum Sustainable Yield and a population at Xt = 1/2.
However, this equilibrium solution would be unstable, and the noise in the
population dynamics (or any other perturbation) drives the system away
from the equilibrium and causes the population to crash and reach Xt = 0,
at which point the population is extinct and the fishery closes.

The figure also includes the constant-effort policy Ut = Xt/2, where we
harvest a fixed fraction of the biomass in each small time interval. With-
out noise, this would also lead to Maximum Sustainable Yield, Xt = 1/2,
Ut = 1/4, which would now be a stable equilibrium. With (weak) noise,
fluctuations around this equilibrium arise. Compared to the optimal policy
Ut = X2

t , the constant effort policy leads to lower biomass most of the time,
and consequently also to lower catches and profits. The optimal policy re-
laxes the fishery effort more in bad years, allowing the biomass to rebuild,
and conversely exploits good years to the fullest.

Exercise 13.1: The value function V0(x) tends to −∞ as x ↘ 0. How
should this be understood? Hint: Consider first the time-varying optimiza-
tion problem and the corresponding value function V (x, t) for x near 0.

For this particular case, the optimal control and the value function V0
turn out to be independent of the noise level. But the noise moves the system
away from the optimal operating point and reduces the expected payoff:
γ = 1

2(1 − 1
2σ

2). The limit γ = 0 is reached when σ2 = 2, i.e., where the
unexploited system becomes unstable (Example 12.3.3). With σ2 > 2, the
population will crash even without fishing, so that no profit can be obtained
in steady state.

13.9 A Fisheries Management Problem in 2D

We extend the fisheries example to two dimensions. Aiming to demonstrate
that numerical solutions are feasible, we give a concise presentation of the
problem. The system is a predator-prey system with harvest:
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Figure 13.4: Simulation of the fisheries management system with σ2 = 1/2
and three management regimes: Constant catch Ut = 1/4 until collapse,
constant effort Ut = Xt/2, and the optimal policy Ut = X2
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simulations are done with the same realization of Brownian motion.
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dNt = Nt

[
r(1 − Nt

K
) − cPt

Nt + N̄
− FN

t

]
dt+ σNNt dB

(1)
t (13.17)

dPt = Pt

[
εcNt

Nt + N̄
− µP − FP

t

]
dt+ σPPt dB

(2)
t . (13.18)

Here, Nt is the prey abundance (think herring or sardines), and Pt is the
predator abundance (cod or tuna). This is the Rosenzweig-MacArthur model
we posed in Section 12.5, except for the catch terms (CN

t = FN
t Nt, C

P
t =

FP
t Pt) which are written in terms of fishing mortalities (FN

t , FP
t ).

We seek fishing mortalities (FN
t , FP

t ) which maximize the total revenue,
assuming a payoff structure as in the previous section, for each fishery:

h(N,P, FN , FP ) = ρN

√
NFN + ρP

√
PFP .

As before, the square root models price dynamics, or our utility from the
catches NFN , PFP . The weights ρN and ρP determine if we prefer to catch
prey or predators.

Theoretically, we aim for a solution to the Hamilton-Jacobi-Bellman
equation (13.12) with x = (N,P ), u = (FN , FP ) on the entire region
{(N,P ) : N ≥ 0, P ≥ 0}. For numerical purposes, we confine ourselves to the
bounded rectangular set {(N,P ) : Nmin ≤ N ≤ Nmax, Pmin ≤ P ≤ Pmax}.
We enforce FN = 0 whenever N = Nmin; i.e., there will be no fishing on
the prey when its abundance drops to Nmin, and similarly for the predator.
Next, we enforce reflection (no-flux) at all boundaries. This approximation
simplifies the problem, and is (partially) justified by the axes being unstable
(compare Section 12.5) in absence of fishing. Therefore, if we close down the
fishery when approaching the axes, the system will never reach the axes.

We use the parameters r = 1, K = 1, c = 1, µ = 0.15, N̄ = 1.5, ε = 0.5,
1
2σ

2
N = 0.01, 1

2σ
2
P = 0.01 and discretize the domain, log-transforming the

dynamics and using a regular grid in the (logN, logP )-plane with 150-by-
151 cells, with a lower left corner of (exp(−4), exp(−4)) and upper right
corner of (e, e). The Hamilton-Jacobi-Bellman equation is discretized to a
Markov Decision Problem which is solved using Policy Iteration (Section
13.12.2). We plot only a subset of the computational domain (Figure 13.5)
where the probability is concentrated under the resulting strategy, but a
larger computational domain is needed to avoid that numerical artifacts
from the boundaries deteriorate the results. The computations take a couple
of seconds on a standard laptop.

Results are seen in Figure 13.5 for parameters ρN = 0.05, ρP = 1, where
the optimal policy ensures that both species co-exist (left panel). At the
mode of the distribution, the prey abundance is N ≈ 0.9 (top left panel)
and the prey fishing mortality is FN ≈ 0.006 (bottom left panel). This is a
much higher abundance, and a much lower effort, than we found in the single-
species model the previous section, where the population was held around
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Figure 13.5: Results from the problem of optimal harvest from a two-species
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t ) under the optimal strategy. Bottom left: Optimal fish-
ing mortality FN . Bottom right: Optimal fishing mortality FP .
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0.5 with a mortality of 1/2. Also, the optimal fishing mortality on the prey
depends on the two abundances in a non-trivial way, in particular around the
mode of the stationary distribution (bottom left panel). The profit from each
of the fisheries fluctuates (top right panel) and in particular the predator
fishery shows large fluctuations, which corresponds to the large range of the
stationary distribution (top left panel). To some degree, the two fisheries
operate in counterphase so that good periods for the predator fishery are
bad periods for the prey fishery, whereas predator-prey cycles are not visible
(compare section 12.5).

This model is quite rich and we could elaborate extensively on the results,
for example, by examining the effect of varying parameters. However, our
objective of this section was simply to demonstrate that highly non-linear
two-dimensional control problems can be solved numerically with relatively
modest effort, and that optimizing an entire system leads to very different
dynamics, compared to optimizing components in isolation.

13.10 Optimal Diel Vertical Migrations

We reconsider the foraging, mortality, and fitness of zooplankton (Section
11.8.2). The state is the vertical position of the animal, x ∈ [0,H], but since
the mortality is time-varying, we can consider time t an extra state variable.
Thus, the problem becomes two-dimensional.

In Section 11.8.2, the animals moved by pure diffusion, and we computed
the fitness using the Feynman-Kac formula. We found spatiotemporal pat-
terns in the fitness which gave the animals an incentive to move vertically,
tracking the fitness maximum. Therefore, we now consider an individual with
a movement strategy u(x, t), leading to the stochastic differential equation

dXt = u(Xt, t) dt+ σ dBt

for the position, still with reflection at the boundaries x ∈ {0,H}. Movement
comes with a cost, so the animal should aim to maximize

EXt=x,St=1
∫ τ

t

[
h(Xs) − 1

2νu
2(Xs, s)

]
ds

where, as in section 11.8.2, h is the energy harvest rate, and τ is the random
time of death, governed by the mortality µ(Xs, s). ν is a parameter which
controls the energetic cost of motion. The value function V (x, t) for this
optimization problem is given by the Hamilton-Jacobi-Bellman equation

V̇ + sup
u

[
uV ′ + 1

2σ
2V ′′ + h− 1

2νu
2 − µV

]
= 0. (13.19)

We impose homogeneous Neumann conditions at the boundaries x ∈ {0,H},
and pursue the time-periodic solution, V (x, 0) = V (x, T ). For a given value
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function, the optimal velocity is Us = u(Xs, s) = V ′(Xs, s)/ν, so the animals
move in direction of increased fitness; this is called fitness taxis. We find the
solution numerically using the methods in Section 13.12.2; with a 100 ×
120 grid, policy iteration takes half a second on a standard laptop. Results
are seen in Figure 13.6. Parameters are as in Section 11.8.2, except the
diffusivity is reduced to D = σ2/2 = 500 m2/day, since the animals now
move directed rather than purely randomly. The cost of motion is ν =
2 · 10−5 J day/m2. Note that the optimal movement strategy (middle panel)
is to evade the surface around dawn (t = 0.25) and stay away from it during
the day. During the day, the animals around the nutricline (x ≈ 50 m) do
not move much vertically; this location, it appears, represents the optimal
trade-off between energetic gains and risk of dying. At dusk (t = 0.75), the
animals take advantage of the safety of darkness to move towards the surface,
where they can exploit the nutrient-rich environment. These strategies derive
from the patterns in the fitness landscape (Figure 13.6, top panel). The
resulting quasi-stationary density φ(x, t) of animals is seen in the bottom
panel. Note that the animals concentrate around a fairly narrow band, which
is at depth during the day and closer to the surface at night. The distribution
appears symmetric in time, although neither the fitness landscape nor the
swimming strategy does, since the animals anticipate dawn and dusk rather
than respond reactively.

13.11 Conclusion

Optimal control problems appear in a range of applications, where the objec-
tive is to design a dynamic system which performs optimally. These covers
traditional control engineering applications, i.e., technical systems, as well as
financial and management problems. They also appear in situations where
we do not aim to design a system, but rather to understand an existing
decision maker, for example, to predict future decisions.

We have focused on the technique of Dynamic Programming for solving
such problems. In the case of stochastic differential equations, dynamic pro-
gramming amounts to solving the Hamilton-Jacobi-Bellman equation. This
equation generalizes the backward Kolmogorov equation and, more specif-
ically, Dynkin’s lemma that we studied in Chapter 11: When analyzing a
given control system, i.e., when U is a singleton, we can determine its per-
formance by solving this backward equation. When we include the choice
of control, this adds the “sup” in the Hamilton-Jacobi-Bellman equation
(13.7), and this equation reduces the problem of dynamic optimization to
a family of static optimization problems, where we trade-off instantaneous
gains h(x, u, t) against future gains (LuV )(x, t).

The presentation in this chapter is meant as a first introduction, and a
number of important issues have been omitted. An important one is the char-
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acterization theorem, which states that the value function satisfies the HJB
equation, provided it is smooth. See (Øksendal, 2010). In many problems,
however, the solution is not smooth. The framework of viscosity solutions to
partial differential equation addresses this issue; see the following notes.

In some of the examples in this section, we found analytical solutions to
the HJB equation. Examples with analytical solutions play a prominent role
in the literature, but it should be clear that they are exceptions rather than
the rule. From a modeling perspective, it would be an extreme restriction if
we have to confine ourselves to models with analytical solutions, and sim-
ple numerical methods are an important element of the toolbox. Sections
13.9 and 13.10 demonstrated applications of such numerical analysis for
problems in one and two dimenions; the methods are detailed in the follow-
ing notes. For problems in higher dimenions, techniques from reinforcement
learning/neuro-dynamic programming are applicable.

13.12 Notes and References

Bellman (1957) coined the term Dynamic Programming and demonstrated
the versatility of the approach through a sequence of papers, mostly in
the context of deterministic and stochastic problems with discrete state
space. Dynamic optimization for deterministic differential equations was ap-
proached with calculus of variations at that time, which lead to Pontryagin
formulating his Maximum Principle in the late 1950’s. The connection be-
tween calculus of variations and partial differential equations of Hamilton-
Jacobi type was developed by Carathéodory in 1935, and pointed out by
Kalman (1963b). Dynamic programming was soon applied to stochastic dif-
ferential equations (Kushner, 1967); an established text is (Fleming and
Rishel, 1975).

A difficulty is that the value function may not be smooth, when
the diffusivity is singular, in which case it cannot satisfy the Hamilton-
Jacobi-Bellman equation in the classicial sense. Under regularity condi-
tions, it is then a viscosity solution (Fleming and Soner, 1993; Pham, 2009;
Touzi, 2013). This weaker concept of a solution can be understood as a
limiting procedure, where we first add a little white noise to all states,
solve the Hamilton-Jacobi-Bellman equation in the classical sense, and
then let the intensity of this regularizing noise tend to zero (Lions, 1982;
Crandall et al., 1992). Example 13.6.1, the swimmer in the river, is useful,
noting that increasing the domain size has the same effect as decreasing the
noise intensity and rescaling: Without noise, the optimal control strategy is
u = signx, i.e., discontinuous, and the value function is V (x) = H − |x|,
which is only piecewise differentiable. This V is a viscosity solution of the
HJB equation.
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13.12.1 Control as PDE-Constrained Optimization

The optimal control problem can also be seen as optimizing subject to the
constrains imposed by system dynamics. We now make this specific in the
particular situation of steady-state control, skipping technicalities: Let Ut =
µ(Xt) be a control strategy which leads to the closed-loop generator Lµ

and the running reward hµ. We consider maximizing the expected running
reward:

sup
µ,π

〈π, hµ〉

subject to the constraint that π is the stationary probability distribution
resulting from the control strategy µ, i.e., subject to the constraints

(Lµ)∗π = 0, 〈π, 1〉 = 1.

We include these constraints using the technique of Lagrange multipliers,
and thus reach the Lagrange relaxed optimization problem

sup
µ,π,V,γ

〈π, hµ〉 + 〈(Lµ)∗π, V 〉 + γ − 〈π, γ〉.

Here, V : X 7→ R and γ ∈ R are Lagrange multipliers associated with
the constraints (Lµ)∗π = 0 and 〈π, 1〉 = 1. We employ duality to rewrite
〈(Lµ)∗π, V 〉 = 〈π, LµV 〉 and collect terms:

sup
µ,π,V,γ

〈π, LµV + hµ − γ〉 + γ.

This relaxed optimization problem is linear in π, so for a finite supremum
to exist, the triple (V, µ, γ) must satisfy

LµV + hµ − γ = 0.

Moreover, this term must be maximized w.r.t. µ for each x. Thus, this PDE-
constrained optimization problem is equivalent to the Hamilton-Jacobi-
Bellman equation, and the value function can also be interpretated as a
Lagrange multiplier associated with the stationarity constraint. This formu-
lation opens up for a number of extensions to the problem as well as for a
number of different numerical methods.

13.12.2 Numerical Analysis of the HJB Equation

We now describe a technique for numerical analysis of the Hamilton-Jacobi-
Bellman equation based on (Kushner and Dupuis, 2001). To simplify and
be specific, we consider the stationary, infinite-horizon situation (13.12):

∀x : sup
u∈U

[LuV (x) + hu(x)] = γ.

Assuming that a solution (V, γ) exists, we present a policy iteration which
identifies it. Starting with a policy µ : X 7→ U, we evaluate its performance
V and γ. Based on V , we improve the policy. Specifically:



CHAPTER 13. DYNAMIC OPTIMIZATION 353

1. Start with an arbitrary policy µ1.

2. For each i = 1, 2, . . .:

(a) Identify the performance (Vi, γi) corresponding to µi by solving

LµiVi + hµi = γi. (13.20)

(b) Determine the next policy µi+1 by

µi+1(x) = arg max
u

[(LuVi)(x) + hu(x)] . (13.21)

We explicitly assume that at each step in the policy iteration, the closed-
loop system with the control µi has a unique stationary distribution, say πi,
under which hµi has finite expectation.

Lemma 13.12.1 The sequence {γi} is non-decreasing and bounded by γ.

Proof: Let (Vi, γi) be given such that LµiVi+hµi = γi. When we identify
the next policy µi+1, it must hold that

Lµi+1Vi + hµi+1 ≥ γi.

We find the next value function Vi+1 and performance γi+1 from

Lµi+1Vi+1 + hµi+1 = γi+1.

Let πi+1 be the stationary probability distribution for Lµi+1 , so that
〈πi+1, L

µi+1Vi+1〉 = 〈πi+1, L
µi+1Vi〉 = 0. Then take inner product of the

two preceding equations with πi+1 to obtain

γi+1 = 〈πi+1, h
µi+1〉 ≥ γi.

Thus, the sequence {γi} is non-decreasing. It is clear that γi ≤ γ, since γi is
the performance of the policy µi while γ is the optimal performance.

In practice we are rarely able to solve these partial differential equations,
so we now discretize these equations in a way that ensures that monotonicity
is preserved. We consider additive controls, i.e.,

dXt =

f0(Xt) +
m∑

j=1
fj(Xt)U j

t

 dt+ g(Xt) dBt

where the set of admissable controls is

Ut = (U1
t , U

2
t , . . . , U

m
t ) ∈ U = [0,∞)m.
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Note that the noise intensity g(x) is independent of the control; this simple
structure is common in applications. The backward operator Lu is then

Lu = L0 +
m∑

j=1
ujLj

where

L0V = ∇V · f0 + 1
2tr[gg>HV ], LjV = ∇V · fj . (13.22)

Here, HV is the Hessian of V , as usual. Since the control are non-negative,
the operators LjV can be discretized using the upwind method (Section
9.11.5). If the original problem allows both positive and negative controls,
for example,

dXt = [f0(Xt) + Ut] dt+ g(Xt) dBt, where Ut ∈ R,

then we rewrite this using two controls as

dXt =
[
f0(Xt) + U1

t − U2
t

]
dt+ g(Xt) dBt,

where both U1
t and U2

t are non-negative; i.e., f1(Xt) = 1 and f2(Xt) = −1.
We now discretize each of the generators L0, L1, . . . , Lm as in Section

9.11.5. Let n be the number of grid cells, i.e., the discretized generators are
G0, G1, . . . , Gm, which are all n-by-n matrices, each being a generator for a
continuous-time Markov chain on the state space {1, . . . , n}.

For a control strategy µ : X 7→ [0,∞)m, we let U ∈ [0,∞)n×m denote
its discretization, obtained by evaluating the each of the m control variables
in the n grid cells. This yields the generator of the discretized controlled
system:

GU = G0 +
m∑

j=1
diag(U·j)Gj . (13.23)

Here, U·j is the j’th column in U , i.e., the j’th control variable evaluated
at each grid point. Note that GU is a generator, since every Gj is, and
each element in U is nonnegative. Moreover, GU is irreducible if G0 is (this
condition is not necessary; the controls can also ensure irreducibility).

We next discretize the pay-off h, abusing notation by also letting h denote
the discretized version. This discretized h is a function [0,∞)n×m 7→ Rn;
for a given control strategy U it gives the pay-off at each grid cell. We can
now write the stationary Hamilton-Jacobi-Bellman equation as

sup
U∈[0,∞)n×m

G0 +
m∑

j=1
diag(U·j)Gj

V + h(U)

 = γe (13.24)

where e is an n-vector of all ones, i.e., a constant function on state space.
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This discrete Hamilton-Jacobi-Bellman equation is a Markov Decision
Problem (Puterman, 2014) which we solve with policy iteration. At an iter-
ation i, we have a given policy U , which gives a closed-loop generator GU

from (13.23) and a pay-off h = h(U), and we solve the equation

GUV + h = γe

for (V, γ) to determine the performance of this policy U . This equation is
underdetermined, since generators GU are singular. We therefore, somewhat
arbitrarily, require that the elements in V sum to 0, and reach the system[

GU e
e> 0

](
V
γ

)
=
(

−h
0

)
. (13.25)

Lemma 13.12.2 Assume that GU is the generator of an irreducible Markov
chain. Then the system (13.25) of linear algebraic equations is regular. More-
over, let π be the stationary probability distribution of this Markov chain,
then γ = πh, and in particular, if h ≥ 0, then γ ≥ 0.

Proof: Assume that there is a row vector (φ, ψ) such that

(φ ψ)
[
G e
e> 0

]
= (0 0) (13.26)

or
φGU + ψe> = 0, φe = 0.

Multiply the first equation from the right with e, and use GUe = 0 to reach

ψe>e = 0

or simply ψ = 0. Thus φGU = 0, so φ is the stationary density, rescaled.
But since φe = 0, we find φ = 0. Since (φ, ψ) = (0, 0) is the only solution to
the homogeneous equation (13.26), we conclude that the system is regular.

Letting π be the stationary probability distribution, we have πe = 1,
πGU = 0. We pre-multiply the system (13.25) with (π 0), to get

πGUV − πeγ = −πh

or simply γ = πh, as claimed.
We can now evaluate the performance γ of a given discretized policy U ,

and find the associated value function V , and the “comparison” property
holds that γ is increasing in h. We next specify the update of the policy U .

The policy update: Let V (i) and γ(i) be given and define the next
policy U (i+1) as follows: Its k’th row is found as

U
(i+1)
k· = Arg max

u∈[0,∞)m

ekG0 +
m∑

j=1
ujekGj

V (i) + h(xk, u)
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where ek is a (row) vector with a 1 in position k and 0 elsewhere. Notice
that this optimization problem is done at each state xk separately, and
structurally, it is the same problem as the continuous-space version (13.21).
In many application, h(x, u) is concave in u for each x, so that we may find
a solution to this optimization problem through the stationarity condition

∂

∂uj
h(xk, u) + ekGjV

(i) = 0

although the requirement uj ≥ 0 must also be taken into account.
It is now easy to see, arguing as in the continuous case, that the sequence

{γ(i)} is non-decreasing under policy iteration and hence convergent. We
include the specific statement for completeness.

Theorem 13.12.3 Assume that under policy iteration, the closed-loop sys-
tem is an irreducible Markov chain at each iteration. Then the performance
{γ(i)} is non-decreasing. If the algorithm has converged, then the policy can-
not be outperformed by any other policy.

Recall that a sufficient condition for irreducibility is that the open-loop
system G0 is irreducible.

Proof: Let U (i) ∈ [0,∞)n×m be a policy, let G(i) be the corresponding
closed-loop generator, let h(i) be the corresponding payoff, and finally let
(V (i), γ(i)) be the performance of that strategy. The equation (13.26) can
then be written as

G(i)V (i) + h(i) = γ(i)e.

We find the next policy U (i+1) using the policy update; let G(i+1) and h(i+1)

be the corresponding generator and payoff, so that

G(i+1)V (i) + h(i+1) ≥ γ(i)e.

Let V (i+1), γ(i+1) be the performance of strategy U (i+1), given by

G(i+1)V (i+1) + h(i+1) = γ(i+1)e

Let π(i+1) be the stationary distribution corresponding to strategy U (i+1),
so that π(i+1)G(i+1) = 0. We then get

γ(i+1) = π(i+1)(G(i+1)V (i+1) + h(i+1))
= π(i+1)(G(i+1)V (i) + h(i+1))
≥ π(i+1)γ(i)e

= γ(i).

It follows that the sequence {γ(i)} is non-decreasing. We can repeat this
reasoning to show that if the algorithm has converged, then the policy cannot
be outperformed by any other policy.
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In practice, this algorithm is often straightforward to implement and
performs well. It is implemented in the SDEtools package; see the functions
PolicyIterationRegular and PolicyIterationSingular. Similar tech-
niques can be devised for other computational problems using the same
principles; see (Kushner and Dupuis, 2001).

13.13 Exercises

Exercise 13.2 Linear-Quadratic Tracking: Consider controlled
Brownian motion dXt = Ut dt+σ dBt, where the aim is to track a reference
{Yt = sWt}, where {Bt} and {Wt} are independent standard Brownian mo-
tions. σ > 0 and s > 0 are parameters. The objective is to find a Markov
control Ut = µ(Xt, Yt) such as to minimize 1

2E(q(Xt − Yt)2 + U2
t ) in steady

state.

1. Defining the tracking error Zt = Xt − Yt, write {Zt} as a controlled
Itô process, and rewrite the problem in terms of {Zt}.

2. Find the optimal control law Ut = u(Zt) and the corresponding cost.

3. Now consider the original problem in (Xt, Yt). Explain why Theo-
rem 13.6.1 does not apply.

4. Undeterred, show that

S = √
q

[
1 −1

−1 1

]

satisfies the algebraic Riccati equation (13.14) and gives rise to the
control law from question 2. Find the two eigenvalues of the controlled
system.

Exercise 13.3 Fisheries management: This exercises repro-
duces Section 13.8 by solving the Hamilton-Jacobi-Bellman equation nu-
merically, following Section 13.12.2.

1. Write up the generator L0 for the uncontrolled system and the gener-
ator L1 for the control, as in (13.22).

2. Truncating the state space to the interval [0,3] and discretizing it in
600 equidistant bins, identify the discretized generators G0 and G1 as
in (13.23).

3. Identify the pay-off (reward) function h(u) as in (13.24). Note: In
the discretized version, this function takes as argument a vector of
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controls, one for each grid cell, and returns the reward obtained in
each grid cell. To avoid problems at the lower boundary, this should
always return 0 for the first grid cell (heuristically, you cannot profit
from fishing if there are no fish).

4. Identify the optimal control. Note: In the discretized version, this takes
a vector G1V and returns a vector containing the optimal control in
each grid cell. It should be “robustified”, so that it always returns a
non-negative real number which is not absurd large, and 0 in the first
grid cell.

5. Solve the stationary control problem, e.g., using PolicuIterationSingular
from SDEtools. Plot the value function, the optimal control, and the
resulting stationary p.d.f. of {Xt}. Compare with the analytical results
from Section 13.12.2 and comment.



Chapter 14

Perspectives

The more you know,
the more you realize you don’t know.

Attributed to both Aristotle (384-322 BC)
and to Albert Einstein (1879–1955).

This book was written for a first course on stochastic differential equa-
tions for scientists and engineers. Even if it contains more material than can
be covered in detail in a 5 ECTS course, its ambition is only to serve as an
entry point into the vast realm of stochastic differential equations. We now
end this book with some suggestions for next steps, reflecting personal bias
and limitations.

We have treated several topics superficially. These include ergodicity,
Girsanov’s theorem, estimation of parameters, and optimal control; Malli-
avin calculus we only mentioned in passing. In several places we have sacri-
ficed mathematical rigor for pace. We have already given references to more
in-depth treatments in the literature; an obvious next step is to pursue these.

We have only presented the simplest numerical methods. This applies to
simulation of sample paths, to Kolmogorov’s equations and other partial dif-
ferential equations, as well as to estimation and optimization. The reasoning
is that it is important for a generalist to have access to a broad numerical
toolbox, for the purpose of pilot studies and experimenting with different
models. In contrast, to master a particular type of numerical analysis (e.g.,
simulation of sample paths, or filters for non-linear systems) requires spe-
cialized studies that are more appropriate in a advanced dedicated course
than in a first introductory one.

We have only considered continuous diffusions, but in many applications,
it is relevant to include discrete jumps. These jumps can be viewed as internal
to the state space model; we saw a first example of this when discussing
killing in Section 11.8.2. When the state can jump to different positions in
state space, the Kolmogorov equations become integro-differential equations,

359
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where the integral terms reflect how probability is redistributed non-locally
through jumps (Gardiner, 1985; Björk, 2021). If the jump rate does not
depend on the state, then jumps can be viewed as imposed on the state
from the outside world. For example, the state dynamics may be driven by
a Poisson process, or a Gamma process, in addition to the Brownian motion,
so that the sample paths involve Itô integrals with respect to these processes.

A different class of driving input is fractional Brownian motion (Metzler
and Klafter, 2000). These are self-similar processes, with statistics that sat-
isfy power laws, but where the variance does not grow linearly with time,
but rather with a non-integer exponent. These processes give rise to anoma-
lous diffusion and the resulting Kolmogorov equations are fractional partial
differential equations, which are most accessible in the linear case where
frequency domain methods apply. They can describe subdiffusion in porous
media, where particles may “get stuck” in pores for long times, or superdif-
fusion in turbulence, where variance grows super-linearly due to eddy struc-
ture. In general, they can describe phenomena with long-range dependence.

Stochastic differential equations can be extended to spatiotemporal phe-
nomena, leading to stochastic partial differential equations. A useful image
is that of a guitar string in a sand storm (Walsh, 1986): Without noise, the
motion of the string is governed by a wave equation; the sand particles which
hit the string are represented by space-time white noise. These equations are
most easily understood by discretizing space, which leads to large systems of
coupled ordinary stochastic differential equations (compare Exercise 5.10).
Passing to the fine-discretization limit is not trivial (Pardoux, 2021), in par-
ticular in more than one spatial dimension. Stochastic partial differential
equations are also relevant for spatial modeling and statistics (Krainski et
al., 2019).

One background for spatio-temporal phenomena is interacting particle
systems, even if this term is mostly used for discrete-space systems (Liggett,
1985; Lanchier, 2017). The so-called superprocesses (Etheridge, 2000) involve
particles that are born and die, and move by diffusion during their lifespan.
Such a system can be seen as a Markov process where the state is a spatial
point pattern, and can display interesting spatial structure and patterns.
When particles also affect the motion of other particles, mean field theory
(Muntean et al., 2016) can be applied. When the particles are agents that
each pursue their own interests, mean field games emerge (Lasry and Lions,
2007; Bensoussan et al., 2013), which find applications in economy as well
as ecology.

Finally, each domain of applications has its particular motivations, clas-
sical models, and refined methods. It is worthwhile to study these carefully,
which will allow you to recognize where and how the state of the art can be
advanced with stochastic differential equations.

In conclusion: My hope for this book is that it serves as a useful intro-
duction to stochastic differential equations, and that it motivates you, the
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reader, to dive deeper into this theory, and to explore the broader connec-
tions to neighboring fields. Wherever you go, there will be no shortage of
fascinating phenomena to study.
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properties, 127
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Itô process, 132
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Kalman filtering
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Killing, 286
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Markov control, 329
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Markov process, 195
Markov property
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of diffusions, 197
Strong, 197

Markov time, 81
Markov, Andrei Andreyevich, 195
Martingale

L2, 83
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convergence, 84
Definition of, 79
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local, 134
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Matrix exponential, 96, 97
Maximum sustainable yield, 344
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Measurable function, 36
Mesh of a partition, 70
Mil’shtein’s scheme, 182
Mixed-effects model, 257
Monte Carlo simulation, 25
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Transition probabilities, 200
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Numerics
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for the Kolmogorov equation,
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Observer vs the Kalman filter, 263
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Exit time, 268
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Orthogonal projection, 49
Oscillator, Noisy, 111
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Partition, 70
Partition function, 215
PDE-constrained optimization, 352
Picard iteration, 178
Poisson equation, 279
Policy iteration, 353
Precision matrix, 88
Predator-prey model

Optimal harvest, 344
Stability analysis, 306

Pricing of options, 204, 229
Probabilistic graphical model, 47
Probability

Interpretation, 32
measure, 34
space (Ω,F ,P), 35

Progressive measurability, 141
Péclet number, 21

and exit probabilities, 276
and exit times, 267

Quadratic variation, 71

Quasi-stationary distribution, 349

Random variable, 35
Simple, 37

Random walk of molecules, 24
Recurrence

of bounded sets, 320
of Brownian motion, 75
of Brownian motion in Rn, 277

Recursive filtering, 237
Reflecting boundaries, 220
Repelling boundary point, 281
Reversible process, 212
Riccati equation, 335, 339
Risk aversion, 158
Risk-free measure, 54

Scale function, 157, 276
for geometric Brownian motion,

158
Schwarz inequality, 49
Second arcsine law, 90
Second-order stationary process, 98
Sensitivity equations, 298
σ-algebra

of events, F , 33
as a model of information, 39

Simple random variable, 37
Simulation

Conditional on observations, 247
of sample paths, 179

Smoothing filter, 245
Solution of an SDE, 133, 171

Numerical, 179
Weak vs strong, 141

Squared Bessel process, 155, 167, 279
Stability

in mean square, 315
of a numerical scheme, 188
of the narrow-sense linear sys-

tem, 301
Stochastic, 301, 313

State estimation and prediction, 241
State feedback control strategy, 329
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State-space model, 93
Stationary Itô process, 153
Stationary distribution, 209

numerics, 228
Stationary process, 209

Second-order, 98
Stochastic control, 2
Stochastic differential equation

Itô vs. Stratonovich interpreta-
tion, 163

as an initial value problem, 171
Existence of a solution, 175
Narrow-sense linear, 151
Solution of, 133
Weak vs strong solution, 141
Wide-sense linear, 150

Stochastic experiment, 31
Stochastic logistic growth, 6, 159,

161, 211, 293
Lyapunov exponent, 302
moments, 229
Sensitivity, 299

Stochastic Lyapunov exponent, 301
Stochastic Lyapunov function, 314
Stochastic process, 65

Continuity, 88
Versions of, 90

Stochastic recursion, 26
Stochastic resonance, 142
Stochastic sample path boundedness,

319
Stochastic Stability, 313
Stopped process, 82
Stopping time, 81
Stratonovich calculus, 162
Stratonovich integral, 136
Stratonovich interpretation of an

SDE, 163
Stratonovich, Ruslan Leontievich, 136
Strong Markov property, 197
Strong order of a numerical scheme,

179

Sub-generator, 283
Supermartingale

Definition, 314
inequality, 314

Time change, 159, 167
and stationary distributions, 232

Time series analysis, 2
Time update

in state estimation, 242
in the Kalman filter, 251

Time-reversible process, 212
Total variation, 71

of Brownian motion, 89
Tower property, 62
Tower property of conditional expec-

tations, 44
Trace of a matrix, 147
Transfer function, 95
Transition probabilities, 197

for a narrow-sense linear SDE,
200

in the double well model, 198
numerics, 224
vs densities, 217

Uniqueness of solutions, 171

van der Pol oscillator, 124
Existence and uniqueness, 192
Stationary density, 212

Variance
Decomposition of, 46
Law of total, 46

Variance decomposition, 62
Variance reduction, 224
Variance spectrum, 101
Versions of a stochastic process, 90
von Mises distribution, 230

Weak order, 185
Weak solution of an SDE, 141
White noise, 105

vs Brownian motion, 105
Wide-sense linear SDE, 150, 168
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Solutions to selected
exercises

Exercise 2.1: The concentration profile is decreasing with x, so the
diffusive flux is from left to right, i.e., positive. The slope is decreasing in
magnitude, i.e., the curve is steeper at x = a than at x = b, so J(a) is larger
than J(b). So there is a net influx into the interval [a, b], and the amount of
material increases.

More generally, the concentration profile is convex, i.e., C ′′ > 0, so from
(2.4) we see that Ċ is positive; the concentration increases everywhere in
the region plotted.

Exercise 2.2: The verification is most easily done with a computer
algebra system such as Maple, Mathematica, or sage. The following piece
of sage does the verification:

var ( ’ x t D x0 ’ )
phi ( x ) = 1/ sq r t (2 ∗ pi ) ∗exp(−xˆ2/ 2)
C(x , t ) = phi ( ( x−x0 ) / sq r t (2 ∗D∗ t ) ) / sq r t (2 ∗D∗ t )
r e s = f a c t o r ( d i f f (C(x , t ) , t ) − D∗ d i f f (C(x , t ) , x , x ) )
p r i n t ( r e s )

The factor is there to simplify the expression. When run, the code will
output the result 0 which verifies that the left and right hand side of the
equation (2.5) agree.

The initial condition is satisfied in the sense that the solution C(x, t)
converges to a Dirac delta as t ↘ 0 in the weak sense. That is, if f(x) is a
continuous bounded function, then

∫
f(x)C(x, t) dx → f(x0) as t → 0.

Exercise 2.3: We define the diffusive length scale L as the standard
deviation in the plume, i.e.,

√
2DT where T is the time scale of interest. We

get:

0



SOLUTIONS TO SELECTED EXERCISES 1

Process Diffusivity 1 sec 1 minute 1 hour 1 day
Salt in water at 293 K 1 · 10−9 4.5 · 10−5 3.5 · 10−4 2.7 · 10−3 1.3 · 10−2

Smoke in air at 293 K 2 · 10−5 6.3 · 10−3 4.9 · 10−2 3.8 · 10−1 1.9 · 100

Carbon in iron at 1250 K 2 · 10−11 6.3 · 10−6 4.9 · 10−5 3.8 · 10−4 1.9 · 10−3

m2/s m m m m
Note that these length scales are all quite small, by everyday measures.

Exercise 2.4: We have

Ċ = −λC and C ′′ = −k2C

Combining, we get Ċ = λ/k2 C ′′ which, with D = λ/k2, agrees with the
diffusion equation governing for C.

Exercise 2.7: We show that the bounds hold. Consider first the upper
bound 1 − Φ(x) ≤ φ(x)/x. This trivially holds for x → ∞, as both sides of
the inequality converge to 0. The differential version of the inequality reads

−φ(x) ≥ −φ(x) − φ(x)/x2

which obviously holds. Thus, the conclusion follows. Next, for the lower
bounds, we repeat the procedure. The differential version of the inquality is[

−x2

1 + x2 + 1 + x2 − 2x2

(1 + x2)2

]
φ(x) ≥ −φ(x)

or
x4 + 2x2 − 1

(1 + x2)2 φ(x) ≤ φ(x)

which obviously holds. The conclusion follows.

Exercise 3.1: Write I := {EXs : Xs simple, 0 ≤ Xs ≤ X}. Since X
is non-negative, it is bounded below by the simple random variable Xs = 0,
for which EXs = 0, so 0 ∈ I. Clearly, all Xs ≥ 0 have EXs ≥ 0. Finally,
assume that Xs ≤ X and α ∈ [0, 1]; then also αXs ≤ X. Therefore, if x ∈ I,
then also αx ∈ I. The result follows.

Exercise 3.2: We have X(ω) > x ⇔ ω < G(x) and hence

P(X > x) = P(ω < G(x)) = G(x)

since G(·) is decreasing. To see that EX =
∫∞

0 G(x) dx, consider the follow-
ing figure, based on the specific example G(x) = exp(−x):
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By definition,

EX =
∫

Ω
X(ω) P(dω) =

∫ 1

0
G−1(ω) dω

which corresponds to the gray shaded area. Finding the area of this set by
integrating along the abscissa (using Fubini’s theorem), we see that

EX =
∫ ∞

0
G(x) dx.

Note that this result is standard, but is usually verified by integration by
parts.

The extension to the case where G is allowed to jump, and to be constant
on subintervals, follows with a careful analysis and what happens at the end
points of these intervals.

Exercise 3.4: If X is H-measurable, then also X2 is H-measurable.
We get

V{X|H} = E{X2|H} − (E{X|H})2

= X2 −X2 = 0

Exercise 3.5:

VX = EX2 − (EX)2

= EE{X2|H} − (EE{X|H})2

= EV{X|H} + E(E{X|H})2 − (EE{X|H})2

= EV{X|H} + VE{X|H}
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Exercise 3.6: By the Law of Total Expectation we have

EY = EE{Y |N} = EµN = µλ.

If you are skeptical about the claim E{Y |N} = µN , then write Y =∑∞
i=1Xi ·1{N ≥ i}. For the variance, we use the Law of Total Variance, and

independence of Xi, to find

VY = EV{Y |N} + VE{Y |N} = ENσ2 + VµN = (µ2 + σ2)λ.

Again, if you are skeptical about the claim V{Y |N} = σ2N , then write
Y = ∑∞

i=1Xi · 1{N ≥ i}.

Exercise 3.7: If we just want to show that E|X|q < ∞, note that
|x|q ≤ 1 + |x|p for any x ∈ R, so E|X|q < 1 + E|X|p < ∞.

For the stronger result ‖X‖q ≤ ‖X‖p, set Y = |X|q and Z = |X|p. Then
Z = g(Y ) with g(y) = yp/q. The function g is convex so Jensen’s inequality
gives

EZ ≥ g(EY )
or E|X|p ≥ (E|X|q)p/q, from which the result follows.

Equality is obtained, for example, when X = 1 w.p. 1. An example where
‖X‖q � ‖X‖p is obtained when X is a Bernoulli variable with probability
parameter r. Then ‖X‖p = r1/p, ‖X‖q = r1/q and the ratio ‖X‖q/‖X‖p → 0
as r → 0.

Exercise 3.8:

1. Let X be standard Gaussian. Let I be an independent Bernoulli vari-
able, taking values 0 and 1 with probability 1/2, independently of X.
Define Y = X(2I − 1).

2. We have EXY = EE{XY |X} = EX EY under the conditions. Next,
let X be uniform on [−1, 1] and define Y = |X|. In greater generality,
let X be symmetrically distributed around 0 and let Y = g(X) for
some even function g.

Exercise 3.10: It suffices to show this for c = 0. The idea is to start
with rectangular (box) sets in the plane and construct the set A using count-
ably many set operations. So define

Bm
n = {(x, y) : x > m/n, y > −m/n}

for natural n and integer m. You should sketch Bm
n , if you can’t visualize

it directly. Clearly Bm
n is Borel. Now define B = ∪n∈N ∪m∈Z B

m
n , then B is

also Borel. Now it is easy to see that (x, y) ∈ B if and only if x+ y > 0. If
you don’t agree, then you should set out to find a n,m so that (x, y) ∈ Bm

n ,
for given (x, y) such that x+ y > 0. So A = R2 B. Hence A is also Borel.
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Exercise 3.11: First, note that Z follows the same distribution as X.
To see that X and Z are independent, we have P(X = 1, Z = 1) = P(X =
1, Y = 1) = 1/4 = P(X = 1)P(Z = 1); similarly for the other combinations.
The same argument yields that Y and Z are independent. Finally, we have
P (X = 1, Y = 1, Z = −1) = 0 but P (X = 1)P(Y = 1)P(Z = −1) = 1/8.

Exercise 3.12:

1. For s > 0, we have P(S > s) = P({ω : ω1 < exp(−s/2)}) =
exp(−s/2).

2. First, brute force: The p.d.f. of (S,Θ) is fSΘ(s, θ) = exp(−s/2)/(4π).
We have fXY (x, y) = fSΘ(s, θ)/|J | where J is the Jacobian of the
map from (s, θ) to (x, y). This determinant is constant and equal to
1/2, which can be verified with standard multivariate calculus. Thus
fXY (x, y) = exp(−(x2 + y2)/2)/(2π).
Alternatively, since the map (s, θ) 7→ (x, y) is one-to-one, there is a one-
to-one mapping between the distribution of (S,Θ) and that of (X,Y ).
This mapping is in fact given by the calculations in the previous, but
we do not need the specifics, only the existence. Next, if (X,Y ) are i.i.d.
and standard Gaussian, then S = X2 +Y 2 is χ2(2)-distributed; this is
also an exponential distribution with mean 2. The angle Θ is uniformly
distributed due to the joint density of (X,Y ) being invariant under
rotations. We conclude that (X,Y ) are jointly standard Gaussian if
and only if (S,Θ) are independent, S being exponentially distributed
with mean 2 and Θ being uniform on [0, 2π).

Exercise 3.13: We find

E|X|p =
∫ +∞

−∞
|x|p 1√

2π
dx

= 2
∫ ∞

0
xp 1√

2π
exp(−1

2x
2)

=
√

2/π
∫ ∞

0
(2u)p/2−1/2 exp(−u) du =

√
2p/πΓ(p/2 + 1/2)

Finally, V(X2) = EX4 − (EX2)2 = 3 − 1 = 2.
The following R sniplet evaluates the result numerically and compares

with Monte Carlo:

N <− 1e6
X <− rnorm (N)
sapply ( 1 : 4 , f unc t i on (p)mean( abs (X)ˆp ) )
sapply ( 1 : 4 , f unc t i on (p) sq r t (2ˆp/ p i ) ∗gamma( ( p+1)/ 2) )
var (Xˆ2)
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Exercise 3.14: Write(
X
Y

)
=
[
a 0
b c

](
U
V

)

where a = σX , b = σXY /σX , c =
√
σ2

Y − σ2
XY /σ

2
X , and U, V are jointly

Gaussian with mean 0, variances 1, and independent. The condition

X > 0, Y > 0

can be stated in terms of U, V as

U > 0, bU + cV > 0,

which identifies a sector (or a cone) in the (u, v)-plane, the angle of which
is φ given by

cosφ = − b√
b2 + c2

= − σXY√
σ2

Xσ
2
Y

.

Since the distribution of U, V is invariant under rotations, the probability
of this sector is

P{X > 0, Y > 0} = φ

2π = 1
2π arccos −σXY√

σ2
Xσ

2
Y

= 1
2π

π
2 + arcsin σXY√

σ2
Xσ

2
Y

 .
From this we easily find the probabilities

P{XY > 0} = 1
2 + 1

π
arcsin σXY√

σ2
Xσ

2
Y

,

and
P{XY < 0} = 1

2 − 1
π

arcsin σXY√
σ2

Xσ
2
Y

.

Exercise 3.16: The following table shows the various conditional ex-
pectations. To find e.g. E{X|G}, an easy approach is to consider the atomic
sets in G, i.e., {1, 3}, {2}, {4, 6}, {5}, and average X over each of these sets.
x E{X|G} E{X|H} E{E{X|G}|H} E{E{X|H}|G}
1 2 3 3 3
2 2 4 4 4
3 2 3 3 3
4 5 4 4 4
5 5 3 3 3
6 5 4 4 4
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Exercise 3.17: The situation involves two observers, G and H, with
information G and H, so that G knows everything that H knows. V{X|H}
describes observer H’s uncertainty about X. The result state that this can
be decomposed into two terms: The first, E[V{X|G}|H], is H’s assessment
of G’s uncertainty. The next, V[E{X|G}|H], represents that H is unsure
about G’s estimate.

1. We have, for the left hand side

V{X|H} = E{X2|H} − (E{X|H})2.

For the right hand side, we get first

E{V(X|G)|H} = E
[
E{X2|G} − (E{X|G})2|H

]
= E{X2|H} − E

[
(E{X|G})2|H

]

and next

V{E(X|G)|H} = E
[
(E{X|G})2|H

]
− (E{X|H})2

Combining these two terms on the right hand side, we get the desired
result.

2. The result follows directly from the decomposition, since V[E{X|G}|H] ≥
0.

3. This situation may seem counter-intuitive, but can occur if the extra
information available to G is that X is more uncertain than on average:
Let Y be a Bernoulli variable with parameter p ∈ (0, 1) and let X|Y
be Gaussian distributed with variance Y . Let G = σ(Y ) and let H =
{∅,Ω}, i.e., H has no information about the outcome of the stochastic
experiment. Then V{X|H} = V{X} = EV{X|Y } + VE{X|Y } = p
but V{X|G} = Y which exceeds p when Y = 1.

Exercise 3.18: Since S and Θ are independent by construction, we
have E{S|Θ} = ES = 2. Since X and Y are independent, we have E{S|Y } =
E{X2 + Y 2|Y } = E{Y 2|Y } + E{X2|Y } = Y 2 + 1.

We therefore get E{S|Θ ∈ {0, π}} = 2 while E{S|Y = 0} = 1.
Ignoring the null event S = 0, we have that Θ ∈ {0, π} if and only if

Y = 0. We see that the “conditional expectation of S given that the point
(X,Y ) is on the x-axis” is not well defined, because the event we condition
on has probability 0. To get a well-defined conditional expectation, we must
specify not just the actual observation that (X,Y ) is on the x-axis, but also
how the observation was made: By measuring Y or by measuring Θ?
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From a practical point of view, we never measure that the point (X,Y ) is
on the x-axis; we measure that the point is so close to the axis that we cannot
distinguish it from the axis. The difference between the two σ-algebras σ(Y )
and σ(Θ), and thus the two different results, arise from different models of
the measurement uncertainty: In the first, we have a measurement error on
Y so that

E(S | − ε < Y < ε) = 1 +O(ε)

In the other, we have a measurement error on the angle Θ so that, for
example

E(S | Θ < ε) = 2 +O(ε)

The two situations can be illustrated as follows:

+ε
−ε x

y

ε

ε x

y

In the left panel, we see the set |Y | ≤ ε. Averaging S over this set, and
letting ε → 0, yields E(S|Y = 0) = 1. The right panel shows the set where
Θ is ε-near 0, π, or 2π. Averaging S over this set, and letting ε → 0, yields
E(S|Θ = 0 ∨ Θ = π) = 2. Note that the latter case set puts more weight
to points far from the origin, i.e., with large S. Hence E(S|Θ ∈ {0, π}) >
E(S|Y = 0).

The paradox shows that it is not enough to report an observation, we
should also report the observation process and, in particular, the nature of
the observation error.

Exercise 3.19: First, we see from the rectangular geometry that P(A∩
B|Y ) = P(A|Y )P(B|Y ). In contrast, we have P(A ∩ B|¬Y ) = 0 while
P(A|¬Y ) > 0, P(B|¬Y ) > 0.

Next, let X, Y and Z be three independent random variables, each uni-
formly distributed on (0, 1). Let G = σ(X) and define A = {Y ≤ X},
B = {Z ≤ X}. Then A and B are conditionally independent given G. But
Ω ∈ G and A and B are not unconditionally independent.

Exercise 3.20: Without loss of generality, we can assume µX = 0 and
µY = 0. Set Z := ΣxyΣ−1

yy Y . Define X̃ := X−Z; this is the estimation error
when using Z as an estimate of X based on Y . Then X̃ is uncorrelated with
Y :

EX̃Y > = EXY > −EZY > = Σxy −EΣxyΣ−1
yy Y Y

> = Σxy −ΣxyΣ−1
yy Σyy = 0.
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Using theorem 3.7.1, this shows that Z = E{X|Y }. To show the result for
the conditional variance, we evaluate the variance directly:

V{X|Y } = V{X̃}
= V(X − ΣxyΣ−1

yy Y )
= E(X − ΣxyΣ−1

yy Y )(X − ΣxyΣ−1
yy Y )>

= Σxx − 2ΣxyΣ−1
yy Σyx + ΣxyΣ−1

yy ΣyyΣ−1
yy Σyx

= Σxx − ΣxyΣ−1
yy Σyx.

The first equality comes from X = Z + X̃ where Z is known given Y , and
X̃ is independent of Y . Finally, to see that the conditional distribution is
Gaussian it suffices to note that the logarithm to the conditional density of
X is a quadratic form in x.

Exercise 3.21:

1. We must show that Z = EX satisfies the conditions in definition
3.5.1. Clearly Z is Y -measurable, since it is deterministic. Next, we
must show that

E{Z · 1H} = E{X · 1H}

for every H ∈ σ(Y ). The right hand size equals Z · PH since Z is
deterministic.
Assume that X is simple, i.e., P(X = xi) = pi where x1 < · · · < xn

and p1 + · · · + pn = 1. Then

E{X · 1H} =
n∑

i=1
xiP{H ∩ (X = xi)}

By independence, P{H ∩ (X = xi)} = P{H}pi so the right hand side
evaluates to PH · EX.
To show the result for general X, we approximate X with a sequence
of simple random variables.

2. Let X be standard Gaussian and let H = σ(|X|).

Exercise 4.1: By the definition of Brownian motion, the increments

Bt1 −B0, Bt2 −Bt1 , . . . , Btn −Btn−1

are Gaussian and independent; hence they constitute a jointly Gaussian
stochastic vector. The process itself (Bt1 , Bt2 , . . . , Btn) (sampled at these
time points) is found through a linear operation on this vector of increments
(viz. the cumulative sum) and hence the process is Gaussian. The mean
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of each element is EBt = E(Bt − B0) = 0 and the variance is VBt =
V(Bt −B0) = t. For the covariance, we find

E(BsBt) = E[Bs((Bt −Bs) +Bs)] = EB2
s = s.

Exercise 4.2: The following R code implements one way to simulate
Brownian motion, and does the verification.

t e s t .rBM <− f unc t i on (N=1e4 , t=c ( 0 , 0 . 5 , 1 . 5 , 2 ) )
{

B <− sapply ( 1 :N, func t i on ( i )rBM( t ) )
p r i n t ( ” Theo r e t i c a l covar iance : ” )
p r i n t ( sapply ( t , f unc t i on ( s ) pmin ( s , t ) ) )
p r i n t ( ” Empir ica l covar iance : ” )
p r i n t ( cov ( t (B) ) )

%% QQ−p lo t
qqnorm (B[ l ength ( t ) / sq r t ( t a i l ( t , 1 ) ) , ] )

}

Exercise 4.3: We have

E|Bt+h −Bt|2 = h.

so Bt+h −Bt → 0 in mean square as h → 0. However,

E 1
h

(Bt+h −Bt) = 0, V 1
h

(Bt+h −Bt) = 1/h

which diverges to ∞ as h ↘ 0. Since the variance diverges, there can be no
mean square limit.

Exercise 4.5: It is clear that {Wt} has independent increments. To
find the distribution of one such increment, let 0 < s < t. Then

Wt −Ws = tB1/t − sB1/s

is obviously Gaussian with mean 0. For the variance we find

V(Wt −Ws) = (t, −s)
[

1/t 1/t
1/t 1/s

](
t

−s

)
= t− s− s+ s = t− s

as required.
It is clear that {Wt} is continuous at any point t > 0. To see continuity

at t = 0, note that limt↘0Wt = lims→∞ s−1Bs, which is 0 according to
exercise 4.4.
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Exercise 4.6: By time inversion we have

lim sup
t↘0

1
t
Bt = lim sup

s→∞
s · 1

s
Ws

which clearly is ∞. The result for the limes inferior follows, and we conclude
that the sample path of the difference quotient does not converge as the
time step vanishes.

Exercise 4.7: Conditions 1 and 2 are trivial. Condition 3 follows
directly from the independence of the increments: Let 0 ≥ s < t, then
E{Bt|Fs} = Bs + E{Bt −Bs|Fs} = Bs.

Exercise 4.8: As in the previous exercise, conditions 1 and 2 are triv-
ial. Condition 3 follows from a direct calculation:

E{B2
t − t|Fs} = E{(Bs + (Bt −Bs))2|Fs} − t

= B2
s + 2BsE{Bt −Bs|Fs} + E{(Bt −Bs)2|Fs} − t

= B2
s + (t− s) − t

= B2
s − s

as required.

Exercise 4.9: This follows directly from the martingale inequality: Let
{Mt : t ∈ N0} denote the gambler’s fortune after game t. Then

P{sup(M0,M1, . . . ,MN ) ≥ c} ≤ c

M0

and with M0 = 1, c = 100 the result follows.

Exercise 4.10: First note that since all variances are finite, the co-
variance exists as a finite number. Now we use the hint:

E(Mv −Mu)(Mt −Ms) = EE{(Mv −Mu)(Mt −Ms)|Fu}
= E [(Mt −Ms)E{Mv −Mu|Fu}]
= 0.

The second claim follows directly from the increments Mu −Mt and Mt −Ms

being uncorrelated. Finally, let 0 ≤ s ≤ t, then

VMt = VMs + V(Mt −Ms) ≥ VMs.

Exercise 4.12: First, it is clear that the return value X̃ is conditionally
Gaussian given Y , as it should be.
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Next, the conditional expectation of X̃ is

E{X̃|Y } = E{X|Y }.

To see this, note that E{E{X̄|Ȳ } + X̄|Y } = 0, since X̄ and Ȳ are indepen-
dent of Y .

Finally, we compute the conditional variance of X̃ given Y . Noting that
E{X|Y } is Y -measurable and that (X̄, Ȳ ) is independent of Y , we get

V{X̃|Y } = V(X̄ − E{X̄|Ȳ }) = V{X̄|Ȳ }.

Now, since (X̄, Ȳ ) has the same distribution as (X,Y ), the result follows.

Exercise 4.13: See source code Wiener-expansion.R.

Exercise 4.14: Loosely, Brownian motion scales with the square root
of time, so as time becomes large, the term ut dominates over Bt. More
stricty, we use

lim inf
t→∞

Bt

2
√
t log log t = −1

and
lim inf

t→∞

ut

2
√
t log log t = ∞

together with the general fact

lim inf
t→∞

[Xt + Yt] ≥ lim inf
t→∞

Xt + lim inf
t→∞

Yt

to conclude
lim inf

t→∞

Bt + ut

2
√
t log log t = ∞

from which result follows. (An alternative is to use the result from exercise
4.4).

Exercise 4.15: From Exercise 4.14, we know that Bt − t/2 → −∞.
Hence Xt → 0. In contrast, the factbox on page 87 regarding log-normal
distributions gives that EX2

t = exp(t) → ∞ as t → ∞.

Exercise 4.17:

1. With the candidate solution, we compute ∑k SikPkj , for the different
cases of (i, j). With i = j = 1, we get

t2
t2 − t1

− t1
t2 − t1

= 1.

With 1 ≤ i < j ≤ n, we get

ti

(
− 1
tj − tj−1

+ tj+1 − tj−1
(tj+1 − tj)(tj − tj−1) − 1

tj+1 − tj

)
= 0.
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With 1 < i = j < n, we get

− ti−1
ti − ti−1

+ ti(ti+1 − ti−1)
(ti+1 − ti)(ti − ti−1) − ti

ti+1 − ti
= 1

(after some cleaning up). Finally, with i = j = n, we get

−tn−1
1

tn − tn−1
+ tn

1
tn − tn−1

= 1.

2. The joint density of X is

fX(x) = 1
(2π|S|)1/2 exp

(
−1

2x
>Px>

)
.

Now, the conditional density of Xi at xi, given X−i = x−i, is

fXi|X−i
(xi, x−i) =

fXi,X−i(xi, x−i)
fX−i(x−i)

= 1
Z

exp
(

−1
2Piix

2
i − xiPi,−ix−i − 1

2x
>
−iP−i,−ix−i

)
.

Here, the normalization constant Z depends on x−i but not on xi. As
a function of xi, we recognize this as the p.d.f. of a Gaussian random
variable with variance 1/Sii. The conditional mean can e.g. be found
by maximizing the conditional p.d.f. w.r.t. xi, using that the mean and
the mode coincide in the Gaussian distribution. We get

−Piixi − Pi,−ix−i = 0,

i.e., the conditional mean is −P−1
ii Pi,−ix−i, as claimed.

3. Since the precision matrix is tridiagonal, we have that Xi = Bti is
conditionally independent of Xj = Btj for |j − i| > 1, which is what
the graphical model illustrates. The variances in the Brownian bridge,
V{Bti |Bti−1 , Bti+1}, are found from the diagonal elements in the preci-
sion matrix. From the precision matrix, we also see that the conditional
expectation interpolates the two neighbors linearly:

E{Bti |Bti−1 , Bti+1} = Pi,i−1Bti−1/Pi,i + Pi,i+1Bti+1/Pi,i

= ti+1 − ti
ti+1 − ti−1

Bti−1 + ti − ti−1
ti+1 − ti−1

Bti+1 .
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Exercise 4.18: The filtration in question must be that generated by
the process itself, so the process is obviously adapted. We have

E|Mn| ≤
n∑

i=1
E|Xi| < ∞

As for the martingale property itself, we have for 1 ≤ s < t

E{Mt|Fs} = Ms + E{
t∑

i=s+1
Xi|Fs} = Ms

as required.

Exercise 4.19: The process {Mt} is adapted to the filtration, since
EX|F t} is F t-measurable by the definition of conditional expectations. To
show E|Mt| < ∞, note that we have |Mt| ≤ E{|X| |F t} by Jensen’s inequal-
ity (theorem 3.3.1). Hence

E|Mt| ≤ EE{|X| F t} = E|X| < ∞

as required. Finally, we use the Tower property (theorem 3.5.1) to see that

E{Mt|Fs} = E{E(X|F t)|Fs} = E{X|Fs} = Ms

since Fs ⊂ F t.

Exercise 4.20: Vn is the sum of n independent and identically dis-
tributed random variables, which each has expectation

√
2/π/

√
n. Here we

have used exercise 3.13 with p = 1 and the fact that E|∆B| scales with√
|∆t|. The result EVn =

√
2n/π follows.

Exercise 4.21: Using the same reflection argument as in Theorem
4.3.2, we find that the probability that the path crosses the origin in the
interval (t, 1] is twice the probability that Bt and B1 have opposite sign:

P{τ > t} = 2P{BtB1 < 0}.

From Exercise 3.14, and using that Bt and B1 have variances t and 1, re-
spectively, and covariance t (Section 4.3), we find

P{τ > t} = 2
(1

2 − 1
π

arcsin t√
t

)
,

or
P{τ ≤ t} = 2

π
arcsin

√
t.
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Exercise 5.1: This is a standard, if somewhat tedious, exercise in ma-
nipulation of the integrals that appear in the Fourier transform:

SX(ω) = 1
2π

∫ +∞

−∞
ρX(l) exp(−iωl) dl

= 1
2π

∫ +∞

−∞

∫ ∞

0

∫ ∞

0
eAvGρU (l + v − w)G>eA>w dw dv exp(−iωl) dl

= 1
2π

∫ ∞

0

∫ ∞

0

∫ +∞

−∞
eAvGρU (l + v − w)G>eA>w exp(−iωl) dl dw dv.

In the inner integral, we make the substitution s = l+ v−w, l = s+w− v,
dl = ds, to get

SX(ω) = 1
2π

∫ ∞

0

∫ ∞

0

∫ +∞

−∞
eAvGρU (s)G>eA>w exp(−iω(s+ w − v)) ds dw dv

= 1
2π

∫ ∞

0

∫ ∞

0

∫ +∞

−∞
eAveiωvGρU (s)e−iωsG>eA>w eiωw ds dw dv

=
∫ ∞

0
eAveiωv dv

1
2π

∫ +∞

−∞
GρU (s)e−iωs ds

∫ ∞

0
G>eA>w eiωw dw

= H(−ω)SU (ω)H>(ω).

Exercise 5.2: From the definition of Brownian motion, we have that
Bt+k −Bt is distributed as N(0, k) for all t, so Xt ∼ N(0, 1/k). To determine
the covariance structure, let 0 ≤ s ≤ t. Aiming to find EXsXt, we must
distinguish between two cases:

1. t > s + k. Then the intervals [s, s + k] and [t, t + k] are disjoint, so
the increments Bs+k − Bs and Bt+k − Bt are independent. We get
EXsXt = 0.

2. t ≤ s + k. Then the intervals [s, s + k] and [t, t + k] are not disjoint.
We single out the overlapping sub-interval [t, s + k] by adding and
subtracting the contributions from the end points:

E(Bs+k −Bs)(Bt+k −Bt)
= E(Bs+k −Bt +Bt −Bs)(Bt+k −Bs+k −Bs+k −Bt)
= E(Bs+k −Bt)2

= s+ k − t.

We therefore get EXsXt = k−2(s+k− t)2. We see that the covariance
depends only on the time lag t− s, so {Xt} is second order stationary.
Using symmetry, we arrive at the expression (5.15).
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Exercise 5.3:

1. First, note that the expression has exp(At) = I for t = 0. Next,
differentiate w.r.t. time to get

d

dt
exp(At) = −µ exp(At) + e−µtk

[
− sin kt − cos kt

cos kt − sin kt

]

=
(

−µI + k

[
0 −1
1 0

])
exp(At)

= A exp(At)

which defines the matrix exponential.

2. We insert the candidate solution in the algebraic Lyapunov equa-
tion (5.27) and verify that it holds.

3. We combine the two previous results and use (5.28) for a positive time
lag; for negative time lags, we use ρX(−t) = ρ>

X(t).

Exercise 5.4:

1. Since dBt/dt has a constant variance spectrum of 1, we find σ =√
2kBTR. With the given numeric values, we get 2.9 · 10−9 V

√
s.

2. The equation for Qt is

dQt

dt
= − 1

RC
Qt + σ

R

dBt

dt

or
dQt = − 1

RC
Qt dt+ σ

R
dBt.

3. The stationary mean for Qt is 0. The variance is

VQt = σ2

2R2/(RC) = σ2C

2R = kBTC.

Note that this is independent of R. The autocovariance function of
{Qt} is

ρQ(h) = EQtQt+h = kBTCe
−|h|/(RC)

and the power spectrum of {Qt} is

SQ(ω) = σ2

R2(ω2 + 1/(RC)2 = 2kBTRC
2

1 +R2C2ω2
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For the voltage over the capacitor, we find a zero mean, a variance of
kBT/C (which again is independent of R), and a power spectrum

SQ/C(ω) = σ2

C2R2(ω2 + 1/(RC)2 = 2kBTR

1 +R2C2ω2

Note that the low-frequency asymptote of this variance spectrum is
independent of C and equals 2kBTR, i.e., the same as the driving
thermal noise.

4. With C = 1 nF, we get a r.m.s. charge of
√
kBTC = 2·10−15 C, a r.m.s.

voltage of
√
kBT/C = 2 µV, and a decorrelation time of RC = 1 µs.

Exercise 5.6: The algebraic Lyapunov equation is[
0 1

−k −µ

] [
Σ11 Σ12
Σ21 Σ22

]
+
[

Σ11 Σ12
Σ21 Σ22

] [
0 −k
1 −µ

]
+
[

0 0
0 s2

]
= 0

or, elementwise, starting with the (1,1)-element

Σ21 + Σ12 = 0,

which, together with symmetry Σ12 = Σ21, implies that Σ12 = Σ21 = 0. So
in stationarity, the position and velocity is uncorrelated. Using this, we get
for the (1,2)-element

Σ22 − kΣ11 = 0.

Since the average kinetic energy is 1
2EV 2

t = 1
2Σ22, while the average potential

energy is 1
2kEX2

t = 1
2kΣ11, equipartitioning follows.

Finally, we can find the average energies. For the (2,2)-element, we get

−2µΣ22 + s2

or Σ22 = 1
2µ

−1s2.

Exercise 5.7: We use the variance decomposition formula

VXt+h = VE{Xt+h|Xt} + EV{Xt+h|Xt}

where we take V to mean the variance-covariance matrix. With the Euler-
Maruyama approximation, we get

E{Xt+h|Xt} = (I +Ah)Xt ⇒ VE{Xt+h|Xt} = (I +Ah)VXt(I +Ah)>

and
V{Xt+h|Xt} = GG> · h
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Inserting, cleaning up, and omitting second order terms in h, we get

VXt+h = VXh + (AVXt + VXt ·A> +GG>)h

Letting h ↘ 0, we get
d

dt
VXt = AVXt + VXt ·A> +GG>.

Exercise 5.9: Since the drift is linear in the state, the mean µt = EXt

satisfies the ordinary differential equation
d

dt
µt = b− µt

T − t
.

Inserting bt = bt/T , we see that this satisfies the ordinary differental equa-
tion. Likewise, the variance Σt = VXt is governed by the equation

d

dt
Σt = − 2

T − t
Σt + 1

and we see that Σt = t(1 − t/T ), which we found for the Brownian bridge,
satisfies this equation. Finally, since {Xt} is governed by a linear equation,
it is a Gaussian process.

Exercise 5.10: We write the system in standard form

dZt = AZt dt+G dBt

where
A =

[
0 I

−K −cI

]
, G =

[
0
σI

]
.

The algebraic Lyapunov equation for the stationary variance S is

AS + SA> +GG> = 0

and with the Ansatz
S =

[
P 0
0 Q

]
we get the two equations

−2cQ+ σ2I = 0, Q = KP,

which have the solutions

Q = σ2

2c I, P = σ2

2cK
−1.

Note, in particular, that the precision matrix of the position is exactly the
stiffness matrix K, scaled. A simulation is seen in source code pearls.R.
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Exercise 6.3: Since {B(N)
t } has smooth sample paths, we have∫ 1

0
B(N)

s dB(N)
s = 1

2(B(N)
1 )2

so ∫ t

0
B(N)

s dB(N)
s → 1

2B
2
t =

∫ t

0
Bs ◦ dBs.

Exercise 6.4: As usual, let ‖ · ‖ denote the L2 norm, i.e., root mean
square. For a given partition ∆ = {0 = t0 < t1 < · · · < tn = t}, we get

n∑
i=1

(∆Ti)2 ≤ |∆|
n∑

i=1
∆Ti

= |∆|t

and ∥∥∥∥∥
n∑

i=1
∆Ti ∆Bi

∥∥∥∥∥ ≤
n∑

i=1
‖∆Ti‖‖∆Bi‖

≤
n∑

i=1
∆ti

√
∆ti

≤
√

|∆|
n∑

i=1
∆ti

= t
√

|∆|

which both converge to 0 as |∆| → 0.
Alternatively, one could have shown that the quadratic variation of biased

random walk equals time, [B + T ]t = t. From this follows 〈T,B〉t = ([B +
T ]t − [T −B]t)/4 = 0.

Exercise 6.5: For a given partition ∆ = {0 = t0 < t1 < · · · < tn = t},
we get

E
n∑

i=1
∆Bi ∆Wi = 0

and

E
(

n∑
i=1

∆Bi ∆Wi

)2

=
∑
i=1

n∆t2i ≤ t|∆|

which converges to 0 as |∆| → 0.
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Exercise 6.6: According to the triangle inequality for norms, we have
‖
∑(∆Bi)3‖ ≤

∑
‖(∆Bi)3‖, where ‖ · ‖ denotes root mean square. By the

scaling of Brownian motion, we have ‖(∆Bi)3‖ = C(∆ti)3/2. The numerical
value for the constant C can be found from exercise 3.13 but we do not need
it. It follows that∥∥∥∥∥

n∑
i=1

(∆Bi)3
∥∥∥∥∥ ≤ C

n∑
i=1

(∆ti)3/2 ≤ C|∆|1/2
n∑

i=1
∆ti = C|∆|1/2t → 0

as |∆| → 0.

Exercise 6.7: We first verify the result formally using the rules (6.16):

d〈X,Y 〉t = dXt dYt

= FtKt(dt)2 + (FtLt +GtKt)dt dBt +GtLt(dBt)2

= GtLt dt.

Since this computation is formal only at this point, we verify its validity.
Setting ∆Xi = Xti −Xti−1 , ∆Yi = Yti − Yti−1 , ∆ti = ti − ti−1, we have

〈X,Y 〉t = lim
|∆|→0

#∆∑
i=1

∆Xi ∆Yi

= lim
|∆|→0

#∆∑
i=1

[
FtiKti∆t2i + FtiLti∆ti∆Bi +GtiKti∆ti∆Bi +GtiLti(∆Bi)2

]

= lim
|∆|→0

#∆∑
i=1

GtiLti(∆Bi)2

=
∫ t

0
GsLs ds.

Here, we have used [B]t = t, so d[B]t = dt, and 〈T,B〉t = 0.

Exercise 6.8: The integral corresponds to Eτ2, where Ft = P{τ ≤ t}.
I.e., τ is exponentially distributed with mean 1. From the properties of that
distribution, we know that Eτ2 = Vτ + (Eτ)2 = 1 + 1 = 2.

A direct evaluation of the integral is∫ ∞

0
t2 dFt =

∫ ∞

0
t2 exp(−t) dt

= Γ(3) = 2.

Exercise 6.9: For the mean, we find

E
∫ t

0
Bs dBs = 1

2 t− 1
2 t = 0,
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which agrees with theorem 6.3.2. For the variance, we find:

VIt = 1
4VB2

t = t2

4 VB2
1 = 1

2 t
2

using that VB2
1 = 2 (Exercise 3.13). This agrees with the Itô isometry:

V
∫ t

0
Bs dBs =

∫ t

0
E|Bs|2 ds =

∫ t

0
s ds = 1

2s
2.

Exercise 6.11:

1. See the source code Exercise-low-pass-solution.R for simulation.

2. We have d(Yt − Bt) = Xt dt − Bt = −λ−1 dXt, and since Y0 =
B0 = X0 = 0, it follows that Yt − Bt = −Xt/λ. {Xt} is an Ornstein-
Uhlenbeck process with stationary variance λ2/(2λ) = λ/2, from which
the result follows.

3. We know that
∫ t

0 Bs dBs = B2
t /t − t/2 and that

∫ t
0 Bs ◦ dBs =

B2
t /t. Since {Yt} is a low-pass filtering of the Brownian motion, it

has bounded total variation, so the Itô and Stratonovich interpre-
tation coincide, and the usual rules of calculus apply:

∫ t
0 Ys dYs =∫ t

0 Ys ◦ dYs = Y 2
t /2. Since Yt ≈ Bt, these integrals are very close to

∈ tt0Bs ◦ dBs = B2
t /2.

4. Since the Itô integral depends continuously on the integrand, and {Yt}
is near {Bt}, we have that

∫ t
0 Ys dBs is near

∫ t
0 Bs dBs. Since the

cross-variation between {Yt} and {Bt} is 0, the Itô and Stratonovich
interpretation of this integral coincides.
On the other hand, we have d(YtBt) = Yt dBt + Bt dYt using that
dYt dBt = 0. We therefore get the approximation∫ t

0
Bs dYs = YtBt −

∫ t

0
Yt dBt ≈ B2

t −B2
t /2 + t/2 = B2

t /2 + t/2.

Finally, the Itô and Stratonovich interpretation of this integral coin-
cides, again since {Bt} and {Yt} have vanishing cross-variation.

Exercise 6.12: The Euler-Maruyama scheme is

Xt+h = Xt + λ(ξ −Xt)h+ γ
√
Xt(Bt+h −Bt)

so
E{Xt+h|Xt} = Xt + λ(ξ −Xt)h
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and therefore, with µt = EXt,

µt+h = µt + λ(ξ − µt)h.

In the limit h → 0, we get

µ̇t = λ(ξ − µt)

with the solution µt = ξ + (µ0 − ξ) exp(−λt). For the variance Σt = VXt,
we get

V{Xt+h|Xt} = γ2Xth

and therefore, with the law of total variance,

Σt+h = EV{Xt+h|Xt} + VE{Xt+h|Xt}
= γ2µth+ (1 − λh)2Σt.

In the limit h → 0, we find

Σ̇t = −2λΣt + γ2µt.

In particular, the stationary variance is Σ = γ2ξ/(2λ).
For the autocovariance function, we use

E{Xt|X0} = ξ + (X0 − ξ)e−λt

and therefore

E(Xt − ξ)X0 = EE{(Xt − ξ)X0|X0} = E(X0 − ξ)X0e
−λt = Σe−λt.

Exercise 7.1: We apply Itô’s lemma to Yt = h(t,Xt) where h(t, x) =
y exp(x) where Xt = (r − σ2/2)t + σBt, i.e., dXt = (r − σ2/2) dt + σ dBt.
We find

ḣ = 0, h′ = h, h′′ = h,

so that

dYt = ḣ dt+ h′ dXt + 1
2h

′′ dX2
t

= 0 + Yt(r − 1
2σ

2) dt+ Ytσ dBt + 1
2Ytσ

2 dt

= rYt dt+ σYt dBt

as required. Next, log Yt is Gaussian with mean log y+(r− 1
2σ

2)t and variance
σ2t, Yt is log-Gaussian distributed

Yt ∼ LN(log y + (r − 1
2σ

2)t, σ2t).
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It follows from the properties of the log-Gaussian distributions that Yt has
mean

EYt = y exp((r − 1
2σ

2)t+ 1
2σ

2t) = y exp(rt)

and variance

VYt = y2(exp(σ2t) − 1) exp(2(r− 1
2σ

2)t+ σ2t) = y2(exp(σ2t) − 1) exp(2rt).

The mean square is EY 2
t = (EYt)2 + VYt = y2 exp((2r + σ2)t).

Exercise 7.4: Using the hint, define Yt = h(t,Xt) = exp(−At)Xt,
then

Yt = x+
∫ t

0
e−As(ws ds+G dBs)

so dYt = e−At(wt dt+G dBt). By Itôś lemma, this implies

dXt = eAtdYt +AeAtYt dt = AXt dt+ wt dt+G dBt

as required. We find the mean by removing the Itô integral:

EXt = eAtx+
∫ t

0
eA(t−s)ws ds,

and note that the mean satisfies the ordinary differential equation
d

dt
EXt = AEXt + wt.

For the variance-covariance matrix Σ(t), we get the same result as (5.20),
i.e.

Σ(t) =
∫ t

0
eA(t−v)GG>eA>(t−v) dv

since linearity implies that the deterministic input {wt} does not affect the
variance.

Exercise 7.5: Define Yt = h(t, x) where h(t, x) = e−Ftx, then

Yt = x+
∫ t

0
e−Fsσs dBs

or
dYt = e−Ftσt dBt

By Itôś lemma applied to Xt = g(Ft, Yt) with g(f, y) = exp(f)y, using
∂2g/∂y2 = 0 and (dFt)2 = dFt · dYt0, we get

dXt = Xt dFt + eF (t) dYt = λtXt dt+ σt dBt

So Xt = g(Ft, Yt) = eFtx+
∫ t

0 e
Ft−Fsσs dBs satisfies the stochastic differential

equation.
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Exercise 7.6: We let h(y) = √
y; thus h′(y) = 1/(2√

y) and h′′(y) =
−y−3/2/4. Thus

dZt = h′(Yt) dYt + 1
2

′′
(Yy)(dYt)2 = n− 1

2
1
Zt
σ2 dt+ σdWt.

Exercise 7.7: For the process (Xt, Yt), the drift is linear so the expec-
tation satisfies (

dEXt

dEYt

)
= 1

2

(
EXt

EYt

)
dt

from which we find EXt = exp(−1
2 t)EX0. With X0 = 1, the conclusion

follows.

Exercise 7.8: The transform is

h(x) =
∫ x 1

σv
dv = σ−1 log x

The transformed process is {Yt : t ≥ 0} given by Yt = σ−1 logXt, which is
governed by the SDE

dYt = ( rXt

σXt
− 1

2σ) dt+ dBt = ( r
σ

− 1
2σ) dt+ dBt

Alternatively, we could prefer to not scale with σ, so define a transformed
process Zt = logXt, corresponding to the SDE

dZt = (r − 1
2σ

2) dt+ σ dBt

which has a constant noise intensity, which is not equal to 1 in general.

Exercise 7.9: The scale function s satisfies s′µ+ 1
2σ

2s′′ = 0; the non-
trivial solution is

s(x) = exp
(
−2µx/σ2

)
and the transformed process Yt = s(Xt) satisfies

dYt = s′(Xt)σ dBt = −2µ
σ2 Yt dBt.

In the x-coordinate, starting from a deterministic initial condition, a positive
drift µ > 0 implies that mode and mean of Xt is increasing. In the y-
coordinate, the mode of Yt is decreasing, but the convexity of s in concert
with the variance of Xt implies that the expected value of Yt is constant.
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Exercise 7.10: The equation governing the scale function is

rxs′(x) + 1
2σ

2x2s′′(x) = 0.

We verify the scale function directly by inserting the candidates in this
equation. For ν 6= 0, we use s′(x) = xν−1, s′′(x) = (ν − 1)xν−2. For ν = 0,
we use s′(x) = 1/x, s′′(x) = −1/x2.

Exercise 7.11: Define Xt = k(t, Bt) with k(t, b) = b/
√
t; then Itô’s

lemma gives

dXt = −1
2Btt

−3/2 dt+ t−1/2 dBt = −1
2Xtt

−1 dt+ t−1/2 dBt

With Ft = −1
2Xtt

−1 and Gt = t−1/2, and with the time change Ut = log t,
we get Ht = 1/t and

dYu = FTu

HTu

du+ GTu√
HTu

dWu = −1
2Yu du+ dWu.

To avoid singularities in the time transform, we first restrict the time t to
a compact interval [a, b] with 0 < a < b < ∞; we can later let a → 0 and
b → ∞ and cover the entire time semiaxis t ≥ 0. Thus, by rescaling both
the dependent and the independent variable, we can transform Brownian
motion to an Ornstein-Uhlenbeck process. Finally, the stationary variance
of this Ornstein-Uhlenbeck process is 1, which follows from the algebraic
Lyapunov equation, so the stationary distribution is a standard Gaussian,
which coincides with the distribution of Y0 = B1.

Exercise 7.14: For Xt we get

dXt = −sinBt ◦ dBt = −Yt ◦ dBt

while for Yt we get

dYt = cosBt ◦ dBt = Xt ◦ dBt.

Combining, we have (
dXt

dYt

)
=
(

−Yt

Xt

)
◦ dBt.

Exercise 7.15: We apply the transformation

Yt = h(Xt) with h(x) =
∫ x 1

g(v) dv

and find
dYt = f(Xt)

g(Xt)
dt+ dBt
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Next, we rewrite the original equation governing {Xt} as an Itô equation:

dXt = (f(Xt) + 1
2g(Xt)g′(Xt)) dt+ g(Xt) dBt

We Lamperti transform this equation with the same transformation and find

dYt =
(
f(Xt)
g(Xt)

+ 1
2g

′(Xt) − 1
2g

′(Xt)
)
dt+ dBt = f(Xt)

g(Xt)
dt+ dBt,

i.e., the same as we obtained with the direct transformation applied to the
Stratonovich equation. Notice that the noise intensity is constant, which
was the purpose of the transformation, so that the Itô and Stratonovich
interpretation of the equation coincide. This explains why we reach the same
result.

Exercise 7.16: Using Itô’s lemma, we have

h′(x) = pxp−1, h′′(x) = p(p− 1)xp−2,

so
dYt = rpXp

t dt+ σpXp dBt + 1
2σ

2p(p− 1)Xp
t dt

or
dYt =

(
rp+ 1

2σ
2p(p− 1)

)
dt+ σpYt dBt.

Hence, {Yt} is geometric Brownian motion with the drift parameter rp +
σ2p(p− 1)/2 and noise parameter σp.

Exercise 7.17: The verification consists of the following steps: We
write Yt = h(Bt) and we use Itô’s lemma to write {Yt} as an Itô process.
Then we eliminate Bt from the drift and noise intensity. The following piece
of Maple code does the computations:

h := s inh :

## I d e n t i f y the i n v e r s e
h i := unapply ( s o l v e ( y=h(b ) , b ) , y ) :

## Determine the increment o f Y us ing Ito ’ s lemma
dY := d i f f (h (B) ,B) ∗ dB + 1/2 ∗ d i f f (h (B) ,B,B) ∗ dt :

## El iminate B
dY := s i m p l i f y ( subs ( B = hi (Y) , dY ) ) ;

The code produces the following output:

dY := (Y 2 + 1)1/2 dB + 1
2Y dt
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which confirms that {Yt} satisfied the SDE, as claimed.
The numerical verification is found in R-code sinhB.R.

Exercise 7.18: With Itô’s lemma, we get

dZt = ḣ(Xt, t) dt+ h′(Xt, t) dXt + 1
2h

′′(Xt, t) (dXt)2

and therefore

d〈Z, Y 〉t = dZt dYt = h′(Xt, t) dXt dYt = h′(Xt, t) d〈X,Y 〉t

since the terms involving dt dYt and (dXt)2 dYt vanish.

Exercise 7.19: The product rule applied to Zt = XtYt with Xt = t,
Yt = Bt immediately gives

d(tBt) = t dBt +Bt dt

from which the integral formulation follows. The Itô integral
∫ t

0 s dBs has
expectation 0 and variance

∫ t
0 s

2 ds = t3/3 according to the Itô isometry.
The integral

∫ t
0 Bs ds has expectation 0 and a variance

E
(∫ t

0
Bs ds

∫ t

0
Bu du

)
=
∫ t

0

∫ t

0
(s ∧ u) ds du = 2

∫ t

0

∫ s

0
u du ds = t3/3,

i.e., the same. Here we have used that EBsBu = s∧u = min(s, u); compare
(4.1). Since tBt has expectation 0 and variance t3, we find

Cov(
∫ t

0
s dBs,

∫ t

0
Bs ds) = 1

2(t3 − 2t3/3) = t3/6,

using the general formula V(X + Y ) = VX + VY + 2Cov(X, y).
The code int s dB and int B ds.R verifies the result with a Monte

Carlo simulation.

Exercise 7.20: By the Brownian bridge, E{Bs|Bt} = sBt/t for 0 ≤
s ≤ t. By Fubini’s theorem, E

{∫ t
0 Bs ds|Bt

}
=
∫ t

0(sBt/t) ds = Bt/t · 1
2 t

2 =
1
2 tBt.

By the product formula,
∫ t

0 s dBs = tBt −
∫ t

0 Bs ds, so E
{∫ t

0 s dBs|Bt

}
=

1
2 tBt.

Exercise 7.21: The result follows directly from (7.10) with f(x) = rx,
g(x) = σx, and h(x) = x.

Exercise 7.22:

1. We have EXt =
∫+∞

−∞ (2πt)−1/2 exp(b2(1 − 1/(2t))) db. The integrand
is a Gauss bell if t < 1/2 and hence the expectation exists. If t ≥ 1/2,
then the integrand does not vanish, so the integral is +∞.
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2. We have EXt =
∫+∞

−∞ (2πt)−1/2 exp(−b2/(2t)+exp b) db. The integrand
diverges to +∞ as b → ∞, for all values of t > 0.

Exercise 7.23: Set h(t, b) = exp(At+Gb)x, then we have

∂h

∂t
= Ah,

∂h

∂b
= Gh,

∂2h

∂b2 = G2b

so Itô’s lemma gives

dXt = AXt dt+GXt dBt + 1
2G

2Xt dt

as claimed.

Exercise 7.24:

1. Define h(x) = |x|2 and Yt = h(Xt) and note that ∇h(x) = 2x>.
According to the chain rule of Stratonovich calculus, we have

dYt = ∂h

∂x
◦ dXt = 2X>

t ◦ dXt = 0.

2. Define Yt = UXt. Then |Yt| = |Xt| and

dYt = U dXt = U(I− 1
|Xt|2

XtX
>
t )U>U ◦dBt = (U− 1

|Yt|2
YtY

>
t )◦dWt

where UBt = dWt. Note that {Wt} is Brownian motion; for example
Wt −Ws ∼ N(0, I(t− s)) for 0 ≤ s ≤ t.

3. With Itô’s formula, and using that Hh = 2I, we get

dYt = ∇h dXt+
1
2dX

>
t Hh dXt =

[
2X>

t

1 − n

2|Xt|2
Xt + tr(I − 1

|Xt|2
XtX

>
t )
]
dt = 0.

Here we have used that g(x) = I−|x|−2xx> is a symmetric projection
matrix, i.e. gg = g.
Taking expectation in the Itô equation for {Xt}, and using that |Xt|2 =
|x|2, we find that

ExXt = xet(1−n)/(2|x|2 .

See source code BM-on-the-sphere.R for the numerical verification.

Exercise 7.25: We apply Itô’s lemma applied to Yt = h(Xt) where
h(x) = expx. We get

dYt = Yt(dXt + 1
2(dXt)2) = Yt(Gt dBt − 1

2G
2
t dt+ 1

2G
2
t dt) = YtGt dBt.

See source code ExponentialMartingale.R for the numerical verification.
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Exercise 8.2: Our first (somewhat naive) guess on the solution is the
constant process {X(0)

t : t ≥ 0} given by X(0)
t = 1. Next, the Picard iteration

gives us

X
(i)
t = 1 +

∫ t

0
rX(i−1)

s ds+ σX(i−1)
s ◦ dBs for i = 1, 2, . . .

and with the Stratonovich calculus, we get:

X
(1)
t = 1 +

∫ t

0
r ds+

∫ t

0
σ ◦ dBs

= 1 + rt+ σBt

X
(2)
t = 1 +

∫ t

0
r(1 + rs+ σBs) ds+

∫ t

0
σ(1 + rs+ σBs) ◦ dBs

= 1 + (rt+ σBt) + 1
2(rt+ σBt)2

This motivates us to guess

X
(n)
t =

n∑
i=0

1
i! (rt+ σBt)i

which is the truncated Taylor expansion of an exponential function, i.e.,

X
(n)
t → exp(rt+ σBt)

for all t and all ω. The following figure shows the first few iterates:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

20
25

t

x

Xt
0

Xt
1

Xt
2

Xt
3

Xt
4

Xt

To show that this guess is correct, assume that it holds for n. We then get

X
(n+1)
t = 1 +

∫ t

0

n∑
i=0

1
i! (rs+ σBs)i(r ds+ σ dBs) =

n+1∑
i=0

1
i! (rs+ σBs)i

which was to be shown.
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Exercise 8.3: For both models, the noise intensity g is constant, so it
is all about the drift. In both cases, the drift is continuously differentiable, so
locally Lipschitz, and uniqueness is guaranteed. For the double well model,
we have

xf(x) = rx2 − qx4 ≤ rx2

so the condition in theorem 8.3.1 is satisfied with C = r.
For the van der Pol oscillator, we have

(x v)
(

v
(µ(1 − x2)v − x

)
= xv + µv2 − µx2v2 − xv ≤ µv2

so the condition in theorem 8.3.1 is satisfied with C = r, if we use Euclidean
norm for the state (x, v).

Exercise 8.4: The noise intensity is globally Lipschitz, so it is all about
the drift f(x) = x(1 − x). This satisfies xf(x) ≤ 1 + x2 as long as x ≥ 0.
So existence and uniqueness is guaranteed as long as the process stays non-
negative. But if the process ever hits 0, then it will stay there, since 0 is
an equilibrium. Therefore existence and uniqueness is guaranteed. Note: In
fact, the process never hits 0, as we will see in Section 11.7 and exercise 12.7.

Exercise 8.5: The functions f , g are Lipschitz continuous on any in-
terval [ε,∞) with ε > 0, so existence and uniqueness holds up to the time
the process hits ε. Since ε > 0 is arbitrary, existence and uniqueness hold
until the process hits x = 0.

Exercise 8.6: We have

g1(x) = 1, g2(x) = x

so
L1V = V ′, L2V = xV ′

and hence
L1L2V = (xV ′)′ = xV ′′ + V ′

while
L2L1V = xV ′′

Therefore, (L2L1 − L1L2)V is not identically 0, and the noise terms do not
commute. More concisely, we have g′

1g2 = 0 6= 1 = g′
2g1.

Exercise 8.7: We have

(∇g1)g2 = 0, (∇g2)g1 =

 0 0 0
− sin θ 0 0
cos θ 0 0


1

0
0

 =

 0
− sin θ
cos θ

 .
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Since these two results differ, the noise terms do not commute. The in-
terpretation of this result is that the unicycle will diffuse not just in the
forward-backward direction, but also sideways. More elaborately, we have

g1(θ, x, y) = (1, 0, 0)>, g2(θ, x, y) = (0, cos θ, sin θ)>

Hence, the operators Li are

L1V = ∂V

∂θ
, L2V = cos θ∂V

∂x
+ sin θ∂V

∂y
.

We therefore get

L1L2V = ∂

∂θ

(
cos θ∂V

∂x
+ sin θ∂V

∂y

)
= − sin θ∂V

∂x
+ cos θ ∂

2V

∂x∂θ
+ cos θ∂V

∂y
+ sin θ ∂

2V

∂y∂θ

while
L2L1V = cos θ ∂

2V

∂x∂θ
+ sin θ ∂

2V

∂y∂θ

so that
(L1L2 − L2L1)V = − sin θ∂V

∂x
+ cos θ∂V

∂y

which is not identically 0. Hence the noise terms do not commute.

Exercise 8.8: We have
Zt+h = Xt(1 + rh+ σ∆B)

and thus
f̄ = 1

2(rXt + rZt+h) = (r + 1
2r

2h+ 1
2rσ∆B)Xt

and
ḡ = 1

2(σXt + σZt+h) = (σ + 1
2rσh+ 1

2σ
2∆B)Xt

and therefore

Xt+h = Xt(1 + rh+ σ∆B + 1
2(rh+ σ∆B)2).

Exercise 9.1: The stationary distribution can be written as

ρ(x) = 1
Z

exp
(∫ x

x0

u(y)
D(y) dy

)
= 1
Z

exp
(∫ x

x0

f(y) −D′(y)
D(y) dy

)
= 1
Z

exp
(∫ x

x0

f(y)
D(y) dy − log(D(x)) + log(D(x0))

)
= D(x0)
Z ·D(x) exp

(∫ x

x0

f(y)
D(y) dy

)
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Redefining Z := Z/D(x0), we obtain the desired result.

Exercise 9.2: The forward Kolmogorov equation can be written in
terms of advection and diffusion:

D(x) = 1
2g

2(x) = 1
2γ

2x, u(x) = f(x) −D′(x) = λ(ξ − x) − 1
2γ

2.

To find the stationary distribution using (9.6) on p. 210), we first identify
the antiderivative∫ x

x0

u(y)
D(y) dy =

∫ x

x0
2λξ − γ2

γ2
1
y

−2λ
γ2 dy =

(2λξ−
γ2 − 1

)
log(x/x0)−2λ

γ2 (x−x0)

so that the un-normalized density is

φ(x) = 1
Z
x2λξ/γ2−1e−2λ/γ2 x = 1

Z
xν−1e−ωx;

i.e., a Gamma distribution with rate and shape parameter as claimed. The
normalization constant follows from the properties of the Gamma distribu-
tion, which also give us the stationary mean and variance:

EXt = ν/ω = ξ, VρXt = ν/ω2 = ξγ2/(2λ).

This agrees with the results of exercise 8.5, as expected.

Exercise 9.3:

1. We have Lh(x) = r(1 − x/K) − σ2/2. The result follows from taking
expectation, setting equal to 0, and isolating EXt.

2. We have Lh(x) = rx(1 − x/K). The first result follows from taking
expectation and setting equal to 0. Then use the definition of the
variance, VXt = EX2

t − (EXt)2.

3. We first maximize VXt w.r.t. EXt ∈ [0,K] and find that this is max-
imal at EXt = K/2. Next, we see that this expectation is obtained
with σ2 = r. At lower noise intensities, the noise is insufficient to ex-
cite large fluctuations. At higher noise intensities, the noise hampers
the growth so that the entire process live at lower levels. Ultimately,
when the noise intensity reaches σ2 = 2r, the expectation drops to 0
so that the population has died out, in which case there are no more
fluctuations.

Exercise 9.4: The solution to the state equation is geometric Brown-
ian motion, starting at X0 = x:

Xt = xe(r− 1
2 σ2)t+σ Bt
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and, using that Bt ∼ N(0, t), we can write Bt = Ξ
√
t where Ξ ∼ N(0, 1), so

k(0, x) =
∫ +∞

−∞
(xe(r− 1

2 σ2)t+σξ
√

t −K)+φ(ξ) dξ

where φ(·) is the p.d.f. of a standard Gaussian random variable. We first
identify the threshold ξ = −d where the integrand touches 0:

xe(r− 1
2 σ2)t−σd

√
t = K ⇔ −d =

log(K/x) − (r − 1
2σ

2)t
σ

√
t

so
k(0, x) =

∫ +∞

−d
(xe(r− 1

2 σ2)t+σξ
√

t −K)φ(ξ) dξ.

We next use∫ ∞

−d
φ(ξ) dξ = Φ(d) and

∫ ∞

−d
eσξ

√
tφ(ξ) dξ = e

1
2 σ2tΦ(d+ σ

√
t).

where Φ(·) is the standard Gaussian c.d.f. Combining these terms, we get
the final expression:

k(0, x) = xertΦ(d+ σ
√
t) −KΦ(d).

The discounted price follows, multiplying with exp(−rt). Note that Φ(d)
denotes the probability that the option is “in the money”, i.e., the price of
the stock exceeds the strike price at the time of expiry, so the option will
have a positive value. Thus, KΦ(d) is the expected price we will pay for the
stock at the time of expiry. The first term is the expected revenue we will
get from selling the stock: x exp(rt) is the expected price of the stock, and
the term Φ(d + σ

√
t) corrects for the fact that we only sell the stock if the

price exceeds K.
See source code BlackSholes.R for the numerical computation and vi-

sualization.

Exercise 9.5:

1. We have
Lψ = −xψ′ + ψ′′, L∗φ = (xφ)′ + φ′′.

2. We find

LH0 = 0, LH1 = −x = −H1
LH2 = −2x2 + 2 = −2H2, LH3 = −3x3 + 3x+ 6x = −3H3

so these are eigenfunctions corresponding to the eigenvalues 0,1,2 and
3, respectively.
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3. For the mean, we know from Section 7.4.1 that ExXt = x exp(−t).
This is consistent with

ExH1(Xt) = (eLtH1)(x) = e−tH1(x) = e−tx.

For the variance, we know from Section 7.4.1 that

VxXt = 1 − e−2t

which implies that the mean square satisfies

ExX2
t = (ExXt)2 + VxXt = 1 + e−2t(x2 − 1).

This can also be written

ExH2(Xt) = e−2tH2(x)

which is consistent with LH2 = −2H2 and ExH2(Xt) = (eLtH2)(x).

4. Let k be an arbitrary smooth test function with bounded support and
let 〈h, k〉 =

∫
hk dx denote the usual inner product on L2. Then

〈L∗(ρψ), k〉 = 〈ρψ, Lk〉
= 〈ψ,Lk〉ρ

= 〈Lψ, k〉ρ

= 〈λψ, k〉ρ

= 〈λρψ, k〉.

Since k is arbitrary, we conclude that L∗(ρψ) = λρψ.

5. See source code OU-spectrum.R

Exercise 9.6: We have

E[h(X0)h(Xt)] = E [h(X0)E{h(Xt)|X0}]

and the backward Kolmogorov equation gives us

E{h(Xt)|X0 = x} = (eLth)(x).

Combining, we get

E [h(X0)E{h(Xt)|X0}] = E
[
h(X0)(eLth)(X0)

]
=
∫

X
ρ(x)h(x)(eLth)(x) dx

as desired. For the Ornstein-Uhlenbeck process, with h(x) = x, we have
Lh = −λh, so (exp(Lt)h) = exp(−λt)h. Therefore, we get

EX0Xt = EX2
0e

−λt = e−λt σ
2

2λ.
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Here we have used the stationary distribution (e.g., example 9.9.2). The
result is consistent with what we found earlier (Section 5.10). Finally, if
Lh = λh, then

Eh(Xt)h(X0) =
∫

X
ρ(x)h(x)eλth(x) dx = eλtE|h(X0)|2

for t ≥ 0.

Exercise 9.7: The forward Kolmogorov equation is

ρ̇ = −(ρ sin x)′ + 1
2σ

2ρ′′.

The stationary distribution is the canonical distribution

ρ(x) = 1
Z

exp(−U(x)/D)

where, as always, D = σ2/2 and the potential U is an antiderivative to
−f(x) = sin x, i.e. U(x) = − cosx. So

ρ(x) = 1
Z

exp(D−1 cosx)

as claimed, with κ = 1/D = 2/σ2.
The question does not ask us to find Z, but we can: We normalize the

distribution over [0, 2π), obtaining

Z =
∫ 2π

0
exp(−U(x)/D) dx = 2πI0(2/σ2)

where I0(·) is the modified Bessel function of the first kind of order 0.
For the numerical part of the exercise, see source code vonMises.R.

Exercise 9.8:

1. The forward Kolmogorov equation is

φ̇ = −(λ(ξ − y)φ)′ + (1
2γ

2yφ)′′.

2. We take as starting point the setting of Section 7.5.2, i.e., we have
n independent Ornstein-Uhlenbeck processes. Assume that the state
of these processes are known at time t = 0, and that their sum of
squares is Y0. At time t, these processes have relaxed partially towards
the origin and are Gaussian distributed. We can now form Yt as the
sum of squares of these n random variables, which implies that a re-
scaling of Yt (to ensure that each Ornstein-Uhlenbeck variables has
unit variance) will follow a non-central chi-squared distribution.
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3. We pose the model for n Ornstein-Uhlenbeck processes, as in Section
7.5.2:

dX
(i)
t = −µX(i)

t dt+ σ dB
(i)
t

with µ = λ/2, σ = γ/2, and n = 4λξ/γ2. Here we assume that n is
integer. Let Y0 = y0 be given; set X(i)

t =
√
y0/n. Note that it does not

matter how we distribute the energy y0 over the n modes. Then, from
the properties of the Ornstein-Uhlenbeck process (Section 7.4.1), we
have

X
(i)
t ∼ N(

√
y0/ne

−tλ/2,
γ2

4λ(1 − e−λt)).

Since the non-central chi-squared distribution concerns sum-of-squares
of Gaussian variables, which each have unit variance, we define

c = 2λ
γ2(1 − e−λt)

so that √
2cX(i)

t ∼ N(
√

2cy0/ne
−tλ/2, 1).

Therefore, 2cYt is non-central chi-squared distributed with n degrees
of freedom, and a non-centrality parameter ν which is the sum of the
squared means, i.e.

ν = 2cy0e
−λt.

Let f(z) be the p.d.f. of this non-central chi-squared distribution (avail-
able in R and other software environments), then the p.d.f. of Yt at y
is

f(2cy)2c
Using the analytical expression for the p.d.f. of the non-central chi-
squared distribution, we find that that the p.d.f. of Yt at y is

ce(−2cy+ν)/2
(2cy
ν

)n/4−1/2
In/2−1(

√
2cνy)

where I is a modified Bessel function of the first kind.

Exercise 9.9: We have

f(x) = u(x) + ∇D(x), g(x) = (2D)1/2(x)

and the Euler-Maruyama method is

Xt+h = Xt + (u(Xt) + ∇D(Xt)) h+ (2D(Xt))1/2 (Bt+h −Bt)

The term ∇D pushes particles in direction of higher diffusivity; without this
term, particles will tend to aggregate in regions with low diffusivity, which
is not in agreement with Fickian diffusion.
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Exercise 9.10: From Section 7.7, we know that the equation governing
{Yu} is dYu = h−1(Yu)f(Yu) du + h−1/2(Yu)g(Yu) dWu. Let ρ(y) be the
stationary density of Yu, then

ρ(y) = 2h(y)
Z̄Y g2(y)

exp
(∫ y

y0

2f(x)
g2(x) dx

)
= Z̄X

Z̄Y

h(y)φ(y)

which should be shown; here Z̄X and Z̄Y are the two normalization con-
stants. Note that this result can be explained as follows: The sample path of
{Yu : u ≥ 0} visits exactly the same points as {Xt : t ≥ 0}, but the u-time
the process {Yu : u ≥ 0} spends in a certain region dy is a factor h(y) larger
than the t-time that {Xt : t ≥ 0} spends in the same region.

Exercise 9.11: We have AΣ + ΣA> + GG> = 0, and the stationary
density is

ρ(x) = |2πΣ|−1/2 exp
(

−1
2x

>Σ−1x

)
.

The flux of probability in stationarity at x is

ρAx− 1
2GG

>∇ρ = ρ

(
A+ 1

2GG
>ρΣ−1

)
x.

This vanishes everywhere iff

A+ 1
2GG

>ρΣ−1 = 0 ⇔ 2AΣ +GG> = 0

which, combined with the stationary Lyapunov equation, gives AΣ = ΣA>.
This holds, as we have already shown, for the Ornstein-Uhlenbeck pro-

cess, and more generally and interestingly for the equation

dXt = −QXt dt+ σ dBt

in n dimensions, where σ > 0 is a scalar, {Bt} is n-dimensional Brownian
motion, and Q = Q>. Here, the stationary distribution is a Gibbs canonical
distribution corresponding to the potential U(x) = 1

2x
>Qx, i.e., a Gaussian

with variance Q−1σ2/2.
One example where detailed balance does not hold is the noisy harmonic

oscillator (Section 5.11).

Exercise 9.12:

1. The generator is

(Lh)(x) = ∇h Ax+ 1
2tr[HhGG>],
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and with the particular form h(x) = x>Qx+ q, we get

(Lh)(x) = x>[QA+A>Q]x+ tr[QGG>].

Here, we have used 2x>QAx = x>(QA + A>Q)x so that the matrix
in the quadratic form is symmetric.

2. We get
x>[Ṗt + PtA+A>Pt]x+ ṗt + tr[PtGG

>] = 0.

This holds for all x iff

Ṗt + PtA+A>Pt = 0, ṗt + tr[PtGG
>] = 0.

In addition, we have the terminal conditions PT = Q, pT = q.

Exercise 9.13:

1. We have g1(θ, x, y) = (1, 0, 0)> and g2(θ, x, y) = (0, cos θ, sin θ)>. So

[g1, g2](x) = ∇g1 ·g2 −∇g2 ·g1 =

 0 0 0
− sin θ 0 0
cos θ 0 0


1

0
0

 =

 0
− sin θ

cos θ

 .
It is now easy to see that the three vectors span R3 - for example, we
can compute the determinant

|[g1 g2 [g1, g2]| =

∣∣∣∣∣∣∣
 1 0 0

0 cos θ − sin θ
0 sin θ cos θ


∣∣∣∣∣∣∣ = 1.

Exercise 9.15: See source code von-Mises-identification.R.

Exercise 10.1: The stationary Riccati equation is

−2λP + σ2 − P 2c2/d2 = 0,

and the maximal solution is

Σ = −2λ+
√

4λ2 + 4σ2c2/d2

2c2/d2 .

Note that Σ > 0. For fixed λ, Σ is a decreasing function of c and an increasing
function of d. For fixed c, d, Σ is a decreasing function of λ. When d → 0, we
have Σ ≈ σd/c → 0. When d → ∞, there are two situations: If λ > 0, then
the system dynamics is stable, and with high measurement noise, the best we
can do is to use the estimate X̂t = 0, which will lead to an estimation error
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with variance σ2/(2λ). To obtain this result, we use
√

1 + x = 1+x/2+o(x).
Conversely, with λ < 0, the state diverges, so we need to use measurements,
even if they are noisy. We obtain Σ ≈ −2d2λ/c2 → ∞ as d → ∞.

The Kalman gain is

K = Σc/d2 = −2λ+
√

4λ2 + 4σ2c2/d2

2c

which is positive. For fixed λ, it is an decreasing function of d and an increas-
ing function of c. For fixed c, d, it is a decreasing function of λ. For d → 0,
we have K → ∞. For d → ∞ and λ > 0, we have K → 0, which agrees with
what we found for Σ. For d → ∞ and λ < 0, we have K → −2λ/c.

Finally, we have

A−KC = −
√
λ2 + σ2c2/d2

which is always negative, and becomes more negative when we increase |λ|,
σ or the signal-to-noise ratio c/d. When d → 0, we have A − CK → −∞,
so that we use measurements agressively to make the error decorrelate fast.
When λ > 0 and d → ∞, we have A − KC → −λ, which agrees with our
previous results that in this case we do not use measurements at all. When
λ < 0 and d → ∞, we find A−KC → λ. In this case the optimal filter flips
the unstable eigenvalue −λ of the system dynamics into a stable eigenvalue
λ of the error dynamics.

Exercise 10.2: See the source code kalman.R.

Exercise 10.3:

1. We have

dX̃t = dXt − dX̂t

= AXt dt+ ut dt+G dBt

− [(A−KC)X̂t dt+ ut dt+K(dYt − CX̂t dt)]
= (A−KC)X̃t +G dBt +KD dWt.

2. The algebraic Lyapunov equation is

(A−KC)Σ + Σ(A−KC)> +GG> +KDD>K> = 0.

3. Minimizing tr(ΣQ) subject to the constraint of the algebraic Lyapunov
equations, we include this in the objective using a Lagrange multiplier,
say Λ:

tr(ΣQ) + trΛ[(A−KC)Σ + Σ(A−KC)> +GG> +KDD>K>].



SOLUTIONS TO SELECTED EXERCISES 39

This must be minimized w.r.t. Σ, K, and Λ. It is linear in Σ, so at the
optimum, the criterion must be stationary w.r.t. Σ:

Q+ Λ(A−KC) + (A−KC)>Λ = 0.

Since Q > 0 and A − KC must be stable, this implies that Λ > 0.
For given Σ, Λ, we now identify a stationary point w.r.t. K by taking
matrix derivative:

−2CΣΛ + 2DD>K>Λ = 0

which is satisfied iff
K = ΣC>(DD>)−1.

Inserting this in the algebraic Lyapunov equation, we obtain the alge-
braic Riccati equation (10.8).

Exercise 10.4: See source code diffusion-bridge.R

Exercise 11.1: The quickest way to confirm this expression is to see
that it agrees with the original expression when λ = 1, σ =

√
2, and that it

is dimensionally correct in that time has been rescaled with 1/λ and space
with

√
σ2/2λ. More elaborately, we would pose the equation for k:

1
2σ

2k′ = xk + 1, k(0) = 0,

which has the solution

k(x) = − 2
σ2

∫ x

0
e

λ
σ2 (x2−y2) dy = − 2

√
π

σ
√
λ
eλx2/σ2(Φ(x

√
2λ/σ2) − 1

2)

To reach the final approximation for h(0) = −
∫ l

0 k(x) dx, we use that the
integral is dominated by the contribution from the region where Φ ≈ 1 (Ex-
ercise 2.7 provides bounds which can be used to assess the error made here;
it is negligible). Finally, we use the asymptotic expansion of the integral,
with the substitution y = x

√
2λ/σ.

Exercise 11.2: We have Exτ = h(x) where

−uh′ +Dh′′ + 1 = 0, h(R) = 0, h′(0) = 0.

Here, D = σ2/2. With k(x) = h′(x), we find −uk + Dk′ + 1 = 0, which
has the general solution is k(x) = 1/u + c exp(ux/D). With the boundary
condition k(0) = 0, we get c = −1/u. Now integrate k using the boundary
condition h(R) = 0.
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Exercise 11.3: Since f = 0, we find φ(x) = 1. Thus s(x) = x and
h(x) = x/l. The varying diffusivity affects the time it takes to reach the
boundary, but does not affect the eventual outcome.

Exercise 11.4: We claim that h is concave, i.e., h′′ < 0: Note first
that φ is positive, so the scale function s is increasing. Therefore c1 > 0 and
hence h is increasing, which should not come as a surprise: The further one
starts to the right, the greater is the probability of exit to the right. Now,
from the equation fh′ + 1

2g
2h′′ = 0 we find

h′′ = −2fh′

g2

Therefore, in any region where f is positive, h′′ must be negative and thus h
is concave. Here, since f(x) = D′(x) > 0, this applies to the entire interval
[0, l].

The graph of a concave function lies above any chord, and hence h(l/2) >
(h(0) + h(l))/2 = 1/2. So the process is more likely to exit at the boundary
point where the diffusivity is high. This result adds to our understanding
that pure Fickian diffusion, when the diffusivity varies with space, is biased
towards regions with high diffusivity.

Exercise 11.5: When h is constant-quadratic, as assumed, the sub-
generator has the form

(Lh−mh)(x) = x>
[
A>P + PA−mP

]
x+ trPGG> −mp,

(compare exercise 9.12) so the steady-state equation is

x>
[
A>P + PA−mP +Q

]
x+ trPGG> −mp = 0.

This holds for all x iff

A>P + PA−mP +Q = 0, trPGG> = mp.

This equation has a solution with the given characterization, provided that
A−mI/2 is strictly stable (all eigenvalues in the open left half of the complex
plane). Here I is the identity matrix.

Exercise 11.6: When x ≥ 1, we have τ = 0 and h(Xτ ) = x. When
x < 1, we have τ < ∞ a.s. (Theorem 4.3.3), and Xτ = 1 so that h(Xτ ) = 1.
In summary Eh(Xτ ) = h(Xτ ) = x ∧ 1.

We also have Lh ≡ 0 so h(x) + Ex
∫ τ

0 Lh(Xt) dt = h(x) = x.
This h does not have bounded support and τ does not have finite ex-

pectation, so Dynkin’s formula needs not apply. In this situation, the Itô
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integral that appears in the proof of Dynkin’s formula is indeed a martin-
gale, so the problem is not that h does not have bounded support, but rather
that τ has infinite expectation.

Exercise 11.7: The probability that h(x) = Px{τ < ∞} is governed
by the equation Lh = 0 with boundary conditions h(0) = 1, h(∞) = 0, and
the solution to this boundary value problem is h(x) = exp(−ux/D). Note
that we have to be somewhat careful with these boundary value problems
on infinite domains: If u had been negative, we would have had h(x) ≡ 1.
A more stringent approach would be to first truncate the domain to [0, l],
apply the results of Section 11.4.1, and then let l → ∞.

To show that S is exponentially distributed, simply note that the random
variable S does not depend on the parameter x, and that S ≥ x if and only
if τ < ∞, i.e., P{S ≥ x} = exp(−ux/D).

Exercise 11.8: See the source code Time-to-boundary.R.

Exercise 11.9: The result is obvious since {cXt} is a martingale and
Eτ < ∞, and also follows from Dynkin’s formula with h(x) = cx. It is
still noteworthy, since it holds regardless of the shape of the domain, and
regardless of g (as long as the diffusion is regular).

Exercise 11.10: Consider the extended state Yt = (Xt, Tt) with
dTt = dt. Then the generator of {Yt}, say M , is Mf = ḟ + Lf . Set
f(x, t) = k(x) + 2th(x) + t2, then Mf = −2h + 2h + 2tLh + 2t = 0. It
follows that k(x, t) = E{T 2

τ |X0 = x, T0 = t}. Now the result follows with
t = 0 since Tτ = t+ τ .

Exercise 11.11:
1. If the population abundance {Xs : s ≥ 0} were known, the survival

function would be

P{τ > t} = e−
∫ t

0 µ(Xs) ds

where τ is the random time of death, and so the expected remaining
lifetime would be

Eτ =
∫ ∞

0
e−
∫ t

0 µ(Xs) ds dt.

With the population size unknown but following the stochastic logistic
growth equation, we have

Exτ = Ex
∫ ∞

0
e−
∫ t

0 µ(Xs) ds dt.

This corresponds to the Feynman-Kac formula with cumulated re-
wards, i.e., (11.11), with r ≡ 1. We therefore find that the expected
lifetime h(x) = Exτ is governed by (11.12.
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2. See source code life-expectancy.R for the implementation.

3. When the parameters µ0 is large, the individual animal has a short
lifespan relative to the time scales of population growth. For very large
µ0, the animal effectively dies before the population size has changed,
so that its life expectancy is Exτ ≈ 1/µ(x). As µ0 is decreased, the
animal lives to see the population size approach its stationary distri-
bution, and therefore the effect of the initial condition X0 = x is less
pronounced.

Exercise 12.1: Define B = A − Iλ where I is the identity matrix.
Then St = exp(λt) exp(Bt) and therefore σ̄(St) = exp(λt) · σ̄(exp(Bt)). B
has all eigenvalues in the closed left half of the complex plane, and therefore
all elements of exp(Bt) can grow at most polynomially in time. It follows
that

lim sup
t→∞

1
t

log σ̄(St) ≤ λ.

On the other hand, let v1 be a right eigenvector of A corresponding to an
eigenvalue λ1 such that Reλ1 = λ. Then Stv1 = exp(λ1t)v1 which implies
that σ̄(St) ≥ | exp(λ1t)| = exp(λt), for all t. Hence

lim inf
t→∞

1
t

log σ̄(St) ≥ λ.

The conclusion follows.

Exercise 12.3: Define Yt = logXt = (r − σ2/2)t + σBt. Then we
know that sup{Yt : t ≥ 0} is exponentially distributed with rate parameter
λ := 1 − 2r/σ2. It follows that

P{S > s} = P{logS > log s} = exp(−λ log s) = s−λ.

I.e., S is Pareto distributed with scale parameter 1 and shape parameter λ.
See the source code Pareto.R for a simulation which verifies the result.

Exercise 12.4: Using that G2 = −4I, we see from exercise 7.23 that
the solution is

Xt = exp(It+GBt)X0

so
‖Xt‖ = et‖X0‖

from which the conclusion follows.

Exercise 12.5: See source code double-well-lyap.R. With λ =
1, 0, 1, we find Lyapunov exponents of approximately -0.13, -0.7, and -
1.5, respectively.
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Exercise 12.6: With f(x, v) = (v, µv(1 − x2) − x), the Jacobian is

∇f =
[

0 1
−2µxv − 1 µ(1 − x2)

]

while g = (0, σ), ∇g = 0. So the sensitivity equation is dSt = ∇f St dt.
See source code vanderPol-lyap.R for the numerical analysis.

Exercise 12.7:

1. V is convex and we have V (x) → ∞ as x → ∞ and as x → 0. So the
set {x : 0 ≤ V (x) ≤ K} is a closed interval.
Finding the stationary point V ′(1/

√
2) = 0, we conclude that V (x) ≥

(1+log 2)/2. Next, we have LV (x) = 2x2(1−x)+σ2x2 +x−1+σ2/2.
As a function of x, this is a polynomial in which the leading term,
the cubic, has negative coefficient, 2x3. So LV (x) is continuous and
bounded above (but not below).

2. LV (x)−γV (x) is bounded above by m := max{LV (x)}−min{V (x)}.
Then LV (x) ≤ V (x) +m.

3. We have

dYt = e−t [−V (Xt) − δ + LV (X)t)] dt+ e−tV ′(Xt) dBt

and the drift term is negative.

4. It follows from the previous that ExYt ≤ Y0 = V (x) and so ExV (Xt) ≤
etV (x) < ∞.

5. When x is near 0, we have LV (x) = −1 + σ2/2 + O(x), so negative
near 0. For x large, we already established that LV (x) is a third order
polynomial in x with a negative cubic term, hence negative for suffi-
ciently large x. It follows that for every ε > 0, there exists an interval
[a, b] such that LV (x) < −1 + σ2/2 + ε for x 6∈ [a, b]. This interval is
then positively recurrent.

Exercise 13.2:

1. We have dZt = Ut dt+ σ dBt − s dWt, and the performance objective
1
2E[qZ2

t + U2
t ]. The problem is therefore stationary LQR control of

{Zt}, i.e., section 13.6.1.

2. The stationary Riccati equation is −S2+q = 0; compare (13.13), where
a = 0, f = 1. The stabilizing solution is S = √

q, i.e., the feedback
law Ut = −√

qZt. With this, the stationary tracking error has mean
0 and variance (σ2 + s2)/2/√q, and the stationary control signal has
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mean 0 and variance sqrtq(σ2 + s2)/2. The total cost in stationarity
has expectation

1
2E(qZ2

t + U2
t ) = 1

2(σ2 + s2)√q,

in agreement with (13.13).

3. The two-dimensional problem can now be written

d

(
Xt

Yt

)
=
(

1
0

)
Ut +

[
σ 0
0 s

] (
dBt

dWt

)

with the performance objective

1
2E

[
(Xt Yt)

[
0 −1/2

−1/2 0

](
Xt

Yt

)
+ U2

t

]
.

This problem is in the form of Theorem 13.6.1, with

A = 0, F =
(

1
0

)
, Q =

[
1 −1

−1 1

]
, R =

[
σ 0
0 s

]

and “Bt := (Bt Wt)>”. However, the system is not stabilizable: The
system matrix A is the zero matrix, so both eigenvalues are 0, and
the left eigenvector p = (0 1) is unaffected by the control (pF = 0).
Also, the system is not detectable: The right eigenvector v = (1 1)> is
unobservable in the performance criterion (Qv = 0).

4. We insert the candidate solution in the algebraic Riccati equation:

−q
[

1 −1
−1 1

](
1
0

)
(1 0)

[
1 −1

−1 1

]
+ q

[
1 −1

−1 1

]
= 0

which we see holds, after doing the matrix multiplication.
The closed-loop system is

d

(
Xt

Yt

)
= −q

(
1
0

)
(1 0)

[
1 −1

−1 0

](
Xt

Yt

)
dt+

[
σ 0
0 s

] (
dBt

dWt

)
or

d

(
Xt

Yt

)
= q

[
−1 1

0 0

](
Xt

Yt

)
dt+

[
σ 0
0 s

] (
dBt

dWt

)
and we see that the closed-loop eigenvalues are −q and 0. The eigen-
value −q corresponds to the tracking error, while the eigenvalue 0
corresponds to the reference.
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