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About this preprint

This is a preprint version of the textbook Stochastic Differential Equa-
tions for Science and Engineering by Uffe Hggsbro Thygesen. The textbook
was published by CRC Press/Taylor & Francis on June 15, 2023. Please
see https://uffe-h-thygesen.github.io/SDEbook/ for more information
about the book, including links to the publisher and to bookstores.

This preprint differs from the published version in the following respects:

e This preprint has been formatted using generic I¥TEXstyles. As a re-
sult, page numbers etc. will differ somewhat.

e Certain edits made by CRC Press during the proofreading process
have not been included in this preprint.

e Certain typos in the printed version have been corrected in this version.

e Solutions to exercises are included at the end of this preprint.



Preface

This book has grown from a set of lecture notes written for a course on Dif-
fusion and Stochastic Differential Equations, offered at the Technical Uni-
versity of Denmark. This 5 ECTS course is primarily aimed at students in
the M.Sc.&FEng. programme, and therefore the book has the same intended
audience. These students have a broad background in applied mathematics,
science and technology, and although most of them are ultimately motivated
by applications, they are well aware that nothing is more practical than a
good theory (to paraphrase Kurt Lewin).

Therefore, the book aims to describe the mathematical construction of
stochastic differential equations with a fair level of detail, but not with com-
plete rigor, while also describing applications and giving examples. Com-
putational aspects are important, so the book is accompanied by a reposi-
tory on GitHub which contains a toolbox in R which implements algorithms
described in the book, code that regenerates all figures, and solutions to
exercises. See https://uffe-h-thygesen.github.io/.

The book assumes that the reader is familiar with ordinary differen-
tial equations, is operational in “elementary” probability (i.e., not measure-
theoretic), and has been exposed to partial differential equations and to
stochastic processes, for example, in the form of Markov chains or time se-
ries analysis.

Many students and colleagues have provided feedback and corrections
to earlier versions. I am grateful for all of these, which have improved the
manuscript. Any remaining errors, of which I am sure there are some, remain
my responsibility.

Uffe Hogsbro Thygesen
Lundtofte, October 2022
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Chapter 1

Introduction

Ars longa, vita brevis.
Hippocrates, ¢. 400 BC

A stochastic differential equation can, informally, be viewed as a differential
equation in which a stochastic “noise” term appears:

dX,

T f(Xe) +9(X) &, Xo==z. (1.1)

Here, X; is the state of a dynamic system at time ¢, and Xy = z is the
initial state. Typically we want to “solve for X;” or describe the stochastic
process {X; : t > 0}. The function f describes the dynamics of the system
without noise, {& : t > 0} is white noise, which we will define later in detail,
and the function g describes how sensitive the state dynamics is to noise.

In this introductory chapter, we will outline what the equation means,
which questions of analysis we are interested in, and how we go about an-
swering them. A reasonable first question is why we would want to include
white noise terms in differential equations. There can be (at least) three
reasons:

Analysis: We may want to examine how noise, or uncertain source terms,
affect the system. Consider, for example, a wind turbine (Figure [1.1]). The
wind exerts a force on the turbine, and the strength of this force fluctuates
unpredictably. We may model these fluctuations as noise, and ask how they
cause the construction to vibrate. To answer this question, we must have a
model of how the noise enters the system, i.e., g, as well as how the system
dynamics respond, i.e., f. Figure shows a simulation from a model with
three state variables, i.e., X; is a 3-vector containing force on the turbine
and the position and velocity of the hub. The figure compares a stochastic
simulation with a noise-free simulation. Based on such a simulation, or a
mathematical analysis of the model, we can get statistics of force, position
and velocity. These statistics are important to assess the wear and tear on
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the turbine, and also affect the regularity of the electrical power which is
generated by the turbine.

Time series analysis: We may have a time series of measurements taken
from the system. Based on these measurements, we may want to estimate
parameters in the differential equation, i.e., in f; we may want to know how
large loads the structure has been exposed to, and we may want to predict
the future production of electrical power. To answer these questions, we must
perform a statistical analysis on the time series. When we base time series
analysis on stochastic differential equations, we can use insight in the system
dynamics to fix the structure of f and maybe of g. The framework lets us
treat statistical errors correctly when estimating unknown parameters and
when assessing the accuracy with which we can estimate and predict.

Optimization and control: We may want to design a control system that
dampens the fluctuations that come from the wind. On the larger scale of
the electrical grid, we may want a control system to ensure that the power
supply meets the demand and so that voltages and frequencies are kept at
the correct values. To design such control systems optimally, we need to take
into account the nature of the disturbances that the control system should
compensate for.

Motion of a Particle Embedded in a Fluid Flow

Let us examine in some more detail the origin and form of the noise term
& in (|1.1). Figure displays water flowing in two dimensions around a
cylindIn absence of diffusion, water molecules will follow the streamlines.
A small particle will largely follow the same streamlines, but is also subject
to diffusion, i.e., random collisions with neighboring molecules which cause
it to deviate from the streamlines. Collisions are frequent but each cause
only a small displacement, so the resulting path is erratic.

In absence of diffusion, we can find the trajectory of the particle by
solving the ordinary differential equation

dX;
S = (X)),

Here, X; € R? is the position in the plane of the particle at time ¢. The
function f(+) is the flow field, so that f(x) is a vector in the plane indicating
the speed and direction of the water flow at position x. To obtain a unique
solution, this equation needs an initial condition such as Xg = xy where xg
is the known position at time 0. The trajectory {X; : ¢t € R} is exactly a
streamline.

!The flow used here is irrotational, i.e., potential flow. Mathematically, this is conve-
nient even if physically, it may not be the most meaningful choice.
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Figure 1.1: A wind turbine is affected by fluctuations in wind speed which
causes it to oscillate. We model the fluctuations as low-pass filtered noise
and the response of the construction as a linear mass-spring-damper system.
Solid lines: Simulated force, position and velocity from a stochastic simu-
lation of a dimensionless model. Dashed lines: Noise-free simulation. The
details of this model are given in Exercise [5.5] Photo credit: CC BY-SA 4.0.
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Figure 1.2: A small particle embedded in the two-dimensional flow around
a cylinder. The thin lines are streamlines, i.e., the paths a water molecule
follows, neglecting diffusion. The thick black line is a simulated random
trajectory of a particle, which is transported with the flow, but at the same
time subjected to molecular diffusion.

To take the molecular diffusion into account, i.e., the seemingly random
motion of a particle due to collisions with fluid molecules, we add “white
noise” & to the equation

dX;

s (X¢) + 9 &- (1.2)

Here, g is the (constant) noise intensity, and & is a two-vector. The
trajectory in Figure has been simulated as follows: We discretize time.
At each time step, we first advect the particle in the direction of a streamline,
then we shift it randomly by adding a perturbation which is sampled from
a bivariate Gaussian where each component has mean 0 and variance g2h.
Specifically,

Xiepn = X+ f(Xs) h+ g & where £ ~ N(0, hI).

Here, h is the time step and the superscript in ft(h) indicates that the
noise term depends on the time step, while I is a 2-by-2 identity matrix.
If we let the particle start at a fixed position Xg, the resulting positions
{Xn, Xon, Xap,...} will each be a random variable, so together they con-
stitute a stochastic process. This algorithm does not resolve the position
between time steps; when we plot the trajectory, we interpolate linearly.



CHAPTER 1. INTRODUCTION )

We hope that the position X; at a given time ¢ will not depend too much
on the time step h as long as h is small enough. This turns out to be the
case, if we choose the noise term in a specific way, viz.

¢M =B, - B,

where {B;} is a particular stochastic process, namely Brownian motion.
Thus, we should start by simulating the Brownian motion, and next compute
the noise terms ft(h) from the Brownian motion; we will detail exactly how to
do this later. Brownian motion is key in the theory of stochastic differential
equations for two reasons: First, it solves the simplest stochastic differential
equation, dX;/dt = &, and second, we use it to represent the noise term in
any stochastic differential equation. With this choice of noise §§h), we can
rewrite the recursion with the shorthand

and since this turns out to converge as the time step h = At goes to zero,
we use the notation

for the limit. This is our preferred notation for a stochastic differential equa-
tion. In turn, is an Euler-type numerical method for the differential
equation , known as the Euler-Maruyama method.

If the particle starts at a given position Xy = zg, its position at a later
time ¢ will be random, and we would like to know the probability density
of the position ¢(x,t). It turns out that this probability density ¢(x,t) is
governed by a partial differential equation of advection-diffusion type, viz.

o9

5 =
with appropriate boundary conditions. This is the same equation that gov-
erns the concentration of particles, if a large number of particles is released
and move independently of each other. This equation is at the core of the
theory of transport by advection and diffusion, and now also a key result in
the theory of stochastic differential equations.

We can also ask, what is the probability that the particle hits the cylin-
der, depending on its initial position. This is governed by a related (specifi-
cally, adjoint) partial differential equation.

There is a deep and rich connection between stochastic differential equa-
tions and partial differential equations involving diffusion terms. This con-
nection explains why we, in general, use the term diffusion processes for
solutions to stochastic differential equations. From a practical point of view,
we can analyze PDE’s by simulating SDE’s, or we can learn about the behav-
ior of specific diffusion processes by solving associated PDE’s analytically
or numerically.

V(6 54°V9)
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Figure 1.3: Two simulated sample paths (solid and dotted erratic curves)
of the stochastic logistic growth model with g(x) = oz of a bacterial
population with g(x) = ox. A noise-free simulation is included (thin black
line). Parameters are r = K = 1, 0 = 0.1, Xy = 0.01. The computational
time step used is 0.001.

Population Growth and State-Dependent Noise

In the two previous examples, the wind turbine and the dispersing molecule,
the noise intensity g(z) in was a constant function of the state x.
If all models had that feature, this book would be considerably shorter;
some intricacies of the theory only arise when the noise intensity is state-
dependent. State-dependent noise intensities arise naturally in population
biology, for example. A model for the growth of an isolated bacterial colony
could be:

Here, r > 0 is the specific growth rate at low abundance, while K > 0 is
the carrying capacity. Without noise, i.e., with g(z) = 0, this is the logistic
growth model; see Figure Dynamics of biological systems is notoriously
noisy, so we have included a noise term ¢g(X;) dB; and obtained a stochastic
logistic growth model. Here, it is critical that the noise intensity g(x) depends
on the abundance x; otherwise, we can get negative abundances X;! To
avoid this, we must require that the noise intensity g(x) vanishes at the
origin, g(0) = 0, so that a dead colony stays dead. Figure includes
two realizations of the solution {X;} with the choice g(x) = ox. For this
situation, the theory allows us to answer the following questions:

1. How is the state X; distributed, in particular as time ¢t — co? Again,
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we can pose partial differential equations of advection-diffusion type to
answer this, and the steady-state distribution can be found in closed
form. For example, we can determine the mean and variance.

2. What is the temporal pattern of fluctuations in {X;}7 We shall see
that {X;} is a Markov process, which allows us to characterize these
fluctuations. We can assess their time scale through their stochastic
Lyapunov exponent, which for this example leads to a time scale of
1/(r — 0?/2), when the noise is weak and the process is in stochastic
steady state.

3. Does a small colony risk extinction? For this particular model with
these particular parameters, it turns out that the answer is “no”. With
other parameters, the answer is that the colony is doomed to extinc-
tion, and for other noise structures, the answer is that there is a cer-
tain probability of extinction, which depends on the initial size of the
colony. These questions are answered by stochastic stability theory as
well as by the theory of boundary behavior and classification.

However, before we can reach these conclusions, we must consider the
equation carefully. We call it a stochastic differential equation, but it
should be clear from Figure that the solutions are nowhere differentiable
functions of time. This means that we should not take results from standard
calculus for granted. Rather, we must develop a stochastic calculus which
applies to diffusion processes. In doing so, we follow in the footsteps of Kiyosi
It6, who took as starting point an integral version of the equation (L.5)), in
order to circumvent the problem that stochastic differential equations have
non-differentiable solutions. The resulting It6 calculus differs from standard
calculus, most notably in its chain rule, which includes second order terms.

Overview of the Book

This book is in three parts. The core is [t6’s stochastic calculus in part 2:
It describes stochastic integrals, stochastic calculus, stochastic differential
equations, and the Markov characterization of their solutions.

Before embarking on this construction, part 1 builds the basis. We first
consider molecular diffusion as a transport processes (Chapter ; this gives a
physical reference for the mathematics. We then give a quick introduction to
measure-theoretic probability (Chapter |3) after which we study Brownian
motion as a stochastic process (Chapter . Chapter [5| concerns the very
tractable special case of linear systems such as the wind turbine (Figure
. At this point we are ready for the It calculus in part 2.

Finally, part 3 contains four chapters which each gives an introduction
to an area of application. This concerns estimation and time series analysis
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(Chapter , quantifying expectations to the future (Chapter , stability
theory (Chapter and finally optimal control (Chapter .

Exercises, Solutions, and Software

In science and engineering, what justifies mathematical theory is that it
lets us explain existing real-world systems and build new ones. The un-
derstanding of mathematical constructions must go hand in hand with
problem-solving and computational skills. Therefore, this book contains ex-
ercises of different kinds: Some fill in gaps in the theory and rehearse the
ability to argue mathematically. Others contain pen-and-paper exercises
while yet others require numerical analysis on a computer. Solutions are
provided at https://github.com/Uffe-H-Thygesen/SDEbook. There, also
code which reproduces all figures is available. The computations use a tool-
box, SDEtools for R, which is available at https://github.com/Uffe-H-
Thygesen/SDEtools. See also

https://uffe-h-thygesen.github.io/.

There is no doubt that stochastic differential equations are becoming
more widely applied in many fields of science and engineering, and this by
itself justifies their study. From a modeler’s perspective, it is attractive that
our understanding of processes and dynamics can be summarized in the drift
term f in (L.I), while the noise term & (or B;) manifests that our models
are always incomplete descriptions of actual systems. The mathematical
theory ties together several branches of mathematics - ordinary and partial
differential equations, measure and probability, statistics, and optimization.
As you develop an intuition for stochastic differential equations, you will
establish interesting links between subjects that may at first seem unrelated,
such as physical transport processes and propagation of noise. I have found
it immensely rewarding to study these equations and their solutions. My
hope is that you will, too.



Part 1

Fundamentals



Chapter 2

Diffusive Transport and
Random Walks

The theory of stochastic differential equations uses a fair amount of math-
ematical abstraction. If you are interested in applying the theory to science
and technology, it may make the theory more accessible to first consider
a physical phenomenon, which the theory aims to describe. One such phe-
nomenon is molecular diffusion, which was historically a key motivation for
the theory of stochastic differential equations.

Molecular diffusion is a transport process in fluids like air and water
and even in solids. It is caused by the erratic and unpredictable motion
of molecules which collide with other molecules. The phenomenon can be
viewed at a microscale, where we follow the individual molecule, or at a
macroscale, where it moves material from regions with high concentration
to regions with low concentration (Figure [2.1)).

The macroscale description of diffusion involves the concentration C' =
C(x,t) of a substance and how it evolves in time. Here, x is the spatial posi-
tion while ¢ is time; the concentration measures how many molecules there
are in a given region. In this chapter, we derive and analyze the advection-
diffusion equation which governs the concentration:

aC
5 = V- (uC - DVO).

In contrast, the microscale description of diffusion is that each single
molecule moves according to a stochastic process, which is governed by a
stochastic differential equation. It turns out that we can use the advection-
diffusion equation to compute the statistics of this process. In turn, we
can simulate the random motion of the molecule, which leads to Monte
Carlo methods for analyzing the advection-diffusion equation. That is, there
is a precise coupling between the microscale and the macroscale; between
stochastic differential equations and partial differential equations.

10
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Initial Terminal

Concentration

i

Particles

Figure 2.1: Diffusion in a container in two dimensions. Top panels: Concen-
tration fields. Bottom panels: Position of 100 molecules. Left panels: Initially,
the solute is concentrated at the center. Right panels: After some time, the
solute is less concentrated. The bottom right panel also includes the trajec-
tory of one molecule; notice its irregular appearance.

2.1 Diffusive Transport

In this section, we model how a substance spreads in space due to molecular
diffusion. Think of smoke in still air, or dye in still water. The substance is
distributed over a one-dimensional space R. Let p([a, b]) denote the amount
of material present in the interval [a, b] at time t. Mathematically, this p is
a measure. We may measure the substance in terms of number of molecules
or moles, or in terms of mass, but we choose to let y; be dimensionless. We
assume that p; admits a density, which is the concentration C(-,t) of the
substance, so that the amount of material present in any interval [a,b] can
be found as the integral of the concentration over the interval:

b
ie([a, b)) :/ C(x,1) da.
a
The density has unit per length; if the underlying space had been two or
three dimensional, then C would have unit per length squared or cubed,
i.e., per area or per volume. The objective of this section is to pose a partial
differential equation, the diffusion equation , which governs the time
evolution of this concentration C.
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2.1.1 The Conservation Equation

We first establish the conservation equation

oc oJ

E
which expresses that mass is redistributed in space by continuous move-
ments, but neither created, lost, nor teleported instantaneously between
separated regions in space. To see that this equation holds, note that trans-
port may then be quantified with a fluz J(z,t), which is the net amount
of material that crosses the point x per unit time, from left to right. The
flux has physical dimension “per time”. Then, the amount of material in the
interval [a, b] is only changed by the net influx at the two endpoints, i.e.,

0, (2.1)

Spalla,b]) = Tla,t) = J(0,1),

See Figure Assume that the flux J is differentiable in x, then

Ja
—
Jp
—
1
a b x

Figure 2.2: Conservation in one dimension. The total mass in the interval
[a,b] is pi([a,b]) = ff C(z,t) dz, corresponding to the area of the shaded
region. The net flow into the interval [a,b] is J(a) — J(b).

C

baJ

J(a,t) —J(b,t)=— | —(z,t) dz.

(0.) = J0.0) =~ [ 52 (wt) da
On the other hand, since y; is given as an integral, we can use the Leibniz
integral rule to find the rate of change by differentiating under the integral

sign:

d b oC
Bl bl = hatrd
Gllat) = [
Here, we assume that C' is smooth so that the Leibniz integral rule applies.
Combining these two expressions for the rate of change of material in [a, b],

we obtain: b roc .
/a L,%(x,t) + M(w,t)] dr = 0.

(z,t) dz.
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Since the interval [a,b] is arbitrary, we can conclude that the integrand is

identically 0, or

oC oJ

—(x,t) + —(x,t) = 0.

)+ 5 1)
This is known as the conservation equation. To obtain a more compact no-
tation, we often omit the arguments (x,t), and we use a dot (as in C) for
time derivative and a prime (as in J') for spatial derivative. Thus, we can

state the conservation equation compactly as

C+J =0.

2.1.2 Fick’s Laws

Fick’s first law for diffusion states that the diffusive flux is proportional to
the concentration gradient:
oC

J(x,t) = —D%(x,t) or simply J = —DC". (2.2)

This means that the diffusion will move matter from regions of high concen-
tration to regions of low concentration. The constant of proportionality, D,
is termed the diffusivity and has dimensions area per time (also when the
underlying space has more than one dimension). The diffusivity depends on
the diffusing substance, the background material it is diffusing in, and the
temperature. See Table for examples of diffusivities.

Table 2.1: Examples of Diffusivities

Process Diffusivity [m?/s]
Smoke particle in air at room temperature 2 x 107°
Salt ions in water at room temperature 1x107°
Carbon atoms in iron at 1250 K 2 x 10711

Fick’s first law ([2.2)) is empirical but consistent with a microscopic model
of molecule motion, as we will soon see. Combining Fick’s first law with the
conservation equation (2.1]) gives Fick’s second law, the diffusion equation:

C = (DC"Y. (2.3)

This law predicts, for example, that the concentration will decrease at a
peak, i.e., where C’ = 0 and C” < 0. In many physical situations, the
diffusivity D is constant in space. In this case, we may write Fick’s second
law as

C = DC" when D is constant in space, (2.4)

i.e., the rate of increase of concentration is proportional to the spatial curva-
ture of the concentration. However, constant diffusivity is a special situation,
and the general form of the diffusion equation is (2.3).
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Biography: Adolph Eugen Fick (1829-1901)

A German pioneer in biophysics with a background
in mathematics, physics, and medicine. Interested
in transport in muscle tissue, he used transport
of salt in water as a convenient model system. In
a sequence of papers around 1855, he reported on
experiments as well as a theoretical model of trans-
port, namely Fick’s laws, which were derived as an
analogy to the conduction of heat.

Exercise 2.1: For the situation in Figure[2.2] will the amount of material
in the interval [a, b] increase or decrease in time? Assume that applies,
i.e., the transport is diffusive and the diffusivity D is constant in space.

For the diffusion equation to admit a unique solution, we need an ini-
tial condition C(z,0) and spatial boundary conditions. Typical boundary
conditions either fix the concentration C' at the boundary, i.e., Dirichlet
conditions, or the flux J. In the latter case, since the flux J = uC — DVC
involves both the concentration C' and its gradient VC, the resulting condi-
tion is of Robin type. In many situations, the domain is unbounded so that
the boundary condition concerns the limit |x| — oc.

2.1.3 Diffusive Spread of a Point Source

We now turn to an important situation where the diffusion equation admits
a simple solution in closed form: We take the spatial domain to be the entire
real line R, we consider a diffusivity D which is constant in space and time,
and we assume that the fluxes vanish in the limit || — oco. Consider the
initial condition that one unit of material is located at position xg, i.e.,

C(z,0) = d(x — xp),

where ¢ is the Dirac delta. The solution is then a Gaussian bell curve:

1 T — o
C(:U,t)—mgb(\/ﬁ). (2.5)

Here, ¢(+) is the probability density function (p.d.f.) of a standard Gaussian
variable,

1 1,
r) = —exp(—=x7). 2.6

6(x) = = expl(— ) (26)
Thus, the substance is distributed according to a Gaussian distribution with
mean zg and standard deviation v2Dt; see Figure This standard devia-

tion is a characteristic length scale of the concentration field which measures
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Figure 2.3: Diffusive spread. The concentration field at times ¢t = 1,5,10 s
with diffusivity D = 1 m?/s and a unit amount of material, which initially
is located at the point x = 0 m.

Length scale +2Dt
2
|

Figure 2.4: Square root relationship between time and diffusive length scale.

(half the) width of the plume; recall also that for a Gaussian, the standard
deviation is the distance from the mean to inflection point. We see that
length scales with the square root of time, or equivalently, time scales with
length squared (Figure . This scaling implies that molecular diffusion is
often to be considered a small-scale process: on longer time scales or larger
spatial scales, other phenomena may take over and be more important. We
will return to this point later, in Section [2.4]

Exercise 2.2: Insert the solution (2.5 into the diffusion equation and
verify that it satisfies the equation. In which sense does the solution also
satisfy the initial condition?

Exercise 2.3: Compute the diffusive length scale for smoke in air, and
for salt in water, for various time scales between 1 second and 1 day.
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Solution is a fundamental solution (or Green’s function) with which
we may construct also the solution for general initial conditions. To see this,
let H(x,x0,t) denote the solution C'(x,t) corresponding to the initial condi-
tion C(z,0) = d(z — z), i.e., (2.5). Since the diffusion equation is linear, a
linear combination of initial conditions results in the same linear combina-
tion of solutions. In particular, we may write a general initial condition as
a linear combination of Dirac deltas:

“+oo
C(z,0) = C(z0,0) - 6(x — xg) dxo.
— 0o
We can then determine the response at time ¢ from each of the deltas, and
integrate the responses up:
—+00
C(z,t) = C(z0,0) - H(z,x0,t) dxo. (2.7)
—0o0
Note that here we did not use the specific form of the fundamental solution;
only linearity of the diffusion equation and existence of the fundamental
solution. In fact, this technique works also when diffusivity varies in space
and when advection is effective in addition to diffusion, as well as for a much
larger class of problems. However, when the diffusivity is constant in space,
we get a very explicit result, namely that the solution is the convolution of
the initial condition with the fundamental solution:

Y 1 1|z — z0|?
C(z,t) = /_OO (4Di)12 exp (—2 5D C(x0,0) dxo.

2.1.4 Diffusive Attenuation of Waves

Another important situation which admits solutions in closed form is the
diffusion equation ([2.4)) with the initial condition

C(z,0) = sin kz,

where k is a wave number, related to the wavelength L by the formula
kL = 2x. In this case, the solution is

C(z,t) = exp(—=At) sinkz with A\ = Dk?. (2.8)

Exercise 2.4: Verify this solution.

Thus, harmonic waves are eigenfunctions of the diffusion operator; that
is, they are attenuated exponentially while preserving their shape. Note that
the decay rate A (i.e., minus the eigenvalue) is quadratic in the wave number
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Figure 2.5: Attenuation of spatial waves by diffusion. Here the diffusivity
is D = 1 and the terminal time is T = 0.01. Solid lines: At time 0, the
amplitude is 1. Dashed lines: At time T, the wave is attenuated — how
much depends on the wave number. Left panel: A long wave is attenuated
slowly. Right panel: A shorter wave is attenuated more quickly.

k. Another way of expressing the same scaling is that the half-time of the
attenuation is

i.e., the half time is quadratic in the wave length: Twice as long waves persist
four times longer. See Figure We recognize the square root/quadratic
relationship between temporal and spatial scales from Figure [2.4]

Recall that we used the fundamental solution to obtain the response
of a general initial condition. We can do similarly with the harmonic solution
, although we need to add the cosines or, more conveniently, use complex
exponentials. Specifically, if the initial condition is square integrable, then
it can be decomposed into harmonics as

1 ftoo o ik
C(x,0) = — C(k,0) e dk,

21 J—so

where C/(k,0) is the (spatial) Fourier transform

~ +oo )
C(k,0) = C(x,0) e”™* dg.

—0o0
Note that different authors use slightly different definitions of the
Fourier transform. Now, each wave component exp(ikx) is attenuated to
exp(—Dk?t + ikx), so the Fourier transform of C(x,t) is

C(k,t) = C(k,0) e~ P¥*.
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We can now find the solution C(z,t) by the inverse Fourier transform:

[ DRk2t+ik
Cz,t) = — C(k,0) e PRHHET g,
T J—00
One interpretation of this result is that short-wave fluctuations (large |k|) in
the initial condition are smoothed out rapidly while long-wave fluctuations
(small |k|) persist longer; the solution is increasingly dominated by longer
and longer waves which decay slowly as the short waves disappear.

2.2 Advective and Diffusive Transport

In many physical situations, diffusion is not the sole transport mechanism: A
particle with higher density than the surrounding fluid will have a movement
with a downwards bias. If the fluid is flowing, then the particle will have a
tendency to follow the flow (Figure [2.6). These situations both amount to a
directional bias in the movement, so we focus on the latter.

0.4

0.3
|

o g4 C(x,0)

0.1

C(x,T)

Figure 2.6: A fluid flow in one dimension which transports a substance. The
plume is advected to the right with the flow; at the same time it diffuses
out. The diffusivity is D = 1, the advection is v = 2.5, and the terminal
time is T = 4.

Let the flow field be u(z,t). If we use X; to denote the position of a fluid
element at time t, then X; satisfies the differential equation

d
%Xt = u(Xt, t)

Consider again a solute which is present in the fluid, and as before let C'(x, t)
denote the concentration of the solute at position x and time ¢. If the material
is a perfectly passive tracer (i.e., material is conserved and transported with
the bulk motion of the fluid), then the flux of material is the advective flux:

Ja(z,t) = u(z,t) C(z,t).
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If in addition molecular diffusion is in effect, then according to Fick’s first
law this gives rise to a diffusive flux Jp = —DC’. We may assume that
these two transport mechanisms operate independently, so that the total
flux is the sum of the advective and diffusive fluxes:

J(z,t) = u(zx,t) C(x,t) — D(x)g(x,t),

or simply J = uC — DC". Inserting this into the conservation equation (2.1),
we obtain the advection-diffusion equation for the concentration field:

C =—(uC—DC" . (2.9)

A simple case is when u and D are constant, the initial condition is a Dirac
delta, C(x,0) = 0(x — xg), where z( is a parameter, and the flux vanishes

as |z| — oco. Then the solution is:
(x —ut — x9)?
exp [ - ——— 20 ) (2.10)

C(z,t) =

1
VAr Dt 4Dt

which is the probability density function of a Gaussian random variable with
mean xg + ut and variance 2Dt. Advection shifts the mean with constant
rate, as if there had been no diffusion, and diffusion gives rise to a linearly
growing variance while preserving the Gaussian shape, as in the case of pure
diffusion (i.e., diffusion without advection). This solution is important, but
also a very special case: In general, when the flow is not constant, it will
affect the variance, and the diffusion will affect the mean.

Exercise 2.5:

1. Verify the solution ([2.10]).

2. Solve the advection-diffusion equation (2.9)) on the real line with con-
stant v and D with the initial condition C(z,0) = sin(kx) or, if you
prefer, C(z,0) = exp(ikz).

2.3 Diffusion in More Than One Dimension

Consider again the one-dimensional situation in Figure[2.2] In n dimensions,
the interval [a,b] is replaced by a region V' C R™. Let u(V) denote the
amount of the substance present in this region. This measure can be written
in terms of a volume integral of the density C":

(V) = /VC(:U,t) dx.

Here z = (z1,...,2,) € R™ and dz is the volume of an infinitesimal volume
element. The concentration C' has physical dimension “per volume”, i.e.,
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ST unit m™", since u¢(V') should still be dimensionless. The flux J(x,t) is
a vector field, i.e., a vector-valued function of space and time; in terms of
coordinates, we have J = (Ji,...,J,). The defining property of the flux J
is that the net rate of exchange of matter through a surface 9V is

J(x,t) - ds(x).
ov
Here, ds is the surface element at x € V', a vector normal to the surface.
The flux J has SI unit m~"*!s~!. Conservation of mass now means that the
rate of change in the amount of matter present inside V' is exactly balanced
by the rate of transport over the boundary oV

/ Clat) de+ | J(x,t) - ds(z) = 0, (2.11)
\%4 ov

where ds is directed outward. This balance equation compares a volume
integral with a surface integral. We convert the surface integral to another
volume integral, using the divergence theorem (the Gauss theorem), which
equals the flow out of the control volume with the integrated divergence.

Specifically,
/V-de:/ J - ds.
1% 1%

In terms of coordinates, the divergence is V- J = 0J1/0x1 + -+ - + 0J, [0z,
Substituting the surface integral in (2.11)) with a volume integral, we obtain

/ {C’(:p,t) +V- J(x,t)] dxr = 0.
1%
Since the control volume V is arbitrary, we get
C+V-J=0, (2.12)

which is the conservation equation in n dimensions, in differential form.
Fick’s first law in n dimensions relates the diffusive flux to the gradient
of the concentration field:
J=-DVC,

where the gradient VC' has coordinates (0C/0x1,...,0C/0x,). Often, the
diffusivity D is a scalar material constant, so that the relationship between
concentration gradient and diffusive flux is invariant under rotations. We
then say that the diffusion is isotropic. However, in general D is a matrix
(or a tensor, if we do not make explicit reference to the underlying coor-
dinate system). Then, the diffusive flux is not necessarily parallel to the
gradient, and its strength depends on the direction of the gradient. These
situations can arise when the diffusion takes place in an anisotropic material,
or when the diffusion is not molecular but caused by other mechanisms such
as turbulence. Anisotropic diffusion is also the standard situation when the
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diffusion model does not describe transport in a physical space, but rather
stochastic dynamics in a general state space of a dynamic system.
Fick’s second law can now be written as

C =V-(DVO).

When the diffusivity is constant and 1sotrop1c this reduces to ' = DV2C.

2
Here V? is the Laplacian V? = ax + -+ axz , a measure of curvature.

To take advection into account we assume a flow field v with coordi-
nates (uq,...,uy). The advective flux is now uC and the advection-diffusion
equation is

C =-V-(uC - DVC). (2.13)

2.4 Relative Importance of Advection and Diffu-
sion

We have now introduced two transport processes, advection and diffusion,
which may be in effect simultaneously. It is useful to assess the relative
importance of the two.

Consider the solution corresponding to constant advection u, con-
stant diffusion D, and the initial condition C'(z,0) = §(z — x,). At time ¢,
the advection has moved the center of the plume a distance |u|t, while the
diffusive length scale - the half width of the plume - is v/2Dt. These length
scales are shown in Figure as functions of the time scale. Notice that
initially, when time ¢ is sufficiently small, the diffusive length scale is larger
than the advective length scale, while for sufficiently large time ¢ the advec-
tive length scale dominates. This justifies our earlier claim that diffusion is
most powerful at small scales. The two length scales are equal when

t=—.
uZ

In stead of fixing time and computing associated length scales, one may

fix a certain length scale L and ask about the corresponding time scales

associated with advective and diffusive transport: The advective time scale

is L/u while the diffusive time scale is L?/2D. We define the Péclet number

as the ratio between the two:

p 5 Diffusive time scale Lu
e = = —.
Advective time scale D

It is common to include the factor 2 in order to obtain a simpler final expres-
sion, but note that different authors may include different factors. Regardless
of the precise numerical value, a large Péclet number means that the dif-
fusive time scale is larger than the advective time scale. In this situation,
advection is a more effective transport mechanism than diffusion at the given
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Figure 2.7: Advective (dashed) and diffusive (solid) length scale as function
of time scale for the dimensionless model with u = D = 1.

length scale; that is, the transport is dominated by advection. Conversely, if
the Péclet number is near 0, diffusion is more effective than advection at the
given length scale. Such considerations may suggest to simplify the model
by omitting the least significant term, and when done cautiously, this can
be a good idea.

The analysis in this section has assumed that uw and D were constant.
When this is not the case, it is customary to use “typical” values of © and D
to compute the Péclet number. This can be seen as a useful heuristic, but can
also be justified by the non-dimensional versions of the transport equations,
where the Péclet number enters. Of course, exactly which “typical values”
are used for v and D can be a matter of debate, but this debate most often
affects digits and not orders of magnitude. Even the order of magnitude of
the Péclet number is a useful indicator if the transport phenomenon under
study is dominated by diffusion or advection.

Example 2.4.1 Consider the advection-diffusion equation i two di-
mensions, where the flow u(x) is around a cylinder. We non-dimensionalize
space so that the cylinder is centered at the origin and has radius 1, and
non-dimensionalize time so that the flow velocity far from the cylinder is 1.
Then, the flow is, in polar coordinates (r,8) with x = r cosf, y = rsiné,

u(r,0) = (1 —r2)cosf, ug=—(1+r"2)siné.

This is called irrotational flow in fluid mechanics (Batchelor, 1967). A unit
of material is released at time t = 0 at position x = —3, y = —0.5. We
solve the advection-diffusion equation for t € [0,2.5] for three values of the
diffusivity D: D = 1, D = 0.1, and D = 0.01, leading to the three Péclet
numbers 1, 10, and 100. Figure [2:§ shows the solution at time t = 2.5 for
the three Péclet numbers. Notice how higher Péclet numbers (lower diffusivity
D) imply a more narrow distribution of the material.
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Figure 2.8: Concentrations C(z,t = 2.5) from Example for flow
around a cylinder with diffusivities leading to different Péclet numbers. Left
panel: Pe=1. Center panel: Pe=10. Right panel: Pe=100. In each panel, the
grayscale represents concentration relative to the maximum concentration.

2.5 The Motion of a Single Molecule

We can accept Fick’s first equation as an empirical fact, but we would like
to connect it to our microscopic understanding. In this section, we present a
caricature of a microscopic mechanism which can explain Fickian diffusion:
Each individual molecule moves in an erratic and unpredictable fashion, due
to the exceedingly large number of collisions with other molecules, so that
only a probabilistic description of its trajectory is feasible. This phenomenon
is called Brownian motion.

0 2 4 6 8 10
! !
Position [um]
-20 20
!

Position [pum]

-40
|
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0O 20 40 60 80 100 0 2000 6000 10000

Time [ns] Time [ns]

Figure 2.9: A random walk model of molecular motion. Left: A close-up
where individual transitions are visible. Right: A zoom-out where the process
is indistinguishable from Brownian motion.

Let X; € R denote the position at time ¢ of a molecule, e.g. smoke in
air, still considering one dimension only. At regularly spaced points of time,
a time step h apart, the molecule is hit by an air molecule which causes a
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Biography: Robert Brown (1773—-1858)
A Scottish botanist who in 1827 studied pollen im-

mersed in water under a microscope, and observed
an erratic motion of the grains. Unexplained at
the time, we now attribute the motion to seem-
ingly random collision between the pollen and wa-
ter molecules. The physical phenomenon and its
mathematical model are named Brownian motion,
although many other experimentalists and theo-
reticians contributed to our modern understanding
of the phenomenon.

displacement +k. This happens independently of what has happened previ-

ously (Figure . |I|

In summary, the position {X; : ¢t > 0} is a random walk :

X:+k w.p. (with probability) p,
Xt+h = Xt w.p. 1 —2p,
Xy —k w.p.p.

Here, p € (0, %] is a parameter. The displacement in one time step, X;1p—Xt,
has mean 0 and variance 2k?p. Displacements over different time steps are
independent, so the central limit theorem applies. After many time steps, the
probability distribution of the displacement X,,;, will be well approximated
by a Gaussian with mean 0 and variance 2k?pn:

Xon ~ N(0,2k%pn). (2.14)

That is, X,,;, will (approximately) have the probability density function

\/2112% : ¢>(x/\/ 2k2pn),

where ¢ is still the p.d.f. of a standard Gaussian variable from . Next,
assume that we release a large number N of molecules at the origin, and that
they move independently. According to the law of large numbers, the number
of molecules present between x1 and xo at time nh will be approximately

T 1

!Physically, collisions cause changes in velocity rather than position, but the simple
picture is more useful at this point. We can argue that the velocity decays to 0 due to vis-
cous friction and that the molecule drifts a certain distance during this decay. The simple
model was used by [Einstein (1905); extensions that takes the velocity process into account
were the [Langevin (1908)| equation and the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930) (Section .
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Notice that this agrees with equation , assuming that we take N = 1,
D = k?p/h and t = nh.

We see that our cartoon model of molecular motion is consistent with
the results of the diffusion equation, if we assume that

1. molecules take many small jumps, i.e., h and k are small, so that the
Central Limit Theorem is applicable at any length and time scale that
our measuring devices can resolve, and

2. there is a large number of molecules present and they behave inde-
pendently, so that we can ignore that their number will necessarily be
integer, and ignore its variance.

Both of these assumptions are reasonable in many everyday situations
where molecular systems are observed on a macroscale, for example, when
breathing or making coffee.

To simulate the motion of a single molecule, if we only care about the
displacements after many collisions, we may apply the approximation
recursively to get

X; — X5~ N(0,2D(t — s)), when t > s.

Here we have assumed that the steps in time and space are consistent with
the diffusivity, i.e., D = k?p/h. This process {X;} with independent and
stationary Gaussian increments is called (mathematical) Brownian motion.
Note that, physically, these properties should only hold when the time lag
t — s is large compared to the time h between molecular collisions, so mathe-
matical Brownian motion is only an appropriate model of physical Brownian
motion at coarse scale, i.e., for large time lags ¢t — s. Mathematical Brownian
motion is a fundamental process. It is simple enough that many questions
regarding its properties can be given explicit and interesting answers, and
we shall see several of these later, in Chapter [4]

In many situations, we choose to work with standard Brownian motion,
where we take 2D = 1 so that the displacement By, — B; has variance equal
to the time step h. When time has the physical unit of seconds s, notice that
this means that B; has the physical unit of /s!

2.6 Monte Carlo Simulation of Particle Motion

The previous section considered diffusion only. To add advection, the mi-
croscale picture is that each particle is advected with the fluid while sub-
ject to random collisions with other molecules which randomly perturb the
particle. Thus, each particle performs a biased random walk. When the dif-
fusivity D and the flow u are constant in space and time, the Gaussian
solution to the advection-diffusion equation applies. Then, a random
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Biography: Albert Einstein (1879-1955)

In his Annus Mirabilis, Einstein (1905) published
not just on the photoelectric effect and on spe-
cial relativity, but also on Brownian motion as
the result of molecular collisions. His work con-
nected pressure and temperature with the motion
of molecules, gave credibility to statistical mechan-
ics, and estimated the size of atoms. Soon con-
firmed in experiments by Jean Perrin, this work
ended the debate whether atoms really exist.

walk model that is consistent with the advection-diffusion equation is that
the increments AX = X; — X, are sampled from a Gaussian distribution

AX ~ N(u-(t—s),2D(t — s)).

Now what if the flow u = u(z,t) varies in space and time? To simulate the
trajectory of a single particle, it seems to be a reasonable heuristic to divide
the time interval [0, 7] into N subintervals

0=ty t1,....txn =T.

We first sample Xy from the initial distribution C(-,0). Then, we sample
the remaining trajectory recursively: At each sub-interval [t;,t;+1], we ap-
proximate the flow field with a constant, namely u(Xy,,t;). This gives us:

where At; = t;11 —t;. It seems plausible that, as the time step in this recur-
sion goes to 0, this approximation becomes more accurate so that the p.d.f.
of X; will approach the solution C(-,t) to the advection-diffusion equation
. This turns out to be the case, although we are far from ready to prove
it.

Example 2.6.1 (Flow past a cylinder revisited) Ezample and
Figure [2.8 present solutions of the advection-diffusion equation for the case
where the flow goes around a cylinder. In the introduction, Figure[I.4 show a
trajectory of a single molecule in the same flow. This trajectory is simulated

with the recursion , using a Péclet number of 200.

The Monte Carlo method, that we have just described, simulates the
motion of single molecules, chosen randomly from the ensemble. Monte Carlo
simulation can be used to compute properties of the concentration C, but
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can also answer questions that are not immediately formulated using partial
differential equations; for example, concerning the time a molecule spends in
a region. Monte Carlo methods are appealing in situations where analytical
solutions to the partial differential equations are not available, and when
numerical solutions are cumbersome, e.g., due to irregular geometries. Monte
Carlo methods can also be useful when other processes than transport are
active, for example, when chemical reactions take place on or between the
dispersing particles.

2.7 Conclusion

Diffusion is a transport mechanism, the mathematical model of which in-
volves the concentration field and the flux. Fick’s laws tell us how to compute
the flux for a given concentration field, which in turn specifies the tempo-
ral evolution of the concentration field. This is the classical approach to
diffusion, in the sense of 19th century physics.

A microscopic model of diffusion involves exceedingly many molecules
which each move erratically and unpredictably, due to collisions with other
molecules. This statistical mechanical image of molecular chaos is consistent
with the continuous fields of classical diffusion, but brings attention to the
motion of a single molecule, which we model as a stochastic process, a so-
called diffusion process. The probability density function associated with a
single molecule is advected with the flow while diffusing out due to unpre-
dictable collisions, in the same way the overall concentration of molecules
spreads.

We can simulate the trajectory of a diffusing molecule with a stochas-
tic recursion (Section . This provides a Monte Carlo particle tracking
approach to solving the diffusion equation, which is useful in science and en-
gineering: In each time step, the molecule is advected with the flow field but
perturbed randomly from the streamline, modeling intermolecular collisions.
This Monte Carlo method is particular useful in high-dimensional spaces or
complex geometries where numerical solution of partial differential equations
is difficult (and analytical solutions are unattainable).

Molecular diffusion is fascinating and relevant in its own right, but has
even greater applicability because it serves as a reference and an analogy
to other modes of dispersal; for example, of particles in turbulent flows,
or of animals which move unpredictably (Okubo and Levin, 2001). At an
even greater level of abstraction, a molecule moving randomly in physical
space is a archetypal example of a dynamic system moving randomly in
a general state space. When studying such general systems, the analogy
to molecular diffusion provides not just physical intuition, but also special
solutions, formulas and even software.

With the Monte Carlo approach to diffusion, the trajectory of the dif-
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Factbox: [The error function] The physics literature often prefers the
“error function” to the standard Gaussian cumulative distribution func-
tion. The error function is defined as

)= — [(e
erf(z) =— [ e s,
VT Jo
and the complementary error function is
fe(e) = 1 —erf(e) = = [ e d
erfc(x) =1 —erf(z) = — e s.
VT Ja

These are related to the standard Gaussian distribution function ®(z)
by

erfe(z) = 2 — 20(V2z), ®(x)=1-— %erfc(m/\@),

erf(z) = 20(V3z) — 1, ®(z) = % + %erf(az/\/i).

fusing molecule is the focal point, while the classical focal points (concen-
trations, fluxes, and the advection-diffusion equation that connect them)
become secondary, derived objects. This is the path that we follow from
now on. In the chapters to come, we will depart from the physical notion
of diffusion, in order to develop the mathematical theory of these random
paths. While going through this construction, it is useful to have Figure
and the image of a diffusing molecule in mind. If a certain piece of math-
ematical machinery seems abstract, it may be enlightening to consider the
question: How can this help describe the trajectory of a diffusing molecule?

2.8 Exercises

Exercise 2.6:

1. Solve the diffusion equation (2.4) on the real line with a "Heaviside
step” initial condition

0 when z <0,
Cl,0) _{ 1  when z > 0.

Use boundary conditions limg_, o C(z,t) = 1 and lim,_,_ o C(x,t) =
0.

Hint: If you cannot guess the solution, use the formula (2.7) and
manipulate the integral into a form that resembles the definition of
the cumulative distribution function.
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2. Consider the diffusion equation on the positive half-line z > 0
with initial condition C'(z,0) = 0 and boundary conditions C(0,t) = 1,
C(oo,t) = 0. Hint: Utilize the solution of the previous question, and
the fact that in that question, C'(0,¢) = 1/2 for all ¢ > 0.

Exercise 2.7: It is useful to have simple bounds on the tail probabilities
in the Gaussian distribution, such as (Karatzas and Shreve, 1997):

T o(@) <1 () <

1
1+ a2 - ;CZ)(SC)

which hold for z > 0. Here, as always, ®(-) is the c.d.f. of a standard Gaussian
variable X ~ N(0,1), so that 1 — ®(z) = P(X > z) = [° é(y) dy with ¢(-)
being the density, ¢(x) = \/%e_%ﬁ. A useful consequence is

1= ®(z) = ¢(x) - (z7 + O(z7?)).

1. Plot the tail probability 1 — ®(x) for 0 < x < 6. Include the upper and
lower bound. Repeat, in a semi-logarithmic plot.

2. Show that the bounds hold. Hint: Show that the bounds hold as z —
00, and that the differential version of the inequality holds for > 0
with reversed inequality signs.

Exercise 2.8: Consider pure diffusion in n > 1 dimensions with a scalar
diffusion D, and a point initial condition C(x,0) = §(z —xo), where x € R"
and ¢ is the Dirac delta in n dimensions. Show that each coordinate can be
treated separately, and thus, that the solution is a Gaussian in n dimensions
corresponding to the n coordinates being independent, i.e.,

_ o1 ei-(x—x0)\ 1 1|z — zo|?
C’(ﬂ:,t)—i:r[l Tthb( D1 )_(47rDt)n/2exp<22Dt >

where e; is the ith unit vector.



Chapter 3

Stochastic Experiments and
Probability Spaces

To build the theory of stochastic differential equations, we need precise prob-
abilistic arguments, and these require an axiomatic foundation of probability
theory. This foundation is measure-theoretic and the topic of this chapter.

In science and engineering, probability is typically taught elementary,
i.e., without measure theory. This is good enough for many applications,
but it does not provide firm enough ground for more advanced topics like
stochastic differential equations. One symptom of this is the existence of
paradoxes in probability: Situations, or brain teasers, where different seem-
ingly valid arguments give different results. Another symptom is that many
elementary introductions to probability fail to give precise definitions, but
in stead only offer synonyms such as “a probability is a likelihood”.

The measure-theoretic approach to probability constructs a rigorous the-
ory by considering stochastic experiments and giving precise mathematical
definitions of the elements that make up such experiments: Sample spaces,
realizations, events, probabilities, random variables, and information. To
gain intuition, we consider simple experiments such as tossing coins or rolling
dice, but soon we see that the theory covers also more complex experiments
such as picking random functions.

At the end, we reach a construction which is consistent with the elemen-
tary approach, but covers more general settings. Therefore, there is no need
to “un-learn” the elementary approach. The measure theoretic approach
may seem abstract, but it gives precise mathematical meaning to concepts
that not many people find intuitive. Once one has become familiar with the
concepts, they can even seem natural, even if they are still technically chal-
lenging. A final argument in favor of the measure-theoretic approach is that
the mathematical literature on stochastic differential equations is written in
the language of measure theory, so the vocabulary is necessary for anyone
working in this field, even if one’s interest is applications rather than theory.

30
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Figure 3.1: In a stochastic experiment, Chance picks an outcome w from the
sample space §2. An event A is a subset of 2 and occurs or is true if w € A.
For the outcome w in the figure, the event A did not occur.

3.1 Stochastic Experiments

The most fundamental concept in probability theory is the stochastic ex-
periment. This is a mathematical model of real-world experiments such as
rolling a die and observing the number of eyes.

Mathematically, a stochastic experiment involves a set containing all
possible outcomes: The sample space €. We let w denote an element in
Q; we call w an outcome or a realization. For the die experiment, we set
Q2 =1{1,2,3,4,5,6}. The stochastic experiment is that some mechanism, or
the Goddess of Chance, selects one particular outcome w from the sample
space Q (Figure [3.1).

A few other examples:

Statistical models: Statistical methods for data analysis are justified
by postulating that the data has been produced by a stochastic experiment.
For example, we may weigh an object n times, obtaining measurements
Y1y - - -, Yn, and postulating y; = p+e;. Here, p is the (unknown) true weight
of the object and e; is the ith measurement error. We take the sample space
to be 2 = R™ and identify the outcome w € € with the measurement errors,
ie,w=(e1,...,en).

Monte Carlo simulation: In computer simulations of stochastic
experiments, we rely on a random number generator which, ideally, pro-
duces an infinite series of independent and identically distributed numbers
{Z; € R : i € N}. Hence, the sample space is the set of sequences of real
numbers, Q = RN. If we take into account that computers only produce
pseudo-random numbers, we may identify the realization w with the seed of
the random number generator; this allows to repeat the stochastic experi-
ment, picking the same realization w.

Diffusion and Brownian motion: In Chapter |2, we considered the
experiment of releasing a large number of molecules; say, dye in water. A
stochastic experiment is to pick one random molecule and record how its
position changes in time. A mathematical model of this, in one dimension,
is Brownian motion (Chapter , where the sample space is 2 = C(R4,R),
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the set of continuous real-valued functions defined on [0,00). We identify
the randomly chosen continuous function w € 2 with the trajectory of the
molecule {B; : t > 0}.

Once the sample space (2 is defined, we next need events. Events are
statements about the outcome, such as “The die showed an even number”
or “the molecule hits x = 1 before time t = 1”. Once the experiment has
been performed, the statement is either true or false. Mathematically, an
event A is a subset of €} containing those outcomes for which the statement
is true. For example:

e For the die experiment, the statement “The die shows an even number”
is the event {2,4,6}.

o For the linear regression model, an event is a subset of R™. One exam-
ple is the event “all the measurement errors are positive”, correspond-
3 n
ing to R

This brings us to probabilities: The point of the stochastic model is to
assign probabilities to each event. For the die-tossing experiment, if the
die is fair, then P({2,4,6}) = 1/2, for example. This probability can be
interpreted in different ways. The frequentist view is that if we toss the die
repeatedly, we will eventually observe that the die has shown 2, 4 or 6 in
half the tosses. The subjective Bayesian view is that we subjectively believe
the event {2,4,6} to be as probable as the alternative, {1,3,5}, and aims
for consistency in such subjective beliefs. From an applied and pragmatic
point of view, in some situations the frequentist view is justified, while in
others the Bayesian view is more appropriate; even other interpretations
exist. Fortunately, the mathematical construction in the following applies
regardless of the interpretation.

Now the vocabulary is in place - sample space, outcomes, events, prob-
abilities - we need to specify the mathematical properties of these objects.
First, which events do we consider? For the example of the die, it is simple:
Any subset of €2 is allowed, including the empty set and 2 itself. Moreover,
if the die is fair, the probability of an event depends only on the number of
elements in it, P(A) = |A|/|€|.

For the statistical model, we could start by trying to make an event out
of each and every subset A of R™. In an elementary course on probability
and statistics, we would maybe postulate a probability density function f(e)
for each measurement error and claim independence such that

P(A) :/Af(el)---f(en) dey --- dep.

Unfortunately, it turns out that there are subsets A of R™ that are so patho-
logical that this integral is not defined - even for n = 1 and regardless of
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how regular f is. You can accept this as a curious mathematical fact, or you
can look up the “Vitali set” in (Billingsley, 1995) or on Wikipedia. We need
to exclude such “non-measurable” subsets of R™: They do not correspond
to events.

In elementary probability and statistics, we tend to ignore non-
measurable subsets of R™, which have little relevance in applications. How-
ever, for more complicated sample spaces €2, which appear in the study of
stochastic processes and in particular stochastic differential equations, this
difficulty cannot be ignored: Not all subsets of the sample space can be
events, and we often need careful analysis to determined which ones are.

When not every set A C  can be an event, which ones should be? Some
events are required for the theory to be useful. For example, in the scalar
case ) = R, we want intervals to correspond to events, so that the statement
w € [a,b] is an event for any a and b. Moreover, it is imperative that our
machinery of logic works: If A is an event, then the complementary set A¢
must also be an event, so that the statement “not A” is valid. Next, if also
B is an event, then the intersection A N B must also be an event, so that
the statement “A and B” is valid. More generally, in stochastic processes
we often consider infinite sequences of events, for instance when analyzing
convergence. So if {A; : i € N} is a sequence of events, then the statement
“for each integer ¢, the statement A; holds” should be valid. In terms of
subsets of sample space €2, this means that A7 N A2 N ... must be an event.

Let F denote the collection of events which we consider. Mathematically
speaking, the requirements on F that we have just argued for, means that
F is a o-algebra:

Definition 3.1.1 (o-algebra of events) Given a sample space €, a o-
algebra F of events is a family of subsets of Q for which:

1. The certain event is included, Q) € F.

2. For each event A € F, the complementary set A° is also an event,
Ace F.

3. Given a sequence of events {A; € F : i € N}, it is an event that all
A; occur, i.e., ;A; € F.

Given a sequence of events {A4; € F : i € N}, also the union U;A; is
an event. Fxercise: Verify this!. We often say, for short, that o-algebras
are characterized by being closed under countable operations of union and
intersection.

Example 3.1.1 (The Borel algebra) A specific o-algebra which we will
encounter frequently in this book, is related to the case 2 = R. We previously
arqued that the intervals [a,b] should be events for the theory to be useful
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Biography: Félix Edouard Justin Emile Borel (1871-1956)
The French mathematician Borel was one of the

leading figures in the development of measure the-
ory. He applied measure theory to real functions
of real variables, as well as to the foundations of
probability. He was also politically active, argued
for a united Europe, was Minister of the Navy, and
was imprisoned during World War II for assisting
the Resistance.

in many sttuations. The smallest o-algebra which contains the intervals is
called the Borel-algebra and denoted B(R) or simply B.

The Borel algebra contains all open sets and all closed sets, as well as
many others. This collection of sets is large enough to contain the sets one
encounters in practice, and the fact that the Vitali set and other non-Borel
sets exist is more an excitement to mathematicians than a nuisance to prac-
titioners.

In the case Q = R", we require F to include (hyper)rectangles of the
form (a1,b1) X (a2,b2) X ... X (an,by), for a;,b; € R and also use the name
Borel-algebra, B(R"), for the smallest o-algebra that contains these hyper-
rectangles. More generally, if Q is a topological space (i.e., we have defined
a system of open subsets of 1), then the Borel algebra on Q is the smallest
o-algebra of subsets of ) that contain all the open sets.

It is important to notice that for a given sample space 2, there can be
several systems of events F. In many applications there is an obvious choice,
but in general, to specify a stochastic experiment, we must state not only
what can happen (i.e., Q) but also which questions we can ask (i.e., F).

Having outcomes and events in place, we need to assign a probability
P(A) to each event A € F. The way we do this must be consistent:

Definition 3.1.2 (Probability measure) A measure P is a map F —
[0,00] which is countably additive, i.e.: P(U;A;) = >, P(A4;) whenever
Ay, Ag, ... are mutually exclusive events (A; N Aj =0 for i # j). A proba-
bility measure is a measure for which P(Q) = 1.

This definition explains why we call the sets in F measurable: F consists
exactly of those sets, for which the measure P(A) is defined. Notice that
probability is additive only for countable collections of sets, just as the o-
algebra F must only be closed under countable unions of sets.

An event with probability 0 is called a null event. Conversely, if an event
has probability 1, then we say that this event occurs almost surely (a.s.) or
with probability 1 (w.p. 1).
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Example 3.1.2 Consider the uniform distribution on [0,1); i.e., Q = [0, 1),
F is the Borel algebra on §2, and probability corresponds to length, P([a,b]) =
b—a for0 <a < b < 1. Now, the rational numbers form a countable set Q, so
the set A = QNQ is measurable and has measure P(A) = 0: When sampling
a real number uniformly from [0,1), the probability of getting a rational
number is 0. At the same time, the rationals are dense in [0,1) (every real
number can be approzimated with a rational number with arbitrary accuracy).
So almost no real numbers are rational, but every real number is almost
rational.

To summarize: Our mathematical model of a stochastic experiment in-
volves a sample space §2, a family of events F, and a probability measure
P, which all satisfy the assumptions in the previous. Together, the triple
(Q,F,P) is called a probability space and constitutes the mathematical
model of a stochastic experiment.

3.2 Random Variables

A random variable is a quantity which depends on the outcome of the
stochastic experiment; mathematically, it is a function defined on §2. In the
real-valued case, we have X : Q — R.

It is a great idea to define random variables as functions on sample
space: We are very familiar with functions and have a large toolbox for their
analysis, and now we can apply this machinery to random variables.

Just like there may be subsets of 2 which are not valid events, there may
be functions 2 — R which are not valid random variables. For example, let
A be a non-measurable subset of €2, i.e., A € F, and take X to be the
indicator function of A:

lifwe A,

X(w)=1a(w)=1weA) = { 0 else.

Then the statement X = 1 (which is shorthand for {w € Q : X(w) = 1})
is no event; we cannot assign a probability to it, zero or non-zero, in a
meaningful way. This X is a real-valued function on sample space, but does
not qualify to be a random variable.

To avoid such degenerate cases, we require that the statement “X €
[a, b]” corresponds to an event, for any a and b (Figure 3.2). Generalizing to
the multidimensional case:

Definition 3.2.1 (Random variable) A R?-valued random variable is a
mapping X : Q — R? such that

{we: X(w)e B}eF
for any Borel set B € B(RY).
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Figure 3.2: A real-valued random variable is a map X : Q — R such that
the preimage X ~!([a, b]) of any interval [a,b] is an event, i.e., an element in
F.

We say that X is a measurable function from (Q, F) to (R%, B(R?)). Notice
that this definition concerns not just the domain € and the codomain RY,
but also the o-algebras on these sets. When discussing measurable functions,
it is convenient to introduce the preimage:

Definition 3.2.2 (Preimage) Given a function X : Q +— R?, and a set
B c RY, the preimage is

X' B)={weQ:X(w)e B}

Note that the preimage of a function is different from the inverse of a func-
tion, although we use the same notation: The preimage maps subsets of R¢
to subsets of 2. In most cases in this book, X maps a high-dimensional sam-
ple space 2 to a low-dimensional space such as R, so the function X will
not be invertible. However, should the function X happen to be invertible,
then the preimage of a singleton {z} is a singleton {w}.

With the notion of preimage, we can say that a function X from (Q, F)
to (R4, B(RY)) is measurable if X ~1(B) € F for any B € B(R%).

We can now define objects which are familiar from elementary proba-
bility. The cumulative distribution function (c.d.f.) of a real-valued random
variable is

Fx(z)=P{X <z} =P{wecQ: X(w) <z} =P{X ((—0c0,z])}.

Note again the notation, where we often omit the w argument; {X < z} isa
shorthand for {w € Q : X(w) < z}. If Fx is differentiable and its derivative
is continuous, then we define the probability density function fx(x) as this
derivativel] IF
X
fx(@) = X (@),
Once we have defined one random variable X, we can derive others from it.
For example, X? is a random variable. In general, if g : R — R is Borel

! Fx does not have to be C; absolute continuity suffices.
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Figure 3.3: Expectation as integrals over sample space 2. Here, Q = [0, 1].
A non-negative random variable X is bounded below by a simple random
variable X. If the probability measure is uniform, then expectation corre-
sponds to area under the curve; e.g., EX; corresponds to the gray area.

measurable, then g(X) is a random variable. Practically all the functions
g : R — R we encounter in applications are Borel measurable; for example,
the piecewise continuous functions.

3.3 Expectation is Integration

Recall that in the elementary (non-measure theoretic) approach to prob-
ability, we define expectation EX of a continuous random variable as an
integral [z fx(x) dx where fx is the probability density; in the case of
a discrete random variable, the integral is replaced with a sum. We now
present the measure-theoretic definition of expectation, which is consistent
with the elementary notion in both cases.

First, consider the case of a “simple” random variable X, i.e., one that
attains a finite number of possible values x1,...,x,. Then the elementary
definition of the expectation is

n
EX, =) zP(X,=ux)
=1

and this definition is applicable in the measure-theoretic construction as well.
If © C R is an interval as in Figure then the right hand side corresponds
to an area which can be seen as the integral over ) of a piecewise constant
function X; : Q — R, so we can write

E&:L&@MH@
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Importantly, we interpret this as an integral also when {2 is more complex
than R"™; e.g., when w is a function or a sequence. Next, consider an arbitrary
non-negative random variable X. Then we may construct a simple random
variable X which is a lower bound on X, i.e., such that 0 < X (w) < X (w).
We require that EX satisfies EX > EX,. Also, we require that if X, is a
“good” approximation of X, then EX; is “near” EX. This leads us to define

EX =sup{EX; : X, simple,0 < X, < X}.

Recall that the supremum (sup) is the smallest upper bound. Note that the
expectation EX is always defined and non-negative, but may equal +o0.

Exercise 3.1: Show that the set {EX; : X simple,0 < X, < X} can
be written as either [0, c) or [0, ¢] for some 0 < ¢ < 0.

This procedure, where we approximate a non-negative function from
below with simple functions, is also used in integration theory. The result
is the Lebesgue integral of X over the sample space 2 with respect to the
probability measure, so we can write:

EX:/QX(w) P ().

Finally, for a random variable X which attains both positive and negative
values, we define the positive part X = X V0 and the negative part X~ =
(=X) VO (here, V is the maximum operator: a V b = max(a,b)). Note that
Xt and X~ are non-negative random variables and that X = X+t — X,
We now define the expectation

EX=EX" —-EX~ ifEX" <00, EX < ooc.

We may state the condition that both positive and negative part have finite
expectation more compactly: We require that E|X| < oc.

Notice that this construction of the integral of a function X over {2 does
not rely on partitioning the domain ) into ever finer subdomains, as e.g.
the Riemann integral would do. This is crucial when outcomes w € ) are
functions or sequences.

This definition of expectation has the nice properties we are used to from
elementary probability, and which we expect from integrals:

Theorem 3.3.1

1. (Linearity) Let a,b € R and let X, Y be random variables with E|X| <
00, E|Y| < 0o. Then ElaX +bY | < 0o and E(aX +b0Y) = dEX +DEY .

2. (Markov’s inequality) Let X be a non-negative random variable and
let c>0. Then EX >c-P(X >c¢).
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3. (Jensen’s inequality) Let X be a random variable with E|X| < co and
let g: R — [0,00) be conver. Then Eg(X) > g(EX).

4. (Fatou’s lemma) Let {X,, : n € N} be a sequence of non-negative
random variables. Then Eliminf,_,., X, <liminf,_,. EX,.

Defining expectation as an integral has the convenience that it covers
both the discrete case where X () is a finite or countable set, and the
continuous case where e.g. X(2) = R, so there is no need to state every
result in both a continuous version and a discrete version. The definition is
also consistent with a Lebesgue-Stieltjes integral

“+o0o
EX :/ x dFx(x)

where we integrate, not over sample space €2, but over the possible values
of X, i.e., the real axis. Also this definition covers both the continuous and
discrete case in one formula. A much more in-depth discussion of expecta-
tions and integrals over sample space can be found in e.g. (Williams, 1991)
or (Billingsley, 1995)).

Exercise 3.2: Define Q = (0, 1], F = B(Q2), and let P be the uniform
distribution on €. Let G : [0,00) — [0, 1] be a continuous strictly decreasing
function with G(0) = 1 and G(x) — 0 as z — oo. Let X (w) = G~1(w).

1. Show that G is the complementary distribution function of X, i.e.,
P(X > z) = G(z). This result is useful for stochastic simulation: If we
can simulate a uniform random variable, and invert the complementary
distribution function, then we have a recipe for simulating a random
variable with that distribution.

2. Show geometrically that

EX:/QX(w) P(dw) :/OOO Gl) dz

by showing that the two integrals describe the area of the same set in
the (z,G(z)) plane (or in the (X,w) plane). This is a convenient way
of computing expectations in some situations.

3. Extend the result to the case where G is merely nonincreasing right
continuous and X (w) = sup{z € [0,00) : G(z) > w}).

3.4 Information is a o-Algebra

Consider an observer who has partial knowledge about the outcome of a
stochastic experiment. This is a very important situation in statistics as
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Figure 3.4: Information and conditional expectation when tossing two dice.
Left panel: Numbers indicate the outcome w. Light gray regions illustrate
the information o-algebra H generated by observing the maximum of the two
dice: The open dark gray ellipsis contains the event “The first die shows one’,
which is not contained in H. Right panel: Numbers indicate the conditional
probability that the first die shows 1, conditional on H.

well as in stochastic processes. We say that the observer can resolve a given
event A € F, if the observation always lets her know if the event has occurred
or not.

For example, when tossing two dice, the sample space is Q = {1,...,6}?;
we will denote the outcomes 11,12,...,16,21,...,66. See Figure left
panel. Now assume an observer does not see the dice, but is told the maxi-
mum of the two. Which events can she resolve? She will certainly know if the
event {11} is true; this will be the case iff (if and only if) the maximum is 1.
Similar, the maximum being 2 corresponds to the event {12, 21, 22}. Gener-
ally, she can resolve the event {1z, 21,2z, 22,...,2z} for any z € {1,...,6}.
There are certainly events which she cannot resolve, for example, the event
that the first die shows 1: She will not generally know if this event is true;
only if she is told that the maximum is 1.

Using the symbol H for all the events that the observer can resolve, we
note that H will be a o-algebra. For example, if she knows whether each
of the events A and B occurred, then she also knows if A N B occurred.
The o-algebra H will be contained in the original system of events F. In
summary:

The information available to an observer is described by a set of
events H, which is a sub-o-algebra to F.

In most situations, the information H stems from observing a random
variable:

Definition 3.4.1 (Information generated by a random variable) Let
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X : Q — R? be a random variable on a probability space (Q,F,P) and let
B(R?) be the Borel algebra on R®. The information generated by X is the
o-algebra

o(X)={AecF:A=X"YB) for some B € B(RY)}.

A related question is if the observer who holds information H always
knows the realized value of a random variable X. This will be the case iff
the event X € B is in H, for any Borel set B. In that case we say that X is
‘H-measurable.

We will often be in situations where two observers have different informa-
tion about a stochastic experiment. Then, we have two different o-algebras G
and H, which are both sub-o-algebras to F. An extreme situation is that one
observer’s information is contained in the others. Let’s say that one observer,
Gretel, has measured X and therefore holds information G = o(X) while
another observer, Hans, has measured Y and holds information H = o(Y").
In which situations does Gretel know also Hans’ observation Y7 That will
be the case if Y is o(X)-measurable, in which case o(Y) C o(X). A lemma
due to Doob and Dynkin (see e.g. (Williams, 1991)) states that the first
observer will know the realized value of Y, if and only if it is possible to
compute Y from X. To be precise:

Lemma 3.4.1 (Doob-Dynkin) Let X : Q@ — R™ and Y : Q — R" be
random variables on a probability space (2, F,P). Then Y is measurable
w.r.t. o(X) if and only if there exists a (Borel measurable) function g :

R™ — R" such that Y (w) = g(X(w)) for all w € Q.

Maybe you think that this is unnecessary formalism; that a statement
such as “The observer has observed Y = y” is sufficient. In this case, consider
exercise which is a slightly modified version of Borel’s paradoz.

3.5 Conditional Expectations

What does an observer want to do with the obtained information? The
basic use of information is to compute conditional expectations of random
variables. We now aim to define conditional expectations, such as

E{X[H}

where X is a random variable on (Q, F,P) and H is a sub-o-algebra to F,
describing the information.

Figure (right panel) illustrates the situation for the case of tossing two
dice and observing the maximum. In the figure, X is the indicator variable
which takes the value 1 when the first die shows 1, and 0 otherwise. Then,
E{X|#} is the conditional probability that the first die shows one.
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First, note that the conditional expectation E{X|H} is a random vari-
able: If we repeat the experiment, then the observer makes different obser-
vations and will therefore have a different expectation. In the figure, this
corresponds to E{X|H} being assigned a value for each outcome w € .

Second, E{X|#H} must depend only on the information available to the
observer. For example, the outcomes 12, 21, 22 all lead to an observed max-
imum of 2, so these three outcomes must lead to the same realized value
of E{X|H}. In general, E{X|H} must be measurable w.r.t. #. When the
information stems from a measurement of Y, i.e., H = o(Y"), then the Doob-
Dynkin lemma tells us that there must exist some (measurable) function g
such that E{X|Y'} = ¢g(Y): We must be able to compute the conditional ex-
pectation from the available data. Note that we allow the shorthand E{X|Y}
for E{X|o(Y)}.

Third, we must specify the value of the random variable E{X|H} for
each w. In Figure [3.4] we have used elementary probability. For example, if
we observe a maximum of 2, then there are three outcomes consistent with
that observation. In only one of these, the first die shows 1, and since the
distribution is uniform, we get a conditional probability of 1/3. In general,
when H = o(Y') and Y is discrete, we get

E{X - 1(Y = y)}
P{Y = yi}

The right hand side can be seen as averaging X only over that part of
the sample space which is consistent with the observation Y = ;. This
expression defines the random variable E{X|Y'} on the entire sample space
€); it is constant on each event Y ~!(y;). The expression only makes sense
because P{Y = y;} > 0, but if we multiply both sides with P{Y = y;}, we
obtain an “integral” version which holds trivially also when P{Y = y;} = 0.
Defining g(y;) as the right hand side, we use the identity g(y;)-P{Y = y;} =
E{g(Y)-1(Y = y;)} to obtain a more appealing form:

E{X]Y =y} =

E{g(Y) - 1(Y = yi)} = E{X - 1(Y = yi)}.

This serves as our definition of conditional expectation with respect to any
information o-algebra H:

Definition 3.5.1 If X is a random variable on (2, F,P) such that E|X| <
oo, and H C F is an information sub-c-algebra, then the conditional ex-
pectation of X w.r.t. H is the random variable Z = E{X|H} which is
measurable w.r.t. H, and for which

E{Z 1y} =E{X -1y} (3.1)

holds for any H € H.
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[ A=Y""([a,0))

~

Figure 3.5: Conditional expectation w.r.t. o(Y): Horizontal strips A =
Y~ ([a,b]) = {w = (z,y) : a < y < b} generate o(Y) and are the typical
elements in o(Y’). The conditional expectation of X w.r.t. Y corresponds to
averaging X w.r.t. P over such a thin horizontal strip.

It follows that E{ZY} = E{XY} for any H-measurable random vari-
able Y such that E|XY| < co. Figure illustrates the situation in the
continuous case Q = R? where w = (z,y), X(w) = z, Y(w) = y, and when
the information H is obtained by observing Y: The conditional expectation
Z = E{X]|Y} is a random variable, i.e., a function defined on the plane. It is
Y -measurable, i.e., constant along any horizontal line. Finally, the equation
says the integrals of Z and X over the horizontal strip in Figure
must coincide. Thus, Z is X averaged over horizontal lines.

Definition hides an implicit theorem, namely that the conditional
expectation is well defined in the sense that it exists and is unique. See
(Billingsley, 1995) or (Williams, 1991)). The conditional expectation is only
“almost surely unique” since it is defined in terms of expectations, and there-
fore can be modified on a H-measurable set of P-measure 0 and still satisfy
the definition. So whenever we write an equation involving realizations of
the conditional expectation, we should really add the qualification “almost
surely”. We do not do this. If the information stems from measurements of
a continuous random variable Y such that H = o(Y’), then there may exist
a continuous g such that E{X|H} = g(Y); in this case, g is unique. This is
reassuring, since from a modeller’s perspective it would be worrying if con-
clusions depend discontinuously on an observed random variable, or are not
uniquely defined. We will assume that g is chosen to be continuous whenever
possible. This allows us to use the notation

E{X]Y =y}

meaning “g(y) where g(Y) = E{X|Y'} (w.p. 1) and ¢ is taken to be contin-
uous”.

Exercise 3.3: Consider again the stochastic experiment of tossing two
dice and observing the maximum (Figure [3.4). Let Z be the conditional
expectation of the first die given H. Compute Z(w) for each w and display
the results in a two dimensional table similar to Figure
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3.5.1 Properties of the Conditional Expectation

Some useful properties of conditional expectations are summarized in the
following theorem.

Theorem 3.5.1 Given a probability space (0, F,P), a sub-c-algebra H of
F, and random variables X and 'Y such that E|X| < co and E|Y| < cc.
Then:

1. E{aX + bY|H} = aE{X|H} + VE{Y|H} for a,b € R (Linearity of
conditional expectation)

2. EE{X|H} = EX (The Law of Total Expectation,).

3. Let G be a o-algebra on Q such that F D G D H. Then E[E{X|G}|H] =
E{X|H}. This “tower” property generalizes the law of total expecta-
tion.

4. E{X|H} = X if and only if X is H-measurable.

5. E{XY|H} = XE{Y|H} whenever X is H-measurable. (“Taking out
what is known”)

The tower property deserves an explanation. Assume that Fred conducts
a stochastic experiment and knows the outcome w; his information is F. He
gives some information to both Hansel and Gretel, but also some information
to Gretel only. So Gretel’s information G contains Hansel’s information 7,
F DO G D H. Fred asks the two siblings to write down their expectations
of the random variable X; they write E{X|H} and E{X|G}, respectively.
Fred then asks Hansel what he expects that Gretel wrote. According to the
tower property, Hansel expects Gretel’s result to be the same as his own;
E[E{X|G}[H] = E{X[#}.

To show the tower property, define Z = E{X|G}. We claim that
E{Z|H} = E{X|H}. The only thing to show is that

E{Z1p} =E{X1y}

for H € H. But since G D H, this H is also in G: Any question that
Hansel can answer, Gretel can also answer. So this equation follows from
the definition of E{X|G}.

The proofs of the other claims are fairly straightforward and a good
exercise.

3.5.2 Conditional Distributions and Variances

From the conditional expectation of a random variable we can define other
conditional statistics, such as
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1. The conditional probability of an event:
P(A[H) = E{14|H}.
2. The conditional distribution function of a random variable

Fypy (@) = P(X < z|H).

3. The conditional density of a random variable

d
Fxn () = %Fxm(ﬂ?),

wherever it exists.

4. The conditional variance of a random variable X such that E|X | < co:
V{X[H} = E{(X — E[X|H])*|H} = BE{X|H} - (B{X[H}).

These conditional statistics are all H-measurable random variables.
When H is generated by a random variable Y, each of these statistics will
be functions of Y, in which case we can write e.g. fx|y(,y) for the condi-
tional density of X at x given Y = y. When the involved distributions admit
densities, we have the important relationship

fxy (@) = fy () fxy (@ y)

between the joint density fx y, the marginal density fy, and the conditional
dEHSity fX\Y

Exercise 3.4: Show that if X is H-measurable and E|X|? < oo, then
V{X|H} =0.

It is useful to be able to manipulate conditional variances. Two fun-
damental formulas are the following: Let X and Y be random variables
such that E|X|?, E|Y|? and E|XY|? all are finite. If furthermore Y is H-
measurable, then we can “take out what is known”:

V{XY|H} = Y2 V{X|H}

and
V{X +YH} = V{X|H}.

These formulas generalize the well known formulas for V(aX) = a?VX,
V(a+ X) = VX where a is a real constant. They can be understood in the
way that given the information in H, Y is known and can hence be treated
as if deterministic.
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We have a very useful decomposition formula for the variance, which is
also known as the Law of Total Variance:

VX = EV{X|H} + VE{X|H}. (3.2)

In the next section, we shall see that this decomposition can be interpreted
in terms of estimators and estimation errors. A generalization of this result
is derived in exercise B.117

Exercise 3.5: Verify the variance decomposition formula.

3.6 Independence and Conditional Independence
When random variables are independent, it is a great simplification.

Definition 3.6.1 (Independence) We say that events A,B € F are in-
dependent if P(ANB) = P(A) P(B). We say that two o-algebras G, H C F
are independent if events G and H are independent whenever G € G and
H € H. We say that two random variables X,Y are independent if o(X)
and o(Y') are independent.

Thus, X and Y are independent iff P{X € AY € B} = P{X €
A}P{Y € B} for any Borel sets A, B. We use the symbol L for indepen-
dence: AL B,G1LH, X 1Y.

Theorem 3.6.1 Let two random wvariables X and Y be independent and
such that E|X| < oo, E|Y| < 0co. Then EXY = EX EY. If also EX? < <,
EY? < oo, then V(X +Y) = VX + VY.

Proof: We leave this as an exercise. To show the result for the mean,
start by assuming that X and Y are simple. [ |

It is often possible to reach results swiftly using independence, in concert
with the rules of expectation and variance that we have established. The
following exercise is illustrative.

Exercise 3.6: Let {X; : i € N} be a collection of independent random
variables, each Gaussian distributed with mean p = 1 and variance o2 = 2.
Let N be a random variable, independent of all X;, and Poisson distributed
with mean A = 5. Finally, define Y = 3% | X;. Determine the mean and

variance of Y.
Independence is often too much to ask for; stochastic processes is all

about dependence between random variables. Then, we can use the notion
of conditional independence.
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Definition 3.6.2 (Conditional independence) We say that two events
A, B € F are conditionally independent given a o-algebra G C F, if

P{ANB|G} = P{A[G} - P{B|G}

(almost surely). We say that two o-algebras H,Z C F are conditionally in-
dependent given G if any events A € H, B € T are conditionally independent
given G. We say that two random variables X and Y are conditionally in-
dependent given G, if 0(X) and o(Y) are conditionally independent given
g.

It is convenient to depict dependence structures between random vari-
ables in a probabilistic graphical model (Figure ; among other benefits,
this can help establishing an overview of the random variables in a model.
In such a graph, each node represents a random variable, while different
conventions exist for the precise meaning of the edges. The graph may be
directed to indicate for which random variables the marginal distribution is
given, and for which random variables the conditional distribution is given.
A directed acyclic graph (also called a Bayesian network) corresponds di-
rectly to computer code that simulates the random variables: In Figure [3.6)b,
Y is the result of a calculation that involves X (and a random number gen-
erator, if Y is not o(X)-measurable). For such an acyclic graph, the joint
distribution of all variables can be computed readily. For example, in Figure
[3:6lc we have the joint density

fxyz(z,y,2) = [x(@) fyix(@,9) fz1v(y, 2) (3-3)

whenever the distributions admit densities. Bayes’ rule can be used to revert
the information flow in the graph, e.g.,

R =i = o4

Thus, the joint density in Figure [3.6)c can alternatively be written as

fxyz(@,y,2) = fyr(y) fX|Y($7y) fZ|Y(ya z). (3.5)

Mathematically, the two forms of fx )y, z, and , are equivalent, but
they correspond to different directed graphs and thus different simulation
algorithms, differing in whether X or Y is considered the root node which
is simulated first.

Conditional independence simplifies estimation: In Figure [3.6] ¢, say that
we aim to estimate X based on Y and Z. Then we get the same result if we
base the estimation only on Y. That is, it holds that E{X|Y, Z} = E{X|Y}.
A slightly more general version of this statement is the following;:
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Figure 3.6: Probabilistic graphical models. a: Two random variables X and
Y are independent. b: X and Y are not independent; the model specifies the
marginal distribution of X and the conditional distribution of ¥ given X.
¢: X and Z are conditionally independent given Y.

Theorem 3.6.2 Let G, H, and T be sub-o-algebras of F such that G and
T are conditionally independent given H. Let X be a G-measurable random

variable such that E|X| < co. Then E{X|H} = E{X|H,Z}.

Proof: Define Z = E{X|H}; we aim to show that Z = E{X|H,Z}.
Clearly Z is measurable w.r.t o(#H,Z). To see that E{X1x} = E{Z1k}
holds for any K € o(#,Z), note that it suffices to show this for a K of the
form K = HN I where H € H and I € Z. We get

E{X1x1;} = EE{X1y1,}|H}
— B(E{X|H} 1y P{I|H})
—EB(Z141) ).

Here, we have used first the law of total expecatation, then that X and I
are conditionally independent given H and that 1y is H-measurable, and
the final equality comes from the definition of P{I|H}, since Z1y is H-
measurable. [

3.7 Linear Spaces of Random Variables

Since random variables are functions defined on sample space, many stan-
dard techniques and results from analysis of functions apply to random
variables.

Given a sample space 2 and a o-algebra F, all the random variables
on (2, F) form a linear (vector) space. That is: If X; and Xs are random
variables defined on (€, F) and c¢; and ¢y are real numbers, then also X :
Q2 — R given by

X(w) = a1 Xi(w) + c2Xo(w) for w e O

is a random variable. (See Exercise for the measurability).
This linear space can be equipped with a norm. We focus on the £,
norms for p > 0:

1 X1, = (E|XP|)/P = (/Q X ()7 P(du)) 1/p
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which each define £,(€Q2, F, P), i.e., a linear space of those real-valued random
variables for which the norm is finite. Letting p — oo, we obtain the L-
norm
1X oo = ess 5up | X ().
weN

The “ess” stands for “essential” and indicates that X (w) is allowed to exceed
| X ||oc on an event of probability 0.

Exercise 3.7: Show that if p > ¢ > 0 and X € L), then X € L,.
Moreover, || X ||, < || X||p. Give an example where || X ||; = || X||p, and another
example where || X, < ||X|,.

Of particular interest is the £1-norm; i.e., mean abs:

X = BIX| = [ 1X(w)| P(de)

and the L£9-norm, i.e., root mean square:

Il = VBX? = | [ X2(P(a).

For X € L9(9, F,P), both the mean and the mean square is finite, so
L2(2, F,P) consists of those variables which have finite variance, since

VX =EX? - (EX)%

In many applications, the space Lo is large enough to contain all variables of
interest, yet the space has many nice properties. Most importantly, the norm
can be written in terms of an inner product, i.e., || X|2 = /(X,X) where
(X,Y) = EXY. This means that many results from standard Euclidean
geometry applies, which is extremely powerful. For example, the Schwarz
inequality applies to random variables X, Y such that E|X|? < oo, E|Y|? <
00:
|[EXY| < E|XY| < VEX?.-EY?

or, in L9 terminology, (X,Y)| < (| X|,|Y|) < [ X]l2 - [|Y|l2- The Schwarz
inequality implies that the covariance of two Ls-variables is finite:

Cov(X,Y) = EXY — (EX)(EY) = E[(X — EX)(Y — EY)]

and that the correlation coefficient Cov(X,Y)/v VX VY is always in the
interval [—1,1]. An impressive use of this geometric view is in the following
result, which relates mean-square estimation, conditional expectation, and
orthogonal projection in La:

Theorem 3.7.1 Let X be a random variable in Lo(2, F,P) and let H be
a sub-o-algebra of F. Use the conditional expectation as an estimator of
X, ie., define X = E(X|H), and let X = X — X be the corresponding
estimation error. Then:
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1. The estimator is unbiased, i.e., EX =0 or equivalently EX = EX.

2. The estimator and the estimation error are uncorrelated:

EXX =0.

3. The mean square (or variance) of X can be decomposed in a term
explained by H, and a term unexplained by H.:

E|X?=EX?+E[X]?>, VX=VX+VX.

4. X is the least squares estimator of X, i.e., if Z is any Lo random
variable which is measurable w.r.t. H, then B(Z — X)? > E(X — X)2.

Proof: That the estimator is unbiased follows directly from the tower

property:
EX =EE{X|H} = EX.

To show that estimator and estimation error are uncorrelated:
EXX =E(X - X)X

= EE{(X — X)X|#}

=E [XEB{X - X|#}]

=E[X 0|

=0
since E{X — X|H} = X — E{X|H} = 0. The decomposition of 2-norms
(or variance) follows directly from this orthogonality, and is essentially the

variance decomposition we established in the previous section. Finally, let
Z be H-measurable. Then

E(Z-X)=E(Z-X)+ (X -X))
=E(Z-X)’+E(X - X)?+2E[(Z - X)(X - X)].
Adding and subtracting the candidate solution X is a standard trick, which

appears on several occasions when working in £, also in filtering and opti-
mal control. Now, for the last term we have

E[(Z - X)(X - X)] = EE{(Z - X)(X - X)|H}
=E[(Z - X)B{X - X|H}|

~E[(Z-X)0]
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since Z and X are H-measurable. It follows that
E(Z - X)?=E(Z-X)?+E(X - X)? > E(X - X)?

and we see that equality holds if and only if Z = X w.p. 1. [ |

This is a projection result in the following sense: The information H
defines a linear sub-space of Lo, namely those random variables which are
H-measurable. The random variable X can now be decomposed into two
orthogonal terms: The one, X , resides in this linear sub-space, while the
other, X, resides in the orthogonal complement. So E{ X |#} is the projection
of X on the linear space of H-measurable random variables.

The L5 theory of random variables is extremely powerful, and we will see
that is central in the construction of stochastic differential equations. It is
particularly operational in the case of multivariate Gaussian variables, where
all computations reduce to linear algebra (exercise . It is a great sim-
plification that in this case, zero correlation implies independence. A word
of caution is that some students forget that this hinges critically on the
assumption of joint Gaussianity. Therefore, the following exercise is worth-
while:

Exercise 3.8:

1. Give an example of two random variables X and Y which are each
standard Gaussian, such that X and Y are uncorrelated but not inde-
pendent.

2. Show that X and Y are uncorrelated whenever E{Y|X} is constant
and equal to EY. Next, show this condition is not necessary: Give an
example of two random variables X and Y which are uncorrelated,
but such that E{Y|X} is not constant and equal to EY".

3.8 Conclusion

In the teaching of probability in science and engineering, it is an on-going
debate when students should be introduced to measure theory, if at all.
The elementary approach, without measure theory, is sufficient for many
applications in statistics and in stochastic processes. The measure theoretic
language, and train of thought, takes time to get used to and even more
time to master! For most students in science and engineering, the time is
better spent with issues that relate more directly to applications.

However, for continuous-time continuous-space processes, and in partic-
ular stochastic differential equations, the elementary approach is not firm
enough. Here, we need the axioms and rigor of measure theory. Even stu-
dents who focus on applications will one day need to read a journal article
which uses the measure-theoretic language.
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When you first encounter measure-theoretic probability, the property of
measurability is often a source of confusion. In mathematical analysis, non-
measurable sets and functions are esoteric phenomena; few people outside
the mathematics departments know about them, and only few people inside
mathematics departments actually study them. Subsets of R which are not
Borel do not appear in applications. However, when partial information ex-
ists in the form of a sub-o-algebra H, then non-measurable events or random
variables w.r.t. H are everyday phenomena. So, requiring a random variable
to be F-measurable is a technical condition which does not limit the ap-
plicability of the theory. On the other hand, if a given random variable X
is ‘H-measurable, then this states that the observer who has access to the
information H is also able to determine the realized value of X.

Another confusion arises when random variables have infinite variance,
or the expectation is undefined because the mean-abs is infinite. From an
applied point of view, the typical situation is that these moments are well
defined and finite. There are notable exceptions; phenomena such as heavy
tails and long-range dependence give rise to infinite moments and appear
in turbulence, finance, and social sciences, just to name a few. It is useful
to build intuition about distributions where the moments diverge, such as
the Cauchy distribution and the Pareto distribution. However, it is not cen-
tral to this book, where the typical situation is that the random variables
we encounter have well defined mean and variance, even if it would be too
restrictive to require it throughout. In contrast, the machinery of the space
L2(Q2, F,P) is central. For example, we will often first assume that all vari-
ances are well defined, carry through an argument using the £5 machinery,
and finally expand the applicability so that it covers also the rare situations
where variances are infinite.

In summary, for anyone working with stochastic differential equations,
or advanced applications of probability, the measure-theoretic approach is
fundemental. In this chapter, we have not constructed this foundation brick
by brick; that would have required the better part of a book and the better
part of a course. But at least we have introduced the language and out-
lined the principles, and this allows us to develop the theory of stochastic
differential equations using the standard terminology (Table [.1]), which is
measure-theoretic.

3.9 Notes and References

A seminal account of the material in this chapter is (Kolmogorov, 1933);
more modern and in-depth treatments are (Billingsley, 1995; Williams,
1991)).
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Table 3.1: A summary of technical terms and their interpretation.

Technical term Interpretation
All events, i.e., all statements about the out-
Basic o-algebra F come of the stochastic experiment that we
consider.
. The information available to an observer; i.e.,
Information o-algebra

the “yes/no” questions that the observe can
answer.

The information in H is enough to determine
the realized value of X.

HCF
X is H-measurable

The information in H is (or could be) ob-

H=o(X) tained by observing X.

GCH Any question that can be answered with G
can also be answered with .

X el X has finite mean.

X €Ly il ileza;s finite mean square (and thus finite vari-

X1lY X and Y are (£2 and) uncorrelated.

X1lY X and Y are independent.
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3.9.1 The Risk-Free Measure

In science and engineering, the frequentist and the Bayesian interpretations
of probabilities are the most common. In finance, an additional notion is
related to pricing: Markets are notoriously unpredictable and affected by
e.g. harvests, production of wind energy, and the success of research and
development projects. So it is natural to model markets as stochastic ex-
periments with a sample space §2 and a family F of events. For any event
A € F, imagine a contract where the issuer after the experiment pays the
holder a fixed amount, say v, if event A occurs, and nothing else. What is
the fair price of such a contract before the experiment? Importantly, ideal
markets are arbitrage free, i.e., it is not possible to make a profit without
taking a risk. The implies that the price of such a contract should be vQ(A)
where Q is a probability measure on (€2, F) - for example, if Q(A U B) were
greater than Q(A) + Q(B) for disjoint events A, B, then one could make a
risk-free profit by selling a A U B-contract and buying an A-contract and
a B-contract. Now, for a contract where the issuer pays the holder X (w)
after the experiment, the fair price is EX where expectation is with respect
to Q. Since pricing involves only expectation and not e.g. the variance, we
say that the measure is risk-free. This measure Q is not identical to the
“real-world” measure P a frequentist or a Bayesian would consider: Market
prices are not expectations w.r.t. P, but typically reward taking risks.

3.9.2 Convergence for Sequences of Events

This section and the next concern convergence, which is of paramount im-
portance in the theory of stochastic differential equations. Questions of con-
vergence can be technically challenging, in particular when one is not yet
comfortable with the measure-theoretic apparatus. Here, we provide a col-
lection of results which will be useful in the following chapters.

Let A1 C Ay C --- be an increasing sequence of events in F. Its limit is

nh_}rglo A, = U A,.
neN

For a decreasing sequence of events A; D Ay D -+, we define the limit as
NpeNAy. These limits are both measurable since F is a o-algebra.

Lemma 3.9.1 If {4, : n € N} is an increasing, or decreasing, sequence of
events, then
P(lim A,) = lim P(A,).
n—oo n—oo

For any sequence of events {A,, : n € N}, we can establish an increasing
sequence {I,, : n € N}
I =) 4.

>n
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We define the limit of {I,,} as the limit inferior of {A, : n € N}:

liminf A,, = U I, = U m A;.
noree neN neN i>n

For a given outcome w € €2, we say that the events {A,} occur eventually
if w € liminf,, . A,. This will be the case if there exists an m such that
w € A, for all n > m.
Similarly, from {A, : n € N} we can define a decreasing sequence of
events
U, = U A;

>n

and from this define the limit superior of {4, }:

limsup 4,, = ﬂ U, = ﬂ UAZ"

n—o0 neN neENi>n

For an outcome w, we say that the events {4, } occur infinitely often if
w € limsup,,_,., Ap. This will hold iff, for any n € N exists an 7 > n such
that w € A;.
Is it easy to see that liminf, ,. A, C limsup,,_,. Ay holds: Any out-
come that occurs eventually, also occurs infinitely often.
If it holds that liminf, ,. A, = limsup,,_,., An, then we say that the
sequence of events converges, and we define the limit
lim A, = liminf A, = limsup A,.
n—00 n—00 n—00
Often, the event A, is a “bad” event and we want to ensure that there
is probability 0 that the events A, occur infinitely often. Equivalently, the
event A is “good” and we want to make sure that with probability 1 the
events { A%} occur eventually. A first result is:

Lemma 3.9.2 Ifliminf, . P(A,) =0, then P(liminf, . Ay,) = 0.

Proof: Let B,, = (,,>m An; then P(B,,) < P(A,) for all n > m.
Since liminf P(A,) = 0 it follows that P(B,,) = 0 for all m. Hence also
P(U,,en Bm) = 0 from which the conclusion follows. [ ]

However, the conclusion here is that A, occurs eventually with proba-
bility 0; the condition P(A;) — 0 does not rule out that the events A, may
occur infinitely often, i.e., that P(limsup,,_,,, 4,) > 0. A standard example
is:

Exercise 3.9: Let Q@ = [0,1), let F be the usual Borel algebra, and
let the measure P be Lebesgue measure, i.e., the length. Then consider the
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sequence {A,, : n € N} given by

A =[0/1,1/1),
4= (0/2,1/2), Ay = [1/2,2/2)
Ay = [0/47 1/4), As= [1/47 2/4)7 Ag = [3/4a 4/4)a A7 = [3/47 4/4)7

Show that for this sequence P(A,,) — 0 while P(limsup A4,,) = 1.

In stead, a useful result is the (first) Borel-Cantelli lemma:

Lemma 3.9.3 (Borel-Cantelli I) IfY > P(A,) < oo, then P(limsup,,_,,, Ap) =
0.

Given this lemma, it is reasonable to ask what can be concluded if the
sum y 2, P(A;) diverges. Without further assumptions, not much can be
said. Ezercise: Construct an example of a sequence such that Y P(A,) di-
verges and where liminf, - A, = Q, and one where limsup,,_,., A, = 0.
However, if we add the requirement that the events are independent, then a
much stronger conclusion can be drawn:

Lemma 3.9.4 (Borel-Cantelli IT) Let A, be a sequence of independent
events such that Y o> 1 P(Ay) = co. Then P(limsup,,_, . 4,) = 1.

3.9.3 Convergence for Random Variables

Throughout this book, we will often consider sequences of random variables
and ask questions about their convergence. Since random variables are func-
tions on €2, there are several modes of convergence for random variables.
The most common modes of convergence are given in the following;:

Definition 3.9.1 Let random variables X and {X; : i € N} be defined on
a probability triple (Q, F,P) and take values in R™. We say that, as i — oo,

1. X; — X almost surely (a.s.) if P{w : X;(w) - X(w)} = 1. We also
say X; — X with probability 1 (w.p. 1).

2. X; = X in Ly, if || X;— X||, = 0. This is equivalent to E|X; —X|P — 0,
provided that p < co. When p = 1 we use the term convergence in mean
and when p = 2 we say convergence in mean square. The cases p =1,
p=2 and p = oo are the most common.

3. X; — X in probability if, for any e > 0:

P(|X;—X|>¢)—0asi— oo.
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in distribution

in probability

Figure 3.7: Modes of convergence for random variables, illustrated by sets
of sequences. For example, a sequence which converges in probability also
converges in distribution.

4. X; — X in distribution (or in law or weakly) if
P(X; € B) - P(X € B)
for any Borel set B such that P(X € 9B) = 0.

Note that several of the definitions use the norm |- | in R"; recall that
it does not matter which norm in R™ we use, since all norms on R™ are
equivalent. So in a given situation, we may choose the most convenient
norm. In most situations, this will either be the Euclidean 2-norm |z|s =
|23 + -+ + 22|Y/2, the max norm |z|oe = max{|z1|,...,|z,|}, or the sum
norm |z|; = |z1| + - + |zp]

Almost sure convergence corresponds to pointwise convergence, except
possibly on a set of measure 0. Note that there may be realizations w for
which the convergence does not happen; there typically are.

Regarding convergence in distribution, the requirement that P(X €
0B) = 0 cannot be disregarded: Consider for example the sequence {X;}
with X; ~ N(0,i72). Then P(X; = 0) = 0 for all i but the weak limit
X has P(X = 0) = 1. For scalar random variables, the requirement is
that the distribution functions F;(x) = P(X; < z) converge pointwise to
F(z) =P(X < z) at any point x where F' is continuous.

As the following theorem states, the different modes of convergence are
not completely independent (see also Figure .

Theorem 3.9.5 Given a sequence {X; : i € N} of random variables, and
a candidate limit X, on a probability space {2, F,P} and taking values in
R™.

1. If X; = X in Ly, and p > q > 0, then X; — X in L. In particular,
mean square (L2) convergence implies convergence in mean (in L1 ).
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2. If X; — X in L, for p >0, then X; — X in probability.
3. If X; — X almost surely, then X; — X in probability.
4. If X; — X in probability, then X; — X in distribution.

It is useful to think through situations where variables converge in one
sense but not in another, because it illuminates the difference between the
modes of convergence. For example:

Example 3.9.1

1. If X; and X are all i.1.d, then X; — X in distribution but in no other
sense - convergence in distribution concerns the distributions only and
not the random variables themselves.

2. Almost sure convergence does not in general imply convergence of mo-

ments: Consider a uniform distribution on [0,1), i.e., Q@ = [0,1), F
the usual Borel algebra on [0,1), and P(B) = |B| for B € F. Now let
p>0 and

Xi(w) =i"?  1(w € [0,1/4)) = { '

Then X; — 0 w.p. 1, but || X;||, =1 for all i.

Another example, which concerns Brownian motion and is related to
stability theory, is the subject of Exercise[{.15

3. In turn, convergence in moments does not in general imply almost sure
convergence. A standard counter-example involves the same probabil-
ity space and considers a sequence of random variables constructed as
indicator variables of the sets in Ezercise[3.9:

X1=1p1),
X2 =1p1), Xa=1p2),
Xe=1pgp Xs=1lpg, Xe=1zg), Xr=lgy,

Then X; — 0 in L, for 1 < p < oo and hence also in probability, but
not with probability 1: For every w and every n € N, there exists an
i >mn such that X;(w) = 1.

We will see another example of convergence in Lo but not w.p. 1 in
the following, when discussing the Law of the Iterated Logarithm for

Brownian motion (Theorem[{.3.4]; page [76).

With extra assumptions, however, the converse statements hold:
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o If X; converges weakly to a deterministic limit, i.e., X; — X where X
is a constant function on {2, then the convergence is also in probability.

o Monotone convergence: If {X;(w) : i € N}, for each w, is a non-
negative non-decreasing sequence which converges to X (w), then either
EX; > ooand EX =00, 0r X € £7 and X; — X in L.

o Dominated convergence: If there is a bound Y € £1(Q2, 7, P) and ran-
dom variables such that | X;(w)| < Y(w) for each w and each ¢, and
X; = X almost surely, then X € £; and the convergence is in £;.
If Y is constant, then this theorem is called the bounded convergence
theorem.

e Fast convergence: If X; — X in probability “fast enough”, then the
convergence is also almost sure. Specifically, if for all ¢ > 0

o0

Y P(IXi— X[ >€) < oo,

i=1
then X; — X almost surely. This follows from the first Borel-Cantelli
lemma. This also implies that if X; — X in £,, 1 < p < oo, fast
enough so that >°1' | E|X; — X|P < oo, then X; — X almost surely.

o Convergence of a subsequence: If X; — X in probability, then there
exists an increasing subsequence {n; : i € N} such that X,,, — X con-
verges fast and hence also almost surely. For example, for the sequence
in example [3.9.1] item [3| the sequence {Xy: : i € N} converges to 0
almost surely.

Regarding convergence in £, a situation that appears frequently is that
we are faced with a sequence of random variables {X,, : n € N} and aim to
show that it converges to some limit X which is unknown to us. A useful
property of the £, spaces is that they are complete: If the sequence X, has
the Cauchy property that the increments tend to zero, i.e.

sup || Xm — Xpllp > 0as N — oo
m,n>N
then there exists a limit X € £, such that X;,, = X as n — oo. Recall (or
prove!) that a convergent series necessarily is Cauchy; the word “complete”
indicates that the spaces £, include the limits of Cauchy sequences, so that
a sequence is Cauchy if and only if it converges.
Some classical theorems concern convergence for averages:

Theorem 3.9.6 (Central limit theorem of Lindeberg-Lévy) Let {X; :
i € N} be a sequence of independent and identically distributed random vari-
ables with mean p and variance 0 < 02 < oo. Then

1 n
o Z(Xl —p) — N(0,1) in distribution, as n — oo.
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Theorem 3.9.7 (Weak law of large numbers) Let {X; : i € N} be a
sequence of independent and identically distributed random variables with
mean . Then

1 n
— ZXZ' — u in probability, as n — oo.
i=1

Theorem 3.9.8 (Strong law of large numbers) Let {X; : i € N} be a
sequence of independent and identically distributed random variables with
mean p and variance 0% < oo. Then

1 n
— Z X; = p almost surely and in Lo as n — oo.

=1
3.10 Exercises

Fundamental Probability

Exercise 3.10: Consider the plane R? with its Borel algebra B(R?). Show
that the set A = {(z,y) € R? : o + y < ¢} is Borel, for any ¢ € R. Hint:
The Borel algebra is built from rectangular sets, so show that A can be
constructed from such rectangular sets using countably many operations.

Exercise 3.11 Independence vs. Pairwise Independence: Let
X and Y be independent and identically distributed Bernoulli variables
taking values on {—1,1} and with probability parameter p = 1/2, i.e.,
P(X =-1)=P(X =1) =1/2. Let Z = XY. Show that X, Y and Z
are pairwise independent, but not all independent.

The Gaussian Distribution

Exercise 3.12 Simulation of Gaussian Variables: This is a clean
and easy way to simulate from the Gaussian distribution. Let = (0, 1] x
[0,1), let F be the usual Borel algebra on 2, and let P be the uniform
measure, i.e., area. For w = (wy,ws2), define O(w) = 27wy and S(w) =
—2logw; .

1. Show that S is exponentially distributed with mean 2.

2. Define X = \/§cos®, Y = V/Ssin®. Show that X and Y are in-
dependent and each are standard Gaussian. Hint: Brute force works;
write up the p.d.f. of (S,0) and derive from that the p.d.f. of (X,Y).
Alternatively, show first that there is a one-to-one mapping between
the p.d.f. of (X,Y’) and that of (S, ©). Then show that if (X,Y) is i.i.d.
and standard Gaussian, then (.5, ©) distributed as in this construction.
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Note: There are (slightly) more computationally efficient ways to simulate
Gaussians.

Exercise 3.13 Moments in the Gaussian Distribution: Con-
sider a standard Gaussian variable, X ~ N(0,1). Show that the moments
of X are given by the following formula:

1
E[X[P = /2¢/% r(g +3)

Hint: Write up the integral defining the moments, use symmetry, and
substitute u = 22, Recall the definition of the gamma function I'(z) =
Jootv et dt.

In particular, show that E|X| = /2/7 ~ 0.798, E|X|> = 1, E|X}? =
V8/m, E|X|* = 3, so that V(X?) = 2. Double-check these results by Monte
Carlo simulation.

Exercise 3.14 Probability That Two Gaussians Have The
Same Sign: Let X,Y be two scalar random variables, jointly Gaussian
distributed with mean 0, variances 0%, 0% and covariance oxy. Show that

the probability that the two variables have the same sign is

oXYy

2 2

1 1

P{XY >0} = 5t — arcsin
T

Ox0%y

Hint: Write the vector (X,Y) as a linear combination of two independent
standard Gaussian variables (U, V), identify the set in the (u,v) plane for
which the condition is met, and compute the probability of this set using
rotational invariance.

Conditioning

Exercise 3.15 Conditional Expectation, Graphically: Consider
the probability space (2, F,P) with Q = [0,1]%, F the usual Borel-algebra
on {2, and P the Lebesgue measure, i.e., area.

For w = (z,y) € Q, define X(w) =z, Y(w) =y, and Z(w) =z + y.

1. Sketch level sets (contour lines) for X, Y, Z, E{Z|X} and E{X|Z}.
2. Define and sketch (continuous) g and h such that E{Z|X} = ¢(X)
and E{X|Z} = h(Z).

Exercise 3.16 The Tower Property: Fred rolls a die and ob-
serves the outcome. He tells Gretel and Hansel if the number of eyes is odd
or even. He also tells Gretel if the number of eyes is greater or smaller than
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Figure 3.8: Venn diagram illustrating conditional independence. Probability
corresponds to surface area. A and B are conditionally independent given
Y, but not conditionally independent given =Y.

3.5. He then asks Gretel and Hansel to estimate the number of eyes (us-
ing conditional expectation). For each outcome, what is Gretel’s estimate?
What is Hansel’s estimate? What is Hansel’s estimate of Gretel’s estimate?
What is Gretel’s estimate of Hansel’s estimate?

Exercise 3.17 A Variance Decomposition; More Informa-
tion Means Less Variance, on Average: Let X be a random variable
on (2, F,P) such that VX < oo, and let H C G be sub-o-algebras of F.

1. Show that V{X|H} = E[V{X|G}|H] + V[E{X|G}|H].
2. Show that E[V{X|G}H] < V{X[H}.

3. Construct an example for which V{X |G} > V{X|H} is an event with
positive probability.

Exercise 3.18 Borel’s paradox: Continuing Exercise show
that
E{S|0} =2 and E{S|Y} =Y? +1.

Conclude that E{S|® € {0,7}} = 2 while E{S|Y = 0} = 1, even if the
event © € {0, 7} is the same as the event Y = 0. (Ignore the null event
S = 0.) Discuss: What is the conditional expectation of S given that the
point (X,Y) is on the z-axis?

Exercise 3.19 Conditional Independence: First, consider the
Venn diagram in Figure Show that A and B are conditionally indepen-
dent given Y. Then show that A and B are not conditionally independent
given =Y. Next, construct an example involving two events A and B which
are conditionally independent given a o-algebra G, and where there is an
event G € G such that A and B are not conditionally independent given G.
Hint: You may want to choose an example where G = €; i.e., conditional
independence does not imply unconditional independence.
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Exercise 3.20: Show the following result: Let X and Y be jointly
Gaussian distributed stochastic variables taking values in R™ and R"™ with
mean py and py, respectively, and with

VX =%,,, Cov(X,Y)=3,, VY =%,
Assume ¥, > 0. Then
E{X|Y} = ux + Say 3, (Y — piy)

and
V{X|Y} = Do — Say Dy, Sy

Finally, the conditional distribution of X given Y is Gaussian.

Exercise 3.21 Conditional Expectations under Indepen-
dence: Let X be a random variable on a probability space (£, F,P) and
let ‘H be a sub-c-algebra of F such that o(X) and H are independent. Show
that E{X|H} = EX (Hint: Assume first that X is simple). Next, give an
example where E{X|H} = EX, but ¢(X) and H are not independent.



Chapter 4

Brownian Motion

In Chapter [2 we considered the physics of Brownian motion and its re-
lationship to diffusion. In this chapter, we consider Brownian motion as a
stochastic process, using the notions of measure theory of Chapter |3 and
we describe its mathematical properties.

Brownian motion is a key process in the study of stochastic differential
equations: First, it is the solution of the simplest stochastic differential equa-
tion, and therefore serves as the main illustrative example. Second, we will
later use Brownian motion to generate noise that perturbs a general ordinary
differential equation; this combination characterizes exactly a stochastic dif-
ferential equation. These are two good reasons to study Brownian motion
in detail.

Brownian motion as a stochastic process has several remarkable proper-
ties. Most importantly, it has independent increments, which implies that the
variance of Brownian motion grows linearly with time. This humble state-
ment has profound consequences; for example, the sample paths of Brownian
motion are continuous everywhere but not differentiable at any point. The
detailed study of Brownian motion in this chapter will later allow us to de-
velop the stochastic calculus that concerns non-differentiable functions and
governs stochastic differential equations.

Even if Brownian motion is a rich phenomenon, it has many simplifying
properties. It is a Gaussian process, which means that many statistics can be
computed analytically in closed form. It is also a self-similar process, which
makes it is easier to analyze it. Perhaps even more importantly, Brownian
motion is the prime example of two central classes of processes: The mar-
tingales, which formalize unbiased random walks, and the Markov processes,
which are connected to the state space paradigm of dynamic systems. All
these properties become useful in the construction of stochastic differential
equations.

64
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4.1 Stochastic processes and random functions

A stochastic process is an indexed collection of random variables
{Xt 1t e T}

where t represents time and T is the time domain. We focus on the
continuous-time case where T is the set of reals R or an interval of re-
als, and where the stochastic process takes values in R™. Thus, for each
time t € T C R, we have a random variable X; : Q — R".

Formulated differently, a stochastic process is a function which takes
values in R™ and has two arguments: The realization w € €2, and the time
teT:

X:OxT—R"

Thus, for fixed time ¢, we have the function w — X;(w), which by definition is
a random variable, i.e. measurable. Conversely, for fixed realization w € €2,
we have the sample path ¢t — X;(w). So a stochastic process specifies a
way to sample randomly a function T — R", including a o-algebra and a
probability measure on the space of functions T — R".

Continuous-time stochastic processes involve an infinite number of ran-
dom variables and therefore require a more complicated sample space {2
than do e.g. statistical models with only a finite number of variables. The
sample space 2 may, for example, be a space of functions w : T — R"”. It is
the complexity of these sample spaces that require and justify the rigor and
precision of the measure-theoretic approach to probability.

4.2 Definition of Brownian motion
Recalling Brownian motion as described in Section we define:

Definition 4.2.1 [Brownian motion] Let {By; : t > 0} be a stochastic pro-
cess on some probability space (Q,F,P). We say that {B:} is Brownian
motion, if it satisfies the following properties:

1. The process starts at By = 0.

2. The increments of By are independent. That is to say, let time points
0<ty <ty <ty <...<ty be given and let the corresponding incre-
ments be AB; = By, — By, | wherei =1,...,n. Then these increments
ABi,...,AB, are independent.

3. The increments are Gaussian with mean 0 and variance equal to the
time lag:
B, — Bs ~ N(0,t —s)

whenever 0 < s < t.
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Biography: Norbert Wiener (1894-1964)

An American wonder kid who obtained his Ph.D. de-
gree at the age of 19. His work on Brownian motion
(1923) explains why this process is often referred to as
the “Wiener process”. During World War II, he worked
on automation of anti-aircraft guns; this work lead to
what is now known as the Wiener filter for noise re-
moval. He fathered the theory of “cybernetics” which
formalized the notion of feed-back, and stimulated work
on artificial intelligence. Photo ©ShutterStock.

4. For almost all realizations w, the sample path t — By(w) is continuous.

Sometimes we also use the word Brownian motion to describe the shifted-
and-scaled process aB;+ ( for a, 8 € R. In that case we call the case a = 1,
B = 0 standard Brownian motion. Similarly, if By = 8 # 0, then we speak
of Brownian motion starting at 5.

Although we now know the defining properties of Brownian motion, it
is not yet clear if there actually exists a process with these properties. For-
tunately, we have the following theorem:

Theorem 4.2.1 Brownian motion exists. That is, there exists a probability
triple (2, F,P) and a stochastic process {B; : t > 0} which together satisfy
the conditions in Definition [4.2.1].

In many situations, we do not need to know what the probability triple
is, but it can be illuminating. The standard choice is to take £ to be the
space C([0,00),R) of continuous real-valued functions R, + R, and to
identify the realization w with the sample path of the Brownian motion,
i.e., Bi(w) = w(t). The o-algebra F is the smallest o-algebra which makes
B; measurable for each ¢ > 0. In other words, the smallest o-algebra such
that {w : @ < w(t) < b} is an event, for any choice of a, b and ¢t > 0. The
probability measure P is fixed by the statistics of Brownian motion. This
construction is called canonical Brownian motion. The probability measure
P on C([0,0)) is called Wiener measure, after Norbert Wiener.

This construction agrees with the interpretation we have offered earlier:
Imagine an infinite collection of Brownian particles released at the origin at
time 0. Each particle moves along a continuous trajectory; for each possible
continuous trajectory there is a particle which follows that trajectory. Now
pick one random of these particles. The statistical properties of Brownian
motion specify what we mean with a “random” particle.

There are also other constructions, where we can generate the initial
part of the sample path {B;(w) : 0 < ¢t < 1} from a sequence of standard
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Gaussian variables {§;(w) : i = 1,2,...}; for example, the Brownian bridge
(next section and Exercise [4.11]) and the Wiener expansion (Exercise 4.13)).

4.3 Properties of Brownian Motion

Physical Dimension and Unit of Brownian Motion

In the mathematical literature, we typically consider all variables dimen-
sionless. However, in science and engineering it is tremendously important
to keep track of dimensions and units, and sometimes a simple look at dimen-
sions can supply quick answers to complicated questions. Moreover, count-
less errors in computations, designs and constructions can be traced back to
wrong dimensions and units.

From our definition, the variance of standard Brownian motion equals
time. This means that the dimension of Brownian motion must equal the
square root of time. If we do computations in SI units, that means that the
unit of By is 1/8, the square root of a second. Of course, in some applications
we may prefer to measure time, e.g., in years, in which case the unit of B
is the square root of a year.

If we construct a model that involves a particular process { X;}, and wish
to model this process as Brownian motion, then X; typically comes with a
dimension. For example, X; may be a distance. In that case, we can write
X; = aB; where {B;} is standard Brownian motion and the scale « has
dimension length per square root of time; in fact we saw in Chapter [2| that
a = /2D, where D is the diffusivity, measured in length squared per time.

Finite-Dimensional Distributions

A stochastic process involves an infinite number of random variables. To
characterize its distribution, one must restrict attention to a finite number of
variables. The so-called finite-dimensional distributions do exactly this. Take
an arbitrary natural number n and then n time points 0 < t; < tg < --- < ty,
then we must specify the joint distribution of the vector random variable

B = (By,,Bi,,...,By,)
For Brownian motion, the distribution of this vector is Gaussian with mean
EB = (0,0,...,0)
and covariance

ti tp - 1

o t1 tog -+ 1o
EB'B=| . N (4.1)
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Figure 4.1: Probabilistic graphical model of Brownian motion evaluated at
a set of time points 0 <t < -+ < tp,.

The expression for the covariance can be summarized with the statement
that Cov(Bs, B;) = s whenever 0 < s < t; alternatively, EB;B; = s At =
min(s, t).

Exercise 4.1: Prove that this is the joint distribution of ﬁ .
Hint: Use the properties of the increments; show first that B is Gaussian,
then find its mean, then the variance of each element, and finally the covari-

ance of two elements.
A probabilistic graphical model of Brownian motion, evaluated at time

points 0 < t; < ty < .-+ < tp, is seen in Figure Note that By, is,
given its neighbors By, _, and By, ,, conditionally independent of the rest,
ie of {By, :j=1,...,i—2,i+2,...,n}. We will exploit this conditional
independence throughout.

When all finite-dimensional distributions are Gaussian, we say that the
process itself is Gaussian, so Brownian motion is a Gaussian process. Note
that this requires much more than just that B; is Gaussian for each t.

The finite-dimensional distributions contain much information about a
process, even if not all (Exercise . A famous result is Kolmogorov’s
extension theorem, which says that if you prescribe the finite-dimensional
distributions, then it is possible to construct a stochastic process which has
exactly these finite-dimensional distributions.

Simulation

Simulation is a key tool in the study of stochastic processes. The following
R-code from SDEtools defines a function rBM which takes as input a vector of
time points, and returns a single sample path of Brownian motion, evaluated
at those time points.

rBM <— function (t)
cumsum (rnorm (n=length (t ),

sd=sqrt (diff(c(0,t)))))

Exercise 4.2: Test the function by simulating sufficiently many repli-
cates of (Bo, By, Bs/a, B2) to verify the covariance of this vector, and the

distribution of Bs.
This way of simulating sample paths is sufficient for most applications,

but sometimes it is useful to be able to refine the grid of time points. This can
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be done with the Brownian bridge, where we consider the law of Brownian
motion conditional on the end points. First, recall the formula for condi-
tioning in the Gaussian distribution (Exercise [3.20). This shows that, for
0<s<t,

E{Bs|B;} = By s/t, V{Bs|B:} = s(1 — s/t).

That is, the conditional mean interpolates the two end points linearly, while
the conditional variance is a quadratic function of time with an absolute
slope of 1 at the two end points. This allows us to insert an additional time
point in the grid - note that independence of increments implies that we
only need to condition on the neighboring time points (Figure . Next,
we can repeat this recursively until we have obtained the desired resolution
in time. See also Exercise [4.11]

This construction has also theoretical implications: Since it allows us to
simulate Brownian motion with arbitrary accuracy, it also provides a prob-
ability space on which we can define Brownian motion, as an alternative to
the canonical construction involving the Wiener measure. To see this, re-
call (Chapter [3)) that any Monte Carlo simulation model corresponds to a
stochastic experiment, in which the sample space €2 is the space of sequences
w = (wy,wa,...) of real numbers. Indeed, when simulating the Brownian
bridge on ¢ € [0, 1], with a random end point B; ~ N (0, 1) and with increas-
ing resolution, one obtains a sequence of random processes which converges
in L9; the limit is Brownian motion.

Self-Similarity

Brownian motion is a self-similar process: if we rescale time, we can also
rescale the motion so that we recover the original process. Specifically, if B,
is Brownian motion, then so is !B, 2;, for any a > 0. Ezercise: Verify this
claim. This means that Brownian motion itself possesses no characteristic
time scales which makes it an attractive component in models. Notice that
the rescaling is linear in space and quadratic in time, in agreement with the
scaling properties of diffusion (Section and, in particular, Figure .

A graphical signature of self-similarity is seen in Figure [£.2] The sample
paths themselves are not self-similar, i.e., they each appear differently under
the three magnifications. However, they are statistically indistinguishable. If
the axis scales had not been provided in the figure, it would not be possible
to infer the zoom factor from the panels.

A useful consequence of self-similarity is that the moments of Brownian
motion also scale with time:

E|B;|? = E|ViB,|P = t?/2 . E| B, .

Numerical values can be found for these moments E|B; [P (Exercise ,
but in many situations the scaling relationships E|B;P ~ t?/2 are all that
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Figure 4.2: Self-similarity of Brownian motion. Three realizations of Brown-
ian motion shown at three different magnifications. The standard deviation
of B, is included (thin dashed curves).

is needed. To remember these scaling relationships, keep in mind that the
physical dimension of Brownian motion is the square root of time, then the
scalings follow from dimensional analysis.

The Total and Quadratic Variation

The increments By, — By are stationary (i.e., follow the same distribution
regardless of ¢t > 0 for fixed h > 0), have mean 0, and are independent for
non-overlapping intervals. These properties are key in the analysis of Brow-
nian motion. They also imply that the sample paths of Brownian motion
are, although continuous, very erratic. This is evident from Figure [£.2] One
mathematical expression of this feature is that Brownian motion has un-
bounded total variation. To explain this, consider Brownian motion on the
interval [0, 1], and consider a partition of this interval:

Definition 4.3.1 (Partition of an Interval) Given an interval [S,T],
we define a partition A as an increasing sequence S =ty <t] < -+ < t, =
T. For a partition A, let #A be the number of sub-intervals, i.e., #A = n,
and let the mesh of the partition be the length of the largest sub-interval,
|A| = max{t; —t;—1 :i=1,...,n}.

Define the sum

#A
VA = Z |Btl - Bt¢,1|- (42)
=1

We call this a discretized total variation associated with the partition A.
We define the total variation of Brownian motion on the interval [0,1] as
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Figure 4.3: Estimating the variation (left panel) and the quadratic variation
(right panel) of one sample path of Brownian motion on [0,1] with dis-
cretization. Notice the logarithmic axis in the total variation. As the time
discretization becomes finer, the total variation diverges to infinity, while
the quadratic variation appears to converge to 1.

the limit in probability V' = limsupjaq Vi as the partition becomes finer
so that its mesh vanishes, whenever the limit exists. Then it can be shown
(Exercise that V = oo, w.p. 1, which agrees with the discrete time
simulation in Figure [£.3]

One consequence of the unbounded total variation is that the length of
the Brownian path is infinite. That is, a particle that performs Brownian
motion (in 1, 2, or more dimensions) will travel an infinite distance in finite
time, almost surely. A physicist would be concerned about this property:
It implies that a Brownian particle has infinite speed and infinite kinetic
energy. The explanation is that the path of a physical particle differs from
mathematical Brownian motion on the very fine scale. The difference may be
insignificant in a specific application such as finding out where the particle is
going, so that Brownian motion is a useful model, but the difference explains
that physical particles have finite speeds while Brownian particles do not.

In turn, Brownian motion has finite quadratic variation:

Definition 4.3.2 (Quadratic Variation) The quadratic variation of a
process {Xs:0 < s <t} is the limit

X = |il|m Z 1 X:, — Xt ,|? (limit in probability)

whenever it exists. Here, A is a partition of the interval [0,t].
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Theorem 4.3.1 The quadratic variation of Brownian motion equals the
time, [Bly =t, for allt > 0.

Proof: For each partition A = {0 = to,t1,...,t, = t} of the time
interval [0, ¢], define S as
#A
Sa =Y _|AB;|* where AB; = By, — By,_,.
i=1
Since AB; is Gaussian with mean 0 and variance At; = t; — t;_1, and since
the increments are independent, we have

#A #A
ESy =) E|ABPP =) At; =t
i=1 i=1
and
#A #A #A
VSa =Y VIAB]? =) 2(At)? < 2|A Y Aty = 2|Alt.
i=1 i=1 i=1
Thus, as |A| — 0, Sp converges to the deterministic limit ¢ in £ and
therefore also in probability. [ |

To appreciate these results, notice that for a continuously differentiable
function f : R — R, the total variation over the interval [0, 1] is finite, and in
fact equals fol |f/(t)| dt, while the quadratic variation is 0. We can therefore
conclude that the sample paths of Brownian are not differentiable (w.p. 1).
In fact, the sample paths of Brownian motion are nowhere differentiable,
w.p. 1.

Exercise 4.3: Show that Brownian motion is continuous in mean
square, but not differentiable in mean square, at any given point. That is,
show that the increments B, — By converge to 0 in mean square as h — 0,
for any ¢ > 0, but that the difference quotients

%(Bt+h — By)
do not have a mean square limit. Note: See also Exercise

It is remarkable that the quadratic variation of Brownian motion is deter-
ministic. One consequence of this concerns statistical estimation: Let {X;}
be scaled Brownian motion, X; = aB; where {B;} is standard Brownian
motion. Then the quadratic variation of {X;} is [X]; = a?t. Now, consider
the situation where the scale « is unknown but we have observed a segment
of a sample path {X; : 0 < ¢ < T}. Then we can compute [X]7 and from
that compute o = /[X|p/T, reaching the correct value, regardless of how
short the interval [0,7] is. Thus, each sample path of {X;} holds infinite
information about « in any finite time interval. In practice, of course, finite
sampling frequencies and measurement errors will introduce errors on the es-
timate. The quadratic variation of Brownian motion is central in stochastic
calculus, notably in Itd’s lemma (Section [7.3).
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Figure 4.4: The reflection argument used to derive the distribution of the
maximum S;. When B, (thick solid line) first hits the level z = 2, we cut
the trajectory and reflect the rest of the trajectory (thin dotted line).

The Maximum over a Finite Interval

How far to the right of the origin does Brownian motion move in a given
finite time interval [0, ¢]? Define the maximum

Sy =max{B; : 0 < s <t}

The following theorem shows a surprising connection between the distribu-
tion of S; and the distribution of By:

Theorem 4.3.2 (Distribution of the maximum of Brownian motion)
For any t,x > 0, we have

P(S; > x) = 2P(B; > x) = 2&(—z /) (4.3)

where, as always, ® is the cumulative distribution function of a standard
Gaussian variable.

Note that the maximum process {S; : ¢ > 0} is also self-similar; for
example, =152, has the same distribution as S; whenever a > 0.

Proof: [Sketch] First, since the path of the Brownian motion is contin-
uous and the interval [0, ¢] is closed and bounded, the maximum is actually
attained, so Si(w) is well defined for each w. Thanks to the monotone con-
vergence theorem, S; is measurable. Next, notice that

P(StZ[L‘):P(StZ[L‘,Bt§$)+P(St2$,BtZ%)—P(StZSL‘,Bt:.I)
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and for the last term we find
P(St > H?,Bt = 1’) < P(Bt = .%') =0.

We now aim to show that P(S; > z,B; < z) = P(S; > z,B; > z) =

P(B; > z). Consider a realization w for which B;(w) > z. Let 7 = 7(w) be
the “hitting time”, a random variable defined by

T(w) = inf{s : Bs(w) = z}.

This is the first, but definitely not the last, time we encounter such a hitting
time; see Section Note that 7(w) < t since we assumed that Bi(w) >
x > 0 = By, and since the sample path is continuous. Define the reflected

trajectory (see Figure

Bs(w) for 0 <s < 7(w),
2 — s .

. (
BY(w) = Bs(w) for 7(w) <t

We see that each sample path with Sy > x, By > x corresponds in this way
to exactly one sample path with S; > x, B; < x. Moreover, the reflection op-
eration does not change the absolute values of the increments, and therefore
the original and the reflected sample path are equally likely realizations of
Brownian motion. This is the argument that works straightforwardly in the
case of a discrete-time random walk on Z (Grimmett and Stirzaker, 1992]),
but for Brownian motion some care is needed to make the statement and the
argument precise. The key is to partition the time interval into ever finer
grids; see (Rogers and Williams, 1994a) or (Karatzas and Shreve, 1997).
Omitting the details of this step, we reach the conclusion

P(S;>z,By > z) =P(S; > z,B; <)

and therefore

Now if the end point exceeds x, then obviously the process must have hit x,
so By > x = S; > x. Hence

P(St Z .I‘,Bt Z .73‘) == P(Bt 2 I)

and therefore

|

In many situations involving stochastic differential equations we need to

bound the effect of random permutations. It is therefore quite useful that

the maximum value of the Brownian motion follows a known distribution

with finite moments. However, our main motivation for including this result

is that it leads to hitting time distributions for Brownian motion, as the
next section shows.
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Brownian Motion is Null-Recurrent

Brownian motion in one dimension always hits any given point on the real
line, and always returns to the origin again, but the expected time until it
does so is infinite.

To state this property precisely, let £ # 0 be an arbitrary point and
define again the hitting time 7(w) to be the first time the sample path hits
x, i.e., 7 = inf{t > 0 : By = z}. By convention the infimum over an empty
set is infinity, so 7 = oo means that the sample path never hits x.

Theorem 4.3.3 The distribution of the hitting time T = inf{t > 0: B, =
x} is given by
P{r <t} = 20(—o|/Vi)

so T has the probability density function

_ dP(1T <t)

= at =32 p(x/ V).

f=()
In particular, P(T < 0c0) =1 and ET = cc.

The p.d.f. of 7 is plotted in Figure for = 1. Notice the heavy
power-law tail with a slope of —3/2.

Proof: Assume that x > 0; the case x < 0 follows using symmetry. Then,
recall from our discussion of the maximum S; = max{B; : 0 < s < t}, that
7 <t< S > x and in particular

P(r <t)=P(S; > x) = 20(—x/V1).

Now it is clear that P(r < ¢) — 1 as t — oo, so 7 is finite w.p. 1. The
p.d.f. of 7 is found by differentiating. The power law tail implies a divergent
expectation:

ET:/OOth(t) dt = oo.
0

To see this, note that f(t) > %t*3/2 whenever t > z2. Hence

ET:/ tf(t) dtz/ 412 gt = o,
0 22 O

Asymptotics and the Law of the Iterated Logarithm

We know that Brownian motion B; scales with the square root of time in
the sense that B;/+/t is identically distributed for all ¢+ > 0; in fact follows
a standard Gaussian distribution, B;/v/t ~ N(0,1). We are now concerned
with the behavior of the sample path of B;/+/t in the limit t — oo.
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Figure 4.5: The p.d.f. of the hitting time 7 = inf{t : By = 1}. Left panel:
The initial part of the curve. Right panel: The tail of the curve. Notice the

log-scales. Included is also a straight line corresponding to a power law decay
~ 132,

Theorem 4.3.4 (The Law of the Iterated Logarithm)

lim sup

By
Bt ——
t—oo  2v/tloglogt

with probability one.

This result states quite precisely how far from the origin the Brownian
motion will deviate, in the long run, and this can be used to derive asymp-
totic properties and bounds on more general diffusion processes.

Since Brownian motion is symmetric, if follows immediately that almost
surely

pooe o B

s 2 /Tloglogt
Now, since the path of the Brownian motion is continuous and, loosely said,
makes never-ending excursions to £2+/tloglogt, it also follows that the sam-
ple path almost always re-visits the origin: Almost surely there exists a
sequence t,(w) such that t, — oo and By, = 0.

Although the law of the iterated logarithm is simple to state and use, it
is a quite remarkable result. The scaled process B;/(2+/tloglogt) converges
(slowly!) to 0 in Lo as t — oo (Ezercise: Verify this!), but the sample path
will continue to make excursions away from 0, and the ultimate size of these
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Figure 4.6: Rescaled Brownian motion in logarithmic time. Included is also
the growing bounds from the Law of the Iterated Logarithm.

excursions are equal to 1, no more, no less. Stated in a different way, when
we normalize the Brownian motion, and view it in logarithmic time, we
reach the process {Xs : s > 0} given by X = B;/\/t with t = exp(s) (we
will consider such time changes further in Section . This process { X} is
Gaussian stationary (compare Figure E] Hence, it will eventually break
any bound, i.e., limsup,_,., Xs = oo. But if the bounds grow slowly with
logarithmic time s as well, i.e., £2y/logs (compare Figure , then the
process will ultimately just touch the bound.

The proof of the law of the iterated logarithm is out of our scope; see
(Williams, 1991)).

Exercise 4.4: Using the law of the iterated logarithm, show that (almost
surely) limsup,_, . t™? B, = 0 for p > 1/2, while limsup,_,,,t™? By = o0
for 0 <p<1/2.

Invariant under Time-Inversion

If {B; : t > 0} is Brownian motion, then also the process {W; : t > 0} given
by
Wy=0, Wt:tBl/thI"t>0,

is Brownian motion.

Exercise 4.5: Show that this {I¥;} satisfies the conditions in the def-
inition of Brownian motion. Hint: To establish continuity of W; at t = 0,

You may want to verify the stationarity, i.e., that EX,, VX, and EX, X, do not
depend on time s. Here h > 0 is a time lag. We will discuss stationary processes further
in Chapter
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use the law of the iterated logarithm, in particular the results established in
Exercise [4.41

This result is particularly useful, because it can be used to connect prop-
erties in the limit { — oo with properties in the limit ¢ — 0. For example,
from the discussion of the law of the iterated logarithm we learned that
Brownian motion almost always revisits the origin in the long run. By time
inversion, it then follows that Brownian motion almost always revisits the
origin immediately after time 0. To be precise, with probability 1 there exists
a sequence t, such that ¢, — 0 and B;, = 0.

Exercise 4.6: Following up on Exercise show that the sample paths
of Brownian motion are not differentiable at the origin, almost surely. Specif-
ically, show that

1 1

lim sup — By = 400, liminf - B; = —o0
N0 t AN

almost surely. Hint: Use time inversion and the law of the iterated logarithm,

in particular Exercise [4.4]

4.4 Filtrations and accumulation of information

Recall that we used a o-algebra of events to model information. This is a
static concept, i.e., the information does not change with time. For stochas-
tic processes, we need to consider also the situation that information changes
with time, so that we obtain a family of o-algebras, parametrized by time.
Our interest is accumulation of information obtained by new observations,
and not, for example, loss of information due to limited memory. We there-
fore define a filtration to be a family of o-algebras, i.e., {F; : t € R}, which
is increasing in the sense that

Fs C F whenever s < t.

We can think of a filtration as the information available to an observer
who monitors an evolving stochastic experiment - as time progresses, this
observer is able to answer more and more questions about the stochastic
experiment. In our context, the information F; almost invariably comes
from observation of some stochastic process X;, so that

Fi=0(Xs:0<s<1).

In this case, we say that the filtration {F; : ¢ > 0} is generated by the process
{X; :t > 0}. A related situation is that the information F; is sufficient to
determine X, for any ¢t > 0. If X; is Fi-measurable, for any ¢ > 0, then we
say that the process {X; : t > 0} is adapted to the filtration {F; : t > 0}.
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Since a filtration is an increasing family of o-algebras, it follows that also
earlier values of the stochastic process are measurable, i.e., X is measurable
with respect to F; whenever 0 < s < t. Of course, a process is adapted to
its own filtration, i.e., the filtration it generates.

The underlying probability space (£2, F,P) and a filtration {F; : ¢t > 0}
together constitute a filtered probability space. We will make frequent use
of filtrations throughout this book. Our first application of filtrations is to
describe a class of processes known as martingales.

4.5 The martingale property

Brownian motion is a prime of example of a class of stochastic processes
called martingalesf’] which can be seen as unbiased random walks: The ex-
pected value of future increments is always 0. It turns out that this property
is tremendously important, for (at least) two reasons: First, from a mod-
eller’s perspective, the mean value of a stochastic process is obviously im-
portant, and therefore it is attractive to model the contribution from the
noise itself as a martingale. Second, a surprising number of conclusions can
be drawn from the martingale property, and therefore it is useful for the
analysis of a model to identify martingales that appear in connection to the
model.

Definition 4.5.1 Given a probability space (Q, F,P) with filtration {F; :
t > 0}, a stochastic process {M; : t > 0} is a martingale (w.r.t. Fy and P)
if

1. The process {M;} is adapted to the filtration {F}.
2. For all times t > 0, E|M,| < cc.

3. E{M;|Fs} = Ms whenevert > s > 0.

The first condition states that the o-algebra F; contains enough infor-
mation to determine M;, for each ¢ > 0. The second condition ensures that
the expectation in the third condition exists. The third condition, which is
referred to as “the martingale property”, expresses that {M,} is an unbiased
random walk: At time s, the conditional expectation of the future increment
M; — M is 0.

2The term martingale has an original meaning which is fairly far from its usage in
stochastic processes: A martingale can be a part of a horse’s harness, a piece of rigging on
a tall ship, or even a half belt on a coat; such martingales provide control and hold things
down. Gamblers in 18th century France used the term for a betting strategy where one
doubles the stake after a loss; if the name should indicate that this controls the losses,
then it is quite misleading. In turn, the accumulated winnings (or losses) in a fair game is
a canonical example of a stochastic process with the martingale property.



CHAPTER 4. BROWNIAN MOTION 80

Biography: Joseph Leo Doob (1910-2004)

An American mathematician and Harvard gradu-
ate, he spent the majority of his career at the Uni-
versity of Illinois. Doob was central in the devel-
opment of the theory of martingales (Doob, 1953).
Inspired by the seminal work of Kakutani, he con-
nected potential theory to the theory of stochastic
processes (Doob, 2001). Photo credit: CC BY-SA
2.0 DE.

The time argument ¢ can be discrete (t € N) or continuous (t € Ry);
our main interest is the continuous-time case. If we just say that {M;} is
a martingale, and it is obvious from the context which probability measure
should be used to compute the expectations, then it is understood that the
filtration {F; :> 0} is the one generated by the process itself, i.e., F; =
o(Ms:s<t).

Exercise 4.7: Show that Brownian motion is a martingale w.r.t. its own

filtration.
In greater generality, let there be be given a filtered probability space

(Q,F,{F:},P) and a process {B; : t > 0} with continuous sample paths.
We say that {B;} is Brownian motion on (2, F,{F:},P), if By =0, {B;} is
adapted to {F;}, and the increment B; — B, is distributed as N(0,t—s) and
independent of F, for all 0 < s < ¢t. We then also say that {B;} is Brownian
motion w.r.t. {F;}. It follows that {B;} is then also a martingale w.r.t.
{F+}. The filtration {F;} could be the one generated by {B:}, but it can
also include other information about other random variables or stochastic
processes; the definition requires just that the filtration does not contain
information about the future increments.

Exercise 4.8: Let {B;} be Brownian motion w.r.t. a filtration {F;}.
Show that the process {B? —t : t > 0} is a martingale w.r.t. {F;}. Note:
The so-called Lévy characterization of Brownian motion says that a converse
result also holds: If { M} is a continuous martingale such that also { M? —t}
is a martingale, then {M;} is Brownian motion.

Martingales play an important role in mathematical finance: Let M; be
the (discounted) market price of an asset (e.g., a stock) at time ¢, and assume
that everybody in the market has access to the information F at time s.
Then the fair price of the asset at time s € [0,t] must be My = E{M;|F}
where expectation is w.r.t. the risk-free measure Q. Le., the (discounted)
price {M,;} is a martingale w.r.t. Q and F;.

In the context of gambling, martingales are often said to characterize
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fair games: if M; is the accumulated winnings of a gambler at time ¢, and
{M; : t > 0} is a martingale, then the game can be said to be fair. In this
context, an important result is that it is impossible to beat the house on
average, i.e., obtain a positive expected gain, by quitting the game early. To
present this, we must first define the admitted strategies for quitting. Let 7
be a random time, i.e., a random variable taking values in [0, 0o], specifying
when some phenomenon happens. We allow the value 7 = oo to indicate
that the phenomenon never occurs. An important distinction is if we always
know whether the phenomenon has occurred, or if we may be unaware that
it has occurred. We use the term Markov time, or stopping time, to describe
the first situation:

Definition 4.5.2 (Markov time, stopping time) A random variable T
taking values in [0, 00] is denoted a Markov time (or a stopping time) (w.r.t.
Fi) if the event

{w:7(w) <t}

is contained in Fy for any t > 0.

Probably the most important example of stopping times are hitting
times, which we have already encountered: If {X; : ¢ > 0} is a stochas-
tic process taking values in R", {F;} is its filtration, and B C R" is a Borel
set, then the time of first entrance

T=inf{t > 0: X; € B}

is a stopping time (with respect to F;). Recall that by convention we take
the infimum of an empty set to be co. On the other hand, the time of last
exit

sup{t > 0: X, € B}

is mot in general a stopping time, since we need to know the future in order
to tell if the process will ever enter B again.

In the context of gambling, a stopping time represents a strategy for
quitting the game. The following result states that you can’t expect to win
if you quit a fair game early.

Lemma 4.5.1 On a probability space (2, F,P), let the process {M; : t > 0}
be a continuous martingale with respect to a filtration {F; :t > 0}. Let T be
a stopping time. Then the stopped process

{Mt/\T 0t Z 0}

is a martingale with respect to {F; : t > 0}. In particular, E(Mx-|Fo) =
My. Here, A is the “min” symbol: a A b = min(a,b).
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Proof:(Sketch) To see that Ma, is Fi-measurable, note that an observer
with acess to the information F; knows the value of t A 7 and therefore also
M. For a rigorous proof, which uses the continuity of the sample paths
of {M,}, see (Williams, 1991).

To verify that E|Ma,| < oo, consider first the case where 7 is discrete,
i.e., takes value in an increasing deterministic sequence 0 = tg < t1 < to <
-+ +. Assume that E|Ma-| < oo, then

E|Mti+1/\7‘ = E|1(T < ti)MT + 1(T > ti)MtiH’
S E[1(7 <t)Mopy, | + E[L(T > ;) My, |
S E|M7'/\ti’ + E|Mti+1‘

< Q.
It follows by iteration that E|Ma-| < oo for all i. Similary,

E{Mti+1/\7'“Fti} = E{l(T < ti)Mti+1/\T + 1(T > ti)MtiJrl/\T"Fti}
= E{].(T < ti)MT + 1(7’ > ti)Mti+1 ’]:’tz}
= 1(7’ < ti)MT + 1(7’ > ti)Mti

= TNE;

Again, by iteration, {My - : 1 =0,1,2,...} is a martingale.

We outline the argument for the general case where 7 is not necessarily
discrete: We approximate 7 with discrete stopping times {7, : n € N}
which converge monotonically to 7, for each w. For each approximation 7,
the stopped process M;x., is a martingale, and in the limit n — oo we find,
with the monotone convergence theorem,

E{Mt/\7'|]:s} = nhﬁrgo E{Mt/\Tn|]:s} = M;

which shows that { M, : t > 0} is also a martingale. [

Of course, it is crucial that 7 is a stopping time, and not just any random
time: It is not allowed to sneak peek a future loss and stop before it occurs.
It is also important that the option is to quit the game early, i.e., the game
always ends no later than a fixed time ¢. Consider, for example, the stopping
time 7 = inf{t : By > 1} where B; is Brownian motion. Then 7 is finite
almost surely (since Brownian motion is recurrent, Section, and of course
B, =1 so that, in particular, EB; # By. But this stopping time 7 is not
bounded so stopping at 7 is not a strategy to quit early. In contrast, if we
stop the Brownian motion whenever it hits 1, or at a fixed terminal time
t > 0, whichever happens first, we get the stopped process By, for which
we now know that EBa, = 0.

Although this result should seem fairly obvious - except perhaps to die-
hard gamblers - it has a somewhat surprising corollary: It bounds (in proba-
bility) the maximum value of the sample path of a non-negative martingale:
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Theorem 4.5.2 [The martingale inequality] Let {M; : t > 0} be a non-
negative continuous martingale. Then
EM,

P(max M; > ¢) < .
s€[0,1] c

This inequality is key in stochastic stability theory (chapter where it
is used to obtain bounds on the solutions of stochastic differential equations.

Proof: Define the stopping time 7 = inf{¢ : My > ¢} and consider the
stopped process { Mya- : t > 0}. This is a martingale, and therefore

EMy = EMp,.
By Markov’s inequality,
EMt/\T Z c P(Mt/\T Z C)-

Combining, we obtain EMy > ¢ P(Mar > ¢). Noting that Mys, > c if and
only if max{M;:0 < s <t} > ¢, the conclusion follows. ]

Exercise 4.9: A gambler plays repeated rounds of a fair game. At each
round, he decides the stakes. He can never bet more than his current fortune,
and he can never lose more than he bets. His initial fortune is 1. Show that
the probability that he ever reaches a fortune of 100, is no greater than 1

%.

The definition of a martingale concerns only expectations, so a martin-
gale does not necessarily have finite variance. However, many things are
simpler if the variances do in fact exist, i.e., if E|[M;|?> < oo for all t > 0.
In this case, we say that {M;} is an Lo martingale. Brownian motion, for
example, is an L9 martingale. In the remainder of this section, {M;} is an
Lo martingale.

Exercise 4.10: Show that if {M; : t¢ > 0} is a martingale such that
E|M;|? < oo for all ¢, then the increments

M; — My and M, — M,

are uncorrelated, whenever 0 < s <t < u < v. (Hint: When computing the
covariance E(M, — M,,)(M; — Mj), condition on F,.) Next, show that the
variance of increments is additive:

V(M, — Ms) = V(M, — M) + V(M — Mj).
Finally, show that the variance is increasing, i.e.

VM, < VM; whenever 0 < s < ¢.
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This property of uncorrelated increments generalizes the independent
increments of Brownian motion.

Since the variance is increasing, an important characteristic of an Lo
martingale is how fast and how far the variance increases. To illustrate this,
we may ask what happens as ¢ — oo. Clearly the variance must either
diverge to infinity, or converge to a limit, lim;_,oo VM; < 00. A very useful
result is that if the variance converges, then also the process itself converges.
Specifically:

Theorem 4.5.3 (Martingale Vonvergence, Lo Version) Let {M,; :t >
0} be a continuous martingale such that the variance {VM; : t > 0} is
bounded. Then there exists a random variable My, such that M; — My, in
Lo and w.p. 1.

Proof: Let 0 = t; < t3 < --- be an increasing divergent sequence of
time points, i.e., t; — 0o as i — co. Then we claim that {M;, : n € N} is a
Cauchy sequence. To see this, let € > 0 be given. We must show that there
exists an N such that for all n,m > N, || My, — M, ||2 < €. But this is easy:
Choose N such that VM, > limy oo VM; — 6 where § > 0 is yet to be
determined, and let n,m > N. Then

V(M — M) <6

and therefore || My, — Mg, ||2 < v/d. The same applies if we replace t,, with
tm. The triangle inequality for the L5 norm then implies that

My, — My, ||l2 < [|Myy — My, |2 + | My — My, |2 < 2V/6.

So if we choose § < €2/4, we get || M, — My, || < €. Since {M;, : n € N} is
a Cauchy sequence and the space Lo is complete, there exists an My, € Lo
such that M;, — My in mean square. Moreover, it is easy to see that this
M does not depend on the particular sequence {¢; : i € N}.

We omit the proof that the limit is also w.p. 1. This proof uses quite
different techniques; see (Williams, 1991)). [

4.6 Conclusion

A stochastic process is a family of random variables parameterized by time,
e.g. {X¢ : t > 0}. For fixed time ¢, we obtain a random variable X; : Q — R".
For fixed realization w, we obtain a sample path X.(w) : Ry — R™, so the
theory of stochastic processes can be seen as a construction that allows us
to pick a random function of time.

Stochastic processes can be seen as evolving stochastic experiments.
They require a large sample space €, typically a function space, and a fil-
tration {F; : t > 0} which describes how information is accumulated as the
experiment evolves.
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In this chapter, we have used Brownian motion as the recurring example
of a stochastic process, to make the general concepts more specific. Brownian
motion is a fundamental process in the study of diffusions and stochastic
differential equations, and it is useful to know its properties in detail. The
two most important properties arguably concern the expectation and the
variance: The expectation af any increment is 0, so Brownian motion is a
martingale. The variance grows linear with time, so that distance scales with
the square root of time.

When the Brownian motion is canonical, the sample space consists of
continuous functions which we identify with the sample path of Brownian
motion. Canonical Brownian motion therefore defines a probability measure
on the space of continuous functions; phrased differently, a stochastic exper-
iment consisting of picking a random continuous function. A side benefit is
that with this construction, all sample paths are continuous by construction.

However, Brownian motion is not differentiable; in contrast, it has infinite
total variation. In the following chapters, we shall see that this has profound
consequences when we include Brownian motion in differential equations.
Instead, it has a very simple quadratic variation: [B]; = t. Since the paths
are not differentiable, the quadratic variation is central in the stochastic
calculus that we will build, together with the martingale property.

4.7 Notes and references

Besides Brown, Einstein, and Wiener, early studies of Brownian motion
include the work of Louis Bechalier in 1900, whose interest was financial
markets, and the study of T.N. Thiele, whose 1880 paper concerned least
squares estimation. More in-depth treatments of Brownian motion can be
found in (Williams, 1991; Rogers and Williams, 1994a; |Oksendal, 2010;
Karatzas and Shreve, 1997)).

4.8 Exercises

Simulation of Brownian Motion

Exercise 4.11 The Brownian Bridge:

1. Write a code which takes Brownian motion By, By,,..., B, on the
time points 0 < t; < --- < t,, and which returns a finer parti-
tion s1,..., S2,_1 along with simulated values of the Brownian motion
Bg,,...,Bs,, ,. Here, the finer partition includes all mid-points, i.e.

i+t to + t3

7S:ta‘9: )
9 3 2 4 2

81 =1t1, S3

ey S2n—1 = tn.
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2. Use this function iteratively to simulate Brownian motion on the inter-
val [0, 1] in the following way: First, simulate By = 0 and B; ~ N(0,1).
Then, conditional on this, simulate By, By /3, B1 using your function.
Then, conditionally on these, simulate By, By 4, By/2, B34, B1. Con-
tinue in this fashion until you have simulated Brownian motion with
a temporal resolution of h = 1/512. Plot the resulting trajectory.

Exercise 4.12 The Brownian Bridge (again): Yet another way
of simulating a Brownian bridge uses a basic result regarding conditional
simulation in Gaussian distributions. For two jointly Gaussian random vari-
ables (X,Y), we can simulate X from the conditional distribution given Y
as follows:

1. Compute the conditional mean, E{X|Y}.
2. Sample (X,Y) from the joint distribution of (X,Y).
3. Return X = E{X |V} - E{X|Y} + X.

Check that the conditional distribution of this X given Y is identical to the
conditional distribution of X given Y.

Then write a function which inputs a partition 0 =ty <t; < --- <t, =
T and a value of Br, and which returns a sample path of the Brownian
bridge By, By, , ..., By which connects the two end points. Test the function
by computing 1000 realizations of {B, : n € N,nh € [0,2]} with h = 0.01
and for which B, = 1 and plotting the mean and variance as function of
time.

Exercise 4.13 The Wiener Expansion: Here, we simulate
Brownian motion through frequency domain. First, we simulate harmon-
ics with random amplitude. Then, we add them to approximate white noise.
Finally we integrate to approximate Brownian motion. For compactness, we
use complex-valued Brownian motion {Bt(l) + iBt(z) : 0 <t < 2w}, where
{Bgl)} and {Bgl)} are independent standard Brownian motions.

1. Write a code that generates, for a given N € N, 2N +1 complex-valued
random Gaussian variables {V; : k = —N, ..., N} such that the real
and imaginary parts are independent and standard Gaussians. Take
e.g. N = 16. Then generate an approximation to white noise as

N
1 A
‘Irt — § Vkezk‘t
V2T Ty

Check by simulation that the real and imaginary parts of W; are in-
dependent and distributed as N (0, (2N + 1)/(27)). Here ¢ € [0, 27] is
arbitrary; try a few different values. Visual verification suffices.
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Factbox: [The log-normal distribution] A random variable Y is said to
be log-normal (or log-Gaussian) distributed with location parameter p
and scale parameter o > 0, i.e.,

Y ~ LN(p,0%)

if X =logY is Gaussian with mean p and variance o2.

Property Expression

Mean EY exp(p + 507)

Variance VY (exp(o ) 1) exp(2u + o?)
C.d.f. Fy(y) ‘I’(U '(log(y) — 1))

mea P.df. fy(y) o 'y~ oo (log(y) — p))
Median exp(u)

Mode exp(u — o?)

2. Verify the claims of independence and distribution theoretically.

3. Evaluate W; on a regular partition of the time interval [0,27] and
plot the empirical autocovariance function. Comment on the degree to
which it resembles a Dirac delta.

4. From the simulated noise signal {W;}, compute a sample path of ap-
proximate Brownian motion by integration:

t
Bt:/ WS ds.
0

The integration of each harmonic should preferably be done analyti-
cally, i.e.,

L 1
/ e ds =t, / ks ds = —(e* — 1) for k # 0.
0 0 ik
Plot the real part of the sample path.

5. Write a code which inputs N and some time points ¢; € [0, 27], and
which returns a sample of (real-valued) Brownian motion evaluated on
those time points, using the calculations above. Verify the function by
simulating 1,000 realizations of (Bj, B1 5, B2, B5) and computing the
empirical mean and the empirical covariance matrix.

87
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Convergence

Exercise 4.14: Show that Brownian motion with drift diverges almost
surely, i.e. liminf; oo (B + ut) = oo for u > 0. Hint: Use the law of the
iterated logarithm.

Exercise 4.15 Convergence w.p. 1, but not in Lo: Let {B;:
t > 0} be Brownian motion and define, for ¢t > 0

Xt = exp(Bt - %t)
Show that X; — 0 almost surely as ¢ — oo, but that E|X;|? — co. Note:
This process {X; : t > 0} is one example of geometric Brownian motion;
we will return to this process repeatedly. If the result puzzles you, you may
want to simulate a number of realizations of X; and explain in words how
X, can converge to 0 almost surely while diverging in £,.

Exercise 4.16 Continuity of Stochastic Processes:

1. Let {N; : t > 0} be a Poisson process with unit intensity, i.e., a Markov
process Ny = 0 and with transition probabilities given by N;|Ns being
Poisson distributed with mean ¢ — s for 0 < s < ¢. Show that {IV;}
is continuous in mean square but that almost no sample paths are
continuous.

2. Let V be a real-valued random variable such that E|[V?| = oo and
define the stochastic process { X; : t > 0} by Xy = V-t. Show that {X;}

has continuous sample paths but is not continuous in mean square.

Exercise 4.17 The Precision Matrix of Brownian Motion:
If X = (X1,Xy,...,X,) is a random variable taking values in R"™ and
with variance-covariance matrix S > 0, then the precision matriz of X is
P = S~! (Rue and Held, 2005). Now, let {B; : t > 0} be standard Brownian
motion.

1. Let X; = By, where 0 < t; < --- <t,. Show that the precision matrix
P is tridiagonal; specifically

tl(t?—tl) ifi=j=1,
T if i = j =n,
Py=1 grithps—y ifl<i=j<n,
f‘t%m ifi=j+1,
0 else.
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2. Assume that X is multivariate Gaussian with expectation u. Show
that 1/.P“ = V{XZ|X_1} and that E{Xl—M1|X_7,} = Zj#i aj(Xj —uj)
where aj = — ZJ/P” Here, X_i = (Xl, NN 7Xi—1, Xi+1, ey Xn> Note:
Precision matrices are most useful in the Gaussian case but can be
generalized beyond this in different ways.

3. Combine the previous to show that this precision matrix agrees with
the probabilistic graphical model of Brownian motion in Figure
and the statistics of the Brownian bridge, i.e.:

t; —ti—1 tiv1 — &
E{B;,|B;, ., B, = — By 7 bu
{ tz‘ ti—1> t2+1} tz+1 _ tz—l tl"'l + tz—‘,—l — tz_l bi-1)
tivg —t)(t; — tiq
V{Bti‘Btithtiﬂ} ( = t.+1Z)_( Z 1 Z )
i i—

Martingales

Exercise 4.18 Martingales as Random Walks: Let X; be indepen-
dent random variables for i = 1,2,... such that E|X;| < co and EX; = 0.
Show that the process {M; : i € N} given by M; = >7%_; X; is a martingale.

Exercise 4.19 Doob’s Martingale: Let X be a random variable
such that E|X| < oo, and let {F; : ¢ > 0} be a filtration. Show that
the process {M; : t > 0} given by M; = E{X|F:} is a martingale w.r.t.
{.Ft it Z O}

Miscellaneous

Exercise 4.20: Let A ={0,1/n,2/n,...,1} be a partition of [0, 1], where
n € N, and let VA be the discretized total variation as in (4.2)).

1. Show that EVA ~ /n, (in fact, EVA = /2n/7) so that EVA — oo as
n — oo.

2. Show that VA — oo w.p. 1 as n — oo, using
n n
Z |Bt¢ - B75¢71|2 < m?XﬂBti - Btz‘71 ’} ’ Z |Bti - Bti*l’
i=1 =1

as well as the quadratic variation and continuity of Brownian motion.
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Exercise 4.21 The (Second) Arcsine Law: Consider Brownian
motion on the time interval [0,1]. Define 7 as the last time the process hits
0:

T =sup{t € [0,1] : B, =0}

1. Show that 5
P{r <t} = —arcsin vt
0

for 0 <t < 1. Hint: Use reflection as in the proof of Theorem to
relate probability that the process visits the origin in the interval (¢, 1]
to the distribution of (By, B1). Then use the result from Exercise
about two Gaussians having different sign.

2. Estimate the distribution function of 7 using Monte Carlo, simulating
N = 1,000 sample paths of {B; : t € [0, 1]} and reporting the last time
the sign is changed. Use a time step of h = 0.001. Plot the empirical
distribution function and compare with the analytical expression.

Exercise 4.22: Let Q = [0, 1], let F be the Borel algebra on this interval,
and let P be the Lebesgue measure on €. Consider the real-valued stochastic
processes {X; : t € [0,1]} and {Y; : ¢ € [0,1]} on this probability space:

1  when t = w,
Xi(w) =0, Yi(w) = { 0 else.

Show that {X;} and {Y:} have identical finite-dimensional distributions; we
say that {X;} and {Y;} are wersions of eachother. Note that the sample
paths of {X;} are continuous w.p. 1, while those of {Y;} are discontinuous,
w.p. 1.



Chapter 5

Linear Dynamic Systems

Systems of linear differential equations with exogenous random inputs make
an important special case in the theory of stochastic processes. Linear mod-
els are important in practical applications, because they quickly give explicit
results, based on simple formulas for the mean and for the covariance struc-
ture. If a linear model is reasonable, or can be used as a first approximation,
then it is typically worthwhile to start the analysis there.

With increasingly strong computers and algorithms, the role of linear
systems is no longer as central in science and engineering curricula as it used
to be: While earlier generations were forced to simplify dynamic systems in
order to analyze them, and therefore often focused on linear models, we can
now conduct numerical simulations of larger and more complex systems.
As a result, the toolbox of linear systems is no longer rehearsed as eagerly.
However, in the case of stochastic systems, simulation is still cumbersome,
because we would need to simulate a large number of sample paths before
we could say anything about the system at hand with confidence. Then, the
analytical techniques of linear systems come to the rescue.

Linear systems can be analyzed in time domain or in frequency domain;
the Fourier transform connects to two domains by decomposing the fluctu-
ations of signals into contributions from different frequencies. Since linear
systems satisfy the superposition principle, we can consider each frequency
in isolation.

Frequency domain methods applied to linear systems also make it possi-
ble to give precise meaning to the notion of fast vs. slow signals and dynam-
ics. If a linear system is affected by a noise signal which is fast compared
both to the system itself and to the interest of the modeler, then it may be
reasonable to approximate the signal with white noise. Doing so, we obtain
the first example of a stochastic differential equation. We will see that it is
possible to analyse the solution of this equation and give very explicit results
for the mean, covariance structure, and spectrum.

91
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Figure 5.1: A mass-spring-damper system drive by an exogenous force is a
simple example of a linear system.

5.1 Linear Systems with Deterministic Inputs

Let us start by briefly recapitulating the basic theory of linear time-invariant
systems driven by additive inputs. A simple example of such a system is a
mass connected to a wall with a spring and a damper, and subject to an
external force, see Figure The governing equations are

— 1

%y, (5.1
dV;

mditt = —kQ; — Vi + Us. (5.2)

Here, Q)¢ is the position at time ¢ while V4 is the velocity and Uy is the exter-
nal force. We use the symbol U; since external driving inputs are typically
denoted Uy in the linear systems literature. The system parameters are the
mass m, the spring constant k and the viscous damping coefficient ¢. The
first equation is simply the definition of velocity, while the second equation
is Newton’s second law, where the total force has contributions from the
spring (—kQ;, Hooke’s law) and the damper (—cV}, linear viscous damping)
in addition to the external force U;.

State-space formalism is tremendously useful. There, we define the sys-
tem state X; = (Q, V)| and track the motion of the system in state space;
in this case, R?. The governing equation can be written in vector-matrix
notation:

X, = AX; + GU,. (5.3)

Here, the system matrices are

0 1 0
A_l—k/m —c/m]andG_[l/m]' (5.4)

Writing the equation in state space form is algebraically convenient and a
concise shorthand, but also represents a fundamental paradigm to dynamic
systems: The state vector summarizes the entire pre-history of the system
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so that predictions about the future can be based solely on the current state
and future inputs, and need not take further elements from the past into
account. State space formalism is to dynamic systems what the Markov
property (Section is to stochastic processes.

For such a linear system with exogenous input, a fundamental property
is the impulse response. This is the (fundamental) solution to the system
which is at rest before time ¢ = 0, i.e., Xy = 0 for ¢ < 0, and subject to
a Dirac delta input, U; = 6(t). For the mass-spring-damper system, this
means that the mass is standing still before time ¢t = 0, @Q; = V; = 0 for
t < 0. Then, a force of large magnitude is applied over a short time period
starting at time 0, effectively changing the momentum instantaneously from
0 to 1. Figure [5.2] shows the impulse response of the position; for correct
dimensions, the momentum is changed instantaneously from 0 to 1 Ns. In
general, the impulse response of the system corresponding to the input
Ut = 6(t) is

0 for t < 0,

ht) = { exp(At)G  for t > 0. (5:5)

The matrix exponential exp(At) is described in the fact box on page For
the mass-spring-damper system, it is possible to write up the elements in
the matrix exponential in closed form, but this is not possible in general.
Rather, there exist powerful numerical algorithms for computing the matrix
exponential.

We can use the impulse response to obtain the solution to the linear
system with the initial condition Xy = xg, for a general forcing {U; :
t > 0}:

t t
X, = ety +/ h(t —s) U, ds = elxg +/ Al=9QU, ds. (5.6)
0 0

This solution is termed the superposition principle: The response at time ¢
to the initial condition only is exp(At)zo while the response to a Dirac delta
at time s and with strength Uy is exp(A(t — s))Us. This solution establishes
that X; arises as the linear combination of these responses. The solution can
be verified by first noting that the right hand side of equals g when
t = 0, and next differentiating the right hand side, using the Leibniz integral
rule for differentiation of an integral:

d t
%Xt = AeMzo + ADGU, + / A9 QU, ds
0

= AX, + GUy,

as claimed.
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5.2 Linear Systems in the Frequency Domain

So far we have considered the linear system in the time domain, but fre-
quency domain methods are powerful. There, we decompose all signals into
harmonics (i.e., sine and cosine functions or, more conveniently, complex
exponentials) using the Fourier transform.

Assume that we apply a force of the form U; = Uy coswt to the mass-
spring-damper system, then there is a solution where the system responds
with a periodic motion X; = Upa(w) cos(wt + ¢(w)). We will find this so-
lution shortly, in the general case. Note that the frequency of the response
is the same as that of the applied force, and that the amplitude Upa(w) is
proportional to the magnitude of the applied force, with the constant of pro-
portionality a(w) depending on the frequency w. Also the phase shift ¢(w)
depends on frequency w. It is convenient to write this as

X; = UpRe [H(w) exp(iwt)]

where H(w) = a(w) exp(i¢(w)) is the complex-valued frequency response; i
is the imaginary unit.

To find the frequency response for the general linear system , simply
search for solutions of the form U; = exp(iwt), Xy = H(w) exp(iwt):

iwH (w)e™! = AH (w)e™ + Ge™,

Then isolate H(w):
H(w) = (iw- I - A)7'G,

where [ is a identity matrix of same dimensions as A. Next, notice that this
result coincides with the Fourier transform of the impulse response h(-):
Assume that A is stable, i.e., all eigenvalues of A have negative real part, so
that h(t) converges to 0 exponentially as t — 0. Then the Fourier transform
is

+oo ) 00 )

H(w) = / h(t)e™ ™t dt — / MGt dt = (iw-T— A)"'G.  (5.7)
—0o0 0

Thus, the frequency response H(-) contains the same information as the

impulse response h(-) from ; the two are Fourier pairs.

Finally, if A admits the eigenvalue decomposition A = TAT~! where
A is diagonal, then H(w) = T(iw - I — A)~'T~1G where the matrix being
inverted is diagonal. Therefore, we can view the frequency response as a
weighted sum of first-order responses, 1/(iw — A;).

The assumption that A is stable deserves a comment: The solution
includes a response exp(At)zg to the initial condition. When A is stable, this
element in the solution vanishes as ¢ — oo so that the solution eventually
becomes independent of the initial condition, and then only the frequency
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Figure 5.2: Impulse and frequency response for the mass-spring-damper sys-
tem with parameters m = 1 kg, k = 1 N/m, and ¢ = 0.4 Ns/m. The applied
impulse has magnitude 1 Ns. The amplitude response peaks near w = 1
rad/s, corresponding to the damped oscillations with a period near 27 in
the impulse response. At slower frequencies, the response is in phase with
the excitation, while at faster frequencies, the response is lagging behind
and eventually in counterphase.

response remains. We can define the frequency response as (iw - I — A)~!G
even when A is not stable, but in that case the response to the initial condi-
tion will grow to dominate the solution, unless the initial condition is chosen
with mathematical precision so that its response is 0.

For small systems, or when the system matrix A has a particular struc-
ture, it is feasible to do the matrix inversion in analytically. For the
mass-spring-damper system , we find

1 1
H = — | . .
() k+ icw — mw? (zw)

Figure[5.2]shows the frequency response of the position, i.e., the top element
of this vector.

In the time domain, we could find the solution for a general forcing
{U; : t > 0} using the impulse response. The same applies in the frequency
domain. Here, it is convenient to consider inputs {U; : ¢t € R} defined also
for negative times, instead of an initial condition on Xy. If this input {U;}
is square integrable, then its Fourier transform {U*(w) : w € R} exists,
so {U;} can be decomposed into harmonics. If furthermore A is stable (all
eigenvalues have negative real parts), then also the response {X; : t € R}
will have a Fourier transform {X*(w) : w € R}. The two will be related by

X*(w) = H(w) U*(w).
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This formula expresses that each angular frequency w can be examined in-
dependently; this follows from the superposition principle of linear systems
that solutions can be added to form new solutions. The response X*(w) is
obtained by multiplying each frequency in the input U*(w) with H(w), which
specifies the amplification and phase shift of an input with that frequency.

5.3 A Linear System Driven by Noise

Up to this point our models have been deterministic, but we now aim for
the situation where the driving input of a dynamic system is a stochastic
process. Figure shows an example for the mass-spring-damper-system,
where the force {U; : t > 0} is the realization of a stochastic process; we
have simulated this force as well as the response of the mass-spring-damper
system (Q¢, V;). In this example, the driving force {U;} is piecewise constant
and changes value at random points in time. These time points of change
constitute a Poisson process with mean interarrival time 7. At a point of
change, a new force is sampled from a Gaussian distribution with mean 0
and variance o2, independently of all other variables.

To simulate this process {U, }, we first simulated the interarrival times 7;
for i = 1,2,..., i.e., the time between two subsequent jumps. According to
the properties of the Poisson process, these 7; are independently of eachother,
and each follows an exponential distribution with mean 7. We then computed
the arrival times T; recursively by Ty = 0, T; = T;_1 +7;. Next, we simulated
the levels be F(®) ~ N(0,02) for i = 0,1,..., again independently of all
other variables. Knowing the time points T} and the levels F(), we can plot
the piecewise constant sample path {Ui(w) : t > 0} as in Figure To
reach an expression for U; at any point in time ¢ > 0, define the epoch
Ny = max{i > 0 : T; <t} (i.e., the number of jumps that have occurred
before time t) and finally define the force process U; = Fp,.

The sample paths of {U;} are piecewise constant, and therefore we can
solve the system dynamics as an ordinary differential equation, for
each realization. In Figure the mean time between jumps in the applied
force is 20 seconds, so in most cases the systems falls to rest before the force
changes again, and the step response of the system is clearly visible.

It is instructive to simulate a driving input and the response it causes,
but it is also cumbersome. We would like to have simpler and more general
analysis tools for computing the statistics of the response, without knowing
the realization of the force, but solely from the statistics of the force. In
the following sections, we develop these tools for the first and second order
statistics of the response, i.e., the mean value and the covariance structure.
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Factbox: [The matrix exponential] For a square matrix A € R™*"™, the
homogeneous linear system X; = AX, with initial condition Xy = zg €
R" has the unique solution X; = exp(At)zy where exp(At) is termed
the matrix exponential. Here, the matrix exponential P(t) = exp(At) is
itself the unique solution to the matrix differential equation

P(t) = AP(t), P(0)=1I¢cR"™"

The matrix exponential has the semigroup property: exp(A(s + t)) =
exp(As) exp(At) for s,t € R.
In principle, the matrix exponential may be computed through its Taylor
series -
exp(At) = I + At + 1(Azt)2 foe=) .l(At)i

2 = 1!
but the series converges slowly; it is only useful when t is small. Bet-
ter algorithms (Moler and Van Loan, 2003) are implemented in good
environments for scientific computing. Do not confuse the matrix expo-
nential with element-wise exponential; (eA)ij does not in general equal
e/, In Matlab or R, compare the two functions exp and expm.

If A=TAT™! then
exp(At) = Texp(At)T!

and if A is diagonal with diagonal elements A;, then exp(At) is a diagonal
matrix with diagonal elements exp(A;t). This may also be written as

n
exp(At) = Z vjeitu;
j=1

where u; and v; are left and right eigenvectors of A, normalized so that
ujvj = 1: Avj = \jvj, u;A = Ajuj. v is a column in T while u; is a row
in 771,

Similar results exist when A cannot be diagonalized, using the Jordan
canonical form. For example,

)\1t_€)\tt€>\t
AP oA o M |-

These formulas highlight the central importance of eigenvalues and
eigenvectors (including generalized eigenvectors) when solving linear sys-
tems of differential equations with constant coefficients.

97
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Figure 5.3: The response of the mass-spring-damper system to a force with
random steps. Parameters as in Figure 7 = 15 s. Top panel: Position
Q [m]. Middle panel: Velocity V' [m/s|. Bottom panel: Force U [N].

5.4 Stationary Processes in Time Domain

It is a useful simplification to consider stationary stochastic inputs, so we
first describe such processes. A stationary stochastic process is one where
the statistics do not depend on time; note that this does not at all imply that
the sample paths are all constant functions of time. There are several notions
of stationarity, but for our purpose at this point we only need stationarity
of the first and second moment:

Definition 5.4.1 (Second-Order Stationary Process) A stochastic pro-
cess {X¢ : t > 0} taking values in R™ is said to be second-order stationary,
if B| X2 < 0o for allt >0, and

EX; = EX;,, EX.X/,, =EX;X/,
for all s,t,k > 0.

Second-order stationarity is also referred to as weak stationarity or wide-
sense stationarity. For a second-order stationary process with mean z =
EX;, the autocovariance depends only on the time lag k, so we define the
autocovariance function px : R — R™" by

px (k) = E(X, - 2)(Xpo — )
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Here t may be chosen arbitrarily. Careful! The word “autocovariance func-
tion” can have slightly different meanings in the literature. When X; =
(Xt(l), . ,Xt(n)) is a vector, i.e., when n > 1, the ith diagonal element of
px (k) is the autocovariance of {Xt(z)} while an (4, 7) off-diagonal element in
px (k) is the covariance E(Xt(i) - a_:(i))(Xéi)k —z\),

We now set out to show that the force process {U; : t > 0}, described
in Section [5.3] is second-order stationary, and determine its autocovariance
function. To do this, we use a standard trick repeatedly: Include some in-
formation, which makes the conditional expectation easy, and then use the
tower property (or one of its variants, i.e., the law of total expectation or

variance). First, to find the mean and variance of Uy, let G be the o-algebra
generated by {T; : i € N}. Then

E{U;|G} =0, V{U[G} =02,
from which we get
EU; = EE{U;|G} =0, VU; = EV{U;|G} + VE{U;|G} = Eo? + V0 = ¢°.

To derive the autocovariance function py(h) = EUUyy for h > 0, we
condition on F;, the o-algebra generated by {Us : 0 < s < t}:

EU U1, = E(E{U Ui | Fi}) = E(UE{Un| Fi}).

Notice that this connects the problem of determining the autocovariance
with that of making predictions. To compute the conditional expectation
E{U;+n|F+}, condition again on the arrival times, i.e., on G. If the force
does not change between time ¢ and time ¢ + h, then Uy = U;. On the
other hand, if the force changes between time ¢ and time t + h, then the
conditional expectation of Uyp is 0. That is:

(TN 0
E{UM\E,Q}:{ lét ;ls{& JO[tt+hl =0

Now, the probability that there are no jumps in the time interval is
PHT:} N [t,t + h] = 0|F] = exp(—h/T),

since the time between events is exponentially distributed. This hinges on
the exponential distribution having no memory, i.e., when we stand at time
t and look for the next jump, we do not need to take into account how
long time has passed since the previous jump. Combining, we use the Tower
property to get

E{Un|Fi} = B[E{Utp|Fe, G} Fi] = Urexp(—h/T),
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Figure 5.4: Autocovariance function and variance spectrum (in log scales) of
the piecewise constant force process {U; : t > 0}, for two values of the time
constant 7. The variance o2 is chosen so that o?7 = 1. Note, in the spec-
trum, that the cut-off frequency 1/7 marks a transition from low-frequency
behavior to high-frequency behavior.

and therefore,
EU U p = 0” exp(—|h|/7) = pu(h). (5.8)

Here we have used symmetry to obtain also autocovariance at negative lags.
Note that EU U, does not depend on the time ¢, but only on the time lag
h, so the process {U;} is second order stationary.

The form of the autocovariance is archetypal: It contains a variance,
o2, and a time constant 7 which measures the time scale over which the
autocovariance function decays and is therefore termed the decorrelation
time. See Figure (left panel).

5.5 Stationary Processes in Frequency Domain

Just as frequency domain methods are useful for linear systems (Section,
they are also useful for stationary processes. I1E| the autocovariance function
px is Lo, we can define the variance spectrum Sy as its Fourier transform:

Sy (w) = [ :O px(t) exp(—iwt) dt.

To justify the name variance spectrum, note that by the inverse Fourier
transform, we can compute the autocovariance function from the variance

! According to the Wiener-Khinchin theorem, this requirement can be relaxed.
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spetrum,
1 [t
px(t) / Sx(w) exp(iwt) dw

:%700

and in particular, with a time lag t = 0, we get

1 [t
VX =px(0) = 2—/ Sx(w) dw.
T J—00
We see that the variance spectrum Sy (w) decomposes the variance of X
into contributions from cycles of different frequencies, which justifies the
name “variance spectrum”.

Remark 5.5.1 The literature does not agree on where to put the factor 2.
Also, much of the physics and engineering literature measures frequencies
in cycles per time v rather than radians per time w; i.e., w = 2wv. For a
scalar process, we can consider positive frequencies only, use dw = 2wdv,
and obtain

+oo
VX =px(0) = / 2Sx(2mv) dv.
0

In the scalar case, we may replace the complex exponential exp(—iwh) with
the cosine cos(wh) since the autocorrelation function is even, and the spec-
trum is real-valued. This gives the simpler expression

+oo
Sx(w) = / px (h) cos(wh) dh. (5.9)
—00

For the particular example of the driving force in Section the auto-
covariance function (5.8)) is L2, so we get the spectrum

S " pulh By dh = 227
w) = exp(—iw = — 5.10
o) = [ pulyesp(-ivh) dh= 12— (5.10)
as shown in Figure (right panel). This form is archetypal: A low-
frequency asymptote 2027 expresses the strength of slow oscillations present
in the force, and at high frequencies, there is a roll-off where the contribu-
tion of harmonics in the force decays with w?. Between the two, there is a
cut-off frequency w = 1/7, corresponding to the decorrelation time 7, which
indicates the transition from slow to fast modes.

5.6 The Response to Noise

We now investigate how a linear system responds to a stochastic input {U;}.

We consider the general linear system (5.3)) where the initial condition
xo € R™ is deterministic, while the input {U; : ¢ > 0} is a stochastic process
with mean u(t) = EU; and autocovariance py(s,t) = E(Us — u(s))(Uy —
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u(t))". We assume that {U; : ¢t > 0} is so well-behaved that we can, for
each realization of {U; : ¢ > 0}, compute the corresponding realization of
the solution {X; : ¢ > 0} by means of the solution formula (5.6].

In this formula , we can take expectation on both sides. Fubini’s the-
orem allows us to commute expectation and time integration, so we obtain
for the mean value z(t) = EXy:

t
(1) = eMag + / A=) Gii(s) ds.
0

Differentiating with respect to time, we obtain an ordinary differential equa-
tion governing the mean value:

%w) — AT + Gat). (5.11)
This equation can be solved uniquely for each initial condition Z(0) = xo.
We see that we can obtain the governing ordinary differential equation for
the mean value simply by taking expectation in (|5.3)).

Next, we aim to obtain the covariance px(s,t) = E(Xs — z(s))(X; —
z(t))". Using Uy = Uy — u(t) and Xy = X; — Z(t) for the deviations of the
processes from their mean values, we first write integral formulas for the
deviation at time s and t¢:

- s - ~ t -
X, = / eGQU,_p dv and X; = / eAMGU,_y dw.
0 0

Combining the two, and commuting the expectation and integration over
time, we obtain

o s rt
px(s,t) = EX, X, = / / eMGpy(s — vt — w)GTeATw dw dv. (5.12)
0o Jo

These integrals may not seem illuminating, but have patience - we will soon
see that they lead to a very tractable and explicit result in the frequency
domain. Focus on the special case where the input {U;} is stationary and
the system is exponentially stable, i.e., all eigenvalues of A have negative
real part, so that the effect of the initial condition and old inputs vanishes
as time progresses. In this case, there exists a solution {X; : ¢ > 0} which is
also wide-sense stationaryﬂ We focus on this solution.
Writing py(t — s) for py(s,t) and px(t — s) for px(s,t), we obtain

s rt
px(t—s) = / / eMGpy(t —s+v— w)GTeAT“’ dw dv
0 Jo
and for s,t — oo with | =t — s fixed, this converges to

px(l) = / / eMCpy(l 4 v — w)GTeATw dw dv. (5.13)
o Jo

2There exist also non-stationary solutions, differing in the initial condition Xj.
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since exp(Av) converges exponentially to zero as v — oo, and since py(-) is
bounded by py(0).

Now we are ready to jump to frequency domain. Taking Fourier trans-
form of the autocovariance function px(-), we obtain the variance spectrum

+0o0
Sx(w) = / px(l) exp(—iwl) di.
—00
It is a standard result for Fourier transforms that convolutions in time do-
main, such as , correspond to multiplication in frequency domain. With
this, we obtain
Sx(w) = H(—w) - Sy(w)-H' (w). (5.14)

Exercise 5.1: Verify the result (5.14)).
In case where X; and U; are scalar, we get the simpler formula

Sx(w) = [HW) - Suw).

In words, the contribution from a given frequency w to the variance of X;
depends on its presence in {U;} and its magnification through system dy-
namics.

5.7 The White Noise Limit

For the example in Figures [5.2] and [5.3] the impulse response of the mass-
spring-damper system displayed damped oscillations with a period near 27
s, since the eigenvalues have magnitude 1 s~ and are near the imaginary
axis. In turn, the driving force was constant of periods of 15 s, on average.
In short, the driving force was slow compared to the system dynamics. The
stochastic differential equations we are interested in are characterized by the
opposite: The driving noise is fast compared to system dynamics. We can,
for example, consider the mass-spring-damper system subjected to random
forces from collisions with air molecules. The assumption is that there is a
separation of time scales where the system evolves on slow time scales, while
the force fluctuates on fast time scales. This separation of time scales allows
us to simplify the analysis.

Figure shows spectra for the situation where the force applied to the
mass-spring-damper system is faster than the system dynamics. Specifically,
the resonance frequency is still 1 rad/s corresponding to a period of 27 s,
but now the mean time between force jumps is 7 = 0.1 s.

In terms of the spectra, we see that in the frequency range up to, say, 5
rad/s, we can approximate the spectrum of the driving force with a constant
function

Sy (w) = 2027 for w < 1/7.
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Figure 5.5: Variance spectrum of position, velocity, and force for the mass-
spring-damper system. Lines are the analytical expressions. Dots are esti-
mated spectra based on simulation of the process. The average time between
jumps in the force is 7 = 0.1 s.
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Moreover, we see that the total variance of the response @Q; is not very
sensitive to the spectrum of the force F' at frequencies larger than 5 rad/s,
since the frequency response of the system is small for such high frequencies.
Therefore we may as well ignore the details of the spectrum Sy at high fre-
quencies, and approximate Sy (w) with the constant 207 for all frequencies
w. This is called the white noise approrimation.

Why do we call this white noise? Recall that when characterizing colors,
white light has the property that all colors of the rainbow (i.e., all frequencies
or wavelengths) are equally present. By analogy, a white noise signal is one
where all frequencies contribute equally to the variance or power. Scalar
white noise is characterized by one number, its intensity, which we take as
the constant value of the variance spectrum. In this example, we approximate
the force U; with white noise with intensity 20%7.

White noise signals are an idealization: Such a signal would have in-
finite variance, since its variance spectrum is not integrable. But it is a
useful approximation; when the force changes rapidly compared to the sys-
tem dynamics, we may approximate the force with a white noise signal.
The approximation is valid as long as we operate in the frequency range of
the system, i.e., at frequencies w < 1/7. We find that the spectrum of the
position is well approximated by

So(w) ~ 20%7|H(w)]? for w < 1/7.

Approximating the force with white noise amounts to letting 7 — 0, but at
the same time letting 02 — oo so that the spectrum Sy (0) = 2027 remains
constant at frequency 0. At any other frequency w, we have (pointwise)
convergence Sy(w) — Sy(0) as 7 — 0. In terms of the autocovariance
function of the driving force, which was

pu(h) = 0% exp(—|h|/7),

we see that this corresponds to approximating the autocovariance function
with a Dirac delta:
pu(h) — 20%7 - 6(h).

In the limit, py(h) vanishes for any non-zero h, and therefore the time-
domain characterization of white noise is independence, i.e., Us and U; are
uncorrelated for any s # ¢.

5.8 Integrated White Noise is Brownian Motion

In this section, we show the connection between white noise and Brownian
motion: Brownian motion can, formally, be regarded as integrated white
noise. Stated differently, white noise can - formally - be seen as the derivative
of Brownian motion.
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First, we investigate the difference quotient of Brownian motion. Let
{B¢ : t > 0} be Brownian motion, let a time lag k be given, and define the
stochastic process {X; : ¢t > 0} by

1

X
Tk

(Biyk — By).

This X, is a difference quotient, and for small £ we may think of {X; : t > 0}
as an approximation to the (non-existing) derivative of Brownian motion.

Exercise 5.2: Show that {X; : ¢ > 0} is second order stationary, has
mean 0, and the following autocovariance function:

k — |l

V0. (5.15)

(Recall our notation that a V b = max(a, b))

The autocorrelation function is shown in Figure Note that as
the time lag k decreases towards 0, the a.c.f. approaches a Dirac deltaE| This
justifies the useful but imprecise statement that the derivative of Brownian
motion is delta-correlated.

Figure displays also the spectrum of the difference quotient {X; : ¢ >
0}. The analytical expression for this spectrum is

_ 2% for w # 0,
SX(w)_{ 1 forw=0.

Note that the spectrum at frequency 0 is Sx(0) = 1 for any k, since the
a.c.f. integrates to 1 for any k. Note also that as k& — 0, the spectrum Sy (w)
converges to the constant 1, for any frequency w, in agreement with the a.c.f.
approaching a Dirac delta. So as the time lag vanishes, k — 0, the spectrum
of the difference quotient approaches that of white noise. This motivates
the statement “the derivative of Brownian motion is white noise”, which is
useful but should not be taken too literally since Brownian motion is not
differentiable.

Now, conversely, consider a white noise signal {U;} with mean 0 and
autocovariance function py(h) = d(h), which is to say that its variance
spectrum is Sy(w) = 1. The following derivation is purely formal, so try not
to be disturbed by the fact that such a signal does not exist! Instead, define
the integral process {B; : t > 0}

t
Bt:/Ust
0

3In the sense of weak convergence of measures, i.c., f_-'—;o f(h)px(h) dh ] f(0)ash |0
for any continuous function f.
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Figure 5.6: Autocorrelation function (left) and variance spectrum (right) of
the difference quotient of Brownian motion.

and consider the covariance structure of {B; : t > 0}. We can apply formula
(5.12) with A =0, G =1 to get

pp(s,t) = EBsB; = s.

In particular, VB, = t. By stationarity, we get V(B; — Bs) = t — s for
any 0 < s < t. Ezercise: Show that the increments of {B; : t > 0} are
uncorrelated. That is, assume 0 < s < t < v < w, and show that E(B; —
B — s)(By — By) = 0. We see that the mean and covariance structure of
{B: : t > 0} agrees with our definition of Brownian motion. The
Gaussianity and continuity of {B;} do not follow from this argument; there
we need more properties of the white noise signal {U;}. Regardless, this
formal calculation justifies the statement “Brownian motion is integrated
white noise”. Again, this statement is useful but should not be taken too
literally since continuous time white noise does not exist as a stochastic
process in our sense.

5.9 Linear Systems Driven by White Noise
We now return to the linear system driven by noise
X; = AX; + GU;. (5.16)

We are interested in the limiting case where U; approaches white noise, cor-
responding to mass-spring-damper example when the mean time 7 between
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jumps tends to 0. We will call this limit a linear stochastic differential equa-
tion in the narrow sense, because the drift term AX; is linear in the state,
and the noise term GU; is independent of the state. We say that the noise
enters additively. Here, we approach this limit indirectly since white noise
does not exist as a stochastic process. We first integrate the equation w.r.t.
dt to obtain

t t
Xt—on/ AX, ds+G/ U, ds.
0 0

Now, if {U;} approximates white noise, the results of the previous section
show that the last integral will approximate Brownian motion

t
Xt - XQ = / AXS ds + GBt (517)
0

Since this equation involves Brownian motion and not white noise, it does
not suffer from the problem that white noise does not exist. We shall see,
in the following chapters, that it is the right starting point for a general
theory of stochastic differential equations; at that point we will re-write the
equation using the notation

dX, = AX, dt + G dB,. (5.18)

If the time ¢ is small, we can approximate fot AX, ds =~ AXot, which leads
to
Xy~ Xo+ AXot + GB;y.

This leads to an Euler-type method, known as the Euler-Maruyama method,
for solving the equation approximately recursively:

Xitn = Xy + AXyh 4+ G(Bgy, — By). (5.19)

This algorithm allows us to simulate sample paths of {X;}. This is the same
algorithm we pursued in Chapter [2] when simulating advective and diffusive
transport.

Note that if X; is Gaussian, then so is X;1p; in fact, the entire process
is Gaussian. Let us identify the mean and covariance structure of this X;.

With z; = EXy, we get from ((5.11])
Zy = exp(At) Zp.
For the covariance, we obtain from ({5.12)

pX(S,t) :/0 eA(s—v)GGTeAT(t—U) dv,

using that the autocovariance function of the noise is py (v, w) = §(v — w).
It is convenient to first look at the variance at time ¢, X(t) = p(¢,):

t
S(t) = / At GGT AT (=) gy (5.20)
0
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Differentiating with respect to t, we obtain
aza):Azu)+zupﬂﬁ+GGT (5.21)

This is a linear matrix differential equation, known as the differential Lya-
punov equation. Together with the initial condition ¥(0) = 0 it determines
the variance function. See Exercise for an alternative derivation, and
Exercise [5.8| for methods for finding the solution numerically. With ¥(-) in
hand, we can find the autocovariance function:

p(s t) = EX X/ (5.22)
:E(E{X XX (5.23)
E(X.,E{X, |X,}) (5.24)

( T AT(t s)) ( )
(5) - et 79, (5.26)

Here, we have used that the equation for the mean also applies to
conditional expectations, so that E{X;| X} = exp(A(t — s))X5.

Of special interest are second-order stationary solutions where ¥(¢) does
not depend on ¢, but satisfies the algebraic Lyapunov equation

I
MH

A +2AT +GGT =o. (5.27)

This ¥ is an equilibrium of the differential Lyapunov equation . It can

be shown that this linear matrix equation in ¥ has a unique solution if A
contains no eigenvalues on the imaginary axis. See Exercise for one way
to solve it. If A is exponentially stable (all eigenvalues in the open left half
plane), then the unique solution ¥ is positive semidefinite, and the equation
expresses a balance between variance pumped into the system by noise (the
term GGT) and dissipated by the stable system dynamics A. In this case,
Y(t) — ¥ ast — oo. This ¥ will be positive definite if all linear combinations
of states in the system are affected by the noise. This will be the case if G
is square and invertible; a weaker and sufficient condition is that the pair
(A, G) is controllable (see Section [9.11.1)).

To elaborate on the stability of A, consider the scalar equation dX; =
X, dt + dBy. The algebraic Lyapunov equation is 2X + 1 =0so ¥ = —1/2!
The explanation is that the system is unstable, so X; diverges to infinity,
and no steady-state exists.

In summary, in this common situation - a stable system all the dynamics
of which are excited by the noise - the process X; will approach a stationary
Gaussian process. The stationary variance is X, the unique solution to the
algebraic Lyapunov equation , and the autocovariance function is

p(h) = Lexp(ATh) for h > 0. (5.28)
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Figure 5.7: A simulation of the Ornstein-Uhlenbeck process (solid) including
the expectation (dashed) and plus/minus one standard deviation (dotted).
Parameters are Xo=1, A =1, 0 =1.

For h < 0, we use the relationship px(—h) = pX(h). Note that the matrix
exponential exp(At) determines both the impulse response and the
autocovariance function of stationary fluctuations. This at the core of so-
called fluctuation-dissipation theory from statistical physics.

5.10 The Ornstein-Uhlenbeck Process

The simplest example of a linear system driven by white noise {U,} arises
when the system is scalar:

Xt = -)\X; +oU;

where A\, o > 0. We take {U;} to have unit intensity. This can alternatively
be written with the notation of (5.18]) as

dXt = —AXt dt +o dBt

This equation is referred to as the Langevin equation. A simulation of this
process is seen in Figure Its expectation satisfies

7, = EX; = e MEX,.
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The variance Y(t) = VX, in turn, satisfies the differential Lyapunov equa-
tion X(t) = —2A%(t) + 02, i.e.,

o’ o’ —2)t
VXt:Z(t):ﬁ—k E(O)—ﬁ e .

The stationary solution {X; : ¢ > 0} to this equation is called the Ornstein-
Uhlenbeck process. Its mean is 0 and its variance satisfies the algebraic Lya-
punov equation —2AVX; + 062 = 0 or VX; = 02/(2)), which gives the
autocovariance function

2
— 7oAl
px(h) 3¢ .

Notice that the form of this a.c.f. coincides with that of the force {F;}
from the mass-spring-damper system (equation and Figure ; ie., a
two-sided exponential. So the variance spectrum of the Ornstein-Uhlenbeck
process has the form and is seen in Figure However, the Ornstein-
Uhlenbeck process is Gaussian while the force {F;} from the mass-spring-
damper example was not. The Ornstein-Uhlenbeck process is also referred
to as low-pass filtered white noise, although this term can also be applied to
other processes. It is a fundamental building block in stochastic models in
more or less all areas of applications.

5.11 The Noisy Harmonic Oscillator

Another basic example of a linear system driven by white noise is the noisy
harmonic oscillator. This also serves as a fundamental building block in
stochastic models, when you need a stochastic process which is oscillatory
and dominated by a specific frequency. The mass-spring-damper system can
be seen as a noisy harmonic oscillator, when we subject it to a white noise
input. However, an alternative formulation which has a more symmetric
form is obtained with the linear stochastic differential equation

X, =AX, 4o U, ordX,=AX,dt+ o dB;.

Here, X; € R2. The noise process {U;} is two-dimensional; its elements are
independent white noise with unit intensity. Correspondingly, {B; : t > 0}
is two-dimensional standard Brownian motion. The system matrix is

_ | —m K
[y

The parameter k specifies the dominating frequency, while p specifies the
damping and o scales the process and specifies the variance - see Exercise
[(-3] to see exactly how. Simulations of this system are seen in Figure [5.8| for
two sets of parameters. In the one case, we take k = 1, u = 0.05, and see
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quite persistent and regular oscillations. In the second case, k =1, u = 0.5,
the damping is higher, so the oscillations are more irregular. These patterns
are also visible in the autocovariance function and in the variance spectrum
- note that lower damping implies more sustained oscillations in the a.c.f.
and a more defined resonance peak in the variance spectrum.

Exercise 5.3:

1. Show that
coskt —sinkt

— e ht
exp(At) =e [ sin kt cos kt

_

2. Show that the stationary variance of {X;} is

o2

¥ =_—1.
24

3. Show that the a.c.f. is

px(t) =5 e sin kt cos kt

o? i | coskt —sinkt
24 ’

5.12 Conclusion

Linear systems of ordinary differential equations driven by random inputs
make a tractable class of stochastic dynamic systems. We can determine the
mean and autocovariance structure quite explicitly, and even if these two
statistics do not fully describe a stochastic process, they may be sufficient
for a given purpose. In the stationary case, where systems are stable and we
assume that the effect of a distant initial condition has decayed, we obtain
explicit formulas, most clearly in frequency domain ([5.14)): The spectrum of
the output is obtained by multiplying the spectrum of the input with the
squared frequency response.

When the noise fluctuates fast relative to system dynamics, it may be
an advantage to approximate it with white noise. In time domain, this cor-
responds to approximating the autocovariance function with a Dirac delta,
while in frequency domain, it corresponds to approximating the variance
spectrum with a constant function. It should be kept in mind that white
noise only exists as an idealization. Linear systems drive by white noise is
particularly simple to analyze with respect to variance structure; the Lya-
punov equation is a key element. Such linear systems are a simple special
case of stochastic differential equations. This theory is highly useful in prac-
tice.
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Figure 5.8: The noisy harmonic oscillator with k = 1. Left column: p = 0.05,
0% = 10. Right column: u = 0.5, 0> = 1. Top row: Simulated sample paths
of {Xt(l)}. Middle row: The a.c.f. of {Xt(l)}. Bottom row: The variance

spectrum of {Xt(l)}.
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Frequency domain concepts and techniques are clear and powerful for
the case of linear systems, because each frequency can be analyzed in isola-
tion. For the nonlinear systems we study in the following chapters, frequency
domain techniques are less directly applicable, so our discussion will focus
on time domain. However, when modeling any dynamic system, it is good
practice to scrutinize which dynamics are active on which timescales, and
which timescales should be resolved by the model. This analysis will give
guidance to which dynamics should be considered “slow” and approximated
with constants, and which dynamics should be considered “fast” and repre-
sented by (possibly filtered) white noise. In this process, frequency domain
notions are very useful for framing the discussion, even if the overall model
contains nonlinear components.

From the point of view of constructing a theory, it is worth noting that
white noise presents a challenge, because it does not exist as a stochastic
process per se but rather represents a limit. However, we were able to cir-
cumvent this problem in two ways: First, we reformulated the differential
equation driven by white noise as an integral equation where Brownian mo-
tion appears. Next, we discretized time with the Euler-Maruyama method.
We shall see that these two techniques are also key for non-linear equations,
even if they need a bit more effort there.

5.13 Exercises

Exercise 5.4 Thermal Noise in an Electrical Circuit: In 1928,
John B. Johnson and Harry Nyquist found that random movements of elec-
trons in electrical components have the effect of an extra voltage supply,
which can be approximated by a white noise source. For the RC-circuit
(resistor-capacitor)

0, ® R

RQ: + ol Vi
C
where @) is the charge in the capacitor, noise in the resistor acts as
an external voltage supply {V;} which is white noise. Considering posi-
tive frequencies only, its spectrum is 4kpT R; with our notation, we have
Sy (w) = 2kpTR (compare remark. Here, kp = 1.4-10723J K~ is the
Boltzmann constant, T is the temperature, and R is the resistor.

1. Taking V; = o dBy/dt, where {B;} is standard Brownian motion, find
0. Find the numeric value of o for T =300 K, R =1k, C =1 nF.

2. Find a stochastic differential equation which governs Q.
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3. Find the stationary mean, variance, a.c.f., and variance spectrum, of
the charge {Q:} and of the voltage {Q:/C} over the capacitor.

4. Find numerical values for the r.m.s. charge {Q,}, the voltage {Q;/C},
and their decorrelation time, for the parameters in question 1.

Exercise 5.5: This exercise reproduces Figure [I.1 on page [3] by posing
and solving differential equations for the motion in a wind turbine. The
equations are

F = —)\(JF— Fy) + o0&,
X, =V,

Vi=—kXy —pVi + Fy

where F; is the force from the wind on the turbine, X; is the position, V;
is the velocity, and {&;:} is white noise with unit intensity which drives the
force. All quantities are dimensionless; as parameters we take A = 0.5, k = 1,
u=0.5 f=3,0=1, and the initial conditions are Fy = 0.5, Xq = Vj = 0.

1. Simulate the noise-free version of the system (U; = 0) for ¢ € [0, 30]
and plot the force, the position, and the velocity.

2. Include noise and simulate the system with the Euler-Maruyama
method. Construct a plot similar to Figure

3. Extend the simulation to a longer period, for example, [0,1000]. Com-
pute the empirical mean and variance-covariance matrix of force, posi-
tion, and velocity. Compute the same quantities analytically by solving
the algebraic Lyapunov equation and compare.

Exercise 5.6: Consider the white noise limit of the wind turbine model
from the previous exercise, i.e.,

Xt:Vt» Vt:—kXt—NVt-l-Sft-

Here we have set the average force f to 0; this corresponds to a shift of
origin for the position. Show