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Abstract
Climate change is evident, and it calls for an immediate global transition to a green and
sustainable energy structure. However, an effective transition requires the discovery of
new materials for solar cells, batteries, catalysts, etc. Artificial intelligence, or machine
learning, has proven that it can accelerate the search for new materials significantly. A
Gaussian process can be a self-taught machine learning method by applying an active
learning approach since the Gaussian process can predict energies and corresponding un-
certainty estimations. Thereby, a substantial amount of time is saved on the manual setup
of databases and screenings for new materials.

In this thesis, the robustness of a Gaussian process and how common mistakes are avoided
when training the Gaussian process are discussed. A correction to the covariance matrix
is derived, which ensures that exception errors are avoided when the Gaussian process is
optimized. Furthermore, boundary conditions for the hyperparameters are defined, which
makes variable transformations of the hyperparameters possible. The variable transforma-
tions make the important regions of the hyperparameter space larger and more probable
without restricting the hyperparameters. By applying the variable transformation, a new
method is developed that globally optimizes the hyperparameters. The new method lo-
cates the global maximum for the hyperparameters in all the test systems with different
training set sizes, which is not the case for any other investigated optimizers. Another
important advantage of the new method is that the time of the optimization is reduced
compared to the other investigated global optimizers. Therefore, a new method has been
implemented which makes the Gaussian process robust and reliable.

Different objective functions are tested to investigate if they improve the Gaussian pro-
cess. The most used objective function, log-likelihood, is confirmed to be the best objective
function in terms of the prediction of energies and uncertainties for the chosen test sys-
tems. The evaluation was possible due to a newly defined uncertainty measure. The
uncertainty predictions from the Gaussian process are improved by modifying the solution
obtained from log-likelihood without changing the energy predictions or increasing the
computational cost.

The uncertainty predictions are also improved by deriving a new process called a Student’s
t process. The new process has the same energy predictions as the Gaussian process, but
it has one hyperparameter less, which is removed with a Bayesian approach. The fully
Bayesian solution to the predictions of the energies and uncertainties is approximated
by applying the Kullback-Leibler divergence. This is a substantial improvement to the
uncertainty predictions. The approximated solution does not require retraining of the
Gaussian process to predict a new point, which is normally required for a fully Bayesian
solution.

A developed structure optimization method for finding the most stable adsorption struc-
ture for any surface is presented. The optimization method finds the most stable ad-
sorption structures for all tested systems. Furthermore, the quantum calculations are
significantly reduced by a factor of 40. This reduction is expected to be even larger for
more complex surfaces. The new robust Student’s t process is implemented into a new ver-
sion of the machine learning accelerated Nudged Elastic Band method, which is essential
for finding activation energies. A reduction factor of 200 compared to the required quan-
tum mechanical calculations for the Nudge Elastic Band method is obtained. Therefore,
it is expected that the developed and robust methods can be powerful tools in automated
material discovery.
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Resumé
Klimaforandringerne er tydelige, og der er brug for en omgående omstilling til en grøn og
bæredygtig energistruktur på verdensplan. Dog er det et krav for en effektiv omstilling, at
der findes nye materialer inden for solceller, batterier, katalysatorer med mere. Kunstig
intelligens, eller maskinlæring, har vist, at de kan accelerere søgningen efter nye materialer
væsentligt. En Gaussisk proces er i stand til at være en selvlærende maskinlæringsmetode
ved hjælp af en aktiv læringstilgang, da den kan forudsige energier og tilsvarende usikker-
hedsestimater. Derved kan der spares betydelig manuel tid på oprettelsen af databaser og
søgning efter nye materialer.

I denne afhandling diskuteres robustheden af en Gaussisk proces, og hvordan man undgår
de hyppige fejl ved træningen af den, hvilket er essentielt for dens benyttelse. Der er
blevet udledt en korrektion til kovariansmatricen, som gør, at der ikke opstår fejl, når den
Gaussiske proces bliver optimeret. Derudover er der blevet defineret grænsebetingelser
for hyperparameterne i den Gaussiske proces, som gør det muligt at lave variabeltransfor-
mationer af hyperparameterne. Variabeltransformationerne gør de vigtige dele af hyper-
parameterrummet større og mere sandsynlige uden at begrænse hyperparameterne. Ved
brug af variabeltransformationerne er der blevet udviklet en ny metode, som optimerer
hyperparameterne globalt. Den nye metode finder det globale maksimum for hyperparam-
eterne i alle undersøgte test-systemer med forskellige træningssæt-størrelser, hvilket ikke
er opnået med de andre undersøgte optimeringsmetoder. En anden vigtig fordel ved den
nye metode er, at optimeringstiden er reduceret i forhold til andre globale optimeringsme-
toder. Altså er der implementeret en ny metode, som gør den Gaussiske proces robust og
pålidelig.

Flere forskellige objektive funktioner er blevet testet for at undersøge, om de forbedrer den
Gaussiske proces. Den mest brugte objektive funktion, log-likelihood, er blevet bekræftet
som værende den bedste objektive funktion til forudsigelser af energier og deres usikker-
hedsestimater af de valgte testsystemer. Evalueringen var mulig på grund af et nyt de-
fineret usikkerhedsmål. Usikkerhedsforudsigelserne fra den Gaussiske proces er også blevet
forbedret ved at modificere løsningen fra log-likelihood, uden at det ændrer på energi-
forudsigelserne eller forøger beregningsomkostningerne.

En forbedring til usikkerhedsforudsigelserne er også opnået ved at udlede en helt ny proces,
kaldet en Students t proces. Den nye proces har samme energiforudsigelser, som den Gaus-
siske proces, men den har en hyperparameter mindre, som er blevet fjernet Bayesiansk.
Den fulde Bayesianske løsning til forudsigelse af energierne og usikkerhederne er blevet
estimeret med brug af Kullback–Leibler divergens. Dette giver en markant forbedring til
usikkerhedsforudsigelserne. Denne estimerede løsning kræver ikke en gentræning af den
Gaussiske proces for forudsigelser af helt nye punkter, hvilket almindeligvis er tilfældet for
fulde Bayesianske løsninger.

En nyudviklet strukturoptimeringsmetode for at finde de mest stabile adsorptionsstruk-
turer for en vilkårlig overflade er blevet præsenteret. Optimeringsmetoden finder de
mest stabile adsorptionsstrukturer for alle testede systemer. Derudover er de kvanate-
mekaniske beregninger blevet betydeligt reduceret med op til en faktor 40. Denne reduk-
tion forudsiges til at være endnu større for mere komplicerede overflader. Den nye robuste
Students t proces er blevet integreret i en ny version af den maskinlæring-accelererede
”Nudged Elastic Band”-metode, som er essentiel for at finde aktiveringsenergier. En re-
duktionsfaktor på op til 200 i forhold til de påkrævede antal kvantemekaniske beregninger
for ”Nudged Elastic Band”-metoden er opnået. Derfor kan det forventes at disse udviklede
og robuste metoder vil være stærke værktøjer i automatiserede materialesøgninger.

Accelerating catalysis simulations using surrogate machine learning models iii



Preface
This thesis is submitted in candidacy for a Doctor of Philosophy (PhD) degree from the
Technical University of Denmark (DTU). The work has been carried out between February
2020 and January 2023 at the Section for Atomic Scale Materials Modelling (ASM) at the
Department of Energy Conversion and Storage. The studies have been supervised by
Thomas Bligaard.

Kongens Lyngby, January 31, 2023

Andreas Lynge Vishart

iv Accelerating catalysis simulations using surrogate machine learning models



Acknowledgements
First and foremost, I would like to say a sincere thank you to my supervisor, Thomas
Bligaard, for a fantastic and exciting project with countless hours of exciting profound
discussions. Thank you for always prioritizing helping me and keeping a positive mind.

I also owe a big gratitude to Kirsten Winther for an incredible external stay at SLAC and
for many great ideas to the project. Furthermore, I will also like to thank the members of
the SUNCAT group for a warm welcome and for sharing their very interesting research.

Thanks to Pablo Lustemberg and M. Veronica Ganduglia Pirovano at CSIC for an insight-
ful collaboration. Furthermore, I would like to thank the members of the I-LINK project
for a great experience in Madrid with an introduction to some new knowledge.

A special thanks to the participants of the weekly machine learning meeting at CAMD
for sharing their very relevant and insightful research. Especially thank you to Karsten
Wedel Jacobsen for teaching and explaining his comprehensive knowledge about Bayesian
statistics and Gaussian processes. A special thanks to Casper Larsen for discussing the
coding of the Gaussian process.

I also want to thank all former and current members of the section for Atomic Scale
Materials Modelling and the section for Autonomous Materials Discovery. Thanks for
all their many great ideas and discussions. A special thanks to Shuang Han for detailed
discussions of MLNEB and to Bjarke Arnskjær Hastrup for discussions about machine
learning in general.

I also owe a thank you to all former and current members of CatTheory for a great insight
into catalysis. A special thanks to Georg Kastlunger for his encouragement and curiosity.
Thanks to Benjamin Thomas Hinrichsen for a fruitful collaboration that hopefully will
continue.

Thanks to Jose Antonio Garrido Torres for sharing his code with MLNEB and being a
part of the introduction to my project.

Especially, I owe enormous gratitude to Pernille Pedersen for her indispensable support,
encouragement, help, and proofreading.

I am also very grateful to my friends and family for their support, interest, and under-
standing during my busy three years. Last but not least, I owe Kristine Rask Andreasen a
heartfelt appreciation for always supporting and encouraging me. I could not have finished
this thesis without your support.

Accelerating catalysis simulations using surrogate machine learning models v



List of publications
Paper I
Best Conventional Gaussian Process
Andreas Lynge Vishart and Thomas Bligaard
To be submitted

Paper II
Machine-learning enabled optimization of atomic structures using atoms with
fractional existence
Casper Larsen, Sami Kaappa, Andreas Lynge Vishart, Thomas Bligaard, and Karsten
Wedel Jacobsen
Submitted to Physical Review Letters

vi Accelerating catalysis simulations using surrogate machine learning models



Acronyms
AIE All-Image-Evaluation method. 48, 50
ASE Atomic Simulation Environment. 36, 37, 41,

42, 45, 46, 65, 66
AuAl A gold atom on an aluminium(100) surface.

17, 47, 48, 65

BC Boundary Conditions. 18, 25, 32
BFGS Broyden–Fletcher–Goldfarb–Shanno. 20

CG Conjugate gradient. 20
CI-NEB Climbing Image Nudged Elastic Band

method. 7, 46
CONi Carbon monoxide on a nickel(111) surface.

17, 66
CPUs Central Processing Units. 36, 37
Cu13 A cluster of thirteen copper atoms. 17, 66
Cu5 A cluster of five copper atoms. 17, 66
CV Cross-Validation. 22

DFT Density Functional Theory. 5, 40–45, 49, 51,
66

EGBC Educated Guessed Boundary Conditions. 18,
20, 21, 32

EMT Effective Medium Theory. 45, 47, 49, 51, 65,
66

FBMGP Fully Bayesian Mimicking Gaussian Process.
14, 17, 31, 53

GGA Generalized Gradient Approximation func-
tional. 6

GMES Global Minimum Energy Structure. 35, 36,
39–44, 54

GP Gaussian Process. 3, 4, 7, 8, 10, 12–14, 17–19,
22–24, 28–33, 38, 39, 47, 53, 54, 65

GPE Geisser’s Predictive mean square Error. 22,
29

GPP Geisser’s surrogate Predictive Probability.
22, 29

H2Cufcc Hydrogen atoms at fcc sites on a copper(111)
surface. 47

Accelerating catalysis simulations using surrogate machine learning models vii



Acronyms

H2Cuhcp Hydrogen atoms at hcp sites on a copper(111)
surface. 47

Heptamer Platinum heptamer island on a platinum(111)
surface. 47

IDPP Image Dependent Pair Potential. 45

KL Kullback–Leibler divergence. 13, 14, 53, 65
KS Kohn-Sham. 5, 6

L-BFGS-B Limited-memory BFGS with boundaries. 20,
26, 67

LDA Local Density Approximation functional. 6
LL Log-Likelihood. 11–13, 17, 18, 20–29, 31–33,

53
LOOCV Leave-One-Out Cross-Validation. 22, 28, 29,

69
LP Log-Posterior. 11, 14, 15, 20, 22, 23, 31, 33,

38, 47

MAP Maximum A Posteriori estimation. 11, 31, 53
MB The Müller-Brown potential energy surface.

17, 47, 49, 51, 65
MD Molecular Dynamics simulation. 2, 45, 66
MEP Minimum Energy Path. 2–4, 6, 45, 48–51, 53,

54
mGGA Meta Generalized Gradient Approximation

functional. 6
ML Machine Learning. 3, 4, 22, 35–38, 40, 42,

44–51, 53, 54
MLE Maximum Likelihood Estimation. 11, 13, 17,

20, 24, 31–33, 53
MLGO Machine Learning Accelerated Global Ad-

sorption Optimization method. 36, 38–44, 53,
54

MLNEB Machine Learning Accelerated Nudged Elas-
tic Band method. 44–51, 53, 54

N2Cufcc Nitrogen atoms at fcc sites on a copper(111)
surface. 47

N2Cuhcp Nitrogen atoms at hcp sites on a copper(111)
surface. 47

NEB Nudged Elastic Band method. 2–4, 6, 7, 45,
46, 48–51, 53, 54

NLPP Negative Log Predictive Probability. 19, 30,
31

NVT Canonical ensemble. 66

viii Accelerating catalysis simulations using surrogate machine learning models



Acronyms

O2Pt Two oxygen atoms adsorbed on a plat-
inum(100) surface. 17

OIE One-Image-Evaluation method. 45, 48, 50
Oxad Oxadiazoline formation from ethene and Ni-

trous oxide. 47

PES Potential Energy Surface. 2, 3, 35, 37, 46,
48–51, 53, 54

QM Quantum Mechanical. 2, 3, 5

RMSE Root-Mean-Square Error. 19

SDGs Sustainable Development Goals. 1
SE Schrödinger Equation. 2, 5
SEC Squared Exponential Covariance. 8, 9, 11, 18,

24, 38
SLURM Simple Linux Utility for Resource Manage-

ment. 71
SP Saddle Point. 2, 7, 49, 51

TerPt A platinum atom on a platinum terrace sur-
face. 47

TNC Truncated Newton. 20, 26, 67
TP Student’s T Process. 12, 13, 17, 29–31, 33,

45, 47, 53, 54
TS Transition State. 2, 3

UD Uncertainty Deviation. 19, 53

WaterPt Four water molecules above a platinum(111)
surface. 17

XC Exchange-correlation. 6, 38, 42, 47

Accelerating catalysis simulations using surrogate machine learning models ix



Acronyms

x Accelerating catalysis simulations using surrogate machine learning models



Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Machine learning in quantum mechanics . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5
2.1 Electronic structure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Nudged Elastic Band method . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 T Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Fully Bayesian Mimicking Gaussian Process . . . . . . . . . . . . . . . . . . 13

3 Optimization of hyperparameters 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Machine Learning Accelerated Global Optimization method 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Machine Learning Accelerated Nudged Elastic Band method 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Summary 53

Bibliography 55

A Appendix 65
A.1 Fully Bayesian Mimicking Gaussian Process derivation . . . . . . . . . . . . 65
A.2 The test systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Local optimization parameters . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.4 Global optimization parameters . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.5 Global optimization of hyperparameters . . . . . . . . . . . . . . . . . . . . 69
A.6 Modification for Leave-one-out object function . . . . . . . . . . . . . . . . 69

Accelerating catalysis simulations using surrogate machine learning models xi



CONTENTS

A.7 Noise correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.8 Objective function error predictions . . . . . . . . . . . . . . . . . . . . . . 71
A.9 Machine learning accelerated Global Optimization . . . . . . . . . . . . . . 73

B Included publications 75
B.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xii Accelerating catalysis simulations using surrogate machine learning models



1 Introduction
1.1 Energy demand
The global energy demand is higher than ever and is still increasing despite a growing
political awareness of the need to decrease carbon dioxide (CO2) emissions by transitioning
to renewable energy sources[1]. This increase is due to a growing global population that
requires more energy. Unfortunately, a large part of the global energy consumption (83%
in 2021) is still from fossil fuels[1]. There is no doubt that climate change is due to the
high levels of CO2 and other greenhouse gas emissions[2]. The correlation between the
increase in the average global temperature[3, 4] and the emission of CO2 due to energy
consumption is evident (see Fig. 1.1). The rapid increase in the average temperature has
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Figure 1.1: The global energy consumption (blue curve) and the average temperature
anomaly compared to the mean temperature of the years 1951–1980 (red curve) as a
function of time in years. The source data is from the references [1, 3, 4].

devastating consequences for the climate, which is increasingly affecting the biodiversity,
wildlife, and humans in all areas of the world.

Political initiatives to raise awareness of climate change and the need to transition to a
CO2-neutral society have been taken in recent years. The 17 Sustainable Development
Goals (SDGs) established by the United Nations is an example of an initiative for acting
on climate changes[5]. Actions toward a society with net zero CO2 emissions will primarily
affect the SDGs: ”7. Affordable and clean energy”, ”8. Decent work and economic
growth”, ”12. Responsible consumption and production”, and ”13. Climate action”. In
the long run, climate actions will secondarily affect most of the SDGs, including the ”14.
life below water” and ”15. life on land”.

Despite political initiatives, it is clear that there is an urgent need to accelerate the tran-
sition to renewable energy. Energy storage is an essential prerequisite for a society based
entirely on renewable energy, which is a fluctuating energy source. To harvest, store, and
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CHAPTER 1. INTRODUCTION

convert renewable energy, new and improved materials are central[6, 7]. Solar cells are an
essential part of renewable energy harvesting with excessive energy potential[8, 9]. How-
ever, new materials are required in solar cells to get higher efficiency, reduce the cost, find
non-toxic materials, etc. [8, 9, 10, 11]. The energy must be stored when the renewable
energy sources fluctuate and for mobility. The energy can e.g. be stored in batteries or
as fuels. Batteries are an indispensable part of our society and a growing part of the
transportation sector. Therefore, the discovery of new sustainable materials for batteries
with higher energy density, faster charging, higher safety, lower cost, etc. is crucial[12].
The conversion from electricity from renewable energy sources to fuels (Power-to-X) is
essential for a sustainable society with net zero CO2 emissions[13]. The fuels can be hy-
drogen, methane, methanol, etc. and they can be stored for a long time and have high
energy density[14]. However, the current catalysts are expensive and inadequate[13, 15,
16]. Thus, the discovery of improved catalyst materials is a key prospective of the green
transition. However, the experimental search for new materials can take 10-15 years[17,
18]. In recent years, significant improvements in computational resources have allowed
computational chemistry to emerge as a significantly faster way to screen for new materi-
als.

1.2 Machine learning in quantum mechanics
A reaction mechanism consists of multiple elementary reactions. An elementary reaction
has an initial state and a final state. The transition path on the Potential Energy Sur-
face (PES) from the initial state to the final state has a Saddle Point (SP). The energy
difference between the energy of the initial state and the SP is the activation energy.
The reaction rate is dependent on the activation energies. Thus, all the energies of the
initial and final states with the SPs must be calculated for all the elementary reactions in
the studied reaction mechanism. The energies are calculated with Quantum Mechanical
(QM) methods. The QM methods calculate the energy and the electronic structure of
the atomistic system from the Schrödinger Equation (SE)[19]. The atomistic structures
of the initial and final states are obtained by structure optimization of the energy. The
SP is acquired from either a Transition State (TS) search or the Minimum Energy Path
(MEP)[20, 21, 22]. The MEP is the transition path from the initial state to the final state
with the lowest energy and therefore the most probable transition. The Nudged Elastic
Band method (NEB) is the standard method for finding the MEP[23, 22, 24] (see Section
2.2). Thus, a single reaction mechanism requires many computationally expensive QM
calculations. Furthermore, thousands or more reaction mechanisms are possible[25]. In
material discovery, different surfaces are also studied which makes the required number
of QM evaluations even vaster.

Another approach for studying a reaction is Molecular Dynamics simulation (MD)[26].
The MD is initialized from an initial state and specifications of its physical environment.
The dynamics of the atoms are then calculated, giving an accurate description of the
equilibrium structures under the given physical environment. However, in a MD, only a
single trajectory is treated, and the exact structure of the lowest SP is rarely observed.
Therefore, despite the huge amount of computationally expensive QM calculations, there
is no guarantee that the resulting reaction path is the MEP. Metadynamics can be applied
to enforce the MD into unsampled chemical space and therefore more likely to sample SPs
and products of reactions[27, 28, 29, 30, 31].

An essential approach to automate the screening for new catalysts and materials are by
applying workflows and high-throughput screening[32, 33, 16, 34, 35, 36, 37, 38]. The
chemical space is too vast to consider manually. Therefore, a range of automated subse-
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1.2. MACHINE LEARNING IN QUANTUM MECHANICS

quent computational tasks is a must. Furthermore, the results from workflows are reliable
and reproducible. High-throughput screening starts by considering a huge number of ma-
terials with a computationally inexpensive calculation method and then decreasing the
number of considered systems while increasing the accuracy of the calculation method for
the price of a higher computational cost. However, the workflows and high-throughput
screening still rely on the standard methods for structure optimizations and TS searches.

The standard methods are extremely computationally expensive and not feasible for most
purposes. Therefore, acceleration in the standard methods are essential given the urgent
need for new energy harvesting and storage materials. Machine Learning (ML) has recently
shown to be an essential tool for accelerating structure optimizations, TS searches, and
the QM calculations themselves [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 31].

ML models can be categorized as supervised, unsupervised, or reinforcement learning[49,
17]. In supervised learning, data of pairs is given to the ML model. The pairs consist of
a feature, also called a descriptor or a fingerprint, that uniquely describes the data, e.g.
a vector that describes the atomic configuration of a system, and a target, also called a
label, that is the observable of interest, e.g. the potential energy. The correlation between
the features and the targets is then learned by the ML model so that it can predict a
target from a new given feature. Unsupervised learning uses only the features, often to
cluster the data and find patterns. In reinforcement learning, an agent is used to interact
with an environment through some actions that give rewards.

Supervised learning is often used for learning the PES to avoid QM calculations[39, 40, 41,
42, 43, 44, 46, 47, 48, 31]. The prediction time of the PES with the ML models is negligible
compared to the QM calculations. Thus, the structure optimizations and TS searches can
be significantly accelerated. However, a ML model requires a database of atomistic systems
with energies from QM calculations similar to the atomistic systems studied. The training
time of the ML model must be taken into account since the computational complexity
of the used ML model scales with the number of training points. Generating a database
can be time-consuming in terms of the user’s time and the computational time due to the
many QM calculations carried out. In active learning, the ML model is enabled to decide
the data that is included in the database[50, 51]. Active learning optimizes an acquisition
function to find the next data point that is evaluated by a QM calculation. The acquisition
function can be, e.g. an uncertainty prediction, an energy prediction, or a combination
of the two. Hence, the database consists of the structures suggested by the ML model
that gives the most information. Therefore, the database becomes as small as possible,
and no data generation and assumptions are required. The Gaussian Process (GP) is an
example of a ML model well suited for active learning since it predicts an observable and
a corresponding uncertainty[52, 53]. Furthermore, the GP also performs well with only a
small number of training points.

Local structure optimizations have been accelerated with ML and GPes[44]. Global struc-
ture optimizations of catalyst and cluster compositions have also been accelerated sig-
nificantly with GPes [41, 47, 48]. The NEB has also been significantly accelerated with
GPes [42, 43, 54]. Reliable and robust ML models are the foundation of using ML for
accelerating the standard methods that find stable structures and MEPs. Often, the GP
is optimized by a local optimization of its hyperparameters, which is unreliable.
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1.3 Outline of thesis
In this thesis, the hyperparameter optimization of a GP is studied to achieve a robust
ML model that can be used for accelerating catalysis simulations. A robust ML model
enables an active learning scheme that is used for constructing a database with no or few
previous data points. Therefore, global adsorption searches are significantly accelerated
with ML without predefining databases. Furthermore, the NEB is also accelerated with
ML for locating the MEP and obtaining the activation energy.

The fundamental theory used throughout the thesis is described in Chapter 2. Further-
more, new methods and equations are introduced and derived. The new methods and
equations include two new forms of the objective function optimized in a GP and a new
ML model.

In Chapter 3, the problematics of optimizing the hyperparameters are discussed, and
approaches to avoid them are introduced. Furthermore, new methods are implemented
and explained to robustly optimize the hyperparameters of the GP. A better Bayesian
approach of the GP is introduced as a new ML model. At last, an approximation for a
fully Bayesian approach is presented and discussed.

A global adsorption search method with ML is introduced in Chapter 4. The method
uses a simple fingerprint and a robust GP to search all adsorption positions of simple
adsorbates at different surfaces.

At last, the NEB is significantly accelerated by applying a new robust ML model with
better uncertainty predictions in Chapter 5.

4 Accelerating catalysis simulations using surrogate machine learning models



2 Theory
2.1 Electronic structure theory
QM calculations are performed by solving the time-independent SE[19]. The time-independent
SE is expressed as:

ĤΨ
(
{r⃗}, {R⃗}

)
= EΨ

(
{r⃗}, {R⃗}

)
(2.1)

where Ĥ is the Hamiltonian operator, E, the corresponding eigenvalue, is the total energy,
Ψ is the total wavefunction of the electrons with their coordinates {r⃗} and the nuclei with
their coordinates {R⃗}. The Hamiltonian operator for an atomistic system is expressed as:

Ĥ =
−h̄2

2

NN∑
i

1

Mi
∇̂2

i +
q2e

8πϵ0

NN∑
i=1

∑
j ̸=i

ZiZj

|Ri −Rj |

+
−h̄2

2me

Ne∑
i=1

∇̂2
i +

q2e
8πϵ0

Ne∑
i=1

∑
j ̸=i

1

|ri − rj |
− q2e

4πϵ0

NN∑
i=1

Ne∑
j=1

Zi

|R⃗i − r⃗j |
(2.2)

where NN is the number of nuclei in the system, Mi is the mass of nucleus i, ∇̂2
i is the

second derivative wrt. to the Cartesian coordinates of nucleus or electron i, qe is the charge
of one electron, Zi is the number of protons in nucleus i, ϵ0 is the vacuum permittivity,
and me is the mass of an electron.

The Born-Oppenheimer approximation[55] assumes that the wavefunction can be sepa-
rated into nuclear and electronic parts since the nuclei can be assumed to be stationary
relative to the electrons due to the mass and speed differences. Hence, the Hamiltonian
operator can also be separated into nuclear and electronic parts. The nuclear Hamilto-
nian operator consists of the two first terms from Eq. 2.2, and the electronic Hamiltonian
operator consists of the rest of the terms.

The problem is that the electronic wavefunction can not be solved analytically when two
or more electrons are present in the system due to the electron-electron repulsion (the
fourth term in Eq. 2.2).

2.1.1 Density Functional Theory
To solve the SE for larger systems, further approximations are necessary. Density Func-
tional Theory (DFT) is the most extensively used approach. DFT is based on the fact
that the electrons can be described exactly and uniquely as an electron probability den-
sity, ρe, instead of an electronic wavefunction[56, 57]. Hence, the electrons depend only
on 3 Cartesian coordinates instead of 3Ne Cartesian coordinates. The electronic energy
can also be expressed as a functional of the electron density as:

E[ρe] = Te[ρe] + Vee[ρe] +

∫
ρe(r⃗)vNe(r⃗; {R⃗})dr⃗ (2.3)

where Te is the kinetic energy of the electrons, Vee is the electron-electron repulsion energy,
and vNe(r⃗; {R⃗}) = −q2e

4πϵ0

∑NN
i=1

Zi

|R⃗i−r⃗|
is the nuclei-electrons attractive potential. The energy

dependence of the electronic density function gives the name of Density Functional Theory.

However, the electron density can not be obtained from the SE due to the electronic kinetic
energy and the electron-electron repulsion energy terms. Therefore, the Kohn-Sham (KS)
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orbitals, ψi, are introduced for each electron to calculate the kinetic energy term and to
separate the electronic wavefunction into one-electron wavefunctions. The electron density
can be expressed from the one-electron orbitals as:

ρe(r⃗; {R⃗}) =
Ne∑
i=1

|ψi(r⃗; {R⃗})|2 (2.4)

The KS orbitals are non-interacting orbitals solved from the KS equation[58]. The KS
equation is expressed as:(
−h̄2

2me
∇̂2

i +
q2e

4πϵ0

∫ ∞

−∞

ρe(⃗̃r)

|r⃗ − ⃗̃r|
d⃗̃r + vNe(r⃗; {R⃗}) + vXC(r⃗)

)
ψi

(
r⃗; {R⃗}

)
= εiψi

(
r⃗; {R⃗}

)
(2.5)

where εi is the eigenvalue of the ith KS orbital and vXC = δEXC [ρe]
δρe(r⃗)

is the Exchange-
correlation (XC) potential or the functional derivative of the XC energy, EXC , wrt. the
electron density. Hence, the energy can be expressed as:

E[ρe] = Ts[ρe] + EJ [ρe] +

∫
ρe(r⃗)vNe(r⃗; {R⃗})dr⃗ + EXC [ρe] (2.6)

where EJ = q2e
8πϵ0

∫∞
−∞

ρe(r⃗)ρe(⃗̃r)

|r⃗−⃗̃r|
d⃗̃rdr⃗ is the classical electron-electron repulsion energy and

Ts is the kinetic energy of the non-interacting electrons. The XC energy, EXC = (Te −
Ts)+ (Vee−EJ), is the correction to the kinetic energy and non-classical electron-electron
repulsion energy for interacting electrons. The energy with the same XC potential follows
the variational principle, and it is therefore minimized self-consistently since the classical
electron-electron repulsion, and the XC terms depend on the electron density in Eq. 2.5.
Eq. 2.6 is, in principle, the exact energy. However, the correct XC functional is unknown.

2.1.2 Exchange-Correlation Functionals
Due to the unknown form of the exact XC functional, various approximate forms exist.
Increasingly complex assumptions are made, with the expectation of higher accuracy, but
also an increasing computational cost. The XC functionals are categorized with increas-
ing complexity as Local Density Approximation functional (LDA), Generalized Gradient
Approximation functional (GGA), Meta Generalized Gradient Approximation functional
(mGGA), and hybrid functionals. The LDA assumes a uniform electronic density[59, 60].
The GGA uses the first-order derivative of the electronic density. Examples of GGAs
are BLYP[61, 62] and PBE[63]. The mGGA uses higher-order derivatives of the electronic
density. Hybrid functionals[64] use fractions of the exchange from Hartree-Fock theory[65,
66, 67, 68], where the KS orbitals are used.

2.2 Nudged Elastic Band method
The NEB is the standard method for obtaining the activation energies and MEPs for
catalysis simulations[22, 23]. A transition path from the initial state to the final state is
constructed by a series of undergoing structures with coordinates {R⃗i}. Those structures
are called images or replicas. The images are connected with spring interactions. There-
fore, the path is presented as an elastic band. To obtain the MEP, the images are moved
accordingly to their forces. The forces of an image i, F⃗i, is the sum of the spring forces
along the tangent of the path, F⃗i∥, and the true force from the energy, ∇̂iEi, perpendicular
to the tangent of the path, F⃗i⊥, expressed as:

F⃗i = F⃗i∥ + F⃗i⊥ (2.7)
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The forces perpendicular to the tangent of the path, τ⃗i, are expressed as:

F⃗i⊥ = ∇̂iEi − ∇̂iEi ·
τ⃗i
|τ⃗i|

(2.8)

The spring forces of image i along the path with the improved tangent method[22] is:

F⃗i∥ = ks

(
|R⃗i+1 − R⃗i| − |R⃗i − R⃗i−1|

) τ⃗i
|τ⃗i|

(2.9)

where ks is the spring constant. The improved tangent of the path at image i is expressed
as:

τ⃗i =



R⃗i+1 − R⃗i if Ei+1 > Ei > Ei−1

R⃗i − R⃗i−1 if Ei+1 < Ei < Ei−1(
R⃗i+1 − R⃗i

)
|Ei+1 − Ei|+

(
R⃗i − R⃗i−1

)
|Ei − Ei−1| if Ei+1 > Ei−1 > Ei(

R⃗i+1 − R⃗i

)
|Ei − Ei−1|+

(
R⃗i − R⃗i−1

)
|Ei+1 − Ei| if Ei > Ei+1 > Ei−1(

R⃗i+1 − R⃗i

)
|Ei − Ei−1|+

(
R⃗i − R⃗i−1

)
|Ei+1 − Ei| if Ei+1 < Ei−1 < Ei(

R⃗i+1 − R⃗i

)
|Ei+1 − Ei|+

(
R⃗i − R⃗i−1

)
|Ei − Ei−1| if Ei < Ei+1 < Ei−1

(2.10)

The Climbing Image Nudged Elastic Band method (CI-NEB)[24] is an extension of the
NEB which can improve the accuracy of the activation energy. The CI-NEB releases the
image j with the largest energy from the spring interactions. The image j is then moved
towards the SP with the forces:

F⃗j = −∇̂jEj + 2∇̂jEj ·
τ⃗j
|τ⃗j |
· τ⃗j
|τ⃗j |

(2.11)

2.3 Gaussian Process Regression
A GP is a multivariate Gaussian distribution, N , for a collection of random variables[49,
53, 69]. The collection of random variables, f⃗(x), can be sampled from the multivariate
normal distribution as:

f⃗(X) ∼ N (m⃗(X),Σ) =
exp

(
−1
2 (f⃗(X)− m⃗(X))TΣ−1(f⃗(X)− m⃗(X))

)
√
(2π)Nv |Σ|

(2.12)

where m⃗ is the prior mean functions, Σ is the covariance matrix, |Σ| is the determinant
of the covariance matrix, and Nv is the number of variables.

The collected random variables can be split into the training targets, f⃗ , with the training
features, X, and the test targets, f⃗∗, with the test features, X∗. The collected training
targets are a column vector with N elements, and the training features have the dimensions
N × D with D as the number of descriptor elements or coordinates. The collected test
targets are also expressed as a column vector with the size of M , and the test features
have the dimensions of M × D. Equivalent to Eq. 2.12, the collected training and test
targets can be sampled from the joint posterior distribution, p(f⃗ , f⃗∗ | X,X∗, θ⃗), as:[

f⃗(X)

f⃗∗(X∗)

]
∼ N

([
µ⃗(X)
µ⃗∗(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
= p(f⃗ , f⃗∗ | X,X∗, θ⃗) (2.13)

where K are subset matrices of Σ, µ⃗ is the prior mean of the training targets, µ⃗∗ is the
prior mean of the test targets, and θ⃗ is a set of hyperparameters that the covariance
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matrices depend on. The covariance matrix elements are covariance function values (see
Section 2.3.1). The covariance functions are usually functions of the distances between
the features to describe the correlations of the targets.

In real data, the training and test targets frequently include some noise, y(x⃗) = f(x⃗)+ εn.
The noise can be assumed to be independently Gaussian distributed, εn ∼ N (0, σ2n), with
a noise variance of σ2n. Thereby, the noisy targets can be expressed from the marginalized
joint posterior distribution over the underlying targets:[

y⃗(X)
y⃗∗(X∗)

]
∼ N

([
µ⃗(X)
µ⃗∗(X∗)

]
,

[
K(X,X) + σ2nI K(X,X∗)

K(X∗,X) K(X∗,X∗) + σ2nI

])
= p(y⃗, y⃗∗|X,X∗, θ⃗)

(2.14)
Now, the new covariance matrices include the noise variance at the diagonal elements.

A single noisy test target can be sampled from the conditional distribution of the GP as:

y∗ | x⃗∗, y⃗,X ∼ N
(
ȳ∗(x⃗∗), σ

2
∗(x⃗∗)

)
= p(y∗ | x⃗∗, y⃗,X, θ⃗) (2.15)

where ȳ∗ is the predictive mean and σ2∗ is the predictive variance. The predictive mean
and variance are:

E[y∗] =ȳ∗(x⃗∗) = µ∗(x⃗∗) + K(x⃗∗,X)C−1 (y⃗(X)− µ⃗(X)) (2.16)
var[y∗] =σ2∗(x⃗∗) = k(x⃗∗, x⃗∗) + σ2n −K(x⃗∗,X)C−1K(x⃗∗,X)⊤ (2.17)

where the covariance matrix with noise is:

C = K(X,X) + σ2nI (2.18)

The predictive mean is the best prediction of the test target given the training data. The
prediction uncertainty is the square root of the predictive variance.

The predictive mean can be treated as a linear combination of basis functions:

ȳ∗(x⃗∗) = µ∗(x⃗∗) + K(x⃗∗,X)c⃗ = µ∗(x⃗∗) +

N∑
i=1

k(x⃗∗, x⃗i)ci (2.19)

where N is the number of training data and c⃗ corresponds to the coefficients. The optimal
expression of the coefficients is:

c⃗ = C−1 (y⃗(X)− µ⃗(X)) (2.20)

2.3.1 Kernels
A frequently used covariance function is the Squared Exponential Covariance (SEC) func-
tion. The SEC function is the exponential of the squared Euclidean distance between two
points scaled with a length-scale hyperparameter, l, defined as:

kSEC(x⃗p, x⃗q) = α2 exp
(
−(x⃗p − x⃗q)T(x⃗p − x⃗q)

2l2

)
(2.21)

where α is the prefactor hyperparameter. The prefactor hyperparameter controls the
magnitude of the covariance matrix. The SEC function can also be treated as a Gaussian
function with x⃗q as the mean. The length-scale hyperparameter determines the broadness
of the Gaussian functions. The broadness affects the flexibility of the prediction (see Fig.
2.1).
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(a) Short length-scale hyperparameter
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(b) Optimized length-scale hyperparameter

Figure 2.1: Two Gaussian process predictions of a simple function, g(x) = 0.25 sin (x)(x−
3)2, from five training points. The linear combination of Gaussian functions is clearly seen
in figure (a). The dark blue areas show the uncertainty predictions and the light blue
areas show two times the uncertainty predictions from the Gaussian processes.

Multiple length-scale hyperparameters can also be used in the SEC function. Then, dif-
ferent length-scale hyperparameters are used for each dimension:

kMLSEC(x⃗p, x⃗q) = α2 exp
(

D∑
d=1

−(xp,d − xq,d)2

2l2d

)
(2.22)

Different length-scale hyperparameters are important if the feature elements vary with
different magnitudes. They can also be applied as an automatic relevance determination.

2.3.2 Derivatives of the targets
The derivatives of the targets can also be implemented to improve the predictions[42].
Hence, the derivatives (or negative forces for energies) can also be predicted together with
their uncertainties. Then, the training targets are extended with the derivatives of each
target wrt. each feature coordinate as:

y⃗ext(X) = [y⃗T,
∂y⃗T

∂x1
, · · · , ∂y⃗

T

∂xD
]T (2.23)

The covariance matrix must also be extended, Kext, if the derivatives of the training targets
are applied. The covariance matrix is extended with its first and second-order derivatives
wrt. each features element:

Kext(X,X′) =


K(X,X′) ∂K(X,X′)

∂x′
1

· · · ∂K(X,X′)
∂x′

D
∂K(X,X′)

∂x1

∂2K(X,X′)
∂x1∂x′

1
· · · ∂2K(X,X′)

∂x1∂x′
D...

... . . . ...
∂K(X,X′)

∂xD

∂2K(X,X′)
∂xD∂x′

1
· · · ∂2K(X,X′)

∂xD∂x′
D

 (2.24)

The first and second-order derivatives of the SEC function wrt. the features are:

∂kSEC(x⃗p, x⃗q)

∂xq,d
=kSEC(x⃗p, x⃗q)

(xp,d − xq,d)
l2

(2.25)

∂2kSEC(x⃗p, x⃗q)

∂xp,d1∂xq,d2
=kSEC(x⃗p, x⃗q)

(
δd1d2
l2
−

(xp,d1 − xq,d1)(xp,d2 − xq,d2)
l4

)
(2.26)
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Figure 2.2: A Gaussian process prediction of a simple function, g(x) = 0.25 sin (x)(x−3)2,
from five training points with derivatives. The light blue areas show small uncertainty
predictions from the Gaussian process. The prediction mean is a perfect fit with low
uncertainty to the simple function when derivatives are included.

Exploiting the derivatives of the targets significantly improves the prediction mean since
it gets the correct derivatives (see Fig. 2.2). Besides the information from the derivatives,
the prediction mean also has more flexibility from an additional term as:

ȳ∗(x⃗∗) = µ∗(x⃗∗) +
N∑
i=1

k(x⃗∗, x⃗i)ci +
N∑
i=1

D∑
d=1

∂k(x⃗∗, x⃗i)

∂xi,d
cd·N+i (2.27)

Unfortunately, the computational complexity increases from O(N3) to O(N3(1 + D)3)
when the derivatives are used.

2.3.3 Hyperparameters
The performance of the GP strictly depends on its hyperparameters. The prior mean
hyperparameter can be dependent on the features, but often the zero prior, µ = 0, or the
mean of the training targets are used, µ = 1

N

∑N
i=1 yi(x⃗i). The prediction mean becomes

the prior mean when the test feature is far from the training features.

The prefactor hyperparameter is a general part of a covariance function. The relation
between the prefactor and noise hyperparameter affects the regularization. Hence, a new
free hyperparameter is introduced as the relative-noise hyperparameter expressed as:

σr ≡
σn
α

(2.28)

The relative-noise hyperparameter, σr, replaces the noise hyperparameter to decouple
them. Therefore, the covariance matrices can be factorized as K = α2K0 and C = α2C0.
As a consequence, it can be observed that the prediction mean (Eq. 2.16) is independent
of the prefactor hyperparameter. Furthermore, the prediction variance is proportional to
the squared prefactor hyperparameter, σ2∗ = α2σ2∗0. The σ2∗0 is expressed as:

σ2∗0 = k0(x⃗∗, x⃗∗) + σ2r −K0(x⃗∗,X)C−1
0 K0(x⃗∗,X)⊤ (2.29)

Thereby, the prefactor hyperparameter only influences the magnitude of the uncertainty
predictions.

The relative-noise hyperparameter has multiple purposes:

1. It makes the covariance matrix of the training features invertible.
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2. It works as a regularization.

3. It identifies the noise-to-signal of the targets.

Further hyperparameters originate from the chosen covariance function. The SEC function
has one or multiple length-scale hyperparameters. As previously mentioned, the length-
scale hyperparameter recognizes the flexibility of the targets.

The posterior distribution of the hyperparameters, θ⃗, given the training features and
targets are expressed from Bayes’ theorem as:

p(θ⃗ | y⃗,X) =
p(y⃗ | θ⃗,X)p(θ⃗)

p(y⃗ | X)
(2.30)

where the marginal likelihood, p(y⃗ | X), is a normalization constant. Different objective
functions are used to optimize the hyperparameters, but the most common is the Log-
Likelihood (LL). Under the approximation that uniform prior distributions can be used
as the prior of the hyperparameters, p(θ⃗) = 1, the unnormalized posterior distribution
of the hyperparameters becomes the likelihood of the targets given the hyperparameters,
p(y⃗|θ⃗,X). The likelihood has the same expression as in Eq. 2.12, but only with the training
targets. The LL is expressed as:

LL ≡ −1
2α2

(y⃗ − µ⃗)⊤C−1
0 (y⃗ − µ⃗)− 1

2
ln (|C0|)−

N

2
ln
(
α2
)
− N

2
ln (2π) (2.31)

Often, the Cholesky factorization[70] matrix, LLT = C0, is used. The Cholesky factoriza-
tion is faster than the inversion of the covariance matrix, which is the rate-determining
step with its computational complexity of O(N3). The coefficients are obtained using back
and forward substitution of the Cholesky factorization matrix and the training target. The
term with the determinant of the covariance matrix in Eq. 2.31 can also be expressed with
the Cholesky factorization, ln (|C0|) = 2

∑N
i=1 ln (Lii).

Usually, the LL is maximized, corresponding to the point estimate or Maximum Like-
lihood Estimation (MLE). The analytical expression of prefactor hyperparameter from
maximization of the LL is[69, 71]:

α2
MLE =

1

N
(y⃗ − µ⃗)⊤C−1

0 (y⃗ − µ⃗) (2.32)

The LL expression with the maximized prefactor hyperparameter, LLMLE, is:

LLMLE =
−N
2

(1 + ln (2π))− 1

2
ln (|C0|)−

N

2
ln
(

1

N
(y⃗ − µ⃗)⊤C−1

0 (y⃗ − µ⃗)
)

=
−N
2

(1 + ln (2π))− 1

2

N∑
i=1

ln
(
[Λ]ii + σ2r

)
− N

2
ln
(

1

N

N∑
i=1

[U⊤(y⃗ − µ⃗)]2i
[Λ]ii + σ2r

)
(2.33)

where the eigendecomposition, K0 = UΛU⊤. A single eigendecomposition is enough
to search after all values of the relative-noise hyperparameter for a given length-scale
hyperparameter value.

However, the prior distributions are crucial in Bayes’ theorem. The Log-Posterior (LP) of
the hyperparameter is easy to calculate when the LL is obtained. The logarithm of the
prior distribution is just added to LL as:

LP = LL +
∑
θi

ln (p(θi)) (2.34)

Thus, the Maximum A Posteriori estimation (MAP) can be obtained in the same way as
the MLE.
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2.4 T Process Regression
The prefactor hyperparameter can be marginalized by a Bayesian approach instead of
maximizing the LL.

The likelihood of the training targets from a GP can be rewritten as an inverse-gamma
distribution for the prefactor hyperparameter[49]:

p(y⃗ | X, α2, σr, l) =(α2)−N/2 exp
(−1

2
1
α2 (y⃗ − µ⃗)TC−1

0 (y⃗ − µ⃗)
)√

(2π)N |C0|
(2.35)

The prior distribution of the prefactor is also chosen to be an inverse-gamma distribution:

p(α2) = Ga−1(α2|a, b) = ba

Γ(a)
(α2)−a−1 exp (− b

α2
) (2.36)

The hyperprior parameters a and b are chosen to be a = b = 1.0 · 10−20 in this work.
Then, the prior distribution is weakly informative in the logarithmic space, but it avoids
prefactor values below machine precision.

The likelihood of the training targets without the prefactor hyperparameter is now ob-
tainable as a multivariate Student’s t distribution:

p(y⃗ | X, σr, l) =
∫ ∞

0
p(y⃗ | X, α2, σr, l)p(α

2) dα2

=
Γ(2a+N

2 )

Γ(a)

1√
(2πb)N |C0|

(
1 +

1

2b
(y⃗ − µ⃗)TC−1

0 (y⃗ − µ⃗)
)−a−N

2

=tν=2a

(
y⃗ | µ⃗, b

a
C0

)
(2.37)

Then, the posterior predictive distribution of a test target without the prefactor can be
derived as follows:

p(y∗ | x⃗∗, y⃗,X, σr, l) =
∫ ∞

0
p(y∗ | x⃗∗, y⃗,X, α2, σr, l)

p(y⃗ | X, α2, σr, l)p(α
2)

p(y⃗ | X, σr, l)
dα2

=
Γ(2aN+1

2 )

Γ(aN )
√
bN2πσ2∗0

(
1 +

1

2bN

1

σ2∗0
|y∗ − ȳ∗|2

)− 2aN+1

2

=tν∗=2a+N

(
y∗ | ȳ∗,

bN
aN

σ2∗0

)
(2.38)

where aN and bN is:

aN ≡
2a+N

2
(2.39)

bN ≡b+
1

2
(y⃗ − µ⃗)TC−1

0 (y⃗ − µ⃗) (2.40)

Thus, p(y∗|x⃗∗, y⃗,X, σr, l) is a Student’s T Process (TP). The TP has the same prediction
mean as the GP and a prediction variance that is scaled compared to the prediction
variance of the GP as:

E[y∗] =ȳ∗ = µ∗(x⃗∗) + K0(x⃗∗,X)C−1
0 (y⃗(X)− µ⃗(X)) (2.41)

var[y∗] =
2b+ (y⃗ − µ⃗)⊤C−1

0 (y⃗ − µ⃗)
2a+N − 2

σ20∗ (2.42)
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The scaling of the variance is closely related to the analytical solution of the prefactor
hyperparameter in Eq. 2.32.

The rest of the hyperparameters (relative-noise and length-scale) can be found by using
the posterior distribution of the hyperparameters:

p(σr, l|y⃗,X) ∝ p(y⃗|σr, l,X)p(σr, l) (2.43)

The prior of the hyperparameters can be chosen to be uniform distributions like for the
GP. The corresponding LL for the TP is:

LL = ln (p(y⃗|X, σr, l))

∝− 1

2
ln (|C0|)−

2a+N

2
ln
(
1 +

1

2b
(y⃗ − µ⃗)TC−1

0 (y⃗ − µ⃗)
)

(2.44)

2.5 Fully Bayesian Mimicking Gaussian Process
The posterior predictive distribution of a target marginalized over the hyperparameters
can be obtained with numerical integration[72, 73]. However, the numerical process must
then be repeated for every new prediction. The use of information theory in the form of
the Kullback–Leibler divergence (KL) [74] can be generalized to find the hyperparameters
that give the solution closest to the fully Bayesian solution.

Initially, a grid in the hyperparameter space is constructed. A hyperparameter set is
denoted as θ⃗ = (l, σr, α). Furthermore, a grid coordinate of those hyperparameters is
defined as [Θ]ijr = ([l]i, [α]j , [σr]r). The posterior predictive distribution of the test target
given only the training targets can be approximated as:

p(y∗ | y⃗) =
1

p(y⃗)

∫ ∞

−∞
p(y∗ | y⃗, θ⃗)p(y⃗ | θ⃗)p(θ⃗)dθ⃗

≈ 1

Nc

Gl∑
i=1

Gα∑
j=1

Gσ∑
r=1

p(y∗ | y⃗, [Θ]ijr)c̃([Θ]ijr, y⃗)

=
1

Nc

∑
i,j,r

c̃([Θ]ijr, y⃗)N (y∗|ȳ∗([Θ]ijr), σ
2
∗([Θ]ijr)) (2.45)

where the trapezoidal rule is applied, the given features are removed from the notation
for clarity, G is the last index in the grid of one of the hyperparameters, c̃([Θ]ijr, y⃗) is the
defined adapted trapezoidal coefficient, and Nc is the approximated marginal likelihood.
The notations are defined as:

c̃([Θ]ijr, y⃗) ≡p(y⃗ | [Θ]ijr)p([Θ]ijr)c([l]i)c([α]j ])c([σr]r) (2.46)

c(θi) ≡


θ(i+1)−θ(i−1)

2 if 1 < i < G
θ2−θ1

2 if i = 1
θG−θ(G−1)

2 if i = G

(2.47)

Nc ≡
∑
i,j,r

c̃([Θ]ijr, y⃗) ≈ p(y⃗|X) (2.48)

where c(θi) is the defined trapezoidal coefficient.

It is assumed a single GP, p(y∗ | y⃗, θ⃗0), exists with a set of hyperparameters, θ⃗0, that
can be a good approximation to the fully Bayesian solution, p(y∗ | y⃗). The MLE is often
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assumed to be a good approximation to the fully Bayesian solution though it is only the
case when a large amount of training data is used. Here, the best approximation to the
fully Bayesian solution is calculated by KL, DFB, as:

DFB ∝

∑
i,j,r c̃([Θ]ijr, y⃗)

(
σ2∗([Θ]ijr) +

(
ȳ∗([Θ]ijr)− ȳ∗(θ⃗0)

)2)
2Ncσ2∗(θ⃗0)

+
1

2
ln (2πσ2∗(θ⃗0)) (2.49)

The complete derivation of Eq. 2.49 is seen in Section A.1. The weighted averages of the
prediction mean and uncertainty with the LP values at the grid points can be used to
store fewer variables:

DFB =
σ2∗ + ȳ2∗ + ȳ2∗(θ⃗0)− 2ȳ∗(θ⃗0)ȳ∗

2α2
0σ

2
∗0(θ⃗0)

+
1

2
ln (2πσ2∗0(θ⃗0)) +

1

2
ln (α2

0) (2.50)

where the weighted averages and the analytical solution for the prefactor hyperparameter,
α2
0, are expressed as:

σ2∗ =
1

Nc

∑
i,j,r

c̃([Θ]ijr, y⃗)σ
2
∗([Θ]ijr) (2.51)

ȳ2∗ =
1

Nc

∑
i,j,r

c̃([Θ]ijr, y⃗)ȳ
2
∗([Θ]ijr) (2.52)

ȳ∗ =
1

Nc

∑
i,j,r

c̃([Θ]ijr, y⃗)ȳ∗([Θ]ijr) (2.53)

α2
0 =

σ2∗ + ȳ2∗ + ȳ2∗(θ⃗0)− 2ȳ∗(θ⃗0)ȳ∗

σ2∗0(θ⃗0)
(2.54)

The analytical solution for the prefactor hyperparameter can be inserted into Eq. 2.50 to
give:

DFB =
1

2
+

1

2
ln (2π)) +

1

2
ln (σ2∗0(θ⃗0)) +

1

2
ln
(
α2
0

)
(2.55)

Thus, the hyperparameter set of the GP that mimics the fully Bayesian solution best
is found from a grid by minimizing Eq. 2.55. However, it requires a validation target
to compare its predictions. Fortunately, the predictions of the validation target are just
compared, and the feature, not the target, is only required.

Multiple validation targets give a better estimate of the Fully Bayesian Mimicking Gaus-
sian Process (FBMGP). The DFB for Nt validation point is simply a sum of DFB for each
validation feature:

DFB =
1

2

(
Nt +Nt ln (2π) +

Nt∑
t=1

ln (σ2∗0t(θ⃗0)) +Nt ln
(
α2
0

))
(2.56)

where the analytic solution to the prefactor hyperparameter is now expressed as:

α2
0 =

1

Nt

Nt∑
t=1

σ2∗t + ȳ2∗t + ȳ2∗t(θ⃗0)− 2ȳ∗t(θ⃗0)ȳ∗t

σ2∗0t(θ⃗0)
(2.57)

The validation features can be sampled between the training features.
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The trick to avoiding numeric under- or overflow in the weighted averages is to subtract
the LP with the greatest observed value, LPmax, at the time. E.g. can Eq. 2.53 be
rewritten as:

ȳ∗ = =

∑
i,j,r exp (ln (c̃([Θ]ijr, y⃗))− LPmax)ȳ∗([Θ]ijr)∑

i,j,r exp (ln (c̃([Θ]ijr, y⃗))− LPmax)
(2.58)

Accelerating catalysis simulations using surrogate machine learning models 15



CHAPTER 2. THEORY

16 Accelerating catalysis simulations using surrogate machine learning models



3 Optimization of hyperparameters
3.1 Introduction
The hyperparameters of the GP (described in Section 2.3.3) are essential for the perfor-
mance of the GP. Usually, the hyperparameters are optimized by a local optimization of
the LL to get the MLE in the literature. However, the local optimization of LL is prob-
lematic and not robust. Therefore, a large part of the work in this thesis has been invested
in identifying common problems and developing an improved approach to optimize the
hyperparamteres. In this chapter, this approach is discussed.

First, the problems of maximizing the LL and how to avoid them are addressed. Local and
global optimizers with optimized parameters are tested on the LL surface. Many different
optimizers exist, each coming with advantages and disadvantages. Therefore, the existing
optimizers have been systematically investigated to determine which performs best in
searching for the optimal hyperparameters. Furthermore, different objective functions are
also considered. The performances of the objective functions are evaluated on a set of
different atomistic test systems.

A new and improved optimization method specially designed for optimizing the hyperpa-
rameters of a GP is developed and discussed. Modifications are also made to improve some
of the common objective functions. A reduction in hyperparameter space by a Bayesian
approach is discussed in the form of the new TP (see Section 2.4). At last, the FBMGP
(see Section 2.5) is compared to the fully Bayesian solution and the MLE solutions.

3.2 Methods
The test systems used for the investigation of the hyperparameter optimizations are:

1. An analytical one-dimensional test function

2. The Müller-Brown potential energy surface[75] (MB)

3. A gold atom on an aluminium(100) surface (AuAl)

4. Carbon monoxide on a nickel(100) surface (CONi)

5. A cluster of five copper atoms (Cu5)

6. A cluster of thirteen copper atoms (Cu13)

7. Two oxygen atoms adsorbed on a platinum(100) surface (O2Pt)

8. Four water molecules above a platinum(111) surface (WaterPt).

The test systems are described in detail in Section A.2.1.

The one-dimensional test system is an analytical function with the expression:

g(x) = 3 sin
(
x2

202

)
− 9 sin

(
0.6x

20

)
+ 17 (3.1)

A database containing 800 data points is constructed from the one-dimensional test func-
tion using x values ranging from −40 to 1000. Random noise from a normal distribution
with a standard deviation of 1.0·10−4 eV is added to the test function. The one-dimensional
test function is introduced as an illustrative function that can be difficult for the GP to
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learn due to its change in frequency. Therefore, it illustrates the challenges of maximizing
the LL. Furthermore, it is also applied to determine the parameters of the optimization
methods and illustrate the effects of the applied methods.

The test systems are used with different training set sizes: 3, 6, 12, 25, 50, 100, and 200.
8 different random seeds are also used for each training set size. Thus, success curves with
deviations can be constructed. The test set sizes consist of 400 data points that are not
included in the used training set.

The mean of the training energies is used as a prior mean for the GP. Furthermore, the
SEC with and without derivatives of the energies are used to evaluate the optimization of
the hyperparameters. The Cartesian coordinates of the moving atoms are used as features
for the atomistic test systems.

Boundary Conditions (BC) are necessary for defining the search space of the hyperpa-
rameters. In this work, a set of educated guesses of the hyperparameters is achieved
from experiences. The best Educated Guessed Boundary Conditions (EGBC) for the hy-
perparameters are summarised in Table. 3.1. The EGBC restricts the search space as

Hyperparameter Min. bound Max. bound
Length-scale (l) median(N⃗N)

5s 4s ·median(D)

Prefactor (α) 1
10s

√
1
N |y⃗ − µ⃗|2 10s

√
1
N |y⃗ − µ⃗|2

Relative-noise (σr) 10
√
2εM N

Table 3.1: Table of the boundary conditions obtained by the educated guesses of the
hyperparameters when using the squared exponential kernel family. s is the scaling factor
chosen, N⃗N is the nearest neighbor distance for each training data in the feature space, D
is the distance matrix in the feature space, and ϵM is the machine precision.

much as possible. The BC of the length-scale hyperparameter depends on the median of
the nearest neighbor distance and the median distance between the training features. A
length-scale hyperparameter shorter than the nearest neighbor distance will give a process
that overfits the training data. Contrary, a length-scale hyperparameter larger than the
largest distance gives a process that underfits the training points. The prefactor hyperpa-
rameter controls the magnitude of the uncertainty prediction. Therefore, the prediction
uncertainty can not generally be much larger or smaller than the deviation in the training
target compared to the prior mean. It is assumed that all the targets are not pure noise
and a reasonable interpolation is possible within the EGBC. Therefore, the upper limit
of the relative-noise hyperparameter is the largest possible eigenvalue of the factorized
covariance matrix when derivatives of the targets are not used. A smaller relative-noise
hyperparameter than the machine precision does not change the process. The limits of
the length-scale and prefactor hyperparameters in the EGBC can be scaled with a factor
s.

100 initial hyperparameter sets are sampled from a uniform distribution given by the
defined EGBC for each random seed.

3.2.1 Evaluation measures
The greatest LL values observed for each test system with the specific number of training
points and random seed are defined as the global maxima, LLG.
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The success rate, S, is calculated compared to the global maximum:

S =

∑Ns
i=1H(|LLi − LLG|)

Ns
(3.2)

where Ns is the number of initial hyperparameter sets and H(|LLi − LLG|) is a step
function. The step function is defined as:

H(|LLi − LLG|) =

{
1 if |LLi − LLG| ≤ 10−3 + 10−3|LLG|
0 otherwise

(3.3)

The prediction mean error is measured as the Root-Mean-Square Error (RMSE) given as:

RMSE =

√√√√ 1

M

M∑
i=1

(y∗i − ȳ∗i)2 (3.4)

where M is the number of test points.

In this study, a measure for the prediction uncertainty error is derived. The measure
is called the Uncertainty Deviation (UD). The prediction mean error scaled with the
prediction uncertainty, zi, is defined as:

zi =
y∗i − y∗i
σ∗i

(3.5)

zi will be called the scaled prediction error. The variance of the scaled prediction errors,
σ2z , can be expressed as:

σ2z =
1

M

M∑
i=1

(zi − z)2 = z2 − z2

=

(
1

M

M∑
i=1

(y∗i − y∗i)2

σ2∗i

)
−

(
1

M

M∑
i=1

y∗i − y∗i
σ∗i

)2

(3.6)

The best variance of the scaled prediction errors must be 1.0. This is caused by the
posterior predictive distribution being a standardized Gaussian distribution when the pre-
diction means are scaled with their prediction uncertainties and a Gaussian distribution
is assumed from the prediction of a GP. The error in the variance of the scaled prediction
error should be symmetric around σ2z = 1.0. Thereby, the UD is expressed as:

UD = ln
(
σ2z
)2 (3.7)

The geometric mean is used for summarising the prediction mean and uncertainty error.

The Negative Log Predictive Probability (NLPP) can also be used as a measure for the
prediction error[76, 72]. The NLPP is expressed as:

NLPP =−
M∑
i=1

ln
(
p(y∗i | ȳ∗i, σ2∗i

)
)

=
M∑
i=1

(
(y∗i − ȳ∗i)2

2σ2∗i
+ ln (σ∗i) +

1

2
ln (2π)

)
(3.8)
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3.2.2 Local optimizers
The Python package SciPy[77] includes both local and global optimizers. The investigated
local optimizers from SciPy are:

1. Nelder-Mead [78, 79]

2. Powell [80]

3. Conjugate gradient (CG) [81]

4. Broyden–Fletcher–Goldfarb–Shanno (BFGS) [82, 83, 84, 85]

5. Limited-memory BFGS with boundaries (L-BFGS-B) [86]

6. Truncated Newton (TNC) [87]

The Nelder-Mead and Powell optimizers are non-gradient-based local optimizers, and the
rest of the local optimizers use gradients. The local optimizers also have parameters to
be tuned, which are considered in Section 3.3. The general parameters are the maximum
number of iterations used and the tolerance criterion. The tested maximum numbers of
iterations are 500 and 5000. The tolerance criteria tested are 10−3, 10−8, and 10−12.
Especially, the TNC method has many parameters. All the tested parameters can be
seen in detail in Section A.3. The local optimizers are tested on the one-dimensional test
function and by maximizing the LL.

3.2.3 Global optimizers
The best optimizer for finding the MLE is investigated. The investigated optimizers are:

1. Local optimization

2. Local optimization with prior distributions

3. Local optimization with an educated guess

4. Grid search

5. Iterative line search

6. Basin-hopping

7. Random sampling with local optimizations

8. Simulated annealing

9. Simulated annealing with analytical prefactor hyperparameter

10. Factorized line search

The best local optimizer is compared to the global optimizers. Furthermore, a local
optimizer that initially maximizes the LP and then maximizes the LL from the result
is also tested. Another local optimizer is tested, which maximizes the LL of the initial
hyperparameter set and an educated guess of the hyperparameter from the geometric mean
of the EGBC.

Some of the global optimizers use a variable transformation of the hyperparameters. The
variable transformation is introduced to enlarge the region of interest and simultaneously
permit all values of the hyperparameters. The variable transformation is an inverse-scaled
logit transformation. The newly transformed hyperparameter, tθ, is defined in the open
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interval of (0.0, 1.0). Therefore, the transformed hyperparameter can be sampled from a
uniform distribution from 0.0 to 1.0. The inverse variable transformation is expressed as:

ln (θ) = µθ + sθ ln
(

tθ
1− tθ

)
(3.9)

where µθ is the mean of the logistic distributions and sθ is the scale parameter of the
logistic distributions. The mean value of the logistic distribution is expressed as:

µθ =
1

2
(ln (bθ,min) + ln (bθ,max)) (3.10)

where bθ,min and bθ,max are the minimum and maximum EGBC for hyperparameter θ,
respectively. The scaling of the logistic distribution is set to 0.14 times the difference of
the logarithm of the EGBC of the hyperparameter:

sθ = 0.14 (ln (bθ,max)− ln (bθ,min)) (3.11)

The EGBC corresponds to the 95% percentile of the logistic distribution when the 0.14
value is used.

The grid search is the brute force method for finding the hyperparameters. The grid is
constructed in the transformed hyperparameter space. The LL is evaluated in all grid
points. The grid search is a robust method if the grid is strictly dense. However, the
number of evaluations needed for the grid search scales with nDθ , where n is the number
of points in each dimension of the hyperparameters and Dθ is the number of hyperpa-
rameters. Often, the grid search method becomes too expensive to use due to the curse
of dimensionality. Furthermore, a local optimization is performed for the hyperparameter
set that gives the largest LL in the grid.

The iterative line search method is similar to the grid search method. A one-dimensional
grid is constructed in each dimension of the transformed hyperparameters. The LL is
evaluated in all the points in the one-dimensional grid for one of the hyperparamters.
Meanwhile, the rest of the hyperparameters are fixed. Then, the grid point that gives the
largest value of LL value is selected, and the procedure is continued for the rest of the
transformed hyperparameters. One loop through all the hyperparameters will cost n ·Dθ

iterations. Multiple loops are performed. In the end, a local optimization of the best
candidate is executed.

Scipy’s basin-hopping implementation is used with 15 jumps[77, 88].

19 sets of transformed hyperparameters are sampled from the uniform distributions in the
random sampling method. All the sampled hyperparameter sets and one given hyperpa-
rameter set are locally optimized.

The simulated annealing method from Scipy (called dual_annealing) is used[89, 90, 91,
92]. The transformed hyperparameters are searched within a required box in the simu-
lated annealing method. The simulated annealing method does not have any convergence
criteria, which makes it an expensive method. The analytical solution of the prefactor
hyperparameter (see Eq. 2.33) are also used to search a reduced hyperparameter space.

A new developed global search method specially designed for maximizing the LL is in-
troduced as the factorized line search method. For simplicity, the factorized line search
method is denoted as the factorization method. The factorization method uses the ana-
lytical solution of the prefactor hyperparameter and performs the eigendecomposition of
the covariance matrix with noise as in Eq. 2.33. A grid of 50 points in the transformed
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relative-noise hyperparameter is constructed. Furthermore, a grid of 80 points is also
constructed in the transformed length-scale hyperparameter space. Then, the LL is eval-
uated in all grid points of the length-scale hyperparameter. All relative-noise grid points
can be evaluated from a single eigendecomposition for each length-scale hyperparameter.
Hence, an inversion of the covariance matrix is only needed when a new length-scale hy-
perparameter is used. The largest value of LL in the relative-noise space is located, and
a golden-section search[93] is performed in the surrounding interval. All maxima are lo-
cated with the finite difference method in the grid of the length-scale hyperparameter. A
golden-section search is performed in all intervals that surround a maximum. The LP can
be used instead of the LL in the same way.

The parameters of the global optimization methods are tested to ensure that the best
parameters are used. The investigated parameters are listed in Section A.4.

3.2.4 Objective function
Other objective functions can also be used[76, 94, 95]. Usually, the hyperparameters of ML
models are optimized by minimizing the prediction error, which is calculated using Cross-
validation. A special case of CV is the Leave-One-Out Cross-Validation (LOOCV) method,
in which a ML model is trained on all except one training point, and the prediction error is
calculated for the excluded point. This process is repeated for all training targets to give an
unbiased error. A GP has the advantage that the LOOCV can be analytically calculated
without retraining the GP N times[76]. The analytical expression of the LOOCV, LOO,
is:

LOO ≡ 1

N

N∑
i=1

(yi − ȳ−i)
2

=
1

N

N∑
i=1

(
[C−1

0 (y⃗(X)− µ⃗(X))]i

[C−1
0 ]ii

)2

(3.12)

where ȳ−i is the prediction of the excluded training target that the GP is not trained on.

The prediction uncertainty of the excluded point, σ2y−i
, can also be calculated analytically

for the GP as:
σ2y−i

=
α2

[C−1
0 ]ii

(3.13)

Another objective function can be derived that minimizes the prediction mean error and
the magnitude of the uncertainty prediction. The objective function is called Geisser’s
Predictive mean square Error (GPE) and is expressed as:

GPE ≡ 1

N

N∑
i=1

(yi − ȳ−i)
2 +

1

N

N∑
i=1

σ2y−i

=LOO +
α2

N

N∑
i=1

1

[C−1
0 ]ii

(3.14)

The predictive probability can also be written as a LOOCV version with the Geisser’s
surrogate Predictive Probability (GPP). It is expressed as:

GPP ≡ 1

N

N∑
i=1

(yi − ȳ−i)
2

σ2y−i

+
1

N

N∑
i=1

ln (σ2y−i
) + ln (2π)

=
1

Nα2

N∑
i=1

[C−1
0 (y⃗(X)− µ⃗(X))]2i

[C−1
0 ]ii

+ ln
(
α2
)
− 1

N

N∑
i=1

ln
(
[C−1

0 ]ii
)
+ ln (2π) (3.15)
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In this work, a modification to the LOO is made that gives it a better uncertainty pre-
diction without changing the prediction mean. The original LOO is independent of the
prefactor hyperparameter, and the prediction uncertainty is therefore not optimized. The
modification is an analytical determination of the prefactor hyperparameter expressed as:

α2
mod =

(
1

N

N∑
i=1

[C−1
0 (y⃗(X)− µ⃗(X))]2i

[C−1
0 ]ii

)
−

 1

N

N∑
i=1

[C−1
0 (y⃗(X)− µ⃗(X))]i√

[C−1
0 ]ii

2

(3.16)

A derivation of Eq. 3.16 is given in Section A.6. The modification has no extra computa-
tional cost.

The analytical solution of the prefactor hyperparameter from the LL (Eq. 2.32) can also
be modified after the maximization. The prefactor hyperparameter can be changed to an
unbiased estimate of the variance as:

α2
mod =

1

N −Dθ
(y⃗ − µ⃗)⊤C−1

0 (y⃗ − µ⃗) (3.17)

where Dθ is the number of optimized hyperparameters.

The LP is also tested with prior distributions of the length-scale and relative-noise hy-
perparameters. The prior distribution of the length-scale hyperparameter is a normal
distribution in the logarithmic space with a mean of 2.0 and a standard deviation of 3.0.
The prior distribution of the relative-noise hyperparameter is also a normal distribution
in the logarithmic space with a mean of −9.0 and a standard deviation at 3.0.

3.3 Results & Discussion
3.3.1 Optimization challenges
The optimization of the three most common hyperparameters by local maximization of the
LL can easily fail. Multiple problems can cause the local optimization to be unsuccessful.

Inversion problems are common since the covariance matrix becomes singular when is
the case at high length-scale hyperparameters and small relative-noise hyperparameters.
In this region, the covariance matrix becomes an all-ones matrix. Therefore, a noise
correction, δn, has been introduced as:

δn =
Tr(K0)

2

(ϵM )−1 −N2
K

(3.18)

where ϵM is the machine precision and NK is the number of diagonal elements in the
covariance matrix. A derivation of Eq. 3.18 is given in Section A.7. The noise correction is
crucial since the local optimization is terminated immediately if an error occurs. The noise
correction is a constant when the same number of training points is used and the derivatives
of the energies are not used due to the definition of the relative-noise hyperparameter
instead of the noise hyperparameter.

Another problem is the large region with no gradients wrt. to the hyperparameters at low
length-scales and low relative-noise hyperparameters (see Fig. 3.1). A local optimization
initialized in this region will immediately converge without finding the global maximum.
The region corresponds to GPes that overfits the data. The length-scale hyperparameter
depends on the feature distances and the variation of the targets as a function of the
features. Therefore, the magnitude of the best length-scale hyperparameter is not known
in advance. The region is flat due to the numerical precision of the exponential term in the
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(a) 12 training points with random seed 7 (b) 100 training points with random seed 7

Figure 3.1: The log-likelihood surface of a Gaussian Process with analytical maximized
prefactor hyperparameter. No noise correction is used. 12 training points are used in
figure (a) and 100 training points are used in figure (b). The test system is the analytical
one-dimensional system.

covariance function (exp (−750) ≈ 0). The SEC matrix becomes the identity matrix when
the length-scale hyperparameter is 0.025 times the smallest feature distance. It can also be
seen from the region with low length-scale hyperparameters that the posterior distribution
of the hyperparameter is an ill-posed problem when uniform prior distributions are chosen.
This problem is seen since the integration of the LL over the length-scale hyperparameter
is not converging towards a finite value.

The region at high relative-noise hyperparameters is also flat. Therefore, local optimization
is not a feasible option for finding the global maximum in this region. The GPes from this
region corresponds to completely regularized predictions, where the targets are treated as
noise.

The LL surface can also have multiple maxima (see Fig. 3.1 (a)). Therefore, a local
optimizer can easily end up at the wrong local maximum. Multiple reasonable GPes can
be constructed from the training data. E.g. for the one-dimensional test function at 12
training points, a regularized model that identifies the underlying sine function has the
largest LL value, and another model that fits through the points is not as likely. The
prediction mean and uncertainty of the GP can be quite different for local maxima of the
LL. It is not necessarily the global maximum of the LL that gives the best predictions.
Therefore, it is essential to express a prior expectation in the form of a prior distribution
of the hyperparameter, e.g. if a low noise of the targets is expected. More training data
often gives a distinct maximum in LL. The MLE is a good approximation when a large
training set size is applied.

The factorization of the covariance matrix to be independent of the prefactor hyperparam-
eter stabilizes the inversion of the covariance matrix. This is a consequence of the condition
number of the covariance matrix being dependent on the machine precision. Naturally,
the inverse covariance matrix is the same for all prefactor hyperparameter values.

It is beneficial to optimize the hyperparameters in the logarithmic space (see Fig. 3.2). The
hyperparameters must be scaling invariant. Therefore, the values of the hyperparameters
can have any magnitude within machine precision. Furthermore, the success rates of
finding the global maxima of the LL in the logarithmic space are higher than in the linear
space. Therefore, the hyperparameters are defined in the logarithmic scale in the code.
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Figure 3.2: A comparison in success rate between hyperparameters in the linear (orange
curve) and logarithmic space (blue curve). 100 initial sets of hyperparameters for every
eight random seeds at each training set size are locally optimized with L-BFGS-B from
Scipy. The test system is the analytical one-dimensional system.

The large flat regions of the LL surface make it essential to define a limited search space
or BC for the hyperparameters. The influence of the area of the BC can be seen in Fig.
3.3. The success rates of finding the global maxima of the LL with local optimizations are
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Figure 3.3: A comparison in success rate between hyperparameters sampled in 1 time
(blue curve), 10 times (orange curve), 100 times (green curve), and 1000 times (red curve)
the educated guess boundary condition interval of the length-scale and prefactor hyperpa-
rameter. 100 initial sets of hyperparameters for every eight random seeds at each training
set size are locally optimized with L-BFGS-B from Scipy. The test system is the analytical
one-dimensional system.

noticeably higher for more restricted BC. The success rates decrease as a function of the
area of BC.

The variable transformation of the hyperparameters enlarges the most important region
of the hyperparameter space without restricting the hyperparameter search (see Fig. 3.4).
Therefore, it is more likely to sample a good initial set of hyperparameters in the variable
transformed space.
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(a) 12 training points with random seed 7 (b) 100 training points with random seed 7

Figure 3.4: The log-likelihood surface of a Gaussian Process with analytical maximized
prefactor hyperparameter. Noise correction and the variable transformation of the hyper-
parameters are used. 12 training points are used in figure (a) and 100 training points are
used in figure (b). The test system is the analytical one-dimensional system.

3.3.2 Parameter tuning of optimizers
The local optimization methods have many parameters that change the average success
rates and the number of performed iterations (see Fig. 3.5). Unsurprisingly, the non-

Figure 3.5: The average success rates as a function of the average iterations for finding the
global maximum of the log-likelihood. Different local optimizers are used. The average of
7 training set sizes and 8 random seeds on the one-dimensional test system is used.

gradient-based local optimizers use on average a larger number of LL evaluations than
the gradient-based local optimizers. On average, the non-gradient-based local optimizers
have larger success rates. The Powell and TNC local optimizers have a parameter set
each with the largest success rate for finding the global maximum of the LL. However,
the L-BFGS-B has almost as high a success rate for a single parameter set (0.71 vs. 0.73
for TNC and Powell). The TNC local optimizer strongly depends on its parameter. The
L-BFGS-B uses significantly fewer iterations on average. Therefore, L-BFGS-B is Pareto-
optimal in terms of success rate and iterations. Thus, L-BFGS-B is selected as the default
local optimizer.
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The parameters of the global optimizers change their performance significantly (see Fig.
3.6). Especially the grid and iterative line search methods are extremely parameter depen-

Figure 3.6: The average success rates as a function of the average iterations for finding the
global maximum of the log-likelihood. Different global optimizers are used. The average
of 7 training set sizes and 8 random seeds on the one-dimensional test system is used.

dent. The factorization method has an average success rate of 1.0 as the only optimizer
and is the global optimizer that uses the fewest LL evaluations. Whereas the factoriza-
tion method thus is Pareto-optimal in terms of iterations and success rate, the random
sampling method consistently performs well in terms of success rate, although using more
iterations. Hence, a more detailed investigation of the global optimization methods con-
sidering different test systems is required.

3.3.3 Global optimization methods
The optimization methods are used on all 9 test systems with 7 training set sizes each and 8
random seeds each. The results from the global optimizations are observed in Fig. 3.7. The
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Figure 3.7: The average success rate of finding the global maxima of the log-likelihood for
9 test systems each with 7 training set sizes and 8 random seeds with different optimizers.
The average time is also shown. The error bars show the smallest and largest value
observed. Here, the derivatives of the targets are not used.

factorization method finds the global maximum of the LL for all test systems (success rate
of 1.0). It is the only method that locates the global maximum for all test systems every
time. The eigendecomposition of the covariance matrix is more computationally expensive
than the Cholesky decomposition. However, the computational time of the factorization
method is still less than the rest of the global optimizers except for Basin-hopping since
it requires less iterations.

The random sampling and the simulated annealing with analytical prefactor hyperparam-
eter methods have almost a 100 % average success rate (see Section A.5) for locating the
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global maximum of LL for all test systems every time. Nonetheless, they identify the
global maximum for all test systems with different training set sizes within the 100 initial
sets of hyperparameters. Therefore, it is a probabilistic problem that both methods are
built on.

The local optimization is improved by using prior distributions or educated guesses of
the hyperparameters. However, neither prior distributions nor educated guesses of the
hyperparameters give a robust method for obtaining the global maximum for all systems.
The success rates change significantly for the local optimization methods. Therefore, it
can be challenging to determine the number of random samplings to use if multiple local
optimizations are performed.

The same trends are observed when the derivatives of the targets are applied (see Section
A.5). The factorization method also finds the global maximum of the LL when derivatives
of the targets are used.

3.3.4 Objective function optimization
Different objective functions are tested on all the test systems with different training set
sizes and random seeds, and the geometric mean of their prediction means and uncertain-
ties are compared.

The geometric means of the prediction means and uncertainties from LOOCV show that
the performance of the GP is strongly dependent on the objective function optimized (see
Fig. 3.8). The LOOCV is used to understand how well the objective functions optimize

Figure 3.8: Geometric mean of prediction means and uncertainties for 9 test systems with
7 different training set sizes and 8 random seeds. The prediction means and uncertainties
are for leave-one-out cross-validations of the training sets. Different objective functions
are tested. Samplings of fixed hyperparameter sets are also used.
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the interpolation of the training points without including all of them simultaneously. Ac-
cordingly, the exploitation of the training data within the given information is evaluated
by LOOCV. The sampling of 2000 sets of fixed hyperparameters from a uniform distri-
bution has also been used for predictions. The uniform distribution is in the (natural)
logarithmic space of the hyperparameters. Uniform distributions ranging from −4.0 to 4.0,
from −18.0 to 4.0 and from −4.0 to 4.0 have been applied for the length-scale, relative-
noise and prefactor hyperparameters, respectively. The sampled fixed hyperparameter
sets show that the optimization of an objective function is essential for the LOOCV error.
The GPE objective function has a low prediction mean error for the LOOCV. However,
the quality of prediction uncertainty from the GPE objective function is poor. Unsurpris-
ingly, the poor prediction uncertainty from the GPE objective function is due to the term
that gives a penalty for the magnitude of the prediction variances in the objective function
(see Eq. 3.14). The LOO objective function likewise has a low LOOCV prediction mean
error. The prediction mean error is the same as for GPE since GPE includes the LOO
as a term. The LOO objective function performs well on the prediction mean error which
shows that the analytical expression for the LOOCV in a GP works well. However, the
uncertainty prediction is poor since it is random due to the independence of the prefactor
hyperparameter. The modification to the LOO objective function gives a good LOOCV
prediction uncertainty error while keeping the same good prediction mean. The GPP ob-
jective function has a larger LOOCV prediction mean error but has a better uncertainty
prediction than the modified LOO. The maximization of the LL gives a larger LOOCV
prediction uncertainty error than for GPP and the modified LOO objective functions. The
LOOCV prediction mean errors for the LL solutions are in general larger than for LOO,
but smaller than for GPP. The modification of the LL does not improve the LOOCV
prediction uncertainty. Thus, the GPP and the modified LOO give a good interpolation
of the known data and are Pareto-optimal for the LOOCV prediction errors. However,
the methods are also tuned to be good at LOOCV.

Optimizing the hyperparameters is important for the prediction quality of unseen test sets
(see Fig. 3.9). The optimization of the GPE results in poor prediction uncertainties and
good prediction means for the test sets too. The modification of the LOO gives good
prediction means and uncertainties. The prediction qualities of the GPP objective func-
tion on the test sets are slightly worse than the modified LOO. However, the predictions
from the modified LL objective function perform better than the GPE, GPP, and the
modified LOO on the test sets. The modification to LL improves significantly the pre-
diction uncertainty on the test sets. The LL objective function without the modification
has a better prediction mean but a slightly worse prediction uncertainty compared to the
modified LOO. The LL with the modification is the Pareto-optimal objective function
for the prediction of the test sets. The LL without the modification and the LOO with
the modification perform almost as well as LL with the modification. The change in the
prediction errors from LOOCV to the test sets is small for the LL objective functions com-
pared to the other objective functions. Therefore, LL is more consistent in its prediction
error estimation and can be more robust.

The same trends are seen when the derivatives of the targets are applied (see Section A.8).
However, in this case the GPP performs better than LOO with the modification in terms
of prediction errors. Maximizing the LL objective function gives better prediction errors
than the GPP and LOO with the modification.

3.3.5 Student’s T Process
The new TP is introduced, and its prediction errors when its hyperparameters are maxi-
mized with LL are compared with the results for the GP (see Table 3.2). The TP has the
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Figure 3.9: Geometric mean of prediction means and uncertainties for 9 test systems with 7
different training set sizes and 8 random seeds. The prediction means and uncertainties are
for test sets. Different objective functions are tested. Samplings of fixed hyperparameter
sets are also used.

Method RMSE/ [eV] UD NLPP
GP LOO 7.76e-02 (1.11e-06,1.61e+02) 2.38e-01 (1.56e-06,1.93e+02) 4.46e+05
GP LL 7.29e-02 (8.07e-07,8.50e+00) 2.41e-01 (3.38e-07,1.10e+02) 2.06e+04
GP LP 7.29e-02 (8.10e-07,8.77e+00) 2.40e-01 (1.48e-06,8.46e+01) 7.18e+03
TP LL 7.29e-02 (8.07e-07,8.50e+00) 2.15e-01 (8.07e-07,8.85e+01) 6.43e+03
TP LP 7.29e-02 (8.10e-07,8.77e+00) 2.17e-01 (2.03e-05,6.56e+01) 1.91e+03
FBMGP weak. 7.65e-02 (8.53e-07,7.88e+00) 2.12e-01 (1.93e-06,7.07e+01) 1.67e+03
FBMGP info. 7.50e-02 (8.31e-07,7.69e+00) 1.60e-01 (1.16e-09,4.90e+01) -1.57e+02

Table 3.2: Table of the prediction mean (RMSE) and uncertainty (UD) errors for the
Gaussian process and the Student’s t process. The Student’s t process is optimized with
log-likelihood and log-posterior. The Gaussian process is optimized with log-likelihood,
log-posterior, and the modified leave-one-out objective function. The fully Bayesian mim-
icking Gaussian process (FBMGP) is calculated with weak and informative prior distri-
butions. The errors are geometric means over 9 test systems each with 7 training set
sizes and 8 random seeds. However, the average is used for the Negative Log Predictive
Probability. The brackets identify the smallest and largest value observed.

same prediction mean errors of the test systems as the GP. The TP and GP have the same
prediction mean expressions, and therefore the prediction mean errors are the same when
the hyperparameters are identical. The geometric mean of the prediction uncertainty er-

30 Accelerating catalysis simulations using surrogate machine learning models



3.3. RESULTS & DISCUSSION

ror of the TP is smaller than for the GP. Furthermore, the largest predicted uncertainty
error is smaller for the TP. The NLPP measure is also smaller for the TP. The prediction
uncertainty is especially improved for the TP compared to the GP at few training points.
The prediction uncertainty of the TP goes towards the prediction uncertainty of the GP
as a function of training points like the unbiased estimation of the variance. However, one
or two training points will lead to huge uncertainty predictions for the TP.

The computational time of optimizing the TP is less or equal to the GP. Hence, the TP is
an improvement to GP with better uncertainty predictions that comes with no additional
computational cost.

3.3.6 Fully Bayesian mimicking Gaussian Process
In this section, weakly informative and informative prior distributions of the hyperparame-
ters are used for the FBMGPes. The weak informative prior distribution of the length-scale
hyperparameter is a normal distribution in the logarithmic scale with a mean of 0.0 and
a standard deviation of 35.0. The weak informative prior distribution of the relative-noise
hyperparameter is also a normal distribution in the logarithmic scale with a mean of −9.0
and a standard deviation of 18.0. The weak informative prior distribution of the prefactor
hyperparameter is an inverse-gamma distribution with parameters a = b = 10−20, which
was also used for deriving the TP (see Section 2.4). The informative prior distributions are
the same as the prior distributions used for the LP of the GP and TP (see Section 3.2.4)
together with the aforementioned weakly informative prior distribution of the prefactor.

The FBMGP is derived from a grid of hyperparameters with LP values. The grid is
constructed in the space of the variable transformed hyperparameters. The space of the
variable transformed hyperparameters provides a better description of the important parts
of the hyperparameter space. It is important that LP is used and not the LL. This is
because the integration of the LL surface does not integrate to a finite number due to the
large flat regions. The influence of the flat regions can be decreased by using informative
prior distributions.

The geometric mean of the prediction uncertainty errors for the FBMGPes with both
prior distributions is even better than for the TP (see Table 3.2). However, the geomet-
ric mean of the prediction mean errors are slightly worse for the FBMGPes due to the
contributions of the flat regions. The prediction means tend to be more overfitted when
few training points are used to have a larger uncertainty instead (see in Fig. 3.10). The
larger uncertainties for the good prediction means are due to the contribution of multiple
maxima. When a larger number of training points is used, the same prediction mean and
uncertainty are predicted as for the MLE as expected. Noticeably, the largest prediction
mean errors are decreased when using the FBMGPes. Informative prior distributions of
the hyperparameters significantly improve the FBMGP since the influence of the flat re-
gions is reduced and the LP distribution is well-behaved. The NLPP measure also shows
that the FBMGP with informative prior distributions is a significant improvement to the
MLE or MAP.

The fully Bayesian solution is approximated as a mixture model of all calculated GPes
with different sets of hyperparameters from the grid weighted by their LP values. The
FBMGP solution is closely related to the fully Bayesian solution.

The computational cost of the FBMGP solutions is larger than the cost of the MLE and
MAP solutions (2.6 times on average). However, the FBMGP can be used for any new
test point without being retrained as generally required for a fully Bayesian solution.
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Figure 3.10: Predictions of a one-dimensional test function from Gaussian processes and a
Student’s t process. The different rows show the use of 3, 6, 12, 25, and 50 training points.
The blue areas show two times the uncertainty predictions. The Gaussian processes are
optimized by either maximizing the posterior distribution or mimicking the fully Bayesian
solution. The Student’s t process is optimized by maximizing the posterior distribution.

3.4 Conclusion
A robust optimization of the hyperparameters is the most important prerequisite for ob-
taining a reliable GP model. However, this optimization is not straightforward and will
often lead to errors in the final results. In this section, several improvements to the op-
timization process have been developed. Furthermore, educated guesses of BC for the
hyperparameters have been defined for restricting the search to a reasonable region of
GPes. The variable transformation of the hyperparameters enlarges the EGBC without
restricting the hyperparameters from values outside the BC. Thus, the problematic large
flat regions of the LL are reduced in the hyperparameter space.

A new method (the factorized line search or factorization method) for finding the three
most common hyperparameters have been implemented. The method is robust, and it finds
the global maximum of LL for all studied test systems with different training sizes. The
computational cost of the factorization method is smaller than other global optimization
searches that do not guarantee finding the global maximum. A finer grid for the factorized
line search can easily be constructed if the basin of attraction is unlikely small.

The LL objective function is confirmed to be the optimal objective function for MLE in
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terms of both the prediction mean and uncertainty. A modification to the solution of
the prefactor hyperparameter obtained from LL maximization gives a significantly better
uncertainty prediction due to the unbiased estimate of the prediction variance. The LP
can be an optimal objective function for MLE if the user has good prior knowledge of the
system. The modification to LOO objective function makes it a competitive method to
LL.

A new type of process is derived as the TP. The TP is similar to the GP but does not
include the prefactor hyperparameter. The prediction uncertainty is improved by the TP
compared to the GP from a Bayesian approach of removing the prefactor hyperparameter.
The prediction means of the TP is identical to the GP. The TP has no extra computational
cost.

At last, an approach for estimating the fully Bayesian solution of the posterior predictive
distribution is derived. Usually, the fully Bayesian solution is only obtainable by mixture
models or Monte Carlo simulations[72]. In this work, a single GP is obtained that mimics
the fully Bayesian solution. The GP can be used to predict new test points without being
retrained. Informative prior distributions of the hyperparameters significantly improve
the fully Bayesian solution.
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4 Machine Learning Accelerated Global
Optimization method

The developed method in this chapter is in collaboration with Kirsten Winther at SUN-
CAT, SLAC National Accelerator Laboratory.

4.1 Introduction
When a chemical reaction is studied, the Global Minimum Energy Structures (GMESs)
of reactants and products are always needed. This is a consequence of the GMES being
the most stable and likely structure to appear in a reaction. Therefore, the probabilities
of other structures must be compared to the GMES. Often, multiple local minima are
present in a reaction where the energy difference is small. A heterogeneous catalytic
reaction has multiple local minima in the forms of adsorption sites, and it is not trivial
to know intuitively what site corresponds to the GMES. Particularly, when complicated
surfaces are involved, it is hard to recognize the symmetry[96].

Many approaches exist to finding the GMES. Some of the approaches are genetic algo-
rithms[97, 98], basin-hopping[88], minima hopping[99, 96], random sampling with local
relaxations, and a range of educated guesses with local relaxations. The educated guesses
can be significantly faster than the other approaches if the surface and adsorbate are sim-
ple and the user has good chemical intuition. However, the surface and adsorbate easily
become too complicated, and educated guesses of the GMES will lead to biased results.
The other global search methods are often unbiased if the sampling is stochastic. How-
ever, they are computationally expensive since they require many iterations. Furthermore,
the global optimization methods are never guaranteed to find the GMES. Thus, global
optimization methods are often kept running for a given number of iterations without
convergence criteria. The brute force grid search will be robust if the grid is dense. Unfor-
tunately, the computational evaluation method is too costly, and the grid search suffers
from the curse of dimensionality.

Constructing a workflow that considers different surfaces for a heterogeneous catalysis
reaction can be complicated because the surfaces can have different sites and different
forms.

ML has shown to be able to accelerate minimum energy structure searches considerably
[17, 100, 44, 47, 48, 101]. A variety of algorithms have been introduced that performs
GMES searches of metal clusters on surrogate surfaces. A surrogate surface is a PES
predicted by ML model.

In this study, a global search method for adsorption structures is introduced. The method
does not aim to optimize all structures and clusters but is restricted to finding the best
adsorption site. To the author’s knowledge, a standard method for finding the best adsorp-
tion site does not exist. The method uses a global search for moving the adsorbate around
the surface on a surrogate surface. The global search aims to find a compromise between
exploration and exploitation. The exploration part is important for learning new regions
of the feature space and finding new candidates for the GMES[100]. The exploitation is
important for obtaining an accurate prediction of the GMES with low uncertainty. Af-
terward, the combined structure is relaxed on the surrogate surface to obtain the optimal
structure.
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4.2 Methods
The method developed in this thesis, Machine Learning Accelerated Global Adsorption
Optimization method (MLGO), is implemented in Python with the same format as the
ASE[102]. The MLGO is built on the assumption that the energy difference is between
the adsorbate placed with fixed bond lengths on a fixed surface and the GMES is small.
Therefore, it is beyond the scope of the method to consider surfaces that undergo recon-
struction during the adsorption step. Furthermore, it is assumed that the adsorbate does
not change significantly after adsorbing on the surface.

The MLGO algorithm is initialized by providing a surface and an adsorbate. The surface
and adsorbate must have the same cell sizes and periodic boundary conditions. The fixed-
atom constraints of the surface or adsorbate specified by the user are also present in the
MLGO simulation. MLGO also provides the option to perform a global optimization of
two adsorbates simultaneously. Furthermore, an ASE calculator that calculates the true
potential energy surface has to be provided. A default ML calculator is available in the
code, however, another ML calculator implemented as a subclass of the ASE calculator
can be specified by the user.

The global optimization method is dual simulated annealing[90, 91, 92] from SciPy[77].
The simulated annealing moves the adsorbate with fixed bond lengths within some bound-
ary conditions. The boundary conditions for the global optimization search can be passed
to the MLGO object. The boundary conditions consist of 6 ranges (list of lower and upper
bounds for the optimized variables) for one adsorbate and 12 ranges for two adsorbates.
The first boundary corresponds to the scaled first unit cell vector of the geometric center of
the adsorbate. Similarly, the second and third boundary ranges correspond to the scaled
second and third unit cell vectors of the geometric center of the adsorbate, respectively.
The last three boundary ranges are rotation angles of the adsorbate. Hence, the adsorbate
atom or molecule with fixed bond lengths can be placed at all positions and angles in the
defined boundary conditions. The default boundary conditions are the entire cell of the
surface structure and all angles. However, it is beneficial to only search the top layer if a
surface is studied.

The MLGO algorithm starts by calculating a number of initial structures given by the
initial_points argument before the surrogate surface is used (see the pseudo-code of
the MLGO algorithm at 1). The initial structures are sampled by moving the center of
the adsorbate with the global optimization method, where the energies are calculated as
the repulsive potential energy. Two initial structures are calculated in this work. After
the initial structures are calculated with the ASE calculator, the ML model is trained
and optimized. Then, the global minimization of an acquisition function is performed.
The acquisition function determines how much the ML model is exploring and exploiting
in the global search. An acquisition function object can also be specified for the MLGO
algorithm. The suggested and used acquisition function is the lower confidence bound
expressed as:

a(x⃗i) = E(x⃗i)− κσ∗(x⃗i) (4.1)

where a(x⃗i) is the acquisition function value of the test point with coordinates x⃗i and κ
corresponds to the number of standard deviations in a Gaussian distribution. A good value
for κ is 3.0, and it is used in this study if not specified otherwise. The global optimization
is performed in parallel if multiple Central Processing Units (CPUs) are used. The number
of global searches that are performed in parallel is set by ml_chains, which is 10 in this
work. Multiple global searches are performed to ensure that the best candidate from the
global search is suggested without using more computational time. Each global search
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Algorithm 1 MLGO
Require: Surface, adsorbate, ASE calculator, ML calculator, second adsorbate (op-

tional).
Ensure: Global minimum energy structure

Calculate initial structures from simulated annealing
converged← False
while converged ̸= True do

Train ML calculator
Simulated annealing on acquisition function in parallel
if Number of structures in ML calculator ≥ norelax_points then

while max (σ∗(x⃗i)) ≤ max_unc do
Local relaxation on the surrogate surface in parallel

end while
end if
Chose candidate from acquisition function
Evaluation of the candidate with ASE calculator
if Number of structures in ML calculator ≥ min_steps then

if |Fi| ≤ fmax then
if max (σ∗(x⃗i)) ≤ unc_convergence then

if |E∗ − E| ≤ 2 ∗ unc_convergence then
if |E∗ − Emin| ≤ unc_convergence then

converged← True
end if

end if
end if

end if
end if

end while

is doing ml_steps, which is set to 2000. Subsequently, the structures obtained from the
global searches are locally relaxed on the predicted PES. The local optimization method
can be specified by the user, in this work the MDMin optimizer from ASE is used. All
atoms that are not affected by the fixed-atom constraints are relaxed. However, the
number of training points used to train the ML calculator must be greater than or equal
to norelax_points before the local relaxations can be executed. norelax_points is set
to 10 as default since the global environment must be well determined before a local
relaxation in case the uncertainty prediction is underestimated. The local relaxations can
also be deselected if the argument relax is set to False. Furthermore, the uncertainty of
the final structure obtained from the global search part must be lower than or equal to
max_unc to start the relaxation. The max_unc is set to 0.05 eV in this work. The local
relaxations are also parallelized for each final structure if multiple Central Processing
Units (CPUs) are used. The uncertainty is checked for each step in the local relaxation,
and if it exceeds max_unc then the local relaxation is stopped. The best structure of the
candidates from the local relaxations or global searches is chosen from the acquisition
function. In this work, the candidate with the largest uncertainty is chosen if it is greater
than max_unc or else it will be the candidate with the lowest acquisition function value
from Eq. 4.1. The chosen candidate is evaluated with the ASE calculator with a relatively
computationally expensive method. Convergence of the algorithm requires five criteria.
Firstly, the training set for the ML algorithm has to be greater than or equal to ml_steps.
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Secondly, the maximum absolute force of an atom in the suggested structure must be
smaller than fmax, which is set to 0.05 eV/Å in this study. Thirdly, the uncertainty
prediction must be smaller than unc_convergence, which is set to 0.025 eV. Fourthly, the
absolute energy difference between the predicted energy and true energy must be smaller
than two times unc_convergence. Lastly, the true energy of the suggested final structure
and the lowest energy observed energy, Emin, while performing the MLGO simulation,
must be smaller than unc_convergence.

The used ML model is a GP. The GP uses a SEC function with derivatives and therefore
trains on energies and forces. The hyperparameters are optimized by maximizing the LP
with the factorization method. As a consequence, the hyperparameters are optimized ro-
bustly, but the same relative-noise hyperparameter is used for energies and forces. The
hyperparameters are optimized in the logarithmic space and have prior normal distribu-
tions. The prior distribution of the length-scale has a mean of 0.0 and a standard deviation
of 3.0 in the logarithmic space. The mean is −11.0, and the standard deviation is −4.0
for the prior distribution of the relative-noise hyperparameter. The prior mean is the
maximum of the energies observed in the training set. Furthermore, a repulsive potential
energy[47, 101] is applied as the baseline with the expression:

µ(x⃗∗) = µ+
N∑
i=1

∑
j ̸=i

(
Rc
Rc,i +Rc,j

|R⃗i − R⃗j |

)12

(4.2)

where Rc = 0.7 is a displacement of the repulsion, Rc,i is the covalent radius of atom i,
and R⃗i is the Cartesian coordinates of atom i. The prior mean and the repulsive potential
energy baseline ensure that atoms do not get too close in the structure search.

A simple fingerprint is also introduced. A fingerprint is essential due to the global consid-
eration of the search. The fingerprint vector consists of blocks of pairs of chemical species.
The fingerprint element in each block is the distance between two atoms within the atomic
pair combination scaled with the sum of the atom’s covalent radii. Each block is sorted
after size. A simplification of the fingerprint is seen below for oxygen at a palladium
surface:

ϕ(x⃗∗) =
[
sort

([
2Rc,Pd

|R⃗Pd1−R⃗Pd2|
2Rc,Pd

|R⃗Pd1−R⃗Pd3|
· · ·
])

sort
([

Rc,O+Rc,Pd

|R⃗O−R⃗Pd1|
Rc,O+Rc,Pd

|R⃗O−R⃗Pd2|
· · ·
])]
(4.3)

The derivatives of the inverse distance fingerprint are also needed for training and pre-
dicting forces.

Different adsorption systems are considered in this study. The GPAW code[103, 104] is
used for calculating the potential energy. The BEEF-vDW[105] XC functional is used in
this study if not otherwise mentioned. Plane waves are used with an energy cutoff of 500
eV, and 4× 4× 1 k-points are used.

4.3 Results & Discussion
The inverse distance fingerprint (see Eq. 4.3) gives chemical information on the energy
dependence of the inverse distances. Therefore, fewer training points are needed to obtain
the chemical information compared to the Cartesian coordinates (see Fig. 4.1). Besides
learning the potential energy surface faster, the inverse distance fingerprint is also global,
and therefore it is invariant to translations, rotations, and permutations. However, it must
be noted that the sorting of the elements in each block may lead to jumps in the derivatives.
This will not be a problem for simple adsorbates since they consist of a few identical
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(a) Cartesian fingerprint
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(b) Inverse distance fingerprint

Figure 4.1: The potential energy of an oxygen atom adsorbing at an ontop site of a
palladium(111) surface. An oxygen atom is already adsorbed on another ontop site. The
black curve shows the potential energy from an effective-medium theory calculation, and
the blue curve shows the Gaussian process predicted energy. The blue-scaled regions
indicate two times the uncertainty from the Gaussian process.

chemical elements. Different tags are used for each adsorbate and the surface. The inverse
distance fingerprint understands different tags as different chemical elements. The size
of the inverse distance fingerprint makes it possible to get deeper learning compared to
using the sum of each block. Utilizing the forces and the fingerprint makes the GP able
to understand the potential energy surface of adsorptions quickly.

The GMES of oxygen adsorption on a fixed palladium(111) surface is easily obtained with
the MLGO (see Fig. 4.2). The predicted potential energies are close to the true potential
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(a) Energy evaluations and predicted energies
and uncertainties. (b) Final structure from the optimization.

Figure 4.2: The global optimization log of oxygen adsorption on a fixed palladium(111)
surface. Oxygen is restricted to the top half of the cell. (a) is the potential energy difference
of the system as a function of the number of density functional theory evaluations. The
black curve shows the true potential energy, and the blue curve shows the predicted energy.
The blue-scaled regions are two times the uncertainty from the Gaussian process. (b) is
the final structure of the oxygen adsorbed on the Pd(111) surface. The unit cell is repeated
twice in the 1. and 2. unit cell vector directions.

energies, and the uncertainties take the prediction errors into account. However, it is
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observed that the training set needs to contain at least four structures for the uncertainties
to be correct. 15 DFT evaluations are required to find the GMES of the oxygen adsorption.
This is a small number of iterations that could be expected for a single local optimization.
It requires 33 DFT evaluations in total to perform local relaxations (BFGS[82, 83, 84, 85]
with fmax=0.05 eV/Å) on the ontop, fcc-hollow, hcp-hollow, and bridge sites from a good
educated guess of oxygen adsorption (1.7 Å from the surface). In this case with the simple
nature of the surface, it is straightforward to make educated guesses for the adsorption
sites, however this is often not the case for more complex surfaces. The ML algorithm
and the fingerprint learn the symmetry of the surface itself. The GMES is predicted to
be the adsorption of oxygen at the fcc-hollow site, which is also the result of the local
relaxations of the different sites. After the MLGO simulation, the ML calculator can be
used to predict the complete potential energy surface of the adsorption of oxygen on the
palladium(111) surface (see Fig. 4.3). The ML algorithm has learned that the fcc-hollow

(a) Minimum predicted energy surface. (b) Global minimum energy structure.

Figure 4.3: (a) The minimum predicted energy surface of oxygen adsorption on a fixed
palladium(111) surface. The minimum potential energy is obtained from the minimum
energy in the z-direction of the oxygen atom. The x-direction of the oxygen atom is scaled
with cell size. The y-direction of the oxygen atom is also scaled with the second unit cell
vector. (b) The global minimum energy structure (fcc-hollow site) in a top view.

site is the most stable site, but also that the hcp-hollow site is a stable local minimum. It
can also locate the bridge site and recognize that the ontop site is not a stable adsorption
site. The time of the prediction of the full potential energy surface is negligible.

The simulations of the oxygen adsorption are executed with 10 random seeds, and the
true GMES is obtained in all 10 simulations. The same results are obtained with κ = 2,
requiring 12 DFT evaluations. However, the exploration is important to ensure that the
GMES is obtained for more complicated systems.

The error of the forces can not be too large compared to the energies when a single relative-
noise hyperparameter is used for both the energies and the forces. The forces should be
neglected if the errors are too large due to the concept of ”garbage in, garbage out”.

Different species can also be adsorbed on different surfaces, like hydrogen adsorption on
fixed silver(111) and platinum(111) surfaces (see Fig. 4.4). The GMES of hydrogen
adsorption on the silver surface is obtained after 10 DFT evaluations. The most stable
adsorption site for hydrogen is the fcc-hollow site. Local relaxations of the four likely
sites also show that the fcc-hollow site is the most stable. On a platinum(111) surface,
the MLGO predicts the most stable adsorption site for hydrogen to be at the ontop site.
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(a) Hydrogen on silver (b) Hydrogen on platinum

Figure 4.4: The global minimum energy structures of hydrogen adsorption on a fixed
silver(111) surface (a) and a platinum(111) surface (b). The unit cell is repeated twice in
the 1. and 2. unit cell vector directions.

Local relaxations of hydrogen in the ontop, fcc-hollow, hcp-hollow, and bridge sites with
the same ASE calculator show that the ontop site is the most stable structure. The GMES
is achieved in 15 DFT evaluations. The different sites have small differences in the local
minimum energies (< 0.2 eV). Thus, the MLGO shows that it can locate the GMES and
learn the true potential energy surface for the adsorbate even for small energy changes.
The exploration part of the MLGO is crucial if there are closely competing local minimum
structures. With κ = 3, the GMES of hydrogen on Pt(111) is achieved 10 out of 10 times
with different random seeds. However, the GMES is only obtained 7 out of 10 times if
κ = 2.

The MLGO can easily be applied on more complicated surfaces like a stepped surface. In
this study, an oxygen atom is adsorbed on a palladium(211) surface. The identification
of the GMES is accomplished in 27 evaluations (see Fig. 4.5). Surprisingly, the more
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(a) Energy evaluations and predicted energies
and uncertainties. (b) Final structure from the optimization.

Figure 4.5: The global optimization log of oxygen adsorption on a fixed palladium(211)
surface. Oxygen is restricted to the top half of the cell. (a) is the potential energy difference
of the system as a function of the number of density functional theory evaluations. The
black curve shows the true potential energy, and the blue curve shows the predicted energy.
The blue-scaled regions are two times the uncertainty from the Gaussian process. (b) is
the final structure of the adsorption. The unit cell is repeated twice in the 1. and 2. unit
cell vector directions.
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complicated surface with many nonequivalent sites does not require a large increase in
MLGO iterations. The true potential energy surface is quickly learned by the ML model,
and the prediction uncertainty accounts for the prediction errors. The location of the local
minima will be harder to search manually since the adsorption sites for more complex
surfaces are not implemented in ASE. Hence, the user needs to make educated guesses for
the adsorption sites. On the other hand, the code setup of MLGO is unaffected by the
surface complexity. Therefore computational and setting-up time is saved using MLGO
compared to manual methods.

A GMES of adsorption of a simple molecule can also be located with the current version
of MLGO. Here, a carbon monoxide molecule (CO) is adsorbed on a fixed copper(111)
surface (see Fig. 4.6). The CO molecule is free to relax its bond length in the local

5 10 15 20 25
Number of evaluations

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Po
te

nt
ia

l e
ne

rg
y 

/ [
eV

]

Predicted
True

(a) Energy evaluations and predicted energies
and uncertainties. (b) Final structure from the optimization.

Figure 4.6: The global optimization log of carbon monoxide adsorption on a fixed cop-
per(111) surface. The carbon monoxide molecule is restricted to the top half of the cell.
(a) is the potential energy difference of the system as a function of the number of density
functional theory evaluations. The black curve shows the true potential energy, and the
blue curve shows the predicted energy. The blue-scaled regions show two times the un-
certainty from the Gaussian process. (b) is the final structure of the adsorption. The unit
cell is repeated twice in the first and second unit cell vector directions.

relaxation part. The GMES is obtained in 27 evaluations. The CO molecule is adsorbed
at the fcc-hollow site with the carbon end chemisorbed to the copper surface. It is also
the most stable site observed from local optimizations. The ML model also learns the
potential energy of the molecule and its interaction with the surface from 27 training
points and with a simple fingerprint. It has also learned the most stable orientation of the
CO molecule at the surface. CO in the gas phase has also been considered in the MLGO
simulation.

Oxygen adsorption on a ruthenium dioxide (RuO2) surface is also investigated for testing
the MLGO on more complicated systems (see Fig. 4.7). The two top layers of the RuO2

surface are free to move, and the two lower layers are fixed. The system is calculated with
GPAW with the XC functional PBE[63], 8 × 4 × 1 k-points, and an energy cutoff of 500
eV. The final structure from the MLGO simulation is the oxygen adsorbed on top of a
ruthenium atom. 29 DFT evaluations have been performed to find the GMES observed,
where the oxygen adsorbate and the two top layers are optimized. The adsorption of the
oxygen atom on a fully fixed RuO2 surface requires 23 DFT evaluations. Hence, the MLGO
can learn the potential energy surface of adsorption on oxides even when the adsorbate is
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Figure 4.7: The global optimization log of oxygen adsorption on a ruthenium dioxide
surface. The oxygen is restricted to the top half of the cell. (a) is the potential energy dif-
ference of the system as a function of the number of density functional theory evaluations.
The black curve shows the true potential energy, and the blue curve shows the predicted
energy. The blue-scaled regions are two times the uncertainty from the Gaussian process.
(b) is the final structure of the adsorption. The unit cell is repeated twice in the 1. and
2. unit cell vector directions.

identical to atoms in the surface.

The GMES of hydroxide adsorption on the RuO2 surface is also obtainable. The hydroxide
adsorption on the fixed RuO2 requires 54 DFT evaluations, and on the RuO2 with two
moving layers requires 45 DFT evaluations. The hydroxide is also adsorbed on top of a
ruthenium atom and has a bond angle of 110.6◦.

It is also possible to globally optimize two adsorbates on a surface simultaneously with
MLGO. Here, two hydrogen atoms are globally optimized on a fixed silver(111) or plat-
inum(111) surface (see Fig. 4.8). The surfaces consist of 3 × 3 × 3 atoms. Therefore,

(a) 2 hydrogen atoms silver(111) surface. (b) 2 hydrogen atoms on platinum(111) surface.

Figure 4.8: The global minimum energy structures of two hydrogen atoms adsorption on
a silver(111) surface (a) and a platinum(111) surface (b). The unit cell is repeated twice
in the 1. and 2. unit cell vector directions.

finding the GMES is a combinatorially complicated task. The hydrogen atoms can be
adsorbed on different sites and different site combinations. Furthermore, the hydrogen
atoms can interact, and therefore the same type of sites are nonequivalent. The hydrogen
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atoms can also form molecular bonds, which introduces an orientational consideration.
After 64 DFT evaluations, the GMES is obtained from the MLGO of two hydrogen atoms
adsorbed on the silver(111) surface. It is unfavorable for the hydrogen atoms to adsorb on
the silver surface when it is possible to form hydrogen gas. Thus, the final structure and
the GMES is a hydrogen molecule with an optimized bond length above the silver surface.
On platinum(111), on the other hand, it is found by the MLGO, that the hydrogen atoms
prefer to adsorb in the ontop sites far from each other. This result is obtained with MLGO
within 66 DFT evaluations. Therefore, the MLGO significantly reduces the number of it-
erations required for finding the GMES. It is also possible to choose an adsorption site for
one of the hydrogen atoms and then optimize the second hydrogen atom with the MLGO.
This approach would further reduce the number of evaluations required.

κ = 3 has shown to be a good parameter that balances the exploration and exploitation
of the active learning approach. The GMESs are observed in all the systems considered,
and the accelerations of the global searches are significant (see Section ??). The repulsive
potential energy baseline and the maximum energy as the prior mean have been shown to
be successful in avoiding structures with too short distances.

Systems with larger cell sizes will not complicate the optimization task further for the
MLGO since the fingerprint is global and will learn the same information. However, the
computational time of the fingerprint and its derivatives would increase. On the other
hand, the computational time for the DFT evaluation would also increase so that the
relative speed-up would be similar.

4.4 Conclusion
The MLGO is a global optimization method that focuses on finding the global adsorption
structure, which is a fundamental task that is always considered when a catalytic reaction
is studied. By not aiming to be a general tool for all kinds of structural optimizations,
the MLGO is specifically tailored to solve problems related to catalytic reactions. It has
been shown how the global optimizations of common adsorbates on surfaces of varying
complexity have been significantly accelerated (a reduction factor up to 40), showing that
MLGO is a promising method to substantially reduce computational costs of material
screenings. It is expected that all kinds of heterogeneous systems with simple adsorbates
are feasible to optimize with MLGO assuming that the individual adsorbate and surface
structures do not change significantly after the adsorption.

The MLGO has been shown to accelerate the global adsorption search significantly. It has
especially been shown to reduce the computational cost for complicated surfaces, where
the manual setup of adsorption sites is non-trivial. Furthermore, it is advantageous that
the process and code do not change depending on the surface or the adsorbate considered
making the method directly applicable to screening studies of different kinds of adsorbates
and surfaces. The tailored training data is generated by the active learning approach,
ensuring that the user is not limited by the availability of existing training data. The
method is expected to significantly improve the computational cost and setup time of
workflows studying changing adsorbates and surfaces.

The data and/or the ML calculator can also be reused to study the adsorptions on the
surface in more detail since the potential energy surface is learned within an uncertainty.
Furthermore, the ML calculator can also be used for a pre-trained Machine Learning
Accelerated Nudged Elastic Band method (MLNEB) (see Section 5.1).
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5 Machine Learning Accelerated
Nudged Elastic Band method

5.1 Introduction
The NEB[22, 24] is the most used method for finding the activation energies and the
MEPs for surface reactions. The activation energies are needed for all reaction kinetic
calculations. Therefore, they are essential in catalysis simulations. However, the NEB is
a computationally expensive method, and a large part of the computational time is used
on those calculations.

ML has shown the potential to significantly accelerate the NEB calculations[42, 43]. In
this chapter, a new implementation of the Machine Learning Accelerated Nudged Elastic
Band method (MLNEB) code developed in Ref. [43] is presented. The new implementation
includes the new and more robust ML model in the form of the TP. The new MLNEB code
is tested on a range of different catalytic reactions with the EMT and DFT calculators.
The energy barriers obtained with MLNEB are compared to the corresponding results
from the NEB.

5.2 Method
MLNEB is written in Python with the same class structure as the NEB code implemented
in ASE[102]. The MLNEB requires the initial and final state structures with an ASE
calculator as input like a regular NEB. Furthermore, it requires a ML calculator with the
same form as an ASE calculator that can be trained, predicts energies, predicts forces,
and estimates uncertainties. A default ML calculator is applied if a ML calculator is not
given. Furthermore, it requires an acquisition function object, an interpolation method, a
specified number of images, and a local optimizer for the NEB simulation. The MLNEB
uses One-Image-Evaluation method (OIE), which means that only a single image is eval-
uated with the ASE calculator for each MLNEB iteration. The image that maximizes an
acquisition function is evaluated. The acquisition object calculates the chosen acquisition
function for each image and returns the image with the largest acquisition function value.
A useful acquisition function that is used in this work is the uncertainty if the uncertainty
is greater than a selected uncertainty convergence criterion, unc_convergence, and else
it will be the upper confidence bound as the uncertainty times a value, κ, added to the
energy:

a(x⃗i) =

{
σ∗(x⃗i) if σ∗(x⃗i) ≥ unc_convergence
E(x⃗i) + κσ∗(x⃗i) otherwise

(5.1)

The interpolation method constructs the initial path that is optimized. The interpolation
method can be a linear interpolation between the initial and final state, Image Depen-
dent Pair Potential (IDPP) that makes a good initial guess of the path using pairwise
distances[106], or a manually constructed initial path. The number of images, n_images,
in the MEP is set to 11 if it is not specified. The local optimizer is set to the MDMin
optimizer implemented in ASE[102]. The MDMin uses MD to relax the structure. The
time step must be small since the energy and structure can be unstable. Especially at the
beginning of the MLNEB simulation, unstable structures can be suggested when the ML
calculator is not trained fully. The MLNEB also takes the regular NEB input parameters
as arguments. The NEB input parameters include the method, which is the improved
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tangent method[22] in this study, and the spring constant, ks. The spring constant is
given as ks = 2

√
n_images/DIF where DIF is the distance between the initial and final

states if a spring constant is not given. When the MLNEB simulation is initialized, a set
of parameters can also be specified. fmax is the argument that specifies the convergence
criterion for the maximum absolute force of an atom in the last iteration, which is set to
0.05 eV/Å as default. unc_convergence is the maximum uncertainty, max (σ∗(x⃗i)), an
image can have on the last iteration to converge. Finally, max_unc sets the maximum
uncertainty an image can have and continues a NEB simulation on the predicted PES.

The pseudo-code for the MLNEB can be seen in Alg. 2. The run of MLNEB is initialized

Algorithm 2 MLNEB
Require: Initial state, final state, ASE calculator, ML calculator.
Ensure: MEP images

Calculate a third structure
converged← False
i← 0
while converged ̸= True do

i← i+ 1
Train ML calculator
Construct initial path
max_u← max_unc(i−1)+unc_convergence

i
while max (σ∗(x⃗i)) ≤ max_u do

NEB step with ML calculator
end while
if NEB converged then

if max (σ∗(x⃗i)) ≤ max_u then
CI-NEB with ML calculator

end if
end if
Chose candidate from acquisition function
Evaluation of candidate with ASE calculator
if |Fi| ≤ fmax then

if max (σ∗(x⃗i)) ≤ unc_convergence then
converged← True

end if
end if

end while

by calculating a third training point, besides from the initial and final states, if a training
set is not given in advance. The third training point is selected from the initial path.
Then, the ML calculator is trained. The initial path is constructed with the ML calculator
as the calculator for each image. The NEB simulation is performed, and the predicted
uncertainties are checked for each NEB iteration. The NEB simulation will stop if a single
uncertainty is greater than max_u. max_u is a scaled uncertainty criterion of max_unc and
unc_convergence that ensure that the uncertainties are small at the beginning of the
simulation. A Climbing Image Nudged Elastic Band method (CI-NEB)[24] simulation is
performed if the NEB simulation converges. Whether or not the CI-NEB simulation is
performed, the next candidate for evaluation with the ASE calculator is decided by the
acquisition object. At last, a convergence check is performed. The MLNEB simulation
is converged if the maximum force of the atoms in the last candidate is less than fmax
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and the uncertainties on all the images are less than unc_convergence. Furthermore, the
difference between the true and predicted energy of the last evaluated candidate has to
be less than in unc_convergence. Therefore, the acquisition object must decide on the
image with the largest energy at the end.

The ML model used as default, and in this study, is the TP. The TP is especially good
at prediction uncertainties at few training points compared to a GP, which is important
at the beginning of the MLNEB simulation. The maximum energy in the training set is
used as the prior mean constant for the TP. The hyperparameters of the TP are tuned by
maximizing the LP with the factorization method every time the ML calculator is trained.
The prior distribution of the length-scale hyperparameter in logarithmic space is a normal
distribution with a mean value of 0.0 and a standard deviation of 3.0. Similarly, the normal
distribution is used for the relative-noise hyperparameter in the logarithmic space with a
mean value of −11.0 and a standard deviation of −4.0. The prior distributions are chosen
to give a reasonable estimate of the hyperparameter when atomic systems are considered
with a small noise in data at a few training points. The Cartesian coordinates of the
moving atoms are used as the fingerprints. The Cartesian coordinates of the fixed atoms
are not included in the fingerprints. All evaluated data through the MLNEB simulation
are used as training data.

5.2.1 Test systems
The MLNEB is tested on 9 test systems. The test systems are:

1. A diffusion of a gold atom from a hollow site to a neighboring hollow site of a fixed
aluminum(100) surface[43] (AuAl)

2. A heptamer island of platinum atoms that diffuse on a fixed platinum(111) sur-
face[43] (Heptamer)

3. Adsorption and dissociation of a hydrogen molecule onto the fcc sites of a fixed
copper(111) surface (H2Cufcc)

4. Adsorption and dissociation of a hydrogen molecule onto the hcp sites of a fixed
copper(111) surface (H2Cuhcp)

5. The Müller-Brown test system[75] (MB)

6. Adsorption and dissociation of a nitrogen molecule onto the fcc sites of a fixed
copper(111) surface (N2Cufcc)

7. Adsorption and dissociation of a nitrogen molecule onto the hcp sites of a fixed
copper(111) surface (N2Cuhcp)

8. Oxadiazoline molecule formation from ethene and Nitrous oxide molecules (Oxad)

9. Diffusion of a platinum atom on a platinum terrace surface [43] (TerPt)

The potential energies and forces of the test systems AuAl, Heptamer, and TerPt are calcu-
lated with EMT[107, 108]. GPAW with the XC functional RPBE[109] and plane waves are
used to calculate the potential energies and forces for H2Cufcc, H2Cuhcp, N2Cufcc, and
N2Cuhcp. GPAW with the XC functional PBE[63] and double zeta linear combinations
of atomic orbitals are used as a calculator for Oxad. Computational inexpensive methods
are chosen for the test systems for proof of concept and speed rather than accurate results
of the activation energies of the test systems.
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5.3 Results & Discussion
A clear advantage of the MLNEB compared to the regular NEB is that it can use the
OIE. The OIE therefore saves n_images−3 evaluations for each iteration compared to the
All-Image-Evaluation method (AIE) method. An example of the influence of the OIE can
be seen in Fig. 5.1. Only the data points with the most information are evaluated. The
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Figure 5.1: The minimum energy path and the potential energy surface for the x- and
z-coordinate of a gold atom diffusing on an aluminum(100) surface. The path in figure (a)
is the result of the regular nudged elastic band method that requires 63 evaluations. The
path in figure (b) is from the machine learning accelerated nudged elastic band method
that requires 7 evaluations. The red dots are the final minimum energy path, and the
black dots are the evaluated points.

predicted PES is not perfect in all regions, but it is correct and has a small uncertainty in
the regions of interest. The obtained activation energy and the MEP from the MLNEB is
the true path. 7 data points are evaluated and required for the AuAl test system when the
MLNEB is used. Thus, a significant reduction in the number of evaluations is obtained
compared to the NEB that requires 63 evaluations on the AuAl test system. The seven
evaluated data points are all in the region of interest.

The acquisition function and the stability of the MLNEB are dependent on the quality of
the uncertainty prediction. More evaluations of the true PES are required if the uncer-
tainties are wrong. The stability of the MLNEB depends on the quality of the uncertainty
predictions since the images could move too far into unknown regions. To remedy this, a
trust radius could be applied instead of uncertainty predictions. Though the trust radius
is simpler, the trust radius does not account for the information from the forces. Fur-
thermore, a random evaluation of one of the images or the AIE method must be applied
instead if the trust radius is used within a simple approach.

The initial guess of the MEP is very important for a regular NEB and MLNEB. A poor
initial guess gives rise to a lot of extra NEB iterations on the true and predicted PES.
Furthermore, a poor initial path will also force the ML algorithm to use evaluations and
time to learn an unnecessary region of the chemical space. It is also not certain that
the NEB can find the MEP if the initial path is poor. The NEB simulation is a local
optimization, and it is therefore dependent on the initial guess. Small step sizes in the local
optimization are necessary for a stable NEB simulation and especially for the MLNEB.
The MLNEB has the same disadvantages and advantages as the regular NEB with respect
to the local optimization.
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All the predicted activation energies from MLNEB matches the true activation energies
from NEB within the pre-defined uncertainty criterion (smaller than 0.05 eV) with the
largest error being 0.02 eV (see Table 5.1). The required number of evaluations for finding

Systems True barrier / [eV] Pred. barrier / [eV] Max. unc. / [eV] NEB evaluations MLNEB evaluations
AuAl 0.40 0.40 0.00 63 7

Heptamer 0.91 0.89 0.03 441 40
H2Cufcc 0.13 0.12 0.03 1404 59
H2Cuhcp 0.13 0.13 0.01 1305 54

MB 1.06 1.06 0.05 243 10
N2Cufcc 3.75 3.75 0.05 7353 38
N2Cuhcp 3.86 3.86 0.02 4850 37

Oxad 0.65 0.65 0.04 1665 55
TerPt 1.82 1.81 0.03 216 33

Table 5.1: The true activation barriers calculated with the nudged elastic band method
compared to the predicted activation barriers calculated with the machine learning ac-
celerated nudged elastic band method together. The required numbers of evaluations for
both methods are also listed. The maximum uncertainty at the last iteration is also listed.

the MEP is reduced with a factor from 6 to 189 with the MLNEB compared to the
corresponding NEB results. The adsorption and dissociation of the hydrogen and nitrogen
molecules required small time steps in the local optimization to converge.

However, the training of the ML model also takes time and especially when the training
set becomes large. The training time of the ML model is larger than the computational
cost of the analytical PES from EMT and the MB potential energy. However, the training
time is not as computationally expensive as DFT evaluations and especially not with
parameters that give more accurate results. The aim of this study is to test the method
to illustrate the robustness of very different systems. Hence, higher accuracy of the DFT
calculations with higher computational cost would be redundant. The DFT data shows
that the MLNEB also works for DFT data, which can have noises in the energies and
forces. However, the noises of the forces can not be too large since a single relative-noise
hyperparameter is used for energy and forces.

The MEP from the MLNEB is also similar to the MEP from the NEB (see Fig. 5.2). The
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Figure 5.2: The minimum energy paths obtained from regular nudged elastic band method
simulations (red dashed curves) and machine learning accelerated nudged elastic band
method simulations (blue curves with the images as dots). The number of evaluations for
each method is shown in the brackets.

structure of the SP is represented correctly and therefore also the activation energy. Small
deviations can be observed in the MEP. Fortunately, the deviations can be avoided with
stricter uncertainty criterion if the precise MEP is important.
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The MLNEB requires an activation barrier larger than 0.0 eV since the maximum force
of an atom in the last iteration must be less than the fmax convergence criterion. fmax
in the MLNEB is not the same as the one often used in the NEB that uses the maximum
force along the MEP.

The number of evaluations required for a regular NEB scale with the number of images
due to the AIE (see Fig. 5.3). Therefore, a higher resolution of the MEP requires more
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Figure 5.3: The number of evaluations performed as a function of the number of im-
ages used. The evaluations from the nudged elastic band method (red curves), the
machine learning accelerated nudged elastic band method with max_unc = 0.05 (blue
curve), max_unc = 0.10 (orange curve), and with max_unc = 0.25 (blue curve) is com-
pared. Figure (a) shows the number of evaluations performed on the Heptamer test
system with unc_convergence = 0.025. Figure (b) shows the H2Cuhcp test system with
unc_convergence = 0.050.

evaluations with the NEB. Contrary, the number of evaluations in the MLNEB does not
scale with the number of images due to OIE. However, the number of evaluations needed
for achieving convergence can change nonlinearly with the number of images. Thus, a
high resolution of the MEP is obtainable at the same computational cost. Furthermore,
the ML calculator is reusable after the simulation, and the PES of the region of interest
can be predicted with uncertainty.

The Cartesian coordinates are sufficient for the MLNEB since the NEB is a local opti-
mization. The structures can change significantly within the MEP, and a general trend
can be more complex to learn than the position dependence.

The prior mean constant greatly influences the stability of the MLNEB. It is advantageous
if the prior mean constant is greater than the activation energy. However, a prior mean
constant with the value of the initial or final state energy does exploration instead of
exploitation in the MEP.

5.4 Conclusion
In this study, the implemented MLNEB has been shown to significantly reduce the number
of evaluations required for finding the MEP. The evaluation reduction factor is around 5-
200 for the test systems studied. The reduction in the number of evaluations comes without
a large price of precision since the predicted accuracy can be tuned by an uncertainty
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criterion that matches the prediction error. Furthermore, the SP structure obtained from
MLNEB is within a maximum force criterion that ensures the right activation energy.

Furthermore, it has been demonstrated that MLNEB can successfully predict reaction
paths and barriers for very different kinds of systems, ranging from metal diffusion to
molecular reactions. This shows, that the MLNEB has the same degree of systemic flexi-
bility as the regular NEB. It should be noted that the MLNEB requires an energy barrier
larger than the reaction energy for convergence. The MLNEB can learn from data calcu-
lated from analytical EMT and MB PESs with no noise in energies and forces as well as
DFT calculated energies and forces with noises. Therefore, it is a robust method that finds
the MEP within the same restrictions as the NEB. The number of evaluations required
for achieving convergence depends on its parameters.

The number of moving atoms needs to be considered in the MLNEB since its computational
cost scales cubically with the coordinates of the moving atoms, similarly to the cubic
scaling with the number of atoms of DFT.

The region of interest for the reaction path is then obtained from active learning within
the MLNEB simulation without predefining a database. Afterward, the ML calculator
can then be used to get a higher resolution of the MEP.

Better scaling of the computational cost as a function of the number of training data
and the number of moving atoms is required to study very complex systems. This can
be achieved by using one or more reduced databases instead of one extensive database.
However, the selection of the data points must be considered. A reoccurring problem is
that the active learning process can be trapped in the suggestion of the same training
point that is being removed from the reduced database. Furthermore, a mixture or linear
combination of models with reduced databases can be used. However, the prediction
means and uncertainties need to be combined. This is the focus of future work.
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6 Summary
In this thesis, the Gaussian Process (GP) has been optimized to obtain a robust model with
good uncertainty predictions. The GP and a newly introduced Machine Learning (ML)
model have been implemented in two algorithms. The first new algorithm significantly
accelerates global adsorption searches for catalysis simulations, which is advantageous in,
e.g. high-throughput screening studies. The Nudged Elastic Band method (NEB) is the
most common way of finding the important Minimum Energy Path (MEP) of surface
reactions. However, the process is often computationally costly. The second algorithm
presented herein is a new implementation of the Machine Learning Accelerated Nudged
Elastic Band method (MLNEB), a robust method to significantly accelerate NEB calcu-
lations.

In chapter 2, the theory of the GP is explained. Furthermore, useful equations are in-
troduced for a robust GP. The factorization of the covariance matrix is treated as the
standard approach. Thus, the covariance matrix is independent of the prefactor hyperpa-
rameter, and the relative-noise hyperparameter replaces the noise hyperparameter. The
factorization gives a more transparent understanding of the hyperparameters effect and a
more robust inversion of the covariance matrix. The Log-Likelihood (LL) is expressed by
the analytical solution of the prefactor hyperparameter. Eigendecomposition of the fac-
torized covariance matrix permits variations in the relative-noise hyperparameter without
inversion of the covariance matrix for every variation. Furthermore, the new Student’s T
Process (TP) is derived from a Bayesian approach of the prefactor hyperparameter. At
last, a GP that mimics the fully Bayesian solution of the posterior predictive distribution
is derived by the use of Kullback–Leibler divergence (KL).

In the most common way of optimizing the GP, several problems often occur, e.g. ex-
ception errors in the optimization, overfitting due to plateaus, and underfitting due to
other plateaus. In chapter 3, methods and notes for avoiding these problems were dis-
cussed. To make optimization of the GP possible without exception error, which is shown
to ensure a stable optimization. A description of the hyperparameter space and a variable
transformation increases the probability of finding the global maximum of the LL. A new
and greatly improved method for the optimization of the hyperparameters is introduced
and implemented. The method finds the global maximums of the LLs for all test systems
with different training set sizes. The new method gives robustness to the GP that reg-
ular local and global optimizers do not achieve. Furthermore, the new method requires
a lower computational cost than other global optimizers. A new measure (Uncertainty
Deviation (UD)) for evaluating the uncertainty predictions is also established. Different
objective functions are evaluated and discussed with measures of the prediction means
and uncertainties. New modifications of already existing objective functions improve their
predictive qualities. The new TP is also discussed and evaluated as an improvement to the
GP. At last, the new Fully Bayesian Mimicking Gaussian Process (FBMGP) is discussed
and compared to the Maximum Likelihood Estimation (MLE), Maximum A Posteriori
estimation (MAP), and fully Bayesian solutions. The FBMGP has proved significantly
better for uncertainty predictions.

In chapter 4, the robust GP was implemented into a new algorithm, called Machine Learn-
ing Accelerated Global Adsorption Optimization method (MLGO), for finding the global
minimum energy adsorption structure. The MLGO performs a global optimization on the
surrogate surface that would be unfeasible on the true Potential Energy Surface (PES).

Accelerating catalysis simulations using surrogate machine learning models 53



CHAPTER 6. SUMMARY

A simple fingerprint of inverse distances is implemented to learn the PES faster globally.
The algorithm was tested on different surface test systems containing various elements
and facets as well as different types of adsorbates, including single atoms, small molecules,
and simultaneously adsorbed species. The Global Minimum Energy Structure (GMES) is
consistently achieved for all the test systems considered. The acceleration of the global
search is significantly faster than the standard methods. Furthermore, the setup of the
code is independent of the structure and adsorbate, which reduces the manual program-
ming time. Due to the active learning approach, no database is required for the ML model.
The advantages of the MLGO algorithm make it well suited for, e.g, automatic workflows.

A new version of the MLNEB is implemented and discussed in chapter 5. The new TP
is implemented into the code as a reliable ML model. The MLNEB uses active learning
for constructing the most useful database. The complete database is applied to optimize
the GP to ensure a stable model. Different catalysis reactions have been investigated to
ensure the stability of the method. A substantial reduction factor of 5-200 is obtained in
the number of evaluations required for getting the Minimum Energy Path (MEP) com-
pared to the regular Nudged Elastic Band method (NEB). As NEB is the most commonly
used method for finding the MEP, which is crucial in estimating reaction products and
rates, the improved MLNEB developed in this thesis has the potential to greatly reduce
computational time and resources for a wide variety of catalytic surface reactions.
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A Appendix
A.1 Fully Bayesian Mimicking Gaussian Process derivation
The Kullback–Leibler divergence (KL) of a single GP to the fully Bayesian solution can be
derived by using that the posterior predictive distribution of a GP is a Gaussian distribu-
tion. Two important equations before the derivation are the expected mean and variance
of a Gaussian distribution:

µ =

∫ ∞

−∞
yN (y|µ, σ2) dy (A.1)

σ2 =

∫ ∞

−∞
(y − µ)2N (y|µ, σ2) dy (A.2)

Thereby, the derivation of Eq. 2.49 in Section 2.5 is performed as:

DFB =

∫ ∞

−∞
p(y∗ | y⃗) ln

(
p(y∗ | y⃗)

p(y∗ | y⃗, θ⃗0)

)
dy∗

∝−
∫ ∞

−∞
p(y∗ | y⃗) ln

(
p(y∗ | y⃗, θ⃗0)

)
dy∗

=
1

2Nc

∑
i,j,r

c̃([Θ]ijr, y⃗)

∫ ∞

−∞
N (y∗|ȳ∗([Θ]ijr), σ

2
∗([Θ]ijr))

(y∗ − ȳ∗(θ⃗0))2

σ2∗(θ⃗0)
dy∗

+
1

2Nc

∑
i,j,r

c̃([Θ]ijr, y⃗)

∫ ∞

−∞
N (y∗|ȳ∗([Θ]ijr), σ

2
∗([Θ]ijr)) ln (2πσ2∗(θ⃗0))dy∗

=
1

2Nc

∑
θ⃗i

c̃(θ⃗i, y⃗)

(
σ2∗(θ⃗i) + (ȳ∗(θ⃗i)− ȳ∗(θ⃗0))2

σ2∗(θ⃗0)
+ ln (2πσ2∗(θ⃗0))

)

=
1

2Ncσ2∗(θ⃗0)

∑
θ⃗i

c̃(θ⃗i, y⃗)
(
σ2∗(θ⃗i) + (ȳ∗(θ⃗i)− ȳ∗(θ⃗0))2

)
+

1

2
ln (2πσ2∗(θ⃗0)) (A.3)

A.2 The test systems
The test systems used in Chapter 3 are described here.

A.2.1 Optimization of hyperparameters
The test systems used in Chapter 3 are described here.
Müller-Brown
The MB test system[75] is an analytical energy surface calculated with the implementation
in CatLearn[110]. Therefore, it has no noise in its energy calculations. The test system is
constructed from a linear grid in two dimensions with 30 points in each. The grid in the
x-direction is from −1.4 Å to 0.2 Å. The grid in the y-direction extends from 0.0 Å to 1.9
Å.
Au at Al
The AuAl test systems is calculated with the ASE [102] and the EMT calculator[107,
108]. The aluminum(100) fcc slab consists of 3× 3× 4 fixed aluminum atoms with a gold
atom located in different positions above the surface. The locations of the gold atom are
constructed from a grid of 12 points in each of the x- and y-dimension and 6 points in the
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z-dimension. The x-grid ranges from 0.0 Å to 5.0 Å. The y-grid ranges from 0.0 Å to 3.2
Å. The z-grid ranges from 0.0 Å to 2.0 Å. The grid points are relative movements of the
gold atom initially located at (1.0, 3.0, 12.65).
CO at Ni with EMT
The CONi test system consists of a nickel(100) fcc slab with 3×3×5 fixed nickel atoms, a
carbon atom adsorbed in the hollow site at 1.8 Å above the surface, and an oxygen atom
adsorbed at the on-top site at 1.7 Å above the surface. A molecular dynamics (MD)[26]
calculation in ASE with the EMT calculator within the canonical ensemble (NVT) is
performed. The Berendsen thermostat[111] at 800 K for 800 steps of 0.5 fs is performed.
CO at Ni with PBE
The system is the same as the CONi with EMT test system except the oxygen atom is
initialized in another hollow site than the carbon atom. Furthermore, the energies and
forces are calculated with DFT performed in GPAW[103, 104] with RPBE[109]. The
default parameters are used in GPAW.
Copper clusters
Two clusters of copper atoms are constructed by MD simulations with the same parameters
as for CONi. The copper clusters consist of 5 (Cu5) and 13 copper (Cu13) atoms. The
energies and forces are calculated with EMT. The initial structure of Cu5 is built from fcc
of Cu(111) with size 2× 2× 1 with a bridged copper atom at 2 Å above the four atoms.
The Cu13 is also an fcc structure of Cu(111) with size 2 × 2 × 3 and a bridged copper
atom.
O2 at platinum
Two oxygen atoms adsorbed at on-top sites of a platinum(100) surface are also as a
database. The platinum atoms are fixed and are constructed as fcc surface with 3× 3× 3
atoms. The energies and forces are calculated with PBE in GPAW. A MD is performed
with the same parameters as for the CONi database.
Water molecules at platinum
A database of four water molecules on a platinum(111) surface with 3 × 2 × 3 atoms is
constructed with a MD. All atoms move. The energies and forces are calculated with PBE
in GPAW. The same MD parameters are used as in the CONi database.
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A.3 Local optimization parameters
All the parameters tested for the local optimizers can be seen in Table A.1. The parameters

Parameters Local optimizer Values
Tolerance (tol) All [1.0 · 10−3, 1.0 · 10−8, 1.0 · 10−12]
Maximum iterations (maxiter) All [500, 5000]
Adapting the parameters to di-
mensionality (adaptive)

Nelder-Mead [False, True]

Metric corrections for the lim-
ited memory matrix (maxcor)

L-BFGS-B [5, 10, 15]

Maximum line search steps
(maxls)

L-BFGS-B [10, 20, 30]

Hessian times vector evalua-
tions per iteration (maxCGit)

TNC [-1, 0, 4]

Quality of line search (eta) TNC [0.1, 0.25, 0.5]
Scaling factor in log10
(rescale)

TNC [0.1, 1.3, 3]

Table A.1: The parameters investigated for getting the best local optimizer implemented
in SciPy are listed here[77].

were discussed in Section 3.2.2 and Section 3.3.2.

A.4 Global optimization parameters
All the parameters tested for the global optimizers can be seen in Table A.2. The param-
eters were discussed in Section 3.2.3 and Section 3.3.2.
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Parameters Global optimizer Values
Use educated guess bound-
ary conditions (use_bound)

Random sampling, Grid
Search, Line search, Fac-
torization

[False, True]

Number of random sam-
pled points (npoint)

Random sampling [10, 20, 30]

Number of grid points in
each dimension (npoint)

Grid search [10, 12, 15]

Local optimize in the end-
point (optimize)

Grid search, Line search,
Factorization

[False, True]

Number of grid points in
each dimension (npoint)

Line search [50, 100, 150]

Number of loops over all di-
mensions (loop)

Grid search [False, True]

Number of jumps (niter) Basin [10, 15, 20]
How often to update step-
size (interval)

Basin [5, 10, 15]

Temperature (T) Basin [0.1, 1.0, 10.0]
Maximum stepsize
(stepsize)

Basin [0.01, 0.01, 1.0]

Number for convergence
(niter_success)

Basin [5,20]

Initial temperature
(initial_temp)

Annealing [1000, 5230, 10000]

Ratio for restart
temperature
(restart_temp_ratio)

Annealing [1e-8, 2e-5, 1e-2]

Visiting distribution
(visit)

Annealing [1.1, 2.62, 2.9]

Local optimizations
(no_local_search)

Annealing [False,True]

Number of grid points in
each dimension (ngrid)

Factorization [50, 80, 100]

Search for multiple maxima
(multiple_max)

Factorization [False,True]

Table A.2: The parameters[77] investigated for getting the best global optimizer.
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A.5 Global optimization of hyperparameters
The average success rates, times, and iterations of the tested optimizers in Section 3.3.3.
The average success rates when derivatives are not used are shown in Table A.3.

Method Success rate Time / [s] Iterations
Local 0.863 (0.040,1.000) 0.071 (0.016,0.275) 52.813
Local prior 0.926 (0.050,1.000) 0.120 (0.028,0.412) 88.521
Local educated 0.933 (0.040,1.000) 0.132 (0.026,0.573) 97.827
Grid search 0.982 (0.000,1.000) 1.314 (0.716,3.550) 1760.612
Line search 0.900 (0.110,1.000) 0.709 (0.386,1.783) 940.271
Basin 0.877 (0.040,1.000) 0.484 (0.086,1.787) 345.061
Random sampling 0.999 (0.560,1.000) 1.304 (0.279,4.808) 1022.864
Annealing 0.940 (0.010,1.000) 4.586 (3.000,10.115) 5006.558
Annealing MLE 0.998 (0.470,1.000) 4.331 (2.744,9.671) 5016.133
Factorization 1.000 (1.000,1.000) 0.587 (0.303,1.555) 111.657

Table A.3: Table of the average success rate of finding the global maxima of the log-
likelihood for 8 test systems each with 7 training set sizes and 8 random seeds with different
optimizers. The average time and iterations are also shown. The brackets identify the
smallest and largest value observed. The derivatives of the targets (forces) are not used.

The average success rates when derivatives are used are shown in Table A.4.

Method Success rate Time / [s] Iterations
Local 0.745 (0.120,1.000) 0.254 (0.017,5.423) 53.019
Local prior 0.839 (0.150,1.000) 0.399 (0.038,8.471) 87.262
Local educated 0.908 (0.120,1.000) 0.484 (0.027,9.382) 107.854
Grid search 0.918 (0.000,1.000) 3.777 (0.662,57.362) 1763.690
Line search 0.753 (0.070,1.000) 1.891 (0.356,28.222) 940.151
Basin 0.768 (0.130,1.000) 1.513 (0.106,28.798) 357.300
Random sampling 0.999 (0.870,1.000) 4.477 (0.311,91.681) 1044.934
Annealing 0.906 (0.090,1.000) 9.685 (2.671,112.999) 5007.056
Annealing MLE 0.997 (0.770,1.000) 9.339 (2.454,110.617) 5017.380
Factorization 1.000 (1.000,1.000) 2.717 (0.293,41.304) 197.175

Table A.4: Table of the average success rate of finding the global maxima of the log-
likelihood for 8 test systems each with 7 training set sizes and 8 random seeds with different
optimizers. The average time and iterations are also shown. The brackets identify the
smallest and largest value observed. The derivatives of the targets (forces) are used.

A.6 Modification for Leave-one-out object function
The LOOCV prediction mean error scaled with the prediction uncertainty, z−i, is defined
as:

z−i =
y−i − y−i

σ−i
(A.4)
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z−i will be called the LOO scaled prediction error. The variance of the LOO scaled
prediction errors, σ2−z, can be expressed as:

σ2−z =
1

N

N∑
i=1

(z−i − z)2 = z2 − z2

=

(
1

N

N∑
i=1

(y−i − y−i)
2

σ2−i

)
−

(
1

N

N∑
i=1

y−i − y−i

σ−i

)2

(A.5)

σ2−z can also be factorized as σ2−z = α−2σ2−z0. Since the best prediction uncertainty is
obtained if σ2−z = 1, the prefactor hyperparameter can be derived analytically as:

α2
mod = σ2−z0 =

(
1

N

N∑
i=1

[C−1
0 (y⃗(X)− µ⃗(X))]2i

[C−1
0 ]ii

)
−

 1

N

N∑
i=1

[C−1
0 (y⃗(X)− µ⃗(X))]i√

[C−1
0 ]ii

2

(A.6)

A.7 Noise correction
In this section, the noise correction introduced in Section 3.3.1 is derived.

A matrix is invertible if the condition number is not infinity. The condition number of a
matrix A can be expressed of the minimum and maximum eigenvalues. As a consequence
of that, the matrix is singular if the minimum eigenvalue is zero. Numerically, the machine
precision, εM ≈ 2.3 · 10−16, is the limit before infinity. Therefore, the ratio between the
maximum and minimum eigenvalues for a matrix must not be larger than the inverse
machine precision if the matrix must be invertible as:

cond(A) =
λmax

λmin
≤ 1

εM
(A.7)

The problem of inverting the covariance matrix arises within the regime of a large length-
scale hyperparameter, where the covariance matrix becomes the all-ones matrix. There-
fore, a small correction (the noise correction) can be added to the diagonal to make the
covariance matrix invertible:

Kc(X,X) = K0(X,X) + δnI (A.8)

The largest possible eigenvalue of the covariance matrix is the trace of the covariance
matrix, λmax ≤ Tr(K0). This is due to the eigenvalues being positive and the sum of
the eigenvalues being equal to the trace of the matrix, Tr(K0) =

∑NK
i=1 λi. In the limit

of the length-scale hyperparameter going towards infinity, the covariance matrix becomes
the all-ones matrix, J, as:

lim
l→∞

Kc(X,X) = JNNα
2 + δnI (A.9)

Then, the minimum eigenvalue will be the noise correction. Therefore, the conditional
number is:

cond(Kc) ≤
∑NK

i=1 [K0]ii + δnNK

δn
≤ 1

εM
(A.10)

where NK is the number of diagonal elements of K0. Now, the noise correction can be
analytically derived as:

δn =
Tr(K0)

cϵϵ
−1
M −NK

(A.11)
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where cϵ ∈ (0, 1] is a constant to ensure that the condition number is lower than the
machine precision.
Unfortunately, the eigendecomposition algorithm requires a larger noise correction than
the analytical noise correction. A noise correction that also works for the eigendecompo-
sition is:

δn =
Tr(K)2

cϵϵ
−1
M −N2

K

(A.12)

The noise correction is tested on all-ones matrices with different sizes on a local MacBook
and Simple Linux Utility for Resource Management (SLURM) cluster with nodes of Xeon
16 and Xeon 40 (see Fig. A.1).
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Figure A.1: Analytic noise corrections from Eq. A.11 (blue dashed line) and Eq. A.12
(orange dashed line) plotted as a function of the size of all-ones matrices. The scatter
plots are the minimum noise correction needed for inverting the all-ones matrices on a
MacBook (green points), a Xeon 16 node (red points), and a Xeon 40 node (purple points)
as a function of matrix size.

The derivative of the corrected covariance matrix wrt. the length-scale hyperparameter
is:

dKc(X,X)

dl =
dK0(X,X)

dl + I 2Tr(K)

cϵϵ
−1
M −N2

K

NK∑
i=1

d[K0(X,X)]ii
dl (A.13)

A.8 Objective function error predictions
The results discussed in Section 3.2.4 are displayed here.

The geometric mean of the prediction mean and uncertainty errors when only energies are
used are shown in Table A.5.

The geometric mean of the prediction mean and uncertainty errors when energies and
forces are used are shown in Table A.6.
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Method RMSE / [eV] UD NLPP
GP LOO 7.76e-02 (1.11e-06,1.61e+02) 2.38e-01 (1.56e-06,1.93e+02) 4.46e+05
GP GPP 8.10e-02 (1.70e-06,9.47e+01) 3.48e-01 (1.22e-05,7.43e+01) 7.43e+03
GP GPE 7.76e-02 (1.12e-06,1.61e+02) 1.92e+03 (6.35e+01,2.96e+04) 5.10e+74
GP LL 7.29e-02 (8.07e-07,8.50e+00) 2.41e-01 (3.38e-07,1.10e+02) 2.06e+04
GP LP 7.29e-02 (8.10e-07,8.77e+00) 2.40e-01 (1.48e-06,8.46e+01) 7.18e+03
GP LL mod. 7.29e-02 (8.07e-07,8.50e+00) 2.13e-01 (1.15e-06,1.10e+02) 2.05e+04
TP LL 7.29e-02 (8.07e-07,8.50e+00) 2.15e-01 (8.07e-07,8.85e+01) 6.43e+03
TP LP 7.29e-02 (8.10e-07,8.77e+00) 2.17e-01 (2.03e-05,6.56e+01) 1.91e+03

Table A.5: Table of the geometric mean prediction errors of test systems. The training
targets are the energies. The LOO is the leave-one-out object function with modification.
LL mod. denotes log-likelihood with modification. The error bars show the smallest and
largest value observed. The brackets identify the smallest and largest value observed.

Method RMSE / [eV] UD NLPP
GP LOO 1.61e-01 (1.60e-04,9.70e+01) 5.88e-01 (1.00e-05,1.00e+02) 2.39e+04
GP GPP 1.54e-01 (1.43e-04,3.29e+01) 5.68e-01 (8.86e-06,1.29e+02) 8.49e+04
GP GPE 1.61e-01 (1.60e-04,9.98e+01) 2.36e+03 (1.27e+02,3.00e+04) 2.80e+75
GP LL 1.31e-01 (1.50e-04,7.88e+00) 4.18e-01 (4.46e-04,4.04e+01) 3.76e+02
GP LP 1.30e-01 (1.50e-04,7.66e+00) 4.04e-01 (3.48e-05,3.23e+01) 1.31e+02
GP LL mod. 1.31e-01 (1.50e-04,7.88e+00) 3.54e-01 (1.32e-05,3.84e+01) 2.11e+02
TP LL 1.31e-01 (1.50e-04,7.88e+00) 3.81e-01 (2.60e-06,3.91e+01) 2.65e+02
TP LP 1.30e-01 (1.50e-04,7.66e+00) 3.85e-01 (8.69e-04,3.12e+01) 3.46e+01

Table A.6: Table of the geometric mean prediction errors of test systems. The training
targets are the energies and derivatives. The LOO is the leave-one-out object function with
modification. LL mod. denotes log-likelihood with modification. The error bars show the
smallest and largest value observed. The brackets identify the smallest and largest value
observed.
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A.9 Machine learning accelerated Global Optimization
The results obtained and discussed in Chapter 4 is shown in Table A.7.

System Evaluations Stand. evaluations Energy deviation / [eV]
2H_Ag_GPAW 64 426 1.018
2H_Pt_GPAW 66 584 0.091
CO_Cu_GPAW 27 78 -0.001
H_Ag_GPAW 10 16 0.000
H_Pt_GPAW 15 28 0.001
OH_RuO2_GPAW 45 387 0.008
O_Pd211_GPAW 27 593 -0.000
O_Pd_GPAW 15 40 -0.000
O_Pd_fix 12 40 -0.001
O_RuO2_fix_GPAW 23 1109 -0.001
O_RuO2_GPAW 29 1009 -0.001

Table A.7: Table of the required evaluations with the new Machine learning accelerated
Global Optimization method compared to the standard methods. The energy deviation
(new method’s energy - standard methods’ energy) is also shown.
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Best Conventional Gaussian Process

Andreas Lynge Vishart1 and Thomas Bligaard1

1ASM, Department of Energy Conversion and Storage,
Technical University of Denmark, Kongens Lyngby, Denmark

Maximum likelihood estimation is a problematic and often unsuccessful task, even though it is the
most used approach for tuning a Gaussian process. The posterior distribution of the hyperparameters
from a Gaussian process is a multi-modal distribution with large flat regions. The success of the tuning is
crucially dependent on the defined area of interest for the hyperparameters. Applying prior distributions
to the hyperparameters are beneficial for tuning if the system is well-known. Besides the likelihood, a
variety of loss functions are considered. An introduction of the new factorization method can guarantee a
global maximization of the likelihood and significantly reduce the computational cost.

INTRODUCTION

Electronic structure calculations are a growing field for
explaining and discovering the regime of molecules and
condensed phases. However, insightful electronic struc-
ture calculations come with a computationally expensive
cost. Even though Density Functional Theory[1, 2] (DFT)
is considered a great compromise between accuracy and
computational cost, the cost is still overwhelming due to
the high number of iterations required for the structure
search algorithms.

Machine learning (ML) methods have shown to be
promising for accelerating the expensive techniques that
require electronic structure calculations[3–9]. Especially,
molecular dynamics, local structure optimizations, global
structure optimizations, and transition state searches with
minimum energy paths have been accelerated tremen-
dously by applying ML models. However, a precise and
reliable ML model is the foundation of all those acceler-
ated techniques.

The complete potential energy surface calculated with
DFT for a specific atomistic system can also be learned by
a ML model[10–12]. A high accuracy is then obtained with
a low computational cost. However, it requires a large pre-
defined database with structures of the specific atomistic
system and their DFT energies.

On the contrary, a structure search can be accelerated by
learning the region of interest and interpolating between
the calculated points. Active learning gives the benefit of
creating a database on the fly, which only contains the ex-
pensive computational calculations needed. However, it re-
quires that the ML model can predict uncertainties.

The Gaussian process (GP) [13] is a well-known ML
model for accelerating the aforementioned expensive tech-
niques. The GP is especially suited for active learning since
it predicts the best fit and corresponding uncertainties. The
GP interpolates well even with a few training points. The
drawback of the GP is that it scales O(N3) with the num-
ber of training points, N , and its hyperparameters must
also be optimized. The optimization of the hyperparam-
eters is not an easy task even for three hyperparameters,
which are often used. The normal procedure for optimizing

the hyperparameters of the GP is by using log-likelihood,
LL, or log-posterior, LP, maximization. The maximum
likelihood estimation (MLE) and the maximum a posteri-
ori estimation (MAP) assume that the posterior distribution
of the hyperparameters is practically described by its mode
with a single set of hyperparameters, which is a crude ap-
proximation and it is only valid when enough training data
is applied. Especially the uncertainty prediction is affected
by the crude single-point estimation. Often, a simple local
optimization is used for maximizing the hyperparameters.
A brute-force grid search can also be used although it is
computationally costly. Hamiltonian Monte Carlo[14] can
also be used to get a complete representation of the hyper-
parameter’s posterior distribution. However, it is extremely
computationally expensive, and it has to be recalculated for
each new test point if the fully Bayesian predictive distri-
bution has to be used.

The MLE can easily fail especially when an educated
guess is not applied. However, the educated guess will
change with the number of training points and the system
considered. In this work, the typical mistakes when opti-
mizing the hyperparameters are illustrated and explained.
Furthermore, a new method that guarantees to find the
global maximum for the three most used hyperparame-
ters is introduced. The performance of the new optimiza-
tion method is shown and compared to usual optimization
methods on nine test systems with various training set sizes
and random seeds. Different objective functions are tested
to verify if LL is the best objective function. Furthermore,
the underestimated uncertainty prediction of the GP due to
MLE is addressed by introducing a modification.

THEORY

A GP is a conditional multivariate normal distribution.
Therefore, a predicted target value, y∗, with a feature x⃗∗ is
given by Bayesian inference from a set of training features,
X, and targets, y⃗, expressed as:

p(y∗ | x⃗∗, y⃗,X, θ⃗) = N
(
y∗ | ȳ∗, σ2

∗
)

(1)
where ȳ∗ is the predictive mean, σ2

∗ is the predictive vari-
ance, and θ⃗ is a set of hyperparameters for the GP. The



2

function dependencies of the features have been disre-
garded due to simplicity. The predictive mean and variance
are analytically determined as:

ȳ∗ =µ∗ +K∗C
−1 (y⃗ − µ⃗) (2)

σ2
∗(x⃗∗) =α2(k∗∗ −K∗C

−1K⊤
∗ + σ2

r) (3)

where µ∗(x⃗∗) is the prior mean of the predicted point,
µ⃗(X) is the prior mean of the training points, K∗ ≡
K(x⃗∗,X) is the covariance matrix between the predicted
point and the training points, k∗∗ ≡ k(x⃗∗, x⃗∗) is the co-
variance matrix element of the test point with itself, and α
is the prefactor hyperparameter. Furthermore, C is the co-
variance matrix of the training points with noise expressed
as:

C = K(X,X) + δnI+ σ2
rI (4)

where σr is the relative-noise hyperparameter and δn is the
noise correction. The introduced noise correction is ex-
pressed as:

δn =
Tr(K)2

(ϵM)−1 −N2
(5)

The noise correction is the minimum noise required to en-
sure that the covariance matrix is invertible. The noise cor-
rection is essential since the covariance matrix can be sin-
gular. The mean of the training targets is used as the prior
mean.

The elements of the covariance matrices are kernel func-
tion values. It is the kernel function that makes it possible
to connect the features to the targets. The kernel function
chosen in this work is the well-known squared exponential
kernel function:

k(x⃗p, x⃗q) = exp

(
−|x⃗p − x⃗q|2

2l2

)
(6)

where l is the length-scale hyperparameter. Usually, the
prefactor hyperparameter is included in the kernel func-
tion. In this work, the prefactor is factorized outside of
the kernel function, and a relative-noise hyperparameter is
defined as a free hyperparameter instead of the common
noise hyperparameter. This factorization gives a better un-
derstanding of the hyperparameters effect. The prefactor
hyperparameter determines the variance of the targets and
affects the prediction uncertainty. However, the prefac-
tor hyperparameter has no effect on the prediction mean.
The relative-noise hyperparameter controls the regulariza-
tion of the predictions. The inversion of the covariance ma-
trix is also stabilized by the factorization due to machine
precision.

The distribution of the hyperparameters can be expressed
from Bayes’ theorem:

p(θ⃗ | y⃗,X) =
p(y⃗ | θ⃗,X)p(θ⃗)

p(y⃗ | X)
(7)

However, often the prior distribution of the hyperparame-
ters, p(θ⃗), is chosen to be a uniform prior distribution. As

a consequence of that, the posterior distribution of the hy-
perparameters is the likelihood. The log-likelihood, LL,
expression with the factorized prefactor hyperparameter is:

LL ≡ −1

2α2
(y⃗ − µ⃗)⊤C−1(y⃗ − µ⃗)− 1

2
ln (|C|)

− N

2
ln
(
α2
)
− N

2
ln (2π) (8)

Thereby, an analytic solution of the prefactor hyperparam-
eter, αMLE, can be derived from maximizing the LL[15]:

α2
MLE =

1

N
(y⃗ − µ⃗)⊤C−1(y⃗ − µ⃗) (9)

One eigendecomposition of the covariance matrix with-
out the relative-noise hyperparameters, K = UΛU⊤, is
enough to search after all values of the relative-noise hyper-
parameter and to find the prefactor solution for each length-
scale hyperparameter. Then, the factorized log-likelihood
is given as:

LL =
−N

2
(1 + ln (2π))− 1

2

N∑
i=1

ln
(
[Λ]ii + σ2

r

)
− N

2
ln

(
1

N

N∑
i=1

[U⊤(y⃗ − µ⃗)]2i
[Λ]ii + σ2

r

)
(10)

Thereby, the LL is independent of the prefactor hyperpa-
rameter in the optimization.

In this work, a modified version of LL is also applied.
The modification is performed by changing the analytical
prefactor hyperparameter solution in Eq. 9 into an unbiased
estimation of the variance after the maximization of LL.
The modified solution to the prefactor hyperparameter is
expressed as:

α2
mod =

N

N −Dθ

α2
MLE (11)

where Dθ is the number of hyperparameters optimized.
In this work, the objective functions from Ref. [16] are

also tested. The analytical expression for leave-one-out
cross-validation (LOO) is obtainable with a GP, which is
expressed as:

LOO =
1

N

N∑
i=1

(
[C−1 (y⃗ − µ⃗)]i

[C−1]ii

)2

(12)

The posterior predictive distribution can also be expressed
in terms of LOO as:

GPP =
1

Nα2

N∑
i=1

[C−1 (y⃗ − µ⃗)]2i
[C−1]ii

+ ln
(
α2
)

− 1

N

N∑
i=1

ln
(
[C−1]ii

)
+ ln (2π) (13)
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The LOO expression in Eq. 12 is independent of the pref-
actor hyperparameter and does not optimize the predic-
tion uncertainty. Therefore, a modification has been imple-
mented that determines the prefactor hyperparameter with-
out changing the prediction mean. The prefactor hyperpa-
rameter for the modified LOO is expressed as:

α2
mod =

(
1

N

N∑
i=1

[C−1 (y⃗ − µ⃗)]2i
[C−1]ii

)

−
(

1

N

N∑
i=1

[C−1 (y⃗ − µ⃗)]i√
[C−1]ii

)2

(14)

METHODS

The test systems

Seven different training set sizes are used for nine dif-
ferent test systems to discuss the performance of the
global optimization algorithms. The test system con-
sists of a one-dimensional analytic test function and seven
atomistic systems that are treated in the Atomic Simula-
tion Environment[17, 18] python package (ASE), where
the potential energies are calculated with either Effective
Medium Theory[19, 20] (EMT) or with DFT exchange-
correlation functional PBE[21] in GPAW[22, 23]. Eight
random seeds are used for each test system, and 100 initial
random sets of hyperparameters are sampled for each of
the random seeds. For detailed information about the test
systems, see SI.

The hyperparameters

A hyperparameter optimization is defined as successful
if the objective function value has a relative and absolute
error smaller than 1.0 · 10−3 compared to the global opti-
mum. The global maxima are defined as the greatest object
function values observed after all optimization for each of
the test systems at each random seed and training set size.
The success rate is calculated as the fraction of success-
ful hyperparameter optimizations. Mean values together
with minimum and maximum success rates over different
test systems and random seeds are used to compare success
rates.

Boundary conditions are defined for the hyperparame-
ters to restrict the search space (see Table. I). The initial
sets of hyperparameters are sampled from a uniform distri-
bution of the boundary conditions. A process with a shorter
length-scale than the lower boundary condition will not de-
scribe the interpolation between the points and will be an
overfit to the training points. However, a larger length-scale
than the median distance will not use the data, but takes an
average of the training points and will be an underfit. A

Hyperparameter Min. bound Max. bound

Length-scale (l) median(N⃗N)
5s 4s · median(D)

Prefactor (α) 1
10s

√
1
N |y⃗ − µ⃗|2 10s

√
1
N |y⃗ − µ⃗|2

Relative-noise (σr) 10
√
2εM N

TABLE I: Table of the boundary conditions obtained by
the educated guesses of the hyperparameters when using

the squared exponential kernel family. s is the scaling
factor chosen, N⃗N is the nearest neighbor distance for each
training data in the feature space, D is the distance matrix

in the feature space, and ϵM is the machine precision.

lower relative-noise hyperparameter than the lower bound-
ary condition does not have any effect, because of the ma-
chine precision and the noise correction. A higher relative-
noise hyperparameter than the upper boundary condition
will lead to an underfit since the largest possible eigen-
value of the covariance matrix without the prefactor will
be N when derivatives of the targets are not used.

A variable transformation of the hyperparameters is in-
troduced to enlarge the region of interest of the hyperpa-
rameters and without restricting any values of the hyperpa-
rameters. The scaled-logit functions are used for the vari-
able transformation from the new parameters tθ ∈ (0, 1)
to the old hyperparameters:

ln (θ) = µθ + sθ ln

(
tθ

1− tθ

)
(15)

The mean values of the logistic distributions, µθ, is the av-
erage of the logarithm of the minimum, bθ,min, and maxi-
mum boundary conditions, bθ,max, (see Table I) of the hy-
perparameters:

µθ =
1

2
(ln (bθ,min) + ln (bθ,max)) (16)

The scaling of the logistic distributions is set to 0.14 times
the difference of the logarithm of the boundary conditions
of the hyperparameter:

sθ = 0.14 (ln (bθ,max)− ln (bθ,min)) (17)

The value of 0.14 is selected since the boundary condi-
tions of the hyperparameters then corresponds to a 95%
percentile of the logistic distribution.

The optimization methods

The different optimization methods used are local, basin-
hopping, grid-search, simulated annealing, random sam-
pling, and the new factorized line-search (factorization
method) optimization.

The local optimization method uses Scipy’s
minimizer[24] with the L-BFGS-B method[25] for
maximizing the LL (Eq. 8).
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The basin-hopping[24, 26] implementation from Scipy
is used to optimize Eq. 8 with 15 basin-hopping iterations
and initialized from the initial sets of the hyperparameters.

The grid-search method defines a grid with 12 points in
each dimension for t⃗θ and calculates the LL in all points.
The point with the greatest value of LL is then maximized
with the local optimization method.

The dual-simulated annealing[24, 27–30] method imple-
mented in Scipy with default parameters and 5000 maxi-
mum iterations is used as the simulated annealing method.
The simulated annealing method uses the t⃗θ space and op-
timizes LL with the analytic solution of the prefactor.

The random sampling method, as the name implies, sam-
ple 19 different sets of hyperparameters in t⃗θ space and
uses the initial set of hyperparameter given. Then, all the
hyperparameter sets are locally optimized.

The factorization method initially makes a grid of 80
points in the tl space. For each length-scale hyperparame-
ter, a grid of 50 points is constructed in the space of the
variable-transformed relative-noise hyperparameter. All
LL values of the grid in the relative-noise hyperparame-
ter space are calculated with Eq. 10, which only requires
a single eigendecomposition of the covariance matrix with
the given length-scale hyperparameter. A golden-section
search[31] is performed on the intervals surrounding the
maximum of LL values. This process is performed for
all length-scale hyperparameters in the grid. All intervals
that surround a maximum of LL are identified with the fi-
nite difference method and optimized with a golden-section
search.

The prediction evaluation

The predictive abilities of the GP with the hyperparam-
eters optimized by global optimization of the different ob-
jective functions are evaluated and compared. When the
LP is maximized, normal prior distributions are used for
the length-scale and relative-noise hyperparameters in the
logarithmic space (log-space). The mean of the length-
scale prior is 2.0, and the standard deviation is 3.0 since
the Cartesian coordinates are used as the fingerprint and
potential energy changes around that length-scale of the
Cartesian coordinates. The mean of the prior distribution
of the relative-noise is −9.0, and the standard deviation is
3.0 since the noise on the potential energy from an EMT or
DFT calculation is small.

The evaluation of the prediction quality is based on the
root-mean-square error (RMSE) for the prediction mean
and new defined uncertainty measure, uncertainty devia-
tion (UD). The UD is the error between the variance from
the standardized predicted distribution and the standard

normal distribution. The RMSE is:

RMSE =

√√√√ 1

N

N∑
i=1

(y∗i − y∗i)
2 (18)

where y∗i is the prediction of test point i and M is the
number of test points. The UD error is expressed as:

UD = ln

( 1

M

M∑
i=1

z2i

)
−
(

1

M

M∑
i=1

zi

)2
2

(19)

where zi =
y∗i−y∗i

σ∗i
is the standardized prediction error for

test point i. The geometric mean is used to summarise the
prediction qualities.

RESULTS & DISCUSSION

Challenges of optimizing hyperparameters

Multiple problems can occur already with three hyper-
parameters. One major issue is the large flat region at low

FIG. 1: Log-likelihood with maximized prefactor
hyperparameter as a function of the length-scale and

relative-noise hyperparameters for the one-dimensional
test system.

length-scale and relative-noise values (see Fig. 1) which
corresponds to overfitting and where the covariance matrix
is going towards an identity matrix. Consequently, the op-
timization of hyperparameters initialized in the mentioned
region will converge immediately. Therefore, a global op-
timization method must be used. A similar problem is an-
other large flat region at high relative-noise values (larger
than the number of training points) that corresponds to all
observations being treated as noise. Another critical prob-
lem is that the covariance matrix can be singular at large
length-scale and low relative-noise hyperparameters if the
noise correction is not applied. This problem comes from
the covariance matrix going towards an all-ones matrix.
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Furthermore, the LL can be a multimodal distribution and
give multiple reasonable and different processes.

It is important to consider the hyperparameters in
the log-space since the hyperparameters must be scale-
invariant given that the features can have any length-scale
and the targets can have any function values. Furthermore,
the success rate comparison between local optimization
of hyperparameters in the linear- and log-spaces clearly
shows an advantage of using hyperparameters in the log-
space (see Fig. 2).

101 102

Training points

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
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s r

at
e

Linear
Log

FIG. 2: A comparison in success rate between
hyperparameters in the linear- (orange curve) and
logarithmic-space (blue curve). 100 initial sets of

hyperparameters for every eight random seeds at each
training set size are locally optimized with L-BFGS-B

from Scipy[24].

The boundary conditions of the hyperparameters are cru-
cial for a good optimization of the hyperparameters due to
the large flat regions on the LL surface. A success rate
comparison can also illustrate the importance of the bound-
ary conditions (see Fig. 3). The success rate of finding
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FIG. 3: A comparison in success rate between
hyperparameters sampled in the boundary condition

interval (blue curve), 10 times (orange curve), 100 times
(green curve), and 1000 times (red curve) the boundary

conditions of the length-scale and prefactor
hyperparameter. 100 initial sets of hyperparameters for
every eight random seeds at each training set size are
locally optimized with L-BFGS-B from Scipy[24].

the global maximum of the LL consistently decreases as a
function of the increase of the boundary conditions of the
length-scale and prefactor hyperparameters.

The optimization methods

The local optimizer finds the global maximum 86.3 %
of the time on average. However, the success rates change
drastically depending on the training set and the initial set
of hyperparameters.

The factorization method outperforms the other opti-
mization methods (see Fig. 4) in terms of success rate for
finding the global maximum of LL for the nine test sys-
tems with seven different training set sizes and eight dif-
ferent random seeds each. The factorization method lo-
cates the global maximum in all test cases and is there-
fore a robust method for finding the global maximum of
LL. However, it is necessary to state that the basin of at-
traction in the length-scale hyperparameter has to be larger
than the grid spacing. The computational cost of the fac-
torization method is larger than the local optimization due
to fewer iterations in the local optimization and the larger
computational cost of the eigendecomposition compared to
the Cholesky decomposition. However, the local optimiza-
tion is far from sufficient for finding the global maximum.
The factorization method does not depend on probability
for finding a reasonable initial hyperparameter set and will
give a consistent hyperparameter solution. Furthermore,
it is not as computationally expensive as the robust grid-
search method, and therefore a finer grid can be achieved.

The grid search method cannot find all global maximums
since the grid is not dense enough due to its high computa-
tional cost.

The random sampling method is performing well in
terms of success rate, but it relies on probability to find the
global maximum. Therefore, the global maximum is not
guaranteed. The computational cost of the random sam-
pling method with the chosen number of samplings is be-
yond the factorization method.

The simulated annealing method also has problems lo-
cating the global maximums consistently, and it is compu-
tationally expensive.

The prediction evaluation

The modification of the LOO significantly improves its
uncertainty predictions (see Table II). The uncertainty pre-
dictions of the modified LOO are slightly better than the
uncertainty predictions from LL and LP. However, the pre-
diction means from LOO are slightly worse than the predic-
tion means from LL and LP. LOO can result in overfitting
due to the prediction of only a single point in the cross-
validation. GPP does not perform as well as the other meth-
ods in terms of prediction mean and uncertainty. The use



6

Local Basin-hopping Grid-search Annealing Random sampling Factorization0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

su
cc

es
s r

at
e

10 1

100

101

Ti
m

e

FIG. 4: The average success rate for finding the global maximum of the likelihood for each optimization method. The
success rate from 100 initial sets of hyperparameters for each of the eight random seeds at each training set size at each

test system is averaged and shown together with error bars from the minimum and maximum success rate for each global
optimization method.

Method RMSE / [eV] UD
LOO 7.76e-02 (1.11e-06,1.61e+02) 1.43e+01 (1.24e-06,2.85e+03)
LOO mod. 7.76e-02 (1.11e-06,1.61e+02) 2.38e-01 (1.56e-06,1.93e+02)
GPP 8.10e-02 (1.70e-06,9.47e+01) 3.48e-01 (1.22e-05,7.43e+01)
LL 7.29e-02 (8.07e-07,8.50e+00) 2.41e-01 (3.38e-07,1.10e+02)
LP 7.29e-02 (8.10e-07,8.77e+00) 2.40e-01 (1.48e-06,8.46e+01)
LL mod. 7.29e-02 (8.07e-07,8.50e+00) 2.13e-01 (1.15e-06,1.10e+02)

TABLE II: Table of the geometric mean prediction errors
of test systems. The training targets are the energies. The

LOO is the leave-one-out object function with
modification. LL mod. Denotes log-likelihood with

modification. The error bars show the smallest and largest
value observed. The brackets identify the smallest and

largest value observed.

of prior distributions on the relative-noise hyperparameters
ensures that the model takes the low noise of the potential
energies from the EMT or DFT calculations into account
to avoid underfitting when the training sets are small. Sim-
ilarly, the length-scale prior distributions enforce a small
enough length-scale to avoid underfitting, but it also avoids
overfitting when the training sets are small. Therefore, the
greatest error in the prediction uncertainty is smaller for LP
than for LL. The modification to LL improves the predic-
tion uncertainty. Therefore, the LL with modification is the
Pareto-optimal solution of the tested objective functions.

CONCLUSION

The LL is verified to be the best of the investigated objec-
tive functions since it leads to a good compromise between
prediction means and uncertainties. Using prior distribu-
tions makes the prediction uncertainty more controlled if
prior knowledge is known. A simple modification to the
prefactor hyperparameter improves the uncertainty predic-
tion without changing the prediction mean. Therefore, ro-
bustly maximizing the LL or LP is essential.

The large flat regions of LL make it challenging to max-

imize LL with local and global methods. The flat regions
lead to overfitted and underfitted models. Thus, enlarging
of the important regions of the LL surface without restrict-
ing possible hyperparameters is essential. It is possible
with a variable transformation that uses defined boundary
conditions for the hyperparameters. Then, a grid can be
constructed in the entire hyperparameter space. This com-
plete grid permits the factorization method. The new fac-
torization method consistently obtains the maxima of LL
for all optimizations of the hyperparameters. Furthermore,
the factorization method has a lower computational cost
than the other global optimizers. Therefore, a robust and
reliable GP can be obtained.
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htari, and H. Jónsson, The Journal of Chemical Physics 147,
152720 (2017).

[5] J. A. G. Torres, P. C. Jennings, M. H. Hansen, J. R.
Boes, and T. Bligaard, Physical Review Letters 122, 156001
(2019).

[6] C. Panosetti, A. Engelmann, L. Nemec, K. Reuter, and J. T.
Margraf, Journal of Chemical Theory and Computation 16,
2181 (2020).

[7] E. G. del Rı́o, J. J. Mortensen, and K. W. Jacobsen, Physical
Review B 100, 104103 (2019).

[8] M. K. Bisbo and B. Hammer, Physical Review Letters 124,
086102 (2020).

[9] S. Kaappa, C. Larsen, and K. W. Jacobsen, Physical Review
Letters 127, 166001 (2021).

[10] S. Lorenz, A. Groß, and M. Scheffler, Chemical Physics
Letters 395, 210 (2004).

[11] J. Behler, S. Lorenz, and K. Reuter, The Journal of Chemical
Physics 127, 014705 (2007).

[12] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky,



7

Nature Communications 13, 2453 (2022).
[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes

for Machine Learning (The MIT Press, 2005).
[14] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth,

Physics Letters B 195, 216 (1987).
[15] E. G. del Rı́o, S. Kaappa, J. A. G. Torres, T. Bligaard,

and K. W. Jacobsen, The Journal of Chemical Physics 153,
234116 (2020).

[16] S. Sundararajan and S. S. Keerthi, Neural Computation 13,
1103 (2001).

[17] S. Bahn and K. Jacobsen, Computing in Science Engineer-
ing 4, 56 (2002).

[18] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Ham-
mer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B.
Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal,
K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson,
T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz,
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Supporting Information

Test systems

Nine test systems are used to study the optimization of
the hyperparameters. A database is made for each of the
nine test systems. Training set sizes of 3, 6, 12, 25, 50,
100, and 200 are sampled from each of the databases with
8 different random seeds. The random seeds are from 1
to 8. The training sets with larger sizes include the same
points as training sets with fewer points at each seed. A
test set of 400 points is also sampled from the database.
The points of the test set are excluded from the training
sets. All atomistic structures are considered in the atomic
simulation environment[17, 18] (ASE) python package.

Simple test system

The first test system is a simple analytical function with
the expression:

g(x) = 3 sin

(
x2

202

)
− 9 sin

(
0.6x

20

)
+ 17 (20)

The database with the simple test system uses an 1 dimen-
sional input feature x from −40 to 100 with 800 points.
The simple test system is used to illustrate the challenges
of finding the global maxima of the LL.

Müller-Brown

The Müller-Brown potential energy[32] is used for a 2-
dimensional analytical test system. The database is calcu-
lated from a feature grid in the x dimension from −1.4 to
0.2 with 30 points and in the y dimension from 0.0 to 1.9
with 30 points.

Au at Al

Another test system is a gold atom at a fixed alu-
minum(100) surface with 3 × 3 × 4 atoms. The potential
energy of the gold atom is calculated from a 3-dimensional
grid. The grid points in the x dimension are from 0.0 to
5.0 with 12 points. The grid points in the y dimension are
from 0.0 to 3.2 with 12 points. The last dimension has
grid points from 0.0 to 2.0 with 6 points. The potential en-
ergy is calculated with the effective medium theory[19, 20]
(EMT).

CO at Ni

Two databases are constructed from molecular dynamic
simulations (MDs) calculation of carbon monoxide at a

fixed nickel(100) surface. The first database uses EMT
for calculating the potential energy. The nickel surface
has 3 × 3 × 5 atoms. The second database uses den-
sity functional theory[33? ] (DFT) with RPBE[34] as the
exchange-correlation functional. GPAW[22, 23] is used for
the electronic structure calculation. The default parameters
are used in GPAW. The nickel surface has 3×3×3 atoms.
The canonical ensemble (NVT) is used for both MDs. The
Berendsen thermostat[35] is used to scale the temperature
at every step. A time step of 0.5 fs, a temperature of 800 K,
and 800 steps are used in both MDs. The initial structure
is constructed from the carbon atom and oxygen atoms are
adsorbed in a hollow side each.

Copper clusters

Two databases are made from copper clusters. The
smallest cluster consist of 5 copper atoms (Cu5). 13 copper
atoms are used in the largest cluster (Cu13). The potential
energies of both databases are calculated with EMT in the
ASE framework. The NVT are used to perform the MDs
of the two clusters. The Berendsen thermostat is used at
every step. A time step is 0.5 fs, the temperature is 800
K, and 800 steps are used. The initial structure of Cu5 is
build from an fcc of Cu(111) with size 2 × 2 × 1 with a
bridged copper atom. Similarly, Cu13 is an fcc structure of
Cu(111) with size 2× 2× 3 and a bridged copper atom.

O2 at platinum

A database of two oxygen atoms adsorbed both on on-
top sides at a platinum(100) is calculated with PBE in
GPAW. The fixed platinum(100) surface is constructed of
3 × 3 × 3 atoms. MD is performed with NVT, and the
Berendsen thermostat is used at every step. The step size is
0.5 fs, the temperature is 800 K, and 800 steps are used.

Water molecules at platinum

The last database is a MD of four water molecules on a
platinum(111) surface with 3 × 2 × 3 atoms. All atoms
are able to move. PBE is used as the exchange-correlation
functional in GPAW. The NVT method is used with the
Berendsen thermostat used at every step, the stepsize is 0.5
fs, the temperature is 300 K, and 800 steps are used.
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Machine-learning enabled optimization of atomic structures using atoms with fractional
existence
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We introduce a method for global optimization of the structure of atomic systems that uses additional
atoms with fractional existence. The method allows for movement of atoms over long distances bypass-
ing energy barriers encountered in the conventional position space. The method is based on Gaussian
processes, where the extrapolation to fractional existence is performed with a vectorial fingerprint. The
method is applied to clusters and two-dimensional systems, where the fractional existence variables are
optimized while keeping the atomic positions fixed on a lattice. Simultaneous optimization of atomic coor-
dinates and existence variables is demonstrated on copper clusters of varying size. The existence variables
are shown to speed up the global optimization of large and particularly difficult-to-optimize clusters.

The atomic-scale structure is of critical relevance to the
physical and chemical properties of materials and nanopar-
ticles. In the low temperature limit, the most stable atomic
configuration is found by minimizing the total energy, but
the optimization problem is difficult because of many meta-
stable states, and, in many cases, the total energy evalua-
tions are computationally time consuming.

To address these problems several algorithms of auto-
matized structure prediction have been proposed [1] in-
cluding random searches [2], genetic searches [3–6], basin
hopping [7] and particle swarm optimizations [8]. Cen-
tral to most of these methods is that they rely on carry-
ing out large numbers of time-consuming calculations with
density functional theory (DFT) or other quantum chem-
istry methods. To circumvent the time-issue of DFT with-
out compromising the accuracy of the calculations, Gaus-
sian processes have shown effective in constructing surro-
gate potential energy surfaces (PES) [9, 10]. These sur-
faces can be explored by random searching and updated
by Bayesian search methods as demonstrated with the so-
called GOFEE (’Global Optimization with First-principles
Energy Expression’) algorithm in Ref. 11. This method-
ology is generalized to include training on forces in the
BEACON (’Bayesian Exploration of Atomic Configura-
tions for OptimizatioN’) code [12]. In Ref. 13, GOFEE is
shown to decrease the number of energy evaluations neces-
sary to find the global minimum by up to several orders of
magnitude compared to traditional algorithms. Central to
GOFEE/BEACON is the representation of atomic configu-
rations by means of a fingerprint, which is invariant under
translation, rotation, and inversion, and also under the per-
mutation of atoms of the same chemical element.

It has been shown that the efficiency of random search-
ing can be improved by inclusion of hyperdimensions [14].
The extra dimensions make it possible to circumvent barri-
ers in the usual configuration space. However, the energy

function has to be defined for the extra hyper-dimensions.
This can be done for some analytic interatomic potentials,
but it is not clear how to do this in the case of potential en-
ergy surfaces based on quantum mechanical calculations.

An alternative way to increase the dimensionality of con-
figuration space and circumvent barriers is to interpolate
between chemical elements (’ICE’) as implemented in the
ICE-BEACON code [15]. Here, additional dimensions are
introduced so that an atom can be a fractional mixture of
two chemical elements. The extension of the energy func-
tion to the extra dimensions is performed through a Gaus-
sian process with a fingerprint, which allows for fractional
chemical identities.

In this paper, we apply the idea of expanded dimension-
ality in a new way by introducing extra variables, which
allow the atoms to have partial existence. The idea is that
additional atoms of fractional existence can act as candi-
date sites for real atoms, allowing existence to be trans-
ferred from less to more favorable sites over arbitrarily long
distances bypassing energy barriers in the conventional po-
sition space. Since some of the atoms end up with very
little or no existence we shall refer to the additional atoms
as ghost atoms, and we will refer to the approach as Ghost-
BEACON.

In the model, a system with N atoms is treated as a sur-
rogate system with N∗ > N atoms, where every atom
(with index i) is given a fractional existence qi ∈ [0, 1]
with the constraint that the fractions sum to the number of
real atoms

∑N∗

i qi = N . The system is thus characterized
by 3N∗ spatial coordinates and N∗ existence variables.
The existence variables are incorporated into a structural
fingerprint with radial and angular parts that resemble the
corresponding distribution functions. The radial part reads

ρR(r) =
∑

i,j
i 6=j

qiqj
1

r2ij
fc(rij) e

−|r−rij |2/2δ2R (1)
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FIG. 1. (a) The 2D test system with 8 atoms, labeled from 1 to 8.
In this configuration, atom 1 is a ghost atom, and atoms 2-8 are
real. The blue curve shows the real-space minimum-energy path,
where atom 8 is moved to the empty site 1. (b) Different energy
profiles while moving the atom from site 8 to site 1 in (a). The
black curve shows the EMT energies along the minimum-energy
path, and the blue curve shows surrogate energies along the same
path. The yellow curve shows the energy profile in the case where
no atoms are moved, but the existence is transferred from atom 8
to atom 1. (c) The variation of the existence variables during the
transfer of existence from atom 8 to 1.

where r is the distance variable, rij are the interatomic dis-
tances, fc a cutoff function, and δR a length parameter. The
angular part has a similar form. (Please, see details of the
machine learning model and the fingerprint in the Supple-
mental Material [16]).

The radial fingerprint is in general quadratic in the exis-
tence variables. However, let us consider a situation where
all atoms either fully exist (q = 1) or are completely re-
moved (q = 0) except for two atoms, say numbers 1 and
2, whose distance is larger than the cutoff distance. In that
case, the fingerprint becomes linear in q1 and q2. If we fur-
thermore assume that the surroundings of the two atoms are
identical, the transfer of existence from atom 2 to atom 1
(q2 = 1− q1) leaves the fingerprint completely unchanged
during the transfer. This means that any machine-learning
model based on the fingerprint shows no energy barrier for
the process. This analysis also holds if the angular finger-
print is included. (Shown explicitly in Supplemental Mate-
rial [16], Fig. S1).

To illustrate the removal of energy barriers further, we
show in Fig. 1(a) a system with 7 copper atoms accom-
panied by a ghost atom with the energies calculated with
an effective-medium-theory (EMT) interatomic potential

[17, 18]. We investigate the energy profile of moving
an atom from a less favourable site (site 8) to a more
favourable one (site 1) by following the trajectory shown
in blue, which is the minimal-energy path found with a
nudged-elastic-band (NEB) calculation [19, 20]. We com-
pare this motion to the alternative path of existence trans-
fer allowed by the new existence variables. A Gaussian-
process surrogate model is trained on 8 points along the
NEB trajectory. The black curve in Fig. 1(b) shows the
EMT energies along the NEB path, while the blue curve is
the surrogate energy along the same path. The blue curve
roughly matches the black one, as expected, showing two
energy barriers in the energy landscape corresponding to
atom 8 bypassing atoms 5 and 2. The yellow curve in
Fig. 1(b) shows the energy during the transfer of existence
from atom 8 to 1 with the reaction coordinate q1 = 1− q8
and all other existence variables fixed. The energy is almost
linear with no potential barrier which means that the trans-
fer of the atom from site 8 to 1 is favoured and straightfor-
ward in the existence space.

Figure 1(c) visualizes the energy minimization process
where initially q1 = 0 and qi = 1 for i = 2, 3, . . . , 8. Dur-
ing the relaxation, the existence of atom 8 decreases while
the existence of atom 1 increases. Interestingly, the process
also involves atoms 2 and 3, which temporarily lose some
of their existence. At the end of the relaxation, the exis-
tence has been completely transferred from atom 8 to atom
1.

We further illustrate the property of the PES when vary-
ing the existence variables in Fig. 2. Atom 8 is now moved
along the indicated linear path in Fig. 2(c) when having dif-
ferent amounts of existence q8, where the remaining exis-
tence is taken up by atom 1, q1 = 1−q8. Atom 8 is seen to
be more weakly interacting with the rest of the cluster when
its existence is reduced, but the bonding distance remains
essentially the same. This means that an atom with a small
existence will tend to position itself at similar geometries as
real atoms making the transfer of existence more relevant.
However, the figure also shows that an atom with vanish-
ing existence does not interact. This also follows from the
fact that such an atom does not contribute to the fingerprint.
Atoms with zero existence can therefore float freely around
making it unlikely that they take part in optimization. For
efficient structure optimizations, it is therefore necessary
to introduce a lower bound for the existence variables and
consequently increase the total existence.

It should be noted that the extension of the machine
learning model to the fractional existence space is an ex-
trapolation that cannot be controlled by the addition of data
points. The quality of the model therefore depends strongly
on the way the existence fractions are included in the fin-
gerprint and the choice of hyperparameters for the machine
learning model.

We now turn to structural optimizations where the ener-
gies and forces are based on DFT. The DFT calculations
are performed using GPAW [21, 22] and the Atomic Simu-
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FIG. 2. (a) Energy curve and (ba) force curve of copper atom
8 as a function of the distance between copper atom 8 and the
remaining cluster along the direction of the blue arrow depicted
in (c) for different existence fractions of atom 8. Training is done
with EMT on 10 different distances of atom 8. All existence not
carried in atom 8 is placed in atom 1 (q1 = 1 − q8). The energy
curves are seen to exhibit a minimum at approximately the same
distance.

lation Environment [23, 24]. We apply the Perdew-Burke-
Ernzerhof [25] exchange-correlation functional. The plane
wave cutoff is 700 eV and the Fermi temperature is 0.1 eV.
Only the Γ-point is used for k-point sampling except for
graphene on a dense grid (Fig. 3) where (3,2,1) k-points
are used. When performing relaxations with DFT, we use
as convergence criterion that all atomic forces are smaller
than 0.01 eV/Å.

The optimization algorithm is similar to the one of ICE-
BEACON but with existence variables instead of chemi-
cal element interpolation: given a database of structures
with DFT calculated energies and forces, a surrogate PES
is constructed using a Gaussian process where the struc-
tures are described by the fingerprint. All systems in the
database have N atoms, but the surrogate model can be
used to make predictions for systems with N∗ atoms with
fractional existence. The surrogate PES is explored with
random searching, that is with 40 local relaxations based
on random initial configurations. The relaxations can be
performed in either the atomic coordinates or the fractional
existence variables, or both. If the existence variables take
on fractional values after relaxation, theN largest fractions
are set to 1, and the remaining to 0. The relaxed structures
are evaluated with an acquisition function using the pre-

dicted energy and its uncertainty, and the structure with the
lowest value is added to the DFT database. This proce-
dure is iteratively repeated keeping track of the low energy
structures obtained. The full simulation procedure is re-
peated to obtain statistics of the performance. Details of
the algorithm including the computational parameters can
be found in Supplemental Material [16].

0 10 20 30 40
Number of DFT evaluations

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

su
cc

es
s

Graphene Graphene
Dense Grid C60 Au20

(a) (b) (c) (d)

(e) A B C D

FIG. 3. (a-d) Atomic grids (top) and global minimum energy
structures (bottom) of (a) carbon (48 atoms) on a periodic trian-
gular lattice (72 atoms), (b) carbon (8 atoms) on a dense rectan-
gular lattice (48 atoms total), (c) C60 on a 147 atoms icosahedral
grid, and (d) Au20 on a 64 atoms fcc grid. (e) Success curves
for finding the global minimum energy structure for each setup
shown in (a-d). Only the existence variables are optimized while
keeping the atomic positions fixed on the grid. The uncertainties
are Bayesian estimates.

We first consider some examples where the atomic posi-
tions are fixed and where only the existence variables are
optimized. Fig 3(a)-(d) show four different systems, which
are (a) a single layer of carbon atoms on a periodic triangu-
lar lattice with an equilibrium interatomic distance of 1.42
Å corresponding to the one of graphene. The system con-
tains a total of 72 atoms with 48 real atoms, which is the
number of atoms corresponding to a layer of graphene. (b)
A dense layer of carbon atoms on a periodic rectangular
grid with interatomic distance a = 0.710 Å in one direc-
tion and 0.5

√
3a in the other direction. The total num-

ber of atoms is 48 with 8 real atoms again corresponding
to the density of graphene. (c) An icosahedron of carbon
atoms with 147 atoms in total and 60 real atoms with an
interatomic distance of 1.44 Å between atoms belonging to
the same icosahedral layer roughly agreeing with the bond
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lengths for a Bucky ball. (d) A cluster of fcc gold contain-
ing a total of 64 atoms and 20 real atoms.

Each optimization has an initial training set of two ran-
dom sets of existence variables: one where the atoms are
chosen by random and one where the atoms are chosen by
random but so that the final structure is connected. The ob-
tained minimum-energy structures for the four systems are
shown in the lower panel of Fig. 3(a)-(d) The minimum-
energy structure for (a) and (b) is a graphene layer, for (c)
it is a C60 bucky ball, and for (d) it is the tetrahedral Au20
cluster [26]. The statistics of the optimizations are shown
in the success curves in Fig 3(e). In all four cases 10 inde-
pendent simulations have been performed, and the success
curves show the fraction of simulations, which have found
the lowest-energy structure as a function of the number of
DFT calculations being performed.

The algorithm succeeds in finding the global optimum
within 50 DFT calculations in 10/10 runs for both grid
types of graphene and in 9/10 and 7/10 attempts for C60

and Au20, respectively. Finding the structure of graphene
on the standard triangular lattice proved to be a particu-
larly easy task for the algorithm, which is probably due to
the high degree of regularity of the grid and due to the high
N/N∗ ratio as compared to the problem of Au20, for ex-
ample.

The method also allows for simultaneous optimization
of atomic coordinates and existence fractions as we shall
now illustrate with copper clusters of varying size. We
compare the performance of BEACON, which optimizes
in only the configuration space of atomic coordinates, and
the present approach, Ghost-BEACON, which optimizes in
both configuration space and existence variables. We con-
sider clusters of sizes 10, 20, and 30 atoms and in each
case we add 50% ghost atoms and perform 20 independent
simulations. The resulting minimum-energy structures are
shown in Fig. 4 together with the success curves, where
success is declared when a structure is within 0.1 eV of the
lowest energy encountered across all runs of a give cluster
size. Further analysis shows that the declared successful
structures for Cu10 are all identical, while in the case of
Cu20 two distinct structures are identified. In the case of
Cu30 several structures have low energies, most of them
slight alterations of the structures shown in (c).

We first note that the number of DFT calculations nec-
essary to determine low energy structures does not vary
monotonically with cluster size. The Cu10 cluster requires
considerably more computational effort than Cu20. This
might seem surprising as the number of variables to con-
sider in the optimization of course increases with cluster
size. However, it should be recalled that we are doing ran-
dom searching on the surrogate PES (with or without the
existence variables) starting from random initial configu-
rations, and the basin of attraction for the different local
minima might vary substantially. This is the case for Cu10,
where the 3rd lowest energy structure is found more fre-
quently than the ground state. (Shown with success curves
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FIG. 4. (a-b) Global minimum structures of Cu10 and Cu20
and(c) the two lowest energy minima of Cu30 being so close in
energy that they are almost inseparable. (d) Success curves of
20 independent runs of each 80 DFT-calculations without ghost
atoms (BEACON) and with ghost atoms constituting 1/3 of the
total number of atoms (Ghost-BEACON) for optimization of
Cu10 (5 extra atoms), Cu20 (10 extra atoms) and Cu30 (15 ex-
tra atoms). Each iteration of the BEACON cycle was based on
40 surrogate relaxations. Each run had an initial training set of 2
random structures.

in Supplemental Material [16]Fig. S2).
The presence of ghost atoms is seen to improve the

searches considerably, in particular in the cases where
BEACON does not easily identify the ground state.

The structures of Fig. 4(a-c) are different from the ones
found using empirical potentials or tight binding molecular
dynamics [27–29]. They are also different and lower in
energy than the structures found using DFT in Ref. 30 as
verified by relaxing all candidate structures with DFT.

The main function of the ghost atoms is to open new
relaxation pathways as discussed above. To analyze this
more, we construct a surrogate PES for Cu30 from a train-
ing set consisting of 151 configurations including some of
the identified low-energy structures. We perform 1000 re-
laxations on the potential energy surface from random ini-
tial configurations for different choices of ghost atoms. The
distributions of the obtained relaxed surrogate energies are
shown in Fig. 5. Without any ghost atoms (the blue curve)
we get the result that is obtained with BEACON. We see
that when ghost atoms are introduced, the distribution is
shifted to lower energies as an indication that the relax-
ations are not trapped as much in higher-lying local minima
as is the case for BEACON. The inset in the figure shows
the average energies of the distributions. Clearly the main
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effect comes from introducing just a few ghost atoms into
the system, and the effect quickly levels off with the num-
ber of ghost atoms. The fact that rather few ghost atoms
improve the efficiency is also seen for Cu10 and Cu20 and
is also observed in the success curves (Supplemental Ma-
terial [16]Figs. S3 and S4).

Several modifications and extensions of the approach
presented here are possible. It should be straightforward
to combine the method with the ICE-approach. Each atom
i would then carry a set of variables qAi ∈ [0, 1], where A
indicates the chemical element. The total existence of the
atom would then be given by qi =

∑
A q

A
i ∈ [0, 1] with

the constraint that the number of atoms NA of element A
is NA =

∑N∗

i qAi .
The example with graphene on a dense grid points to

the possibility of restricting the atomic positions to a finely
spaced grid and then only optimize the existence variables.
However, this will require the treatment of very many
atoms (one per grid point), which is not feasible with the
current fingerprint.

In the present implementation, the sum of the existence
variables is constrained to be the number of real atoms in
the system. However, one could easily generalize this to
treat open systems with a variable number of atoms con-
trolled by a chemical potential. This would just correspond
to a Lagrange-multiplier implementation of the constraint.
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[6] M. Jäger, R. Schäfer, and R. L. Johnston, Nanoscale 11,
9042 (2019).

[7] D. J. Wales and J. P. K. Doye, The Journal of Physical
Chemistry A 101, 5111 (1997).

[8] Z. Chen, W. Jia, X. Jiang, S.-S. Li, and L.-W. Wang, Com-
puter Physics Communications 219, 35 (2017).
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Montiel, L. Feria, and J. Cruz-Borbolla, Journal of Cluster
Science 32, 1155 (2021).



Supplemental Material for:

Machine-learning enabled optimization of atomic structures using

atoms with fractional existence

Casper Larsen,1 Sami Kaappa,1, 2 Andreas Lynge Vishart,3, 4

Thomas Bligaard,3, 4 and Karsten Wedel Jacobsen1

1CAMD, Department of Physics, Technical

University of Denmark, Kongens Lyngby, Denmark

2Computational Physics Laboratory, Tampere University,

P.O. Box 692, FI-33014 Tampere, Finland

3CatTheory, Department of Physics,

Technical University of Denmark, Kongens Lyngby, Denmark

4ASM, Department of Energy Conversion and Storage,

Technical University of Denmark, Kongens Lyngby, Denmark

(Dated: November 24, 2022)

1

ar
X

iv
:2

21
1.

10
34

2v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
3 

N
ov

 2
02

2



MACHINE LEARNING MODEL

Fingerprint

The fingerprint is based on the one used in BEACON [1] with the inclusion of existence

fractions qi ∈ [0, 1] for each atom i. It is similar to the one used in ICE-BEACON [2] with

the difference that in ICE-BEACON all atoms have both a fraction qi,A of element A, and a

fraction for element B that satisfies qi,B = 1− qi,A, while here qi denotes the total existence

of the atom.

The fingerprint is denoted by ρ(x, Q), where x is the full set of Cartesian coordinates and

Q is the full set of existence fractions. ρ(x, Q) is divided into a radial part, ρR(r;x, Q) and

an angular part, ρα(θ;x, Q), which for a single-element system is given by:

ρR(r;x, Q) =
∑

i,j
i 6=j

qiqj
1

r2ij
fc(rij;R

R
c ) e−|r−rij |

2/2δ2R (S1)

ρα(θ;x, Q) =
∑

i,j,k
i 6=j 6=k

(
qiqjqkfc(rij;R

α
c )fc(rjk;R

α
c ) · e−|θ−θijk|2/2δ2α

)
(S2)

fc(rij;Rc) =





1− (1 + γ)
( rij
Rc

)γ
+ γ
( rij
Rc

)1+γ
if rij ≤ Rc

0 if rij > Rc

(S3)

where the indices i, j, and k run over all atoms. Here rij is the distance between atoms

i and j, θijk is the angle between atoms i, j and k, and fc is a smooth cutoff function going

to zero at the radial and angular cutoff radii RR
c and Rα

c , respectively. γ is a parameter set

to 2. Hence ρR describes a sum over all pairs of atoms whereas ρα describes a sum over all

triplets. The full fingerprint ρ(x, Q) is created by concatenating ρR and ρα.

In Eqs. S1 and S2, the values for RR
c and Rα

c are fixed for a given system but scaled

with the covalent radius rcov of the element as RR
c = 5rcov and Rα

c = 3rcov. The constants

δR = 0.4 Å and δα = 0.4 rad are identical for all systems.

Gaussian process in the Ghost-BEACON framework

Following the notation for the fingerprint, the energies and forces, µ = (E,−F ), are calcu-

lated with the standard expression for a Gaussian Process [3, 4]:
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µ(x, Q) = µp(x, Q) +K(ρ[x, Q], P )C(P, P )−1(y − µp(X)) (S4)

where µp(x, Q) and ρ(x, Q) are the prior mean and the fingerprint, respectively, K and C are

the covariance matrix without and with regularization, P a matrix containing the training

data fingerprints, y the training data targets and µp(X) the prior function applied to all

structures in the training data. The uncertainty of the predicted energy is given by:

Σ(x, Q) =
{
K̃(ρ[x, Q], ρ[x, Q])−K(ρ[x, Q], P )C(P, P )−1K(P, ρ[x, Q])

}1/2

, (S5)

where K̃(ρ(x, Q), ρ(x, Q)) represents the covariance matrix for the fingerprint.

The applied kernel function for the covariance matrices is a squared exponential kernel

function (SE). The SE uses a prefactor (σ2) and one length-scale (l) hyperparameters (the

routine for optimization of the hyperparameters is described below). The covariance matrix

between two atomic configurations has three components[1, 5]. The first components are

the covariances between energies (k), the second are the covariances between energies and

forces (∇ik), and the third component are the covariances between forces (∇i∇jk). ∇i is

the gradient operator with respect to the Cartesian coordinates xi. The covariance matrix

is written as

K(ρ1, ρ2) =


 k(ρ1, ρ2) (∇2k(ρ1, ρ2))

>

∇1k(ρ1, ρ2) ∇1(∇2k(ρ1, ρ2))
>


 . (S6)

We observe from Eq. S4 that K and µp(x, Q) are the only terms including the existence

fractions. Details about the construction of K, C, and y are reported in Ref. [1]. Keeping

the order of all terms but simplifying the notation, we can rewrite Eq. S4 as

µ = µp,x +KC−1(y − µp,X). (S7)

If we denote the number of atoms by N , the number of elements per data point will be

F = 1 + 3N for one energy and 3N force components. If we further denote the number of

structures in our training data D, the full training data will include DF features. Keeping

the order of terms in Eq. S7, we have the following dimensions:

[F ] = [F ] + [F ×DF ][DF ×DF ][DF ] (S8)

which is the standard scenario for a Gaussian process. When predicting features on a

structure with N∗ atoms (comprising the real and the ghost atoms), the amount of predicted
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features becomes G = 1 + 3N∗, but the number of features on all structures in the training

data is still F and hence Eq. S8 becomes

[G] = [G] + [G×DF ][DF ×DF ][DF ] (S9)

Prior function

For the simultaneous optimization of positions and existence fractions of Figs. 3 and 4 in

the main text, a repulsive prior modified to include the existence fractions is used [1, 6]:

µp(x, Q) = µc +
∑

i,j
i 6=j

rij<2R

qiqj

(2σpr̃cov
rij

)12
, (S10)

where σp is a repulsive constant set to 0.4 and r̃cov is an atomic radius set to be 0.8rcov of the

element and µc is a constant prior. This prior is chosen to disfavor atoms with overlapping

atomic radii, but in such a way that low existence atoms do not interfere with the clustering

of high existence atoms. For all other simulations the prior is set to a constant value µp = µc

which is updated throughout the run.

Acquisition function

We use the acquisition function f for a structure x given by f(x) = µ(x) − κΣ(x), where

κ = 2 is a constant while µ(x) and Σ(x) are the predicted energy and uncertainty of Eq. S4

and Eq. S5 [1, 6]. The dependency on Q is omitted as the acquisition function is always

evaluated on structures without ghost atoms.

The acquisition function is used to select which of the relaxed structures to include

in the DFT database. However, sometimes the relaxations mostly reproduce an already

investigated structure. It is therefore an advantage to discard structures that are closer

than a certain distance, dfp, in fingerprint space from already known structures. For the

optimization of both atomic coordinates and existence values we set dfp = 5. For the

optimization on a grid dfp was set to a small value to exclude already visited structures

without disqualifying any other structures.
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Robust determination of hyperparameters

During the BEACON and Ghost-BEACON runs, the hyperparameters are updated by using

the maximum a posteriori probability (MAP) for the hyperparameters given the training

data, p(l, σr, σ|y). A uniform prior is considered for the prefactor, σ, whereas a log-normal

prior distribution is used for the length-scale hyperparameter, l, as explained in the section

below. The noise, σn, is set by a relative noise, σ2
r = σ2

n

σ2 .

The MAP is calculated by using the analytical solution of the prefactor, σ2
MLE, from

maximizing the posterior distribution:

σ2
MLE =

1

DF
(y − µp)>C−10 (y − µp) (S11)

where C0(P, P ) = K0(P, P ) + σ2
rI is the covariance matrix of the training data without

the prefactor and a relative-noise. K0(P, P ) denotes the covariance matrix of the training

data without the prefactor and noise. The same relative-noise is used for energy and force

contributions. The log-posterior distribution, LP , is:

LP(l, σr, y) ∝ MLL(l, σr, y) + ln (p(l)) (S12)

where the MLL is the maximum log-likelihood with respect to the prefactor hyperparameter.

The MLL is expressed as:

MLL =
−1

2

(
DF + ln (|C0|) +DF ln

(
1

DF
(y − µp)>C−10 (y − µp)

)
+DF ln (2π)

)

=
−1

2

(
DF +

DF∑

i=1

ln
(
[Λ]ii + σ2

r

)
+DF ln

(
1

DF

DF∑

i=1

[E>(y − µp)]2i
[Λ]ii + σ2

r

)
+DF ln (2π)

)

(S13)

where E is the eigenvectors and Λ is the diagonal matrix with the eigenvalues of the co-

variance matrix without prefactor and relative-noise hyperparameters, K0(P, P ) = EΛE>.

All relative-noise hyperparameter values can be searched from a single eigendecomposition.

A small noise is added to the covariance matrix to ensure it is invertible. However, a fixed

relative-noise of 0.001 is used to avoid the maximum likelihood values that corresponds to

the overfitting models.

A uniform grid with a spacing of 0.1 in the log-space of the length-scale hyperparameter

is constructed from the mean nearest neighbour to 100 times the maximum Euclidean dis-

tance in the fingerprint space. All intervals surrounding a maxima of the log-posterior can
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be identified by using finite difference on the grid. Afterwards, a golden-section search is

performed for all intervals containing a maxima.

The grid search method finds the global maxima of the log-posterior distribution under

the constraints if the grid spacing is finer than the length of the basin of attraction.

The prior mean constant is optimized from the maximum likelihood [1] under the con-

straint that it must be greater than or equal to the average between the smallest and the

mean energies of the training data as:

µp =





(min(Energy)+mean(Energy))
2

if µp < min(Energy)

U>C(P,P )−1y)
U>C(P,P )−1U

otherwise
(S14)

where U is a vector with the length of DF and has Ui = 1 for energy components and Ui = 0

for force components.

The prior distribution and constrained interval of the length-scale hyperparameter im-

proves the model quality at small data sets at the beginning of a run, where the model

could be likely to either overfit (short length-scales with low noise) or underfit (very large

length-scales with high noise). At the beginning of a run, the length scale is set to 2.5 times

the maximal distance in fingerprint space. The prefactor, noise and prior are updated at

every BEACON cycle, whereas the length scale is updated every fifth cycle.

Prior distribution of the length scale

A prior distribution of the length scale is introduced to hinder the algorithm in over-fitting

for small data sets and because it is observed that a longer length scale improves the inter-

polation in existence space. The length scale prior is defined as a log-normal distribution,

i.e. a normal distribution in the logarithmic space:

P (l) =
1

lσLN
√

2π
exp

(
− (ln(l)− µLN)2

2σ2
LN

)
, (S15)

where µLN and σ2
LN are the mean and variance in the logarithmic space.

A simple estimate of the length is l0 = 0.5(mean(∆FP ) + max(∆FP )), where ∆FP are all

the Euclidian distances between any two fingerprints. We set the parameters µLN and σLN

using mode(l) = exp(µLN − σ2
LN) = l0 and take σLN = 0.75.
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For the Gaussian processes for EMT-evaluated Cu structures, which are fitted to only

few data points, we simply keep the initial estimate of the length as 2.5 times the maximal

distance in the fingerprint space.

ALGORITHMIC DETAILS AND COMPUTATIONAL PARAMETERS

Random structure generator

In this study, all random configurations not placed on a grid are set up using a cubic box

with a volume which is five times the sum of the volumes of atomic spheres with radii equal

to the covalent atomic radii of the elements. The atoms initially placed randomly in the

box are then repelled until all atom centers are at least 1.6rcov away from each other. 7.5

Å of vacuum is then added around the structure to complete the unit cell. This procedure

ensures a similar initial atomic packing fraction independent on the number of atoms in the

BEACON/Ghost-BEACON runs.

Random fraction generator

The random sampling of the initial existence values is done using the Dirichlet-Rescale

algorithm [7, 8]. This allows for a uniform distribution of the existence values satisfying the

constraints qi ∈ [qmin, 1] and
∑

i qi = N + (N∗ − N)qmin, where 0 ≤ qmin < 1 is the lower

existence bound.

Surrogate surface relaxations

The relaxations on the surrogate potential energy surface are performed using sequential

least squares programming [9] as implemented in the SCIPY package [10]. This allows for

efficient gradient-driven optimization under the inequality constraint that all atoms have an

existence value between qmin and 1 as well as the equality constraint for the total amount of

existence.

While optimizing the coordinates and the existence fractions simultaneously, the exis-

tence of an atom might fall to zero, effectively removing its interactions with the rest of

the system. To counteract this unwanted effect in the algorithm and to proceed with the
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most efficient optimization, a lower limit to the existence is introduced, and the following

procedure is adopted:

1) Initialize a system of random atomic positions and existence fractions between qinitmin (> 0)

and 1 with a total existence of N + (N∗ −N)qinitmin.

2) Relax the system on the surrogate PES for nrelax steps.

3) Decrease the lower limit in nD steps of qinitmin/nD and, at each level, perform a relaxation

with nd steps.

4) Relax the system for np steps with all existence variables fixed to 0 or 1 to effectively

remove the ghost atoms.

The relaxations are terminated if all predicted forces are below 0.001 eV/Å. The low

value is picked to counteract underestimation of forces in regions of large uncertainty on the

potential energy surrogate surface. In this paper, the simultaneous relaxations of existence

and positions are done with nrelax = 200, qinitmin = 0.05, nD = 5, nd = 20, and np = 100.

The calculations on a grid, where only the existence variables are optimized, do not

require a lower boundary. All non-ghost BEACON runs are performed with nrelax = 400

with N∗ = N and all fractions fixed to 1.

Declaration of success

Except for Fig. 4 in the main paper, a success is registered once a structure satisfies the

correct nearest neighbor distribution for all atoms in the cluster as compared to the global

minimum. This procedure is chosen to identify structures belonging to the correct basin.

Calculation of success curve uncertainty

To calculate the uncertainty of the success curves of the paper, a Bayesian approach

was followed. A success curve composed of W independent runs can for a given number

of DFT calculations be seen as a binary outcome of n successes and m failures such that

the total number of attempts is always W = n + m. Using Bayes theorem with a uniform

prior, the posterior probability of the chance of success psuccess becomes a Beta distribution

B(p|α = n+1, β = m+1). We use the mode of this distribution mode(psuccess) = n/(n+m)

8



as the value of the success curve. For the uncertainty, we use the square root of the variance

√
var(psuccess) =

√
(n+ 1)(m+ 1)

(n+m+ 2)2(n+m+ 3)
. (S16)
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FIG. S1. Illustration of the point that existence transfer between atoms far away from each other

does not involve energy barriers. The clusters are similar to the one in Fig. 1 of the main paper.

The clusters have different distances between the two atoms indicated with red and green edges.

In the upper row (a-c), the two atoms occupy identical sites while in the lower row (d-f) they are

different. Blue and yellow circles indicate the radial and angular cutoff radii, respectively, of the

red and green edge atoms. Figures (g) and (h) show the energy change during existence transfer

from the red edge atom to the green edge atom with all other atoms being constrained at existence

1. The curves are normalized with respect to the energy of the initial configuration shown in figures

(a-f). The figure shows that as the two atoms are separated from each other, the potential barrier

is completely removed in the case of identical sites. When the sites are different, the energy decays

monotonically towards the most stable site.
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of 20 independent runs of each 80 DFT-calculations. Each iteration of the BEACON cycle is based

on 40 surrogate relaxations. Each run has an initial training set of 2 random structures

11



0 20 40 60
Number of DFT evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

su
cc

es
s

Cu20(a)

(b)

Number of extra atoms
0
5

10
20

30
40

0 20 40 60
Number of DFT evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

su
cc

es
s

Cu20(c)

(d)

Number of extra atoms
0
5

10
20

30
40

FIG. S3. (a) Global minimum and (c) second lowest energy structure of Cu20. (b) and (d) Success-

curves of 20 independent runs of each 80 DFT-calculations without ghost atoms (blue) and with

5 different numbers of ghost atoms for finding the structure shown in (a) and (c) respectively.

Each iteration of the BEACON cycle is based on 40 surrogate relaxations. Each run has an initial

training set of 2 random structures.
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FIG. S4. Histograms of the predicted energies for 1000 surrogate relaxations of (a) Cu10 and (b)

Cu20 for six different numbers of ghost atoms. The figures are similar to Fig. 5 in the main paper

for Cu30.
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İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-

riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and SciPy 1.0 Contributors, Nature Methods 17, 261 (2020).

13



Technical
University of
Denmark

Anker Engelunds Vej , Building 301
2800 Kgs. Lyngby
Tlf. 4525 1700

www.energy.dtu.dk/english

www.energy.dtu.dk/english

	Abstract
	Resume
	Preface
	Acknowledgements
	List of publications
	Acronyms
	1 Introduction
	1.1 Energy demand
	1.2 Machine learning in quantum mechanics
	1.3 Outline of thesis

	2 Theory
	2.1 Electronic structure theory
	2.2 Nudged Elastic Band method
	2.3 Gaussian Process Regression
	2.4 T Process Regression
	2.5 Fully Bayesian Mimicking Gaussian Process

	3 Optimization of hyperparameters
	3.1 Introduction
	3.2 Methods
	3.3 Results & Discussion
	3.4 Conclusion

	4 Machine Learning Accelerated Global Optimization method
	4.1 Introduction
	4.2 Methods
	4.3 Results & Discussion
	4.4 Conclusion

	5 Machine Learning Accelerated Nudged Elastic Band method
	5.1 Introduction
	5.2 Method
	5.3 Results & Discussion
	5.4 Conclusion

	6 Summary
	Bibliography
	A Appendix
	A.1 Fully Bayesian Mimicking Gaussian Process derivation
	A.2 The test systems
	A.3 Local optimization parameters
	A.4 Global optimization parameters
	A.5 Global optimization of hyperparameters
	A.6 Modification for Leave-one-out object function
	A.7 Noise correction
	A.8 Objective function error predictions
	A.9 Machine learning accelerated Global Optimization

	B Included publications
	B.1 Paper I
	B.2 Paper II


