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Summary
The International Electrotechnical Commission (IEC) describes the standard procedure
to measure the power performance of a wind turbine. Manufacturers follow the IEC
guidelines to assess the performance of their turbines, while wind farm operators conduct
IEC-compliant power performance measurements to determine whether the turbines are
performing properly. Since most operating wind turbines are in wind farms, the IEC
standard describes the procedure to ensure that the measured power performance is not
impacted by the neighbouring turbines. Most importantly, wind directions are restricted
to make sure that both the tested turbine and the wind measurement equipment are not
in wake.

When several wind turbines are clustered in a wind farm, upstream wake-free turbines
might also be affected by flow disturbances caused by the other turbines. The IEC
standard recommends to measure the wind speed at a minimum distance of two rotor
diameter from the turbines to retrieve blockage-free wind speed measurements. However,
wind farm blockage effects might still influence the flow field at that distance. Additionally,
the turbine under test might be subject to blockage effects from the neighbouring turbines.
This thesis evaluates the impact of blockage effects on power performance measurements
and how to correct for them. Additionally, since numerous wind turbines operate under
waked conditions for a substantial amount of time, it is investigated how to accurately
measure the power performance of a waked wind turbine.

This thesis aims to advance the methods for the evaluation of the power performance
of a wind turbine in a wind farm. To this purpose, nacelle lidar measurements are
retrieved in front of the turbine under test. Several nacelle lidar configurations are tested
for both wind speed and turbulence measurements under both waked and wake-free
conditions. Specifically, it is tested whether nacelle lidar measurements can be used
to improve the accuracy of power performance measurements relatively to the current
standard procedure.

The impact of blockage on power performance measurements is evaluated through both
simulations and measurements. Reynolds-averaged Navier-Stokes (RANS) simulations
are performed with both a row of five turbines and a large wind farm with 100 turbines.
Results are compared with simulations of a single isolated turbine operating under the
same freestream conditions. Additionally, measurements are analyzed from a test site
consisting of a single row of five turbines. The numerical results show consistent power
performance deviations between the wind farm and the isolated cases, with CP variations
up to 4%. The measurements show that the power output of the turbine on one side of
the row changes with the wind direction due to blockage effects from the neighbouring
turbines. Specifically, compared to wind directions perpendicular to the row, the power
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output varies of −1.8% and +1.8% when the turbine is the most upwind and downwind
of the row, respectively.

A method is presented to correct for blockage effects on IEC-compliant power perfor-
mance measurements. Two different approaches are presented to apply the correction: one
based on numerical simulations and one based on short range nacelle lidar measurements.
Both the approaches are tested numerically through RANS simulations, showing that
they improve the evaluation of the power performance. Additionally, the method is used
to correct power curves measured under waked conditions.

In addition to the correction method, lidar-based data-driven power curves are defined
to evaluate the wind turbine power performance under waked conditions. Specifically,
multivariate power curves are implemented as multivariable polynomial regressions, whose
input variables are several wind speed and turbulence measurements obtained with nacelle
lidars. A numerical framework is implemented to test the multivariate power curves under
both waked and wake-free conditions using different nacelle lidar configurations. The
same framework is also used to test nacelle lidar turbulence measurements. Furthermore,
the numerical results are validated with lidar measurements from the field. Results show
that the multivariate power curves are more accurate than the IEC standard power curve
under both wake-free and waked conditions. The power output estimation improves when
using nacelle lidar turbulence measurements in addition to wind speed measurements.

Several nacelle lidar scanning configurations are tested through both simulations and
measurements. When measuring turbulence under nearly homogeneous conditions, at
least six beams are needed, including one beam with a different opening angle, to retrieve
all the six Reynolds stresses. Additionally, the Reynolds stresses estimation improves by
increasing the opening angle, while no substantial improvement is obtained by increasing
the number of beams beyond six. The optimal lidar configuration to implement the
multivariate power curves is site-specific. However, both numerical and experimental
results show that a circular scanning configuration provides similar accuracy to the
optimal configuration, as long as the scanning pattern has a diameter equal to around
0.9 the turbine rotor diameter.
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CHAPTER 1
Introduction

1.1 Motivation
Wind energy is expected to play a key role in the energy system of the future. Forecasts
predict a more than tenfold increase in wind energy production between 2020 and 2050
[21]. This means that the wind industry will be busy with the planning and development
of numerous wind farms around the globe. Wind farm planning is not trivial, and
one of the critical activities is estimating how much energy the wind farm is going to
produce during its lifetime. This requires both the assessment of the wind resource at
the designated location and the estimation of how much energy is produced out of that
resource. The link between the estimated wind energy resource and the predicted energy
production is provided by the wind turbine power performance, which indicates how
much power is generated by the wind turbine in relation to the characteristics of the
wind flow.

The International Electrotechnical Commission (IEC) describes the standard proce-
dure to measure the power performance of a wind turbine [33]. Since its first publication
in 1998 [34], the IEC standard is now widely accepted as the contractual guidance for
wind turbine purchase agreements. Manufacturers follow the IEC standard to assess the
performance of their turbines, while wind farm operators conduct on-site IEC-compliant
power performance measurements to determine whether the turbines are performing at a
level consistent with what predicted by the manufacturer. Since most operating wind
turbines are in wind farms and these are nowadays in wind farm clusters, it is crucial to
make sure that power performance measurements are not biased due to flow disturbances
caused by neighbouring wind turbines.

According to the IEC standard, the wind turbine under test is not influenced by
neighbouring wind turbines when it is not in the wake of upstream turbines and there is a
distance of at least two rotor diameters (D) from all the neighbouring turbines, including
those on the sides and downstream. Consequently, the wind turbine power performance
is often measured in test centers consisting of a single row of wind turbines aligned
perpendicularly to the prevailing wind direction, so that the turbines are most frequently
not in wake. However, several numerical experiments and wind tunnel tests showed that
the power performance is affected when several wind turbines are aligned perpendicularly
to the incoming flow [53, 51, 46, 73], raising the question on whether power performance
measurements might be biased when conducted at such sites. Additionally, power
performance tests are also conducted within the upstream row of large operating wind
farms, where the tested turbine might be subject to wind farm blockage effects, which
consist of flow disturbances generated inside and around the wind farm by the wind farm
itself [11, 68, 63, 70, 4].
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Although growing evidence suggests that IEC-compliant power performance measure-
ments might be influenced by wind farm blockage effects, these are still not accounted for
by the IEC standard and there is not a generally accepted method to quantify and correct
for such effects. Additionally, the IEC standard describes the procedure to measure the
power performance of a wake-free wind turbine, and assessment of the power performance
of a turbine in wake is not part of the standard yet. The lack of such procedure hinders
the assessment of the power performance of most wind turbines, which operate inside
wind farms and are in wake for a substantial amount of time [9, 8, 64]. Consequently,
it is not possible to determine whether turbines inside wind farms are performing as
specified by the manufacturer.

When in wake, wind turbines operate under a strongly inhomogeneous inflow, which
causes large uncertainty in the determination of the power curve, here referred to as the
relation between the power output and the wind speed at hub height, as specified by
the IEC standard. Under waked conditions, even when using velocity measurements at
several heights to estimate the rotor equivalent wind speed [79], horizontal wind speed
gradients would cause high uncertainty in the power curve. In order to reliably evaluate
the power performance of a waked turbine, several wind measurements are needed across
the whole rotor swept area to accurately characterize the inflow to the turbine. Such
measurements can be retrieved with nacelle-mounted lidars, which are able to measure
across the rotor swept area and at several distances from the rotor [12, 58, 69].

Nacelle lidars provide accurate estimations of both wind speed and atmospheric
turbulence [79, 81, 58, 25]. Moreover, they have been used to study wakes [18, 31]. They
have also been used to improve the accuracy in load assessment [19, 17]. In the same
manner, nacelle lidars could be used to improve the accuracy in the evaluation of the
wind turbine power performance under both waked and wake-free conditions.

1.2 Objectives and hypotheses
The overall purpose of this thesis is to advance the methods for the evaluation of the
power performance of a wind turbine in a wind farm, where the turbines influence each
other through mainly wakes and blockage effects among others. The IEC standard
accounts for the effect of wakes on the power performance by excluding waked wind
turbines from power performance tests. Blockage effects are considered by recommending
to measure the wind speed at a minimum distance of 2D from the turbine. However,
wind farm blockage effects might still influence the flow field at that distance [47, 11, 68].

This thesis evaluates the impact of blockage effects on power performance measure-
ments and how to correct for them. Additionally, it is investigated how to accurately
measure the power performance of a waked wind turbine. To this purpose, nacelle
lidar measurements are used to provide an accurate characterization of the inflow to
the turbine. Therefore, the ability of nacelle lidars to provide both wind speed and
turbulence measurements in wake is evaluated. The research activities are shaped by
investigating the validity of three hypotheses:

• Hypothesis I : IEC power performance measurements do not provide a reliable
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estimation of the power performance of the isolated wind turbine when conducted
on wake-free turbines in a wind farm.

• Hypothesis II : Nacelle lidar measurements can be used to evaluate the wind turbine
power performance with an accuracy of the same order under both waked and
wake-free conditions.

• Hypothesis III : Nacelle lidar turbulence measurements improve the accuracy in
power performance estimation under both wake-free and waked conditions compared
to using mean wind speed measurements only.

On the basis of those three hypotheses, a number of research questions are formulated:

• Does the power performance measured in a single row of wind turbines differ from
that of the isolated wind turbine? If yes, how to correct for that difference?

• Does the power performance measured at the edges of a large wind farm differ from
that of the isolated turbine? If yes, how to correct for that difference?

• Can we use nacelle lidars to improve the accuracy of power performance measure-
ments under both waked and wake-free conditions relatively to the current standard
procedure? Moreover, can the power performance of the waked wind turbine be
evaluated as accurately as that of the wake-free turbine?

• Do nacelle lidar turbulence measurements improve the accuracy of power perfor-
mance estimations under both waked and wake-free conditions relatively to using
mean wind speed measurements only?

• What is the optimal nacelle lidar configuration for turbulence measurements?
• What is the optimal nacelle lidar configuration to evaluate the wind turbine power

performance?

In order to answer those research questions, a number of research activities are
conducted, which aim at meeting the following objectives:

• To assess the blockage effects on power performance at a typical power performance
test site through both simulations and field measurements.

• To define a method to correct for the effect of both blockage and wakes on power
performance measurements.

• To investigate whether the correction method can be applied by relying on nacelle
lidar measurements from the field.

• To implement a numerical framework to test both turbulence and power performance
measurements with several nacelle lidar configurations under both wake-free and
waked conditions.

• To use the previously defined numerical framework to test multivariate power
curves, whose inputs are several wind speed and turbulence measurements retrieved
with nacelle lidars.
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• To validate the numerical findings regarding both turbulence estimation and multi-
variate power curves with nacelle lidar measurements from the field.

1.3 Thesis outline and list of publications
This thesis consists of two parts. In the first one, the overall motivation, scientific
background and conclusions of the work are given, highlighting the main results from the
related publications. The second part consists of a collection of the scientific peer-reviewed
publications related to this PhD project.

The first part consists of six Chapters. Chapter 1 has introduced the motivation and
objectives of this work. In Chapter 2, the wind turbine power performance is introduced
by describing both the IEC standard power curve and data-driven approaches to model
the power performance. Chapter 3 initially describes the main issues related to power
performance measurements in wind farms and then discusses the research findings in
relation to power performance measurements conducted on either a single row of wind
turbines or a large wind farm. Chapter 4 presents the numerical framework developed to
test nacelle lidar measurements and data-driven power curves, with a summary of the
research findings from numerical investigations conducted with such framework. Chapter
5 describes the lidar measurements used to validate the main findings from the numerical
evaluation of the data-driven power curves. Finally, conclusions are given in Chapter 6.

The second part of the thesis includes seven scientific peer-reviewed publications.
Four articles are published (Papers I, III, V and VI), one is under review (Paper IV),
one is about to be submitted (Paper II) and one manuscript is in preparation (Paper
VII).

• Paper I [65]: Evaluation of the global-blockage effect on power performance in
a single row of wind turbines. RANS simulations are performed of both a single
isolated wind turbine and a row of five wind turbines operating under the same inflow
conditions. Additionally, measurements are analyzed from a test site consisting of
a single row of five turbines.

• Paper II []: Evaluation of the global-blockage effect on power performance in a
large wind farms through RANS simulations. Additionally, a method is presented to
correct for the effect of both blockage and wakes on wind turbine power performance
measurements.

• Paper III [27]: Virtual turbulence measurements are retrieved by simulating
several nacelle-lidar scanning geometries within synthetic wind fields. The lidars
are simplified by neglecting their probe volume and the six Reynolds stresses are
retrieved with a least-square procedure using the radial velocity variances from all
beams.

• Paper IV [26]: The numerical investigation of Paper III is extended with more
accurate simulations including the lidar probe volume. Additionally, numerical
findings are validated with field measurements.
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• Paper V [67]: The wind turbine power performance is modelled with multivariate
power curves in the form of multivariable polynomial regressions, whose input
variables are wind speed, turbulence and yaw misalignment. The analysis is
conducted under homogeneous conditions with a numerical dataset of virtual power
performance tests.

• Paper VI [66]: Data-driven multivariate power curves based on nacelle lidar
measurements are tested under both waked and wake-free conditions. The analysis
is conducted on a numerical dataset generated through aeroelastic simulations
combined with both virtual nacelle lidars and the dynamic wake meandering model.

• Paper VII []: Measurements are retrieved with the DTU SpinnerLidar mounted
in the spinner of a wind turbine inside a wind farm. Measurements are collected
under both wake-free and waked conditions to test the multivariate power curves
and validate the numerical findings of Paper V and Paper VI.
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CHAPTER 2
Wind turbine power

performance
The power performance of a wind turbine indicates how much power is generated by
the turbine in relation to the characteristics of the wind flow. In the IEC standard, the
power performance is quantified through the annual energy production (AEP) and the
power curve, which indicates the relation between the wind speed and the wind turbine
power output [33].

2.1 The IEC power curve
In the IEC standard for power performance measurements, the power curve is retrieved
through simultaneous measurements of the turbine power output and a number of
characteristics of the atmospheric flow [33]. Most importantly, the power output is
defined in the standard as a direct function of the air density ρ and the horizontal wind
speed at hub height Uhub. Other characteristics which are recognized to impact the
turbine power output are the vertical variations of both wind speed and wind direction,
which are referred to as vertical wind shear and vertical wind veer, respectively. Their
effect on the power performance is evaluated with the rotor equivalent wind speed
(UREWS), which is defined by measuring the horizontal wind speed at several heights
across the rotor swept area and combining those measurements in the expression defined
by Wagner et al. [79]. In conditions of high shear and veer, UREWS better characterizes
the kinetic energy flux through the rotor and it is better correlated with the power output
than Uhub [79].

Since the wind speed is a random non-stationary variable, the relation between the
wind speed and the power output is based on 10-min realizations. The IEC power curve
is derived as the relation between the 10-min means of the power output P and the wind
speed evaluated as either Uhub or UREWS. In order to get the curve, wind speed values are
grouped within bins of 0.5 m/s to get the mean values of both P and Uhub (or UREWS)
within each bin.

The normalized IEC-compliant power curve obtained from measurements in Paper
I is shown in Fig. 2.1, where two different turbine operating regions are highlighted.
As illustrated, for wind speeds between the cut-in value Uin and the rated value Urated,
the turbine operates within the non-rated region, where the power output increases
proportionally to the wind speed. Above Urated, within the rated region of operation, the
power output is nearly equal to the rated value Prated for wind speeds up to the cut-out
value Uout, which is the maximum operating wind speed. In addition to the measured
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power curve, the IEC standard requires the evaluation of the power coefficient

CP = P
1
2ρAU3 , (2.1)

where U is the measured wind speed evaluated as either Uhub or UREWS, ρ is the measured
air density and A is the rotor area. As seen in Fig. 2.1, the CP curve typically presents
the highest values within the non-rated region, where the aerodynamic efficiency of the
turbine is maximized in order to extract as much energy as possible from the wind flow.
During rated operation, the CP gradually decreases as the aerodynamic efficiency is
reduced to keep the power output constant.
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Figure 2.1: IEC-compliant power curve of the turbine analyzed in Paper I. Vertical
dashed lines indicate the boundary of the two regions of operation: non-rated
and rated.

According to the IEC, the uncertainty of the power curve is quantified by combining
the standard uncertainty of the power output values within the bin with several Category
B uncertainty components [35]. Therefore, the standard deviation of the power output
values within each bin (σ2

P ) is one of the main contributors to the overall uncertainty of the
power curve. Several factors contribute to increase σ2

P , such as the spatial inhomogeneity
of the wind flow and the turbulence-related wind speed variability within the 10-min
intervals.

The turbulence-induced variations of the power performance can be qualitatively
explained by the non-linearity of the power curve: the 10-min mean power output does
not depend only on the mean wind speed, but also on the wind speed variance and
therefore on the turbulence intensity (TI) [29]. Specifically, close to the cut-in wind
speed, where the power curve is convex, the power output increases with the TI; close to
the rated value, where the curve is concave, the power output decreases with the TI [15,
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7]. The effect of turbulence is then negligible for wind speeds above rated, where the
power output is constant.

In the IEC standard, the effect of turbulence is accounted for using a normalization
method, which reduces the effect of turbulence on the measured power curve. Therefore,
the IEC standard procedure includes the effect of atmospheric turbulence, vertical shear
and vertical veer on the power performance, while, still, assuming horizontal homogeneity
of the wind flow, so that horizontal shear and veer are not included. Consequently, IEC-
compliant power performance measurements are not conducted under waked conditions,
which are characterized by large horizontal wind-speed gradients.

In IEC-compliant power performance tests, the wind speed must be measured at
distances between 2D and 4D from the rotor. The distance of 2D is defined as the closest
distance to the rotor where the turbine blockage is negligible, while measuring closer
to the rotor would result in an underestimation of the wind speed and consequently an
overestimation of the power performance. On the other hand, farther than 4D from
the rotor, the measured wind speed would be poorly correlated with the turbine power
output. However, even when measuring at 2D, uncertainty is introduced in the power
curve due to the distance between the wind measurement and the rotor.

By measuring closer to the rotor or, hypothetically, by retrieving the wind speed
at the rotor, the measured velocity would be more highly correlated with the power
output, reducing the scatter in the power curve. By hypothetically retrieving an ‘effective’
velocity across the rotor, the accuracy in the evaluation of the power performance would
be nearly independent of the operating conditions, as the inhomogeneity of the inflow
would not affect the correlation between the measured velocity and the power output.
Consequently, power curves would present the same uncertainty when measured under
waked and wake-free conditions.

Pedersen et al. [56] used a blade-mounted Pitot tube to estimate the velocity at the
rotor plane, showing the complexity of such measurement procedure. They showed that
the wind speed at the rotor plane is highly correlated with the power output, but also
that the measurements are heavily influenced by the pitch angle of the blade, which
introduces scatter in the power curve. A more viable option seems to retrieve nacelle
lidar short-range measurements to accurately estimate both wind speed and turbulence
in proximity of the rotor [12, 69, 20]. Such measurements are more highly correlated
with the power output than IEC-compliant measurements at 2D from the rotor, and
they could be used to improve the accuracy of power performance measurements in wind
farms.

Nacelle lidar measurements could also be used to define data-driven power curves by
modelling the relation between them and the power output. If properly trained, such
models would be able to correctly predict the power output based on, e.g., nacelle lidar
measurements. Consequently, the data-driven power curve could be used to evaluate the
power performance of the wind turbine under a number of different operating conditions.
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2.2 Data-driven power curves
Wind turbines are critically large rotating machines. They operate within the complex
flow conditions of the atmospheric boundary layer (ABL), whose complexity is often
increased by the turbines themselves through wakes and blockage effects. The combination
of flow complexity and wind turbine size results in the large uncertainty of the IEC power
curve, which is not reliable under a number of operating conditions, such as wake and
complex terrain. Under those conditions, the IEC power curve cannot be used to conduct
performance monitoring and fault detection, i.e. we cannot assess whether the wind
turbine is under-performing. Therefore, data-driven power curves have been implemented
with the primary scope of improving performance monitoring in wind farms, where the
operating conditions are different from those of IEC power performance tests [14, 40, 82].

Data-driven power curves have been developed as both parametric and non-parametric
models [40]. Parametric models absorb information through the definition of a finite
number of parameters, which are then used for prediction, as in the case of linear
and polynomial regressions. Non-parametric models do not consist of a finite set of
parameters and they can capture a flexible amount of information, as in the case of
neural networks and Gaussian processes. Additionally, data-driven power curves can be
catalogued depending on the number of input variables.

In some cases, the sole input variable is the hub-height wind speed retrieved by
the nacelle-mounted cup anemometer [28, 75, 45, 44, 84]. However, since the power
performance does not only depend on the hub-height wind speed, those models leave
margin for improvement and it is beneficial to include other atmospheric variables, such
as turbulence, vertical wind shear and vertical wind veer [55, 62, 16, 13]. Pelletier,
Masson, and Tahan [57] showed that the accuracy further improves when including
yaw misalignment as an input to the model. Furthermore, when only hub-height wind
measurements are available, data-driven power curves can be improved by including
control variables, such as rotor rotational speed and blade pitch angle [36, 5].

Accurate data-driven power curves could be defined with nacelle lidar measurements,
as they are able to retrieve several features of the inflow, such as hub-height wind speed
[80], turbulence intensity [58, 25] and vertical wind shear [48, 12]. However, power curve
modelling has so far been conducted by relying on mast measurements or nacelle-mounted
cups and vanes. Additionally, no model has included several measurements at the same
height in order to characterize horizontal velocity gradients, which are encountered under
both waked and yaw-misaligned conditions. Nacelle lidars can be used to evaluate yaw
misalignment [22] and to retrieve flow characteristics under waked conditions [32, 19, 17,
18]; therefore, it is possible to define data-driven power curves, which account for the
effect of both wakes and yaw misalignment.

The performance monitoring of wind turbines would benefit enormously from the
accurate evaluation of the power performance in wake, as most turbines within a wind farm
operate under waked conditions. By having a clear reference of the power performance
in wake, it would be possible to evaluate whether all the turbines in the farm are
performing according to what specified by the manufacturer. On the contrary, nowadays,
performance validation tests can be conducted only for those turbines which meet the IEC
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standard requirements. Consequently, it is not possible to verify the turbine performance
in the inner area of the wind farm, where the turbines are almost constantly in wake.
Additionally, due to the development of the yaw-based wake steering control strategy
[24, 23], there is an increasing need to accurately evaluate the effect of yaw misalignment
on the power performance.
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CHAPTER 3
Power performance inside a

wind farm
The wind turbine power performance is hardly ever measured on a completely isolated
turbine. Power performance test sites usually consist of a single row of wind turbines
aligned perpendicularly to the prevailing wind direction, so that the turbines hardly
operate under waked conditions [51]. Additionally, power performance tests are often
conducted on the upstream turbines of an operating wind farm to evaluate whether the
turbines perform accordingly to what the power curve specifies, i.e. to conduct production
validation tests [11]. Consequently, it is important to evaluate whether turbine interactions
affect power performance tests, resulting in a site-dependent estimation of the power
performance.

Even a small bias of a few percentages in the measured power curve might cause large
errors when that power curve is used to estimate the AEP of the wind farm. Therefore,
it is crucial to make sure that power curves measured at a test site are not affected by
blockage and that they are a reliable evaluation of the turbine performance. Additionally,
power curves measured in operating wind farms should be also free of bias in order to
assess whether the wind-farm turbines are performing according to the power curve
specified by the manufacturer.

Inside a wind farm, most turbines operate in wake for a substantial amount of time
and their performance cannot be compared with the reference power curve, which is
assumed to be measured under wake-free conditions. Since there is not a generally
accepted procedure to assess the power performance of a waked wind turbine, production
validation tests cannot be conducted in the wind farm inner region. Therefore, the
definition of a procedure for power performance tests in wake would give the chance to
assess the power performance of all the turbines in the farm, reducing the uncertainty
related to wind farm operation. Additionally it would allow wind farm operators to
perform maintenance on turbines that do not operate properly, thus reducing power
losses.

3.1 Blockage effects
In fluid mechanics, flow blockage is defined as the deflection of the flow due to an
obstruction, which causes a deceleration of the incoming flow. In wind energy, the notion
of turbine blockage refers to the deceleration of the wind flow upstream of the turbine
rotor due to the turbine itself [47, 50]. The induction zone is the region upstream of
the rotor where turbine blockage affects the wind speed, with maximum reduction at
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the rotor position and an incremental wind speed recovery moving further upstream.
Generally, the blockage effect is considered as negligible farther than 2.5D from the
rotor [50], which is the recommended distance for wind speed measurements in power
performance tests [33].

The concept of turbine blockage is of crucial importance for power performance tests,
as a blockage-affected wind speed measurement would cause an underestimation of the
wind velocity and, consequently, an overestimation of the power performance. Therefore,
according to the IEC standard, the wind speed should be measured at a distance of at
least 2D from the rotor. However, the IEC standard does not differentiate between the
cases of a single isolated turbine and several turbines clustered together, only requiring
to measure the performance of a wake-free wind turbine with a spacing of at least 2D
from the neighbouring turbines [33].

In the IEC standard, the intensity of blockage is assumed to be the same in case
of both a single isolated turbine and a wind farm. However, when several turbines are
clustered together, blockage effects might be enhanced by the turbine interactions causing
a deceleration of the incoming wind flow due to blockage from the whole wind farm,
a phenomenon which is generally referred to as either global blockage or wind farm
blockage [68, 63, 64, 74]. Because of the wind speed reductions due to global blockage,
the wake-free wind-farm turbines produce less than a single isolated turbine under the
same freestream conditions [11, 54].

Since global blockage affects both the power output of the wake-free wind turbines and
the flow upstream of the wind farm, it most likely has an influence on power performance
tests conducted in the upstream row of a wind farm. To the author’s knowledge, whilst
the wind energy community has paid much attention to the effects of wind farm blockage
on the AEP, possible effects on power performance tests have not been thoroughly
investigated.

Several studies evaluated blockage effects in a single row of wind turbines through
both wind tunnel experiments and simulations [46, 53, 51, 73, 10], showing that the
power performance changes relatively to the isolated turbine operating within the same
freestream inflow. Specifically, the power output varies for the same freestream velocity
depending on the wind direction, the inter-turbine spacing and the location of the
turbine within the row, with variations up to 8% relatively to the isolated turbine [73].
Consequently, the question is raised on how strong the combined effect on the power
output and the measured wind speed is in the context of power performance tests.
Additionally, the power curve is retrieved by binning the power output values depending
on the wind speed, so that measurements retrieved for different wind directions are
averaged together. This might result in power variations observed for specific wind
directions, which might be cancelling out when taking the bin average.

3.2 Single row of wind turbines
In Paper I, blockage effects at a typical test site are investigated through simulations of
both an isolated wind turbine and a row of five turbines aligned perpendicularly to the
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incoming flow. Specifically, several Reynolds-averaged Navier-Stokes (RANS) simulations
are performed under neutral conditions (no buoyancy nor inversion) with a uniform wind
profile (no vertical wind shear). The inter-turbine spacing L, the freestream velocity U∞
and the inflow angle θ between the wind direction and the orthogonal line to the row
are varied. Additionally, the simulations are compared to measurements from a turbine
test site with five wind turbines aligned perpendicularly to the prevailing wind direction.
The illustration in Fig. 3.1 describes the layout of both the numerical setup and the site.

x

y

x1

y1

θ
θ θ θ θ

T1 T2 T3 T4 T5

θ

U
�

L L L L

Figure 3.1: Layout of both numerical setup and site [Fig. 1 from Paper I].

The available field measurements comprise the operating data of turbine T1 together
with the operational status of turbines T3-T5, while no information is available regarding
turbine T2. The turbines are spaced with L = 2.3D, where D refers to the rotor of
the reference turbine T1. Additionally, wind measurements are retrieved from both a
meteorological mast and a ground-based lidar aligned with T1 along the orthogonal
line to the row at distances of 2.3D and 2.5D, respectively. The met mast is equipped
with, among others, a top-mounted cup anemometer at the turbine hub height and
a side-mounted wind vane 4 m beneath the hub height. The ground-based lidar is a
WindCube WLS7 from Vaisala Leosphere scanning at 11 different heights from −0.4 D
to +0.85 D relatively to hub height.

The numerical results of Paper I show power variations among the row turbines due
to blockage effects from the neighbouring turbines for all the tested inter-turbine spacings
L (1.8D, 2D and 3D). The power variations increase with a closer spacing and vary with
the free-stream velocity depending on the turbine thrust coefficient (CT ). In agreement
with the findings from previous works [51, 46, 53], all the row turbines produce more
than in isolation when the wind direction is perpendicular to the row (θ = 0◦), with
increases in power up to 2%. For skewed inflows, the power output varies almost linearly
across the row, with the lowest and highest productions from the most upstream and
most downstream turbines, respectively. The highest and lowest power variations of
nearly +5% and −3% are observed with θ = 45◦ for turbines T5 and T1, respectively.
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Furthermore, due to the blockage effects from the neighbouring turbines, the relation
between the power output and the measured wind speed at 2D changes relatively to the
isolated turbine, with strong variations for the power coefficient CP . When averaging
over the whole inflow sector [−45◦, +45◦], the measured CP varies up to +4% relatively
to the isolated turbine operating under the same freestream conditions.

The field measurements analyzed in Paper I corroborate the numerical results on the
power variation with θ observed for T1 and T5 as a result of blockage effects from the
neighbouring turbines. Specifically, compared to wind directions perpendicular to the
row, the power output varies of +1.8% and −1.8% when the turbine is the most upwind
and downwind of the row, respectively.

The IEC standard assumes that a reliable estimation of the power performance as
function of the free-stream wind (P = P (U∞)) can be achieved by measuring the wind
speed at around 2.5D from the turbine. Paper I shows the weakness of that assumption
in the case of several turbines aligned perpendicularly to the wind direction. Specifically,
different power outputs could be measured for the same free-stream velocity depending
on the wind direction, the inter-turbine spacing and the location of the reference turbine
within the row. As a consequence of the blockage effects from the neighbouring turbines,
the relation between the power output and the IEC-compliant wind speed measurement
changes relatively to what would be measured for a completely isolated wind turbine.
Thus, the measured power curve is not the true estimation of the power performance of
the isolated turbine, with variations of a few percentage points in both power output
and CP .

3.3 Multiple-row wind farm
Blockage effects on power performance measurements are evaluated in Paper II for the
case of a large wind farm. RANS simulations are performed within a conventionally
neutral ABL of a wind farm with five rows of twenty turbines, as shown in Fig. 3.2-(a).
Simulations are also performed of a single isolated wind turbine operating within the
same numerical domain under the same free-flow conditions, as shown in Fig. 3.2-
(b). Simulations are performed for five different wind directions, from −45◦ to +45◦,
where θ = 0◦ is the northerly wind direction shown in Fig. 3.2. Power performance
measurements are simulated for all the upstream wind-farm turbines and the isolated
turbine. The IEC-compliant wind speed measurements are simulated with both virtual
nacelle lidars and mast-like measurements. As shown in Fig. 3.2, mast measurements
are retrieved at 2D from the reference turbine along all the IEC-compliant measuring
sector [−45◦, +45◦].

Results from Paper II show that blockage effects cause consistent power deviations
along the twenty upstream turbines (T81, T82,.., T100). When the wind direction is
perpendicular to the rows, all the upstream turbines produce less than the isolated
turbine under the same freestream conditions, with power variations down to −5%. For
skewed inflows, similarly to the single-row case, the power output changes almost linearly
along the row, with the downwind turbines producing more than the upwind ones. The
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Figure 3.2: Schematics of the layout for the wind farm (a) and the isolated turbine (b),
with both wind turbines (black circles) and met masts (red circles). Black
arrows show the θ = 0◦ wind direction [Fig. 1 from Paper II].

strongest power deviations relatively to the isolated case are observed for θ = 45◦, with
an increase of +5% for turbine T81 and a decrease of −9% for T100.

The power variations relatively to the isolated turbine are larger in the case of
Paper II than in Paper I, as the wind farm blockage effects are stronger due to the
higher number of turbines. The same is observed for the blockage effect on the wind
speed measurements retrieved at 2D in front of the turbines, with variations down to
−3% relatively to the isolated case. The power-velocity relation strongly differs from
what would be measured for the isolated turbine. Consequently, power performance
measurements conducted at the edge of a large wind farm are not a reliable estimation
of the power performance of the isolated turbine. As shown in Paper II, the measured
power performance vary with the wind direction, the location of the turbine within the
row and the location of the met mast along the 2D arch. Those variations decrease the
accuracy and increase the uncertainty of the power performance measurements relatively
to the truly isolated case.

3.4 Correcting for the effect of blockage and
wakes on power performance measurements

From the analyses of Paper I and Paper II, it is concluded that power performance
tests do not provide a reliable evaluation of the isolated turbine performance when
they are conducted either in a single row of wind turbines or at the edge of a large
multi-row wind farm. However, the current practice is to assume that such power
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performance tests provide a reliable estimation of the power curve, which is then used
in AEP calculations or as a benchmark to evaluate the performance of operating wind
turbines. Consequently, both the uncertainty and inaccuracy of AEP calculations are
partially due to the unreliability of the utilized power curves. Furthermore, production
validation tests might result in biased conclusions regarding whether the turbines are
underperforming.

In Paper II, a method is presented to correct for the effect of blockage on power
performance measurements. By applying such correction method, an accurate evaluation
of the isolated turbine performance is retrieved from power performance tests conducted
in wind farms, providing a nearly blockage-free power curve. The method relies on the
numerical estimation of the power-velocity relation, which is modelled by retrieving the
ratio (Udisk/Umast), where Udisk is the rotor-averaged velocity extracted at the rotor plane
and Umast is the velocity retrieved at the IEC-compliant mast. The (Udisk/Umast) ratio is
numerically evaluated for both the isolated and the wind-farm cases, and it is then used
to correct the wind speed measurements in order to retrieve the power performance of
the isolated turbine from tests conducted within the wind farm.

In Paper II, the method is tested numerically with virtual power performance
measurements conducted on the upstream turbines of Fig. 3.2. Results show both an
increase in the accuracy and a reduction in the uncertainty of the power performance
measurements. Specifically, the scatter in the power curve is reduced and the estimated
CP is closer to what would be measured for the isolated turbine. Furthermore, the
method is applied to virtual power performance tests conducted on the downstream
turbines (T1,.., T80), showing that reliable power curves can be retrieved from such
measurements.

In order to apply the correction by relying on measurements only, the ratio (Udisk/Umast)
is replaced by (Udisk,lidar/Umast), where Udisk,lidar is derived from short-range nacelle lidar
measurements within the turbine induction zone. Specifically, four different nacelle lidar
configurations are used to retrieve the wind speed at 0.5D from the rotor. Results from
Paper II show that the correcting method would be reliable with all the tested lidar
configurations, providing accurate power performance measurements from the waked
wind turbines.



CHAPTER 4
Numerical framework to test

lidar configurations and power
curve modelling

Numerical simulations are convenient to test engineering applications under specific
conditions which are complicated to set up for an experiment. They can also be
used for preliminary evaluations before planning an expensive measurement campaign.
This chapter presents a numerical framework which can be used to test nacelle lidar
configurations and power curve modelling approaches under both homogeneous and
waked conditions. The framework consists in the combination of an aeroelastic code with
virtual lidar measurements and a wake model.

The utilized aeroelastic code is the DTU in-house aeroelastic software HAWC2 [39].
The lidar simulations are performed with a Python code developed during this PhD
project. The lidar simulator scans the same synthetic wind fields which are used as input
to the aeroelastic simulations. Thus, from the same wind field, HAWC2 is used to retrieve
the wind turbine outputs while the lidar simulator retrieves the wind measurements,
similarly to what would happen in reality with a nacelle-mounted lidar on top of an
operating wind turbine. The synthetic wind fields are generated with the turbulence
spectral model by Mann, hereafter simply referred to as Mann model [41, 42]. When
waked conditions are to be tested, the dynamic wake meandering (DWM) model is used
to add wake characteristics to the homogeneous wind fields [2].

The choice of such framework aims to provide a relatively computationally inexpensive
tool to perform simulations in time domain. The primary goal is to simulate power per-
formance tests, which require the evaluation of the turbine performance during numerous
10-min realizations including a wide spectrum of wind characteristics. Specifically, IEC
power performance tests require a database with a minimum of 1080 10-min intervals
with at least three intervals within each velocity bin of 0.5 m/s.

4.1 Turbulence spectral model
The three-dimensional wind field can be described by the velocity vector field u(x),
as time dependency is neglected because of the Taylor’s frozen turbulence hypothesis
[76]. The velocity vector field u = (u1, u2, u3) = (u, v, w) refers to the right-hand
coordinate system x = (x1, x2, x3) = (x, y, z), where the x-axis is aligned with the
direction of the mean horizontal wind vector. Assuming homogeneous turbulence and
no vertical wind speed, the mean velocity field results in ⟨u(x)⟩ = (U(z), 0, 0), where
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the wind speed variation with height depends on the vertical shear. Consequently,
the turbulence-induced velocity fluctuations around the mean values are quantified as
u′ = u − (U(z), 0, 0) = (u′

1, u′
2, u′

3) = (u′, v′, w′).
Because of the assumption of homogeneity, the covariance of two velocity components

between two different points in space is only function of the separation between the
points: Rij =

〈
u′

i(x) u′
j(x + r)

〉
= Rij(r), where r = (r1, r2, r3) is the separation vector.

The covariance tensor of single-point statistics R(r = 0) = R consists of the variances
and covariances of the velocity components, and it is often referred to as the Reynolds
stress tensor:

R =

u′u′ u′v′ u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

 =

 σ2
u u′v′ u′w′

v′u′ σ2
v v′w′

w′u′ w′v′ σ2
w

 . (4.1)

The spectral tensor Φ is defined as the Fourier transform of the covariance tensor:

Φij(k) = 1
(2π)3

∫ ∞

−∞
Rij(r) exp(−ik · r) dr, (4.2)

where
∫

dr ≡
∫∞

−∞
∫∞

−∞
∫∞

−∞ dr1dr2dr3 and k = (k1, k2, k3) is the vector field representing
the wavenumbers along the (x, y, z) directions.

The Mann model describes the spectral tensor Φ as function of three parameters:
αϵ2/3 is the product between the Kolmogorov constant α and the turbulent energy
dissipation rate ϵ, Γ is a parameter related to the anisotropy of the turbulence field, and
L is a length scale related to the size of the turbulence eddies. From the spectral tensor,
the spectra between two points located in the same y-z plane and separated by the vector
(0, ∆y, ∆z) can be retrieved as

χij(k1, ∆y, ∆z) =
∫ ∞

−∞

∫ ∞

−∞
Φij(k, αϵ2/3, Γ, L) exp(ik2∆y + ik3∆z) dk2 dk3. (4.3)

In case of ∆y = ∆z = 0, the single-point cross- and auto-spectra are given as

Fij(k1) =
∫ ∞

−∞

∫ ∞

−∞
Φij(k, αϵ2/3, Γ, L) dk2 dk3, (4.4)

from which the variances and covariances of the velocity components are retrieved as

u′
iu

′
j =

∫ ∞

−∞
Fij(k1) dk1. (4.5)

4.2 Lidar simulator
Doppler wind lidar (light detection and ranging) is a remote sensing technology, which
measures the wind speed by emitting a laser beam and detecting the light backscattered
by aerosol particles in the air. The component of the wind velocity along the laser beam
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direction, usually referred to as the radial velocity or line-of-sight velocity, is retrieved
from the Doppler shift in the frequency of the backscattered light as

vr = λl ∆f

2 , (4.6)

where λl is the laser wavelength and ∆f is the Doppler shift [60]. When the lidar is set to
measure the wind speed at a certain focus distance fd along the laser beam, light is still
backscattered by aerosol particles lying along the beam trajectory closer or farther than
the intended distance fd. Consequently, lidar measurements are affected by a spatial
sensitivity, also referred to as probe-volume effect, which is quantified with a weighting
function φ, indicating the weighted contribution of the aeroesol particles along the beam
trajectory.

The weighting function is modelled with different mathematical expressions depending
on the lidar type:

• Continuous wave (CW) lidar [71]:

φ(s) = 1
π

lz
l2
z + s2 , with lz = λlf

2
d

πr2
b

, (4.7)

where rb is the lens aperture radius, s is the distance from the focus point along
the beam direction and lz is the Rayleigh length.

• Pulsed lidar [6, 49]:

φ(s) = 1
2∆p

{
Erf

[
s + ∆p/2

rp

]
− Erf

[
s − ∆p/2

rp

]}

with Erf(x) = 2√
π

∫ x

0
exp(−t2)dt and rp = ∆l

2
√

ln(2)
,

(4.8)

where ∆p is the range-gate length and ∆l the Gaussian lidar pulse full width at
half maximum (FWHM).

As it can be noted from Eq. 4.7 and Eq. 4.8, the weighting function of a CW lidar
changes with the distance of the focus point, while φ is independent of the measurement
location for a pulsed lidar. Figure 4.1 shows the weighting functions given by Eq.s 4.7
and 4.8 using parameters of typical commercial lidars [49, 60].

The Doppler shift is retrieved by mixing the backscattered radiation with a reference
laser beam in an optical mixer, where the frequency shift between the two radiations is
determined through heterodyne detection. Then, the optically mixed beam is directed
to a photodector which generates a digitised output. A digital Fourier transform is
then applied to get a power spectrum from the detector output. Since the spectra are
sampled at very high frequency (in the order of 100 MHz), several consecutive spectra
are averaged to get a more reliable spectrum, resulting in a measurement frequency in
the order of 100 Hz. Fig. 4.2 shows the normalized average power spectrum from the
measurement campaign of Paper VII. In the case of a nacelle lidar scanning horizontally,
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the width of the power spectrum depends mainly on atmospheric turbulence and the
weighting function. For a vertically-scanning ground-based lidar, the vertical wind shear
also affects the width of the spectrum.

As highlighted in Fig. 4.2, the Doppler shift can be retrieved by estimating several
frequency values from the power spectrum: the peak, the median or the centroid frequency
[30]. Then, the radial velocity corresponding to such frequency is estimated with Eq.
4.6. Generally, the centroid method is most commonly used for wind speed estimations,
while both the median and peak methods attenuate better the probe-volume effect on
turbulence estimations [25, 30]. The power spectrum can also be seen as a distribution of
radial velocities by converting the frequency axis of Fig. 4.2 to radial velocities through
eq. 4.6.

In the lidar simulator, the radial-velocity power spectrum is retrieved as:

S(vr) =
∫ smax

smin
φ(s) δ(vr − u(s) · n) ds, (4.9)

where δ is the Dirac delta function and n = (nx, ny, nz) is the unit vector along the beam
direction. smin and smax are the boundary of the modelled portion of the probe volume.
From S(vr), the measured radial velocity can be retrieved as either the centroid, median
or peak frequency. Specifically, when applying the centroid method, the radial velocity
coincides with the first statistical moment of the spectrum:

vr =
∫ smax

smin
φ(s)S(vr) dvr. (4.10)

The lidar-measurements time-series is retrieved by applying Eq. 4.9 along the whole
length of the synthetic wind field. Because of the Taylor’s assumption, time and space
coincide along the direction of the x-axis. So, wind velocities are retrieved at subsequent
focus points, whose locations depend on the lidar scanning geometry and the measurement
frequency. Fig. 4.3 shows an illustration of the virtual measurements retrieved with a
circular scanning lidar inside the turbulence box.

By neglecting the probe-volume effect and assuming the lidar measuring at a single
point, the relation between the radial velocity and the wind speed vector can be written
as

vr = n · u = nxu + nyv + nzw. (4.11)
This relation is used to reconstruct the wind speed vector from the radial velocity
measurements through different wind-speed reconstruction methods, which depend on
the lidar scanning geometry and the characteristics of the flow field [37, 12].

4.3 Nacelle lidar turbulence measurements
When referring to the coordinate system of Fig 4.3, the unit vector along the lidar beam
direction can be defined as n = (nx, ny, nz) = (−cosϕ, cosθ sinϕ, sinθ sinϕ), where ϕ is
the the angle between the beam direction and the negative x-axis (the lidar half-opening
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Figure 4.3: Schematics of the lidar simulator indicating the rotor, the lidar scanning
pattern, the weighting function and the boundaries of the turbulence box.

angle) and θ is the angle between the y-axis and the projection of the beam onto the
y-z plane. Consequently, by taking the variance of Eq. 4.11, the variance of the radial
velocity is retrieved as [83]:

σ2
vr

=σ2
u cos2ϕ + σ2

v cos2θ sin2ϕ + σ2
w sin2θ sin2ϕ

− 2 ⟨u′v′⟩ cosϕ cosθ sinϕ

− 2 ⟨u′w′⟩ cosϕ sinθ sinϕ

+ 2 ⟨v′w′⟩ sin2ϕ cosθ sinθ.

(4.12)

Due to the probe-volume effect, lidar measurements are not able to detect the velocity
fluctuations at high frequency associated with small turbulence spatial structures. This
results in an underestimation, or filtering, of the radial velocity variance σ2

vr
. However,

when the Doppler power spectra are available, the unfiltered radial velocity variance can
be estimated as the second central statistical moment of the ensemble average spectrum
[43]:

σ2
vr,unf =

∫ ∞

−∞
⟨S(vr)⟩ (vr − ⟨vr⟩)2dvr. (4.13)

Then, same as for the estimation of the wind speed vector, reconstruction methods are
needed to retrieve the Reynolds stresses from the measured σ2

vr,unf .
In Paper III, several nacelle lidar configurations are simulated to retrieve turbulence

measurements under homogeneous conditions. The lidar probe-volume effect is neglected
by assuming point-wise measurements from the lidar. The Reynolds stresses are retrieved
through a least-squares method which uses the radial velocity variances of each beam
without reconstructing the wind components (u, v and w). The analysis is conducted
with the implemented lidar simulator over 100 turbulence wind fields generated with the
Mann model. Results show that at least six beams are needed, including one beam with
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a different opening angle ϕ, to retrieve all the six Reynolds stresses. Additionally, both
accuracy and uncertainty of the Reynolds stresses estimation improve by increasing ϕ,
while no substantial improvement is obtained by increasing the number of beams beyond
six.

In Paper IV, the results from Paper III are validated with both field measurements
and more accurate lidar simulations, where the probe volume is modelled including both
CW and pulsed lidars. Additionally, both numerical and experimental results show that,
when the Doppler power spectrum S(vr) is available, all lidar configurations are able to
accurately estimate the variance of the along-wind component σ2

u, with variations up to
6.8% relatively to the mean value of σ2

u estimated with a sonic anemometer.

4.4 Dynamic wake meandering model
The DWM model is an efficient way of simulating wind turbine wakes in a time domain.
It is based on the assumption of Taylor’s frozen turbulence and it consists of three parts:
a model for predicting the downstream evolution of the quasi-steady velocity deficit, a
model for the meandering of the wake caused by large-scale turbulence structures and a
model for the wake-generated turbulence [2].

The quasi-steady velocity deficit is defined according to the work of Ainslie [3]. In
the near-wake region (within 2–3D) the wake deficit is function of the turbine’s axial
induction derived according to the blade element momentum (BEM) theory [2]. In the
far-wake region (downstream distances larger than 2–3D), the flow field is defined with
the thin-shear-layer form of the rotationally symmetric Navier-Stokes (N-S) equations:
the pressure terms are neglected and turbulence closure is achieved with an eddy viscosity
term [2]. The N-S equations consist of the following formulations for the momentum
equation

U
∂U

∂x
+ Vr

∂U

∂r
= 1

r

∂

∂r

(
νt r

∂U

∂r

)
(4.14)

and the continuity equation
1
r

∂

∂r
(Vr r) + ∂U

∂x
= 0 , (4.15)

where U and Vr are the mean flow velocities in the axial and radial directions, respectively.
νt represents the eddy viscosity term, which accounts for both atmospheric and shear
layer generated turbulence [38, 18]:

νt = F1 k1 TIamb + F2 k2 max
(

D2
w

2Uhub D

∣∣∣∣∣∂U

∂r

∣∣∣∣∣ ; Dw

D

(
1 − Umin

Uhub

))
, (4.16)

where Dw is the wake diameter, TIamb is the ambient turbulence intensity, Umin is the
minimum wind speed in the wake. k1 and k2 are empirical constants. F1 and F2 are filter
functions used to model the development of the turbulent stresses inside the wake.

The wake is assumed as a passive tracer driven by large-scale turbulence structures
and the wake meandering is modelled by superimposing turbulence fluctuations with a
cut-off frequency of fcut = U/2D, as the atmospheric turbulence structures responsible
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for the wake meandering are in the order of 2D and larger [78]. The superimposed
turbulence fluctuations are modelled with a turbulence box presenting a discretization of
∆y = ∆z = D, with the velocity vectors at each grid point evaluated as the average over
the grid cube.

Additional turbulence is generated in the wake due to the velocity shear, as well as
to trailing vortices generated at both tip and root of the blade. The additional wake
turbulence is modelled by superimposing a turbulence box generated with Γ = 0 and a
length scale L which is 10% of the atmospheric turbulence length scale, as wake-generated
turbulence is nearly isotropic and characterized by smaller structures than atmospheric
turbulence [1]. Additionally, wake turbulence is purely mechanically generated and rather
inhomogenous. Such inhomogeneity is modelled by scaling the wake turbulence box with
the factor

Kmt(r̂) = |1 − Ûdef(r̂)| km1 +
∣∣∣∣∣∂Ûdef(r̂)

∂r̂

∣∣∣∣∣ km2 , (4.17)

where Ûdef is the mean velocity in the wake Udef nondimensionalized with Uhub. r̂ is the
radial distance normalized by the rotor radius. km1 and km2 are empirical constants [2].

The final three-dimensional velocity field is obtained through linear superposition
of the quasi steady velocity deficit and the three fluctuating components related to the
meandering turbulence, the ambient turbulence and the wake-generated turbulence:

uDWM = Udef + u′
amb + u′

meandering + Kmt u′
wake . (4.18)

4.5 Multivariate power curves using nacelle lidars
In Paper V and Paper VI, datasets of synthetic power performance tests are generated
by retrieving virtual lidar measurements from the same wind fields used as input to
aeroelastic simulations of the Vestas V52 wind turbine [61]. The datasets are then used
to implement and test multivariate power curves in the form of multivariable polynomial
regressions, which consist of all the possible polynomial combinations of the N input
variables with degree less than or equal to the specified degree β. For example, in the
case of β = 2 and three input variables x1, x2 and x3, the multivariable polynomial
expression is defined as

y = c1 + c2x1 + c3x2 + c4x3 + c5x1x2 + c6x1x3 + c7x2x3 + c8x
2
1 + c9x

2
2 + c10x

2
3, (4.19)

where c1, .., c10 are the coefficients of the polynomial regression.
Since the same dataset is used to both train and test the multivariable polynomial

regression, a k-fold cross-validation is performed to avoid overfitting. Specifically, the
dataset is split into k folds (or subsets) of approximately equal size, k − 1 of which
are used to train the regression, which is then tested on the one remaining fold. Such
training-testing process is repeated k times with a different fold being used as the test
set each time. The accuracy of the multivariate power curves is quantified with their
error in power prediction, i.e. the deviation between the actual power output values
given by the aeroleastic simulations and the power output predicted by the multivariate
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power curves. The mean error in power prediction Ej is evaluated for each jth iteration
of the k-fold cross-validation. Then, by averaging the errors across all k iterations, the
accuracy of the model is evaluated with the generalization error Egen = 1

k

∑k
j=1 Ej.

In Paper V, the multivariate power curves are tested under wake-free conditions
including cases with yaw misalignment, i.e. the mean wind direction and the turbine rotor
axis are skewed of an angle γ. The multivariable polynomial regressions define the power
output as function of wind speed, turbulence and yaw misalignment: P = P (U, σ2

u, γ).
The wind characteristics U and σ2

u are estimated with both a virtual sonic anemometer
at hub height and simulations of the DTU SpinnerLidar [59]. The same reconstruction
methods presented in Paper III and Paper IV are used to retrieve U and σ2

u from the vr

and σ2
vr

values. Results show that the multivariate power curves outperform the IEC
standard power curve, with an error reduction of 48% when testing on a realistic dataset,
which includes the same wind conditions of a test site on the west coast of Denmark. The
multi-dimensional power curves are more accurate when using SpinnerLidar measurements
than with mast-based anemometry, as nacelle lidars measure in front of the turbine in
spite of the yaw misalignment, allowing for a better characterization of the inflow to the
rotor. Additionally, it is shown that both turbulence and yaw misalignment improve the
power output prediction relatively to using the wind speed only.

In Paper VI, multivariate power curves in the form of multivariable polynomial
regressions are tested under both wake-free and waked conditions. Several nacelle lidar
configurations are simulated, including both relatively simple commercial devices and
complex configurations utilized in research projects, as, e.g., the DTU SpinnerLidar [59].
For the wake-free cases, the hub-height wind speed and the wind speed variance are used
as input variables to the multivariate power curve P = P (Uhub, σ2

u), where Uhub and σ2
u

are reconstructed from the lidar measurements using the methods presented in Paper
III and Paper IV. When including waked conditions, due to the strong inhomogeneity
of the flow field, the mean wind speed U and the radial velocity variance σ2

vr
retrieved

from each lidar beam are considered as possible input variables, with U reconstructed by
neglecting both the horizontal and vertical wind components: vr = nxU . Among all the
measured values of U and σ2

vr
, the input variables are selected with a feature-selection

process. For example, in case of a lidar measuring along five beams, the input variables
are selected among ten possible features (five values of both U and σ2

vr
).

The feature selection is performed through a forward-selection algorithm: starting
with an empty model, features are added iteratively by selecting the variable providing
the greatest improvement in power prediction. The selection stops when the prediction
error increases by adding one more variable. An illustration of the feature-selection
process is shown in Fig. 4.4. At each step, the prediction error given by each model
is evaluated with a k-fold cross-validation to ensure that the models are tested over all
the observations of the dataset and that the selected features do not depend on which
observations are used to train the model. Additionally, if the prediction accuracy was
evaluated on the training data, the error would iteratively decrease until all the available
features are selected. However, this results in overfitting over the training data: a larger
error is obtained when testing the regression over new data, as the model is too closely
related to the training data, with low capacity to describe the new data. Therefore, by
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performing a cross-validation, the optimal number of features is spotted, allowing the
most accurate modelling of the power-velocity relation without causing overfitting.

Test N models with 1 feature

Test (N – 1) models with 2 features

Test (N – 2) models with 3 features

Error increases when 
adding the 3rd feature, 
so the 2-feature model 
is selected

Empty model

Figure 4.4: Schematics of the feature-selection process when two input variables are
selected out of N available features.

Results from Paper VI show that the multivariate power curves are more accurate
than the IEC standard power curve under both wake-free and waked conditions, with an
error reduction of 88% for the in-wake cases. The feature-selection process shows the
benefit of measuring wind characteristics at several locations, with error reductions of
more than 50% compared to the case of a polynomial regression with a single wind speed
measurement as the sole input variable. The feature selection also shows the importance
of accounting for turbulence, which is selected as an input variable for all the tested
lidar configurations. Moreover, the multivariate power curves evaluate the wind turbine
power performance with accuracy of the same order under both homogeneous and waked
conditions. When using SpinnerLidar-based multivariate power curves, the power output
is predicted with mean absolute percentage error (MAPE) of 1.12% and 2.74% under
wake-free and waked conditions, respectively. Results with different lidar configurations
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show that, overall, the optimal multivariate power curve consists of a multivariable
polynomial regression of the 4th order (β = 4) with four selected input variables: three
wind speed and one turbulence measurements. Furthermore, it is investigated what
are the optimal scanning locations to retrieve those four measurements, showing that
the lidar should scan along a line passing through the rotor centre rather than along
a circular pattern to better characterize the radial velocity gradient of the waked flow.
However, the multivariate power curve provides accurate power output estimations when
using a circular scanning pattern with a diameter equal to 0.77D, with error reduction of
75% relatively to the IEC standard power curve.
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CHAPTER 5
SpinnerLidar measurements

from the Tjæreborg wind farm
5.1 Measurement campaign
The analyzed measurements were obtained in 2012 from an onshore wind farm located
in Tjæreborg, western Denmark. As shown in Fig. 5.1, the site consists of eight Neg
Micon (NM) 80 2.3 MW turbines with a rotor diameter of 80 m and hub height of 59 m.
Turbine T2 was equipped with the SpinnerLidar, a CW Doppler wind lidar measuring
at a high frequency along a rosette pattern, installed in the rotating spinner of the
turbine. Additionally, Supervisory Control and Data Acquisition (SCADA) data are
available from turbine T2, including measurements from a cup anemometer mounted on
the turbine nacelle. The dataset comprise both SpinnerLidar measurements and SCADA
data covering a period of nine days from 2 September 2012 to 11 September 2012.

T1

T2

T3

T4

T5

T6

T7

T8

N

E

S

W

Figure 5.1: Layout of the Tjæreborg onshore wind farm [Fig. 1 from Paper VII].

Several measurement campaigns have been conducted to describe the characteristics
of wakes using downwind-looking nacelle lidars [78, 77, 18, 72]. However, in order
to evaluate the power performance of a waked turbine, an upwind-looking lidar must
be installed on a waked turbine. Because of the scarcity of such measurements, the
Tjæreborg SpinnerLidar dataset is still a very valuable and nearly unique dataset to
investigate the power performance of a wind turbine under waked conditions.

The SpinnerLidar consists of a CW Doppler lidar equipped with two optical prisms
in the scanner head. The prisms, also referred to as the Risley prism pair, rotate with
a fixed velocity ratio of 13:7 and they are deflected of 15◦. The lidar line-of-sight is
redirected by the prism pair on a rosette pattern with half-opening angle from 0◦ to 30◦,
as shown in Fig. 5.2. More technical details can be found in the patent description [52].
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Figure 5.2: Illustration of the SpinnerLidar scanning pattern when focused at 100 m in
front of an 80 m rotor.

During the field campaign, the SpinnerLidar was mounted in the rotating spinner of
the turbine and it was focused to measure at 100 m, i.e. 1.25D, upstream of the turbine.
Due to the configuration of the Risley prism pair, measurements are not retrieved within
the same y − z plane, with a maximum ∆x of around 20 m between the measurements.
The lidar system was set to cover the rosette pattern of Fig. 5.2 within 10 s with a
measurement frequency of 100 Hz. Since the SpinnerLidar was mounted in the rotating
spinner, the scanning pattern was rotating together with the rotor. Therefore, over longer
periods, measurements were retrieved at many different points across the rotor swept
area, as it can be seen in Fig. 5.3-(a) and Fig. 5.3-(b) for measurement periods of 10 s
and 1 min, respectively.

5.2 SpinnerLidar measurements
After processing the Doppler spectra as described in Paper VII, all the spectra retrieved
within the same 10-min period are grouped according to their measurement location.
Specifically, the scanned area of the y − z plane is gridded with squared cells of 3 m x 3
m, and 10-min ensemble average spectra are obtained by averaging the spectra within
the same cell. Then, the 10-min mean radial velocity ⟨vr⟩ is obtained as the median value
of the ensemble average spectrum ⟨S(vr)⟩, while the unfiltered radial velocity variance
σ2

vr
is estimated according to Eq. 4.13. Only cells containing at least 30 Doppler spectra

are considered for the estimation of both ⟨vr⟩ and σ2
vr

. Figure 5.4 shows the raw and
processed Doppler spectra for the cell at y = 0 m and z = 12 m of the 10-min period
2012-09-04-08:40.
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Figure 5.3: Scanning pattern covered by the SpinnerLidar every 10 s (a) and locations
of measurements retrieved during 1 min (b). The red line indicates the rotor
diameter.
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Figure 5.4: Raw (a) and cleaned (b) Doppler spectra from grid cell at y = 0 m and
z = 12 m during the 10-min interval 2012-09-04-08:40.
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Since most 10-min periods comprise measurements in wake, the strong inhomogeneity
of the flow field does not allow to apply the wind speed reconstruction methods presented
in Paper III and Paper IV. Therefore, by assuming no lateral nor vertical mean wind
components (V = W = 0), and that the yaw misalignment is negligible, the 10-min
mean wind speed is estimated as U = ⟨vr⟩ /⟨nx⟩, where ⟨nx⟩ is obtained as the average
of the x−axis components of the beam unit vectors within the grid cell. Information
about turbulence is retrieved in the form of σ2

vr
as the combination of Eq. 4.13 with

the strongly inhomogeneous conditions leaves no margin for the reconstruction of the
Reynolds stresses.

The SpinnerLidar measurements are used to test the multivariate power curves defined
as in Eq. 4.19 and validate the numerical findings from Paper VI. Therefore, a dataset
is needed with N observations of n variables: n/2 measurements of both U and σ2

vr
. In

order to apply the feature-selection process described in Fig. 4.4, each ith observation
must contain the same n variables retrieved at the same n/2 cells. Since not all 10-min
intervals comprise measurements at all cells, a filtering of both the 10-min intervals
and the grid cells is applied in order to obtain a good trade-off between the number of
selected intervals N and the number of available variables n, resulting in a dataset with
759 observations of 1424 variables: 712 values of both U and σ2

vr
retrieved within the

cells shown in Fig. 5.5.
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Figure 5.5: Wind speed (a) and radial velocity variance (b) at the 712 selected grid cells
during the 10-min interval 2012-09-11-06:10. Turbine rotor is indicated in
red.

The multivariate power curves are compared with IEC-similar power curves obtained
by applying the IEC binning method using the SpinnerLidar measurements. Specifically,
two different IEC-similar curves are obtained: one based on the wind speed Uhub from
the central grid cell at hub height (y = 0 and z = 0 in Fig. 5.5), and one based on the
rotor effective wind speed Urotor obtained as the average weighted wind speed over the
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rotor swept area. The IEC-similar power curves are derived using measurements under
wake-free conditions, which are selected by relying on a wake detection method described
in Paper VII. Both the multivariate and IEC-similar power curves are tested with a
k−fold cross-validation and the generalization error is evaluated as both MAPE and root
mean square error (RMSE).

5.3 Multivariate power curves: validation of the
numerical results

As shown in Paper VII, when testing with the SpinnerLidar dataset, the multivariate
power curve provides lower error in power prediction than both the IEC-similar power
curves, with reductions in MAPE of 55.6% and 24.5% relatively to the Uhub- and Urotor-
based IEC curves, respectively. The input variables to the multivariate power curve are
selected with the feature-selection algorithm of Fig. 4.4, resulting in 7 selected features
in the optimal case: 6 wind speed and 1 turbulence measurements.

The multivariate power curve is also tested using measurements from a circular
scanning lidar by selecting input variables along a circular pattern from the available cells
shown in Fig. 5.5. Several circular scanning patterns are tested with diameter from 0.2D
to 1.4D, with six wind speed measurements and one turbulence measurement retrieved
along each circular pattern. Results show that the circular scanning pattern is suitable
to implement the multivariate power curve when the scanning pattern has the proper
diameter. In the optimal case, with a diameter of 0.9D, the multivariate power curve
estimates the power output with a 52.5% lower MAPE than the Uhub-based IEC curve.

The analysis of the SpinnerLidar measurements from Tjæreborg validates some of the
numerical results from Paper VI, showing that the multivariate power curves give a more
accurate evaluation of the wind turbine power performance under waked conditions than
the IEC binning method. When testing with measurements, more input variables are
selected than when using the numerical dataset: 7 and 4 variables for measurements and
simulations, respectively. This difference can be explained with the higher complexity
of the inflow in the real case than in the simulations, where the only source of flow
inhomogeneity is the DWM-generated wake field. In the field, the inflow is characterized
by additional sources of inhomogeneity and complexity, such as atmospheric stability,
yaw misalignment and terrain effects. However, in both simulations and measurements,
one turbulence measurement is selected among the optimal features. This shows the
utility and fitness of lidar-derived turbulence measurements for power curve modelling
under both waked and wake-free conditions.

When selecting features rotated of an azimuth angle θ relatively to the optimal case,
in both simulations and measurements, the error in power estimation increases up to
twice that of the optimal case. However, in the numerical case, the multivariate power
curve still performs much better than the IEC curve for all the tested values of θ. On the
contrary, in the measurements, the accuracy of the multivariate power curve is slightly
more accurate than the Uhub-based curve and less accurate than the Urotor-based curve.
This difference shows the low flexibility of the feature selection when working with field
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measurements. This is probably due to the higher complexity of the inflow conditions in
the field.

The circular scanning pattern is a robust lidar scanning configuration, which could be
used independently of the turbine location and site characteristics. In both the analyses
with measurements and simulations, when using features selected along a circular pattern
of the proper dimension, the multivariate power curve is more accurate than the IEC
binning method. Additionally, both numerical and experimental results show the same
variation of the error with the diameter of the circular scanning pattern: starting from
the lowest diameter, the accuracy of the multivariate power curve increases up to a
maximum around 0.9D (0.77D and 0.9D for simulations and measurements, respectively)
and decreases for larger circular patterns.



CHAPTER 6
Conclusions

The main objective of this thesis is to improve the methods for the evaluation of the
power performance of wind turbines in wind farms. The shortcomings of the current
IEC standard procedure are highlighted through both simulations and measurements. A
method is presented to correct for the effect of both blockage and wakes on IEC power
performance measurements. Additionally, data-driven multivariate power curves using
nacelle lidar measurements are tested under both wake-free and waked conditions through
both simulations and field measurements.

6.1 Main contributions
Both numerical and experimental results show that IEC-compliant power performance
measurements are influenced by blockage effects, which cause the measured power
performance to be different from that of a truly isolated turbine. The power-velocity
relation changes depending on the wind farm layout and the wind direction, with CP

variations up to 4% relatively to the isolated turbine under the tested conditions. Results
from this thesis highlight, in agreement with previous studies, that the influence of
neighbouring turbines on IEC-compliant power performance measurements should not
be neglected to avoid possible biases in power performance verification tests and energy
yield analyses.

A method is presented to correct for blockage effects on IEC-compliant power perfor-
mance measurements. The method relies on the assumption that the velocity reductions
in the turbine induction zone are function of the turbine CT . Two different approaches are
presented to apply the correction: one based on numerical simulations and one based on
short range nacelle lidar measurements. The two approaches are tested numerically under
neutral conditions, showing that they improve the evaluation of the power performance.
Additionally, the method can be used to correct power curves measured under waked
conditions.

Lidar-based data-driven methods are presented to evaluate the wind turbine power
performance. Specifically, multivariate power curves are defined in the form of polynomial
regressions whose input variables are several wind speed and turbulence measurements
retrieved with nacelle lidars. Numerical results show that the multivariate power curves
are more accurate than the IEC standard power curve under wake-free conditions, with
improved power output estimations when using nacelle lidar turbulence measurements in
addition to wind speed measurements. Under waked conditions, the gap between the
multivariate and the IEC power curves is enhanced, with further improvement provided
by the multivariate power curves, as shown by both simulations and measurements.
Additionally, numerical results show that the multivariate power curves can provide
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accuracy of the same order under both waked and wake-free conditions. When retrieved
under waked conditions, nacelle lidar turbulence estimations are still beneficial to estimate
the wind turbine power output, as shown by both numerical and experimental results.

When using nacelle lidars to retrieve turbulence measurements under waked conditions,
the strong inhomogeneity of the flow field does not allow to retrieve the Reynolds stresses.
However, turbulence can be estimated in the form of radial velocity variance to improve
the accuracy in power output prediction. On the contrary, under homogeneous conditions,
all the six Reynolds stresses can be retrieved from the measurements of a six-beam lidar
which includes one beam with a different opening angle. The accuracy in turbulence
estimation improves by enlarging the lidar opening angles, while it is not beneficial to
further increase the number of beams. For the estimation of the along-wind variance
alone, all the tested nacelle lidar configurations provide good accuracy.

The optimal lidar configuration to implement the multivariate power curves is site-
specific. However, both numerical and experimental results show that a circular scanning
configuration provides similar accuracy to the optimal configuration, as long as the
scanning pattern has a diameter equal to around 0.9 the rotor diameter. Furthermore,
such configuration is the one which gives the highest accuracy when applying the
correction method to IEC-compliant power performance measurements. However, for
such correction, good accuracy is also obtained with a simple two-beam lidar.

6.2 Future work
The research work presented in this thesis should be extended by further testing the
correction method for IEC power performance measurements. Simulations should be
conducted under different atmospheric conditions and the method should be tested using
nacelle lidar measurements from the field. The experiment could be conducted with a
nacelle lidar measuring both at the IEC-compliant distance and in proximity of the rotor.
The lidar should be mounted on a turbine located at the edge of a large wind farm, so
that both wake-free and in-wake measurements can be retrieved. Ideally, two different
power performance tests should be conducted at two different locations with the same
turbine model to evaluate the site-dependency of the results.

The analysis of the multivariate power curves could be extended by using nacelle lidar
measurements to implement different data-driven models than the polynomial regressions
tested in this work. For example, artificial neural networks could be trained with nacelle
lidar measurements retrieved in front of the same turbine model from different locations
in order to decrease the site-dependency of the data-driven power curve.

Finally, it would be interesting to use both approaches presented in this thesis, i.e.
the physics-based correction method and the data-driven multivariate power curves, for
energy yield analyses and compare the results to traditional analyses conducted with the
IEC power curve provided by the manufacturer.
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Abstract. Blockage effects due to the interaction of five wind turbines in a row are investigated through both
Reynolds-averaged Navier–Stokes simulations and site measurements. Since power performance tests are often
carried out at sites consisting of several turbines in a row, the objective of this study is to evaluate whether
the power performance of the five turbines differs from that of an isolated turbine. A number of simulations are
performed, in which we vary the turbine inter-spacing (1.8, 2 and 3 rotor diameters) and the inflow angle between
the incoming wind and the orthogonal line to the row (from 0 to 45◦). Different values of the free-stream velocity
are considered to cover a broad wind speed range of the power curve. Numerical results show consistent power
deviations for all five turbines when compared to the isolated case. The amplitude of these deviations depends
on the location of the turbine within the row, the inflow angle, the inter-spacing and the power curve region
of operation. We show that the power variations do not cancel out when averaging over a large inflow sector
(from −45 to +45◦) and find an increase in the power output of up to +1 % when compared to the isolated
case under idealised conditions (neutral atmospheric conditions, no vertical wind shear or ground effects). We
simulate power performance “measurements” with both a virtual mast and nacelle-mounted lidar and find a
combination of power output increase and upstream velocity reduction, which causes an increase of +4 % in the
power coefficient under idealised conditions. We also use measurements from a real site consisting of a row of
five wind turbines to validate the numerical results. From the analysis of the measurements, we also show that
the power performance is impacted by the neighbouring turbines. Compared to when the inflow is perpendicular
to the row, the power output varies by +1.8 % and −1.8 % when the turbine is the most downwind and upwind
of the line, respectively.

1 Introduction

It is well known that the performance of a wind turbine is
highly affected by the wakes of upstream turbines (Crespo
et al., 1999; Barthelmie et al., 2009; Göçmen et al., 2016; Se-
bastiani et al., 2021). Also well known is the blockage effect,
which is the reduction of the velocity upstream of the tur-
bine, due to the presence of the turbine itself (Medici et al.,
2011; Meyer Forsting, 2017). Recently, the global-blockage
effect has started to draw attention within the wind energy
community. This is also characterised by a velocity decrease
but upstream of a wind farm or cluster of wind turbines, due
to the presence of the wind farm itself (Bleeg et al., 2018).
In the latter study, the global-blockage effect was quanti-

fied by comparing wind speed measurements collected from
meteorological masts before and after the operation of wind
farms. Additionally, they showed, using Reynolds-averaged
Navier–Stokes (RANS) simulations, that the velocity reduc-
tion upstream of wind farms causes the energy production of
each of the turbines in the front row of the wind farm to be
different from that of the same turbine in isolation. The ve-
locity reduction upstream of a wind farm made up of several
rows was also shown by Segalini and Dahlberg (2020) using
wind tunnel experiments. Schneemann et al. (2021) showed
how the global-blockage effect relates to the atmospheric sta-
bility for the case of an offshore wind farm. They used a long-
range Doppler scanning lidar to measure the wind speed up-
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stream of the wind farm and showed global blockage only
under stable atmospheric conditions.

The global-blockage effect is not only due to the super-
position of the induction from the single turbines, but is also
the result of the interaction between the wind farm as a whole
and the atmospheric boundary layer, which might generate an
upstream reverse pressure gradient and thus a wind speed re-
duction (Smith, 2010; Allaerts and Meyers, 2017; Porté-Agel
et al., 2020). In this work, with the term global blockage, we
refer to all the alterations of the flow field (out of the wind
turbine wakes) caused by the presence of a number of wind
turbines, which would not occur for the case of an isolated
turbine. Specifically, we do not specify whether we refer to
the superposition of the rotor inductions, to the interaction
between the rotors and the atmospheric boundary layer, or to
the combination of both.

Some studies showed global blockage for a single row of
turbines, where turbines are affected by those beside them
rather than by downstream turbines (Nishino and Draper,
2015; McTavish et al., 2015; Meyer Forsting et al., 2017b;
Strickland and Stevens, 2020). The power output of three
wind turbines aligned perpendicularly to the wind was shown
to be higher than that of an isolated turbine by means of both
wind tunnel studies and simulations with the free-vortex code
GENUVP (McTavish et al., 2015). They explained that the
power increase is a consequence of in-field blockage occur-
ring between adjacent turbines, which results in a region of
relative increased wind speeds that extends up to three ro-
tor diameters (D) upstream of the row. For the case with a
spacing of 2 D, they found an increase in power output of
the order of 3 % compared to the isolated turbine. Similarly,
Nishino and Draper (2015) showed through RANS simula-
tions that wind turbines produce up to 5 % more than what
they would produce in isolation when they are aligned in a
row of nine wind turbines with a spacing of 1.5 D. Strickland
and Stevens (2020) performed large-eddy simulations of an
infinite row of wind turbines with a spacing of 1.57 D, show-
ing that the power enhancement relative to the isolated case
increases with the thrust coefficient up to 8 %.

According to the IEC standard (IEC, 2017), power per-
formance testing can be performed on a turbine within a
row of turbines by considering a wind sector within the di-
rection perpendicular to the row (±50◦ when the turbine
inter-spacing is 2 D). Within these inflow conditions, tur-
bines are assumed to be unaffected by neighbouring tur-
bine wakes, and the measured power curve is assumed to
be valid for the case of an isolated turbine. The study of
McTavish et al. (2015) was perhaps the first that questioned
these assumptions. Meyer Forsting et al. (2017b) analysed
the power production of turbines in a row by using both
RANS simulations and a simple inviscid vortex ring model
with wake expansion. They considered a row of five turbines
with a 3 D turbine spacing, a wind speed of 8 m s−1 (in the
middle between cut-in and rated values), and wind directions
of +0, +15, +30 and +45◦ relative to the orthogonal line

to the row. Results showed a difference in the power output
when comparing each of the turbines in the row to the iso-
lated case, which depended on the inflow angle and the lo-
cation of the turbine in the row. The largest difference (2 %)
was found for the turbine on the row edge for an inflow angle
of 45◦.

Ideally, a power curve relates the power output of the tur-
bine with the wind speed that would be measured at the
turbine’s location without the turbine actually being there.
The IEC standard assumes that blockage is negligible al-
ready at 2 D in front of the turbine and suggests measuring
either the hub height wind speed or the rotor-equivalent wind
speed (Wagner et al., 2011) in front of the turbine at a dis-
tance between 2 and 4 D. At these upstream distances, global
blockage influences the flow field, with variations up to 3 %
for the wind speed and up to 5 % for the power production
(Meyer Forsting et al., 2017b; Bleeg et al., 2018; Segalini
and Dahlberg, 2020), indicating that standard power perfor-
mance tests, normally carried out on turbines at sites with at
least a row of turbines, might be affected by global blockage.
In this work, we use a similar numerical experiment to that of
Meyer Forsting et al. (2017b) to further investigate this issue.

We analyse the power output of five wind turbines in a
row and investigate the difference to their production in iso-
lation. We extend the numerical work of Meyer Forsting et al.
(2017b) by extracting velocities in front of the turbines using
virtual met masts and nacelle-mounted lidars to further anal-
yse the relation between global blockage and power perfor-
mance measurements. Additionally, we analyse if and how
deviations in the power output between the row and the iso-
lated case are affected within a broad range of free-stream
velocities and turbine inter-spacings. The inflow velocities
cover a number of regions of the power curve from cut-in to
rated, while the turbine inter-spacings represent typical val-
ues used at test sites. Further, this work includes the analysis
of measurements from a real site consisting of a row of five
wind turbines. This is the first time that the global-blockage
effect for a single row of turbines is investigated using both
simulations and measurements, which comply with the IEC
standard for power curve measurements.

This paper is organised as follows. In Sect. 2, the numeri-
cal setup and the available measurements are introduced. In
Sect. 2.2.1, possible numerical biases are analysed. The nu-
merical results are reported in Sect. 3, the global-blockage
effect on the power output is shown in Sect. 3.1, variations
in the flow field around the row are shown in Sect. 3.2 and
effects on power performance measurements are analysed in
Sect. 3.3. The analysis of the measurements is described in
Sect. 4. In Sect. 4.1, we explain how the measurements are
filtered to assure compliance with the numerical setup. In
Sect. 4.2 the power variations observed in the measurements
are compared with those of the simulations. Finally, a discus-
sion and conclusions are presented in Sects. 5 and 6, respec-
tively.
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Figure 1. Schematics of the wind turbine rotors (T1–T5) in the
numerical setup. Clockwise relative directions of θ are positive.

2 Methodology

2.1 Problem definition

The numerical setup consists of five turbines aligned in a row
perpendicular to the prevailing wind, similar to power perfor-
mance test sites. In addition to the case of the wind approach-
ing perpendicular to the row, θ = 0◦, inflow angles between 5
and 45◦ are considered, as shown in Fig. 1. The modelled tur-
bine is the NREL 5 MW with a diameter of 126 m (Jonkman
et al., 2009), but any other turbine type could have been used
as blockage is largely independent of turbine design (Meyer
Forsting, 2017; Meyer Forsting et al., 2021). The effect of
the turbine spacing (L) is evaluated by considering three dif-
ferent values: L= 1.8, 2 and 3 D. The 1.8 D case is tested
to evaluate whether the global-blockage effect changes dra-
matically for a spacing lower than 2 D, which is the lowest
value currently accepted by the IEC standard. To highlight
the effects of the rotors on the power output, the inflow is
simplified as much as possible. Therefore, the inflow is uni-
form without turbulence, purely neutral (no buoyancy) and
assumed as time invariant. Additionally, the ground is not
modelled, so the flow is completely unconstrained. Virtual
measurements from meteorological towers are simulated by
extracting point-wise velocity values in front of the rotors
at hub height and at 2, 2.5 and 3 D upstream, which are
the distances prescribed in the IEC standard. Lidar measure-
ments are simulated with a two-beam pulsed lidar mounted
on the nacelle and pointing upstream with a half-opening an-
gle of 15◦. The lidar is characterised by a range-gate length
of 38.4 m and a full width at half maximum (FWHM) of
24.75 m. More details about the lidar simulator can be found
in Meyer Forsting et al. (2017a). As can be seen in Fig. 1, the
mast measurements are taken at fixed locations, while the
nacelle-mounted lidars yaw together with the rotors and their
point of measurement changes with θ .

2.2 Computational method

The numerical setup adopted here is the same as used and
described in detail by Meyer Forsting et al. (2017b), so
here we will only briefly describe the simulation setup.
All simulations are performed using the in-house incom-
pressible finite-volume flow solver EllipSys3D (Michelsen,
1992, 1994; Sørensen, 1995). The simulations are carried out
with steady-state Reynolds-averaged Navier–Stokes (RANS)
equations using the k−ω shear-stress transport (SST) turbu-
lence model by Menter (1994). The numerical domain is an
ellipse-shaped cylinder with (Lx,Ly,Lz)= (95,84,25 D),
where Lx and Ly denote the major and minor axes of the
ellipse and Lz is the height of the cylinder. The turbines are
placed as shown in Fig. 1 with T3 located in the centre of the
domain. In the vicinity of the turbines, the grid cells are cubic
with a side length ofD/32 within an inner box of dimensions
(15,4,2 D). From there, the mesh grows hyperbolically out-
wards. The turbines are modelled as actuator discs (Réthoré
and Sørensen, 2012; Troldborg et al., 2015) using the air-
foil and blade data from the NREL 5 MW turbine (Jonkman
et al., 2009). In contrast to Meyer Forsting et al. (2017b), who
prescribed a constant rotational speed and blade pitch angle,
we instead use a controller that set these based on the ve-
locity averaged over the rotor area at the rotor position (Van
Der Laan et al., 2015). The accuracy of the computational
fluid dynamics (CFD) model (numerical setup and actuator
disc) over the wind turbine induction zone was validated us-
ing measurements from three lidars (Meyer Forsting et al.,
2017c).

2.2.1 Sensitivity to numerical domain and turbine
location

As we need to assess the difference in both inflow and power
output between a row of turbines and an isolated turbine, we
need to verify that the difference between the two cases is
only due to the number of turbines without being affected
by numerical bias, not by the location of the turbine within
the domain. Meyer Forsting and Troldborg (2015) already
showed that this numerical setup guarantees results free of
tunnel blockage due to either grid resolution or domain size.

Here, we further simulate an isolated turbine placed at
the location of turbine 5, and these results are compared
with the reference case, i.e. an isolated turbine placed at T3,
for U∞ = 8 m s−1 and θ = 0,30 and 45◦. The difference in
power output is found to be negligible compared to the de-
viations caused by the whole row (we show these deviations
in Sect. 3.1). Specifically, for θ = 45◦, when the turbine is
placed at T5, the power output is only 0.15 % higher than
when it is placed at T3.

The results might also be biased due to numerical sen-
sitivity to the inflow angle, as the effective grid resolution
changes when the flow is aligned or misaligned with the
grid direction. Even though the grid refinement is unchanged,
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Figure 2. Standard and staggered configurations with boundaries
of the refined area.

these variations in the effective resolution affect the power
output of the isolated turbine, which changes with θ while
it should be dependent on U∞ alone. However, this effect
causes only small variations in power. The difference with
the case θ = 0◦ is 0.02 % for θ = 30◦ and 0.15 % for θ = 45◦.

The sensitivity of the results to the extension of the re-
fined area is evaluated by replicating some of the results from
Fig. 3 with the same layout and an enlarged refined area
(from y =−4 D to y =+4 D). However, enlarging the re-
fined area results in differences of the order of 0.3 % for both
the isolated turbine and the five turbines, so that no differ-
ence is found for the results of Fig. 3. Therefore, we assume
that there is no need to enlarge the refined area and that our
results are reliable, at least when evaluated in terms of nor-
malised power output.

Simulations are also performed with a staggered config-
uration, where the same layout of Fig. 1 is achieved not by
yawing the rotors, but by moving the turbines along the y
direction, as is shown in Fig. 2. In this way, the main flow
direction is aligned with the grid direction regardless of the
inflow angle. In the staggered configuration, the equispaced
box mesh in the centre of the domain is enlarged (y =−4 D
to y =+4 D), as T1 and T5 would otherwise be out of the
refined area. Results show a much larger dependency of the
power output on the turbine location, with variations for the
power of the isolated turbine when it is placed at different
locations. This is probably due to differences in the fraction
of the wake that rests inside the refined mesh region, causing
variations for the induction of the single rotors. The power
output of the isolated turbine decreases 1.2 % when the tur-
bine is moved from T3 to T1, while it increases 0.71 % when
moved from T3 to T5. These results suggest that the stag-
gered configuration should be avoided for studies that require
high accuracy and, thus, not used in this study.

2.3 Measurements

Measurements are available for a period of approximately
21 months from a site consisting of five turbines aligned per-
pendicularly to the predominant wind direction. The area is
flat, and the surface characteristics within the analysed direc-

tions are the same for each of the turbines in the row (and
rather homogeneous). The name of the site can not be dis-
closed due to proprietary reasons, but the layout is very sim-
ilar to that in Fig. 1. The available dataset comprises the op-
erational data from a turbine on one edge of the row (T1)
together with measurements from “its power-performance”
meteorological mast and a ground-based wind lidar aligned
with the turbine along the predominant wind direction at dis-
tances of 2.3 and 2.5 D, respectively. The lidar is a Wind-
Cube WLS7 from Vaisala Leosphere. Additionally, the data
include the operational status of the turbines T3–T5 (T2 op-
eration and status are unknown). The five turbines are placed
with a mutual distance L= 2.3 D, with D being the diame-
ter of T1. Although we do not know specifics on the turbines
standing on the other four positions, considering the size of
modern wind turbines, the spacing is likely to be lower than
3 D when normalised with the rotor diameters of the other
turbines at the site.

Data from T1 are used to validate the numerical results. If
the asymmetry due to wake rotation is neglected, the turbine
can represent either turbine T1 or T5 from the simulations, as
it is either the most upwind or downwind turbine of the row
for θ > 0◦ and θ < 0◦, respectively.

Measurements from both the turbine and the mast are sam-
pled at 35 Hz, while the wind lidar provides measurements
at 11 different heights every 4 s, covering a vertical distance
from−0.4 to+0.85 D relative to the wind turbine hub height.
The analysis is performed by considering 10 min means for
all examined variables.

3 Numerical results

3.1 Power output

In Fig. 3, the power output P of the five turbines is nor-
malised by that of the isolated turbine Pref under the same
inflow conditions. The normalised power varies with the
free-stream velocity U∞ for different values of θ . At U∞ ≈
8 m s−1, the turbine is within the region of the power curve
where the turbine controller keeps a constant tip speed ratio
and an optimal power output, i.e. a constant power coeffi-
cient (CP) and thrust coefficient (CT). We also show results
for 7 and 11 m s−1 as they are the first two integer values out
of this region (Jonkman et al., 2009). The highest variation
from the reference case is found for the side turbines (T1 and
T5) with an inflow angle θ = 45◦. Although not shown, the
difference between the power output of the five turbines and
the isolated turbine decreases for 12 m s−1 (above the CP-
constant interval), while it increases for 7 m s−1. The power
output increases for all five turbines when θ = 0◦, with the
highest gain, when compared to the reference case, for T3
and U∞ = 7 m s−1 reaching nearly 2 %.

Figure 4 shows the normalised power output for cases
with the same free-stream velocity (8 m s−1) and a number
of turbine inter-spacings (1.8, 2 and 3 D). The normalised
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Figure 3. Power output of the five turbines normalised by that of an isolated turbine (placed at T3) for the cases with an inter-spacing of 2 D
predicted by RANS–CFD.

power varies with turbine inter-spacing for all five turbines
and decreases the larger the turbine inter-spacing. For the
largest turbine inter-spacing (3 D), the normalised power is
still larger than 2 % for the side turbines when θ = 30 and
45◦. The reduction of the turbine inter-spacing from 2 to
1.8 D results in small variations in the power output; the high-
est variation (0.75 %) is for turbine T5 when θ = 45◦.

3.2 Global blockage and induced velocities

The higher power output of the five turbines relative to that
of the isolated case cannot be explained with upstream ve-
locity measurements. The upstream induction on the row
of turbines is higher than that of the single turbine, so that
there is a higher velocity reduction in front of the rotors,
as expected because of the global-blockage effect. This is
shown in Fig. 5, where the vertical velocity profile in front
of T1 and T3 is compared to that of an isolated turbine for
U∞ = 8 m s−1 and θ = 0◦. Lower velocities correspond to
higher power production, with T3 producing the most despite
the lowest incoming wind speed at both 2 and 1 D. It is only
very close to the rotor (closer than 0.2 D) that the incoming
wind speed in front of T3 is higher than in the isolated case.
Although not shown, the same trend is found for all values of
U∞ and θ .

Meyer Forsting et al. (2017b) already showed that these
counter-intuitive power deviations of the turbines on the row
relate to the downstream induced velocity caused by the
neighbouring turbines. Particularly, a positive downstream
induced velocity results in faster advection of the wake and
lower induction upstream of the turbine. The “local” block-
age at the rotor is thus lower compared to the isolated case,
which results in higher power output. Likewise, a negative
downstream induced velocity results in lower power output
compared to the isolated case.

Figure 6 shows the velocity induced by the isolated tur-
bine at T3 along the rotor axis at the locations T2 and T4
(but without other rotors than T3) for θ = 45◦ and U∞ = 7,
8 and 11 m s−1. For −1.3/yi/1.5, the induction is positive
along y4 and negative along y2. This explains the results

in Fig. 3, where the downstream turbines (T4 and T5) pro-
duce more than the upstream ones (T1 and T2). It should be
noted that a velocity increase of≈ 1 % at the rotor (case with
U∞ = 8 m s−1 in Fig. 6) is not negligible and it could def-
initely be enough to explain the power variations observed
in Figs. 3 and 4. For example, assuming the same air den-
sity and power coefficient values, such a velocity increase
can result in a power increase of ≈ 3 %. Additionally, the
magnitude of the induction decreases the higher the wind
speed, also in agreement with the results in Fig. 3, where the
power variation decreases for higher wind speeds. Further-
more, as shown in Fig. 7, the magnitude of the induced ve-
locities varies with the turbine inter-spacing so that stronger
inductions are observed for an inter-spacing of 2 D compared
to those of the 3 D case, which is in agreement with the
power variations in Fig. 4. The variation in induced veloc-
ities with both turbine inter-spacing and wind speed further
confirms the relation between downstream induced velocities
and power variations.

3.3 Effects on power performance measurements

From the previous results, one might expect biases in power
performance measurements carried out for non-isolated tur-
bines. Particularly, we would like to quantify whether the ef-
fects shown for specific θ values in Figs. 3 and 4 cancel out
when averaging over an inflow sector typical for power per-
formance measurements.

A series of simulations are performed for both the refer-
ence case and the turbine row with an inter-spacing of 2 D
for a number of U∞ and θ values. The free-stream veloc-
ity varies from 7 to 11 m s−1 with a step of 1 m s−1, while
θ varies from −45 to +45◦ with a step of 5◦. A normal dis-
tribution Nθ (µθ ,σ 2

θ ) (with µθ and σθ as mean and standard
deviation) is assumed for the wind direction, and the mean
power output is calculated for each free-stream velocity as
P̄ =

∫
P (U∞,θ )Nθ (µθ ,σ 2

θ ) dθ . The effect of averaging over
the whole inflow sector is shown in Fig. 8 for a distribu-
tion given by µθ = 0◦ and σθ = 41◦. A standard deviation
value of 41◦ is chosen in order to get a nearly uniform dis-
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Figure 4. Power output of the five turbines normalised by that of an isolated turbine (placed at T3) for U∞ = 8 m s−1 and a number of θ
values and turbine inter-spacings.

Figure 5. Upstream vertical velocity profiles extracted from
RANS–CFD at 1 D (dashed lines) and 2 D (continuous lines) of the
isolated case, T1 and T3 for U∞ = 8 m s−1 and θ = 0◦.

tribution of wind directions within the interval [−45, 45◦].
Although not shown here, a narrower Gaussian distribution
would enhance the increase in power for T3, and the results
would not be representative of power performance tests in
general, but rather of tests conducted with that specific and
narrow wind direction distribution. As illustrated in Fig. 8,
there is a difference with respect to the reference case; the
five turbines in the row produce more than in isolation for
all values of U∞. Since Nθ (µθ ,σ 2

θ ) is symmetric and cen-
tred in θ = 0◦, the power output of T5 is exactly the same
as T1, and the same applies to T2 and T4. The central tur-
bine T3 shows the largest increase in power relative to the
reference case, with a power gain higher than 1% for most
wind speeds. Furthermore, the highest and lowest power vari-
ations are observed for U∞ = 7 and 11 m s−1, respectively.
The power variations are nearly constant for free-stream ve-
locities within the range 8–10 m s−1. These results further
confirm that the global-blockage-related power variations de-
pend on the power curve region of operation of the wind tur-
bines; they are CT-dependent and consequently steady in the
constant-CP region of the power curve, while they decrease

for U∞ closer to the rated wind speed and increase for U∞
closer to the cut-in value.

Due to the increase in power and reduction of the upstream
wind speed, the differences in power coefficient CP com-
pared to the isolated case are higher than those of the power
output. Results for CP are shown in Fig. 9 for the same case
of Fig. 8. The estimated free-stream velocity U∞ is extracted
at hub height and 2.5 D upstream of the rotor by both the
virtual met mast and the virtual nacelle-mounted lidar. CPs

for the turbines of the row are up to 4 % higher than that of
the reference when measuring with a mast and higher when
measuring with the nacelle lidar. This is due to the masts
measuring at fixed locations, while the nacelle-mounted li-
dars yaw together with the turbine. The volume-averaging
effect of the lidar is considered negligible due to the nearly
uniform velocity within the probe volume.

4 Analysis of the measurements

4.1 Data filtering

To compute the power variation P (θ ) observed at the site,
the inflow sector θ = 0◦± 50◦ is divided into three differ-
ent intervals θ = 0◦±16.5◦,+33◦±16.5◦ and−33◦±16.5◦.
These are selected to characterise the three conditions of op-
eration (“upwind”, “downwind” and inflow perpendicular to
the row) and obtain the largest possible amount of data within
each interval. The wind direction is taken from measure-
ments of a wind vane installed on the met mast 4 m below
hub height. Additionally, the data are filtered according to
the wind speed measured by the hub height cup anemometer
(UHH) and corrected for air density, even though the correc-
tion leaves the data nearly unchanged due to the flat and sea
level terrain. Only wind speeds within the constant-CP range
are considered, as this is also the range providing a constant
CT (the manufacturer’s CT curve is not available). Therefore,
after determining the CP curve of the turbine, the interval
UHH = [5.5,8.5]m s−1 is selected.

After selecting the data according to 10 min mean values
of both θ and UHH, other meteorological conditions are im-
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Figure 6. Velocities induced by the central turbine (T3) on the rotor axis of T2 (solid line) and T4 (dashed line), for different values of U∞,
turbine inter-spacing of 2 D and θ = 45◦.

Figure 7. Velocities induced by the central turbine (T3) on the rotor axis of T2 (solid line) and T4 (dashed line), for U∞ = 7 m s−1, θ = 45◦

and different turbine inter-spacings.

Figure 8. Power output of the five turbines in the row averaged over
an inflow sector and normalised by the average power output of the
isolated turbine for several values of U∞ and a normal distribution
Nθ (µθ = 0◦,σθ = 41◦) for θ .

posed to both increase the compliance with the numerical
setup and avoid biases due to extreme conditions. Conditions
of both very low and very high turbulence are filtered out by
considering only 10 min intervals where the turbulence in-
tensity at hub height is between 2 % and 10 %. Additionally,
thresholds are set for both the wind veer (γ ) and the wind
direction standard deviation (σθ ). Measurements with either
γ > 10◦ or σθ > 10◦ are filtered out. γ is the difference be-
tween the 10 min mean wind directions given by the Wind-
Cube at heights of −0.4 and 0.85 D relative to hub height.

We also consider only power-law-like wind profiles to
avoid biases due to different profiles among different wind
directions. For all the 10 min intervals, the power law
U (z)/Uref = (z/zref)α is fitted to the WindCube measure-
ments at the 11 different heights via a least-squares fit. Then,
the mean absolute error (MAE) between the measured wind
speeds and the values estimated by the power law is calcu-
lated. Only the profiles providing a MAE lower than 0.03 are
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Figure 9. Power coefficient CP of the five turbines in the row averaged over the inflow sector and normalised by the average CP of the
isolated turbine for several values of U∞ and a normal distribution Nθ (µθ = 0◦,σθ = 41◦) for θ . The free-stream velocity U∞ is extracted
by a virtual met mast (a) and a virtual lidar (b) at a distance of 2.5 D from the rotor.

Figure 10. Power output normalised by the power derived from
the power curve for different wind directions. Dots and error bars
represent means and standard deviations within each bin, while the
continuous lines represent the distributions of P̂ and θ within each
bin.

taken for the analysis to avoid reducing the amount of data
excessively. Additionally, to avoid conditions of very strong
shear, profiles with a shear exponent α higher than 0.35 are
discarded. Finally, to increase the amount of data, we select
all the intervals when at least two of the other four turbines
are operating.

4.2 Power variations

Due to the substantial differences between the numerical
setup and the real site, the objective of the inter-comparison
with the measurements is to evaluate the trends of power vari-
ations. Thus, we evaluate the power output for each of the
three wind direction bins (θ = 0◦±16.5◦, θ =+33◦±16.5◦

and θ =−33◦± 16.5◦) and make sure that the same mete-
orological conditions are in place in all three bins, so that
the power differences are mainly explained by the effect
of the other four turbines. However, we could have dif-

ferent wind speed distributions among the bins, since the
wind speed interval is relatively large (3 m s−1). Therefore,
we normalise the 10 min mean power values Pi with the
power value derived from the power curve for the related
10 min mean wind speed measured at hub height, result-
ing in the normalised power values P̂ . The power curve is
derived from the dataset filtered for meteorological condi-
tions, without including the operational status of the other
turbines. Different atmospheric stability conditions might be
associated with different wind directions. To decrease the
effect of stability, data are sampled so that the three bins
present the same number of measurements within each in-
terval α = ᾱ± 0.02, for ᾱ = 0.01,0.03,0.05, . . .,0.33,0.35.
This sampling assures that all the inflow sectors have the
same distribution of α values, and it results in 534 10 min
mean data for each of the three sectors. The distributions for
the normalised power P̂ are shown in Fig. 10. Additionally,
the sampling for α is repeated for 50 random seeds, and the
results are nearly constant (standard deviations lower than
0.1 % of the means), proving that the findings are not affected
by the random sampling.

The highest mean power output is observed for θ̄ =−33◦

(θ̄ stands for the mean of all the 10 min wind directions), i.e.
when the turbine is the most downwind in the row. The low-
est power output is observed for θ̄ = 32◦, when the wind tur-
bine is the most upwind. The comparison between measure-
ments and simulations is shown in Fig. 11, where the numer-
ical results, indicated as red squares, represent the means of
the power distributions obtained for the same wind direction
distribution of the measurements and a free-stream velocity
of 8 m s−1. To ease the comparison, as the simulations do
not correspond to the same turbine, the means and uncertain-
ties are normalised by the mean power output for the central
sector (θ̄ = 1◦). As illustrated, both simulations and obser-
vations show the same trend. Also, the measurements show
that the differences among mean power values for different
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Figure 11. Normalised power output variation with wind direction
based on measurements and simulations. Error bars represent 95 %
confidence intervals.

inflow angles are larger than the uncertainties, which repre-
sent 95 % confidence intervals. The statistical significance of
the results is also tested through null hypothesis significance
testing, resulting in p values below 0.05 for all the inflow
angles.

5 Discussion

The RANS simulations show that the power output of five
turbines in a row is higher than what they would produce
in isolation when the incoming wind is perpendicular to the
line along the rotors. This is in agreement with the study of
McTavish et al. (2015) for a line of three turbines, with that
of Meyer Forsting et al. (2017b) for a row of five turbines
and with that of Van der Laan et al. (2019) for a multi-rotor
configuration. Additionally, the RANS simulations show that
the power difference between the reference and the five
aligned turbines changes when the wind is not perpendicu-
lar to the row. Specifically, the downwind turbines produce
more power than the upwind turbines, with a difference that
increases for larger inflow angles. For the cases with θ = 30
and 45◦, the most upwind turbine produces less than the iso-
lated turbine for all simulated turbine inter-spacings (1.8, 2
and 3 D). These results agree with those by Meyer Forsting
et al. (2017b) for the case with U∞ = 8 m s−1 and a turbine
inter-spacing of 3 D, despite the addition of a wind turbine
controller. However, adding the controller results in a differ-
ent outcome for the cases with U∞ = 7 and 11 m s−1, as we
are not within the constant-CP region of operation of the tur-
bine any longer.

The power variations are due to positive and negative ve-
locities induced in the wakes of the neighbouring rotors,
which depend on θ . In this study, we show how these induced
velocities vary with both the turbines’ inter-spacing and the
free-stream velocity. Furthermore, wind profiles extracted
upstream of the rotors show that the row’s global blockage
causes a reduction of the upstream velocity relative to the

isolated case, as expected. However, it has the opposite effect
on the power output, which might be counter-intuitive. When
averaging over the whole inflow sector (−45◦ < θ < 45◦), an
increase relative to the isolated case of more than 1 % for the
power and more than 4 % for the power coefficient CP fur-
ther confirms our results. This might cause a bias for power
performance measurements conducted on a row of wind tur-
bines, as they would result in a higher power performance
than what would be measured for the same turbine in isola-
tion.

Analysis of field and supervisory control and data acqui-
sition (SCADA) measurements confirms that the power per-
formance changes with the inflow angle due to the global-
blockage effect. Due to differences between the numerical
setup and the conditions of the measurements, we cannot
expect a one-to-one agreement between measurements and
simulations. We expected the global-blockage effect at the
site to be lower than in the simulations, since the turbine
inter-spacing is larger at the site and since we also consider
cases where three, four or five turbines are in operation. Nev-
ertheless, measurements show a very good agreement with
the numerical results. This might be due to an increase in
the global-blockage effect due to wind shear and terrain ef-
fects. The terrain represents an additional boundary to the
flow, deflecting greater amounts to the sides and above the
wind farm. This effect, usually simulated with mirror ro-
tors (Meyer Forsting et al., 2021), is not accounted for in
our setup and causes an additional source of blockage in the
real site. In sheared inflow conditions, the wind speed in the
lower part of the rotor can be substantially lower than that in
the higher part, which causes a non-optimal selection of the
pitch angle for the blades and consequently a non-optimal
aerodynamic performance of the wind turbine. As shown by
Meyer Forsting et al. (2018), the blade forces in the lower
half of the rotor are stronger than what would be the optimal
value according to the local velocity. This results in a higher
local CT and stronger induction in the lower half of the ro-
tors.

The measurements confirmed the relation between power
and wind direction P (θ ), with an increased power output
when the side turbine is the most downwind and a decreased
power output when it is the most upwind relative to the case
for θ = 0◦. This might cause a bias for power performance
tests conducted on a single row of wind turbines, as a dif-
ferent power output could be obtained from the same turbine
depending on the wind direction distribution and the num-
ber of turbines in the row. The filtering procedures applied to
the measurements try to guarantee that the power variation
P (θ ) is driven by blockage effects as is the case in the simu-
lations. Additionally, it must be noted that the measurements
analysed in this work cover only the constant-CP region of
the power curve, so only a small portion of the power curve
is subjected to the power increase. Numerical results show
that the power rise is higher for wind speeds below that re-
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gion, while it is lower, although still present, for wind speeds
above it.

One might argue that the power performance of a wind tur-
bine within a wind farm is better represented by the turbine in
the row than by the turbine in isolation. Consequently, energy
yield assessments would be more accurate when the power
performance is estimated in a row of wind turbines. How-
ever, according to our results, the power performance of the
turbine in the row depends, among others, on both the wind
direction and the CT of all turbines in the row. This suggests
that power performance tests do not result in generic power
curves when carried out in a non-isolated situation. There-
fore, due to the lack of a validated methodology to assess the
power performance of a wind turbine inside a wind farm, we
should aim at minimising the influence of other turbines.

Ideally, power curves define the relation between the wind
turbine power output and the wind speed that would be mea-
sured at the turbine’s location without the turbine actually be-
ing there. Therefore, the procedure outlined in the IEC stan-
dard (IEC, 2017) is seriously questioned by our numerical
results, which show how the wind speed measured at 2 D
in front of the rotor would be affected by global blockage,
increasing the difference between the measured wind speed
and the “ideal” value when compared to the case of an iso-
lated wind turbine. However, an accurate evaluation of the
bias on the wind speed measurements is out of the scope
of this work, and it will be considered when extending this
study.

6 Conclusions

The power output of five wind turbines in a row is computed
through RANS simulations and compared with the power
output of the same turbine in isolation. The flow field is also
analysed both upstream and downstream to understand the
global-blockage effect (as it is defined in this work) result-
ing from the wind farm orientation. All the simulations are
performed under purely neutral conditions, without ground
effects and with a uniform inflow. Several cases are consid-
ered, with variations to the free-stream velocity, the turbine
inter-spacing and the inflow angle.

Our results show that the power output varies according
to the above three factors, with changes relative to the iso-
lated case from −3 % to +5 %. We find an increase of more
than 1 % for the mean power output when averaging over
the whole inflow angle (−45◦ < θ < 45◦) for a turbine inter-
spacing of 2 D and several values of the free-stream veloc-
ity. Due to the upstream velocity reduction caused by global
blockage, the difference with the reference increases up to
4 % for the mean power coefficient.

Measurements from a site are analysed in order to validate
the numerical findings. The site consists of five turbines in a
row, and the available dataset comprises the operational data
from one of the side turbines together with measurements

from both a met mast and a ground-based WindCube lidar
located in front of the turbine. The analysis confirms the vari-
ation in power with inflow angle observed in the simulations.
Compared to the case with a flow perpendicular to the row,
the power output changes+(1.8±0.7) % and−(1.8±0.7) %
when the turbine is the most downwind and upwind of the
line, respectively.

Our numerical results show that wind turbine power output
can be enhanced when wind turbines are aligned on a row.
Therefore, power performance tests might be biased when
conducted on such an array, resulting in a better power per-
formance than what would be measured for the same turbine
in isolation. Additionally, the measurements show that, in a
single row of wind turbines, the power output changes with
the wind direction due to the global-blockage effect. This
suggests that a different power output could be obtained de-
pending on the wind direction distribution, resulting in pos-
sible biases for power performance tests conducted at such
turbine arrays.
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Abstract. Wind turbine power performance measurements are often conducted in the upstream row of a wind farm, where

the wind flow is affected by blockage effects, which might impact the measured power performance relatively to the turbine

performance in isolation. We perform Reynolds-averaged Navier-Stokes simulations within a conventionally neutral atmo-

spheric boundary layer of a wind farm with five rows of twenty turbines to evaluate whether the power performance measured

on turbines on the upstream row would differ from that of the isolated turbine operating under the same inflow conditions.5

We simulate power performance measurements with both meteorological masts and nacelle-mounted lidars. Results show that

blockage effects have an impact on the power performance of the turbines; for the turbines on the upstream row of the wind

farm the scatter of the power curve increases causing a variation of more than 1% in the power coefficient relatively to that of

the isolated turbine. Furthermore, we suggest a method to correct for the effect of blockage on power performance measure-

ments. The method reduces the scatter in the power curve and can be used to derive the power performance of the isolated10

turbine from measurements conducted on the wind farm turbines. Additionally, the method accounts for blockage effects from

the single isolated turbine, which results in the power as function of the undisturbed freestream wind speed. The method relies

on the numerical modelling of the turbine induction zone, but we show that it can be applied using nacelle lidar measurements

retrieved very close to the turbine rotor. Finally, the numerical results show that by applying the method, we can derive reliable

power curves from nacelle lidar measurements mounted on downstream waked wind turbines as these measurements are highly15

correlated with the power output despite the strong inhomogeneity of the waked flow.

1 Introduction

Wind turbine power curve measurements play an important role in the wind industry. Manufacturers use them to better under-

stand the performance of their fleet of operating turbines, and also to refine their power predictions for new, untested designs.

Wind farm owners use on-site power performance measurements to determine whether their turbines are performing at a level20

consistent with the predicted, theoretical power curves provided by the manufacturer. The vast majority of power performance

measurements are conducted in wind farms for this purpose. Any assessment of discrepancies between actual wind farm energy

production and the pre-construction estimate is not complete without verification of turbine power performance.

1



In an energy yield analysis (EYA), theoretical turbine power curves are the key link between the expected freestream wind

resource and the predicted energy production of a planned wind farm. As such, theoretical power curves are traditionally defined25

as functions of hub-height freestream wind speed. When running a power performance verification test, it is straightforward

to measure the power; however, the freestream wind speed—i.e. the horizontal wind speed that would prevail at the turbine

location if the wind turbine was not there—is not a measurable quantity. Instead, power performance measurement campaigns

are designed to measure a wind speed that is expected to be very close to what the hub-height freestream wind speed would

be if we could measure it. The IEC standard for power performance measurements (IEC, 2017) requires the mast or lidar to30

measure between two and four rotor diameters (D) upstream of the test turbine, close enough for the flow to be well correlated

with conditions at the turbine, but far enough, ostensibly, for the influence of turbine induction on the measured wind speed to

be negligibly small. In addition, the measurement location and valid wind directions are restricted to avoid upstream wakes.

The IEC standard states the purpose of these requirements clearly (IEC, 2017): “The WME (wind measurement equipment)

shall not be influenced by the wind turbine under test. The wind turbine under test and the WME shall not be influenced by35

neighbouring operating wind turbines.”

Despite these restrictions, there is growing evidence that turbine-related disturbances materially influence power perfor-

mance measurements. The most compelling evidence involves field observations. Nacelle-mounted lidar measurements at eight

different offshore wind farms reported by Nygaard and Brink (2017) showed that the wind speeds measured 2.5D upstream of

the test turbines were below freestream, an average of 1.0% below according to the authors’ estimate. Based on this finding, the40

authors recommended applying an “induction correction factor” when calculating energy yield using a measured power curve

or similarly productive theoretical curve. Using meteorological mast measurements taken before and after the start of operation

at three onshore wind farms, Bleeg et al. (2018) found that wind speeds measured 2D upstream the wind farms decreased by

3.4%, on average, relative to wind speeds measured farther away after the turbines started operating. The observed slowdowns

were well in excess of what could be attributed to induction of a single turbine, which in part led to the conclusion that the45

other wind farm turbines also contributed to these slowdowns. Based on additional analysis, the authors further concluded that

wind farm blockage not only reduces the wind speed upstream of the wind farm, but it also reduces the wind speed experienced

by the turbines on the upstream perimeter of the wind farm, causing them to generally produce less than they would operating

in isolation. An analysis of power performance measurements conducted in a row of five turbines, along with a complemen-

tary set of Reynolds-Averaged Navier-Stokes (RANS) simulations, showed that wind farm blockage materially influences the50

measurements (Sebastiani et al., 2022). Specifically, wind farm blockage appears to affect the wind speed relationship between

the mast location and the rotor in these results. Beyond field observations, there are also simulation-based studies (Allaerts

and Meyers, 2017; Meyer Forsting et al., 2017; Nishino and Draper, 2015; Strickland and Stevens, 2022) and wind tunnel

studies (Medici et al., 2011; Ebenhoch et al., 2017; Segalini and Dahlberg, 2020; McTavish et al., 2015) that highlight flow

disturbances that likely affect power performance measurements.55

The IEC standard largely explains how to correct for flow distortions caused by terrain, but there is no information on flow

disturbances/distortions caused by wind turbines themselves. This omission can no longer be ascribed to a lack of evidence

that these disturbances exist in IEC-compliant measurements. We lack a generally accepted method to quantify the impact of

2



these flow disturbances and thereby correct for them. Specifically, although several models have been developed to account for

blockage effects on turbine interaction loss (Nygaard et al., 2020; Branlard and Meyer Forsting, 2020; Segalini, 2021; Bleeg,60

2020), accounting for blockage effects on power performance measurements is still a rather unexplored topic.

Here, we propose a method to correct for the impact of turbine-related disturbances on power performance measurements.

The methodology, which applies to both mast- and lidar-based measurements, is designed to yield power curves that are

consistent with how theoretical curves are defined. After describing the correction method in detail, including the reasoning

behind it, we test the method using RANS simulations of a notional wind farm. Finally, we explore whether the correction can65

be completed, at least partly, using nacelle lidar measurements rather than flow simulations alone.

The work is organized as follows. In Sect. 2, the correction method is explained. In Sect. 3, the numerical model is presented

with descriptions of the computational fluid dynamics (CFD) model (Sect. 3.1), the simulation set-up (Sect. 3.2) and the virtual

lidar measurements (Sect. 3.3). Results from power performance measurements conducted on the first upstream row of a wind

farm are shown in Sect. 4, while in Sect. 5 we show how short-range nacelle lidar measurements can be used to apply the70

correction method. In Sect. 6, the correction method is applied to all turbines in the wind farm, including downstream waked

turbines. Finally, discussion and conclusions are presented in Sects. 7 and 8, respectively.

2 Correction method

Common practice, when estimating the energy yield of a planned wind farm, is to combine the expected freestream wind

resource at each turbine location with the manufacturer-provided theoretical power curve to calculate the so-called gross energy.75

This is the total of the energy that each turbine would produce absent the presence of the other wind turbines and other loss

sources. The net energy is obtained after turbine interaction and other losses are accounted for. Thus, the power curve used in

an EYA should faithfully represent the power production of the turbine as function of freestream wind speed when the turbine

is operating in isolation. We refer to this power curve definition as a freestream power curve, P(U∞).

A power curve measured according to IEC standards, P(Umast), is not a freestream power curve as defined above. The test80

turbine affects the measured wind speed via induction, and the other wind farm turbines affect the relationship between that

wind speed and conditions at the rotor face, via blockage and sometimes wakes. The impact of these effects on the measured

power curve should be quantified and corrected. The objective of the correction method described in this section is to convert the

measured power curve to a freestream curve that can defensibly be compared with a theoretical power curve. In our approach,

we only alter the wind speed column in the tabular power curve. Specifically, for a given measured power vs. wind speed pair in85

the table, we correct to the freestream mean wind speed that would prevail if the test turbine were producing the same amount

of power while operating in isolation. The correction can be thought of a two-step process:

– Convert the measured curve to what would be measured if the test turbine were operating in isolation and producing the

same amount of power measured in the test.

– Correct for the impact of induction from the isolated turbine on the mast wind speed.90
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When measuring the power performance of a turbine inside a wind farm, the measured power curvePWF = P (UWF
mast) differs

from the power curve that would be measured if the turbine were operating in isolated condition P I = P (U I
mast), since both P

and Umast are affected by the turbine interactions. Consequently, since both power and wind speed are different (PWF ̸= P I

and UWF
mast ̸= U I

mast), both UWF
mast and PWF should be corrected in order to retrieve the power performance of the isolated turbine

from wind farm measurements. However, if we consider the case with the isolated and the wind farm turbines producing the95

same amount of power P = P I = PWF, we would only need to correct the wind speed measurement, retrieving U I
mast from

UWF
mast.

Although wind turbine power is commonly formulated as a function of freestream wind speed, it is more directly a function

of the velocity across the rotor face, which, along with air density and rotor speed, determines most of the aerodynamic loads

on the blades. In this paper, we use average axial velocity across the rotor face as a power-equivalent wind speed, Udisk. In100

other words, if two turbines experience the same Udisk, they are assumed to produce the same amount of power regardless of

the respective Umast and U∞ values. Thus, if P I = PWF, then (U I
disk/U

WF
disk) = 1, and U I

mast can be reconstructed from UWF
mast

as

U I,rec
mast = UWF

mast

(
Udisk

Umast

)WF(
Umast

Udisk

)I

, (1)

where U I,rec
mast is the reconstructed velocity at the mast of the isolated turbine, UWF

mast is the velocity measured at the wind-farm105

mast, and the ratios (Udisk/Umast)
WF and (Umast/Udisk)

I are computed from numerical simulations of the wind farm and the

isolated turbine, respectively.

The ratio (Umast/Udisk)
I relates to the turbine blockage/induction and can be assumed to be nearly constant with small

changes in wind speed over the plateau of the thrust-coefficient curve CT = CT (U∞). Therefore, Eq. (1) is still valid in the

case of UWF
disk ̸= U I

disk, as long as the turbine is operating at nearly the same thrust coefficient CT = CWF
T = CI

T and at a similar110

wind speed.

When U I
mast is retrieved at a distance of 2 D upstream of the rotor, it might be affected by turbine blockage. Therefore, a

similar approach as that used to derive Eq. (1) can be applied to reconstruct the freestream velocity:

U rec
∞ = U I,rec

mast

(
U∞
Umast

)I

, (2)

where U I,rec
mast is given by Eq. (1) and (U∞/Umast)

I is computed from simulations of both the isolated turbine and the undis-115

turbed free flow.

Some variations are expected for both (Umast/Udisk)
I and (U∞/Umast)

I depending on the wind direction, as the degree

of blockage at the mast depends on turbine yaw. Therefore, we also simulate IEC-compliant measurements with a 2-beam

nacelle-mounted lidar, which yaws with the turbine. In those cases, we refer to the IEC wind speed measurement as either

U I
lidar or UWF

lidar.120
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3 Numerical model

3.1 CFD model

The numerical simulations were run using a CFD model based on STAR-CCM+, a general-purpose CFD software. The model

solves the steady-state RANS equations along with a transport equation for potential temperature. The turbulence model is

standard k− ϵ with modified coefficients. Buoyancy effects are captured through the addition of a gravity term in the vertical125

momentum equation, which is formulated using a shallow Boussinesq approximation. Buoyancy source terms are also included

in the turbulence equations. More details about the flow model may be found in Bleeg et al. (2015b) and Bleeg et al. (2015a).

The turbines are represented via a simple actuator disk model. The disk volumes are discretised with cubic mesh cells

with edge lengths equal to 5% of the rotor diameter (20 cells across the rotor diameter and 5 cells across the disk thickness).

The axial and tangential body forces applied to the disk are modelled as a function of the disk-averaged axial velocity at the130

rotor face when the turbine is operating (Udisk). Since manufacturer-provided curves for power and thrust coefficient (CT ) are

functions of freestream wind speed (U∞), the curves used in the simulations need to be reformulated to be functions of Udisk.

The conversion of the manufacturer-provided CT and power curves follows a procedure similar to that reported by van der

Laan et al. (2015). The procedure involves running a series of single-turbine simulations, each corresponding to a different

hub-height wind speed. In these simulations, the U∞ values are known, and actuator disk forces are thereby set according to135

theoretical curves specified as functions of U∞. After each simulation finishes, we record Udisk. The outcome of the conversion

is a set of curves (P ′(Udisk), C ′
T (Udisk), and rotor speed) specified as a function of Udisk.

All simulations correspond to a conventionally neutral boundary layer with a thickness of approximately 1000 m. The

maximum potential gradient in the capping inversion is +10 K/km, and the free atmosphere above is stably stratified with

a vertical potential temperature gradient of +3.3 K/km. In this numerical experiment, three types of simulations were run:140

full wind farm, turbines in isolation, and freestream. As the labels imply, the full wind farm simulations include all the wind

turbines, the isolated turbine simulations only include one turbine, and the freestream simulations have no turbines/actuator

disks. The three types of simulations are run with the same mesh and boundary conditions.

3.2 Simulation set-up

We perform RANS simulations of a wind farm with five rows of 20 turbines, as shown in Fig. 1-(a). The turbines have a rotor145

diameter of 136 m and are distributed with spacings of 3 and 10 D along x and y, respectively. We simulate five different wind

directions, covering the sector from −45◦ to +45◦ with respect to the orthogonal wind direction θ = 0◦ as shown in Fig. 1-(a).

The turbines are numbered starting from the most downwind row, so that turbines from T81 to T100 are wake-free for all the

simulated wind directions.

Simulations are also performed with a single turbine operating within the same domain and under the same free-flow con-150

ditions of the wind farm. We simulate four different single-turbine cases in order to evaluate whether numerical effects cause

different results for different locations of the isolated turbine. We simulate the single turbine located at the spot of T28, T81,

T92 and T100 and, although not shown, we find that the location of the isolated turbine does not change the conclusions re-
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garding the blockage effect on power performance: the variations in both power and wind speed between the upstream turbines

(T81,.., T100) and the isolated turbine do not change, i.e. results shown in Fig. 4 are independent of the location of the isolated155

turbine. Therefore, in the following analysis, we refer to the case with the isolated turbine located at T92 spot, as shown in Fig.

1-(b).
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Figure 1. Illustrations of the wind farm layout (a) and the isolated turbine (b), with both wind turbine (black circles) and mast (red circles)

locations. The arrows show the θ = 0◦ wind direction.

To test the correction method, i.e., Eqs. (1) and (2), we extract the wind speed at hub height in front of all the first-row

turbines and the isolated turbine. To test all the possible IEC-compliant wind speed measurements, we simulate nine masts

located on the 2D-radius circle around each turbine and distributed every 10◦ from α=−40◦ to α= 40◦ relatively to the160

north, as shown in Fig. 1-(b). It should be noted that, according to the IEC standard, the available sector for power performance

tests would be larger than [−40◦, +40◦] for the isolated turbine, T81 and T100, as there are not neighbouring turbines on one

or both sides of the turbine. However, to keep consistency in the comparison between the 20 upstream turbines and the isolated

turbine, we consider the same sector of −40◦ to 40◦ for all the turbines.

We aim to simulate five wind directions regularly distributed over the [−45◦,+45◦] interval. However, the simulated flow165

field is characterized by vertical veer due to the combination of surface friction and Coriolis force, so the wind direction varies

around 4◦ from bottom to top of the rotor swept area, as shown in Fig. 2-(b), with wind directions at hub height of −46◦, −23◦,

−1◦, 20◦ and 44◦. Additionally, Fig. 2-(a) shows the vertical velocity profiles, which are all characterized by an horizontal wind

speed of around 7.1 m/s at hub height, with variations from ∼5.9 to ∼7.8 m/s across the rotor swept area. The wind speed was

chosen so that the wake-free turbines operate on the plateau of the CT curve.170
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Figure 2. Vertical profiles of the horizontal wind speed (a) and wind direction (b) extracted at the location of T92 from the freestream

simulations.

3.3 Virtual lidar measurements

The correction method is based on the combination of measurements (Umast or Ulidar) with the numerically computed value

of Udisk, which is hard to estimate out in the field. Therefore, we investigate whether Udisk can be replaced with a measurable

velocity quantity: we simulate short-range nacelle lidar measurements in the induction zone and derive a velocity quantity

Udisk,lidar that is tested as a proxy for Udisk in Eq. (1). Furthermore, we simulate IEC-compliant nacelle lidar measurements to175

evaluate the performance of the correction method when replacing Umast with Ulidar in Eq. (1).

We retrieve the IEC-compliant wind speed measurements with a 2-beam nacelle-mounted lidar measuring at 2 D upstream of

the rotor with a half-opening angle φ= 15◦. Additionally, as shown in Fig. 3, we retrieve wind speed values at 0.5 D upstream

of the rotor with four different nacelle lidars: the same 2-beam lidar used to measure at 2 D; a 4-beam lidar with φ= 18◦ and

the measurement points at the four vertices of a square; a 50-beam circularly scanning lidar with φ= 15◦; and an additional180

50-beam ideal lidar which scans along the circular pattern of radius equal to three quarters of the rotor radius. The choice of the

50-beam ideal lidar scanning pattern is based on the work by Sebastiani et al. (2023), who showed that, among several circular

scanning patterns, the one scanning at around a three quarter of the radius provided the highest accuracy in power prediction.

We assume horizontal homogeneity of the flow field to reconstruct the horizontal wind speed at hub height from the 2-beam

lidar measurements by inverting the linear system185

n1

x n1
y

n2
x n2

y


 ·


ux

uy


=


v1r

v2r


 , (3)
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Figure 3. Illustrations of the rotor and lidar measurement points at both 2 and 0.5D with three- and two-dimensional views in (a) and (b),

respectively.

where ni
j is the j-th component of the unit vector ni indicating the direction of the i-th beam, vir is the radial velocity retrieved

from the i-th beam and uj is the j-th component of the horizontal wind velocity, whose magnitude is Ulidar =
√

u2
x +u2

y . We

do not simulate the lidar probe volume, so the radial velocities are retrieved as point measurements with a three-dimensional

linear interpolation from the flow solution.190

When using lidars with more than 2 beams, i.e., the two 50-beam and the 4-beam, we neglect both the lateral and vertical

components of the wind speed vector by assuming ux = uz = 0 m/s, so that the horizontal wind speed at each beam loca-

tion is retrieved as uy = vr/ny . Then, the lidar-estimated disk velocity is obtained as the mean of the beam measurements:

Udisk,lidar = 1/nbeam

∑nbeam

i=1 ui
y . When using the 2-beam lidar focused at 0.5 D, the horizontal wind speed value reconstructed

with Eq. (3) is used as Udisk,lidar.195

4 Power performance measurement of the first-row turbines

Wind farm blockage affects the flow upstream of the wind farm, changing velocity relative to the flow upstream of the isolated

turbine. Figure 4-(a) shows the difference between the wind speed U I
mast measured in front of the isolated turbine and the wind

speed UWF
mast measured in front of the ith wind-farm turbine for the same jth wind direction:

∆Uij = 100
UWF
mast(Ti,θj)−U I

mast(θj)

U I
mast(θj)

. (4)200

The error bars of Fig. 4-(a) indicate mean and standard deviations associated with the mast orientation α. For most of

the first-row turbines, the measured wind speed is lower than in the isolated case for all the simulated wind directions, with
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velocity reductions of more than 3% in the centre of the row. However, in cases of highly skewed inflow, the wind speed is

increased around the most downwind turbines. For θ = 44◦, UWF
mast at T81 is more than 1% higher than U I

mast. The same trend

of wind speed variations for a skewed inflow was found by Sebastiani et al. (2022) for a single row of wind turbines, where the205

downstream turbines are in the speed-up region formed at the edge of the wakes from the upstream turbines (Sebastiani et al.,

2022; Meyer Forsting et al., 2017). In our case, due to the larger scale of the wind farm, the wind speed increase might be also

due to the speed-up at the edge of the wind-farm induction region. The asymmetry in global-blockage effect between cases

with almost symmetric inflow angles, such as −46◦ and 44◦, is probably due to the asymmetry introduced by the vertical wind

veer, and perhaps also wake rotation.210
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Figure 4. Variations in wind speed (a,b) and power output (c) relatively to the isolated turbine for all the simulated wind directions, when

measuring the wind speed at 2D in front of the turbines with either masts (a) or the 2-beam lidar (b). Error bars (a) indicate the standard

deviations with the α values.

The blockage-induced velocity variations do not change much when replacing the masts with a 2-beam nacelle-mounted

lidar, as shown in Fig. 4-(b). However, the nacelle lidars measure the wind speed along the rotor axis irrespective of θ, removing

the variation associated with α.

Similarly to the wind speed variations shown in Fig.s 4-(a) and 4-(b), Fig. 4-(c) shows the power deviations of the first-row

turbines relatively to the isolated turbine:215

∆Pij = 100
PWF(Ti,θj)−P I(θj)

P I(θj)
. (5)

Since the power output is related to the velocity raised to the power of 2–3, power variations are larger in magnitude than

the velocity ones, with variations from −9.4% to +5.6% with respect to the isolated turbines. Additionally, the largest power

losses are not found for the central turbines as for the wind speed, but for the most upstream turbines in the case of strongly

skewed inflows, i.e., T81 for θ =−46◦ and T100 for θ = 44◦.220

Since UWF
mast and P are not perfectly correlated, their blockage-induced variations cause uncertainty in the power curve, as

shown in Fig. 5-(a) with a scatter plot of the power output from the first-row turbines against the wind speed measured by their
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mast for all wind directions. When applying the correction in Eq. (1) to UWF
mast, the scatter in the power curve does not decrease

much, as shown in Fig. (5)-(b). On the other hand, when further correcting U I,rec
mast with Eq. (2), the scatter in the power curve

decreases substantially to a much lower level as shown in Fig. 5-(c).225
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Figure 5. Power output against the mast-measured wind speed of all the first-row turbines for all wind directions and mast locations. (a): no

correction applied on the measured wind speed. (b): wind speed corrected with Eq. (1). (c): wind speed corrected with Eq. (2).

The scatter shown in Fig. 5-(a) is not only due to global blockage, but also to turbine blockage, whose effect is not accounted

for using Eq. (1), which reconstructs the wind speed that would be measured around the isolated turbine that is producing the

same amount of power as the wind-farm turbine. Since the blockage-induced velocity field is not spatially uniform, the ratio

(Umast/Udisk)
I varies with both θ and α as shown in Fig. 6, where error bars represent the standard deviations of the values

obtained for different mast orientations α.230

When applying Eq. (2), we are correcting for the turbine blockage, relating the power output to the freestream velocity that

would be measured at the isolated turbine location if the turbine was not there. The power curves retrieved from different

masts collapse onto each other, as the freestream velocity does not vary substantially with either α or θ due to the nearly

homogeneous velocity field. As shown in Fig. 6, the variation of (U∞/Udisk)
I with α is almost non-existing while a maximum

variation of 0.25 % is observed with θ. The larger variation with θ is partly due to tiny variations in the wind profiles among235

different simulations, as U∞ is evaluated at hub height while Udisk depends on the wind speed along the entire rotor swept area.

Additionally, other factors might cause the discrepancy in (U∞/Udisk)
I between different simulations, such as slight variations

in the wake diffusion or number of cells across the disk.

Figure 7 shows scatter plots of the power output against the lidar-retrieved wind speeds for the first-row turbines. When

using nacelle lidars, α can be disregarded and the power performance variations are due to the turbine location and wind240

direction only. The scatter is almost completely reduced by using Eq. (1), as nacelle lidars measure the wind along the rotor

axis regardless of θ so that the measurements are equally affected by turbine blockage for different values of θ. When using
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Figure 6. Wind speed variations in the induction zone of the isolated turbine when using mast measurements. Error bars represent the

standard deviations of the values obtained for different mast orientations α and same wind direction θ.

Eq. (2) to correct for turbine blockage, the scatter does not decrease and the only effect is the shifting towards higher velocity

values.
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Figure 7. Power output against the lidar-measured wind speed of all the first-row turbines for all wind directions. (a): no correction applied

on the measured wind speed. (b): wind speed corrected with Eq. (1). (c): wind speed further corrected with Eq. (2).

Figure 8 shows the variations with θ of the ratios (Ulidar/Udisk)
I and (U∞/Udisk)

I. Both ratios show almost the same245

dependency on θ, which demonstrates that the differences in U I
lidar values are due to the variation of the freestream flow

rather than to turbine blockage. This also explains the similarity in the scatter of the power curve when using either U I,rec
lidar

or U rec
∞ . When measuring power curves with nacelle lidars, Eq. (1) can be used to correct wind-farm effects and retrieve the

power performance of the isolated turbine. However, Eq. 2 is still needed to get the power output as function of the freestream
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velocity and avoiding an overestimation of the power performance, as it can be noticed in Fig. 7-(c), where power values are250

shifted to the right compared to Fig. 7-(b).
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Figure 8. Wind speed variations in the induction zone of the isolated turbine when using nacelle lidars

Figure 9 shows the distributions of the CP values estimated using the different wind speed definitions. When looking at

the CP of the isolated turbine, we notice lower variation using lidar than mast measurements, as we avoid dependencies on α

variations, so that the spread of the CP values is lower when using UWF
lidar, U

I,rec
lidar and U I

lidar than with UWF
mast, U

I,rec
mast and U I

mast,

respectively. If we assume CP = CP (U
I
lidar) as the reference value, the CP estimation is both inaccurate and imprecise when255

using either UWF
lidar or UWF

mast. The CP mean values are 1.5% and 1.4% higher than CP (U
I
lidar) for UWF

mast and UWF
lidar, respectively,

whereas the interquartile range (IQR) is 600% and 700% higher for UWF
mast and UWF

lidar, respectively. By correcting with Eq. (1),

the term U I,rec
mast provides higher accuracy than UWF

mast with both median and mean values closer to the reference, but the values

are still highly spread due to the variations in (Umast/Udisk)
I, as shown in Fig. 6. On the other hand, we observe both an

increase in accuracy and reduction in the spread when using U I,rec
lidar , with differences with the reference of 0.4% and 19.8%260

for the mean value and IQR, respectively. However, without applying Eq. 2, the CP values are not an accurate estimation

of the power performance as CP = CP (U∞). As shown in Fig. 9, the CP is overestimated relative to CP (U∞) of 4.1% and

4.5% when using U I
mast and U I

lidar, respectively. On the other hand, the CP estimation is very accurate when using Eq. 2, with

deviations of 0.4% from CP (U∞) for both U∞,rec
mast and U∞,rec

lidar .

It should be noted that the overestimation of CP observed with both UWF
mast and UWF

lidar might have strong implications on265

the accuracy of AEP estimations. Additionally, the wind speeds corresponding to the high CT values assumed in this work are

usually among the most frequent wind speed values at the wind farm site. Therefore, results of Figs. 5, 7 and 9 show the need

to correct for the effect of blockage on power performance measurements.
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Figure 9. Box plots of the CP distributions for the first-row and isolated turbines. Box plot features: quartiles q1 and q3 (box limits); lowest

and highest values within [q1− 2 IQR, q3+2 IQR] (whiskers); values outside the range [q1− 2 IQR, q3+2 IQR] are shown as outliers

(circles); median (red line) and mean (blue line).

5 Lidar-based estimation of the disk velocity

We simulate the 2-beam lidar focused at 19 different distances from the rotor, as shown in Fig. 10-(a). Specifically, we simulate270

measurements from the rotor plane up to 1.875 D, and we compute Udisk,lidar from the radial velocities of the two beams at

each distance. We then model the relationship between the terms Udisk,lidar and Udisk with least-square linear regressions using

the (Udisk,lidar,Udisk) values from all the 20 upstream turbines, whose coefficients of determination R2 are shown in Fig. 11.

As it can be noted in Fig. 11, R2 is low when measuring closer than 0.2 D to the rotor and reaches its maximum at 0.25 D,

with a smooth decreasing trend for further distances. The value at ∆y = 0.625 D appears as an outlier due to numerical biases275

because the focus point of the beams is at the edge of the highly discretized region, as shown in Fig. 10-(b).

The correlation between Udisk and Udisk,lidar decreases very close to the rotor. This is due to a combination of discretisation

and interpolation error. As shown in Fig. 10-(a), the flow field close to the rotor (y ⪅ 0.2D) does not appear as smooth as it

does far from the rotor. Strong velocity gradients near the rotor, caused by the applied turbine forces, increase discretisation

and interpolation errors here.280

We use the distance of ∆y = 0.5 D for testing the correction method based on the work by Troldborg and Meyer Forsting

(2017), who showed that the induction zone is self-similar beyond 0.5 D upstream of the rotor, i.e., that the induced velocity

field is only function of the total CT with no dependency on the distribution of loads across the rotor. When measuring

Udisk,lidar at 0.5 D, the results are representative of all wind turbine rotors, while using closer measurements might provide

results which are representative of the simulated rotor only.285
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Figure 10. Normalized velocity field at hub height in front of the isolated turbine (a) and grid discretization within the same area (b).
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Figure 11. Coefficient of determination of the least-square linear regression between Udisk and Udisk,lidar estimated at several upstream

distances.
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6 Power performance measurements in wakes

The correction method is not limited to blockage effects. In theory, it can be used to correct for any turbine-related disturbances,

including wakes. Figure 12 shows the relation between wind speed and power output for all the 100 turbines in the farm and

for all the simulated wind directions. Since it is not common to erect masts in the inner region of the wind farm, we only

consider nacelle lidars for power performance measurements of turbines T1, .., T80. As shown in Fig. 12-(a), the power output290

is very poorly correlated with the hub-height wind speed measured at 2 D in front of the rotor, as this does not represent well

Udisk. This is due to the complex inflow conditions faced by the downstream turbines (T1, T2, ..., T80), with both axial and

lateral velocity gradients affecting the relationship between the measured wind speed and Udisk. Additionally, for skewed wind

directions, the measurement location might be in wake, while the rotor is not, or the rotor might be partially in wake, further

decreasing the correlation between the power output and the measured wind speed.295

When applying Eq. (1), as shown in Fig. 12-(b), the corrected wind speed is highly correlated with the power output, as

the correlation between Udisk and P is not affected by the complexity of the flow field in the model. When further correcting

with Eq. (2), as shown in Fig. 12-(c), the scatter in the power curve is not further decreased, and a shift towards slightly higher

wind speed values is observed due to the correction of the turbine blockage. When comparing to the freestream power curve

values (U∞,P I) given by the combination of the isolated and freestream simulations (black squares in Fig 12), we notice an300

overestimation of the power performance when correcting with Eq. (1) only, and strong agreement when further correcting

with Eq. (2).
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Figure 12. Power output against the lidar-measured wind speed of all the wind-farm turbines for all wind directions. (a): no correction

applied on the measured wind speed. (b): wind speed corrected with Eq. 1. (c): wind speed corrected with Eq. 2. Black squares indicate the

(U∞,P I) points given by the combination of the isolated and freestream simulations.

The correction method also works well when replacing the term Udisk in Eq. (1) with Udisk,lidar retrieved at 0.5 D in front

of the rotors, as shown in Fig. 13. Although the scatter is slightly larger than when using Udisk, all lidar configurations allow
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for large improvements in the power curve. The results for the three commercial lidars in Figs.13-(a,b,c) are quite similar with305

no significant improvements when increasing the number of beams, while keeping the same opening angle (φ= 15◦,18◦).

However, when increasing φ to 37◦, the correction results in significant less scatter, as shown in Fig. 13-(d). This is because

the lidar-estimated Udisk is closer to the true value when increasing the scanned area.
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Figure 13. Power output against the lidar-measured wind speed of all the wind-farm turbines and all wind directions. Wind speed measure-

ments are corrected with Eq. (1), where Udisk is replaced with the term Udisk,lidar, which is estimated using measurements at 0.5D from the

2-beam lidar (a), the 4-beam lidar (b), the 50-beam (c) and the 50-beam ideal lidar (d).

The short-range lidar measurements at 0.5 D in front of the rotor cannot be used as a proxy of Udisk. However, the correction

method can be applied with these measurements as they are highly correlated with the velocity at the disk, as shown in Fig.310

14. Since the lidar measures very close to the rotor, the correlation between Udisk,lidar and Udisk is less affected by the velocity
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gradients in the wakes and the measurements and the rotors have a higher probability of being both either inside or outside the

wake. In agreement with the results of Fig. 13, the highest correlation is shown by the circular scanning lidar with φ= 37◦

with a coefficient of determination R2 = 0.998.
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Figure 14. Scatter plots and related linear regressions between Udisk and Udisk,lidar estimated with measurements at 0.5D from the 2-beam

lidar (a), the 4-beam lidar (b), the CSL (c) and the 50-beam lidar (d).

7 Practical application and limitations315

In this work, a method is presented to correct for the effect of turbine-induced flow distortions on power performance mea-

surements. Our results show that the correction method can potentially reduce both bias and uncertainty of power performance

measurements. However, the approach relies on the accuracy of the flow model, which might introduce errors when applying

the correction to field measurements. In addition, the ratio (Udisk/Ulidar)
WF is likely sensitive to the wind direction and, es-

pecially out of the constant-CT region of the CT curve, the correction factors change with the wind speed; as a result, many320
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numerical simulations might be required to account for different wind speed and wind directions. Additionally, it would be

necessary to evaluate the uncertainty introduced in the measurements by the numerical correction.

The drawbacks of relying exclusively on numerical simulations to make the corrections could be mitigated by complement-

ing the flow model with nacelle lidar measurements. Our numerical results indicate that short range nacelle lidar measurements

can be used to reduce the impact of turbine-induced flow disturbances on power performance measurements, improving both325

accuracy and precision of the power curve. However, when using nacelle lidar measurements to apply Eq. 1, the power perfor-

mance would be still overestimated because of the difference between U I
lidar and U∞. In order to retrieve the freestream power

curve P = P (U∞), the lidar measurements must be further corrected with Eq. 2, which can only be applied through numerical

simulations of both the isolated turbine and the freestream flow field. Thus, as shown in this work, nacelle lidar measurements

can be used to correct for the effect of neighbouring turbines on the measured power performance, but simulations are needed330

in order to further correct for the blockage effect of the single isolated rotor.

During the power performance testing of an isolated turbine, nacelle lidar measurements could be retrieved at both 0.5

D and 2 D in order to estimate (Udisk/Ulidar)
I. Then, when testing the power performance of the same turbine model in a

wind farm, the ratio (Udisk/Ulidar)
WF would be retrieved with the same procedure and the measured power curve can be

corrected with Eq. 1. However, (Udisk/Ulidar)
I might be sensitive to the atmospheric conditions at the isolated-turbine test site,335

which might be different from those of the wind farm site. In our numerical tests, both the isolated turbine and the wind farm

operate under the same atmospheric conditions. This might improve the results compared to the case where (Udisk/Ulidar)
I

and (Udisk/Ulidar)
WF are obtained from sites presenting significantly different atmospheric conditions.

A viable procedure could be using the short range nacelle lidar measurements to validate the flow model. Numerical and ex-

perimental investigations (Meyer Forsting, 2017; Simley et al., 2016) showed that the induction factor a= (U∞ −Udisk)/U∞340

is not affected by moderate shear, while strong variations of both a and CT have been observed under extreme shear condi-

tions (power law exponent of 0.5) (Meyer Forsting et al., 2018). On the basis of such results, the variation of (Udisk/Ulidar)
I

among different sites is likely small when measuring under neutral or nearly-neutral conditions, while variations might be

observed under stable conditions characterized by strong vertical shear. However, further investigation is needed to evaluate

the sensitivity of the correction method to different vertical wind profiles and atmospheric conditions.345

Separately, but still on the subject of further investigation, the reliability of the correction method under waked condi-

tions could be tested by conducting power performance measurements at the wind farm edge using nacelle lidar measure-

ments. Depending on the wind direction, the reference turbine would be either the most upwind or downwind of the farm. So,

(Udisk/Ulidar)
I and (Udisk/Ulidar)

WF could be retrieved from wake-free and waked measurements, respectively. Eq. 1 would

be then applied to the waked measurements to evaluate whether they provide a power curve which is consistent with that350

obtained from the IEC-compliant wake-free measurements.
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8 Conclusions

We perform RANS simulations that include both a wind farm and an isolated wind turbine operating within a conventionally

neutral ABL. The simulations aim to analyze the influence of wind farm blockage effects on power performance tests, assessing

whether the measured power performance differs from that of the isolated wind turbine. Furthermore, we suggest a method to355

correct for blockage effects on the power performance. The method corrects the power curves of the wind farm turbines so that

they become closer to that of the isolated turbine. Additionally, we correct for the blockage effect of the single isolated wind

turbine, retrieving the power performance as function of the undisturbed freestream velocity. Finally, we use the correcting

method to evaluate the power performance of all the wind turbines in the farm, including downstream turbines in wake.

The numerical results show that wind farm blockage affects the power performance of the turbines in the upstream row of360

the wind farm, with variations up to 3% in IEC-compliant wind speed measurements and up to 9% in power output depending

on both the location of the turbine in the row and the wind direction. Wind farm blockage increases the uncertainty of power

performance measurements conducted on the wind-farm turbines, with high scatter in the power curve and large spread of

the CP values. When considering all wind directions and upstream turbines, variations up to 1.5% are observed for the mean

power coefficient CP relatively to the isolated turbine. Additionally, single-turbine blockage causes an overestimation of CP365

up to 4.5% due to the difference between the measured wind speed and the undisturbed freestream velocity.

We show that the influence of blockage effects on power performance measurements can be reduced by performing numerical

simulations of the frestream flow field, the isolated wind turbine and the wind farm. The method reduces the scatter in the power

curve and decreases the difference in CP between the wind farm and the isolated turbines. Additionally, the method accounts

for blockage effects from the single isolated turbine, retrieving the power performance of the turbine in isolation as a function of370

the freestream wind speed. Furthermore, the correction method is used to derive reliable power curves from power performance

measurements conducted on waked wind turbines.

The correction method is also tested by replacing the numerical estimation of the rotor velocity with virtual nacelle lidar

measurements retrieved close to the rotor. Results show that the nacelle lidar measurements are highly correlated with the power

output; therefore, they can likely be used to perform power performance measurements for wind turbines inside the wind farm.375

However, further investigation is needed to assess to what extent the lidar-based correction is affected by the atmospheric

conditions during the measurements.

Code and data availability. Code and data related to this work can be obtained by contacting the authors.
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Abstract. Nacelle lidars with different number of beams, scanning configurations and focus
distances are simulated for characterizing the inflow turbulence. Lidar measurements are
simulated within 100 turbulence wind fields described by the Mann model. The reference
wind turbine has a rotor diameter of 52 m. We assume homogeneous frozen turbulence over
the lidar scanning area. The lidar-derived Reynolds stresses are computed from a least-square
procedure that uses radial velocity variances of each of the beams and compared with those
from a simulated sonic anemometer at turbine hub height. Results show that at least six
beams, including one beam with a different opening angle, are needed to estimate all Reynolds
stresses. Enlarging the beam opening angle improves the accuracy and uncertainty in turbulence
estimation more than increasing the number of beams. All simulated lidars can estimate the
along-wind variance accurately. This work provides guidance on designing and utilizing nacelle
lidars for inflow turbulence characterization.

1. Introduction
Characteristics of inflow turbulence are crucial for wind turbine load validation [1], power
performance assessment [2] and wind turbine control [3]. In-situ anemometers installed on
meteorological masts, such as cup and sonic anemometers, have been used to measure inflow
turbulence. Nevertheless, with the increasing size of modern wind turbines, installing a
meteorological mast that reaches the height of the blade tips has becoming more and more
unaffordable, especially in offshore conditions. In recent years, lidars of different types and
configurations have been mounted on the nacelle of wind turbines to scan the inflow [2; 4].
These forward-looking nacelle lidars have the advantage that they yaw with the wind turbine
and scan towards the main wind direction. Compared to the point-wise anemometers, lidars
measure over an area in front of the rotor, which gives the possibility to derive rotor-averaged
turbulence characteristics.

Turbulence can be characterized by the second-order moments (variances and covariances)
of the wind field components u, v and w in typically 10 min or 30 min assuming statistical
stationarity. A matrix containing these six second-order moments ⟨u′iu′j⟩ is known as the
Reynolds stress tensor, which is frequently used to describe atmospheric flow. The along-wind
variance is widely used in wind energy as it is part of the definition of the turbulence intensity,
which is an important turbulence parameter for turbine structural loads [5]. The momentum
fluxes (i.e., two covariances ⟨u′w′⟩ and ⟨v′w′⟩) are used to calculate the friction velocity, which
is closely connected to the vertical wind profile [6; 7]. The turbulence kinetic energy, i.e., half
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the sum of the variances of the three velocity components, is a key parameter for studying
wind turbine wake structure [8]. The Reynolds stresses are also useful for evaluating the three-
dimensional turbulence models for e.g., load simulations.

Compared to turbulence estimates from sonic anemometers, lidar-derived turbulence
characteristics can be biased due to the lidar scanning patterns, the spatial and temporal
resolutions intrinsic to the lidar systems and the characteristics of atmospheric turbulence.
[1; 9] studied the application of lidar measurements from different scanning patterns for load
validation. [10] optimized the scanning trajectory of nacelle lidars based on a coherence model
for the rotor-effective wind speed for control applications. Only a few works have investigated the
influence of lidar scanning pattern on turbulence characterization. [11] proposed an optimized
six-beam configuration using an objective function for a ground-based lidar to minimize the
sum of the random errors of the Reynolds stresses. [12] showed that turbulence estimates from
ground-based lidars can be improved by using the variance from the vertical beam.

Here, we compare the estimates of the Reynolds stress tensor from nacelle lidars with different
scanning patterns through numerical simulations. The Reynolds stresses are computed via a
least-square procedure that uses radial velocity variances for each of the lidars’ beams without
the need to reconstruct the wind components. We summarize how the number of beams, the half-
cone opening angle and focus distance influence the accuracy and the uncertainty of turbulence
estimates. This work provides guidance on designing and utilizing nacelle lidars for inflow
turbulence characterization.

This paper is organized as follows. Section 2 describes the simulated turbulence wind fields
and the methodology to estimate the Reynolds stresses. Section 3 provides information on the
simulated lidar scanning patterns and the simulation setup. Section 4 shows the comparison of
Reynolds stress estimation between the virtual lidars and sonic anemometer. Conclusion and
outlook are given in Section 5.

2. Methodology
2.1. Turbulence wind fields
Assuming homogeneous frozen turbulence [13], the wind fields can be described by a vector
field u(x) = (u, v, w), where u is the horizontal along-wind component, v the horizontal
lateral component, w the vertical component, and x = (x, y, z) the position vector defined
in a right-handed coordinate system. The mean value of the homogeneous velocity field is
⟨u(x)⟩ = (U, 0, 0), so the coordinate x is in the mean wind direction. We simulate lidar
measurements on the nacelle of a wind turbine with a rotor diameter (D) of 52 m using 100
randomly generated turbulence fields described by the Mann model [14; 15]. The wind fields have
typical values of the model parameters: αε2/3 = 0.05 m4/3 s−1, which is related to the turbulent
energy dissipation rate; L = 61 m, which is a turbulent length scale; and Γ = 3.2, which describes
the anisotropy of the turbulence. The turbulence boxes have lengths of 30 min in the along-
wind direction assuming a mean wind U = 10 m s−1. We add a linear shear dU/dz = 0.0288
s−1 to the u components in each box. The lengths are 128 m both in the vertical and lateral
directions. The number of grid points in the three directions are (Nx, Ny, Nz) = (8192, 64, 64).
Sonic anemometer statistics are taken at the location of the turbine rotor (i.e., center of the
turbulence boxes) as the reference for evaluation of the lidar-derived turbulence characteristics.
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2.2. Estimation of the Reynolds stresses
The Reynolds stress tensor Rij(x) ≡ ⟨u′iu′j⟩, where ui are the fluctuations around the mean,

contains the variances σ2
u,v,w and the covariances of the velocity components:

R =




σ2
u ⟨u′v′⟩ ⟨u′w′⟩

⟨v′u′⟩ σ2
v ⟨v′w′⟩

⟨w′u′⟩ ⟨w′v′⟩ σ2
w


 . (1)

The unit vector n describing the beam orientation of a nacelle lidar can be expressed as [4]:

n(ϕ, θ) = (− cosϕ, cos θ sinϕ, sin θ sinϕ), (2)

where θ is the angle between the y axis and n projected onto the y-z plane and ϕ is the angle
between the beam and the negative x-axis (the half-cone opening angle). If we assume the lidar
probe volume can be negligible and u, v, and w do not change over the scanned area, the radial
velocity can be expressed as

vr(ϕ, θ) = −u cosϕ+ v cos θ sinϕ+ w sin θ sinϕ. (3)

The radial velocity variance can be derived by taking the variance of Eq. (3), as shown in [16]:

σ2
vr(ϕ, θ) = σ2

u cos
2 ϕ+ σ2

v cos
2 θ sin2 ϕ+ σ2

w sin2 θ sin2 ϕ− 2⟨u′v′⟩ cosϕ cos θ sinϕ

− 2⟨u′w′⟩ cosϕ sin θ sinϕ+ 2⟨v′w′⟩ sin2 ϕ cos θ sin θ.
(4)

To compute the Reynolds stress tensor R, we use the simulated lidar radial velocity variance
from all beams over the scanning pattern. Assuming statistical homogeneity, we apply a least-
square fit to all radial velocity variances σ2

vr and the beam unit vectors n :

∆2 =

∫
(n ·Rn − σ2

vr)
2dµ. (5)

The matrix Rij that minimizes the integral must fulfill

∂∆2

∂Rij
= 0 ⇒

∫
(n ·Rn − σ2

vr)ninjdµ = 0. (6)

This can be written as

Rkl

∫
nknlninjdµ =

∫
σ2
vrninjdµ, (7)

where (k, l) and (i, j) go through the six combinations of indices. More details are given in [17].
Equation (7) implies that we need at least six radial velocity variances from different beam

directions to compute the six Reynolds stresses. If the nacelle lidar has fewer than six beams,
only σ2

u (Ruu) can be determined well and the stresses involving the lateral component will be
more noisy [18]. For lidars that have fewer than six beams, we use another two ways to retrieve
only σ2

u from the simulated measurements under different assumptions. The first is to correct
all radial velocity variances σ2

vr with a factor of cos2 ϕ, which is the same as solving Eq. (4)
assuming that all Reynolds stresses apart from σ2

u are zero (denoted as ‘σ2
u-LSP’ method). The

second is to assume that turbulence is isotropic, which gives σ2
u as the mean of all σ2

vr (denoted
as ‘σ2

u-isotropy’ method).
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3. Lidar scanning patterns
Figure 1 shows the considered lidar scanning patterns. The SpinnerLidar (SL in short) scans
in a rosette-curve pattern and generates 400 radial velocities in one full scan. In practice, the
SpinnerLidar streams out radial velocities at a rate of 200 Hz so it takes 2 s to finish one full
scan. It has half-cone opening angles between 0−30◦ and measures with a focus distance fd = 52
m (1D) in front of the rotor. Other lidars have ϕ = 15◦ and measure further away (at the focus
distance of 98 m) to cover the whole rotor plane. Furthermore, we simulate all considered lidars
with multiple measurement planes at fd = 49, 72, 98, 121 and 142 m. We use the simulated
radial velocity variances at all measurement levels to compute the turbulence statistics. Figure
2 illustrates the scanning trajectories of the 4-beam and 50-beam lidars with multiple planes
as examples. To investigate the influences of the lidar opening angle and the focus distance on
turbulence estimation, we simulate the 6-beam configuration [11] with a fixed focus distance of
52 m and increasing opening angles (Fig. 3(a)), and a fixed opening angle of 15◦ and increasing
focus distances (Fig. 3(b)). We neglect the lidar probe volume and assume that the lidar can
measure at a point in the simulation.
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(h) SpinnerLidar (SL)

Figure 1: Scanning patterns of the simulated lidars. The SpinnerLidar (h) has ϕ = 0− 30◦ and
scans at fd = 52 m, while other lidars (a-g) have ϕ = 15◦ and scan at fd = 98 m to cover the
whole rotor plane. Red dots represent the lidar beam scanning locations. The wind turbine
rotor is indicated in a black circle.

4. Results
We compare the six Reynolds stresses computed from the simulated measurements of lidars,
which have more than six beams and measure with a single plane, with those from a sonic
anemometer at hub height, as shown in Fig. 4. The SpinnerLidar gives the best estimation
for all six components, which is closely related to the maximum ϕ of the lidar. The 6-beam
and 51-beam lidar provide very similar results, with larger errors and higher uncertainties than
the SpinnerLidar. However, the 50-beam configuration cannot estimate the v- and w-variances
accurately. This is because the least-squares problem can lead to infinite solutions if we have
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Figure 2: Scanning trajectories of the 4-beam and the 50-beam lidars with multiple measurement
planes at fd = 49, 72, 98, 121 and 142 m. Red dots represent the lidar beam scanning locations.
The wind turbine rotor is indicated in a black circle. The turbine nacelle is marked in a black
dot on the rotor plane.
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Figure 3: Scanning patterns of the 6-beam lidar with (a) a fixed focus distance and various
half-cone opening angles, and (b) a fixed half-cone opening angle and various focus distances.
The wind turbine rotor is indicated in a black circle. The turbine nacelle is marked in a black
dot on the rotor plane.

only one ϕ value. Comparing the results from 50-beam and 51-beam lidar, we can see that
adding one central beam is very beneficial for measuring all variances.

We show the performances of 50-beam and 51-beam lidar with multiple measurement planes
on the Reynolds stresses estimation in Fig. 5, where the estimates using a single plane (marked in
green and blue) are the same as those in Fig. 4. The comparison shows that if the measurements
at a single plane are not sufficient to retrieve all Reynolds stresses, measuring at multiple planes
with the same beam configuration does not help in the turbulence reconstruction. Results from
the 51-beam lidar suggest that using multiple measurement planes does not improve the results
much in our simulations; it only reduces slightly the uncertainty of the estimations.

Figure 6 shows the four Reynolds stresses retrieved from the 4-beam and 5-beam lidars
assuming that the ⟨u′v′⟩ and ⟨v′w′⟩ covariances are negligible in Eq. (7). The Reynolds stress
estimates are very noisy so that some of them are out of the limit of the axis. In all cases,
the determinants of the matrix that results when expanding Eq. (7) are close to zero, which
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Figure 4: Reynolds stresses derived from the virtual sonic anemometer and lidars, which have
more than six beams and measure at a single distance, from 100 simulated wind fields. The
markers are the means and the error bars are ± one standard deviation.
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Figure 5: Reynolds stresses derived from the virtual sonic anemometer, the 50-beam and 51-
beam lidars measuring at a single plane and at multiple planes from 100 simulated wind fields.
The markers are the means and the error bars are ± one standard deviation.

indicates that the four Reynolds stresses cannot be estimated accurately using the least-square
procedure with the 4-beam and 5-beam configurations. Again, the comparison suggests that
using multiple measurement planes does not improve the results much in our simulations.

In Fig. 7, we analyze how the accuracy and the uncertainty of the Reynolds stresses estimation
change when increasing ϕ and fd of the 6-beam lidar. We compare them with those from the sonic
anemometer and the SpinnerLidar. Both the error and the uncertainty decrease as the opening
angle increases. Specifically, for ϕ = 45◦, the six-beams configuration provides lower uncertainty
than the SpinnerLidar despite having much fewer beams. Increasing the focus distance has an
opposite effect as increasing the beams’ opening angles due to the random error on the variances
of the radial velocity. The radial velocity variances of the beams are less correlated when the
lidar scans over a larger area. We performed the same analysis with the 51-beam lidar and
observed the same trends (not shown here).
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Figure 6: Reynolds stresses derived from the virtual sonic anemometer, the 4-beam and 5-beam
lidars measuring at a single plane and at multiple planes from 100 simulated wind fields. The
markers are the means and the error bars are ± one standard deviation.
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Figure 7: Influence of increasing opening angle ϕ and focus distance fd on the Reynolds
stresses estimation for the virtual sonic anemometer, the SpinnerLidar, and all 6-beam lidar
configurations from 100 simulated wind fields.
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We also simulate the nacelle lidars with all considered scanning patterns at the five
measurement planes mentioned above, and retrieve the along-wind variance using the ‘σ2

u-LSP’
and ‘σ2

u-isotropy’ methods, respectively. The results are shown in Fig. 8. Table 1 summarizes
the relative errors of the lidar-derived estimates compared to the one from the sonic anemometer.
The results in first row are computed solving Eq. (7), from which we get perfect estimations
of the along-wind variance using lidars with more than six beams. Furthermore, we find as an
overall trend that lidar-derived σ2

u are overestimated using the ‘LSP’ method, when compared
to the estimate from the sonic anemometer, while they are slightly underestimated using the
‘isotropy’ method. The biases are in general smaller when σ2

u are computed using the ‘isotropy’
method. Overall, all simulated lidars are able to estimate σ2

u well, despite of their different
number of beams. The staring lidar acts like a sonic anemometer in our simulation and achieves
zero relative error since no probe volume is considered and the beam is perfectly aligned with
the along-wind component.

sonic staring 2-beam 4-beam 5-beam 6-beam 50-beam 51-beam SL

1.1

1.2

1.3

1.4

1.5

1.6

σ2 u
 [m

2  s
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]

Figure 8: The along-wind variance derived from simulated lidars using the ‘σ2
u-LSP’ method (in

solid lines) and ‘σ2
u-isotropy’ method (in dashed lines). All lidars measure at multiple planes.

Table 1: Relative error of the mean value of the lidar-derived along-wind variance using 100
simulated wind fields, when compared to the one from the sonic anemometer. All lidars measure
at multiple planes. Negative values indicate that the along-wind variance is underestimated.

staring 2-beam 4-beam 5-beam 6-beam 50-beam 51-beam SL

⟨u′u′⟩ [%] — — — — 0.00 — 0.00 0.17
σ2
u-LSP [%] 0 4.75 3.76 2.92 3.03 3.65 3.56 6.53

σ2
u-isotropy [%] 0 -2.27 -3.91 -2.52 -2.66 -3.30 -3.23 -6.07

5. Conclusion and Outlook
Our results show that at least six beams, including one beam with a different opening angle,
are needed to estimate all the six Reynolds stresses accurately. The accuracy and uncertainty
in turbulence characterization are better improved by enlarging the opening angle than by
increasing the number of beams. Enlarging the measurement area of the nacelle lidars with the
same beam orientation reduces the accuracy and increases the uncertainty. Compared to the
point-wise sonic anemometer, all considered lidars can estimate the along-wind variance with
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a relative error lower than 7%. All in all, the lidar with a 6-beam configuration and a large
opening angle gives the best estimates of all Reynolds stresses.

This study should be extended by modelling the lidar probe volume in the simulation, which
can cause turbulence attenuation. For continuous-wave lidar, the focus distance is closely related
to the impact of the probe volume. Further studies on the lidar scanning pattern should also
consider the inhomogeneity of the inflow. Modern wind turbines are often operating inside
a wind farm or have large vertical span among the rotor area. Under those conditions, the
turbulence homogeneity assumption is violated. Therefore, there is a need to investigate the
scanning strategy for characterizing inhomogeneous inflows.
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Abstract. Through numerical simulations and the analysis of field measurements, we investigate the dependence of the accu-

racy and uncertainty of turbulence estimations on the main features of the nacelle lidars’ scanning strategy, i.e., the number

of measurement points, the half-cone opening angle, the focus distance and the type of the lidar system. We assume homoge-

neous turbulence over the lidar scanning area in front of a Vestas V52 wind turbine. The Reynolds stresses are computed via

a least-squares procedure that uses the radial velocity variances of each lidar beam without the need to reconstruct the wind5

components. The lidar-retrieved Reynolds stresses are compared with those from a sonic anemometer at turbine hub height.

Our findings from the analysis of both simulations and measurements demonstrate that to estimate the six Reynolds stresses

accurately, a nacelle lidar system with at least six beams is required. Further, one of the beams of this system should have a

different opening angle. Adding one central beam improves the estimations of the velocity components’ variances. Assuming

the relations of the velocity components’ variances as suggested in the IEC standard, all considered lidars can estimate the10

along-wind variance accurately using the least-squares procedure and the Doppler radial velocity spectra. Increasing the open-

ing angle increases the accuracy and reduces the uncertainty on the transverse components, while enlarging the measurement

distance has opposite effects. All in all, a 6-beam continuous-wave lidar measuring at a close distance with a large opening

angle provides the best estimations of all Reynolds stresses. This work gives insights on designing and utilizing nacelle lidars

for inflow turbulence characterization.15

1 Introduction

Inflow turbulence characteristics are important for wind turbine load validation (Conti et al., 2021), power performance assess-

ment (Gottschall and Peinke, 2008; Wagner et al., 2014) and wind turbine control (Dong et al., 2021). The traditional way to

measure inflow turbulence uses the in-situ anemometers installed on meteorological masts, such as cup and sonic anemome-

ters. However, rotor planes of the modern wind turbines have large vertical span that can reach 250 m above the ground. It20

is more and more costly to install a meteorological mast that reaches the height of the blade tips, especially under offshore

conditions. Recently, nacelle lidars of different types and configurations have been used to scan the inflow (Harris et al., 2006;

Mikkelsen et al., 2013; Wagner et al., 2015; Peña et al., 2017; Fu et al., 2022a). Compared to the point-wise, mast-mounted

anemometers, forward-looking nacelle lidars yaw with the wind turbine and measure at different points in front of the rotor,

which can potentially better characterize the inflow that actually interacts with the wind turbine.25
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Assuming statistical stationarity, turbulence can be represented by the variances and covariances of the wind field compo-

nents u,v and w (u1,u2,u3) averaged typically over 10 or 30 min. The homogeneous velocity field can be decomposed into

the mean Ui and the fluctuating part u′
i. The Reynolds stress tensor, a matrix containing the six second-order moments ⟨u′

iu
′
j⟩,

describes the variability of the atmospheric flow in some detail. The terms in the Reynolds stress tensor are frequently used in

wind energy and meteorology. The square root of the along-wind variance is a part of the definition in the turbulence intensity,30

which is a key turbulence parameter for the structural loads assessment and the design of wind turbines (IEC, 2019). However,

this is not the only component that is important for loads (Petersen et al., 1994). The two covariances ⟨u′w′⟩ and ⟨v′w′⟩ form

the momentum fluxes, which are used to calculate the friction velocity and are closely connected to the vertical wind profile

(Wyngaard, 2010; Peña et al., 2016). The half the sum of the variances of the three velocity components is the turbulence

kinetic energy, which is an important parameter for investigating wind turbine wake structures (Kumer et al., 2016). Also, the35

Reynolds stresses are needed to determine the parameters of the three-dimensional turbulence models for, e.g., load simulations

(Mann, 1994).

Compared to turbulence estimates from traditional anemometry, the accuracy and the uncertainty of lidar-derived turbulence

characteristics can be affected by not only the spatial and temporal resolutions intrinsic to the lidar systems and the characteris-

tics of atmospheric turbulence but also the lidar scanning strategies (Sathe et al., 2011; Smalikho and Banakh, 2017). Dimitrov40

and Natarajan (2017) and Conti et al. (2021) applied lidar measurements using different scanning strategies for load validation.

Schlipf et al. (2018) optimized the scanning trajectory of nacelle lidars based on a coherence model for the rotor-effective wind

speed to improve control performance. Only a few works investigated the dependence of turbulence estimations on lidar scan-

ning strategies. Sathe et al. (2015) explained that at least six radial velocity variances are needed to compute all six Reynolds

stresses, and proposed for a ground-based lidar an optimized six-beam configuration using an objective function which mini-45

mizes the sum of the random errors of the Reynolds stresses. Newman et al. (2016) showed that using the variance from the

vertical beam improves the turbulence estimates from ground-based lidars. Fu et al. (2022a) investigated the benefit of using

multiple-beam nacelle lidars by comparing the accuracy of turbulence estimations from a SpinnerLidar (a lidar measuring the

inflow at 400 positions) with two- and four-beam lidars.

Lidars measure the radial velocity (also known as the line-of-sight velocity) along the laser beam. Sathe and Mann (2013)50

and Fu et al. (2022a) showed that the variance along a single beam can be higher or lower than the u-variance measured by

sonic anemometers depending on the beam orientation. This is due to the correlation between different velocity components,

which can be described in the three-dimensional spectral velocity tensor model by Mann (1994) (hereafter Mann model). We

need to assume homogeneity when combining the radial velocity variances along different laser beam directions to reconstruct

the Reynolds stresses. Compared to the in-situ anemometers, the lidar’s measurement volume is generally larger, which leads55

to turbulence attenuation.

There are two main types of nacelle lidar systems, namely continuous-wave (CW) and pulsed. They mainly differ on the

working principle and the way they probe the atmosphere within their measurement volume. The probe volume of a CW system

increases with the square of the focus distance, while the one of a pulsed system remains constant with measurement range

(Peña et al., 2015). The ‘unfiltered’ radial velocity variances (in which the volume-averaging effect is compensated) can be60
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retrieved from the Doppler radial velocity spectra, which are normally available in CW systems (Mann et al., 2010; Branlard

et al., 2013).

This work investigates the dependence of the accuracy and the uncertainty of the turbulence estimations on the main features

of the nacelle lidars’ scanning strategy, i.e., the number of measurement positions within a full scan, the half-cone opening

angle, the focus distance and the type of the lidar system. We select eight scanning patterns, which are commonly known or65

widely used in the wind energy industry. Homogeneous frozen turbulence is assumed throughout our analysis. The Reynolds

stresses are estimated via a least-squares procedure using radial velocity variances instead of computing from the reconstructed

mean wind velocities. Estimates from a sonic anemometer at turbine hub height are used as reference. Compared to Fu et al.

(2022b), here we study the topic using not only numerical simulations with turbulence boxes but also the SpinnerLidar mea-

surements collected at DTU Risø test site. We select measurements at certain beam scanning locations of the SpinnerLidar to70

imitate lidars with different scanning configurations. Another main difference to Fu et al. (2022b) is that we consider the probe

volume of both a CW and a pulsed lidar system in our simulations, which plays an important role, especially when studying

the influence of the focus distance on the turbulence estimation.

This paper is organized as follows. Section 2 introduces the turbulence spectral model and the modeling of nacelle lidars.

Section 3 describes how the unfiltered radial velocity variance and the Reynolds stresses are estimated. It also gives details about75

the setup of the numerical simulations, the considered lidar scanning strategies and the field experiment. Section 4 compares the

Reynolds stress estimations between the lidars and the sonic anemometer at turbine hub height from both numerical simulations

and measurements. Discussions are given in Section 5. Section 6 concludes the work and provides the outlook.

2 Theoretical background

2.1 Turbulence spectral model80

Assuming Taylor’s frozen turbulence (Taylor, 1938), the wind field can be described by u(x) = (u,v,w), where x= (x,y,z)

is the position vector defined in a right-handed coordinate system, u the horizontal along-wind component, v the horizontal

lateral component, and w the vertical component. The homogeneous wind field u(x) can be decomposed into the mean value

⟨u(x)⟩= (U,0,0), where ⟨ ⟩ denotes ensemble averaging, and the fluctuating part u′(x) = (u′,v′,w′). U is the mean wind

velocity along the x-direction. The one-dimensional single point (co-)spectra of any component of the wind field are given as85

(Mann, 1994)

Fij(k1) =
1

(2π)

∞∫

−∞

Rij(x1,0,0)exp(−ik1 ·x1)dx1, (1)

where k1 is the first component of the wave vector k, Rij(r)≡ ⟨u′
i(x)u

′
j(x+ r)⟩ is the Reynolds stress tensor, r is the

separation vector, and u′
i are the fluctuations around the mean of the wind field. The wave number can, via Taylor’s hypothesis,

be related to the frequency f through k1 = 2πf/U . The auto-spectra of the three wind components Fu,v,w (= F11,22,33) can90

3



be evaluated using Eq. (1). The velocity components’ variances are

σ2
u,v,w =

∞∫

−∞

Fu,v,w(k1)dk1. (2)

We assume that the Mann model well describes the spatial structure of the turbulent flow. Besides k1 and the other two

components of the wave vector k, the Mann model contains three parameters: αε2/3, which is related to the turbulent energy

dissipation rate, L to a turbulence length scale, and Γ to the anisotropy of turbulence. This model is chosen because it describes95

the correlations between different velocity components, which play an important role in deriving turbulence statistics from

measurements of multiple-beam lidars pointing at different directions.

2.2 Nacelle lidar and modeling of the probe volume

The unit vector n describes the beam orientation of a nacelle lidar, which can be expressed as (Peña et al., 2017):

n(ϕ,θ) = (−cosϕ,cosθ sinϕ,sinθ sinϕ), (3)100

where θ is the angle between the y axis and n projected onto the y-z plane and ϕ the angle between the beam and the negative

x-axis (also known as the half-cone opening angle), as shown in Fig.1.

Figure 1. Definition of the coordinate system and beam angles for nacelle lidar modeling.

The radial velocity of a lidar can be written as the convolution of the weighting function φ and the radial velocity sampled

along the beam in the probe volume (Mann et al., 2010):

vr(ϕ,θ) =

∞∫

−∞

φ(s)n(ϕ,θ) ·u[n(ϕ,θ)(fd + s)]ds, (4)105
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where s is the distance from the focus point along the beam and fd the focus or measurement distance. The relation assumes

that the velocity is determined from the Doppler spectrum as the center of gravity, see Held and Mann (2018). We use the

following weighting functions to approximate the probe volume of different types of lidar:

– CW lidar (Sonnenschein and Horrigan, 1971):

φ(s) =
1

π

zR

z2R + s2
with zR =

λf2
d

πr2b
, (5)110

where zR is the Rayleigh length, λ the laser wavelength and rb the beam radius at the output lens.

– pulsed lidar (Meyer Forsting et al., 2017):

φ(s) =
1

2∆p

{
Erf

[
s+∆p/2

rp

]
−Erf

[
s−∆p/2

rp

]}

with the error function Erf(x) =
2√
π

x∫

0

exp(−t2)dt and rp =
∆l

2
√

ln(2)
, (6)

where ∆p is the range-gate length and ∆l the Gaussian lidar pulse Full Width at Half Maximum (FWHM).

Variances calculated from the centroid-derived radial velocities are attenuated by the lidar probe volume, which acts like a115

low-pass filter to the wind velocity fluctuations. Therefore, we refer to them as the ‘filtered’ radial velocity variances. If we

assume that the lidar probe volume can be negligible and that u,v, and w are constant over the scanned area, the radial velocity

can be expressed as

vr(ϕ,θ) =−ucosϕ+ v cosθ sinϕ+w sinθ sinϕ. (7)

The ‘unfiltered’ radial velocity variance can be derived by taking the variance of Eq. (7), as shown in Eberhard et al. (1989):120

σ2
vr,unf(ϕ,θ) = σ2

u cos
2ϕ+σ2

v cos
2 θ sin2ϕ+σ2

w sin2 θ sin2ϕ− 2⟨u′v′⟩cosϕcosθ sinϕ

− 2⟨u′w′⟩cosϕsinθ sinϕ+2⟨v′w′⟩sin2ϕcosθ sinθ. (8)

3 Methodology

3.1 Estimation of the unfiltered radial velocity variance

In practice, the unfiltered radial velocity variance σ2
vr,unf in Eq. (8) can be estimated from the Doppler radial velocity spectrum.

When the nacelle lidar measures at a small opening angle over a relatively homogeneous inflow and the wind shear is not125

very strong, the effect of radial velocity gradient within the lidar probe volume can be negligible (see Mann et al., 2010, for

a detailed discussion). In this case, one can estimate σ2
vr,unf as the second central statistical moment of the ensemble-averaged

Doppler spectrum of the radial velocity within typically a 10- or 30-min period. Each Doppler spectrum is area-normalized
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before computing the ensemble-averaged Doppler spectrum p(vr). The mean radial velocity can be estimated as

µvr =

∞∫

−∞

vrp(vr)dvr, (9)130

and its variance as

σ2
vr
=

∞∫

−∞

(vr −µvr)
2p(vr)dvr. (10)

Assuming that all contributions of the radial velocity to the Doppler spectrum are because of turbulence, σ2
vr

in Eq. (10) provides

an estimate of σ2
vr,unf. This assumption is reasonable when beams are close to horizontal.

3.2 Estimation of the Reynolds stresses135

The Reynolds stress tensor R≡R(x= 0) contains the variances and covariances of the velocity components:

R=




σ2
u ⟨u′v′⟩ ⟨u′w′⟩

⟨v′u′⟩ σ2
v ⟨v′w′⟩

⟨w′u′⟩ ⟨w′v′⟩ σ2
w


 . (11)

To compute R, we use the radial velocity variances from all beams over the lidar scanning trajectory. Assuming spatial homo-

geneity, we apply a least-squares fit to the radial velocity variances σ2
vr

. This can be done since the variance in any direction n

can be written as n ·Rn or niRijnj using the index notation and assuming summation over repeated indices. We then sum the140

squared differences between the measured radial variances σ2
vr

and n ·Rn for any given Reynolds stress tensor R. In order to

avoid too many indices, we express this sum as integral
∫

dµ such that the sum we are going to minimize can be written as

∆2 =

∫
(n ·Rn−σ2

vr
)2dµ. (12)

The matrix Rij that minimizes the integral must fulfill

∂∆2

∂Rij
= 0⇒ 2

∫
(n ·Rn−σ2

vr
)ninjdµ= 0. (13)145

This can be written as

Rkl

∫
nknlninjdµ=

∫
σ2
vr
ninjdµ, (14)

where (k, l) and (i, j) are each of the indices combinations (1,1),(1,2),(1,3),(2,2),(2,3),(3,3), n1 =−cosϕ, n2 = cosθ sinϕ

and n3 = sinθ sinϕ (as given in Eq. 3), i.e. Fu et al. (2022a),:
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To solve the six Reynolds stresses from Eq. (15), two requirements of the nacelle lidar scanning pattern need to be fulfilled

(see Sathe et al., 2015, for a detailed discussion):

– the lidar has at least six beams or measures at six different locations within one full scan;

– the lidar beams have at least two different opening angles.

If a lidar has less than six beams, or the opening angles of all beams are identical and some of the six equations are linearly155

dependent, we have fewer knowns than unknowns in Eq. (15), which leads to infinite solutions. In those cases, only the along-

wind variance σ2
u can be estimated well (Peña et al., 2019). To solve σ2

u from Eq. (15), assumptions of some Reynolds stresses

terms are needed to reduce the number of unknowns. Here, we use three different assumptions, as introduced in Fu et al.

(2022a):

– All Reynolds stresses apart from σ2
u are zero (denoted as ‘LSP-σ2

u’ method). For lidars with only one half-cone opening160

angle, this means σ2
u =

∑
σ2
vr
/
∑

cos2ϕ.

– Turbulence is isotropic, i.e., σ2
u = σ2

v = σ2
w and that other terms are negligible (denoted as ‘LSP-isotropy’ method). This

method is the same for lidars with only one half-cone opening angle as taking the mean of all radial velocity variances.

– The relations between velocity components’ standard deviation σv = 0.7σu and σw = 0.5σu, as recommended in IEC

(2019), and all covariances are negligible (denoted as ‘LSP-IEC’ method).165

3.3 Numerical simulations

We simulate lidar measurements on the nacelle of a wind turbine with a rotor diameter (D) of 52 m using 100 randomly gen-

erated turbulence boxes. The boxes contain the fluctuations of the three wind components. The turbulence boxes are described

by the Mann model with typical values of the model parameters αε2/3 = 0.05 m4/3 s−1, L= 61 m and Γ = 3.2. The selected

three parameters are adopted from Mann (1994) and characterize a neutral atmospheric stratification on a typical offshore site.170

The dissipation rate αε2/3 is a scaling factor on the turbulence intensity. The number of grid points in the three directions

are (Nx,Ny,Nz) = (8192,64,64). The lengths of the turbulence boxes in the vertical and lateral directions are both 128 m.

The boxes have lengths of 30 min in the along-wind direction assuming a mean wind U = 10 m s−1. We add a linear shear

dU/dz = 0.0288 s−1 on top of the along-wind velocity component u in each box:

u= U +
dU
dz

(z− zrotor)+u′, (16)175

where zrotor is the turbine hub height in the turbulence box, i.e., the middle grid point in the z-coordinate.

We simulate eight lidars with different scanning patterns, as shown in Fig. 2. Statistics of the sonic anemometer are taken

at the location of the turbine rotor center (which is also the center of the turbulence boxes) as the reference for evaluating the

lidar-derived turbulence characteristics. The SpinnerLidar scans in a rosette-curve pattern and has half-cone opening angles in

the range 0− 30°. It generates 400 radial velocities in one full scan. The SpinnerLidar is simulated with a focus distance of180
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52 m (1D) in front of the rotor, while other lidars are simulated with the focus distance of 98 m due to their smaller opening

angles (ϕ= 15°) to cover the whole rotor plane. We also simulate all considered lidars with multiple measurement planes at

fd = 49, 72, 98, 121 and 142 m, which are arbitrarily selected. As examples, Fig. 3 shows the scanning trajectories of the

4-beam and 50-beam lidars measuring at the five planes. We then use the radial velocity variances at all measurement levels

to compute the turbulence statistics. Furthermore, to study the dependence of the turbulence estimations on the opening angle185

and the focus distance, we simulate the 6-beam configuration, proposed by Sathe et al. (2015), with extra setups: a fixed focus

distance of 52 m and increasing opening angles (see Fig. 4(a)), as well as a fixed opening angle of 15° and increasing focus

distances (see Fig. 4(b)).
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(h) SpinnerLidar (SL)

Figure 2. Selected lidar scanning patterns for numerical simulations. The SpinnerLidar (h) has ϕ= 0− 30° and scans at fd = 52 m, while

other lidars (a-g) have ϕ= 15° and scan at fd = 98 m to cover the whole rotor plane. The lidar beam scanning locations are marked in blue

dots. The wind turbine rotor is represented in a black dashed circle.

We consider the lidar probe volume when we investigate the dependence of the Reynolds stresses estimation on ϕ and fd.

The Doppler radial velocity spectrum S(vr, t) is simulated as (Held and Mann, 2018)190

S(vr, t) =

M∫

−M

φ(s)δ(vr −u(ns−U t) ·n)ds, (17)
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Figure 3. Scanning trajectories of the 4-beam and the 50-beam lidars measuring at fd = 49,72,98,121 and 142 m. Features regarding the

blue dots and the dashed circle as in Fig. 2. The turbine nacelle is marked in a black dot on the rotor plane.
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Figure 4. Scanning strategies of the 6-beam lidar with (a) a fixed focus distance and various half-cone opening angles, and (b) a fixed half-

cone opening angle and various focus distances. Features regarding the dashed circle and the black dot as in Fig.3.
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where δ represents the Dirac delta function, the integral is truncated with the distance M along the beam, and φ(s) can be

described by Eq. (5) or (6) depending on the type of the lidar system. The resolution of the Doppler radial velocity spectrum is

0.1 m s−1 per velocity bin, which is hereafter always used. Parameters used for modelling the probe volume are summarized in

Table 1 (Meyer Forsting et al., 2017). We select M as shown in Table 1 so that 95% of the area under both weighting functions195

is covered. Figure 5 compares the modelled lidar probe volume for CW and pulsed lidars at focus distances fd = 52, 98 and

120 m. The size of the probe volume for CW lidars increases with the square of the focus distance (see Eq. 5), while it remains

the same for pulsed lidars.

CW

λ= 1.565× 10−6m

rb = 2.8× 10−2 m

M = 8zR

pulsed

∆l = 24.75 m

∆p= 38.4 m

M = 1.2∆l

Table 1. Parameters for modelling the CW and pulsed lidar probe volume in numerical simulations.

Figure 5. Comparison of the modelled lidar probe volume for CW and pulsed lidars at three different focus distances.

The time lag between each measurement within a full scan is not considered but assumed that measurements are taken at the

same time. In the numerical simulations neglecting lidar probe volume (see results in Sections 4.1 and 4.2), the time resolution200

of the wind field is used as the lidar scan rate, i.e., lidars complete one full scan in dt= dx/U = 0.22 s. In the simulations

considering lidar probe volume (see results in Section 4.3), the lidars are assumed to finish a full scan in 2 s.
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3.4 Field measurements

During the period from 1 October 2020 to 30 April 2021, a SpinnerLidar was deployed on the nacelle of a Vestas V52 wind

turbine at DTU Risø campus in Roskilde, Denmark, measuring the flow in front of the turbine. The V52 wind turbine has a205

rotor diameter of 52 m and a hub height of 44 m. Between the scan head of the SpinnerLidar and the turbine rotation axis, there

is a vertical displacement of 2.47 m. A test site layout is shown on a digital surface elevation model in Fig. 6. The terrain is

slightly hilly and its surface is characterized by a mix of cropland, grassland and coast. The dominant wind directions during

this period at this site are west and south-west. The V52 wind turbine (marked with a red circle) stands at the northernmost

position of a row of wind turbines (marked in black circles). There is also a meteorological mast (marked as a red square)210

mounted at 120 m (≈ 2.3D) upstream from the V52 wind turbine at 291° from the north. One of the Metek USA-1 3D sonic

anemometers on the mast is located at 44 m above the ground, and its turbulence statistics is used as references to be compared

with the estimations from the nacelle-based lidars. A cup anemometer is located at the same height as the sonic anemometer

on the mast. There are also a wind vane at 41 m and a Thies precipitation opto sensor at 2 m on the mast.

Figure 6. A digital surface elevation model (UTM32 WGS84) showing the Risø test site in Roskilde, Denmark. The height above the mean

sea level is indicated by the color bar (in meters). A row of wind turbines are marked in circles (in red the reference V52 wind turbine). The

meteorological mast is shown in a red square.

The SpinnerLidar (Peña et al., 2019) is based on a CW system and it was set up to scan the inflow at a focus distance of 62215

m (≈ 1.2D, see Fig. 7). The Rayleigh length zR of the SpinnerLidar at this focused distance is 2.44 m. It reported 400 radial

velocities at a rate of 200 Hz, so it took 2 s to finish one full scan. The system also stored the instantaneous Doppler spectrum

of the radial velocity, which allows us to estimate the unfiltered radial velocity variance.

The measurements used for the analysis are from the wind sectors, which are relatively aligned with the mast-turbine direc-

tion (i.e., the 10-min averaged wind direction measured by the vane is within 291°± 30°). The yaw misalignment of the V52220
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Figure 7. The scanning trajectory of the SpinnerLidar in the measurement campaign.

turbine is below 5°, thereby minimizing the influence of nearby wind turbine wakes. We use a 10-min period, when the lidar

and the V52 wind turbine are concurrently operating, and the averaged wind speed from the cup anemometer at 44 m is higher

than 3 m s−1. No precipitation was detected during the analyzed 10-min periods. After filtering, 2348 10-min periods are used

for the analysis.

The SpinnerLidar measurements are post-processed to remove the signals reflected by the wind turbine blades, the telescope225

lens (the beam can hit the lens perpendicularly) or other hard targets. Such a procedure filters out some measurements close to

the middle of the pattern. To compensate for the nacelle movement, we rotate the system-reported beam scanning coordinates

using the 10-min averaged azimuthal and inclination angles of the SpinnerLidar, which are typically around 0.3° and 3°,

respectively. Taking the motion of the turbine and the slack of the SpinnerLidar into consideration, we divide the y–z plane

into grids of 1-m resolution to aggregate the corrected scan locations. In the given 10-min, all Doppler radial velocity spectra230

lying within each grid cell are accumulated, and only measurements within the grid cells, where there are more than 30

instantaneous Doppler spectra, are used for the reconstruction. At least 900 grid cells should satisfy the criterion in the 10-min

periods for our analysis. The light-grey dots in Figs. 8 and 9 represent the grid cells (for this particular case we have 1127

grid cells) satisfying the criterion in one arbitrary 10-min period. Other details about the measurement campaign and how the

SpinnerLidar measurements are selected, filtered and processed can be found in Fu et al. (2022a). The post-processing of the235

measurements leaves us 1294 time periods for the final comparison.

To imitate lidars with different scanning strategies, we select SpinnerLidar measurements at certain grid cells to estimate the

Reynolds stresses, as marked in red in Fig. 8. Due to the rotation of the system-reported lidar unit vectors, the corresponding

half-cone opening angles of the grid cells are typically higher in the upper circle than those in the lower circle of the pattern,

e.g., the ϕ of the top beam reaches 32° while the ϕ of the bottom beam is 27°. To mimic the simulation setup of the 6-beam240

lidar in Fig. 4(a), we select 6 grid cells with different levels of opening angle (see Fig. 9), in which the central grid is always

used. The mean half-cone opening angles of the 5 grid cells forming the circles are 12°, 19° and 30°, respectively. We estimate
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the unfiltered radial velocity variance σ2
vr,unf using the Doppler radial velocity spectra collected in each selected grid cell. The

Doppler spectra processing and usage are described in detail in Fu et al. (2022a).
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(h) SpinnerLidar (SL)

Figure 8. Selected lidar scanning patterns (in red) from the gridded SpinnerLidar scans (in light grey), which are at the focus distance of

62m.

4 Results245

In this section, we show comparisons of the Reynolds stresses computed from the considered lidars against those from the

sonic anemometer at turbine hub height in bar plots. In the plots, markers correspond to the means of the estimations from 100

turbulence fields and the error bars are ± one standard deviation indicating the uncertainty of the estimation. The Reynolds

stresses estimated from the measurements are normalized by the square of the mean along-wind velocity estimated by the lidar

U2 as we analyze a wide range of observed turbulence conditions. The mean wind velocity is computed by applying a least-250

square fit to the lidar radial velocities from all beams (Fu et al., 2022a). Results in Sections 4.1 and 4.2 neglect the lidars’ probe

volumes to study the influence of the number of beams. Nevertheless, for the CW lidar system, the probe volume increases

with the square of the focus distance. Also, for pulsed lidar systems, the probe volume effect cannot be easily compensated

since the Doppler spectra are usually not accessible. Therefore, the probe volumes are considered in Section 4.3 to show how

different factors are altogether influencing the turbulence estimations.255

13



−30 −20 −10 0 10 20 30
y [m]

20

30

40

50

60

70

80

z [
m
]

6-beam
ϕ=12°
ϕ=19°
ϕ=30°

Figure 9. Selected grid cells for the 6-beam lidar with three different levels of the half-cone opening angle. The central grid coincides in the

three cases. The gridded SpinnerLidar scans are shown in light grey.

4.1 Estimation of Reynolds stresses by multiple-beam lidars

We show in Fig. 10 the estimations of the six Reynolds stresses by the lidars, which have more than six beams and measure

at a single plane, as well as those of the sonic anemometer. Results in Fig. 10(a) are from simulations that assume the lidars

measure at the focus point only, i.e., no probe-volume averaging is accounted for. Results from both the simulations and the

measurements show that the SpinnerLidar gives the best estimation for all six components. The results for the 6-beam and260

51-beam lidars are very similar with larger errors and higher uncertainties than those of the SpinnerLidar. The 50-beam lidar

can estimate the covariances accurately, while it shows large errors and uncertainties for ⟨v′v′⟩ and ⟨w′w′⟩; these are so noisy

that some of them are out of the limit of the figure’s axis. This is because the least-squares problem as formulated in Eq. (14)

can lead to infinite solutions if we have only one opening angle ϕ. By comparing the results from the 50- and 51-beam lidar, we

can see that the addition of a central beam is very beneficial for the computation of the variances of the velocity components,265

because the central beam provides an additional opening angle to the 50-beam lidar making the matrix on the left side of

Eq. (15) not singular. In principle, adding an extra beam in any different opening angle than the others in the 50-beam scanning

pattern will improve the estimations. The central beam is the best option for improving the estimation of the ⟨u′u′⟩ since the

beam aligns with the along-wind velocity component and can fully capture its variation when the probe volume is neglected.

Results in Fig. 10 (a) indicate that nacelle lidars are able to characterize inflow turbulence as accurate as the sonic anemome-270

ter with reasonable uncertainties, when the lidar has at least six beams and two different opening angles. We see the similar

trends from the measurements shown in Fig. 10 (b). The unfiltered Reynolds stresses estimated from all lidar measurements
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are generally close to those from the sonic anemometer but biased. What unexpected and rare are the negative values of ⟨v′v′⟩
and ⟨w′w′⟩ observed in some periods of the measurements, as shown and discussed in Fu et al. (2022a).
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Figure 10. Reynolds stresses derived from the sonic anemometer and lidars, which have more than six beams and measure at a single

distance. (a) simulated with 100 virtual wind fields. The lidars’ probe volumes are neglected. (b) computed from the unfiltered radial velocity

variance of the measurements. The markers are the means and the error bars are ± one standard deviation indicating the uncertainty of the

estimation.

Figure 11 shows four of the Reynolds stresses retrieved from the 4- and 5-beam lidars. ⟨u′v′⟩ and ⟨v′w′⟩ are neglected275

in Eq. (15). In all cases, the determinants of the matrix in Eq. (15) are close to zero, which indicate that the 4- and 5-beam

configurations cannot estimate these four Reynolds stresses accurately using the least-square procedure. Results from multiple-

plane cases show that measuring at several planes with the same beam orientations does not aid much in the Reynolds stress

reconstruction, as the determinant of the matrix in Eq. (15) does not change. For the 5-beam lidar, adding measurement planes

only slightly reduces the uncertainty of the ⟨u′u′⟩ and ⟨u′w′⟩ components. This lack of sensitivity is partly due to Taylor’s280

frozen hypothesis, as we do not account for evolution in the turbulence fields. We observe the same trend by comparing the

estimation of these stresses from a 50-beam lidar measuring at a single and multiple planes (not shown here).

4.2 Estimation of the along-wind variance by all considered lidars

In case the nacelle lidar has fewer than six beams, not all six Reynolds stresses can be solved from Eq. (15). We focus our

estimations on the along-wind variance and retrieve σ2
u from all considered lidars using the ‘LSP-σ2

u’, ‘LSP-isotropy’ and ‘LSP-285

IEC’ methods, respectively, as introduced in Section 3.2. Results are shown in Fig. 12. All lidars are simulated to measure at a

single plane (same as in Fig. 2) without accounting for the probe volume. Results from measurements are computed using the

unfiltered radial velocity variances.

Both simulation and measurement results show, as a general trend, that lidar-derived σ2
u values are overestimated using the

‘LSP-σ2
u’ method when compared to those from the sonic anemometer, while they are underestimated using the ‘LSP-isotropy’290

method. The ‘LSP-IEC’ method gives the most accurate estimates among the three methods, as it assumes relations between the
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Figure 11. Reynolds stresses derived from the virtual sonic anemometer, the 4- and 5-beam lidars measuring at a single and multiple (multi)

planes from 100 simulated wind fields. The lidars’ probe volumes are neglected.

variances of the velocity components that might be close to those we can find within the atmospheric surface layer. The staring

lidar performs like a sonic anemometer in our simulations as the beam is perfectly aligned with the along-wind component and

the effect of lidar probe volume is not considered. Overall, all considered lidars are able to estimate σ2
u very well, despite of

their different number of beams.295

Table 2 summarizes the relative errors of the means of lidar-derived estimates compared to the one from the sonic anemome-

ter. A negative value indicates that the along-wind variance is underestimated and vice-versa. The results in the first row of the

table are computed solving the full matrix of Eq. (15) (same as ⟨u′u′⟩ showed in Fig. 10, here denoted as ‘LSP-6Re’ method),

from which we get perfect estimations of σ2
u using the 6- and the 51-beam lidars, and the SpinnerLidar without the effect of

the probe volume in the simulations. Furthermore, for lidars that have at least six beams and two different opening angles, the300

method ‘LSP-6Re’ is the best option to compute σ2
u among others, because it does not assume any relations between the six

Reynolds stresses. While for lidars with fewer than six beams or only one opening angle, the ‘LSP-6Re’ does not work well

and the ‘LSP-IEC’ gives the best estimation of σ2
u. These results are aligned with one of the main findings in Fu et al. (2022a).

In this work, the ‘LSP-IEC’ gives even smaller errors because we are able to compensate for the probe volume effect and use

the ‘unfiltered’ radial velocity variances. In addition, comparing the relative errors between the 4- and 5-beam lidars, and those305

between the 50- and 51-beam lidars, we find again that the addition of a central beam can sometimes improve the estimation

of the along-wind variance.

4.3 Dependence of Reynolds stresses estimations on the opening angle, focus distances and the type of lidar

The results shown in this section include the averaging effect of the lidar probe volume. In Fig. 13, we analyze how the accuracy

and the uncertainty of the Reynolds stresses estimations change when increasing the half-cone opening angle ϕ for the 6-beam310

lidar. The simulation setup has been shown in Fig. 4(a). We compare these estimations with those from the sonic anemometer

and the SpinnerLidar. The lidar probe volumes are modelled as in a CW system. Simulation and measurement results show

that both the error and the uncertainty decrease as the opening angle increases. Specifically, the 6-beam lidar with ϕ= 45°
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Figure 12. The along-wind variance derived from all considered lidars using the ‘LSP-σ2
u’ method (solid lines), ‘LSP-isotropy’ method

(dashed lines) and ‘LSP-IEC’ method (dotted lines). All lidars from simulations are assumed to have no probe volume and they measure at a

single plane (Fig. 2).

in the simulations provides lower uncertainty than the SpinnerLidar despite having much fewer beams, as the SpinnerLidar’s

maximum opening angle is ϕ= 30°. We observe the same trend when simulating the probe volume with a 6-beam pulsed315

system (not shown here). Possible reasons for the positive bias of the v- and w-variances seen from the simulation results are

discussed in Section 5.

We study the dependence of the Reynolds stresses estimations on the increasing focus distance fd for the 6-beam lidar

based on numerical simulations. The setup has been shown in Fig. 4(b). We assume the lidar systems to be continuous-wave

and pulsed, as shown in Fig. 14(a) and (b), respectively. All Reynolds stresses are computed using the centroid-derived radial320

velocity variances. Therefore, the estimated variances are attenuated by the probe volume and in general smaller than those

from the sonic anemometer. For both types of lidar, we see that increasing the focus distance has negative effects on the

estimation of all Reynolds stresses. The uncertainty increases due to the random error on the variances of the radial velocity;

17



methods staring 2-beam 4-beam 5-beam 6-beam 50-beam 51-beam SL

simulations

(without probe volume)

LSP-6Re — — — — 0 9.7 0 0.1

LSP-σ2
u 0 4.7 3.6 2.8 3.0 3.6 3.5 6.3

LSP-isotropy 0 −2.3 −3.4 −2.6 −2.6 −3.4 −3.3 −6.2

LSP-IEC 0 1.1 0.9 0.7 0.9 0.9 0.9 1.3

measurements

(unfiltered variance)

LSP-6Re — — — — −5.4 −23.9 −5.5 −5.6

LSP-σ2
u −6.8 16.4 14.3 8.0 8.9 18.7 17.9 6.2

LSP-isotropy −6.8 −12.9 −13.8 −11.9 −12.0 −11.1 −11.0 −9.0

LSP-IEC −6.8 0 2.1 −0.3 0.1 5.4 5.0 0

Table 2. Relative error [%] of the mean values of the lidar-derived along-wind variance to the one from the sonic anemometer. The lidars’

probe volumes are neglected in the simulations. Results from the simulations are computed using measurements at a single plane (same set

up as Fig. 2). A negative value indicates that the along-wind variance is underestimated and vice-versa.

⟨u′u′⟩ ⟨v′v′⟩ ⟨w′w′⟩ ⟨u′v′⟩ ⟨u′w′⟩ ⟨v′w′⟩
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Figure 13. Dependence of the Reynolds stresses estimations on the increasing half-cone opening angle ϕ for the 6-beam lidar (single plane),

the sonic anemometer and the SpinnerLidar (ϕ= 0–30°). The probe volume in the simulations is assumed to be as in CW systems. All

Reynolds stresses are computed using the unfiltered radial velocity variances.
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they are less correlated when the lidar scans over a larger area. In the case of the CW system, the bias for the estimations

increases with fd due to its growing probe volume, while the bias is almost constant for the pulsed system, as expected. For325

the closest focus distance fd = 52 m, the bias of the estimations from the pulsed system is evidently larger than those from the

CW system, where the later system gives accurate estimations of all Reynolds stresses. We perform the same analysis with the

51-beam lidar and observe the same trends (not shown here).

Figure 14. Dependence of the Reynolds stresses estimations on the increasing focus distance fd for the 6-beam lidar (single plane, ϕ= 15°),

compared to those from the sonic anemometer. The probe volume in the simulations are assumed to be as in (a) a CW system, and (b) a

pulsed system. All Reynolds stresses are computed using the centroid-derived (filtered) radial velocity variances.

5 Discussion

Results shown in Fig. 13 are from simulations that consider the CW lidar probe volume to mimic the lidar’s behavior in the330

reality. Then, the Doppler radial velocity spectra are used to compute the ‘unfiltered’ velocity variances for both simulations

and measurements. Compared to the estimations from the sonic anemometer, we observe positive biases of the lidar-retrieved

v- and w- variances. The biases decreas with increasing the half-cone opening angle ϕ. The reason is that although the large

matrix on the left side of Eq. (15) is not degenerate (i.e., its determinant is not zero) for a 6-beam lidar, the coefficients for

Rvv and Rww are very small (in the order of 10−3) for ϕ= 15°; the equation system is only balanced by overestimating both335

terms Rvv and Rww. The coefficients are proportional to the value of the opening angle ϕ, so they increase to 10−2 in the

case of ϕ= 30°, and to 10−1 in the case of ϕ= 45°, which explains why the biases are reduced with larger opening angles.

The positive biases for Rvv and Rww are slightly more evident in the simulations with probe volume compared to the case in

which the probe volume is neglected (see Fig. 10 (a)), because the simulated radial velocity variances are different in the two

scenarios.340

As shown in Fig. 13, increasing the lidar opening angle improves the accuracy and uncertainty of Rvv and Rww estimations.

The uncertainty of σ2
u is not much influenced if the lidar has a central beam that always aligns with the mean wind, e.g. the

six-, 51-beam lidars, and the SpinnerLidar. For nacelle lidars without a central beam, enlarging the opening angle brings higher
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uncertainty to σ2
u estimation, which is a key parameter for assessing wind turbine loads (IEC, 2019). Therefore, the optimum

opening angle for turbulence estimations depends on which Reynolds stress is of interest. In addition, for control applications,345

the large opening angle is beneficial for measuring wind directions, but sacrifices the accuracy of rotor-effective wind speed

and wind shear estimations (Simley et al., 2018). The optimum opening angle is also very much relevant to the turbine’s size.

In this work, we characterize turbulence in front of a small wind turbine at 1D and 1.2D in the simulations and the field

experiment, respectively. Taylor’s frozen turbulence hypothesis (and homogeneity) is assumed throughout our numerical sim-

ulations, because the wind evolution is not very relevant to turbulence statistics, but more to the rotor-effective wind speed350

estimations (Chen et al., 2021). Mann et al. (2018) showed that turbulence is slightly affected by the stagnation in front of

the wind turbine rotor as it goes through the induction zone. The change of the low-frequency wind variation is related to the

thrust coefficient of the wind turbine, but the main turbulence statistics do not change. In addition, the yaw misalignment of the

wind turbine is not considered in this work. A small yaw misalignment (below 20°) does not affect much σ2
u estimations but

increases the uncertainty of Rvv and Rww estimations. For modern wind turbines with very large rotor disks, the single-point355

turbulence statistics do not represent well the inflow turbulence affecting the wind turbine. The least-square procedure cannot

be used to characterize the inhomogeneous inflow. New methodologies, e.g., constrained simulations (Dimitrov and Natarajan,

2017; Conti et al., 2021), are needed to reconstruct the inhomogeneous wind field.

We show from both simulations and measurements that all six Reynolds stress components can be estimated accurately

when using a nacelle multi-beam lidar. Although the spectral turbulence model used here (the Mann model), which is the360

basis of our simulated turbulence fields, assumes two of these components to be zero, namely ⟨u′v′⟩ and ⟨v′w′⟩, the methods

and techniques introduced in this work enable us to estimate all components accurately. This is advantageous for the study of

atmospheric flow over complex terrain and, particularly, in offshore conditions, where turbulence measurements are scarce and

expensive, and where we rely very much on models to assess the site conditions that impact wind turbines. These models often

assume relations between the turbulence components and/or use parametrizations of stresses/fluxes that are invalid due to the365

nature of the flow phenomena and the interaction between the waves and the wind field. For example, surface stresses over

long-lasting waves can be highly misaligned with the vertical gradient of the horizontal wind; most parametrizations of the

air-sea interaction assume such an alignment to estimate momentum fluxes within the marine boundary layer. Offshore nacelle

lidars can therefore help us understanding phenomena that are otherwise difficult to assess with traditional anemometry used

for offshore wind power development.370

6 Conclusion and Outlook

This study investigated the dependence of the Reynolds stresses estimations on different number of beams, half-cone opening

angles, focus distances, single or multiple measurement planes, and different types of the Doppler wind nacelle lidars using

both numerical simulations and measurements. The considered lidar scanning patterns included the staring lidar (single beam),

the 2-, 4-, 5-, 6-, 50-, 51-beam lidars and the SpinnerLidar, which reports 400 radial velocities with one scan. We assumed a375

homogeneous inflow turbulence (both for the simulations and measurements) and the Taylor’s frozen turbulence (for the simu-
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lations). The lidar-retrieved turbulence estimations were compared with those from a sonic anemometer at turbine hub height.

Analysis of both numerical simulations and measurements showed that to estimate all the six Reynolds stresses accurately, a

nacelle lidar system with at least six beams is required. Also, one of the beams of this system should have a different opening

angle. Adding one central beam improves the estimations of the velocity components’ variances. Measuring at multiple planes380

with the same beam orientations only reduces the uncertainty but not the bias in the reconstruction, if Taylor’s frozen turbu-

lence hypothesis is applied. All considered lidars can estimate the along-wind variance accurately by using the least-squares

procedure and the assumption that the relations of the velocity components’ variances are as suggested in the IEC standard.

Also, the Doppler radial velocity spectra are needed for the accurate estimations. For both CW and pulsed lidars, increasing

the opening angle reduces both the error and uncertainty of the estimations, while increasing the focus distance has opposite385

effects. In short, from all tested scanning strategies, a 6-beam CW lidar measuring at a close distance with a large opening

angle gives the best estimations of all Reynolds stresses. The optimum value of the opening angle depends on the Reynolds

stress term of interest and also the wind turbines’ size. Further studies or experiments are needed to study the best opening

angle of the 6-beam lidar for different applications.

In this work, the single-point turbulence statistics are estimated using the least-square procedure, which assumes homogene-390

ity over the lidar scanning area. Wind turbines nowadays are often operating inside a wind farm or have large spans over the

swept area. The assumption of homogeneous turbulence can be violated under those conditions. Therefore, further studies on

the optimized lidar scanning strategy for turbulence estimation should consider the inhomogeneity of the inflow. Additionally,

the proposed nacelle lidar scanning strategies can be used to study the wind evolution, the spatial correlations of turbulence

and estimate multi-point statistics, which better characterize the inflow that interacts with the turbine than the hub height ones.395

The wind field reconstruction of the inhomogeneous wind fields can benefit from constrained simulations, which incorporate

lidar measurements into three-dimensional turbulence wind fields. Future works could also consider the non-Gaussianity of

turbulence (Liu et al., 2010; Schottler et al., 2017) and the scale-dependent anisotropy of wind fluctuations (Syed et al., 2023).
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Abstract. The power performance of a wind turbine depends on several characteristics of
the inflow, such as wind speed, turbulence and wind shear. Additionally, wind turbine control
strategies affect the power performance of the wind turbines; under certain conditions one might
want to, e.g., intentionally misalign the turbine with respect to the main wind direction. Here,
we evaluate whether the accuracy in power performance evaluation can be improved by using
multi-dimensional power curves in the form of multivariate polynomial regressions, which define
the power output as function of wind speed, turbulence and yaw misalignment. The analysis is
conducted on a dataset of virtual power performance measurements, which is generated through
aeroelastic simulations combined with a simulator of nacelle lidar measurements. Results show
that the multi-dimensional power curves can provide higher accuracy than those derived using
the IEC standard for power curve measurements; the error in power prediction is nearly halved
compared to that using the IEC standard power curve method. Additionally, we show that
nacelle lidar measurements increase the accuracy of the multi-dimensional power curves when
compared to using mast-based anemometer measurements.

1. Introduction
The first version of the IEC standard for power performance measurements described the power
output of a wind turbine as function of only two flow characteristics: the air density and the
mean wind speed at hub height [1]. However, studies have shown that wind turbine power
performance is affected by other flow characteristics, such as atmospheric turbulence and wind
shear [2; 3]. Because of the non-linearity of the power curve, the mean1 power output depends
on both the mean and the variance of the wind speed. Where the power curve is concave, e.g. for
wind speeds slightly higher than the cut-in value, the mean power output increases with the wind
speed variance. On the contrary, where the power curve is convex, e.g. for wind speeds slightly
lower than the rated-value, the mean power output decreases with the wind speed variance. This
expected behavior was confirmed by several studies through both simulations and measurements
[2; 4; 5]. Additionally, neglecting the wind speed variation with height might result in a poor
estimation of the kinetic energy flux through the rotor [3]. Therefore, in the most recent version
of the IEC standard [6] for power performance measurements, both wind shear and atmospheric
turbulence are considered. These additional flow characteristics increase the accuracy of the

1 mean here refer to the average within a 10-min period



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 022059

IOP Publishing
doi:10.1088/1742-6596/2265/2/022059

2

power performance assessment, resulting in more reliable power curves and less uncertainty in
energy yield assessment (EYA).

Nevertheless, in order to guarantee an accurate EYA, it is crucial to account for flow
inhomogeneities from the atmosphere-wind turbine interaction and evaluate their effect on
the power performance. Previous studies used both parametric and non-parametric models
to evaluate wind turbine power performance under different environmental conditions [7–9].
Recently, wake steering, which is a control strategy, introduced the need to evaluate the power
performance of a wind turbine under yawed conditions, i.e. when the mean wind direction and
the turbine rotor axis are misaligned [10]. Previous studies showed how to correct standard
power curves for yaw misalignment [10; 11] in order to evaluate the effects of wake steering in
EYA.

In this work, we evaluate whether the accuracy in power performance evaluation can be
improved by using multi-variable power curves, which define the power output as function of
wind speed, turbulence and yaw misalignment. The analysis is conducted on a dataset of power
performance simulations. Specifically, numerical wind fields are generated with the turbulence
spectral model of Mann [12], and the in-house aeroelastic code HAWC2 [13] is used to perform
time-domain aeroelastic simulations. Additionally, we simulate measurements from a nacelle-
mounted lidar to evaluate whether the accuracy of the new multi-variable power curve changes
when using nacelle-mounted lidars instead of traditional mast-based anemometry.

This paper is organized as follows. The methodology is outlined in section 2, which describes
the numerical wind fields in section 2.1, the lidar simulator in section 2.2 and the multi-
dimensional power curves in section 2.3. Section 3 shows and discusses the accuracy of the
multi-dimensional power curves. Conclusions are given in section 5.

2. Methodology
2.1. Generation of the dataset
The turbulence model by Mann is used to generate three-dimensional velocity fields u(x), with
u = (u, v, w) being the along-wind, transverse, and vertical velocity components and x = (x, y, z)
the spatial field. The wind fields are characterized by homogeneous frozen turbulence, with
the wind speed fluctuations u′ = (u′, v′, w′) advected along the horizontal axis x. Therefore,
assuming homogeneity and no vertical wind speed, the mean wind speed varies with height
according to the chosen shear profile: U = (U(z), 0, 0). In case of no vertical shear, the mean
wind speed is uniform in the (y, z) plane.

The turbulence fields are used as input to the HAWC2 aeroelastic simulations [13], which
are performed with the Vestas V52 wind turbine, with a rotor diameter (D) of 52 m and a
rated power of 900 kW. According to the IEC standard [6], power performance measurements
are based on 10-min means of both wind speed and power output. Therefore, in order to get a
10-min mean power output from each aeroelastic simulation, all the wind fields have dimensions
of (U T , 128 m, 128 m). We choose T = 700 s; the additional 100 s are needed to avoid the
initial transient phase of the aeroelastic simulation, while the length of 128 m is used in both
the vertical and lateral directions to ensure enough distance between the rotor and the edge of
the turbulence field, avoiding possible bias due to the field periodicity [14].

We generate two different datasets, hereafter referred to as the synthetic and realistic dataset.
The synthetic dataset is shaped in order to guarantee a data distribution that is convenient
for the evaluation of the multi-dimensional power curves. On the other hand, the realistic
dataset aims to replicate the data distribution that would be collected from a real wind turbine
operating under optimal conditions. Both datasets present turbulence fields generated with the
Mann-model length scale of L = 29.4m and anisotropy of Γ = 3.9, while the other Mann-model
parameter αϵ2/3 is varied to match the desired turbulence level. The synthetic dataset consists
of 720 wind fields characterized by a uniform distribution of U between 6.5 and 12 m/s. Half
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Table 1. Flow characteristics of the numerical wind fields in the different datasets. [a, b]
indicates a uniform or nearly uniform distribution between a and b. N(µ, σ) indicates a Gaussian
distribution with µ and σ as mean and standard deviation, respectively. A single value indicates
a constant over the whole dataset

Dataset U [m/s] L [m] Γ αϵ2/3 [m4/3/s] γ [◦] α N

Synthetic (1st half) [6.5, 12] 29.4 3.9 [0.005, 0.165] 0 0 360
Synthetic (2nd half) [6.5, 12] 29.4 3.9 0.03 [−40,+40] 0 360
Realistic [6, 14] 29.4 3.9 N(0.06, 0.02) N(0, 3) N(0.15, 0.1) 150

of this dataset (360 wind fields) presents a uniform turbulence distribution obtained by varying
the αϵ2/3 parameter between 0.005 and 0.165 m4/3/s and no yaw misalignment (γ = 0◦). In
the other half, turbulence is kept constant (αϵ = 0.03 m4/3/s) and γ is varied between ±40◦.
Additionally, all wind fields of the synthetic dataset have a uniform mean wind speed (no
vertical shear). The realistic dataset consists of 150 wind fields characterized by sheared inflows
and Gaussian distributions (µ representing the mean and σ the standard deviation) for αϵ2/3,
γ and the shear exponent α (µαϵ2/3 = 0.06m4/3/s, σαϵ2/3 = 0.02m4/3/s; µγ = 0◦, σγ = 3◦;
µα = 0.15, σα = 0.1). The mean wind speed is varied between 6 and 14 m/s according to the
wind speed distribution retrieved from wind-speed measurements on the west coast of Denmark
[15].

In order to simulate the wind speed measurements close to a real power performance test,
10-min mean wind speeds are retrieved from the numerical wind fields from both virtual
sonic anemometer (hereafter referred to as sonics) and nacelle-mounted lidar measurements.
Specifically, we place one sonic anemometer at hub height and six more sonic anemometers
along the vertical coordinate at distances of ±6,±14 and ±22 m from hub height. In this way,
we obtain 10-min mean values of both power output and wind speed at seven different levels,
similarly to a real power performance test where the wind speed is measured in front of an
operating wind turbine.

2.2. Lidar simulations and wind-speed reconstruction
The lidar simulator scans the same velocity fields used as input to the aeroelastic simulations
without considering the impact of the wind turbine, i.e., the induction zone in front of the
rotor is not modelled. We simulate measurements from the DTU SpinnerLidar [16], which is a
continuous-wave Doppler wind lidar that scans over the rose pattern shown in figure 1-a. Similar
to [16], we assume that at the 400 locations of the rose pattern, shown as filled circles in figure
1, we obtain 400 averaged Doppler radial velocity spectra for each full scan. The system is set
to generate a rose pattern every 2 s, so we get 300 Doppler spectra at each of the 400 scanning
locations within a 10-min period. The SpinnerLidar is characterized by a laser wavelength of
1.565 µm and a lens aperture radius of 28 mm, which result in the weighting function φ shown in
figure 1-b when the SpinnerLidar is focused at 1D in front of the rotor. In order to provide a good
estimation of the probe-volume effect without getting out of the turbulence-box boundaries, we
model the probe volume over a distance of 20 times the Rayleigh length Zr, which is a lidar
characteristic length defined by the laser wavelength, the lens radius and the focus distance.
The portion of weighting function within ±10Zr around the focus point is highlighted in red in
figure 1-b.
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Figure 1. (a) Scanning configuration of the SpinnerLidar (blue) focused at 1D in front of the
rotor (red). (b) Weighting function of the SpinnerLidar focused at 1D.

The simulated Doppler radial velocity spectrum is obtained as

S(vr, t) =

∫ 10Zr

−10Zr

φ(s) · δ(vr − u(s) · n) ds, (1)

where s is the distance from the focus point along the lidar beam direction, vr is the velocity
component along the beam (radial velocity), n is the unit vector n = (nx, ny, nz) along the beam
direction and δ is the Dirac delta function. Equation 1 can be viewed as a weighted histogram
distribution of vr, which returns the weighted frequency of the considered value within the
probe volume. We choose a discretization of 0.1 m/s for the histogram distribution in order to
match the typical velocity resolution of a real lidar system. The measured radial velocity is then
retrieved as the first statistical moment of the Doppler spectrum:

vr(t) =

∫ ∞

−∞
vr · S(vr, t) dvr. (2)

The radial velocity variance σ2
vr is estimated as the second central moment of the ensemble

averaged Doppler spectrum S(vr) = ⟨S(vr, t)⟩ in order to avoid turbulence filtering caused by
the probe-volume effect [17]:

σ2
vr =

∫ ∞

−∞
S(vr)(vr − v̄r)

2 dvr, (3)

where v̄r is the first moment of S(vr). The virtual measurements of vr and σ2
vr are then used to

reconstruct both the mean and variance of the wind speed over the 10-min interval.
In order to estimate the 10-min mean wind speedU = (U, V,W ), the lidar beams are clustered

in bins according to their height with a discretization of ∆z = 1 m, so that the wind speed can
be assumed as homogeneous within each bin despite of the wind shear. Consequently, the mean
wind speed at each height U(z) is retrieved by applying a least-square fit to all the beams within
the same bin:

∆2 =

∫
(n ·U− ⟨vr⟩)2dµ, (4)

where ⟨vr⟩ is the ensemble average of the 300 radial velocities measured at each of the positions
in the rose pattern during the 10-min period. Since the wind fields are homogeneous with regards
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to turbulence, the Reynolds stress tensor R is assumed as uniform over the whole scanned area.
Therefore, the Reynolds stresses Rij = ⟨u′iu′j⟩ are retrieved by applying a least-square fit to all
the beams:

∆2 =

∫
(n ·Rn− σ2

vr)
2dµ. (5)

More details about the mean and turbulence reconstruction techniques can be found in [18].

2.3. Evaluation of the multi-dimensional power curves
After carrying out the HAWC2 simulations and scanning the wind fields with the virtual
lidar, we get two datasets with 720 (synthetic dataset) and 150 (realistic dataset) observations
of 6 attributes: U from both SpinnerLidar and sonics, the first Reynolds stress component
⟨u′u′⟩ = σ2

u from both SpinnerLidar and sonics, cos(γ) and the 10-min mean power output P .
The mean wind speed U is evaluated as the wind speed at hub height in the synthetic dataset,
while in the realistic dataset, U is the rotor equivalent wind speed defined as in [3]. It should
be noted that in cases of yaw misalignment γ ̸= 0◦, U measured by the SpinnerLidar represents
the wind-speed component perpendicular to the rotor instead of the horizontal wind speed, as
the nacelle-mounted lidar yaws with the turbine.

The two datasets are used to define three different multi-variable power curves: P = P (U, σ2
u),

P = P (U, γ) and P = P (U, σ2
u, γ), where U and σ2

u are measured from the SpinnerLidar
or the sonics. The multi-variable power curves are modelled as multivariate polynomial
regressions, whose input attributes consist of a polynomial combination of the original attributes
with degree less than or equal to the specified degree β. For example, for the bivariate
power curve P = P (U, σ2

u) with β = 2, we get the following polynomial expression: y =
c1 + c2x1 + c3x2 + c4x

2
1 + c5x

2
2 + c6x1x2, where y = P , x1 = U , x2 = σ2

u and c1, .., c6 are the
regression coefficients. When accounting for the yaw misalignment γ, the input attributes are
X = [U, cos(γ)] and X = [U, σ2

u, cos(γ)] for the bivariate and trivariate cases, respectively. For
each multi-variable power curve, we evaluate nine values of β from the first to the ninth order.

Each regression model is tested through a K-fold cross-validation with K = 10: the dataset
is randomly split into 10 sub-datasets (folds) presenting the same number of observations, and
each fold is used as testing dataset, while the training dataset consists of the other nine folds.
This results in training and testing the model ten times obtaining ten different test errors Ej ,
which are computed as the root mean square deviation between the estimated power output P est

and the reference value given by the aeroelastic simulations P , i.e., Ej =
√

1
N

∑
i(P

est
i − Pi)2,

where N is the number of observations in the testing fold. Models are evaluated by looking at
the generalization error λ = 1

10

∑
j Ej . This procedure ensures that the final error λ does not

depend on how the dataset is split into training and testing sets, since the model is tested over
all the observations.

3. Results
The accuracy of the multi-dimensional power curves is compared to that of the IEC standard
power curve, which is defined according to the latest IEC standard [6]. In case the wind field is
characterized by shear, we correct for the wind shear by using the rotor equivalent wind speed,
while we do not apply any turbulence normalization. This is in line with the standard, as both
wind-shear and turbulence corrections are recommended but not mandatory procedures [6].

When the synthetic dataset is used to define the power curves, all the multi-dimensional
power curves are more accurate than the IEC standard power curve, as shown in figure 2-a.
Both P (U, γ) and P (U, γ, σ2

u) outperform the IEC standard due to the strong yaw misalignment
that cannot be characterized by the standard power curve. Additionally, also the bivariate
power curve P (U, σ2

u) provides higher accuracy than that using the IEC standard, showing the
benefits of including turbulence to analyze the power output. For P (U, σ2

u), the SpinnerLidar is



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 022059

IOP Publishing
doi:10.1088/1742-6596/2265/2/022059

6

much more accurate than the sonic, as the SpinnerLidar measures the wind-speed component
perpendicular to the rotor despite the yaw misalignment. Between the two bivariate power
curves, P (U, γ) is the most accurate due to the cases of very large yaw misalignment (up to 40◦),
which make the correlation between P and γ stronger than that between P and σ2

u. However,
the highest accuracy is given by considering both γ and σ2

u; compared to the IEC standard, the
error is reduced by 79% and 80% for the sonic and the SpinnerLidar, respectively.

Figure 2 also shows how the generalization error changes with the degree of the polynomial
regressions. As seen in the figure, the optimal value of β varies for the different power curves. For
the three-dimensional power curves, λ strongly decreases up to β = 3, remains nearly constant
for 3 ≤ β ≤ 5 and quickly increases for β ≥ 6, with the same trend for both SpinnerLidar and
sonic. The bivariate regressions present a larger interval of nearly optimal values for β, with
values of λ close to the minimum within 3 ≤ β ≤ 7 and 3 ≤ β ≤ 9 when considering σ2

u and γ,
respectively.
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Figure 2. (a) Generalization error of power curves defined with the synthetic dataset when
using the optimal β. (b) Variation of λ with the order of the polynomial regressions P (U, σ2

u)
(squares), P (U, γ) (triangles) and P (U, σ2

u, γ) (circles) based on sonic (blue) and SpinnerLidar
(orange); optimal values are highlighted in red.

Figure 3 shows scatter plots of the power estimated by both the SpinnerLidar-based and
the IEC power curves against the reference power given by the aeroelastic simulations for the
synthetic dataset. Each scatter plot presents 720 points for both power curves since all the power
values in the dataset are used for testing due to the cross validation. As shown in the figure,
the multi-dimensional power curves provide a very good correlation between the estimated and
reference power values without significant outliers, especially in the three-dimensional case.

When the realistic dataset is used to define the power curves, as shown in figure 4, only the
bivariate regression P (U, σ2

u) is more accurate than that of the IEC standard. Similar to the
results using the synthetic dataset, the SpinnerLidar provides higher accuracy than the sonic
as the yaw misalignment is inherently accounted for. However, when γ is an input attribute to
the regression, both the bivariate and trivariate regressions fail to outperform the IEC standard
power curve for both sonic and SpinnerLidar measurements. This is due to the distribution of
γ in the realistic dataset, which does not allow a proper training of the models.

When using the realistic dataset for training and testing, nearly all the multivariate
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Figure 3. Scatter plots of the power estimated by both SpinnerLidar-based regressions and
IEC standard power curve against the reference power for the synthetic dataset
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Figure 4. (a) Generalization error of power curves defined with the realistic dataset when
using the optimal β. (b) Variation of λ with the order of the polynomial regressions P (U, σ2

u)
(squares), P (U, γ) (triangles) and P (U, σ2

u, γ) (circles) based on sonic (blue) and SpinnerLidar
(orange); optimal values are highlighted in red.

regressions present the lowest error for β = 3 or β = 4, except for the SpinnerLidar-based
P (U, σ2

u), which presents β = 5 as the optimal case. Additionally, for the three-dimensional case
P (U, σ2

u, γ), λ quickly increases for β > 3 for both sonic- and SpinnerLidar-based power curves.
Despite the higher mean error compared to the result of the IEC standard, figure 5 shows that
the multi-dimensional power curves provide a reliable estimation of the power output, without
resulting in large outliers.

Due to the differences in the results when analyzing the synthetic and realistic datasets,
a third analysis is performed combining the two datasets. Specifically, all the multivariate
polynomial regressions are trained on the synthetic dataset and tested on the realistic one. In
this case, the models are evaluated based on the root mean square error instead of λ, since the
models are only trained and tested once, without performing any cross-validation. As shown
in figure 6, all the models including γ outperform the IEC standard power curve, with a clear
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Figure 5. Scatter plots of the power estimated by both SpinnerLidar-based regressions and
IEC standard power curve against the reference power for the realistic dataset

improvement compared to the case when the models are both trained and tested on the realistic
dataset. This confirms that the realistic dataset is not suitable for training the models due to
the low and non-uniformly distributed values of γ.

Furthermore, it should be noted that for the two-dimensional case P (U, σ2
u), only the

SpinnerLidar outperforms the IEC standard, while the sonic provides an increase of the error.
In this case, information about σ2

u does not benefit the power estimations; only when accounting
for the yaw misalignment we observe the benefits. However, for both sonic and SpinnerLidar
measurements, P (U, σ2

u, γ) outperforms P (U, γ), showing that σ2
u adds valuable information to

the model when γ is already known.
The three-dimensional power curve P (U, σ2

u, γ) provides the highest accuracy with an error
of 7.2 kW and 6.4 kW for the sonic and the SpinnerLidar, respectively. When compared to
the error of the IEC standard power curve (12.2 kW), this means a reduction of 41% and 48%.
Differently from the case of figure 2, where the difference between sonics and SpinnerLidar is
negligible, SpinnerLidar-based two-dimensional power curves perform better than those based
on sonics. This is probably due to a better characterization of the wind shear and the kinetic
energy flux throughout the rotor.

As shown in figure 6, the error of the three-dimensional power curve reaches the minimum
for β = 4 and steeply increases for β > 4, further confirming the results in figure 2. Only when
training the model with the realistic dataset, the trivariate regression presents β = 3 as the
optimal case. However, that case can be neglected since the realistic dataset is not suitable to
train the trivariate regression. In the two-dimensional cases P (U, σ2

u) and P (U, γ), the error is
nearly constant for a large number of degrees, similarly to the case of figure 2. Although it is
not shown here, scatter plots for the case of figure 6 look similarly to those of figures 3 and 5,
with very good correlation and without any outliers.

Figure 7 shows how the power output varies with σ2
u and γ according to the trivariate power

curve P = P (U, σ2
u, γ) trained over the whole synthetic dataset and whose accuracy is shown in

figure 6. In order to show the effect of the two variables σ2
u and γ, we use two different data

distributions: in figures 7-(a,c), we have constant γ = 0◦ and the same variation of U and σ2
u

as in the synthetic dataset; in figures 7-(b,d), we have constant σ2
u = 0.5m2/s2 and the same

variation of U and γ as in the synthetic dataset. As it can be seen in figures 7-(a,c), higher
turbulence increases the power output for wind speed values close to cut-in, while it decreases
the power output closely to the rated value. The yaw misalignment γ decreases the power output
irrespective of the wind speed, as confirmed by figure 7-b. The effect seems to be the opposite
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when looking at figure 7-d, as U represents the wind-speed component orthogonal to the rotor
when using SpinnerLidar measurements. Consequently, in case of same U and different γ, higher
γ means higher free-stream velocity. This effect on the power curve should not be misunderstood
as a positive correlation between γ and P .
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Figure 6. (a) Error of power curves trained on the synthetic dataset and tested on the realistic
dataset when using the optimal β. (b) Variation of the error with the order of the polynomial
regressions P (U, σ2

u) (squares), P (U, γ) (triangles) and P (U, σ2
u, γ) (circles) based on sonic

(blue) and SpinnerLidar (orange); optimal values are highlighted in red.

4. Discussion
Wind turbine power performance is modelled through multivariate power curves in the form
of polynomial regressions, which present three input attributes: the mean wind speed U , the
atmospheric turbulence evaluated as the wind speed variance σ2

u and the yaw misalignment γ.
We do not include the shear exponent α as an input to the regressions as we account for the
wind shear through the rotor equivalent wind speed. This likely gives similar accuracy to adding
a 4th term to the regression, without increasing the numerical complexity of the model. The
evaluation of α as a 4th input to the multivariate power curves could be part of the further
development of this work.

The multivariate power curves are tested on a dataset consisting of virtual flow measurements.
Therefore, one could question to which extent this approach would be affected by the
uncertainties related to real field measurements. We are confident that the virtual flow
measurements are a reliable and accurate representation of what we would get from field
measurements, as long as these were conducted under nearly homogeneous conditions. In case
of inhomogeneous conditions, the wind speed reconstruction described in section 2.2 would be
unreliable, so that a different approach is needed to accurately retrieve U and σ2

u from the
SpinnerLidar measurements vr and σ2

vr . However, even when the assumption of homogeneity is
rather crude, we expect the multivariate power curves to perform well. The difference is that the
multivariate power curve will relate the power output to the lidar-derived characteristics rather
than to the “true” flow characteristics. Additionally, when testing the multi-dimensional power
curves with measurements out in the field, their accuracy might be challenged by the uncertainty
in the estimation of the yaw misalignment, which is known in our virtual setup. Therefore,
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Figure 7. Power curves given by the trivariate regression P = P (U, σ2
u, γ) based on sonic (a,

b) and SpinnerLidar (c, d) with γ = 0◦ (a, c) and σ2
u = 0.5m2/s2 (b, d)

nacelle lidar measurements are needed to estimate the yaw misalignment more accurately than
with, e.g., traditional nacelle-based wind vanes.

Testing the multivariate power curves under inhomogeneous conditions would be an
interesting topic for future research. Additionally, it would be interesting to evaluate the
necessary range of γ available in the training dataset in order to obtain accurate curves.
Probably, in the synthetic dataset, we considered a larger γ interval (±40◦) than needed, while
a larger standard deviation or more available data would make the realistic dataset suitable for
training the model.

5. Conclusions
A methodology to evaluate power curves through aeroelastic simulations and virtual nacelle lidar
measurements is outlined. Specifically, we test multi-dimensional power curves in the form of
multivariate polynomial regressions, whose input attributes consist of the mean wind speed, the
wind speed variance and the yaw misalignment. The mean wind speed is derived as either hub
height wind speed or rotor equivalent wind speed, depending on whether the numerical wind
fields are characterized by wind shear.

When properly trained, the multivariate polynomial regressions outperform the IEC standard
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power curve. Specifically, when tested on a realistic dataset, which presents wind conditions
similar to those of a test site on the west coast of Denmark, the trivariate power curve
P = P (U, σ2

u, γ) predicts the power output with a 48% lower error than the IEC standard
power curve. Additionally, the SpinnerLidar measurements increase the accuracy of the
multi-dimensional power curve compared to mast-based sonic anemometers, due to a better
characterization of the inflow to the rotor.

The optimal value for the degree of the polynomial expressions change depending on the
input attributes, the dataset and the measuring device (mast-based anemometry or nacelle-
mounted lidar). For the three-dimensional case P (U, σ2

u, γ), the minimum error is obtained
with a polynomial expression of the 4th order when using both the SpinnerLidar and the sonic
measurements. However, a different optimal polynomial degree might be found using a different
dataset.

Our results show that multi-dimensional power curves in the form of multivariate polynomial
regressions can be a valuable alternative to the IEC standard power curve, with possible
improvements in wind turbine power prediction and energy yield assessment.

This work should be extended by testing the same multi-dimensional power curves with
either simulations of more realistic flow cases or measurements from a nacelle-mounted
SpinnerLidar out in the field. Moreover, it would be interesting to test the same approach
under inhomogeneous conditions, i.e. for wind turbines under waked conditions, where the gain
in accuracy compared to the IEC standard power curve is expected to be much larger than what
found in this work for homogeneous conditions.
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A B S T R A C T

The IEC standards describe how to measure the power performance of an isolated wake-free wind turbine.
However, most wind turbines operate under waked conditions for a substantial amount of time, calling for
the need of a new methodology for power performance evaluation. We define multivariate power curves in
the form of multivariate polynomial regressions, whose input variables are several wind speed and turbulence
measurements retrieved with nacelle lidars. We use a dataset of synthetic power performance tests including
both waked and wake-free conditions. The dataset is generated through aeroelastic simulations combined with
both virtual nacelle lidars and the dynamic wake meandering model. A feature-selection algorithm is used to
select the input variables among the available measurements, showing that the optimal model includes four
input variables: three correspondent to wind speed and one to turbulence measures. Additionally, we give
insights on the optimal nacelle-lidar scanning geometry needed to implement the multivariate power curve.
Results show that the multivariate power curves predict the power output with accuracy of the same order
under both waked and wake-free operation. For the in-wake cases, the accuracy is much higher than that of
the IEC standard power curve, with an error reduction of up to 88%.

1. Introduction

For many years, the power output of a wind turbine was defined
as function of two flow characteristics: the air density and the wind
speed at hub height [1]. However, several studies have shown that
additional variables should be considered when evaluating the power
performance of a wind turbine, e.g. turbulence characteristics and ver-
tical wind shear [2–4]. Clifton and Wagner [2] investigated the effect of
atmospheric turbulence on the power output of a wind turbine through
aeroelastic simulations and showed that turbulence and power are
closely related for wind speeds just above the cut-in and just below the
rated value. Specifically, the power output increases with turbulence
around cut-in, while it decreases close to rated. The same effect was
shown with measurements by Hedevang [5] and Bardal and Sætran
[4]. Wagner et al. [3] evaluated the effect of the vertical wind shear on
the power output. They showed that one single velocity measurement at
hub height does not accurately estimate the kinetic energy flux through
the rotor. Therefore, they introduced a methodology to increase the
accuracy of the power curve by using wind speed measurements from
several heights combined into one scalar quantity, the rotor equivalent
wind speed.

Research on the effect of turbulence and vertical wind shear led
to the revision of the International Electrotechnical Commission (IEC)

∗ Corresponding author.
E-mail address: aseb@dtu.dk (A. Sebastiani).

standard for power performance testing. In the most recent version,
both turbulence intensity and wind shear are included as variables
to be considered when testing power curves [6]. However, the IEC
standard power curves still provide a rather simplified evaluation of the
power performance and require further improvements. One of the main
issues, portrayed also in its newest edition, is that the IEC standard
only describes the methodology to assess the power performance of
an isolated, wake-free wind turbine. However, most wind turbines
are currently clustered together within wind farms and operate under
waked conditions for a substantial amount of time. This means that
these wind turbines operate without an accurate indication of their
power performance under their actual operating conditions. This is
not only true for the waked wind turbines. Due to blockage effects,
the performance of the non-waked wind turbines in a wind farm are
also affected as shown by Sebastiani et al. [7]. Therefore, there is a
need to implement an alternative methodology for power performance
evaluation, which is reliable under waked conditions or complex inflow
in general.

Several previous works have introduced alternative methods to
model the power curve of a wind turbine. In some, the power output
was modelled as function of the wind speed at hub height through
both parametric and non-parametric models [8–11]. In others, the

https://doi.org/10.1016/j.renene.2022.11.081
Received 12 July 2022; Received in revised form 17 November 2022; Accepted 19 November 2022
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power performance was modelled through multivariate power curves
accounting for several atmospheric variables, such as turbulence, ver-
tical wind shear and wind veer [12–15]. Some other studies included
control variables as the turbine’s rotational speed and pitch angle of
the blades [16,17]. Additionally, Sebastiani et al. [18] used trivariate
power curves accounting for wind speed, turbulence and yaw misalign-
ment. In many of these studies, only one wind speed measurement
was considered [8–11,16,17], while others used wind speeds at several
heights to characterize the vertical wind shear [12–15]. However, none
of the studies included more than one wind speed measurement at the
same height, which could be beneficial under waked conditions. Ad-
ditionally, none of the available studies specifically focused on waked
conditions.

In this work, we test multivariate power curves, which include
several wind speed and turbulence measurements retrieved through
nacelle-mounted lidars. To the best of our knowledge, this is the first
evaluation of multivariate power curves in wakes using nacelle lidars.
The main objective is to evaluate the power performance of a wind
turbine with the same accuracy under both waked and free-standing
conditions. We define multivariable power curves in the form of mul-
tivariate polynomial regressions, whose input variables are both wind
speed and turbulence measurements at several locations in front of the
rotor. We test several lidar configurations, with a varying number (from
6 to 400) of wind speed measurements. A feature-selection algorithm is
used to select the optimal number of measurements needed to evaluate
the power performance, as well as to give insights about the best mea-
surement locations. The analysis is conducted on a dataset of synthetic
power performance measurements, which is built with the combina-
tion of aeroelastic simulations and virtual nacelle lidar measurements.
We use the dynamic wake meandering (DWM) model [19] to gener-
ate waked inflows and simulate power performance measurements in
wake.

This paper is organized as follows. The methodology is outlined in
Section 2, with descriptions of the homogeneous turbulent wind fields
in Section 2.1, the DWM model in Section 2.2 and the lidar simulator in
Section 2.3. In Section 2.4, we describe how the aeroelastic simulations
are combined with the virtual lidars and the DWM model to generate a
dataset of virtual power performance tests. The implementation of the
multivariate power curves is described in Section 2.5. Results from the
analysis for wake-free and waked conditions are shown in Sections 3.1
and 3.2, respectively. The combination of both conditions is shown in
Section 3.3, while the optimal lidar scanning configuration is described
in Section 3.4. Finally, discussion and conclusions are presented in
Sections 4 and 5, respectively.

2. Methodology

We use the DTU in-house aeroelastic code HAWC2 [20] to perform
aeroelastic simulations of the Vestas V52 wind turbine [21], which has
a rated power of 850 kW and rotor diameter (D) of 52 m. Addition-
ally, we implement a lidar simulator to retrieve virtual nacelle lidar
measurements from the same turbulent wind fields, which are used as
input to the aeroelastic simulations. The combination of the power out-
put from the HAWC2 simulations and the virtual measurements from
the lidar simulator results in a dataset of virtual power performance
measurements. Specifically, the dataset is divided in two distinct parts,
consisting of power performance measurements under homogeneous
and waked conditions, respectively; the wake fields are simulated with
the DWM model.

2.1. Turbulence spectral model

We use three-dimensional homogeneous turbulent wind fields gen-
erated with the turbulence spectral model by Mann [22], hereafter re-
ferred to as Mann model. The three-dimensional wind field is described
by the vector field 𝐮(𝐱), as time dependency is neglected because of

the Taylor’s frozen turbulence hypothesis. The velocity vector field
𝐮 = (𝑢, 𝑣,𝑤) consists of the along-wind (𝑢), transverse (𝑣) and vertical
(𝑤) components, with the along-wind component aligned with the 𝑥
direction of the right-hand coordinate system 𝐱 = (𝑥, 𝑦, 𝑧), as shown in
Fig. 2. Assuming homogeneous turbulence and no vertical wind speed,
the mean velocity field results in ⟨𝐮(𝐱)⟩ = (𝑈 (𝑧), 0, 0), where the wind
speed variation with height depends on the vertical shear.

The second-order statistics of the homogeneous three-dimensional
wind field can be described with the spectral tensor 𝜱(𝐤), which is
the Fourier transform of the covariance tensor 𝐑(𝐫), where 𝐫 is the
separation vector and 𝐤 = (𝑘1, 𝑘2, 𝑘3) is the vector field representing the
wavenumbers along the (𝑥, 𝑦, 𝑧) directions. The Mann model describes
the spectral tensor 𝜱 as function of three parameters: 𝛼𝜖2∕3 is the
product between the Kolmogorov constant 𝛼 and the turbulent energy
dissipation rate 𝜖, 𝛤 is a parameter related to the anisotropy of the
turbulence field, and 𝐿 is a length scale related to the size of the
turbulence eddies.

In this work, all the three-dimensional turbulent wind fields are
generated with 𝐿 = 29.4 m and 𝛤 = 3.9, which are the values suggested
in the IEC standard [23], while 𝛼𝜖2∕3 is varied according to the desired
level of atmospheric turbulence. All the wind fields have the maximum
number of grid points allowed in HAWC2: (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (8192, 64, 64).

2.2. Dynamic wake meandering model

The DWM model simulates wind turbine wakes in a time domain
at a relatively low computational expense. It relies on Taylor’s frozen
turbulence assumption and consists of three elements: a model of the
quasi-steady velocity deficit and its evolution downstream; a model of
the wake meandering due to large-scale turbulence structures, and a
model of the wake-generated turbulence [19].

The definition of the quasi-steady velocity deficit is strongly inspired
by the work of Ainslie [24]. The wake deficit in the near-wake re-
gion (within 2–3D) is defined by the turbine’s axial induction derived
from blade element momentum (BEM) theory [19]. In the far-wake
region (downstream distances larger than 2–3D), the wake evolution
is described by the thin shear layer approximation of the rotationally
symmetric Navier–Stokes (N–S) equations, with the pressure terms dis-
regarded and an eddy viscosity term used for turbulence closure [19].
The eddy viscosity 𝜈𝑡 accounts for both atmospheric and shear layer
generated turbulence through the formulation by Keck et al. [25]:

𝜈𝑡 = 𝐹1 𝑘1 TI𝑎𝑚𝑏 + 𝐹2 𝑘2 max

(
𝑅2
𝑤

𝑈hub 𝑅
||||
𝜕𝑈
𝜕𝑅

|||| ;
𝑅𝑤
𝑅

(
1 −

𝑈min
𝑈hub

))
, (1)

where 𝑅𝑤 is the wake radius, 𝑅 is the rotor radius, TI𝑎𝑚𝑏 is the ambient
turbulence intensity, 𝑈min is the minimum wind speed in the wake
and 𝑈hub is the free-stream velocity at hub height. 𝐹1 and 𝐹2 are
filter functions used to model the development of the turbulent stresses
inside the wake. 𝑘1 and 𝑘2 are empirical constants. In our work, we use
the HAWC2 default values for 𝐹1, 𝐹2, 𝑘1 and 𝑘2.

In the DWM model, the wake is assumed as a passive tracer driven
by large-scale turbulence structures. Trujillo et al. [26] showed that
the atmospheric turbulence structures responsible for the wake me-
andering are in the order of 2D and larger. Therefore, in the DWM
model, the wake meandering is modelled by superimposing turbulence
fluctuations with a cut-off frequency of 𝑓𝑐𝑢𝑡 = 𝑈

2𝐷 . Those turbulence
fluctuations are modelled with a Mann-model generated turbulence
box, which presents a discretization of 𝛥𝑦 = 𝛥𝑧 = 𝐷 and where the
velocity vectors at each grid point represent the average over the grid
cube.

In addition to the atmospheric turbulence and the apparent tur-
bulence due to the meandering of the wake, additional turbulence is
generated in the wake as a consequence of the velocity shear, as well
as of trailing vortices generated at both tip and root of the blade.
Wake-generated turbulence tends to be isotropic and characterized
by smaller structures than atmospheric turbulence [27]. Therefore,
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Fig. 1. Illustration of the numerical framework utilized to generate the dataset of virtual power performance measurements.

additional wake turbulence is modelled by super-imposing a Mann-
model turbulence box generated with 𝛤 = 0 and a length scale 𝐿
which is 10% of the atmospheric turbulence length scale. Additionally,
wake turbulence is purely mechanically generated and rather inhomo-
geneous. In the DWM, the inhomogeneity of wake-generated turbulence
is modelled by scaling the wake turbulence box with the factor

𝐾𝑚𝑡(�̂�) = |1 − �̂�def (�̂�)| 𝑘𝑚1 +
|||||
𝜕�̂�def (�̂�)

𝜕�̂�

|||||
𝑘𝑚2, (2)

where �̂�def is the axisymmetric wake velocity 𝑈def = 𝑈amb − 𝛥𝑈
nondimensionalized with 𝑈hub. �̂� is the radial distance normalized by
the rotor radius. 𝑘𝑚1 and 𝑘𝑚2 are empirical constants [19]. We use the
HAWC2 default values for both 𝑘𝑚1 and 𝑘𝑚2.

The final three-dimensional velocity field is obtained through linear
superposition of the quasi steady velocity deficit, the meandering turbu-
lence and the wake-generated turbulence to the homogeneous ambient
velocity field:

𝑢DWM = 𝑈def + 𝑢′amb + 𝑢′meandering +𝐾𝑚𝑡 𝑢
′
wake (3)

2.3. Nacelle lidar simulator

We implement a lidar simulator to retrieve virtual nacelle lidar
measurements from the same turbulent velocity fields used as input
to the aeroelastic simulations. As shown in Fig. 2, the forward-looking
lidar is located in the centre of the (𝑦, 𝑧) plane and scans the inflow
approaching the wind turbine. We simulate continuous-wave (CW)
lidars using a typical weighting function 𝜑(𝑠), which allows us to model
the lidar probe-volume effect [28]:

𝜑(𝑠) = 1
𝜋

𝑧𝑟
𝑧2𝑟 + 𝑠2

, with 𝑧𝑟 =
𝜆 𝑓 2

𝑑

𝜋 𝑟2𝑏
, (4)

where 𝑧𝑟 is the Rayleigh length, 𝜆 is the laser wavelength, 𝑟𝑏 is the lens
aperture radius, 𝑓𝑑 is the focus distance and 𝑠 is the distance from the
focus point along the lidar beam direction.

In this work, we assume 𝜆 = 1565 nm and 𝑟𝑏 = 28 mm, which
are common values among available CW lidars. In order to provide
a realistic modelling of the probe-volume effect without requiring a
critically large wind field, we model the weighting functions over
distances of ±6𝑧𝑟 around the focus point, accounting for around 90%
of the weight.

We test different scanning configurations, comprising both commer-
cial and research lidars, as shown in Fig. 3. Specifically, we simulate
the DTU SpinnerLidar [29], which retrieves 400 measurements every 2

s along the rose pattern of Fig. 3(a). Additionally, we simulate a 6-beam
lidar and a circular scanning lidar. The 6-beam configuration is chosen
as it is the optimal configuration for turbulence measurements [30],
while the circular configuration is chosen as it is performed by one
of the available commercial lidars for power performance tests. We
also include a grid of ‘sonic anemometers’, which are able to retrieve
the true wind and turbulence characteristics, without being affected by
neither the volume averaging nor the method used to reconstruct the
wind, as most lidars are.

The lidar virtual measurements consist in the retrieval of the
Doppler radial velocity spectrum as

𝑆(𝑣𝑟, 𝑡) = ∫
𝑠max

𝑠min

𝜑(𝑠)𝛿(𝑣𝑟 − 𝐮(𝑠) ⋅ 𝐧)d𝑠, (5)

where 𝑣𝑟 is the velocity component along the beam (radial velocity),
𝐧 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) is the unit vector along the beam direction and 𝛿 is the
Dirac delta function. Eq. (5) can be considered as a weighted histogram
distribution of 𝑣𝑟 within the probe volume. We use a discretization of
0.1 m/s for the histogram distribution in order to match the typical
velocity resolution of a real lidar system. The measured radial velocity
is the first statistical moment of the Doppler spectrum:

𝑣𝑟(𝑡) = ∫
∞

−∞
𝑣𝑟𝑆(𝑣𝑟, 𝑡)d𝑣𝑟. (6)

Here, the along-wind component 𝑢 of the velocity vector is retrieved
from the radial velocity by neglecting the contribution of both the
transverse 𝑣 and vertical 𝑤 components:

𝑢 =
𝑣𝑟
𝑛𝑥

. (7)

In order to get information about turbulence, the radial velocity
variance 𝜎2𝑣𝑟 is obtained as the second central moment of the ensemble
averaged Doppler spectrum 𝐒(𝑣𝑟) = ⟨𝑆(𝑣𝑟, 𝑡)⟩:

𝜎2𝑣𝑟 = ∫
∞

−∞
𝐒(𝑣𝑟)

(
𝑣𝑟 − �̄�𝑟

)2 d𝑣𝑟, (8)

where �̄�𝑟 is the first central moment of 𝐒(𝑣𝑟), i.e., the mean radial
velocity. This ensures that 𝜎2𝑣𝑟 is not affected by turbulence filtering
due to the lidar spatial averaging [31].

When we face conditions in which the turbulent wind field is free of
wakes, i.e., when the turbulent inflow is homogeneous, the components
of the Reynolds stress tensor (variances and covariances of the velocity
components) are estimated from the radial velocity variances 𝜎2𝑣𝑟 of the
different lidar beams following the methodology described by Fu et al.
[32].
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Fig. 2. Illustrative three-dimensional view of one of the simulated scanning patterns, the turbine rotor and the along-wind velocity component.

Fig. 3. Nacelle lidar scanning configurations: (𝑎) SpinnerLidar focused at 2D; (𝑏): 6-beam lidar focused at 2D; (𝑐) circular scanning lidar focused at 2D; (𝑑) grid of ‘sonic anemometers’.
The rotor is highlighted in 𝑏𝑙𝑎𝑐𝑘.

2.4. Generation of the dataset

As shown in Fig. 1, we combine HAWC2 with the DWM model
and the lidar simulator to generate two datasets of virtual power
performance tests: one consisting of wake-free homogeneous cases and
the other of waked inflows, hereafter referred to as the wake-free and
waked-inflow datasets. For the retrieval of 10-min statistics of both
power output and wind characteristics, all the wind turbulent fields
have dimensions of (𝑈∞ 𝑇 , 128m, 128m), with 𝑇 = 700 s. The additional
100 s are added to get 10-min statistics from the lidars, whose focus
point is upstream of the rotor and that would otherwise be out of
the turbulent field during the last few seconds of the simulation. The
length of 128 m is chosen for both transverse and vertical directions
so that we can account for a large portion of the weighting function.
Additionally, some distance is needed between the rotor and the edge

of the turbulence box in order to avoid possible biases due to field
periodicity [33].

The wake-free dataset contains results from 620 10-min aeroelastic
simulations characterized by uniform inflows (no shear). The wind
speed varies uniformly within [4, 14] m∕s to cover the power curve from
cut-in to rated values. The turbulent fields are characterized by 𝐿 = 29.4
m, 𝛤 = 3.9 and the parameter 𝛼𝜖2∕3 is nearly uniformly distributed
within [0.002, 0.25] m4∕3∕s. The 𝛼𝜖2∕3 values are selected in order to get
similar TI distributions at different wind speed ranges, with most values
between 5% and 20%.

The waked-inflow dataset presents 864 10-min aeroelastic simu-
lations characterized by waked conditions simulated with the DWM
model. Three different wake conditions are included: 1/3 of the cases
present a centred full wake, 1/3 a partial wake on the right side of the
rotor (𝛥𝑦 > 0 m) and 1/3 a partial wake on the left side of the rotor
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Fig. 4. Two-dimensional views of the quasi-steady velocity deficit in case of an upstream wake-generator rotor at 𝑥 = −5D (𝑎), 𝑥 = −6D (𝑏) and 𝑥 = −8D (𝑐), with a free-stream
velocity of 8 m/s. The two-dimensional plane is obtained for 𝑦 = 0 m. In red we show the weighting function of a CW lidar focused at (𝑥, 𝑦, 𝑧) = (−2D, 0, 0).

(𝛥𝑦 < 0 m). For each condition, three different along-wind distances 𝛥𝑥
are considered: 5D, 6D and 8D, with 96 simulations for each (𝛥𝑥, 𝛥𝑦)
case. Each of those sets of 96 simulations present a uniform distribution
of free-stream velocities 𝑈∞ within [6.5, 14] m∕s and a nearly uniform
distribution of TIs between 5% and 12%. As mentioned in Section 2.2,
the waked field results from the superposition of three Mann-model
generated turbulent fields. For all the waked fields in the dataset, the
ambient turbulent field is generated with 𝐿 = 29.4 m and 𝛤 = 3.9, while
𝛼𝜖2∕3 is varied according to the desired level of atmospheric turbulence.

All turbulent wind fields used as input to the aeroelastic simulations
are scanned with the lidar simulator to get a dataset of virtual power
performance measurements, same as what we would get from a nacelle
lidar mounted on an operating wind turbine. As mentioned in Sec-
tion 2.3, we simulate the lidar scanning geometries illustrated in Fig. 3.
For the in-wake cases, we account for the wake evolution inside the
probe volume by calculating the quasi-steady velocity deficit at several
downstream positions with an interspacing of 𝛥𝑥 = 0.1D and linearly
interpolating for the in-between locations. The wake meandering and
the wake-generated turbulence are assumed as invariant with 𝑥. From
Eq. (3), 𝑈def varies with 𝑥, while all the other terms remain unchanged.
As shown in Fig. 4, we need to account for the wake evolution in order
to reliably represent the lidar measurements in wake, as it would be
too unrealistic to consider one single profile 𝑈def (𝑥, 𝑧) within the whole
lidar probe volume.

2.5. Evaluation of the multivariate power curves

After performing the aeroelastic simulations and retrieving the vir-
tual lidar measurements, both the wake-free and waked-inflow datasets
are used to define multivariate power curves in the form of multivari-
able polynomial regressions. The input variables are combined into all
possible polynomial combinations of degree less than or equal to the
specified degree 𝛽. For example, for the case with three input variables
𝑦 = 𝑦(𝑥1, 𝑥2, 𝑥3) and 𝛽 = 2, we get the following polynomial expression:

𝑦 = 𝑐1 + 𝑐2𝑥1 + 𝑐3𝑥2 + 𝑐4𝑥3 + 𝑐5𝑥
2
1 + 𝑐6𝑥

2
2 + 𝑐7𝑥

2
3 + 𝑐8𝑥1𝑥2 + 𝑐9𝑥1𝑥3 + 𝑐10𝑥2𝑥3,

where 𝑐1, .., 𝑐10 are the coefficients of the polynomial regression.
In the wake-free homogeneous case, we consider two input variables

and define the power output as function of the hub-height wind speed
(𝑈ℎ𝑢𝑏) and atmospheric turbulence represented by the variance of the
along-wind velocity component (𝜎2𝑢 ): 𝑃 = 𝑃 (𝑈ℎ𝑢𝑏, 𝜎2𝑢 ). This choice is
based on the homogeneity of the inflow, which makes both 𝑈 and 𝜎2𝑢
uniform over the whole (𝑦, 𝑧) plane. For the SpinnerLidar, we use the
methods described in Section 2.3 to derive 𝑈ℎ𝑢𝑏 and 𝜎2𝑢 .

In the waked-inflow case, due to the strong inhomogeneity of the
inflow, all the measured wind speed and turbulence values are consid-
ered as potential input variables to the polynomial regressions. When

using lidar measurements, the wind speed 𝑈 and the radial velocity
variance 𝜎2𝑣𝑟 at each scanning location are considered, whereas 𝑈 and
𝜎2𝑢 are considered when using the sonic anemometers. This difference is
due to the difficulty in reconstructing 𝜎2𝑢 from 𝜎2𝑣𝑟 under inhomogeneous
conditions. The input variables are then selected among the measured
variables through a feature-selection process.

The feature selection is performed through a forward-selection al-
gorithm. Starting with an empty model, variables are added one by
one. At each step, each of the available variables is added to the
existing model and the prediction error is calculated using nine values
of 𝛽 = 1, 2, 3,… , 9. The variable providing the lowest error is selected
and the selection continues until adding one more variable causes an
increase of the prediction error due to overfitting. An illustration of the
feature-selection process is shown in Fig. 5.

The prediction error given by each model is evaluated as a K-fold
cross-validation with 𝐾 = 10: the dataset is split into ten equally large
folds, nine of which are used to train the model and the remaining one
is used to test the model. This procedure is performed ten times using
each of the folds as testing dataset and the final error, referred to as the
generalization error 𝜆, is evaluated as the average of the mean errors
from the 10 folds: 𝜆 = 1

10
∑

𝑗 𝐸𝑗 . The errors 𝐸𝑗 are calculated with three
different approaches in order to better compare the different models:
the root mean square error (RMSE), the mean absolute error (MAE)
and the mean absolute percentage error (MAPE). The cross-validation
ensures that all observations in the dataset are used to test the model
and the error does not depend on how we split into training and test
sections.

If we evaluated the prediction accuracy on the 90% training data,
the error would decrease with the number of features up to the maxi-
mum number of available features. However, this causes an overfitting
over the training data with a larger error when testing the regression
over the 10% testing data, as the model is too tightly related to the
training data, causing less flexibility and larger errors when evaluating
on the testing data. Therefore, there is an optimal number of features,
which allows the most accurate modelling of the power-velocity rela-
tion without causing overfitting, which would enlarge the error as the
number of features keep increasing.

3. Results

3.1. Wake-free dataset

For the wake-free dataset, only two variables are considered: the
wind speed at hub height 𝑈ℎ𝑢𝑏 and the atmospheric turbulence (𝜎2𝑢
at hub height), as the inflow is uniform and not much benefit is
expected by measuring the wind speed at additional locations. In Fig. 6,
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Fig. 5. Illustration of the feature-selection process in a case where two input variables
are selected out of 𝑁 available features.

the multivariate power curves are compared with the IEC standard
power curve, which is defined using 𝑈ℎ𝑢𝑏 and without any turbulence
normalization (𝑃 = 𝑃IEC(𝑈hub)). The multivariate power curve is more
accurate than the IEC standard when using both SpinnerLidar and sonic
anemometer velocity and turbulence measurements, with an error re-
duction of about 50% from the IEC standard power curve. The optimal
polynomial order is 𝛽 = 7 for both SpinnerLidar and sonic anemometer
measurements. The scatter plots of Fig. 7 show the estimated power
against the power predicted by the different power curves for all the
620 observations of the wake-free dataset. As illustrated, the multivari-
ate power curves predict the power output quite accurately, without
any significant outliers.

3.2. Waked-inflow dataset

When including the wake cases, the correlation between 𝑃 and
𝑈ℎ𝑢𝑏 decreases, with higher scattered power curve plots, as shown in
Fig. 8. Using the IEC standard power curve results in large errors in
the evaluation of the power performance of a wind turbine in wake.
Therefore, we use nacelle lidar measurements to define alternative

multivariate power curves, which provide the same accuracy under
wake and wake-free conditions.

We train the multivariate polynomial regressions by using SpinnerL-
idar measurements taken at 2D in front of the rotor for all the 864 cases
in the waked-inflow dataset. The optimal number of features among
the 800 available variables (400 measurements for both 𝑈 and 𝜎2𝑣𝑟 )
and the optimal 𝛽 are selected through the forward-selection algorithm
combined with the 𝐾 = 10-fold cross-validation. Fig. 9 shows the
results of the feature selection, highlighting how the generalization
error and the optimal degree change when increasing the number of
input variables.

As shown in Fig. 9(a), four features are selected: three values of 𝑈
and one of 𝜎2𝑣𝑟 . When adding a fifth input variable, the error starts to
increase and the feature-selection process stops. The input variables are
selected approximately along a line passing through the rotor centre.
This result agrees with the physics of wakes, which are generally
characterized by a concentric velocity field. Finally, the optimal model
is a 4th order polynomial with four input variables, giving an error
reduction of 59% compared to the case of only one input variable.

We also use the waked-inflow dataset to train and test multivariate
power curves based on measurements taken at 2D from the 6-beam
lidar, the circular scanning lidar and the grid of sonic anemometers.
Additionally, we also consider the case of a grid of sonic anemometers
located exactly at the rotor, measuring the flow as if there was no
turbine. Results of the forward-selection for those four cases are shown
in Fig. 10. In all cases, either four or five features are selected, with
three cases out of four including both wind speed and turbulence
measurements. The grid of sonic anemometers at 2D is the only case
that does not choose to use turbulence measurements. For both cases
using the grid of sonic anemometers, the selected features come from
measurements at different radial distances, similarly to the case using
the SpinnerLidar measurements.

Fig. 11 shows the error variations related to the feature selection
illustrated in Fig. 10. For the 6-beam case, the error drops 51% when
adding the 2nd feature, and by 55% while including the 3rd and 4th
features. For the circular scanning lidar, the five selected features pro-
vide an error reduction of 40% compared to the case of a single input.
This shows the benefit of adding one measurement at a different radial
distance, in analogy to the findings in Fu et al. [30] with regards to
turbulence measurements with nacelle lidars. For the sonic anemometer
grids, the feature selection provides error reductions of 57% and 52%
when measuring at 2D and at the rotor, respectively. As expected, the
error is lower when using measurements at the rotor plane, due to a
better correlation between the inflow and the power output. As shown
in Fig. 4, there might be strong velocity variations within a distance of
𝛥𝑥 = 2D. Although not shown here, in all cases of Fig. 10, the feature
selection results in polynomials of the 4th order (𝛽 = 4).

In Fig. 12, the generalization errors from the multivariate power
curves are compared with those from the IEC standard power curve,
which are also shown by the red line in Fig. 8. We use two different
wind speed measurements as input to the relation 𝑃 = 𝑃𝐼𝐸𝐶 (𝑈 ): the
wind speed at hub height (𝑈ℎ𝑢𝑏) and the rotor-averaged wind speed
𝑈𝑟𝑜𝑡𝑜𝑟 estimated as the arithmetic mean of the wind speed values from
all the sonic anemometers within the rotor area. As expected, results
are more accurate when using 𝑈𝑟𝑜𝑡𝑜𝑟 instead of 𝑈ℎ𝑢𝑏, due to the strongly
non-uniform inflow.

When considering only measurements at 2D, all the multivariate
power curves outperform the IEC standard. Specifically, the Spinner-
Lidar provides the highest accuracy with a MAPE of 2.74%, while the
circular configuration provides an error of 5.48%, which is larger than
that from both the SpinnerLidar and the 6-beam lidar. The IEC power
curve is less accurate with MAPE of 24.12% and 12.95% when using
𝑈ℎ𝑢𝑏 and 𝑈𝑟𝑜𝑡𝑜𝑟, respectively. The grid of sonic anemometers at 2D
provide a MAPE of 3.43%, which demonstrates that accuracy does not
necessarily increase when removing the lidar’s probe-volume effect.
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Fig. 6. (𝑎) Generalization error in form of MAPE of power curves for the wake-free cases. (𝑏) Variation of 𝜆𝑀𝐴𝑃𝐸 with the order of the polynomial regressions based on sonic
anemometer (𝑏𝑙𝑢𝑒) and SpinnerLidar (𝑜𝑟𝑎𝑛𝑔𝑒) measurements; optimal values are highlighted in red.

Fig. 7. Scatter plots of the power estimated by the IEC standard (𝑎) and by the polynomial regression 𝑃 = 𝑃 (𝑈, 𝜎2
𝑢 ) based on SpinnerLidar (𝑏) and sonic anemometer (𝑐)

measurements in the wake-free cases. 𝑦 = 𝑥 line is shown in red.

Fig. 8. IEC standard power curve (red line) and scattered power curves (blue dots) for cases including wake-free conditions (𝑎), centred wakes (𝑏), laterally-displaced wakes (𝑐),
and both centred and laterally-displaced wakes (𝑑).
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Fig. 9. (𝑎) Scanning configuration of the SpinnerLidar (𝑏𝑙𝑢𝑒) with selected measurements (𝑟𝑒𝑑) of 𝑈 (𝑐𝑖𝑟𝑐𝑙𝑒𝑠) and 𝜎2
𝑣𝑟

(𝑠𝑞𝑢𝑎𝑟𝑒𝑠) in the waked-inflow dataset; numbers indicate the
selection order; rotor diameter is highlighted (𝑏𝑙𝑎𝑐𝑘). (𝑏) Variation of the generalization error with the number of selected-features. (𝑐) Optimal degree for each model.

Fig. 10. Scanning configurations (𝑏𝑙𝑢𝑒) and selected measurements (𝑟𝑒𝑑) of wind speed (𝑐𝑖𝑟𝑐𝑙𝑒𝑠) and turbulence (𝑠𝑞𝑢𝑎𝑟𝑒𝑠) in the waked-dataset: (𝑎) 6-beam lidar focused at 2D; (𝑏)
circular scanning lidar focused at 2D; (𝑐) grid of sonic anemometers at 2D; (𝑑) grid of sonic anemometers at the rotor. Numbers indicate the selection order. The rotor diameter
is highlighted (𝑏𝑙𝑎𝑐𝑘).

The lower accuracy of the grid of sonic anemometers compared to
the SpinnerLidar might be due to the smaller scanned area; thus it
might be beneficial to measure outside of the rotor area. However, the
lowest error (MAPE = 2.34%) appears for the grid of sonic anemome-
ters located at the rotor, which shows the benefits of measuring close
to the rotor. Similar findings are observed for the IEC power curves,
which are more accurate when using wind speed measurements at the
rotor position. However, even for the case of 𝑈𝑟𝑜𝑡𝑜𝑟 evaluated at the
rotor plane, the IEC power curve is less accurate than the multivariate
power curves based on measurements at 2D from SpinnerLidar, 6-beam
lidar and grid of sonic anemometers.

Table 1 shows all the generalization errors given by the cross-
validation over the waked-inflow dataset. As shown in the table, the
findings are the same for the MAPE and MAE metrics, whereas a small
difference is observed for the RMSE. When using measurements at
the rotor, the 𝑈𝑟𝑜𝑡𝑜𝑟-based IEC power curve provides the same RMSE
of the grid of sonic anemometers at the rotor and lower RMSE than
the SpinnerLidar. This is due to the RMSE giving a relatively high
weight to larger errors, as the errors are squared before being averaged.
Therefore, the grid of sonic anemometers and the SpinnerLidar give a

few relatively large errors that make the RMSE increasing. However, it
should be noted that this is the case only when the IEC power curve is
based on measurements at the rotor plane. When using measurements
at 2D, the multivariate power curves outperform the IEC power curve
for all the error metrics.

The scatter plots of Fig. 13 show the estimated power against the
power predicted by the different power curves for all the 864 obser-
vations of the waked-inflow dataset. As illustrated, the multivariate
power curves predict the power output accurately. Specifically, we have
intercept-free regression lines close to 𝑦 = 0.99 𝑥 and determination
coefficients close to 𝑅2 = 0.99 for the SpinnerLidar, 6-beam and grid of
sonic anemometer configurations, while the regression is less accurate
when using the circular configuration. As illustrated in Figs. 13(a, b),
the IEC power curves are less accurate than the multivariate power
curves; the former tend to underestimate the power output, with re-
gressions lines in the order of 𝑦 = 0.91 𝑥 and 𝑦 = 0.95 𝑥 for 𝑈ℎ𝑢𝑏
and 𝑈𝑟𝑜𝑡𝑜𝑟, respectively. Note that for both the 6-beam and circular
lidar configurations, although their scatter is lower than that of the
IEC power curve, a few strong outliers appear in Figs. 13 (d,e). These
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Fig. 11. Variation of the generalization error in the form of RMSE with the number of selected-features when using the waked-inflow dataset in the case of: (𝑎) 6-beam lidar
focused at 2D; (𝑏) circular scanning lidar focused at 2D; (𝑐) grid of sonic anemometers at 2D; (𝑑) grid of sonic anemometers at the rotor.

Fig. 12. Generalization error in the form of MAPE given by the optimal model for different configurations when trained and tested with the waked-inflow dataset.

Table 1
Generalization errors from the 𝐾 = 10 cross-validation on the waked-inflow dataset with measurements retrieved both at the rotor and 2D upstream.

2D Rotor

𝜆 SL 6-beam Circular Grid IEC (𝑈ℎ𝑢𝑏) IEC (𝑈𝑟𝑜𝑡𝑜𝑟) Grid IEC (𝑈ℎ𝑢𝑏) IEC (𝑈𝑟𝑜𝑡𝑜𝑟)

RMSE [kW] 16.8 25.9 33.3 19.2 98.6 51.9 15.6 60.7 15.6
MAE [kW] 10.7 15.3 21.3 12.6 71.1 37.9 9.4 45.1 11.9
MAPE [%] 2.74 3.85 5.48 3.43 24.12 12.95 2.34 15.34 4.03
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Fig. 13. Scatter plots of the estimated power against the real power output for different measurements at 2D in the waked-inflow dataset: (𝑎) IEC-𝑈ℎ𝑢𝑏; (𝑏) IEC-𝑈𝑟𝑜𝑡𝑜𝑟; (𝑐) SpinnerLidar;
(𝑑) 6-beam; (𝑒) Circular; (𝑓 ) Grid of sonic anemometers. 𝑦 = 𝑥 line is shown in red.

two scanning patterns cannot fully evaluate the inflow under waked
conditions.

3.3. Combining both datasets

Figs. 6 and 12 show that the multivariate power curves can ac-
curately estimate the power output of a wind turbine under both
waked and wake-free conditions. However, those results are obtained
by training and testing the polynomial regressions on the single datasets
separately, resulting in two different multivariate power curves for the
homogeneous and waked conditions.

We want to evaluate whether it is possible to obtain a single
multivariate power curve, which characterizes the wind turbine power
output irrespective of knowing whether it is in wake or not. Therefore,
we combine the two datasets (wake and wake-free) and, then, train
and test a multivariate power curve through a 𝐾 = 10-fold cross-
validation over all the 1484 observations. We use measurements from
the SpinnerLidar without the feature selection algorithm. We use 𝛽 = 4,
as it is the optimal value previously selected for the waked dataset, and
the four input variables shown in Fig. 9(a), i.e. three wind speed and
one turbulence measures taken along a line passing through the rotor
centre. In this way, we can assess whether the results from the previous
feature-selection are strongly dependent on the training dataset.

When using both datasets, the SpinnerLidar-based multivariate
power curve is still accurate, as shown in Fig. 14(a). Compared to
training with both datasets separately, the generalization error slightly
increases to 𝜆MAPE = 2.86% only.

Furthermore, in order to assess the flexibility of the regression
model and its dependence on the training dataset, we use a new dataset
to test the SpinnerLidar-based multivariate power curve. Specifically,
we use the combination of wake-free and waked-inflow datasets to
define the power curve, which is then tested on a new dataset consisting
of 192 observations characterized by wakes from either two or three
upstream rotors, with a spacing of 6D between them. Distributions for
the wind speed and atmospheric turbulence are the same as in the
waked-inflow dataset. Here, we do not perform the cross-validation, as

we use the entire combined dataset to train the regression model, which
is then used to predict the power output of all the 192 observations in
the testing dataset. As shown in Fig. 14(b), the power prediction is very
accurate, with a MAPE = 3.42%. The model performs accurately when
tested on conditions that are not included in the training dataset; this
shows that overfitting is avoided.

3.4. Optimal scanning configuration

The feature selection suggests a common trend for all the measure-
ment configurations: as shown in Fig. 9, the features are selected along
a line passing through the rotor centre. Additionally, results using the
6-beam lidar are more accurate than those using the circular configura-
tion, which demonstrates the need for measurements at different radial
distances.

In order to test the robustness of the optimal configuration sug-
gested by the results of Figs. 9 and 10, we evaluate how the accuracy
of the multivariate power curves changes for different input variables.
Specifically, we focus on the SpinnerLidar and use the same polyno-
mial order (𝛽 = 4) and number of features (three wind speed and
one turbulence measurements), but selected at different locations. We
evaluate how the error changes when we select features along a line
through the rotor centre rotated of an azimuth angle 𝜃 with respect to
the optimal case of Fig. 9. Additionally, we perform the same analysis,
but on features over the same radius.

The selected features for each rotation are shown in Fig. 15(a) and
the related errors in Fig. 15(b). The error does not vary substantially
with the rotations, increasing up to 𝜆𝑀𝐴𝑃𝐸 = 4.1%. On the contrary, the
accuracy strongly decreases when we select the features along a circular
path. As shown in Fig. 15(c,d), errors are generally large and strongly
dependent on the radius of the circular path, varying from 5.95% to
19.74%. Starting from 𝑅 = 7 m, the error decreases for larger values of
𝑅, reaching a minimum at around 3∕4 of the rotor radius (𝑅 = 20 m),
and increasing again for circular paths outside the rotor area.
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Fig. 14. Scatter plots of the estimated power against the real power output for all the observations of the combined dataset (𝑎) and the multiple-wakes case (𝑏). The power is
estimated with the SpinnerLidar-based multivariate power curve. 𝑦 = 𝑥 line is shown in red.

Fig. 15. Variation of the generalization error with the selected features. (𝑎, 𝑏): Selected features obtained by rotating the optimal locations of an azimuth angle 𝜃. (𝑐, 𝑑): Selected
features along circular patterns at different radii R.

4. Discussion

4.1. Alternative power curve measurements

We show that the accuracy of the IEC standard power curve under
waked conditions increases when measuring closer to the rotor and
when using the rotor-averaged wind speed as reference. Therefore,
when using the IEC standard power curve in combination with engi-
neering wake models for energy yield assessment, the rotor-averaged
wind speed should be used instead of a single measurement at hub
height. This aspect is often underestimated when evaluating engineer-
ing wake models, where the details are normally put into the modelling
of the wakes and not much attention is paid to the wind-to-power
conversion [34–36].

In our study, when combining the DWM model with the IEC stan-
dard power curve, the power output is predicted with a MAPE of
15.34% and 4.03% when using 𝑈ℎ𝑢𝑏 and 𝑈𝑟𝑜𝑡𝑜𝑟, respectively. However,

these errors are obtained with velocity measurements at the rotor plane.
When using measurements at 2D in front of the rotor, as suggested by
the IEC standard [6], the error using the IEC standard power curve
is much larger (up to 24.12%). Therefore, under inhomogeneous and
complex flows, the wind speed should be measured at several locations
and as close as possible to the rotor to minimize the errors in predicting
power output.

When measuring close to the rotor, e.g. at 1D, one might argue that
the wind speed measurements should be corrected for the induction
in order to get the free-stream velocity. The need for such correction
is a consequence of defining wind turbine power curves as a rela-
tion between the power output and the free-stream velocity, which is
generally defined as the wind speed measured at the turbine location
without the turbine being there. However, wind measurements out of
the induction zone are a valid estimation of the free-stream velocity
only under few specific conditions, e.g. for an isolated turbine in flat
terrain, which do not coincide with the operating conditions of most
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wind turbines. Therefore, in this work, we develop a power curve,
which relates the power output to a number of characteristics of the
inflow without assuming that the velocity measurements correspond to
the ‘true’ free-stream velocity.

We use nacelle lidars to measure the inflow characteristics, as they
currently are the most capable systems for measuring the wind speed
impacting the rotor. The idea is to develop power curves, which relate
the power output of the wind turbine to a number of inflow conditions
and wind characteristics measured by the lidar rather than to the
free-stream velocity. Such power curves would give a reliable estima-
tion of the power output independently of the operating conditions,
whereas the IEC standard power curve is reliable only under restricted
conditions.

In this work, we propose data-driven power curves in the form of
multivariate polynomial regressions based on nacelle lidar measure-
ments, showing that they can reliably evaluate the power performance
of a wind turbine under waked conditions. This approach could be
replicated with field data by mounting a lidar on the nacelle of a
wind turbine, which operates under both waked and free-standing
conditions. However, it should be noted that in our simulations, wakes
are the only source of flow complexity. Out in the field, inhomogeneity
and flow complexity can be caused by a number of factors, such as
terrain effects and turbulence conditions. Therefore, more complex
methods than multivariate polynomial regressions might be needed to
develop power curves that are reliable under both waked and wake-free
operation.

4.2. Scanning configurations

All the feature selection processes result in four or five features se-
lected for the optimal model. However, when five features are selected,
the use of the 5th selected feature results in small error reductions
(2.2% and 1.5% for the circular configuration and the grid of sonic
anemometers, respectively). These results suggest that four is the op-
timal number of features. But where we should retrieve these four
features? Results from the feature selection in Figs. 9 and 10 show
that it is beneficial to retrieve the measurements along a line through
the rotor centre and that measurements at similar radial distances
should be avoided. Results in Fig. 15(a,b) further confirm the benefits
in measuring along such a line, showing that the accuracy does not
change much with the azimuth orientation of the measurements. This
is expected due to the shape of the velocity deficit of turbine wakes.
By measuring on a radial line, we can estimate the wake radius and
the portion of the rotor in wake.

The deficiencies of the circular configuration are confirmed by
the results of Fig. 15(c,d). The error is generally large and strongly
dependent on the radius of the scanning path. Note how the error is
high for a very small radius, it decreases as the radius grows up to
about the size of the rotor radius, where it reaches a minimum before
increasing again. If the lidar performs such a scanning configuration,
the highest accuracy of the multivariate power curve results when
scanning at the rotor. When scanning on either a very small or very
large circular path, an accurate estimation of the velocity field within
the rotor area cannot be achieved.

When using the SpinnerLidar measurements, as shown in Fig. 9(a),
the selected features are located both inside and outside of the rotor
area, showing that measurements outside the rotor area might be
beneficial to evaluate the power performance in wake, as they allow
a better characterization of the inflow to the rotor. However, if one
had to choose between two configurations presenting all features either
inside or outside the rotor area, we expect the error to be larger
when using features outside the rotor area. This is because of the
order of selection of the features by the feature-selection algorithm,
which selects a measurement within the rotor area as first selected
feature and one just outside the rotor area as second. Additionally, the
circular configurations of Fig. 15(c,d) give the lowest error when using

measurements within the rotor area (R = 20 m), suggesting once more
that features selected within the rotor area are likely to give a more
accurate estimation of the power performance than those outside of
the rotor.

5. Conclusions

Alternative wind turbine power curves are implemented in the form
of multivariable polynomial regressions, whose input variables consist
of several wind speed and turbulence measurements retrieved using
nacelle lidars. The power curves are tested on a dataset of synthetic
power performance measurements, which is generated through the
combination of aeroelastic simulations with virtual nacelle lidar mea-
surements. Additionally, power performance measurements in wake are
simulated with the DWM model.

Our results show that nacelle lidars can be used to characterize the
power performance of a wind turbine under waked conditions with
an accuracy of the same order as that in wake-free operation. Specif-
ically, when using measurements from the SpinnerLidar, we obtain
MAPE of 1.12% and 2.74% under homogeneous and waked conditions,
respectively. These errors are much lower than those from the IEC
standard power curve: 3.07% and 24.12% for homogeneous and waked
conditions, respectively, i.e., an error reduction of 88% for the waked
inflow cases. Furthermore, under waked conditions, the MAPE from IEC
standard power curve is reduced to 4.03% when using a rotor-averaged
wind speed at the rotor position.

We test several nacelle lidar configurations, which measure the
wind speed at a different number of locations arranged along differ-
ent patterns. A feature-selection algorithm is used to select the input
variables among the available measurements, showing the benefit to
measure wind characteristics at more than one location. We find error
reductions of more than 50% compared to the case of a univariate
polynomial regression using one single wind speed measurement. Ad-
ditionally, the feature selection shows the importance in measuring
turbulence, which is selected as an input variable for all the lidar
configurations and for one of the two grid of sonic anemometers.

The optimal multivariate power curve consists of a multivariable
polynomial regression of the 4th order with four input variables: three
wind speed and one turbulence measurements from different locations.
Those measurements should be arranged along a line passing through
the rotor centre rather than on a circular pattern to better capture the
radial velocity gradient of the waked flow.

Our methodology for power performance evaluation is not largely
affected by the lidar probe volume averaging, as the accuracy does not
increase when using measurements from virtual sonic anemometers.
Additionally, we show that accuracy in power curve measurements
increases when measuring closer to the rotor due to wake evolution.

This research might be extended by testing the same approach with
field measurements from nacelle lidars within wind farms. Additionally,
further numerical investigations including wind turbine induction and
wind evolution can be important for future studies.
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Abstract4

Most wind turbines are installed inside wind farms, where they usually5

operate under waked inflow conditions during their life-time. Because of6

those strongly inhomogeneous inflow conditions, the power performance of a7

waked wind turbine cannot be assessed by following the IEC standard pro-8

cedure. Thus, new methods are needed to evaluate the power performance9

of a waked wind turbine. In this work, we investigate the accuracy of a10

multivariate power curve acquired through a polynomial regression, whose11

input variables are wind speed and turbulence measurements retrieved up-12

stream of the turbine rotor. For this purpose, we use measurements from the13

SpinnerLidar, a continuous-wave, scanning Doppler lidar measuring along a14

rosette pattern. The SpinnerLidar was mounted in the spinner of a Neg Mi-15

con 80 wind turbine within an onshore wind farm in western Denmark. The16

input variables are selected among the available lidar measurements with a17

feature-selection algorithm, resulting in seven input variables for the optimal18

case: six wind speed and one turbulence measurements. The multivariate19

power curve is tested and compared with IEC-similar power curves under20

both waked and wake-free conditions. Results show that the multivariate21

power curve is more accurate than the IEC-similar power curves, with er-22

ror reductions up to 65.3% in the estimated power output. Additionally,23

we test the impact of the lidar scanning configuration, showing that a cir-24

cular scanning lidar, centered at the hub height, is suitable to implement25

the multivariate power curve when the diameter of the scanning pattern is26

approximately equal to 0.9 rotor diameters.27

Keywords: lidar, power curve, wake, multivariable regression28
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1. Introduction29

The standard procedure to measure the power curve of a wind turbine is30

described in the standard by the International Electrotechnical Commission31

(IEC) [1]. The IEC standard describes how to measure the power perfor-32

mance of a wake-free wind turbine, whose performance is supposedly not33

affected by neighbouring wind turbines [1]. However, most wind turbines34

operate inside wind farms, where they often stand in the wake of upstream35

turbines. In those cases the IEC power curve cannot be used to reliably eval-36

uate their power performance. Thus, most operating wind turbines do not37

have an indication of their expected power performance under actual oper-38

ating conditions. Therefore, alternative procedures to the IEC standard are39

needed to conduct the performance monitoring of operating wind turbines.40

Previous studies have introduced alternative data-driven power curves in41

order to improve the evaluation of the wind turbine power performance rel-42

atively to the IEC power curve [2]. Those works introduced both parametric43

and non-parametric power curve models, which can be catalogued accord-44

ing to the input variables [3]. In some models, the hub-height wind speed45

measured with a nacelle-mounted cup is the only input variable to the power46

curve [4, 5, 6, 7, 8]. However, since the wind turbine power output is function47

of several flow characteristics [9, 10], uni-variate power curves were outper-48

formed by models which account for additional features of the inflow, such49

as turbulence, vertical wind shear and vertical wind veer [11, 12, 13, 14, 15].50

Additionally, the accuracy of data-driven power curves has been further im-51

proved by including control-related variables, such as yaw misalignment, ro-52

tor’s rotational speed and blades’ pitch angles [16, 17, 18, 19].53

In the available studies, power curves were modelled using either nacelle-54

mounted anemometry or ground-based instruments located close to the tur-55

bine, i.e. meteorological masts and ground-based lidars. Not much attention56

has been paid to power curve modelling using nacelle-mounted lidars, which57

are able to characterize the inflow to the turbine independently of both the58

turbine location and the operating conditions. Nacelle lidars have been suc-59

cessfully used to measure flow characteristics, such as turbulence [e.g. 20, 21],60

vertical wind shear [e.g. 22, 23] and wake dynamics [e.g. 24, 25]. However,61

their potential for power performance assessment is still quite unexplored. Se-62

bastiani et al. [26] numerically evaluated multivariate power curves based on63

virtual nacelle lidar measurements through aeroelastic simulations in wake,64

finding error reductions up to 88% relatively to the IEC power curve.65
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In this work, we aim to validate the numerical findings of Sebastiani et al.66

[26]. We use measurements from a wind lidar mounted in the hub of a Neg67

Micon 80 wind turbine installed in the onshore wind farm in Tjæreborg,68

western Denmark. The wind lidar is the DTU SpinnerLidar [27, 28, 29],69

which is used to characterize the inflow to the turbine under both waked and70

wake-free conditions.71

The wake field studies that have been conducted so far have been based72

on observations from downwind looking nacelle lidars [24, 30, 31, 32, 25, 33].73

Thus, there is a lack of measurements from upwind looking nacelle lidars74

mounted on waked turbines. Therefore, the Spinnerlidar measurements,75

along with the turbine Supervisory Control and Data Acquisition (SCADA)76

data, form a state-of-the-art dataset for evaluating the power performance77

of a waked wind turbine. Additionally, since the SpinnerLidar provides a78

full picture of the inflow to the turbine, this dataset can be used to test79

several lidar scanning patterns by selecting measurements along particular80

trajectories, following the same approach as in Fu et al. [34].81

We investigate a multivariate power curve in the form of polynomial re-82

gressions whose input variables can be several wind speed and turbulence83

measurements retrieved with the SpinnerLidar. Together with the multivari-84

ate power curve, we test two IEC-similar power curves implemented using85

either hub height wind speed or rotor effective wind speed estimates based86

on the SpinnerLidar measurements. Additionally, we used the SpinnerLidar87

measurements for wake detection in order to select wake-free time intervals88

for the development of the IEC-similar power curves.89

This paper is organized as follows. The methodology is presented in90

Sect. 2, which contains the description of the field campaign (Sect. 2.1), the91

processing of the SpinnerLidar Doppler spectra (Sect. 2.2), the wind field92

reconstruction methods used to retrieved wind characteristics from the lidar93

measurements (Sect. 2.3), the filtering of the turbine data (Sect. 2.4) and94

the methods to implement and test the power curves (Sect. 2.5). The results95

of this study are presented in Sect. 3. In specific, Sect. 3.1 shows the wake-96

detection method, while the results from testing the power curves are shown97

in Sect.s 3.2 and 3.3. The optimal scanning configuration is investigated98

in Sect.s 3.4. Discussion and conclusions are reported in Sect. 4 and 5,99

respectively.100
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2. Methodology101

2.1. Field campaign set-up102

Measurements were retrieved within an onshore wind farm with eight103

Neg Micon (NM) 80 2.3 MW wind turbines, with rotor diameter (D) of 80104

m and hub height of 59 m. The dataset covers a period of nine days from105

02-09-2012 to 11-09-2012, and the site is located in Tjæreborg, western Den-106

mark. A similar campaign was conducted at the same site with a simpler107

circular scanning lidar installed in the spinner of the same wind turbine[35].108

As shown in Fig. 1, the SpinnerLidar is mounted on turbine T2, measuring109

under both waked and wake-free conditions depending on the wind direc-110

tion. Operating SCADA data were additionally available from the turbine111

T2, including measurements from both a cup anemometer and a wind vane112

mounted on the turbine nacelle. The measurements have been preliminary113

analyzed by Kapp [36], who compared the SpinnerLidar measurements at hub114

height with measurements from both the nacelle-mounted cup anemometer115

and the ultrasonic anemometer mounted on a meteorological mast installed116

at the site.117

T1

T2

T3

T4

T5

T6

T7

T8

N

E

S

W

Figure 1: Schematics of the wind farm layout.

The SpinnerLidar consists of a continuous-wave (cw) Doppler lidar equipped118

with a scanner-head that consists of two rotating optical prisms. The prisms119

rotate with a fixed velocity ratio of 13:7 and each deflects the line-of-sight of120

the lidar by 15◦. Due to this characteristics the trajectory of the line-of-sight121

follows a rosette pattern with an opening angle from 0◦ to 30◦. Further-122

more, the SpinnerLidar can adjust mechanically the measuring distance and123
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thus the measuring configuration can include one or more measuring dis-124

tances that in practice can range between 10 m and up to 200 m from the125

instrument. More technical details can be found in the patent description126

[37, 27, 29].127

In this field campaign, the SpinnerLidar was mounted in the rotating128

spinner of the turbine and it was focused to measure at 100 m, i.e. 1.25129

D, upstream of the turbine. Due to the prisms’ configuration and the tilt130

of the rotor, measurements were not retrieved within a plane parallel to131

the rotor, but they were distributed over a distance of around 20 m along132

the x-axis, as shown in Fig. 2-(b). The lidar system was set to cover the133

rosette pattern of Fig. 2-(a) within 10 s with a sampling frequency of 100 Hz.134

Since the SpinnerLidar was mounted in the rotating spinner of the turbine,135

the scanning pattern of Fig. 2-(a) was rotating together with the rotor.136

Therefore, over longer periods, measurements were retrieved across all the137

rotor swept area, as shown in Fig 2-(c) for a measurement period of 1 min.138
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Figure 2: Scanning pattern covered by the SpinnerLidar every 10 s (a, b) and locations of
measurements retrieved during 1 min (c). The red line indicates the rotor diameter.

2.2. SpinnerLidar data processing139

The SpinnerLidar Doppler spectra cover a frequency bandwidth of 50140

MHz divided in 256 bins. Since the laser wavelength is λ = 1.565 µm, the141

radial velocity measurements cover the interval 0-39 m/s with a resolution of142

0.15 m/s. The first step in the processing of the raw Doppler spectra is the143

5



removal of the background noise. For this purpose, two spectra are obtained144

as the median spectra from all the raw Doppler spectra retrieved during two145

different 10-min intervals, and the background spectrum is defined by taking146

the lower value between the two median spectra for each frequency bin. The147

two selected 10-min intervals are chosen in order to obtain two median spectra148

with peaks corresponding to different radial velocities, as shown in Fig 3-(a),149

so that the spectra peaks are not considered in the background noise. Each150

spectrum is then flattened by dividing with the background noise as shown151

in Fig. 3-(b) for one single Doppler spectrum.152
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Figure 3: (a): Background spectrum (red dashed line) obtained from the two median spec-
tra (blue and black solid lines). (b): Raw Doppler spectrum (black) and the corresponding
flattened spectrum (red).

Once all Doppler spectra are flattened, special attention is paid to the153

spectra retrieved in the centre of the scanning pattern. Several of those spec-154

tra are characterized by high energy at low frequency, and it is difficult to155

detect the wind induced Doppler peak. This low frequency noise is related156

to reflections from the top window of the SpinnerLidar [29, 38]. In gen-157

eral, we found that the energy in the first frequency bin is highly correlated158

with the energy in the remaining bins, with a decrease in the correlation159

for the bins presenting the wind-related Doppler shift. Figure 4-(a) shows160

the correlation coefficient between the spectrum values S(fi) and S(f1) for161

two different 10-min intervals. The correlation coefficients are obtained using162

values from all the spectra within the considered 10-min interval. Due to the163

high correlation, for each ith frequency bin, the relation between S(fi) and164

S(f1) can be modelled with a linear least-square regression using the 10-min165
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interval which shows the highest correlation for that specific ith bin among166

the two intervals shown in Fig. 4-(a). This is done in order to avoid using167

wind-affected correlations. Then, the linear regressions are used to normal-168

ize the central-beam spectra which have their maximum value in either the169

1st or 2nd frequency bin. This is done in order to both filter the spectra170

and also avoid removing large amounts of measurements. As shown in Fig.171

4-(b) for one central-beam spectrum from the 20120910-00:00 time interval,172

the readability of the spectrum substantially increases after normalizing with173

the values given by the regression coefficient combined with the S(f1) value174

of the spectrum.175
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Figure 4: (a): Correlation coefficient (ρ) between S(fi) and S(f1) from two different time
intervals. 20120904-00:00 (blue) and 20120904-08:40 (black). (b): Central-beam flattened
Doppler spectrum before (black) and after (red) normalizing with the regression values.

In order to finally get rid of the noise, spectra are further normalized by176

the value obtained as the mean plus five times the standard deviation of the177

values within the last 50 bins (vr > 31.48 m/s). To further clean from noise178

at low frequency, values of the first six bins (vr < 0.6 m/s) are manually set179

to zero. To further clean from peaks which are not related to wind, spectra180

are grouped in bins every 10 consecutive spectra and the median spectrum181

for each bin is retrieved. Then, spectra values are manually set to zero where182

the median spectrum is zero excluding values at the sides of the peak up to183

1 m/s from the edge of the median spectrum.184

Since the lidar rotates in the turbine spinner, the location of the lidar185

scanner head is monitored with two accelerometers which are used to re-186

trieve the measurement locations. In order to retrieve the wind velocity, the187
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Doppler spectra acquired over the scanned (y, z) plane are gathered in grid188

square 3 m x 3 m cells. Subsequently, 10-min ensemble average spectra are189

calculated by averaging all Doppler spectra retrieved within the same cell190

during a 10-min interval. Then, the 10-min mean radial velocity ⟨vr⟩ is ob-191

tained as the median value of the ensemble average spectrum ⟨S(vr)⟩, while192

the radial velocity variance σ2
vr is estimated as the second statistical central193

moment of the ensemble spectrum194

σ2
vr,unf =

∫ ∞

−∞
⟨S(vr)⟩ (vr − ⟨vr⟩)2dvr (1)

in order to avoid turbulence filtering due to the lidar spatial averaging, as195

shown in [39]. Only grid cells containing at least 30 Doppler spectra are196

considered for the estimation of both ⟨vr⟩ and σ2
vr .197

2.3. Wind field reconstruction198

The wind velocity vector field is defined as u = (u, v, w) within the right-199

handed coordinate system (x, y, z) of Fig. 2, where the x direction is aligned200

with the rotor axis. Due to the strong inhomogeneity of the waked flow field,201

most wind field reconstruction methods cannot be applied to retrieve either202

two or three components of the wind velocity vector. Therefore, by neglecting203

the yaw misalignment between the rotor axis and the wind direction and204

assuming no lateral nor vertical mean components (V = W = 0), the mean205

wind speed is estimated as U = ⟨vr⟩ / ⟨nx⟩, where ⟨nx⟩ is obtained as the206

average of the x−axis components of the beam unit vectors n = (nx, ny, nz)207

within the grid cell. Information about turbulence is retrieved in the form208

of σ2
vr as the strongly inhomogeneous conditions leave no margin for the209

reconstruction of the along-wind component variance σ2
u. Figure 8 shows the210

mean wind speed U and the radial velocity variance σ2
vr measured across the211

scanned area during the 10-min interval 20120911-06:10.212

As it can be seen in Fig. 8-(a), turbine T2 is in the wake of an upwind213

turbine during the considered time interval, with wind speed variation from214

6.4 m/s to 15.4 m/s within the scanned area. There is good agreement be-215

tween the spatial distribution of the wind speed and turbulence estimations,216

as the largest turbulence values are measured at the wake boundary, where217

higher turbulence is expected due to the mechanically-produced turbulence218

associated with the strong radial velocity shear.219
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Figure 5: Mean wind speed (a) and radial velocity variance (b) across the scanned area
from the 10-min interval 20120911-06:10

2.4. Turbine data filtering220

The wind speed is never above the rated value during the measurement221

period, so that the turbine is expected to operate at its maximum aerody-222

namic efficiency with a blade pitch angle equal to β ≈ 0◦. However, some223

10-min intervals are characterized by power curtailment and large β. In order224

to define unbiased power curves, 10-min intervals are discarded when either225

β > 2◦ or the 10-min mean power output P is lower than 5 kW. In Fig.226

6, the 10-min mean power values are plotted against the mean wind speed227

measured by the nacelle-mounted cup and the discarded time intervals are228

highlighted in red.229

2.5. Power curve modelling230

We use the SpinnerLidar measurements to define multivariate power curves231

in the form of multivariable polynomial regressions, whose input variables232

consist of wind speed (U) and turbulence (σvr) measurements. The polyno-233

mial regression consists of all the possible polynomial combinations of the234

input variables with degree lower or equal to a specified degree α. For exam-235

ple, in the case of three input variables y = y(x1, x2, x3) and degree α = 2,236

we would get the following polynomial expression237

y = c0+c1x1+c2x2+c3x3+c4x1x2+c5x2x3+c6x1x3+c7x
2
1+c8x

2
2+c9x

2
3, (2)

where c0, .., c8 are the regression coefficients.238
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Figure 6: Scatter plot of 10-min mean power output against 10-min mean wind speed at
hub height measured by the nacelle-mounted cup. Discarded time intervals (β > 2◦ |P < 5
kW) are highlighted in red.

The values of U and σvr from all the grid cells are considered as potential239

input variables to the polynomial regressions. Therefore, a feature-selection240

process is implemented to select the input variables among the available241

measurements. Specifically, a forward-selection algorithm is utilized for the242

feature selection. The process starts with an empty model and iteratively243

selects the variable that give the lowest error in power prediction among the244

available ones. Six different degrees are tested at each step (α = 1, .., 6)245

and the one giving the lowest error is selected. This selection process is246

repeated until adding one more variable causes an increase of the error due247

to overfitting.248

At each step of the selection process, the prediction error is evaluated249

through a K-fold cross-validation with K = 5: the dataset is split into 5250

equally large subsets, 4 of which are used to train the model and 1 is used251

to test the model. This process is repeated 5 times, with a different subset252

reserved for validation each time. The model performance is quantified with253

the generalization error λ, i.e. the average of the mean errors from the 5254

folds: λ = 1
5

∑
j Ej. The error Ej is evaluated as the root mean square error255

(RMSE). The cross-validation helps to prevent overfitting of the regressions,256

as all the observations, i.e. the 10-min intervals, in the dataset are used to257

test the model and the accuracy does not depend on how we split into train258

and test sections.259

In order to implement the forward-selection algorithm, all observations260

in the dataset must contain the same variables. However, for each 10-min261
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period, we only consider grid cells with at least 30 Doppler spectra, resulting262

in different number of measurements among the observations. Therefore, we263

need to select a group of grid cells available in all the 10-min intervals which264

are used to define and test the multivariate power curves. A trade-off is265

made between maximizing the number of observations and the available cells266

within each observation, resulting in a dataset, hereafter referred to as the267

testing dataset, of 759 observations with 712 cells whose locations are shown268

in Fig. 7.269
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Figure 7: Mean wind speed during the time interval 20120911-06:10 at the 712 cells used
to define the multivariate power curves. The rotor diameter is highlighted in red.

In addition to the multivariate power curves, we implement IEC-similar
power curves by applying the IEC binning method with either the hub-height
wind speed (Uhub) and the rotor effective wind speed (UREWS) given by the
SpinnerLidar measurements:

UREWS =
1

πR2

∫∫

A

U(y, z) dy dz,

where A is the rotor area and R is the rotor radius. We refer to these270

curves as IEC-similar as the utilized wind speed measurements are not IEC-271

compliant since they are retrieved 1.25 D upstream of the rotor and the wind272

direction is not known. However, we define the IEC-similar power curves273

using only time intervals when the turbine is not in wake according to a274

wake-detection method based on the SpinnerLidar measurements.275

All the implemented power curves are tested with a K-fold cross-validation
with K = 5 using the 759 observations available for the multivariate power
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curves. Two error metrics are used to test the power curves: the RMSE and
the mean absolute percentage error (MAPE):

RMSE =

√∑N
i=1(Pi − P̂i)2

N

MAPE =
100

N

N∑

i=1

∣∣∣∣∣
Pi − P̂i

Pi

∣∣∣∣∣ ,

where N is the number of observations in the dataset and P̂ is the estimated276

power output.277

3. Results278

3.1. Wake detection279

The IEC-similar power curves are defined using time intervals when the280

wind turbine is not in wake. Since information about the wind direction is not281

available, a wake detection method is implemented using the SpinnerLidar282

measurements. Specifically, for each of the 759 available 10-minute intervals,283

a 2nd order Gaussian function is fitted to the 10-min mean vr values measured284

by the SpinnerLidar across the y− z plane. In the free-wake cases, as shown285

in Fig. 8-(a), the vr values follow quite accurately a Gaussian distribution,286

but without perfect y−axis symmetry due to the vertical wind shear. Under287

waked operation, as shown in Fig. 8-(b), the vr values do not resemble a288

Gaussian distribution. Therefore, the agreement between the measured vr289

and the reconstructed values vr,G given by the Gaussian function is higher290

for wake-free intervals than under waked-conditions.291

A threshold of 3.5% is empirically chosen for the MAPE between the292

measured and reconstructed values: Efit = 100/N
∑N

1 (vr − vGr )/vr, where N293

is the number of available grid cells for the considered time interval. The wind294

turbine is considered to operate in wake-free conditions when Efit < 3.5% and295

under waked conditions otherwise. This results in 494 time intervals in wake296

and 265 time intervals under waked operation.297

Figure 9 shows the agreement between the wind speed measured by the298

Spinnerlidar at hub height, i.e. cell located at y = 0 and z = 0, and by the299

nacelle-mounted cup during the 265 wake-free intervals. As it can be seen in300

Fig 9, the SpinnerLidar slightly overestimates Uhub relatively to the nacelle-301

mounted cup. The discrepancy between the two instrument can be due to302
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Figure 8: Radial velocity values vr and error of the Gaussian fit (Efit) under wake-free (a)
and waked (b) conditions.

several reasons, such as wrong calibration of the nacelle transfer function303

or flow distortion caused by the rotor and the nacelle upstream of the cup304

anemometer. In general, nacelle cup anemometers do not provide reliable305

estimations of the wind speed and we do not use the results from Fig. 9306

to assess the accuracy of the SpinnerLidar measurements, but rather as a307

validation of the wake detection process.308
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Figure 9: Hub height 10-minute wind speeds (Uhub) given by the SpinnerLidar against the
ones measured by the nacelle-mounted cup.
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3.2. IEC-similar power curves309

The 265 wake-free observations are used to define the IEC-similar power310

curves using either the hub-height wind speed (Uhub) or the rotor effective311

wind speed (UREWS). In both cases, the wind speed measurements are re-312

trieved with the SpinnerLidar. Following the IEC standard [1], 10-min mean313

values are grouped in bins every 0.5 m/s, and only bins containing at least314

3 values are considered. The resulting power curves are shown in Fig. 10315

together with the 265 10-minute power-velocity values.316

3 4 5 6 7 8 9 10
Uhub [m/s]

0

200

400

600

800

1000

 P
ow

er
 [k

W
]

(a)

3 4 5 6 7 8 9 10
UREWS [m/s]

0

200

400

600

800

1000
 P
ow

er
 [k

W
]

(b)

Figure 10: Scatter plot of the 10-min mean power output against the hub-height wind
speed (a) and the rotor effective wind speed (b) given by the SpinnerLidar and the related
power curves obtained with the IEC binning method (red).

As it can be seen in Fig. 10-(a), the IEC-similar power curve covers317

the wind speed interval 3-10 m/s when using Uhub. The power output is318

underestimated for Uhub = 10 m/s, and the estimation would be more reliable319

if more data was available. However, since there are at least three 10-min320

intervals in the 10 m/s bin, the estimation is reliable according to the IEC321

standard, and we include this bin in the power curve to show the potential322

shortcomings of the IEC standard. Fig. 10-(b) shows the IEC-similar power323

curve using UREWS. This covers the interval 3-9.5 m/s and it is characterized324

by less scattering than when using Uhub, as UREWS is estimated using wind325

speed measurements across the whole rotor swept area, accounting for the326

spatial variations of the wind kinetic energy flux due to, e.g., vertical wind327

shear or yaw misalignment.328

Both IEC-similar power curves are tested through cross-validation using329

the testing dataset. However, we consider only time intervals with both Uhub330
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and UREWS within the corresponding available bins showed in Fig.s 10-(a)331

and 10-(b), resulting in 704 available observations. The IEC-similar predict332

the power output with MAPE of 27.6% and 16.2% when using Uhub and333

UREWS, respectively. As it can be seen by comparing Fig.s 11-(a) and 11-(a),334

the evaluation of the power performance is more accurate when using UREWS,335

resulting in fewer outliers and higher correlation between the predicted and336

true power output values.337
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Figure 11: Scatter plot between true and predicted power output using the IEC-similar
power curves with Uhub (a) and UREWS (b).

3.3. Multivariate power curve338

The feature-selection process is used to obtain the optimal number of339

input variables for the multivariate power curve among the 1424 available340

variables (712 measurements of both U and σvr). During the feature-selection341

process, the optimal degree α is also selected among the six tested values.342

The optimal multivariate power curve is the polynomial expression with 9343

input variables (6 values of U and 3 of σvr) and α = 2. The location of344

the selected features is shown in Fig 12-(a), where the selected variables345

are indicated with red circles and red squares corresponding to U and σ2
vr ,346

respectively. Fig. 12-(b) shows the generalization error obtained at each347

step of the feature-selection process. The error steeply decreases up to the348

6th selected feature, it flattens when increasing above the 7th feature and it349

increases when adding the 10th feature. So, we only use the first 7 selected350

features, as the 8th and 9th do not substantially increase the performance of351
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the model. When four or more variables are included in the model, α = 2 is352

the polynomial degree which provides the best performance of the model, as353

shown in Fig. 12-(c).354
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Figure 12: (a): Available SpinnerLidar measurements (black) with selected measurements
(red) of U (circles) and σ2

vr (squares); red numbers indicate the selection order; rotor
diameter is highlighted (red line). (b): Variation of the generalization error with the
number of selected features. (c): Variation of the optimal degree with the number of
selected features.

As it can be seen in Fig. 12-(a), selected features include both wind speed355

and turbulence measurements. One turbulence measurement is also available356

among the first 7 selected features, which are responsible for a large portion357

of the error reduction. This is in agreement with the numerical results of358

Sebastiani et al. [26], further confirming the benefit of including turbulence359

measurements in the evaluation of the wind turbine power performance.360

The results from the feature-selection process show that the wind turbine361

power performance is more accurately evaluated when including more than362

one single wind speed measurement. Specifically, as shown in Fig. 12-(b),363

the power output is predicted with a RMSE of 99.9 kW and 39.3 kW when364

using one and seven input variables, respectively. This means that an error365

reduction of 60.6% is provided by the additional 6 features. When evaluating366

the multivariate power curve in terms of MAPE, the optimal case gives an367

error of λMAPE = 12.2%. Table 1 shows the generalization error given by368

the multivariate power curve and the two IEC-similar curves. Specifically,369

compared to the Uhub-based power curve, the multivariate power curves pro-370

vides error reductions of 65.3% and 55.6% in terms of RMSE and MAPE,371

respectively. Relatively to the UREWS-based power curve, error reductions of372

41.2% and 24.5% in terms of RMSE and MAPE, respectively.373

Results from Fig. 12 and Table 1 show that the multivariate power curve374

provides an overall reliable evaluation of the wind turbine power performance,375
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Table 1: Generalization errors from the K = 5 cross-validation on the testing dataset

λ IEC-similar (Uhub) IEC-similar (UREWS) Multivariate
MAPE [%] 27.6 16.2 12.2

RMSE [kW] 113.4 67.2 39.3

with low average errors in power output predictions. Fig. 13 shows the376

scatter plot between the true power output and the values estimated by the377

multivariate power curve for all the observations in the testing dataset. As it378

can be seen in Fig. 13, the scatter plot provides a fitted linear regression with379

slope of 0.992 and coefficient of determination of R2 = 0.975, meaning that380

the multivariate power curve provides a both accurate and precise estimation381

of the power output, with clear improvement compared to the results of the382

IEC-similar power curves shown in Fig.s 11-(a) and 11-(b).383
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Figure 13: Scatter plot between true and predicted power output using the multivariate
power curve with 7 input variables and α = 2.

3.4. Optimal scanning configuration384

In order to test the robustness of the optimal configuration given by385

the feature selection and shown in Fig. 12-(a), we evaluate the variation386

in accuracy when using different input variables to the multivariate power387

curve. We evaluate how the error changes when using the same degree α = 2388

and selecting the same number of features rotated of an azimuth angle θ389

relatively to the optimal case of Fig. 12. As it can be seen in Fig. 14-(b),390
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the error varies with θ up to 25.3%, i.e. around twice the optimal error of391

12.2%. This is in agreement with the numerical findings from Sebastiani392

et al. [26]. However, in their numerical results, there was larger difference393

in accuracy between the multivariate and IEC power curves, so that even394

when doubling its error, the multivariate power curve still provided a large395

improvement compared to the IEC power curve. In our case, when rotating396

the selected features of θ, the power estimation is slightly more accurate than397

the Uhub-based curve and less accurate than the UREWS-based curve.398
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Figure 14: (a): Optimal features (red) and features selected with roations of θ = 45◦

(blue) and θ = 90◦ (green). (b): Variation of the generalization error with the azimuth
angle θ.

The accuracy of the multivariate power curve is highly dependent on the399

selected features. As shown in Fig. 14, when applying small variations in400

the selected features, the error in power output estimation increases, getting401

close to that of the IEC-similar power curve. Since the optimal features are402

strongly related to the location of the turbine in the farm and the wind direc-403

tion distribution during the test, they might be different for other turbines404

in the wind farm. Therefore, the multivariate power curve might be inac-405

curate when measuring the wind characteristics at the locations obtained as406

the optimal ones for another turbine.407

In order to define a more flexible lidar scanning configuration, which could408

be used independently of the turbine location, we test the multivariate power409

curve using measurements along a circular pattern. We test 13 different410

configurations with 7 measurements (6 U and 1 σ2
vr) along circular patterns411
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with diameters from 0.2 D to 1.4 D. As shown in Fig. 15-(a), the circular412

scanning lidars are simulated by selecting SpinnerLidar measurements along413

the circular patterns. Fig. 15 shows the errors in power prediction given by414

the multivariate power curves using the 7 measurements along the circular415

pattern and α = 2. Starting with the smallest diameter, the error decreases416

as the diameter of the scanning configuration increases up to a minimum at417

0.9 D. then, the error increases when further enlarging the scanning pattern.418
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Figure 15: (a): Optimal features (red) and features selected with roations of θ = 45◦

(blue) and θ = 90◦ (green). (b): Variation of the generalization error with the azimuth
angle θ.

In the case of a circular scanning lidar with a 0.9 D diameter, the multi-419

variate power curves estimate the power output with MAPE of 13.1%. That420

is 7.4 % higher than when using the optimally selected features, but 52.5%421

and 19.1% lower than with the Uhub- and UREWS-based IEC-similar power422

curves, respectively. Additionally, the power output estimation is also quite423

accurate when the scanning configuration has a diameter of either 0.8 D or424

1 D, with MAPE of 14.5% and 14.3%, respectively. Therefore, the circular425

scanning configuration is suitable to evaluate the turbine power performance426

with the multivariate power curve as long as it is characterized by the correct427

diameter. This is in agreement with the numerical results from Sebastiani428

et al. [26], who showed good accuracy of the multivariate power curves when429

using a circular scanning lidar with a diameter of ≈ 0.8 D.430
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4. Discussion431

Our results show that multivariate power curves in the form of polynomial432

regressions are more accurate than the IEC binning method based on either433

the hub-height wind speed or the rotor effective wind speed. Specifically,434

the rotor effective wind speed is usually used to apply the IEC power curve435

in combination with engineering wake models when conducting energy yield436

analyses (EYA). A lot of attention has been paid to improve engineering437

wake models in the estimation of the flow field, but a considerable portion of438

the error in EYA is due to the conversion of the available wind flow in power439

output. Therefore, EYA could benefit from the utilization of the multivariate440

power curves for the conversion from wind speed to power. As shown in441

this work, the multivariate power curve is more accurate than the IEC in442

predicting the power output of a waked wind turbine using information of443

the inflow provided by a Doppler lidar installed in the spinner.444

The multivariate power curve could be also used to improve the accuracy445

in monitoring the wind turbine power performance, as well as to conduct446

production validation tests, i.e. assessing whether the turbines are produc-447

ing at a level consistent with their theoretical power curve. Nacelle lidars448

are becoming more and more common within the wind energy industry, as449

they can be used for several applications such as lidar assisted control, load450

assessment and wake steering-based wind farm control.451

Results from this work show the benefits of mounting the lidar in the452

turbine hub relatively to more traditional nacelle-mounted lidars. With a453

hub-mounted lidar, since the scanning pattern rotates together with the454

turbine, a larger portion of the rotor swept area is covered relatively to a455

nacelle-mounted lidar with the same scanning configuration.456

5. Conclusions457

Multivariate wind turbine power curves are defined in the form of multi-458

variable polynomial regressions, whose input variables are several wind speed459

and turbulence measurements retrieved by the DTU SpinnerLidar mounted460

in the turbine hub. The multivariate power curves are defined and tested461

under both waked and wake-free conditions with measurements retrieved at462

the onshore wind farm in Tjæreborg (Denmark). The multivariate power463

curves are compared with IEC-similar power curves implemented using the464

IEC binning method.465
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The IEC-similar power curves are defined using wake-free measurements466

only. These are selected using a wake-detection method based on the Spin-467

nerLidar measurements. Additionally, we show a procedure to process the468

lidar Doppler spectra in order to retrieve both wind speed and turbulence469

measurements.470

Our results show that the multivariate power curves provide a more accu-471

rate evaluation of the wind turbine power performance than the IEC binning472

method. Specifically, when using the multivariate power curve, the error in473

power output estimation is reduced by 65.3% and 41.2% relatively to the474

Uhub- and UREWS-based IEC-similar power curves, respectively.475

The input variables to the multivariate power curve are selected among476

all the available SpinnerLidar measurements with a feature-selection process477

based on a forward-selection algorithm. The optimal power curve consists of478

polynomial regressions of the 2
nd

order and 7 input variables (6 wind speed479

and 1 turbulence measurements). The accuracy of the multivariate power480

curve substantially varies when changing the input variables, highlighting481

the uniqueness of the optimal configuration.482

In order to provide a robust method to apply the multivariate power483

curve in different cases without changing the lidar measurement locations,484

circular scanning configurations are tested by selecting SpinnerLidar mea-485

surements along circular patterns. Results show good accuracy of the mul-486

tivariate power curves when the scanning pattern diameter is around 0.9 D,487

with error reductions of 52.5% and 19.1% relatively to the Uhub- and UREWS-488

based IEC-similar power curves, respectively.489

This work shows that the Tjæreborg dataset is suitable for studies fo-490

cused on the evaluation of the wind turbine power performance under waked491

conditions. This research could be extended by testing more complex ma-492

chine learning algorithms to model the wind turbine power performance using493

the SpinnerLidar measurements. Additionally, the multivariate power curves494

should be tested for applications such as power forecasting and annual energy495

production estimations.496
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