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Summary

In this chapter, we will provide an overview of occupant modeling, begin-
ning with key definitions and a background on common occupant modeling 
approaches. Next, we will present more advanced modeling approaches, in-
cluding data-​driven stochastic models, agent-​based models, and personas. 
Finally, we will discuss methods to implement occupant models into build-
ing performance simulation tools and methods to communicate occupant 
model characteristics.

6.1 � Introduction

Computational modeling and simulation are powerful techniques to cre-
ate a representation of buildings. In general, building performance mod-
eling and simulation provide a deeper understanding of a given system to 
inform decision-​making at any or all phases of the building life cycle, from 
early-​stage design to operations and management. In the past two decades, 
occupant modeling has gained significant traction by researchers and prac-
titioners due to the increasingly significant impact of occupants, interest in 
occupant well-​being, and increased computational and simulation capabil-
ities. Occupant modeling is a mathematical approach to characterize how 
people occupy and act in buildings. When integrated into building perfor-
mance simulation (BPS), occupant modeling can be used to estimate how 
occupants might behave in buildings for a year or longer, and how building 
design and operation might affect occupants.

Ultimately, occupants can profoundly affect building performance rela-
tive to predictions. This impact has been evidenced in studies of architectur-
ally similar spaces or buildings whose performance varies greatly as a result 
of their occupants (Dong et  al., 2015; Iwashita and Akasaka, 1997). The 
so-​called energy performance gap—​the difference between predicted and 
measured energy use—​tends to be even larger for high-​performance build-
ings. For instance, as insulation levels and airtightness increase as a con-
sequence of stricter regulations, occupants’ control over building systems 
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and equipment will have higher relative effects on heat transfer and energy 
use (Carpino et al., 2017; Guerra Santin et al., 2009). Occupant control of 
windows and blinds can also significantly impact energy flows across the 
envelope (Hoes et al., 2009).

Failure to accurately characterize occupants in the building design pro-
cess caries two risks: first, it may lead to a performance gap; second, and 
perhaps more critically, it may lead to poor design decisions (Gilani et al., 
2016). For example, optimistic assumptions about how occupants will be-
have (e.g., in an energy-​optimal way) or pessimistic assumptions about oc-
cupant density (e.g., very high values for HVAC equipment sizing) may lead 
to design decisions that impact a building’s performance for life.

In the past decade, occupant modeling has been used extensively to sup-
port building design (discussed further in Chapter 8) and to close the gap 
between the predicted and actual energy performance (e.g., Goubran et al., 
2021; Mahdavi et al., 2021). For example, occupant modeling can be used to 
assess the impact of occupant interactions with architectural features and 
technologies (e.g., adaptive facades) (Hong et al., 2017; O’Brien and Gunay, 
2015; Luna-​Navarro et al., 2020; Stopps and Touchie, 2021; Yan et al., 2015). 
Occupant modeling can also be used to design more comfortable and 
energy-​efficient spaces and to avoid oversizing or undersizing equipment 
and spaces (e.g., O’Brien et al., 2019).

Aside from energy performance, occupant modeling can be used to better 
understand comfort and adaptive opportunities, such as adaptive facades, 
clothing, and thermostats (Deng and Chen, 2021). It can also be used to help 
develop strategies toward healthy indoor spaces, e.g., to control the trans-
mission of COVID-​19 and other pathogens (Li et al., 2021). Building models, 
for example, can be used in combination with various occupant scenarios to 
create profiles of individual heat exposure (Sailor et al., 2021) and analyses 
of occupant presence and behavior (Yan et al., 2021).

This first section introduces basic occupant modeling concepts and defi-
nitions, and subsequent sections delve into more details and more complex 
methods.

6.1.1 � Occupancy and Occupant Behaviors

In this chapter and throughout the book, we distinguish between two ma-
jor occupant characteristics: occupancy and behavior. Occupancy is used 
synonymously with presence and quantitatively defines the number of occu-
pants or density of occupants in spaces. It can be defined as a binary state: 
occupied (at least one person present) or vacant (no occupants in space or 
building). It can also be distinguished by occupant types and groups (e.g., 
children, students, guests, staff). Accurate modeling of occupancy is impor-
tant for estimating latent and sensible heat gains and air contaminant loads 
and to understand schedules and logic for controls and operations. Yet, one 
of the primary reasons to try to predict occupancy is to predict occupant 
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behaviors and actions; except for cases of remote actions (e.g., smartphone-​
based thermostats), occupant presence is a necessary condition for actions 
to occur.

In contrast to occupancy, behaviors are actions that occupants take that 
affect building performance directly or indirectly (e.g., energy, indoor envi-
ronmental conditions). In many instances, occupants are triggered to act by 
indoor environmental conditions (e.g., open a window in response to stale 
air). These are known as adaptive triggers. In turn, these behaviors affect 
indoor environmental quality (IEQ) and potentially building energy use. 
However, other behaviors (e.g., use of office and entertainment equipment) 
affect building performance but are not related to IEQ. These are known as 
non-​adaptive triggers and may be a result of habits or tasks (e.g., occupant 
turns on computer when they arrive at work).

Occupant actions may be triggered by physical, physiological, psycholog-
ical, or social phenomena. The relationship between triggers and actions is 
often moderated by contextual factors (e.g., office dress codes constrain oppor-
tunities to modify clothing levels) (O’Brien and Gunay, 2014). Figure 6.1 rep-
resents the relationships between actions, behaviors, and triggers (Schweiker 
et al., 2018).

6.1.2 � Occupant Modeling Approaches

Following the terminology of Figure 6.1, occupants’ presence and behavior 
can be modeled as actions (e.g., the action of turning on/off the heating/
cooling system) and states (e.g., the state of light switch, state of windows 
opening, thermostat setpoint). An action changes the state, which then nor-
mally remains constant until a new action is taken, though interventions 
from mechanical and electrical systems may occur (e.g., overriding controls). 

Adaptive triggers (e.g., 
air temperature, sound 
level, illuminance)

Non-adaptive triggers
(e.g., habits, schedules, 
tasks)

Occupancy (e.g., 
occupancy state, number 
of occupants, 
demographics)

Action (e.g., turn on light, 
open window)

State (e.g., light is on, 
window is open)

Triggers

Contextual 
factors

Contextual 
factors

Actions Prerequisite for…*

Affects

Influences

*Occupancy is a necessary condition for actions 
unless a building system is controlled remotely

Figure 6.1 � Relationships between actions, behaviors, and triggers in buildings.
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A state can be defined by more than two levels and options, depending on 
the accuracy and targets of the modeling approach. For example, a window 
can have several states, including fully open/closed or half-​open, percent 
open/closed, or lighting can be switched on/off or can include dimming 
(Schweiker et al., 2018).

Ultimately, the objective of occupant behavior modeling is to predict 
either occupant actions/interactions with building systems or the result-
ing state of the building systems. It is generally accepted that accurately 
predicting individual actions is difficult, but predicting long-​term trends is 
feasible if enough data is available to make generalized models. Defining 
generalizable predictors and model coefficients is challenging due to the di-
versity of available studies and the fact that many actions are contextually 
sensitive (e.g., climates, cultures, building types, systems) or differ for per-
sonal characteristics (Carlucci et al., 2020; Schweiker and Shukuya, 2009). 
In addition, influencing variables for some domains, such as spatial move-
ments or changes in body posture, can be important yet difficult to define 
and measure (Jakubiec and Reinhart, 2012; Schweiker et al., 2018). There-
fore, there is a strong need for researchers to collaborate on standard frame-
works; this was one of the main motivations of initiating IEA EBC Annex 
79 (O’Brien et al., 2020).

While this book is broadly focused on buildings and building perfor-
mance simulation, it should be noted that there are many other applications 
and domains for occupant modeling in the built environment. For example, 
human mobility and behavior modeling is of primary interest in scientific 
disciplines that explore topics such as evacuation in emergencies, pedestrian 
flow in public transportation, and motion in vehicles. Such models have the 
advantage of capturing occupants at the individual level while attaining re-
alistic collective activities. For instance, people’s velocities and buildings’ 
structure (Lizhong et al., 2003), occupants’ health status and social influence 
(Liu et al., 2020), and herd behaviors (Yang et al., 2014) are some of the key 
factors affecting evacuation efficiency. Modeling frameworks to capture pe-
destrians’ walking behaviors use a combination of concepts from the social 
force model, behavioral heuristics, and materials science (Porter et al., 2018). 
Aircraft boarding models are implemented considering individual proper-
ties to explore the dynamics of passengers’ motions (Tang et al., 2012). With 
this background on occupant behavior and presence, the following section 
provides greater depth on traditional occupant modeling methods.

6.2 � Traditional Occupant Modeling

To date, the dominant method to model occupants in building simulation 
is through relatively simple schedules, values, and simple rules. A survey of 
building simulation users indicated that the majority of them use occupant 
modeling approaches that are specified by building codes, in part to avoid 
the liability of making other assumptions that may prove to be incorrect 
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(O’Brien et al., 2016). In another study, practitioners were found to rely on 
default tool values, which also likely originated from codes and standards 
(Duarte et al., 2013). However, applying the same schedules and other val-
ues to all buildings neglects the impact of building design and people. This 
approach is akin to the way that weather files are imposed in building simu-
lation, i.e., as a boundary condition; however, it fails to recognize that build-
ing design influences occupant behavior (O’Brien and Gunay, 2015).

It is relevant to precede our discussion of the state-​of-​the-​art and future 
of occupant modeling by acknowledging why using schedules to represent 
occupants became a long-​standing norm. The practice of assigning a single 
occupancy value to a modeled interior space for any simulated point in time 
dates back to at least the early 1980s and the first generations of building 
energy performance simulation tools, including but not limited to DOE-​2 
(Clarke, 2001; Diamond and Hunn, 1981; Norford, 1984; Vine et al., 1982). 
This was a time where 3D computer-​aided design had yet to be introduced to 
the buildings industry. Interior building volumes simulated in the BPS tools 
of the day were prescribed numerically, using simplified metrics for build-
ing geometry such as wall area, window area, and interior volume. With 
respect to building heat transfer modeling, these volumes were represented 
as perfectly mixed indoor air spaces, with only a single value representing 
the air temperature within an interior volume at any given time. Similarly, 
internal heat gains, including occupancy, were represented as single point 
source loads, nominally determined by a user-​assigned schedule as per the 
engineering manuals of the time (York and Cappiello, 1981). The location of 
an occupant in any simulated volume would be either fully non-​spatial or 
located in an assumed fixed position of the floor space.

While the processing capabilities of computers today are worlds apart 
from the computers used in the early days of BPS, the legacy of this sim-
plified approach to representing occupants and building geometry lives 
on. The same numerical methods DOE-​2 used to represent occupants in its 
original source code remains engrained in the engineering of established, 
present-​day BPS tools, such as EnergyPlus (the direct successor to DOE-​2) 
(Crawley et al., 2001). Hence, it is common that users of BPS tools today 
specify similar time-​based schedules and densities to represent building oc-
cupancy as would have been done by their predecessors 40 years ago. The 
term diversity is often used to describe these schedules, in recognition that 
peaks are unlikely to occur simultaneously (e.g., an office might only have 
80% of occupants at a given time, compared to maximum or nominal ca-
pacity). To reinforce the simplicity of common occupant modeling practice, 
Table 6.1 provides a summary of common methods to model different as-
pects of occupants based on the results of O’Brien et al. (2016) and O’Brien 
et al. (2020).

An example of a common modeling approach for occupancy is shown in 
Figure 6.2, where the occupancy density and schedule for numerous coun-
tries’ energy code specifications are compared. These graphs show that 
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typical occupancy modeling approaches are remarkable similar across dif-
ferent regions. They also show the inconsistency among different countries, 
suggesting a need for a global effort to standardize the way occupants are 
considered in building simulation.

A common question about occupant modeling approaches is where values 
and rules originated. Unfortunately, to date, data to support the develop-
ment of occupant-​related schedules has been obtained in a relatively dated 
and ad hoc way (e.g., “engineering judgment”) (Abushakra et al., 2004; Deru 
et al., 2011; Duarte et al., 2013). O’Brien et al. (2020) reported that several 
building codes’ occupancy density values have roots in non-​energy appli-
cations, such as fire codes, which may be intentionally conservative. In the 
case of fire codes, for example, the relative risk of human safety is consid-
ered over the accuracy of energy estimates.

Aside from the challenge and importance of selecting appropriate sched-
ule values to represent occupants, the schedule-​based approach has funda-
mental problems. While these traditional occupant modeling methods are 
straightforward (e.g., mathematically simple), consistent (i.e., same results 
each run), and transparent (to the BPS tool user and stakeholders alike), 
they also have some drawbacks:

•	 They lack recognition of two-​way interactions between people and buildings. 
The models assume occupants behave the same regardless of building 

Table 6.1 � Summary of commonly considered occupant-​related domains and the 
corresponding modeling methods

Domain Common modeling approaches/assumptions

Occupancy (presence) Daily diversity schedules (hourly resolution) with 
a corresponding density (e.g., m2 per occupant), 
usually specified for different building or space types

Plug-​in equipment and 
appliances

Daily diversity schedules with a corresponding power 
density (e.g., watts per m2)

Operable windows Windows are closed
Lighting Daily diversity schedules or daylight-​controlled 

(otherwise turned on with occupancy) with a 
corresponding lighting power density (e.g., watts 
per m2) 

Window blinds/shades Always open/non-​existent (considered furnishing) or 
closed during glare events (e.g., above 1,000 lux, as 
per IES LM 83 [IESNA, 2012])

Water appliances (e.g., 
showers, toilets, sinks)

Hot water volume or energy per day per person or per 
floor area (e.g., L/person/day)

Thermostats Daily setpoint schedules with the possibility to turn off 
systems or use a temperature setback for unoccupied 
and/or overnight periods 

Clothing level Seasonal schedule (e.g., 0.5 clo in summer and 1.0 clo in 
winter [ASHRAE, 2020])
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design. For example, they assume occupants control lights the same re-
gardless of window geometry.

•	 They are deterministic, which means that possible ranges of building per-
formance and occupant behavior are not modeled. They assume that every 
occupant behaves the exact same way for a given set of circumstances 
(e.g., all occupants turn on their light at a specific time of day).

Average: 15.4 m2/person
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Figure 6.2 � Example comparison of occupancy levels and schedules for office build-
ings in 15 different countries.
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•	 They separate each occupant-​related domain separately, without consider-
ing interdependencies. For example, schedule-​based models tend not to 
consider the linkages between occupant presence and adaptive actions 
(e.g., opening windows, turning on fans).

•	 They are rather coarse and abstract, thus allowing practitioners to avoid 
deeply considering occupants. Superficial occupant modeling does not 
require design practitioners to think about how building design can af-
fect behavior (e.g., accessibility to and ease of opening windows).

These limitations have major implications for building design practice (see 
Chapters  8 and 11), and significantly limit the power of simulation-​aided 
building design. Traditional methods are rooted in confirming or estimating 
building energy performance, rather than exploiting a better understanding 
of the two-​way relationship between buildings and their occupants.

6.3 � Advanced Occupant Modeling

In contrast to traditional methods of modeling occupants (see Section 6.2), 
more advanced occupant models tend to have one or more of the following 
possible and desirable traits (see Chapters 7 and 8 for additional discussion):

•	 Stochastic: A randomness to consider the reality that occupants’ in-
dividual decisions are often diverse, unpredictable, and inconsistent. 
Stochastic modeling is used given that we cannot fully characterize, 
through any measurement, all the boundary conditions that might lead 
to a specific action. Moreover, there is unknown diversity among peo-
ple and how they respond to current conditions, which means there is 
uncertainty about the specific individual occupants who will occupy a 
building.

•	 Dynamic: The recognition that conditions (e.g., air temperature) alter 
the way occupants behave and locate themselves within a space. In 
this way, the two-​way relationship between occupants and buildings is 
characterized such that building design and operations can affect occu-
pants’ decision-​making.

•	 Data-​driven: The trait that occupant models are generated based on 
measurements. While most existing occupant modeling approaches are 
based on some measurements or observations, more advanced occu-
pant models tend to use some form of model fitting (e.g., regression to 
relate behavior to one or more other variables).

•	 Agent-​based: The acknowledgement that occupants interact with build-
ings and/or each other through a series of decisions that are likely a 
result of one or more conditions (e.g., IEQ, presence or behavior of 
others). While any of the methods described in Section 6.3 could be 
considered agent-​based, the term is normally reserved for particularly 
sophisticated models (as discussed in Section 6.3.3).
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In the following section, we provide an overview and mathematical details of 
some of the most common advanced occupant modeling approaches that in-
clude some or all of the above traits. We aim to provide an overview, coupled 
with key technical and mathematical details, and references where readers 
can seek greater detail. At the end of the section, we highlight two more ad-
vanced occupant modeling methods: agent-​based modeling and personas.

6.3.1 � Deterministic Models

Deterministic or non-​probabilistic models are based on fixed values (e.g., 
an average and constant value for the internal gains in residential buildings) 
or schedules that are derived from assumptions or empirical observations, 
such as those described in Section 6.2. As argued in that section, such mod-
els offer ease of application, transparency, and reproducibility. However, 
they are independent of design and operations, and they typically do not 
capture uncertainty.

We should note that schedules and other non-​probabilistic models could 
be made stochastic, though this is rare in practice. For example, schedules 
or densities could be stochastic (e.g., shape parameters randomly chosen 
from distribution) and data-​driven (O’Brien et al., 2019). They could also 
be customized based on a particular building design (Ouf et al., 2019), or 
several clusters of occupant types with stochastic weightings could be used.

6.3.2 � Stochastic Models

Probabilistic, or stochastic, models make use of stochastic processes to re-
produce occupancy and a variety of behaviors, resulting in a probabilistic 
distribution of predicted results, from the timestep up to annual results. Sev-
eral stochastic models have been used to reproduce human actions within 
buildings; in this chapter, we focus on four such models (described in each 
of the next four sections): binomial models, Markov chains models, hidden 
Markov chain models, and mixed effect models. Table 6.2 provides a general 
summary of the purpose and potential application of each model type. We 
describe each of the models in more depth in the sections that follow, with 
a focus on the models’ application to the field of occupant modeling. For a 
more extensive explanation of the mathematics behind the different models, 
we recommend referring to more detailed sources (D’Oca et al., 2019; Mah-
davi et al., 2017).

6.3.2.1 � Binomial Model

A well-​established statistical model used to both analyze and model binary 
dependent variables is the binomial model, often referred to as logistic re-
gression1 (Hastie and Tibshirani, 2017) when using the logit function as a 
link function. It can be used to model, for example, the state of a window 
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(e.g., closed or open) or the change of state of a window (e.g., from closed to 
open and vice versa) (Andersen et al., 2013; Calì et al., 2016).

Binomial models can be used for both analysis and predictive modeling 
purposes. For the former, it can be used, for instance, to understand the 
drivers (i.e., leading causes for change, e.g., Fabi et  al., 2012) leading oc-
cupants to take an action. The results can provide researchers with back-
ground about how occupants make decisions depending on the indoor 
environment, weather, time of the day or day of the week, and/or any other 
measured entity. An illustrative example of binomial models is in Calì (2016), 
who applied binomial modeling with multiple explanatory variables to 300 
monitored windows to generate 300 different models. For each window, the 
author determined which of the measured explanatory variables had a ma-
jor influence on the probability of a change of window state and which did 
not. The variables were then classified depending on the number of times 
they appeared in the 300 models, where the more frequent the variable, the 
more important it was considered.

Table 6.2  Summary of four common occupant modeling approaches

Model type Typical purpose Application

Binomial 
model

Data analysis (e.g., to 
understand which factors 
influence occupants to 
execute an action) and 
stochastic modeling (e.g., to 
simulate human operations 
in building performance 
simulation software)

A model for predicting binary 
outcomes (e.g., yes/no, awake/
asleep, open/closed, opening 
action/closing action)

Markov 
chains 

Stochastic modeling with 
time dependencies (e.g., 
to model an event that is 
more likely to happen at a 
particular time of day, or a 
particular day of week)

A model for predicting outcomes 
with n states, where n can be 
an integer and represent—​for 
example, specific locations in 
a building, occupant presence 
(e.g., present and awake, present 
and asleep, absent), or position 
of a window (open, half opened, 
closed), e.g., at different times of 
the day

Hidden 
Markov 
chain 

Data analysis and stochastic 
modeling

A model for predicting outcomes 
with n unmeasured states, where 
the states are not measured but are 
deduced by related information 
(e.g., the presence of an occupant 
in a specific room, while only their 
activity is known)

Mixed 
effect 

Data analysis and stochastic 
modeling

A model for predicting binary 
outcomes (see binomial model 
regression, above)
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For modeling purposes, the binomial model can be used to dynamically 
model occupants (e.g., presence in a room, opening/closing a window) within 
a building simulation model. The model can be called at each timestep or at 
some selection of timesteps (e.g., only if an occupant is present in a room) 
and it reacts to the actual room conditions.

The binomial model using the logit function as a link function is based on 
the logistic function as expressed in Equation (6.1). )(p x  expresses the prob-
ability function for a certain event to happen (e.g., a window state changes) 
depending on an explanatory variable x, and, by definition, [ ])( ∈ ∀0,1 ,   p x x.  
Equation (6.1) can be rewritten as in Equation (6.2).

=
+ α β( )− +p

e x

1

1
	 (6.1)

α β
−





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= +ln
p

p
x

1
  	 (6.2)

where α is the intercept, β is a coefficient, and x is the explanatory variable. 
Equation (6.1) describes the probability of a certain event (e.g., opening a 
window, switching off the heating system) depending on one explanatory 
variable (e.g., the outdoor temperature) and is therefore used for simple lin-
ear regression analysis. For regression analysis with n explanatory varia-
bles, the probability function p can be expressed as in Equation (6.3).

α β β β
−





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Andersen et  al. (2013) suggested the inclusion of interaction terms in the 
probability function for some circumstances. That is, the probability of an 
action might depend on xi at one level of xj as compared to another level 
of xj. For example, the probability of opening (or closing) a window, the 
coefficient βi of the xi explanatory variable at a certain period, e.g., in the 
morning, might differ from the coefficient βi at a different period, e.g., at 
night. Also, there might be cases where an increase in the room air temper-
ature might result in an increase in the probability of opening a window in 
the morning, and in a decrease in the probability of opening a window in 
the evening. Equation (6.4) can be used to include interaction terms (γ). It is 
good practice to use only interaction terms between continuous and cate-
gorical variables—​time of day can be represented, for instance, in categori-
cal variables such as morning, afternoon, evening, and night.

α β β γ γ
γ−



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= + + +…+ +…+ +…
+ − −
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p

x x x x x x
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  0 0 1 1 1,2 1 2 1, 1
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	 (6.4)
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As mentioned above, binomial models can be used to understand and 
model a state or a change of state. For occupants’ use of building systems, 
binomial models can be used to model the action rather than the state (e.g., 
light switching action rather than on/off state). As noted by Fabi et  al. 
(2012), the status of the window itself influences the indoor environment 
(hence the explanatory variables used for the modeling) and therefore af-
fects the model.

Calì (2016) provides an example of the application of a binomial model 
for modeling occupant interactions with operable windows in a residential 
building. Figure 6.3 shows sample plots of the analysis, with the probability 
of the opening action of a specific window from a specific living room of a 
specific apartment, which was found to vary by time of the day, the indoor 
CO2 concentration, and the indoor air temperature. The results suggest that 
window opening probability increases with indoor temperature and CO2 
concentration. Also, occupants are much more likely to open the window 
during the day than at night.

6.3.2.2 � Markov Chain Models

This section describes discrete-​time Markov chain models of the first 
order—​henceforth, simply Markov chain models. Markov chain models are 
useful to model processes with two or more states, such as the position of 
a window (e.g., closed, open, half open) or the state of a fan (e.g., on or off, 
low flow, medium flow, high flow). When the state that has to be modeled is 
measured, a discrete-​time Markov chain of the first order can be used (e.g., 
Calì et al., 2018; Haldi and Robinson, 2009; McKenna et al., 2015; Page et al., 
2008). Alternatively, when the state that has to be modeled is measured in-
directly (e.g., the position of a window is inferred by the CO2 concentration 
in the room, or the presence of occupants with one specific room is inferred 
based on a time use survey indicating only the activity of the occupants), 
hidden Markov models (see next section) can be used.

The paragraphs that follow include a brief description of the principles 
of Markov chain, inverse function sampling, and the Markov chain Monte 
Carlo technique. A deeper illustration of the Markov chain technique can 
be found in Feller (1968). The Markov chain Monte Carlo method is well 
described in (Gilks et al., 1995).

To begin, a Markov chain is a random process that, within a state space, 
undergoes a transition from one state to another. The Markov property, 
which characterizes the Markov chain (illustrated in Equation (6.5)) states 
that the probability distribution of the next state (Xn2) depends on the cur-
rent state (Xn1) and not on the events that preceded it. This property is also 
known as the memory-​less property since the Markov process does not keep 
previous states in memory.

{ } { }… =| ,  ,  ,  ,  |  1 2 3 4 5 1 2P X X X X X P X Xn n n n n n n 	 (6.5)
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Figure 6.3 � Probability of opening action of a window in a living room of a specific 
apartment (Calì, 2016) at three different times of day, within the next 
minute.
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State changes in the process are called transitions; the probability of such 
transitions is stored in transition probability matrices (TPMs). When the 
transition probability does not depend on the time—​and hence, the tran-
sition probability does not vary with the time—​the Markov chain is called 
time-​stationary or time-​homogeneous, and this property is expressed in 
Equation (6.6).

{ } { }=| |1 2 2 3P X X P X Xn n n n 	 (6.6)

Examples of time-​homogeneous Markov chains include the “random 
walk” or the number of successes on bets by flipping a coin. As mentioned 
above, the presence or absence of occupant(s) as well as the state of a win-
dow can be modeled through Markov chains. However, in those cases, the 
probability of a change of the state (e.g., window opened/closed, occupant 
present/absent) varies over the time: in such cases, the Markov chain is time-​
inhomogeneous or simply inhomogeneous.

Equation (6.7) and Figure 6.4 show a two-​state TPM for the status of a 
window at a given point in time: the state “0” indicates a closed window, 
while the state “1” indicates an open window; Sn,00 indicates the probabil-
ity that a closed window (first 0) stays closed (second 0); Sn,01 indicates the  
probability that a closed window (0) will be opened (1); Sn,10 indicates 
the probability that an open window (1) will be closed (0); Sn,11 indicates 
the probability that an open window (first 1) stays open (second 1). For this 
particular example, at the given time n, there is a probability of Sn,00 = 0.95 
that the window remains closed if it was already closed at the preceding time 
n-​1; in the case of the window being open at time n ˗ 1, the probability that 
the window remains open is Sn,11 = 0.75. The numbers in red in the figure 
represent the probability of a state change: Sn,01 = 0.05 for a change from 
closed to open and Sn,10 = 0.25 for a change from open to closed. The two 
dimensions illustrated in the example are related to the change of status for 
the time interval [n ˗ 1, n].

Occupant behavior depends on time; for instance, occupants are more 
likely to sleep at night, windows are more likely to get opened in the morning, 

Window
closed

Window
open0.95 0.75

0.25

0.05

Figure 6.4 � Two-​state transition graphic for the TPM, at a given time instance, as 
shown in Equation (6.3) (Calì, 2016).
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and so on. Thus, the TPM needs a third dimension that allows probabilities 
of state change that vary over time. For a two-​state process with transitions 
changing each minute during an entire day, the TPM shape will be 2 × 2 × 
1,440 (Figure 6.5).
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There are cases where two states are not enough to model occupant behav-
ior, such as when the goal is to model the presence of a number N of oc-
cupants or the opening and closing of a window with two movable panes. 
In the latter case, for instance, if a distinction between the panels is not 
necessary—​for example because the two panels are the same size—​a three-​
state Markov chain can be used. In the case of the panels being different 
sizes, a four-​state Markov chain is necessary. Equation (6.8) and Figure 6.6 
demonstrate an example of a three-​state TPM for the status of a double-​
paneled window (with panels of equal size) at time n. In this example, “0” 

Figure 6.5 TPM over n states ( Calì, 2016).
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  �

Figure 6.6 � Three-​state transition graphic for the TPM, at a given time instance, as 
given in Equation (6.4) (Calì, 2016).
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indicates a completely closed window, “1” indicates that one panel of the 
window is open, and “2” indicates that both panels are open.

As for the two-​state TPM, for the three-​state TPM, the sum of the values 
of each row at each time is equal to 1. In this way, the Markov chain does not 
stop within the simulation process.
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The generation of the TPMs can be done separately for each window or 
together for all windows based on the observed status changes of those win-
dows at each measured time interval.

6.3.2.3 � Hidden Markov Chain Models

Unlike the Markov chain model, the hidden Markov chain model (HMM) 
consists of two components: an unobserved Markov chain { }Xt  and an ob-
served sequence { }Yt . Yt only depends on the current state Xt, and not on its 

own history Y (t − 1), as expressed in Equation (6.9).

( ) ( )=( ) ( )− −Y XP Y X P Y Xt t
t t

t t| ,  ,  |1 1 	 (6.9)

The distribution of Yt|Xt is called response distribution. In an HMM, the pa-
rameters are given by the set { }{ }π,  , A B , where A corresponds to the TPM, 
B corresponds to the response distribution, and π corresponds to the distri-
bution of the unobserved state of X0 in the initial timestep. For the estima-
tions of the parameters, the Baum-​Welch algorithm can be used (Rabiner, 
1989; Zucchini and MacDonald, 2009). The Baum-​Welch algorithm is based 
on the maximum likelihood estimation principle. When dealing within the 
context of HMM, the most likely sequence of unobserved states for a given 
sequence of observations can be of interest. This sequence, called global 
decoding, can be efficiently calculated through the Viterbi algorithm. An 
example of an application of a hidden Markov chain for the generation of 
occupants’ presence profiles within buildings based on a time-​use survey is 
provided by Wolf et al. (2019).

6.3.2.4 � Mixed Effect Models

We previously described a generalized linear model (GLM; see Footnote 1), 
specifically a binomial model with the logit function as a link function, that 
describes the probability of an action for a specific window, in a specific liv-
ing room, and in a specific apartment. Thus, if the goal is to use the GLM for 
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simulating the performance of a building with a number X of apartments, 
each with a number Y of rooms, we will need to have X·Y models for the 
opening action and X·Y models for the closing action: one model for each 
window. Hence, within the simulation of the performance of a building, it 
will be difficult to choose among one of the many models, for each room 
and each apartment. Ideally, there would be a unique model able to address 
behavioral diversity.

A solution can be represented by the addition of a further predictor of 
random nature, xk (McCulloch et al., 2003; Pinheiro and Bates, 2006), fol-
lowing the approach proposed by Haldi (2013) and resulting in a general-
ized linear mixed model (GLMM), as demonstrated in Haldi et al. (2016) 
and O’Brien et al. (2017). An example of a mixed model is the mixed-​effects 
logistic model defined as in Equation (6.10), where there is a fixed effect (like 
in Equation (6.3)) and a mixed effect. An application of this model to the 
case of window action, applied to residential and non-​residential buildings 
from Germany, Denmark, and the United Kingdom is illustrated in Haldi 
et al. (2016).

∑β β( )( ) = + + +
= …

p b x b x
k n

k k k klog it 0 0

1, , 

	 (6.10)

In conclusion, binomial models are GLMs that can be used to analyze and 
predict the probability of specific binary events, such as opening or closing 
a window or switching on or off a device. Markov models are particularly 
useful to model the probability of an action that is observable, the state of 
a window, if this state has been observed, and that varies with time. Hid-
den Markov models are useful to analyze and model the probability of an 
action that has not been observed (e.g., the state of the window) based on 
an observable variable (e.g., the carbon dioxide concentration in the room). 
Finally, generalized linear mixed models can be used to model the probabil-
ity of a particular event, adding a mixed effect to represent the differences 
among the population (e.g., different apartments, different occupants).

6.3.2.5 � Selection of Explanatory Variables

When addressing a modeling case with different potential explanatory varia-
bles, it is important to decide which explanatory variables (e.g., outdoor and 
indoor temperature and humidity, indoor carbon dioxide concentration) are 
relevant to evaluate and select the most appropriate model. Schweiker and 
Shukuya (2009) suggest using “forward” and “backward” selection of the 
variables for the regression models and scoring the models using the Akaike 
information criterion (AIC). This process allows the selection of a “best 
model” containing only the most important explanatory variables (i.e., vari-
ables that have a consistent impact on the probability function). Besides the 
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AIC, other criteria can be used, such as the Bayesian information criteria 
(BIC) (Schwarz, 1978).

The process for the selection of the best model can be executed by using 
the step function within the glm function in the statistical language R, with 
n explanatory variables. This process is described as follows:

1		  Each coefficient of each variable is fitted by the regression model in a 
single variable model, and the related AIC is computed for each fit;

2		  The variable with the lowest AIC is selected, and the model is fitted n-​1 
times with the selected variable and each of the n-​1 remaining variables;

3		  The model based on two variables with the lowest AIC is selected. Then, 
the AIC of this model is compared to the AIC of the best single-​variable 
model (the single-​variable model with the lowest AIC). Then:
a	 If the new model (two-​variables model) had a consistently lower 

AIC, the process can go to step 4;
b	 Otherwise, the single-​variable model is selected;

4		  The previously excluded n—​2 variables are then used to fit the model 
together with the two variables of the “two variables model” with the 
lowest AIC from step 3, in a “three variables model” (this is the so-​
called “forward selection”). Hence, from the three variables model, 
three two-​variables models, obtained by dropping each of the variables 
recursively, are fitted (this is the so-​called “backward selection”). Then:
a	 In the case that none of the three-​variable or “new generated” two-​

variable models has a consistently lower AIC than the two-​variables 
model with the lowest AIC from step 3, the model with the lowest 
AIC from step 3 is the final model,

b	 Otherwise, the process goes as in step 4, adding one more variable 
recursively.

6.3.2.6 � Inverse Transform Sampling

The generated TPMs can be used to generate occupants’ profiles within 
a simulation process. Within this scope, the so-​called inverse transform 
sampling (ITS) or “inverse function method” is utilized to sample random 
numbers in Page et al. (2008). Through this method, sample numbers can 
be randomly generated from any probability distribution given its cumu-
lative distribution function (cdf). For the case of windows or occupancy, a 
uniform distribution can be used. The first step of the ITS is related to the 
generation of a random number from a uniform distribution, between zero 
and one. Thus, the generated random number p is compared to the cdf in 
order to define the next state of the Markov chain. Using the window case as 
an example, if the generated value p is smaller than the probability of a state 
change of the window Pn+1, XX, at the given time, the window remains in the 
same state; otherwise, the window changes its state. Figure 6.7 is a flowchart 
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of the simulation process (for the time instance “n + 1”) of a double-​paneled 
window, where both panels are closed at time n (Calì, 2016).

6.3.2.7 � Evaluation and Validation of Occupant Models

Previously, we described a procedure to develop a model with an optimal 
selection of explanatory variables. Yet, the generated model needs to be 
evaluated and validated. It is generally understood that an exact prediction 
of building performance or each occupant-​related event is impractical and 
unrealistic (e.g., timing of window opening actions). However, modelers can 
still strive for models that yield reasonable estimates and direct designers to 
near-​optimal designs. This section briefly discusses occupant model evalua-
tion and validation. Interested readers are encouraged to consult additional 
resources (Langevin et al., 2015; Mahdavi and Tahmasebi, 2017; Tahmasebi 
and Mahdavi; 2016).

The first quality of interest is that the model can reproduce the occupant 
actions or states for the building from which the data was first collected. In 

Generation 
of a random number “p“ from a 

uniform distribution

p > Pn+1, 00

Window remains closed p > Pn+1, 00 + Pn+1, 01

One panel open Two panels open

Window
closed?

One panel
closed?

YES

YES

YES

NO

NO

NO

Figure 6.7 � Inverse transform sampling Markov chain flow chart example (Calì, 2016).
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other words, the validation process relates to the model at hand and how 
well it predicts the behavior of a particular process (e.g., the act of open-
ing a window) in a particular space or building. This validation should not 
be confused with a generalization of the model to other situations. For in-
stance, this validation does not indicate the applicability of this model to 
other contexts (e.g., buildings, climates, occupant types). The second qual-
ity of interest is that the occupant model can predict occupant actions or 
states in other contexts. This has been proven to be more difficult to achieve 
since behavior can be sensitive to building technologies, local customs, and 
climates (Schweiker et al., 2012).

One technique for validating of a model for a single space or building 
is the k-​fold cross-​validation. To apply it, each data sample (i.e., the set of 
data of the observed phenomenon that is being modeled and the potential 
explanatory variables) is partitioned into k-​ordered subsamples. If k=10, 
for example, nine subsamples are used for training a model following the 
method described above and one subsample is used to test the model. The 
test of the model is done by using the measured input variables of the 10th 
subsample (i.e., the subsample that was not used for the training) as input 
to the model, thus comparing the model output with the actual, monitored 
change of window position. This operation is executed ten times in total; the 
ten combinations of nine out of ten subsamples are used to train the model, 
while the last subsamples is used each time as a validation subsample. The 
process is summarized in Figure 6.8 and described further in Calì (2016).

When creating a model, a validation process of the model should be un-
dertaken to select the best possible model and ensure that the selected model 
is correctly representing the behaviors it is intended to portray. In the case 
of a model with a binary outcome (e.g., the change of state of a window from 
closed to open or from open to closed) to infer the “state change probabil-
ity” (i.e., probability of opening or closing actions), the data sample should 
be partitioned into two subsamples:

1		  Subsample A “window closed”: This subsample is used to infer the 
probability that a window will change its status to open.

2		  Subsample B “window open”: This subsample is used to infer the prob-
ability that a window will change its status to closed.

The complete modeling process to achieve, as an example, a model describ-
ing the opening and closing operation of windows, is described in Figure 6.8.

To evaluate the applicability of an occupant model to another building, 
the model can be simulated in another context (e.g., climate, building design) 
to assess whether it accurately predicts occupant behavior in that building. 
The results may be compared on numerous metrics, such as a fraction of 
time when the state is correct and the number of actions per year (Mahdavi 
and Tahmasebi, 2017).
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6.3.3 � Agent-​based Models

Building upon the previous sections and modeling techniques, agent-​based 
modeling (ABM) is a technique capable of representing autonomous agents, 
their interactions with each other and their environment, and the resulting 
impact on the system as a whole (Gilbert, 2019). Agents (e.g., building occu-
pants, households, cars) are assigned attributes that govern their interaction 
with each other and their environment (e.g., building space or geographi-
cal area). Each agent can evaluate the environment and the state of other 
agents and decide whether to take action (or not) based on a set of rules. The 
global behavior of the system then emerges from the micro-​actions and in-
teractions of these agents. The unique ability to simulate decision-​making at 
the individual agent level enables ABM to simulate real-​world systems with 
complex, nonlinear, and dynamic properties (Bonabeau, 2002).

Figure 6.9 shows the main steps to build an agent-​based model, based on 
the work of Salgado and Gilbert (2013) and Sayama (2015). The core of the 
figure describes the ABM implementation stage following the specification 

Binomial model of the sub-sample, 
comparison and selection of best-model 

through a criterion, e.g., AIC or BIC, store
chosen model as “k-best-model“

Start k-fold cross validation, k=1

Partitioning the data sample into two 
sub-samples, depending on the state of 

the variable to be simulated

Partitioning each sub-sample into 10 sub-
samples for k-fold cross validation

k=10 ?
No

Yes
Comparison of the 10 k-best-models and 

choice of the k-best-model with best fitting

k=k+1

Figure 6.8 � Flowchart of the process to generate and obtain the best fitting binomial 
model (Calì, 2016).
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and formalization of the problem to solve. The main implementation steps 
include the design of data structures for agents and the environment fol-
lowed by steps to describe the behavioral rules and interactions (between 
agents and with the environment). Once the model is executed, calibration, 
verification, and validation efforts are performed with the model being 
revised as needed.

In terms of the programming environment, agent-​based models can be 
implemented using general programming languages (e.g., Python, Java, 
C++) or software packages and toolkits created to help in the development 
and visualization of simulations (e.g., RePast, NetLogo, Anylogic).

ABM shares attributes with other modeling techniques, such as the prob-
abilistic methods described in Section 6.3. For instance, it is common to 
define probabilistic rules that guide agents’ actions based on information 
collected from their environment or other agents. As an example, when en-
tering a shared office with uncomfortable thermal conditions, a “person” 
agent might interact with other nearby persons in the area (based on prob-
abilistic rules) and adjust thermostat settings based on the group’s prefer-
ences. Similarly, probabilistic rules could be used to model agents adapting 
their preferences (and behavioral rules) following interactions with other 
agents. In general, Bonabeau (2002) recommends the use of ABM when the 
real-​world system to model has one or more of the following characteristics:

1		  When interactions between agents exist and are of a complex, nonlin-
ear, or discontinuous nature (e.g., the behavior of an agent potentially 
being influenced by that of another agent)

2		  When the topology of interactions is heterogeneous (e.g., in social 
networks)

3		  When space is an essential element of the problem with dynamic positions 
of agents (e.g., agents moving and interacting within an environment)

4		  When the population of agents is heterogeneous (e.g., agents with differ-
ent characteristics and adaptive behaviors)

5		  When agents show complex behaviors (e.g., with learning and adapta-
tion features)

Figure 6.9 � Main steps to building an agent-​based model, adapted from Salgado and 
Gilbert (2013) and Sayama (2015).



126  William O’Brien et al.

ABM has been applied in numerous fields, including epidemiology (Tracy 
et  al., 2018), population dynamics (Pablo-​Martí et  al., 2015), econom-
ics (Tesfatsion, 2002), transportation (Bernhardt, 2007), electricity grids 
(Ringler et al., 2016), among others. In the past decade, ABM applications 
have been extended to cover the building science domain, particularly oc-
cupant behavior applications. Berger and Mahdavi (2020) reviewed schol-
arly articles that applied ABM to simulate building occupants for energy 
and indoor-​environmental performance analysis. Papadopoulos and Azar 
(2016) presented an ABM framework that captured different and changing 
energy use characteristics of agents while accounting for their level of con-
trol over building systems. Their ABM framework also featured surrogate 
models of building systems to translate the agents’ characteristics to build-
ing energy performance estimates. Lee and Malkawi (2014) proposed an 
ABM approach to mimic the behavior of real-​world occupants of commer-
cial buildings in response to environmental stimuli. After evaluating their 
indoor conditions, agents could increase their comfort levels by adjusting 
their clothing and activity levels or controlling building systems, such as 
windows, blinds, fans, and space heaters. Other applications of ABM in-
clude occupants’ water consumption patterns (Linkola et al., 2013), occu-
pants’ movements and shared activities (Schaumann et al., 2017), and HVAC 
control optimization (Gopika, 2015; Sangi et al., 2017).

Despite the many advancements in applying ABM to understanding and 
improving building performance, several limitations exist that motivate 
future work on the topic. First, most ABM applications in building stud-
ies are focused on understanding and improving building operation. Little 
research extends the scope of analysis to include occupant-​centric design 
practice and applications. This gap is not limited to ABM studies but ex-
tends to occupant-​centric building design research in general (Azar et al., 
2020). Second, current ABM studies often fail to provide information on the 
implementation of their models, particularly on the level of detail and res-
olution at which they modeled occupants’ behaviors. More clarity and con-
sistency are needed to determine the level of complexity needed to achieve 
the models’ specific objectives. Finally, as highlighted by Berger and Mah-
davi (2020), ABM applications are rarely based on robust and validated hu-
man behavior theories, which are needed to increase the levels of confidence 
in the developed models and their solutions. Future ABM studies should 
consider stronger theoretical underpinnings for agent rules and behaviors, 
in parallel to extensive observation studies for validation purposes.

6.3.4 � Personas

The final method for modeling occupants that is considered in this chap-
ter is personas. Personas are archetypal characters that are representative 
of the expected occupants. While the above mathematical formalisms in 
Section 6.3 are relatively abstract, the use of personas offers a promising 



Introduction to Occupant Modeling  127

approach to modeling occupant behavior and beliefs and group behavior 
in a more tangible and understandable by a wide range of stakeholders. 
Personas are fictional, but representative, characters capturing occupant 
characteristics, behavior, and goals (Cooper, 1999) for user-​centered design. 
Personas can help designers and simulation users anchor their work in a 
user’s needs (Takai and Ishii, 2010). Like the other modeling approaches 
described earlier in this chapter, personas can be either data-​driven or de-
veloped by the designers’ judgment. Personas are somewhat analogous to 
clusters in machine learning, in that representative agents are extracted 
from a population.

Personas can be fictional (Blythe and Wright, 2006), goal-​oriented (Cooper 
et al., 2014), role-​based (Pruitt and Adlin, 2010), or engaging (Nielsen, 2013). 
Fictional personas may be imaginative or empirical. Goal-​oriented perso-
nas focus on specific workflows, needs, motivations, and attitudes of the 
persona to accomplish their goals (e.g., save energy or improve thermal 
comfort) (Cooper et al., 2014). Role-​based personas assume the role the us-
ers play in their context and environment (Pruitt and Adlin, 2010). For ex-
ample, in a large building context, personas may be developed for occupants 
and building energy managers. Engaging personas consider characters and 
stories to “produce involvement and insight” (Nielsen, 2013).

6.3.4.1 � Past Use of Personas in Building Design and Simulation

While personas are widely employed in fields like human–​computer interac-
tion (HCI) and human-​centered product design to anchor design in human 
needs from the beginning to the end of product development, their use in 
building design to represent different types of occupants is a relatively un-
exploited opportunity. Only recently, have examples of the application of 
personas in building design and operation emerged. For example, personas 
have been used to design spaces for people with dementia (McCracken et al., 
2019) and as a lens through which to evaluate the retrofit of buildings accord-
ing to different behaviors, motivations, and attitudes (Haines and Mitchell, 
2014). Bennetts et al. (2020) used a persona-​based approach to create thermal 
guidelines for older people in Australia using hierarchical cluster analysis 
(HCA) on data collected from the participants (ideas, beliefs, knowledge, 
etc.). Unlike traditional comfort standards, the comfort guidelines were de-
veloped for six different thermal personalities (Bennetts et al., 2020).

To date, personas have not been implemented as standard features 
in mainstream building simulation tools. Goldstein et  al. (2010) used the 
schedule-​calibrated and weighting coefficients method to generate personas 
for office buildings. The model considered office parameters such as arrival, 
departure, desk meetings, team meetings, and onsite and offsite breaks. 
This method helped create diverse occupant profiles for office buildings, 
but they did not consider other parameters like comfort and energy-​related 
parameters.
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6.3.4.2 � Developing Personas for Building Simulation

Personas can be designed for particular building contexts (e.g., police sta-
tions, schools), comfort issues, and user types (e.g., older people, children). 
The data for these personas can be derived from literature, surveys, par-
ticipatory workshops, among others. For new buildings, information can 
be estimated by looking to a similar project type, obtaining details from 
the client, or considering extreme conditions. Here, we focus on data-​driven 
personas. We note that care must be taken to avoid unconscious bias/
discrimination when creating personas, as the associated implications may 
influence design and neglect certain populations of occupants (e.g., persons 
with disabilities).

For data-​driven personas, the richer the data collection and analysis (e.g., 
mixed methods, methods that capture user-​system context), the more use-
ful the persona will be for designers and simulation users. An example of 
a data-​driven persona is provided by Agee et al. (2021). Agee et al. (2021) 
collected both quantitative and qualitative data from 20 multifamily hous-
ing developments (representing 239 units) in Virginia, USA. Data were col-
lected and analyzed in four steps, as summarized in Chapter 4, to create the 
persona in Figure 6.10.

Sadie
Senior Persona

Figure 6.10 � Data-​driven persona representing a 
senior occupant.

Source: Agee et al. (2021).

Physical Needs: safety, easy-​
to-​access and understand 
spaces and interfaces, level 
floor surfaces and transitions 
to avoid tripping hazards

Physiological Needs: her 
comfort is critical, she keeps 
thermostat between 72 and 
75°F (22 and ​24°C), she is 
keenly aware of drafts/air 
movement

Psychological Needs: safety, 
connection with community 
and family, continuing to 
stay active and involved in 
her family and community

Attitude: uses only what she 
needs, prefers traditional 
communication (e.g., 
talking face to face, writing 
letters), conserves energy to 
avoid wasting money, feels 
agnostic toward technology
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Sadie
Senior Persona

Sadie is a 78-​year-​old retiree and widow. She 
lives by alone, but keeps a full schedule of 
commitments (e.g., with her church group, 
visiting with her grandkids, reading, and 
watching TV). She enjoys learning and keeping 
an active mind with a daily crossword puzzle 
and reading her Bible. She spends most of her 
day at home in her apartment. She lives alone, 
so feeling safe is important to her sense of well-​
being. She is cold-​natured, and a cozy housing 
unit is one reason she is more satisfied with her 
current unit compared to her previous unit. 
She likes the heat pump in her apartment but is 
sensitive to direct air blowing on her. She sets 
her thermostat between 72 and 75°F (22 and ​
24°C). She uses 88 kWh/m2/yr of energy. She 
has an Energy Star-​rated dishwasher but 
cleans her daily dishes by hand. Sadie feels 
the old ways of life are better. She doesn’t like 
new technology and prefers the old ways of 
communicating. For example, she writes letters 
to her friends instead of email. She remembers 
when times were hard and you didn’t waste 
anything. She is intentional about conserving 
energy and money (e.g., turning off the TV, 
lights, and coffee). She lives on a fixed income 
and cannot afford to be wasteful.

Behavior: turns off lights and 
plug loads when not in the 
room, cleans dishes by hand, 
takes short to medium length 
showers, uses space heater to 
adapt indoor environment

In closing, personas are a powerful tool to map observed or imagined oc-
cupant characteristics onto one or more representations of occupants. While 
they have not been extensively used in building design, we recommend their 
future research and implementation because of their desirable traits (e.g., 
relatability and tangibility to all stakeholders, complexity, and richness in 
characteristics). Ultimately, for personas to be incorporated into BPS tools, 
their characteristics must be mapped to simulation inputs and models. There 
is strong potential for personas to be developed in conjunction with agent-​
based models and the advanced occupant models described in Section 6.3.  
For example, a persona could be developed based on a large number of 
single-​behavior models; the model parameter could be varied depending on 
the persona characteristics (e.g., very reactive to low illuminance levels).

6.4 � Implementation of Occupant Models in Simulation Tools

Thus far, in this chapter, we have described a variety of occupant mode-
ling approaches. In this next section, we provide an overview and analysis 
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of common methods of implementing occupant models in simulation tools. 
Since the remainder of this book focuses on building simulation, this prelim-
inary overview of implementation is an essential step before occupant mod-
eling can be discussed in terms of supporting the design process (Chapters 7 
and 8). This section describes current available methods to implement oc-
cupant models in BPS tools as well as offering discussion on limitations and 
future research and development needs.

6.4.1 � Occupant-​Centric Simulation Tools and Approaches

While modeling occupants using schedules in BPS tools is commonplace 
(see Section 6.2), more advanced models require more sophisticated means 
for implementation. In general, BPS tools with a graphical front-​end inter-
face are more restrictive, while research-​grade tools with open-​source ca-
pabilities have greater flexibility to implement advanced occupant models. 
Most BPS tools provide at least one of the following approaches to model 
occupants (Hong et al., 2018). We hereby divide implementation methods 
into two categories: those which are integrated into BPS tools and those 
which generate inputs in advance of integrating them into BPS (i.e., offline 
and stand-​alone). BPS-​integrated methods include:

•	 Schedules (deterministic)—​These built-​in or user-​customized schedules 
generally represent occupant-​related states as repeating time-​varying 
parameters (e.g., occupancy profiles, lighting/equipment loads, temper-
ature setpoint). The level of schedule resolution varies among BPS tools, 
with some allowing sub-​hourly resolution and others being restricted to 
hourly. Ideally, tools represent these schedules graphically to identify 
errors quickly.

•	 Rules (deterministic/stochastic)—​This method enables simulation users 
to use built-​in rules or specify a set of rules for different building sys-
tems such as lighting, windows, and shading devices. For example, rules 
can be set to turn off lights when daylight illuminance reaches a certain 
threshold to simulation typical occupant behavior. The threshold can 
be probabilistic to simulate the variability of occupants’ manual inter-
actions with lights. While some BPS tools do not use such rules at all, 
others allow custom rules to be defined, such as User Function in DOE-​
2 and EMS in EnergyPlus (Gunay et al., 2016). Moreover, models from 
external standardized languages can be integrated into the simulation 
tool, such as TRNSYS or IDA-​ICE. Although user-​customized controls 
allow more flexibility for the users to incorporate bespoke models, their 
implementation and debugging require a strong knowledge of the occu-
pant models and programming.

•	 User-​defined source code (deterministic/stochastic)—​Some occupant 
models involve more than simple rules and may necessitate that the 
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source code modifications. However, advanced user knowledge is re-
quired for this approach.

•	 Co-​simulation (deterministic/stochastic)—​Occupant models can also 
be implemented in BPS via co-​simulation that allows the dynamic ex-
change of information between BPS tools. For example, the occupant 
behavior Functional Mockup Unit (obFMU) is an example of a co-​
simulation method that supports reading the data in a standardized 
XML format through a new schema, titled ‘occupant behavior XML’ 
(obXML). The initial repository of obXML contains 52 models (Belafi 
et al., 2019). A more advanced and flexible interface is Building Control 
Virtual Test Bed (BCVTB) which is based on a stand-​alone interface 
(Ptolemy II) to host certain programs (Wetter, 2011). Similar to user-​
customized source code, advanced knowledge is required. Moreover, 
co-​simulation can significantly increase computation time.

6.4.1.1 � Stand-​Alone (Offline) Methods Include:

•	 Occupancy simulator (stochastic)—​This method is a web-​based platform 
to provide hourly or sub-​hourly occupant presence and movements 
based on stochastic models for an individual occupant in the form of 
CSV files (Chen et al., 2017), which can then be used as an input for BPS 
tools such as EnergyPlus. Although this approach considers the diver-
sity and stochasticity of occupancy, it is limited to occupancy schedules 
without considering two-​way interactions between occupants and the 
environment. Moreover, this approach typically neglects interdepend-
encies between different aspects of occupant behavior.

•	 Offline techniques (deterministic/stochastic)—​An alternative method is 
to conduct sequential simulations to integrate occupant interactions in 
a building. Programming languages such as Python or R have the capa-
bility of high-​level programming functions using a wide range of librar-
ies and packages. The two main approaches are: (1) a pre-​processing 
stage where occupant-​centric control metrics are derived as inputs for 
further evaluation using BPS tools (Hobson et al., 2021); or (2) a post-​
processing stage when a set of design alternatives are initially simu-
lated as datasets to program occupant-​centric control functions (Ouf 
et al., 2019). Both techniques can deliver deterministic (e.g., rule-​based) 
or probabilistic (e.g., supervised learning) controls to model occupant 
behavior. Further discussion on ways to simulate occupants to inform 
design is provided in Chapter 8.

While stand-​alone offline methods potentially offer greater transparency 
and versatility, they do not offer dynamic interaction with the simulation. 
As such, interactions between triggers (e.g., IEQ) and occupant actions are 
not captured; thus, offline methods are more suitable for non-​adaptive occu-
pant features such as occupancy and office equipment use.
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6.4.2 � Current Limitations and Recommendations

Each of the major stages of building performance simulation—​inputs, sim-
ulation, and outputs—​have limitations with respect to occupant modeling 
that should be addressed in the future.

•	 Inputs—​Generally speaking, increasing the number and complexity of 
occupant-​related inputs will increase the level of occupant modeling 
detail in building simulation. These inputs can include occupant de-
mographics and diversity, details on energy-​related occupant behavior, 
and relationships between occupants (and the impact of these relation-
ships on behavior). Current methods to specify occupant behavior are 
often abstract and implicit (e.g., refer to traditional occupant modeling 
approaches as in Section 6.2). Moreover, most tools treat occupants 
in much the way building systems are specified rather than as active 
participants in building performance. For example, in EnergyPlus, oc-
cupants’ actions regarding blinds control are categorized as window 
properties rather than people objects and there are missing quantitative 
metrics to control certain functions such as shading systems through 
vertical eye illuminance (Tabadkani et al., 2020). We recommend that 
occupant-​related inputs are reframed and increased in detail to parallel 
recent research developments (e.g., more advanced models). Addition-
ally, given the significant uncertainty during the design stage about the 
occupants that will occupy a space, features to allow ranges of occupant 
traits is a beneficial feature (Ouf et al., 2019).

•	 Simulation—​Most common BPS tools have very limited capabilities re-
garding occupant modeling (i.e., similar to those described in Section 6.2, 
rather than Section 6.3). Thus, for the reasons argued in Section 6.3, we 
strongly recommend an increase in the number and capability of occu-
pant models in research-​grade and mainstream BPS tools. Common BPS 
tools can process only a single simulation at a time without defining a cor-
relation between occupants’ behavioral aspects (e.g., occupancy profile 
and light switching) (Ouf et al., 2018). However, more complex occupant 
models often necessitate multiple simulation runs, e.g., to quantify uncer-
tainty and stochastic model distributions. Thus, we recommend new BPS 
tool features to automate batch simulations. While co-​simulation has 
shown significant flexibility for implementing and simulating occupant 
models, it is not compatible with many BPS tools and requires advanced 
modeling knowledge, which hinders industry adoption. To overcome 
existing limitations of common BPS tools in terms of linking different 
occupant-​related variables together (e.g., occupant density and lighting/
equipment loads), parametric design tools such as open-​source Ladybug 
Tools can be used to allow the definition of correlations among inputs 
algorithmically. Parametric-​based interfaces enable simulating a large 
number of iterations automatically to efficiently quantify the impact of 
different occupants or occupant models.
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•	 Outputs—​Because BPS is rooted in annual energy use predictions, 
BPS tool outputs tend to focus on building performance rather than 
occupants (e.g., discomfort hours of the building rather than discom-
fort hours of occupants). BPS tools should be more informative and 
use an occupant-​centric approach such that results are output and 
presented them from an occupant experience perspective. Moreover, 
many occupant-​related simulation outputs are not available for report-
ing (e.g., number of light switching actions, view to outdoors). Future 
BPS tool should have features that support the output and visualiza-
tion of occupant uncertainty (and other sources of uncertainty), such 
as probability distributions resulting from stochastic occupant models. 
Further discussion on simulation outputs and communicating results is 
presented in Section 6.5.

This section briefly summarized existing methods through which occupant 
models can be incorporated and implemented into BPS tools. It also pro-
vided recommendations on BPS tool inputs, simulation, and outputs to 
support occupant modeling. The next section explores the improvement of 
transparency of occupant modeling for practitioners and other users.

6.5 � Communication and Practical Application

As the complexity of modeling approaches and their underlying statistical 
methods has increased, so has the number of variables taken into account 
when creating occupant behavioral models. Several researchers have at-
tempted to classify the growing number of data sources and modeling ap-
proaches. For example, Mahdavi and Taheri (2017) presented an ontology 
for the classification of building performance data (e.g., air temperature, 
energy use), and others have discussed ways to select the most appropri-
ate model for a specific simulation task (Gaetani et al., 2016; Mahdavi and 
Tahmasebi, 2017; Tahmasebi and Mahdavi, 2016) (see also Chapter 7). As 
discussed in Section 6.2, most current approaches focus on schedules, which 
are relatable and simple to interpret for practitioners. In contrast, more ad-
vanced modeling approaches presented in scientific literature (and Section 
6.3) are not suitable to communicate model results such as schedules or, for 
stochastic models, the variance in behavioral patterns.

Accordingly, there is a need to communicate occupant model properties 
and results in a comprehensible way, especially for those who apply these 
models, such as building engineers, without expertise in statistics. This ar-
gument is emphasized by O’Brien et al. (2016) who conclude, based on data 
from a survey among practitioners, that time and understanding are major 
obstacles of using more advanced occupant modeling. Thus, increasing the 
comprehensibility of occupant models may be a prerequisite for their wide-
spread application in building performance simulation for design and oper-
ation of buildings. To date, there are only a few attempts to communicate to 
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simulation users the impact of occupant modeling choices (e.g., Chen et al., 
2017; Gunay et al., 2016; Ouf et al., 2019; Schweiker et al., 2019).

Discussing all potential methods to communicate occupant models is be-
yond the scope of this chapter and still debated among researchers. The 
most important aspects of a model’s behavior to be communicated depend 
on the characteristics of interest and whether the practitioner is, for exam-
ple, an engineer applying a model in communication with the researcher 
who developed the model, or an architect or investor communicating with 
the simulation engineer. Basic characteristics need to be communicated to 
enable (1) the comparison between different models and (2) judgment of the 
suitability of a model, including the number and type of input and output 
variables, potential hidden values, the basis of model (e.g., type of data col-
lection, type of building and occupants monitored, region, climate), and the 
validation status of the model together if available with validation results.

To ease the understanding of a models’ behavior, a breakdown of poten-
tially complex model behaviors into transferable and communicable pa-
rameters is desirable. Such parameters could be descriptive values, such as 
the predicted mean duration of the behavior, the number of actions, the 
sensitivity of model to variance in input parameters, or the effect of the pre-
dicted behavioral patterns on other outcome parameters (Gunay et al., 2016; 
Schweiker et al., 2019). For example, Gunay et al. (2016) presented a method 
to compare a variety of occupant behavior models in terms of behavioral 
characteristics as well as energy use variations. Other ways to present the 
behavior of complex models is the generation of exemplary schedules result-
ing from their application. Such an approach is presented by Ouf et al. (2019) 
for stochastic models of lighting usage and by (Schweiker et al., 2019) for 
window opening models’ behaviors. The latter presented a method to com-
pare model behaviors parametrically for combinations of different climates 
and building properties (see also Figure 6.11).

6.6 � The Future of Occupant Modeling and Simulation

Major challenges and opportunities exist regarding occupant modeling, in 
the context of the methods proposed in Section 6.3. Care must be taken to 
balance accuracy gained by the relatively advanced statistical modeling of 
that section (relative to the knowledge of most BPS practitioners) with the 
opaqueness and obscurity that results (e.g., see Section 6.5). Ultimately, a sim-
ple model that is fit-​for-​purpose (see Chapter 7) is better than an inappropri-
ately advanced model. With the Internet of Things (IoT), Internet-​connected 
building automation systems, and other smart building technologies, the 
availability of occupant-​related data is improving and becoming less costly 
to collect. We expect this to greatly enhance the ability to develop robust, 
data-​driven occupant profiles for a variety of domains, building types, cli-
mates, etc. However, centrally managed and coordinated efforts, such as 
ASHRAE’s Global Occupant Behavior Database (Dong et al., 2021) are still 
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Figure 6.11 � Example visualization of the behavior of four different window opening 
behavior models for simulated summer and winter day depending on 
weather data file and building characteristics.
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required to maintain model quality, reliability, and consistency. Commensu-
rate with any centrally-​managed occupant data and model repository should 
also be rigorous verification of the generalizability of occupant models, much 
like the early work of (Schweiker et al., 2012).

We must also recognize that while the buildings industry will witness the 
emergence and widespread use of new occupant modeling techniques in the 
future, as summarized above and throughout this chapter, it is likely that 
the industry will simultaneously experience a widening or shifting of the 
disciplines that undertake the activity in practice.

Despite the many advances that have been made with respect to meth-
ods for generating occupancy schedules, the inherent simplification of occu-
pancy presence in existing BPS tools remains a research gap facing the future 
of occupancy modeling as a whole. Rooms within buildings, like an open-​
office space, are subject to thermal and occupant asymmetries. An occupant 
sitting near a window will face unique thermal conditions, and may respond 
uniquely to environmental control decisions compared to an occupant lo-
cated in a different position of the same modeled room (Brager et al., 2004). 
Different HVAC concepts can also produce unique asymmetrical thermal 
environments, where the specific position and location of an occupant in an 
HVAC-​conditioned space, including the extent to which one’s own limbs are 
exposed in that space, produces a unique regime of thermal sensation across 
the occupant’s body (De Dear, 2011). These asymmetries are known to in-
crease uncertainty in predicting occupant control decisions and predicting 
building energy demand using existing BPS tools (Halawa et al., 2014).

Accurately simulating spatial asymmetries between occupants and the 
built environment involves overcoming at least two challenges: (1) predict-
ing the specific location and orientation of an occupant with respect to 3D 
space and time; and (2) directly modeling the asymmetrical relationship 
between the occupant and the indoor environment. Established advances 
in coupling BPS with computational fluid dynamics (CFD) have long-​since 
illustrated how the latter challenge can be overcome (Zhai et al., 2002). The 
first challenge persists, however, albeit with a number of emerging solutions 
in the research pipeline. Most interesting is that these solutions are originat-
ing from fields that have historically lagged behind BPS, namely, architec-
ture and computer-​aided design.

Whereas decades ago, only a few architects were using computers for de-
sign, let alone simulation, the division of computer and simulation literacy 
between engineers and architects has narrowed considerably. Simulation 
and software programming has not only been introduced to architects, it is 
also fast becoming a standard skillset in the field (Riekstins, 2018). Credit for 
this goes particularly to Grasshopper 3D, a visual programming language 
that was created in 2007 by Rutten and McNeel (2007) to enable parametric, 
programmable computer-​aided design. Grasshopper is effectively a func-
tional mock-​up environment which connects a programmable computer-​
aided design process with a growing suite of third-​party simulation tools 
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and other plug-​ins written natively for the Grasshopper environment. Like 
the coupling of BPS with CFD modeling, Grasshopper provides the oppor-
tunity to couple BPS with highly spatial, parametric design algorithms that 
can include the modeling of occupant movement, behavior, and thermal 
sensation in fully-​resolved 3D spaces.

Several recent examples of Grasshopper-​based occupancy modeling are 
relevant to acknowledge. Aviv et al. (2022) used Grasshopper to develop a 
raytracing-​based radiant heat transfer model to resolve the radiant asym-
metries between occupants and the built environment. PedSim Pro, a pe-
destrian movement simulation tool developed for Grasshopper, was used 
by Pan et al. (2021) to generate time-​ and space-​varying building occupancy 
profiles. Yi (2020) achieved a similar outcome by using Grasshopper to cou-
ple a BPS model with a hybrid agent-​based model of occupant movement 
and behavior. As more Grasshopper-​based BPS tools emerge and become 
popular, such as ClimateStudio (Solemma Inc., 2022), we can expect the 
field of highly-​spatial occupancy modeling to grow more capable, and com-
monplace, in the years to come. We can also expect to see more and more 
architects leading this charge in future practice.

6.7 � Closing Remarks

In this chapter, we provided an overview of occupant modeling from tradi-
tional and current practices to advanced occupant modeling. We explained 
why we should model occupants and that representing occupants using fixed 
schedules has some major limitations in simulation-​aided building design.

We also covered the major traits of occupant models (stochastic, dy-
namic, data-​driven, and agent-​based) and their implications for simulation 
and building design. It explained how the different model types can be de-
veloped from various sources of occupant data. Next, we provided an over-
view of methods to implement occupant models into building performance 
simulation tools, ranging from schedules to co-​simulation. We concluded 
the chapter with a discussion on how occupant models and their character-
istics can be better communicated to users as well as in future work.

While in this chapter we discussed model selection in the context of accu-
racy and strengths and weaknesses, the next two chapters delve into details 
on selecting the most appropriate occupant models for a given purpose and 
then methods to use occupant models to support building design.

Note
1		  Both logistic and probit regression are generalized linear models (GLM). In 

such models, instead of using the outcome Y, a link function is used, which is a 
function of the mean of Y. The difference between logit and probit models is in 
the link function: logit models make use of an inverse normal function, and the 
probit model makes use of a logit link function.
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