

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Numerical optimization packages for optimal control
QPIPM and NLPSQP

Kaysfeld, Morten Wahlgreen; Jørgensen, John Bagterp

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kaysfeld, M. W., & Jørgensen, J. B. (2023). Numerical optimization packages for optimal control: QPIPM and
NLPSQP. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/358df7c7-812a-481e-884b-9ecdb8996f84

Morten Wahlgreen Kaysfeld

Numerical optimization packages for
optimal control: QPIPM and
NLPSQP

Technical Report, July 25, 2023

MORTEN WAHLGREEN KAYSFELD

Numerical optimization packages for
optimal control: QPIPM and NLPSQP

Technical Report, July 25, 2023

Supervisors:

John Bagterp Jørgensen

DTU - Technical University of Denmark, Kgs. Lyngby - 2023

Numerical optimization packages for optimal control: QPIPM and NLPSQP

This report was prepared by:
Morten Wahlgreen Kaysfeld

Advisors:
John Bagterp Jørgensen

DTU Compute - Department of Applied Mathematics and Computer Science
Section for Scientific Computing
Technical University of Denmark
Matematiktorvet, Building 303B
2800 Kgs. Lyngby
Denmark

morwa@dtu.dk

Field: Numerical optimization, quadratic programming, nonlinear programming

Class: Report publicly available - Software is closed-source

Remarks: This technical report is prepared to document the numerical optimization software
packages: QPIPM (quadratic-programming-interior-point-method) and NLPSQP
(nonlinear-programming-sequential-quadratic-programming)

Copyrights: ©Morten Wahlgreen Kaysfeld, 2023

Table of Contents

I QPIPM 1

1 Introduction 3

2 Mathematical details 5
2.1 Primal-dual interior-point algorithm . 5

2.1.1 Search direction . 6

2.1.2 System reduction . 8

2.1.3 Fraction-to-the-boundary . 10

2.1.4 Predictor-corrector algorithm . 10

2.1.5 Convergence criterion . 11

2.1.6 Infinity bound constraints . 11

2.1.7 Algorithm . 11

2.2 Riccati based factorization for optimal control problems 13

2.2.1 Search direction . 14

2.2.2 System reduction . 15

2.2.3 Riccati recursion algorithm . 18

2.2.4 Algorithm . 18

2.2.5 A note on bounds . 18

3 Implementation of QPIPM in Matlab and C 21
3.1 Matlab . 21

3.2 C . 22

3.2.1 Memory allocation . 23

3.2.2 Dependencies . 24

3.2.3 Gitlab . 24

3.2.4 Doxygen documentation . 24

3.3 Examples . 24

4 Conclusion 25

II NLPSQP 27

5 Introduction 29

i

ii TABLE OF CONTENTS

6 Mathematical details 31
6.1 Sequential quadratic programming algorithm . 32

6.1.1 Optimality conditions . 32
6.1.2 Quadratic programming subproblem . 32
6.1.3 Line-search . 33
6.1.4 BFGS update . 34
6.1.5 Initialization . 35
6.1.6 Convergence . 35
6.1.7 Algorithm . 35

6.2 Riccati version for optimal control problems . 35
6.2.1 Block BFGS update . 38
6.2.2 Application to solve OCPs . 38
6.2.3 Algorithm . 40
6.2.4 A note on bounds . 41

7 Implementation of NLPSQP in Matlab and C 43
7.1 Matlab . 43
7.2 C . 44

7.2.1 Memory allocation . 47
7.2.2 Dependencies . 47
7.2.3 Gitlab . 47
7.2.4 Doxygen documentation . 48

7.3 Examples . 48

8 Conclusion 49

Bibliography 51

Part I

QPIPM

1

CHAPTER 1

Introduction

In this part, we introduce the Riccati based primal-dual interior-point software, QPIPM (quadratic-
programming-interior-point-method), for solution of quadratic programming problems (QPs). QPIPM can
solve QPs with 1) equality constraints, 2) box constraints, and 3) soft constraints. We have implemented
QPIPM in both a Matlab version and a C version. Due to time constraints, currently only the Matlab version
of QPIPM supports QPs with soft constraints. The Matlab version provides a non-optimized and simple
implementation that can be useful in a development phase. The C version is implemented thread-safe with
the intention to solve multiple optimal control problems (OCPs) in parallel. The thread-safety is achieved
by QPIPM having no internal memory allocations. The main purpose of QPIPM is to be included in the
sequential quadratic programming algorithm, NLPSQP, introduced in the next part of this report and the
integration of QPIPM and NLPSQP in a previously implemented toolbox for parallel Monte Carlo simulation
of closed-loop systems (Wahlgreen et al. 2021). We also point out that the current version of QPIPM is work
in progress and that the implementation can be optimized for better computational performance.

In this report, we introduce the mathematical details in the QPIPM implementation and introduce the
interfaces of QPIPM in both Matlab and C. QPIPM is stored in a private gitlab-repository QPIPM and is part
of the project SCProject, which is implemented in C and contains a number of other gitlab-repositories.
For the C version, we introduce the other dependencies in SCProject and explain how to allocate the
required memory prior to calling QPIPM.

We point out that the implementation of QPIPM is highly inspired by previous work on the topic (Rao
et al. 1998, Jørgensen 2004, Wächter and Biegler 2006, Frison and Jørgensen 2013, Jørgensen et al. 2012,
Wahlgreen and Jørgensen 2022).

3

CHAPTER 2

Mathematical details

We introduce the mathematical details of the QPIPM implementation. The mathematical details of the
Matlab and C implementation are identical. However, the C version does not include the option to apply soft
constraints in the current version. QPIPM is a primal-dual interior-point algorithm, which can both apply
an LDL-factorization and a Riccati based method to solve the system of linear equations for the Newton
search direction. The Riccati based method requires a structured QP, which, e.g., occurs in optimal control
applications.

2.1 Primal-dual interior-point algorithm

In this section, we introduce the mathematical details of the primal-dual interior-point algorithm applied
in QPIPM. The algorithm solves the first order Karush–Kuhn–Tucker (KKT) conditions with Newtons’
method (Karush 1939, Kuhn and Tucker 1951, Kjeldsen 2000). As such, the algorithm is iterative and in
each iteration, l, a system of linear equations is solved for the Newton search direction. We apply Mehrotra’s
predictor-corrector method, as such QPIPM computes both a predictor and corrector step with the same
factorization of the search direction matrix (Mehrotra 1992).

We design QPIPM to solve QPs with bound constraints and general soft constraints. The general soft
constraints include a lower and upper soft bound with slack variables, and the slack variables are penalized
with both a linear and quadratic term in the objective. As such, the QP is in the form

min
x,ϵl,ϵu

1
2x⊤Hx + g⊤x + 1

2ϵ⊤
l Qlϵl + q⊤

l ϵl + 1
2ϵ⊤

u Quϵu + q⊤
u ϵu, (2.1a)

s.t. A⊤x = b, (2.1b)

l ≤ x ≤ u, (2.1c)

ls − ϵl ≤ S⊤x ≤ us + ϵu, (2.1d)

ϵl, ϵu ≥ 0. (2.1e)

H ∈ Rn×n, g ∈ Rn, A ∈ Rn×me , b ∈ Rme , l ∈ Rn, u ∈ Rn, S ∈ Rn×ms , ls ∈ Rms , us ∈ Rms , and
x ∈ Rn are the decision variables. ϵl ∈ Rms are lower soft bound slack variables and ϵu ∈ Rms are upper
soft bound slack variables. Ql ∈ Rms×ms and Qu ∈ Rms×ms are (assumed) diagonal penalty matrices,
and ql ∈ Rms and qu ∈ Rms are penalty vectors. As such, n is the number of decision variables, me is the
number of equality constraints, and ms is the number of upper and lower soft constraints.

5

6 CHAPTER 2. MATHEMATICAL DETAILS

2.1.1 Search direction

QPIPM computes a search direction in each iteration. First, we consider the Lagrangian function,
L = L(x, ϵl, ϵu, y, vl, vu, zsl

, zsu
, vϵl

, vϵu
), of (2.1), which is

L = 1
2x⊤Hx + g⊤x + 1

2ϵ⊤
l Qlϵl + q⊤

l ϵl + 1
2ϵ⊤

u Quϵ + q⊤
u ϵu

− y⊤(A⊤x− b)− v⊤
l (x− l)− v⊤

u (u− x)− v⊤
ϵl

ϵl − v⊤
ϵu

ϵu

− z⊤
sl

(S⊤x− ls + ϵl)− z⊤
su

(−S⊤x + us + ϵu).

(2.2)

y are equality constraint (2.1b) Lagrange multipliers, vl and vu are bound constraint (2.1c) Lagrange
multipliers, zsl

and zsu
are soft constraint (2.1d) Lagrange multipliers, and vϵl

and vϵu
are ϵ-bound constraint

(2.1e) Lagrange multipliers. As such, we write up the corresponding first order KKT-conditions,

∇xL = Hx + g −Ay − vl + vu − Szsl
+ Szsu = 0, (2.3a)

∇ϵl
L = Qlϵl + ql − zsl

− vϵl
= 0, (2.3b)

∇ϵu
L = Quϵu + qu − zsu

− vϵu
= 0, (2.3c)

b−A⊤x = 0, (2.3d)

tl + l − x = 0, tu + x− u = 0, (2.3e)

tϵl
− ϵl = 0, tϵu − ϵu = 0, (2.3f)

ssl
− S⊤x + ls − ϵl = 0, ssu

+ S⊤x− us − ϵu = 0, (2.3g)

tl,ivl,i = 0, tu,ivu,i = 0, (2.3h)

tϵl,ivϵl,i = 0, tϵu,ivϵu,i = 0, (2.3i)

ssl,izsl,i = 0, ssu,izsu,i = 0, (2.3j)

(vl, vu, zsl
, zsu

, vϵl
, vϵu

) ≥ 0, (tl, tu, ssl
, ssu

, tϵl
, tϵu

) ≥ 0, (2.3k)

where tl and tu are bound constraint (2.1c) slack variables, ssl
and ssu are soft constraint (2.1d) slack

variables, and tϵl
and tϵu are ϵ-bound constraint (2.1e) slack variables. The slack variables are defined as

ssl
= S⊤x− ls + ϵl, ssu

= −S⊤x + us + ϵu, (2.4a)

tl = x− l, tu = u− x, (2.4b)

tϵl
= ϵl, tϵu

= ϵu. (2.4c)

2.1. PRIMAL-DUAL INTERIOR-POINT ALGORITHM 7

We write the KKT-conditions, (2.3), as a system of nonlinear equations in the form

rL

rϵl

rϵu

rA

rSl

rSu

rBl

rBu

rBϵl

rBϵu

rSZsl

rSZsu

rT Vl

rT Vu

rT Vϵl

rT Vϵu

=

Hx + g −Ay − vl + vu − Szsl
+ Szsu

Qlϵl + ql − zsl
− vϵl

Quϵu + qu − zsu
− vϵu

b−A⊤x

ssl
− S⊤x + ls − ϵl

ssu + S⊤x− us − ϵu

tl + l − x

tu + x− u

tϵl
− ϵl

tϵu − ϵu

Ssl
Zsl

e

SsuZsue

TlVle

TuVue

Tϵl
Vϵl

e

TϵuVϵue

= 0, (2.5a)

(vl, vu, vϵl
, vϵu , zsl

, zzu , tl, tu, tϵl
, tϵu , ssl

, ssu) ≥ 0. (2.5b)

Vl = diag(vl), Vu = diag(vu), Vϵl
= diag(vϵl

), Vϵu
= diag(vϵu

), Zsl
= diag(zsl

), Zsu
= diag(zsu

),
Tl = diag(tl), Tu = diag(tu), Tϵl

= diag(tϵl
), Tϵu

= diag(tϵu
), Ssl

= diag(sl), Ssu
= diag(su), and e is

a vector of ones of proper dimension. We apply Newtons’ method to solve the nonlinear system of equations,
(2.5), which results in the following linear system of equations for the Newton search direction,

H 0 0 −A −S S −I I 0 0 0 0 0 0 0 0
0 Ql 0 0 −I 0 0 0 −I 0 0 0 0 0 0 0
0 0 Qu 0 0 −I 0 0 0 −I 0 0 0 0 0 0
−A⊤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
− S⊤ −I 0 0 0 0 0 0 0 0 I 0 0 0 0 0
S⊤ 0 −I 0 0 0 0 0 0 0 0 I 0 0 0 0
−I 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 −I 0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 −I 0 0 0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 Ssl
0 0 0 0 0 Zsl

0 0 0 0 0
0 0 0 0 0 Ssu

0 0 0 0 0 Zsu
0 0 0 0

0 0 0 0 0 0 Tl 0 0 0 0 0 Vl 0 0 0
0 0 0 0 0 0 0 Tu 0 0 0 0 0 Vu 0 0
0 0 0 0 0 0 0 0 Tϵl

0 0 0 0 0 Vϵl
0

0 0 0 0 0 0 0 0 0 Tϵu
0 0 0 0 0 Vϵu

∆x
∆ϵl

∆ϵu

∆y

∆zsl

∆zsu

∆vl

∆vu

∆vϵl

∆vϵu

∆ssl

∆ssu

∆tl

∆tu

∆tϵl

∆tϵu

= −

rL

rϵl

rϵu

rA

rSl

rSu

rBl

rBu

rBϵl

rBϵu

rSZsl

rSZsu

rT Vl

rT Vu

rT Vϵl

rT Vϵu

. (2.6)

The solution,

(∆x, ∆ϵl, ∆ϵu, ∆y, ∆zsl
, ∆zsu , ∆vl, ∆vu, ∆vϵl

, ∆vϵu , ∆ssl
, ∆ssu , ∆tl, ∆tu, ∆tϵl

, ∆tϵu), (2.7)

8 CHAPTER 2. MATHEMATICAL DETAILS

is the search direction applied in QPIPM. We point out that the system of equations, (2.6), can be compactly
written as

Ĥ −Â −Ĉ 0
−Â⊤ 0 0 0
−Ĉ⊤ 0 0 I

0 0 Ŝ Ẑ

∆x̂

∆ŷ

∆ẑ

∆ŝ

 = −

r̂L

r̂A

r̂C

r̂SZ

 , (2.8)

where

x̂ =

 x

ϵl

ϵu

 , ŷ = y, ẑ =

zsl

zsu

vl

vu

vϵl

vϵu

, ŝ =

ssl

ssu

tl

tu

tϵl

tϵu

, (2.9a)

r̂L =

rL

rϵl

rϵu

 , r̂A = rA, r̂C =

rSl

rSu

rBl

rBu

rBϵl

rBϵu

, r̂SZ =

rSZsl

rSZsu

rT Vl

rT Vu

rT Vϵl

rT Vϵu

, (2.9b)

Ĥ =

H

Ql

Qu

 , Â =

A

0
0

 , Ĉ =

S −S I −I 0 0
I 0 0 0 I 0
0 I 0 0 0 I

 , (2.9c)

Ẑ =

Zsl

Zsu

Vl

Vu

Vϵl

Vϵu

, Ŝ =

Ssl

Ssu

Tl

Tu

Tϵl

Tϵu

. (2.9d)

However, we exploit the structure of the matrices in (2.9), and elimination of Lagrange multipliers and slack
variables, to reduce the size of the system (2.6) in the following section.

2.1.2 System reduction

The linear system (2.6) can be reduced in size by elimination of the inequality Lagrange multipliers and
corresponding slack variables (i.e., for the lower and upper bound constraint, the soft constraints, and the
ϵ-bound constraints). We define six diagonal matrices from the Lagrange multipliers and corresponding
slack variables,

Dsl
= diag(zsl

/ssl
), Dsu

= diag(zsu
/ssu

), (2.10a)

Dl = diag(vl/tl), Du = diag(vu/tu), (2.10b)

Dϵl
= diag(vϵl

/tϵl
), Dϵu

= diag(vϵu
/tϵu

). (2.10c)

2.1. PRIMAL-DUAL INTERIOR-POINT ALGORITHM 9

By elimination of the six Lagrange multipliers and slack variables, we arrive at the following reduced system
H̄ E F −A

E⊤ Q̄l

F ⊤ Q̄u

−A⊤

∆x

∆ϵl

∆ϵu

∆y

 =

r̄L

r̄ϵl

r̄ϵu

r̄A

 (2.11)

where

H̄ = H + Dl + Du + ES⊤ − FS⊤, (2.12a)

E = SDsl
, F = −SDsu , (2.12b)

Q̄l = Ql + Dϵl
+ Dsl

, Q̄u = Qu + Dϵu
+ Dsu

, (2.12c)

and

r̄L = − rL + S(S−1
sl

Zsl
(rSl
− Z−1

sl
rSZsl

))− S(S−1
su

Zsu
(rSu

− Z−1
su

rSZsu
))

+ T −1
l Vl(rBl

− V −1
l rT Vl

)− T −1
u Vu(rBu

− V −1
u rT Vu

),
(2.13a)

r̄ϵl
= − rϵl

+ T −1
ϵl

Vϵl
(rBϵl

− V −1
ϵl

rT Vϵl
) + S−1

sl
Zsl

(rSl
− Z−1

sl
rSZsl

), (2.13b)

r̄ϵu
= − rϵu

+ T −1
ϵu

Vϵu
(rBϵu

− V −1
ϵu

rT Vϵu
) + S−1

su
Zsu

(rSu
− Z−1

su
rSZsu

), (2.13c)

r̄A = − rA. (2.13d)

The eliminated Lagrange multipliers and slack variables are

∆vl = T −1
l Vl(rBl

− V −1
l rT Vl

)− T −1
l Vl∆x, (2.14a)

∆vu = T −1
u Vu(rBu

− V −1
u rT Vu

) + T −1
u Vu∆x, (2.14b)

∆vϵl
= T −1

ϵl
Vϵl

(rBϵl
− V −1

ϵl
rT Vϵl

)− T −1
ϵl

Vϵl
∆ϵl, (2.14c)

∆vϵu = T −1
ϵu

Vϵu(rBϵu
− V −1

ϵu
rT Vϵu

)− T −1
ϵu

Vϵu∆ϵu, (2.14d)

∆zsl
= S−1

sl
Zsl

(rSl
− Z−1

sl
rSZsl

)− S−1
sl

Zsl
(S⊤∆x + ∆ϵl), (2.14e)

∆zsu = S−1
su

Zsu(rSu − Z−1
su

rSZsu
)− S−1

su
Zsu(−S⊤∆x + ∆ϵu), (2.14f)

∆tl = − V −1
l rT Vl

− V −1
l Tl∆vl, (2.14g)

∆tu = − V −1
u rT Vu − V −1

u Tu∆vu, (2.14h)

∆tϵl
= − V −1

ϵl
rT Vϵl

− V −1
ϵl

Tϵl
∆vϵl

, (2.14i)

∆tϵu
= − V −1

ϵu
rT Vϵu

− V −1
ϵu

Tϵu
∆vϵu

, (2.14j)

∆ssl
= − Z−1

sl
rSZsl

− Z−1
sl

Ssl
∆zsl

, (2.14k)

∆ssu = − Z−1
su

rSZsu
− Z−1

su
Ssu∆zsu . (2.14l)

In addition, we eliminate the soft constraint slack variables, ϵl and ϵu, from the system (2.11) to further
reduce the size. The resulting system of linear equations is[

H̃ −A

−A⊤ 0

] [
∆x

∆y

]
=

[
r̃L

r̃A

]
, (2.15)

where

H̃ = H̄ − EQ̄−1
l E⊤ − FQ̄−1

u F ⊤, (2.16a)

r̃L = r̄L − EQ̄−1
l r̄ϵl

− FQ̄−1
u r̄ϵu , (2.16b)

r̃A = r̄A. (2.16c)

10 CHAPTER 2. MATHEMATICAL DETAILS

The eliminated slack variables are given as

∆ϵl = Q̄−1
l (r̄ϵl

− E⊤∆x), (2.17a)

∆ϵu = Q̄−1
u (r̄ϵu

− F ⊤∆x). (2.17b)

The search direction (2.7) can be obtained by solution of the system of linear equations, (2.15), to obtain
(∆x, ∆y) and computing first the soft constraint slack variables from (2.17) and finally the remaining
Lagrange multipliers and slack variables from (2.14). QPIPM solves (2.15) with an LDL-factorization and
back substitution.

Applying the compact notation in (2.9a), we define the QPIPM step as

(x̂, ŷ, ẑ, ŝ) = (x̂, ŷ, ẑ, ŝ) + ηα(∆x̂, ∆ŷ, ∆ẑ, ∆ŝ), (2.18)

where η = 0.995 and the step-size, α, ensures (ẑ, ŝ) ≥ 0.

2.1.3 Fraction-to-the-boundary

QPIPM applies a fraction-to-the-boundary rule to avoid the QPIPM step zeroing the Lagrange multipliers
or slack variables (Wahlgreen and Jørgensen 2022). The rule is[

ẑ

ŝ

]
+ α

[
∆ẑ

∆ŝ

]
≥ κ

[
ẑ

ŝ

]
, (2.19)

where 0 ≤ κ≪ 1 and κ→ 0 as the iteration number of QPIPM, l, increases. The rule (2.19) implements a
proportional step-back from the zero-boundary. In the predictor phase, QPIPM uses κ = 0 to compute αaff ,
and in the corrector phase QPIPM uses κ = min(1− η, µaff) to compute α. The rule (2.19) is similar to
the rule applied in IPOPT (Wächter and Biegler 2006).

2.1.4 Predictor-corrector algorithm

QPIPM applies Mehrotra’s predictor-corrector algorithm (Mehrotra 1992), i.e., QPIPM applies the
factorization of (2.15) twice: 1) in the predictor step and 2) in the corrector step. In the predictor phase, we
solve [

H̃ −A

−A⊤ 0

] [
∆xaff

∆yaff

]
=

[
r̃L

r̃A

]
, (2.20)

and compute the remaining part of the affine search direction from (2.17) and (2.14). From the affine search
direction, we compute the duality gap, µ, and the centering parameter, σ as

µaff = (ẑ + αaff ∆ẑaff)⊤(ŝ + αaff ∆ŝaff)
m̄

, µ = ŝ⊤ẑ

m̄
, σ =

(
µaff

µ

)3

, (2.21)

where we apply the notation in (2.9a) for simplicity and m̄ is the total number of inequality constraints
(bound constraints, soft constraints, and ϵ-bound constraints). In the corrector step, we adapt the right hand
side of (2.15) and consider the system[

H̃ −A

−A⊤ 0

] [
∆x

∆y

]
=

[
˜̄rL

r̃A

]
, (2.22)

2.1. PRIMAL-DUAL INTERIOR-POINT ALGORITHM 11

where ˜̄rL is computed according to (2.13a) and (2.16b), with the terms, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

, rSZsl
, and

rSZsu
being defined as

rT Vl
← rT Vl

+ ∆T aff
l ∆V aff

l − σµe, rT Vu ← rT Vu + ∆T aff
u ∆V aff

u − σµe, (2.23a)

rT Vϵl
← rT Vϵl

+ ∆T aff
ϵl

∆V aff
ϵl
− σµe, rT Vϵu

← rT Vϵu
+ ∆T aff

ϵu
∆V aff

ϵu
− σµe, (2.23b)

rSZsl
← rSZsl

+ ∆Saff
sl

∆Zaff
sl
− σµe, rSZsu

← rSZsu
+ ∆Saff

su
∆Zaff

su
− σµe. (2.23c)

Then the QPIPM search direction is the solution to (2.22) with the remaining part being computed from
(2.17) and (2.14).

We point out that system matrix in the predictor and corrector phase is identical. Therefore, QPIPM
reuses the factorization from the predictor phase in the corrector phase.

2.1.5 Convergence criterion

QPIPM converges once the KKT-conditions (2.3) are satisfied. In practice, we consider a scaled violation,
ξ, and define convergence as ξ < ϵ, where ϵ > 0 is a user-selected convergence tolerance. The scaled
violation is

ξ = max
(

sH ||rL, rϵl
, rϵu
||∞, sA||rA||∞, sS ||rSl

, rSu
||∞, sB ||rBl

, rBu
||∞, ||rBϵl

, rBϵl
||∞,

||rSZsl
, rSZsu

, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

||∞
)

,
(2.24)

where

sH = max(1, ||H||∞, || g||∞, ||A ||∞, ||Ql||∞, ||Qu||∞, ||ql, qu||∞, ||Sl||∞, ||Su||∞)−1, (2.25a)

sA = max(1, ||A⊤||∞, ||b||∞)−1, (2.25b)

sS = max(1, ||S⊤
l ||∞, ||S⊤

u ||∞, ||ls||∞, ||us||∞)−1, (2.25c)

sB = max(1, ||l||∞, ||u||∞)−1. (2.25d)

QPIPM computes ξ after taking the step (2.18) in the end of the corrector phase.

2.1.6 Infinity bound constraints

QPIPM eliminates all infinity bounds, i.e., bounds set to −∞ or∞, before starting the loop. As such,
columns of S are not accessed if both ls and us are infinity.

2.1.7 Algorithm

Algorithm 1 presents a detailed implementation guide for QPIPM.

12 CHAPTER 2. MATHEMATICAL DETAILS

Algorithm 1: QPIPM pseudo code
Input: Initial guess, x0, and soft constrained QP,

min
x,ϵl,ϵu

1
2x⊤Hx + g⊤x + 1

2ϵ⊤
l Qlϵl + q⊤

l ϵl + 1
2ϵ⊤

u Quϵ + q⊤
u ϵu,

s.t. A⊤x = b,

l ≤ x ≤ u,

ls − ϵl ≤ S⊤x ≤ us + ϵu,

ϵl, ϵu ≥ 0,

i.e. the matrices and vectors: H , Ql, Qu, g, gl, gu, A, b, l, u, S, ls, and lu.

• Initialize:

x = x0, ϵl = ϵu = 0, y = 0, ẑ = 1, ŝ = 1.

• Compute scaling factors,

r̃L = max(1, ||H, Ql, Qu||∞, ||g, gl, gu||∞, ||A||∞, ||S||∞)−1, r̃A = max(1, ||A⊤||∞, ||b||∞)−1,

r̃B = max(1, ||l||∞, ||u||∞)−1, r̃S = max(1, ||S⊤||∞, ||ls||∞, ||lu||∞)−1

• Compute scaled KKT-violation, ξ,

ξ = max(r̃L||rL, rϵl
, rϵu
||∞, r̃A||rA||∞, r̃S ||rSl

, rSu
||∞, r̃B ||rBl

, rBu
||∞, ||rϵl

, rϵu
||∞,

||rSZsl
, rSZsu

, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

||∞)

while ξ > ϵ do

1. Predictor phase:

i. Setup augmented system, [
H̃ −A

−A⊤ 0

]
︸ ︷︷ ︸

M

[
∆x
∆y

]
=

[
r̃L

r̃A

]
(2.26)

ii. LDL factorize: [L, D] = ldl(M)
iii. Solve the system (2.26) to get the affine direction, ∆x = ∆xaff and ∆y = ∆yaff

iv. Compute ∆ϵl and ∆ϵu,

∆ϵl = Q̄−1
l (r̄ϵl

− E⊤∆x), ∆ϵu = Q̄−1
u (r̄ϵu

− F ⊤∆x)

v. Compute ∆zsl
, ∆zsu

, ∆vl, ∆vu, ∆ϵl, ∆ϵu, ∆ssl
, ∆ssu

, ∆tl, ∆tu, ∆tϵl
, and ∆tϵu

,

∆zsl
= S−1

sl
Zsl

(rSl
− Z−1

sl
rSZsl

)− S−1
sl

Zsl
(S⊤∆x + ∆ϵl), ∆ssl

= −Z−1
sl

rSZsl
− Z−1

sl
Ssl

∆zsl
,

∆zsu
= S−1

su
Zsu

(rSu
− Z−1

su
rSZsu

)− S−1
su

Zsu
(−S⊤∆x + ∆ϵu), ∆ssu

= −Z−1
su

rSZsu
− Z−1

su
Ssu

∆zsu
,

∆vl = T −1
l Vl(rBl

− V −1
l rT Vl

)− T −1
l Vl∆x, ∆tl = −V −1

l rT Vl
− V −1

l Tl∆vl,

∆vu = T −1
u Vu(rBu

− V −1
u rT Vu

) + T −1
l Vl∆x, ∆tu = −V −1

u rT Vu
− V −1

u Tu∆vu,

∆vϵl
= T −1

ϵl
Vϵl

(rBϵl
− V −1

ϵl
rT Vϵl

)− T −1
ϵl

Vϵl
∆ϵl, ∆tϵl

= −V −1
ϵl

rT Vϵl
− V −1

ϵl
Tϵl

∆vϵl
,

∆vϵu = T −1
ϵu

Vϵu(rBϵu
− V −1

ϵu
rT Vϵu

)− T −1
ϵu

Vϵu∆ϵu, ∆tϵu = −V −1
ϵu

rT Vϵu
− V −1

ϵu
Tϵu∆vϵu ,

vi. Find αaff such that (ẑ, ŝ) + αaff ∆(ẑ, ŝ) ≥ 0, where ẑ = (zsl
, zsu

, vl, vu, vϵl
, vϵu

) and ŝ =
(ssl

, ssu , tl, tu, tϵl
, tϵu)

vii. Compute the duality gap, µ, and the centering parameter, σ (with m̄ being the total number of
inequality constraints including soft constraints)

µaff = (ẑ + αaff ∆ẑ)⊤(ŝ + αaff ∆ŝ)
m̄

µ = ŝ⊤ẑ

m̄
, σ =

(
µaff

µ

)3

2. Corrector phase:

i. Recompute r̃L with the following definitions

rSZsl
← rSZsl

+ ∆Saff
sl

∆Zaff
sl
− σµe, rSZsu

← rSZsu
+ ∆Saff

su
∆Zaff

su
− σµe,

rT Vl
← rT Vl

+ ∆T aff
l ∆V aff

l − σµe, rT Vu ← rT Vu + ∆T aff
u ∆V aff

u − σµe,

rT Vϵl
← rT Vϵl

+ ∆T aff
ϵl

∆V aff
ϵl
− σµe, rT Vϵu

← rT Vϵu
+ ∆T aff

ϵu
∆V aff

ϵu
− σµe.

ii. Repeat step 1ii-1v from the predictor phase (reapply LDL factorization from predictor phase)

iii. Compute the step size, α, such that (ẑ, ŝ) + αaff ∆(ẑ, ŝ) ≥ κ(ẑ, ŝ), for κ = min(1− η, µaff)

3. Take step: χ = χ̂ + ηα∆χ̂, where χ = (x, ϵl, ϵu, y, zsl
, zsu , vl, vu, vϵl

, vϵu , ssl
, ssu , tl, tu, tϵl

, tϵu) and
η = 0.995

4. Compute scaled KKT-violation,

ξ = max(r̃L||rL, rϵl
, rϵu
||∞, r̃A||rA||∞, r̃S ||rSl

, rSu
||∞, r̃B ||rBl

, rBu
||∞, ||rϵl

, rϵu
||∞,

||rSZsl
, rSZsu

, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

||∞)

Return: χ̂ = (x, ϵl, ϵu, y, zsl
, zsu , vl, vu, vϵl

, vϵu , ssl
, ssu , tl, tu, tϵl

, tϵu)

2.2. RICCATI BASED FACTORIZATION FOR OPTIMAL CONTROL PROBLEMS 13

2.2 Riccati based factorization for optimal control problems

In this section, we introduce QPIPM’s Riccati option to solve structured QPs. QPIPM is intended to
solve QPs arising in OCPs in the form

min
{uk,xk+1,ϵl,k+1,ϵu,k+1}N−1

k=0

ϕ = l0(u0) +
N−1∑
k=1

lk(xk, uk) + lN (xN) +
N∑

k=1
ls,k(ϵl,k, ϵu,k), (2.27a)

s.t. xk+1 = A⊤
k xk + B⊤

k uk + bk, k = 0, 1, ..., N − 1, (2.27b)

umin,k ≤ uk ≤ umax,k, k = 0, 1, ..., N − 1, (2.27c)

xmin,k − ϵl,k ≤ S⊤
k xk ≤ xmax,k + ϵu,k, k = 1, 2, ..., N, (2.27d)

(ϵl,k, ϵu,k) ≥ 0, k = 1, 2, ..., N, (2.27e)

where x0 = x̂0 is a parameter and

l0(u0) = 1
2u⊤

0 R0u0 + r⊤
0 u0 + ρ0, (2.28a)

lk(xk, uk) = 1
2

[
xk

uk

]⊤ [
Qk Mk

M⊤
k Rk

] [
xk

uk

]
+

[
qk

rk

]⊤ [
xk

uk

]
+ ρk, k = 1, 2, ..., N − 1, (2.28b)

lN (xN) = 1
2x⊤

N QN xN + q⊤
N xN + ρN , (2.28c)

ls,k(ϵl,k, ϵu,k) = 1
2

[
ϵl,k

ϵu,k

]⊤ [
Qϵl,k

Qϵu,k

] [
ϵl,k

ϵu,k

]
+

[
qϵl,k

qϵu,k

]⊤ [
ϵl,k

ϵu,k

]
, k = 1, 2, ..., N. (2.28d)

The OCP (2.27) can be written as the general soft constrained QP in the form (2.1) with

x =
[
u0 x1 u1 x2 · · · uN−1 xN

]⊤
, (2.29a)

ϵl =
[
ϵl,1 ϵl,2 · · · ϵl,N

]⊤
, (2.29b)

ϵu =
[
ϵu,1 ϵu,2 · · · ϵu,N

]⊤
, (2.29c)

H =

R0

Q1 M1

M⊤
1 R1

. . .

QN−1 MN−1

M⊤
N−1 RN−1

QN

, (2.29d)

Ql =

0
Qϵl,1

0
Qϵl,2

. . .

0
Qϵl,N

, (2.29e)

14 CHAPTER 2. MATHEMATICAL DETAILS

Qu =

0
Qϵu,1

0
Qϵu,2

. . .

0
Qϵu,N

, (2.29f)

g =
[
r0 q1 r1 · · · qN−1 rN−1 qN

]⊤
, (2.29g)

ql =
[
0 qϵl,1 0 qϵl,2 · · · 0 qϵl,N

]⊤
, (2.29h)

qu =
[
0 qϵu,1 0 qϵu,2 · · · 0 qϵu,N

]⊤
, (2.29i)

A =

−B⊤

0 I

−A⊤
1 −B⊤

1 I

.

−A⊤
N−1 −B⊤

N−1 I

⊤

, (2.29j)

b =
[
b̃0 b1 · · · bN−1

]⊤
, (2.29k)

l =
[
umin,0 −∞ umin,1 −∞ · · · umin,N−1 −∞

]⊤
, (2.29l)

u =
[
umax,0 ∞ umax,1 ∞· · · umax,N−1 ∞

]⊤
, (2.29m)

S =

0
S1

0
S2

. . .

0
SN

, (2.29n)

ls =
[
−∞ xmin,1 −∞ xmin,2 · · · −∞ xmin,N

]⊤
, (2.29o)

us =
[
∞ xmax,1 ∞ xmax,2 · · · ∞ xmax,N

]⊤
, (2.29p)

where b̃0 = b0 + A⊤
0 x0. We point out that QPIPM can solve the OCP (2.27) by applying the definitions

(2.29). However, the Riccati based version utilizes the structure, which will result in better computational
performance.

In the Riccati version, QPIPM utilizes the structure of the QP (2.27) to compute the search direction. As
such, QPIPM does not apply a standard LDL factorization to solve (2.6), but rather a dedicated structure-
utilizing Riccati algorithm.

2.2.1 Search direction

In the Riccati mode, the Newton search direction is on the form (2.6) with the provided matrices in
(2.29). Due to space restrictions, we do not write out the full system matrix. The right hand side of the linear

2.2. RICCATI BASED FACTORIZATION FOR OPTIMAL CONTROL PROBLEMS 15

system is

rL =
[
rL,u0 rL,x1 rL,u1 rL,x2 · · · rL,uN−1 rL,xN

]⊤
, (2.30a)

rϵl
=

[
rϵl,1 rϵl,2 · · · rϵl,N

]⊤
, (2.30b)

rϵu
=

[
rϵu,1 rϵu,2 · · · rϵu,N

]⊤
, (2.30c)

rA =
[
rA,0 rA,1 · · · rA,N−1

]⊤
, (2.30d)

rSl
=

[
rSl,1 rSl,2 · · · rSl,N

]⊤
, (2.30e)

rSu
=

[
rSu,1 rSu,2 · · · rSu,N

]⊤
, (2.30f)

rBl
=

[
rBl,0 rBl,1 · · · rBl,N−1

]⊤
, (2.30g)

rBu =
[
rBu,0 rBu,1 · · · rBu,N−1

]⊤
, (2.30h)

rϵl
=

[
rϵl,1 rϵl,2 · · · rϵl,N

]⊤
, (2.30i)

rϵu =
[
rϵu,1 rϵu,2 · · · rϵu,N

]⊤
, (2.30j)

rSZsl
=

[
rSZsl

,1 rSZsl
,2 · · · rSZsl

,N

]⊤
, (2.30k)

rSZsu
=

[
rSZsu ,1 rSZsu ,2 · · · rSZsu ,N

]⊤
, (2.30l)

rT Vl
=

[
rT Vl,0 rT Vl,1 · · · rT Vl,N−1

]⊤
, (2.30m)

rT Vu =
[
rT Vu,0 rT Vu,1 · · · rT Vu,N−1

]⊤
, (2.30n)

rT Vϵl
=

[
rT Vϵl

,1 rT Vϵl
,2 · · · rT Vϵl

,N

]⊤
, (2.30o)

rT Vϵu
=

[
rT Vϵu ,1 rT Vϵu ,2 · · · rT Vϵu ,N

]⊤
, (2.30p)

Currently, QPIPM computes the right hand side (2.30) directly from (2.5). However, the algorithm can be
improved further by exploiting the structure of the problem and compute individual elements separately.

2.2.2 System reduction

Similarly as in the general case, we eliminate Lagrange multipliers and slack variables. Diagonal
matrices are defined as in (2.10) and submatrices are defined with k as subscript. By elimination of Lagrange
multipliers and slack variables for inequality constraints and rearranging decision variables, we arrive at the

16 CHAPTER 2. MATHEMATICAL DETAILS

KKT system (for N = 3)

R̄0 B1

Q̄1 E1 F1 M1 −I A1

E⊤
1 Q̄ϵl,1

F ⊤
1 Q̄ϵu,1

M⊤
1 R̄1 B1

Q̄2 E2 F2 M2 −I A2

E⊤
2 Q̄ϵl,2

F ⊤
2 Q̄ϵu,2

M⊤
2 R̄2 B2

Q̄3 E3 F3 −I

E⊤
3 Q̄ϵl,3

F ⊤
3 Q̄ϵu,3

B⊤
0 −I

A⊤
1 B⊤

1 −I

A⊤
2 B⊤

2 −I

∆u0

∆x1

∆ϵl,1

∆ϵu,1

∆u1

∆x2

∆ϵl,2

∆ϵu,2

∆u2

∆x3

∆ϵl,3

∆ϵu,3

∆y0

∆y1

∆y2

=

r̄L,u0

r̄L,x1

r̄ϵl,1

r̄ϵu,1

r̄L,u1

r̄L,x2

r̄ϵl,2

r̄ϵu,2

r̄L,u2

r̄L,x3

r̄ϵl,3

r̄ϵu,3

r̄A,0

r̄A,1

r̄A,2

,

(2.31)

where

Ek = SkDsl,k, k = 1, ..., N, (2.32a)

Fk = −SkDsu,k, k = 1, ..., N, (2.32b)

Q̄k = Qk + EkS⊤
k − FkS⊤

k , k = 1, ..., N, (2.32c)

Q̄ϵl,k = Qϵl,k + Dϵl,k + Dsl,k, k = 1, ..., N, (2.32d)

Q̄ϵu,k = Qϵu,k + Dϵu,k + Dsu,k, k = 1, ..., N, (2.32e)

R̄k = Rk + Dl,k + Du,k, k = 0, ..., N − 1. (2.32f)

and

r̄L,xk
= − rL,xk

+ Sk(S−1
sl,kZsl,k(rSl,k − Z−1

sl,krSZsl,k
))

− Sk(S−1
su,kZsu,k(rSu,k − Z−1

su,krSZsu,k
)),

k = 1, ..., N, (2.33a)

r̄ϵl,k = − rϵl,k
+ T −1

ϵl,kVϵl,k(rBϵl
,k − V −1

ϵl,krT Vϵl,k
)

+ S−1
sl,kZsl,k(rSl,k − Z−1

l,k rSZsl,k
),

k = 1, ..., N, (2.33b)

r̄ϵu,k = − rϵu,k
+ T −1

ϵu,kVϵu,k(rBϵu ,k − V −1
ϵu,krT Vϵu,k

)

+ S−1
su,kZsu,k(rSu,k − Z−1

u,krSZsu,k
),

k = 1, ..., N, (2.33c)

r̄L,uk
= − rL,uk

+ Tl,kVl,k(rBl,k − V −1
l,k rT Vl,k

)

− T −1
u,kVu,k(rBu,k − V −1

u,k rT Vu,k
),

k = 0, ..., N − 1, (2.33d)

r̄A,k = − rA,k, k = 0, ..., N − 1. (2.33e)

2.2. RICCATI BASED FACTORIZATION FOR OPTIMAL CONTROL PROBLEMS 17

The eliminated Lagrange multipliers and slack variables are

∆vl,k = T −1
l,k Vl,k(rBl,k − V −1

l,k rT Vl,k)− T −1
l,k Vl,k∆xk, k = 0, ..., N − 1, (2.34a)

∆vu,k = T −1
u,kVu,k(rBu,k − V −1

u,k rT Vu,k) + T −1
u,kVu,k∆xk, k = 0, ..., N − 1, (2.34b)

∆vϵl,k = T −1
ϵl,kVϵl,k(rBϵl,k

− V −1
ϵl,krT Vϵl,k

)− T −1
ϵl,kVϵl,k∆ϵl,k, k = 1, ..., N, (2.34c)

∆vϵu,k = T −1
ϵu,kVϵu,k(rBϵu,k

− V −1
ϵu,krT Vϵu,k

)− T −1
ϵu,kVϵu,k∆ϵu,k, k = 1, ..., N, (2.34d)

∆zsl,k = S−1
sl,kZsl,k(rSl,k − Z−1

sl,krSZsl,k
)

− S−1
sl,kZsl,k(S⊤

k ∆xk + ∆ϵl,k),
k = 1, ..., N, (2.34e)

∆zsu,k = S−1
su,kZsu,k(rSu,k − Z−1

su,krSZsu,k
)

− S−1
su,kZsu,k(−S⊤

k ∆xk + ∆ϵu,k),
k = 1, ..., N, (2.34f)

∆tl,k = − V −1
l,k rT Vl,k − V −1

l,k Tl,k∆vl,k, k = 0, ..., N − 1, (2.34g)

∆tu,k = − V −1
u,k rT Vu,k − V −1

u,k Tu,k∆vu,k, k = 0, ..., N − 1, (2.34h)

∆tϵl,k = − V −1
ϵl,krT Vϵl,k

− V −1
ϵl,kTϵl,k∆vϵl,k, k = 1, ..., N, (2.34i)

∆tϵu,k = − V −1
ϵu,krT Vϵu,k

− V −1
ϵu,kTϵu,k∆vϵu,k, k = 1, ..., N, (2.34j)

∆ssl,k = − Z−1
sl,krSZsl,k

− Z−1
sl,kSsl,k∆zsl,k, k = 1, ..., N, (2.34k)

∆ssu,k = − Z−1
su,krSZsu,k

− Z−1
su,kSsu,k∆zsu,k, k = 1, ..., N. (2.34l)

We eliminate the soft constraint slack variables. The resulting system is (for N = 3)

R̃0 B0

Q̃1 M1 −I A1

M⊤
1 R̃1 B1

Q̃2 M2 −I A2

M⊤
2 R̃2 B2

Q̃3 −I

B⊤
0 −I

A⊤
1 B⊤

1 −I

A⊤
2 B⊤

2 −I

∆u0

∆x1

∆u1

∆x2

∆u2

∆x3

∆y0

∆y1

∆y2

=

r̃L,u0

r̃L,x1

r̃L,u1

r̃L,x2

r̃L,u2

r̃L,x3

r̃A,0

r̃A,1

r̃A,2

, (2.35)

where

Q̃k = Q̄k − EkQ̄−1
ϵl,kE⊤

k − FkQ̄−1
ϵu,kF ⊤

k , k = 1, ..., N, (2.36a)

R̃k = R̄k, k = 0, ..., N − 1, (2.36b)

r̃L,xk
= r̄L,xk

+ EkQ̄−1
ϵl,kr̄ϵl,k

+ FkQ̄−1
ϵu,kr̄ϵu,k

, k = 1, ..., N, (2.36c)

r̃L,uk
= r̄L,uk

, k = 0, ..., N − 1, (2.36d)

r̃A = r̄A, k = 0, ..., N − 1. (2.36e)

and the eliminated slack variables are

∆ϵl,k = Q̄−1
ϵl,k

(
r̄ϵl,k
− E⊤

k ∆xk

)
, (2.37a)

∆ϵu,k = Q̄−1
ϵu,k

(
r̄ϵu,k

− F ⊤
k ∆xk

)
. (2.37b)

The KKT-system (2.35) can be solved with Riccati recursion, and finally the remaining part of the search
direction can be compute from (2.37) and (2.34).

18 CHAPTER 2. MATHEMATICAL DETAILS

2.2.3 Riccati recursion algorithm

We apply a Riccati recursion based algorithm to solve structured systems of linear equations in the form
(2.35). For simplicity of notation, we write the system (2.35) as

R0 B0

Q1 M1 −I A1

M⊤
1 R1 B1

Q2 M2 −I A2

M⊤
2 R2 B2

P3 −I

B⊤
0 −I

A⊤
1 B⊤

1 −I

A⊤
2 B⊤

2 −I

∆u0

∆x1

∆u1

∆x2

∆u2

∆x3

∆y0

∆y1

∆y2

= −

r0

q1

r1

q2

r2

p3

b0

b1

b2

, (2.38)

We point out that the data in (2.38) should not be confused with variables with similar names previously
introduced. Algorithm 2 and 3 introduce the factorization and solution phase of the Riccati recursion
algorithm (Jørgensen 2004, Wahlgreen and Jørgensen 2022). We point out that the Algorithm 2 returns the
cholesky factorization of Re,k, which QPIPM applies in Algorithm 3 to solve the linear systems involving
Re,k.

Note the negation on the right hand side in (2.38). Before calling the Riccati algorithm to solve (2.35),
QPIPM negates the right hand side of the system (2.35) such that it is in the form (2.38).

2.2.4 Algorithm

In Riccati mode, QPIPM follows the steps in Algorithm 1, where the LDL-factorization step and LDL-
solve step are replaced with the the Riccati factorization and Riccati solve algorithms in Algorithm 2 and
3.

2.2.5 A note on bounds

The Riccati recursion part of QPIPM does allow for hard output constraints, i.e., box constraints on
xk (we have not provided these equations here, but they are easily included based on the input, uk, box
constraints). Therefore, if elements corresponding to xk in l and/or u are not set to infinity, QPIPM does
include the bound. On the other hand, QPIPM does not support soft input constraints in Riccati mode.
Therefore, elements corresponding to the inputs, uk, in S will never be accessed even if the corresponding
values of ls and/or lu are not set to infinity. QPIPM does however require the entries in S corresponding
to uk to be set. We have implemented QPIPM in this way such that one can turn Riccati mode on and off
without changing the provided QP formulation.

2.2. RICCATI BASED FACTORIZATION FOR OPTIMAL CONTROL PROBLEMS 19

Algorithm 2: Riccati factorization

Input: {Rk, Qk, Mk, Ak, Bk}N−1
k=0 , PN .

1. Compute,

Re,k = Rk + BkPk+1B⊤
k ,

Kk =−R−1
e,k(M⊤

k + BkPk+1A⊤
k),

Pk = Qk + AkPk+1A⊤
k −K⊤

k Re,kKk,

for k = N − 1, N − 2, ..., 1 and

Re,0 = R0 + B0P1B⊤
0 .

Return: {Re,k, chol(Re,k), Pk+1}N−1
k=0 , {Kk}N−1

k=1 .

Algorithm 3: Riccati solution

Input: {Qk, Mk, Ak, Bk, Re,k, chol(Re,k), Pk+1}N−1
k=0 , {Kk}N−1

k=1 .

1. Compute,

ak = −R−1
e,k(rk + Bk(Pk+1bk + pk+1)),

pk = qk + Ak(Pk+1bk + pk+1) + K⊤
k (rk + Bk(Pk+1bk + pk+1)),

for k = N − 1, N − 2, ..., 1 and

a0 = −R−1
e,0(r0 + B0(P1b̃0 + p1)).

2. Compute the solution, {∆uk, ∆xk+1}N−1
k=0 ,

∆u0 = a0,

∆x1 = B⊤
0 ∆u0 + b̃0,

and

∆uk = Kk∆xk + ak,

∆xk+1 = A⊤
k ∆xk + B⊤

k ∆uk + bk,

for k = 1, 2, ..., N − 1.

3. Compute the Lagrange multipliers, {∆yk}N−1
k=0 ,

∆yN−1 = PN ∆xN + pN ,

∆yk−1 = Ak∆yk + Qk∆xk + Mk∆uk + qk,

for k = N − 1, N − 2, ..., 1.

Return: {∆uk, ∆xk+1, ∆yk}N−1
k=0 .

CHAPTER 3

Implementation of QPIPM in Matlab and C

In this chapter, we introduce how QPIPM can be called in both Matlab and in C. Both versions are part
of a gitlab-repository, which can be cloned with the command line command

git clone https://gitlab.gbar.dtu.dk/SCGroup/QPIPM.git

3.1 Matlab

QPIPM in Matlab has the following interface:

1 function [x, stat] = QPIPM(H, g, A, b, C, d, l, u, options, ls, S, us, Ql, Qu, ql, qu)

Inputs:

The inputs H, g, A, b, l, u, ls, us, S, Ql, Qu, ql, and qu are as in (2.1). The inputs C and d implements
general inequality constraints in the form

C⊤x ≥ d. (3.1)

The general inequality constraints (3.1) have only been included in QPIPM for testing purposes and are
ignored in Riccati mode. The inputs ls – qu can be left empty in which case QPIPM solves a problem
without soft constraints. The options input is a structure with the following fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: NaN

We point out that QPIPM takes the same inputs and have the same outputs when Riccati mode is off and
on. When applying Riccati mode, QPIPM assumes that the provided matrices are structured as described
in section 2.2. QPIPM will not check that this is the case. Therefore, Riccati mode can be applied for a
non-structured QP, but the result will likely be wrong.

Outputs:

The output x is the solution at convergence or after maximum iterations are reached. QPIPM prints a
warning message in the case that maximum iterations are reached. The stat output is a structure with the

21

22 CHAPTER 3. IMPLEMENTATION OF QPIPM IN MATLAB AND C

following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

lamBn Lagrange multipliers for bound constraints

lamZs Lagrange multipliers for soft constraints

lamEpsBn Lagrange multipliers for ϵ-bound constraints

eps ϵ-slack variables

3.2 C

As previously mentioned, the C version of QPIPM does currently not have the option to include soft
constraints. QPIPM in C has the following interface:

1 void QPIPM(

2 // Inputs

3 struct mat *H ,

4 struct vec *g ,

5 struct mat *A ,

6 struct vec *b ,

7 struct mat *C ,

8 struct vec *d ,

9 struct vec *l ,

10 struct vec *u ,

11 void *optionsIn ,

12 mem *memory ,

13

14 // Outputs

15 struct vec *x ,

16 void *statIn

17)

The structures vec, mat, and mem are vector, matrix, and memory structures, respectively. Theses structures
are defined in the dependency SCInterface, which is shortly introduced in section 3.2.2. In the following,
we introduce the inputs and outputs of the C version.

3.2. C 23

Inputs:

The inputs H, g, A, b, C, d, l, and u are as in the Matlab version. The optionsIn input is a options
structure of type optionsQPIPM_t, which has the fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: NaN

bigN Numbers above treated as infinity Default: 1020

The input memory is a structure of type mem, which contains sufficient integer and double memory for
QPIPM (see section 3.2.1).

Outputs:

The output x is the solution at convergence or after maximum iterations are reached. Similarly to the
Matlab version, QPIPM in C prints a warning message if the maximum number of iterations are reached.
The stat structure is of type statQPIPM_t and has the following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

lamBn Lagrange multipliers for bound constraints

3.2.1 Memory allocation

QPIPM requires both integer and double workspace, which should be allocated in the input memory
structure. QPIPM features the function

1 void workspaceQPIPM(int n, int me, int mi, int *iwork, int *dwork)

which given the dimensions of the QP, n (decision variables), me (equality constraints), and mi (inequal-
ity constraints), computes the required workspace for QPIPM. Then the amount of integer workspace,
iwork, and double workspace, dwork, can be use to initialize the memory input with sufficient memory.
Additionally, the stat structure for the output is required to be initialized, which can be done with the
function

1 void createStatQPIPM(const int n, const int me, const int mi, statQPIPM_t

*const stat)

createStatQPIPM allocates the required memory for the output stat structure. Note that when finished
using the stat structure, the memory can be freed with the function

1 void destroyStatQPIPM(statQPIPM_t *stat)

24 CHAPTER 3. IMPLEMENTATION OF QPIPM IN MATLAB AND C

3.2.2 Dependencies

QPIPM is a part of the private gitlib-repository SCProject, which is a project containing a series of
git repositories. QPIPM is dependent on the following two repositories in SCProject

SCInterface A set of structure and function definitions

linalg A set of vector and matrix linear algebra functions

Additionally, linalg is BLAS dependent and requires linking to a BLAS installation on the system.

3.2.3 Gitlab

The private Gitlab group SCGroup grants access to all projects contained in SCProject. Therefore,
the three projects, QPIPM, SCInterface, and linalg are also included in SCGroup. When access is
granted to SCGroup, one can clone the whole SCProject or parts of it. To apply QPIPM, one has to
clone QPIPM, SCInterface, and linalg (and install a version of BLAS). The C version of QPIPM
includes a settings.mk file where the dependency paths can be set. The three git repositories can be
cloned with the following command line commands (accompanied with a username and password):

git clone https://gitlab.gbar.dtu.dk/SCGroup/SCInterface.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/linalg.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/QPIPM.git

3.2.4 Doxygen documentation

The C version of QPIPM is documented with Doxygen. The Doxygen documentation is available in
QPIPM/C/docs, which can be compiled by typing doxygen in the command line. Afterwards, the
documentation is available in QPIPM/C/docs/results/html/index.html, which will open in a
browser. The documentation includes descriptions of all QPIPM functions and their inputs and outputs.
Note, this requires an installation of Doxygen on the system.

3.3 Examples

Both the Matlab and C version of QPIPM has a few test examples. The Matlab version has a driver to
test the implementation on a linearized four tank system. The C version includes a simple test example and a
few examples showing that the algorithm can be called in parallel to solve multiple QPs. The examples can
be found in the examples folder in the Matlab and C version of QPIPM.

Note: The C version of QPIPM is thread-safe such that it can be called in parallel to solve multiple QPs.
This feature requires linking to a thread-safe BLAS library, e.g., BLASFEO (Frison et al. 2018, 2020).

CHAPTER 4

Conclusion

In this part, we introduced the Riccati based primal-dual interior-point software, QPIPM, to solve
structured quadratic programming problems (QPs). QPIPM is a software package that is stored in a private
gitlab-repository QPIPM, which is part of the project SCProject. QPIPM has a Matlab version and a
C version, where the Matlab version is intended for testing purposes and have not been implemented for
computational speed. The C version is thread-safe due to internal distribution of memory allocated prior
to calling QPIPM. QPIPM can solve QPs with equality constraints, box constraints, and soft constraints.
However, currently only the Matlab version supports soft constraints. We have provided the mathematical
details of QPIPM and introduced the implementation of QPIPM in both Matlab and C. We have provided the
interfaces of the implementations and described the inputs and outputs. In the C version, we have elaborated
on how to allocate the needed memory and how to link to the introduced dependencies.

25

Part II

NLPSQP

27

CHAPTER 5

Introduction

We introduce the sequential quadratic programming (SQP) software, NLPSQP (nonlinear-programming-
sequential-quadratic-programming), for solution of nonlinear programming problems (NLPs). NLPSQP
applies an iterative sequential quadratic programming (SQP) algorithm. In each iteration, NLPSQP per-
forms three major steps, 1) solve a quadratic programming problem (QP) subproblem with QPIPM, 2)
apply a line-search algorithm to ensure sufficient decrease in a merit function, and 3) perform a Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) update to avoid the need of evaluating second order derivatives.
NLPSQP supports a Riccati mode for solution of structured problems arising in optimal control problems
(OCPs). NLPSQP is intended for use in nonlinear model predictive control (NMPC) and economic NMPC
(ENMPC) applications. We have implemented NLPSQP in both a Matlab version and a C version. The
Matlab version is intended for testing purposes, while the C version is intended for uncertainty quantification
studies of closed-loop systems with Monte Carlo simulation. To that end, the C version of NLPSQP is
implemented thread-safe to enable parallel scaling in Monte Carlo simulations, i.e., NLPSQP can be called in
parallel to solve different NLPs. The thread-safety of NLPSQP is ensured by internally distributing memory
allocated prior to calling NLPSQP. Similarly to QPIPM, the Matlab version supports soft constraints, while
the C version lacks this feature due to time constraints. The current implementation of NLPSQP is still work
in progress and can likely be optimized for better performance. However, the most computational work is
done in QPIPM.

In this report, we introduce the mathematical details in the NLPSQP implementation and introduce the
interfaces of NLPSQP in both Matlab and C. NLPSQP is stored in a private gitlab-repository NLPSQP

and is part of the project SCProject, which is implemented in C and contains a number of other gitlab-
repositories. For the C version, we introduce the other dependencies in SCProject and explain how to
allocate the required memory prior to calling NLPSQP.

We point out that the implementation of NLPSQP is highly inspired by previous work (Wächter and
Biegler 2006, Kaysfeld et al. 2023).

29

CHAPTER 6

Mathematical details

We have developed NLPSQP to solve NLPs with equality constraints, box constraints, and soft constraints
in the form,

min
x,ϵl,ϵu

f(x) + Q(ϵl, ϵu), (6.1a)

s.t. g(x) = 0, (6.1b)

l ≤ x ≤ u, (6.1c)

ls − ϵl ≤ s(x) ≤ us + ϵu, (6.1d)

ϵl, ϵu ≥ 0, (6.1e)

where x ∈ Rn, ϵl ∈ Rms , ϵu ∈ Rms , f : Rn → R, Q : R2ms → R, g : Rn → Rme , l ∈ Rn, u ∈ Rn,
s : Rn → Rms , ls ∈ Rms , and us ∈ Rms . We point out that l and u can have elements set to −∞ and∞ in
which case NLPSQP eliminates these constraints in a pre-computing phase. We let ml and mu denote the
actual number of lower bounds and upper bounds after elimination of∞-bounds, respectively.

The penalty function, Q(·), is a combination of quadratic and linear terms similarly to the penalty term
the QP solved in QPIPM,

Q(ϵl, ϵu) = 1
2ϵ⊤

l Qlϵl + q⊤
l ϵl + 1

2ϵ⊤
u Quϵu + q⊤

u ϵu, (6.2)

where we assume that Ql ∈ Rms×ms and Qu ∈ Rms×ms are diagonal matrices.

NLPSQP is an iterative algorithm that in each iteration goes through the following three major steps,

• Compute the search-direction by solving a QP-subproblem,

• A line-search algorithm to ensure sufficient decrease in a merit function,

• A BFGS update for Lagrangian Hessian approximation.

We let the superscript [l] denote the l’th iteration of NLPSQP. In each iteration NLPSQP takes the step

x[l+1] = x[l] + α[l]∆x[l], (6.3)

where α[l] is a step-size computed by the line-search algorithm to ensure sufficient decrease in a merit
function and ∆x[l] is the search direction computed as the solution to the QP-subproblem.

NLPSQP features a version to solve the general NLP (6.1) and a Riccati recursion based version to solve
structured NLPs arising in OCPs. The non-Riccati version is not optimized and primarily implemented for
testing purposes.

31

32 CHAPTER 6. MATHEMATICAL DETAILS

6.1 Sequential quadratic programming algorithm

In this section, we introduce the SQP algorithm implemented in NLPSQP to solve soft constrained NLPs
in the form (6.1).

6.1.1 Optimality conditions

We define the Lagrangian function for (6.1), which is

L(x, λ, πl, πu, πϵl
, πϵu

, πls
, πus

) = f(x) + Q(ϵl, ϵu)− λ⊤g(x)− π⊤
l (x− l)− π⊤

u (u− x)

− π⊤
ϵl

ϵl − π⊤
ϵu

ϵu − π⊤
ls

(s(x)− ls + ϵl)− π⊤
us

(us + ϵu − s(x)).
(6.4)

λ ∈ Rm are equality constraint Lagrange multipliers, πl ∈ Rn are lower bound Lagrange multipliers,
πu ∈ Rn are upper bound Lagrange multipliers, πϵl

∈ Rms are ϵl-non-negativity Lagrange multipliers,
πϵu
∈ Rms are ϵu-non-negativity Lagrange multipliers, πls

∈ Rms are lower soft constraint Lagrange
multipliers, and πus

∈ Rms are upper soft constraint Lagrange multipliers. The Lagrangian gradient with
respect to the decision variables, x, and the soft constraint Lagrange multipliers, ϵl and ϵu, is then

∇xL = ∇f(x)−∇g(x)λ− πl + πu −∇s(x)πls
+∇s(x)πus

, (6.5a)

∇ϵl
L = ∇ϵl

Q(ϵl, ϵu)− πϵl
− πls

, (6.5b)

∇ϵuL = ∇ϵuQ(ϵu, ϵu)− πϵu − πus , (6.5c)

where L(x, λ, πl, πu, πϵl
, πϵu

, πls
, πus

). The first order KKT-conditions for (6.1) are given as

∇xL = 0, (6.6a)

∇ϵl
L = 0, (6.6b)

∇ϵu
L = 0, (6.6c)

g(x) = 0, (6.6d)

x− l ≥ 0, u− x ≥ 0, (6.6e)

s(x)− ls + ϵl ≥ 0, us + ϵu − s(x) ≥ 0, (6.6f)

ϵl ≥ 0, ϵu ≥ 0. (6.6g)

6.1.2 Quadratic programming subproblem

NLPSQP solves a QP-subproblem in each iteration to get the search direction. For simplicity of notation,
we disregard the iteration superscript [l] in this section (x = x[l], ∆x = ∆x[l], ϵl = ϵ

[l]
l , ϵu = ϵ[l]

u ,
W = W [l]). The QP-subproblem solved in NLPSQP is

min
∆x,ϵl,ϵu

1
2∆x⊤W∆x +∇f(x)⊤∆x + Q(ϵl, ϵu), (6.7a)

s.t. ∇g(x)⊤∆x = −g(x), (6.7b)

l − x ≤ ∆x ≤ u− x, (6.7c)

ls − s(x)− ϵl ≤ ∇s(x)⊤∆x ≤ us − s(x) + ϵu, (6.7d)

ϵl, ϵu ≥ 0. (6.7e)

W is a BFGS approximation of the second order derivative of the Lagrangian. We denote the Lagrange
multipliers of the QP-subproblem (6.7) as: µ for equality constrain, τl and τu for bound constraints, and
τls and τus for soft constraints. We point out that the slack variables ϵl and ϵu in the QP-subproblem (6.7)

6.1. SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 33

are identical to those in the original NLP (6.1). Therefore, the Lagrange multipliers for the ϵ-bounds in the
QP-subproblem are exactly πϵl

and πϵu
, i.e., the Lagrange multipliers from the original NLP (6.1).

The Lagrange multipliers of the QP-subproblem (6.7) are related to the Lagrange multipliers of the
original NLP (6.1) as

µ = λ + ∆λ, (6.8a)

τl = πl + ∆πl, τu = πu + ∆πu, (6.8b)

τls
= πls

+ ∆πls
, τus

= πus
+ ∆πus

. (6.8c)

Using the relation (6.8), we can compute the search direction for the Lagrange multipliers,

(∆λ, ∆πl, ∆πu, ∆πls , ∆πus). (6.9)

We point out that the solution to the QP-subproblem (6.7) ensures to satisfy the linear constraints in the
original NLP (6.1), i.e., the bound constraints (6.1c) and the ϵ-non-negativity constraints (6.1e). Note also
that the QP-subproblem (6.7) is in the form (2.1) and can be solved with QPIPM.

6.1.3 Line-search

NLPSQP applies a backtracking line-search algorithm to compute the step-size, α, that ensures sufficient
degrees in Powell’s l1-merit function (Powell 1978, Jørgensen 2004). We have adapted the merit function to
include soft constraint

P (x) = f(x) + σ⊤|g(x)|+ κ⊤
l |min(0, s(x)− ls + ϵl)|

+ κ⊤
u |max(0, s(x)− us − ϵu)|.

(6.10)

The j’th element of the vectors, σ, κl, and κu, are defined as

σj = max
(
|µj |,

1
2(σj + |µj |)

)
, j = 1, ..., m, (6.11a)

κl,j = max
(
|τls,j |,

1
2(κl,j + |τls,j |)

)
, j = 1, ..., ms, (6.11b)

κu,j = max
(
|τus,j |,

1
2(κu,j + |τus,j |)

)
, j = 1, ..., ms, (6.11c)

where σj = |µj |, κl,j = |τls,j |, and κu,j = |τus,j | in the first iteration (l = 0). Note, linear constraints
are not included in the merit function since these are satisfied by construction of the QP-subproblem (6.7).
Also, the penalty function, Q(ϵl, ϵu), is not included in the merit function since ϵl and ϵu are not affected by
changes in the step-size, α. We define the following function

T (α) = P (x[l+1]) = P (x[l] + α∆x[l]). (6.12)

We define sufficient decrease with the Armijo condition as

T (α) ≤ T (0) + c1αD∆xT (0), (6.13)

34 CHAPTER 6. MATHEMATICAL DETAILS

where

T (α) = f(x[l] + α∆x[l]) + σ⊤|g(x[l] + α∆x[l])|

+ κ⊤
l |min(0, s(x[l] + α∆x[l])− ls + ϵ

[l]
l)|

+ κ⊤
u |max(0, s(x[l] + α∆x[l])− us − ϵ[l]

u)|

(6.14a)

T (0) = f(x[l]) + σ⊤|g(x[l])|

+ κ⊤
l |min(0, s(x[l])− ls + ϵ

[l]
l)|

+ κ⊤
u |max(0, s(x[l])− us − ϵ[l]

u)|

(6.14b)

D∆xT (0) = ∇f(x[l])⊤∆x[l] − σ⊤|g(x[l])|

− κ⊤
l |min(0, s(x[l])− ls + ϵ

[l]
l)|

− κ⊤
u |max(0, s(x[l])− us − ϵ[l]

u)|

(6.14c)

The backtracking line-search algorithm is (Kaysfeld et al. 2023)

1. Set α = 1

2. Check the Armijo condition (6.13) and if satisfied break with α[l] = α as output

3. Reduce step α← βα

4. Go to 2.

We apply c1 = 10−4 and β = 0.5, which are similar values as chosen in IPOPT (Wächter and Biegler 2006).

Once the step-size, α[l], is computed by the line-search algorithm, NLPSQP performs the step

x[l+1] = x[l] + α[l]∆x[l], λ[l+1] = λ[l] + α[l]∆λ[l], (6.15a)

π
[l+1]
l = π

[l]
l + α[l]∆π

[l]
l , π[l+1]

u = π[l]
u + α[l]∆π[l]

u , (6.15b)

π
[l+1]
ls

= π
[l]
ls

+ α[l]∆π
[l]
ls

, π[l+1]
us

= π[l]
us

+ α[l]∆π[l]
us

. (6.15c)

6.1.4 BFGS update

NLPSQP requires only gradient information. Thus, no second order derivatives are required to apply
NLPSQP. In NLPSQP, we apply a BFGS update for the Lagrange Hessian. Specifically, we apply a damped
version of the BFGS update to ensure positive definiteness of the update (Powell 1978). In the remainder of
this section, we apply the following definitions to ease notation: W = W [l] and W̄ = W [l+1].

We define the following two vectors

s = x[l+1] − x[l], (6.16a)

y = ∇xL+ −∇xL−, (6.16b)

where

∇xL− = ∇xL(x[l], λ[l+1], π
[l+1]
l , π[l+1]

u , π[l+1]
ϵl

, π[l+1]
ϵu

, π
[l+1]
ls

, π[l+1]
us

)

= ∇f(x[l])−∇g(x[l])λ[l+1] − π
[l+1]
l + π[l+1]

u −∇s(x[l])π[l+1]
ls

+∇s(x[l])π[l+1]
us

,
(6.17a)

∇xL+ = ∇xL(x[l+1], λ[l+1], π
[l+1]
l , π[l+1]

u , π[l+1]
ϵl

, π[l+1]
ϵu

, π
[l+1]
ls

, π[l+1]
us

)

= ∇f(x[l+1])−∇g(x[l+1])λ[l+1] − π
[l+1]
l + π[l+1]

u −∇s(x[l+1])π[l+1]
ls

+∇s(x[l+1])π[l+1]
us

.

(6.17b)

6.2. RICCATI VERSION FOR OPTIMAL CONTROL PROBLEMS 35

We point out that the πl and πu contributions in L− and L+ can be ignored as these are eliminated in (6.16b).
Now let

r = θy + (1− θ)Ws, (6.18)

where

θ =

1 s⊤y ≥ 0.2s⊤Ws

0.8s⊤Ws

s⊤Ws− s⊤y
s⊤y < 0.2s⊤Ws

(6.19)

The damped BFGS update is then

W̄ = W − (Ws)(Ws)⊤

s⊤(Ws) + rr⊤

s⊤r
. (6.20)

NLPSQP applies W [0] = I , where I is an identity matrix of proper dimensions.

6.1.5 Initialization

NLPSQP requires an initial guess on the decision variables x[0], which the user has to provide. The soft
constraint slack variables, ϵl and ϵu, and all Lagrange multipliers are initialized by NLPSQP to 0.

6.1.6 Convergence

NLPSQP converges when the KKT-conditions (6.6) are satisfied, i.e., a local optimum is located. In
practice, NLPSQP evaluates a scaled convergence criterion based on a user-specified convergence tolerance
ϵ > 0

||∇xL/sd||∞ ≤ ϵ, (6.21a)

||∇ϵl
L||∞ ≤ ϵ, (6.21b)

||∇ϵuL||∞ ≤ ϵ, (6.21c)

||g(x)||∞ ≤ ϵ, (6.21d)

||min(0, s(x)− ls + ϵl)||∞ ≤ ϵ, (6.21e)

||max(0, s(x)− us − ϵu)||∞ ≤ ϵ, (6.21f)

where

sd = max
(

smax,
||λ||1 + ||πl||1 + ||πu||1

m + ml + mu

)
/smax. (6.22)

We apply smax = 100 similarly to IPOPT (Wächter and Biegler 2006). NLPSQP evaluates the criterion
(6.21) after the step (6.15) is computed.

6.1.7 Algorithm

Algorithm 4 presents a detailed implementation guide for NLPSQP.

6.2 Riccati version for optimal control problems

In this section, we introduce the Riccati recursion option for NLPSQP. In this mode, NLPSQP assumes
that the NLP has a specific structure, where the QP-subproblem is in the form (2.27) such that QPIPM can
apply Riccati mode. Therefore, the following is required of the NLP for NLPSQP to apply Riccati mode,

36 CHAPTER 6. MATHEMATICAL DETAILS

Algorithm 4: NLPSQP pseudo code
Input: Initial guess, x0, and soft constrained NLP,

min
x,ϵl,ϵu

f(x) + Q(ϵl, ϵu),

s.t. g(x) = 0,

l ≤ x ≤ u,

ls − ϵl ≤ s(x) ≤ us + ϵu,

ϵl, ϵu ≥ 0,

i.e. the functions: f(x), g(x), s(x) and the matrices and vectors: Ql, Qu, gl, gu, l, u, ls, lu.

• Initialize (l = 0):

x[0] = x0, ϵ
[0]
l = ϵ[0]

u = 0, λ[0] = π
[0]
l = π[0]

u = π[0]
ϵl

= π[0]
ϵu

= π
[0]
ls

= π[0]
us

= 0, W [0] = I.

• Check convergence (6.21).

while not converged do

1. Update iteration counter: l← l + 1.

2. Apply QPIPM to solve the QP-subproblem for ∆x[l] = ∆x, ϵ
[l]
l = ϵl, and ϵ[l]

u = ϵu,

min
∆x,ϵl,ϵu

1
2∆x⊤W∆x +∇f(x)⊤∆x + Q(ϵl, ϵu),

s.t. ∇g(x)⊤∆x = −g(x),
l − x ≤ ∆x ≤ u− x,

ls − s(x)− ϵl ≤ ∇s(x)⊤∆x ≤ us − s(x) + ϵu,

ϵl, ϵu ≥ 0,

where W = W [l] and x = x[l]. Note, the Lagrange multipliers for the QP-subproblem are

µ = λ[l] + ∆λ[l],

τl = π
[l]
l + ∆π

[l]
l , τu = π[l]

u + ∆π[l]
u ,

τls = π
[l]
ls

+ ∆π
[l]
ls

, τus = π[l]
us

+ ∆π[l]
us

,

πϵl
= π[l]

ϵl
, πϵu

= π[l]
ϵu

.

3. Compute the step-size, α[l], with the line-search algorithm as descriped in section 6.1.3.

4. Compute the step

x[l+1] = x[l] + α[l]∆x[l], λ[l+1] = λ[l] + α[l]∆λ[l],

π
[l+1]
l = π

[l]
l + α[l]∆π

[l]
l , π[l+1]

u = π[l]
u + α[l]∆π[l]

u ,

π
[l+1]
ls

= π
[l]
ls

+ α[l]∆π
[l]
ls

, π[l+1]
us

= π[l]
us

+ α[l]∆π[l]
us

.

5. Check convergence (6.21) - break if criterion is satisfied.

6. Apply the BFGS update as described in section 6.2.1

W [l+1] = W [l] − (W [l]s)(W [l]s)⊤

s⊤(W [l]s)
+ rr⊤

s⊤r
.

Return: x, y, πl, πu, πϵl
, πϵu , πls , and πus .

6.2. RICCATI VERSION FOR OPTIMAL CONTROL PROBLEMS 37

1. The decision variable vector contains two variables, xk and uk, and are structured as follows

ξ =
[
u0 x1 u1 · · · xN−1 uN−1 xN

]⊤
. (6.23)

2. The equality constraints, g(ξ) = 0, are structured such that the gradient has the structure

∇g(ξ) =

−B0

I −A1

−B1

I −A2

−B2

I
. . . −AN−1

−BN−1

I

. (6.24)

3. The soft constraint function, s(ξ), contain no soft constraints on the inputs and its gradient has a block
diagonal structure in the form

∇s(ξ) =

0
S1

0
S2

. . .

0
SN

. (6.25)

4. In addition, NLPSQP in Riccati mode applies a block BFGS update to ensure the block diagonal
Hessian structure for the QP-subproblem. For the update to be a good approximation of the true
Lagrange Hessian, we suggest that the NLP has the following Lagrange Hessian structure,

∇2
ξξL =

W0

W1
. . .

WN−1

WN

, (6.26)

with

W0 = R0, (6.27a)

Wk =
[

Qk Mk

M⊤
k Rk

]
, k = 1, ..., N − 1, (6.27b)

WN = PN . (6.27c)

Under the above assumptions, NLPSQP can apply QPIPM in Riccati mode to efficiently solve the
QP-subproblem. In the following section, we introduce the applied block BFGS update to maintain the
required block diagonal Hessian structure in the QP-subproblem. We point out that the line-search algorithm,
convergence criterion, and algorithm initialization is identical to the non-Riccati mode version of NLPSQP.

38 CHAPTER 6. MATHEMATICAL DETAILS

6.2.1 Block BFGS update

In Riccati mode, NLPSQP applies a block BFGS update to maintain a block diagonal Hessian structure
for the QP-subproblem. A usual BFGS update would result in a dense matrix and would therefore not
produce the structure required to apply Riccati recursion in the QP-subproblem. In the remainder of this
section, we apply Wk = W

[l]
k and W̄k = W

[l+1]
k for simplicity of notation.

We define the vectors, s and y, similar to (6.16),

s = ξ[l+1] − ξ[l], (6.28a)

y = ∇ξL+ −∇ξL−, (6.28b)

where L− and L+ is defined as in (6.17). We let sk and yk be sub-vectors in s and y corresponding to the
diagonal block matrices, Wk, in (6.26). Similarly to the normal damped BFGS update, we define

rk = θkyk + (1− θk)Wksk, (6.29)

where

θk =

1 s⊤

k yk ≥ 0.2s⊤
k Wksk

0.8s⊤
k Wksk

s⊤
k Wksk − s⊤

k yk
else

(6.30)

Finally, the BFGS update of each block is

W̄k =

Wk −
(Wksk)(Wksk)⊤

s⊤
k (Wksk)

+ rkr⊤
k

s⊤
k rk

κ > ϵm

Wk else
(6.31)

ϵm is the machine precision of the computer and κ = min(κ1, κ2) with κ1 = s⊤
k Wksk and κ2 = s⊤

k rk.
These update safeguards are implemented to avoid zero-division if some blocks converge faster than others.
NLPSQP initializes the full block diagonal structured Hessian approximation as W [0] = I , where I is an
identity matrix of proper dimensions. Numerical tests have shown that numerical errors might cause indefinite
BFGS block updates. NLPSQP applies the simple strategy to reset the entire Hessian approximation to
identity if an indefinite update is detected.

6.2.2 Application to solve OCPs

In this section, we introduce an OCP and demonstrate that direct multiple shooting discretization
transcribes the OCP to an NLP in the form required for NLPSQP to apply Riccati mode.

We consider continuous OCPs in the form

min
[x(t);u(t)]

tf
t0

ϕ =
∫ tf

t0

l(t, x(t), u(t), p)dt + l̂(x(tf), p), (6.32a)

s.t. x(t0) = x0, (6.32b)

ẋ(t) = f(t, x(t), u(t), d(t), p), t0 ≤ t ≤ tf , (6.32c)

umin(t) ≤ u(t) ≤ umax(t), t0 ≤ t ≤ tf . (6.32d)

By direct multiple shooting discretization, we transcribe the continuous OCP (6.32) to the following NLP,

min
{uk,xk+1}N−1

k=0

ϕ = Φ̂
(
{uk, xk+1}N−1

k=0
)

, (6.33a)

s.t. Rk = xk+1 − F (tk, xk, uk, dk, p) = 0, k = 0, ..., N − 1, (6.33b)

umin,k ≤ uk ≤ umax,k, k = 0, ..., N − 1, (6.33c)

6.2. RICCATI VERSION FOR OPTIMAL CONTROL PROBLEMS 39

where F (·) is a numerical integration scheme and

Φ̂
(
{uk, xk+1}N−1

k=0
)

=
{

N−1∑
k=0

∫ tk+1

tk

l(xk(t), uk, dk, p)dt + l̂(xN , p) :

x0(t0) = x0,

xk(tk) = xk, k = 1, ..., N − 1,

ẋk(t) = f(t, xk(t), uk, dk, p), tk ≤ t ≤ tk+1

}
.

(6.34)

We add soft constraints to the discretized OCP and get a soft constrained OCP in the form

min
{uk,xk+1,ϵl,k+1,ϵu,k+1}N−1

k=0

ϕ = Φ̂
(
{uk, xk+1}N−1

k=0
)

+ Q(ϵl, ϵu), (6.35a)

s.t. Rk = xk+1 − F (tk, xk, uk, dk, p) = 0, k = 0, ..., N − 1, (6.35b)

umin,k ≤ uk ≤ umax,k, k = 0, ..., N − 1, (6.35c)

xmin,k − ϵl,k ≤ sk(xk) ≤ xmax,k + ϵu,k, k = 1, ..., N, (6.35d)

where ϵl =
[
ϵl,1 ϵl,2 · · · ϵl,N

]⊤
, ϵu =

[
ϵu,1 ϵu,2 · · · ϵu,N

]⊤
, and Q(ϵl, ϵu) is as in (6.2). In the

following, we demonstrate that the NLP (6.35) satisfies the requirements for NLPSQP to be called in Riccati
mode.

Equality constraints

We write the equality constraints (6.35b) as

g(ξ) =
[
R0 R1 · · · RN−1

]⊤
, (6.36)

and observe that the gradient has the required form (6.24),

∇g(ξ) =

−∇u0F

I −∇x1F

−∇u1F

I −∇x2F

−∇u2F

I
. . . −∇xN−1F

−∇uN−1F

I

, (6.37)

where we define

Ak = ∇xk
F = ∇xk

F (tk, xk, uk, dk, p), k = 1, ..., N − 1, (6.38)

Bk = ∇uk
F = ∇uk

F (tk, xk, uk, dk, p), k = 0, ..., N − 1. (6.39)

Soft constraints

Similarly, we write the soft constraints (6.35d) as

s(ξ) =
[
s1(x1) s2(x2) · · · sN (xN)

]⊤
(6.40)

40 CHAPTER 6. MATHEMATICAL DETAILS

and observe that the gradient has the required form (6.25),

∇s(ξ) =

0
∇x1s1

0
∇x2s2

. . .

0
∇xN

sN

, (6.41)

where we define

Sk = ∇xk
sk = ∇xk

sk(xk), k = 1, ..., N. (6.42)

Lagrangian Hessian block diagonal structure

We notice that the soft constrained NLP (6.35) has a partially separable (in the states, x, and inputs, u)
objective function and constraints. Therefore, the Lagrangian is also partial separable as

L(ξ) = L0(u0) +
N−1∑
k=1
Lk(xk, uk) + LN (xN), (6.43)

where we leave out the Lagrange multiplier dependencies in L for simplicity. As a result of the partial
separability, the Lagrangian Hessian is given as

∇2
ξξL =

∇2
u0,u0

L0
∇2

x1,x1
L1 ∇2

x1,u1
L1

∇2
u1,x1
L1 ∇2

u1,u1
L1

. . .
∇2

xN−1,xN−1
LN−1 ∇2

xN−1,uN−1
LN−1

∇2
uN−1,xN−1

LN−1 ∇2
uN−1,uN−1

LN−1
∇2

xN ,xN
NN

.

(6.44)

We notice that the Lagrangian Hessian has the required block diagonal structure (6.26), where

R0 = ∇2
u0,u0

L0, (6.45a)[
Qk Mk

M⊤
k Rk

]
=

[
∇2

xk,xk
Lk ∇2

xk,uk
Lk

∇2
uk,xk

Lk ∇2
uk,uk

Lk

]
, (6.45b)

PN = ∇2
xN ,xN

LN . (6.45c)

We point out that the matrices Qk, Rk, Mk, and PN are not required to be evaluated as NLPSQP apply the
block BFGS update described in section 6.2.1.

6.2.3 Algorithm

In Riccati mode, NLPSQP applies the steps in Algorithm 4. However, NLPSQP calls QPIPM in Riccati
mode to solve the QP-subproblem and applies the block BFGS update described in section 6.2.1 to ensure
the required structure of the QP-subproblem.

6.2. RICCATI VERSION FOR OPTIMAL CONTROL PROBLEMS 41

6.2.4 A note on bounds

Even though we have not included hard output constraints in the problem (6.32), NLPSQP does have the
option to include these in the OCP.

CHAPTER 7

Implementation of NLPSQP in Matlab and C

In this chapter, we introduce how to call NLPSQP in both Matlab and in C. Both versions are part of a
private gitlab-repository, which can be cloned with the command line command

git clone https://gitlab.gbar.dtu.dk/SCGroup/NLPSQP.git

7.1 Matlab

NLPSQP in Matlab has the following interface:

1 function [x, stat] = NLPSQP(ffun, x0, gfun, hfun, l, u, options, varargin)

Inputs:

The inputs are as follows: ffun is the objective function, f(x), x0 is the user-provided initial condition,
x0, gfun is the equality constraint function, g(x), l is the lower bound vector, u is the upper bound vector,
options is an options structure, and varargin contains a set of variable input arguments for f(x), g(x),
and h(x).

The input hfun is for general inequality constraints,

h(x) ≥ 0, (7.1)

which is only implemented for testing purposes and not optimized in any way. In Riccati mode, general
inequality constraints are not supported and hfun has to be left empty.

The input options contains a number of options and the possibility to enable soft constraints. The
options structure has the following fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

tolStep Minimum allowed step-size Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: NaN

printQP 0 or 1 to print QPIPM iteration information Default: 0

tolQP QPIPM convergence tolerance Default: 10−2 · tol

maxitQP QPIPM maximum iterations Default: 100

43

44 CHAPTER 7. IMPLEMENTATION OF NLPSQP IN MATLAB AND C

subWarn 0 or 1 to suppress Matlab warnings Default: 0

softLin 0 or 1 to specify linear soft constraints Default: 0

softNonlin 0 or 1 to specify nonlinear soft constraints Default: 0

softProblemLin Structure with linear soft constraints Default: empty

softProblemNonlin Structure with nonlinear soft constraints Default: empty

The two soft constrained problem structures softProblemLin and softProblemNonlin are required
to be set if softLin=1 and softNonlin=1 respectively. Note also that softLin and softNonlin
cannot be set to 1 at the same time. The fields of softProblemLin and softProblemNonlin are

ls Lower soft bound

S/sfun Linear case: Soft constraint matrix - Nonlinear case: Soft constraint function

us Upper soft bound

Ql Quadratic penalty maitrx for lower soft bound - assumed diagonal

Qu Quadratic penalty matrix for upper soft bound - assumed diagonal

ql Linear penalty vector for lower soft bound

qu Linear penalty vector for upper soft bound

We point out that NLPSQP takes the same inputs and have the same outputs when Riccati mode is off and
on. When applying Riccati mode, NLPSQP assumes that the provided NLP has the required structure as
described in section 6.2. NLPSQP does not check that this is the case. Riccati mode can be applied for a
non-structured NLP, but NLPSQP makes assumptions about the structure in the QP-subproblem, which
likely leads to poor search directions. This can cause bad convergence properties of NLPSQP and might
ultimately prevent convergence.

Outputs:

The output x is the solution vector after 1) convergence, i.e., x is a local optimum, 2) the maximum
number of iterations are reached in which case NLPSQP prints a warning, and 3) the computed step-size is
smaller than tolStep in which case NLPSQP prints a warning. The stat output is a structure with the
following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

lamBn Lagrange multipliers for bound constraints

eps ϵ-slack variables

7.2 C

The C version of NLPSQP does not include soft constraints as previously mentioned. The interface for
NLPSQP in C is

7.2. C 45

1 void NLPSQP(

2 // Inputs

3 objectiveFunctionNLPSQP_t *ffun ,

4 struct vec *x0 ,

5 void *varargin ,

6 equalityConstraintFunctionNLPSQP_t *gfun ,

7 inequalityConstraintFunctionNLPSQP_t *hfun ,

8 struct vec *l ,

9 struct vec *u ,

10 optionsNLPSQP_t *options ,

11 mem *memory ,

12

13 // Outputs

14 struct vec *x ,

15 statNLPSQP_t *stat

16)

Inputs:

NLPSQP takes three function inputs ffun, gfun, and hfun similarly to the Matlab version. The
varargin input is a set of variable input arguments required by the three input functions. The vectors
l and u are the lower and upper bounds, respectively. The memory input contains both integer and
double workspace required by NLPSQP (see section 7.2.1). The options inputs is a structure of type
optionsNLPSQP_t which has the following fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

tolStep Minimum allowed step-size Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: idummy

printQP 0 or 1 to print QPIPM iteration information Default: 0

tolQP QPIPM convergence tolerance Default: 10−2 · tol

maxitQP QPIPM maximum iterations Default: 100

bigN Numbers above treated as infinity Default: 1020

where idummy = -11111 is an integer dummy variable defined in NLPSQP. The function types of ffun,
gfun, and hfun are

1 typedef void objectiveFunctionNLPSQP_t(

2 // Inputs

3 struct vec *x ,

4 void *varargin ,

5 int nargout ,

6

7 // Outputs

46 CHAPTER 7. IMPLEMENTATION OF NLPSQP IN MATLAB AND C

8 double *f ,

9 struct vec *df

10);

1 typedef void equalityConstraintFunctionNLPSQP_t(

2 // Inputs

3 struct vec *x ,

4 void *varargin ,

5 int nargout ,

6

7 // Outputs

8 struct vec *g ,

9 struct mat *dg

10);

1 typedef void inequalityConstraintFunctionNLPSQP_t(

2 // Inputs

3 struct vec *x ,

4 void *varargin ,

5 int nargout ,

6

7 // Outputs

8 struct vec *h ,

9 struct mat *dh

10);

The three function types have the same inputs, which are

x Decision variables

varargin A set of variable input arguments

nargout Number of outputs to evaluate

and their outputs are

f Objective value

df Gradient for objective function

g Equality constraints vector

dg Gradient for equality constraints

h Inequality constraints vector

dh Gradient for inequality constraints

Outputs:

The output x is the solution vector after 1) convergence, i.e., x is a local optimum, 2) the maximum
number of iterations are reached in which case NLPSQP prints a warning, and 3) the computed step-size is
smaller than tolStep in which case NLPSQP prints a warning. The stat output is a structure of type

7.2. C 47

statNLPSQP_t with the following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamBn Lagrange multipliers for bound constraints

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

7.2.1 Memory allocation

NLPSQP requires both integer and double workspace, which should be allocated in the input memory
structure. NLPSQP features the function

1 void workspaceNLPSQP(int n, int me, int mi, int *iwork, int *dwork)

which given the dimensions of the NLP, n (decision variables), me (equality constraints), and mi (inequal-
ity constraints), computes the required workspace for NLPSQP. Then the amount of integer workspace,
iwork, and double workspace, dwork, can be use to initialize the memory input with sufficient memory.
Additionally, the stat structure for the output is required to be initialized, which can be done with the
function

1 void createStatNLPSQP(const int n, const int me, const int mi,

statNLPSQP_t *const stat)

createStatNLPSQP allocates the required memory for the output stat structure. Note that when
finished using the stat structure, the memory can be freed with the function

1 void destroyStatNLPSQP(statNLPSQP_t *stat)

7.2.2 Dependencies

NLPSQP is a part of the private gitlib-repository SCProject, which is a project containing a series of
git repositories. NLPSQP is dependent on the following three repositories in SCProject:

SCInterface A set of structure and function definitions

linalg A set of vector and matrix linear algebra functions

util A set of utility functions

QPIPM A primal-dual interior-point software to solve QPs

Additionally, linalg is BLAS dependent and requires linking to a BLAS installation on the system.

7.2.3 Gitlab

The private Gitlab group SCGroup grants access to all projects contained in SCProject. Therefore,
the four projects, NLPSQP, QPIPM, SCInterface, and linalg are also included in SCGroup. When
access is granted to SCGroup, one can clone the whole SCProject or parts of it. To apply NLPSQP, one
has to clone NLPSQP, QPIPM, SCInterface, util, and linalg (and install a version of BLAS). The
C version of NLPSQP includes a settings.mk file, where the dependency paths can be set. The five git

48 CHAPTER 7. IMPLEMENTATION OF NLPSQP IN MATLAB AND C

repositories can be cloned with the following command line commands (accompanied with a username and
password):

git clone https://gitlab.gbar.dtu.dk/SCGroup/SCInterface.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/linalg.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/util.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/QPIPM.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/NLPSQP.git

7.2.4 Doxygen documentation

The C version of NLPSQP is documented with Doxygen. The Doxygen documentation is available
in NLPSQP/C/docs, which can be compiled by typing doxygen in the command line. Afterwards,
the documentation is available in NLPSQP/C/docs/results/html/index.html, which opens in a
browser. The documentation includes descriptions of all NLPSQP functions and their inputs and outputs.
Note, this requires an installation of Doxygen on the system.

7.3 Examples

Both the Matlab and C version of NLPSQP has a few test examples. The Matlab version includes a
driver to test NLPSQP on a simple NLP and a few drivers to apply NLPSQP to solve OCPs for both a four
tank system model and a continuous stirred tank reactor (CSTR) model. The drivers show how to apply
NLPSQP and demonstrate NLPSQP with/without Riccati mode and with/without soft constraints.

The C version also includes a test simple test NLP. Additionally, the C version includes test examples that
demonstrate that NLPSQP can solve an OCP for the CSTR model similarly to the Matlab version. Finally,
the C version includes an example that demonstrates that NLPSQP can be called to solve multiple OCPs in
parallel using openMP. This example requires linking to a thread-safe BLAS installation, e.g., BLASFEO
(Frison et al. 2018, 2020).

Furthermore, we refer to previous work, where we have integrated NLPSQP in an NMPC. The NMPC
was applied in large-scale closed-loop Monte Carlo simulations to quantify uncertainties in the closed-loop
system (Kaysfeld et al. 2023).

CHAPTER 8

Conclusion

In this part, we introduced the sequential quadratic programming (SQP) software, NLPSQP, to solve
structured nonlinear programming problems (NLPs). NLPSQP is a software package that is stored in a
private gitlab-repository NLPSQP, which is part of the project SCProject. NLPSQP has a Matlab version
and a C version. In the current version only NLPSQP in Matlab supports soft constraints. We have provided
the mathematical details of NLPSQP and introduced the implementation of NLPSQP in both Matlab and
C. We showed interfaces of the implementations and described the inputs and outputs. In the C version,
we elaborated on how to allocate the needed memory for NLPSQP and how to link to the introduced the
dependencies.

The C version of NLPSQP is intended for application in parallel Monte Carlo simulation of closed-loop
systems containing nonlinear model predictive control (NMPC) algorithms. Due to the thread-safety of the
implementation, NLPSQP can be applied to solve multiple OCPs in parallel with almost linear scaling and is
therefore well-suited for the purpose.

49

Bibliography

Frison, G. and Jørgensen, J. B.: 2013, Efficient implementation of the riccati recursion for solving linear-
quadratic control problems, IEEE International Conference on Control Applications (CCA), Hyderabad,

India pp. 1117–1122.

Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A. and Diehl, M.: 2018, BLASFEO: Basic linear algebra
subroutines for embedded optimization, ACM Transactions on Mathematical Software 44(4).

Frison, G., Sartor, T., Zanelli, A. and Diehl, M.: 2020, The BLAS API of BLASFEO: Optimizing perfor-
mance for small matrices, ACM Transactions on Mathematical Software 46(2).

Jørgensen, J. B.: 2004, Moving Horizon Estimation and Control, PhD thesis, Technical University of
Denmark.

Jørgensen, J. B., Frison, G., Gade-Nielsen, N. F. and Damman, B.: 2012, Numerical methods for solution of
the extended linear-quadratic control problem, IFAC Proceedings Volumes 45(17), 187–193.

Karush, W.: 1939, Minima of functions of several variables with inequalities as side constraints, M.sc. thesis,
University of Chicago, Chicago, Illinois.

Kaysfeld, M. W., Zanon, M. and Jørgensen, J. B.: 2023, Performance quantification of a nonlinear model
predictive controller by parallel Monte Carlo simulations of a closed-loop system, Proceedings of the 21st

European Control Conference (ECC), Bucharest, Romania, 2023, accepted .

Kjeldsen, T. H.: 2000, A contextualized historical analysis of the Kuhn–Tucker theorem in nonlinear
programming: The impact of world war II, Historia Mathematica 27(4), 331–361.

Kuhn, H. W. and Tucker, A. W.: 1951, Nonlinear programming, University of California Press pp. 481–492.

Mehrotra, S.: 1992, On the implementation of a primal-dual interior point method, SIAM Journal on

Optimization 2(4), 575–601.

Powell, M. J. D.: 1978, A fast algorithm for nonlinearly constrained optimization calculations, Proceedings

of the Biennial Conference on Numerical Analysis pp. 144–157.

Rao, C. V., Wright, S. J. and Rawlings, J. B.: 1998, Application of interior-point methods to model predictive
control, Journal of Optimization Theory and Applications 99(3), 723–757.

51

52 BIBLIOGRAPHY

Wahlgreen, M. R. and Jørgensen, J. B.: 2022, On the implementation of a preconditioned riccati recur-
sion based primal-dual interior-point algorithm for input constrained optimal control problems, IFAC-

PapersOnLine 55(7), 346–351. 13th IFAC Symposium on Dynamics and Control of Process Systems,
including Biosystems (DYCOPS) 2022.

Wahlgreen, M. R., Reenberg, A. T., Nielsen, M. K., Rydahl, A., Ritschel, T. K. S., Dammann, B. and
Jørgensen, J. B.: 2021, A high-performance monte carlo simulation toolbox for uncertainty quantification
of closed-loop systems, Proceedings of the 60th IEEE Conference on Decision and Control (CDC)

pp. 6755–6761.

Wächter, A. and Biegler, L. T.: 2006, On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming, Mathematical Programming 106(1), 25–57.

	QPIPM
	Introduction
	Mathematical details
	Primal-dual interior-point algorithm
	Search direction
	System reduction
	Fraction-to-the-boundary
	Predictor-corrector algorithm
	Convergence criterion
	Infinity bound constraints
	Algorithm

	Riccati based factorization for optimal control problems
	Search direction
	System reduction
	Riccati recursion algorithm
	Algorithm
	A note on bounds

	Implementation of QPIPM in Matlab and C
	Matlab
	C
	Memory allocation
	Dependencies
	Gitlab
	Doxygen documentation

	Examples

	Conclusion

	NLPSQP
	Introduction
	Mathematical details
	Sequential quadratic programming algorithm
	Optimality conditions
	Quadratic programming subproblem
	Line-search
	BFGS update
	Initialization
	Convergence
	Algorithm

	Riccati version for optimal control problems
	Block BFGS update
	Application to solve OCPs
	Algorithm
	A note on bounds

	Implementation of NLPSQP in Matlab and C
	Matlab
	C
	Memory allocation
	Dependencies
	Gitlab
	Doxygen documentation

	Examples

	Conclusion
	Bibliography

