

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Reduction Techniques for Boolean Networks

Argyris, Georgios

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Argyris, G. (2023). Reduction Techniques for Boolean Networks. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/e26df610-c50e-4e0e-a9ff-ec309a0d9165

Technical University of Denmark
Department of Applied Mathematics and Computer

Science

Reduction Techniques
for Boolean Networks

Supervisors
Alberto Lluch Lafuente
Andrea Vandin

Student
Georgios Argyris

January 30, 2023

Abstract

Boolean Networks (BNs) are popular qualitative formalisms for the
modelling of biological systems. However, their analysis suffer from the
state space explosion; there are exponentially many states on the number
of BN variables. To enhance tractable analysis of the underlying systems,
we facilitate scientists and engineers with techniques and tools. This thesis
is a compendium of four research articles that introduce two reduction
techniques and their software implementation.

The thesis is separated into two parts. The first part gives a con-
cise, semiformal, and meaningful overview of our research work. Here
we navigate the reader through the second part of the thesis, the Ap-
pendix, which includes our contributions in detail. The first paper intro-
duces Boolean backward equivalence, the second article redesigns Boolean
backward equivalence method and extends the applications, the third in-
troduces generalised forward bisimulation for the reduction of general dy-
namical systems (also Boolean Networks), and the fourth article presents
the software implementation of Boolean backward equivalence.

Keywords— Boolean Networks, Reduction

Abstract

Boolean Netværk (BN) er populære qualitative formalismer for mod-
elling af biologiske systemer. Imidlertid lider deres analyse af tilstandsek-
splosion dvs. der er exponentielt mange tilstande i antallet af BN vari-
abler. For at forbedre gennemførlig analyse af underliggende systemer,
skal forskere faciliteres med teknikker og værktøjer. Denne afhandling
introducerer to reduktionsteknikker og deres softwareimplementering.

Afhandlingen best̊ar af to dele. Den første del giver et koncist, semi-
formelt og meningsfuldt overblik af vores forskningsarbejde. Her nav-
igerer vi læseren gennem den anden del af afhandlingen, bilaget, der om-
fatter vores bidrag i detaljer. Den første artikel introducerer Boolean
backward equivalence, den anden artikel redesigner Boolean backward
Equivalence metode og udvider applikationerne, den tredje introducerer
generaliseret forward bisimulation for reduktion af generelle dynamiske
systemer (ogs̊a Boolean netværk), og den fjerde artikel præsenterer soft-
wareimplementeringen af Boolean backward equivalence.

Keywords— Boolean Netværk, Reduktion

1

Abstract

Τα δίκτυα Μπουλ είναι δημοφιλείς ποιοτικοί φορμαλισμοί για την μοντε-

λοποίηση βιολογικών συστημάτων. Ωστώσο, υποφέρουν από έκρηξη του

χώρου καταστάσεων· δηλαδή ο αριθμός των καταστάσεων είναι εκθετικός

ως προς τον αριθμό των μεταβλητών. Με αυτή την εργασία διευκολύνουμε

επιστήμονες και μηχανικούς με τεχνικές και εργαλεία που τιθασεύουν την

ανάλυση των συστημάτων. Αυτό το σύγγραμα συνοδεύει τέσσερα ερευνητι-

κά άρθρα που εισάγουν δύο νέες τεχνικές μείωσης και την υλοποίηση τους

σε λογισμικό.

Το σύγγραμα χωρίζεται σε δύο μέρη. Το πρώτο δίνει μία συνοπτική,

ημιτυπική, αλλά ουσιαστική επισκόπηση της ερευνετικής μας δραστηριότη-

τας. Σε αυτό το μέρος, καθοδηγούμε τον αναγνώστη στο δεύτερο μέρος

του συγγράματος, το παράρτημα, που εμπεριέχει τις συμβολές μας λεπτο-

μερειακά. Το πρώτο άρθρο εισάγει την Boolean Backward Equivalence, το
δεύτερο την ανασχεδιάζει και επεκτείνει τις εφαρμογές, το τρίτο παρουσιάζει

την γενικευμένη εμπρόσθια διπροσομοίωση (Generalised Forward Bisimu-
lation) για την μείωση γενικευμένων δυναμικών συστημάτων (επομένως και
δικτύων Μπουλ), και το τέταρτο παρουσιάζει κάποιες πτυχές της προγραμ-

ματιστικής υλοποίησης της Boolean Backward Equivalence.

Keywords— Δίκτυα Μπουλ, μείωση διαστασιμότητας

Acknowledgements

This thesis is a result of 3 years collaboration with Alberto Lluch Lafuente, Andrea
Vandin, Max Tschaikowski and Mirco Tribastone. Thanks a lot to them for the nice
collaboration.1 Special thanks to the Technical University of Denmark that provided
a nice environment for the execution of the research project, and the DFF (project
REDUCTO 9040-00224B) that funded my studies.

Last but no least, thanks to the the institutions that hosted me during my re-
search: the IMT School for Advanced Studies in Lucca (System Modelling and Analy-
sis group), the Goethe University in Frankfurt (Molecular Bioinformatics group), and
the University of Bordeaux (group of Modelling and Technologies for Verification).

The Ph.D. program has been completed at the Technical University of Denmark,
Department of Applied Mathematics and Computer Science, in the Section of Software
System Engineering. Alberto Lluch Lafuente is employed by the Technical University
of Denmark and Andrea Vandin is employed by the Sant’Anna School of Advanced
studies in Pisa and the Technical University of Denmark.

1The writer of the manuscript is responsible for the way that the material is presented in
the thesis.

2

Guidelines for the reader

The reader shall be familiar with logic, validity of logical formulas, equivalence rela-
tions, partitions, bisimulations, isomorphisms, and monoids.

The thesis is organized as follows: in Section 1 (Preliminaries) we provide the basic
notions, in Section 2 we highlight the importance of reduction with a case study, in
Section 3 (Contributions) we present the two reduction methods, in Section 4 (Related
work) we focus on relevant work on the reduction of Boolean networks, and in Section
5 we motivate the reader to new horizons for further investigations.

Contents

1 Preliminaries 4

2 Reduction is essential 6

3 Contributions 7
3.1 Boolean Backward Equivalence . 8
3.2 Generalised Forward Bisimulation . 10
3.3 Automation . 14

4 Related work 16

5 Future Work and Conlusion 18

6 Appendix 22

A PAPER I: Reducing Boolean Networks with Backward Boolean Equiv-
alence 22

B PAPER II: Reducing Boolean Networks with Backward Boolean
Equivalence 55

C PAPER III: Minimization of Dynamical Systems over Monoids 92
C.1 Supplementary Material . 106

D PAPER IV: An Extension of ERODE to Reduce Boolean Networks
By Backward Boolean Equivalence 108

3

1 Preliminaries

Qualitative modeling provides a useful framework for modeling biological processes
and signalling pathways. Popular models are Boolean Networks (BNs) [1]: discrete-
time dynamical systems with variables taking values in the Boolean domain ({0, 1}).
Each variable is assigned an update function, defined by logical rules, that governs the
value of the variable (see left part of Fig. 1). Formally, a BN is defined as follows:

x1 (t+1) = x1 (t) ∧ ¬x4 (t)
x2 (t+1) = x1 (t) ∧ x2 (t)
x3 (t+1) = ¬x4 (t) ∧ x1 (t) ∧ x3 (t)
x4 (t+1) = x2 (t) ∧ x3 (t) ∨ ¬x1 (t) 0000

0001

1000

0100

1100

0010

1010

0110

1110

1111 1001

0101

1101

0011

1011

0111

Figure 1: (Left) A discrete-time BN on four variables. (Right) The synchronous
STG.

Definition 1. A BN is a pair (X,F) where X = {x1, ..., xn} is a set of variables and
F = {fx1 , ..., fxn} is a set of update functions, with fxi : Bn → B being the update
function of variable xi.

In the example of Fig. 1, we have X = {x1 , x2 , x3 , x4}, and F = {fx1 , fx2 , fx3 , fx4 }
with fx1 = x1 ∧ ¬x4 , fx2 = x1 ∧ x2 , etc. More complex qualitative models are Multi-
valued Networks [2] wherein variables take values in a discrete but finite integer do-
main, e.g. {0, 1, 2} (for instance, see Multi-valued Network case study of Section 7
in Appendix C). Although Definition 1 will guide the reader through the theoretical
development, we will use the formalism of Fig. 1 (left) to explain our concepts in the
examples for the sake of simplicity and demonstration.

The state space and the dynamics of a BN are encoded in the state transition
graph (STG), which we display in the right part of Fig. 1. The nodes correspond to
the states containing an evaluation of the variables, whereas the arrows correspond to
the transitions. For example, if the variables x1 , x2 , x3 , x4 have the value given by the
vector of values (1 , 1 , 0 , 1) -upper left box of the STG of Fig. 1-, the simultaneous
application of the update functions will map this state to the vector (0 , 1 , 0 , 0). We
see that the BNs suffer from the infamous state space explosion since the state space is
exponentially large on the number of variables: if the BN has n variables, the STG has
2 n states. The contributions of this thesis are clear; we attack the state space explosion
by introducing two novel model-to-model reduction techniques [3, 4] implemented in
ERODE software [5, 6]. Notice that all variables of the BN are updated concurrently,
so each state has just one outgoing transition (successor state) in the STG.

Different schemes of synchronization give rise to different dynamics, i.e., different
transition set. For example, the fully asynchronous scheme, wherein only one vari-
able is non-deterministically selected and updated, gives rise to a different STG (left
part of Fig. 2). A generalization of these schemes is a hybrid synchronization scheme,
wherein some subsets of variables are updated at the same time. These subsets form
the partition of synchronization (denoted with K) which consists of blocks of variables
such that, variables of the same block, are updated concurrently. Note that: in the

4

0000

00011000

0100

0101 1100

0010

00111010

0110

0111

1110

1111

1001

11011011

0000

00011000

0100

0101 1100

0010

0011

1010

0110

0111

1110

1111

1001

1101

1011

Figure 2: (Left) The fully asynchronous STG wherein at each transition
only one variable is non-deterministically selected and updated. (Right) The
non-deterministic STG according to the partition of synchronization K =
{{x1, x3}, {x2}, {x4}}.

fully asynchronous scheme all variables belong to one (unique) block of the partition
(|K| = 1), while in the fully asynchronous scheme each variable belongs to a single-
ton block (|K| = |X |). For the partition of synchronization one can distinguish two
different cases: if we specify an order for the update of the blocks, we obtain an asyn-
chronous yet deterministic STG, while if the blocks are selected non-deterministically
for updating, we obtain an asynchronous and non-deterministic STG (see right part
of Fig. 2).

Dynamical Properties of Interest. The state space is finite but the variables
can be updated infinitely many times. Consequently, the BN will eventually visit a
state that has already visited before. Considering the STG of Fig. 2, if the variables
x1 , x2 , x3 , x4 have the values (1, 0, 0, 0) -bottom left box of the STG of Fig. 2- then the
update functions will not change these values. These states (like (1, 0, 0, 0)) towards
which the system tends to evolve and remain are called attractor states and their in-
terpretation is crucial in systems biology. In cell differentiation processes, for instance,
different attractors correspond to different cell types [7].

An important feature of attractors is the length which is typically the number
of states that the attractor contains. A steady state is an attractor of length 1 . In
the STG of Fig. 2, we see 4 steady states: (1 , 0 , 0 , 0), (0 , 0 , 0 , 1), (1 , 1 , 0 , 0), and
(1 , 0 , 1 , 0). If an attractor is not a steady state, it is called a cyclic attractor (for
a cyclic attractor of length 2 , we refer the reader to the introductory example of
Section Introduction of Appendix A). In the case of synchronous dynamics, the length
of an attractor is also called period and the periodic behaviour of cyclic attractors has
been utilized to model the cell cycle [8] and the circadian clock [9]. In the case of
asynchronous dynamics, the STG may have cycles which are not attractors [10].

Reachability of a BN is another interesting property. This is the ability of a BN
model to replicate behaviours observed in time series data [11]: if none of the states
matching an observation at a given time is reachable from any state matching an
experimental observation at an earlier time, then the BN fails to properly model the
system.

5

2 Reduction is essential

Boolean Networks have been ideal for the modeling of gene regulatory networks (ac-
tive/inactive behaviour of genes), but it is estimated that humans have between 20000
and 25000 genes. From a theoretical viewpoint, the decision of reachability is known
to be PSPACE-complete from the logical representation of the update function f [11].
The same holds for the problem of deciding a state belongs to an attractor. This gives
a strong argument that the dynamical properties of interest are likely not tractable on
models with thousands of variables. To this end, biologists need to be supported with
techniques and tools that ease system analysis, and help them with decision making
in heterogeneous medical environments, with finding new medical treatments, etc [12].

Formal model reduction ensures fast, low-cost and tractable model analysis while
providing formal guarantees for the preserved properties. In the paperwork of the
Appendix, we demonstrate that indeed reduction is crucial for the speed-up of com-
putations, and for performing tasks which are otherwise intractable because of our
limited computational resources. For relevant results on STG generation and attrac-
tor computation, we refer the reader to Section Results of Appendix B wherein we
validate the efficiency of our method in the whole GINsim [13] and Biomodels [14]
repositories which consist of about 100 qualitative models (both Boolean and Multi-
valued Networks [2]). Reduction though has been also utilized to facilitate model
checking [12] and model simulation [15].

To motivate the reader, we present an application that complements the large
set of experiments done in our papers on a BN with 321 variables. The results are
summarized in Table 1. We highlight that the attractors of the original BN cannot
be computed with the most efficient tool for attractor identification in synchronous
BNs [16]. We display this in first row of Table 1 where Time-out means that the
computation takes more than 12 hours. Our hypothesis is that we can compute some
attractors after reduction. Our proposed techniques behave greedy; by holding no re-
strictions to our reduction algorithm, we obtain the Maximal reduction where we can
identify only two attractors (last row of Table 1). Thereby we sacrifice the precision of
the model for the sake of reduction performance. Despite greedy, our reduction proce-
dures can be tuned to sacrifice performance for precision; by restricting the reduction
power we obtain a different reduced BN with 137 variables, where we can identify a
vast amount of attractors.

Model Size Attractors Analysis (s) Reduction (s)
Original 321 —Time Out— -

Restricted reduction 137 8960 175,69 3,071
Maximal 8 2 0,032 0,277

Table 1: Size: number of BN variables. Attractors: Number of attractors
(these can be either steady states or cyclic attractors). Analysis (s): attractors
computation time in seconds. Reduction (s): Reduction time

More information about the reduction of this model can be found in the Supplemen-
tary Material of D. In C.1, C.2 of Appendix A, we provide empirical reductions that
preserve all attractors. These intuitions are based on an abstract graph representation
of a BN called interaction graph and a relaxed version of Thomas’ conjecture [17] rele-
vant to feedback loops in this abstract graph representation. Our approach is similar:

6

we reduce without corrupting none of the feedback loops.

3 Contributions

Our contributions consist of two novel reduction techniques and their implementa-
tion in ERODE software. Articles A, B of the Appendix refer to Boolean Backward
Equivalence (BBE) while article C refers to Generalized Forward Bisimulation (GFB).
Both techniques are implemented in ERODE. Article D documents the tool support
for BBE and provides guidelines for the use of ERODE. Particularly:

• Paper A: Reducing Boolean Networks with Backward Boolean Equivalence.
Georgios Argyris, Alberto Lluch Lafuente, Mirco Tribastone, Max Tschaikowski
and Andrea Vandin, Conference paper CMSB 2021: Computational Methods in
Systems Biology pp 1–18.

In this paper, we present BBE for synchronous BNs. BBE reduction method
identifies disjoint subsets (blocks) of variables that, if they are initialized equally,
they remain equal at all time steps. We evaluate the reduction power of our
method to the whole GINsim repository, demonstrate that BBE offers speed-
ups for attractor computation, and apply BBE to three special case studies.

• Paper B: Reducing Boolean Networks with Backward Boolean Equivalence.
Georgios Argyris, Alberto Lluch Lafuente, Mirco Tribastone, Max Tschaikowski
and Andrea Vandin, BMC Bioinformatics (Accepted, to appear).

Here we extend our method to non-deterministic BNs whose variables are up-
dated according to some partition of synchronization. We present new case
studies and demonstrate with state-of-the-art tools that BBE reduction renders
analysis feasible in the reduced BN while in the original BN the same kind of
analysis is infeasible.

• Paper C: Minimization of Dynamical Systems over Monoids. Georgios Argyris,
Alberto Lluch Lafuente, Alexander Leguizamon Robayo, Mirco Tribastone, Max
Tschaikowski and Andrea Vandin (under preparation).

This article presents GFB; a reduction method that can be used for reduction
of general dynamical systems (DS) like equations of difference, systems of dif-
ferential equations, BNs, multi-valued networks etc. GFB reduction method
identifies blocks of variables such that the DS can be rewritten in terms of the
variables of the block and up to a user specified operation. We discuss this
method in more detail in Section 3.2.

• Paper D: An Extension of ERODE to Reduce Boolean Networks By Backward
Boolean Equivalence. Georgios Argyris, Alberto Lluch Lafuente, Mirco Trib-
astone, Max Tschaikowski and Andrea Vandin, CMSB 2022: Computational
Methods in Systems Biology pp 294–301.

Here we present the implementation of BBE with ERODE, and some importing
and exporting capabilities between different BN formats. ERODE provides also
features for BN segmentation as we discuss in Section 3.3.

In the rest of the section, we explain the two complementary methods based on
the introductory example of Fig. 1. However, the methods have been applied in detail
to overall 10 real world case studies from models found in literature (these studies can
be found in the papers of the Appendix). We present BBE in Section 3.1, GFB in
Section 3.2, and we discuss some implementation details in Section 3.3.

7

3.1 Boolean Backward Equivalence

In this section we present the BBE reduction method. We first describe the notion of
BBE partition, then how to obtain the BBE reduced BN up to a BBE partition and,
finally, we discuss the preserved properties of interest.

BBE partition. BBE is an equivalence relation over the set of variables which
induces a partition of the variable set. Each block of a BBE partition satisfies the
following property: if the variables are equal in each block of the partition, then the
update functions of these variables are equal. We encode this property as a logical
formula whose validity can be checked with a SAT-solver [18]. For the rest of the
section, we refer to P to denote a BBE partition and P to refer to a block of the
partition.

Definition 2. Let BN B = (X ,F). A partition P is a BBE partition if the following
formula is valid: ∧

P∈P
xi,xj∈P

(
xi = xj

) −→ ∧
P∈P

xi,xj∈P

(
fxi = fxj

)
(1)

In other words, the previous formula states that if the variables of the block obtain
the same value -or are initialized equally-, they always retain the same value. We
exemplify the previous definition in the running example of Fig. 1.

Example 3.1. Consider the BN of Fig. 1

x1(t+1) = x1(t) ∧ ¬x4(t)

x2(t+1) = x1(t) ∧ x2(t)

x3(t+1) = ¬x4(t) ∧ x1(t) ∧ x3(t)

x4(t+1) = x2(t) ∧ x3(t) ∨ ¬x1(t)

If we set x1(t) = x3(t), we have that:

x3(t+1) = ¬x4(t)∧ x1(t)∧ x3(t) = ¬x4(t)∧ x1(t)∧ x1(t) = ¬x4(t)∧ x1(t) = x1(t+1)

We see that if x3 (t) = x1 (t), it holds that x3 (t + 1) = x1 (t + 1). This means that
x1 , x3 are BBE equivalent and, consequently, the partition P = {{x1 , x3}, {x2}, {x4}}
is a BBE partition.

One may easily check that P = {{x1 , x3}, {x2 , x4}} is not a BBE-partition; if we
set x2 (t) = x4 (t), it does not always hold that x2 (t + 1) = x4 (t + 1).

We next proceed to the computation of the reduced BN which is derived by the
original after merging the BBE-equivalent variables into one single variable component.

Computation of BBE reduced BN. We denote with [α/β] the replacement of
each occurrence of α with β. The reduced BN can be automatically derived according
to the following definition:

Definition 3. The reduction of a BN (X,F) up to a BBE partition P is the BN
(XP , FP) where FP = {fxP : P ∈ P}, with fxP = fxk{xi/xP ′ : ∀P ′ ∈ P,∀xi ∈ P ′} for
some xk ∈ P .

8

In words, each variable of the reduced BN corresponds to a block of the BBE
partition. Then, we obtain each update function by replacing each variable of a
specific block with its corresponding block-variable. We exemplify the previous def-
inition in the running example where the BN is reduced up to the BBE partition
P = {{x1 , x3}, {x2}, {x4}}.

Example 3.2. The variables x1 , x3 are collapsed into one single variable component
x1 ,3 whose update function will be either the update function of x1 or the update
function of x3 , after replacing each occurrence of x1 and each occurrence of x3 with
x1 ,3 . In our case, we choose the update function of x1 and, after replacement, we
get x1 ,3 (t + 1) = x1 ,3 (t) ∧ ¬x4 (t). The update functions of other variables are also
obtained by replacing the occurrences of x1 and x3 with x1 ,3 . Hence, the reduced BN
is the following:

x1,3(t+1) = x1,3(t) ∧ ¬x4(t)

x2(t+1) = x1,3(t) ∧ x2(t)

x4(t+1) = x2(t) ∨ ¬x1,3(t)

To conclude, if the modeler provides a BN and a partition of the set of variables, a
logical formula can determine if this is a BBE partition, and the reduced BN can be au-
tomatically computed. However, if the partition provided is not a BBE partition, one
may wonder what happens: try all different partitions? This possibility is exhaustive
and computationally expensive since the actual number of partitions for n variables is
given by the Bell number from the following iterative formula: Bn =

∑n−1
k=0

(
n−1
k

)
Bk .

We solve this problem with a partition refinement algorithm that we roughly describe
in Section 3.3.

Properties Preserved. Part of the original STG is related with the reduced STG
through a reduction isomorphism (Lemma 2 in Appendix A). Considering the original
STG in the left part of Fig. 3, the blue states with all the transitions between them
are preserved. Each blue state of the original STG is mapped to a state in the reduced
STG (right part of Fig. 3). For instance, the state (1 , 0 , 1 , 1), where x1 , x3 have the
same value is mapped to (1 , 0 , 1). The state (1 , 0 , 1 , 1) has two outgoing transitions
to steady states ((0 , 0 , 0 , 1), (1 , 0 , 1 , 0)) while the same happens for the state (1 , 0 , 1)
in the reduced STG (towards (0 , 0 , 1), (1 , 0 , 0)). The reduced STG is essentially the
blue part of the original STG after collapsing the 1st and the 3rd digits into one single
digit. In all blue states these two digits are equal.

0000

00011000

0100

0101 1100

0010

0011

1010

0110

0111

1110

1111

1001

1101

1011 000

001100

010

011

110

111

101

Figure 3: (Left) The STG according to the partition of synchronization K =
{{x1, x3}, {x2}, {x4}} (Right) The BBE-reduced STG according to the partition
of synchronization K = {{x1,3}, {x2}, {x4}}.

9

We prove that the reduction isomorphism secures the preservation of a special
kind of attractors; all attractors wherein the collapsed variables have the same value
are preserved -constant attractors, Theorem 3 in Appendix A-. Another immediate
consequence of the reduction isomorphism is that the exact length of all constant at-
tractors is preserved in the reduced BN. Last but not least, the reduction isomorphism
secures the exact number of transitions is preserved between any two states of the re-
duced STG in the original STG. Consider the state (0 , 1 , 0 , 0) of the original STG
which is mapped to (0 , 1 , 0). State (0 , 1 , 0 , 0) reaches always the same steady state
-(0 , 0 , 0 , 1)- in two different ways, both containing two transitions. The behaviour
of (0 , 1 , 0) is the same in the reduced STG towards the steady state (0 , 0 , 1)-which
corresponds to the state (0 , 0 , 0 , 1)-.

We highlight that these properties are preserved in the fully synchronous schema,
and in a hybrid scheme considering that the initial partition is (a refinement of) the
partition of synchronization K.

3.2 Generalised Forward Bisimulation

In this section we present the GFB reduction method. We first describe a particular
form of GFB partition called And-FB partition and how one can obtain the And-
FB reduced BN. We gradually raise the And-FB definition to GFB definition for the
reduction of general dynamical systems and then discuss the preserved properties of
interest.

And-FB partition. An And-FB partition is a partition over the set of BN vari-
ables. The blocks of an And-FB partition satisfy the following property: the system
can be “rewritten” in terms of the conjunction of the variables that belong to the same
block.

Example 3.3. We first exemplify what “rewritten” means to the BN of Fig. 1:

x1(t+1) = x1(t) ∧ ¬x4(t) (2)

x2(t+1) = x1(t) ∧ x2(t) (3)

x3(t+1) = ¬x4(t) ∧ x1(t) ∧ x3(t) (4)

x4(t+1) = x2(t) ∧ x3(t) ∨ ¬x1(t) (5)

The conjunction by parts of (2) and (3) gives the following:

x2(t+ 1) ∧ x3(t+ 1) = x1(t) ∧ x2(t) ∧ ¬x4(t) ∧ x1(t) ∧ x3(t)

= (x2(t) ∧ x3(t)) ∧ x1(t) ∧ ¬x4(t)

We replace x2(t+ 1) ∧ x3(t+ 1) with x2,3(t+ 1), and x2(t) ∧ x3(t) with x2,3(t) in
all update functions, to obtain the And-FB reduced BN:

10

x1(t+1) = x1(t) ∧ ¬x4(t)

x2,3(t+1) = x1(t) ∧ x2,3(t) ∧ ¬x4(t)

x4(t+1) = x2,3(t) ∨ ¬x1(t)

The partition P = {{x1}, {x2 , x3}, {x4}} is an And-FB partition.

The “rewritting” property can be secured by a family of logical formulas whose
validity can be checked with a SAT-solver. For the rest of the section, we denote with
P an And-FB partition and with P a block of the partition. As before, we denote with
[α/β] the replacement of each occurrence of α with β. The definition of an And-FB
partition is as follows:

Definition 4. Let BN B = (X ,F). A partition P is a And-FB partition if ∀P ∈
P ∧ ∀xi, xj ∈ P with xi ̸= xj the following formula is valid:∧

P∈P

(∧
xk∈P

fxk =
∧

xk∈P

fxk [xi/1][xj/(xi ∧ xj)] =
∧

xk∈P

fxk [xj/1][xi/(xi ∧ xj)]
)

In words, the previous formula secures that for each block of the partition the
equality inside the parenthesis holds. The first part of the equality is the conjunction
of the update functions of all variables belonging to one specific block. The second
part of the equality is the conjunction of the update functions of all variables belonging
to this block, after replacing one variable (xi) with 1 , and the other variable (xj) with
xi ∧ xj . The third part is the same as the second part after changing the positions of
the variables xi , xj . Theorem 3 of Appendix C secures that the validity of the formulas
is both sufficient and necessary for us to be able to rewrite the BN.

Computation of the And-FB reduced BN. If the logical formulas of Defini-
tion 4 are valid, we can automatically derive the reduced BN according to the following
definition.

Definition 5. The reduction B/P of a BN B = (X,F), up to an And-FB P, is the
BN (XP , FP) with FP = (fP)P∈P such that

fP =
∧

xi∈P

fxi [xk/1 : xk /∈ XP][xiP ′ /xP ′ : P ′ ∈ P],

where xiP ∈ P is a representative of P ∈ P and XP = {xiP : P ∈ P} is the set of all
representatives.

We explain how to obtain the reduced BN for the BN of Fig. 1 in the following
example.

Example 3.4. As we explained in Example 3.3, the partition P = {{x1}, {x2 , x3}, {x4}}
is an And-FB partition. The variables x2 , x3 are merged into one single variable com-
ponent x2 ,3 which is the representative of the block P = {x2 , x3}. Notice that in this
case the set of all representatives is the set XP = {x1, x2,3, x4}.

The update function of x2 ,3 is the conjunction of the update functions of the merged
variables i.e.:

x2,3(t+ 1) = x2(t+ 1) ∧ x3(t+ 1) = (x2(t) ∧ x3(t)) ∧ x1(t) ∧ ¬x4(t)

11

We get the final form of the update function, by replacing each occurrence of one
merged variable with a representative of the block (x2 ,3), and all the other variables
with 1 . We choose to replace x2 (t) with x2 ,3 (t), and each occurrence of x3 (t) with 1 .

The update functions of the other variables (x1 , x4) are derived similarly: we replace
each occurrence of x2 with x2 ,3 , and each occurrence of x3 with 1 . We therefore end
up with the reduced BN of Example 3.3.

To sum up, given a BN and a partition of the set of variables, a family of logical
formulas can determine if the BN can be rewritten in terms of the ∧ (and) of the
variables that belong to the same block of the partition. The reduced BN can be
automatically derived as explained in current section. If the formulas do not hold,
the partition is plugged to a partition refinement algorithm which splits each block
of the partition until it becomes an And-FB partition. The partition refinement can
be found in Appendix C and an overview of the automation process is described in
Section 3.3.

GFB for arbitrary dynamical systems over monoids. In this section, we
raise the definition of GFB to arbitrary dynamical systems. Note that in Definitions 4
and 5 the value 1 , which replaces one of the variables, is the identity element of
the monoid (B,∧) i.e. ∀x ∈ X : x ∧ 1 =x . These definitions can be adapted to every
operation ⊕ as long as the operation forms with the Boolean domain B = {0 , 1} a com-
mutative monoid. Hence, the Definition 4, which ensures the “rewritting” property,
takes the following form:

Definition 6. Let BN B = (X ,F). A partition P is a GFB partition if ∀P ∈ P ∧
∀xi, xj ∈ P the following formula is valid:∧

P∈P

(⊕
xk∈Pi

fxk =
⊕

xk∈Pi

fxk [xi/0⊕][xj/(xi⊕xj)] =
⊕

xk∈Pi

fxk [xi/(xi⊕xj)][xj/0⊕]
)

The orange colour denotes the differences w.r.t. Definition 4. For example, we can
adapt to disjunction of variables if we set⊕ = ∨ and 0⊕ = 0 . Similarly to Definition 5,
the reduced DS is defined as follows:

Definition 7. The reduction B/P of a BN B = (X,F) up to a GFB P, is the BN
(XP , FP) with FP = (fP)P∈P such that

fP =
⊕

xi∈P

fxi [xk/1 : xk /∈ XP][xiP ′ /xP ′ : P ′ ∈ P],

where xP ∈ P is a representative of P ∈ P and XP = {xiP : P ∈ P} is the set of all
representatives.

We can further raise the method to arbitrary discrete-time dynamical systems
whose variables take values in a set M which, when endowed with a modeler speci-
fied operation ⊕, form a commutative monoid. In summary, GFB supports general
discrete-time dynamical systems provided by the following definition:

Definition 8 (Dynamical System). A discrete-time dynamical system is a pair D =
(X,F) where X={x1, . . . , xn} are variables and F ={fx1 , . . . , fxn} is a set of update
functions, where fxi : M

|X| → M is the update function of variable xi.

12

Our generalisation to arbitrary dynamical systems supports equations of difference
which can be reduced over the monoid (R,×) or the monoid (R,+). It also encompasses
more complex qualitative models called Multi-valued Networks [2] wherein variables
take values in a discrete but finite integer domain, e.g. {0, 1, 2} (for instance, see
Multi-valued Network case study of Section 7 in Appendix C). In the latter case, the
monoid can be (Zn ,min) or (Zn ,max). Next, we give an example of a dynamical
system that can be reduced over the monoid (R,×).

Example 3.5. We consider the Lorentz system; a system of ordinary differential
equations which is notable for its chaotic solutions for certain parameter values and
initial conditions. The equations that describe the evolution are the following:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y (6)

dz

dt
= xy − βz

We set σ = 1 , and discretize the system with the Euler method for τ = 1, to obtain
the following:

x(t+ 1) = y(t)

y(t+ 1) = x(t)(ρ+ z(t)) (7)

z(t+ 1) = x(t)y(t)− (β − 1)z(t)

Solving for x (t + 1) = x (t), y(t + 1) = y(t), and z (t + 1) = z (t), we find that
the original system has 3 critical points: (0, 0, 0), (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1), and

(−
√

β(ρ− 1),−
√

β(ρ− 1), ρ− 1).
Notably, the system can be rewritten up to xy and, hence, we can get a reduction

over the monoid (R,×). The evolution of the system, after collapsing the variables
x, y into a single variable component w, is described by the following equations:

w(t+ 1) = w(t)(ρ− z(t)) (8)

z(t+ 1) = w(t)− (β − 1)z(t)

The reduced system has two critical points (0, 0), (β(ρ− 1), ρ− 1). Notice that the
critical point (β(ρ−1), ρ−1) in the reduced system can be obtained by multiplying the x
and y coordinate of the original system’s critical points. However, we have to highlight
that the partition P = {{x, y}, {z}} is not a GFB partition since this rewriting must
hold ∀τ > 0. For the case of the Lorentz system, this holds only for τ = 1.

Properties preserved. In the left part of Fig. 4, we display the STG of the
original BN of Fig. 1, and in the right part of Fig. 4 we display the STG of the
reduced BN as we computed it in the Example 3.3. States of the original STG with
similar colour are mapped to the same state in the reduced STG. Essentially, each
state of the reduced STG is derived by the original STG after collapsing the 2nd and
the 3rd digit into one single digit according to their ∧. The original STG and the GFB
reduced STG are both deterministic and bisimulation equivalent.

13

0000

0001

1000

0100

1100

0010

1010

0110

1110

1111 1001

0101

1101

0011

1011

0111 000

001

100

010

110

111

101

011

Figure 4: (Left) The original STG in the fully synchronous update scheme.
(Right) The GFB-reduced STG.

We prove in Appendix C that several interesting properties are preserved, for
instance, attractor states of the original STG are mapped to attractor states of the
reduced STG (Corollary 1), while reachability between any two states of the same
colour in the original STG is preserved in the reduced STG. In Appendix C.1, we
present some outstanding cases wherein the computation of the original STG is slow
or it cannot be computed, while the reduction speeds-up and renders the computations
feasible.

3.3 Automation

One crucial aspect of the proposed reduction methods is the automation; the partition
refinement algorithms can identify disjoint sets of variables that satisfy the BBE/GFB
criterion or, equivalently, validate the logical formula of Definition 1/Definition 6. The
overall procedure is described in Fig. 5.

Inputs:
DS (X,F) & initial partition

YesNo

Is the running
 partition BBE/GFB

Compute reduced
DS

The algorithm outputs
a refined partition

Figure 5: The schematic illustration of the automation.

The inputs of the procedure are a BN/DS (X ,F) and an initial partition P of the
set of variables X , which is specified by the modeller (top box of Fig. 5). The procedure

14

first checks if the partition P satisfies the BBE/GFB criterion (central rhombus node
of Fig. 5). If yes (right arrow of Fig. 5), the running partition P is a BBE/GFB
partition, and the reduced BN/DS is computed (right box of Fig. 5) by merging each
block of the BBE/GFB partition into a single variable component. If the modeler
provides a partition that is not a BBE/GFB partition (left arrow of Fig. 5), we apply
the partition refinement algorithm to refine the partition. The algorithms split each
block P and output another partition which is checked if it is a BBE/GFB partition
(the feedback arrow from the left box to the central rhombus).

The input of the initial partition provides flexibility to the modeller since, by
isolating specific variables of interest in the initial partition, she/he prevents them
from merging with other variables. The algorithms output the one unique BBE/GFB
partition; for a given BN, every time that we initialize the algorithm with the same
initial partition, we end up having the same BBE/GFB partition. (Theorems 1 and 2
in Supplementary Material 1 (S1) of Appendix B for the case of BBE, and in Theorems
1,2 of Appendix C for the case of GFB).

For a closer look to the partition refinement algorithm for the case of BBE, we
refer the reader to:

• Appendix A (Section 3.2), where we explain how the algorithm is applied to a
BN that models the cortical area development,

• Appendix B where we explain the algorithm to a part of a T-cell model that
contains the TRL5 receptor, and

• Appendix D where we explain how the algorithm is applied for the reduction of
a neurogenesis BN model.

Software Implementation. In the paper of Appendix D, we present the imple-
mentation of BBE with ERODE 2, some importing and exporting capabilities between
different BN formats, and a high level overview of the mathematics and the partition
refinement algorithm for computing the BBE partition and the reduced model.

ERODE provides special features for BN segmentation. The set of BN variables
can be decomposed into three different parts: inputs, internal variables and outputs.
Inputs are variables whose update function is either the identity function (fx = x) or
a constant (fx = 1 , fx = 0). These variables are inherently backward equivalent so
in Appendix A and Appendix B we study different reduction scenarios relevant to
them. Outputs are variables whose value does not appear in the update function of
any other variable and they are inherently GFB equivalent. Hence, in Appendix C
we study different scenarios relevant to output variables. ERODE provides special
features to identify these variables and place them either to a unique block or to
singleton blocks of the initial partition.

BBE has also been implemented in Colomoto Notebook [19], a framework that
combines many tools for interoperability between different system biology tools. An
illustration of BBE with Colomoto Notebook is documented 3. GFB is also supported
by ERODE but the implementation is not documented.

2https://www.erode.eu/index.html
3https://github.com/colomoto/colomoto-docker/blob/for-next/tutorials/ERODE/

Reduction%20of%20synchronous%20BNs%20by%20Backward%20Boolean%20Equivalence.ipynb

15

https://www.erode.eu/index.html
https://github.com/colomoto/colomoto-docker/blob/for-next/tutorials/ERODE/Reduction%20of%20synchronous%20BNs%20by%20Backward%20Boolean%20Equivalence.ipynb
https://github.com/colomoto/colomoto-docker/blob/for-next/tutorials/ERODE/Reduction%20of%20synchronous%20BNs%20by%20Backward%20Boolean%20Equivalence.ipynb

4 Related work

The reduction techniques can be classified into two categories according to their do-
main of reduction: syntactic reduction methods, and semantic reduction methods.
Semantic level reductions reduce the STG (i.e. the state space and dynamics of the
BN) and, thus, still incurring state space explosion. The methods that we introduced
in current thesis reduce the syntax of the BN (i.e. the model). The most popular idea
on syntax driven reduction is based on the idea of fast-slow decomposition proposed
originally for BNs in [10, 20].

Fast-Slow Decomposition. The main idea is that certain BN variables can get
removed by replacing their occurrences in the update functions of other variables
with their update functions. Formally, the reduced BN is obtained by the following
definition:

Definition 9. The reduction of B up to a variable xi is the BN B ′ = (X ′,F ′) where
X ′ = X \ {xi} and F ′ = {fxj [xi /fxi] | xj ∈ X ′}.

Next we give an example of the previous definition to our running example.

Example 4.1. Consider the BN of Fig. 1:

x1(t+1) = x1(t) ∧ ¬x4(t)

x2(t+1) = x1(t) ∧ x2(t)

x3(t+1) = ¬x4(t) ∧ x1(t) ∧ x3(t)

x4(t+1) = x2(t) ∧ x3(t) ∨ ¬x1(t)

We remove x4 from the system, and the occurrences of x4 in the update functions
of other variables will be replaced by the update function of x4 . The reduced BN after
simplification is as follows:

x1(t+1) = x1(t) ∧ (¬x2(t) ∨ ¬x3(t))

x2(t+1) = x1(t) ∧ x2(t)

x3(t+1) = ¬x1(t) ∧ ¬x2(t) ∧ x3(t)

We note that this technique has been raised to Multi-valued networks [10] and is
implemented in GINsim software [21]. GFB and BBE differ from this method in three
aspects: assumptions, limitations, and properties preserved.

Assumptions. In the case of fast-slow decomposition the assumptions are differ-
ent: the modeller assumes that the absorbed variable (x4 in the Example 4.1) is
updated first (or faster) before all the other variables. The assumptions of BBE and
GFB are orthogonal; we assume that the aggregated variables are updated at the same
time -concurrently-.

16

Limitations. In the case of fast-slow decomposition, auto-regulated variables can-
not be absorbed. These are variables whose state in the next time step depends on
its current state, like the variables x1 , x2 and x3 in the Example 4.1. In all these
variables xi(t + 1) depends on xi(t). The limitations of the methods presented here
are different; we cannot always rewrite a BN in terms of any variables up to a modeler
specified operation. We explain this in the BN of Fig. 1 where we cannot rewrite the
system in terms of x1 ∨ x2 and, thus, x1 , x2 are not Or-FB equivalent.

Example 4.2. We try to rewrite the running example of Fig. 1 as the disjunction of
x1 , x2 . We have that:

x1(t+ 1) ∨ x2(t+ 1) = x1(t) ∧ x2(t) ∨ x1(t) ∧ ¬x4(t)

= x1(t) ∧ x2(t) ∧ x1(t) ∨ x1(t) ∧ x2(t) ∧ ¬x4(t)

= x1(t) ∧ x2(t) ∨ x1(t) ∧ x2(t) ∧ ¬x4(t)

We observe that we cannot group the expression x1 (t) ∨ x2 (t) in order to replace
them with x1 ,2 (t). Moreover, the expression x1 (t) ∨ x2 (t) does not appear in the
update function of x3 , x4 to be replaced properly. This indicates that the partition
P = {{x1, x2}, {x3}, {x4}} is not an Or-FB partition.

Properties preserved. In the case of fast-slow decomposition, steady states are
preserved independent of the partition of synchronization as proved in [20]. However,
fast-slow decomposition generates spurious behaviours for cyclic attractors; when ap-
plied to the synchronous schema cyclic attractors may get shrinked, whereas in the
fully asynchronous scheme cyclic attractors may split and form new attractors. More-
over, transient trajectories may also end up being attractors in the reduced BN. In
the case of BBE, despite loosing attractors, we secure the exact length of all preserved
attractors while in the case of GFB we secure that attractor states of the original BN
are mapped to attractor states of the reduced BN.

Reachability is not preserved in the case of fast slow decomposition when the
method is used in the fully asynchronous schema [10], while in the case of synchronous
schema no relevant reachability results have been published. On the other hand,
GFB preserves the reachability and exact number of transitions between any two
original states in the reduced STG, concerning that the merged variables are updated
concurrently. BBE also preserves all reachability and exact number of transitions
between any two original preserved states.

Other relevant work. Other techniques have different limitations: some methods
remove output/leaf variables [22, 23] (variables that do not appear in the update
functions of other variables) or frozen ones (variables that stabilize to the same value
after some iterations independently of the initial conditions) [24]. Nevertheless, leaf
variables usually correspond to the “response” of the modelled system [22, 25], so
their removal may not be biologically plausible, while frozen variables can only be
identified statistically which is inevitably error prone. We note that the motivation
of [24] and [23] are different from ours. Particularly, in [24] the authors perform
frozen variable removal in order to justify that complex systems are compressive and
reducible while in [23] the authors reduce (with a method called decimation procedure)
to investigate the effect of reduction to stability. Stability is the ability of the BN to
converge to the same attractor when starting from slightly different initial conditions.

17

5 Future Work and Conlusion

Future Work. The reduction techniques for BNs presented in this thesis have
also been implemented for various other formalisms like systems of differential equa-
tions [26] and chemical reaction networks [27] but, yet, native implementation to other
formalisms (like Petri Nets [28]) is still missing.

BBE has been extended to BNs that are updated according to a hybrid syn-
chronization schema (governed by the partition of synchronization) that leads to a
non-deterministic STG. Our intuition is that the same idea can be applied to GFB,
which will give raise to bisimulations of non-deterministic STGs. Consider the run-
ning example of 1 while its variables are updated according to the partition of syn-
chronization K = {{x1 , x4}, {x2 , x3}}. By plugging this initial partition to the parti-
tion refinement algorithm of Section 5 of Appendix C, we obtain the GFB partition
P = {{x1}, {x2 , x3}, {x4}}. The GFB reduced BN is calculated as in the Example
3.4 while its corresponding STG if given in the right part of Fig. 6 according to the
partition of synchronization K = {{x1, x4}, {x2,3}}. Notice that the original and the
reduced STG are non-deterministic yet bisimulation-equivalent.

0000

0001

1000

0100

0101

1100

0010

0011

1010

0110

0111

1110

1111

1001

11011011

000

001

100

010

011

110

111

101

Figure 6: (Left) The original STG according to the partition of synchronization
K = {{x1, x4}, {x2, x3}}. States with the same colour are mapped to the same
state in the reduced STG. (Right) The GFB-reduced STG according to the
partition of synchronization K = {{x1, x4}, {x2,3}}.

Up to now, GFB has been introduced for reduction of arbitrary dynamical systems
over monoids. The theory can be extended to discrete-time dynamical systems over
arbitrary functions or over other algebraic structures, for instance, rings or semirings.
BBE (like GFB) can be trivially extended to arbitrary dynamical systems.

Conclusion. We introduced and implemented two novel reduction methods for
DSs. We focused on BNs which are discrete-time, and discrete-space dynamical sys-
tems whose variables are updated according to logical rules.

The modeler has to specify a DS and a partition of the set of variables. These are
plugged in a partition refinement algorithm which identifies disjoint sets of variables
with interesting properties. In the case of BBE, the variables of each set satisfy the
following property: if they are initialized equally, they are always updated equally.. In
the case of GFB, the variables of each set satisfy the following property: the DS can
be rewritten in terms of a modeler-specified operation of the variables that belong to

18

the same set. The disjoint sets are merged into single variable components to produce
the reduced DS. The overall procedure has been implemented in ERODE.

We have also given formal statements about how the original and the reduced DS
are related. The two methods are complementary with other methods found in the
literature. As discussed in the related work section, the reduction methods should be
applied carefully according to the assumptions of the modeller, the limitations of the
DS, and the properties that she/he wishes to preserve. Finally, we shall highlight that
reduction is important for system analysis; we can identify properties in the reduced
DS which cannot be identified in the original DS due to our limited computational
resources.

References

[1] S. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic
nets,” Journal of Theoretical Biology, vol. 22, no. 3, pp. 437 – 467, 1969.

[2] R. Thomas, D. Thieffry, and M. Kaufman, “Dynamical behaviour of biological
regulatory networks — i. biological role of feedback loops and practical use of the
concept of the loop-characteristic state,” Bulletin of mathematical biology, vol. 57,
no. 2, pp. 247–276, 1995.

[3] G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, and A. Vandin,
“Reducing boolean networks with backward boolean equivalence,” in Interna-
tional Conference on Computational Methods in Systems Biology. Springer, 2021,
pp. 1–18.

[4] ——, “Minimization of dynamical systems over monoids,” arXiv e-prints, pp.
arXiv–2206, 2022.

[5] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Erode: a tool
for the evaluation and reduction of ordinary differential equations,” in Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2017, pp. 310–328.

[6] G. Argyris, A. L. Lafuente, M. Tribastone, M. Tschaikowski, and A. Vandin,
“An extension of erode to reduce boolean networks by backward boolean equiva-
lence,” in International Conference on Computational Methods in Systems Biol-
ogy. Springer, 2022, pp. 294–301.

[7] E. Azpeitia, M. Beńıtez, I. Vega, C. Villarreal, and E. R. Alvarez-Buylla, “Single-
cell and coupled grn models of cell patterning in the arabidopsis thaliana root
stem cell niche,” BMC systems biology, vol. 4, no. 1, pp. 1–19, 2010.

[8] J. Behaegel, J.-P. Comet, G. Bernot, E. Cornillon, and F. Delaunay, “A hybrid
model of cell cycle in mammals,” Journal of bioinformatics and computational
biology, vol. 14, no. 01, p. 1640001, 2016.

[9] E. Cornillon, J.-P. Comet, G. Bernot, and G. Enée, “Hybrid gene networks: a
new framework and a software environment,” advances in Systems and Synthetic
Biology, 2016.

[10] A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, “Dynamically consistent reduc-
tion of logical regulatory graphs,” Theoretical Computer Science, vol. 412, no. 21,
pp. 2207–2218, 2011.

19

[11] L. Paulevé, J. Kolčák, T. Chatain, and S. Haar, “Reconciling qualitative, abstract,
and scalable modeling of biological networks,” Nature communications, vol. 11,
no. 1, pp. 1–7, 2020.

[12] W. Abou-Jaoudé, P. T. Monteiro, A. Naldi, M. Grandclaudon, V. Soumelis,
C. Chaouiya, and D. Thieffry, “Model checking to assess t-helper cell plasticity,”
Frontiers in bioengineering and biotechnology, vol. 2, p. 86, 2015.

[13] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya,
“Logical modelling of regulatory networks with ginsim 2.3,” Biosystems, vol. 97,
no. 2, pp. 134–139, 2009.

[14] N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri,
L. Li, H. Sauro, M. Schilstra, B. Shapiro et al., “Biomodels database: a free,
centralized database of curated, published, quantitative kinetic models of bio-
chemical and cellular systems,” Nucleic acids research, vol. 34, no. suppl 1, pp.
D689–D691, 2006.

[15] L. Grieco, L. Calzone, I. Bernard-Pierrot, F. Radvanyi, B. Kahn-Perles, and
D. Thieffry, “Integrative modelling of the influence of mapk network on cancer
cell fate decision,” PLoS Comput Biol, vol. 9, no. 10, p. e1003286, 2013.

[16] E. Dubrova and M. Teslenko, “A sat-based algorithm for finding attractors in syn-
chronous boolean networks,” IEEE/ACM transactions on computational biology
and bioinformatics, vol. 8, no. 5, pp. 1393–1399, 2011.

[17] R. Thomas and R. d’Ari, Biological feedback. CRC press, 1990.

[18] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 337–340.

[19] A. Naldi, C. Hernandez, N. Levy, G. Stoll, P. T. Monteiro, C. Chaouiya, T. He-
likar, A. Zinovyev, L. Calzone, S. Cohen-Boulakia et al., “The colomoto interac-
tive notebook: accessible and reproducible computational analyses for qualitative
biological networks,” Frontiers in physiology, vol. 9, p. 680, 2018.

[20] A. Veliz-Cuba, “Reduction of boolean network models,” Journal of theoretical
biology, vol. 289, pp. 167–172, 2011.

[21] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya,
“Logical modelling of regulatory networks with ginsim 2.3,” Biosystems, vol. 97,
no. 2, pp. 134–139, 2009. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0303264709000665

[22] A. Naldi, P. T. Monteiro, and C. Chaouiya, “Efficient handling of large signalling-
regulatory networks by focusing on their core control,” in International Confer-
ence on Computational Methods in Systems Biology. Springer, 2012, pp. 288–306.

[23] S. Bilke and F. Sjunnesson, “Stability of the Kauffman model,” Physical Review
E, vol. 65, no. 1, p. 016129, 2001.

[24] K. A. Richardson, “Simplifying boolean networks,” Advances in Complex Sys-
tems, vol. 8, no. 04, pp. 365–381, 2005.

[25] O. Rodŕıguez-Jorge, L. A. Kempis-Calanis, W. Abou-Jaoudé, D. Y. Gutiérrez-
Reyna, C. Hernandez, O. Ramirez-Pliego, M. Thomas-Chollier, S. Spicuglia,
M. A. Santana, and D. Thieffry, “Cooperation between t cell receptor and toll-like
receptor 5 signaling for cd4+ t cell activation,” Science signaling, vol. 12, no. 577,
2019.

20

https://www.sciencedirect.com/science/article/pii/S0303264709000665
https://www.sciencedirect.com/science/article/pii/S0303264709000665

[26] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Efficient syntax-
driven lumping of differential equations,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2016,
pp. 93–111.

[27] ——, “Forward and backward bisimulations for chemical reaction networks,”
arXiv preprint arXiv:1507.00163, 2015.

[28] J. Meseguer and U. Montanari, “Petri nets are monoids,” Information and com-
putation, vol. 88, no. 2, pp. 105–155, 1990.

[29] H. Klarner, A. Streck, and H. Siebert, “Pyboolnet: a python package for the gen-
eration, analysis and visualization of boolean networks,” Bioinformatics, vol. 33,
no. 5, pp. 770–772, 2017.

[30] A. Mbodj, G. Junion, C. Brun, E. E. Furlong, and D. Thieffry, “Logical modelling
of drosophila signalling pathways,” Molecular BioSystems, vol. 9, no. 9, pp. 2248–
2258, 2013.

[31] D. P. Cohen, L. Martignetti, S. Robine, E. Barillot, A. Zinovyev, and L. Calzone,
“Mathematical modelling of molecular pathways enabling tumour cell invasion
and migration,” PLoS Comput Biol, vol. 11, no. 11, p. e1004571, 2015.

21

6 Appendix

A PAPER I: Reducing Boolean Networks with
Backward Boolean Equivalence

Reproduced with permission from Springer Nature

22

Reducing Boolean Networks with
Backward Boolean Equivalence - extended

version?

Georgios Argyris1[0000−0002−3203−0410], Alberto Lluch
Lafuente1[0000−0001−7405−0818], Mirco Tribastone2[0000−0002−6018−5989], Max

Tschaikowski3[0000−0002−6186−8669], and Andrea Vandin4,1[0000−0002−2606−7241]

1 DTU Technical University of Denmark, Kongens Lyngby, Denmark
2 IMT School for Advanced Studies Lucca, Italy

3 University of Aalborg, Denmark
4 Sant’Anna School for Advanced Studies, Pisa, Italy

Abstract. Boolean Networks (BNs) are established models to qualita-
tively describe biological systems. The analysis of BNs might be infeasi-
ble for medium to large BNs due to the state-space explosion problem.
We propose a novel reduction technique called Backward Boolean Equiv-
alence (BBE), which preserves some properties of interest of BNs. In
particular, reduced BNs provide a compact representation by grouping
variables that, if initialized equally, are always updated equally. The re-
sulting reduced state space is a subset of the original one, restricted to
identical initialization of grouped variables. The corresponding trajecto-
ries of the original BN can be exactly restored. We show the effectiveness
of BBE by performing a large-scale validation on the whole GINsim BN
repository. In selected cases, we show how our method enables analyses
that would be otherwise intractable. Our method complements, and can
be combined with, other reduction methods found in the literature.

Keywords: Boolean Network · State Transition Graph · Attractor Anal-
ysis · Exact Reduction · GinSim Repository

1 Introduction

Boolean Networks (BNs) are an established method to model biological sys-
tems [28]. A BN consists of Boolean variables (also called nodes) which repre-
sent the activation status of the components in the model. The variables are
commonly depicted as nodes in a network with directed links which represent
influences between them. However, a full descriptive mathematical model un-
derlying a BN consists of a set of Boolean functions, the update functions, that
govern the Boolean values of the variables. Two BNs are displayed on top of
Fig. 1. The BN on the left has three variables x1, x2, and x3, and the BN on

? Partially supported by the DFF project REDUCTO 9040-00224B, the Poul Due
Jensen Foundation grant 883901, and the PRIN project SEDUCE 2017TWRCNB.

ar
X

iv
:2

10
6.

15
47

6v
2

 [
cs

.C
E

]
 3

0
Ju

n
20

21

2 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

the right has two variables x1,2 and x3. The dynamics (the state space) of a BN
is encoded into a state transition graph (STG). The bottom part of Fig. 1 dis-
plays the STGs of the corresponding BNs. The boxes of the STG represent the
BN states, i.e. vectors with one Boolean value per BN variable. A directed edge
among two STG states represents the evolution of the system from the source
state to the target one. The target state is obtained by synchronously applying
all the update functions to the activation values of the source state. There exist
BN variants with other update schema, e.g. asynchronous non-deterministic [47]
or probabilistic [43]. Here we focus on the synchronous case. BNs where variables
are multivalued, i.e. can take more than two values to express different levels of
activation [46], are supported via the use of booleanization techniques [18], at
the cost, however, of increasing the number of variables.

x1(t+ 1) = ¬x3(t) ∨ x1(t)
x2(t+ 1) = x1(t) ∨ x2(t) ∨ ¬x3(t)
x3(t+ 1) = x2(t) ∧ ¬x3(t)

=========⇒
x1, x2 : BBE

x1,2(t+ 1) = ¬x3(t) ∨ x1,2(t)
x3(t+ 1) = x1,2(t) ∧ ¬x3(t)

Fig. 1: A BN (top-left), its STG (bottom-left), the BBE-reduced BN (top-right)
and its (reduced) STG (bottom-right).

BNs suffer from the state space explosion problem: there are exponentially
many STG states with respect to the number of BN variables. This hampers BN
analysis in practice, calling for reduction techniques for BNs. There exist manual
or semi-automated ones based on domain knowledge. Such empirical reductions
have several drawbacks: being semi-automated, they are error-prone, and do
not scale. Popular examples are those based on the idea of variable absorption,
proposed originally in [34,48,41]. The main idea is that certain BN variables
can get absorbed by the update functions of their target variables by replacing
all occurrences of the absorbed variables with their update functions. Other
methods automatically remove leaf variables (variables with 0 outgoing links)
or frozen variables (variables that stabilize after some iterations independently
of the initial conditions) [39,3]. Several techniques [23,1] focus on reducing the
STGs rather than the BN generating them. This requires to construct the original
STG, thus still incurring the state space explosion problem.

Our research contributes a novel mathematically grounded method to au-
tomatically minimize BNs while exactly preserving behaviors of interest. We
present Backward Boolean Equivalence (BBE), which collapses backward Boolean

Reducing Boolean Networks with Backward Boolean Equivalence 3

equivalent variables. The main intuition is that two BN variables are BBE-
equivalent if they maintain equal value in any state reachable from a state
wherein they have the same value. In the STG in Fig. 1 (left), we note that for all
states where x1 and x2 have same value (purple boxes), the update functions do
not distinguish them. Notably, BBE is that it can be checked directly on the BN,
without requiring to generate the STG. Indeed, as depicted in the middle of Fig. 1
, x1 and x2 can be shown to be BBE-equivalent by inspecting their update func-
tions: If x1, x2 have the same value in a state, i.e. x1 (t) = x2 (t), then their update
functions will not differentiate them since x2(t + 1) = x1(t) ∨ x2(t) ∨ ¬x3(t) =
x1(t) ∨ x1(t) ∨ ¬x3(t) = x1(t) ∨ ¬x3(t) = x1(t + 1). We also present an iter-
ative partition refinement algorithm [36] that computes the largest BBE of a
BN. Furthermore, given a BBE, we obtain a BBE-reduced BN by collapsing all
BBE-equivalent variables into one in the reduced BN. In Fig. 1, we collapsed
x1 , x2 into x1 ,2 . The reduced BN faithfully preserves part of the dynamics of the
original BN: it exactly preserves all states and paths of the original STG where
BBE-equivalent variables have same activation status. Fig. 1 (right) shows the
obtained BBE-reduced BN and its STG. We can see that the purple states of
the original STG are preserved in the one of the reduced BN.

We implemented BBE in ERODE [10], a freely available tool for reducing bio-
logical systems. We built a toolchain that combines ERODE with several tools for
the analysis, visualization and reduction of BNs, allowing us to apply BBE to all
BNs from the GINsim repository (http://ginsim.org/models_repository).
BBE led to reduction in 61 out of 85 considered models (70%), facilitating STG
generation. For two models, we could obtain the STG of the reduced BN while
it is not possible to generate the original STG due to its size. We further demon-
strate the effectiveness of BBE in three case studies, focusing on their asymptotic
dynamics by means of attractors analysis. Using BBE, we can identify the at-
tractors of large BNs which would be otherwise intractable.

The article is organized as follows: Section 2 provides the basic definitions
and the running example based on which we will explain the key concepts. In
Section 3 , we introduce BBE, present the algorithm for the automatic compu-
tation of maximal BBEs, and formalize how the STGs of the original and the
reduced BN are related. In Section 4, we apply BBE to BNs from the literature.
In Section 5 we discuss related works, while Section 6 concludes the paper.

2 Preliminaries

BNs can be represented visually using some graphical representation which, how-
ever, might not contain all the information about their dynamics [29]. An ex-
ample is that of signed interaction (or regulatory) graphs adopted by the tool
GinSim [31]. These representations are often paired with a more precise descrip-
tion containing either truth tables [39] or algebraic update functions [45]. In this
paper we focus on such precise representation, and in particular on the latter.
However, in order to better guide the reader in the case studies, wherein we ma-

4 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

xFgf8 (t +1) = xFgf8 (t) ∧ ¬xEmx2 (t) ∧ xSp8 (t)
xPax6 (t +1) = ¬xEmx2 (t) ∧ xSp8 (t) ∧ ¬xCoup tfi(t)
xEmx2 (t +1) = ¬xFgf8 (t) ∧ ¬xPax6 (t) ∧ ¬xSp8 (t) ∧ xCoup tfi(t)

xSp8 (t +1) = xFgf8 (t) ∧ ¬xEmx2 (t)
xCoup tfi(t +1) = ¬xFgf8 (t) ∧ ¬xSp8 (t)

Fgf8

Pax6

Emx2

Sp8

Coup_tfi

Fig. 2: (Left) the BN of cortical area development from [25]; (Right) its signed
interaction graph.

nipulate BNs with a very large number of components, we also introduce signed
interaction graphs.

We explain the concepts of current and next sections using the simple BN
of Fig. 2 (left) taken from [25]. The model refers to the development of the
outer part of the brain: the cerebral cortex. This part of the brain contains
different areas with specialised functions. The BN is composed of five variables
which represent the gradients that take part in its development: the morphogen
Fgf8 and four transcription factors, i.e., Emx2, Pax6, Coup tfi, Sp8. During
development, these genes are expressed in different concentrations across the
surface of the cortex forming the different areas.

Fig. 2 (right) displays the signed interaction graph that corresponds to the
BN. The green arrows correspond to activations whereas the red arrows corre-
spond to inhibitions. For example, the green arrow from Sp8 to Pax6 denotes
that the former promotes the latter because variable xSp8 appears (without nega-
tion) in the update function of xPax6 , whereas the red arrow from Pax6 to Emx2
denotes that the former inhibits the latter because the negation of xPax6 appears
in the update function of xEmx2 .

We now give the formal definition of a BN:

Definition 1. A BN is a pair (X,F) where X = {x1, ..., xn} is a set of variables
and F = {fx1

, ..., fxn
} is a set of update functions, with fxi

: Bn → B being the
update function of variable xi.

A BN is often denoted as X(t + 1) = F (X, t), or just X = F (X). In Fig. 2
we have X = {xFgf8 , xPax6 , xEmx2 , xSp8 , xCoup tfi}.

The state of a BN is an evaluation of the variables, denoted with the vector
of values s = (sx1

, . . . , sxn
) ∈ Bn . The variable xi has the value sxi

. When the
update functions are applied synchronously, we have synchronous transitions
between states, i.e. for s, t ∈ Bn we have s −→ t if t = F (s) = (fx1 (s), . . . , fxn (s)).

Suppose that the activation status of the variables xFgf8 , xEmx2 , xPax6 , xSp8 ,
xCoup tfi is given by the state s = (1, 0, 1, 1, 1). After applying the update func-
tions, we have t = F (s) = (0, 0, 0, 0, 0).

The state space of a BN, called State Transition Graph (STG), is the set of
all possible states and state transitions.

Reducing Boolean Networks with Backward Boolean Equivalence 5

00000

10000

01000 11000

00100

10100

01100

11100

00010

10010

11010
01010

00110

10110

01110

11110

00001

10001

01001

11001
00101

10101

01101

11101

00011

10011

01011

11011

00111

10111

01111

11111

(a) STG of BN in Fig. 2

0000

1000

1100

0100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

(b) STG of BN in Fig. 4

Fig. 3: The STGs of the BN of Fig. 2 and of its BBE-reduction in. Fig. 4. We use
GINsim’s visual representation, where self-loops are implicit in nodes without
outgoing edges.

Definition 2. Let B = (X,F) be a BN. We define the state transition graph of
B, denoted with STG(B), as a pair (S, T) with S ⊆ Bn being a set of vertices
labelled with the states of B, and T = {s −→ t | s ∈ S, t = F (s)} a set of directed
edges representing the transitions between states of B.

We often use the notation s −→+ t for the transitive closure of the transition
relation. The cardinality of the set of states is 2n, which illustrates the state
space explosion: we have exponentially many states on BN variables. Fig. 3(a)
displays the STG of the BN in Fig. 2.

Several BN properties are identified in STGs, e.g. attractors, basins of at-
traction, and transient trajectories [42]. Attractors are sets of states towards
which a system tends to evolve and remain [27]. They are often associated with
the interpretation of the underlying system; for example, Kauffman equated at-
tractors with different cell types [20]. Hence, the main reduction methods that
have been developed in the literature so far concentrate on how they affect the
asymptotic dynamics i.e. the number of attractors and the distribution of their
lengths. We define an attractor as follows:

Definition 3. (Attractor) Let B = (X,F) be a BN with STG(B) = (S, T).
We say that a set of states A ⊆ S is an attractor iff

1. ∀s, s′ ∈ A, s −→+ s′, and
2. ∀s ∈ A,∀s′ ∈ S, s −→+ s′ implies s′ ∈ A.

Attractors are hence just absorbing strongly connected components in the
STG. An attractor A such that |A| = 1 is called a steady state (also named point
attractor). We also denote with |A| the length of attractor A.

6 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

3 Backward Boolean Equivalence

Our reduction method is based on the notion of backward equivalence, recast
for BNs, which proved to be effective for reducing the dimensionality of ordinary
differential equations [9,13] and chemical reaction networks [11,6,8]. Section 3.1
introduces Backward Boolean Equivalence (BBE), which is an equivalence rela-
tion on the variables of a BN, and use it to obtain a reduced BN. Section 3.2
provides an algorithm which iteratively compute the maximal BBE of a BN.
Section 3.3 relates the properties of an original and BBE-reduced BN.

We fix a BN B = (X,F), with |X| = n. We use R to denote equivalence
relations on X and XR for the induced partition.

3.1 Backward Boolean Equivalence and BN Reduction

We first introduce the notion of constant state on an equivalence relation R.

Definition 4. (Constant State) A state s ∈ Bn is constant on R if and only
if ∀(xi, xj) ∈ R it holds that sxi

= sxj
.

Consider our running example and an equivalence relation R given by the
partition XR = {{xSp8, xFgf8}, {xPax6}, {xEmx2}, {xCoup tfi}}. The states con-
stant on R are colored in purple in Fig. 3. For example, the state s = (1, 0, 1, 1, 1)
is constant on R because sSp8 = sFgf8 (the first and fourth positions of s, re-
spectively). On the contrary, (1, 0, 1, 0, 1) is not constant on R.

We now define Backward Boolean Equivalence (BBE).

Definition 5. (Backward Boolean Equivalence) Let B = (X,F) be a BN,
XR a partition of the set X of variables, and C ∈ XR a class of the partition.
A partition XR is a Backward Boolean Equivalence (BBE) if and only if the
following formula is valid:

ΦXR ≡

∧

C∈XR
x,x′∈C

(
x = x′

)

 −→

∧

C∈XR
x,x′∈C

(
fx(X) = fx′(X)

)

ΦXR says that if for all equivalence classes C the variables in C are equal,
then the update functions of variables in the same equivalence class stay equal.

In other words, R is a BBE if and only if for all s ∈ Bn constant on R it
holds that F (s) is constant on R. BBE is a relation where the update functions F
preserve the “constant” property of states. The partition XR = {{xSp8, xFgf8},
{xPax6}, {xEmx2}, {xCoup tfi}} described above is indeed a BBE. This can be ver-
ified on the STG: all purple states (the constant ones) have outgoing transitions
only towards purple states.

We now define the notion of BN reduced up to a BBE R. Each variable in
the reduced BN represents one equivalence class in R. We denote by f{a/b} the
term arising by replacing each occurrence of b by a in the function f .

Reducing Boolean Networks with Backward Boolean Equivalence 7

Definition 6. The reduction of B up to R, denoted by B/R, is the BN (XR, FR)
where FR = {fxC

: C ∈ XR}, with fxC
= fxk

{xC′/xi
: ∀C ′ ∈ XR,∀xi ∈ C ′} for

some xk ∈ C.

The definition above uses one variable per equivalence class, selects the up-
date function of any variable in such class, and replaces all variables in it with a
representative one per equivalence class. Fig. 4 shows the reduction of the corti-
cal area development BN. We selected the update function of xSp8 as the update
function of the class-variable x{Fgf8 ,Sp8}, and replaced every occurrence of xSp8

and xFgf8 with x{Fgf8 ,Sp8}. The STG of such reduced BN is given in Fig. 3(b).

x{Fgf8 ,Sp8}(t+ 1) = x{Fgf8 ,Sp8}(t) ∧ ¬x{Emx2}(t)
x{Pax6}(t+ 1) = ¬x{Emx2}(t) ∧ x{Fgf8 ,Sp8}(t) ∧ ¬x{Coup tfi}(t)
x{Emx2}(t+ 1) = ¬x{Fgf8 ,Sp8}(t) ∧ ¬x{Pax6}(t) ∧ ¬x{Fgf8 ,Sp8}(t) ∧ x{Coup tfi}(t)

x{Coup tfi}(t+ 1) = ¬x{Fgf8 ,Sp8}(t) ∧ ¬x{Fgf8 ,Sp8}(t)

Fig. 4: The BBE-reducion of the cortical area development network of Fig. 2.

3.2 Computation of the maximal BBE

A crucial aspect of BBE is that it can be checked directly on a BN without
requiring the generation of the STG. This is feasible by encoding the logical
formula of Definition 5 into a logical SATisfiability problem [2]. A SAT solver
has the ability to check the validity of such a logical formula by checking for
the unsatisfiability of its negation (sat(¬ΦXR)). A partition XR is a BBE if
and only if sat(¬ΦXR) returns “unsatifiable”, otherwise a counterexample (a
witness) is returned, consisting of variables assignments that falsify ΦXR . Using
counterexamples, it is possible to develop a partition refinement algorithm that
computes the largest BBE that refines an initial partition.

The partition refinement algorithm is shown in Algorithm 1. Its input are a
BN and an initial partition of its variablesX. A default initial partition that leads
to the maximal reduction consists of one block only, containing all variables. In
general, the modeller may specify a different initial partition if some variables
should not be merged together, placing them in different blocks. The output of
the algorithm is the largest partition that is a BBE and refines the initial one.

We now explain how the algorithm works for input the cortical area develop-
ment BN and the initial partition XR = {{xFgf8 , xEmx2 , xPax6 , xSp8 , xCoup tfi}}.

Iteration 1. The algorithm enters the while loop, and the solver checks if ΦXR is
valid. XR is not a BBE, therefore the algorithm enters the second branch of the if
statement. The solver gives an example satisfying ¬ΦXR : s = (sxFgf8

, sxPax6 , sxEmx2 ,
sxSp8

, sxCoup tfi
) =(0, 0, 0, 0, 0). Since t = F (s) = (0, 0, 0, 0, 1), the for loop par-

titions G into XR1
= {{xFgf8 , xPax6 , xEmx2 xSp8}, {xCoup tfi}}. The state t =

(0, 0, 0, 0, 1) is now constant on XR1
.

8 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

Algorithm 1: Compute the maximal BBE that refines the initial par-
tition XR for a BN (X,F)

Result: maximal BBE H that refines XR

H ← XR;
while true do

if ΦH is valid then
return H ;

else
s← get a state that satisfy ¬ΦH ;
H ′ ← ∅;
for C ∈ H do

C0 = {xi ∈ C : fxi(s) = 0};
C1 = {xi ∈ C : fxi(s) = 1};
H ′ = H ′ ∪ {C1} ∪ {C0};

end
H ← H ′ \ {∅};

end

end

Iteration 2. The algorithm checks if ΦXR1 is valid (i.e. if XR1
is a BBE). XR1

is not a BBE. The algorithm gives a counterexample with s = (0, 0, 0, 0, 1) and
t = F (s) = (0, 0, 1, 0, 1). The for loop refines XR1 into XR2 = {{xFgf8 , xPax6

xSp8}, {xEmx2}, {xCoup tfi}}. XR2 makes t = (0, 0, 1, 0, 1) constant.

Iteration 3. The algorithm checks if G2 is a BBE. The formula ¬ΦXR2 is sat-
isfiable, so G2 is not a BBE, and the solver provides an example with s =
(1, 1, 0, 1, 1) and F (s) = (1, 0, 0, 1, 0). Hence, XR2 is partitioned into XR3 =
{{xFgf8 , xSp8}, {xPax6} {xEmx2}, {xCoup tfi}}.

Iteration 4. The SAT solver proves that ΦXR3 is valid.
The number of iterations needed to reach a BBE depends on the counterex-

amples that the SAT solver provides. As for all partition-refinement algorithms,
it can be easily shown that the number of iterations is bound by the number
of variables. Each iteration requires to solve a SAT problem which is known to
be NP-complete, however we show in Section 4 that we can easily scale to the
largest models present in popular BN repositories.

We first show that given an initial partition there exists exactly one largest
BBE that refines it. 1

After that, we prove that Algorithm 1 indeed provides the maximal BBE
that refines the initial one.

Theorem 1. Let BN = (X,F) and XR a partition. There exists a unique max-
imal BBE H that refines XR.

Theorem 2. Algorithm 1 computes the maximal BBE partition refining XR.
1 All proofs are given in Appendix A

Reducing Boolean Networks with Backward Boolean Equivalence 9

3.3 Relating Dynamics of Original and Reduced BNs

Given a BN B and a BBE R, STG(B/R) can be seen as the subgraph of STG(B)
composed of all states of STG(B) that are constant on R and their transitions.
Of course, those states are transformed in STG(B/R) by “collapsing” BBE-
equivalent variables in the state representation. This can be seen by comparing
the STG of the our running example (left part of Fig. 3) and of its reduction
(right part of Fig. 3). The states (and transitions) of the STG of the reduced
BN correspond to the purple states of the original STG.

Let B be a BN with n variables, S ⊆ Bn be the states of its STG, and
R a BBE for B. We use S|R to denote the subset of S composed by all and
only the states constant on R. With STG(B)|R we denote the subgraph of
STG(B) containing S|R and its transitions. Formally STG(B)|R = (S|R, T|R),
where T|R = T ∩ (S|R × S|R).

The following lemma formalizes a fundamental property of STG(B)|R, namely
that all attractors ofB containing states constant onR are preserved in STG(B)|R.

Lemma 1. (Constant attractors) Let B(X,F) be a BN, R be a BBE, and
A an attractor. If A ∩ S|R 6= ∅ then A ⊆ S|R .

We now define the bijective mapping mR : S|R ↔ SR induced by a BBE R,
where SR are the states of STG(B/R), as follows: mR(s) = (vC1

, . . . , vC|X/R|)
where vCj

= sxi
for some xi ∈ Cj . In words mR bijectively maps each state of

STG(B)|R to their compact representation in STG(B/R). Indeed, STG(B)|R
and STG(B/R) are isomorphic, with mR defining their (bijective) relation. We
can show this through the following lemma.

Lemma 2. (Reduction isomorphism) Let B(X,F) be a BN and R be a BBE.
Then, it holds

1. For all states s ∈ S|R it holds FR(mR(s)) = mR(F (s)).

2. For all states s ∈ SR it holds F (m−1R (s)) = m−1R (FR(s)).

The previous Lemma ensures that BBE does not generates spurious trajec-
tories or attractors in the reduced system. We can now state the main result
of our approach, namely that the BBE reduction of a BN for a BBE R exactly
preserves all attractors that are constant on R up to renaming with mR.

Theorem 3. (Constant attractor preservation) Let B(X,F) be a BN, R
a BBE, and A an attractor. If A∩S|R 6= ∅ then mR(A) is an attractor for B/R.

4 Application to BNs from the Literature

We hereby apply BBE to BNs from the GINsim repository. Section 4.1 validates
BBE on all models from the repository, while Section 4.2 studies the runtime
speedups brought by BBE on attractor-based analysis of selected case studies,

10 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

BoolSim

Step 1

Step 2

Step 2

Step 3

Step 3

Step 3

Step 2

Fig. 5: BBE toolchain. (Step 1) We use GINsim [15] to access its model repository,
and (Step 2) export it in the formats of the other tools in the toolchain to
perform: STG generation (PyBoolNet [30]), attractor analysis (BoolSim [19]),
and BBE reduction (ERODE [10]). (Step 3) We export the reduced models for
analysis to PyBoolNet and BoolSim, or to GINsim.

showing cases for which BBE makes the analysis feasible. 2 Section 4.3 compares
BBE with the approach based on ODE encoding from [11], showing how such
encoding leads to scalability issues and to the loss of reduction power. 3

The experiments have been made possible by a novel toolchain (Fig. 5)
combining tools from the COLOMOTO initiative [33], and the reducer tool
ERODE [10] which was extended here to support BBE-reduction. For Algo-
rithm 1 we use the solver Z3 [17] which was already integrated in ERODE.

All experiments were conducted on a common laptop with an Intel Xeon(R)
2.80GHz and 32GB of RAM. We imposed an arbitrary timeout of 24 hours for
each task, after which we terminated the analysis. We refer to these cases as
time-out, while we use out-of-memory if a tool terminated with a memory error.

4.1 Large Scale Validation of BBE on BNs

We validate BBE on real-world BNs in terms of the number of BNs that can be
reduced and the average reduction ratio.

Configuration. We conducted our investigation on the whole GINsim model
repository which contains 85 networks: 29 are Boolean, and 56 are multivalued.
In multivalued networks (MNs), some variables have more than 2 activation
statuses, e.g. {0, 1, 2}. These models are automatically booleanized [18,14] by
GinSim when exporting in the input formats of the other tools in the tool-chain.

Most of the models in the repository have a specific structure [32] where
a few variables are so-called input variables. These are variables whose update
functions are either a stable function (e.g. x(t + 1) = 0, x(t + 1) = 1) or the
identity function (e.g. x(t + 1) = x(t)). These are named ‘input’ because their
values are explicitly set by the modeler to perform experiments campaigns. We
investigate two reduction scenarios relevant to input variables. In the first one,

2 These models are further analysed in Appendix C using initial partitions based on
information from the original publications, obtaining better reductions.

3 Appendix D further studies BBE-induced runtime speedups to STG generation on
the repository. We display again cases where BBE makes the analysis feasible.

Reducing Boolean Networks with Backward Boolean Equivalence 11

Algorithm 1 starts with initial partitions that lead to the maximal reduction, i.e.
consisting of one block only. In the second scenario, we provide initial partitions
that isolate inputs in singleton blocks. Therefore, we prevent their aggregation
with other variables, and obtain reductions independent of the values of the
input variables (we recall that BBE requires related variables to be initialized
with same activation value). We call this case input-distinguished (ID) reduction.

Results. By using the maximal reduction setting, we obtained reductions on 61
of the 85 models, while we obtained ID reductions on 38 models. We summarize
the reductions obtained for the two settings in Fig. 6, displaying the distribution
of the reduction ratios rm = Nm/N and ri = Ni/N , where N , Nm and Ni are
the number of variables in the original BN, in the maximal BBE-reduction, and
in the ID one, respectively. 4 We also provide the average reduction ratios on
the models, showing that it does not substantially change across Boolean or
multivalued models. No reduction took more than 3 seconds.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Reduction ratio

0

2

4

6

8

Nu
m

be
r o

f m
od

el
s

Maximal
ID

Average reduction ratios

Maximal ID
BNs 0.66 0.83
MNs 0.68 0.95
ALL 0.67 0.91

Fig. 6: (Left) Distribution of reduction ratios (reduced variables over original
ones) on all models from the GINsim repository using the maximal and ID
reduction strategy. Each bar counts the number of models with that reduction
ratio, starting from 15% up to 90%, with step 5%. (Right) Average reduction
ratios for Boolean, Multivalued and all models.

Interpretation. BBE reduced a large number of models (about 72%). In partic-
ular, this happened in 24 out of the 29 (83%) Boolean models and in 37 out
of 56 (66%) multivalued networks. The average reduction ratio for the maximal
and ID strategies are 0.67 and 0.91, respectively. For the former strategy, we
get trivial reductions in 22 models wherein only input variables are related. In
such trivial cases, the ID strategy does not lead to reduction. In other cases,
the target variables of inputs (i.e. variables with incoming edges only from input
variables considering the graphical representation of variables) appeared to be

4 More details can be found in Table 2 of Appendix B.

12 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

backward equivalent together with the input variables. This results in reductions
with large equivalence classes consisting of input variables and their descendants.
These are interesting reductions which get lost using the ID approach, as the
input variables get isolated.

4.2 Attractor analysis of selected case studies

Hypothesis. We now investigate the fate of asymptotic dynamics after BBE-
reduction, and test the computational efficiency in terms of time needed for
attractor identification in the original and reduced models. We expect that BBE-
reduction can be utilized to (i) gain fruitful insights into large BN models and
(ii) to reduce the time needed for attractor identification.

Configuration. Our analysis focuses on three BNs from the GINsim repository.
The first is the Mitogen-Activated Protein Kinases (MAPK) network [26] with
53 variables. The second refers to the survival signaling in large granular lympho-
cyte leukemia (T-LGL) [52] and contains 60 variables. The third is the merged
Boolean model [40] of T-cell and Toll-like receptors (TCR-TLR5) which is the
largest BN model in GINsim repository with 128 variables.

Results. The results of our analysis are summarized in Table 1 for the original,
ID- and maximal-reduced BN. We present the number of variables (size) and
of Attractors (Attr.), the time for attractor identification on the original model
(An. (s)) and that for reduction plus attractor identification (Red. + An. (s)).

Original model ID reduction Maximal reduction

Size Attr. An.(s) Size Attr. Red.+An.(s) Size Attr. Red.+An.(s)

MAPK Network 53 40 16.50 46 40 15.33 39 17 3.49
T-LGL 60 264 123.43 57 264 86.84 52 6 3.49

TCR-TLR 128 —Time Out— 116 —Time Out— 95 2 31.29

Table 1: Reduction and attractor analysis on 3 selected case studies.

Interpretation. ID reduction preserves all attractors reachable from any combi-
nation of activation values for inputs. This is an immediate consequence of 2,
Theorem 3 and the fact that number of attractors in the original and the ID
reduced BN is the same (see Table 1). Maximal reduction might discard some
attractors. We also note that, despite the limited reduction in terms of obtained
number of variables, we have important analysis speed-ups, up to two orders of
magnitude. Furthermore, the largest model could not be analyzed, while it took
just 30 seconds to analyze its maximal reduction identifying 2 attractors. 5

5 There might be further attractors of interest in addition to these. In Appendix C we
show how BBE could be used by a modeler by imposing ad-hoc initial partitions to
preserve more attractors while reducing more than with the ID stategy.

Reducing Boolean Networks with Backward Boolean Equivalence 13

4.3 Comparison with ODE-based approach from [11]

As discussed, BBE is based on the backward equivalence notion firstly pro-
vided for ordinary differential equations (ODEs), chemical reaction networks,
and Markov chains [9,11]. Notably, [11] shows how the notion for ODEs can be
applied indirectly to BNs via an odification technique [49] to encode BNs as
ODEs. Such odification transforms each BN variable into an ODE variable that
takes values in the continuous interval [0,1]. The obtained ODEs preserve the
attractors of the original BN because the equations of the two models coincide
when all variables have value either 0 or 1. However, infinitely more states are
added for the cases in which the variables do not have integer value.

TCR CD28 TLR5CD4CD45 CD6

MyD88

TICAM1

TRAF6

TCRp
CD28p

CD6p

LCKr LCK FYN

ABL1

ZAP70

LAT

LCP2

PI3K

PIK3AP1

IRAK4

IRAK1

CSK

DAG

DGKZ

MAP4K3

PKCtheta

GAB2

GRAP2

RASA1

VAV1

VAV2

GRB2

SOS

GSK3b

MAP4K1 GADD45A

IKBKG

NFKBIA

IKBKB

JNK

ERK

P38a

IP3

ITK

Malt1

MAP2K1

MAP3K1

MAP2K4

MAP3K11

PDPK1

PIK3R1

PIP3

Akt

PLCg

Foxo1

CDKN1B

CDKN1A

Bclxl

RHEBL1

CBLB

CCBLp

CCBL

CDC42

PTEN

INPP5DPTPN6

PTPN11

PTPN22

TNFAIP3

DUSP

PAG1

PPP3C

RCAN1

CALM1

Camk2

Camk4

CARD11a

CARD11

Akap5

BAD

Bcl10

Ca

Cabin1

RAC1p1

RAC1p2

RAC1

RAF1

HRAS

RASGRP1

TXK

RPS6KA1

SH3BP2

WAVE

WAS

HCLS1

ARP

mTOR

MAP3K8

Kinases

NFKB1

TAK1

TAB

TAK1c

MAP2K2

MAP2K3

MAP2K7

RPS6KA2

MKNK1

RPS6KA5

MAPKAPK2

ZFP36

Cyc1

FOS JUN

NFkB

AP1

NFAT

CREB1

CTNNB1

SRF

ActinRem
PICytokinesAICytokines

CellCycleProg Survival
Anergy

Fig. 7: Excerpt of GINsim’s
depict of TCR-TLR.

Scalability. The technique from [11] has been
proved able to handle models with millions
of variables. Instead, the odification technique
is particularly computationally intensive. Due
to this, it failed on some models from the
GINsim repository, including two from [22],
namely core engine budding yeast CC and cou-
pled budding yeast CC, consisting of 39 and 50
variables, respectively. Instead, BBE could be ap-
plied in less than a second.

Reduction power. Another example is the TCR-
TLR model from the previous section. In this case,
both the ODE-based and BBE techniques suc-
ceeded. However, BBE led to better reductions
due to the added non-integer states in the ODEs.
Intuitively, the ODE-based technique counts in-
coming influences from equivalence classes of
nodes, while BBE only checks whether at least
one of such influence is present or not. Figure 7
shows an excerpt of the graphical representation
of the model by GINsim. We use background col-
ors of nodes to denote BBE equivalence classes
(white denotes singleton classes). We see a large
equivalence class of magenta species, 3 of which
(IRAK4, IRAK1, and TAK1) receive two influences by magenta species, while
the others receive only one. This differentiates the species in the ODE-based
technique, keeping only the top four in the magenta block, while all the others
end up in singleton blocks. We compare the original equations of MyD88 and
IRAK4 which have 1 and 2 incoming influences each.

xMyD88 (t+ 1) = xTLR5 (t)

xIRAK4 (t+ 1) = (¬xMyD88 (t) ∧ xTICAM1 (t)) ∨ (xMyD88 (t))

14 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

We see that the two variables are BBE because their update functions de-
pend only on the BBE-equivalent variables TLR5 and MyD88, respectively. For
IRAK4, the three variables in the update function are BBE. Therefore, they
have same value allowing us to simplify the update function to just MyD88. The
ODEs obtained for the 2 variables are, where x′− denotes the derivative of x−:

x′MyD88 = xTLR5 − xMyD88

x′IRAK4 = xMyD88 + xTICAM1 − xMyD88 · xTICAM1 − xIRAK4

Given that all variables appearing in the equations are backward equivalent,
the two equations coincide with the original ones when all variables have values
either 0 or 1. However, they differ for non-integer values. For example, in case
all variables have value 0.5, we get 0 for the former, and 0.25 for the latter.

5 Related Work

BN reduction techniques belong to three families according to their domain of
reduction: (i) they reduce at syntactic level (i.e. the BN [34,48,39,3,32,41,51]),
(ii) at semantic level (i.e. the STG [23,1]), or (iii) they transform BNs to other
formalisms like Petri Nets [16,44] and ordinary differential equations [50] offering
formalism-specific reductions. However, (semantic) STG-reduction does not solve
the state space explosion whereas the transformation to other formalisms has
several drawbacks as shown in Section 4.3.

Syntactic level reduction methods usually perform variable absorption [3,34,48,41]
at the BN. BN variables can get absorbed by the update functions of their target
variables by replacing all occurrences of the absorbed variables with their up-
date functions. This method was first investigated in [34] wherein update func-
tions are represented as ordinary multivalued decision diagrams. The authors
consider multivalued networks with updates being applied asynchronously and
iteratively implement absorption. The process, despite preserving steady states
in all synchronization schemas [48], might lead to loss of cycle attractors in the
synchronous schema. However, absorption of variables might lead to introduc-
tion of new attractors in the asynchronous case, i.e., by reducing the number of
variables the number of attractors can stay the same or increase (attractors can
split or new attractors can appear).

A similar study [48] presents a reduction procedure and proves that it pre-
serves steady states. This procedure includes two steps. The first refers to the
deletion of links between variables on their network structure. Deletion of pseudo-
influences is feasible by simplifying the Boolean expressions in update functions.
The second step of the procedure refers to the absorption of variables like in [34].

The difference between studies [48], [34] is that [48] exploits Boolean algebra
instead of multivalued decision diagrams to explain absorption. Moreover, they
refer only to Boolean networks, and do not consider any update schema. In
studies [34,48,41], self-regulated BN variables (i.e. variables with a self-loop in
the graphical representation) can not be selected for absorption. The inability to

Reducing Boolean Networks with Backward Boolean Equivalence 15

absorb self-regulated variables is inherent in the implementation of absorption
in contrast to our method where the restrictions are encoded by the user at the
initial partition and self-regulated variables can be merged with other variables.

In [41] the authors presented a two step reduction algorithm. The first step
includes the absorption of input variables with stable function and the second
step the absorption of single mediator variables (variables with one incoming and
outgoing edge in the signed interaction graph). The first step of the algorithm
in [41] is equally useful and compatible with the first step of [48]. Moreover, if
we combine the first steps of [48] and [41], we may achieve interesting reductions
which exactly preserve all asymptotic dynamics.

The first steps of [48,41] affect only a BN property called stability. Stabil-
ity is the ability of a BN to end up to the same attractor when starting from
slightly different initial conditions. In [3], the authors introduced the decima-
tion procedure -a reduction procedure for synchronous BNs- to discuss how it
affects stability. The crucial difference between decimation procedure and BBE-
reduction is that the first was invented to study stability whereas the latter was
invented to degrade state space explosion. The decimation procedure is summa-
rized by the following four steps: (i) remove from every update functions the
inputs that it does not depend on, (ii) find the constant value for variables with
no inputs, (iii) propagate the constant values to other update functions and re-
move this variable from the system, and (iv) if a variable has become constant,
repeat from step (i). The study also refers to leaf variables because their pres-
ence does not play any role in the asymptotic dynamics of a BN. However, both
leaf and fixed-valued variables affect stability. Overall, the decimation procedure
exactly preserves the asymptotic dynamics of the original model since it throws
out only variables considered as asymptotically irrelevant.

6 Conclusion

We introduced an automatic reduction technique for synchronous Boolean Net-
works which preserves dynamics of interest. The modeller gets a reduced BN
based on requirements expressed as an initial partition of variables. The reduced
BN can recover a pure part of the original state space and its trajectories estab-
lished by the reduction isomorphism. Notably, we draw connections between the
STG of the original and that of the reduced BN through a rigorous mathematical
framework. The dynamics preserved are those wherein collapsed variables have
equal values.

We used our reduction technique to speed-up attractor identification. Despite
that the length of the preserved attractors is consistent in the reduced model,
some of them may get lost. In the future, we plan to study classes of initial
partitions that preserve all attractors. We have shown the analysis speed-ups
obtained for attractor identification as implemented in the tool BoolSim [24]. In
the future we plan to perform a similar analysis on a recent attractor identifica-
tion approach from [21].

16 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

Our method was implemented in ERODE [10], a freely available tool for
reducing biological systems. Related quantitative techniques offered by ERODE
have been recently validated on a large database of biological models [37,38,5].
In the future we plan to extend this analysis considering also BBE. We also plan
to investigate whether BBE can be extended in order to be able to compare
different models as done for its quantitative counterparts [7,12].

Our method could be combined with most of the existing methods found
in literature. Our prototype toolchain consists of several tools from the COLO-
MOTO interoperability initiative. We aim to incorporate our toolchain into the
COLOMOTO Interactive Notebook [35], a unified environment to edit, execute,
share, and reproduce analyses of qualitative models of biological networks.

Multivalued BNs, i.e. whose variables can take more than two activation
values, are currently supported only via a booleanization technique [18,14] that
might hamper the interpretability of the reduced model. In future work we plan
to generalize BBE to support directly multivalued networks.

References

1. Bérenguier, D., Chaouiya, C., Monteiro, P.T., Naldi, A., Remy, E., Thieffry, D.,
Tichit, L.: Dynamical modeling and analysis of large cellular regulatory networks.
Chaos: An Interdisciplinary Journal of Nonlinear Science 23(2), 025114 (2013)

2. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
NLD (2009)

3. Bilke, S., Sjunnesson, F.: Stability of the Kauffman model. Physical Review E
65(1), 016129 (2001)

4. Calzone, L., Tournier, L., Fourquet, S., Thieffry, D., Zhivotovsky, B., Barillot, E.,
Zinovyev, A.: Mathematical modelling of cell-fate decision in response to death
receptor engagement. PLoS Comput Biol 6(3), e1000702 (2010)

5. Cardelli, L., Pérez-Verona, I.C., Tribastone, M., Tschaikowski, M., Vandin, A.,
Waizmann, T.: Exact maximal reduction of stochastic reaction networks by species
lumping. CoRR abs/2101.03342 (2021), https://arxiv.org/abs/2101.03342

6. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: 26th International Conference
on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015.
pp. 226–239 (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.226, https:

//doi.org/10.4230/LIPIcs.CONCUR.2015.226

7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chem-
ical reaction networks: A categorical and algorithmic perspective. In: Pro-
ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016. pp.
485–494 (2016). https://doi.org/10.1145/2933575.2935318, https://doi.org/10.
1145/2933575.2935318

8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: Tools and Algorithms for the Construction
and Analysis of Systems - 22nd International Conference, TACAS 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software,

Reducing Boolean Networks with Backward Boolean Equivalence 17

ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. pp. 93–
111 (2016). https://doi.org/10.1007/978-3-662-49674-9 6, https://doi.org/10.

1007/978-3-662-49674-9_6
9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic com-

putation of differential equivalences. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp.
137–150 (2016). https://doi.org/10.1145/2837614.2837649, https://doi.org/10.
1145/2837614.2837649

10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Erode: a tool for the
evaluation and reduction of ordinary differential equations. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 310–328. Springer (2017)

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of
polynomial dynamical systems. Proceedings of the National Academy of Sciences
114(38), 10029–10034 (2017)

12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical
reaction networks: A categorical and algorithmic perspective. Theor. Comput. Sci.
765, 47–66 (2019). https://doi.org/10.1016/j.tcs.2017.12.018, https://doi.org/

10.1016/j.tcs.2017.12.018
13. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic com-

putation of differential equivalences. Theor. Comput. Sci. 777, 132–154
(2019). https://doi.org/10.1016/j.tcs.2019.03.018, https://doi.org/10.1016/j.

tcs.2019.03.018
14. Chaouiya, C., Bérenguier, D., Keating, S.M., Naldi, A., Van Iersel, M.P., Ro-

driguez, N., Dräger, A., Büchel, F., Cokelaer, T., Kowal, B., et al.: SBML qualita-
tive models: a model representation format and infrastructure to foster interactions
between qualitative modelling formalisms and tools. BMC systems biology 7(1),
1–15 (2013)

15. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with ginsim. In: Bacterial Molecular Networks, pp. 463–479. Springer (2012)

16. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory
networks. Journal of Discrete Algorithms 6(2), 165–177 (2008)

17. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

18. Delaplace, F., Ivanov, S.: Bisimilar booleanization of multivalued networks. BioSys-
tems p. 104205 (2020)

19. Di Cara, A., Garg, A., De Micheli, G., Xenarios, I., Mendoza, L.: Dynamic simu-
lation of regulatory networks using squad. BMC bioinformatics 8(1), 462 (2007)

20. Drossel, B.: Random boolean networks. Reviews of nonlinear dynamics and com-
plexity 1, 69–110 (2008)

21. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM transactions on computational biology
and bioinformatics 8(5), 1393–1399 (2011)

22. Fauré, A., Naldi, A., Lopez, F., Chaouiya, C., Ciliberto, A., Thieffry, D.: Modular
logical modelling of the budding yeast cell cycle. Molecular bioSystems 5, 1787–96
(2009 Dec 2009)

23. Figueiredo, D.: Relating bisimulations with attractors in boolean network models.
In: International Conference on Algorithms for Computational Biology. pp. 17–25.
Springer (2016)

18 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

24. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous ver-
sus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17),
1917–1925 (07 2008). https://doi.org/10.1093/bioinformatics/btn336, https://

doi.org/10.1093/bioinformatics/btn336

25. Giacomantonio, C.E., Goodhill, G.J.: A boolean model of the gene regulatory net-
work underlying mammalian cortical area development. PLOS Computational Bi-
ology 6(9), 1–13 (09 2010). https://doi.org/10.1371/journal.pcbi.1000936, https:
//doi.org/10.1371/journal.pcbi.1000936

26. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thief-
fry, D.: Integrative modelling of the influence of mapk network on cancer cell fate
decision. PLoS Comput Biol 9(10), e1003286 (2013)

27. Hopfensitz, M., Müssel, C., Maucher, M., Kestler, H.A.: Attractors in boolean
networks: a tutorial. Computational Statistics 28(1), 19–36 (2013)

28. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22(3), 437 – 467 (1969)

29. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS com-
putational biology 5(5) (2009)

30. Klarner, H., Streck, A., Siebert, H.: Pyboolnet: a python package for the genera-
tion, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–772
(2017)

31. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logi-
cal modelling of regulatory networks with ginsim 2.3. Biosystems 97(2), 134–139
(2009)

32. Naldi, A., Monteiro, P.T., Chaouiya, C.: Efficient handling of large signalling-
regulatory networks by focusing on their core control. In: International Conference
on Computational Methods in Systems Biology. pp. 288–306. Springer (2012)

33. Naldi, A., Monteiro, P.T., Müssel, C., for Logical Models, C., Tools, Kestler, H.A.,
Thieffry, D., Xenarios, I., Saez-Rodriguez, J., Helikar, T., Chaouiya, C.: Cooper-
ative development of logical modelling standards and tools with colomoto. Bioin-
formatics 31(7), 1154–1159 (2015)

34. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction
of logical regulatory graphs. Theoretical Computer Science 412(21), 2207–2218
(2011)

35. Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P.T., Chaouiya,
C., Helikar, T., Zinovyev, A., Calzone, L., Cohen-Boulakia, S., Thieffry, D.,
Paulevé, L.: The colomoto interactive notebook: Accessible and reproducible
computational analyses for qualitative biological networks. Frontiers in Phys-
iology 9, 680 (2018). https://doi.org/10.3389/fphys.2018.00680, https://www.

frontiersin.org/article/10.3389/fphys.2018.00680

36. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

37. Pérez-Verona, I.C., Tribastone, M., Vandin, A.: A large-scale assessment of exact
model reduction in the biomodels repository. In: Computational Methods in Sys-
tems Biology - 17th International Conference, CMSB 2019, Trieste, Italy, Septem-
ber 18-20, 2019, Proceedings. pp. 248–265 (2019). https://doi.org/10.1007/978-3-
030-31304-3 13, https://doi.org/10.1007/978-3-030-31304-3_13

38. Pérez-Verona, I.C., Tribastone, M., Vandin, A.: A large-scale assessment of exact
model reduction in the biomodels repository. Theoretical Computer Science (2021)

39. Richardson, K.A.: Simplifying boolean networks. Advances in Complex Systems
8(04), 365–381 (2005)

Reducing Boolean Networks with Backward Boolean Equivalence 19

40. Rodŕıguez-Jorge, O., Kempis-Calanis, L.A., Abou-Jaoudé, W., Gutiérrez-Reyna,
D.Y., Hernandez, C., Ramirez-Pliego, O., Thomas-Chollier, M., Spicuglia, S., San-
tana, M.A., Thieffry, D.: Cooperation between t cell receptor and toll-like receptor
5 signaling for cd4+ t cell activation. Science signaling 12(577) (2019)

41. Saadatpour, A., Albert, R., Reluga, T.C.: A reduction method for boolean net-
work models proven to conserve attractors. SIAM Journal on Applied Dynamical
Systems 12(4), 1997–2011 (2013)

42. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.:
Concepts in boolean network modeling: What do they all mean?
Computational and Structural Biotechnology Journal 18, 571 – 582
(2020). https://doi.org/https://doi.org/10.1016/j.csbj.2020.03.001, http:

//www.sciencedirect.com/science/article/pii/S200103701930460X

43. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic boolean net-
works: a rule-based uncertainty model for gene regulatory networks. Bioinformatics
18(2), 261–274 (2002)

44. Steggles, L.J., Banks, R., Shaw, O., Wipat, A.: Qualitatively modelling and
analysing genetic regulatory networks: a petri net approach. Bioinformatics 23(3),
336–343 (2007)

45. Su, C., Pang, J.: Sequential control of boolean networks with temporary and per-
manent perturbations. arXiv preprint arXiv:2004.07184 (2020)

46. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical de-
scription. Journal of theoretical biology 153(1), 1–23 (1991)

47. Thomas, R.: Kinetic logic: a Boolean approach to the analysis of complex regula-
tory systems: proceedings of the EMBO course “formal analysis of genetic regula-
tion”, held in Brussels, September 6–16, 1977, vol. 29. Springer Science & Business
Media (2013)

48. Veliz-Cuba, A.: Reduction of boolean network models. Journal of theoretical biol-
ogy 289, 167–172 (2011)

49. Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D.A., Klamt,
S., Theis, F.J.: Transforming boolean models to continuous models: methodology
and application to T-cell receptor signaling. BMC Systems Biology 3(1), 98 (2009).
https://doi.org/10.1186/1752-0509-3-98

50. Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D.A., Klamt,
S., Theis, F.J.: Transforming boolean models to continuous models: methodology
and application to t-cell receptor signaling. BMC systems biology 3(1), 98 (2009)

51. Zañudo, J.G.T., Albert, R.: An effective network reduction approach to find the dy-
namical repertoire of discrete dynamic networks. Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 23(2), 025111 (2013). https://doi.org/10.1063/1.4809777,
https://doi.org/10.1063/1.4809777

52. Zhang, R., Shah, M.V., Yang, J., Nyland, S.B., Liu, X., Yun, J.K., Albert, R.,
Loughran, T.P.: Network model of survival signaling in large granular lymphocyte
leukemia. Proceedings of the National Academy of Sciences 105(42), 16308–16313
(2008)

20 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

A Proofs

Proof (Proof of Theorem 1). Let XR1 , XR2 be two BBE partitions that refine
some other partition XI that is not necessarily a BBE. We start by noting that
R = (R1 ∪ R2)∗ ⊆ I because R1, R2 ⊆ I, where asterisk denotes the transitive
closure, while R1, R2 and I are equivalence relations underlying XR1

, XR2
and

XI , respectively. Hence, XR is a refinement of XI . We next show that XR is
a BBE partition. To this end, fix some s ∈ Bn that is constant on R. Since
Ri ⊆ R, this implies that s is constant on Ri which, in virtue of XRi being a
BBE, implies that F (s) ∈ Bn is constant on Ri. This implies that F (s) ∈ Bn is
constant on R = (R1 ∪ R2)∗, thus showing that XR is indeed a BBE partition.
The overall claim follows by noting that the finiteness of X implies that there
are finitely many BBE partitions XRi

that refine any given partition XI of X.

Proof (Proof of Theorem 2). Assume that G′ denotes the coarsest BBE partition
that refines some given partition G. Set H0 := G and define for all k ≥ 0

Hk+1 :=
(
{C0 | C ∈ Hk} ∪ {C1 | C ∈ Hk}

)
\ {∅},

where C0 and C1 are as in Algorithm 1. Then, a proof by induction over k ≥ 1
shows that (a) G′ is a refinement of Hk and (b) Hk is a refinement of Hk−1, for
all k ≥ 1. Since G′ is a refinement of any Hk, it holds that G′ = Hk if Hk is a
BBE partition. Since X is finite, b) allows us to fix the smallest k ≥ 1 such that
Hk = Hk−1. This, in turn, implies that Hk−1 is a BBE.

Proof (Proof of Lemma 1). The fact that A ∩ S|R 6= ∅ implies that there is at
least one state s ∈ A that is constant on R, i.e., s ∈ A ∩ S|R. For any such
state s, by the properties of BBE we have that any state t such that s →+ t
is also constant on R. Actually, it is trivial to show that A = {t | s →+ t}. It
immediately follows that A ⊆ S|R.

Proof (Proof of Lemma 2). Follows readily from the definition of a BBE and
mR.

Proof (Proof of Theorem 3). The theorem trivially follows from Lemmas 1 and 2.

B Table of large-scale validation

We provide the table referenced in the Section 4.1 on large-scale validation of
BBE. The table contains the results of BBE reduction on all the models from
the GINsim repository. The first column contains the model identifier (MI). The
second column contains the url to download the model and the third column
displays the number of variables in the original BN. In the case of multivalued
networks, the column contains the number of variables after booleanization. We
denote with Nm, Ni the number of variables of the maximal and the ID reduced
BN in the fifth and sixth column respectively. Note that when a BN has no input
variables Ni and Nm coincide. The last two columns display the reduction ratios
ri = Ni/N , rm = Nm/N where N is the number of variables in the original BN.

Reducing Boolean Networks with Backward Boolean Equivalence 21

MI GINsim repository URI N Ni Nm ri rm
B1 http://ginsim.org/node/225 128 107 95 0.836 0.742
B2 http://ginsim.org/node/225 110 103 91 0.936 0.827
B3 http://ginsim.org/node/87 60 57 52 0.95 0.867
B4 http://ginsim.org/node/173 53 46 39 0.868 0.736
B5 http://ginsim.org/node/225 42 37 29 0.881 0.690
B6 http://ginsim.org/node/78 40 31 29 0.775 0.725
B7 http://ginsim.org/node/227 33 27 25 0.818 0.758
B8 http://ginsim.org/node/191 32 32 31 1 0.969
B9 http://ginsim.org/node/227 28 25 20 0.893 0.714
B10 http://ginsim.org/node/97 26 23 4 0.885 0.154
B11 http://ginsim.org/node/144 24 23 9 0.958 0.375
B12 http://ginsim.org/node/126 24 21 4 0.875 0.167
B13 http://ginsim.org/node/102 23 22 8 0.957 0.348
B14 http://ginsim.org/node/39 20 15 13 0.75 0.65
B15 http://ginsim.org/node/160 18 18 8 1 0.444
B16 http://ginsim.org/node/35 18 17 0.944
B17 http://ginsim.org/node/31 14 14 12 1 0.857
B18 http://ginsim.org/node/152 11 10 9 0.909 0.818
B19 http://ginsim.org/node/37 10 9 9 0.9 0.9
B20 http://ginsim.org/node/69 10 8 8 0.8 0.8
B21 http://ginsim.org/model/C_crescentus 9 7 0.778
B22 http://ginsim.org/node/21 9 7 0.778
B23 http://ginsim.org/node/214 6 2 0.333
B24 http://ginsim.org/model/C_crescentus 5 1 0.2
M1 http://ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1 218 201 136 0.922 0.623
M2 http://ginsim.org/node/229 133 126 122 0.947 0.917
M3 http://ginsim.org/node/178 107 93 59 0.869 0.551
M4 http://ginsim.org/node/185 103 97 52 0.941 0.505
M5 http://ginsim.org/model/SP 102 16 0.157
M6 http://ginsim.org/node/194 83 79 0.951
M7 http://ginsim.org/node/79 71 69 42 0.972 0.592
M8 http://ginsim.org/node/234 61 60 58 0.983 0.95
M9 http://ginsim.org/model/drosophila_mesoderm 57 57 11 1 0.192
M10 http://ginsim.org/node/69 56 56 50 1 0.893
M11 http://ginsim.org/model/EMT_Selvaggio_etal 56 56 43 1 0.768
M12 http://ginsim.org/node/229 53 51 50 0.962 0.943
M13 http://ginsim.org/node/21 50 49 41 0.98 0.82
M14 http://ginsim.org/node/180 48 35 0.729
M15 http://ginsim.org/node/25 39 37 31 0.948 0.794
M16 http://ginsim.org/model/sex_determination_chicken 37 37 14 1 0.378
M17 http://ginsim.org/node/79 36 35 21 0.972 0.583
M18 http://ginsim.org/node/188 35 34 28 0.971 0.8
M19 http://ginsim.org/node/216 34 34 33 1 0.971
M20 http://ginsim.org/node/96 34 32 15 0.941 0.441
M21 http://ginsim.org/node/183 30 30 14 1 0.467
M22 http://ginsim.org/model/eggshell_patterning 24 23 12 0.958 0.5
M23 http://ginsim.org/node/41 21 21 18 1 0.857
M24 http://ginsim.org/model/sex_determination_mammals 19 19 12 1 0.632
M25 http://ginsim.org/node/109 19 19 7 1 0.368
M26 http://ginsim.org/model/SP 19 18 17 0.947 0.895
M27 http://ginsim.org/node/89 18 18 10 1 0.556
M28 http://ginsim.org/node/29 16 16 13 1 0.812
M29 http://ginsim.org/model/sex_determination_chicken 15 15 13 1 0.866
M30 http://ginsim.org/node/194 14 14 13 1 0.928
M31 http://ginsim.org/node/26 12 12 8 1 0.667
M32 http://ginsim.org/node/115 16 16 5 1 0.3125
M33 http://ginsim.org/node/220 10 10 8 1 0.8
M34 http://ginsim.org/model/eggshell_patterning 8 8 2 1 0.25
M35 http://ginsim.org/node/82 7 7 6 1 0.857
M36 http://ginsim.org/node/82 7 7 6 1 0.857
M37 http://ginsim.org/node/50 6 6 5 1 0.833

Table 2: Application of BBE to BNs from the GINsim model repository.

22 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

C Refined initial partitions for the selected case studies

In Section 4.2, we studied how BBE affects attractor analysis of three selected
case studies. It is remarkable that attractor identification was infeasible for the
largest TCR-TLR5 BN, whereas we identified its attractors in 30 seconds in
its maximal reduction. However, the attractors identified may not be all the
attractors of interest for the BN. Our crucial hypothesis is that one can spec-
ify alternative initial partitions that preserve more or discard some irrelevant
attractors. We also expect that the reduction ratio of these alternative initial
partitions lies between that of the ID and that of the maximal reduction (rm,
ri).

Configuration In Sections C.1 , C.2 and C.3 , we provide a detailed description
of the initial partitions that lead to the refined reduced models.

Results The results of the refined MAPK, the refined merged TCR-TLR, and
the refined T-LGL reduced models are summarized in the following Table 3 . We
present the number of variables (Size), the number of Attractors, and the time
needed for reduction (Reduction (s)) and attractor identification (Analysis (s)).

Model Original model Refined Reduced model

Size Attractors Analysis (s) Reduction (s) Size Attractors Analysis (s)

MAPK Network 53 40 16.501 1.202 42 40 12.115

T-LGL 60 264 123.431 1,816 56 120 55.049

TCR-TLR merged 128 —Time Out— 2.096 98 8 9349.577

Table 3: The results of 3 case studies for the original and the refined reduced
BNs

The refined reduced MAPK network consists of 42 variables but preserves
all attractors in the original model. Notably, the reduced model has 80 % the
size of the original. The refined reduced T-LGL results from the original after
specifying two input variables in the same block of the initial partition. The
merging of these two input variables is an immediate result of [52] and discards
144 attractors which are irrelevant for their analysis. Last but not least, the
refined reduced TCR-TLR merged has 98 variables and 8 attractors-more than
the maximal reduction of Table 1 . Note again that the attractor identification
in the original BN is intractable.

Interpretation Overall, Table 3 illustrates the possibility of analyzing large BNs
by defining alternative initial partitions than the two considered in Section 4.1.
Alternative reductions may provide fruitful insights and identify crucial proper-
ties of the underlying system. The size of the refined reduced model lies between
the size of the input-distinguished and the maximal reduced model in all three
models.

Reducing Boolean Networks with Backward Boolean Equivalence 23

The initialization of Algorithm 1 provides also a framework to specify desires
and limitations. Desires refer to the preserved properties with respect to the orig-
inal model whereas limitations refer to variable perturbation. If such a variable
get merged then its perturbation will indicate subsequent perturbation to all the
variables that belong to its class. Consequently, variables that are amenable to
perturbation, should be kept in singleton blocks of the initial partition. To this
end, we can construct empirical initial partitions that (i) preserve attractors,
(ii) discard some of them, or (iii) isolate in singleton blocks variables which are
amenable to perturbation.

C.1 T Cell and Toll-like Receptor (TCR-TLR) merged signalling
BN

In this Section, we exploit the results from the maximal and the ID reduction
to obtain two refined reduced BNs of the TCR-TLR merged BN. This BN refers
to the T cell receptors and their responsibility for the activation of T cell ([40],
Fig. 9). The authors generated logical models for the TCR and the TLR5 sig-
nalling pathways, and merged them by considering their cross interactions. The
original model contains 128 variables, fact that renders its analysis intractable.
In order to experimentally validate the correctness of their new merged BN,
they considered asynchronous update schema and performed reduction with ab-
sorption [34]. Absorption does not guarantee preservation of all asymptotic dy-
namics. It has been proven [48,34,41] that preserves only steady states and may
cause spurious cyclic attractors when applied to asynchronous dynamics. When
applied to synchronous dynamics, this method may also degenerate cyclic attrac-
tors. BBE-reduction maintain the lengths of the preserved attractors according
to Theorem 3.

ID reduction The application of ID reduction to the merged model resulted in
10 equivalence classes displayed in Fig. 8 . We also display them in Fig. 9 with
different colors for each class: Backward equivalent variables are represented with
colored boxes, and colored boxes that belong to the same equivalence class have
the same background. Variables in white background belong to singleton classes.
The ID reduced BN is still huge (116 variables) and the attractor identification
is intractable.

{IRAK4 , PIK3AP1} {GRAP2 , MAP4K1}
{TICAM1 , MyD88} {MKNK1 , RPS6KA5}

{Foxo1 , BAD , GSK3B , CDKN1A} {MAPKAPK2 , mTOR}
{MAP2K3 , MAP2K7} {Camk2 , Camk4}
{Cyc1 , CTNNB1} {DAG, IP3}

Fig. 8: The equivalence classes of the input-distinguished reduction

24 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

TCR CD28 TLR5CD4CD45 CD6

MyD88

TICAM1

TRAF6

TCRp
CD28p

CD6p

LCKr LCK FYN

ABL1

ZAP70

LAT

LCP2

PI3K

PIK3AP1

IRAK4

IRAK1

CSK

DAG

DGKZ

MAP4K3

PKCtheta

GAB2

GRAP2

RASA1

VAV1

VAV2

GRB2

SOS

GSK3b

MAP4K1 GADD45A

IKBKG

NFKBIA

IKBKB

JNK

ERK

P38a

IP3

ITK

Malt1

MAP2K1

MAP3K1

MAP2K4

MAP3K11

PDPK1

PIK3R1

PIP3

Akt

PLCg

Foxo1

CDKN1B

CDKN1A

Bclxl

RHEBL1

CBLB

CCBLp

CCBL

CDC42

PTEN

INPP5DPTPN6

PTPN11

PTPN22

TNFAIP3

DUSP

PAG1

PPP3C

RCAN1

CALM1

Camk2

Camk4

CARD11a

CARD11

Akap5

BAD

Bcl10

Ca

Cabin1

RAC1p1

RAC1p2

RAC1

RAF1

HRAS

RASGRP1

TXK

RPS6KA1

SH3BP2

WAVE

WAS

HCLS1

ARP

mTOR

MAP3K8

Kinases

NFKB1

TAK1

TAB

TAK1c

MAP2K2

MAP2K3

MAP2K7

RPS6KA2

MKNK1

RPS6KA5

MAPKAPK2

ZFP36

Cyc1

FOS JUN

NFkB

AP1

NFAT

CREB1

CTNNB1

SRF

ActinRem
PICytokines

AICytokines
CellCycleProg Survival

Anergy

TCR CD28 TLR5CD4CD45 CD6

MyD88

TICAM1

TRAF6

TCRp
CD28p

CD6p

LCKr LCK FYN

ABL1

ZAP70

LAT

LCP2

PI3K

PIK3AP1

IRAK4

IRAK1

CSK

DAG

DGKZ

MAP4K3

PKCtheta

GAB2

GRAP2

RASA1

VAV1

VAV2

GRB2

SOS

GSK3b

MAP4K1 GADD45A

IKBKG

NFKBIA

IKBKB

JNK

ERK

P38a

IP3

ITK

Malt1

MAP2K1

MAP3K1

MAP2K4

MAP3K11

PDPK1

PIK3R1

PIP3

Akt

PLCg

Foxo1

CDKN1B

CDKN1A

Bclxl

RHEBL1

CBLB

CCBLp

CCBL

CDC42

PTEN

INPP5DPTPN6

PTPN11

PTPN22

TNFAIP3

DUSP

PAG1

PPP3C

RCAN1

CALM1

Camk2

Camk4

CARD11a

CARD11

Akap5

BAD

Bcl10

Ca

Cabin1

RAC1p1

RAC1p2

RAC1

RAF1

HRAS

RASGRP1

TXK

RPS6KA1

SH3BP2

WAVE

WAS

HCLS1

ARP

mTOR

MAP3K8

Kinases

NFKB1

TAK1

TAB

TAK1c

MAP2K2

MAP2K3

MAP2K7

RPS6KA2

MKNK1

RPS6KA5

MAPKAPK2

ZFP36

Cyc1

FOS JUN

NFkB

AP1

NFAT

CREB1

CTNNB1

SRF

ActinRem
PICytokines

AICytokines
CellCycleProg Survival

Anergy

Fig. 9: Up: The TCR-TLR merged BN with input-distinguishing BBE-variables
having the same background color.Bottom: The TCR-TLR merged BN with
maximal-reduction BBE-variables having the same background color. Variables
with white backround belong to singleton classes.

Reducing Boolean Networks with Backward Boolean Equivalence 25

Maximal reduction However, the maximal reduced BN contains 95 variables
and the attractor identification is feasible in 29 .336 seconds. Fig. 9 displays the
following BBE-equivalence classes with different colors:

*{CD45 , CD4 , CD6 , CCBL, ***{TCR, CD28 , TLR5 , TICAM1 , PIK3AP1 ,
PTPN22 , Malt1 , Bcl10 , RCAN1 , MyD88 , IRAK1 TRAF6 , TAB , TAK1 ,

RAC1 , RASA1 , GDD45A} TAK1c, IRAK4 , MAP2K3 , MAP2K7}
{MAPKAPK2 , mTOR} ** {Kinases, Akap5}
{MKNK1 , RPS6KA5} {Foxo1 , BAD , GSK3B , CDKN1A}

{DAG, IP3} {GRAP2 , MAP4K1}
{Camk2 , Camk4} {Cyc1 , CTNNB1}

Fig. 10: The equivalence classes of the maximal reduction

The maximal reduction splits input variables into 3 classes: The first class (*
in Fig. 10) contains all variables with stable update function which equals to true.
The second class (**) contains all variables with stable update functions that
equals to false. The third class (***) contains all variables with identity update
function (TCR, CD28 , TLR5) and all variables BBE-equivalent variables with
them.

Refined Reduction We now consider two alternative initial partitions, initialize
Algorithm 1 with them, and gain deeper insights in the underlying model. The
first initial partition is constructed as follows:

– two of the inputs with identity function, TCR and CD28 , are kept in sin-
gleton blocks,

– variables with stable function true belong to one block,
– variables with stable function false belong to another block, and
– we define one more block containing TLR5 and all variables that belong to

its equivalent class in the case of maximal reduction i.e. {TLR5 , TICAM1 ,
PIK3AP1 , MyD88 , IRAK1 , TRAF6 , TAB , TAK1 , TAK1c, IRAK1 , MAP2K3 ,
MAP2K7}-the blue chain of variables (Fig. 9 top).

We call the reduced BN obtained by the first initial partition refined reduced
model I.

The second initial partition that we consider is similar to the first but one sub-
tle differentiation: the variable MAP2K3 is kept in singleton block. The reduced
BN that results from this initial partition, is called refined reduced model II. The
results of our study in this model is summarized in Table 4 . We present the
number of variables (Size), the number of Attractors, and the time needed for
reduction (Reduction (s)) and attractor identification (Analysis (s)).

Interpretation As we have seen before, attractor identification is intractable in
the original and the ID-reduced BN whereas we can identify two attractors in
the case of maximal reduction. Attractor identification in the refined reduced

26 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

Model Size Attractors Analysis (s) Reduction (s)

Original 128 —Time Out— -

Input-distinguished 116 —Time Out— 2.058

Refined Reduced II 98 8 9349.577 2.096

Refined Reduced I 97 8 1103.912 1.833

Maximal 95 2 29.336 1.958

Table 4: The results of the TCR-TLR merged BN for different reduced versions
of the original model.

models is still feasible wherein we find more attractors than in the case of max-
imal reduction. We should highlight that reducing the TCR-TLR merged BN
by just one variable decreases attractor identification time by several orders of
magnitude (see Analysis time in the case of Refined Reduced Models). The com-
putation of the BBE-reduced BN took less than 3 seconds in all cases. To sum
up, initializing Algorithm 1 with alternative initial partitions derived from the
results of the maximal and ID reduction enables us to explore richer behaviours
of the original model.

C.2 Mitogen-Activated Protein Kinase (MAPK) network

In this Section, we obtain a refined reduced model of the MAPK BN using
results from the maximal and the ID reduced model. The original MAPK BN [26]
consists of 53 variables, 4 inputs and has 40 attractors. We performed ID BBE-
reduction and found the following equivalence classes: {JNK , p38}, {SMAD ,
TAK1}, {ATF2 , JUN ,MAX , PPP2CA}, {ELK1 , MSK}, {RSK ,SPRY }. The
classes are displayed in the up part of Fig. 11 : Backward equivalent variables are
represented with colored boxes and colored boxes that belong to the same class
have the same background. Variables in white background belong to singleton
classes.

ID Reduction The ID reduced MAPK BN has 46 variables and 40 attractors.
Note that all attractors are preserved. This is a trivial consequence from the fact
that (i) the number of attractors is the same, and (ii) the STG of the reduced
BN is a subgraph of the STG of the original BN (isomorphism Lemma 2). The
BBE-reduction is consistent with [11], where the authors transformed the BN to a
system of ordinary differential equations, and reduced with backward differential
equivalence.

Maximal Reduction The bottom part of Fig. 11 displays the MAPK BN and its
equivalence classes after performing the maximal reduction. Algorithm 1 found
the following equivalence classes: {JNK , p38}, {SMAD , TGFBR, ATM , TAOK ,
EGFR stimulus, FGFR3 stimulus, TGFBR stimulus, DNA damage, TAK1},
{ATF2 , JUN , MAX , PPP2CA}, {ELK1 , MSK}, {RSK ,SPRY }. BoolSim com-
putes 17 attractors in this case which means that the number of attractors is not
preserved. In contrast with [34], the preserved attractors are pure in the original

Reducing Boolean Networks with Backward Boolean Equivalence 27

EGFR_stimulus FGFR3_stimulus
TGFBR_stimulus DNA_damage

Apoptosis Growth_ArrestProliferation

ERK
p38JNK

p53

p21

TGFBR

EGFR
FGFR3

ATM

TAOK

MAX

GRB2

FRS2

PI3K

AP1

PPP2CAMEK1_2

DUSP1

MYC

AKT

PLCG

PKC

GADD45

ELK1

FOS
ATF2

JUNMSK

CREB

RSK

SMAD

MTK1

SPRY RAF

GAB1

PDK1

p70

p14

FOXO3

RASSOS MDM2

BCL2

TAK1

MAP3K1_3

PTEN

EGFR_stimulus FGFR3_stimulus
TGFBR_stimulus DNA_damage

Apoptosis Growth_ArrestProliferation

ERK
p38JNK

p53

p21

TGFBR

EGFR
FGFR3

ATM

TAOK

MAX

GRB2

FRS2

PI3K

AP1

PPP2CAMEK1_2

DUSP1

MYC

AKT

PLCG

PKC

GADD45

ELK1

FOS
ATF2

JUNMSK

CREB

RSK

SMAD

MTK1

SPRY RAF

GAB1

PDK1

p70

p14

FOXO3

RASSOS MDM2

BCL2

TAK1

MAP3K1_3

PTEN

Fig. 11: Up: The MAPK BN with input-distinguishing BBE-variables having the
same background color. Bottom: The MAPK BN with maximal-reduction BBE-
variables having the same background color. Variables with white backround
belong to singleton classes.

28 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

network in the sense that the isomorphism of Lemma 2 translates the attractors
of the reduced to the original BN.

Refined Reduction Based on observations gained from the maximal and the
ID reduction, we specify the following partition: {EGFR stimulus}, {FGFR3
stimulus}, {TGFBR stimulus, TGFBR, TAK1 , SMAD}, {DNA damage, ATM ,

TAOK}, and one block containing all the remaining variables. In other words,
we keep 2 of the inputs ({EGFR stimulus}, {FGFR3 stimulus}) still in single-
ton sets, while we define two more blocks with each one containing one input
and the input’s BBE-variables found in the maximal reduction. We expect that
the reduced BN, which now contains 42 variables (79 , 25 % of the original size),
preserves more properties. Indeed, the refined reduced BN has all 40 attractors
of the original BN. The results of our study in this model is summarized in
the following Table 5 . We present the number of variables (Size), the number
of Attractors, and the time needed for reduction (Reduction (s)) and attractor
identification (Analysis (s)).

Model Size Attractors Analysis (s) Reduction (s)

Original 53 40 16.501 -

Input-distinguished 46 40 14.480 0.848

Refined Reduced 42 40 12.115 1.202

Maximal 39 17 2.471 1.018

Table 5: The results of the MAPK BN for different reduction versions of the
original model.

C.3 T cell granular lymphocyte (T-LGL) leukemia BN

T-LGL BN was originally introduced in [52] and refers to the disease T-LGL
leukemia which features a clonal expansion of antigen-primed, competent, cyto-
toxic T lymphocytes (CTL). The T-LGL BN is a signalling pathway, constructed
empirically through extensive literature review, and determines the survival of
CTL. The ID reduction and the maximal reduction are depicted in the top part
and the bottom part of Fig. 12 respectively. The original BN consists of 60
variables, and has 264 attractors.

In the case of ID reduction, the variables FasT , A20 , TNF and RANTES are
BBE-equivalent so we can collapse them into a single variable. The ID reduced
BN has 57 variables, and 264 attractors. Since the number of attractors is the
same, and the STG of the reduced BN is a subgraph of the STG of the original
BN, the asymptotic dynamics are preserved. The bottom part of Fig. 12 refers to
the maximal BBE. In this case, we have two equivalence classes: the one found
in ID BBE, and one consisted of all the input variables. On the other hand, the
maximal reduced BN has 52 variables and 6 attractors. This means that some
attractors are lost.

Reducing Boolean Networks with Backward Boolean Equivalence 29

IL2RBT

BclxL

IFNgT

PDGFR

IFNg

GAP
Proliferation

GZMB

RAS

TPL2

FasT

FLIP

LCK

NFAT

FasL

Caspase

NFkB

IAP

BID

Cyt_sign

TNF

MCL1

Ceramide

GRB2

PI3K

SMAD

P27

ZAP70

CREB

DISC

IL2RB

Fas

IL2RA

S1P

ERK

SPHK1

A20

MEK

CTLA4

Tbet

RANTES

SOCS

sFas

IL2RAT

TCR

STAT3

GPCR

P2

TRADD

PLCG1

FYN

IL2

JAK

Apoptosis

PDGF Stimuli

CD45

TAX

IL15

Stimuli2

IL2RBT

BclxL

IFNgT

PDGFR

IFNg

GAP
Proliferation

GZMB

RAS

TPL2

FasT

FLIP

LCK

NFAT

FasL

Caspase

NFkB

IAP

BID

Cyt_sign

TNF

MCL1

Ceramide

GRB2

PI3K

SMAD

P27

ZAP70

CREB

DISC

IL2RB

Fas

IL2RA

S1P

ERK

SPHK1

A20

MEK

CTLA4

Tbet

RANTES

SOCS

sFas

IL2RAT

TCR

STAT3

GPCR

P2

TRADD

PLCG1

FYN

IL2

JAK

Apoptosis

PDGF Stimuli

CD45

TAX

IL15

Stimuli2

Fig. 12: Up: The T-LGL BN with input-distinguishing BBE-variables having the
same background color. Bottom: The T-LGL BN with maximal-reduction BBE-
variables having the same background color. Variables with white backround
belong to singleton classes.

30 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

In [52], the authors considered the asynchronous schema and presented a
variable specified analysis. Specifically, their analysis determined which variables
are sufficient to induce all of known signalling abnormalities in leukemic T-
LGL, which variables are important for the survival of leukemic T-LGL, and
which variables are constantly active in leukemic T-LGL. Notably, permanent
activation of the variables IL− 15 and PDGF is sufficient to produce all of the
known deregulations and signalling abnormalities. For this reason, we consider as
reasonable initial partition one wherein IL− 15 and PDGF belong to the same
block, other input variables belong to singleton blocks, and non-input variables
belong to one block. In this case, the refined reduced BN has 56 variables and 120
attractors. In contrast with the maximal reduced and the original BN which have
264 attractors, the BN reduced with this reasonable initial partition discards 144
attractors which are irrelevant for this kind of analysis. The results of our study
on this model is summarized in the following Table 6 . We present the number
of variables (Size), the number of Attractors, and the time needed for reduction
(Reduction (s)) and attractor identification (Analysis (s)).

Model Size Attractors Analysis (s) Reduction (s)

Original 60 264 123.431 -

Input-distinguished 57 264 85.999 0.843

Refined Reduced 56 120 55.049 1.816

Maximal 52 6 2.489 0.999

Table 6: The results of the T-LGL BN for different reduction versions of the
original model.

D Speed-ups on STG generation in BBE-reduced models

Hypothesis We hope to drastically reduce the time needed for STG generation.
Furthermore, we claim that our technique may be utilized for STG visualization
since reducing a BN only by one variable results in reducing its corresponding
STG by 50 %.

Configuration We reduced the original BN with both ID and maximal BBE-
reduction. We observed that PyBoolNet failed to generate the STG of BNs that
have more than 25 variables. Hence, we restricted our experiments to all BNs
with less variables. PyBoolNet generates the STG within several minutes for
BNs between 21 and 25 variables, and within a minute for BNs with up to 20
variables. We did not consider BNs with less than 9 variables since the generation
and visualization of the full STG is feasible and computationally costless. We
present the results in Table 7:

Reducing Boolean Networks with Backward Boolean Equivalence 31

Model Original model Input-distinguished Reduced model Maximal Reduced model

Size STG generation(s) Reduction (s) Size STG generation(s) Reduction (s) Size STG generation(s)

B7 33 out of memory 0.585 27 out of memory 0.608 25 out of memory

B9 28 out of memory 0.449 25 out of memory 0,416 20 52.8

B10 26 out of memory 0.227 23 457 0.145 4 0.006

B11 24 984 0.243 23 475 0.207 9 0,280

B12 24 987 0.349 21 102 0.121 4 0.050

B13 23 455 0.302 22 226 0.176 8 0.164

B14 20 55.6 0.497 15 2.11 0.408 13 0.302

B15 18 11.6 0.209 18 11.6 0,182 8 0.007

B16 18 14.300 —NO INPUTS— 0.449 17 6.760

B17 14 0,867 0.267 14 0.867 0.389 12 0.169

B18 11 0.072 0.327 10 0.064 0.214 9 0.065

B19 10 0.044 0.228 9 0.016 0.303 9 0.016

B20 10 0.172 0.283 8 0.044 0.202 8 0.044

B21 9 0.015 —NO INPUTS— 0.279 7 0.005

B22 9 0.025 —NO INPUTS— 0.237 7 0.003

M9 57 out of memory 0.791 57 out of memory 0.260 11 0.233

M16 37 out of memory 0.907 37 out of memory 0.454 14 1.360

M17 36 out of memory 0.413 35 out of memory 0.516 21 136

M20 34 out of memory 0.364 32 out of memory 0.383 15 2.68

M21 30 out of memory 0.421 30 out of memory 0.238 14 1.37

M22 24 1212 0.251 23 1043 0.219 12 0.172

M23 21 130 0.273 21 130 0.326 18 14.6

M24 19 31 0.109 19 31 0.153 7 0.463

M25 19 28.3 0.210 19 28.3 0.243 12 0.609

M26 19 30.1 0.249 18 13.9 0.356 17 6.320

M27 18 14.2 0.161 18 14.2 0.194 10 0.260

M28 16 3.34 0.189 16 3.34 0.266 13 1.54

M29 16 3.15 0.101 16 3.15 0.096 5 0.028

M30 15 1.59 0.187 15 1.59 0.235 13 0.303

M31 14 0.883 0.178 14 0.883 0.203 13 0.444

M32 12 0.156 0.168 12 0.156 0.137 8 0.010

M33 10 0.032 0.098 10 0.032 0.044 8 0.007

Table 7: Time needed for model reduction and STG generation of the origi-
nal and the reduced BN. The running times are coming from one run and the
computation of the BBE-reduced BNs take no more than 1 second in the worst
cases.

Results PyBoolNet failed to generate the STG of the original B9 [4]. This was
done within a minute after applying maximal BBE-reduction. For BNs between
20 and 25 variables, our method drastically decreased the STG generation time:
The STG of the ID BN needs on average 25 % of the time for the generation of
the full STG, and the maximal BN needs less than 1 % of the time needed for
the generation of the full STG. For BNs with less than 20 variables the reduction
may be computationally effective in several cases (see B15 and B16 in Table 7).

Interpretation We should note that our method (i) may render the analysis of
large BN models tractable in many cases (like B9, M9, and M21) and (ii) facil-
itates STG visualization. BBE-reduction constitutes a useful method for gener-
ating pure segments of the original state space. According to the isomorphism
Lemma 2, the STG of the reduced BN constitutes a subgraph of the STG of the
original BN resulting from it after the collapse of a BBE-class into one variable
component. In other words, our reduction method provides a pure image of the

32 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

state space of the original BN. We utilize these results in Section 4.2 wherein we
conduct an attractor based analysis.

B PAPER II: Reducing Boolean Networks with
Backward Boolean Equivalence

Submitted to journal BMC Bioinformatics

55

Argyris et al.

RESEARCH

Reducing Boolean Networks with Backward
Equivalence
Georgios A. Argyris1, Alberto Lluch Lafuente1, Mirco Tribastone2, Max Tschaikowski3 and Andrea

Vandin4,1*

Abstract

Background: Boolean Networks (BNs) are a popular dynamical model in biology where the state of each
component is represented by a variable taking binary values that express, for instance, activation/deactivation
or high/low concentrations. Unfortunately, these models suffer from the state space explosion, i.e., there are
exponentially many states in the number of BN variables, which hampers their analysis.

Results: We present Boolean Backward Equivalence (BBE), a novel reduction technique for BNs which
collapses system variables that, if initialized with same value, maintain matching values in all states. A
large-scale validation on 86 models from two online model repositories reveals that BBE is effective, since it is
able to reduce more than 90% of the models. Furthermore, on such models we also show that BBE brings
notable analysis speed-ups, both in terms of state space generation and steady-state analysis. In several cases,
BBE allowed the analysis of models that were originally intractable due to the complexity. On two selected
case studies, we show how one can tune the reduction power of BBE using model-specific information to
preserve all dynamics of interest, and selectively exclude behavior that does not have biological relevance.

Conclusions: BBE complements existing reduction methods, preserving properties that other reduction
methods fail to reproduce, and vice versa. BBE drops all and only the dynamics, including attractors,
originating from states where BBE-equivalent variables have been initialized with different activation values
The remaining part of the dynamics is preserved exactly, including the length of the preserved attractors, and
their reachability from given initial conditions, without adding any spurious behaviours. Given that BBE is a
model-to-model reduction technique, it can be combined with further reduction methods for BNs.

Keywords: Boolean Network, Model reduction, State-space generation, Attractors analysis, Partition
refinement

*Correspondence:

andrea.vandin@santannapisa.it
4Department of Excellence

EMbeDS and Institute of

Economics, Sant’Anna School for

Advanced Studies, Pisa, Italy
1Department of Applied

Mathematics and Computer

Science, Technical University of

Denmark, Lyngby, Denmark

Full list of author information is

available at the end of the article

Background

Boolean networks (BNs) are a popular model in systems biology where the dynamics

is qualitatively associated with two levels. These may express, for instance, on/off

behavior in gene regulation or high/low concentrations of molecular compounds [1].

In a BN, the state is defined as a vector of Boolean variables, each representing

a distinct component of the system under consideration. The time evolution of

each variable is governed by an update function, i.e., a Boolean expression that

encodes how the other variables affect the change of state at each (discrete) time

step [2, 3, 4, 5]. In the main text we focus on synchronous BNs whereby the next

state is obtained by applying all the update functions to the activation values of the

current state. However, in the supplementary material we show how our approach

can be applied also to BNs with partially asynchronous update schema (see, e.g.,

the priority classes supported by the popular tool GINsim [6] as described in [7]).

Argyris et al. Page 2 of 36

From a computational viewpoint, BNs are challenging to analyze. For example,

the state space of the network, known as the state transition graph (STG), has

exponential size in the number of variables. Thus, a full enumeration of the state

space is possible only for networks of limited size. Another relevant type of analysis

concerns the computation of attractors, i.e., those sets of states toward which the

system tends to evolve and remain [8, 9]; these are often associated with biologically

intelligible conditions of the system under study such as cell differentiation [3, 10].

Attractor identification is NP-hard [11] and, even if efficient tools have been devel-

oped [12], they do not scale well for large BNs.

These computational difficulties have motivated the development of reduction

methods to ease BN analysis. Available techniques can be classified in three families

according to the type of reduction: (i) by reasoning directly on the BN structure [4,

13, 14, 15, 16]; (ii) by reducing the underlying STG [5, 17]; (iii) by transforming a BN

into other formalisms for which specific reduction techniques are available [18, 19].

The latter two classes suffer two main limitations. First, STG-based reductions

are still subject to state space explosion since they require the full enumeration of

the state space to start with. Second, reductions via other formalisms may not be

complete in the sense that the dynamics of the original BN and of the transformed

model are not equivalent, hence some reductions may be missed (see Additional

file 2).

In the case of reduction methods at the BN level, popular examples are based

on the notion of variable absorption, proposed originally in [14, 15]. The main idea

is that certain BN variables can get removed by replacing their occurrences with

their update functions. This is based on the assumption that those variables evolve

over time scales that justify that they can be updated first in the model. Other

methods remove output/leaf variables [4, 13] (variables that do not appear in the

update functions of other variables) or frozen ones (variables that stabilize to the

same value after some iterations independently of the initial conditions) [16].

Here we present a complementary type of reduction method based on the com-

putation of a partition of the variables in the BN, whereby the future dynamics of

variables in a block of the partition are equal whenever they start from the same

condition. This can be convenient, for instance, if one is interested in studying the

dynamics due to simultaneous activation or deactivation of groups of variables [20]

(see also the case studies presented in the Results and discussion section). We call

this kind of relation a Boolean backward equivalence (BBE) because it is defined

analogously to the notion of backward bisimulation for Markov chains [21], more

recently extended to chemical reaction networks [19, 22] and ordinary differential

equations [23]. Recently, it has been shown how this backward notion can be given

also for linear differential algebraic equations (DAE) [24, 25]. Using DAE termi-

nology, such backward notion has been related to the preservation of invariant

subspaces.

Every reduction technique comes with its own intuitive interpretation. For exam-

ple, if we consider variable absorption mentioned above, it is intuitively based on

the idea of fast/slow decomposition: it is biologically plausible to absorb a variable

in the update function of another when the former fires faster than the latter. BBE

is based on the following three orthogonal considerations:

Argyris et al. Page 3 of 36

x1(t+ 1) = ¬x3(t) ∨ x1(t)

x2(t+ 1) = x1(t) ∨ x2(t) ∨ ¬x3(t)

x3(t+ 1) = x2(t) ∧ ¬x3(t)

========⇒
x1, x2 : BBE

x1,2(t+ 1) = ¬x3(t) ∨ x1,2(t)

x3(t+ 1) = x1,2(t) ∧ ¬x3(t)

Figure 1: Boolean backward equivalence shown on a simple example. (Top-

left) BN with three variables denoted by x1, x2, and x3. (Bottom-left) The

underlying STG. Each node is labelled by a vector that defines the state of

each variable; a directed edge denotes a transition from a source state to a target

state by a synchronous application of the update functions. States 110 and 111

form an attractor. (Top-right) Variables x1 and x2 can be shown to be BBE-

equivalent by inspecting their update functions. If they have the same value in a

state, i.e. x1 (t) = x2 (t), then they will be equivalent for all successor states since

x2(t + 1) = x1(t) ∨ x2(t) ∨ ¬x3(t) = x1(t) ∨ x1(t) ∨ ¬x3(t) = x1(t) ∨ ¬x3(t) =

x1(t+1). Based on this, a reduced BN can be obtained by considering a represen-

tative variable for each block and rewriting the corresponding update functions

in terms of those representatives (here the representative variable is denoted by

x1,2). (Bottom-right) The underlying STG agrees with the original one on all

states that have equal values for variables in the same block (purple nodes in

bottom-left panel). Instead, any other state (i.e. those where variables in the

same BBE block have different value), is removed. The criteria for BBE only

involve checks for the update functions of the original model, such that the gen-

eration of original STG can be circumvented.

• BBE allows the modeler to discover chains of variables that, under some ini-

tialization conditions, describe the same dynamics. This might be interesting,

e.g., to estimate the quality of a model: large BBE reductions might signal

excessive redundancy in the model.

• As mentioned above, the modeler might be interested only in dynamics where

two or more variables have simultaneous (de)activation value (see, e.g., [20]).

The T-LGL case study in section Results and discussion further discusses this.

• In [23], it has been shown that this backward notion corresponds to Cardelli’s

emulation [26] which enables to relate a complex model with a simpler one.

Interestingly, [26] discusses how emulation can be given an evolutionary in-

terpretation. In fact, an original model can express all the dynamics of the

reduced model. In addition, the original model can also express all additional

dynamics coming from states where variables related by emulation have dif-

ferent activation values (not permitted in the reduced model because variables

related by emulation get collapsed in the same reduced one). Given this richer

dynamics of the original model, Cardelli uses selected case studies in [26] to

Argyris et al. Page 4 of 36

argue how the original model can be seen as an evolved version of the reduced

one. We do not further investigate this aspect for BBE. However, given that

BBE is based as well on the mentioned backward notions, it is not surpris-

ing that there exists a similar relation among the dynamics expressed by the

original and reduced model (cf Fig. 1).

The criteria for a candidate partition of variables to be a BBE are encoded into a

satisfiability problem over the expressions of the BN’s update functions: we synthe-

sise a Boolean expression involving BN variables and check whether there exists at

least one combination of truth values for the variables that makes such expression

true. This type of test can be effectively implemented using tools known as SAT

solvers [27].

If a partition is a BBE, a reduced BN can be obtained by choosing and maintaining

only a representative variable for each partition block, and renaming all variables in

the remaining update functions with the representative one from their block. The

STG of the reduced network exactly preserves the original dynamics for all states

that have equal values across variables in the same block (Fig. 1). Importantly,

however, the reduction method does not require the generation of the original STG,

making it possible to obtain a reduced STG also from instances that would not be

analyzable due to their massive size.

A crucial property satisfied by BBE is that there exists a maximal reduction for

each BN, i.e., the coarsest BBE partition. This can be computed using a partition-

refinement algorithm in a similar fashion as in Markov chains [28], reaction net-

works [22] and differential equations [23]. The algorithm essentially builds upon

a fundamental result in computer science to prove equivalences in formal lan-

guages [29]. Given an initial partition of variables, the algorithm splits the blocks

of the partition to compute its coarsest refinement that satisfies the BBE crite-

ria. Thus, the maximal reduction is obtained when all variables are in the same

unique block of the initial partition. However, the possibility of arbitrarily choos-

ing the initial partition unlocks model-specific reduction queries that preserve the

dynamics of user-defined variables. For example, in typical BN models of signaling

pathways [30, 31], certain variables may represent the input signals to upstream

components such as receptors. Formally, inputs may be detected because their up-

date functions are constants that represent the values of such inputs. In this case,

a possibly more biologically relevant initial partition may separate inputs from the

other variables, obtaining input-separated (IS) reductions.

Our partition-refinement algorithm takes a polynomial number of steps as a func-

tion of the number of BN variables. At each iteration, it queries a SAT solver to

check for the BBE criteria. If the query is satisfiable, i.e., the current partition is not

a BBE, the returned assignment is used to split the current partition and perform

another iteration; if the query is unsatisfiable, it returns the current partition as

the coarsest BBE refinement of the initial one. Interestingly, although the algorithm

is theoretically as complex as SAT solving, it behaves effectively in practice. Us-

ing a prototype implementation available within the software tool ERODE [32], we

demonstrate its performance on a large-scale validation across 86 BN models from

two well-known repositories [33, 6]. We show that almost all BNs can be reduced

by BBE, providing speed-ups for the computation of STGs and attractors by more

Argyris et al. Page 5 of 36

than three orders of magnitude. In some cases, BBE could render the analysis fea-

sible in instances that originally issued out-of-memory errors or that were stopped

after long time outs. This comes at the cost that part of the original dynamics is

lost. In particular, in the STG we preserve all and only the states where variables

within the same BBE-block have the same value, and transitions among them. From

this, and from the properties of BBE, we also get that the method preserves all and

only the attractors containing at least one preserved state. This confirms that BBE

is complementary to existing reduction techniques for BNs. Indeed, in several areas

of science and engineering, it is common to have reduction techniques that:

• Preserve all dynamics but might add spurious ones. An example is [14] which

preserves all attractors but might create new spurious ones. These often come

with the name of over-approximations (this is because, e.g., [14] might over-

approximate the set of attractors of a model by computing a larger set con-

taining all original ones, plus some spurious ones;

• Do not preserve all the dynamics, but guarantee to not add spurious ones,

like BBE. These often come with the name of under-approximations (this is

because, e.g., BBE might under-approximate the set of attractors of a model

by computing a smaller set containing only original ones, but potentially not

all).

These two families of techniques are not comparable. They might be jointly used

to obtain upper-bounds (the case of [14]), and lower-bounds (the case of BBE) on

the actual number of attractors in a model.

This paper extends the previous conference version [34]. All numerical experiments

have been redesigned by adding an additional model repository, by performing a

large-scale validation of the analysis speed-ups offered by BBE, and by considering

a more recent and efficient tool for identification of attractors. We have also per-

formed a new large-scale validation on randomly generated BNs. Finally, we have

generalised the theory to support also BNs with partially asynchronous update

schema, and we have added a new case study considering one such BN.

Methods
Here we explain the key steps of the reduction procedure on the BN in Fig. 2.

Its customary graphical representation allows one to distinguish different kinds of

variables depending on whether they appear in the update functions of other vari-

ables (as indicated by the green arrows). In the example, TLR5 can be interpreted

as an input because its state remains constant and unaffected by other variables.

Inputs, which often denote external stimuli [4], are explicitly set by the modeler to

perform experiment campaigns. Conversely, IRAK4 and PIK3AP1 can be consid-

ered output variables because they do not appear in the update functions of other

variables.

Step 1: initial partition. Our reduction algorithm starts with the specification of

an initial partition of variables. The idea behind initial partitions is that the modeler

can force our algorithm to not collapse given variables, by placing them in different

initial blocks. In the case studies presented in the Results and discussion section we

see examples of user-specified initial partitions enabling analyses of interest on the

Argyris et al. Page 6 of 36

xTLR5 (t +1) = fxTLR5
= xTLR5 (t)

xTICAM1 (t +1) = fxTICAM1
= xTLR5 (t)

xMyD88 (t +1) = fxMyD88
= xTLR5 (t)

xIRAK4 (t +1) = fxIRAK4 = xMyD88 (t) ∨ xTICAM1 (t)

xPIK3AP1 (t +1) = fxPIK3AP1 = xMyD88 (t)

TLR5

TICAM1 MyD88

PIK3AP1IRAK4

00000

10000

01000 11000

00100

10100

11100

01100

00010

10010

01010

11010

00110

10110

11110

01110

00001

10001

01001 11001

00101
1010101101

11101
00011

10011

01011

11011

00111

1011111111

01111

Figure 2: Excerpt of the BN from [30]. It refers to the receptor TLR5 and its sig-

nalling to the four following genes: TICAM1, MyD88, IRAK4, PIK3AP1. When

a virus infects an organism, the receptor TLR5 receives the relevant antigen

stimuli becoming active (the value of xTLR5 turns from 0 to 1), and the signal is

subsequently propagated to the other connected genes. (Top) The update func-

tions of the BN. (Bottom-left) Variables are commonly depicted as nodes in a

network while directed links represent influences between them. A directed link

from a source variable to a target variable denotes that the source variable exists

in the update function of the target variable. (Bottom-right) The corresponding

STG, where we use purple to denote attractors.

considered models. This is how initial partitions shall be used, devising case-by-case

useful ones. In order to favour a systematic large-scale validation of our approach,

here we consider two examples of initial partitions whose computation can be easily

automated: the maximal partition, where all variables are placed in the same block;

and the input-separated (IS) one, where the inputs are separated from the other

variables, i.e., we use an initial partition with two blocks, one for input variables

and one for the other variables. [1] In the example, these are respectively given by

[1]We refer to [34] for a third example of initial partition, input-distinguished, where

inputs were further separated from each other. As exemplified in the case studies in

the Results and discussion section, initial partitions should be defined by the modeler

depending on the model at hand and on the properties to be studied. We discuss

the maximal and IS partitions here to enable the large-scale validation of BBE

discussed in the same section.

Argyris et al. Page 7 of 36

the partitions:

H0 =
{
{xTLR5 , xTICAM1 , xMyD88 , xIRAK4 , xPIK3AP1}

}
(1)

and

H′0 =
{
{xTLR5}, {xTICAM1 , xMyD88 , xIRAK4 , xPIK3AP1}

}
. (2)

Iterative step: splitting by the BBE condition. At every iteration, the algorithm

checks the BBE condition on the current partition. Formally, BBE is defined as a

partition X of variables that renders the following formula valid:

ΦH ≡

∧

Hi∈H
x,x′∈Hi

(
x = x′

)

 −→

∧

Hi∈H
x,x′∈Hi

(
fx = fx′

)
(3)

This is a Boolean formula for: whenever all variables in the same block have same

value, they will not be distinguished in the next state. In other words, ΦH says that

if for all partition blocks Hi the variables in Hi are equal, then the evaluations

of update functions of variables in the same block stay equal. A SAT solver can

determine if ΦH is valid by checking the unsatisfiability of its negation. For example,

given the H′0 partition in Eq. 2, one can obtain that ¬ΦH
′
0 is satisfiable (i.e., H′0 is

not a BBE) because there exists the assignment s given by

s = (sxTLR5
, sxTICAM1

, sxMyD88
, sxIRAK4

, sxPIK3AP1
) = (1, 0, 0, 0, 0)

for which, as it can be seen in the STG of Fig. 2, the next state s′ is

s′ = (s′xTLR5
, s′xTICAM1

, s′xMyD88
, s′xIRAK4

, s′xPIK3AP1
) = (1, 1, 1, 0, 0).

This assignment proves that variables xTICAM1 , xMyD88 , xIRAK4 , and xPIK3AP1

cannot belong to the same block of a partition that satisfies the BBE criteria because

despite having the same value (0) in the source state s, they differ in the target state

s′. In addition, the assignment s suggests to split that block into two sub-blocks for

which that assignment does not disprove the BBE condition: xTICAM1 and xMyD88

have same value in s′, as well as xIRAK4 and xPIK3AP1 . Thus the algorithm will

perform a new iteration with the refined partition

H′1 =
{
{xTLR5}, {xTICAM1 , xMyD88}, {xIRAK4 , xPIK3AP1}

}
.

With this, ¬ΦH
′
1 is unsatisfiable, implying thatH′1 is a BBE partition. In Theorem 2

from Additional file 1, we prove that this algorithm returns, for any initial partition,

its unique coarsest refinement that satisfies the BBE condition (3). Overall, the

algorithm takes at most n steps, where n is the number of BN variables; at every

step, it iterates through the provided SAT assignment, if any is provided, to perform

the splitting. Thus, overall the algorithm is as hard as SAT solving; however, the

numerical evaluation presented in the Results and discussion section will show how

it can effectively tackle BN models from the literature.

Argyris et al. Page 8 of 36

BBE properties. As discussed in Fig. 1, given a BBE it is possible to construct a

reduced BN where each variable represents a partition block (Proposition 4 from

Additional file 1). The STG of the reduced BN agrees with the original STG on

all, and only on, states that are constant on the partition, i.e., whose variables in

the same block have the same value (Proposition 4 from Additional file 1). The

reduction also preserves any attractor of the original BN which contains at least

one state that is constant on the partition (Theorem 5 from Additional file 1). Thus,

in particular the reduced BN maintains the exact length of the attractors that are

preserved without introducing spurious dynamical behavior. Instead, all states non

constant on the partition are dropped, as well as all attractors not containing any

state constant on the BBE partition.

We use two examples to better explain the exact preservation of part of the

attractors. Considering preserved attractors, we have seen in Fig. 1 that the two-

states attractor of the original model (Fig. 1 bottom-left) is preserved in a two-

states attractor in the reduced model (Fig. 1 bottom-right). This is the case for any

preserved attractor; the number of states is preserved.

As regards attractors that are not preserved, we provide in Fig. 3 (top-left) a

simple BN with 3 variables (x1, x2, and x3) and 4 attractors (steady-states, Fig. 3,

bottom-left). Fig. 3 (top-right) shows a BBE reduction of the model where x1 and

x2 get collapsed. We can see in Fig. 3 (bottom-right) that 2 attractors are preserved

in the BBE reduction, while the other 2 attractors belong to the part of the STG

that is not preserved, and therefore are not present in the reduced BN. In particular,

according to our theory, the two attractors where x1 and x2 are both 1 or both 0

are preserved. Instead, the other two attractors have different values for x1 and x2,

and therefore are not preserved.

Partially asynchronous BNs. In Additional file 1, we show how BBE can also be

applied to partially asynchronous BNs. Here, we equip a BN with a partition K of

its variables that we name synchronization partition. A new state is obtained by

selecting one of the blocks K of K, and then applying of the update functions of the

variables in K only. The activation values of the other variables are not modified.

Notably, this synchronization schema is supported, e.g., by popular BN analysis

tools like GINsim [6] under the name of priority classes [7].[2] In particular, BBE

can be applied to such BNs with the caveat that the initial partition must be K
or refinements of it. In Additional file 3 we apply BBE to a BN with partially

asynchronous update schema.

Results and discussion
In this section, we perform a large-scale validation of BBE. We first check its reduc-

tion power on published models from the literature, and then we demonstrate how

it facilitates the analysis tasks of STG generation and attractor computation. In

particular, we show how BBE brings important analysis speed-ups, both in terms of

[2] The dynamics of BNs considered in this paper are less general than those offered

by GINsim using priority classes, as they also further allow to assign different pri-

orities to the classes, and to update the variables within them asynchronously.

Argyris et al. Page 9 of 36

x1(t+ 1) = (x1(t) ∧ ¬x2(t)) ∨ x3(t)

x2(t+ 1) = (¬x1(t) ∧ x2(t)) ∨ x3(t)

x3(t+ 1) = x1(t) ∧ x3(t)

========⇒
x1, x2 : BBE

x1,2(t+ 1) = x3(t)

x3(t+ 1) = x1,2(t) ∧ x3(t)

000

100 010

110

001

101

111

011

00

10

01

11

Figure 3: Boolean backward equivalence shown on a simple example: not all at-

tractors are preserved. (Top-left) BN with three variables denoted by x1, x2, and

x3. (Bottom-left) The underlying STG. The model has 4 steady-state attractors

(nodes 100, 010, 000, and 111). Two have same activation values for x1 and x2

(000, and 111), two have not. (Top-right) Variables x1 and x2 can be shown to

be BBE-equivalent by inspecting their update functions. If they have the same

value in a state, i.e. x1 (t) = x2 (t), then they will be equivalent for all successor

states. Based on this, a reduced BN can be obtained by considering a represen-

tative variable for each block and rewriting the corresponding update functions

in terms of those representatives (here the representative variable is denoted by

x1,2). (Bottom-right) The underlying STG agrees with the original one on all

states that have equal values for variables in the same block (purple nodes in

bottom-left panel). Notably, the two attractors having same activation value for

x1 and x2 are preserved, while the other two are dropped, as expected by our

theory.

STG generation, and attractor analysis. In several cases, BBE enables the analysis

of models that were originally intractable due to their complexity.

After this, we use two selected case studies to show how one can tune the reduction

power of BBE to preserve or exclude specific dynamics of interest.

Toolchain. We implemented our method in ERODE [32], a freely available software

for the modeling, analysis, and reduction of biological systems modelled in terms of

BNs [34], differential equations [35], and chemical reaction networks [19]. ERODE

integrates the SAT solver Z3 [36]. Thanks to importing/exporting functionalities,

we let ERODE interact with the COLOMOTO Notebook [37, 38], which integrates

several tools for modeling and analysis of BNs. STG generation is performed using

the tool PyBoolNet [39], while attractor identification is performed using the SAT-

based tool BNS [12].[3]

[3]Among the tools available in the COLOMOTO notebook, we could have opted

for GINsim [40] and BoolSim [41] for STG generation and attractor identification,

respectively, for BNs with synchronous update schema. In both cases, we have

Argyris et al. Page 10 of 36

Configuration. All experiments were conducted on a machine equipped with an In-

tel Xeon(R) 2.80 GHz processor and 32 GB RAM. We imposed an arbitrary timeout

of 8 hours for each task, after which we terminated the analysis. We refer to these

cases as time-out, while we use out-of-memory if the execution issued a memory

error.

We conducted our investigation using two model repositories: GINsim reposi-

tory [6] (http://ginsim.org/models_repository), which contains 83 models, and

the Biomodels repository [42] (https://www.ebi.ac.uk/biomodels/), which con-

tains 24 models, obtaining overall 98 distinct models (9 appeared in both reposito-

ries). From these, we restricted only to models with input variables, obtaining 86

models. In other words, we considered about 92% of the models available in the

two respositories. This selection was done to avoid favouring BBE: in BNs without

inputs, IS initial partitions correspond to the maximal ones, which, as the name

says, allow for the best possible BBE reduction of a model in terms of aggregation

power. Part of these 86 models, 45, are multi-valued networks, i.e. logical mod-

els wherein some variables take more than two activation statuses, e.g., {0, 1, 2}
for low, medium, or high concentration respectively (see, e.g., [43]). We transform

such models in dynamically equivalent BNs by applying a so-called booleanization

technique [44], supported by GINsim [40].

As in the Methods section, we consider two reduction scenarios relevant to input

variables, using maximal and input-separated (IS) initial partitions likeH0 in Eq. (1)

and H′0 in Eq. (2), respectively. In Additional file 4 we perform a similar analysis

on randomly generated BNs.

Large-scale validation

Large-scale validation: reduction power. We begin by addressing the reduction

power of BBE. For this, we consider the reduction ratios (variables in the reduced

BN over the variables in the original one) obtained on all models.

Fig. 4 displays the reduction ratios for both the maximal and IS reductions. We

observe that almost all models can be reduced by BBE, in particular 93% admit

a maximal reduction, while 91% admit an IS one. The reduction ratios distribute

almost uniformly from 0.15 to 1.00 (no reduction), with average reduction ratio of

0.70 and 0.77 for maximal and IS reductions, respectively. For most models, the

maximal and IS reduction ratios do not change significantly, meaning that BBE is

effective also when we prevent input variables from merging with internal variables.

All detailed results of this analysis can be found in Table S3 in Additional file 5.

Large-scale validation: STG generation speed-up. We hereby demonstrate the

speed-ups that BBE provides to STG generation on a selection of the considered

models. Fig. 5 focuses on the 20 models with more than 10 variables for which the

STG generation succeeded in both the original and reduced models, while Fig. 6

focuses on the 13 ones where the STG generation failed on the original model and

succeeded in the maximal or IS reduction. On the used machine, STG generation

opted for the tools with best performances according to preliminary experiments

we conducted, not reported here.

Argyris et al. Page 11 of 36

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86
Model Identifier

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
du

ct
io

n
Ra

tio

Maximal
IS

Figure 4: Large-scale validation: reduction power. The x-axis provides model

identifiers for the 86 considered models (only even ones are shown due to space

constraints), while the y-axis refers to reduction ratios “reduced variables over

original ones”. The green dots denote the reduction ratios, in increasing order,

for maximal reductions. Using the same ordering, the blue crosses denote the

reduction ratios for IS reductions. Only 6 models do not admit any BBE reduc-

tion, while two more models (33 and 58) do not admit IS reduction.

failed for models with 24 or more variables. Therefore, Fig. 5 focuses on models with

less than 24 variables, while Fig. 6 focuses on models with 24 or more variables for

which at least one reduction had less than 24 variables.

The red line in Fig. 5 marks the area where the reduction would not bring speed-

ups. We can see that all points are below the line, with instances showing more than

two orders of magnitude difference between the original and reduced runtimes. This

proves that BBE can effectively lead to faster STG generation. All cases where the

dots and crosses overlap refer to models where the two reductions coincide.

We now consider the 13 models in Fig. 6 where STG generation was not feasible

for the original models. We note that the generation succeeded for all maximal

reductions, while it failed for two IS ones. As denoted by the model identifiers in

the x-axis, these are models 4 and 15 in Fig. 4, where the IS reductions have 34 and

25 variables, respectively. The largest runtime is 441 s for the IS reductions, and

338 s for the maximal ones. Detailed results are presented in Table S4 in Additional

file 5.

Large-scale validation: Attractor computation speed-up. Fig. 7 studies the speed-

ups that BBE provided to the computation of attractors on the models from Fig. 4.

The plot has the same structure as Fig. 5. We observe that, in several cases, we have

significant analysis speed-ups. In particular, we note how the dots and crosses spread

to the right, due to original runtimes in the order of 103 s, while they hardly go up

beyond 1 s for runtimes on reduced models. Furthermore, models 18 and 29 from

Fig. 4 are omitted here because the analysis failed on the original models. Instead,

the analysis of their maximal reductions required at most 0.15 s, and that of their IS

reductions at most 2.5 s. Detailed results are given in Table S5 in Additional file 5.

Argyris et al. Page 12 of 36

100 101 102

Original BN

10 1

100

101

102
BB

E
Re

du
ct

io
n

STG Generation Time (s)
Maximal
IS

Figure 5: Large-scale validation: STG generation speed-up. Comparison of STG

generation between BBE reductions and original BNs. We omit models with

10 or fewer variables, where the runtimes are not particularly informative be-

cause STG generation is trivial. Furthermore, we omit models with more than

60 variables, where STG generation fails with out-of-memory for both the origi-

nal models and their reductions. Overall, we obtain 33 models, from which here

we focus only on the 20 ones for which the STG generation succeeded in both

the original and reduced models, while Fig. 6 focuses on the remaining 13. The

x-axis refers to the generation time for original models, while the y-axis refers

to that for reduced models, using green circles and blue crosses for maximal and

IS reductions, respectively. The runtimes are averaged over 3 runs.

Large-scale validation: Interpretation. BBE can successfully reduce a large amount

of models. For the original models, the state space explosion prevents full state space

exploration in many cases, and hampers the identification of the attractors. This

is mitigated in practice by BBE, with extreme cases where BBE made analysis

feasible whereas the original models were intractable. As shown in Table S5 in

Additional file 5, part of the attractors are lost in the reduced models, namely

those not involving constant states on the computed BBE (see Methods section).

Table S5 shows cases like model 18 or 29, whose attractors could not be computed

at all without BBE reduction. At the same time, the table shows that, by using the

default IS or maximal initial partitions, a large part of the attractors might be lost

(because, according to our theory, involve STG states where variables belonging

to the same BBE block have different value). In Fig. S7 from Additional file 4 we

provide this information graphically for the BNs from the two repositories, and for

randomly generated ones. This can be mitigated by devising refined initial partitions

for the model and problem at hand. This is exemplified and discussed in greater

detail in the next section where we show how a modeler can easily devise refined

initial partitions that may allow to preserve more attractors, or drop those that are

not of interest.

Argyris et al. Page 13 of 36

1 3 4 11 12 13 15 16 22 35 44 46 59
Model Identifier

10 1

100

101

102
BB

E
Re

du
ct

io
n

STG Generation Time (s)
Maximal
IS

Figure 6: Large-scale validation: STG generation speed-up. STG generation time

for the maximal and the IS reductions. We consider the 13 models omitted in

Fig. 5 because the STG generation failed for the original models. The x-axis refers

to the model identifier from Fig. 4, while the y-axis refers to the generation time

for the reduced models, using green circles and blue crosses for maximal and IS

reductions, respectively. The runtimes are averaged over 3 runs.

Case Studies

In the previous part of this section we studied the aggregation power and the anal-

ysis speedups offered by BBE on 86 models from the literature. Here, instead, we

use two selected case studies (MAPK, T-LGL) to show how one can tune, or re-

fine the reduction power of BBE using model-specific information to preserve all

dynamics of interest, and selectively exclude behavior that does not have biological

relevance. Nevertheless, for completeness, we provide in Table 1 information on the

analysis runtimes on all models (and their reductions) discussed in this section. We

consider analysis runtimes on the models (Original), and on their IS (IS) and max-

imal (Maximal) reductions as done in the large-scale validation. Furthermore, we

consider an additional reduction obtained using a refined initial partition discussed

in the corresponding sections (Refined). STG generation failed on all models and

reductions because they all have more than 24 variables. Indeed, we have previously

discussed how, on the used machine, STG generation fails for models with 24 or

more variables. Instead, attractor analysis succeeded on all models, with important

speed-ups obtained for all reductions. For both models, the IS and Maximal cases

have a particularly low analysis runtime. This is because, as we shall discuss next,

several attractors are discarded in these reductions. Notably, despite the Refined

reductions have speedup factors of about two, as we shall see they preserve all

attractors for MAPK, and all attractors of interest for T-LGL.

MAPK case study. We consider a BN model for Mitogen-Activated Protein Ki-

nase (MAPK) from [45]. The model consists of tightly interconnected signalling

Argyris et al. Page 14 of 36

10 2 10 1 100 101 102

Original BN
10 3

10 2

10 1

100

101

102
BB

E
Re

du
ct

io
n

Attractor Computation Time (s)
Maximal
IS

Figure 7: Large-scale validation: Attractor computation speed-up. Attractor

computation time of the original models versus the one of maximal and IS re-

ductions. Out of the 86 models from Fig. 4 we select the 78 admitting both

maximal and IS reduction. The figure further omits models 18 and 29 from

Fig. 4 for which the analysis failed for the original model due to time-out. The

x-axis refers to the analysis time for original models, while the y-axis refers to

that for reduced models, using green circles and blue crosses for maximal and IS

reductions, respectively. The runtimes are averaged over 3 runs.

MAPK T-LGL

Original IS Maximal Refined Original IS Maximal Refined

STG Generation ————- out-of-memory ————- ————- out-of-memory ————-
Atractor analysis 0.55 0.16 0.16 0.35 2.66 0.10 0.11 1.17

Table 1: Analysis runtimes (in seconds) for the models in section Case Studies.

pathways involved in diverse cellular processes, such as cell cycle, survival, apop-

tosis and differentiation. The BN is depicted in Fig. 8. It contains 53 variables, 4

of which being inputs (EGFR stimulus, FGFR3 stimulus, TGFBR stimulus, and

DNA damage), and has 40 attractors.

MAPK: Maximal and IS reduction. The maximal BBE reduction of this model

has 39 variables. The discovered blocks are visualized in Fig. 8 using different back-

ground colors. In particular, we note that the yellow block contains all inputs and

five non-inputs variables, three related to TGFBR stimulus, and two related to

DNA damage. Instead, the IS reduction has 41 variables, the only difference being

that the block with inputs from the maximal reduction (Fig. 8) is split in three

blocks: one for the inputs, one for the two non-input variables directly connected to

the two right-most inputs, and one for the remaining non-input variables. In both

cases, the reduced BNs have 17 attractors.

Argyris et al. Page 15 of 36

EGFR_stimulus FGFR3_stimulus
TGFBR_stimulus DNA_damage

Apoptosis Growth_ArrestProliferation

ERK
p38JNK

p53

p21

TGFBR

EGFR
FGFR3

ATM

TAOK

MAX

GRB2

FRS2

PI3K

AP1

PPP2CAMEK1_2

DUSP1

MYC

AKT

PLCG

PKC

GADD45

ELK1

FOS
ATF2

JUNMSK

CREB

RSK

SMAD

MTK1

SPRY RAF

GAB1

PDK1

p70

p14

FOXO3

RASSOS MDM2

BCL2

TAK1

MAP3K1_3

PTEN

Figure 8: Graphical representation of the MAPK BN using GINsim. The back-

ground colors denote blocks of the maximal BBE (white background denotes

singleton blocks). Instead, the blue dashed shapes denote blocks of the refined

initial partition, vertical IS, where we omit the fifth large block containing all

remaining nodes.

MAPK: Refined reduction with vertical IS. We propose a third model-specific ini-

tial partition that considers inputs also indirectly. Intuitively, variables like TGFBR

depend only on the value assigned to an input (TGFBR stimulus). This reasoning

can be iterated downward through the pathway, allowing to add also TAK1 , and

SMAD , until variables that depend on other (input) variables are met. In some

sense, we can see TGFBR, TAK1 , and SMAD as indirect inputs. This is because,

in a few iterations the value assigned to the corresponding input will be propagated

to them, and they will not change value anymore. In other words, we use a block

per input, each containing the input and all non-input variables only positively

affected by the input or by variables in the block. That way, we obtain an initial

partition denoted by the blue dashed shapes in Fig. 8, plus an additional fifth block

containing all other variables. The rationale is that a variable only affected by an

input will have the same truth value of the input, therefore it can be considered as

a sort of indirect input. The obtained BBE is depicted in Fig. 9. The reduced BN

contains 42 variables and preserves all 40 attractors.

T-LGL case study. We consider a BN model for T-LGL from [20]. It refers to

the disease T-LGL leukemia which features a clonal expansion of antigen-primed,

competent, cytotoxic T lymphocytes (CTL). This BN is a signalling pathway, con-

structed empirically through extensive literature review, and determines the survival

of CTL. The BN, depicted in Fig. 10, consists of 60 variables, 6 of which are inputs

(the yellow nodes in Fig. 10). The model has 264 attractors.

Argyris et al. Page 16 of 36

EGFR_stimulus FGFR3_stimulus
TGFBR_stimulus DNA_damage

Apoptosis Growth_ArrestProliferation

ERK
p38JNK

p53

p21

TGFBR

EGFR
FGFR3

ATM

TAOK

MAX

GRB2

FRS2

PI3K

AP1

PPP2CAMEK1_2

DUSP1

MYC

AKT

PLCG

PKC

GADD45

ELK1

FOS
ATF2

JUNMSK

CREB

RSK

SMAD

MTK1

SPRY RAF

GAB1

PDK1

p70

p14

FOXO3

RASSOS MDM2

BCL2

TAK1

MAP3K1_3

PTEN

Figure 9: Graphical representation of the MAPK BN. Background colors denote

blocks of the BBE obtained using the refined initial partition (white background

denotes singleton blocks).

T-LGL: Maximal and IS reduction. The maximal and IS BBE coincide, as depicted

in Fig. 10. We have only two non-singleton blocks: one consisting of all the inputs,

and one consisting of FasT , A20 , TNF , and RANTES . The reduced BN has 52

variables and 6 attractors, which means that most of the attractors are lost.

T-LGL: Refined reduction. In [20], the authors discover that the simultaneous

activation of the two input variables IL15 and PDGF is sufficient to produce all

dynamics of interest to them (namely, all the known so-called deregulations and

signalling abnormalities).

In terms of initial partitions for BBE, we can encode the notion of contemporary

activation or deactivation of the two inputs by using a model- and problem-specific

initial partition where IL15 and PDGF form a block. Furthermore, we assign every

input to a singleton block, while all non-input variables belong to the same block,

for a total of 56 blocks. It turns out that this initial partition is actually a BBE,

which therefore does not get refined by our algorithm. The reduced BN has 120

attractors.

Conclusion
Boolean backward equivalence (BBE) is an automatic reduction technique for

Boolean networks (BNs) which exactly preserves dynamics of interest to the mod-

eler by collapsing variables that are proven to have equal values in all states. The

method, based on a partition refinement algorithm, can be tuned on a model- and

problem-specific way by specifying which variables should be preserved using an ap-

propriate choice of the initial partition. The approach is complementary to the state

of the art. Roughly, in [4, 13], reduction is achieved by replacing variables with con-

stants and propagating those in the transitions of somehow richer STGs or across

Argyris et al. Page 17 of 36

Figure 10: Graphical representation of the T-LGL BN using GINsim. Background

colors denote blocks of both the maximal and IS BBE, which coincide (white

background denotes singleton blocks).

the network, respectively. Thus, the reduced model cannot be used to investigate

how changes in those variables affect the dynamics. In a BBE reduction, instead,

variables are collapsed into blocks and the original dynamics is exactly recovered

whenever variables in the same block are assigned equal values. These studies [4, 13]

additionally remove the output [4] variables (also called leaf variables [13]). How-

ever, output variables sometimes are used to denote different “responses” by the

modelled system [4, 30], therefore their removal might not always be appropriate.

In variable absorption [14, 15], the main assumption is that there are variables that

are updated faster than others, therefore one class of variables can be assumed to be

constant and absorbed if focusing on the dynamics of the other class. Unlike BBE,

this can only increase the number of attractors. In particular, variable absorption

preserves exactly all steady states (single-state attractors), while it might change the

length of other attractors. Furthermore, new spurious attractors might be added.

Instead, BBE might decrease the number of attractors (it discards all and only the

attractors involving states where BBE-equivalent variables have different activation

values), but all preserved attractors are preserved exactly, including their length

and reachibility from (preserved) initial states, and no spurious ones are added.

Regarding other relevant work, in [16], the authors identify variables that have the

same value in attractors only, but, differently from BBE, might behave differently

in other states of the STG.

We validated BBE on 86 BNs from two model repositories, providing reductions

and analysis speed-ups in almost all cases. In some, BBE enabled the analysis of

models which would be otherwise intractable. There were also instances for which

the reduced model could not be analyzed. This calls for further research into more

aggressive reductions; for example, in its current implementation multi-valued BNs

are first translated into ordinary BNs, but this causes a blow-up in the number

of variables. It is worth investigating approaches that circumvent the intermediate

Argyris et al. Page 18 of 36

translation to reduce dimensionality. Another area of research concerns the different

semantic interpretations of a BN. Currently, BBE supports BN with synchronous

and partially asynchronous updates; we plan to investigate variants of BBE for

probabilistic BNs.

Supplementary Information

Declarations

Abbreviations

BN: Boolean Network. BBE: Boolean Backward Equivalence. STG: State Transition

Graph.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Material to replicate the large-scale experiments, including all models, are available

here: https://www.erode.eu/models/BMCBioInf_CMSB2021.zip

Competing interests

The authors declare that they have no competing interests.

Funding

Partially supported by the DFF project REDUCTO 9040-00224B, the Poul Due

Jensen Grant 883901, the Villum Investigator Grant S4OS, and the PRIN project

SEDUCE 2017TWRCNB.

Authors’ contributions

All authors contributed equally and read and approved the final manuscript.

Acknowledgements

We thank reviewers of the original CMSB 2021 submission and of this submission

for their help in improving the paper. We also thank the CMSB 2021 attendants for

their comments and suggestions on the work. We thank Laure Bally-Cuif, author

of [46], for her fruitful information on the modelling approach helping us in the case

study in Additional file 3

Additional Files

Additional file 1 — Technical Results.

Additional file 2 — Comparison with encoding-based reductions.

Additional file 3 — Application of BBE to a partially asynchronous schema

Additional file 4 — An application of BBE to random Boolean Networks

Additional file 5 — Tables with detailed results from large-scale experiments.

Author details
1Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
2SysMA Unit, IMT School for Advanced Studies, Lucca, Italy. 3Department of Computer Science, University of

Aalborg, Denmark. 4Department of Excellence EMbeDS and Institute of Economics, Sant’Anna School for

Advanced Studies, Pisa, Italy.

Argyris et al. Page 19 of 36

References
1. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical

Biology 22(3), 437–467 (1969)

2. Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology

and applications. Physical biology 9(5), 055001 (2012)

3. Azpeitia, E., Beńıtez, M., Vega, I., Villarreal, C., Alvarez-Buylla, E.R.: Single-cell and coupled grn models of

cell patterning in the arabidopsis thaliana root stem cell niche. BMC systems biology 4(1), 1–19 (2010)

4. Naldi, A., Monteiro, P.T., Chaouiya, C.: Efficient handling of large signalling-regulatory networks by focusing on

their core control. In: International Conference on Computational Methods in Systems Biology, pp. 288–306

(2012). Springer

5. Bérenguier, D., Chaouiya, C., Monteiro, P.T., Naldi, A., Remy, E., Thieffry, D., Tichit, L.: Dynamical modeling

and analysis of large cellular regulatory networks. Chaos: An Interdisciplinary Journal of Nonlinear Science

23(2), 025114 (2013)

6. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical modelling of regulatory

networks with ginsim 2.3. Biosystems 97(2), 134–139 (2009)

7. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic boolean model for the control

of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)

8. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in boolean network modeling:

What do they all mean? Computational and Structural Biotechnology Journal 18, 571–582 (2020).

doi:10.1016/j.csbj.2020.03.001

9. Hopfensitz, M., Müssel, C., Maucher, M., Kestler, H.A.: Attractors in boolean networks: a tutorial.

Computational Statistics 28(1), 19–36 (2013)

10. Drossel, B.: Random boolean networks. Reviews of nonlinear dynamics and complexity 1, 69–110 (2008)

11. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: A system for identifying genetic networks from gene

expression patterns produced by gene disruptions and overexpressions. Genome Informatics 9, 151–160 (1998)

12. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in synchronous boolean networks.

IEEE/ACM transactions on computational biology and bioinformatics 8(5), 1393–1399 (2011)

13. Bilke, S., Sjunnesson, F.: Stability of the Kauffman model. Physical Review E 65(1), 016129 (2001)

14. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction of logical regulatory graphs.

Theoretical Computer Science 412(21), 2207–2218 (2011)

15. Veliz-Cuba, A.: Reduction of boolean network models. Journal of theoretical biology 289, 167–172 (2011)

16. Richardson, K.A.: Simplifying boolean networks. Advances in Complex Systems 8(04), 365–381 (2005)

17. Figueiredo, D.: Relating bisimulations with attractors in boolean network models. In: International Conference

on Algorithms for Computational Biology, pp. 17–25 (2016). Springer

18. Zañudo, J.G.T., Albert, R.: An effective network reduction approach to find the dynamical repertoire of discrete

dynamic networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 23(2), 025111 (2013).

doi:10.1063/1.4809777

19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical

systems. Proceedings of the National Academy of Sciences 114(38), 10029–10034 (2017)

20. Zhang, R., Shah, M.V., Yang, J., Nyland, S.B., Liu, X., Yun, J.K., Albert, R., Loughran, T.P.: Network model

of survival signaling in large granular lymphocyte leukemia. Proceedings of the National Academy of Sciences

105(42), 16308–16313 (2008)

21. Sproston, J., Donatelli, S.: Backward bisimulation in markov chain model checking. Software Engineering, IEEE

Transactions on 32(8), 531–546 (2006). doi:10.1109/TSE.2006.74

22. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical

reaction networks. In: 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,

September 1.4, 2015, pp. 226–239 (2015). doi:10.4230/LIPIcs.CONCUR.2015.226.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.226

23. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences.

ACM SIGPLAN Notices 51(1), 137–150 (2016)

24. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Differential equivalence for linear differential

algebraic equations. IEEE Trans. Autom. Control. 67(7), 3484–3493 (2022). doi:10.1109/TAC.2021.3108530

25. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Backward invariance for linear differential algebraic

equations. In: 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL, USA, December 17-19,

2018, pp. 3771–3776. IEEE, ??? (2018). doi:10.1109/CDC.2018.8619710.

https://doi.org/10.1109/CDC.2018.8619710

26. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC systems biology 8(1), 84

(2014)

27. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in

Artificial Intelligence and Applications. IOS Press, NLD (2009)

28. Valmari, A., Franceschinis, G.: Simple O(m logn) time markov chain lumping. In: Tools and Algorithms for the

Construction and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.

Proceedings, pp. 38–52 (2010). doi:10.1007/978-3-642-12002-2 4.

http://dx.doi.org/10.1007/978-3-642-12002-2 4

29. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on Computing 16(6), 973–989

(1987). doi:10.1137/0216062. http://epubs.siam.org/doi/pdf/10.1137/0216062

30. Rodŕıguez-Jorge, O., Kempis-Calanis, L.A., Abou-Jaoudé, W., Gutiérrez-Reyna, D.Y., Hernandez, C.,

Ramirez-Pliego, O., Thomas-Chollier, M., Spicuglia, S., Santana, M.A., Thieffry, D.: Cooperation between t cell

receptor and toll-like receptor 5 signaling for cd4+ t cell activation. Science signaling 12(577) (2019)

31. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and

Argyris et al. Page 20 of 36

functional analysis of signaling and regulatory networks. BMC bioinformatics 7(1), 56 (2006)

32. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Erode: a tool for the evaluation and reduction of

ordinary differential equations. In: International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pp. 310–328 (2017). Springer

33. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra,

M., Shapiro, B., et al.: Biomodels database: a free, centralized database of curated, published, quantitative

kinetic models of biochemical and cellular systems. Nucleic acids research 34(suppl 1), 689–691 (2006)

34. Argyris, G., Lluch Lafuente, A., Tribastone, M., Tschaikowski, M., Vandin, A.: Reducing boolean networks with

backward boolean equivalence. In: International Conference on Computational Methods in Systems Biology, pp.

1–18 (2021). Springer

35. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences.

In: POPL 2016, pp. 137–150 (2016). doi:10.1145/2837614.2837649

36. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pp. 337–340 (2008). Springer

37. Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P.T., Chaouiya, C., Helikar, T., Zinovyev, A., Calzone,

L., Cohen-Boulakia, S., Thieffry, D., Paulevé, L.: The colomoto interactive notebook: Accessible and

reproducible computational analyses for qualitative biological networks. Frontiers in Physiology 9, 680 (2018).

doi:10.3389/fphys.2018.00680

38. Naldi, A., Monteiro, P.T., Müssel, C., for Logical Models, C., Tools, Kestler, H.A., Thieffry, D., Xenarios, I.,

Saez-Rodriguez, J., Helikar, T., Chaouiya, C.: Cooperative development of logical modelling standards and

tools with colomoto. Bioinformatics 31(7), 1154–1159 (2015)

39. Klarner, H., Streck, A., Siebert, H.: Pyboolnet: a python package for the generation, analysis and visualization

of boolean networks. Bioinformatics 33(5), 770–772 (2017)

40. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim 804, 463–479

(2012)

41. Di Cara, A., Garg, A., De Micheli, G., Xenarios, I., Mendoza, L.: Dynamic simulation of regulatory networks

using squad. BMC bioinformatics 8(1), 462 (2007)

42. Malik-Sheriff, R.S., Glont, M., Nguyen, T.V.N., Tiwari, K., Roberts, M.G., Xavier, A., Vu, M.T., Men, J.,

Maire, M., Kananathan, S., Fairbanks, E.L., Meyer, J.P., Arankalle, C., Varusai, T.M., Knight-Schrijver, V., Li,

L., Dueñas-Roca, C., Dass, G., Keating, S.M., Park, Y.M., Buso, N., Rodriguez, N., Hucka, M., Hermjakob, H.:

BioModels — 15 years of sharing computational models in life science. Nucleic Acids Research 48(D1),

407–415 (2020). doi:10.1093/nar/gkz1055. gkz1055.

https://academic.oup.com/nar/article-pdf/48/D1/D407/31698010/gkz1055.pdff

43. Fauré, A., Vreede, B., Sucena, E., Chaouiya, C.: A discrete model of drosophila eggshell patterning reveals

cell-autonomous and juxtacrine effects. PLoS Comput Biol 10, 1003527 (2014).

doi:10.1371/journal.pcbi.1003527

44. Delaplace, F., Ivanov, S.: Bisimilar booleanization of multivalued networks. BioSystems, 104205 (2020)

45. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thieffry, D.: Integrative modelling of

the influence of mapk network on cancer cell fate decision. PLoS Comput Biol 9(10), 1003286 (2013)

46. Coolen, M., Thieffry, D., Drivenes, Ø., Becker, T.S., Bally-Cuif, L.: mir-9 controls the timing of neurogenesis

through the direct inhibition of antagonistic factors. Developmental cell 22(5), 1052–1064 (2012)

47. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Course Technology, Boston, MA (2013)

48. Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D.A., Klamt, S., Theis, F.J.: Transforming

boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Systems

Biology 3(1), 98 (2009). doi:10.1186/1752-0509-3-98

49. Müssel, C., Hopfensitz, M., Kestler, H.A.: Boolnet—an r package for generation, reconstruction and analysis of

boolean networks. Bioinformatics 26(10), 1378–1380 (2010)

50. Mbodj, A., Junion, G., Brun, C., Furlong, E.E., Thieffry, D.: Logical modelling of drosophila signalling

pathways. Molecular BioSystems 9(9), 2248–2258 (2013)

51. Martinez-Sanchez, M.E., Hiriart, M., Alvarez-Buylla, E.R.: The cd4+ t cell regulatory network mediates

inflammatory responses during acute hyperinsulinemia: a simulation study. BMC systems biology 11(1), 1–12

(2017)

52. Mbodj, A., Gustafson, E.H., Ciglar, L., Junion, G., Gonzalez, A., Girardot, C., Perrin, L., Furlong, E.E.,

Thieffry, D.: Qualitative dynamical modelling can formally explain mesoderm specification and predict novel

developmental phenotypes. PLoS computational biology 12(9), 1005073 (2016)

53. Martinez-Sanchez, M.E., Mendoza, L., Villarreal, C., Alvarez-Buylla, E.R.: A minimal regulatory network of

extrinsic and intrinsic factors recovers observed patterns of cd4+ t cell differentiation and plasticity. PLoS

computational biology 11(6), 1004324 (2015)

54. Fauré, A., Vreede, B.M., Sucena, É., Chaouiya, C.: A discrete model of drosophila eggshell patterning reveals

cell-autonomous and juxtacrine effects. PLoS Comput Biol 10(3), 1003527 (2014)

55. Sánchez, L., Chaouiya, C.: Primary sex determination of placental mammals: a modelling study uncovers

dynamical developmental constraints in the formation of sertoli and granulosa cells. BMC systems biology

10(1), 1–11 (2016)

56. Mombach, J.C., Bugs, C.A., Chaouiya, C.: Modelling the onset of senescence at the g1/s cell cycle checkpoint.

BMC genomics 15(S7), 7 (2014)

57. Corral-Jara, K.F., Chauvin, C., Abou-Jaoudé, W., Grandclaudon, M., Naldi, A., Soumelis, V., Thieffry, D.:

Interplay between smad2 and stat5a is a critical determinant of il-17a/il-17f differential expression. Molecular

Biomedicine 2(1), 1–16 (2021)

58. Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.:

Model checking to assess t-helper cell plasticity. Frontiers in bioengineering and biotechnology 2, 86 (2015)

59. Kondratova, M., Barillot, E., Zinovyev, A., Calzone, L.: Modelling of immune checkpoint network explains

synergistic effects of combined immune checkpoint inhibitor therapy and the impact of cytokines in patient

Argyris et al. Page 21 of 36

response. Cancers 12(12), 3600 (2020)

60. Vaga, S., Bernardo-Faura, M., Cokelaer, T., Maiolica, A., Barnes, C.A., Gillet, L.C., Hegemann, B., van

Drogen, F., Sharifian, H., Klipp, E., et al.: Phosphoproteomic analyses reveal novel cross-modulation

mechanisms between two signaling pathways in yeast. Molecular systems biology 10(12), 767 (2014)

61. Naldi, A., Carneiro, J., Chaouiya, C., Thieffry, D.: Diversity and plasticity of th cell types predicted from

regulatory network modelling. PLoS Comput Biol 6(9), 1000912 (2010)

62. Nuñez-Reza, K.J., Naldi, A., Sánchez-Jiménez, A., Leon-Apodaca, A.V., Santana, M.A., Thomas-Chollier, M.,

Thieffry, D., Medina-Rivera, A.: Logical modelling of in vitro differentiation of human monocytes into dendritic

cells unravels novel transcriptional regulatory interactions. Interface focus 11(4), 20200061 (2021)

63. Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris, M.K., Iersel, M.v.,

Lauffenburger, D.A., Saez-Rodriguez, J.: Cellnoptr: a flexible toolkit to train protein signaling networks to data

using multiple logic formalisms. BMC systems biology 6(1), 1–14 (2012)

64. Floc’Hlay, S., Molina, M.D., Hernandez, C., Haillot, E., Thomas-Chollier, M., Lepage, T., Thieffry, D.:

Deciphering and modelling the tgf-β signalling interplays specifying the dorsal-ventral axis of the sea urchin

embryo. Development 148(2), 189944 (2021)

65. Hernandez, C., Thomas-Chollier, M., Naldi, A., Thieffry, D.: Computational verification of large logical

models-application to the prediction of t cell response to checkpoint inhibitors. bioRxiv (2020)

66. Fauré, A., Naldi, A., Lopez, F., Chaouiya, C., Ciliberto, A., Thieffry, D.: Modular logical modelling of the

budding yeast cell cycle. Molecular BioSystems 5(12), 1787–1796 (2009)

67. Calzone, L., Tournier, L., Fourquet, S., Thieffry, D., Zhivotovsky, B., Barillot, E., Zinovyev, A.: Mathematical

modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6(3), 1000702

(2010)

68. Niarakis, A., Bounab, Y., Grieco, L., Roncagalli, R., Hesse, A.-M., Garin, J., Malissen, B., Daëron, M., Thieffry,

D.: Computational modeling of the main signaling pathways involved in mast cell activation. Fc Receptors,

69–93 (2014)

69. Sahin, Ö., Fröhlich, H., Löbke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C.,

Thieffry, D., et al.: Modeling erbb receptor-regulated g1/s transition to find novel targets for de novo

trastuzumab resistance. BMC systems biology 3(1), 1 (2009)

70. MacNamara, A., Terfve, C., Henriques, D., Bernabé, B.P., Saez-Rodriguez, J.: State–time spectrum of signal

transduction logic models. Physical biology 9(4), 045003 (2012)

71. Selvaggio, G., Canato, S., Pawar, A., Monteiro, P.T., Guerreiro, P.S., Brás, M.M., Janody, F., Chaouiya, C.:

Hybrid epithelial–mesenchymal phenotypes are controlled by microenvironmental factors. Cancer Research

80(11), 2407–2420 (2020)

72. Chaouiya, C., Bérenguier, D., Keating, S.M., Naldi, A., Van Iersel, M.P., Rodriguez, N., Dräger, A., Büchel, F.,

Cokelaer, T., Kowal, B., et al.: SBML qualitative models: a model representation format and infrastructure to

foster interactions between qualitative modelling formalisms and tools. BMC systems biology 7(1), 1–15 (2013)

73. Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., Calzone, L.: A modeling approach to

explain mutually exclusive and co-occurring genetic alterations in bladder tumorigenesis. Cancer research

75(19), 4042–4052 (2015)

74. González, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of the regulatory network defining the

dorsal–ventral boundary of the drosophila wing imaginal disc. Genetics 174(3), 1625–1634 (2006)

75. Sánchez, L., Chaouiya, C.: Logical modelling uncovers developmental constraints for primary sex determination

of chicken gonads. Journal of The Royal Society Interface 15(142), 20180165 (2018)

76. Hamey, F.K., Nestorowa, S., Kinston, S.J., Kent, D.G., Wilson, N.K., Göttgens, B.: Reconstructing blood stem

cell regulatory network models from single-cell molecular profiles. Proceedings of the National Academy of

Sciences 114(23), 5822–5829 (2017)

77. Béal, J., Pantolini, L., Noël, V., Barillot, E., Calzone, L.: Personalized logical models to investigate cancer

response to braf treatments in melanomas and colorectal cancers. PLOS Computational Biology 17(1),

1007900 (2021)

78. Simao, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative modelling of regulated metabolic pathways:

application to the tryptophan biosynthesis in e. coli. Bioinformatics 21(suppl 2), 190–196 (2005)

79. Enciso, J., Mayani, H., Mendoza, L., Pelayo, R.: Modeling the pro-inflammatory tumor microenvironment in

acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks.

Frontiers in physiology 7, 349 (2016)

80. Sánchez, L., Thieffry, D.: A logical analysis of the drosophila gap-gene system. Journal of theoretical Biology

211(2), 115–141 (2001)

81. Fauré, A., Thieffry, D.: Logical modelling of cell cycle control in eukaryotes: a comparative study. Molecular

BioSystems 5(12), 1569–1581 (2009)

82. Mendoza, L.: A network model for the control of the differentiation process in th cells. Biosystems 84(2),

101–114 (2006)

83. González, A., Chaouiya, C., Thieffry, D.: Logical modelling of the role of the hh pathway in the patterning of

the drosophila wing disc. Bioinformatics 24(16), 234–240 (2008)

84. Sánchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: logical analysis of the role of the segment

polarity cross-regulatory module. International journal of developmental biology 52(8), 1059–1075 (2002)

85. Montagud, A., Béal, J., Tobalina, L., Traynard, P., Subramanian, V., Szalai, B., Alföldi, R., Puskás, L.,

Valencia, A., Barillot, E., Saez-Rodriguez, J., Calzone, L.: Patient-specific boolean models of signaling networks

guide personalized treatments. bioRxiv (2021). doi:10.1101/2021.07.28.454126.

https://www.biorxiv.org/content/early/2021/07/29/2021.07.28.454126.full.pdf

86. Sánchez-Villanueva, J.A., Rodŕıguez-Jorge, O., Raḿırez-Pliego, O., Rosas Salgado, G., Abou-Jaoudé, W.,

Hernandez, C., Naldi, A., Thieffry, D., Santana, M.A.: Contribution of ros and metabolic status to neonatal

and adult cd8+ t cell activation. PloS one 14(12), 0226388 (2019)

87. Verlingue, L., Dugourd, A., Stoll, G., Barillot, E., Calzone, L., Londoño-Vallejo, A.: A comprehensive approach

Argyris et al. Page 22 of 36

to the molecular determinants of lifespan using a boolean model of geroconversion. Aging cell 15(6),

1018–1026 (2016)

88. Flobak, Å., Baudot, A., Remy, E., Thommesen, L., Thieffry, D., Kuiper, M., Lægreid, A.: Discovery of drug

synergies in gastric cancer cells predicted by logical modeling. PLoS Comput Biol 11(8), 1004426 (2015)

89. Zañudo, J.G., Steinway, S.N., Albert, R.: Discrete dynamic network modeling of oncogenic signaling:

Mechanistic insights for personalized treatment of cancer. Current Opinion in Systems Biology 9, 1–10 (2018)

90. Cohen, D.P., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of

molecular pathways enabling tumour cell invasion and migration. PLoS Comput Biol 11(11), 1004571 (2015)

91. Cacace, E., Collombet, S., Thieffry, D.: Logical modeling of cell fate specification—application to t cell

commitment 139, 205–238 (2020)

92. Collombet, S., van Oevelen, C., Ortega, J.L.S., Abou-Jaoudé, W., Di Stefano, B., Thomas-Chollier, M., Graf,

T., Thieffry, D.: Logical modeling of lymphoid and myeloid cell specification and transdifferentiation.

Proceedings of the National Academy of Sciences 114(23), 5792–5799 (2017)

93. Traynard, P., Fauré, A., Fages, F., Thieffry, D.: Logical model specification aided by model-checking

techniques: application to the mammalian cell cycle regulation. Bioinformatics 32(17), 772–780 (2016)

94. Abou-Jaoudé, W., Ouattara, D.A., Kaufman, M.: From structure to dynamics: frequency tuning in the

p53–mdm2 network: I. logical approach. Journal of theoretical biology 258(4), 561–577 (2009)

Argyris et al. Page 23 of 36

1 Technical Results

1.1 Preliminaries

First, we formalize a BN as follows.

Definition 1 (Boolean Network (BN)) A BN is a pair (X,F) where X = {x1, ..., xn} is a set of

variables and F = {fx1 , ..., fxn} is a set of update functions, with fxi
: Bn → B being the update

function of variable xi.

The state of a BN is an evaluation of the variables, denoted by a vector of values s = (sx1
, . . . , sxn) ∈ Bn. Given

a partition of synchronization {K1, . . . , Km} = K of the variables X, and two states for s, t ∈ Bn, we have a

transition s→ t if there exists a block K in K such that

• txi
= fxi

(s) for all xi ∈ K
• txi

= sxi
for all xi 6∈ K

We next introduce the state transition graph of a BN with respect to a given partition of synchronization. This is a

graph having all possible states as vertices, and all transition among states as edges.

Definition 2 (State transition graph (STG)) Let B = (X,F) be a BN and K a partition of X. The

state transition graph of B w.r.t. the synchronization partition K, denoted by STGK(B), is a pair

(S, TK), where S = Bn is the set vertices, while the set of transitions TK is defined by

TK = {s −→ t | t|K = F|K(s) and t|X\K = s|X\K for some s ∈ S and K ∈ K}.

Using common notation, v|I denotes the restriction of a vector v to the set of indices I. When K is

clear from the context or does not have an impact on the statement, we shall drop the subscript K.

We note that (S, TK) corresponds to the STG of a synchronous BN when K = {X} = Ksync and to that of an

asynchronous BN when K = {{x} | x ∈ X} = Kasync. The case when K refines Ksync and is at the same time

coarser than Kasync, instead, describes a middle ground where different sets of variables, the blocks of K, update

synchronously within their block, and asynchronously with respect to the other blocks. We call K synchronization

partition because the updates of two variables are synchronized if and only if they belong to the same block of K.

Notably, this synchronization schema is supported, e.g., by popular BN analysis tools like GINsim [6] under the

notion of priority classes as described in [7].

We shall use the notation s −→+ t for the transitive closure of the transition relation. With this, we can formally

define the notion of attractors.

Definition 3 (Attractor) Let B = (X,F) be a BN with STG(B) = (S, T). We say that a set of

states A ⊆ S is an attractor whenever

1 ∀s, s′ ∈ A, s −→+ s′, and

2 ∀s ∈ A, ∀s′ ∈ S, s −→+ s′ implies s′ ∈ A.

Attractors are hence absorbing strongly connected components in the STG. An attractor A such that |A| = 1 is

called a steady state (also named point attractor). We also denote with |A| the length of attractor A.

1.2 Boolean Backward Equivalence

Let X be a set, and H a partition over it. Any partition obtained by breaking down the blocks of H into sub-blocks

is said to be a refinement of H. The notion of BBE, the algorithm for its computation, and the notion of BN

reduced up to a BBE do not depend on the used synchronization partition K. However, as we shall see, a BBE H
guarantees the preservation of dynamics of a BN only if H refines K. This can be guaranteed by using as initial

partition G either K, or any refinement of it.

We first introduce the notion of constant state on a partition H.

Definition 4 (Constant State) Let X be a set of variables, and H a partition of X. A state s ∈ Bn

is constant on H if and only if for all H ∈ H and xi, xj ∈ H it holds that sxi
= sxj

.

We now define the notion of BN reduced up to a BBE H. Each variable in the reduced BN represents one block of

H. Informally, we pick one variable per block, select the update function of any variable in such block and replace

all variables in it with the representative of the block the variable belongs to. Formally, we denote by f [a/b] the

term arising by replacing each occurrence of a by b in the function f .

Definition 5 (BN reduction) The reduction of B up to H, denoted by BH, is the BN (XH, FH)

where FH = {fxH
| H ∈ XH} and, for any H ∈ H and some xk ∈ H, one sets

fxH
= fxk

[
xi/xH′ | ∀H′ ∈ XH, ∀xi ∈ H′

]
.

Argyris et al. Page 24 of 36

Algorithm S1: Compute maximal BBE of (X,F) refining an initial partition

G
Result: maximal BBE H that refines an arbitrary partition G
H ← G ;
while true do

if ΦH is valid then
return H ;

else
s← get a state that satisfies ¬ΦH;
H′ ← ∅;
for H ∈ H do

H0 = {xi ∈ H : fxi (s) = 0};
H1 = {xi ∈ H : fxi (s) = 1};
H′ = H′ ∪ {H1} ∪ {H0};

end
H ← H′ \ {∅};

end
end

The partition refinement algorithm is shown in Algorithm S1. Its inputs are a BN and G, an initial partition of its

variables X. The output of the algorithm is the coarsest partition that is a BBE and that refines G.

The number of iterations needed to reach a BBE depends on the state assignments that the SAT solver provides

but is at most |X| = n because a partition over X can be refined at most |X| times. Each iteration requires to

solve a SAT problem which is known to be NP-complete [47]. However, as discussed in the main text, our

implementation can scale to the largest models present in popular BN repositories.

We first show that given an initial partition there exists a unique coarsest BBE.

Theorem 1 Fix a BN (X,F) and a partition G. There exists a unique maximal BBE H that

refines G.

Proof of Theorem 1 Let H1, H2 be two BBE partitions that refine some other partition G that is not

necessarily a BBE. Let R1, R2, R3 be equivalence relations over X inducing H1,H2 and G,

respectively. We start by noting that R = (R1 ∪ R2)∗ ⊆ R3, where the asterisk denotes the transitive

closure. Hence, XR is a refinement of G, where XR = X/R. We next show that XR is a BBE partition.

To this end, fix some s ∈ Bn that is constant on XR. Since Ri ⊆ R, this implies that s is constant on

Xi which, in virtue of Hi being a BBE, implies that F (s) ∈ Bn is constant on Hi. This implies that

F (s) ∈ Bn is constant on XR, i.e., that XR is indeed a BBE partition. The overall claim follows by

noting that the finiteness of X implies that there are finitely many BBE partitions Hi that refine any

given partition G of X.

We now prove that Algorithm S1 provides indeed the maximal BBE that refines the initial one.

Theorem 2 Algorithm S1 computes the maximal BBE partition refining G.

Proof of Theorem 2 Assume that G′ denotes the coarsest BBE partition that refines some given

partition G. Set H0 := G and define for all k ≥ 0

Hk+1 :=
(
{H0 | H ∈ Hk} ∪ {H1 | H ∈ Hk}

)
\ {∅},

where H0 and H1 are as in Algorithm S1. Then, a proof by induction over k ≥ 1 shows that (a) G′ is a

refinement of Hk and (b) Hk is a refinement of Hk−1, for all k ≥ 1. Since G′ is a refinement of any

Hk, it holds that G′ = Hk if Hk is a BBE partition. Since X is finite, b) allows us to fix the smallest

k ≥ 1 such that Hk = Hk−1. This, in turn, implies that Hk−1 is a BBE.

1.3 Relating Dynamics of Original and Reduced BNs

We next relate the STGs of the original and the reduced BN.

Definition 6 Fix a BN B = (X,F), a BBE H of B, a synchronization partition K, and

STGK(B) = (S, TK) such that K is coarser than H. With this, the STG of B/H = (XH, FH) has

synchronization partition KH =
{
{Hj | xi ∈ K and xi ∈ Hj} | K ∈ K

}
and states mH(S|H), where

• S|H denotes all states of S constant on H and;

Argyris et al. Page 25 of 36

• mH : S|H → SH is given by mH(s) = (vH1
, . . . , vH|H|) and extends to sets via elementwise

application, while vHj
:= sxi

for previously chosen representative xi ∈ Hj .

The following lemma ensures that all attractors of STGK(B) containing states constant on H are preserved by

STGKH (B/H).

Lemma 3 (Constant attractors) Fix a BN B = (X,F), a BBE H of B and STGK(B) = (S, TK)

such that K is coarser than H. Let us further assume that A is an attractor of STGK(B). With

this, if A ∩ S|H 6= ∅, then A ⊆ S|H.

Proof of Lemma 3 By assumption, we can pick a state s ∈ A that is constant on H. The fact that H is

a BBE refining K ensures that any state t with s→+ t is also constant on H. Actually, it is trivial to

show that A = {t | s→+ t}, thus implying that A ⊆ S|H.

The next proposition ensures that BBE does not generate spurious trajectories or attractors in the reduced system.

In particular we show that the STG of the reduced BN is a subgraph (modulo state renaming) of the STG of the

original BN.

Proposition 4 (Reduction isomorphism) Fix a BN B = (X,F), a BBE H of B and

STGK(B) = (S, TK) such that K is coarser than H. It can be shown that STGKH (B/H) is described

by
(
mH(S|H),mH(TK ∩ (S|H × S|H)

)
. Furthermore

1 For all states s ∈ S|H it holds FH(mH(s)) = mH(F (s)).

2 For all states s ∈ SH it holds F (m−1
H (s)) = m−1

H (FH(s)).

Proof of Proposition 4 Follows readily from the definition of a BBE, STGKH (B/H), and mH.

Instead, the following example shows that it is necessary for the initial partition to be a refinement of the

synchronization partition of the model.

Example 1 Let us consider the 3-variables example from Fig. 1. Let us assume that the model is

equipped with the synchronization partition K = {{x1}, {x2, x3}}. This means, e.g., that from state

000 we can go either in state 100 by updating x1, or in state 010. From both states, we can go to

state 110. If we apply BBE using the initial partition H = {{x1, x2, x3}} that does not refine K, we

get the same reduced model as in Fig. 1. In such reduced model, we find the reduced variable x1,2

representing variables x1 and x2 which, however, shall not be updated synchronously according to

K. Therefore, it is not possible to define the synchronization partition KH as given in Definition 6.

Note furthermore that if we opt for a synchronization partition enabling the synchronous update of

x1,2 and x3, we get the STG from the top-right of Fig. 1. Here, our reduction isomorphism result

does not hold, because the reduced STG cannot express the above-discussed 2-steps path from 000 to

110. In fact, the corresponding path from 00 to 10 is done in only 1 transition.

We can now state the main result of our approach, namely that the BBE reduction of a BN for a BBE H exactly

preserves all attractors that are constant on H up to renaming with mH.

Theorem 5 (Constant attractor preservation) Fix a BN B = (X,F), a BBE H of B and

STGK(B) = (S, TK) such that K is coarser than H. Let us further assume that A is an attractor of

STGK(B). With this, if A ∩ S|H 6= ∅, then mH(A) is an attractor of STGK(B). Furthermore, given

a state s ∈ S|H and an attractor A such that A ∩ S|H 6= ∅, we have that A is reachable from s if and

only if mH(A) is reachable from mH(s).

Proof of Theorem 5 The theorem readily follows from Lemma 3 and Proposition 4.

Argyris et al. Page 26 of 36

2 Comparison with encoding-based reductions
In this section we discuss how BN reduction techniques mediated by a translation into another formalism may miss

certain reductions. In particular, we present a comparison with the approach from [19] based on ordinary differential

equations (ODEs). Further details on such comparison can be found in [34]. The considered ODE-based approach

first applies a so-called odification technique to encode a BN into an ODE system [48]; then it applies backward

equivalence to ODEs, which is the ODE counterpart of BBE.

We consider the TCR-TLR model from [30], part of which adopted in the Method section. The equations for two of

the variables in the model, MyD88 and IRAK4, are given by:

xMyD88 (t+ 1) = xTLR5 (t)

xIRAK4 (t+ 1) = (¬xMyD88 (t) ∧ xTICAM1 (t)) ∨ (xMyD88 (t))

Using maximal reduction, BBE reveals that these two variables are equivalent because also TICAM1 and TLR5 are

so. The corresponding ODEs after odification are instead given by:

x
′
MyD88 = xTLR5 − xMyD88

x
′
IRAK4 = xMyD88 + xTICAM1 − xMyD88 · xTICAM1 − xIRAK4

where x′ denotes the derivative of variable x with respect to time. The ODE variables for TLR5, MyD88, and

TICAM1 can shown to be still backward equivalent. However, differently from BBE, IRAK4 is not anymore ODE

backward equivalent to the others. Indeed, since ODEs allow a continuous range of values in the interval [0; 1], the

property that the solution of variables must be equal at all time points must be valid for all possible such values.

However, if all variables have value 0.5, then we get derivative with value 0 for MyD88 and value 0.25 for IRAK4,

which indeed makes them not ODE backward equivalent.

Argyris et al. Page 27 of 36

3 Application of BBE to a BN with partially asynchronous schema
We present an application of BBE to a BN with partially asynchronous schema. According to Section 1, here we use

a partition of synchronisation K separating variables in blocks. At each time point, one block K ∈ K is

non-deterministically selected, and all and only the variables in K are updated syncrhonously. As mentioned in

previous sections, this type of synchronization schema is supported, e.g., by popular BN analysis tools like

GINsim [6] under the notion of ”priority classes” [7]. We focus on the BN of [46] which is displayed in the left part

of Fig. S1. The BN models neurogenesis: the process by which nervous system cells, the neurons, are produced by

neural stem cells.

xHer6 (t+1) = ¬xmiR9 (t) ∧ ¬xN (t)

xHuC (t+1) = ¬xmiR9 (t) ∧ ¬xP (t)

xN (t+1) = xHuC (t)

xP (t+1) = xHer6 (t) ∨ xZic5 (t)

xZic5 (t+1) = ¬xmiR9 (t) ∧ ¬xN (t)

xmiR9 (t+1) = ¬xHer6 (t) ∧ ¬xN (t)

x{Her6,Zic5}(t+1) = ¬x{miR9}(t) ∧ ¬x{N}(t)

x{HuC}(t+1) = ¬x{miR9}(t) ∧ ¬x{P}(t)

x{N}(t+1) = x{HuC}(t)

x{P}(t+1) = x{Her6,Zic5}(t)

x{miR9}(t+1) = ¬x{Her6,Zic5}(t) ∧ ¬x{N}(t)

Figure S1: (Left) The variables and update functions. (Right) The reduced BN

obtained after collapsing the variables xHer6, xZic5 into one single variable com-

ponent x{Her6,Zic5}.

Hypothesis. The authors consider a fully synchronous schema wherein all variables are updated at the same time.

However, the set {xHer6 , xZic5 , xP} seems to update synchronously in vivo, while xmiR9 , xHuC and xN update

asynchronously both with the set {xHer6, xZic5, xP }, and with each other [46],

Configuration. To this end, we create a corresponding partition of synchronization as follows:

K = {{xHer6, xZic5, xP }, {xmiR9}, {xHuC}, {xN}},

The STG according to this partition of synchronization is given in Fig. S2. This STG has been obtained using the

GINsim tool.

We reduce this model using BBE. In order to be coherent with our theory, we set K as the initial partition for our

reduction algorithm Algorithm S1. This enables us to use the results on preservation of dynamics from Section 1.

000000

010000

100010

000001

100000

110000

100110

011000

110010

010001

111000 110110

001000

101000

001100

011100

000100

000101

100100

010100

010101

110100

111100

101100

000010

010010 000011

111010

011010

010011

001010

101010

000110

000111

100001

011001

111110

010110

011110

010111

110001

111001

001001

101110 001110

101001

001101

011101

100101

110101

111101

101101

100011

011011

110011

111011

001011

101011

100111

011111

110111

111111

001111101111

Figure S2: The STG of the BN of Fig. S1 (left) according to the partition of synchro-
nization K = {{xHer6, xZic5, xP }, {xmiR9}, {xHuC}, {xN}}.

Results. The resulting BBE is:

{{xHer6, xZic5}, {xP }, {xmiR9}, {xHuC}, {xN}}

Please note that, in this specific example, the update functions of the two related variables (xHer6, and xZic5)

have the same update function. However, we have seen in other examples here that BBE might relate also variables

with apparently unrelated update functions (e.g., the case of xMyD88 and xIRAK4 in Section 2).

Argyris et al. Page 28 of 36

00000

1000001000

00001

11000

10010

01100

01001

1110011010

00100

10100

00110

01110

00010

00011

11110

01010

01011

10110

10001

01101

11001

11101

00101

10101

00111

01111

10011

11011

11111

10111

Figure S3: The STG of the BBE-reduced BN. This STG corresponds to the original
one (Fig. S2) after dropping all states non constant on the used BBE. Note that the
first and the fifth digit of each preserved state are collapsed into one single digit (these
two digits are always equal in the preserved states).

The grey states of Fig. S2 correspond to the constant states of this BBE partition and, consequently, these are the

preserved states after reduction. We obtain the reduced BN by collapsing {xHer6, xZic5} into a single variable

component represented by the variable x{Her6,Zic5}. The reduced BN is displayed in the right part of Fig. S1.

Interpretation and Discussion. The STG of the reduced BN is displayed in Fig. S3. The reduction isomorphism

(Proposition 4) guarantees that the constant states are preserved with all the transitions between them, and that

there are no transitions from the constant states to the non-constant states. According to Theorem 5, constant

attractors are preserved (i.e., attractors containing at least one state constant on the BBE). In this case, the original

BN has 3 steady states (the states 011000, 000001 and 100110) and all of them are preserved in the reduced BN.

Argyris et al. Page 29 of 36

x1

x2

x3

x4

x1 (t+1) = x1 (t)

x2 (t+1) = x1 (t) ∨ x3 (t)

x3 (t+1) = x1 (t) ∧ x2 (t)

x4 (t+1) = ¬x1 (t) ∧ x3 (t)

Figure S4: (Left) A randomly generated graph of influences for n = 4 , k = 2 .

(Right) A BN with randomly generated update functions coherent with (Left).

4 Application of BBE to randomly generated Boolean Networks

In this section, we apply BBE to randomly generated BNs. These have been constructed by using an n-k model [49]

as described in Kauffman’s seminal work on BNs [1]. In partiuclar, n refers to the number of variables in the

generated BNs, while k to the number of incoming influences of each variable. The process is described in Fig. S4:

we first obtain a directed graph on n nodes. For each node, the number of incoming edges is drawn randomly from

a Poisson distribution with mean k , choosing the source nodes randomly (see left part of Fig. S4). On average, the

nodes of such randomly generated BNs will have k incoming edges. The nodes are then transformed in BN variables

by using a procedure specified in [49] to randomly generate update functions coherent with the previously generated

graph of influences (right part of Fig. S4). The procedure is implemented in the R package BoolNet [49]. In what

comes later we will study BNs generated by varying both n (size of the BN) and k (density of the BN). For the

additional parameters of the package not mentioned here, we use default values from [49].

Purpose. Our purpose is to investigate the scalability of BBE to randomly generated BNs as the number of

variables increases, and estimate the expected loss of attractors. We consider two different values for k: 2, and 1,

studying BBE at the varying of the density of influences in the BNs. [4]

Configuration. For k = 2, we generate 100 BNs for n = 50 , n = 100 , and n = 200 variables, resulting in

300 BNs overall. As done in the main text, we reduce these BNs using maximal and IS initial partitions, and

compute the reduction ratios (paragraph “Results on Reduction Magnitude”). We also compute the number of

attractors in the original and reduced BNs (paragraph “Results related to attractor preservation.”). We then repeat

the same analysis for k = 1, considering 300 more BNs. Overall, we consider 600 randomly generated BNs.

Results on Reduction Magnitude. As a reminder, the reduction ratio is defined as the fraction of the number of

variables in the reduced BN, over the number of variables in the original BN. We display the reduction ratio for

these 300 BNs for varying size and k = 2 in Fig S5. Both scenarios (IS and maximal) lead to the reduction of 299

out of the 300 BNs considered. Only one BN with n = 50 was not reduced (for any of the two initial partitions).

When the red dot and the blue cross coincide, the IS and the maximal reduction have the same reduction ratio.

Fig. S6 displays the same analysis for 300 networks of k = 1 . In Table S1, we present the average reduction ratios

of the BNs obtained for the different values of n and k. We can see that models generated for k = 1 allow for

stronger reductions. We interpret this as follows: the more sparse is a BN (i.e., the less influences there are among

the variables), the more effective becomes BBE.

IS Maximal IS Maximal

k=2 k=1

n=50 0 .878 0 .875 0 .556 0 .542
n=100 0 .856 0 .852 0 .517 0 .502
n=200 0 .837 0 .833 0 .464 0 .450

Table S1: Mean IS and maximal reduction ratio of the 600 randomly generated BNs.

In Table S2 (left) we provide the average reduction time, for IS and maximal initial partitions, of the 600 randomly

generated BNs. We observe that the average reduction time seems to increase linearly with the size of the considered

BN. In Table S2 (right) we display the maximum reduction time; in the worst case scenario the BBE-reduction was

performed in about 3 seconds. The IS and maximal reductions seem to take about the same time.

Results related to attractor preservation. For k = 2 , and n = 100 and 200, the tool BNS failed several times

due to time-out (we imposed an arbitrary time-out of 30 minutes). Therefore, we focus only on the BNs with

[4]We chose k = 2 as maximum value because it was the largest value used in a similar study for a

different analysis technique in [12] (section 6.2). In [12], further used values for k were 1.9, 1.889, and

1.875. Here we preferred to use k = 1 because we are interested in studying the effect on BBE of higher

changes in the density of the interaction graph.

Argyris et al. Page 30 of 36

Average IS Maximal IS Maximal

k=2 k=1

n=50 0 .591 0 .614 0 .442 0 .477
n=100 1 .402 1 .428 0 .989 1 .034
n=200 2 .433 2 .489 1 .869 1 .894

Maximum IS Maximal IS Maximal

k=2 k=1

n=50 0 .870 0 .943 0 .923 0 .901
n=100 1 .888 1 .907 1 .437 1 .478
n=200 3 .285 3 , 363 3 .224 2 .571

Table S2: Mean (Left) and maximum (Right) reduction time of the 600 randomly

generated BNs for IS and maximal initial partitions.

Figure S5: Reduction ratios for 300 randomly generated BNs using k = 2.

n = 50 for which we experienced only two time-outs (models 44 and 46 for which we report 10−1 as number of

obtained attractors to stress that attractor generation failed). We consider only the 99 BNs that admitted BBE

reduction. We display in Fig. S7 (top) the number of attractors in the original, the IS, and the maximal reduced

BNs. In most cases, BBE preserves all attractors; the cases wherein attractors are lost are these where the orange

line is above the other two lines (see, e.g., the BNs 7 and 55). The IS and maximal reduction scenario seemed to

preserve the same number of attractors; these are cases wherein the red dot and the blue cross coincide. However,

this case is not general as, for instance, BN 15 wherein the IS reduction preserves more attractors than the maximal

one. The bottom part of Fig. S7 displays the corresponding information in the case of real BNs. Given the better

reduction ratio obtained for the real models, here we tend to preserve a lower percentage of attractors. In k = 1 ,

attractors generation succeeded always within the specified time limit of 30 minutes. The results are displayed in

Fig. S8. Surprisingly, the much better reduction ratio than case k = 2 does not lead to lower preservation of

attractors. Attractors are often fully preserved.

Argyris et al. Page 31 of 36

1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910
0

100 BNs with 100 variables
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
du

ct
io

n
ra

tio
s

Maximal
IS

1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910
0

100 BNs with 200 variables
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
du

ct
io

n
ra

tio
s

Maximal
IS

Figure S6: Reduction ratios for 300 randomly generated BNs using k = 1.

Interpretation. From Table S1, we see that BBE scales well with the size of BNs: while the number of variables

increases, the reduction ratio decreases. Indeed, for k = 2 the average IS reduction ratio goes from 0.88 for

n = 50, to 0.83 for n = 200. The same behavior is observed in the case of maximal reduction, and also in both

cases for k = 1. The same table shows that the average reduction ratio is better when k = 1, meaning that BBE

performs better when the density of the interaction graph of a BN (see Fig. S4, left) is low.

In the case of randomly generated BNs, attractors are often fully preserved. This is in contrast with the realistic BNs

from the repositories. For k = 2 and n = 100 and n = 200 , the BNS tool fails to compute the attractors within

the 30-minutes time-out arbitrarily chosen by us. Here, several variables might have a high number of incoming

influences. This leads to complex update Boolean functions that the BNS tool fails to manage. Instead, BBE

terminated correctly on all randomly generated BNs in less than 3.5 seconds in all cases.

In Figs. S7, and S8 we have seen that for randomly generated BNs, BBE tends to preserve more attractors than for

realistic BNs from the repositories. This might be reasonable for the cases k = 2, for which we have higher

reduction ratios (we reduce less) than for the realistic BNs. Instead, this is somehow surprising for k = 1 where we

reduce more. Given the persistent result obtained for k = 2 and k = 1 (and given that, as discussed, we considered

a larger interval for k than in [12]), we suspect that this depends on oher parameters of the generation process not

considered in our study. For example, a possible interpretation is that by looking at Figs. S7 and S8 we can see that

the BNs from the repositories can generate more attractors (up to 105) than the randomly generated BNs (slightly

above 102). However, we believe that a deeper study on the used generation process from the R package BoolNet is

out of the scope of this paper.

Argyris et al. Page 32 of 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

100 BNs with 50 variables

10 1

100

101

102

Nu
m

be
r o

f a
ttr

ac
to

rs

Original
IS
Maximal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Real BNs

10 1

100

101

102

103

104

105

Nu
m

be
r o

f a
ttr

ac
to

rs

Original
IS
Maximal

Figure S7: (Top) number of preserved attractors for 100 networks with 50 vari-

ables and k = 2. (Bottom) number of preserved attractors for the realistic BNs

of Table S5 from the two online repositories. In bottom, for models 17 and 28 we

provide “0 attractors” in the Original case to stress that it was not possible to

compute the attractors for the original models 17 and 28 (while it was possible

for their reductions). The number of attractors are given in log scale.

Argyris et al. Page 33 of 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

100 Boolean Networks with 50 variables

100

101

102

Nu
m

be
r o

f a
ttr

ac
to

rs

Original
IS
Maximal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

100 Boolean Networks with 100 variables

100

101

Nu
m

be
r o

f a
ttr

ac
to

rs

Original
IS
Maximal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

100 Boolean Networks with 200 variables

100

101

102

Nu
m

be
r o

f a
ttr

ac
to

rs

Original
IS
Maximal

Figure S8: Number of preserved attractors for 300 randomly generated BNs of

different sizes. In the generation process we set k = 1.

Argyris et al. Page 34 of 36

5 Tables
Model ID URL Size Reduction Ratio

N Ni Nm Ri Rm

1 [50] ginsim.org/node/97 26 7 4 26.92 15.38
2 [51] www.ebi.ac.uk/biomodels/MODEL1606020000 19 11 3 57.89 15.79
3 [50] ginsim.org/node/126 24 11 4 45.83 16.67
4 [52] ginsim.org/model/drosophila_mesoderm 57 34 11 59.65 19.3
5 [53] www.ebi.ac.uk/biomodels/BIOMD0000000592 10 2 2 20.0 20.0
6 [53] www.ebi.ac.uk/biomodels/BIOMD0000000593 18 13 4 72.22 22.22
7 [54] ginsim.org/model/eggshell_patterning 8 4 2 50.0 25.0
8 [50] ginsim.org/node/115 16 8 5 50.0 31.25
9 [50] ginsim.org/node/102 23 13 8 56.52 34.78
10 [50] ginsim.org/node/109 19 8 7 42.11 36.84
11 [50] ginsim.org/node/144 24 11 9 45.83 37.5
12 [55] ginsim.org/model/sex_determination_mammals 37 16 14 43.24 37.84
13 [50] ginsim.org/node/96 34 23 15 67.65 44.12
14 [50] ginsim.org/node/160 18 11 8 61.11 44.44
15 [56] ginsim.org/node/183 30 25 14 83.33 46.67
16 [54] ginsim.org/model/eggshell_patterning 24 15 12 62.5 50.0
17 [57] www.ebi.ac.uk/biomodels/MODEL2101150001 92 72 46 78.26 50.0
18 [58] ginsim.org/node/185 103 54 52 52.43 50.49
19 [59] ginsim.org/model/immune-checkpoints 66 43 35 65.15 53.03
20 [60] www.ebi.ac.uk/biomodels/MODEL1506260002 45 24 24 53.33 53.33
21 [50] ginsim.org/node/89 18 11 10 61.11 55.56
22 [61] ginsim.org/node/79 36 23 21 63.89 58.33
23 [61] ginsim.org/node/79 71 44 42 61.97 59.15
24 [62] ginsim.org/model/monocytes-to-dc 96 81 57 84.38 59.38
25 [63] www.ebi.ac.uk/biomodels/MODEL1506260000 82 49 49 59.76 59.76
26 [3] www.ebi.ac.uk/biomodels/MODEL1504170000 10 7 6 70.0 60.0
27 [3] www.ebi.ac.uk/biomodels/MODEL1504170003 10 7 6 70.0 60.0
28 [64] ginsim.org/node/236 41 27 25 65.85 60.98
29 [65] ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1 218 140 136 64.22 62.39
30 [55] ginsim.org/model/sex_determination_mammals 19 14 12 73.68 63.16
31 [3] www.ebi.ac.uk/biomodels/MODEL1504170002 9 7 6 77.78 66.67
32 [3] www.ebi.ac.uk/biomodels/MODEL1504170001 9 7 6 77.78 66.67
33 [66] ginsim.org/node/26 12 12 8 100.0 66.67
34 [30] ginsim.org/node/225 42 37 29 88.1 69.05
35 [67] ginsim.org/node/227 28 22 20 78.57 71.43
36 [31] ginsim.org/node/78 40 29 29 72.5 72.5
37 [68] ginsim.org/node/180 48 38 35 79.17 72.92
38 [45] ginsim.org/node/173 53 41 39 77.36 73.58
39 [30] ginsim.org/node/225 128 103 95 80.47 74.22
40 [45] ginsim.org/node/173 16 12 12 75.0 75.0
41 [69] ginsim.org/node/39 20 15 15 75.0 75.0
42 [67] ginsim.org/node/227 33 26 25 78.79 75.76
43 [45] ginsim.org/node/173 17 13 13 76.47 76.47
44 [70] www.ebi.ac.uk/biomodels/MODEL1305240000 30 23 23 76.67 76.67
45 [71] www.ebi.ac.uk/biomodels/MODEL2004040001 56 44 43 78.57 76.79
46 [72] www.ebi.ac.uk/biomodels/BIOMD0000000562 28 22 22 78.57 78.57
47 [66] ginsim.org/node/25 39 31 31 79.49 79.49
48 [73] ginsim.org/node/188 35 31 28 88.57 80.0
49 [74] ginsim.org/node/69 10 8 8 80.0 80.0
50 [75] ginsim.org/model/sex_determination_chicken 10 8 8 80.0 80.0
51 [76] www.ebi.ac.uk/biomodels/MODEL1610060000 31 26 25 83.87 80.65
52 [77] ginsim.org/node/248 37 32 30 86.49 81.08
53 [66] ginsim.org/node/29 16 13 13 81.25 81.25
54 [50] ginsim.org/node/152 11 9 9 81.82 81.82
55 [66] ginsim.org/node/21 50 41 41 82.0 82.0
56 [30] ginsim.org/node/225 110 91 91 82.73 82.73
57 [45] ginsim.org/node/173 18 15 15 83.33 83.33
58 [78] ginsim.org/node/50 6 6 5 100.0 83.33
59 [79] ginsim.org/model/HSPC_MSC 26 23 22 88.46 84.62
60 [80] ginsim.org/node/82 7 6 6 85.71 85.71
61 [80] ginsim.org/node/82 7 6 6 85.71 85.71
62 [81] ginsim.org/node/31 14 12 12 85.71 85.71
63 [82] ginsim.org/node/41 21 18 18 85.71 85.71
64 [76] www.ebi.ac.uk/biomodels/MODEL1610060001 29 27 25 93.1 86.21
65 [75] ginsim.org/model/sex_determination_chicken 15 13 13 86.67 86.67
66 [20] ginsim.org/node/87 60 52 52 86.67 86.67
67 [83] ginsim.org/node/71 56 50 50 89.29 89.29
68 [84] ginsim.org/model/SP 19 17 17 89.47 89.47
69 [81] ginsim.org/node/37 10 9 9 90.0 90.0
70 [81] ginsim.org/node/37 10 9 9 90.0 90.0
71 [85] ginsim.org/model/signalling-prostate-cancer 133 121 121 90.98 90.98
72 [86] ginsim.org/node/229 133 124 122 93.23 91.73
73 [87] ginsim.org/model/T2DM 26 24 24 92.31 92.31
74 [88] ginsim.org/node/194 14 13 13 92.86 92.86
75 [86] ginsim.org/node/229 53 50 50 94.34 94.34
76 [89] ginsim.org/node/240 18 17 17 94.44 94.44
77 [90] ginsim.org/node/191 20 19 19 95.0 95.0
78 [91] ginsim.org/node/234 61 58 58 95.08 95.08
79 [90] ginsim.org/node/191 32 31 31 96.88 96.88
80 [92] ginsim.org/node/216 34 33 33 97.06 97.06
81 [80] ginsim.org/node/82 7 7 7 100.0 100.0
82 [93] ginsim.org/node/189 14 14 14 100.0 100.0
83 [7] ginsim.org/node/4 10 10 10 100.0 100.0
84 [93] ginsim.org/node/189 13 13 13 100.0 100.0
85 [80] ginsim.org/node/82 7 7 7 100.0 100.0
86 [94] ginsim.org/model/p53-Mdm2 6 6 6 100.0 100.0

Table S3: Large-scale application of BBE on the repositories GINsim and Biomodels. Model ID
gives the model identifier as in Fig. 4 and a reference. URL allows to download the model from the
repositories. Size presents the number of variables in the original BN, and in its IS and maximal
reduction (N , Ni, Nm resp.). The last column contains the ratios: Ri = Ni/N and Rm = Nm/N .
In most of the cases, BBE took less than a second. The largest runtime is about 2 seconds.

Argyris et al. Page 35 of 36

Model ID Original IS Reduced Max Reduced
N Time (s) Ni Time (s) Nm Time (s)

1 [50] 26 time-out 7 0.046 4 0.048
2 [51] 19 21.739 11 0.433 3 0.037
3 [50] 24 time-out 11 5.768 4 0.041
4 [52] 57 time-out 34 time-out 11 0.453
6 [53] 18 12.470 13 2.749 4 0.038
8 [50] 16 2.581 8 0.265 5 0.229
9 [50] 23 339.396 13 0.259 8 0.042
10 [50] 19 20.333 8 6.931 7 5.472
11 [50] 24 time-out 11 0.089 9 0.055
12 [55] 37 time-out 16 2.492 14 0.954
13 [50] 34 time-out 23 417.864 15 1.191
14 [50] 18 7.836 11 4.178 8 2.759
15 [56] 30 time-out 25 time-out 14 0.485
16 [54] 24 time-out 15 6.602 12 0.179
21 [50] 18 11.608 11 0.116 10 0.079
22 [61] 36 time-out 23 440.921 21 96.438
30 [55] 19 21.901 14 0.568 12 0.180
35 [67] 28 time-out 22 167.489 20 39.467
40 [45] 16 3.554 12 0.265 12 0.251
41 [69] 20 37.951 15 0.972 15 0.968
43 [45] 17 9.598 13 1.751 13 1.256
44 [70] 30 time-out 23 346.175 23 338.690
46 [72] 28 time-out 22 160.363 22 166.330
53 [66] 16 3.800 13 0.647 13 0.652
57 [45] 18 12.099 15 1.270 15 1.307
59 [79] 26 time-out 23 425.386 22 202.055
62 [81] 14 0.655 12 0.155 12 0.185
63 [82] 21 88.812 18 10.205 18 10.148
65 [75] 15 1.159 13 0.326 13 0.305
68 [84] 19 21.972 17 4.465 17 4.397
74 [88] 14 2.228 13 0.894 13 0.897
76 [89] 18 11.451 17 4.376 17 4.453
77 [90] 20 43.676 19 23.144 19 22.595

Table S4: The table displays the results of the large-scale validation for STG generation. The
first column contains the model identifier. Then, each 2-columns block Original, IS Reduced, and
Max Reduced contains information on STG generation on the original BN and its IS and maximal
reductions, respectively. In particular, N , Ni and Nm contain the number of variables, while Time
contains the time in seconds, averaged over 3 runs, for STG generation by PyBoolNet.

Argyris et al. Page 36 of 36

Model Original IS Reduced Max Reduced
ID N Attractors Time (s) Ni Attractors Time (s) Nm Attractors Time (s)
1 [50] 26 16384 16.771 7 2 0.002 4 2 0.002
2 [51] 19 2832 2.296 11 16 0.011 3 2 0.002
3 [50] 24 64 0.067 11 2 0.002 4 2 0.002
4 [52] 57 9984 20.124 34 4 0.009 11 2 0.002
5 [53] 10 125 0.072 2 2 0.001 2 2 0.001
6 [53] 18 339 0.283 13 14 0.011 4 2 0.002
7 [54] 8 24 0.030 4 3 0.002 2 2 0.001
8 [50] 16 512 0.367 8 2 0.0026 5 2 0.002
9 [50] 23 512 0.473 13 2 0.003 8 2 0.002
10 [50] 19 4110 3.284 8 2 0.002 7 2 0.002
11 [50] 24 8192 7.866 11 2 0.002 9 2 0.002
12 [55] 37 15459 21.847 16 16 0.014 14 12 0.010
13 [50] 34 1536 1.952 23 3 0.005 15 2 0.003
14 [50] 18 256 0.203 11 2 0.002 8 2 0.002
15 [56] 30 9 0.019 25 3 0.005 14 2 0.003
16 [54] 24 1596 1.572 15 9 0.009 12 4 0.004
17 [57] 92 7360 24.031 72 50 0.144 46 2 0.008
18 [58] 103 – time-out 54 9 0.145 52 9 0.126
19 [59] 66 77876 235.756 43 2 0.008 35 2 0.005
20 [60] 45 1 0.009 24 1 0.002 24 1 0.003
21 [50] 18 384 0.313 11 3 0.003 10 2 0.002
22 [61] 36 86358 118.792 23 12 0.014 21 12 0.013
23 [61] 71 121976 359.252 44 12 0.025 42 12 0.023
24 [62] 96 4 0.030 81 2 0.015 57 2 0.009
25 [63] 82 1 0.013 49 1 0.005 49 1 0.005
26 [3] 10 10 0.011 7 3 0.002 6 2 0.002
27 [3] 10 10 0.011 7 3 0.002 6 2 0.002
28 [64] 41 990 1.50 27 6 0.010 25 5 0.008
29 [65] 218 – time-out 140 68 2.433 136 68 2.182
30 [55] 19 308 0.255 14 10 0.009 12 7 0.006
31 [3] 9 7 0.009 7 4 0.003 6 3 0.002
32 [3] 9 7 0.009 7 4 0.003 6 3 0.002
34 [30] 42 2 0.010 37 2 0.005 29 2 0.004
35 [67] 28 97 0.121 22 23 0.025 20 23 0.023
36 [31] 40 8 0.019 29 2 0.005 29 2 0.005
37 [68] 48 22 0.047 38 4 0.009 35 3 0.007
38 [45] 53 40 0.138 41 17 0.038 39 17 0.034
39 [30] 128 8 0.072 103 2 0.0232 95 2 0.021
40 [45] 16 20 0.023 12 5 0.005 12 5 0.004
41 [69] 20 1 0.007 15 1 0.002 15 1 0.002
42 [67] 33 71 0.104 26 29 0.038 25 29 0.035
43 [45] 17 22 0.027 13 4 0.004 13 4 0.004
44 [70] 30 6 0.026 23 6 0.008 23 6 0.008
45 [71] 56 1972 4.250 44 2 0.009 43 2 0.009
46 [72] 28 2 0.009 22 2 0.003 22 2 0.004
47 [66] 39 3 1.387 31 3 0.073 31 3 0.072
48 [73] 35 62 0.102 31 8 0.015 28 8 0.014
49 [74] 10 1 0.005 8 1 0.002 8 1 0.002
50 [75] 10 48 0.032 8 12 0.007 8 12 0.007
51 [76] 31 53 0.072 26 23 0.028 25 17 0.021
52 [77] 37 57 0.136 32 2 0.008 30 2 0.007
53 [66] 16 2 0.008 13 2 0.003 13 2 0.003
54 [50] 11 4 0.007 9 2 0.002 9 2 0.002
55 [66] 50 1 2.343 41 1 0.134 41 1 0.134
56 [30] 110 4 0.030 91 2 0.016 91 2 0.016
57 [45] 18 22 0.027 15 5 0.005 15 5 0.006
59 [79] 26 6 0.017 23 3 0.006 22 3 0.006
60 [80] 7 1 0.005 6 1 0.002 6 1 0.001
61 [80] 7 1 0.005 6 1 0.001 6 1 0.001
62 [81] 14 1 0.006 12 1 0.002 12 1 0.002
63 [82] 21 8 0.014 18 8 0.009 18 8 0.009
64 [76] 29 27 0.096 27 15 0.021 25 8 0.013
65 [75] 15 48 0.041 13 12 0.010 13 12 0.010
66 [20] 60 264 0.676 52 6 0.022 52 6 0.021
67 [83] 56 3 0.034 50 3 0.016 50 3 0.019
68 [84] 19 19 0.024 17 5 0.006 17 5 0.006
69 [81] 10 13 0.014 9 5 0.004 9 5 0.004
70 [81] 10 2 0.006 9 2 0.002 9 2 0.002
71 [85] 133 7008 108.475 121 4 0.103 121 4 0.102
72 [86] 133 11 2.882 124 5 2.118 122 5 2.161
73 [87] 26 32 0.045 24 8 0.012 24 8 0.012
74 [88] 14 4 0.009 13 2 0.003 13 2 0.003
75 [86] 53 10 0.502 50 5 0.220 50 5 0.217
76 [89] 18 5 0.012 17 5 0.006 17 5 0.006
77 [90] 20 13 0.020 19 7 0.008 19 7 0.008
78 [91] 61 32 0.115 58 7 0.034 58 7 0.033
79 [90] 32 15 0.032 31 9 0.018 31 9 0.018
80 [92] 34 20 0.048 33 10 0.031 33 10 0.030

Table S5: The table contains the large-scale validation for the attractor analysis. The first column
is the model identifier and its reference. Each 3-columns block Original, IS Reduced, and Max
Reduced contains information on attractor computation on the original BN and its IS and maximal
reductions, respectively. In particular, N , Ni, and Nm contain the number of variables, while
Attractors contains the number of attractors computed by tool BNS, and Time the time in seconds
to obtain them averaged over 3 runs.

C PAPER III: Minimization of Dynamical Sys-
tems over Monoids

Submitted to the Thirty-Eighth Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS 2023)

92

Minimization of Dynamical Systems over Monoids
Authors omitted to adhere to double-blind requirements

Abstract—Quantitative notions of bisimulation are well-known
tools for the minimization of dynamical models such as Markov
chains and ordinary differential equations (ODEs). In forward
bisimulations, each state in the quotient model represents an
equivalence class and the dynamical evolution gives the overall
sum of its members in the original model. Here we introduce
generalized forward bisimulation (GFB) for dynamical systems
over commutative monoids and develop a partition refinement
algorithm to compute the largest one. When the monoid is (R,+),
we recover probabilistic bisimulation for Markov chains and
more recent forward bisimulations for nonlinear ODEs. Using
(R, ·) we get nonlinear reductions for discrete-time dynamical
systems and ODEs where each variable in the quotient model
represents the product of original variables in the equivalence
class. When the domain is a finite set such as the Booleans B, we
can apply GFB to Boolean networks, a widely used dynamical
model in computational biology. Using a prototype implementa-
tion of our minimization algorithm for GFB, we find disjunction-
and conjunction-preserving reductions on 60 Boolean networks
from two well-known repositories, and demonstrate the obtained
analysis speed-ups. We also provide the biological interpretation
of the reduction obtained for two selected Boolean networks,
and we show how GFB enables the analysis of a large one that
could not be analyzed otherwise. Using a randomized version
of our algorithm we find product-preserving (therefore non-
linear) reductions on 21 dynamical weighted networks from the
literature that could not be handled by the exact algorithm.

I. INTRODUCTION

Bisimulation is a fundamental tool in computer science for
abstraction and minimization, relating models by useful logical
and dynamical properties [1]. Originally developed to reason
about concurrent processes in a non-quantitative setting [2],
it has been extended to quantitative models based on labeled
transition systems, such as, e.g., the notion of probabilistic
bisimulation [3], closely related to ordinary lumpability for
Markov chains [4].

Forward bisimulations relate states based on criteria that
depend on their outgoing transitions (as opposed to backward
bisimulations that depend on incoming ones, e.g., [5]). When
applied to a dynamical system (DS), forward bisimulations
preserve properties related to sums of values of state vari-
ables. For example, probabilistic bisimulation yields a quotient
Markov process where each state represents an equivalence
class preserving the sum of the probabilities of its members;
forward bisimulation for reaction networks identifies equiv-
alence classes among the chemical species that preserve the
total concentration [6], [7]; forward differential equivalence
(FDE) for nonlinear ordinary differential equations (ODEs)
relates variables preserving sums of their solutions [8].

An attractive feature of bisimulation is that one can compute
the largest bisimulation using partition refinement, based on
the pioneering solution for concurrent processes [9]. Partition

refinement algorithms start from an initial partition of vari-
ables which is iteratively refined (i.e., its blocks get split)
until the obtained partition is a bisimulation. Notably, such
notion of initial partition is particularly useful to the modeler
to tune the reduction. For example, one can separate groups of
variables according to given criteria so as to refine them, i.e., to
prevent that variables from different groups will be aggregated
together. This makes bisimulation an effective approach for
the minimization of complex DS, adding to cross-disciplinary
methods originated in e.g., chemical engineering [10], control
theory [11], and systems biology [12].

Thus far, one can identify two common properties of
existing forward bisimulations for DS: they preserve sums of
state values, and the DS variables take real R values. There
are, however, motivations that call for generalizations of this
setting. A forward bisimulation for ODEs can be seen as a
special case of linear lumping [10], a minimization achieved
by a linear projection of the state space operated by a matrix
that encodes the partition of the state variables. However, one
may be also interested in nonlinear lumpings where each state
in the reduced model represents a nonlinear transformation of
original variables [13].

Another motivating question tackled in this paper is the gen-
eralization of the domain on which the DS evolves. Forward
bisimulation is not currently applicable to DS that evolve over
finite domains. Consider, e.g., the DS

x1(k + 1) = x2(k) ∨ x3(k)

x2(k + 1) = x1(k) ∨ x3(k)

x3(k + 1) = ¬x3(k) ∧ (x1(k) ∨ x2(k))

(1)

where the state variables x1, x2, and x3 are defined over the
Booleans B = {0, 1}, and k denotes discrete time. This is
a Boolean network (BN), an established model of biological
systems [14].

Here we develop a more abstract notion of forward bisimu-
lation, generalized forward bisimulation (GFB), for a DS over
a (commutative) monoid. We show that this is a conservative
extension with respect to the literature because we recover
available notions of forward bisimulation for DS when the
monoid is (R,+). However, it is more general. For example,
over the monoid (B,∨) one can prove that variables x1 and
x2 in (1) are GFB equivalent, i.e., we can rewrite the model in
terms of x1∨x2 and x3. Indeed, by computing the disjunction
of the left- and right-hand-side of x1 and x2 in (1) we get

x1(k+1)∨x2(k+1) = x2(k) ∨ x3(k) ∨ x1(k) ∨ x3(k)

= x3(k) ∨ (x1(k) ∨ x2(k)).

By using the derived variable x1,2 ≡ x1 ∨ x2, we get the
GFB-reduced model

x1,2(k + 1) = x3(k) ∨ x1,2(k)

x3(k + 1) = ¬x3(k) ∧ x1,2(k).
(2)

This can be used in place of the original model if one is
not interested in the individual values of x1 and x2, but only
in their disjunction.

Here we show that GFB satisfies desirable properties for
bisimulations.

1) Over any commutative monoid (M,⊕), GFB charac-
terizes ⊕-preserving reductions, in the sense that any
DS with fewer state variables which coincides with ⊕-
operations of original state variables must necessarily be
the quotient of a GFB. This generalizes characterization
results for Markov chains [3], chemical reaction net-
works [15], and nonlinear ODEs [8]. Notably, our char-
acterization result also covers the asymptotic dynamics,
often of interest when analyzing DS (see, e.g., [16]). We
show that GFB preserves all attractors, i.e., the states
towards which the DS tends to evolve and remain.

2) GFB can be computed by a partition refinement algo-
rithm. We develop a template algorithm which hinges
on the computation of a formula whose decidability
and complexity depend on the domain and the right-
hand sides of the dynamical system under study. In
general, this can be undecidable. However, when the
monoid is (R,+) our algorithm reduces to that for
forward differential equivalence for nonlinear ODEs [8].
Instead, when the domain is B, the problem corresponds
to Boolean satisfiability.

3) For polynomial ODEs and the monoid (R, ·), we obtain,
to the best of our knowledge, the first algorithm for
nonlinear model reduction in (randomized) polynomial
time.

4) GFB is effective in practice, both in terms of reduction
power and of obtained analysis speed-ups.

Previous results are essentially agnostic to whether the
time evolution of the DS is continuous or discrete. More
specifically, the criteria for probabilistic bisimulation [3] are
the same for both continuous-time and discrete-time Markov
chains. Similarly, FDE equivalently applies to both a nonlinear
ODE system in the form ∂tx = f(x) (where ∂t denotes time
derivative) and to a discrete-time nonlinear DS in the form
x(k + 1) = f(x(k)). With GFB, instead, more care has to be
taken because this verbatim correspondence does not hold any
longer. For this reason, we first develop GFB for discrete-time
DS. Then, we consider continuous time by studying GFB for
DS over the reals relating to, and extending, results for ODEs.

Applications. Using a prototype implementation, we apply
GFB to case studies from different domains. We consider
Boolean and multi-valued networks [14], [17], where the latter
allows for finer degrees of activation than just 0/1 as in (1).
These models are known to suffer from state-space explosion,
making model reduction appealing (see, e.g., [18]). We select
two case studies from the literature to showcase the physical

intelligibility of GFB reductions, and one to show how GFB
can enable the analysis of BNs that otherwise could not be ana-
lyzed. In the three case studies, we show how initial partitions
can be devised using domain knowledge from specific case
studies. For example, we show how (B,∧) allows to identify
and abstract away from distinct sub-models (biological path-
ways); we show how finite monoids and operations min and
max allow studying full model (de)activation, meaning that we
obtain reductions that track groups of components whose acti-
vation status denote the (de)activation of different mechanisms
of the model. We also perform a large-scale validation of GFB
on 60 Boolean and multi-valued networks from established
repositories (GinSim [19], BioModelsDB [20]), showing how
default initial partitions can be synthesized automatically in
this setting. We show that GFB is useful due to its high
reduction power, and the high speed-up obtained in attractors
computation. We also consider real-valued DS. We study a
case study of a higher-order Lotka-Volterra model [21], and
we perform a large-scale validation on 72 weighted networks
from the Netzschleuder repository [22].

II. RELATED WORK

Most of the literature about model minimization can be
found for DS over the reals. In this context, the general frame-
work of exact lumping considers reductions by means of both
linear and nonlinear operators [23], [24]. The aforementioned
notions of bisimulation for Markov chains and FDE can be
seen as specific linear reductions that are induced by a partition
of the state space. Indeed, this corresponds to a specific type of
minimization known as proper lumping, where each original
variable is represented by only one variable in the reduced
model [10]. Since also GFB is developed in the same style, it
too can be seen as a special case of exact lumping. However,
the largest GFB can be computed in randomized polynomial
time when the dynamics is described by polynomials over the
monoids (R,+) or (R, ·), see [25] and Section V. Instead,
the computation of exact lumpings hinges, in the case of
polynomial dynamics, on symbolic computations with worst-
case exponential complexity [13, Section 2.2].

Relying on polynomial invariants [26], [27], L-
bisimulation [28], [29] can be seen as a generalization of
backward differential equivalence (BDE) [8], a backward-type
bisimulation for non-linear ODEs, and is thus complementary
to FDE (hence, GFB), as discussed in [28]–[30]. It is also
worth noting that neither BDE nor L-bisimulation allow
for model reduction through nonlinear transformations, in
contrast to GFB. Similarly to L-bisimulation, consistent
abstraction (aka bisimulation) [31]–[33] is complementary
to GFB. Indeed, for a so-called observation function, the
largest consistent abstraction gives rise to a minimal reduced
DS which coincides with the original one up to the chosen
observation function. Instead, computing the largest GFB
corresponds to finding an observation function which induces
a largest consistent abstraction. Hence, GFB reduces across
observation functions, while consistent abstraction reduces
with respect to a given observation function. Moreover,

in contrast to consistent abstraction, GFB considers the
subclass of observation functions induced by equivalence
relations. To the best of our knowledge, the computation of
an observation function yielding a minimal reduced model
has been investigated for linear dynamics only [31].

Reduction techniques exist for BNs. Boolean backward
equivalence (BBE) is a backward-type bisimulation [18], in
line exact lumpability for Markov chains [4] and BDE. Hence,
it can be shown that BBE and GFB (applied to BNs) are not
comparable. Other approaches for BN reduction are based on
variable absorption (e.g., [34], [35]) where selected variables
are absorbed by the update functions of their target variables
by replacing all occurrences of the absorbed variables with
their update functions. These approaches are complementary
to GFB because they do not compute exact reductions.

III. PRELIMINARIES

In this section we formalize the notion of discrete-time
DS and of attractor for discrete-time DS [36], and notation
considered in this paper. Then, we provide a running example
used throughout the text.

Definition 1 (Dynamical System). A discrete-time DS is a
pair D = (X,F) where X={x1, . . . , xn} are variables and
F = {fx1

, . . . , fxn} is a set of update functions, where fxi :
MX → M is the update function of variable xi. Elements
of MX are states. The solution (simulation) of D for initial
state s(0) ∈MX is given by the sequence (s(k))k≥0, where
s(k+1)=F (s(k)) for all k≥0.

We use R to denote an equivalence relation over X ,
and XR the induced partition. We often do not distinguish
among an equivalence relation and its induced partition. If not
mentioned, we assume that ⊕ : M × M → M is such that
(M,⊕) is a commutative monoid with neutral element 0⊕.
Moreover, GI denotes the set of all (total) functions from I to
G and f [a/b] is the term arising by replacing each occurrence
of a by b in f .

As running example we use a BN from [37] that describes
cell differentiation. Deeper biological interpretation and its
reduction will be given in Section VII.

Example 1. Let (X,F) be a discrete-time DS with Boolean
variables X = {SCR, SHR, JKD,MGP,WOX5, CLEX, PLT, ARF,
AUXIAA, AUXIN} and update function F : BX→BX with

fSCR = SHR ∧ SCR ∧ (JKD ∨ ¬MGP) fCLEX = SHR ∧ CLEX

fSHR = SHR fPLT = ARF

fJKD = SHR ∧ SCR fARF = ¬AUXIAA
fMGP = SHR ∧ SCR ∧ ¬WOX5 fAUXIAA = ¬AUXIN
fWOX5 = ARF ∧ SHR ∧ SCR ∧ ¬CLEX fAUXIN = AUXIN

Monoids for the DS are (B,⊕), ⊕∈{∧,∨,XOR}, with neutral
elements 1, 0, 0.

Definition 2 (Attractor). Let D = (X,F) be a discrete-time
DS. A non-empty set A ⊆ MX is called attractor of D (wrt
some given topology of MX) whenever

• A is invariant under F , that is, F (A) ⊆ A;
• there is an open neighborhood B of A s.t. for any v ∈ B

there exists a ν ≥ 1 such that Fn(v) ∈ A for all n ≥ ν.
B is called a basin of attraction of A.

Example 2. Let s = (0, 0, 0, 0, 0, 1, 1, 1, 0, 1) ∈ BX denote
a state of the DS from Example 1 where only the variables
CLEX, PLT, ARF, AUXIN are active. By applying the update func-
tions we get F (s) = s′ = (0, 0, 0, 0, 0, 0, 1, 1, 0, 1) ∈ BX ,
where PLT, ARF and AUXIN are active. If we apply the update
functions again, the system remains in the same state, i.e.,
F (s′) = s′, meaning that {s′} is an attractor.

IV. GENERALIZED FORWARD BISIMULATION

Here we define generalized forward bisimulation (GFB),
the notion of GFB reduction, and show that GFB reductions
preserve the original model dynamics.

Definition 3 (Generalized Forward Bisimulation). Let D =
(X,F) be a discrete-time DS, (M,⊕) a commutative monoid
and XR a partition of X . Then, XR is a GFB when the
following formula holds true:

∀s, s′ ∈MX .
∧

C∈XR

(⊕

xi∈C
sxi =

⊕

xi∈C
s′xi

)

=⇒
∧

C∈XR

(⊕

xi∈C
fxi(s)=

⊕

xi∈C
fxi(s

′)
)
.

The homomorphism of R, denoted by ψR : MX → MXR , is
given by

ψR(s)C =
⊕

xi∈C
sxi , for all C ∈ XR.

Example 3. For ⊕ = ∧, XR = {C, {PLT}, {ARF}, {AUXIAA},
{AUXIN}} is a GFB for our running example, where C =
{SCR, SHR, JKD,MGP,WOX5, CLEX}. This means that the running
example can be rewritten solely in terms of conjunctions over
all variables in C, and the other individual variables. To
this end, we first note that for all xi /∈ C we have that
fxi is independent of any xj ∈ C. 1 Moreover, the update
functions of WOX5 and CLEX contain terms ¬CLEX and CLEX,
respectively, therefore the conjunction of their update functions
(and of all variables in C) can be simply rewritten as 0 since:∧
xi∈C

fxi(s) = sCLEX ∧ ¬sCLEX ∧ (. . .) = 0.

Definition 4 (Reduced DS). The reduction D/R of a discrete-
time DS D = (X,F) for an equivalence R, is the DS
(XR, FR) with FR = (fC)C∈XR such that

fC =
⊕

xi∈C
fxi [xk/0⊕ : xk /∈ X̂][xiC′/xC′ : C ′ ∈ XR],

where xiC ∈ C is a representative of C ∈ XR and X̂ = {xiC :
C ∈ XR} is the set of all representatives.

1However, the original system is not trivially decoupled in variables in C
and variables not in C, because ARF appears in the update function of WOX5.

Example 4. We compute the reduced DS of our running
example for the GFB XR from Example 3. We choose JKD

as representative of C, while the representative for the other
(singleton) blocks is obvious. With this, we obtain

fC =
∧

xk∈C
fxk [xk/1 : xk /∈ X̂][xiC′/xC′ : C ′ ∈ XR]

= 1 ∧ 1 ∧
(
C ∨ ¬1

)
∧ 1 ∧ 1 ∧ 1 ∧ 1

∧ 1 ∧ ¬1 ∧ {ARF} ∧ 1 ∧ 1 ∧ ¬1 ∧ 1 ∧ 1 = 0

For all other blocks, instead, we obtain

f{PLT}={ARF}, f{ARF}=¬{AUXIAA},
f{AUXIAA}=¬{AUXIN}, f{AUXIN}={AUXIN}

Remark 1. We note that, syntactically, the reduced DS de-
pends on the choice of representatives. However, if R is a
GFB, then Theorem 1 guarantees that such choice does not
affect the semantics of the reduced DS.

We now show that D and D/R have same dynamics up to
ψR iff R is a GFB.

Theorem 1 (GFB characterization via model dynamics). Fix
a DS D = (X,F), a partition XR of X , D/R = (XR, FR),
and a commutative monoid (M,⊕). Then, R is a GFB iff for
any initial state s0 ∈MX the solutions of D and D/R for s0
and ŝ0 = ψR(s0), respectively, are equal up to ψR. That is:

ŝk = ψR(sk), for k ≥ 0,

where sk+1 = F (sk) and ŝk+1 = FR(ŝk).

Proof of Theorem 1. Let R be a GFB, pick s0 ∈MX and set
ŝ0 = ψR(s0) ∈ MXR . We next show that ŝk = ψR(sk) by
induction over k ≥ 0. Since the base case k = 0 is true by
construction, we can turn to the induction step. For k ≥ 0, we
obtain

ŝk+1 = FR(ŝk) = FR(ψR(sk)) = ψR(F (sk)) = ψR(sk+1),

where the second identity follows from the induction hypoth-
esis, while the third identity follows from the definition of FR
and the fact that R is a GFB. Conversely, if ŝk = ψR(sk) for
all k ≥ 0, we can conclude for k = 0 and arbitrary s0 ∈MX

that

ψR(F (s0)) = ψR(s1) = ŝ1 = FR(ŝ0) = FR(ψR(s0)),

thus showing that R is a GFB.

Theorem 1 readily implies the following result on attractors.

Corollary 1. Let D = (X,F) be a DS, (M,⊕) a commutative
monoid, R a GFB and D/R = (XR, FR). Then, we have the
following two (equivalent) statements.
• If A ⊆MX is an attractor of D, then ψR(A) ⊆MXR is

an attractor of D/R.
• If A ⊆MXR is not an attractor of D/R, then ψ−1R (A) ⊆

MX is not an attractor of D.

Example 5. We consider the attractor s′ = {(0, 0, 0, 0, 0, 0,
1, 1, 0, 1)} from Example 2. The homomorphism ψR maps the

attractor to ψR(s′) =
{

(0, 1, 1, 0, 1)
}

. Corollary 1 ensures
that the set ψR(s′) is an attractor of the reduced system D/R.
Indeed, by applying the update functions FR to (0, 1, 1, 0, 1),
the reduced system remains at the same state, and thus ψR(s′)
is invariant under FR.

V. COMPUTATION OF THE LARGEST GFB

Computing the largest (or coarsest) GFB that refines a given
initial partition is based on the classic partition refinement
algorithm [9] where the blocks of an initial partition are
iteratively refined (or split) until a GFB is obtained. The
largest GFB is obtained when the initial partition contains
one block only. Different initial partitions can be useful to
tune reductions to preserve variables of interest (see, e.g.,
Section VII). Here we prove that there exists a unique largest
GFB that refines a given initial partition, and that the algorithm
computes it.

Theorem 2. Let D = (X,F) be a discrete-time DS, and XR
a partition of X . There exists a unique coarsest GFB H that
refines XR.

Proof of Theorem 2. Fix arbitrary GFBs ∼1, . . . ,∼ν⊆ R and
let H1, . . . , Hν be the corresponding partitions, i.e., Hi =
X∼i . Moreover, let ∼∗:=

(⋃m
i=1 ∼i

)∗
and H∗ := X∼∗ ,

where the asterisk denotes transitive closure of a relation. At
last, let xiH∗ ∈ H∗ denote some representative of H∗ ∈ H∗.
With this, pick an arbitrary H∗ ∈ H∗. By construction of
H∗, there exist x0, . . . , xk ∈ X and i0, . . . , ik−1 ∈ {1, . . . , ν}
so that {x0, . . . , xk} = H∗, xk = xiH∗ and xj ∼ij xj+1

for all 0 ≤ j ≤ k − 1. Moreover, for any G∗ ∈ H∗ and
1 ≤ i ≤ ν, there exist (unique) Gi1, . . . , G

i
mi ∈ Hi such that⊎mi

l=1G
i
l = G∗. Since xj ∼ij xj+1 and Hij is a GFB, we

obtain

⊕

xι∈G∗
fxι =

mij⊕

l=1

⊕

xι∈G
ij
l

fxι

=

mij⊕

l=1

⊕

xι∈G
ij
l

fxι [xj/0⊕][xj+1/(xj ⊕ xj+1)]

=
⊕

xι∈G∗
fxι [xj/0⊕][xj+1/(xj ⊕ xj+1)]

Since {x0, x1, . . . , xk} = H∗ and xk = xiH∗ , an application
of the argument for all 0 ≤ j ≤ k−1 implies that

⊕
xι∈G∗ fxι

is equivalent to
⊕

xι∈G∗
fxι [xk/0⊕ : xk ∈ H∗, xk 6= xiH∗][xiH∗ /

⊕

xl∈H∗
xl]

Since the choice of G∗, H∗ ∈ H∗ was arbitrary, we infer that
H∗ is a GFB.

A partition refinement algorithm for computing GFB needs
a condition to tell: (i) if the current partition is a GFB, and,
if not, (ii) how to split its blocks towards getting a GFB.
Definition 3 can only be used for Point (i). Theorem 3 below
provides a binary, relation-driven, characterization of GFB

which allows for Point (ii). The intuition is that, by applying
such binary characterization pairwise to all variables in each
block of the current partition, we get the sub-blocks in which
they should be split in the next iteration.

Theorem 3 (Binary Characterization of GFB). Let D =
(X,F) be a DS, (M,⊕) a commutative monoid, R an equiva-
lence relation on X , and XR the induced partition. Then, XR
is a GFB if and only if for any (xi, xj) ∈ R with xi 6= xj ,
the following formula holds (where 0⊕ is the neutral element
of ⊕):

ΨXRxi,xj ≡
∧

C∈XR

(⊕

xk∈C
fxk =

⊕

xk∈C
fxk [xi/0⊕][xj/(xi ⊕ xj)]

)

Proof of Theorem 3. Let us assume first that XR is a GFB,
pick an arbitrary (xi, xj) ∈ R and pick the unique C ′ ∈ XR
such that xi, xj ∈ C ′. With this, define s′ := s[xi 7→
0⊕][xj 7→ sxi ⊕ sxj] for an arbitrary s ∈ MX , where
s[xk 7→ b]xk = b and s[xk 7→ b]xl = sxl for all b ∈ M
and xl 6= xk. Then, since ⊕ is commutative and associative
and because XR is a GFB, we have that

∧

C∈XR

(⊕

xi∈C
fxi(s) =

⊕

xi∈C
fxi(s

′)
)
. (3)

Since the choice of (xi, xj) ∈ R and s ∈ MX was arbitrary,
we infer that ΨXRxi,xj is valid. For the converse, let us assume
that ΨXRxi,xj holds true for all (xi, xj) ∈ R and pick any two
s, s′ ∈MX such that

∧

C∈XR

(⊕

xi∈C
sxi =

⊕

xi∈C
s′xi

)
(4)

With this, pick for any C ∈ XR some arbitrary representative
xiC ∈ C and let X̂ = {xiC : C ∈ XR} be the set of all
representatives. For any (xi, xj) ∈ R, define si→j := s[xi 7→
0⊕, xj 7→ sxi ⊕ sxj]. With this, the fact that ⊕ is commu-
tative and associative ensures the existence of a sequence
xi1 , xi2 , ..., xik for which ŝ = (((si1→i2)i2→i3) . . .)ik−1→ik
is such that

∧

C∈XR

(⊕

xi∈C
sxi =

⊕

xi∈C
ŝxi

)
,

ŝxi = 0⊕ for all xi /∈ X̂ and ŝxiC =
⊕
xi∈C

sxi for all C ∈ XR.

Since ΨXRxil ,xil+1
is valid for all 1 ≤ l ≤ k − 1, we obtain

∧

C∈XR

(⊕

xi∈C
fxi(s) =

⊕

xi∈C
fxi(ŝ)

)
.

A similar argument for s′ ensures that there is an ŝ′ such that
ŝ′xi = 0⊕ for all xi /∈ X̂ , ŝ′xiC =

⊕
xi∈C

s′xi for all C ∈ XR and

∧

C∈XR

(⊕

xi∈C
s′xi =

⊕

xi∈C
ŝ′xi

)
,

∧

C∈XR

(⊕

xi∈C
fxi(s

′) =
⊕

xi∈C
fxi(ŝ

′)
)
.

Algorithm 1: Compute the largest GFB that refines an
initial partition H for DS (X,F).

1: while true do
2: H′ ← ∅
3: for all H ∈ H do
4: R← {(xi, xj) ∈ H ×H : if xi 6= xj , then

ΨHxi,xj and ΨHxj ,xi}
5: H′ ← H′ ∪ (H/R)
6: end for
7: if H = H′ then
8: return H
9: else

10: H ← H′
11: end if
12: end while

Thanks to (4), we infer that ŝ = ŝ′. This, in turn, implies the
desired relation (3), thus showing that XR is a GFB if and
only if ΨXRxi,xj is valid for all (xi, xj) ∈ R.

The binary characterization tells us that we can rewrite an
⊕-expression of the update functions of a block of a GFB in
terms of ⊕-expressions of pairs of GFB equivalent variables
xi and xj . This can be done by successively moving, pair
by pair, all variables of a GFB equivalence class to a chosen
representative.

Example 6. Let us consider the GFB XR from Example 3,
the only non-singleton block C ∈ XR, and the variables
SHR, JKD ∈ C. With ⊕ = ∧ and 0∧ = 1, we obtain
∧

xk∈C
fxk = SHR ∧ SCR ∧ (JKD ∨ ¬MGP)

∧ SHR ∧ SHR ∧ SCR ∧ SHR ∧ SCR ∧ ¬WOX5 ∧ ARF∧
SHR ∧ SCR ∧ ¬CLEX ∧ SHR ∧ CLEX

= 0

= 1 ∧ SCR ∧ ((JKD ∧ SHR) ∨ ¬MGP)

∧ 1 ∧ 1 ∧ SCR ∧ 1 ∧ SCR ∧ ¬WOX5 ∧ ARF

∧ 1 ∧ SCR ∧ ¬CLEX ∧ 1 ∧ CLEX

=
∧

xk∈C
fxk [SHR/1, JKD/(SHR ∧ JKD)]

For any other block the clause is trivially true because SHR

and JKD appear only in the update functions of variables in C.
Hence, ΨXRSHR,JKD is valid. Similarly, we can show that ΨXRxi,xj
is valid for all (xi, xj)∈R, xi 6=xj . Hence XR is a GFB.

The next result addresses the algorithmic computation of
the largest GFB.

Theorem 4. Let D = (X,F) be a discrete-time DS and XR

a partition. Algorithm 1 computes the largest GFB refining R
by deciding at most O(|X|3) instances of formula ΨHxi,xj . If
M is finite, any formula ΨHxi,xj is decidable.

Proof of Theorem 4. Pick the largest (i.e., coarsest) GFB H∗
that refines XR using Theorem 2. With this, set H0 := XR

and define for all k ≥ 0 and H ∈ Hk
Rk(H) := {(xi, xj) ∈ H ×H : xi 6= xj ⇒ ΨHkxi,xj ∧ΨHkxj ,xi}
Hk+1 :=

⋃

H∈Hk
H/R∗k(H),

where R∗k(H) denotes the transitive closure of Rk(H). By
construction, Rk(H) is reflexive and symmetric, thus implying⊕
xi∈H

fxi(s) =
⊕
xi∈H

fxi(s̃) for all s ∈MX , H ∈ Hk, where

s̃ = s[xj 7→ 0⊕ : xj /∈ X̂k+1][xiC′ 7→
⊕

xj∈C′
sxj : C ′ ∈ Hk+1]

and xiC ∈ C is a representative of class C ∈ Hk+1, while
X̂k+1 = {xiC : C ∈ Hk+1}. (Note that H ∈ Hk, while
C ∈ Hk+1 and X̂k+1 is defined using Hk+1.) This implies
that Rk is transitive. Indeed, for any (xi, xj), (xj , xk) ∈ Rk
and s′ ∈ MX , the previous equation ensures for state s :=
s′[xi 7→ 0⊕, xk 7→ s′xi ⊕ s′xk] and any H ∈ Hk that
⊕

xi∈H
fxi(s) =

⊕

xi∈H
fxi(s̃

′) =
⊕

xi∈H
fxi(s̃

′′) =
⊕

xi∈H
fxi(s̃

′′′),

where

s̃′=s[xl 7→0⊕ : xl /∈ X̂k+1][xiC′ 7→
⊕

xj∈C′
sxj : C ′ ∈ Hk+1],

s̃′′=s′[xl 7→0⊕ : xl /∈ X̂k+1][xiC′ 7→
⊕

xj∈C′
s′xj : C ′ ∈ Hk+1],

s̃′′′=s′[xi 7→0⊕, xj 7→0⊕, xk 7→s′xi ⊕ s′xj ⊕ s′xk].

Hence, R∗k = Rk and the expression H/R is indeed well-
defined in Algorithm 1. Further, a proof by induction over
k ≥ 1 shows that a) H∗ is a refinement of Hk and b) Hk is a
refinement of Hk−1. Since H∗ is a refinement of any Hk, it
holds thatH∗ = Hk ifHk is a GFB partition. Since X is finite,
b) allows us to fix the smallest k ≥ 1 with Hk = Hk−1. This,
in turn, implies that Hk−1 is a GFB. To see the complexity
statement, we note that the algorithm can perform at most |X|
refinements, while each iteration compares O(|X|2) pairs. For
the decidability, instead, we first note that the finiteness of M
ensures the finiteness of ⊕ ⊆M×M and any fxi ⊆MX×M.
Hence, checking

∧

C∈H

(⊕

xk∈C
fxk =

⊕

xk∈C
fxk [xi/0⊕][xj/(xi ⊕ xj)]

)

amounts to a finite number of checks over finite sets and is
thus decidable.

The decidability of ΨHxi,xj for M infinite is less immediate.
Indeed, since deciding ΨHxi,xj amounts to deciding identities
between functions, decidability over infinite domains critically
hinges on the nature of the update functions. For instance, if
M = R, the conditions of ΨHxi,xj require one to decide the
equivalence of real-valued functions. If ⊕ = + and update
function terms arise through addition and multiplication of

variables and may contain minima and maxima expressions,
the problem is double exponential [8]. If also exponential
and trigonometric functions are allowed, the problem becomes
undecidable [38].

We thus study the complexity of deciding ΨHxi,xj when
(fxi)xi∈X are polynomials and ⊕ ∈ {+, ·}. In such a case,
checking ΨHxi,xj amounts to deciding whether the polynomials

⊕

xk∈C
fxk and

⊕

xk∈C
fxk [xi/0⊕][xj/(xi ⊕ xj)]

are equal. In case of the real and complex field, this question is
equivalent to polynomial identity testing for which no holistic
algorithms with polynomial time complexity are known [39].2

Fortunately, the following result readily follows from the
Schwartz-Zippel lemma [39].

Theorem 5. Let D = (X,F) be a discrete-time DS and XR
a partition. Then, if (fxi)xi∈X are polynomials over some
(sufficiently large) field M and ⊕ ∈ {+, ·}, Algorithm 1 runs
in randomized polynomial time. More specifically, assume that
ΨHxi,xj is false and that it involves polynomials of degree less
or equal d. Then, for any finite set S ⊆M, any C ∈ H and a
uniformly sampled v ∈ SX , we have

P
{⊕

xk∈C
fxk(v) =

⊕

xk∈C
fxk [xi/0⊕][xj/(xi⊕xj)](v)

}
≤ d

|S| ,

where P{A} denotes the probability of event A. In particular,
one obtains a polynomial time randomized algorithm whenever
M has more than d elements.

VI. CONTINUOUS-TIME DS
We relate GFB to continuous-time DS, showing how GFB

encapsulates existing bisimulations for (nonlinear) ODEs.
Thus, in what follows we consider DS with domain R. We
can study minimizations for an ODE system ∂tv(t) = Φ(v(t))
(where ∂t denotes time derivative) using GFB on its time
discretization (X,F), where F (s) = s + τΦ(s). Standard
results imply that the approximation error between the ODEs
and its time discretization vanishes if τ approaches zero [40].

A. Exact lumpability

GFB-type reductions can be captured by exact lumpability,
an established reduction notion for ODEs [23], [24]. Indeed,
exact lumping must not be necessarily induced by a partition of
the variables. However, we will show that when an exact lump-
ing on an ODE system is described by the homomorphism
ψR of an equivalence relation R, then it must necessarily be
a GFB for its discretization. We start with the definition of
exact lumping [23].

Definition 5. Given an ODE system ∂tv(t) = Φ(v(t)) with a
differentiable function Φ : RX → RX , a twice differentiable
function ψ : RX → RX̂ is an exact lumping if |X̂| < |X| and
there is a unique differentiable function Φ̂ : RX̂ → RX̂ such

2The common holistic approach rewrites a polynomial into a sum of
monomials. Hence, if ⊕ = · and all fxk have, say, 2 monomials, a direct
computation of the monomials of ⊕xk∈Cfxk requires O(2|C|) steps.

that for any v : [0;T] → RX satisfying ∂tv(t) = Φ(v(t)), it
holds that ∂tψ(v(t)) = Φ̂(ψ(v(t))) for all t ∈ [0;T].

Consider, e.g., the model

∂tvx1 = vx1

∂tvx2 = vx2 .

Then, ψ(vx1 , vx2) = vx1vx2 is an exact lumping since

∂tψ(v) = (∂x1ψ(v), ∂x2ψ(v)) · Φ(v)

= (vx2
, vx1

) · (∂tvx1
, ∂tvx2

)T

= 2vx1
vx2

= 2ψ(v)

where superscript T denotes the transpose of a vector. We can
observe that this can be discovered using GFB on the time
discretization of the ODE system, given by

fx1
(s) = sx1

+ τsx1
and fx2

(s) = sx2
+ τsx2

.

Indeed XR = {{x1, x2}} is a GFB over (R, ·) since

fx1 ·fx2 = (x1+τx1) · (x2+τx2)

= x1x2+2τx1x2+τ2x1x2

= (fx1
·fx2

)[x2/1, x1/x1x2].

This shows that ψR is indeed an exact lumping. The next result
formalizes this relationship.

Theorem 6. Given ∂tv(t) = Φ(v(t)) with a differentiable
function Φ : RX → RX , consider the DS Dτ = (X,F) with
F (s) = s + τΦ(s), where τ > 0. Further, let us assume that
⊕ : R × R → R is twice differentiable and that (R,⊕) is a
commutative monoid. Then, for any partition XR of X:

1) If R is a GFB of all Dτ , then ψR is an exact lumpability
of ∂tv(t) = Φ(v(t)).

2) If ψR is linear, then R is a GFB of all Dτ if and only
if ψR is an exact lumpability of ∂tv(t) = Φ(v(t)).

Proof of Theorem 6. See proof of Theorem 7.

With the exception of the important case where ψR is linear,
Theorem 6 does not address whether GFB is also a necessary
condition for exact lumpability. Indeed, it turns out that a
characterization requires to relax formula ΨXRxi,xj to, roughly
speaking, ignore the terms of (higher) order τ2, τ3, ... and so
on. This is exemplified next.

Example 7. Let us fix a continuous DS

∂tvx1
= vx1

log(vx2
) ∂tvx2

= vx2
log(vx1

).

Together with v⊕v′ = log(v)+log(v′) and XR = {{x1, x2}},
it then holds that ψR(vx1

, vx2
) = log(vx1

) + log(vx2
) is an

exact lumping, while XR is not a GFB.
In order to see this, we start by noting that

ψR(vx1
, vx2

) = log(vx1
) + log(vx2

)

is an exact lumping because

∂tψR(v) = (v−1x1
, v−1x2

) · (∂tvx1 , ∂tvx2)T = ψR(v).

At the same time, the ODE discretization of the model is

fx1 = x1 + τx1 log(x2), fx2 = x2 + τx2 log(x1).

Writing h = τx1x2 log(x1x2) + τ2x1x2 log(x1) log(x2) for
convenience, we observe that

log(fx1)+log(fx2)= log(fx1fx2) = log
(
x1x2 + h

)

= log(x1x2) + (∂ log)(x1x2)h+

(∂2 log)(x1x2)h
2

2 +O(τ3)

= log(x1x2) + h
x1x2

− h2

2x2
1x

2
2

+O(τ3)

= log(x1x2) + τ log(x1x2)+

τ2log(x1)log(x2)− τ2 log(x1x2)
2

2 +O(τ3)

Here, O refers to big O notation from numerical analysis,
while the third identity follows from Taylor’s theorem and from
∂ log(x) = x−1 and ∂2 log(x) = −x−2. Since the higher-
order term τ2 log(x1) log(x2) cannot be expressed in terms of
log(x1x2), we conclude that XR is not a GFB.

We now characterize exact lumpings of the form ψR,
accounting for Example 7 and generalizing Theorem 6. As
anticipated, we ignore higher-order terms O(τ2) when check-
ing ΨXRxi,xj , where O is the big O notation from numerical
analysis.

Theorem 7. Given ∂tv(t) = Φ(v(t)) with a differentiable
vector field Φ : RX → RX , consider the DS Dτ = (X,F)
with F (s) = s + τΦ(s) where τ > 0. Let us assume that
⊕ : R × R → R is twice differentiable and that (R,⊕) is
a commutative monoid. Then, for any partition XR of X ,
function ψR is an exact lumping iff for all (xi, xj) ∈ R with
xi 6= xj formula ΨXRxi,xj is valid up to O(τ2), that is

∧

C∈XR

(⊕

xk∈C
fxk +O(τ2) =

⊕

xk∈C
fxk [xi/0⊕][xj/(xi ⊕ xj)] +O(τ2)

)
.

(5)

Proof of Theorem 7. To improve readability, we write ψ in-
stead of ψR in the present proof. Since ⊕ is twice differen-
tiable by assumption, so is ψ = (ψH)H∈XR . For any H ∈ XR,
Taylor’s theorem thus ensures

ψH(F (s)) = ψH(s+ τΦ(s))

= ψH(s) + (∂sψH)(s+ τΦ(s)) · τΦ(s) +O(τ2)

= ψH(s) + τ · (∂sψH)(s+ τΦ(s)) · Φ(s) +O(τ2)

We begin by assuming that ψ is an exact lumping. Then,
with ∂tv(t) = Φ(v(t)), by [24] the derivative of t 7→ ψH(v(t))
can be written as a function of

(
ψC(v(t))

)
C∈XR . Since v(0) ∈

RX can be chosen arbitrarily, there is thus a function ℘H such
that ℘H(ψ(s)) = (∂sψH)(s + τΦ(s)) · Φ(s) for all s ∈ RX .
Overall, we conclude for all s ∈ RX

ψH(F (s)) = ψH(s) + τ · ℘H(ψ(s)) +O(τ2)

Since H ∈ H can be chosen arbitrarily, following the argu-
mentation from the proof of Theorem 3, we infer that for

all (xi, xj) ∈ R with xi 6= xj formula ΨXRxi,xj is valid up to
O(τ2). For the converse, let us assume that for all (xi, xj) ∈ R
with xi 6= xj formula ΨXRxi,xj is valid up to O(τ2). Then,
Taylor’s theorem yields as before

ψH(F (s)) = ψH(s) + τ · (∂sψH)(s+ τΦ(s)) · Φ(s) +O(τ2)

With this and the validity of the aforementioned ΨXRxi,xj ,
the argumentation from the proof of Theorem 3 ensures the
existence of functions (℘H)H∈XR over RXR such that

ψH(F (s)) = ψH(s) + τ · ℘H(ψ(s)) +O(τ2)

for all H ∈ XR and s ∈ RX . Hence, with ∂tv(t) = Φ(v(t)),
the derivative of t 7→ ψH(v(t)) can be written as a function of(
ψC(v(t))

)
C∈XR . Since v(0) ∈ RX can be chosen arbitrarily,

we obtain that ψ is an exact lumping. This completes the proof
of Theorem 7. We next turn to the proofs of 1) and 2) of
Theorem 6. For 1), we note that ΨXRxi,xj is valid up to O(τ2)
for all (xi, xj) ∈ R when R is a GFB. Instead, for 2) we
observe that for a linear ψR there are no higher-order terms,
i.e., O(τ2) = 0. This two observations, combined with the
foregoing discussion, yield statements 1) and 2).

Theorem 6 is related to geometric integration where it has
been shown [41, Section IV.1] that discrete-time approxima-
tions preserve invariants of continuous-time DS only when
these are linear or quadratic, but not if they are cubic or
of higher degree. In contrast, Theorem 7 provides a one-
to-one correspondence between continuous- and discrete-time
invariants by dropping the higher order terms. Additionally,
Theorem 6 and 7 allow in contrast to [41] for the algorithmic
computation of (nonlinear) invariants.

We end the subsection by noting that if the functions
(fxi)xi∈X are polynomials, then (5) can be checked algorith-
mically by representing polynomials as sums of monomials
and by dropping afterwards all monomials containing a term
τν with ν ≥ 2. Moreover, we remark that the big-O notation
encapsulates in Theorem 7 the universal quantifier across all
τ > 0, thus requiring the statements to hold for any positive
τ .

B. Forward differential equivalence and Markov chains

Using the results of this section we can relate GFB with
analogous bisimulations for DS. We start by restating the
notion of forward differential equivalence (FDE) from [8].

Definition 6 (FDE). Let us consider an ODE system ∂tv(t) =
Φ(v(t)) with a differentiable function Φ : RX → RX . A
partition XR of X is an FDE if ψR in case of ⊕ = + is
an exact lumpability.

The next result follows from Theorem 6, relating GFB and
FDE [8].

Corollary 2. Given ∂tv(t) = Φ(v(t)) with a differentiable
vector field Φ : RX → RX , and the DS Dτ = (X,F) with
F (s) = s + τΦ(s), where τ > 0. Then, for (R,+), we have
that R is a GFB of all Dτ iff R is an FDE of ∂tv(t) = Φ(v(t)).

Proof of Corollary 2. Set ⊕ = + in Theorem 6.

Similarly, the next corollary relates GFB with continuous-
time Markov chains [4] and probabilistic bisimulation of
discrete-time Markov chains [3].

Corollary 3. Let (X,Q) be a continuous-time Markov chain
with states X and transition rate matrix Q ∈ RX×X . Consider
the DS Dτ = (X,F) with F (s) = s + τQT s where τ >
0. Then, Dτ is an embedded discrete-time Markov chain of
(X,Q) for sufficiently small τ > 0. With this, for monoid
(R,+) the following three conditions are equivalent: 1. R is
a GFB of all Dτ ; 2. R is an ordinary lumpability of (X,Q);
3. R is a probabilistic bisimulation of all Dτ that describe a
discrete-time Markov chain.

Proof of Corollary 3. The vector of transient probabilities of
the Markov chain at time t ≥ 0 satisfies the forward Kol-
mogorov equations ∂tπ(t) = QTπ(t). Moreover, by [8], an
equivalence relation R over X is an ordinary lumpability if
and only if R is an FDE the forward Kolmogorov equations.
With this, Corollary 2 yields the equivalence of 1) and 2). The
equivalence of 2) and 3), instead, is a well-known fact [4].

Remark 2. The above discussion ensures that ΨHxi,xj from
Algorithm 1 can be decided in polynomial time for FDE and
probabilistic bisimulation, see [8].

C. Attractors of continuous-time DS

The notion of attractor from Definition 2 also exists for
continuous-time dynamics [42].

Definition 7 (Attractor). Consider an ODE system ∂tv(t) =
Φ(v(t)) with a differentiable vector field Φ : RX → RX .
A compact nonempty set A ⊆ RX is an attractor (aka
asymptotically stable) if there exists an open neighborhood
B of A such that for any ε > 0 there is some time t′ ≥ 0
such that for any v[0] ∈ B, the solution of ∂tv(t) = Φ(v(t))
with v(0) = v[0] satisfies d(v(t), A) ≤ ε for all t ≥ t′. Here,
d(v(t), A) = mina∈A d(v(t), a) and distance d is induced,
similarly to B, by some norm.

The next result from [42] essentially ensures that attractors
of an ODE system can be approximated by attractors of its
discrete-time discretization.

Theorem 8 ([42]). Given ∂tv(t) = Φ(v(t)) with a differen-
tiable vector field Φ : RX → RX , let A ⊆ RX be an attractor
of ∂tv(t) = Φ(v(t)). Then, for any τ > 0, there exists a set
A(τ) ⊆ RX such that
• F (A(τ)) ⊆ A(τ), where F (s) = s+ τΦ(s) and;
• The sets A(τ) converge to the set A in the Hausdorff

metric as τ → 0.

Corollary 1 and Theorem 8 allow to use GFB to argue
on attractors of ODEs. Less importantly, Theorem 8 does
not explicitly provide basins of attraction for the sets A(τ).
However, A(τ) are attractors when the discrete topology is
used.

ARFAUXIAAAUXIN

CLEX

JKD

MGP

PLT

SCR

SHR

WOX5

Fig. 1. Pictorial representation of the Boolean network from Example 1
using GinSim [43], adapted from [37].

VII. APPLICATIONS

A. Regulatory Networks

We now apply GFB to Boolean and multi-valued networks
from the literature.

a) BN case study: We study the BN used as running
example (Example 1). To ease interpretation, Fig. 1 uses the
typical graphical notation of influence graphs (offered, e.g., by
GinSIM [43]). Nodes denote variables, while arrows denote
influences among nodes. Influences come from the update
functions: green and red arrows denote, respectively, positive
(promotion) and negative (inhibition) influence. In Example 1,
ARF promotes PLT due to term ARF in fPLT, while AUXIN inhibits
AUXIAA due to term ¬AUXIN in fAUXIAA. The BN consists of
two connected pathways: one for the transcription factor SHR

with its signalling to the other variables of the pathway (we
highlight in yellow the involved nodes), and one involving the
hormone AUXIN and its signaling to the plethora (PLT) genes.

BN variables can be categorized into three groups [45]:
inputs (SHR, and AUXIN) that do not have incoming edges,
outputs (PLT) that do not have outgoing edges, and the re-
maining internal nodes. The distinction is obvious from update
functions: inputs have constant update functions, while outputs
do not appear in the update function of other variables. Inputs
are often set by the modeler to perform what if experiments,
whereas outputs permit to observe the response dynamics of
the model. In this BN, each input controls its own pathway,
meaning that the modeller can decide to enable them via
appropriate initial states.

Considering the GFB XR from Example 3 for ⊕ = ∧, the
only non-trivial block C = {SCR, SHR, JKD,MGP,WOX5, CLEX}
corresponds to the yellow nodes in Fig. 1. This GFB is
computed using the initial partition with two blocks separating
outputs and non-output nodes. Considering the reduced model
for XR from Example 6, all yellow nodes in Fig. 1 get
collapsed into one, meaning that the SHR pathway is abstracted
away. In other words, in this example GFB has automatically
identified and simplified a pathway in the model, offering a
coarser representation of the system focusing on the AUXIN

pathway only.

Operculum

Floor

Roof

EGF BMP

Roof_adj

anterior

Fig. 2. Pictorial representation using GinSim [43] adapted from [44] of the
model on eggshell formation for drosophila melanogaster flies.

b) Multi-valued network case study: We apply GFB to a
multi-valued regulatory network (MV) from [44]. Intuitively,
an MV is a BN where variables can admit more than two
values. This is a single-cell model describing the development
of eggshell structures in drosophila melanogaster flies. The
MV has 7 variables with relations depicted in Fig. 2 and update
functions:

fEGF = EGF

fBMP = BMP

fAnt = Ant

fRoofAdj = RoofAdj

fRoof = Ant :1 ∧ EGF :1 ∧ BMP :0

fFloor = Ant :1 ∧ (EGF :2 ∨ (EGF :1 ∧ BMP :1)) ∧ RoofAdj :1

fOperc = Ant :1 ∧ (EGF :2 ∨ (EGF :1 ∧ BMP :1)) ∧ RoofAdj :0

Using the notation in [44], “var : v” stands for variable
var has value v. This is a Boolean predicate evaluating to
1 if var has value v, and 0 otherwise. Variable EGF, the
rectangular node in Fig. 2, can take values 0, 1, 2, denoting
absent/intermediate/high activation levels. All other variables
are Boolean (0/1).3

Differently from Fig. 1, variables divide in two groups only:
the inputs EGF, BMP, Ant, and RoofAdj, and the outputs Operc, Floor,
and Roof. We also have a third edge type, the purple one from
EGF to Roof. This visually stresses that EGF influences Roof only
when in intermediate level and not when in high level.

The MV relates three follicle cell fates, the outputs, to
combinations of values of the inputs. EGF and BMP are
known pathways responsible for patterning of the drosophila
eggshell [44]. This is encoded in the model because EGF

and BMP influence, in different ways, all outputs. Finally,
Ant models the anterior competence region, therefore it is
required by all outputs, while RoofAdj accounts for the state

3Our framework requires all variables to have same domain M. In order to
support MV, we implicitly expand the domain of all variables to the largest
one (e.g., {0, 1, 2} of EGF). This does not change the models’ dynamics, in
the sense that when setting initial states fitting in the original domain we will
remain within the original domain.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
BN with outputs in GinSim & BioModels

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
du

ct
io

n
ra

tio
s

AND
OR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MN with outputs in GinSim & BioModels

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
du

ct
io

n
ra

tio
s

MIN
MAX

Fig. 3. (Left) Reduction ratios (reduced variables over original ones) in ascending order for the 29 BN with outputs from GINsim and BioModelsDB for
⊕ ∈ {∧,∨} and initial partitions with two blocks separating output and non-outputs. (Right) Same as (Left) for the 31 MV with outputs from the two
repositories using ⊕ ∈ {min,max}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
BN with outputs in GinSim & BioModels

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ru
nt

im
e

ra
tio

s

AND
OR

Fig. 4. Runtime ratios in ascending order for computation of attractors for
the 29 BNs from Fig. 3 (Left) and their reductions.

of neighboring cells by promoting Floor and inhibiting Operc

(operculum).
The partition with one block for all outputs and singleton

blocks for each input is a GFB for ⊕ ∈ {max,min}. By
Definition 4, we get two different reduced models in the two
cases, enabling complementary studies. Case max allows full
output deactivation studies, meaning that the reduced variable
for the outputs gets value 0 only if all outputs have value 0.
Instead, case min allows full output activation studies, as the
reduced variable gets value 1 only when all outputs have value
1. By naming outputs the reduced variable corresponding to the
block of outputs, by applying Definition 4 and some algebraic
simplification we get:

foutputs = Ant :1 ∧ (EGF :1 ∨ EGF :2), for ⊕ = max,
foutputs = 0, for ⊕ = min,

while the update functions of the input variables remain un-
changed. From this we get that: despite the three outputs have
different dependencies on Ant, BMP, RoofAdj, and on different
values of EGF, in the ⊕ = max case it is enough to consider
only ANT and EGF to answer questions related to full output
deactivation. Furthermore, it is not necessary anymore to use
three values for EGF, as we are only interested in the cases
in which it is 0 or positive (EGF :1 ∨ EGF :2). Instead, from
the ⊕ = min case we know that the original model never
expresses cases of full activation, i.e., it never happens that

the three outputs have all value 1. Indeed, by studying the
update functions of the original outputs, we see that there are
no values for the involved variables that makes all of them
true.

c) Large-scale validation of GFB on regulatory net-
works: We present a large-scale validation of GFB on the BNs
and MVs from the repositories GinSim (ginsim.org/models
repository) and BioModelsDB [20]. We validate GFB in terms
of aggregation power and of speed-up offered for attractor
analysis.

Experimental setting. We created a prototype implemen-
tation of GFB integrated with the SMT solver Z3 [46] to
check formulas from ΨHxi,xj in Algorithm 1.4 We created an
importer for SBML Qual [47], an XML format supported by
both repositories, allowing us to import all 43 BNs and 50
MVs. In order to obtain physically-relevant initial partitions,
we infer candidate outputs, variables not appearing in the
update function of other variables. For each model, we create
output-preserving initial partitions: these consist of two blocks,
one containing all outputs and one containing the remaining
variables. This guarantees that reduced models allow, e.g., for
full output (de)activation studies discussed before. In order to
perform a consistent treatment, we restricted our analysis on
the 29 BNs and 31 MVs with at least one candidate output.

Validation of aggregation power. Fig. 3 (Left) provides the
reduction ratios obtained for the BNs using ⊕ ∈ {∧,∨}.
For each model we plot the reduction ratio, defined as the
number of reduced variables over that of original ones. For
each operator ⊕, the ratios were sorted in ascending order.
We can see that ⊕ = ∧ has high aggregation power, with
about one third of the models having reduction ratio below
0.6, while for ⊕ = ∨ most of the models have 0.8 or more.
For ⊕ = ∧, some models have particularly low ratios, below
0.2, some of which due to the fact that the reduced model has
2 variables only. We remark that these shall not be considered
degenerate reductions, because of the used initial partitions, as
discussed. We do not present results on maximal reductions,

4Note to reviewers: the tool, models, and replication material have been
omitted to adhere to double-blind policy. They will be made available online
upon acceptance.

obtained with the initial partition with one block only. These
are significantly smaller, but some are degenerate with one
variable only. We leave for future work a detailed study
on finer intermediate reductions using model-specific initial
partitions preserving variables of interest for the modeler. For
example, a modeler could be interested in preserving only
some outputs. Fig. 3 (Right) presents a similar study performed
on the MVs using ⊕ = min and ⊕ = max, confirming the
aggregation power of GFB.

Validation of analysis speed-up. Corollary 1 ensures that
GFB maps all attractors of the original system to attractors of
the reduced one. Here we show that this can speed-up attractor
computation. We use the COLOMOTO Notebook [48], an
environment incorporating a variety of tools for BN analysis.
An example is BNS [49], which combines SAT-solving and
bounded model checking to identify attractors. We computed
the attractors of the 29 considered BNs and of their reductions.
We could not consider MVs because we are not aware of
tools for general attractor analysis for MVs. Fig. 4 shows
the obtained runtime ratios (computation time of attractors in
the reduced model over that in the original one). In several
cases the reduction led to significant analysis speed-ups: in 11
BNs the ratio is less than 0.3. We remark that GFB is useful,
because the analysis of the original BNs, the AND- and OR-
reductions took on average 100s, 30s and 60s, respectively.
Notably, reductions with low reduction ratios are particularly
fast (fewer algorithm iterations): the 6 AND-reductions in
Fig. 3 (Left) with ratio smaller than 0.3 take less than 1.5
seconds on average.

d) Enabling analysis of large BNs using GFB: We now
apply GFB to a large BN of signalling pathways central to
macrophage activation [50]. This BN contains 321 variables,
making attractor computation infeasible even using the most
efficient tool for this task [49]. In particular, the analysis does
not terminate within an arbitrarily chosen time limit of 10
hours. Our crucial hypothesis is that GFB can enable some
analysis of this otherwise not analyzable BN, although with
certain restrictions imposed by what is exactly preserved by
the reduction.

The results are presented in Table I. In this experiment we
focus on ⊕ = ∧. We can see that the maximal reduction is
not physically-relevant, as it reduces to 1 variable only. The
output-preserving reduction, instead, leads to a reduced model
with 189 variables. Despite this, the obtained reduced model is
still not analyzable within the chosen time limit. We now show

Model Variables Attractors analysis
Count Runtime(s)

Original 321 —Time Out—

Output separated 189 —Time Out—
O1 70 64 0.668
O2 33 64 0.325

Maximal 1 1 0.001

TABLE I
GFB ENABLES ATTRACTORS COMPUTATION ON LARGE BN [50].

how two alternative initial partitions lead to reduced models
that can be effectively analyzed. In particular, we assume that
the modeler is not interested in preserving all 68 outputs, but
two different subsets of them: O1 = {S 28, S 26, S 198, S 11} and
O2 = {S 184, S 188}. In both cases, we use an initial partition
with one block for the selected outputs, and one for all the
other variables. In these two cases, we obtained models with
70 and 33 variables, respectively, which admit analysis. In
particular, the obtained reduced models can now be analyzed
using less than a second.

B. Non-linear reductions of Differential and Difference Equa-
tions

We present examples of exact lumping where ψR is not
linear, and thus cannot be captured by linear lumpings such
FDE. We use (R, ·) with neutral element 1.

a) Nonlinear Reduction of a Lotka-Volterra Model over
(R, ·): We start considering a prototypical higher-order Lotka-
Volterra model [21] where x1 preys x2 and x3, while x2 and
x3 prey together x1. The corresponding ODE system is

∂tvx1
= vx1

(1− vx2
vx3

),

∂tvx2
= vx2

(1− vx1
),

∂tvx3
= vx3

(1− vx1
).

(6)

The ODE discretization of (6) is given by

fx1
(s) = sx1

+ τsx1
(1−sx2

sx3
),

fx2
(s) = sx2

+ τsx2
(1−sx1

),

fx3
(s) = sx3

+ τsx3
(1−sx1

).

By Theorem 6, the nonlinear function ψR(vx1
, vx2

, vx3
) =

(vx1 , vx2 · vx3) is an exact lumping of (6). Indeed, XR =
{{x1}, {x2, x3}} is a GFB of (6) for ⊕ = · because ΨXRx2,x3

is
valid thanks to the identities fx1

= fx1
[x2/1, x3/x2x3], and

fx2
· fx3

= (x2 + τx2(1− x1)) · (x3 + τx3(1− x1))

= x2x3 + 2τx2x3(1− x1) + τ2x2x3(1− x1)2

= (fx2
· fx3

)[x2/1, x3/x2x3].

The lumped ODE system is given by ∂tvx1 = vx1(1−vx2vx3)
and

∂t(vx2
vx3

) = ∂tvx2
· vx3

+ vx2
· ∂tvx3

= vx2
(1− vx1

)vx3
+ vx2

vx3
(1− vx1

)

= 2vx1
vx2

(1− vx1
).

b) Nonlinear Reduction of Dynamical Weighted Net-
works over (R, ·): We now consider real-valued DS ob-
tained from weighted networks from the Netzschleuder repos-
itory [22]. We considered all 72 weighted networks with
at most 200 nodes (by restricting to at most the first 15
models from each family of models). The undirected ones were
expanded in directed by replacing every undirected edge with
two corresponding directed ones with same weight.

We consider two different dynamical interpretations. For A
the adjacency matrix of a network, we study the discrete-
time DS x(t + 1) = Ax(t), and the (ODE discretization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Reducbile Weighted networks from Netzschleuder (=)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
du

cti
on

 ra
tio

s

Discr. time
Cont. time

Fig. 5. Similarly to Fig. 3, we plot reduction ratios for the discrete-
and continuous-time dynamical interpretations of 21 weighted networks from
Netzschleuder. We used one operator, ⊕ = ·, and initial partitions separating
the first node in the network from the others.

of the) continuous-time DS ∂tv(t) = Av(t). In both cases,
we use one variable per node.5 We use ⊕ = ·, obtaining
nonlinear reductions. This leads to high nonlinearities in
formulas ΨXRxi,xj from Theorem 3, complex to handle for Z3.
Indeed, Algorithm 1 failed to terminate within an arbitrarily
chosen time-out of 1 hour even for models of moderate size.
Hence, for our experiments we used the randomized version
of the algorithm discussed in Section V, performing 40 tests
per formula ΨXRxi,xj from Theorem 3 after sampling values for
all variables. Currently, our prototype is still based on Z3,
to which we provide the sampled values making all ΨXRxi,xj
formulas variable free. In this setting, Z3 never failed.

Fig. 5 provides the results for the 21 networks that admitted
a reduction, 29% of the 72 considered. We got similar reduc-
tion ratios in the two interpretations, with slightly better ones
for the discrete-time one. The lower reduction power of the
continuous-time case comes from two factors: (i) Models have
higher nonlinearities due to the τ term; (ii) Theorem 6 gives
only a necessary condition for aggregation in this case (our
prototype does not support the results of Theorem 7). The
largest runtimes for the continuous- and discrete-time cases
were about 500 and 400 seconds, respectively, for a model
with 145 nodes.

VIII. CONCLUSION

Generalized forward bisimulation (GFB) is a technique
for dimensionality reduction of discrete- and continuous-
time dynamical systems that captures and generalizes existing
techniques. GFB allows to compute nonlinear reductions. One
needs to specify a dynamical system, a commutative monoid
(the variables’ domain and an operation used to aggregate
them), and an initial partition of the variables (used to tune the
reduction power to preserve variables of interest). A partition
refinement algorithm then minimizes the system over the
operation of the monoid. We implemented GFB and applied
it to four popular formalisms: difference and differential
equations with monoid (R, ·), Boolean networks with (B,∧)

5In the continuous-time case, we also have an additional variable for the τ
term from the ODE discretization, to which we give constant update function.
This guarantees that the obtained reductions hold for any value of τ .

and (B,∨), multi-valued networks with ({0, 1, 2},min) and
({0, 1, 2},max). In all cases, GFB yielded notable nonlinear
reductions. On 60 Boolean and multi-valued networks from
two popular repositories, we have shown high aggregation
power and analysis speed-ups. Using an existing large Boolean
network with 321 variables we have shown that GFB might
enable the analysis of otherwise untractable models. On 21
ODEs originated from weighted networks from a popular
repository, we have computed nonlinear reductions thanks to
the · operation, showing high aggregation power.

REFERENCES

[1] D. Sangiorgi, Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2011.

[2] D. Park, “Concurrency and automata on infinite sequences,” in Theoret-
ical Computer Science, 1981, pp. 167–183.

[3] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Inf. Comput., vol. 94, no. 1, pp. 1–28, 1991.

[4] P. Buchholz, “Exact and ordinary lumpability in finite Markov chains,”
Journal of Applied Probability, vol. 31, no. 1, pp. 59–75, 1994.

[5] R. De Nicola, U. Montanari, and F. Vaandrager, “Back and forth
bisimulations,” in CONCUR ’90 Theories of Concurrency: Unification
and Extension, ser. Lecture Notes in Computer Science, J. Baeten
and J. Klop, Eds. Springer Berlin Heidelberg, 1990, vol. 458, pp.
152–165. [Online]. Available: http://dx.doi.org/10.1007/BFb0039058

[6] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Forward
and backward bisimulations for chemical reaction networks,” in 26th
International Conference on Concurrency Theory, CONCUR, 2015,
pp. 226–239. [Online]. Available: http://cse.lab.imtlucca.it/∼mirco.
tribastone/papers/concur2015.pdf

[7] L. Cardelli, I. C. Pérez-Verona, M. Tribastone, M. Tschaikowski,
A. Vandin, and T. Waizmann, “Exact maximal reduction of stochastic
reaction networks by species lumping,” Bioinform., vol. 37, no. 15, pp.
2175–2182, 2021.

[8] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Symbolic
computation of differential equivalences,” in POPL, 2016, pp. 137–150.
[Online]. Available: https://doi.org/10.1145/2837614.2837649

[9] R. Paige and R. E. Tarjan, “Three partition refinement algorithms,” SIAM
Journal on Computing, vol. 16, no. 6, pp. 973–989, 1987.

[10] M. S. Okino and M. L. Mavrovouniotis, “Simplification of mathematical
models of chemical reaction systems,” Chemical Reviews, vol. 2, no. 98,
pp. 391–408, 1998.

[11] A. Antoulas, Approximation of Large-Scale Dynamical Systems, ser.
Advances in Design and Control. SIAM, 2005.

[12] T. J. Snowden, P. H. van der Graaf, and M. J. Tindall, “Methods
of model reduction for large-scale biological systems: A survey
of current methods and trends,” Bulletin of Mathematical Biology,
vol. 79, no. 7, pp. 1449–1486, 2017. [Online]. Available: https:
//doi.org/10.1007/s11538-017-0277-2

[13] G. Li, H. Rabitz, and J. Tóth, “A general analysis of exact
nonlinear lumping in chemical kinetics,” Chemical Engineering
Science, vol. 49, no. 3, pp. 343–361, 1994. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0009250994870063

[14] S. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3,
pp. 437 – 467, 1969.

[15] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Maximal
aggregation of polynomial dynamical systems,” Proceedings of the
National Academy of Sciences, vol. 114, no. 38, pp. 10 029 – 10 034,
2017.

[16] M. Hopfensitz, C. Müssel, M. Maucher, and H. A. Kestler, “Attractors
in boolean networks: a tutorial,” Computational Statistics, vol. 28, no. 1,
pp. 19–36, 2013.

[17] R. Thomas, D. Thieffry, and M. Kaufman, “Dynamical behaviour of
biological regulatory networks — i. biological role of feedback loops
and practical use of the concept of the loop-characteristic state,” Bulletin
of mathematical biology, vol. 57, no. 2, pp. 247–276, 1995.

[18] G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, and
A. Vandin, “Reducing boolean networks with backward boolean equiv-
alence,” in International Conference on Computational Methods in
Systems Biology. Springer, 2021, pp. 1–18.

[19] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and
C. Chaouiya, “Logical modelling of regulatory networks with ginsim
2.3,” Biosystems, vol. 97, no. 2, pp. 134–139, 2009.

[20] R. S. Malik-Sheriff, M. Glont, T. V. N. Nguyen, K. Tiwari, M. G.
Roberts, A. Xavier, M. T. Vu, J. Men, M. Maire, S. Kananathan, E. L.
Fairbanks, J. P. Meyer, C. Arankalle, T. M. Varusai, V. Knight-Schrijver,
L. Li, C. Dueñas-Roca, G. Dass, S. M. Keating, Y. M. Park, N. Buso,
N. Rodriguez, M. Hucka, and H. Hermjakob, “BioModels — 15
years of sharing computational models in life science,” Nucleic Acids
Research, vol. 48, no. D1, pp. D407–D415, 1 2020, gkz1055. [Online].
Available: https://doi.org/10.1093/nar/gkz1055

[21] P. Singh and G. Baruah, “Higher order interactions and species coexis-
tence,” Theoretical Ecology, vol. 14, pp. 71–83, 2021.

[22] T. P. Peixoto, “The netzschleuder network catalogue and repository,”
2020. [Online]. Available: https://networks.skewed.de/

[23] G. Li and H. Rabitz, “A general analysis of exact lumping in chemical
kinetics,” Chemical Engineering Science, vol. 44, no. 6, pp. 1413–1430,
1989.

[24] A. S. Tomlin, G. Li, H. Rabitz, and J. Tóth, “The effect of lumping and
expanding on kinetic differential equations,” SIAM Journal on Applied
Mathematics, vol. 57, no. 6, pp. 1531–1556, 1997.

[25] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Guaran-
teed error bounds on approximate model abstractions through reacha-
bility analysis,” in QEST, 2018, pp. 104–121.

[26] K. Ghorbal and A. Platzer, “Characterizing algebraic invariants by
differential radical invariants,” in TACAS, E. Ábrahám and K. Havelund,
Eds., vol. 8413. Springer, 2014, pp. 279–294.

[27] E. Bartocci, L. Kovács, and M. Stankovic, “Automatic generation of
moment-based invariants for prob-solvable loops,” in ATVA, Y. Chen,
C. Cheng, and J. Esparza, Eds., 2019, pp. 255–276.

[28] M. Boreale, “Algebra, coalgebra, and minimization in polynomial dif-
ferential equations,” Log. Methods Comput. Sci., vol. 15, no. 1, 2019.

[29] ——, “Complete algorithms for algebraic strongest postconditions and
weakest preconditions in polynomial odes,” Sci. Comput. Program., vol.
193, p. 102441, 2020.

[30] G. Bacci, G. Bacci, K. G. Larsen, M. Tribastone, M. Tschaikowski,
and A. Vandin, “Efficient local computation of differential bisimulations
via coupling and up-to methods,” in Symposium on Logic in Computer
Science, LICS, 2021, pp. 1–14.

[31] G. J. Pappas, G. Lafferriere, and S. Sastry, “Hierarchically consistent
control systems,” IEEE Trans. Automat. Contr., vol. 45, no. 6, pp. 1144–
1160, 2000.

[32] G. J. Pappas and S. Simic, “Consistent abstractions of affine control
systems,” IEEE Trans. Automat. Contr., vol. 47, no. 5, pp. 745–756,
2002.

[33] A. J. van der Schaft, “Equivalence of dynamical systems by bisimula-
tion,” IEEE Transactions on Automatic Control, vol. 49, 2004.

[34] A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, “Dynamically con-
sistent reduction of logical regulatory graphs,” Theoretical Computer
Science, vol. 412, no. 21, pp. 2207–2218, 2011.

[35] A. Veliz-Cuba, “Reduction of boolean network models,” Journal of
theoretical biology, vol. 289, pp. 167–172, 2011.

[36] J. Milnor, “On the concept of attractor,” Communications in Mathemat-
ical Physics, vol. 99, no. 2, pp. 177–195, 1985.

[37] E. Azpeitia, M. Benı́tez, I. Vega, C. Villarreal, and E. R. Alvarez-Buylla,
“Single-cell and coupled grn models of cell patterning in the arabidopsis
thaliana root stem cell niche,” BMC systems biology, vol. 4, no. 1, pp.
1–19, 2010.

[38] D. Richardson, “Some undecidable problems involving elementary func-
tions of a real variable,” The Journal of Symbolic Logic, vol. 33, no. 4,
pp. 514–520, 1968.

[39] N. Saxena, “Progress on polynomial identity testing,” Bull. EATCS,
vol. 99, pp. 49–79, 2009.

[40] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1971.

[41] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration,
2006.

[42] P. E. Kloeden and J. Lorenz, “Stable attracting sets in dynamical systems
and in their one-step discretizations,” SIAM Journal on Numerical
Analysis, vol. 23, no. 5, pp. 986–995, 1986.

[43] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and
C. Chaouiya, “Logical modelling of regulatory networks with ginsim
2.3,” Biosystems, vol. 97, no. 2, pp. 134–139, 2009.

[44] A. Fauré, B. Vreede, E. Sucena, and C. Chaouiya, “A discrete model of
drosophila eggshell patterning reveals cell-autonomous and juxtacrine
effects,” PLoS Comput Biol, vol. 10, p. e1003527, 2014.

[45] A. Naldi, P. T. Monteiro, and C. Chaouiya, “Efficient handling of large
signalling-regulatory networks by focusing on their core control,” in
International Conference on Computational Methods in Systems Biology.
Springer, 2012, pp. 288–306.

[46] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[47] C. Chaouiya, D. Bérenguier, S. M. Keating, A. Naldi, M. P. Van Iersel,
N. Rodriguez, A. Dräger, F. Büchel, T. Cokelaer, B. Kowal et al., “SBML
qualitative models: a model representation format and infrastructure to
foster interactions between qualitative modelling formalisms and tools,”
BMC systems biology, vol. 7, no. 1, pp. 1–15, 2013.

[48] A. Naldi, P. T. Monteiro, C. Müssel, C. for Logical Models, Tools,
H. A. Kestler, D. Thieffry, I. Xenarios, J. Saez-Rodriguez, T. Helikar, and
C. Chaouiya, “Cooperative development of logical modelling standards
and tools with colomoto,” Bioinformatics, vol. 31, no. 7, pp. 1154–1159,
2015.

[49] E. Dubrova and M. Teslenko, “A sat-based algorithm for finding at-
tractors in synchronous boolean networks,” IEEE/ACM transactions on
computational biology and bioinformatics, vol. 8, no. 5, pp. 1393–1399,
2011.

[50] S. Raza, K. A. Robertson, P. A. Lacaze, D. Page, A. J. Enright, P. Ghazal,
and T. C. Freeman, “A logic-based diagram of signalling pathways
central to macrophage activation,” BMC systems biology, vol. 2, no. 1,
pp. 1–15, 2008.

C.1 Supplementary Material

The state space and the dynamics of a BN are encoded into the state transition
graph (STG) which consists of states and transitions. Consider the introductory ex-
ample of C given in the top-left part of Fig. 7. The corresponding STG is provided
in the bottom left part of figure. Each box contains an evaluation of the set of vari-
ables while the arrows correspond to the transitions after an update. For example, if
the variables at time point k have the value (1 , 0 , 0) i.e. x1 (k) = 1 , x2 (k) = 0 , and
x3 (k) = 0 -top left blue box-, then by applying the update functions we arrive at the
yellow state (0 , 1 , 1).

x1(k + 1) = ¬x2(k) ∨ x3(k)
x2(k + 1) = x1(k) ∨ x3(k)
x3(k + 1) = ¬x3(k) ∧ (x1(k) ∨ x2(k))

x1,2(k + 1) = ¬x3(k) ∨ x1,2(k)
x3(k + 1) = x1,2(k) ∧ ¬x3(k)

000 100

011

110

111

010

101 001

00

10

11

01

Figure 7: A BN (top-left), its STG (bottom-left), the GFB-reduced BN (top-
right) and its (reduced) STG (bottom-right).

We provide the GFB-reduced BN in the top-right part of Fig. 7, as derived in the
introduction. Essentially, each state/box of the reduced STG results from original STG
after collapsing the first and the second digit of each box to one single digit according
to their OR. States with the same colour in the original STG are mapped to the same
state in the reduced STG. We highlight that the original and the reduced STG are
deterministic and bisimulation equivalent which means that reachability properties are
preserved.

Hypothesis. Note that STGs suffer from the state space explosion; there are ex-
ponentially many states on the number of the BN variables. In several cases, STG
generation takes a lot of time, while in other cases the STG can not be generated due
to our limited computational resources. Our crucial hypothesis is that our reduction
method can speed-up STG generation and render it feasible.

Configuration. To generate the STG, we use PyBoolNet [29], a python package
for the generation, analysis and visualisation of Boolean networks. We focus on 5
BNs of intermediate size wherein the results were outstanding and compute the time
needed for the generation of the original and the reduced STGs. The experiments have
been conducted in a common PC with an Intel Xeon(R) 2.80GHz and 32GB of RAM.
We note that STG generation was infeasible for BNs with more than 24 variables.

106

Results. We present the results of our analysis in Table 2. The first column (Model)
contains a model identifier and the relevant literature. The column original model
contains the number of variables (Size) of the original model and the time needed for
the generation of the STG in seconds. The same information are presented for the
case of the And-Reduced model and the Or-Reduced model in columns 2 and 3.

Model Original model And-Reduced Or-Reduced
Size STG generation(s) Size STG generation(s) Size STG generation(s)

M1 [30] 24 out of memory 17 9 24 out of memory
M2 [30] 26 out of memory 18 36 21 188
M3 [30] 23 333 21 158 20 78
M4 [30] 18 8 16 4 16 7
M5 [31] 20 49 17 12 18 14

Table 2: Time needed for STG generation of the original and the reduced BNs.

Interpretation. In the case of M1 and M2 we could not store the original STG due
to our limited computational resources. However, in the case of M1 we could compute
the STG of the And-Reduced BN, while for M2 we could compute the reduced STG
in both reduction scenarios. For the case of M3, M4, and M5 we have speed-ups.
Particularly in the case of M3 STG generation takes more that 5 minutes while in the
Or-reduced STG it takes a bit more than 1 minute and in the case of the And-reduced
STG 2 .5 minutes. To conclude, our reduction method can offer significant speed-ups
in the generation of the STG and render the generation feasible despite intractable for
the original BN.

107

D PAPER IV: An Extension of ERODE to Re-
duce Boolean Networks By Backward Boolean
Equivalence

Reproduced with permission from Springer Nature

108

An Extension of ERODE to Reduce Boolean
Networks by Backward Boolean Equivalence ⋆

Georgios Argyris1[0000−0002−3203−0410], Alberto Lluch
Lafuente1[0000−0001−7405−0818], Mirco Tribastone2[0000−0002−6018−5989], Max

Tschaikowski3[0000−0002−6186−8669], and Andrea Vandin4,1[0000−0002−2606−7241]

1 DTU Technical University of Denmark, Kongens Lyngby, Denmark
2 IMT School for Advanced Studies Lucca, Italy

3 University of Aalborg, Denmark
4 Sant’Anna School for Advanced Studies, Pisa, Italy

Abstract. Boolean Networks (BN) are established tools for modelling
biological systems. However, their analysis is hindered by the state space
explosion: the exponentially many states on the variables of a BN. We
present an extension of the tool for model reduction ERODE with sup-
port for BNs and their reduction with a recent method called Backward
Boolean Equivalence (BBE). BBE identifies maximal sets of variables
that retain the same value whenever initialized equally. ERODE has
been also extended to support importing and exporting between differ-
ent formats and model repositories, enhancing interoperability with other
tools.

Keywords: Boolean Network · Backward Equivalence · Reduction

1 Introduction

Boolean Networks (BNs) [9] are established models for biological systems which
have gained a lot of interest due to their simplicity; they consist of Boolean vari-
ables which denote active/inactive genes, high/low concentration of substances,
etc. The variables are updated according to functions which are encoded into
logical rules as we display in the left part of Fig. 1. This BN was published
in [6], and models neurogenesis: the process by which nervous system cells, the
neurons, are produced by neural stem cells.

A major hurdle in analyzing large BNs is the state space explosion, i.e.,
the presence of exponentially many BN states, the different configurations of
(de)activation values of each variable, with respect to the number of BN vari-
ables. For example, Fig. 2 shows the state space of the BN of Fig. 1; the BN
has 6 variables, leading to 26 states. For the tractability of large BNs, several
reduction techniques have been proposed (e.g., [1,16,19]). One of the most pop-
ular reduction methods is based on fast-slow decomposition, studied in [16,19]

⋆ Partially supported by the DFF project REDUCTO 9040-00224B, the Poul Due
Jensen Grant 883901, the Villum Investigator Grant S4OS, and the PRIN project
SEDUCE 2017TWRCNB. Corresponding author: Andrea Vandin.

2 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

Her6 (t+1) = ¬miR9 (t) ∧ ¬N (t)
HuC (t+1) = ¬miR9 (t) ∧ ¬P(t)

N (t+1) = HuC (t)
P(t+1) = Her6 (t) ∨ Zic5 (t)

Zic5 (t+1) = ¬miR9 (t) ∧ ¬N (t)
miR9 (t+1) = ¬Her6 (t) ∧ ¬N (t)

Her6

HuC

N

P

Zic5

miR9

Fig. 1: A BN from [6]. (Left) The variables and update functions. (Right) An
abstract graphical representation known as interaction graph where the nodes
correspond to the variables, and the green/red arrows denote positive/negative
effect to the activation value of the target variable, resp.

and implemented in GINsim [5]. Here, we present an extension of ERODE [3],
a tool for modelling, analysis, and reduction of biological models that imple-
ments a complementary method of reduction for BNs called Boolean Backward
Equivalence (BBE) [1]. Originally, ERODE was developed to support chemical
reaction networks, and systems of ordinary differential equations [3]. Here, we
present an extension to support BNs and the new importing and exporting capa-
bilities between three different formats: a native format of ERODE to describe
BNs (.ode), the .bnet format [11], and the SBML-qual format [4]. Notably, the
latter is a standard for modelling biological systems 5. These formalisms allow to
interface with popular online BN model repositories like BioModelsDB [10] and
the GinSim repository [12], as well as tools for BN analysis like those fostered
by the COLOMOTO initiative [15].

2 Preliminaries

Model. A BN model is a pair (X ,F) with X being a set of variables, and
F a set of update functions. In the model of Fig. 1, the set of variables and
the set of update functions are: X = {Her6 ,HuC , N ,P ,Zic5 ,miR9} and F =
{fHer6 , fHuC , fN , fP , fZic5 , fmiR9} with, e.g., fHer6 = ¬miR9 ∧ ¬N .

BBE Partition. The crucial aspect of BBE is the notion of BBE partition (or
BBE equivalence), which is a partition of the BN variables that satisfies the
following criterion:

if the variables within each block have same activation value, they will
retain the same value in all subsequent steps.

An example of partition is P1 = {{Her6 ,HuC ,N ,P , Zic5 , miR9}}, which
consists of one unique block. Another partition is P2 = {{Her6 , Zic5 , P},
{HuC}, {N }, {miR9}}, which consists of four blocks. The partitions P1 , P2 are
not BBE partitions. Instead, P3 = {{Her6 ,Zic5}, {P}, {HuC}, {N }, {miR9}}
is a BBE partition.

5 The artifact can be downloaded from www.erode.eu/examples.html with further
guidelines to replicate the experiments in this document.

Extension of ERODE to reduce BNs by BBE 3

Fig. 2: The state transition graph (STG) of the BN of Fig. 1. An STG encodes the
state space (nodes) and the dynamics (transitions) of a BN. The STG consists
of 4 disconnected components. Each node contains digits denoting the activation
values of each variable in that particular state. The transitions are obtained by
synchronously applying the update functions in Fig. 1 to the activation values
of the source state.

The BBE reduction method requires the user to specify an initial partition.
Following a partition refinement approach [17], BBE proceeds by iteratively split-
ting the blocks of such partition until a BBE partition is obtained. The maximal
BBE reduction of a BN can be obtained by using trivial initial partitions with
one block only like P 1. By using P 2 as initial partition we get P 3.

Given a BBE partition, we can create a BBE-reduced BN containing one
variable per partition block. We have shown in [1] that this can be used to study
selected part of the original dynamics.

3 ERODE

Fig. 3 provides a screenshot of ERODE. The middle panel provides the BN of
Fig. 1 in ERODE format. The variables shall be declared in a block begin init

... end init. We illustrate by comment (//), how one could specify initial
conditions for some of the variables (set to false by default).

The initial partition for the partition refinement algorithm can be specified
in a block begin partition ... end partition. In the example of Fig. 3 we
declare P2 .

Finally, we declare the update functions for each of the variables in a block
begin update functions ... end update functions.

After BN definition which is encoded in the previous three blocks, we can
provide either reduction or exporting commands. For example, BBE reduction

4 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

Fig. 3: ERODE GUI: (left) the project explorer; (middle) the BN from Fig. 1 in
ERODE format; (right) The BBE reduction of the BN; (bottom) A console with
log information. In (right) we see how to specify (i) the variables, (ii) a partition
of the variables, (iii) the update functions, and (iv) the reduction commands.

is obtained with command reduceBBE which requires 3 parameters. The first,
fileWhereToStorePartition, names the .txt file to store the blocks of the ob-
tained BBE partition. The second parameter, reducedFile, names the ERODE
file wherein the reduced BN is stored. We display this .ode file in the right
window of Fig. 3. The parameter prePartition can take three values: USER to
declare as initial partition the one specified above, NO for plugging the trivial
partition wherein all variables belong to one block (e.g., P 1), or IC to define
an initial partition according to the initial conditions specified by the user (one
block for all variables initialized to true, and one for those initialized to false).

Before discussing the importing/exporting commands in Section 5, we pro-
vide the steps, implemented by ERODE, in our running example.

4 An Illustration of BBE Reduction

In this section, we exemplify how ERODE performs BBE reduction in the BN of
Fig. 1. The reduction is summarized in three steps: (i) the first step is done by
the modeller who provides the BN and an initial partition of the BN variables.
ERODE implements the other two steps as follows: (ii) it splits the blocks Pi of
the initial partition until a partition P that satisfies the BBE criterion is reached.
The splitting is done by an iterative partition refinement algorithm [17]. In each
iteration, the Z3 SAT solver [7], integrated in ERODE, checks the validity of the

Extension of ERODE to reduce BNs by BBE 5

SAT-encoding of the BBE criterion (see [1]); if valid, the current partition is a
BBE; if invalid, Z3 returns a counter-example according to which the splitting is
performed. Once we get to a partition for which the formula is valid, (iii) ERODE
produces the reduced BN according to the resulting BBE partition by collapsing
all variables that belong to the same block into single variable components.

Partition Refinement. We assume that the modeler sets parameter prePartition
to NO, requiring to use the trivial initial partition P1 . Firstly, the tool checks if
P 1 is a BBE partition. Z3 decides that the BBE criterion is invalid which means
that P 1 is not a BBE. Z3 provides as counterexample the state (0, 0, 0, 0, 0, 0),
which transits to the state (1, 1, 0, 0, 1, 1). This means that the third and fourth
variable cannot be BBE-equivalent to the others, therefore we refine the initial
single block in two separating variables with value 0 and 1. We obtain the new
partition: P = {{N ,P}, {Her6 , HuC , Zic5 ,miR9}}. The algorithm repeats it-
eratively the above steps until a BBE partition is met. In this case, the algorithm
terminates with P because it is a BBE partition.

Reduced BN. When the algorithm reaches a BBE partition, ERODE computes
the reduced BN based on it. In the case of the BBE partition P = {{N ,P},
{Her6 , HuC , Zic5 ,miR9}}, the variables N , P are collapsed into one component
x{N ,P}, and the variables Her6 ,HuC ,Zic5 , miR9 into the variable component
x{Her6 ,HuC ,Zic5 ,miR9}. The update function of the variable x{N ,P} is given by
selecting the update function of one variable (either N or P), and replacing each
occurrence of an original variable with the new one corresponding to its block
(i.e., N , and P , are replaced by x{N ,P}, and the others by x{Her6 ,HuC ,Zic5 ,miR9}).
It can be shown that any update function of the variables in a block can be chosen
without affecting the dynamics of the obtained reduced model. In this example
we select the variables with the simplest function. We obtain:

x{N ,P}(t + 1) = x{Her6 ,HuC ,Zic5 ,miR9}(t)
x{Her6 ,HuC ,Zic5 ,miR9}(t + 1) = ¬x{Her6 ,HuC ,Zic5 ,miR9}(t) ∧ ¬x{N ,P}(t)

We display this BN in the right panel of Fig. 3, where variable x{N,P} is
denoted by N , and the variable x{Her6,HuC,Zic5,miR9} by Her6.

Application of BBE reduction for model analysis. Several tasks in model analysis
are intractable due to the high dimensionality of BNs e.g., the generation of the
STG, and the computation of attractors. Attractors are sets of states towards
which the BN tends to evolve and remain. They are usually associated with
important behaviours of the underlying system: for instance, different attractors
correspond to different cell types in cell differentiation processes [2]. In [1], we
present cases wherein BBE reduction can enable of facilitate these tasks.

5 Importing and Exporting Capabilities

6 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

x_in

x_1 x_2

x_out

Fig. 4: The interac-
tion graph of a BN
with 1 input (xin)
and 1 output (xout).

Input and Output Variables. The variables of a BN can
be divided in 3 categories [14]: inputs which denote ex-
ternal stimuli, outputs which model readout/response of
the modelled system, and internal variables. These cate-
gories can be easily observed in the interaction graph of
a BN (e.g., Fig. 1 and Fig. 4). Inputs have no incoming
edges, outputs have no outgoing edges, and internal vari-
ables have both incoming and outgoing edges. ERODE
features automatic identification of these three categories
basing on the update functions. Input variables can be
identified in the BN model as variables that are regulated
only by themselves or have a stable update function, i.e.
the update function of an input variable x has the form:
x , 1 , or 0 . Instead, output variables do not appear in the update functions of
other variables.

Importing a model. ERODE has importing capabilities from the SBML-qual
format [4], which is a standard format for biological models, and the .bnet format.
Importing can be done with the following commands:

importSBMLQualFolder(folderIn="BNs_sbml",folderOut="BNs_ode")

importBNetFolder(folderIn="BNs_bnet",folderOut="BNs_ode")

which load all models from folder folderIn, and store the ERODE versions
in folder folderOut. The commands have an additional optional parameter
guessPrepartition, triggering the generation of corresponding partition block.
If set to outputs, the outputs are split in singleton blocks, while the oth-
ers belong to another single block. Similarly for inputs. We can also specify
outputsOneBlock or inputsOneBlock in which cases we put all outputs (or
inputs) in the same block.

Exporting a model. ERODE can export BNs, e.g. reduced ones, in the above men-
tioned formats. This is done using commands exportBoolNet or exportSBMLQual.

6 Conclusion

We extended ERODE to reduce Boolean Networks (BN) with Boolean Backward
Equivalence (BBE) which collapses variables such that if initialized equally, re-
tain the same value in all subsequent steps. The scalability and the efficiency the
tool has been illustrated in [1] wherein we apply our method to the whole GINsim
repository. 6 As future work, ERODE will be extended with further reduction
techniques for BNs, complementary to BBE that we presented here. In our fu-
ture work, we also aim to incorporate ERODE in COLOMOTO notebook [13]
to further promote interoperability.

6 Note to reviewers: The appendix mentions an additional case study material that
we will use in showcasing our tool during the conference.

Extension of ERODE to reduce BNs by BBE 7

References

1. Argyris, G., Lluch-Lafuente, A., Tribastone, M., Tschaikowski, M., Vandin, A.:
Reducing boolean networks with backward boolean equivalence. In: Computational
Methods in Systems Biology, CMSB. pp. 1–18 (2021). https://doi.org/10.1007/978-
3-030-85633-5 1

2. Azpeitia, E., Beńıtez, M., Vega, I., Villarreal, C., Alvarez-Buylla, E.R.: Single-cell
and coupled grn models of cell patterning in the arabidopsis thaliana root stem
cell niche. BMC systems biology 4(1), 1–19 (2010)

3. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Erode: a tool for the
evaluation and reduction of ordinary differential equations. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 310–328. Springer (2017)

4. Chaouiya, C., Bérenguier, D., Keating, S.M., Naldi, A., Van Iersel, M.P., Ro-
driguez, N., Dräger, A., Büchel, F., Cokelaer, T., Kowal, B., et al.: SBML qualita-
tive models: a model representation format and infrastructure to foster interactions
between qualitative modelling formalisms and tools. BMC systems biology 7(1),
1–15 (2013)

5. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with ginsim. In: Bacterial Molecular Networks, pp. 463–479. Springer (2012)

6. Coolen, M., Thieffry, D., Drivenes, Ø., Becker, T.S., Bally-Cuif, L.: mir-9 controls
the timing of neurogenesis through the direct inhibition of antagonistic factors.
Developmental cell 22(5), 1052–1064 (2012)

7. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

8. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM transactions on computational biology
and bioinformatics 8(5), 1393–1399 (2011)

9. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22(3), 437 – 467 (1969)

10. Malik-Sheriff, R.S., Glont, M., Nguyen, T.V.N., Tiwari, K., Roberts, M.G.,
Xavier, A., Vu, M.T., Men, J., Maire, M., Kananathan, S., Fairbanks, E.L.,
Meyer, J.P., Arankalle, C., Varusai, T.M., Knight-Schrijver, V., Li, L., Dueñas-
Roca, C., Dass, G., Keating, S.M., Park, Y.M., Buso, N., Rodriguez, N.,
Hucka, M., Hermjakob, H.: BioModels — 15 years of sharing computa-
tional models in life science. Nucleic Acids Research 48(D1), D407–D415
(1 2020). https://doi.org/10.1093/nar/gkz1055, https://doi.org/10.1093/nar/
gkz1055, gkz1055

11. Müssel, C., Hopfensitz, M., Kestler, H.A.: Boolnet: an r package for generation,
reconstruction and analysis of boolean networks. Bioinformatics 26(10), 1378–1380
(2010)

12. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logi-
cal modelling of regulatory networks with ginsim 2.3. Biosystems 97(2), 134–139
(2009). https://doi.org/https://doi.org/10.1016/j.biosystems.2009.04.008, https:
//www.sciencedirect.com/science/article/pii/S0303264709000665

13. Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P.T., Chaouiya, C., Helikar,
T., Zinovyev, A., Calzone, L., Cohen-Boulakia, S., et al.: The colomoto interac-
tive notebook: accessible and reproducible computational analyses for qualitative
biological networks. Frontiers in physiology 9, 680 (2018)

8 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

14. Naldi, A., Monteiro, P.T., Chaouiya, C.: Efficient handling of large signalling-
regulatory networks by focusing on their core control. In: International Conference
on Computational Methods in Systems Biology. pp. 288–306. Springer (2012)

15. Naldi, A., Monteiro, P.T., Müssel, C., for Logical Models, C., Tools, Kestler, H.A.,
Thieffry, D., Xenarios, I., Saez-Rodriguez, J., Helikar, T., Chaouiya, C.: Cooper-
ative development of logical modelling standards and tools with colomoto. Bioin-
formatics 31(7), 1154–1159 (2015)

16. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction
of logical regulatory graphs. Theoretical Computer Science 412(21), 2207–2218
(2011)

17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

18. Raza, S., Robertson, K.A., Lacaze, P.A., Page, D., Enright, A.J., Ghazal, P., Free-
man, T.C.: A logic-based diagram of signalling pathways central to macrophage
activation. BMC systems biology 2(1), 1–15 (2008)

19. Veliz-Cuba, A.: Reduction of boolean network models. Journal of theoretical biol-
ogy 289, 167–172 (2011)

A Supplementary Material

We expect to provide a tool demonstration at the conference. This will include
some of the experiments presented in [1], and the one presented in this appendix.
Notably, the material in the appendix allows us to show that BBE is useful,
because it allows to analyze models that were intractable before.

A.1 An application to the Signalling Macrophage Activation

In this section we present an application that complements the large set of
experiments done in our previous and ongoing studies. We reduce a logic-based
diagram of signalling pathways central to macrophage activation [18]. This BN
model encompasses four pathways that are central to innate immunity: the toll-
like receptor, the inteferon, the NF-κB and apoptotic pathways. The BN consists
of 321 variables which refer to proteins, genes or complexes, 19 of them being
inputs, 68 of them being outputs and the rest variables are internal. We highlight
that the attractors of this BN cannot be computed by using the most efficient
tool for attractor identification in synchronous BNs among those supported by
the COLOMOTO initiative [8].

Hypothesis. For large models, several tasks are computationally expensive like
the computation of attractors. Our crucial hypothesis is that, with BBE reduc-
tion, we can compute several attractors which would be otherwise intractable.

Configuration. We explore four different reduction scenarios relevant to input
variables: (i) the Maximal reduction wherein all variables belong to just one
block, (ii) the Input-separated reduction wherein the initial partition consists of
two blocks (one containing the inputs and one containing the rest variables), (iii)

Extension of ERODE to reduce BNs by BBE 9

Input-distinguished reduction wherein all input variables belong to a singleton
block of the initial partition, and (iv) the Manually-refined reduction where we
permit some of the input variables to be merged with other internal variables.
The input variables considered in the last case have been selected arbitrarily in
order to get results demonstrating that custom initial partitions might allow to
handle otherwise untractable models.

Results. The Input-distinguished reduction leads to a reduced BN with 161 vari-
ables, but, still, attractor computation is infeasible. The Input-separated and
Maximal reduction lead to reduced BNs with 91 and 8 variables respectively,
while in these two cases only 2 attractors of the original BN are preserved. How-
ever, after arbitrarily selecting some of the inputs, and permitting their merging
with internal variables, we obtain a manually-refined reduced BN with 137 vari-
ables that preserves 8960 attractors of the original system. We summarize the
results in Table 1.

Model Size Attractors Analysis (s) Reduction (s)

Original 321 —Time Out— -

Input-distinguished 161 —Time Out— 3,295

Manually-refined 137 8960 175,69 3,071

Input-separated 91 2 0.105 3,501

Maximal 8 2 0.032 0,277

Table 1: Different reduction scenarios reproduce different dynamics of the origi-
nal system.

Interpretation. The Maximal and the Input-separated reduction usually leads to
tractable reduced BNs which, however, may lose several interesting dynamics of
the original system. In the case of Input-distinguished reduction, we may obtain
reduced BNs by several orders of magnitude, but without being able to compute
the attractors using state-of-the-art methods [8]. Luckily, there exist cases (like
the Manually-refined reduction) wherein we reduce enough while preserve more
attractors of the original system.

	Preliminaries
	Reduction is essential
	Contributions
	Boolean Backward Equivalence
	Generalised Forward Bisimulation
	Automation

	Related work
	Future Work and Conlusion
	Appendix
	PAPER I: Reducing Boolean Networks with Backward Boolean Equivalence
	PAPER II: Reducing Boolean Networks with Backward Boolean Equivalence
	PAPER III: Minimization of Dynamical Systems over Monoids
	Supplementary Material

	PAPER IV: An Extension of ERODE to Reduce Boolean Networks By Backward Boolean Equivalence

