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Summary (English)

Some logics make it easier to say what we want than others and some methods
of deduction are simpler to work with than others. One thing typically remains
important: that we can deduce all valid things (completeness). In this thesis I
tackle completeness of various deduction methods for various logics. The work is
formalized in the proof assistant Isabelle/HOL which offers a common language
for mathematics and computer science where proofs can be checked mechanically.
This thesis discusses the following contributions of my PhD project in particular:

• A historical overview of formalized completeness proofs and a formalization
that explains the essence of synthetic completeness proofs.

• A formalization of a concise completeness proof for first-order logic in
Isabelle/HOL, including solutions to the issues of formalizing quantifiers
and proving completeness for formulas with free variables.

• A verified prover for first-order logic with functions, with a formalized
completeness proof that takes the search strategy of the prover into account.

• A synthetic completeness proof for a tableau system for basic hybrid logic
which is both terminating and in the Seligman style where the proof rules
reflect the local perspective that modal logic is based on.

• Formalized soundness and completeness results for epistemic and public
announcement logic, instantiated to a range of concrete axiom systems.

• A best-first proof search tactic for the proof assistant Lean 4.

• An abstract framework for synthetic completeness proofs.



Summary (Danish)

Nogle logikker gør det nemmere at udtrykke hvad vi gerne vil end andre og
nogle deduktionsmetoder er nemmere at arbejde med end andre. En ting er som
regel vigtig: at vi kan deducere alt hvad der er gyldigt (komplethed). I denne
afhandling beskæftiger jeg mig med komplethed af diverse deduktionsmetoder
for diverse logikker. Arbejdet er formaliseret i bevisassistenten Isabelle/HOL,
der tilbyder et fællessprog for matematik og datalogi, hvor beviser kan verificeres
automatisk. Afhandlingen diskuterer især følgende af mit PhD-projekts bidrag:

• Et historisk overblik over formaliserede komplethedsbeviser og en formalis-
ering, der forklarer essensen af syntetiske komplethedsbeviser.

• En formalisering af et koncist komplethedsbevis for førsteordenslogik i
Isabelle/HOL, inklusiv løsninger til udfordringerne ved at formalisere
kvantorer og at bevise komplethed for formler med frie variable.

• En verificeret bevisfører for førsteordenslogik med funktioner, med et for-
maliseret komplethedsbevis, der tager højde for bevisførerens søgestrategi.

• Et syntetisk komplethedsbevis for et tableausystem til grundlæggende
hybridlogik, som er både terminerende og i Seligmans stil hvor bevisreglerne
afspejler det lokale perspektiv som modallogik er baseret på.

• Formaliserede sundheds- og komplethedsresultater for epistemisk og public
announcement logik, instantieret med en række konkrete aksiomsystemer.

• En bedst-først bevissøgningstaktik for bevisassistenten Lean 4.

• Et abstrakt framework for syntetiske komplethedsbeviser.
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Chapter 1

Introduction

My PhD work has taken place under the title “Formally Correct Deduction
Methods for Computational Logic”. Here, computational logic is understood as
logic in computer science. The following chapters will cover propositional, first-
order, hybrid, modal/epistemic and public announcement logic. Each of these
plays a role in the field by expressing different ways to reason about the world.
This reasoning is enabled by different deduction methods, e.g. axiomatic systems,
sequent calculus and natural deduction. I work in the language of higher-order
logic, enabled by the proof assistant Isabelle/HOL, to prove that the deduction
methods are formally correct. In particular, I focus on the completeness of each
deduction method with respect to the logic: whether it can prove every validity.
I have also put the theory into practice by co-developing proof automation for
the Lean theorem prover.

The rigidity of working in a proof assistant, rather than formal English, places
stricter requirements on our definitions and proofs. The induced uniformity
enables collaborative efforts like Isabelle’s Archive of Formal Proofs or Lean’s
mathlib where beginners and experts can contribute on equal footing because
everyone “speaks the same language” and everyone’s work is automatically verified.
The proof assistant can also generate counterexamples to flawed propositions,
find the lemmas necessary to prove a theorem or pinpoint what breaks when a
definition changes. I argue that working in a proof assistant encourages us to
find better, more reusable abstractions, as I have tried to do in this thesis.
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1.1 Synopsis of the Following Chapters

I give a brief overview of the main points of each of the following chapters. All
but chapter 8 are peer-reviewed articles. Page 164 contains an overview of the
included publications and their publication status. Page 165 lists other papers
that I have contributed to during my PhD studies, but which are not included in
this thesis. Many of these chapters and papers have accompanying Isabelle/HOL
formalizations in the Archive of Formal Proofs (AFP). Submissions to the AFP
are refereed and accepted entries are kept up to date with the latest Isabelle
version. Page 167 contains a bibliography of entries in the AFP that I have
contributed to during my PhD studies.

1.1.1 Formalizing Henkin-Style Completeness of an Ax-
iomatic System for Propositional Logic

Chapter 2 serves as an introductory chapter and includes a historical account of
formalized soundness and completeness proofs, including the distinction between
synthetic and analytic completeness proofs. I formalize an axiomatic system
for a minimal fragment of propositional logic in Isabelle/HOL and use it to
walk through the core elements of the synthetic completeness method: maximal
consistent sets, Lindenbaum’s lemma, Hintikka sets, etc. The chapter includes a
lot of Isabelle syntax, and both the presentation and the proofs are improved
in the subsequent chapter, but the minimal setting of propositional logic allows
a focus on the techniques rather than the logic. The chapter also introduces a
technique of using chains of implications to model natural deduction, which is
used again in later chapters.

1.1.2 A Succinct Formalization of the Completeness of
First-Order Logic

Chapter 3 extends the previous chapter to cover first-order logic. I abstract the
notion of propositional tautologies using Smullyan’s idea of a “boolean valuation”
for first-order logic. This is an idea I later reuse in the context of epistemic
logic and which simplifies the formalization of the axiomatic systems, giving a
style similar to that used in pen-and-paper presentations. The chapter focuses
on succinctness in both the formalization of first-order logic itself, with its
syntax and semantics, and in the synthetic completeness proof. Quantifiers are
notoriously difficult to formalize conveniently, but I present a simple setup, based
on just a few definitions and lemmas, that encapsulates the problem. Moreover,
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the proof works effortlessly for open and closed formulas alike. That is, free
variables are of no concern as they have been in previous formalizations.

The Hintikka sets in this chapter are formulated differently than those in chap-
ter 2. This has two benefits: the model existence theorem becomes completely
mechanical, and we can derive this definition of Hintikka sets directly from
the semantics of first-order logic and the canonical model. I expand on this in
chapter 8.

1.1.3 Verifying a Sequent Calculus Prover for First-Order
Logic with Functions in Isabelle/HOL

Chapter 4 was written in collaboration with Frederik Krogsdal Jacobsen. We
start from an existing sequent calculus called SeCaV and design a prover based
on the calculus. We use an existing framework in Isabelle/HOL to formalize
the prover and verify its soundness and completeness. The formalized prover
can be exported to Haskell code for execution. The completeness proof in
this chapter is analytic: we build a countermodel from a failed proof attempt,
considering saturated escape paths rather than maximal consistent sets. Since we
are verifying the completeness of not just a calculus but a prover with a concrete
search strategy, we need to prove that this strategy is sufficiently sophisticated.
Moreover, we cannot build a countermodel based on all possible first-order terms,
since the prover is not guaranteed to use every term in its instantiations. Instead,
we need a bounded countermodel over only the terms that actually appear in a
run of the prover. This requires us to formalize the semantics differently than in
the original SeCaV system and introduce a bounded semantics where the domain
is represented concretely as a set rather than implicitly as the inhabitants of a
type. We prove completeness under this notion of validity and prove that SeCaV
is sound with respect to the bounded semantics. In the end we prove that for
any formula derivable in SeCaV, the prover eventually derives it.

1.1.4 Synthetic Completeness for a Terminating Seligman-
Style Tableau System

Chapter 5 switches focus to hybrid logic: modal logic with an extra sort of
propositional symbols used to name the worlds in the Kripke frame. These
nominals naturally give rise to satisfaction operators @i that, for each nominal i,
cause the operand to be evaluated at the world denoted by i. These nominals can
thus serve as witnesses for the possibility operator 3, similarly to how constants
can witness the existential quantifier ∃ in first-order logic. In the chapter, I
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combine existing work on tableau systems for basic hybrid logic and formalize it
in Isabelle/HOL. I start from an existing Seligman-style tableau system for basic
hybrid logic and impose several constraints from a different tableau system on
the rules. These constraints are designed to ensure that no proof attempt can
go on forever. I show how to lift some of the restraints and adapt the synthetic
completeness proof for the original, unconstrained Seligman-style system to my
new terminating version, formally verifying its completeness. It remains future
work to verify the termination of the system in Isabelle/HOL. In the chapter, I
prove it via a pen-and-paper translation to an existing terminating system.

The chapter relies on careful proof engineering to make sure that the necessary
hybrid logic proof theory is formalizable in Isabelle/HOL. Informally, we can
talk about the root nominals of a tableau as those that were present from the
beginning rather than introduced by a tableau rule. This concept is crucial
for ensuring termination, since we use it to give a direction to the rule that
allows copying formulas between equivalent nominals. In the chapter, I instead
parameterize the proof system with a set of allowed nominals. This set turns out
to clarify the completeness proof by specifying the role played by root nominals
more concretely as those we are allowed to copy.

In the chapter, I deviate from the existing work by giving a model based on entire
sets of equivalent formulas rather than single nominals representing equivalence
classes. This choice yields a slightly more complicated model, but frees me from
having to prove the admissibility of the so-called Bridge rule which is otherwise
used to guarantee that the equivalence class representatives are well behaved.

1.1.5 Formalized Soundness and Completeness of Epis-
temic and Public Announcement Logic

Chapter 6 continues the theme of modal logic, but returns to axiomatic systems.
Here, I focus on generic soundness and completeness proofs for epistemic and
public announcement logic.

To achieve this, I first formalize the family of normal modal logics by parameter-
izing the minimal proof system with a set of extra axioms A. We can instantiate
this parameter with no extra axioms to get the system K, the axiom Kiφ→ φ to
get system T and so on. I then formalize the entire synthetic completeness proof
for epistemic logic in this abstract setting to arrive at my generic completeness
theorem: if the canonical model induced by axioms A has property P (e.g.
reflexivity) and the formula φ is valid on all P -models, then we can derive φ
using axioms A. This theorem is easily instantiated with concrete systems, by
simply proving that, for instance, the T axiom enforces reflexivity.
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I extend this to public announcement logic by formalizing the usual completeness
proof based on a reduction to the underlying epistemic logic. This allows me to
reuse the generic theorem for epistemic logic to obtain a generic completeness
theorem for public announcement logic. In essence, I lift the completeness of the
underlying epistemic logic to its version with public announcements.

1.1.6 Aesop: White-Box Best-First Proof Search for Lean

Chapter 7 was written in collaboration with Jannis Limperg. We develop proof
automation for the Lean 4 theorem prover. The implemented proof tactic is based
on best-first search and can prove a variety of results automatically, making it
faster and more pleasant to formalize results in Lean. Users can extend the tactic
to take new lemmas into account during its search. Lean is based on dependent
type theory and makes heavy use of metavariables to express dependencies
between proof goals. We present an elegant method of handling metavariables
irrespective of the proof search strategy. Finally, we argue via case studies that
Aesop is useful in practice.

1.1.7 An Abstract Framework for Synthetic Completeness

Chapter 8 collects the experience of previous chapters into an abstract framework
for developing synthetic completeness proofs. I formalize a transfinite version of
Lindenbaum’s lemma that just depends on a reasonable definition of consistency
for the logical calculus and can be used to build maximal consistent sets for
languages of any cardinality. The constructed maximal consistent sets are
saturated, making them useful for logics like first-order logic and hybrid logic. I
then show how to derive definitions of Hintikka sets from the logic’s semantics and
the models induced by the maximal consistent sets. I instantiate this framework
to five different examples: a propositional tableau system, a propositional sequent
calculus, a natural deduction system for first-order logic, an axiomatic system
for modal logic and a natural deduction system for hybrid logic.

1.2 Other Developments

My PhD studies have resulted in several papers not included in this thesis.

Eschen, Villadsen and I have written about the formalizations of several axiomatic
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systems for propositional logic in Isabelle/HOL [6, 11], extending the work in
chapter 2. Jacobsen and I develop a prover for the SeCaV system in chapter 4.
This system was previously described by Villadsen and me [3] at the Isabelle
Workshop 2020 and by Jacobsen, Villadsen and me [7] in more detail and with a
teaching focus. We describe the benefits of using a subset of Isabelle/HOL as a
proof checker. In doing so, the internal workings are not an opaque black box in
some programming language, but Isabelle/HOL definitions that can be inspected
by interested students. Schlichtkrull, Villadsen and I [8] have written in detail
about the formalization of a completeness proof for first-order logic natural
deduction. The formalization uses Fitting’s consistency properties and we reuse
them to prove the completeness of a tableau system and sequent calculus. We
also extend the original completeness proof to open formulas.

My work on hybrid logic, which originated in my MSc thesis, was first published
as a short paper at an automated reasoning conference [2] with my MSc thesis
advisors Villadsen and Blackburn. I described further progress at a modal logic
venue [1], before chapter 5 was published. I described work in progress on
formalizing termination of the tableau system at the Isabelle Workshop 2022 [12].
Chapter 6 on epistemic and public announcement logic originated as a paper
about epistemic logic [5] only. Villadsen, Jensen, Schlichtkrull and I briefly
described an earlier version of the formalization of public announcement logic in
our paper on interactive theorem proving for logic and information [14].

Villadsen, Blackburn and I have written about using Isabelle/HOL as a meta-
language for teaching logic [4]. Proof assistants encourage experimentation since
feedback is easily available and the solution space is narrowed by the formal syn-
tax. We have also written more specifically about using the generic Isabelle/Pure
framework for teaching intuitionistic and classical propositional logic [10]. Villad-
sen and I have described our experience with teaching automated reasoning and
formally verified functional programming in Agda and Isabelle/HOL [9]. Lund,
Villadsen and I have written a case study in computer-assisted meta-reasoning
based on a small prover verified in Isabelle/HOL [13].



Chapter 2

Formalizing Henkin-Style
Completeness of an

Axiomatic System for
Propositional Logic

This chapter contains a lot of syntax. I recommend generous skimming during a
first reading and to focus on the natural language explanations.

Preprint

Asta Halkjær From. “Formalizing Henkin-Style Completeness of an Axiomatic
System for Propositional Logic”. In: European Summer School in Logic, Language,
and Information - ESSLLI 2019 & 2020 Student Sessions, Selected Papers. Ed.
by Alexandra Pavlova and Mina Young Pedersen. Lecture Notes in Computer
Science. Springer, 2023. Forthcoming.



Formalizing Henkin-Style Completeness of an
Axiomatic System for Propositional Logic

Asta Halkjær From[0000−0002−3601−0804]

Technical University of Denmark

Abstract. I formalize a Henkin-style completeness proof for an ax-
iomatic system for propositional logic in the proof assistant Isabelle/HOL.
The formalization precisely details the structure of this proof method.

Keywords: Propositional logic · Henkin-style completeness · Isabelle/HOL.

1 Introduction

Hilbert proved the completeness of an axiomatic system for propositional logic
in 1917-18 [32], Gödel proved the completeness of first-order logic in 1929 [13]
and Henkin [14] simplified this proof in 1947, thus devising what we now know as
the Henkin-style method. In this paper I study the structure of a Henkin-style
completeness proof for an axiomatic Hilbert system for propositional logic by
formalizing it in the proof assistant Isabelle/HOL [21].

Isabelle is a generic proof assistant and Isabelle/HOL is the instance based on
higher-order logic. With it, we can state every definition, proposition and proof
in the precise language of higher-order logic rather than in natural language.
Our proof language is then completely formal, which makes it possible for the
machine to assist us in our endeavor. By writing our proofs in the Isar language,
an acronym of intelligible semi-automated reasoning [31], we can have Isabelle
check everything that we type. In particular, Isar contains commands such as
assume to introduce assumptions, have to state a partial result and moreover
to chain several of these together. After these commands, we typically write so-
called 〈cartouches〉, delimited by angle brackets, that contain our higher-order
logic terms: definitions, statements and so on [21]. Our proofs are checked by the
trusted Isabelle/HOL kernel but we do not typically use the kernel’s axioms and
inference rules directly. Instead we give the name of e.g. a tableaux or resolution
prover that will generate the proof for us. By formalizing our proofs like this we
know that our conclusions always follow from our assumptions.

Of course, Isabelle cannot verify that our definitions match our intentions,
that part is up to us, but formalization still reduces the possibility of mistakes.
In particular, it reduces the surface area where mistakes can happen, since the
proofs themselves are checked by the machine. Not only does a formalization
like this one increase the trust in the result, it can also serve as a reference
to understand the proof since every detail is given: no case can be omitted as

1



“trivial” or left as an “exercise for the reader.” The work can also act as a
starting point for formalizing other results based on the same techniques.

The full formalization, just below 400 lines, is available online:

https://github.com/logic-tools/axiom

I reproduce the essential pieces of it here and introduce parts of the syntax
as needed, but forgo any thorough explanation of the Isabelle commands [21].

1.1 Structure of the paper

After a brief history of formalized completeness proofs, the paper continues with
a formalization of the syntax and semantics of propositional logic (§ 2) and
a sound proof system (§ 3). The idea of the completeness proof is as follows:
given a formula φ valid under assumptions ψ1, . . . , ψk, assume for the sake of
contradiction that there is no corresponding derivation of φ under ψ1, . . . , ψk:

6` ψ1 −→ . . . −→ ψk −→ φ

This means we cannot derive falsity, ⊥, when also assuming ¬φ, so:

6` ¬φ −→ ψ1 −→ . . . −→ ψk −→ ⊥

The set {¬φ, ψ1, . . . , ψk} is therefore consistent and can be turned into a maximal
consistent set (§ 4) through an extension (§ 5). Such sets are Hintikka sets (§ 6)
and their elements have a model. This contradicts the validity assumption, prov-
ing that a derivation must exist. The proof system is therefore complete (§ 7)
and the paper concludes with possible extensions (§ 8).

1.2 A history of formalized completeness proofs

The formalization is part of a long line of formalized completeness proofs.
Completeness proofs can generally be split into two categories based on their

approach: semantic proofs in the style of Gödel [13] and Henkin [14] on the one
hand and syntactic proofs in the style of Beth and Hintikka [17] and Gallier [12]
on the other. Fitting and Mendelsohn call the semantic proofs “synthetic” be-
cause they start from a formula and synthesize new ones, building up larger
and larger sets of formulas that are consistent with the starting point [9]. For-
mulas in such sets are then shown to have a model and this is the approach
presented here. Fitting and Mendelsohn contrast this with the syntactic proofs
that they dub “analytic” because they work by analyzing the given formula,
breaking it into smaller and smaller subformulas and reasoning from those. In
these proofs we typically construct a counterexample from the open leaves or an
infinite path of a failed derivation attempt. The synthetic approach is remarked
to have a mathematical, abstract feeling whereas the analytic approach is more
computational and often resembles an actual prover for the logic [5].

2



The Henkin-style completeness method has been applied to modal logic from
the beginning, notably to system S5 as early as 1959 by Bayart [1] (in French).
Bentley [2] recently formalized such a proof in the proof assistant Lean. Jørgensen
et al. [16] adapted the synthetic approach to a tableau system for hybrid logic
and I formalized this proof [10] in Isabelle/HOL.

In 1985, Shankar [27] formalized Shoenfield’s first-order logic and axiomatic
proof system in the Boyer-Moore theorem prover. He showed propositional com-
pleteness of the system analytically by defining a tautology checker for a fragment
of the syntax based on negation and disjunction.

In 1996, Persson [24] showed completeness for intuitionistic first-order logic in
Martin-Löf type theory using the proof assistant ALF. His proof had a synthetic
flavor and the result was constructive: he obtained a program that transforms a
proof of validity into a natural deduction or sequent calculus derivation. Persson
also formalized an axiomatic system without proving completeness.

By early 2000, Margetson formalized the completeness of first-order logic and
the cut elimination theorem for sequent calculus in Isabelle/HOL and Ridge later
updated the formalization to the Isar language [18]. Their completeness proof, in
the Beth-Hintikka style, was based on analyzing failing branches in proof trees.

In 2005, Braselmann and Koepke [6] followed in the Mizar system but using
a Henkin-style argument for their sequent calculus.

In 2007, Berghofer [3] formalized Fitting’s synthetic work on natural deduc-
tion [8] in Isabelle/HOL. The formalized model existence theorem was based on
Smullyan’s abstract consistency properties [29] and Berghofer followed Fitting
in reusing the result to show the Löwenheim-Skolem theorem. I extended the for-
malized completeness result to also cover open formulas [3]. Inspired by Berghofer,
Schlichtkrull [26] proved the completeness of first-order resolution in 2016.

In 2010, Ilik [15] investigated Henkin-style arguments for both classical and
intuitionistic first-order logic in the proof assistant Coq.

In 2017, Michaelis and Nipkow [19,20] formalized a number of proof systems
for propositional logic in Isabelle/HOL: natural deduction, sequent calculus, an
axiomatic Hilbert system and resolution. They gave a syntactic completeness
proof for the sequent calculus and showed that sequent calculus derivations can
be translated into natural deduction and further into their Hilbert system, ob-
taining completeness for the three proof systems. Independently of this approach,
they formalized the propositional model existence theorem by Fitting [8] and
used this result to reprove completeness of the sequent calculus and Hilbert
system, respectively. Their formalization is more ambitious than this one and
therefore more involved. I start from a smaller syntax and focus on one proof
system and one approach. This leads to a simpler formalization that helps us
understand the essential pieces of the method.

Blanchette, Popescu and Traytel [5] recently advanced the state of complete-
ness proofs for sequent calculus and tableau systems in Isabelle/HOL. They de-
liberately chose the Beth-Hintikka style and used codatatypes to model possibly
infinite derivation trees. Their result can be instantiated for different variations
of sequent calculus or tableau systems and various flavors of first-order logic.
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Blanchette [4] gave an overview of the formalized metatheory of various other
logical calculi and automatic provers in Isabelle.

If we move to Gödel’s incompleteness theorems, the first one was formalized
in the Boyer-Moore theorem prover by Shankar in 1986 [28] and in Coq by
O’Connor in 2003 [22]. Both incompleteness theorems have been formalized in
Isabelle/HOL by Paulson in 2013 [23] and by Popescu and Traytel in 2019 [25].

In summary, the Henkin style is ubiquitous and we have seen it applied to
examples such as sequent calculus and natural deduction for first-order logic,
system S5 for modal logic and a tableau system for hybrid logic. Most work
either extends the technique to cover more advanced logics or abstracts it so that
it applies to several at once. My contribution is to boil this proof style down to
its essence, motivate each step as it is presented and to use a proof assistant to
ensure precision, correctness and comprehensiveness. The paper may also serve
as a fast-paced introduction to Isabelle/HOL on a concrete example.

2 Syntax and Semantics

The syntax is minimal and consists of a logical constant representing falsity,
natural numbers as propositional symbols and implication. The datatype form
models it in Isabelle/HOL with a constructor for each case (falsity, propositional
symbols and implication) separated by “|”:

datatype form = Falsity (〈⊥〉) | Pro nat | Imp form form (infixr 〈−→〉 25 )

The annotations in parentheses allow us to construct formulas using standard
notation (in bold, to avoid conflict with built-in Isabelle syntax). The definition
of negation as an abbreviation makes use of this:

abbreviation Neg (〈¬ -〉 [40 ] 40 ) where 〈¬ p ≡ p −→ ⊥〉

The meaning of formulas is given by their interpretation in the meta-logic,
where the higher-order logic type bool gives the truth of the formula. The seman-
tics are thus a primitive recursive predicate on formulas given an interpretation
of propositional symbols:

primrec semantics :: 〈(nat ⇒ bool) ⇒ form ⇒ bool 〉 (〈- |= -〉 [50 , 50 ] 50 ) where
〈(I |= ⊥) = False〉

| 〈(I |= Pro n) = I n〉

| 〈(I |= (p −→ q)) = ((I |= p) −→ (I |= q))〉

The first line gives the type and infix notation while the remaining lines
define the predicate by each case of the syntax. The first case states that no
interpretation models ⊥, the second case that the semantics of a propositional
symbol is given by the interpretation and finally the meta-logical implication −→
interprets the object logic implication −→.
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3 Proof System
Church’s axiom system P1 [7] is delightfully simple. It consists of modus ponens
and three axiom schemas and can be defined in Isabelle/HOL as follows:
inductive Axiomatics :: 〈form ⇒ bool 〉 (〈` -〉 [50 ] 50 ) where

MP : 〈` p =⇒ ` (p −→ q) =⇒ ` q〉

| Imp1 : 〈` (p −→ q −→ p)〉

| Imp2 : 〈` ((p −→ q −→ r) −→ (p −→ q) −→ p −→ r)〉

| Neg : 〈` (((p −→ ⊥) −→ ⊥) −→ p)〉

The specification defines the inductive predicate Axiomatics with the sym-
bolic name `. The judgment holds for a given formula if the formula can be
derived from the specified rule and axioms in a finite number of steps.

This proof system is sound with respect to the semantics, which means that
every derivable formula is true under any interpretation:
theorem soundness: 〈` p =⇒ I |= p〉

by (induct rule: Axiomatics.induct) simp-all

The by command completes the proof in two proof method invocations. The
induct part states that the proof should be performed by induction over the
rules of the proof system, transforming the one goal into a subgoal for each case
of the predicate. Next, the simplifier, simp-all, easily discharges these subgoals.

4 Consistency and Maximality
A list of formulas is consistent when we cannot derive ⊥ from it. The judg-
ment ` has no notion of such entailment but implication, −→, can serve the
same purpose. The below technique is widely applicable, whereas extending the
judgment ` would make the result harder to translate to e.g. modal logic. The
following function, imply, builds a chain of implications from a list of assump-
tions to a conclusion. Here, a list is a finite sequence that is either empty, [], or
built from an element, the separator #, and a smaller list. We then say that q
can be derived from ps when we can derive ` imply ps q.
primrec imply :: 〈form list ⇒ form ⇒ form〉 where

〈imply [] q = q〉

| 〈imply (p # ps) q = (p −→ imply ps q)〉

A potentially infinite set S is consistent exactly when all its finite subsets
are consistent. That is, when there is no list S′ that, when treated as a set, is a
subset of S and that entails ⊥ in the sense of imply :
definition consistent :: 〈form set ⇒ bool 〉 where

〈consistent S ≡ @S ′. set S ′ ⊆ S ∧ ` imply S ′ ⊥〉

A set is maximal when any proper extension makes it inconsistent:
definition maximal :: 〈form set ⇒ bool 〉 where

〈maximal S ≡ ∀ p. p /∈ S −→ ¬ consistent ({p} ∪ S)〉

Note that, to separate concerns, this allows for inconsistent maximal sets.
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5 Extension

We want to grow a consistent set into a maximal one while preserving consis-
tency. According to Lindenbaum’s lemma, attributed to him by Tarski [30], we
can always do this. First, given an enumeration of formulas, (φn), construct a
corresponding sequence of consistent sets (Sn) in the following way.

Assuming Sn has been constructed, its immediate extension is given by

Sn+1 =
{
{φn} ∪ Sn if {φn} ∪ Sn is consistent,
Sn otherwise.

That is, we only add the corresponding formula to the previous set if consis-
tency is preserved. In the Isabelle code, the function extend S f n constructs Sn

from S = S0 given an enumeration of formulas represented by f :

primrec extend :: 〈form set ⇒ (nat ⇒ form) ⇒ nat ⇒ form set〉 where
〈extend S f 0 = S 〉

| 〈extend S f (Suc n) =
(if consistent ({f n} ∪ extend S f n)
then {f n} ∪ extend S f n
else extend S f n)〉

To construct the maximal consistent set, take the infinite union
⋃
Sn:

definition Extend :: 〈form set ⇒ (nat ⇒ form) ⇒ form set〉 where
〈Extend S f ≡ ⋃

n. extend S f n〉

It is easy to see that the starting set is a subset of the union:

lemma Extend-subset : 〈S ⊆ Extend S f 〉

unfolding Extend-def by (metis Union-upper extend .simps(1 ) range-eqI )

And, by induction, that any element Sm is a superset of previous elements:

lemma extend-bound : 〈(
⋃

n ≤ m. extend S f n) = extend S f m〉

by (induct m) (simp-all add : atMost-Suc)

5.1 Consistency

When the initial set S is consistent, so is any Sn by construction:

lemma consistent-extend : 〈consistent S =⇒ consistent (extend S f n)〉

by (induct n) simp-all

Finally, the limit,
⋃
Sn, is also consistent:

lemma consistent-Extend :
assumes 〈consistent S 〉

shows 〈consistent (Extend S f )〉
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The proof starts by classical contradiction using the ccontr rule:

unfolding Extend-def
proof (rule ccontr)

Assume, towards a contradiction, that the union is inconsistent. Then we can
derive ⊥ from some subset S′:

assume 〈¬ consistent (
⋃

n. extend S f n)〉

then obtain S ′ where 〈` imply S ′ ⊥〉 〈set S ′ ⊆ (
⋃

n. extend S f n)〉

unfolding consistent-def by blast

This subset is finite so it must be a subset of a finite segment of the union,
say, S0 ∪ . . . ∪ Sm for some m:

then obtain m where 〈set S ′ ⊆ (
⋃

n ≤ m. extend S f n)〉

using UN-finite-bound by (metis List .finite-set)

But every element in (Sn) is a subset of the next, so S′ is a subset of Sm:

then have 〈set S ′ ⊆ extend S f m〉

using extend-bound by blast

And we already established that any such element is consistent:

moreover have 〈consistent (extend S f m)〉

using assms consistent-extend by blast

So there cannot be an inconsistent subset S′ and we have our contradiction:

ultimately show False
unfolding consistent-def using 〈` imply S ′ ⊥〉 by blast

qed

In conclusion,
⋃
Sn is consistent when S0 is.

5.2 Maximality

Importantly, the union
⋃
Sn is also maximal (regardless of the choice of S0) when

the enumeration f is surjective. That is, when it enumerates every formula:

lemma maximal-Extend :
assumes 〈surj f 〉

shows 〈maximal (Extend S f )〉

(proof omitted)

The proof is similar to the one for consistency. If the union is not maximal
then there is some φk /∈ ⋃

Sn such that {φk} ∪
⋃
Sn is consistent. Since φk /∈⋃

Sn, it was not added to the sequence, i.e. φk /∈ Sk+1, and by construction
this must be because {φk}∪Sk is inconsistent. But {φk}∪

⋃
Sn is a superset of

{φk}∪Sk, so {φk}∪
⋃
Sn must be inconsistent too, contradicting the assumption.
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6 Hintikka Sets

The completeness proof works by showing that every maximal consistent set is
a Hintikka set, where Hintikka sets are defined by the following four conditions:

locale Hintikka =
fixes H :: 〈form set〉

assumes
NoFalsity : 〈⊥ /∈ H 〉 and
Pro: 〈Pro n ∈ H =⇒ (¬ Pro n) /∈ H 〉 and
ImpP : 〈(p −→ q) ∈ H =⇒ (¬ p) ∈ H ∨ q ∈ H 〉 and
ImpN : 〈(¬ (p −→ q)) ∈ H =⇒ p ∈ H ∧ (¬ q) ∈ H 〉

The idea is to ensure that every formula in a set is satisfiable through syn-
tactic criteria. This is done by making the set downwards saturated [29] such
that the satisfiability of any complex formula is guaranteed by conditions on its
subformulas. Since ⊥ is unsatisfiable it should never occur (NoFalsity), and if a
propositional symbol occurs then its negation should not (Pro). An implication
is satisfied if either the antecedent is false or the consequent is true, so if an
implication occurs in a Hintikka set, then either the negated antecedent or the
consequent should too (ImpP). If a negated implication occurs in a Hintikka set
then so should both the antecedent and negated consequent (ImpN ).

6.1 Model existence

The downwards saturation ensures that if we interpret every proposition in a
Hintikka set as true, then every larger formula in the set will be modelled induc-
tively by this interpretation. Therefore, the model is based on set membership:

abbreviation (input) 〈model H n ≡ Pro n ∈ H 〉

This satisfies any formula in a Hintikka set (and falsifies its negation):

lemma Hintikka-model :
〈Hintikka H =⇒ (p ∈ H −→ model H |= p) ∧ ((¬ p) ∈ H −→ ¬ model H |= p)〉

by (induct p) (simp; unfold Hintikka-def , blast)+

The proof goes by induction on the structure of the formula and standard
proof methods to handle each resulting case. We need to prove both satisfaction
and falsification at the same time to obtain a strong enough induction hypothesis.

6.2 Maximal consistency

The penultimate task is to show that a maximal consistent set is a Hintikka set:

lemma Hintikka-Extend :
assumes 〈maximal S 〉 〈consistent S 〉

shows 〈Hintikka S 〉
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The proof has four similar cases based on the cases of the Hintikka definition.
The following gives the essence. Consider first propositional symbols:

fix n
assume 〈Pro n ∈ S 〉

moreover have 〈` imply [Pro n, ¬ Pro n] ⊥〉

by (simp add : FalsityE)
ultimately show 〈(¬ Pro n) /∈ S 〉

using assms(2 ) unfolding consistent-def
by (metis bot .extremum empty-set insert-subset list .set(2 ))

Assume a fixed but arbitrary propositional symbol n that occurs positively
in S. We can derive ⊥ from this in combination with a negative occurrence.
Thus, the latter cannot appear in the consistent S and this case of the Hintikka
definition is proved.

Next, assume that a negated implication occurs in S. By contradiction, so
does the antecedent:

assume ∗: 〈(¬ (p −→ q)) ∈ S 〉

show 〈p ∈ S ∧ (¬ q) ∈ S 〉

proof (rule conjI ; rule ccontr)

The set S is maximal, so if it does not contain p there must be some finite
subset S′ of S that we can derive falsity from when adding p:

assume 〈p /∈ S 〉

then obtain S ′ where S ′: 〈` imply (p # S ′) ⊥〉 〈set S ′ ⊆ S 〉

using assms inconsistent-head by blast

But p follows from the negated implication so we can cut out p in favor of it:

moreover have 〈` imply ((¬ (p −→ q)) # S ′) p〉

using add-imply ImpE1 deduct by blast
ultimately have 〈` imply ((¬ (p −→ q)) # S ′) ⊥〉

using cut ′ by blast

These assumptions, however, are a subset of S, contradicting its consistency:

moreover have 〈set ((¬ (p −→ q)) # S ′) ⊆ S 〉

using ∗(1 ) S ′(2 ) by fastforce
ultimately show False

using assms unfolding consistent-def by blast

7 Completeness

Isabelle can automatically prove the countability of formulas, providing a surjec-
tive function from-nat for obtaining specific elements of the enumeration (φn):

instance form :: countable by countable-datatype
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With this we finally reach the completeness lemma itself. If we assume that
p is valid under the assumptions ps, then p can be derived from ps:

lemma imply-completeness:
assumes valid : 〈∀ I s. list-all (λq . I |= q) ps −→ I |= p〉

shows 〈` imply ps p〉

The proof proceeds by contradiction and a similar derivation rule:

proof (rule ccontr)
assume 〈¬ ` imply ps p〉

then have ∗: 〈¬ ` imply ((¬ p) # ps) ⊥〉

using Boole by blast

Abbreviate the starting consistent set ?S and its maximal extension ?H :

let ?S = 〈set ((¬ p) # ps)〉

let ?H = 〈Extend ?S from-nat〉

Then use the previous results to show that ?H is a Hintikka set:

have 〈consistent ?S 〉

unfolding consistent-def using ∗ imply-weaken by blast
then have 〈consistent ?H 〉 〈maximal ?H 〉

using consistent-Extend maximal-Extend surj-from-nat by blast+
then have 〈Hintikka ?H 〉

using Hintikka-Extend by blast

We have seen that we have a model for any formula in such an ?H :

have 〈model ?H |= p〉 if 〈p ∈ ?S 〉 for p
using that Extend-subset Hintikka-model 〈Hintikka ?H 〉 by blast

So in particular for ¬p and all of ps:

then have 〈model ?H |= (¬ p)〉 〈list-all (λp. model ?H |= p) ps〉

unfolding list-all-def by fastforce+

The validity assumption then gives us that model ?H also models p:

then have 〈model ?H |= p〉

using valid by blast

But this is a contradiction:

then show False
using 〈model ?H |= (¬ p)〉 by simp

qed

As such, any valid formula must be derivable:

theorem completeness: 〈∀ I . I |= p =⇒ ` p〉

using imply-completeness[where ps=〈[]〉] by simp
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8 Conclusion

We have seen how to formalize the soundness and completeness of a simple
axiomatic proof system for propositional logic in Isabelle/HOL. The proof as-
sistant is sophisticated enough to do the soundness proof almost automatically
and enables constructions like infinite sets in the proof of completeness.

The choice of propositional logic means that we missed out on an aspect
of Henkin’s original proof: the use of special constants to witness existential
statements. I have included this in a larger formalization of first-order logic [11].

The formalization is simple to extend. The supplementary material contains a
file with binary disjunction and conjunction operators added to the syntax, proof
system and completeness proof. The result is around 130 lines longer and only
adds new lines. The biggest changes are in the Hintikka definition and maximal
consistency lemma while model existence remains completely automatic.

Acknowledgements I thank Jørgen Villadsen, Alexander Birch Jensen, Frederik
Krogsdal Jacobsen, Anders Schlichtkrull, Agnes Moesg̊ard Eschen and the anony-
mous reviewers for valuable comments.
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1 Introduction

The completeness of first-order logic has been known since Gödel’s work in 1929 [19]. Proof
assistants too have a long history [18], with de Bruijn initiating the Automath project in 1967
and the first system of LCF, an Isabelle/HOL predecessor, being developed in 1972. Despite
of this, I am unaware of a formalization of completeness in a proof assistant with a focus on
explaining the core techniques. The ideas involved in such a proof deserve to be documented
and detailed in a formalization where the proof assistant guarantees precision and correctness.
This effort benefits students trying to understand mathematical logic and researchers looking
for a base for their own work. I start from a Hilbert system, partly because I am unaware of
a formalization which does the same, and partly because its simplicity allows me to focus
on the ideas of the completeness proof itself. While other deduction systems may be more
popular for first-order logic, Hilbert systems are still prominent in areas like modal logic.

This paper builds especially on work by Smullyan [40] and Henkin [21]. The Hilbert
system of choice is Smullyan’s System Q1 [40, p. 81] and the completeness proof resembles
the “more direct construction” near the end of his book [40, p. 96] (a construction that
was pointed out to him by Henkin himself). This paper formalizes ideas by de Bruijn,
Henkin, Herbrand [23], Hilbert, Hintikka, Lindenbaum and Smullyan in an attempt to give a
“strikingly direct” [40, p. 96] completeness proof formalized in a modern proof assistant.

Smullyan includes a generalization rule for the universal quantifier that works under an
assumption (i.e. to the right of an implication) rather than on a standalone formula. This
extra generality makes it very suited for my purposes, where I always work under a number
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8:2 A Succinct Formalization of the Completeness of First-Order Logic

of assumptions. Smullyan does not consider function symbols as part of his syntax, but his
System Q1 is easily extended to cover these: simply allow for any term in the instantiation
axiom. Barwise [1] makes the same modification.

I use the proof assistant Isabelle/HOL [34]. Isabelle is a generic proof assistant and
Isabelle/HOL is the version based on higher-order logic. This paper includes a number of
Isabelle listings, all taken from the formalization after it has been exported to LATEX. These
listings appear either in bulleted lists or prefixed by an Isabelle command in bold and should
therefore be clearly distinguishable from the surrounding text. Any such listing has been
checked and verified by the proof assistant. I sometimes use these listings to explain proofs.
In these cases, I do not include the commands that justify each step of reasoning, but only the
intermediate statements themselves. For clarity, I have omitted many types from the main
text. Some of these can be found in Table 1 on page 6. The full formalization (under 700
lines) is available in the Archive of Formal Proofs [17], which referees Isabelle formalizations
and, when accepted, keeps them up to date with the latest version of the proof assistant.

Contributions

The main contribution of this paper is a succinct formalization of the definitions and proofs
that make up the synthetic style, a widely applicable method of proving completeness.

As a smaller contribution, this is, to my knowledge, the first formalization of completeness
for classical first-order logic that starts from a Hilbert system. However, several formalizations
that start from other proof systems are available (cf. Section 2) and the relations between
various proof systems have also been formalized, see for instance recent work by Laurent [27]
in Coq on translating between Hilbert systems and natural deduction for first-order logic.

On the more technical side, I formalize a Herbrand universe which, like in Herbelin
and Ilik’s [22] unformalized proof, consists of all terms, not just those without variables.
Combined with a Hintikka set in the style of Forster et al. [11] in Coq, based on the absence
of formulas rather than the presence of their negations, but which, unlike theirs, contains
open formulas as well as closed, I naturally formalize completeness for all valid formulas.

Isabelle/HOL Overview

This section seeks to give a quick overview of the Isabelle/HOL features used later. Nipkow
and Klein [33, Part 1] give a more complete introduction.

The higher-order logic of Isabelle/HOL can be reasonably understood as functional
programming + logic [33]. The datatype command defines a new type from a series of
constructors, where each can be given custom syntax. The natural numbers are built from
the nullary constructor 0 and unary Suc. The constructors True and False belong to the
built-in type bool. The usual connectives and quantifiers from first-order logic (−→, ∀ ,
etc.) are available for bool, as well as if-then-else expressions. We can write total functions
over datatypes using primrec for primitive recursive functions and fun for more advanced
definitions. The type constructor A ⇒ B denotes a function from A to B. Instead of concrete
types, we can also use type variables ′a, ′b, etc. These stand in the place of other types. The
term UNIV stands for the set of all values of a given type.

Another important built-in type is ′a list, the type of lists whose elements are of type ′a.
These are built from [], the empty list, and #, an infix constructor that adjoins an element
to an existing list. The notation [a, b, c] is shorthand for these primitive operations. The
function set turns a list into a set of its elements. The higher-order function map applies a
given function to every element of a list.
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Function application resembles functional programming languages in that f(x, y) is
written as f x y. The function f(x := y) maps x to y and every other element x′ to f x′.
Anonymous functions can be built using λ-expressions, e.g. λn. n + n for f(n) = n + n.

In proofs, the meta-logical implication =⇒ separates assumptions from conclusions. These
can also be distinguished using the assumes and shows keywords, using and as a separator
when there are multiple assumptions or conclusions. The keyword have states an intermediate
fact in a proof and the keywords then, moreover and ultimately bind these statements
together in different ways. The keyword let introduces a local abbreviation and obtain
eliminates an existential statement; for quantifies a statement universally.

The command definition introduces a new definition that is hidden behind a name
and must be explicitly unfolded, while an abbreviation is unfolded by the parser. The
inductive command also makes use of the meta-logical implication. This command allows
us to specify the least predicate closed under some given rules. For instance a predicate that
denotes whether a formula can be derived, specified by axioms and inference rules. A locale
in Isabelle, as used here, names an association between terms and assumptions about them.
We could, for instance, specify a group as a set and a binary operation coupled with the
group axioms. To instantiate the locale we must give concrete terms and show that they
satisfy the assumptions. When assuming a locale, we assume the conditions hold for the
terms.

The axiom of choice is available as Hilbert’s choice operator: the expression SOME x. P x
returns some element x that satisfies the predicate P, when such an element exists.

Overview of Paper

I discuss related work next (Section 2). In Section 3, I formalize the syntax of first-order
logic in Isabelle/HOL, including the idea of de Bruijn indices. This idea is developed
further in Section 4 on the semantics of terms and formulas. Section 5 formalizes the proof
system and its soundness, including all the operations necessary to do so. This includes the
instantiation of universal quantifiers, propositional tautologies and a range of lemmas. I
prove the completeness in Section 6 where I introduce the notion of a maximal consistent set,
the Lindenbaum construction and the model existence theorem for Hintikka sets. I discuss
challenges and choices in Section 7 and conclude with thoughts on future work in Section 8.

2 Related Work

The completeness of first-order logic itself has a long history, starting with Gödel’s proof [19]
and Henkin’s later simplification [21]. Smullyan [40], Barwise [1] and Fitting [10] all include
completeness proofs in their texts. Smullyan’s main completeness proof is an “analytic” proof
for a tableau system. He devotes only two pages to the “synthetic” (also called Henkin-style)
completeness proof of System Q1 [40, pp. 96–97] that I formalize a version of here. Barwise [1]
considers System Q1 extended with axioms for equality and gives a quite different proof
that relies on a reduction to propositional logic (and the completeness of propositional logic).
Fitting [10] proves completeness for tableaux and resolution similarly to Smullyan and leaves
the completeness of his Hilbert system as an exercise for the reader. This paper spells out
the synthetic completeness proof for first-order logic, starting from a Hilbert system rather
than from tableaux, resolution or similar.

The synthetic style has been successfully applied in several formalizations lately. From [13]
used it to formalize the completeness of a Hilbert system for propositional logic in Isa-
belle/HOL. Berghofer [3] formalized natural deduction for first-order logic in Isabelle/HOL
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8:4 A Succinct Formalization of the Completeness of First-Order Logic

following the work by Fitting [10]. My formalization of the syntax and semantics of first-order
logic and the Lindenbaum construction is inspired by his work. My formalization of Hintikka
sets and proof of the model existence theorem, however, differ from his and is inspired by
Herbelin and Ilik [22] and Forster et al. [11]. In particular, I prove completeness for open and
closed formulas together, where Berghofer’s completeness proof only covers closed formulas
and is extended to cover open formulas afterwards. From, Schlichtkrull and Villadsen [14, 16]
built on Berghofer’s work to formalize the completeness of both a sequent calculus and
tableau system for first-order logic. They also described Berghofer’s formalization in detail.
Bentzen [2] formalized the completeness of a Hilbert system for the modal logic S5 in Lean.
Jørgensen et al. [26] gave a synthetic completeness proof for a tableau system for basic hybrid
logic, which From [12, 15] formalized in Isabelle/HOL.

I am far from the first to formalize the completeness of first-order logic, but my formaliz-
ation is the only one that proves completeness for a Hilbert system for classical first-order
logic. Shankar [39] formalized a tautology checker for first-order logic in the Boyer-Moore
theorem prover, but notably did not formalize first-order completeness. Harrison [20] also
formalized first-order logic in higher-order logic (but HOL rather than Isabelle/HOL). He
did not formalize a proof system but rather model-theoretic results like compactness and
the Löwenheim-Skolem theorem. Margetson and Ridge [29] formalized the completeness
of first-order logic without functions in Isabelle/HOL via a sequent calculus. Braselmann
and Koepke [7] did the same in their Mizar formalization. Schlichtkrull [37, 38] formalized
the completeness of first-order resolution in Isabelle/HOL. Michaelis and Nipkow [30, 31]
did not formalize first-order logic, but did formalize a Hilbert system for propositional
logic in Isabelle/HOL. They proved completeness via translation from a sequent calculus
with an analytic completeness proof. Blanchette, Popescu and Traytel [5, 6] formalized
analytic completeness of abstract sequent calculus and tableau systems for first-order logic in
Isabelle/HOL. Blanchette [4] outlines formalizations of logical meta-theory in Isabelle/HOL.

The completeness proof presented here relies on Lindenbaum’s lemma: that any consistent
set of formulas has a maximal consistent extension. The proof is non-constructive since, for
the given semantics, Lindenbaum’s lemma is equivalent to Weak König’s Lemma [22, 24].
There are, however, a number of formalizations of completeness in other meta-theories (and
necessarily using other semantics). Veldman [43] gave an intuitionistic completeness theorem
for intuitionistic predicate logic in 1976. Persson [35] formalized the completeness of sequent
calculus and natural deduction for intuitionistic first-order logic in the ALF proof assistant,
but only defined a Hilbert system without further proof. His models are based on formal
topology. Constable and Bickford [8] constructively proved completeness for intuitionistic
first-order logic in the proof assistant Nuprl. Ilik [25] formalized multiple constructive proofs
of first-order completeness in the proof assistant Coq using novel variants of Kripke models
for full classical and intuitionistic first-order logic. Forster et al. [11] recently analyzed
the computational content of completeness theorems for various semantics and for natural
deduction and sequent calculus systems. They mechanized their results in constructive type
theory using Coq.

3 Syntax

The following syntax will be our starting point.
A term t is either a variable x or a function symbol f applied to a number of other terms:

s, t ::= x | f(t1, . . . , tn)

A function symbol applied to zero terms is called a constant and is denoted by a.
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A formula p is either falsity (denoted ⊥), a predicate symbol P applied to a list of terms,
an implication (−→) between two formulas or a universally quantified formula:

p, q ::= ⊥ | P (t1, . . . , tn) | p −→ q | ∀x. p(x)

I apply a number of techniques to make this syntax suitable for formalization. First,
I represent the variables with de Bruijn indices [9]. Instead of connecting quantifiers and
variables by using the same variable symbol x, each variable is a natural number n that is
understood to be connected to the nth quantifier, starting from the innermost. For example,
the formula ∀x. ∀y. P (x, y) is represented as ∀ ∀ P (1, 0). This makes it simpler to define
capture-avoiding instantiation, which we need for the proof system.

Second, to distinguish variables, function symbols and predicate symbols in the proof as-
sistant, I prefix each kind by a distinct symbol: † for function symbols, ‡ for predicate symbols
and # for variables. The formula ∀ P (f(0)) is then written (for now) as ∀ ‡P (†f(#0)).

Finally, lists of argument terms are represented as proper Isabelle/HOL lists, so the
term f(a) becomes †f [a].

The (parameterized) datatype ′f tm of terms with function symbols of type ′f becomes:

datatype (params-tm: ′f ) tm
= Var nat (#)
| Fun ′f ( ′f tm list) (†)

The annotation params-tm generates a function of that name from terms to ′f sets: it
collects all values of type ′f in a given term. I discuss its properties in Section 5.1.

The following abbreviates a constant, as I use these frequently:

abbreviation Const (⋆) where ⋆a ≡ †a []

The datatype ( ′f, ′p) fm of formulas with functions symbols of type ′f and predicate
symbols of type ′p becomes:

datatype (params-fm: ′f , ′p) fm
= Falsity (⊥)
| Pre ′p ( ′f tm list) (‡)
| Imp (( ′f , ′p) fm) (( ′f , ′p) fm) (infixr −→ 55 )
| Uni (( ′f , ′p) fm) (∀ )

The custom notation for each syntactic case is enclosed in parentheses (infixr specifies
right associativity and 55 specifies parsing priority). I use bold symbols to avoid conflicts
with existing syntax. The notation params-fm, similarly to for terms, generates a function
which produces a set of all function symbols in a given formula.

The Isabelle command term checks the type of an expression. Given the above definitions,
we can try our syntax, here with strings for the types of function and predicate symbols:

term ∀ (⊥ −→ ‡ ′′P ′′ [† ′′f ′′ [#0 ]])

In regular notation this would be ∀x. ⊥ −→ P (f(x)).
The following abbreviation for negation will ease notation: ¬ p ≡ p −→ ⊥ .
Similar notations can easily be introduced for conjunction, disjunction, the existential

quantifier etc. since in classical logic, these can be defined using the given syntax.
It should be noted that since arities are implicit in the datatypes above, we unfortunately

cannot represent finite signatures. The awarded benefit is that we do not need a predicate to
distinguish between correct and incorrect syntax.
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Table 1 Type signatures for selected functions.

semantics-tm (nat ⇒ ′a) ⇒ ( ′f ⇒ ′a list ⇒ ′a) ⇒ ′f tm ⇒ ′a
semantics-fm (nat ⇒ ′a) ⇒ ( ′f ⇒ ′a list ⇒ ′a) ⇒ ( ′p ⇒ ′a list ⇒ bool) ⇒ ( ′f, ′p) fm ⇒ bool
shift (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a
boolean ( ′p ⇒ ′f tm list ⇒ bool) ⇒ (( ′f, ′p) fm ⇒ bool) ⇒ ( ′f, ′p) fm ⇒ bool
Axiomatic ( ′f, ′p) fm ⇒ bool
imply ( ′f, ′p) fm list ⇒ ( ′f, ′p) fm ⇒ ( ′f, ′p) fm
consistent ( ′f, ′p) fm set ⇒ bool
extend ( ′f, ′p) fm set ⇒ (nat ⇒ ( ′f, ′p) fm) ⇒ nat ⇒ ( ′f, ′p) fm set
witness ′f set ⇒ ( ′f, ′p) fm ⇒ ( ′f, ′p) fm set
hmodel ( ′f, ′p) fm set ⇒ ( ′f, ′p) fm ⇒ bool

4 Semantics

The semantics of first-order logic has two parts: one for terms and one for formulas. I
formalize both as functions.

4.1 Terms
A term evaluates to an element of the domain. It does so under an environment (a mapping
from variables to the domain) and a function denotation (a mapping from function symbols
to functions on the domain).

In Isabelle, I represent the domain as a type (variable) and the environment as a
function E from the natural numbers (the de Bruijn indices) to that type. Similarly, the
function denotation becomes the function F from function symbols to functions on the
domain. This results in the following definition:

primrec semantics-tm ((|-, -|)) where
(|E , F |) (#n) = E n
| (|E , F |) (†f ts) = F f (map (|E , F |) ts)

The semantics of a variable is given by the environment and in the case of a function
application †f ts, we must first evaluate all the argument terms ts (using map) and then
apply the function denoted by f.

Here (|E, F |) denotes the function from terms to the domain, given by the environment E

and function denotation F . As seen in the clause above for functions, this notation lets me
conveniently “bundle” a given E and F so they can be applied to any term without the need
for anonymous functions. I use a similar notation [[E, F, G]] for the semantics of formulas.

4.2 Formulas
I use a deep embedding where formulas evaluate to a truth value under an environment E, a
function denotation F and a predicate denotation, dubbed G, that maps predicate symbols
to predicates on the domain. I formalize it as follows:

primrec semantics-fm ( [[-, -, -]] ) where
[[-, -, -]] ⊥ = False
| [[E , F , G]] (‡P ts) = G P (map (|E , F |) ts)
| [[E , F , G]] (p −→ q) = ([[E , F , G]] p −→ [[E , F , G]] q)
| [[E , F , G]] (∀ p) = (∀ x. [[E⟨0 :x⟩, F , G]] p)
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The formula ⊥ is always False and the semantics of a predicate is similar to that of a
function application. For implication each subformula is evaluated to a truth value and the
connective is interpreted using the built-in implication. Similarly, I use the built-in universal
quantifier to interpret the object-level quantifier. The notation E⟨0:x⟩ is explained next.

4.3 Shifting
The expression E⟨n:x⟩ modifies the environment E such that variable n is assigned x, any
smaller variable m is assigned E m and any larger variable m is assigned E (m− 1). This
shift operation has the following definition:

definition shift ( -⟨-:-⟩) where
E⟨n:x⟩ m ≡ if m < n then E m else if m = n then x else E (m−1 )

To understand the shifting operation on larger variables, consider the following:

[[E, F, G]] (∀ ∀ ‡P [#0, #1])

By the semantics, this reduces to:

∀x. [[E⟨0:x⟩, F, G]] (∀ ‡P [#0, #1])

where the outer quantifier comes from the meta-logic. This again reduces to:

∀x. ∀y. [[E⟨0:x⟩⟨0:y⟩, F, G]] (‡P [#0, #1])

Thus, the terms are evaluated by (|E⟨0:x⟩⟨0:y⟩, F |). This is clearly correct for variable #0
since E⟨0:x⟩⟨0:y⟩ 0 = y as desired. We also want that #1 corresponds to the outer
meta-logic quantifier, namely that E⟨0:x⟩⟨0:y⟩ 1 = x. This is exactly what happens since
E⟨0:x⟩⟨0:y⟩ 1 = E⟨0:x⟩ (1− 1) = x. Thus, the semantics reduces to the expected:

∀x. ∀y. G P [y, x]

Notice that any free variable in a formula (those with no corresponding quantifier) are not
affected by this shifting when it is coupled with the removal of an outer quantifier: they are
mapped to whatever E originally assigned them to. In this sense they behave like constants.

The following four lemmas will be used implicitly.

▶ Lemma 1 (Shifting). The first three results characterize the function and the last one
commutes a shift of variable 0 with another shift.

n = m =⇒ E⟨n:x⟩ m = x
m < n =⇒ E⟨n:x⟩ m = E m
n < m =⇒ E⟨n:x⟩ m = E (m−1 )
(E⟨n:y⟩⟨0 :x⟩) = (E⟨0 :x⟩⟨n+1 :y⟩)

Proof. Immediate from the definition. ◀

5 Proof System

To define the proof system I must first define a number of operations needed to state the
side conditions and transformations of formulas.
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5.1 Parameters
The proof rule for the universal quantifier will generalize a fresh constant to a quantified
variable. To perform this freshness check, I use the functions params-tm and params-fm
that Isabelle generates automatically from the datatype declarations above. These collect
all function symbols in terms and formulas, respectively, and would also be easy to define
recursively. Similarly to Smullyan [40], I abbreviate function symbol to parameter.

The following definition generalizes params-fm to a set of formulas:

abbreviation params S ≡
⋃

p ∈ S . params-fm p

I need a few lemmas about parameters for later.

▶ Lemma 2 (Finite parameters). Terms and formulas contain only finitely many parameters:
finite (params-tm t)
finite (params-fm p)

Proof. By simple inductions. ◀

▶ Lemma 3 (Unused parameters). The denotation of an unused parameter does not affect
the semantics of either terms or formulas:

f /∈ params-tm t =⇒ (|E , F(f := x)|) t = (|E , F |) t
f /∈ params-fm p =⇒ [[E , F(f := x), G]] p = [[E , F , G]] p

Proof. By simple inductions. ◀

5.2 Instantiation
I will need to instantiate a universally quantified formula with a concrete term: to go from
∀ p to “p with t inserted for variable 0 and free variables in p adjusted.” I will denote this
formula by ⟨t/0⟩p. Note that when instantiating for n in ∀ p, we need to then instantiate for
n + 1 in p, since we enter the scope of another quantifier (the formula ∀x. ∀y. P (x, y) becomes
∀∀P (1, 0) with de Bruijn indices, so to instantiate for x we must actually replace variable 1).

There are two additional considerations. Consider first why we need to adjust the
free variables in p. Say that we are instantiating ∀ P [#0, #3] with the term t. When
evaluating ∀ P [#0, #3] under an environment E, the free variable 3 will be interpreted
as (E⟨0:x⟩) 3 = E 2. We expect that the interpretation of free variables under the same
environment does not change when we instantiate a quantifier. However, when evaluating
the naively instantiated formula P [t, #3], the free variable 3 will be evaluated as E 3, which
might be a different value than E 2. Therefore, we should decrement any free variables we
encounter during the instantiation. The result here should then be P [t, #2].

Second, it is important that any free variable in t remains free in ⟨t/0⟩p (i.e. that the
instantiation avoids capturing a free variable). With named variables we would ensure this
by renaming any bound variables in p that would conflict. By using de Bruijn indices we are
free from having to come up with fresh names for such an operation. Instead, we increment
every variable in t by one whenever we pass under a quantifier. Thus ⟨†f [#0]/0⟩(∀ (‡P )) =
∀ (⟨†f [#1]/1⟩(‡P )).

I call this last operation lifting the term:

primrec lift-tm (↑) where
↑(#n) = #(n+1 )
| ↑(†f ts) = †f (map ↑ ts)
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While this terminology is common (cf. Nipkow [32], Berghofer [3]) it unfortunately
conflicts with the terminology in explicit substitutions (cf. Lescanne [28]) where lifting and
shifting have roughly opposite meanings compared to this paper.

With the above considerations in mind, we can now define instantiation on terms:
primrec inst-tm (⟨⟨- ′/-⟩⟩) where
⟨⟨s/m⟩⟩(#n) = (if n < m then #n else if n = m then s else #(n−1 ))
| ⟨⟨s/m⟩⟩(†f ts) = †f (map ⟨⟨s/m⟩⟩ ts)

The notation ⟨⟨s/m⟩⟩ “bundles” an instantiation of term s for variable m, ready to be
applied to a term. For formulas, the only interesting case is for the universal quantifier, where
we lift the term we are instantiating with and increment the variable we are instantiating for:

primrec inst-fm (⟨- ′/-⟩) where
⟨-/-⟩⊥ = ⊥
| ⟨s/m⟩(‡P ts) = ‡P (map ⟨⟨s/m⟩⟩ ts)
| ⟨s/m⟩(p −→ q) = ⟨s/m⟩p −→ ⟨s/m⟩q
| ⟨s/m⟩(∀ p) = ∀ (⟨↑s/m+1 ⟩p)

Despite the complexity of instantiation when using de Bruijn indices, it can be captured
in the three simple definitions above that involve little more than simple arithmetic.

A more standard name for ⟨t/n⟩p is substitution, but I prefer instantiation since it
potentially does more than simple syntactic substitution of term t for variable n: namely
lifts t and decrements variables in p.

The only results about instantiation that I need for the formalization are the following.

▶ Lemma 4 (Lifting and shifting). Lifting cancels out with shifting the environment at 0.
(|E⟨0 :x⟩, F |) (↑t) = (|E , F |) t

Proof. By structural induction. ◀

▶ Lemma 5 (Instantiation and shifting). Instantiating with a term at m is the same as shifting
the environment at m with the value denoted by that term.

(|E , F |) (⟨⟨s/m⟩⟩t) = (|E⟨m:(|E , F |) s⟩, F |) t
[[E , F , G]] (⟨t/m⟩p) = [[E⟨m:(|E , F |) t⟩, F , G]] p

Proof. By structural induction, using Lemma 4. ◀

5.3 Size
To prove the model existence theorem, I will need to do induction on formulas. However,
structural induction does not work, since in the case for ∀ p, the induction hypothesis must
be applied to the instance ⟨t/0⟩p, for some term t, rather than simply to p. This calls for
induction on the size of the formula. Unfortunately, the pre-defined size measure for our
datatype takes the size of terms into account and is therefore not invariant under instantiation.
The following definition suffices:

primrec size-fm where
size-fm ⊥ = 1
| size-fm (‡- -) = 1
| size-fm (p −→ q) = 1 + size-fm p + size-fm q
| size-fm (∀ p) = 1 + size-fm p

▶ Lemma 6 (Size). Instantiation preserves size.
size-fm (⟨t/m⟩p) = size-fm p

Proof. By structural induction. ◀
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5.4 Propositional Semantics
Instead of picking a suitable set of propositional axioms, Smullyan [40], Barwise [1] and
others simply include all tautologies as one of their axioms. I follow their lead and need
a suitable way to express which formulas are tautologies. Smullyan [40, p. 51] extends his
notion of a Boolean valuation from propositional logic to the syntax of first-order logic by
treating quantified formulas as another sort of propositional symbols. A tautology is then a
formula that is true under all Boolean valuations.

The following definition uses the same principle, where G is a predicate denotation as
before and A is a special “universally quantified formula denotation.”

primrec boolean where
boolean - - ⊥ = False
| boolean G - (‡P ts) = G P ts
| boolean G A (p −→ q) = (boolean G A p −→ boolean G A q)
| boolean - A (∀ p) = A (∀ p)

The hyphens stand for ignored arguments. Compare this semantics to the first-order one:
it is indeed a Boolean valuation [40] of first-order logic. We can now take Smullyan’s notion
of tautology as definition:

abbreviation tautology p ≡ ∀G A. boolean G A p

Smullyan gives no details on his extension of Boolean valuations to first-order logic. The
way I set it up, with a separate denotation for the quantified formulas, it can be directly
related to the first-order semantics.

▶ Lemma 7 (Boolean semantics). The Boolean and first-order semantics coincide when G
matches the first-order predicate semantics and A is the first-order semantics itself.

boolean (λa. G a ◦ map (|E , F |)) [[E , F , G]] = [[E , F , G]]

Proof. By structural induction. ◀

▶ Lemma 8 (Tautologies). All tautologies are valid.
tautology p =⇒ [[E , F , G]] p

Proof. Since a tautology holds for any choice of G and A it holds in particular for those
that coincide with the first-order semantics (cf. Lemma 7). ◀

For reassurance, Isabelle easily verifies that not all first-order validities are propositional
tautologies (e.g. (∀x. P (x)) −→ P (a) is only the former):

proposition ∃ p. (∀E F G. [[E , F , G]] p) ∧ ¬ tautology p

5.5 The Inductively Defined Calculus
Finally, we are ready to define the calculus itself. I define it as an inductive predicate ⊢ that
holds exactly when a formula can be derived from the given axioms and rules. The previous
work has made the definition simple:

inductive Axiomatic (⊢ - [50 ] 50 ) where
TA: tautology p =⇒ ⊢ p
| IA: ⊢ ∀ p −→ ⟨t/0 ⟩p
| MP: ⊢ p −→ q =⇒ ⊢ p =⇒ ⊢ q
| GR: ⊢ q −→ ⟨⋆a/0 ⟩p =⇒ a /∈ params {p, q} =⇒ ⊢ q −→ ∀ p
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The Tautology Axiom (TA) derives any tautology. The Instantiation Axiom (IA) states
that a quantified formula implies its instantiation with any term. The Modus Ponens (MP)
rule is stated as usual and lifts an implication between formulas to an implication between
derivations. Finally, the Generalization Rule (GR) works under assumptions q and generalizes
from an instance to a quantified formula, given that the witness (the constant) is fresh.

▶ Theorem 9 (Soundness). Any derivable formula is valid:
⊢ p =⇒ [[E , F , G]] p

Proof. By induction over the inductive definition of the axiomatic system for arbitrary
function denotation F .

All cases except for GR can be proven automatically, with the case for TA relying on
Lemma 8 about tautologies. In the GR case I apply the induction hypothesis not just once
at plain F but at F (a := x) for every element x of the domain:

have [[E , F(a := x), G]] (q −→ ⟨⋆a/0 ⟩p) for x

This is enough help for Isabelle to prove the case. ◀

▶ Corollary 10. Falsity cannot be derived:
¬ (⊢ ⊥)

5.5.1 Notation
For the proof of completeness I need to express that a formula can be derived from a set of
assumptions. Instead of building this notion into the definition of the proof system, I am
going to simulate it using chains of implications. The expression [p1, p2, . . . , pn]⇝ q expands
to p1 −→ p2 −→ . . . −→ pn −→ q. It is defined by recursion on the list of assumptions:

primrec imply (infixr ⇝ 56 ) where
([] ⇝ q) = q
| (p # ps ⇝ q) = (p −→ ps ⇝ q)

I then write ps ⊢ q to abbreviate ⊢ ps ⇝ q:
When I talk about assumptions in a derivation I will always mean a finite list of formulas.

5.6 Derived Formulas
Due to my semantic characterization of the Tautology Axiom, the automation in Isabelle
can easily prove that various propositional formulas (schemas) can be derived.

▶ Lemma 11 (Derivations). The S and K combinators, double negation elimination and
contraposition in both directions can all be derived:
⊢ (p −→ q −→ r) −→ (p −→ q) −→ p −→ r
⊢ q −→ p −→ q
⊢ ¬ ¬ p −→ p
⊢ (p −→ q) −→ ¬ q −→ ¬ p
⊢ (¬ q −→ ¬ p) −→ p −→ q

Proof. By the Tautology Axiom. ◀
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5.6.1 Generalization Rule
My use of chains of implications is a disadvantage to the GR rule since it works on the
consequent but implication is right associative. Consider the following: we know that
ps ⊢ ⟨⋆a/0⟩p, for fresh a and want to use GR to derive ps ⊢ ∀ p. We can only do so if
ps consists of exactly one formula q, as ps ⊢ p is short for ⊢ ps ⇝ q. To circumvent this
restriction, I derive the following variant of the rule.

▶ Lemma 12 (GR’ rule). The following rule is derivable:

GR ′: ⊢ ¬ ⟨⋆a/0 ⟩p −→ q =⇒ a /∈ params {p, q} =⇒ ⊢ ¬ (∀ p) −→ q

Proof. Follows from the GR rule, modus ponens and the derivations in Lemma 11. ◀

Since this rule works on the left-hand side of the implication, the right-hand side can,
without issues, be an arbitrarily long chain of implications. Smullyan [40, p. 83] himself uses
this version of the rule in his System Q1’ (but for notational reasons).

An alternative is to start from the existential quantifier, ∃, as primitive, rather than ∀,
as the generalization rule for ∃ works on the left-hand side of the implication [40]. However,
it is less immediately clear why this rule for ∃ can be called a generalization rule.

5.6.2 Working with Assumptions
The following is an assortment of useful lemmas for working with assumptions.

▶ Lemma 13 (Assumptions). The following are derivable: modus ponens under assumptions,
derivation of any assumption, the deduction theorem in both directions, a cut rule, classical
reasoning and finally a structural rule encompassing weakening, contraction and exchange:

ps ⊢ p −→ q =⇒ ps ⊢ p =⇒ ps ⊢ q
p ∈ set ps =⇒ ps ⊢ p
ps ⊢ p −→ q =⇒ p # ps ⊢ q
p # ps ⊢ q =⇒ ps ⊢ p −→ q
p # ps ⊢ r =⇒ q # ps ⊢ p =⇒ q # ps ⊢ r
(¬ p) # ps ⊢ ⊥ =⇒ ps ⊢ p
ps ⊢ q =⇒ set ps ⊆ set ps ′ =⇒ ps ′ ⊢ q

Proof. By a mix of induction over the list of assumptions and propositional reasoning. ◀

6 Completeness

We are now ready to delve into the completeness proof itself. The plan is as follows. If we
cannot derive a formula p under any assumptions from X then we cannot derive falsity from
¬ p and any assumptions from X either. Sets like {¬ p} ∪X are consistent with respect
to the proof system, as we cannot derive a contradiction from them. I formalize them in
Section 6.1. These sets are defined based on the proof system but we will use them to build
a model that contradicts the validity of p under X. For this purpose we must prove that
two important types of formulas preserve consistency: fresh witnesses of existential formulas
(Henkin witnesses) and instances of universal formulas.

Lindenbaum (according to Tarski [41]) showed how to extend a consistent set into a
maximal consistent set (MCS). Any proper superset of a maximal consistent set is inconsistent.
In particular this means that for any formula p, an MCS contains exactly p or ¬ p. Henkin [21],
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showed the utility of adding the Henkin witnesses for existential formulas during Lindenbaum’s
construction. I formalize the construction and its consistency in Section 6.2 and prove that
the result is maximal in Section 6.3.

The addition of Henkin witnesses ensures that our MCSs are saturated. Section 6.4
outlines the benefits of ensuring this by construction.

Instead of building a model directly from a maximal consistent saturated set, I introduce
a standard layer of abstraction. In Section 6.5, I formalize the notion of a Hintikka set [40]
using three simple conditions and prove a model existence theorem: given a Hintikka set H,
I build a model from a Herbrand structure [10, 22] that satisfies exactly the formulas in H. I
then prove that maximal consistent saturated sets are Hintikka sets.

In Section 6.6, I put all the pieces together. The model existence theorem gives us a
model for ¬ p and all of X. Therefore, if p is in fact valid under assumptions from X, then
it must be derivable or we have a contradiction.

6.1 Consistent Sets
The definition of consistency is straightforward. The set of formulas S is consistent when
there is no list of assumptions S’, coming from S, that can be used to derive falsity:

definition consistent S ≡ ∄S ′. set S ′ ⊆ S ∧ S ′ ⊢ ⊥

The following lemma will be useful.

▶ Lemma 14 (Inconsistent addition). Assume that S is consistent on its own but becomes in-
consistent with the addition of a formula p. Then there exists a concrete list of assumptions S′,
coming from S, such that p # S ′ ⊢ ⊥:

assumes consistent S and ¬ consistent ({p} ∪ S)
obtains S ′ where set S ′ ⊆ S and p # S ′ ⊢ ⊥

Proof. It follows from consistency and the structural lemma for assumptions (Lemma 13). ◀

It is important to prove that two types of formulas preserve consistency. The first type is
fresh witnesses for existential formulas.

▶ Lemma 15 (Consistency of fresh witnesses). If a consistent set contains an existential
formula ¬ (∀ p) then adding a witness ¬ ⟨⋆a/0⟩p, for a fresh a, preserves consistency:

assumes consistent S and ¬ (∀ p) ∈ S and a /∈ params S
shows consistent ({¬ ⟨⋆a/0 ⟩p} ∪ S)

Proof. We need to show that there is no finite subset from which we can derive falsity, so
assume that indeed there is one. From Lemma 14 we can name the problematic assumptions:

then obtain S ′ where set S ′ ⊆ S and (¬ ⟨⋆a/0 ⟩p) # S ′ ⊢ ⊥

After showing that the side conditions are fulfilled, we can apply the GR’ rule:

then have ¬ (∀ p) # S ′ ⊢ ⊥

But every assumption is now in S, which we assumed to be consistent, so we have reached
the desired contradiction and proved the lemma. ◀

We shall also need that instantiating a universally quantified formula preserves consistency.
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▶ Lemma 16 (Consistency of instantiation). If a consistent set contains a universal formula ∀ p

then adding an instance ⟨t/0⟩p, for any term t, preserves consistency:

assumes consistent S and ∀ p ∈ S
shows consistent ({⟨t/0 ⟩p} ∪ S)

Proof. The proof proceeds as before and we start by naming the problematic assumptions
from an assumed inconsistency (Lemma 14):

then obtain S ′ where set S ′ ⊆ S and ⟨t/0 ⟩p # S ′ ⊢ ⊥

This time we make use of the Instantiation Axiom, instantiated to p and t:

moreover have ⊢ ∀ p −→ ⟨t/0 ⟩p

With the deduction theorem, the cut rule and the structural lemma (Lemma 13), we can
apply this implication to weaken the derivation of falsity:

ultimately have ∀ p # S ′ ⊢ ⊥

But again, these assumptions are all in S, which we assumed to be consistent, so this is a
contradiction and adding the instance must also be consistent. ◀

6.2 Lindenbaum Extension
We turn now to a central construction. Note first that if the sets of variable, function and
predicate symbols are countable, so too are the sets of terms and formulas (formalized in
Section 6.6). Thus, we can enumerate the formulas as p0, p1, . . . and so on. Starting from a
consistent set S0, which leaves infinitely many parameters unused, we then build a sequence
of consistent sets in the following way. Given Sn, construct Sn+1 as:

Sn+1 =
{

w(∗, pn) ∪ {pn} ∪ Sn if {pn} ∪ Sn is consistent
Sn otherwise

where ∗ is the set of parameters in {pn} ∪ Sn.
The function w returns a singleton set with a fresh witness when pn is an existential

formula and the empty set otherwise. Usually, the availability of such fresh witnesses is
guaranteed by extending the set of function symbols. I assume instead that the set of function
symbols is infinite from the start and that S0 leaves infinitely many parameters unused. I
pass the parameters of {pn} ∪ Sn to w. It can then pick a parameter that has not been used
already. This is simpler than dealing with two sorts of function symbols.

In the Isabelle formalization, the enumeration of formulas is represented by a (surjective)
function f from the set of natural numbers to the set of formulas (cf. Section 6.6). The
expression extend S f n constructs the set Sn starting from S0 = S:

primrec extend where
extend S f 0 = S
| extend S f (Suc n) =

(let Sn = extend S f n in
if consistent ({f n} ∪ Sn)
then witness (params ({f n} ∪ Sn)) (f n) ∪ {f n} ∪ Sn
else Sn)

The function witness is simple:
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fun witness where
witness used (¬ (∀ p)) = {¬ ⟨⋆(SOME a. a /∈ used)/0 ⟩p}
| witness - - = {}

Its definition uses Hilbert’s choice operator to pick a fresh parameter.
The maximal consistent set is given by taking the union of this sequence of sets:

⋃
n∈N Sn.

In Isabelle, it becomes:
definition Extend S f ≡

⋃
n. extend S f n

The following lemmas are needed later.
▶ Lemma 17 (Lindenbaum bounds). The starting set is included in its maximal extension
and each set in the constructed sequence bounds the previous sets:

S ⊆ Extend S f
(
⋃

n ≤ m. extend S f n) = extend S f m

Proof. By definition and by induction on m, respectively. ◀

▶ Lemma 18 (Lindenbaum parameters). A witness includes only finitely many parameters
and each set Sn contains finitely many more parameters than the starting set S0:

finite (params (witness used p))
finite (params (extend S f n) − params S)

Proof. Since p contains finitely many parameters and by induction on n, respectively. ◀

6.2.1 Consistency
The consistency of each constructed set Sn is apparent.
▶ Lemma 19 (Consistency of Sn). When starting from a consistent S0 with infinitely many
unused parameters, any constructed Sn is consistent:

assumes consistent S and infinite (UNIV − params S)
shows consistent (extend S f n)

Proof. By induction on n. The consistency of adding the witness follows from Lemma 15.
The only complication is to prove that there are indeed always fresh parameters available
and therefore that the parameter given by Hilbert’s choice operator is usable, but this follows
from Lemma 18. ◀

The consistency of the union
⋃

n Sn is more interesting.
▶ Lemma 20 (Consistency of

⋃
n Sn). The maximal extension of a consistent set S with

infinitely many unused parameters is consistent:
assumes consistent S and infinite (UNIV − params S)
shows consistent (Extend S f )

Proof. Assume towards a contradiction that we can derive falsity from some finite subset:
then obtain S ′ where S ′ ⊢ ⊥ and set S ′ ⊆ Extend S f

Since this subset is finite, it must be a subset of some initial segment of the union:
then obtain m where set S ′ ⊆ (

⋃
n ≤ m. extend S f n)

But, by Lemma 17, each such segment is bounded by its last element:
then have set S ′ ⊆ extend S f m

And since we have already shown the consistency of each Sn (Lemma 19), we reach our
desired contradiction. ◀
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6.3 Maximal Sets
A maximal set is inconsistent under any proper extension:

definition maximal S ≡ ∀ p. p /∈ S −→ ¬ consistent ({p} ∪ S)

Maximal consistent sets are truly maximal:

▶ Lemma 21 (Maximality of Maximal Consistent Sets). If S is a maximal consistent set, then
for every formula p, p ∈ S if and only if ¬ p /∈ S.

assumes consistent S and maximal S
shows p ∈ S ←→ (¬ p) /∈ S

Proof. The left-to-right direction follows from consistency alone and the right-to-left direction
follows from consistency and maximality. ◀

That the Lindenbaum extension results in a maximal set is very easy to see.

▶ Lemma 22 (Maximality of
⋃

n Sn). Given a surjective enumeration f ,
⋃

n Sn is maximal:
assumes surj f
shows maximal (Extend S f )

Proof. Assume towards a contradiction that some formula p is not included even though its
inclusion preserves consistency:

assume p /∈ Extend S f and consistent ({p} ∪ Extend S f )

Say that p is formula number k in the enumeration. Since p is not in the result, it must
be inconsistent with Sk:

then have ¬ consistent ({p} ∪ extend S f k)

And this set is a subset of the final result:
moreover have {p} ∪ extend S f k ⊆ {p} ∪ Extend S f

Ultimately, this contradicts the assumption that adding p preserves consistency. ◀

6.4 Saturation
We shall need saturation to show that our constructed sets are Hintikka sets:

definition saturated S ≡ ∀ p. ¬ (∀ p) ∈ S −→ (∃ a. (¬ ⟨⋆a/0 ⟩p) ∈ S)

So, in a saturated set there is a corresponding Henkin witness for each existential formula.

▶ Lemma 23 (Saturation of
⋃

n Sn). A consistent Lindenbaum extension is saturated:
assumes consistent (Extend S f ) and surj f
shows saturated (Extend S f )

Proof. Guaranteed by construction. ◀

If we only constructed our set to be maximal consistent and tried to show that it was also
saturated, we would run into trouble [40, p. 96]. First, given an arbitrary maximal consistent
set S, it might be that a Henkin witness is missing because S includes every parameter
available and every reuse of a parameter results in an inconsistency. Second, we might be
unlucky and enumerate the negation of every suitable witness before enumerating the witness
itself: we might always add the negation and never the witness. Following Henkin [21], I
ensure saturation by adding the Henkin witnesses together with the existential formulas.
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6.5 Hintikka Sets
Instead of showing the model existence theorem directly for maximal consistent saturated
sets, it will be cleaner to show that Hintikka sets induce a model for their formulas and that
our sets are in fact Hintikka sets.

The following definition characterizes a Hintikka set H over our syntax:

locale Hintikka =
fixes H :: ( ′f , ′p) fm set
assumes

FlsH : ⊥ /∈ H and
ImpH : (p −→ q) ∈ H ←→ (p ∈ H −→ q ∈ H ) and
UniH : (∀ p ∈ H ) ←→ (∀ t. ⟨t/0 ⟩p ∈ H )

Hintikka sets are sets that are saturated downwards [40, p. 27] and induce a model for the
formulas in them. Since the set should induce a model, ⊥ should never be present (FlsH ).
Following Forster et al. [11, Lemma 11], I enforce that the set respects both implication
(ImpH ) and universal quantification (UniH ): a formula is in the Hintikka set if and only if
the “evidence” for that formula is also present. Here, evidence is to be understood in terms
of the Herbrand model given below.

6.5.1 Model Existence
The model induced by a Hintikka set H is very simple. It consists of a Herbrand structure [10]
and a predicate denotation based on H itself:
Domain Herbrand universe: the universe of terms.
Function denotation The constructor †, i.e. every function symbol evaluates to itself.
Predicate denotation Predicate P is true for terms ts exactly when ‡P ts ∈ H.

Like in the work by Herbelin and Ilik [22], but unlike for instance the formalizations by
Berghofer [3] and Forster et al. [11], the Herbrand universe includes all terms, not just those
with no variables. I never formalize what it means for a formula to be closed. The Herbrand
structure famously evaluates any term without variables to itself [10]. Or in this case:

▶ Lemma 24 (Herbrand semantics). Under any Herbrand structure and the specific environ-
ment #, every term evaluates to itself:

(|#, †|) t = t

Proof. By structural induction. ◀

I reuse the notation for semantics and abbreviate the model induced by H as [[H ]]:

abbreviation hmodel ( [[-]] ) where [[H ]] ≡ [[#, †, λP ts. ‡P ts ∈ H ]]

We now reach the model existence theorem.

▶ Theorem 25 (Model existence). When H is a Hintikka set, [[H ]] satisfies exactly the
formulas in H.

assumes Hintikka H
shows p ∈ H ←→ [[H ]] p

Proof. By well-founded induction on the size of the formula as given by size-fm. Thus the
induction hypothesis applies to any formula that is smaller by this measure, i.e. to subformulas
and to instances of universally quantified formulas (cf. Lemma 6). These are exactly the
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formulas that appear in the Hintikka conditions. The proof proceeds by considering each
type of formula. Since there is a Hintikka condition for every type, which corresponds exactly
to the semantics of the induced model, Isabelle automatically proves each case. For instance,
a universal formula p is in the Hintikka set iff every instance ⟨t/0⟩p is in the Hintikka set
(UniH ) iff every instance ⟨t/0⟩p holds in the induced model (by the induction hypothesis). ◀

6.5.2 Saturated MCSs are Hintikka Sets
Consider first the following correspondence between derivability and MCSs.

▶ Lemma 26 (Derivability and MCSs). A formula p is derivable from an MCS S iff p is in S:

assumes consistent S and maximal S
shows (∃ ps. set ps ⊆ S ∧ ps ⊢ p) ←→ p ∈ S

Proof. The left to right direction follows from the maximality of MCSs. The right to left
direction follows trivially from the derivability of any assumption (Lemma 13). ◀

I now show that maximal consistent saturated sets are Hintikka sets.

▶ Lemma 27 (Saturated MCSs are Hintikka sets). If the set H is consistent, maximal and
saturated, it is a Hintikka set:

assumes consistent H and maximal H and saturated H
shows Hintikka H

Proof. We need to prove each case of the Hintikka definition. Take first the FlsH case:

show ⊥ /∈ H

We need to show that falsity does not appear in our set. This follows directly from
Lemma 26 and the assumed consistency of H.

Consider next the ImpH case:

show (p −→ q) ∈ H ←→ (p ∈ H −→ q ∈ H )

From left to right, by using Lemma 26 this simply becomes modus ponens: if both p −→ q

and p are derivable from H then q must be derivable from H. The right to left direction is
similar. It relies on Lemma 26, contraposition and Lemma 21: that exactly one of a formula
and its negation is present in an MCS.

Consider next the UniH case:

show (∀ p ∈ H ) ←→ (∀ t. ⟨t/0 ⟩p ∈ H )

One direction follows directly from consistency of instantiation (Lemma 16) and the
maximality of H. The other direction follows from saturation (and Lemma 21). ◀

6.6 Completeness Theorem
Isabelle can automatically prove the countability of our syntax:

instance tm :: (countable) countable
instance fm :: (countable, countable) countable

These commands provide instances of the surjective function from-nat that takes natural
numbers and returns terms and formulas, respectively. I state the main theorem as follows.
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▶ Theorem 28 (Completeness). Assume that formula p is valid under assumptions X and
that X leaves infinitely many parameters unused. Then we can derive p from X.

fixes p :: ( ′f :: countable, ′p :: countable) fm
assumes ∀ (E :: - ⇒ ′f tm) F G. (∀ q ∈ X . [[E , F , G]] q) −→ [[E , F , G]] p

and infinite (UNIV − params X)
shows ∃ ps. set ps ⊆ X ∧ ps ⊢ p

Proof. By contradiction:
assume ∄ ps. set ps ⊆ X ∧ ps ⊢ p
then have ∗: ∄ ps. set ps ⊆ X ∧ ((¬ p) # ps ⊢ ⊥)

If no such list of assumptions exists, then (by classical reasoning on the object level) there
is also no list that allows us to derive falsity when assuming ¬ p.

I introduce some local abbreviations ?S and ?H (where ? is required by Isabelle):
let ?S = {¬ p} ∪ X
let ?H = Extend ?S from-nat

It is easy to see from ∗ above that ?S must be consistent and the extension ?H is therefore
maximal consistent (Lemmas 20, 22):

have consistent ?S
moreover have infinite (UNIV − params ?S)
ultimately have consistent ?H and maximal ?H

?H is saturated (Lemma 23) and Hintikka (Lemma 27):
moreover from this have saturated ?H
ultimately have Hintikka ?H

The model induced by ?H satisfies any formula in ?H (Theorem 25), including the
starting set ?S (Lemma 17):

have [[?H ]] p if p ∈ ?S for p
then have [[?H ]] (¬ p) and ∀ q ∈ X . [[?H ]] q

But this includes all formulas in X so by the assumed validity, [[H ]] must also satisfy p
and we reach our contradiction:

moreover from this have [[?H ]] p
ultimately show False

The proof system is complete. ◀

The following abbreviation of validity in a specific Herbrand universe, with countably
infinite function and predicate symbols, makes the result simpler to state:

abbreviation valid :: (nat, nat) fm ⇒ bool where
valid p ≡ ∀ (E :: nat ⇒ nat tm) F G. [[E , F , G]] p

I fix the function and predicate symbols to be natural numbers but any countably infinite
type works. One thing to note is that I only assume validity in one domain (the Herbrand
universe), as I cannot quantify over the type I use to represent the domain. This is, however,
a weaker assumption than assuming validity in all domains as is usually done.
▶ Theorem 29 (Soundness and completeness). Exactly the valid formulas are derivable:

theorem main: valid p ←→ (⊢ p)

Proof. By Theorems 9, 28. ◀

Only the definitions in Sections 3, 4 and Sections 5.1 to 5.5 must be inspected to trust
the result. The definitions in this Section are only used for the proof.
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7 Discussion

There are many choices to make in a formalization like this one. I choose to work with
de Bruijn indices rather than named variables or Nominal Isabelle [42], which provides
automation for this situation. While this choice makes it more complicated to explain the
formalizations of e.g. semantics and quantifier instantiation, it makes the formalization
self-contained. I hope to have demonstrated that the definitions themselves are simple, the
functions are short and only a few simple lemmas are needed about them.

Recall the GR rule which is used in Lemma 15 to justify the consistency of fresh witnesses:

GR: ⊢ q −→ ⟨⋆a/0 ⟩p =⇒ a /∈ params {p, q} =⇒ ⊢ q −→ ∀ p

Since I use de Bruijn indices, this could also be formalized without the use of a parameter a

by lifting q, in the sense of ↑ , to ensure that variable 0 in p is safe to generalize directly:

⊢ ↑q → p =⇒ ⊢ q → ∀ p

However, we would then need to ensure that the entire set S ′ in Lemma 15 is lifted in order
to apply the rule. With the present GR rule, we simply ensure that a is chosen to be fresh.
It would be interesting to try Laurent’s anti-locally nameless approach to quantifiers [27]
and see whether this would yield a simpler formalization.

Another choice has been to simulate assumptions in derivations by a chain of implications.
This trick applies directly to a one-sided calculus and makes it a lot simpler to work with,
especially with some custom notation. It works especially well with Smullyan’s System Q1
where the generalization rule (GR) works under an implication. The semantic characterization
of the tautology axiom, which works well with Isabelle’s proof automation, makes it even
smoother since propositional reasoning becomes a non-issue.

One challenge was the realization that the variant GR’ is more suitable than GR. Isabelle
cannot tell us something like this, nor is the proof automation powerful enough to derive the
rule automatically. The insight comes from experimenting with the formalization and proofs.

Some of these issues could also be resolved by starting from a natural deduction system
rather than Smullyan’s Hilbert system. Natural deduction systems have a context built in,
where I must simulate it with implications, and more natural rules for the connectives, which
could be used instead of the semantic characterization of tautologies. It remains future work
to adapt the formalization to this setting and review the potential benefits.

At this point in time there is a large body of formalizations to draw on. I am inspired by
Berghofer’s formalization [3] of the completeness of natural deduction for first-order logic.
Berghofer also formalizes Lindenbaum’s construction and my definition is close to his. My
formalization of Hintikka sets and the model existence theorem, however, is both shorter (due
to Forster et al. [11]) and, unlike Berghofer’s, works directly for open formulas (cf. Herbelin
and Ilik [22]). As such, even though some notion has already been formalized, it can be
beneficial to revisit it.

8 Conclusion and Future Work

I have used techniques from computer science like de Bruijn indices and functional program-
ming to work in the meta-logic of the proof assistant Isabelle/HOL. Here, I have formalized
the syntax and semantics of first-order logic and defined a simple axiomatic proof system for
it. This definition has included careful considerations of the interplay between syntax and
semantics, a semantic characterization of tautologies suitable for formalization and notational
tricks like the use of implications to simulate assumptions.
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I have then carried out a completeness proof for the Hilbert system in the style of Henkin,
and using ideas from Lindenbaum, Hintikka and Herbrand along the way. The proof is
direct: use Lindenbaum’s construction to extend a consistent set to a maximal consistent
set, add Henkin witnesses of existential formulas during this construction, notice that the
result is a Hintikka set and build a model in the Herbrand universe. Section 2 demonstrated
the usefulness of this style in the formalization of other logics and proof systems. My
formalization may serve as starting point for such endeavors: researchers can modify the
existing definitions and proofs rather than start from scratch. Isabelle/HOL ensures that
such modifications are correct and can help fill in gaps in the proofs when they arise. This
provides an entry point to formalizing such a completeness proof.

In the future, however, I want to abstract this proof along several dimensions. First, the
entire construction outlined above could potentially be given in the abstract and instantiated
with a concrete proof system, witnessing function, notion of saturation, etc. Then it might
be shared among the several formalizations of this method, and potential new ones. Popescu
and Traytel [36] have already developed some syntax-independent logical infrastructure in
their formal verification of an abstract account of Gödel’s incompleteness theorems. This
future work could potentially build on theirs, extending it with the model existence theorem
and more. Second, Smullyan gives many constructions in his uniform notation that abstracts
over the concrete choice of syntax. I would like to abstract this formalization in a similar way:
witnesses could be added for “δ-formulas”, which might happen to be of the form ¬ (∀ p)
like here or maybe of the form ♢ p as seen in hybrid logic [26].

I also want to extend the syntax, semantics, proof system and completeness proof to
first-order logic with equality. I already handle function symbols, unlike Smullyan, but to get
on par with Barwise, equality needs to be considered too. The Henkin style should scale well
for this extension. The current formalization does, however, have the benefit of outlining
the fundamental ideas of the completeness proof without too many auxiliary considerations.
This is an advantage for adapting it to other logics.

I hope this formalization will serve as inspiration, and perhaps as a starting point, for
further formalizations of logic.
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1 Introduction

While there are many automated theorem provers capable of proving theorems involving very
large formulas and many lemmas, very few of them have formalized proofs of metatheoretical
properties such as soundness and completeness. This leads to issues of trust: how do we
know that the answers returned by automated theorem provers are actually correct? And do
we know that our automated theorem provers will actually be able to prove what we want
them to? Even those provers that can generate proof certificates to support their answers
may not always be trustworthy, since some proof techniques lead to proofs that are very
difficult to follow for a human, and are thus difficult to check for correctness.

Formalizing the soundness and completeness of a prover provides two crucial benefits.
With a soundness result, we know that the prover does not erroneously accept an invalid
formula and outputs a wrong proof of the formula. Thus, advanced features and optimizations
cannot cause unforeseen flaws in the prover. Completeness of the prover is especially useful
in combination with the possibility of generating readable proof certificates. With formalized
completeness, we can use the prover as a tool to generate step-by-step proofs of any valid
formula, and it can thus also be used to gain understanding, e.g. by students trying to
understand why a counter-intuitive formula is valid. While there are some systems with
formalized metatheory, they rarely include executable provers, often cannot generate proof
certificates, and are often quite limited in their expressive power (cf. Section 1.1).
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In this paper, we present an automated theorem prover for first-order logic with functions
based on sequent calculus. We formalize its soundness and completeness in Isabelle/HOL.
We reuse the syntax and semantics of first-order logic from the Sequent Calculus Verifier
(SeCaV) system [16] (Section 2.1). We state the soundness and completeness of the prover
with respect to the SeCaV proof system, its semantics and a bounded semantics that we
introduce here. The prover can generate human-readable and machine-verifiable SeCaV
proofs for valid formulas.

Our formalization instantiates an abstract framework of coinductive proof trees by
Blanchette et al. [11] (Section 2.2). By instantiating the framework with concrete functions
implementing our sequent calculus, it builds a prover for us (Section 3). By discharging
further proof obligations, the framework proves that any proof tree built by our prover is
either finite or contains an infinite path with certain properties. We then build either a
SeCaV proof from the finite tree (Section 4) or a countermodel from the failed proof attempt
(Section 5). As far as we are aware, we are the first to use the framework to prove soundness
and completeness of a non-trivial executable prover (as opposed to simply a calculus).

Our prover is deterministic, fair and works on finite sequents. To handle the quantifiers
we must thus build our countermodel in a Herbrand universe that contains only the subset
of terms that actually appear in the failed proof. This idea is inspired by Ben-Ari’s textbook
proof [2], where terms are either variables or constants, and by Ridge’s Isabelle proof [38],
where only variables are considered. We are not aware of any previous formalization of
this construction that handles functions. We consider all terms in our Herbrand universe,
including those with free variables, yielding completeness for both open and closed formulas.

The prover is free software and the source code is available as supplementary material.
This consists of around 3000 lines of Isabelle/HOL and 1300 lines of supplementary Haskell.

We summarize our main contributions:
A formally verified sound and complete automated theorem prover for full first-order
logic with functions.
An analytic proof of completeness for both open and closed formulas for a deterministic
prover via a bounded semantics.
A method of translating the prover-generated certificates of validity into human-readable
and machine-verifiable proofs in SeCaV.
A concrete application of the abstract completeness framework, and a demonstration
of how to obtain soundness and completeness of an actual, executable prover using the
framework as a starting point.

We summarize the results and discuss the generated proofs, challenges encountered during
the verification, prover limitations and future work in Section 6 before concluding in Section 7.

1.1 Related work
The present paper is a much improved version of the work started in the second author’s
master’s thesis [21]. The Sequent Calculus Verifier (SeCaV) is a well-established proof system,
and both soundness and completeness have been proven for the system [19]. The system has
been used to teach students in several courses at the Technical University of Denmark [20,47].
An online tool called the SeCaV Unshortener has been developed to allow input of proofs in
a simple format which is then translated to an Isabelle proof [16].

Our prover is based on the abstract completeness framework by Blanchette et al. [10, 11].
The framework contains a simple example prover for propositional logic, and the original
application of the framework was in the formalization of the metatheory of the Sledgehammer
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tool for automated theorem proving within Isabelle/HOL [8]. Blanchette et al. [11] have
used the framework to formalize soundness and completeness of a calculus for first-order
logic with equality and in negation normal form. Their search is nondeterministic and they
do not generate an executable prover like we do. As such, we improve on their work by using
the framework to prove soundness and completeness of an executable prover.

A number of other systems have formally verified metatheories. NaDeA (Natural De-
duction Assistant) by Villadsen et al. [49] is a web application that allows users to prove
formulas with natural deduction. The metatheory of a model of the system is formalized in
Isabelle/HOL, and the application allows export of proofs for verification in Isabelle. The
Incredible Proof Machine by Breitner [12] is a web application that allows users to create
proofs using a specialized graphical interface. The proof system is as strong as natural
deduction, and a model of the system is formalized in Isabelle using the abstract framework
by Blanchette et al. [11]. Neither system includes automated theorem provers; they are
essentially simple proof assistants designed to aid students in understanding logical systems.

THINKER by Pelletier [35] is a proof system and an attached automated theorem prover.
THINKER is a natural deduction system designed to allow for what the author calls “direct
proofs”, as opposed to proofs based on reduction to a resolution system. THINKER was
perhaps the first automated theorem prover designed specifically with “naturality” in mind, as
a reaction to the indirectness of resolution-based proof systems. MUSCADET by Pastre [34]
is also an automated theorem prover based on natural deduction. The system distinguishes
itself by also supporting usage of prior knowledge such as previously proven theorems through
a Prolog knowledge base.

While there are many very advanced automated theorem provers such as Vampire [24],
Zipperposition [3] and Z3 [13], their metatheory and implementations are rarely formalized.
As a first step towards formally verifying modern provers, Schlichtkrull et al. [40] have
formalized an ordered resolution prover for clausal first-order logic in Isabelle/HOL. Jensen
et al. [22] formalized the soundness, but not the completeness, of a prover for first-order logic
with equality in Isabelle/HOL. Villadsen et al. [50] verified a simple prover for first-order logic
in Isabelle/HOL with the aim of allowing students to understand both the prover and the
formalization. That work is based on an earlier formalization by Ridge and Margetson [38],
but simplifies both the prover and the proofs to enable easier understanding by students.
Neither of these two provers provide support for functions or generation of proof certificates.

Blanchette [5] gives an overview of a number of verification efforts including the metatheory
of SAT solvers [6, 14,29,30,43] and certificate checkers [26,27], SMT solvers [28,31,45], the
superposition calculus [37], resolution [36,39, 41], a number of non-classical logics [15,17, 42,
46,48], and a wide range of proof systems for classical propositional logic [32,33]. Some of
these efforts are part of the IsaFoL project (Isabelle Formalization of Logic). Part of the
goal is to develop “a methodology for formalizing modern research in automated reasoning”.
Our work points in this direction too, by formally verifying a non-saturation-based prover.

2 Background

In this section, we briefly introduce the two existing things we build on: the Sequent Calculus
Verifier (SeCaV) system and the abstract framework by Blanchette et al [11]. In particular,
we have not modified these projects in any way for our use, and their designs thus significantly
influence the design of our prover.

ITP 2022
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datatype tm = Fun nat (tm list) | Var nat

datatype fm =
Pre nat (tm list) | Imp fm fm | Dis fm fm | Con fm fm | Exi fm | Uni fm | Neg fm

Figure 1 The syntax of the Sequent Calculus Verifier (parentheses added for clarity).

definition shift e v x ≡ λn. if n < v then e n else if n = v then x else e (n − 1 )

primrec semantics-term and semantics-list where
semantics-term e f (Var n) = e n

| semantics-term e f (Fun i l) = f i (semantics-list e f l)
| semantics-list e f [] = []
| semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l

primrec semantics where
semantics e f g (Pre i l) = g i (semantics-list e f l)

| semantics e f g (Imp p q) = (semantics e f g p −→ semantics e f g q)
| semantics e f g (Dis p q) = (semantics e f g p ∨ semantics e f g q)
| semantics e f g (Con p q) = (semantics e f g p ∧ semantics e f g q)
| semantics e f g (Exi p) = (∃ x. semantics (shift e 0 x) f g p)
| semantics e f g (Uni p) = (∀ x. semantics (shift e 0 x) f g p)
| semantics e f g (Neg p) = (¬ semantics e f g p)

Figure 2 The semantics of the Sequent Calculus Verifier (# separates the head and tail of a list).

2.1 The Sequent Calculus Verifier
The system is a one-sided sequent calculus for first-order logic with functions. Constants
are encoded as functions with arity 0. Figure 1 gives the syntax of terms and formulas as
Isabelle/HOL datatypes. The system uses de Bruijn indices to identify variables, while func-
tions and predicates are named by natural numbers. Besides predicates, the system includes
implication, disjunction, conjunction, existential quantification, universal quantification, and
negation (in that order in Figure 1). Predicates and functions take their arguments as ordered
lists of terms, which may be empty. Sequents are ordered lists of formulas. Parameterized
datatypes are written in postfix notation, e.g. the type tm list of lists containing terms.

The semantics of a formula is due to Berghofer [4], who models the universe as a type
variable like we do for now. The interpretation consists of an environment e for variables, a
function denotation f and a predicate denotation g. The semantics of the system is standard
and defined using the three recursive functions in Figure 2. The semantics of the logical
connectives is defined using the connectives from the meta-logic in Isabelle/HOL. The shift
function handles shifting de Bruijn-indices when interpreting quantifiers. We say that a
sequent is valid when, under all interpretations, some formula in the sequent is satisfied.

The system has a number of proof rules, some of which are displayed in Figure 3 (abusing
set notation for the membership and inclusion relations on lists – see the formalization for
details and the remaining rules). The rules should be read from the bottom up, since we
generally work backwards from a sequent we wish to prove. The rules are classified according
to Smullyan’s uniform notation [44].

The first proof rule, Basic, terminates the branch and applies when the sequent contains
both a formula and its negation. Isabelle/HOL allows pattern matching only on the head of
a list, so to simplify the specification of this rule, the positive formula must come first.
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Neg p ∈ z

⊩ p, z
Basic

⊩ z z ⊆ y

⊩ y
Ext

⊩ p, z

⊩ Neg (Neg p), z
NegNeg

⊩ p, q, z

⊩ Dis p q, z
AlphaDis

⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BetaDis

⊩ p [Var 0/t], z

⊩ Exi p, z
GammaExi

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DeltaExi

Figure 3 Sample proof rules for the Sequent Calculus Verifier (rules omitted here are similar).

The structural Ext rule can be applied to change the position of formulas in a sequent
(permutation), duplicate an existing formula (contraction), and remove formulas that are
not needed (weakening). It is crucial, since most rules in the system work only on the first
formula in a sequent. Duplicating a formula is necessary if a quantified formula needs to be
instantiated several times, since γ-rules (starting with Gamma) destroy the original formula.

The NegNeg rule removes a double negation from the first formula in a sequent. It can
be considered an α-rule, but we keep it separate from the others because it does not generate
two formulas. The AlphaDis rule decomposes disjunctions (and similar for the AlphaImp
and AlphaCon rules omitted here). The BetaDis rule decomposes negated disjunctions
and requires that two sequents are proven separately, creating branches in the proof tree
(and similar for the BetaCon, BetaImp rules omitted here). This essentially moves the
connective into the proof tree itself, since both branches now need to be proven separately.
The GammaExi rule instantiates an existential quantifier with any term t by substituting t

for variable 0 in the quantified formula. The GammaUni rule omitted here is similar. The
DeltaExi rule instantiates a negated existential quantifier in the first formula in a sequent
with a fresh constant function, with fresh here meaning that the function identifier does not
already occur anywhere in the sequent. The fresh constant cannot have any relationship to
other terms in the sequent: it is arbitrary. Thus we could have used any other term without
affecting the validity of the formula, which is exactly what is needed to prove a universally
quantified (“there does not exist”) formula. The DeltaUni rule omitted here is similar.

The proof system in Figure 3 has been formally verified to be sound and complete with
regards to the semantics in Figure 2 by From et al. [19]. We use these results to relate our
prover to SeCaV.

2.2 Abstract frameworks for soundness and completeness
Blanchette et al. [11] have formalized an abstract framework to facilitate soundness and
completeness proofs by coinductive methods. In particular, they give abstract definitions
that can be instantiated to a concrete sequent calculus or tableau prover. They facilitate
proofs in the Beth-Hintikka style: the search “builds either a finite deduction tree yielding
a proof (. . . ) or an infinite tree from which a countermodel (. . . ) can be extracted.” The
framework consists of a number of Isabelle/HOL locales that must be instantiated and in
return provide various definitions and proofs.

Locales [1, 23] allow the abstraction of definitions and proofs over given parameters. As
an example, consider groups in algebra defined by a carrier set, a binary operation and the
group axioms. With a locale, these can be specified abstractly and a number of operations
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13:6 Verifying a Sequent Calculus Prover for First-Order Logic with Functions

Table 1 The RuleSystem locale with premises above the line and important conclusions below.

eff Effect relation between a rule, a state and a finite set of resulting states.
rules Stream of rules. The set of these is called R.
S Set of well formed states.
eff-S Proof that for any rule in R and proof state in S the eff -related states are in S.
enabled-R Proof that for any state in S, some rule in R is enabled, i.e. applies to that state.
mkTree A function from a stream of rules and a starting state to a tree of states and rules.
wf-mkTree Proof that the tree generated by mkTree is well formed wrt. eff.

Table 2 The PersistentRuleSystem locale which extends RuleSystem from Table 1.

per Proof that if a rule r in R is enabled in a well formed state s and s’ is
eff -related to s by a rule r’ in R distinct from r, then r is enabled in s’.

epath-completeness-
Saturated

Proof that for any well formed state s, there exists either a well formed
finite tree with s as root or a saturated escape path with s as root.

and results can then be given in the abstract. Later, we can instantiate the locale with a
concrete group by providing the carrier set and binary operation, and proving that the group
axioms are fulfilled. We then obtain instantiations of the results for our concrete group.

In this section we give an overview of the locales provided by the abstract framework:
what they require and what they provide. We have condensed the Isabelle code into four
tables for brevity, since the specific details of the framework are not our main focus. The
exact definitions can be found in the Archive of Formal Proofs entry by Blanchette et al. [9].

First, two coinductive datatypes are crucial: a tree is finitely branching but can be
infinitely deep, while a stream has no branching but is decidedly infinite (a list with no end).

Tables 1 and 2 cover the two locales RuleSystem and PersistentRuleSystem which are
central for proving completeness. The locale premises are given above each vertical line and
the (important) conclusions are given below. The locales require us to prove a number of
things about three definitions. First, the eff relation specifies the effect of applying a rule to
a state in our proof search. By (proof) state we mean a sequent, potentially coupled with
additional information. The nodes of our proof tree will be proof states in this sense. Second,
rules is a stream of rules for the prover to attempt to apply. Third, S is a set of well formed
states (in our case simply the set of all states).

For the RuleSystem locale we must prove two things about these definitions. First, eff-S,
that the set of well formed states S is closed under the eff relation on rules from the stream
rules. Second, enabled-R, that no matter the proof state we have reached (in S), some rule in
rules applies. In return we get the function mkTree which embodies our prover and a proof,
wf-mkTree, that the tree produced by this prover is well formed. A tree is well formed (wf )
when its children are well formed and the set of child states is eff -related to the node’s state
and applied rule.

For the PersistentRuleSystem locale, we must additionally prove per. This essentially
states that rules do not interfere with each other: when we apply a rule, any other rules
that were applicable before are still applicable. In return we get a theorem called epath-
completeness-Saturated. An escape path (epath) is an infinite path in a well formed proof
tree. Such a path is saturated (Saturated) when any rule which is enabled at some point
on the path is eventually applied. Thus, this theorem states a completeness property for
the mkTree function (on valid input): either it returns a well formed finite tree or a tree
containing a saturated escape path (from which we can build a countermodel).
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Table 3 The Soundness locale.

eff, rules As in Table 1 but states are now called sequents.
structure Set of models.
sat Satisfaction predicate on sequents and models.
local-soundness Proof that the validity of a sequent (as given by sat and structure) follows from

the validity of its children (as given by eff and rules).
soundness Proof that any finite, well formed tree has a valid root.

Table 4 The RuleSystem-Code locale.

eff Effect function from a rule and a state to a finite set of resulting states.
rules Stream of rules.
i.mkTree Executable version of the mkTree function.

Table 3 covers the Soundness locale used to prove the soundness of resulting proof trees.
Here, besides eff and rules, we must state a set of models, structure, and a satisfaction
predicate, sat, on sequents and models. The locale then turns a local soundness proof,
local-soundness, that validity of a sequent follows from validity of its children, into a global
result, soundness, that any finite, well formed tree has a valid root.

Finally, to generate code we need to instantiate the locale RuleSystem-Code in Table 4,
where eff must now be a deterministic relation, i.e. a function and rules is as before. In
return we get an executable version of mkTree above, called i.mkTree.

RuleSystem-Code provides no guarantees on its own but we use the same underlying
function in all four locales. We export this function to Haskell using Isabelle’s (unverified)
code generation, code lemmas and a few (unverified) custom code-printing facilities. This
step moves us from a verified prover inside Isabelle to a prover in Haskell which is based on
a verified prover, but which is not itself verified.

3 Prover

In this section we explain the design of the proof search procedure driving our prover. The
procedure does not use the proof system of SeCaV directly, but introduces a new set of
similar proof rules that apply to entire sequents at once. This obviates the need for the
structural Ext rule, which is therefore not present. Additionally, we remove the Basic rule
and let the prover close proof branches implicitly.

Before we can define what the rules do, we need a few auxiliary definitions. The function
generateNew generates a function name that is fresh to a given list of terms. The function
subtermFms computes the list of terms occurring in a list of functions. We define subterms
as the list of all terms in a sequent, except that the list contains exactly Fun 0 [] when
it would otherwise be empty. This ensures that we always have some term to instantiate
γ-formulas with. The function sub implements substitution in a standard way using de Bruijn
indices. See the formalization [18] or the original SeCaV work [19] for details. The function
branchDone computes whether a sequent is an axiom, i.e. whether the sequent contains both
a formula and its negation. The prover uses this to determine when a branch of the proof
tree is proven and can be closed.

We first define which “parts” of a single formula must be proven for a rule to apply:
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definition parts :: tm list ⇒ rule ⇒ fm ⇒ fm list list where
parts A r f ≡ (case (r , f ) of

(NegNeg, Neg (Neg p)) ⇒ [[p]]
| (AlphaDis, Dis p q) ⇒ [[p, q]]
| (BetaDis, Neg (Dis p q)) ⇒ [[Neg p], [Neg q]]
| (DeltaExi, Neg (Exi p)) ⇒ [[Neg (sub 0 (Fun (generateNew A) []) p)]]
| (GammaExi, Exi p) ⇒ [Exi p # map (λt. sub 0 t p) A]
...
| - ⇒ [[f ]])

We have omitted some similar cases here (and will continue to do so in the sequel; see
the formalization for the full definitions). The result of applying a rule is a list of lists of
formulas with an implicit conjunction between lists and disjunction between inner formulas.
For instance, the parts of Dis p q under AlphaDis state that we must prove either p or q. The
definition takes a parameter A, which should be a list of terms present on the proof branch.
For δ-rules, a function which does not appear in A is generated (ensuring soundness), and
for γ-rules, the quantifier is instantiated with every term in A (ensuring completeness). Note
that if the rule and formula do not match, the result simply contains the original formula.
This means that rules are always enabled, but that they do nothing to most formulas.

To construct a proof tree, we need a function that computes the result of applying a rule
to (all formulas in) a sequent. This is done by the following function (@ appends two lists):

primrec children :: tm list ⇒ rule ⇒ sequent ⇒ sequent list where
children - - [] = [[]]

| children A r (p # z) =
(let hs = parts A r p; A ′ = remdups (A @ subtermFms (concat hs))
in list-prod hs (children A ′ r z))

It first computes the effect of applying the rule to the first formula in the sequent (using
the definition parts) and gives a name to the updated list of terms in the sequent (since
δ- and γ-rules may introduce new terms). The function then goes through the rest of the
sequent recursively, combining the generated child branches with the function list-prod:

primrec list-prod :: ′a list list ⇒ ′a list list ⇒ ′a list list where
list-prod - [] = []

| list-prod hs (t # ts) = map (λh. h @ t) hs @ list-prod hs ts

The type variable ′a in the type signature means that the function works on lists of lists
containing any type of elements.

It behaves in the following way (similar to the Cartesian product):

set (list-prod hs ts) = {h @ t |h t. h ∈ set hs ∧ t ∈ set ts}

For β-rules, the end result is a list of 2n child branches, where n is the number of
β-formulas in the sequent. These branches are ordered such that they correspond to the
branches one would have obtained by applying the corresponding SeCaV β-rule n times. For
all other rules, the end result is a single child branch. The parameter A to children should
again be a list of terms present on the proof branch. We should be clear that children does
not apply rules recursively to sub-formulas, but only to the “top layer.” If the application
of a rule reveals a formula that this rule applies to again, this formula is left as is and only
considered the next time children is applied to the sequent with that rule. For example,
the result of calling children with the rule AlphaDis and the sequent containing only the
formula Dis (Dis p q) r is Dis p q, r and not p, q, r.



A. H. From and F. K. Jacobsen 13:9

The prover needs to ensure that bound variables are instantiated with all terms on the
current branch when a γ-rule is applied. For this reason, we define the state in a proof tree
node to be a pair consisting of a list of terms appearing on the branch and a sequent. The
list of terms will be used to instantiate the parameter A in the definitions above.

We are now ready to define the effect of applying a proof rule to a proof state:

primrec effect :: rule ⇒ state ⇒ state fset where
effect r (A, z) =
(if branchDone z then {||} else

fimage (λz ′. (remdups (A @ subterms z @ subterms z ′), z ′))
(fset-of-list (children (remdups (A @ subtermFms z)) r z)))

To fit the types of the framework, the function returns a finite set (fset) instead of a list.
If the sequent is an axiom, the branch is proven, and the function returns an empty set of
child nodes, closing the branch. Otherwise, the function converts the result of the children
function to a finite set, and adds any new terms to the list of terms in each child node.

Having defined what rules do, we now need a stream of them (rules in Table 1). We,
somewhat arbitrarily, define a list of rules in the order α, δ, β, γ and cycle it to obtain a
stream. For efficiency, we could run, say, all α- and δ-rules to completion before branching
with the β-rules, but this cannot be encoded in the simple stream of rules without further
machinery: one could imagine having larger “meta-rules” corresponding to groups of SeCaV
rules. This would give a notion of “phases” where we would first run all the rules in one
group, then all the rules in the next group in the stream etc. For simplicity (see Section 6.4)
we apply single rules in a fixed order. This also trivially ensures fairness.

3.1 Applying the framework
We are now ready to apply the abstract completeness framework to obtain the actual proof
search procedure (cf. Section 2.2). First, we define a relational version of the effect of a rule,
called eff. To use the framework, we need to prove three properties: that the set of well
formed proof states is closed under eff (eff-S), that it is always possible to apply some rule
(enabled-R), and that the rules that can be applied are still possible to apply after applying
other rules (per). We do not need to restrict the set of well formed proof states, so the first
property is trivial. Since all of our rules can always be applied (they simply do nothing
if they do not match the sequent), the other two properties are also trivial. We can thus
instantiate the framework with our effect relation and stream of rules. This allows us to
define the prover using the mkTree function from the framework:

definition secavProver ≡ mkTree rules

This function takes a list of terms and a sequent, and applies the rules in the stream
in order to build a proof tree with the given sequent at the root, using our eff relation to
determine the children of each node. The list of terms is used to collect the terms that occur
in the sequents on each branch and should initially be empty (in the exported prover, the
function is wrapped in another function to ensure that the list of terms is empty).

We call the sequent at the root of this proof tree the root sequent:

abbreviation rootSequent t ≡ snd (fst (root t))
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3.2 Making the prover executable
To actually make the prover executable, we need to specify that the stream of rules should
be lazily evaluated, or the prover will never terminate. Additionally, we need to define the
prover using the code interpretation of the framework to enable computation of some parts of
the framework (cf. Table 4). After telling Isabelle how to translate operations on the option
type to the Maybe type, this also allows us to export the prover to Haskell code.

We have implemented a few Haskell modules to drive the exported prover, and translate
found proofs into the proof system of SeCaV. These modules are not formally verified, but the
proofs generated in this manner can be verified by Isabelle. We have written an automated
test suite that tests the unverified code for soundness and completeness by applying the
prover to a number of valid formulas, then calling Isabelle to verify the generated proofs,
and by applying the prover to a number of invalid formulas and confirming that it does not
generate a proof (within 10 seconds). While these tests do not give us absolute certainty
that the exported code and the hand-written Haskell modules are correct, they provide a
reasonable amount of certainty when combined with the formal proofs of correctness of the
proof search procedure within Isabelle.

4 Soundness

We use the abstract soundness framework (cf. Section 2.2) to prove that any sequent with
a well formed and finite proof tree can be proved in SeCaV. It follows from the soundness
of SeCaV that such sequents for which the prover terminates are semantically valid. The
following lemma comprises the core of the result:

▶ Lemma 1. If for all sequents z ′ in children A r z, we can derive ⊢⊢ pre @ z ′, and the term
list A contains all parameters of pre and z, then we can derive ⊢⊢ pre @ z itself:

assumes ∀ z ′ ∈ set (children A r z). (⊢⊢ pre @ z ′)
and paramss (pre @ z) ⊆ paramsts A

shows ⊢⊢ pre @ z

Proof. By induction on z for arbitrary pre and A.
For the empty sequent, the thesis holds immediately as we get by assumption and the

definition of children that we can derive ⊢⊢ pre.
For the non-empty sequent with formula p as head and z as tail we have the following

induction hypothesis (for any pre and A):

then have ih: ∀ z ′ ∈ set (children A r z). (⊢⊢ pre @ z ′) =⇒ (⊢⊢ pre @ z)
if paramss (pre @ z) ⊆ paramsts A for pre A

We abbreviate the term list that the prover actually recurses on as ?A. From the first
assumption and the definition of list-prod we then have (*):

∀ hs ∈ set (parts A r p). ∀ ts ∈ set (children ?A r z). (⊢⊢ pre @ hs @ ts)

The proof continues by examining the possible cases for parts.
Take first the case where r = AlphaDis and p = Dis q r. Then (*) states that we can

derive ⊢⊢ pre @ q # r # z ′ for all z ′ in children ?A r z. We apply the induction hypothesis
at pre extended with q and r, which is allowed since they are subformulas of p. We then get
the derivation ⊢⊢ pre @ q # r # z. By the Ext and AlphaDis rules from SeCaV we obtain
the desired derivation ⊢⊢ pre @ Dis q r # z.
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The remaining α- and β-cases are similar. In the δ-cases we prove that the constant used
by the prover is new to the sequent, as required by the SeCaV δ-rules.

In the γ-cases we get a derivation that includes both the γ-formula and all instances of
it using terms from the list A. Here we induct on A to generalize each instance into the
corresponding γ-formula and use Ext to contract this γ-formula with the existing occurrence.

When parts A r p returns p, the thesis holds from (*) and the induction hypothesis. ◀

We only need pre in the above lemma to make the induction hypothesis strong enough
for the proof, so we can instantiate it afterwards.

▶ Corollary 2 (Proof tree to SeCaV). We derive a sequent from derivations of its children:

assumes ∀ z ′ ∈ set (children A r z). (⊢⊢ z ′) and paramss z ⊆ paramsts A
shows ⊢⊢ z

We obtain the following soundness theorem from the abstract soundness framework.

▶ Theorem 3 (Prover soundness wrt. SeCaV). The root sequent of any finite, well formed
proof tree has a derivation in SeCaV:

assumes tfinite t and wf t
shows ⊢⊢ rootSequent t

5 Completeness

The completeness proof is heavily based on the abstract completeness framework. As noted
in Section 2.2, however, the framework only takes us so far. First, we duplicate the output of
Table 2, since the mkTree function is unhelpfully abstracted away by an existential quantifier.
This could easily be changed in the framework and should be considered for the next release.

▶ Lemma 4 (Prover cases). The proof tree generated by the prover is either finite and well
formed or there exists a saturated escape path with our initial state as root:

defines t ≡ secavProver (A, z)
shows (fst (root t) = (A, z) ∧ wf t ∧ tfinite t) ∨

(∃ steps. fst (shd steps) = (A, z) ∧ epath steps ∧ Saturated steps)

In the first case, the sequent has a proof (cf. Section 4). In the second case, we need to
build a countermodel from the saturated escape path to contradict validity of the sequent.
The rest of this section does exactly that. Inspired by Ben-Ari [2] and Ridge [38], we start
off by giving a definition of Hintikka sets over a restricted set of terms (Section 5.1). We
show that the set of formulas on saturated escape paths fulfill all Hintikka requirements
when we take the set of terms to be the terms on the path (Section 5.2). We then define a
countermodel for any formula in such a set using a new semantics that bounds quantifiers by
an explicit set rather than by types alone (Section 5.3). Finally we tie these results together
to show that the prover terminates for all sequents that are valid under our new semantics
(Section 5.4). In Section 6.1 we use existing results to prove completeness of the prover
wrt. the SeCaV semantics.
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locale Hintikka =
fixes H :: fm set
assumes

Basic: Pre n ts ∈ H =⇒ Neg (Pre n ts) /∈ H and
AlphaDis: Dis p q ∈ H =⇒ p ∈ H ∧ q ∈ H and
BetaDis: Neg (Dis p q) ∈ H =⇒ Neg p ∈ H ∨ Neg q ∈ H and
GammaExi: Exi p ∈ H =⇒ ∀ t ∈ terms H . sub 0 t p ∈ H and
DeltaExi: Neg (Exi p) ∈ H =⇒ ∃ t ∈ terms H . Neg (sub 0 t p) ∈ H and
...
Neg: Neg (Neg p) ∈ H =⇒ p ∈ H

Figure 4 Abridged list of requirements for a set of formulas H to be a Hintikka set.

5.1 Hintikka
First, by the terms of a set of formulas H we mean the following:

definition terms H ≡ if (
⋃

p ∈ H . set (subtermFm p)) = {} then {Fun 0 []}
else (

⋃
p ∈ H . set (subtermFm p))

This set contains an arbitrary (but fixed) constant, Fun 0 [], when H itself contains no
terms. Otherwise it contains all subterms of all formulas in H.

Figure 4 contains an abridged definition of a Hintikka set H. Here, we use a locale slightly
differently to the previous ones, in that we have specify no conclusions, only premises: the
formula set H and the requirements Basic, AlphaDis, etc. The omitted requirements are
similar to the ones shown. This use simply allows us to assume Hintikka H in a theorem and
know that the set H then fulfills the stated requirements. Similarly, we can prove that a set
H is Hintikka by proving that it fulfills the requirements. It is important to note that in the
γ- and δ-cases, the quantifiers only range over the terms of H.

5.2 Saturated escape paths are Hintikka
The following definition forgets all structure of a path and reduces it to a set of formulas:

definition tree-fms steps ≡
⋃

ss ∈ sset steps. set (pseq ss)

The function sset returns the set of steps and pseq extracts the sequent from each.
Given a saturated escape path steps, we want to prove that tree-fms steps is a Hintikka

set. For instance, if Dis p q appears on the path, then both p and q should too. The prover
is designed to make this property of its proof trees as evident as possible: formulas unaffected
by a given rule are easily shown to be preserved by the application of that rule and any rule
immediately applies to all its affected formulas, regardless of their position in the sequent.

We will need a number of intermediate results.

5.2.1 Unaffected formulas
We define the predicate affects to hold for a rule and a formula, when that rule does not
preserve the formula (thus no rule affects a γ-formula, since the γ-rules of the prover, unlike
those of SeCaV, preserve the original formula). For instance, affects AlphaDis (Dis p q) holds
while affects BetaCon (Dis p q) does not.

We then prove the following key preservation lemma:
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▶ Lemma 5 (effect preserves unaffected formulas). Assume formula p occurs in sequent z
and the rule r does not affect p. Then p also occurs in all children of z as given by effect
( |∈| denotes membership of a finite set):

assumes p ∈ set z and ¬ affects r p and (B, z ′) |∈| effect r (A, z)
shows p ∈ set z ′

Proof. The function parts preserves unaffected formulas (proof by cases) so children does as
well (proof by induction on the sequent) and thus effect does too. ◀

We lift this to escape paths:

▶ Lemma 6 (Escape paths preserve unaffected formulas). Assume formula p occurs in some
sequent at the head of an escape path which consists of a prefix pre, where none of the rules
affect p, and a suffix suf. Then p occurs at the head of suf:

assumes p ∈ set (pseq (shd steps)) and epath steps and steps = pre @− suf and
list-all (not (λstep. affects (snd step) p)) pre

shows p ∈ set (pseq (shd suf ))

Next, notice the following property of streams:

▶ Lemma 7 (Eventual prefix). When a property P eventually holds of a stream, then the
stream is comprised of a prefix of n (possibly zero) elements for which P does not hold and
then a suffix that starts with an element for which P does hold:

assumes ev (holds P) xs
shows ∃ n. list-all (not P) (stake n xs) ∧ holds P (sdrop n xs)

Saturation states that a rule is eventually applied and Lemmas 6 and 7 combine to state
that any affected formulas are preserved until then.

5.2.2 Affected formulas
Knowing that formulas are preserved as desired, we need to know that they are broken down
as desired. The following lemma (proof omitted here) states this in general via parts:

▶ Lemma 8 (Parts in effect). For any formula p in a sequent z, the effect of rule r on z
includes some part of r’s effect on p:

assumes p ∈ set z and (B, z ′) |∈| effect r (A, z)
shows ∃ C xs. set A ⊆ set C ∧ xs ∈ set (parts C r p) ∧ set xs ⊆ set z ′

This is easier to understand when we specialize the rule and the formula:

▶ Corollary 9. Example effect of the NegNeg rule on a double-negated formula p:

corollary Neg (Neg p) ∈ set z =⇒ (B, z ′) |∈| effect NegNeg (A, z) =⇒ p ∈ set z ′

5.2.3 Hintikka requirements
We then need to prove the following:

▶ Theorem 10 (Hintikka escape paths). Saturated escape paths fulfill all Hintikka requirements:

assumes epath steps and Saturated steps
shows Hintikka (tree-fms steps)
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Proof. This boils down to proving each requirement of Figure 4 (and those omitted there).
We give a couple of examples and refer to the formalization for the full details.

For Basic, assume towards a contradiction that both a predicate and its negation appear
on the branch. By preservation of formulas (Lemma 6), both appear in the same sequent
at some point. But then branchDone holds for that sequent, so it has no children and the
branch would terminate. This contradicts that escape paths are infinite, so Basic must hold.

For AlphaDis, assume that Dis p q appears on the branch. Then it appears at some step
n. By saturation of the escape path, AlphaDis is eventually applied at some (earliest) step
n + k. By Lemma 6, Dis p q is preserved until then. So by the effect of rule AlphaDis, both
p and q appear at step n + k + 1. The cases for the β- and δ-requirements are very similar.

For GammaExi assume that Exi p occurs at step n. We need to show that it is instantiated
with all terms that (eventually) appear on the branch. Fix an arbitrary such term t. There
must be some point m where t appears in a sequent. Thus at every point greater than m,
term t appears in the term list which is part of the proof state. By saturation, at some step
greater than n + m + 1, rule GammaExi is applied. The formula Exi p is preserved until
this stage (Lemma 6) and the term list only grows, so t is too. Thus, at the next step, sub 0
t p occurs on the branch as desired. ◀

5.3 Countermodel
We need to build a countermodel for any formula in a Hintikka set to contradict the validity
of any formula on a saturated escape path. We do this in the usual term model with a
(bounded) Herbrand interpretation. Unfortunately, we cannot build a countermodel in the
original semantics where the universe is specified as a type, since we cannot form the type
of terms in a given Hintikka set (the typedef command does not support free variables).
Instead, we introduce a custom bounded semantics.

5.3.1 Bounded semantics
The bounded semantics is exactly like the usual semantics (cf. Figure 2) except for an extra
argument u, standing for the universe, which bounds the range of the quantifiers in the
following cases:

| usemantics u e f g (Exi p) = (∃ x ∈ u. usemantics u (SeCaV .shift e 0 x) f g p)
| usemantics u e f g (Uni p) = (∀ x ∈ u. usemantics u (SeCaV .shift e 0 x) f g p)

This leads to the following natural requirements on environments e and function denota-
tions f, namely that they must stay inside u:

definition is-env u e ≡ ∀ n. e n ∈ u
definition is-fdenot u f ≡ ∀ i l. list-all (λx. x ∈ u) l −→ f i l ∈ u

In general, we only consider environments and function denotations that satisfy these
requirements and call them (and any model based on them) well formed. When u = UNIV,
we do not actually bound the quantifiers and the two semantics coincide.

The SeCaV proof system (cf. Figure 3) is sound for the bounded semantics too.

▶ Theorem 11 (SeCaV is sound for the bounded semantics). Given a SeCaV derivation of
sequent z and a well formed model, some formula p in z is satisfied in that model:

assumes ⊢⊢ z and is-env u e and is-fdenot u f
shows ∃ p ∈ set z. usemantics u e f g p
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Proof. The proof closely resembles the original soundness proof (cf. [19]). ◀

We abbreviate validity of a sequent in the bounded semantics as uvalid:
abbreviation uvalid z ≡ ∀ u (e :: nat ⇒ tm) f g. is-env u e −→ is-fdenot u f −→

(∃ p ∈ set z. usemantics u e f g p)

Namely, for all universes and well formed models, some formula in the sequent is satisfied
in the bounded semantics at that universe by that model.

5.3.2 Model construction
Our countermodel is given by a bounded Herbrand interpretation where terms are interpreted
as themselves when they appear in the universe terms H and as an arbitrary term otherwise.

▶ Definition 12 (Countermodel induced by Hintikka set S). We abbreviate the model as M S:
abbreviation E S n ≡ if Var n ∈ terms S then Var n else SOME t. t ∈ terms S
abbreviation F S i l ≡ if Fun i l ∈ terms S then Fun i l else SOME t. t ∈ terms S
abbreviation G S n ts ≡ Neg (Pre n ts) ∈ S
abbreviation M S ≡ usemantics (terms S) (E S) (F S) (G S)

The definition of G is what makes this a countermodel rather than a model: a predicate
is satisfied exactly when its negation is present in the Hintikka set.

Importantly, these definitions are well formed:

▶ Lemma 13 (Well formed countermodel). Definition 12 is well formed:
shows is-env (terms S) (E S)
shows is-fdenot (terms S) (F S)

Proof. By the construction of E and F and the nonemptiness of terms S. ◀

▶ Theorem 14 (Model existence). The given model falsifies any formula p in Hintikka set S:
assumes Hintikka S
shows (p ∈ S −→ ¬ M S p) ∧ (Neg p ∈ S −→ M S p)

Proof. By induction on the size of the formula p (substitution instances are smaller than
the quantified formulas they arise from). The second part of the thesis is needed when the
Hintikka requirements concern negated formulas. We show a few cases here and refer to the
formalization for the full details. The cases omitted here are similar to those shown.

Assume p = Pre n ts occurs in S. We need to show that the given model falsifies p.
Since terms S is downwards closed by construction, ts is interpreted as itself by the bounded
Herbrand interpretation. Moreover, by the Basic requirement, we know that Neg p is not in
S and is therefore satisfied. Thus, p is falsified.

Assume p = Dis q r occurs negated in S. Then by the BetaDis requirement, either Neg q
or Neg r occurs in S. The induction hypothesis applies to these, so p is satisfied as desired.

Assume p = Uni q occurs in S. By the DeltaUni requirement, so does some instance sub
0 t q for a term t in terms S. By the induction hypothesis, this is falsified by M S, and by its
origin, t is interpreted as itself. Thus, we have a counterexample that falsifies p.

Assume p = Exi q occurs in S. By the GammaExi requirement, so do all instances using
terms from S. Thus, these are all falsified by the model. These terms from S are interpreted
as themselves by definition so we have no witness for p in terms S and M S falsifies it. ◀

We note that the above proof works for open and closed formulas alike because we consider
both bound and free variables to be subterms of a formula.
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5.4 Result
We start off by proving completeness for uvalid sequents. We need to relate these to saturated
escape paths.

▶ Lemma 15 (Saturated escape paths contradict uvalidity). A sequent z with a saturated
escape path, steps, cannot be uvalid:

assumes fst (shd steps) = (A, z) and epath steps and Saturated steps
shows ¬ uvalid z

Proof. Assume towards a contradiction that z is uvalid. By Theorem 10 the formulas on
steps form a Hintikka set S. Every formula p in z also occurs in S, so by Theorem 14, the well
formed model M S (Lemma 13) falsifies all of them. This contradicts the uvalidity of z. ◀

This leads to completeness for uvalid sequents:

▶ Theorem 16 (Completeness wrt. uvalid). The prover terminates for uvalid sequents:

assumes uvalid z
defines t ≡ secavProver (A, z)
shows fst (root t) = (A, z) ∧ wf t ∧ tfinite t

Proof. From the abstract framework (Lemma 4), either the thesis holds or a saturated escape
path exists for our sequent, but assumed uvalidity and Lemma 15 contradict the latter. ◀

▶ Corollary 17 (Completeness wrt. SeCaV). Termination for sequents derivable in SeCaV:

assumes ⊢⊢ z
defines t ≡ secavProver (A, z)
shows fst (root t) = (A, z) ∧ wf t ∧ tfinite t

Proof. By the soundness of SeCaV (Theorem 11) and Theorem 16 for uvalid sequents. ◀

6 Results and discussion

We have presented an automated theorem prover for the Sequent Calculus Verifier system.
The prover is capable of proving a number of selected exercise formulas very quickly, including
formulas which are quite difficult for humans to prove. The prover does have some limitations,
mostly related to performance and length of the generated proofs, since our proof search
procedure is not very optimized for either of these metrics. In particular, our prover always
instantiates quantified formulas with all terms in the sequent and breaks down all formulas
as much as possible, even when some formulas are “obviously” irrelevant to the proof.

6.1 Summary of theorems
We have proven soundness and completeness of the proof search procedure with regards to the
proof system of SeCaV (see Figure 3). For soundness, this was done directly (in Theorem 3),
while we took a detour through our notion of a bounded semantics to prove completeness
(in Theorems 11 and 16, which lead to Corollary 17). To justify the introduction of our
bounded semantics, we can use the existing soundness and completeness theorems of the
SeCaV proof system [19] and our results to prove that validity in the two semantics coincide.
Additionally, a number of easy corollaries further linking the prover, the proof system and
the two semantics follow from our results, and have been collected in Figure 5. In the figure,
the interpretations are implicitly universally quantified and for the bounded semantics we
only consider well formed interpretations.
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finite(t) ∧ wf(t) ∧ rootSequent(t) = [p]

usemantics u e f g p semantics e f g p

⊩ [p]

prover_soundness_SeCaV

prover_soundness_usemantics

prover_soundness_semantics

sound_usemantics
sound

prover_completeness_usemantics

prover_completeness_SeCaV

prover_completeness_semantics

complete_sound

Figure 5 Overview of our results. Solid arrows represent our main contributions, squiggly arrows
represent theorems of the existing SeCaV system, and dashed arrows represent easy corollaries.

6.2 Example proofs
Famously, we must beware of a program that has only been proven correct, but not tested. To
demonstrate that the automated theorem prover works, we examine some simple generated
proofs. The prover generates proofs in the SeCaV Unshortener format: first comes the
formula to be proven, then the names of proof rules to apply and the resulting sequent after
each application, with each formula in a sequent on its own line. Arguments to predicates and
functions are given in square brackets and parentheses are used to disambiguate formulas.

We start with perhaps the simplest possible classical example, that ¬p ∨ p. Figure 6a
shows the proof generated by the prover. This is the shortest possible proof of the formula
in the SeCaV system, and the prover is thus on par with a human in this very simple case.

The next example is ¬p(a) ∨ ∃x.p(x). Figure 6b contains the generated proof. It can be
shortened since the quantified formula only needs to be instantiated once, by a. However,
the prover always duplicates a γ-formula before instantiating it with all terms on the branch.

6.3 Verification challenges
While verifying the prover, we discovered that our initial version was unsound due to a
missing update of the term list when applying (multiple) δ-rules to a sequent. The attempted
soundness proof failed in exactly this case, pointing us directly to the issue. Thus, the formal
verification caught a critical flaw that we had missed in our testing and helped us fix it.

We have designed the prover to be easily verified and it mostly was. Especially the
abstract framework worked well for our novel case with a deterministic prover for first-order
logic. One obstacle, however, was in using a type to represent the domain in the SeCaV
semantics (cf. Figure 2). To build the countermodel, we need the domain to contain only the
terms on the saturated escape path, but we cannot form this type, which depends on a local
variable, in Isabelle/HOL. Here we would benefit from Isabelle integration of the work by
Kunčar and Popescu [25] which adds exactly this capability to higher-order logic. Instead we
introduced the bounded semantics (“the set-based relativization” in their terminology [25])
and proved a new soundness result for it (cf. Section 5.3.1). Otherwise the largest issue was
dealing with substitutions using de Bruijn indices. We are excited to see how recent work by
Blanchette et al. [7] for reasoning about syntax with bindings improves matters in this area.

ITP 2022



13:18 Verifying a Sequent Calculus Prover for First-Order Logic with Functions
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Neg p
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p
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p [0]
Exi (p [0])
Neg (p [a])
p [a]

Ext
p [a]
Neg (p [a])
Exi (p [0])
p [0]
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Figure 6b continued.

Figure 6 Proofs generated by the prover in SeCaV Unshortener format.

6.4 Limitations and future work

There are a number of limitations and possibilities for optimization in the proof search itself.
Most importantly, the focus of the procedure is on completeness, not performance. Our
prover is much slower than state-of-the-art provers such as Vampire [24], but our goal was not
to compete on speed, but simply to show that formal verification of provers with advanced
features such as generation of proof certificates and support for functions is possible. The
prover also cannot output counterexamples, even though these can be detected in some cases:
our prover simply never terminates on invalid formulas.

We believe that the approach used for our prover is extendable to more sophisticated and
optimized proof search procedures, albeit with considerably more work needed to formally
verify them. The most obvious opportunity for optimization is controlling the order of proof
rules. In systems with unordered sequents, it is generally better to apply as many α-rules as
possible before applying β-rules to avoid duplicating work, but the prover simply applies
rules in a fixed order. As mentioned in Section 3, this optimization can be done by working
with “meta-rules” corresponding to groups of SeCaV rules such that a meta-rule e.g. applies
as many α-rules as possible before continuing to the next “phase” of the proof. We have
attempted to implement this, but found that it complicates the proofs considerably since this
idea makes it much harder to determine when a proof rule is actually applied. In the proof
of fairness and the proof that the formulas on saturated escape paths form Hintikka sets, we
need to know that certain formulas are preserved until proof rules are eventually applied to
them. By introducing phases in the proof, proving this becomes much more difficult, since
we then need to prove that each phase actually ends (requiring some measure which depends
on the specific sequents in question), and to locate each rule within the meta-rule it is part
of. We thus leave optimizations in this vein as future work. We note that, since the SeCaV
system requires application of the Ext rule to permute sequents, and proof rules only apply
to the first formula in a sequent, the optimization described above may not always reduce the
number of SeCaV proof steps needed to prove a formula, and some heuristics would probably
be needed to produce reasonably short proofs in all cases.



A. H. From and F. K. Jacobsen 13:19

Another optimization could be to only support closed formulas and thus reduce the
number of subterms of a given formula. For our current Herbrand interpretation, we need
variables to be subterms, but if we only considered closed terms, we could do away with this.

The length of proofs could also be optimized by performing more post-processing of the
found proofs, for example by removing unnecessary instantiations or rule applications that
do not contribute to proving a branch. This would not improve the performance in the
sense that the prover would still spend the same amount of time finding the proof, but it
could reduce the length of some proofs significantly. The proof trees generated by the prover
already require some (unverified) post-processing to obtain proofs in the SeCaV system. It
would be interesting to move these steps from Haskell into Isabelle/HOL and extend the
proofs to cover them.

7 Conclusion

We have designed, implemented and verified an automated theorem prover for first-order logic
with functions in Isabelle/HOL. We have used an existing framework in a novel way to get
us part of the way towards completeness and extended existing techniques on countermodels
over restricted domains to reach our destination. We build on the existing SeCaV system
and contribute an automatic way of finding derivations to the project. Thus, we have
demonstrated the utility of Isabelle/HOL for implementing and verifying executable software
and the strength of its libraries in doing so. Our prover handles the full syntax of first-order
logic with functions and constructs human-readable proof certificates in a sequent calculus.
We hope our work inspires others to verify more sophisticated provers in the same vein.
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1 Introduction

Hybrid logic increases the expressiveness of modal logic by adding a special sort of proposi-
tional symbol called nominals to the syntax. In regular modal logic we can only reference
worlds indirectly through the modalities, but nominals, that are true at exactly one world,
name worlds explicitly. A nominal i gives rise to the satisfaction operator @i that states what
world a formula is true “at.” These features make hybrid logic well suited for applications
like temporal logic [3], description logic [5] and epistemic logics for social networks [24].

There are many proof systems for classical hybrid logic [4] and we focus on tableau systems
in the following. Early work relied on loop checks to ensure termination [10] but Bolander and
Blackburn introduced a calculus that guarantees finite branches through local restrictions [9].
Their completeness proof is analytic, meaning that they reason about open branches directly.
Blackburn et al. [4] introduced the Seligman-style [25] system ST with a more local proof
style than previous systems. Jørgensen et al. [21] later introduced a synthetic completeness
proof for ST and showed that it scales with extensions to the logic. The synthetic approach
involves reasoning about maximal consistent sets and their properties [13, 26] and this also
opens the way for other developments, notably interpolation results [1].

Blackburn et al. [4] restricted ST into the terminating ST* but showed completeness by
translation from the system by Bolander and Blackburn [9]. The synthetic completeness
proof for ST relies on a symmetry in branches that neither terminating system has. We
present system STA, a refinement of ST* suitable for formalization, which is formalized in
the simple type theory of Isabelle/HOL [23]. Its proof of completeness fills a gap as the first
synthetic completeness proof for a terminating tableau system for hybrid logic. It is also
the first standalone completeness proof for a terminating Seligman-style system and, to our
knowledge, the first formalization of any proof system for hybrid logic.
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5:2 Synthetic Completeness for a Terminating Seligman-Style Tableau System

The formalization provides absolute trust in the correctness of the completeness proof
and serves as a companion to this paper, where the proofs can be seen in full detail.

Our system closely resembles ST* but with restrictions that are simpler to formalize and
we argue for termination based on this relationship. Formalizing termination remains future
work since we want a direct proof, not one based on translation. Blanchette [6] gives an
overview of efforts to formalize the metatheory of logical calculi and provers in Isabelle.

Other formalizations of hybrid logic itself exist. Doczkal and Smolka [12] formalized hybrid
logic with nominals in constructive type theory using the proof assistant Coq. They gave
algorithmic proofs of small model theorems and computational decidability of satisfiability,
validity, and equivalence of formulas. In Isabelle/HOL, Linker [22] formalized the semantic
embedding of a spatio-temporal multi-modal logic with a hybrid logic-inspired at-operator.

Our work is classical but hybrid logic also has a constructive variant. Braüner and de
Paiva [11] defined intuitionistic hybrid logic, and a natural deduction system, and Galmiche
and Salhi [19] showed its decidability via a sequent calculus. Jia and Walker [20] interpreted
modal proofs as distributed programs with nominals denoting places in the network.

We formalized the synthetic completeness of ST with some of the simpler ST* restric-
tions required for termination in our MSc thesis [17]. A short paper by From et al. [14]
briefly described an even earlier version of the formalization and we mentioned the present
completeness proof in a short presentation at Advances in Modal Logic 2020 [18].

The paper continues as follows. First, we give the syntax and semantics of basic hybrid
logic (Section 2). We introduce the proof system, corresponding rule restrictions and some
consequences (Section 3). Next, we show a number of properties of the system that are useful
for the completeness proof (Section 4). After that, we prove completeness of the system and
show how our proof relates to existing work (Section 5). We then show how STA relates
to ST* and argue for our choice of restrictions. From this relationship we claim that STA

must be terminating by sketching a possible translation (Section 6). We briefly discuss some
points about the formalization (Section 7) and conclude with future work (Section 8).

2 Syntax and Semantics

The well-formed formulas of the basic hybrid logic are given by the following grammar, where
we use p as a propositional symbol and i, j, k, a, b for nominals.

ϕ, ψ ::= p | i | ¬ϕ | ϕ ∨ ψ | ♢ϕ | @iϕ

The ♢ operator is the usual possibility modality and @i is the aforementioned satisfaction
operator. A formula of the form @iϕ is called a satisfaction statement.

We interpret the language on Kripke models M = (W,R, V ). The frame (W,R) consists
of a non-empty set of worlds W and a binary accessibility relation R between them. V is the
valuation of propositional symbols. An assignment g maps nominals to elements of W ; if
g(i) = w we say that nominal i denotes w. Formula satisfiability is defined as follows:

M, g, w |= p iff w ∈ V (p)
M, g, w |= i iff g(i) = w

M, g, w |= ¬ϕ iff M, g, w ̸|= ϕ

M, g, w |= ϕ ∨ ψ iff M, g, w |= ϕ or M, g, w |= ψ

M, g, w |= ♢ϕ iff for some w′, wRw′ and M, g, w′ |= ϕ

M, g, w |= @iϕ iff M, g, g(i) |= ϕ
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@iϕ1

@iϕ2
...

@jψ1
...

(a) Internalized.

i

ϕ1

ϕ2
...
j

ψ1
...

(b) Seligman-style.

Figure 1 Internalized and Seligman-style tableau branches.

3 Our Seligman-Style Tableau System

Our proof system of choice is tableau. In tableau we decompose an initial set of root formulas
into a tree structure and show unsatisfiability by reaching a contradiction on each branch.
This is called “closing” the branch and a branch that cannot be closed remains “open.” If we
can close every branch that emerges then the root formulas have a closing tableau.

A hybrid logic formula is true relative to a given world and our proof system must handle
this. Internalized tableau systems, as depicted in Figure 1a, encode the information in
every formula on the branch by working exclusively with satisfaction statements. We follow
instead the Seligman style [25] adapted to tableau systems by Blackburn et al. [4]. Here, the
information is attached to a group of formulas at once by dividing the branch into blocks as
depicted in Figure 1b. The first formula on each block is ensured to be a nominal and called
the opening nominal. It denotes the world that the formulas on the block are true at. We
occasionally call a block’s opening nominal its “type” and use the following shorthands:

▶ Definition 1 (ϕ at i). If a formula ϕ occurs on a block with opening nominal i, then we
say that ϕ occurs “on an i-block” or simply that ϕ occurs “at i.”

3.1 Proof System
Figure 2 gives our tableau rules. We give the rule output below the vertical lines and the
rule input above them. The opening nominal of the latest, current, block is given below
the horizontal line. Above each input formula we write the opening nominal of the block it
occurs on. When a rule has multiple input we write these pairs side by side. Any formula on
the current block may be used as input under the same restrictions on opening nominals.

▶ Example 2. Consider the (¬¬) rule: if ¬¬ϕ occurs on an a-block and the current block
is an a-block, then ϕ is a legal extension of the branch. The intuition for the Nom rule is
that the current opening nominal a occurs on a b-block so nominals a and b must denote
the same world and it is sound to copy ϕ from b to a. The (♢) rule witnesses its input
formula, ♢ϕ, with a fresh witnessing nominal i by producing an accessibility formula, ♢i,
and a satisfaction statement, @iϕ, saying that ϕ holds at the reachable world denoted by i.

▶ Remark 3. In the internalized system, cf. Figure 1a, we may work on a formula prefixed
by @i one moment and one prefixed by @k the next. The Seligman-style blocks give rise to a
more local proof style by delegating this perspective switch, e.g. from i to k, to the GoTo
rule that opens a new block with corresponding opening nominal.

The soundness proof for STA follows existing work [4, 14] (cf. the formalization).

TYPES 2020
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1 i is fresh and ϕ is not a nominal.
2 i is not fresh.

Figure 2 Our Seligman-style tableau system STA.

3.2 Restrictions for Termination
Besides the side conditions, we need to impose the following four restrictions on the system
to ensure that we eventually run out of applicable rules (inspired by Blackburn et al. [4]):

S1 The output of a non-GoTo rule must include a formula new to the current block type.
S2 The (♢) rule can only be applied to input ♢ϕ on an a-block if ♢ϕ is not already witnessed

at a by formulas ♢i and @iϕ for some witnessing nominal i.
S3 We associate potential, a natural number n, with each line in the tableau. GoTo must

decrement the number, the other rules increment it and we may start from any amount.
S4 We parameterize the proof system by a fixed set of nominals A and impose the following:

a. The nominal introduced by the (♢) rule is not in A.
b. For any nominal i, Nom only applies to a formula ϕ = i or ϕ = ♢i when i ∈ A.

Restrictions S1 and S2 prevent us from applying the same rule to the same input repeatedly.
We motivate restriction S3 by the following examples and restriction S4 in Section 3.3.

▶ Example 4. In Figure 3a we prove the validity of ¬@iϕ ∨ @iϕ by constructing a closing
tableau for its negation. We start from potential 0 in the fourth column. Notice how regular
rule applications build up potential that is then discharged to open a new block on line 5.

▶ Example 5. In Figure 3b we start from the unsatisfiable formula @i¬i and potential n.
Restriction S3 prevents infinite applications of GoTo and eventually forces us to make progress
(or we might get stuck if no rules apply).

▶ Remark 6. The choice of a fresh opening nominal for the root block ensures that we do not
close the branch because of an interplay between the formula itself and the opening nominal
(imagine starting from ¬i on a block with opening nominal i).

Given restrictions S3 and S4 we say that a branch has a closing tableau with respect to a
set of allowed nominals A and potential n. We also introduce the following shorthand:

▶ Definition 7 (Allowed ϕ). A formula ϕ is allowed by A if it meets condition S4b.
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0. a

1. ¬(¬@iϕ ∨ @iϕ) [0]
2. ¬¬@iϕ (¬∨) 1 [1]
3. ¬@iϕ (¬∨) 1 [1]
4. @iϕ (¬¬) 2 [2]
5. i GoTo [1]
6. ¬ϕ (¬@) 3 [2]
7. ϕ (@) 4 [3]

×
(a) Building up potential.

0. a

1. @i¬i [n]
2. i GoTo [n− 1]
3. i GoTo [n− 2]
...

...
...

...
n+ 1. i GoTo [0]
n+ 2. ¬i (@) 1 [1]

×
(b) Running out of potential.

Figure 3 Two examples of potential.

3.3 Nominal Asymmetry
See Blackburn et al. [4] for why a restriction like S4 is needed. They conclude:

We . . . have to enforce some control on the “direction” we allow the copying of
formulas, so that we can establish a decreasing length argument. It is OK to copy a
formula true at a nominal i to a nominal j if j generated i, but not if i generated j [4].

Essentially, we need to ensure that blocks of generated nominals contain strictly smaller
formulas, so that any chain of them eventually terminates. It is the (♢) rule that generates a
fresh nominal i by producing the formulas ♢i and @iϕ. Only GoTo can decompose either
formula into the raw nominal i. Our restriction S4a ensures i /∈ A so by S4b, nominal i
cannot be copied to another block. Thus, unlike root nominals, the nominals generated by (♢)
can only appear raw as opening nominals. Since Nom requires the opening nominal of the
current block to appear on its own, formulas can only be copied to blocks with (♢)-generated
opening nominals, not from them. This matches the quote. It also shows how generated
nominals are treated differently, causing a “nominal asymmetry.”

We revisit termination in Section 6. For now, note that the fixed set A frees us from
formalizing the growing set of nominals generated by (♢). The reader may imagine the set A
to contain all root nominals, as it will in Section 5, such that these can be copied freely.

4 Properties

We briefly remark on some properties of STA that are useful for the completeness proof. We
start by noting that while restriction S3 allows us to start from any amount of potential, a
single unit is always sufficient to close a branch. Then we lift the S1 and S2 restrictions by
showing that unrestricted versions of the proof rules are admissible. This makes it simpler to
show further properties of the system, since we do not have to worry about the restrictions
any longer. Finally we show a structural property.

4.1 Sufficient Potential
That a single unit is sufficient is not surprising: simply never make a detour (i.e. two
applications of GoTo in a row) and the other rule applications will build up the potential
as needed. Similarly, given an existing tableau, construct a more “efficient” counterpart by
collapsing sequences of GoTo so only the last one remains. GoTo serves no other purpose
than starting a new block so any subsequent rule applications only depend on the final GoTo.
The single starting unit may, however, be needed for an initial application of the rule.

TYPES 2020
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▶ Lemma 8 (A single unit of potential). If branch Θ closes with respect to A and potential n
then Θ closes with respect to A and potential 1.

Proof. By induction on the closing tableau for Θ (see the formalization for details). ◀

4.2 Strengthening
▶ Lemma 9 (Strengthening). Let Θ be a branch and ∆ a set of occurrences of ϕ on i-blocks
in Θ. Assume that at least one “lasting occurrence” of ϕ at i is not in ∆. If Θ closes wrt. A
and potential n then so does Θ with all occurrences in ∆ removed.

Proof. By induction on the construction of the closing tableau for Θ. When an occurrence
in ∆ is used as rule input, use the lasting occurrence of ϕ instead to construct the tableau
for the strengthened branch. No rule applications are invalidated, so the new branch closes
under the same amount of potential. Similarly, we only apply rules that were applicable
before, so restriction S2 cannot be violated. See the formalization for exact details. ◀

In the formalization we represent the set of occurrences as a set of indices into the branch.
We state the lemma over such a set to make it work with the induction principle given by
Isabelle/HOL. To lift restriction S1, fix the set of occurrences to contain only the rule output,
which must occur elsewhere since S1 is violated, and apply the lemma to justify it.

4.3 Substitution
Next we show a substitution lemma. Note that substitution across a tableau can collapse
formulas such that an occurrence suddenly violates restriction S1 and cannot be justified as
before the substitution. This is why Lemma 9 is useful. But it also means that our substitution
lemma will quantify existentially over the potential needed to close the transformed branch:
we may need to start from more potential to account for the fewer rule applications. Another
complication is that restriction S2 may suddenly be violated by this collapsing but, as we
have also shown previously [14], collapsing witnessing nominals allows us to lift S2.

▶ Definition 10 (Θσ). Given a substitution σ, i.e. a mapping from nominals to nominals,
and a branch Θ, Θσ denotes the branch obtained by replacing every nominal i in Θ by σ(i).

Substitutions are allowed to change the type of nominals, e.g. from numbers to strings,
so in the following lemma we need to ensure that it leaves enough fresh nominals available.

▶ Lemma 11 (Substitution). Let Θ be a branch, A be a finite set of allowed nominals and σ
a substitution whose co-domain is at least as large as its domain. If Θ closes with respect to
A then Θσ closes with respect to the image of A under σ.

Proof. By induction on the construction of the closing tableau for an arbitrary σ.
In the (♢) case, let i be the generated witnessing nominal. After the (collapsing)

substitution, the rule input may become witnessed by some nominal σ(j), violating S2. In
this case, utilize that we can pick σ in the induction hypothesis such that it maps i to σ(j).
By the side condition on (♢), the image of A under the updated σ is the same, but now
Lemma 9 justifies the rule output. The rest of the branch is unaffected since i is fresh.

If S2 is not violated, it may still be that σ(i) is no longer fresh like i was before the
substitution. Therefore, use the finiteness of both the branch and A, and the size of the
co-domain of σ, to obtain a fresh nominal k. Apply the induction hypothesis at σ mapping i
to k. This guarantees that the (♢) rule applies to justify the rule output. ◀
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To lift S2, collapse the involved witnessing nominals in the same way as in the proof of
Lemma 11 and apply Lemma 9. The finiteness assumption on A is stronger than we need,
but we forgo generalization since we work with finite sets in Section 5 anyway.

4.4 Branch Structure
The following lemma shows that we can add, contract and rearrange blocks on a branch
without affecting the existence of a closing tableau. Such operations may violate both S1
and S2, but we have lifted these restrictions already, so we do not need to worry about them.

▶ Lemma 12 (Adding, contracting and rearranging blocks). Let Θ be a branch consisting of
the set of blocks {B1, . . . , Bn} and let Θ′ be a branch whose blocks are a finite superset of
{B1, . . . , Bn}. If Θ closes wrt. finite A then so does Θ′.

Proof. By induction on the construction of the closing tableau for arbitrary Θ′. In each case
we apply the induction hypothesis at Θ′ extended by B, where B is the current block of the
original branch. This makes the opening nominals agree on the two branches, so that the
original rule applies to the new branch as well. After applying this rule, we justify the B
block by Lemma 9 and the GoTo rule. Lemma 11 resolves (♢) cases where the fresh nominal
is not fresh on the new branch since we can substitute it with another fresh nominal. ◀

5 Completeness

Our completeness proof is a synthesis of two approaches, both based on showing completeness
via contradiction by constructing a model for formulas on open, exhausted branches.

Bolander and Blackburn reason about the shape of such branches directly from the proof
rules in their terminating, internalized calculus [9]. Jørgensen et al., on the other hand, define
Hintikka sets of blocks as an abstraction of their open, exhausted branches and show model
existence for formulas in such sets. They show that any set of blocks without a closing tableau
can be extended to a maximal consistent set of blocks and that these are Hintikka sets [21].
Their model construction, however, assumes that all nominals are treated uniformly, which
our termination restrictions prevent (cf. Section 3.3). We define Hintikka sets of blocks that
characterize open branches exhausted with respect to a set of allowed nominals A. We then
abstract the model existence result by Bolander and Blackburn, which is compatible with
such branches, and apply it to our Hintikka sets. In Section 5.4 we contrast our approach
with the existing work but the proof itself is self-contained.

5.1 Hintikka Sets
Figure 4 shows our definition of Hintikka sets of blocks. We reuse the “at” notation
from Definition 1 and suppress “in H” for brevity. Our goal is to show a model existence
result for formulas on blocks in such sets. ProP and NomP ensure consistency at the bottom
by forbidding certain contradictions. The remaining requirements match the proof rules. The
ones up to Nom ensure downwards saturation such that the satisfiability of a complex formula
is guaranteed by conditions on its subformulas [21]. The novel condition Nom ensures lateral
saturation of allowed formulas across blocks whose opening nominals denote the same world.
This allows us to treat such blocks uniformly when it comes to allowed formulas.

▶ Remark 13. Nom replaces three requirements by Jørgensen et al. [21, (iv, v, vii)] that
serve the same purpose for a smaller range of formulas.
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ProP If nominal b occurs at a and prop. symbol p occurs at b then ¬p does not occur at a.
NomP If nominal i occurs at a then ¬i does not occur at a.
NegN If ¬¬ϕ occurs at a then ϕ occurs at a.
DisP If ϕ ∨ ψ occurs at a then either ϕ or ψ occurs at a.
DisN If ¬(ϕ ∨ ψ) occurs at a then both ¬ϕ and ¬ψ occur at a.
DiaP If ♢ϕ occurs at a and ϕ is not a nominal then for some i, ♢i and @iϕ occur at a.
DiaN If ¬♢ϕ and ♢i both occur at a then ¬@iϕ occurs at a.
SatP If @aϕ occurs at b then ϕ occurs at a.
SatP If ¬@aϕ occurs at b then ¬ϕ occurs at a.
GoTo If ϕ occurs at a and i is a nominal in ϕ then some block in H has opening nominal i.
Nom If ϕ and nominal a both occur at b and ϕ is allowed by A then ϕ occurs at a.

Figure 4 Eleven requirements for a set of blocks H to be a Hintikka set with respect to A.

5.1.1 Equivalence
Assume for the rest of the section that H is a Hintikka set with respect to the set of allowed
nominals A. We define an equivalence between nominals:

▶ Definition 14 (Equivalence). Nominals i, j are equivalent, i ∼H j, if j occurs at i in H.

▶ Note 15 (∼ and ϕ at i). In the following we typically suppress the subscript in ∼H and
likewise the fragment “in H” in sentences like “ϕ occurs at i in H”.

The equivalence i ∼ j only implies j ∼ i if i ∈ A as otherwise Nom does not apply: only
allowed nominals are symmetric. This motivates the restriction on the following lemma:

▶ Lemma 16 (Equivalence relation). ∼H is an equivalence relation on the set of allowed
opening nominals in H.

Proof. Reflexivity: i ∼H i for any opening nominal i in H since opening nominals occur on
their own block. Symmetry: Assume i ∼H j with i ∈ A. That is, j occurs at i in H so by
Nom, i occurs at j in H: j ∼H i. Transitivity: Assume i ∼H j and j ∼H k with i, k ∈ A.
By symmetry, i occurs at j in H: j ∼H i. Moreover, k ∈ A occurs at j in H so by Nom, k
occurs at i in H: i ∼H k. ◀

▶ Note 17. Due to the GoTo Hintikka restriction, any nominal occurring in H also occurs as
opening nominal, so ∼H is an equivalence relation on the allowed nominals in H.

5.1.2 Model Construction
Let |i|∼H denote the set of nominals equivalent to i with respect to H.

We make use of the following shorthand in our model construction:

▶ Definition 18 (ϕ at a∗). We say that ϕ occurs at a set of nominals a∗ = {a0, a1, . . .} if it
occurs at some nominal ak ∈ a∗ and that ϕ occurs at all a∗ if it occurs at all nominals in a∗.

We can now define the model induced by Hintikka set H and allowed nominals A:

▶ Definition 19 (The model MH,A and assignment gH,A induced by H and A).
Worlds The worlds of MH,A are sets of equivalent nominals, written a∗, from H.



A. H. From 5:9

Assignment The assignment gH,A maps a nominal to the equivalence class of an equivalent,
allowed nominal or a singleton set if no such nominal exists:

gH,A(a) =
{

|b|∼H ∃b ∈ A. a ∼H b

{a} otherwise

Reachability From world a∗ we can reach a world exactly if it is denoted by some nominal b
that is reachable at a∗ (as witnessed by ♢b occurring at a∗):

RH,A(a∗) = {gH,A(b) | ∃a ∈ a∗. ♢b occurs at a in H}

Valuation Propositional symbol p holds at world a∗ exactly if p occurs at a∗ in H:

VH,A(a∗)(p) = ∃a ∈ a∗. p occurs at a in H

5.1.3 Properties of the Model
Consider first a property of the assignment:

▶ Lemma 20 (Non-empty assignment). The induced assignment gH,A is always non-empty.

Proof. Fix an arbitrary nominal a. If gH,A(a) = {a} the thesis holds immediately. So assume
there is some b ∈ A such that a ∼H b and gH,A(a) = |b|. b ∈ |b| witnesses the thesis. ◀

The following lemma showcases the lateral saturation guaranteed by the Nom condition:

▶ Lemma 21 (Assignment closure). If ϕ is allowed by A and ϕ occurs at a in H then ϕ

occurs at all gH,A(a) in H (and at least one such world exists).

Proof. If gH,A(a) = {a} the thesis holds immediately. So assume there is some b ∈ A where
b occurs at a in H and gH,A(a) = |b|. Then by Hintikka requirement Nom, ϕ occurs not only
at b in H but at all a ∈ |b| in H, proving the thesis. Lemma 20 gives the parenthetical. ◀

5.1.4 Model Existence
We can now prove model existence:

▶ Lemma 22 (Model existence). Let H be a Hintikka set with respect to allowed nominals A.
We show two statements by mutual induction:

If ϕ occurs at i in H and ϕ is allowed by A then MH,A, gH,A, gH,A(i) |= ϕ.
If ¬ϕ occurs at i in H and ϕ is allowed by A then MH,A, gH,A, gH,A(i) ̸|= ϕ.

Proof. By induction on the structure of ϕ for an arbitrary nominal i. The proof follows the
one by Bolander and Blackburn [9]. We suppress subscripts for readability.

If p at i then p at g(i) by Lemma 21, which matches the valuation, so M, g, g(i) |= p.
If ¬p at i then ¬p at all g(i) so by ProP, p does not occur at g(i), so M, g, g(i) ̸|= p.
If a at i then from the assumption a ∈ A we have g(i) = |a| and g(a) = |a| and thereby

g(i) = g(a) so M, g, g(i) |= a.
If ¬a at i then ¬a at g(i) by Lemma 21. Moreover, a ∈ A by assumption so from

Lemma 21 we have that a occurs at all g(a). We thus have ¬a at g(i) but a at all g(a) so by
NomN, g(i) ̸= g(a) and therefore M, g, g(i) ̸|= a.

If ¬ϕ at i then M, g, g(i) ̸|= ϕ by the induction hypothesis so M, g, g(i) |= ¬ϕ.
If ¬¬ϕ at i then ϕ at i by NegN and M, g, g(i) ̸|= ¬ϕ by the induction hypothesis.
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The cases for ϕ ∨ ψ, ¬(ϕ ∨ ψ), @jϕ and ¬@jϕ at i all follow similarly to ¬ϕ and ¬¬ϕ.
If ♢j at i then j ∈ A by assumption. Thus ♢j at g(i) so g(i)Rg(j) and M, g, g(i) |= ♢j.
If ♢ϕ at i where ϕ is not a nominal then by DiaP (and Lemma 21) there is some witnessing

nominal k such that ♢k and @kϕ both appear at g(i). By SatP, ϕ then occurs at k and by
the induction hypothesis at k we have M, g, g(k) |= ϕ. From ♢k at g(i) we have g(i)Rg(k)
so combined we get M, g, g(i) |= ♢ϕ.

If ¬♢ϕ at i then ¬♢ϕ at g(i) by Lemma 21. We need to show that all worlds reachable
from g(i) falsify ϕ. So assume for some arbitrary j that ♢j occurs at some a ∈ g(i). By
Nom, we also have ¬♢ϕ at a so by DiaN we get ¬@jϕ at a and finally by SatN we have ¬ϕ
at j. The induction hypothesis at j then tells us that M, g, g(j) ̸|= ϕ as needed. Since j was
chosen arbitrarily, M, g, g(i) ̸|= ♢ϕ.

Each appeal to the induction hypothesis requires showing that the subformula is allowed
by A but since it is a subformula this holds trivially. ◀

5.2 Maximal Consistent Sets
Our next task is to follow the classical synthetic recipe: extend a consistent set of blocks to
be maximally consistent, show that such sets fulfill all Hintikka requirements and thus that
formulas in them are satisfiable. Consistency and maximality are standard but wrt. A:

▶ Definition 23 (Consistency). The set of blocks S is consistent wrt. A if there is no finite
subset S′ ⊆ S such that S′ has a closing tableau wrt. A and any amount of potential.

▶ Definition 24 (Maximality). The set of blocks S is maximal wrt. A if it is consistent wrt. A
and for any block B /∈ S the set S ∪ {B} is inconsistent wrt. A.

Besides maximally consistent, our constructed set will also be ♢-saturated [21]:

▶ Definition 25 (♢-Saturation). The set of blocks S is ♢-saturated if for any ϕ at any a in S,
where ϕ is not a nominal, there is a nominal i such that @ip and ♢i both occur at a in S.

We now construct our ♢-saturated maximally consistent set and show it is a Hintikka set:

▶ Definition 26 (Lindenbaum-Henkin construction). Assume an enumeration of all blocks
B0, B1, B2 . . . in the language. From a consistent set S0 we build an infinite sequence of
consistent sets S0, S1, S2, . . . in the following way. Given Sn, construct Sn+1 like so:

Sn+1 =
{
Sn if Sn ∪ {Bn} is inconsistent wrt. A
Sn ∪ {Bn} ∪ {B′} otherwise, where B′ is a ♢-witness for Bn

A ♢-witness for a block B is a block with the same opening nominal that witnesses all
♢ϕ-formulas in B using fresh and disallowed nominals (when ϕ is not a nominal).

▶ Lemma 27 (Lindenbaum-Henkin). Let S0 be a consistent set of blocks with respect to finite
A and over a finite set of nominals. Then

⋃
Sn as given by Definition 26 is a ♢-saturated

maximally consistent set.

Proof. The three-part proof follows the one by Jørgensen et al. [21].

Consistency. Proof by contradiction. Assume
⋃
Sn is inconsistent. Then some finite subset

S′ ⊆ ⋃
Sn has a closing tableau. But the sequence S0, S1, S2, . . . grows with respect to ⊆

so there must be an m such that S′ ⊆ Sm. And since S0 is consistent, it follows by
induction on m that Sm is too (each ♢-witness preserves consistency due to the (♢) rule).
This contradicts the existence of an inconsistent, finite subset S′.
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Maximality. Proof by contradiction. Assume that there is some block Bm /∈ ⋃
Sn such that⋃

Sn ∪ {Bm} is still consistent. This block is part of the enumeration of blocks, but
was not added to Sm+1. This can only be because Sm ∪ {Bm} is inconsistent. However,
Sm ∪ {Bm} ⊆ ⋃

Sn ∪ {Bm} contradicting the consistency of the right-hand side.
♢-Saturation. Follows directly from the addition of ♢-witnesses. ◀

▶ Lemma 28 (Smullyan-Fitting block lemma). Assume S is a ♢-saturated maximal consistent
set of blocks wrt. a finite set A and a finite set of nominals. Then S is a Hintikka set.

Proof. The proof follows the one by Jørgensen et al. [21] but we have fewer cases since we
have fewer Hintikka requirements. The cases are straight-forward so we only exemplify three,
with the last being the typical one. The remaining cases can be found in the formalization.

Case ProP. Proof of negation. Assume that b occurs at a, p occurs at b and ¬p occurs at a
in S for some a, b, p. The set S is assumed to be consistent but we can construct a closing
tableau from these blocks by applying the Nom rule to get ¬p at b and immediately close
due to the existing p at b.

Case DiaP. Follows directly from ♢-saturation.
Case Nom. Assume that both ϕ and a occur at b in S and that ϕ is allowed by A. Assume

towards a contradiction that ϕ does not occur at a in S. Then by the maximality of S,
we can find an inconsistent finite subset S′ ∪ {([ϕ], a)} ⊆ S ∪ {([ϕ], a)} where ([ϕ], a) is
an a-block that only contains ϕ. If a closing tableau exists for S′ ∪ {([ϕ], a)} then it also
exists for the larger set S′ ∪ {([ϕ], a)} ∪ {([ϕ, a], b)} (Lemma 12). But now the Nom rule
tells us that ϕ at a is redundant, so just S′ ∪ {([], a)} ∪ {([ϕ, a], b)} is inconsistent. The
GoTo rule gets us to S′ ∪ {([ϕ, a], b)} and this set is trivially a subset of S, contradicting
its consistency. ◀

5.3 Tying It All Together

Completeness follows by constructing a model for any formula whose tableau does not close.

▶ Theorem 29 (Completeness). Assume that ϕ is a valid formula and a is some nominal.
Let A be the set containing all nominals in ϕ. Then the branch consisting solely of ¬ϕ on an
a-block has a closing tableau with respect to A and 1 unit of potential.

Proof. Assume towards a contradiction that the branch does not close. Then the set
S0 = {([¬ϕ], a)} is consistent with respect to A. We construct

⋃
Sn, which by Lemma 27 is

a ♢-saturated maximal consistent set of blocks, so by Lemma 28
⋃
Sn is a Hintikka set.

Since ¬ϕ occurs at a in
⋃
Sn, we obtain from Lemma 22 a model that does not satisfy ϕ,

namely MH,A, gH,A, gH,A(a) ̸|= ϕ. This contradicts our validity assumption, so the branch
must close. By Lemma 8 it must close from a single unit of potential. ◀

5.4 Relation to Existing Work

In this section we provide context for our induced model, Definition 19, and the corresponding
Lemma 22. Readers less familiar with tableau systems for hybrid logic may skip this section.
To refresh, Bolander and Blackburn give an analytic proof for a terminating, internalized
calculus [9] and Jørgensen et al. give a synthetic proof for the non-terminating system ST [21].
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5.4.1 Worlds

Jørgensen et al. have no restrictions on their Nom rule so they have no nominal asymmetry
(cf. Section 3.3) and ∼H is an equivalence relation on all nominals. They use representatives
of such equivalence classes as their worlds [21]. Since ∼H is only an equivalence relation on
a subset of our nominals, we cannot use equivalence classes directly. Instead we use sets of
equivalent nominals. Bolander and Blackburn use plain nominals as their worlds.

5.4.2 Assignment

Jørgensen et al. map each nominal i in H to its equivalence class |i|∼H [21]. If we artificially
fix A to contain all nominals in H then ∼H becomes an equivalence relation on all nominals.
Our assignment then reduces to its first clause and becomes equivalent to theirs.

Bolander and Blackburn map each nominal a to its “urfather” u(a): either an equivalent
“right nominal” or the nominal itself if no such nominal exists [9]. This is very similar to
our assignment that maps each nominal to the equivalence class of an equivalent allowed
nominal or the singleton set if no such nominal exists.

A right nominal, understood in terms of our setting, is a non-opening nominal that
occurs on its own. Since there may be multiple equivalent right nominals, Bolander and
Blackburn impose an ordering on them and always choose the smallest one to ensure that their
assignment is well-defined [9]. Working with sets of nominals frees us from such concerns.

5.4.3 Reachability and the Bridge Rule

It is worthwhile to compare the three different reachability relations from the considered
systems. By writing them in similar notation we get:

Jørgensen et al. |i|RH |j| iff ♢j occurs at i in H

Bolander and Blackburn i RH u(j) iff ♢j occurs at i in H

The present paper i∗ RH gH,A(j) iff ♢j occurs at i∗ in H

If we further note that g(j) = |j| for Jørgensen et al. [21] and g(j) = u(j) for Bolander and
Blackburn [9] we see that the relations are all defined in the same way over the assignment:
a world is reachable iff it is denoted by a nominal j such that ♢j occurs at the current world.
Only the treatment of the worlds differ. Since Jørgensen et al. use representatives of their
sets they need the following Hintikka requirement to ensure well-definedness:

If there is an i-block in H with ♢j on it, and a j-block in H with k on it, then there
is an i-block in H with ♢k on it [21, (vi)].

To see why, imagine that the premises hold but the conclusion does not. Then |i|RH |j|
and j ∼H k but not |i|RH |k| even though |j| = |k| by the second premise, so the choice of
representative matters when it should not. In our setting we side-step the problem completely
by having no representatives but quantifying existentially over the nominals in our worlds.

If we view the requirement as a rule, we get the known Bridge rule that produces ♢k at i
given ♢j at i and nominal k at j. Jørgensen et al. prove the admissibility of Bridge as part
of their completeness proof [21]. We include this result in the formalization (when j ∈ A)
because it is interesting in its own right [4] but do not need it for completeness.
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5.4.4 Valuation
Our valuation is standard but our use of sets instead of representatives slightly complicates
the ProP Hintikka requirement, where we take equivalence of nominals into account. For
Jørgensen et al. the following suffices: “if there is an i-block in H with atomic formula a on
it then there is no i-block in H with ¬a on it.” [21].

5.4.5 Model Existence
We turn now to the model existence result, Lemma 22, inspired by Blackburn and Bolander [9].

The two nominal cases and the ♢j case rely on the involved nominals being in A. Bolander
and Blackburn work with right nominals instead of allowed nominals [9]. This gives them
the positive nominal case for free, since the formula in that case is a right nominal. In the
negative nominal case, however, they need to rely on a special (¬) rule that upgrades a
negated nominal, “@i¬a”, to a right nominal “@aa”. They need this rule because of the
nature of internalized tableau systems: the nominal i in a satisfaction statement @ia has
lower status than the right nominal a. The status of nominals in our system is not defined
structurally but by the set A. Thus, we make the (¬) rule unnecessary by picking A carefully.

Finally, Bolander and Blackburn assume that the formula in question is not a ♢j formula
produced by the (♢) rule. Our assumption j ∈ A matches this, since the (♢) rule cannot
generate an allowed nominal, but we are free from keeping track of actual rule applications.

6 Relation to ST*

Here, we relate our restrictions S1-S4 to the restrictions R1-R5 and Nom* rule in ST* [4].

6.1 System ST*

For reasons of space we introduce ST* only briefly. To obtain ST*, take the rules in Figure 2,
add another rule called Name that introduces a fresh nominal to the branch and impose
restrictions R1-R5 and Nom* that we explain in the following. Since the rules of STA are a
subset of ST*, it is meaningful to compare the strength of our restrictions to those of ST*.

Blackburn et al. [4] need the Name rule since they allow the very first block to have no
opening nominal. We have dispensed with this flexibility to obtain a simpler formalization.

6.2 Restrictions R1-R5
Restriction R1 states that “a formula is never added to an i-block if it already occurs in an
i-block on the same branch” [4]. This formulation is more ambiguous than our S1, which
states when a rule is applicable. Any rule application outlawed by R1 is also outlawed by S1:

▶ Lemma 30 (R1 implies S1). If R1 outlaws a rule application then so does S1.

Proof. R1 outlaws the rule application so it must include no formulas new to the block type.
Therefore, S1 outlaws it too. ◀

Restriction R2 states that “the (♢) rule can not be applied twice to the same formula
occurrence” [4]. Note that formalizing this would require keeping track of (♢) rule applications.
This is why S2 is formulated in terms of branch content instead. It is at least as strict as R2:

▶ Lemma 31 (R2 implies S2). If R2 outlaws an application of (♢) then so does S2.
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Proof. Assume that an application of the rule (♢) to formula ♢ϕ at a is outlawed by R2.
This means that (♢) has already been applied to ♢ϕ at a. So for some nominal i there must
be formulas @iϕ and ♢i witnessing ♢ϕ at a. Thus the application is also outlawed by S2. ◀

Restriction R3 applies to the omitted name rule so we have no equivalent of it [4].
Restriction R4 states that “the GoTo rule can not be applied twice in a row” [4]. Our

counterpart is S3 that does allow repeated applications but still prevents repeating the rule
ad infinitum (cf. Figure 3b). We see in Section 6.5 why this extra flexibility is desirable. For
now recall the idea from Section 4.1 that any tableau with repeated applications of GoTo
can be translated into one where just the final application remains. We have the following:

▶ Lemma 32 (From S3 to R4). A tableau satisfying S3 collapses into one that satisfies R4
where only finite sequences of GoTo are removed and all non-GoTo applications are preserved.

Proof. By collapsing all sequences of GoTo applications into the last one (cf. Lemma 8). All
such sequences are finite due to decreasing potential so “the last one” is well-defined. ◀

Finally, restriction R5 can be ignored here: it restricts the more liberal variants of rules
(@) and (¬@) in system ST to the versions present in ST* and STA [4].

6.3 Nom* and Allowed Nominals
We turn now to the Nom* rule in ST* and its relationship to our set of allowed nominals A in
restriction S4. We first need the following by Blackburn et al. [4]: “A quasi-root subformula
is a formula of the form ϕ, ¬ϕ, @iϕ or ¬@iϕ where ϕ is a subformula of the root.”

Their Nom* rule is then defined as follows:

Suppose i and j are nominals, ϕ is a quasi-root subformula and j ̸= i, ϕ. If j and ϕ

both occur in i-blocks on a branch Θ, then ϕ can be added to any j-block on Θ [4].

By inspecting the rules of ST* and STA we see that only the (♢) rule can produce
formulas that are not quasi-root subformulas [4]. As such, the only formulas that Nom* does
not allow us to copy are formulas i and ♢i where i was introduced by (♢). This is exactly
what restriction S4 enforces on our Nom rule (cf. Section 3.3). So S4 is at least as strict:

▶ Lemma 33 (Nom implies Nom*). Suppose that ϕ and a both occur at b in a tableau
constructed under the allowed set of nominals A. If Nom can add ϕ to a then so can Nom*.

Proof. If ϕ can be added by Nom it must be allowed by A. Thus ϕ must be a quasi-root
subformula. Moreover, since adding ϕ to a does not violate S1 (or R1), a ≠ ϕ and likewise
a ̸= b. Ultimately, Nom* can also add ϕ to a. ◀

6.4 Termination
We have covered all differences between ST* and STA and seen how the restrictions compare.
This motivates the following unformalized theorem and proof sketch:

▶ Theorem 34 (STA is terminating). Any STA tableau is finite.

Proof. Lemmas 30–33 imply that we can translate any STA tableau into an ST* tableau of
similar size by collapsing repeated applications of GoTo (and adding an initial application of
the Name rule). Since all ST* tableaux are finite [4] so must any STA tableau be. ◀

Blackburn et al. [4] exemplify a number of infinite branches possible in system ST and
show that they are illegal in system ST*. In support of the above theorem, we note that the
sequences of rule applications leading to those infinite branches are also outlawed in STA.
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a

ϕ

a′ GoTo
ϕ′ R
i GoTo
ψ

(a) Possible segment on original closing tableau.

a

ϕ

a GoTo
ϕ R
σ(i) GoTo
ψσ

(b) R becomes invalid causing two GoTos in a row.

Figure 5 Unjustified GoTo after applying substitution σ that unifies a and a′ as well as ϕ and ϕ′.

6.5 Restricting the GoTo Rule
We should motivate our choice of S3 over R4. As Section 4 shows, we typically show lemmas of
the form “if branch Θ has a closing tableau then so does f(Θ)”, where f is some operation like
substitution or restructuring. In a proof by induction on the closing tableau under restriction
R4 we need to show in each non-GoTo case that GoTo becomes applicable, since we need
that assumption to discharge the GoTo case. However, the transformation may invalidate a
previously valid rule application and prevent us from making this promise. Figure 5 depicts a
possible case when proving the substitution lemma. Before the substitution, the application
of rule R was legal, but afterwards it violates restriction R1. We can still justify the extension
ϕ with the Strengthening Lemma 9 but doing so does not make GoTo applicable afterwards.

We might give a more intricate transformation that also prunes detours but that would
complicate an otherwise simple idea like substitution. We could also state the lemma in
weaker terms that allow for a different branch structure, but we prefer to give straight-forward
lemmas and transformations. Our S3 restriction resolves the issue by dealing with detours
separately. Consider Figure 5 from the perspective of potential: we need to start from more
potential to close the transformed branch since we lose a rule application, but we can simply
do this, so the detour becomes benign. Thus, we can give the transformation we want, we
just need to existentially quantify the potential required to close the resulting branch.

7 Formalization

In general, the formalization consists of close to 5000 lines in the intelligible semi-automated
reasoning language Isar [27] and follows the structure of the paper. It is accepted into the
Archive of Formal Proofs and thus kept up to date with new versions of Isabelle/HOL.

We formalize the logic as a deep embedding into higher-order logic by specifying the syntax
as a datatype and the semantics as a predicate on that datatype (alongside a model and an
assignment). Types in higher-order logic are non-empty so we represent the set of worlds as
a type variable ’w. Similarly, we use ’a for the universe of propositional symbols and ’b for
the universe of nominals. We formalize a block as a list of formulas paired with its opening
nominal and a branch as a list of blocks, where lists in Isabelle/HOL are finite, ordered
sequences. We use the inductive command to specify the proof system as ten inductive
cases. The command provides a predicate ⊢ for whether or not a given branch closes with
respect to a set A and potential n. Thus, we abstract away the concrete shape of a closing
tableau and reason only about its existence. This suffices for formalizing completeness but
not termination where we would need to inspect well-formed but infinite branches. However,
it permits induction over the proof rules instead of the trickier coinduction.

Imagine that we formalized ST* instead of STA. Section 6.5 motivated our choice of S3
over R4. Restriction R2 on the (♢) rule would require us to additionally index our predicate ⊢
by a list of indices, each pointing to a formula occurrence that (♢) cannot be applied to. When
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proving lemmas by induction, we would need to make suitable assumptions about this list.
Instead, our formulation S2 identifies the applicability of (♢) from the branch content itself,
which we already know. The Nom* rule considers quasi-root subformulas and would require
us to remember the root segment of the tableau as we extend it, complicating induction
proofs too. Our parameterization of the rules by the set A causes no such complications.

Imagine next that we adapted the completeness proof for ST* to STA. That proof works
by translation from a different system with an analytic completeness proof, which we would
have to formalize as well. This could be done: Blanchette, Popescu and Traytel [7, 8] have
formalized analytic completeness proofs for first-order logic in Isabelle/HOL. Instead, our
standalone synthetic completeness proof joins a family of such proofs in Isabelle/HOL [2, 15,
16]. While possible, a similar proof for ST* would, as described, be harder to formalize.

8 Conclusion and Future Work

We have presented a Seligman-style tableau system for hybrid logic with a formalization
in Isabelle/HOL of its soundness and completeness and argued that it is terminating. The
restrictions required for termination cause an asymmetry in branches that makes a previous
synthetic completeness proof for hybrid logic tableau systems inapplicable. We have presented
a novel proof that works in this case and described its relation to existing work. The use of
plain sets instead of representatives in the model construction relieves us of some concerns
about well-definedness. Our work is the first sound and complete formalized proof system
for hybrid logic and the first synthetic proof for a terminating hybrid logic tableau system.

Blackburn et al. showed termination of ST* by a translation of any branch into a
terminating system and we claim termination of STA by possible translation into ST*. We
are currently working on a direct, formalized termination proof for STA through a decreasing
measure argument in the style of Bolander and Blackburn [9]. This will allow code generation
for a verified decision procedure based on the tableau system. We also want to explore
extensions to the logic and investigate a Seligman-style system for intuitionistic hybrid logic.
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Abstract. I strengthen the foundations of epistemic logic by formalizing
the family of normal modal logics in the proof assistant Isabelle/HOL.
I define an abstract canonical model over any set of axioms and for-
malize completeness-via-canonicity: when the canonical model for the
chosen axioms belong to a certain class of frames, strong completeness
over that class follows immediately. I instantiate the result with logics
based on various epistemic principles to obtain completeness results for
systems from K to S5. I then move to a family of public announce-
ment logics (PAL) and prove abstract results for strong soundness and
completeness. I lift the completeness results from epistemic logic to the
setting with public announcements in a modular way. This work formu-
lates the completeness-via-canonicity technique as a proper theorem and
demonstrates its applicability. Additionally, it succinctly formalizes the
requirements for lifting completeness from bare epistemic logic to the
addition of public announcements.

Keywords: Epistemic Logic · Public Announcement Logic · Soundness
· Completeness · Isabelle/HOL · Canonicity.

1 Introduction

Epistemic logic (EL) provides a foundation for reasoning about the knowledge
of agents, both factual (“I know the sky is blue”) and higher-order (“I know
that you know that I know the sky is blue”). This has applications in computer
science and artificial intelligence [25]. Basic epistemic logic extends propositional
logic with a knowledge modality Ki that, for each agent i, expresses that agent’s
knowledge. For example, the following formula states that: (i) agent 1 knows p,
(ii) agent 2 knows that agent 1 knows p, but (iii) agent 1 does not know (ii):

K1p ∧K2K1p ∧ ¬K1K2K1p

Such formulas are understood on possible-worlds models that represent the
different situations that agents consider possible, including which situations are
indistinguishable to them (say, due to a lack of observations). Different things can
be true at each possible world and the uncertainty of each agent is modeled by
relating the worlds through so-called accessibility relations, one for each agent.
The agent finds itself at some world and it considers those worlds possible that
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are accessible from this world. Thus, an agent knows something if it holds at
every world that the agent considers possible, i.e. all accessible worlds.

The addition of public announcements increases the expressiveness. Agents
trust these announcements and thus rule out worlds that are incompatible with
them. This allows us to model dynamic problems, like the muddy children puz-
zle [2], where a series of public announcements increases the knowledge of the
agents. For example, the following formula states that after the announcement
that agent 1 knows p, agent 2 knows that agent 1 knows p:

[K1p]! (K2K1p)

To model different kinds of knowledge, we can consider classes of possible-
worlds models. We may want true knowledge: if something is known then it is
true. Then we consider models with reflexive accessibility relations, where the
agents must always consider the current world. If we want positive introspection
(if the agent knows something then it knows that it knows it) we want transitive
accessibility relations. There is a large range of epistemic principles to consider.

With a deductive proof system, we can use just a few axioms and inference
rules, with different epistemic principles resulting in different axioms, to reason
about the consequences of such epistemic principles: what formulas classify dif-
ferent possible-worlds models and what formulas are true on this class. To trust
such reasoning we need to know that the system is sound and thus only allows
us to deduce formulas that hold on our considered class. Moreover, we want the
system to be complete: if we cannot prove a formula, then it is not due to a
limitation of the proof system but because the formula is “incorrect”, i.e. does
not hold on our considered class.

In this paper I formalize epistemic logic [16] in the Isabelle/HOL [27] proof
assistant. I consider the so-called normal modal logics, from the smallest, system
K, which is valid over all models, to S5, where the accessibility relations must
be reflexive, symmetric and transitive. I base my proofs on the textbooks Rea-
soning About Knowledge by Fagin, Halpern, Moses and Vardi [13], which mainly
proves completeness for system K, and Modal Logic by Blackburn, de Rijke and
Venema [7], which goes further. The formalization of public announcement logic
(PAL) is based on the entry by Baltag and Renne in the Stanford Encyclopedia
of Philosophy [2]. The chosen proof system is PA + DIST! + NEC! according
to the classification by Wang and Cao [30].

Unfortunately, textbooks tend to treat extensions of system K informally.
For the completeness of system T on reflexive models, Fagin et al. [13] write:
“A proof identical to that of Theorem 3.1.3 can now be used.” In a formalized
setting we do not want to copy/paste our efforts but rather to find a suitable
abstraction of the theorem that works for both cases. We should seek to achieve
the compositionality expressed by Blackburn et al. [7] (emphasis mine):

The canonical frame of any normal logic containing T is reflexive, the
canonical frame of any normal logic containing B is symmetric, and the
canonical frame of any normal logic containing D is right unbounded.
This allows us to ‘add together’ our results.
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To this effect, I give a disciplined treatment of normal modal logics and
completeness-via-canonicity [7] by formalizing an abstract account of the Henkin-
style completeness method. This is made possible by parameterizing the proof
system and the notion of a maximal consistent set to allow for an open-ended
number of additional axioms. I obtain an abstract completeness theorem that
just depends on the class of the canonical model. My scheme then allows me to
add together canonicity results in exactly the way expressed by Blackburn et
al. [7]. Where Fagin et al. [13] suggest using an identical proof, I simply instanti-
ate my abstract result. For the formalization of PAL, I implicitly rely on the idea
of a PAL-friendly theory [2] to state my results. The use and interplay of three
predicates, A on axioms, P on models and, for PAL, B on announced formulas,
make the soundness and completeness results easy to both state abstractly and
work with concretely.

1.1 Contributions and Previous Work

A short extended abstract [18] describes an earlier version of the EL formaliza-
tion, covering only system K and not the family of normal modal logics. We
used an earlier version of the formalization of PAL as one of the examples in a
chapter on interactive theorem proving for logic and information [29]. It included
a weak soundness and completeness result for PAL with no additional axioms.
Finally, my WoLLIC paper [14], which this extends, described the EL formal-
ization of normal modal logics and completeness for various choices of axioms.
The following contributions are new to the present paper:

– The completeness-via-canonicity technique is lifted to an abstract theorem
for normal modal logics, resulting in shorter proofs for extensions of K.

– I use transfinite induction to prove Lindenbaum’s lemma, removing the pre-
vious restriction to countably many agents.

– I prove strong soundness and completeness for PAL.
– I consider extensions of PAL with various axioms.
– I parameterize the proof system for PAL with a predicate on announced for-

mulas, giving more precise and reusable soundness and completeness results.
– I prove soundness and completeness for systems K5 and PAL + K5 over

Euclidean accessibility relations.
– The presentation of the Isabelle code and the notation used in the formal-

ization are both improved compared to previous work.

I continue with some remarks on the formalizations before discussing related
work (Section 2). Then follow a section on epistemic logic (Section 3) and one
on public announcement logic (Section 4). I conclude by pointing out potential
future work (Section 5).

1.2 Remarks on the Formalization

I have specified my definitions and proofs in the precise language of higher-
order logic and the Isabelle/HOL proof assistant has checked every step of the
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reasoning mechanically. While the end results are not new, this approach ensures
a new level of precision and guarantee of correctness. The formalizations [16,
17] are available online in the (development version) of the Archive of Formal
Proofs (AFP). They have been refereed by Isabelle experts to appear in the AFP.
This paper provides a recipe for extending the work with similar logics and the
formalizations can serve as starting point for related and future work.

The formalization of EL consists of around 1600 lines of Isabelle/HOL text,
while for PAL the number is around 1000. Around 1100 lines of the EL formal-
ization prove the abstract completeness result and the remaining 500 concern
concrete systems. For PAL, I prove abstract soundness and completeness in
around 700 lines and use 300 (plus the EL formalization) to apply the results.

I reproduce a number of definitions and results from the formalization here
(in italics), but none of the proofs. The Isabelle text is close enough to formal
English, with notation from mathematical logic, that I trust the accompanying
explanations to make it understandable. I present the paper in this way for two
reasons. One, to remind the reader of the formal precision behind the results: the
proof of each stated result was checked by the proof assistant. Two, to provide
familiarity with the formalization for those who want to examine or extend
it. The presentation of the results, e.g. the surrounding Isabelle keywords, is
optimized for clarity and may not match the formalization exactly. I omit the
usual delimiters around statements from the presentation of the Isabelle code.

Producing a formalization of this size is a significant undertaking: every sig-
nificant step of reasoning in every proof must be written down explicitly and
the gaps between them must be sufficiently small that the proof assistant can fill
them in. This is a craft. Some of the process is pure labor, but a significant part is
getting the definitions right, not just to match our intended meaning but so that
they are easy to work with. For instance, we can formalize substitution instances
of propositional tautologies (cf. Section 3.2) or the worlds of the canonical model
(cf. Section 3.4) in different ways. One choice can lead to a lot less work than
another. I want to stress a benefit of this too: duplicating work becomes that
much more expensive. It is much better to prove a general result than to copy,
paste and tweak a concrete result a handful of times. This encourages reuse. For
instance, the results for PAL rely heavily on the work done for EL and we know
that it does so correctly, since Isabelle ensures that the definitions etc. line up
according to our expectations.

2 Related Work

Wu and Goré [31] formalize modal tableaux with histories for the modal logics
K, KT and S4 in Lean, giving formally verified decision procedures for these
logics. Bentzen [3] also works in Lean but formalizes a Hilbert-style system for
single-agent S5 with a Henkin-style completeness proof similar to mine. Bentzen
only considers S5 built from axioms T, B and 4, while I also consider the com-
bination of T and 5, as well as a wider range of normal modal logics. Both
Li [23] and Neeley [26] have recently formalized dynamic epistemic logic [12] in
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Lean including Henkin-style completeness proofs for multi-agent S5 and public
announcement logic. Hagemeier [20] formalized intuitionistic epistemic logic in
Coq including completeness of a natural deduction proof system. Slightly differ-
ently, Magessi and Brogi [24] have given a formal proof of modal completeness
for provability logic in HOL Light. All of this work focuses on specific systems
rather than an abstract family of logics, as I do here. The unverified tool SQEMA
by Conradie et al. [11] proves canonicity of modal formulas, giving a purely al-
gorithmic approach to proving canonical completeness in modal logic. Balco et
al. [1] have built software tool support for reasoning about dynamic modal logics
in Isabelle/HOL. Their toolbox can generate both shallow and deep embeddings
of a calculus and they use it to formally verify the solution of the muddy children
puzzle for any number of children.

Benzmüller and Reiche [4,5] have formalized public announcement logic and
the wise men puzzle in Isabelle/HOL. They employ a shallow embedding of the
logic as a fragment of HOL, such that they can benefit maximally from the
automation provided by Isabelle/HOL. This, however, makes it impossible for
them to prove soundness and completeness as I do here.

Xiong et al. [32] present a variant of epistemic logic that adds the notion of
secret knowledge as a first-class citizen. They introduce a new modality of secrets
instead of defining it in terms of the knowledge operator. The authors argue
that the main principles can be studied this way, for instance when considering a
language with an operator for secrets and without the usual knowledge operator.
It would be interesting to formalize their work in a proof assistant.

Kądziołka [22] formalized a solution to a logic puzzle in Isabelle/HOL, using
a logic tailored to the problem that is very similar to the possible-worlds model
of epistemic logic. My formalization could potentially be used for this reasoning.
Guzman [19] has built on my epistemic logic entry in the Archive of Formal proofs
to formalize the soundness and completeness of Stalnaker’s epistemic logic.

Blanchette et al. [9] formalize an abstract completeness result for various
flavors of first-order logic. Besides the different logic, they consider Gentzen
and tableau systems, where I consider axiomatic proof systems. Their technique
is analytic, based on inspecting infinite proof attempts, where the one here is
synthetic, in the Henkin style, using maximal consistent sets of formulas. I have
also used the synthetic technique to formalize completeness for a tableau system
for hybrid logic [15].

3 Epistemic Logic

I first discuss the syntax and semantics of the epistemic logic and the formaliza-
tion of normal modal logics before diving into abstract soundness and complete-
ness, and finally results for concrete systems.
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3.1 Syntax and Semantics

The well-formed formulas of the epistemic logic are given by the following gram-
mar, where I denote propositional symbols by x and agent labels by i:

p ::= ⊥ | x | p ∨ p | p ∧ p | p→ p | Kip

The Ki operator, “agent i knows”, is typically written �i in non-epistemic
multimodal logic. I write Li for the dual modality, “agent i considers possible”,
typically written ♦i. I use x for propositional symbols, since I use p instead of ϕ
for formulas to follow the Isabelle/HOL text. This is a common choice [3, 6, 24]
in formalizations of logic and their presentations, regardless of the chosen proof
assistant. Similarly, I sometimes write K i for Ki.

I deeply embed the language as a datatype in the higher-order logic of
Isabelle/HOL, with a constructor for each case of the grammar. Formulas in
epistemic logic then become objects in the meta-logic that we can manipulate.
For instance, the semantics is a predicate on this datatype, a model and a world.
The datatype declaration in Isabelle/HOL looks as follows, where id is a type
synonym for strings and the type variable ′i represents the type of agent labels:

datatype ′i fm
= FF (⊥)
| Pro id
| Dis ( ′i fm) ( ′i fm) (infixr ∨ 60 )
| Con ( ′i fm) ( ′i fm) (infixr ∧ 65 )
| Imp ( ′i fm) ( ′i fm) (infixr −→ 55 )
| K ′i ( ′i fm)

I formalize Kripke models as a kind of datatype known as a record, here
using type variables ′w to represent the non-empty domain of worlds and ′i for
the type of agent labels. I include the set of worlds, drawn from the domain,
explicitly as W. In doing so, I can consider models over sets of worlds that are
cumbersome to define as subtypes. I write π for the valuation of propositional
symbols and K for the accessibility relations, which are indexed by an agent
label. In Isabelle/HOL, the record is split in two. First the frame (X ⇒ Y in
Isabelle denotes a function from X to Y ):

record ( ′i , ′w) frame =
W :: ′w set
K :: ′i ⇒ ′w ⇒ ′w set

Kripke models extend frames (id is again a type synonym for strings):

record ( ′i , ′w) kripke =
( ′i , ′w) frame +
π :: ′w ⇒ id ⇒ bool

As mentioned, formula satisfiability has the following type:

( ′i , ′w) kripke ⇒ ′w ⇒ ′i fm ⇒ bool
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tautology p =⇒ A ` p
A ` K i p ∧ K i (p −→ q) −→ K i q
A p =⇒ A ` p
A ` p =⇒ A ` p −→ q =⇒ A ` q
A ` p =⇒ A ` K i p

Fig. 1. Proof system for EL using axiom predicate A.

The predicate itself is defined in Isabelle/HOL by the following clauses:

M , w |= ⊥ ←→ False
M , w |= Pro x ←→ π M w x
M , w |= p ∨ q ←→ M , w |= p ∨ M , w |= q
M , w |= p ∧ q ←→ M , w |= p ∧ M , w |= q
M , w |= p −→ q ←→ M , w |= p −→ M , w |= q
M , w |= K i p ←→ (∀ v ∈ W M ∩ K M i w . M , v |= p)

The notation π M stands for the valuation of model M . Note that for K i,
the semantics only considers accessible worlds in the set W (of M).

3.2 Normal Modal Logic

I consider the family of normal modal logics, namely those that contain all
substitution instances of propositional tautologies and all formulas of the form
Kiφ∧Ki(φ→ ψ)→ Kiψ and are closed under modus ponens and necessitation.

Propositional Tautologies We need a way to characterize substitution in-
stances of propositional tautologies, so we can give an axiom that derives them.
For instance, Kix ∨ ¬Kix should be derivable because it is obtained by substi-
tuting Kix for p in the tautology p∨¬p. To avoid formalizing substitution, which
can be messy, I classify tautologies semantically, giving a propositional semantics
for the language. That is, I treat formulas of the form Kiφ as a different sort
of propositional symbols whose truth value is given by another valuation. I use
this characterization because it is easier to formalize but it also corresponds to
Smullyan’s [28] boolean valuations.

Definition 1 (Tautologies). The propositional semantics, eval, corresponds
to |= but treats formulas Ki p as a second sort of propositions:

eval - h (K i p) = h (K i p)

The substitution instances of propositional tautologies are the formulas valid
under this propositional semantics:

abbreviation tautology p ≡ ∀ g h. eval g h p
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Proof System I formalize the family of normal modal logics as the inductive
predicate ` in Fig. 1, which is parameterized by a predicate A. This axiom
predicate is used to admit additional formulas as axioms. The implication =⇒
in Isabelle allows us to conclude the right-hand side from the left.

The first axiom (schema) derives any tautology (under any axiom predicate)
and the second derives any instance of the distributivity of Ki over implication.
The special third axiom derives any formula admitted by A. Finally, the first
rule (using =⇒) is modus ponens and the second one is necessitation.

Note that logics in this family are only closed under substitution when A
is: it is harmless to permit an A that admits Kix → x but not Kix

′ → x′ for
distinct propositional symbols x and x′, but I do not consider any concrete logics
with this property here.

We obtain the smallest normal modal logicK whenA admits no extra axioms.
I sometimes say that a formula is A-derivable to clarify that it is derivable

under the axiom predicate A.

Working with Assumptions We need a notion of deriving a formula from a
number of assumptions. Instead of baking this into the proof system, requiring
extra rules, I build it from the existing syntax for implication. The following
function builds a chain of these. The notation [] stands for the empty list in
Isabelle/HOL and # separates the head and tail of a list.

Definition 2 (Chains of implications). If ps = [p1, . . . , pn] is some (finite
and potentially empty) list of formulas then the expression ps  q builds the
formula p1 → . . .→ pn → q using the following Isabelle/HOL rules:

([]  q) = q
(p # ps  q) = (p −→ ps  q)

The following notation codifies the idea of deriving a formula from a set of
assumptions.

Definition 3 (Deriving from assumptions). We can A-derive formula p
from the set of assumptions G if there exists a finite subset qs of G such that we
can A-derive qs  p:

abbreviation A; G ` p ≡ ∃ qs. set qs ⊆ G ∧ (A ` qs  p)

We now have two notions: the axioms admitted by predicate A and the
assumptions in the set G. We could make do with either one on its own, modeling
axioms as assumptions or using A to admit assumptions. However, in doing so
we would lose accuracy: while axioms can be derived as formulas on their own,
assumptions always appear in the antecedent. This distinction makes it possible
to show that certain choices of A force the canonical model to take a certain
shape, regardless of the assumptions we are working with.
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Derived Rules The formalization contains a number of derived rules that ease
the completeness proof. The precise meta-language of the proof assistant makes
it possible to state many such rules in a methodical way. Consider the following
lemma, which lifts any derivation of an implication into the Ki operator:

assumes A ` p −→ q
shows A ` K i p −→ K i q

In the derivation of another formula, we can readily reuse this result and the
proof assistant makes sure we have applied it correctly: that p and q can be
instantiated so the assumption is met and that the resulting conclusion matches
the desired one. In this way, we can compose larger derivations out of smaller
pieces in a disciplined way and the proof automation of Isabelle can even help
find the right pieces and put them together for us.

3.3 Abstract Soundness

I now give a generalized soundness result for the family of logics. The Isabelle
symbol

∧
quantifies universally over a variable.

Theorem 1 (Soundness of normal modal logics). Fix a predicate P on
models (e.g. admitting reflexive ones). If the axioms admitted by A are sound on
P -models, then the normal modal logic based on A is sound on P -models.

assumes
∧
M w p. A p =⇒ P M =⇒ w ∈ W M =⇒ M , w |= p

shows A ` p =⇒ P M =⇒ w ∈ W M =⇒ M , w |= p

Proof. By induction over the derivation and relying on the simple fact that any
tautology is valid in all models.

After deriving some proof rules, we can extend the result above to strong
soundness. First, I introduce an abbreviation for validity.

Definition 4 (P -validity). The formula p is P -valid under G if for all P -
models M and worlds w in M , whenever all of G is satisfied at w so is p:

abbreviation P ; G ||=? p ≡ ∀M . P M −→
(∀w ∈ W M . (∀ q ∈ G. M , w |= q) −→ M , w |= p)

The (hidden) type variables ′i and ′w in the above definition are arbitrary.
Later I introduce another abbreviation without the star with exactly the same
definition but for a specific type of worlds needed for the completeness proof. We
will see that the specific validity implies the general one. First, strong soundness.

Theorem 2 (Strong soundness of normal modal logics). Fix a predicate
P on models. If the axioms admitted by A are sound on P -models, then the
normal modal logic based on A is strongly sound on P -models.

assumes
∧
M w p. A p =⇒ P M =⇒ w ∈ W M =⇒ M , w |= p

shows A; G ` p =⇒ P ; G ||=? p
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Proof. By induction on the list of assumptions and for arbitrary target formula p.
In the case of no assumptions, Theorem 1 applies. Otherwise, the chain of impli-
cations looks like q −→ qs  p for some formula q and list qs. Rearrange this
to qs  (q −→ p). The induction hypothesis then proves the thesis.

While the predicate P in the above theorem can in principle inspect the
valuation of the model, I will only use predicates on the frame part.

3.4 Abstract Completeness

I follow the completeness proof for system K by Fagin et al. [13] but in my
generalized setting. As such, I do not just talk about maximal consistent sets
(MCSs) but MCSs with respect to a choice of axiom predicate A (A-MCSs).
Likewise, the canonical model is parameterized by such an A, which I fix later
to obtain completeness of various logics over various classes of frames.

Maximal Consistent Sets I first define consistency and maximality with re-
spect to an axiom predicate.

Definition 5 (A-Consistency). A (potentially infinite) set of formulas S is
A-consistent if we cannot A-derive a contradiction (⊥) from it:

definition consistent A S ≡ ¬ (A; S ` ⊥)

Definition 6 (A-Maximality). A set of formulas is A-maximal if it contains
all formulas consistent with it:

definition maximal S ≡ ∀ p. consistent ({p} ∪ S) −→ p ∈ S

It is straightforward to verify some classic properties about A-MCSs [7, 13]:

Theorem 3 (A-MCS properties). For V an A-MCS, we have (i) any deriv-
able formula (using A) is in V (including any formula admitted by A), (ii)
exactly one of φ and ¬φ is in V and (iii) V is closed under modus ponens.

assumes consistent A V and maximal A V
shows A ` p =⇒ p ∈ V
and p ∈ V ←→ (¬ p) /∈ V
and p ∈ V =⇒ (p −→ q) ∈ V =⇒ q ∈ V

Proof. See the formalization or a textbook like the one by Blackburn et al. [7].

Lindenbaum’s Lemma Our goal is now to extend any A-consistent set to an
A-MCS. To do this, we will employ Lindenbaum’s construction (cf. Chang and
Keisler [10]). Typical presentations assume an enumeration of formulas from the
ordinals, but since higher-order logic is weaker than set theory and cannot, for
instance, express a type of all ordinals, we work a bit differently. The set of all
formulas is trivially infinite, and the cardinality of an infinite set is a limit ordinal.
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Limit ordinals have the property that every element has a successor. So we will
work “inside” this limit ordinal, using the formulas themselves as the numbers.
This better matches the way Isabelle/HOL supports transfinite recursion and
induction [8] than the traditional representation using an enumeration.

Starting from an A-consistent set of formulas S, we build an infinite sequence
of consistent sets S0, S1, S2, . . . , Sα, . . . using transfinite recursion and take their
union to form the A-MCS. There are three cases for constructing Sα depending
on which type of ordinal element α is. For α = 0, Sα = S. For α+ 1, a successor
element, construct Sα+1 like so:

Sα+1 =
{
{α} ∪ Sα if {α} ∪ Sα is A-consistent
Sα otherwise

To understand this definition, recall that the elements α are actually our
formulas serving a dual purpose as numbers. When α is a limit element, con-
struct Sα as the union over strictly smaller elements Sα =

⋃
β<α Sβ .

In Isabelle, extend S α constructs element Sα of the sequence, starting from S.
Extend S gives the infinite union

⋃
α Sα. The result is A-consistent when the

starting point is A-consistent and always A-maximal.

Lemma 1 (A-consistent and A-maximal Lindenbaum extension).
If S is A-consistent, so is the Lindenbaum extension of S:

assumes consistent S
shows consistent (Extend S)

The Lindenbaum extension is always A-maximal:

shows maximal (Extend S)

Proof. Same proofs as for normal maximal consistent sets (cf. [7,10,16]). In the
maximality proof, we use the fact that all elements have successors to show that
Sα+1 is defined and includes α when {α} ∪ Sα is A-consistent.

Model Existence I first define the canonical model based on A-MCSs.

Definition 7 (Canonical Model).
The worlds are A-MCSs:

abbreviation mcss A ≡ {W . consistent A W ∧ maximal A W }

The valuation, pi, and accessibility relation, reach, are as follows:

abbreviation pi V x ≡ Pro x ∈ V
abbreviation known V i ≡ {p. K i p ∈ V }
abbreviation reach A i V ≡ {W . known V i ⊆ W }

In total, I abbreviate the canonical model built from axiom predicate A as:

abbreviation canonical A ≡ (|W = mcss A, K = reach A, π = pi |)
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The valuation pi states that proposition x holds in a world V if and only
if x ∈ V . Where Fagin et al. [13] write V/Ki for the set of formulas known by
agent i at V , i.e. {p | Ki p ∈ V }, I write known V i. The worlds reachable by i
from V are those A-MCSs that contain all formulas known at V by i.

I formalize the usual truth lemma.

Lemma 2 (Truth lemma). The canonical model for axiom predicate A satis-
fies a formula p at an A-MCS V if and only if p ∈ V :

assumes consistent A V and maximal A V
shows p ∈ V ←→ canonical A, V |= p

Proof. By structural induction on the formula p. The only non-trivial case is
for the Ki-operator where we need to show that when Kiq is satisfied at V
then Kiq ∈ V . I follow the proof by Fagin et al. [13] and note that ¬q must
be inconsistent with the formulas known at V by i. If they were consistent,
they could be extended into an A-MCS satisfying both ¬q and known V i,
making it accessible from V , which would then satisfy ¬Kiq as well as Kiq (a
contradiction). Thus, we can derive q from some finite subset L ⊆ known V i of
the known formulas. By necessitation, agent i knows this and by distributivity
of Ki over implication, if agent i knows all of L then it knows q. Since L is a
subset of what agent i knows, the thesis follows immediately.

Since the canonical model has A-MCS worlds, it has a very specific type: the
type of Kripke models whose worlds are sets of formulas. For these to be our
countermodels, the completeness results must assume validity over this type of
models. To ease notation, I specialize the existing validity abbreviation.

Definition 8 (P -validity in the universe of MCSs).
Abbreviate P ; G ||= p ≡ P ; G ||=? p at the specific type:

(( ′i , ′i fm set) kripke ⇒ bool) ⇒ ′i fm set ⇒ ′i fm ⇒ bool

We can now state and prove abstract strong completeness succinctly.

Theorem 4 (Strong completeness). If p is P -valid under G and the canon-
ical model for A is a P -model, then we can A-derive p from G:

assumes P ; G ||= p and P (canonical A)
shows A; G ` p

Proof. If p is valid under assumptions G but has no A-derivation from G, then
{¬p}∪G is A-consistent and the canonical model satisfies both ¬p and all of G.
This, however, contradicts the P -validity of p under G since the canonical model
is assumed to be a P -model.

In the following I consider choices of A that impose structure on the canonical
model, yielding completeness over various classes of frames.
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Table 1. Epistemic axioms.

Axiom Formula Frame condition Principle

T Kiϕ→ ϕ Reflexive True knowledge
B ϕ→ KiLiϕ Symmetric Knowledge of consistency of truthsa

4 Kiϕ→ KiKiϕ Transitive Positive introspection
5 Liϕ→ KiLiϕ Euclidean Negative introspection

a Name suggested by Rineke Verbrugge.

Table 2. Soundness and completeness results.

System Axioms Class

K All frames
T T Reflexive frames
KB B Symmetric frames
K4 4 Transitive frames
K5 5 Euclidean frames
S4 T, 4 Reflexive and transitive frames
S5 T, B, 4 Frames with equivalence relations
S5’ T, 5 Frames with equivalence relations

3.5 Concrete Systems

I now consider logics based on the axioms in Table 1 and show how we can
compose axioms to easily obtain completeness over the class of frames resulting
from each axiom’s contribution.

I abbreviate validity over a class of frames as - ||=X - where X is a system
from Table 2, which identifies the corresponding class. For instance - ||=K4 - ab-
breviates validity over transitive frames. Moreover, the proof system `X consists
of the axioms listed for system X in Table 2.

Recipe: System T I consider system T as an example of my general recipe
for formalizing strong soundness and completeness of a canonical normal modal
logic. Define a predicate that admits the right axioms: AxT (K i p −→ p).

Next, define the proof system based on the axiom predicate:

abbreviation G `T p ≡ AxT ; G ` p

Prove soundness of the axiom on the proper class of models:

shows AxT p =⇒ reflexive M =⇒ w ∈ W M =⇒ M , w |= p

By Theorem 2, System T is then strongly sound on reflexive models:

shows G `T p =⇒ reflexive; G ||=? p

Note that this derives validity in any type of reflexive model.
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Next, prove that the axioms force the canonical model to belong to the right
class. If the predicate A admits all the formulas admitted by axiom T then every
A-MCS can reach itself, by virtue of the canonical accessibility relation:

assumes AxT ≤ A and consistent A V and maximal A V
shows V ∈ reach A i V

Therefore, when A admits everything T does, the canonical model is reflexive:

assumes AxT ≤ A
shows reflexive (canonical A)

Strong completeness follows directly from Theorem 4:

shows G ||=T p =⇒ G `T p

In total we have the following theorem.

Theorem 5 (System T wrt. reflexive models).
T-validity corresponds exactly with T-derivability:

shows G ||=T p ←→ G `T p

Proof. Using the generalized results (Theorems 2 and 4).

As noted, for the completeness result I assume validity over one type of
worlds only (as restricted by -; - ||= - rather than -; - ||=? -). This a stronger
result than assuming validity in all universes. Moreover, validity in the specific
universe implies validity in any other.

Corollary 1. If p is T-valid under G on the type of reflexive models with sets
of formulas as worlds, then p is T-valid under G on any type of reflexive models:

shows G ||=T p −→ reflexive; G ||=? p

Proof. By composing strong soundness and completeness of system T.

The formalization contains a similar corollary for every concrete system.

System K System K is the smallest normal modal logic so A always returns
false. It is strongly sound and complete on all models.

Theorem 6 (System K wrt. all models).
K-validity corresponds exactly with K-derivability:

shows G ||=K p ←→ G `K p

Proof. Follows directly from the generalized results (Theorems 2 and 4).
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System KB I formalize axiom B from Table 1 as I did with T. The correspond-
ing logic KB is strongly sound and complete over symmetric models.

Theorem 7 (System KB wrt. symmetric models).
KB-validity corresponds exactly with KB-derivability:

shows G ||=K B p ←→ G `K B p

Proof. Isabelle easily verifies that axiom B is sound on symmetric frames:

have AxB p =⇒ symmetric M =⇒ w ∈ W M =⇒ M , w |= p

And, with a bit of help, that imposes symmetry on the canonical frame:

have AxB ≤ A =⇒ AxB ≤ A

Soundness and completeness then follow from Theorems 2 and 4.

System K4

Theorem 8 (System K4 wrt. transitive models).
K4-validity corresponds exactly with K4-derivability:

shows G ||=K 4 p ←→ G `K 4 p

Proof. As for Theorem 5. See the formalization for details [16].

System K5

Theorem 9 (System K5 wrt. Euclidean models).
K5-validity corresponds exactly with K5-derivability:

shows G ||=K 5 p ←→ G `K 5 p

Proof. As for Theorem 5. See the formalization for details [16].

System S4 The following abbreviation combines axiom predicates.

Definition 9 (Combining axiom predicates).
A⊕A′ admits p as an axiom if either A or A′ does:

abbreviation (A ⊕ A ′) p ≡ A p ∨ A ′ p

We can then define system S4 as the combination of axioms T and 4:

abbreviation G `S4 p ≡ AxT ⊕ Ax4 ; G ` p

Theorem 10 (System S4 wrt. reflexive and transitive models).
S4-validity corresponds exactly with S4-derivability:

shows G ||=S4 p ←→ G `S4 p

Proof. Each axiom imposes the required condition on the canonical frame (cf. the
proofs of Theorems 7 and 8) so the result follows from Theorems 2 and 4.
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System S5 I formalize two versions of System S5. The first version is obtained
by combining the axioms T, B and 4. In formalizing the systems T,KB andK4,
I have already proved that these axioms force the canonical model to be reflex-
ive, symmetric and transitive, respectively. Thus, their composition guarantees
equivalence relations. The second version uses the more traditional combination
of axioms T and 5. I show completeness for this system by proving that reflexive
and Euclidean models have equivalence relations. Afterwards, I outline how to
syntactically derive the axioms of each system from the axioms of the other.

Axioms T + B + 4 I combine the axioms and follow the recipe from before,
reusing the canonicity results, and leading to the expected result. First:

abbreviation G `S5 p ≡ AxT ⊕ AxB ⊕ Ax4 ; G ` p

Theorem 11 (System S5 wrt. models with equivalence relations).
S5-validity corresponds exactly with S5-derivability:

shows G ||=S5 p ←→ G `S5 p

Proof. Each axiom is sound on models with equivalence relations and imposes
the required conditions on the canonical frame (cf. the proofs of Theorems 5, 7
and 8) so the result follows from Theorems 2 and 4.

Axioms T + 5 I define a predicate for axiom 5: Ax5 (L i p −→ K i (L i p)). I
then define a different version of S5 and call it S5’:

abbreviation G `S5
′ p ≡ AxT ⊕ Ax5 ; G ` p

Theorem 12 (System S5’ wrt. models with equivalence relations).
S5-validity corresponds exactly with S5’-derivability:

shows G ||=S5 p ←→ G `S5
′ p

Proof. We have already seen that axiom 5 is sound on models with Euclidean
relations. Isabelle can show in one line that symmetric and transitive models
have Euclidean relations:

have symmetric M =⇒ transitive M =⇒ Euclidean M

The soundness then follows from the previous results (Theorems 5 and 9):

have AxT5 p =⇒ equivalence M =⇒ w ∈ W M =⇒ M , w |= p

We know that axiom T imposes reflexivity on the canonical model and that
axiom 5 imposes Euclideanness. Isabelle easily verifies that the two conditions
guarantee equivalence relations:

have reflexive M =⇒ Euclidean M =⇒ equivalence M

Each axiom is thus sound on models with equivalence relations and imposes
the required conditions on the canonical frame (cf. the proofs of Theorems 5
and 9) so the result follows from Theorems 2 and 4. We have achieved the
compositionality promised by the completeness-via-canonicity technique.
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Syntactic derivations The formalization makes it easy to prove compositional
rules. For instance, whenever we have at least axiom 4 available, we can prove
the dual version of it, which uses Li instead of Ki:

assumes Ax4 ≤ A
shows A ` L i (L i p) −→ L i p

We can then derive axiom 5 as follows.

Lemma 3 (Axiom 5 from B and 4).
We can derive axiom 5 from B and 4:

assumes AxB ≤ A and Ax4 ≤ A
shows A ` L i p −→ K i (L i p)

Proof. The proof has four steps. I show the intermediate results here as they
appear in the Isabelle formalization.

First, we instantiate axiom B:

have A ` L i p −→ K i (L i (L i p))

Moreover, we use the version of axiom 4 from above:

have A ` L i (L i p) −→ L i p

We then lift this into Ki operator:

have A ` K i (L i (L i p)) −→ K i (L i p)

And by transitivity we have the result:

have A ` L i p −→ K i (L i p)

Lemma 4 (Axiom B from T and 5).
We can derive axiom B from T and 5:

assumes AxT ≤ A and Ax5 ≤ A
shows A ` p −→ K i (L i p)

Proof. We can derive the dual version of axiom T:

have A ` p −→ L i p

And instantiate axiom 5 to:

have A ` L i p −→ K i (L i p)

The thesis follows by transitivity.

Lemma 5 (Axiom 4 from T and 5).

assumes AxT ≤ A and Ax5 ≤ A
shows A ` K i p −→ K i (K i p)

Proof. The crucial derivations are the following instantiation of axiom 5:
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have A ` L i (K i p) −→ K i (L i (K i p))

The dual version of axiom T:

have A ` K i p −→ L i (K i p)

And the dual version of axiom 5 (lifted into Ki:

have A ` K i (L i (K i p)) −→ K i (K i p)

The thesis follows by transitivity (cf. [16]).

We can then prove derivational equivalence between the two systems.

Lemma 6 (Systems S5 and S5’ are equivalent).
S5-derivability corresponds exactly with S5’-derivability:

shows G `S5 p ←→ G `S5
′ p

Proof. By inductions on each proof system and using Lemmas 3 to 5.

4 Public Announcement Logic

I first discuss the syntax and semantics of the public announcement logic and
the formalization of a proof system for any choice of axioms before diving into
abstract soundness and completeness, and finally results for concrete systems.

4.1 Syntax and Semantics

The well-formed formulas of PAL are given by the following grammar:

p ::= ⊥! | x | p ∨! p | p ∧! p | p→! p | K!i p | [p]! p

I index connectives by an exclamation point to distinguish them formally
from the previous syntax. The new type of formula [r]!p stands for the truth
of p after an announcement of r. The same abbreviations as before apply. In
Isabelle/HOL, the formulas are represented by the following datatype:

datatype ′i pfm
= FF (⊥!)
| Pro ′ id (Pro!)
| Dis ( ′i pfm) ( ′i pfm) (infixr ∨! 60 )
| Con ( ′i pfm) ( ′i pfm) (infixr ∧! 65 )
| Imp ( ′i pfm) ( ′i pfm) (infixr (−→! 55 )
| K ′ ′i ( ′i pfm) (K !)
| Ann ( ′i pfm) ( ′i pfm) ([-]! - [80 , 80 ] 80 )

I reuse the formalization of Kripke models from EL directly. The semantics
for PAL has the same clauses as for EL for the shared connectives. For the
announcements, we have the following:
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ptautology p =⇒ A; B `! p
A; B `! K ! i p ∧! K ! i (p −→! q) −→! K ! i q
A p =⇒ A; B `! p
A; B `! p =⇒ A; B `! p −→! q =⇒ A; B `! q
A; B `! p =⇒ A; B `! K ! i p
A; B `! p =⇒ B r =⇒ A; B `! [r ]! p

A; B `! [r ]! ⊥! ←→! (r −→! ⊥!)
A; B `! [r ]! Pro! x ←→! (r −→! Pro! x )
A; B `! [r ]! (p ∨! q) ←→! [r ]! p ∨! [r ]! q
A; B `! [r ]! (p ∧! q) ←→! [r ]! p ∧! [r ]! q
A; B `! [r ]! (p −→! q) ←→! ([r ]! p −→! [r ]! q)
A; B `! [r ]! K ! i p ←→! (r −→! K ! i ([r ]! p))

Fig. 2. Proof system for PAL with axiom predicate A and announcement predicate B.

M , w |=! [r ]! p ←→ M , w |=! r −→ M [r !], w |=! p

If the announcement r is true then the truth of the formula is given by p in
a restricted model defined as follows:

M [r !] = M (|W := {w . w ∈ W M ∧ M , w |=! r}|)

That is, restricting the model M to the formula r simply means to take only
the subset of worlds in M that satisfy r.

The functions lift and lower, move from EL to PAL and vice versa. The effect
of lowering an announcement is undefined and cannot be depended on.

4.2 Proof System

Figure 2 presents the proof system.
The first six lines are similar to the normal modal logics of EL (cf. Fig. 1).

The tautology predicate is now called ptautology but it is based on the same
idea. The idea of the axiom predicate A is exactly the same but it now works
on PAL formulas. Notably, we now have a necessitation rule for announcements
which states that if announcement predicate B admits the formula r then we can
derive [r]! p from a derivation of p. This predicate effectively allows us to work
in fragments of PAL where only certain types of formulas can be announced. As
such it is analogous to the axiom predicate A.

The six lines that follow in Fig. 2 give reduction axioms that describe how
announcements distribute over the other connectives. Since the announcement
disappears at the base cases, these axioms can be used to reduce a PAL formula
to the announcement-free syntax of EL.

I employ the same trick as for EL to work with assumptions (cf. Section 3.2):

abbreviation A; B ; G `! p ≡ ∃ qs. set qs ⊆ G ∧ (A; B `! qs  ! p)
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4.3 Abstract Soundness

As before, we can state an abstract soundness result by placing appropriate
restrictions on the axiom and announcement predicates.

Theorem 13 (Soundness of PAL). If all axioms admitted by A are sound
on P -models and all formulas admitted by B restrict P -models to P -models, then
any formula p derived under A and B is valid on P -models:

assumes
∧
M p w . A p =⇒ P M =⇒ w ∈ W M =⇒ M , w |=! p

and
∧
M r . P M =⇒ B r =⇒ P (M [r !])

shows A; B `! p =⇒ P M =⇒ w ∈ W M =⇒ M , w |=! p

Proof. By induction on the derivation. Isabelle discharges all cases automatically
after we have proved that any ptautology is valid.

Like before we can lift this to strong soundness.

Theorem 14 (Strong soundness of PAL). If axioms A are sound on P -
models and announcements B restrict P -models to P -models, then any formula
p derived from assumptions G under A and B is valid under G on P -models:

assumes
∧
M w p. A p =⇒ P M =⇒ w ∈ W M =⇒ M , w |=! p

and
∧
M r . P M =⇒ B r =⇒ P (M [r !])

shows A; B ; G `! p =⇒ P ; G ||=!? p

Proof. By induction on the derivation. Isabelle discharges all cases automatically
after we have proved that any ptautology is valid.

Similar to EL, the abbreviation -; - ||=!? - abbreviates validity under the PAL
semantics in any type of models while -; - ||=! - assumes the type we need to
prove completeness.

4.4 Abstract Completeness

Completeness for PAL is based on the following idea: (i) reduce the valid PAL
formula to a static one without announcements (ii) prove that it is valid in
EL (iii) use a completeness result from EL to obtain a derivation of the static
formula in EL (iv) transfer the derivation to PAL (v) use the reduction axioms
to derive the original formula.

Reduction There are two parts to the reduction: the function reduce ′ reduces
[r]! p when both r and p are static. The function reduce repeatedly applies reduce ′
to reduce any PAL formula to its static counterpart.

Definition 10 (Reduction of PAL formulas).
The function reduce ′ is defined by the following rules:
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reduce ′ r ⊥! = (r −→! ⊥!)
reduce ′ r (Pro! x ) = (r −→! Pro! x )
reduce ′ r (p ∨! q) = (reduce ′ r p ∨! reduce ′ r q)
reduce ′ r (p ∧! q) = (reduce ′ r p ∧! reduce ′ r q)
reduce ′ r (p −→! q) = (reduce ′ r p −→! reduce ′ r q)
reduce ′ r (K ! i p) = (r −→! K ! i (reduce ′ r p))
reduce ′ r ([p]! q) = undefined

The defining case for the function reduce is for announcements:

reduce ([r ]! p) = reduce ′ (reduce r) (reduce p)

In the other cases it simply recurses on subformulas.

These functions are not designed for efficiency but can be executed in practice
to reduce a given PAL formula.

Two lemmas are critical: that reduce actually produces static formulas and
that it preserves the semantics.

Lemma 7 (Correctness of reduction).
Any reduced formula is static:

shows static (reduce p)

And reduction preserves truth:

shows M , w |=! p ←→ M , w |=! reduce p

Proof. By simple inductions.

Static completeness If a PAL formula is static and its lowering is derivable
in EL, then it is derivable in PAL.

Lemma 8 (Strong static completeness for PAL).
If p and all of G are static, p is P -valid under G and we have strong com-

pleteness for EL, then we can derive p from G under any A and B:

assumes static p and ∀ q ∈ G. static q and P ; G ||=! p
and

∧
G p. P ; G ||= p =⇒ A o lift ; G ` p

shows A; B ; G `! p

Proof. First note that the semantics of PAL and EL agree on static formulas so
validity in PAL implies validity in EL for this class. By assumption we then get
a derivation in EL of the lowered formula. Now note that we can derive in PAL
the lifted version of any formula that we can derive in EL since we have the same
rules and axioms available. Finally, the result of lifting a lowered, static formula
is just the formula.
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Strong completeness We need a number of lemmas about reduced formulas.

Lemma 9 (Deriving reduce ′). When p is static we can derive equivalence
between [r]! p and reduce ′ p:

assumes static p
shows A; B `! [r ]! p ←→! reduce ′ r p

Proof. By induction on p using the reduction axioms.

Lemma 10 (Equivalent announcements). When p is static we can derive
an equivalence between announcements from a derivation of equivalence between
the announced formulas:

assumes A; B `! r ←→! r ′ and static p
shows A; B `! [r ]! p ←→! [r ′]! p

And when r is admitted by B we can derive an equivalence between announce-
ments from an equivalence between target formulas:

assumes A; B `! p ←→! p ′ and B r
shows A; B `! [r ]! p ←→! [r ]! p ′

Proof. By induction on p using the reduction axioms and in the second case also
announcement necessitation.

We arrive at the main result of this section.

Lemma 11 (Equivalent reduction). When all announcements in p are ad-
mitted by B, then we can derive an equivalence between p and reduce p:

assumes ∀ r ∈ anns p. B r
shows A; B `! p ←→! reduce p

Proof. By induction on p using Lemmas 9 and 10.

Theorem 15 (Strong completeness for PAL). If p is P -valid under G, all
announced formulas in p and G are admitted by B and we have strong complete-
ness for A and P in EL, then we can derive p from G under A and B:

assumes P ; G ||=! p
and ∀ r ∈ anns p. B r and ∀ q ∈ G. ∀ r ∈ anns q . B r
and

∧
G p. P ; G ||=? p =⇒ A o lift ; G ` p

shows A; B ; G `! p

Proof. First note that reduced p is P -valid under reduced G (Lemma 7) and that
the results are static. Then by the assumption and strong static completeness
(Lemma 8) we can derive reduced p from reduced G. Then there is a finite list of
assumptions qs in G such that we can derive the chain reduce (qs  p). Finally
by Lemma 11 we can derive the unreduced chain.
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4.5 Concrete Systems

For each of the systems in Table 2 we can now formalize the corresponding
system in PAL. As before I present the general recipe and then the main results.

Recipe: PAL + T We again need to define the axiom predicate since the
syntax is formalized as a different datatype: AxPT (K ! i p −→! p). We can
then define the resulting proof system (with no restrictions on announcements):

abbreviation G `!T p ≡ AxPT ; (λ-. True); G `! p

I use the same notation to denote systems as before (cf. Table 2) but with a
subscript exclamation point to indicate we are working in PAL.

Isabelle easily proves that restriction preserves reflexivity of models:

shows reflexive M =⇒ reflexive (M [r !])

We also need to prove a connection between the EL and PAL axiom predicates
but again this can be done automatically:

shows AxT = AxPT o lift

Then strong soundness and completeness follow from Theorems 14 and 15:

shows G ||=!T p ←→ G `!T p

Again, validity in the specific universe implies validity in general:

shows G ||=!T p =⇒ reflexive; G ||=!? p

Results

Theorem 16 (PAL + T, B, 4, 5, T+B+4, T+5). We have the following
soundness and completeness results for different versions of PAL:

shows G ||=!K p ←→ G `!K p
shows G ||=!T p ←→ G `!T p
shows G ||=!K B p ←→ G `!K B p
shows G ||=!K 4 p ←→ G `!K 4 p
shows G ||=!K 5 p ←→ G `!K 5 p
shows G ||=!S4 p ←→ G `!S4 p
shows G ||=!S5 p ←→ G `!S5 p
shows G ||=!S5 p ←→ G `!S5

′ p

Proof. By completeness for the underlying EL systems and the abstract results
(Theorems 14 and 15). See the formalization for the details.
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5 Conclusion and Future Work

I have formalized the syntax and semantics of epistemic logic in the proof assis-
tant Isabelle/HOL, following the textbook by Fagin et al. [13] and providing a
precise, mechanically-checked elaboration of their completeness proof (extended
to also cover uncountably many agents). Instead of considering just one proof
system for epistemic logic I have formalized the family of normal modal logics
and given an abstract account of the Henkin-style completeness method, which
can be instantiated with any logic in the family. I have formalized the canonicity
of various epistemic principles and used this, alongside the abstract complete-
ness result, to prove strong completeness of systems K, T, KB, K4, K5, S4
and two variants of S5 over their respective classes of frames. In the compos-
ite systems I have reused the results about the constituent axioms, confirming
Blackburn et al.’s [7] statement that we can ‘add our results together’ in such
completeness-via-canonicity arguments. I have then formalized public announce-
ment logic over the same Kripke models and proved how we can lift completeness
results from EL to completeness results for PAL. By doing so, I have succinctly
formalized completeness for the PAL counterparts of the above systems. In both
formalizations, three predicates, A, B and P , have played significant roles in
allowing me to state and prove each result abstractly before instantiating it for
the concrete systems. Working in a proof assistant, where duplicated work is
doubly expensive, encourages finding solutions like these.

In the initial version of my WoLLIC paper [14], I did not include the set of
worlds in the model explicitly, as I do now, but only implicitly as the inhabitants
of the type variable ′w. This, however, required me to explicitly define a sub-
type of each kind of A-MCS, to build the canonical model over. While doable,
this quickly proved tedious. A recently suggested addition to Isabelle/HOL by
Kunčar and Popescu [21] might alleviate this problem. I am grateful to the
anonymous reviewer who pointed me back towards the current solution with an
explicit set. While it may seem less intuitive to have both a domain of worlds,
the type, and a concrete set of considered worlds, it currently turns out simpler.

In the future one might extend the formalization with a broader range of
results about epistemic and modal logics, including a formalization of Salhquist’s
correspondence theorem, which would subsume the present results for EL. It
would also be interesting to consider limitative results like the non-canonicity
of KL or the existence of incomplete logics when moving to the basic temporal
language [7]. It might also be interesting to consider algebraic semantics [7],
drawing on the large library of algebraic results in the Archive of Formal Proofs.
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Abstract
We present Aesop, a proof search tactic for the Lean 4 inter-
active theorem prover. Aesop performs a tree-based search
over a user-speci�ed set of proof rules. It supports safe and
unsafe rules and uses a best-�rst search strategy with cus-
tomisable prioritisation. Aesop also allows users to register
custom normalisation rules and integrates Lean’s simpli�er
to support equational reasoning. Many details of Aesop’s
search procedure are designed to make it a white-box proof
automation tactic, meaning that users should be able to eas-
ily predict how their rules will be applied, and thus how
powerful and fast their Aesop invocations will be.

Since we use a best-�rst search strategy, it is not obvious
how to handle metavariables which appear in multiple goals.
The most common strategy for dealing with metavariables
relies on backtracking and is therefore not suitable for best-
�rst search. We give an algorithm which addresses this issue.
The algorithm works with any search strategy, is independ-
ent of the underlying logic andmakes few assumptions about
how rules interact with metavariables. We conjecture that
with a fair search strategy, the algorithm is as complete as
the given set of rules allows.

CCS Concepts: • Mathematics of computing → Mathem-
atical software; • Theory of computation→ Type theory;
Logic and veri�cation; Automated reasoning.

Keywords: proof search, tactic, Lean, interactive theorem
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1 Introduction
One of the biggest barriers to a more widespread adoption of
interactive theorem provers is the tedium of proving lemmas
which are entirely obvious to the human eye. The provers
force us to explicitly demonstrate that = ∗ 2 is even, that
[I,~, G] is a permutation of [G,~, I] or that a homomorphism
of groups is also a homomorphism of the underlying semi-
groups. This adds substantially to the cost of using theorem
provers, which is still too high for many applications.

To help address this issue, we present Aesop (Automated
Extensible Search for Obvious Proofs), a new proof search tac-
tic for the upcoming version 4 of the Lean theorem prover [7].
In essence, Aesop is a tree-based search procedure which
operates on a user-speci�ed set of rules. The rules are ar-
bitrary Lean tactics which, given a goal, either succeed —
generating zero or more subgoals — or fail. Aesop applies
these rules to the initial goal, then to the subgoals, etc., to
build a search tree. On top of this basic setup, we provide
the following features:

• Aesop uses a best-�rst search strategy, prioritising
more promising rules (and their subgoals) over less
promising ones. Which rules are considered promising
is speci�ed by the users themselves, using a simple
prioritisation mechanism.

• Aesop distinguishes between safe rules, which are ap-
plied eagerly without backtracking, and unsafe rules,
whichmay be backtracked. Safe rules are e�cient since
the goals to which they apply never need to be revis-
ited.

• Aesop introduces a normalisation phase in which spe-
cial normalisation rules are applied in a �xpoint loop to
normalise the goal, before any other rules are applied.
We use normalisation to establish invariants which
the subsequent rules can rely on. For example, we split
hypotheses of the form %1∧ . . .∧%= into separate hypo-
theses %8 , establishing the invariant that no hypothesis
is a conjunction.

• The normalisation phase includes an invocation of
Lean’s simpli�er, which performs rewriting with user-
speci�ed, possibly conditional equations. This allows
us to bene�t from the large collection of simpli�cation
rules which are typically de�ned by Lean projects.

• With best-�rst search, it is not obvious how to deal
with metavariables which appear in multiple goals.
In search procedures based on backtracking, such as

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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depth-�rst search, if a metavariable assignment turns
out to be wrong, we can simply backtrack it and try
a di�erent one (assuming that the theorem prover’s
data structures e�ciently support this). By contrast,
a best-�rst algorithm must be able to consider mul-
tiple assignments in parallel. To address this issue, we
present a new algorithm which handles metavariables
and is independent of the search strategy.

Users of Isabelle’s auto [18, 20] will recognise some of
these features. More broadly, Aesop stands in the tradition of
white-box proof automation tools, which also include Coq’s
(e)auto, PVS’s grind [5] and ACL2’s waterfall [11]. White-
box tools require users to curate a set of rules which the
tool applies. In return, users gain control over the power-
performance tradeo�: many explosive rules make the auto-
mation stronger but slower; few conservative rules make it
weaker but faster. Due to their customisability, white-box
tools can also serve as a foundation for domain-speci�c auto-
mation, using domain-speci�c rule sets.
In contrast, black-box or push-button tools such as ham-

mers [3], which invoke external automated theorem provers
to �nd proofs, or machine learning systems which write a
tactic script [2, 8, 10, 13], aim to operate with little or no
user interaction. This makes them very convenient when
they succeed, but the complex algorithms which deliver high
success rates can be brittle. Sometimes a minor reformula-
tion makes the di�erence between �nding or not �nding
a proof. When a black-box tool does not �nd a proof or is
slow to �nd one, it is often unclear how to improve the tool’s
performance.

White-box and black-box tools thus have complementary
strengths and weaknesses, and so we believe it is worth-
while to explore both approaches. Aesop is an attempt to
move far to the white-box end of the spectrum while re-
taining some of the useful features of Isabelle’s auto and
other systems. This is why we choose tree-based search as a
base: it is easy to understand and close to interactive proof,
which helps users predict how their rules will a�ect the
search. We choose best-�rst search with customisable prior-
itisation (rather than some opaque heuristic) to give users
more control over Aesop’s performance. And we introduce
�xpoint-based normalisation as an intuitive and reliable way
to establish invariants. Taken together, these features should
enable users to design e�ective and reasonably e�cient rule
sets for many domains.

Aesop is available as a Lean 4 library.1 The speci�c version
described here is available as a supplement to this paper.2

2 Best-First Proof Search
At its core, Aesop performs a tree-based, best-�rst proof
search. This approach is independent of the underlying logic,

1h�ps://github.com/JLimperg/aesop
2h�ps://doi.org/10.5281/zenodo.7424818

so it could also be used as a proof method for, say, �rst-order
or higher-order logic, though we will use the notation of
dependent type theory for examples. For now, we assume
that goals do not contain metavariables, which simpli�es the
algorithm considerably.

2.1 Goals and Rules
We assume a set of goals given by the underlying logic. These
could, for example, be �rst-order sequents or higher-order
formulas. In Lean, they are structures of the form ®ℎ : ®) ⊢ * ,
where ®ℎ is a list of hypotheses with types ®) and * is a type.
Each hypothesis may depend on earlier hypotheses (so ®ℎ is
a telescope) and* may depend on all hypotheses. We call*
the goal’s target.
We also assume a �nite set of rules, which are partial

functions that map a goal to a �nite set of goals. When a goal
is in the domain of a rule, we say that the rule is applicable
to the goal. In the Aesop implementation, rules are arbitrary
tactics.

When applied to a goal� , a rule produces a set of subgoals
�1, . . . ,�= . Rules should be provability-re�ecting, meaning
that if the subgoals�8 are provable in the underlying logic,
then the initial goal � is also provable. For instance, an ∧-
introduction rule would map the goal Γ ⊢ % ∧& to the set
{Γ ⊢ %, Γ ⊢ &}. If a rule generates no subgoals, it proves the
goal outright.

2.2 Search Tree
Aesop’s central data structure is a search tree containing two
alternating kinds of nodes: goal nodes and rule application
(‘rapp’) nodes. The children of a goal node are rapp nodes
representing rules which have been applied to the goal. The
children of a rapp node are goal nodes representing the
subgoals generated by the rule. For example, the goal ⊢ % ∧&
could have a child rapp for ∧-introduction with two subgoals
⊢ % and ⊢ & .

At any point during the search, a node (goal or rapp) is in
one of three states:

• proved: the node is proved. For a goal node, this means
that at least one of its child rapps is proved. For a rapp
node, it means that all of its child goals are proved. So
sibling goal nodes are implicitly conjoined and sibling
rapp nodes are implicitly disjoint, making the tree an
AND/OR tree.

• stuck: the node cannot be proved with the given rules.
For a goal node, this means that (a) all rules which
can be applied to the goal have been applied and (b)
all resulting child rapps are stuck. For a rapp node, it
means that at least one of its child goals is stuck.

• unknown: the node is neither proved nor stuck.
The state of a node matters only insofar as it is necessary

to determine the state of its parent node, then the parent’s
parent, etc., until we ultimately learn whether the root goal is
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proved or stuck. This means that nodes can become irrelevant
during the search. For example, if a goal ⊢ % ∨& has child
rapps for left or-introduction (with subgoal ⊢ % ) and right or-
introduction (with subgoal ⊢ &), and ⊢ % is already proved,
then ⊢ % ∨& is also proved and there is no point in trying to
prove ⊢ & . In general, we say that a node is irrelevant if at
least one of its ancestors, including the node itself, is already
proved or stuck. Incidentally, when the search terminates
successfully, the root goal becomes proved and therefore, by
our de�nition, irrelevant. So ‘irrelevant’ means ‘irrelevant
for the rest of the search’, not ‘irrelevant for the proof’.

2.3 Search Algorithm
The search procedure starts with a search tree containing
a single goal. It then enters a loop which, in each iteration,
picks a goal node � with unknown state and a rule ' which
has not yet been applied to � . We then apply ' to � . If this
fails, we continue with the next rule and goal; if it succeeds,
we add a rapp node for ' with parent � and subgoals '(�)
to the tree. We call this operation the expansion of � along
'. We exit the loop when the root goal becomes proved or
stuck (or when one of several con�gurable limits, e.g. on the
depth of the search tree, is reached).
Which goal is expanded �rst, and along which rule, is

determined by a best-�rst search strategy. Usually, best-�rst
search is realised by a heuristic which ranks goals and rules
according to simple numeric properties, e.g. the size of a
goal or the number of subgoals of a rule. This goes against
Aesop’s white-box philosophy since the heuristics tend to be
�xed (so users cannot easily change them) and opaque (so
users cannot easily predict which goals will be prioritised).
Instead, we implement a scheme whereby the rules carry a
user-de�ned priority which is used to rank both goals and
rules.
Speci�cally, Aesop users give each rule a success prob-

ability between 0% and 100%. This probability is a rough
estimate of how useful a rule is, i.e. how likely it is to lead
to a proof. For example, left and right ∨-introduction could
each be given a success probability of 50%.
For rules whose success probability is less obvious, we

have found it su�cient in practice to pick probabilities from
a six-point scale: last resort (1%), low (25%), medium (50%),
high (75%) and almost always (99%). The probabilities could
also be determined by automated methods, for example by
determining the actual success probability of each rule in an
existing corpus of proofs. But while such automated tuning
would perhaps improve Aesop’s overall performance in a
larger library, it would also likely make some previously
successful proofs fail, leading to maintenance challenges.
From the rules’ success probabilities we derive, for each

goal in the search tree, a priority between 0% and 100%. The
root goal has priority 100%. Then, whenever we apply a rule
' to a goal� , the priority of the subgoals is the priority of�
multiplied with the success probability of '. In each iteration

of the search loop, Aesop picks the highest-priority goal and
expands it along the rule with the highest success probability.
We could also allow rules to give di�erent priorities to their
subgoals, e.g. to prioritise goals which are known to quickly
become unprovable if the initial goal is unprovable.

2.4 Safe and Unsafe Rules
So far, we have treated all rules as unsafe. An unsafe rule
is one that does not necessarily preserve provability: when
applied to a provable goal � , it may generate unprovable
subgoals. For our search, this means that we must continue
to expand both � and the subgoals.
However, in practice there are many rules which pre-

serve provability and are therefore safe. For instance, ∧-
introduction is safe: to prove Γ ⊢ % ∧& , it su�ces to prove
Γ ⊢ % and Γ ⊢ & . So after this rule has been applied, the
original goal Γ ⊢ % ∧& does not need to be considered any
more, shrinking the search space.
To take advantage of this insight, Aesop, like Isabelle’s

auto, lets users mark rules as safe. To accommodate these
safe rules, we split the expansion of a goal� into two phases.
First, Aesop tries to apply all safe rules to � . If one of them
succeeds, the resulting subgoals are added to the tree as
usual. An unsafe rule would then re-insert � into the goal
queue which we maintain throughout the search, to give
other rules a chance to �re. For safe rules, we simply skip
this step, ensuring that� is never expanded again. If no safe
rules are applicable to � , Aesop moves to the second phase,
in which unsafe rules are applied as explained above.

Safe rules are considered to have success probability 100%,
so the subgoals of a safe rule receive the same priority as the
parent goal. To control the order in which safe rules are tried,
users can give them an integer priority. This order does not
a�ect provability — assuming that rules marked as safe are
actually safe — but it does a�ect the search performance. For
instance, suppose we have, in addition to safe∧-introduction,
a safe rule ' that transforms a hypothesis ℎ : � into ℎ : �.
Then for the goal ℎ : � ⊢ % ∧& , it is better to apply ' before
∧-introduction; otherwise we would have to apply ' twice.

In practice, the distinction between safe and unsafe rules
can be tricky since safe rules must preserve provability rel-
ative to the whole rule set. When we mark ∧-introduction
as safe, we require the rest of the rule set to maintain the
invariant that whenever we can prove Γ ⊢ % ∧ & , we can
also prove Γ ⊢ % and Γ ⊢ & . This invariant can be violated,
for example, by registering an unsafe rule ' which proves
% ∧& : the rule will never be applied since any goal Γ ⊢ % ∧&
gets split by “safe” ∧-introduction before ' can be tried. So
we must add more rules to ensure that Γ ⊢ % and Γ ⊢ & can
also be proved — or consider ∧-introduction unsafe after all.

2.5 Normalisation
Besides safe and unsafe rules, Aesop introduces a third cat-
egory of normalisation rules. These are rules which normalise
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and simplify a goal, preparing it for further rule applications.
Like safe rules, normalisation rules should preserve prov-
ability. Unlike safe rules, they must either prove the goal
outright or return a single subgoal. For example, Aesop’s
default normalisation rules introduce assumptions, unfold
certain de�nitions and prove trivial equations, reducing the
goal ⊢ ∀5 , map f [] = [] �rst to 5 ⊢ [] = [] and then to
5 ⊢ True.
Normalisation rules are applied in yet another expansion

phase, before the safe and unsafe phases. Like safe rules, they
have a user-speci�ed integer priority determining the order
in which they are applied. Let'1, . . . , '= be the normalisation
rules in this order. During the normalisation phase, Aesop
then runs a loop which updates the goal. In each iteration,
this loop tries to apply �rst '1, then, if it fails, '2, and so
on. As soon as one of the '8 succeeds, the goal is set to the
subgoal generated by '8 and the loop restarts. (If '8 produces
no subgoal, the goal is proved and we are done.) If all the '8
fail, the loop ends. Compared with a simpler �xpoint loop
which executes '1, . . . , '= , '1, . . . until all the '8 fail, this
method has the advantage that the order of rules is always
respected, so on each intermediate goal '1 is tried before '2.
Like safe rules, normalisation rules must be chosen care-

fully to ensure that they preserve provability relative to the
whole rule set. If we, for example, rewrite with the unfolding
rule [x] ++ xs = x :: xs during normalisation, rules
about concatenation no longer apply to the normalised goal.
If this is not desired, the unfolding is better performed as an
unsafe rule or added as a local rule when needed. A common
pattern is to register unfolding equations as normalisation
rules while we prove facts about the respective de�nition
(which almost always requires unfolding) and then remove
them again for the remainder of the library.

2.6 Safe Goals
When Aesop fails to prove a goal, it reports the safe goals.
These are the goals that would remain if we were to run
Aesop with only normalisation and safe rules. Since normali-
sation and safe rules are non-branching (meaning each goal
expanded by such a rule has exactly one child rapp), applying
them exhaustively results in a single set of safe goals.
The safe goals are interesting because they indicate how

much progress Aesop has made in the safe, non-branching
part of its search. A typical Aesop proof work�ow looks like
this:

• Run Aesop on a goal � . If this proves the goal, we are
done. Otherwise Aesop produces safe goals�1, . . . ,�= .

• Manually perform some proof steps on each safe goal
�8 , producing a goal � ′

8 .
• For each � ′

8 , apply this work�ow recursively.

Once the proof is complete, we collect the manual steps
and turn them into Aesop rules. This allows Aesop to prove

the initial goal � fully automatically — and hopefully other,
similar goals as well.

To report the safe goals, we must address one minor com-
plication. It is possible for the search to terminate before all
safe goals have been generated. For example, suppose we
register ∧-introduction as a safe rule and search for a proof
of the goal ⊥ ∧ (% ∧ &). Then the safe goals are ⊥, % and
& . But Aesop may terminate after the �rst ∧-introduction,
realising that the goal ⊥ cannot be proved, without ever
applying the second ∧-introduction to % ∧ & . So it would
wrongly report ⊥ and % ∧& as safe goals. Hence we must
expand all relevant safe rules (here: ∧-introduction on % ∧&)
before computing the safe goals.

2.7 Multi-Rules
It is sometimes useful for a rule to add multiple rapps at
once. For example, we will shortly see a rule which tries to
apply the constructors of an inductive type. If more than one
constructor can be applied, it is more natural (and slightly
faster) to let the rule add one rapp per applicable constructor,
rather than making each constructor a separate rule. We call
such rules multi-rules.
Unsafe multi-rules are a straightforward generalisation

of unsafe regular rules and require almost no changes to
the search procedure. Safe and normalisation multi-rules
are trickier. Normalisation multi-rules are not allowed at all
since normalisation cannot branch. Safe multi-rules could be
allowed, but their behaviour would be unintuitive: the whole
raison d’être of safe rules is that they, too, do not branch. So
we also forbid safe multi-rules.

The prohibition of safe and normalisation multi-rules is
enforced dynamically, meaning that users may register safe
and normalisation multi-rules but they fail if they actually
generate multiple rapps. This is convenient because, for ex-
ample, a rule that applies the constructors of an inductive
family can be perfectly safe if for any given goal at most one
constructor is applicable, which is the case for many induc-
tive predicates and relations. Such multi-rules are e�ectively
non-branching, so we should not ban them outright.

3 Best-First Proof Search in Lean
We now instantiate our best-�rst search framework to obtain
a practical proof method for Lean.

3.1 Rule Builders
Aesop rules are arbitrary tactics, but it would be highly in-
convenient if users had to write a tactic whenever they want
to add, say, a lemma as a rule. We therefore provide several
rule builders which register theorems, de�nitions or types
as rules. Rules are registered either locally, i.e. for a single
Aesop invocation, or globally in a rule set. Rule sets are col-
lections of rules which can be activated or deactivated for
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each Aesop invocation. The distinguished default rule set
is activated by default.

3.1.1 apply. Given a term 5 of type ∀®G : ®), % ®G , the apply
builder creates a rule which applies 5 to goals Γ ⊢ % ®~. The
arguments ®G are either inferred (by uni�cation or type-class
search) or become subgoals.
When we write % ®G , % is an arbitrary type-valued func-

tion (e.g. _ G ~, G = ~ + 1), so % ®G is essentially an arbitrary
type-valued term involving the variables ®G . However, due
to the inherent limitations of higher-order uni�cation, our
apply builder cannot support all functions % ; it uses the
same heuristics as Lean’s apply tactic to support a useful
subset. Similar caveats also apply to some of the following
rule builders.

3.1.2 constructors. The constructors builder creates a
rule which applies the constructors of an inductive type � .
The rule has the same e�ect as if each constructor of � had
been added as an apply rule, except that these apply rules
are combined into one multi-rule.

3.1.3 forward. Given a term 5 : ∀®G : ®), % ®G , the forward
builder creates a rule which performs forward reasoningwith
5 . This means that whenever a goal’s local context contains
hypotheses ®ℎ : ®) , the rule adds a new hypothesis ℎ′ : % ®ℎ.
For example, the left ∧-elimination lemma ∀��, �∧� → �,
when used as a forward rule, reduces the goalℎ : �∧� ⊢ ) to
ℎ : � ∧ �, ℎ′ : � ⊢ ) . If there are multiple sets of hypotheses
with types ®) , one new hypothesis is added for each set.

More generally, users can partition the arguments ®G into
immediate arguments ®0 : ®� and non-immediate arguments
®1 : ®�. Then, Aesop searches only for hypotheses ®ℎ : ®� cor-
responding to the immediate arguments and, if successful,
adds a hypothesis of type ∀®1 : ®�, % ®ℎ ®1. (This notation sug-
gests that the immediate arguments must precede the non-
immediate ones, but in fact they can be interleaved freely.) So
the immediate arguments must be “immediately available” as
hypotheses while the non-immediate ones remain premises
to be proved later. By default — and in our example above
— all arguments which cannot be inferred are considered
immediate.

In the example, the left ∧-elimination rule is again applic-
able to the subgoals it generated. This is a general issue with
forward rules: when a rule applies to a set of hypotheses ®ℎ,
the subgoals still contain ®ℎ, so the rule is still applicable. To
prevent this sort of looping, whenever a forward rule tries
to add a hypothesis ℎ : ) , we check whether any forward
rule that was applied earlier on this branch of the search tree
already added a hypothesis ℎ′ : ) . If so, the new hypothesis
is not added and the rule fails.
There is also a variant of forward, destruct, which re-

moves any hypotheses that matched the immediate argu-
ments. If we use left ∧-elimination as a destruct rule, it

reduces the goal ℎ : � ∧ � ⊢ ) to ℎ : � ⊢ ) . Since the
matched hypotheses are removed, destruct rules do not
generally apply to their own subgoals, so there is no need to
prevent cycles.

3.1.4 cases. Given an inductive family � with arguments
(parameters and indices) ®G : ®) , the cases builder creates a
rule which performs case analysis on any hypothesis ℎ : � ®G .
For example, the cases rule for Or, the inductive type behind
the notation % ∨ & , reduces the goal ℎ : % ∨ & ⊢ ) to two
subgoals ℎ : % ⊢ ) and ℎ : & ⊢ ) . To perform this case
analysis, we use Lean’s built-in cases tactic, which uses the
standard elimination principle for � .
To perform case analysis according to a non-standard

elimination principle, we can use the view pattern [15]: de�ne
a data type � whose constructors correspond to the desired
cases, register a function 5 : � → � as a destruct rule and
register a cases rule for � . With this setup, the goal ℎ : � ⊢ )
is �rst reduced to ℎ : � ⊢ ) and then ℎ is split into the desired
cases.

Like forward rules, cases rules for recursive types, such
as lists or trees, can loop. If we register a cases rule for the
List type, the goal ; : List U ⊢ % ; is split into two goals
⊢ % [] and 0 : U, ; : List U ⊢ % (0 :: ;) and the cases rule is
again applicable to the second goal.

One solution for this problem is to register the cases rule
as an unsafe rule with very low priority. Aesop then uses it
only as a last resort. This method is simple and e�ective, but
it is problematic if Aesop does not �nd a proof: once there
are no other rules left to apply, the cases rule is, as before,
applied ad in�nitum. This sort of cases rule is therefore
only suitable as an ad hoc rule.

To support global cases rules as well, we provide a variant
of the cases builder which avoids looping in some common
cases. Consider the inductive predicate All P xs, which
encodes the proposition that all elements of the list xs satisfy
the predicate P:

inductive All (P : α → Prop) : List α → Prop
| nil : All P []
| cons : P x → All P xs → All P (x :: xs)

When a goal contains a hypothesis All P (x :: xs), we
almost alwayswant to perform a case split on this hypothesis,
leaving us with two simpler hypotheses P x and All P xs.
Crucially, neither of these hypotheses has the same form
as the initial one, so there is no in�nite regress. To take
advantage of this insight, Aesop allows users to annotate a
cases rule with a pattern which restricts the hypotheses to
which the rule is applicable. In our example, we would use
the pattern All _ (_ :: _) to ensure that an All hypothesis
is only split if it refers to a non-empty list. Multiple patterns
can also be given; the rule is then applied if at least one of
the patterns matches a hypothesis.
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We also considered a third solution to the in�nite regress
issue: we could stipulate that once a cases rule has been
applied to a hypothesis, it cannot be applied again to the
descendants of that hypothesis; or, more generally, that it can
only be applied to the �rst = descendants. The vast majority
of proofs should still work for, say, = = 3. Unfortunately
the restriction is somewhat tricky to implement since Lean
does not provide a reliable way to associate metadata with a
hypothesis, but we want to support this in the future.

3.1.5 tactic. The last and most fundamental rule builder,
tactic, allows users to register any tactic as a rule. The tactic
can generate arbitrary subgoals (justi�ed by a proof term
that is later checked by Lean’s kernel). We only require that
tactic rules either change the goal or fail, so they cannot
be no-ops.

3.2 Simpli�er Integration
Lean’s simpli�er, which performs rewriting with a user-
provided set of conditional rewrite rules, is used heavily in
all big Lean projects. In particular, mathlib [4], a large library
of formalised mathematics which contains most Lean code
written to date, de�nes an extensive set of simpli�er rules.
To make Aesop practical, we should leverage this existing
automation.

To that end, we integrate simpli�cation into the normalisa-
tion process, adding a built-in normalisation rule which runs
the simpli�er on the entire goal (target type and hypotheses).
This invocation of the simpli�er uses the default global set of
rewrite rules, plus a separate Aesop-speci�c rule set. Aesop
users can add rules to this set by using a special simp rule
builder.

An important detail of the simpli�er integration concerns
how we use local hypotheses. Lean’s simpli�er can be con-
�gured to use them in two ways. First, local equations can be
used as rewrite rules, transforming the goal ℎ : G = ~ ⊢ % G
into ℎ : G = ~ ⊢ % ~. This can be dangerous since local equa-
tions are not necessarily oriented in a way that works well
with other rules. For example, a rule that proves % G may not
�re any more. Worse, a rogue equation can easily make the
simpli�er loop.

Second, local hypotheses which are propositions (but not
equations) can be rewritten to truth values, transforming the
goalℎ1 : %, ℎ2 : ¬& ⊢ %∨& �rst into . . . ⊢ ⊤∨⊥ and then, via
a global rewrite rule, into . . . ⊢ ⊤. This functionality allows
the simpli�er to perform some propositional reasoning. In
particular, conditional rewrite rules such as % → G = ~ are,
by default, used only if the antecedent % simpli�es to ⊤.
In practice we have found that, despite the danger of re-

writing with local equations, letting the simpli�er use local
hypotheses substantially increases Aesop’s utility. We there-
fore enable this behaviour by default, but users can disable
it for speci�c Aesop invocations.

3.3 Rule Indexing
So far we have been pretending that when a goal is expan-
ded, we run all registered Aesop rules in order of priority.
But Aesop is intended to be used with a large rule set, so
this naive approach would be prohibitively slow. We there-
fore introduce a rule index which, given a goal � , e�ciently
determines a small subset of rules that may apply to � .
The index o�ers several indexing schemes. An indexing

scheme determines, given a rule and a goal, whether the rule
is potentially applicable to the goal. We currently implement
three schemes:

• Target: the rule speci�es a pattern expression) , which
may contain holes. It is considered potentially applic-
able when the goal has the form Γ ⊢ * and * uni�es
with ) . We use this scheme for apply rules.

• Hypothesis: the rule again speci�es a pattern expres-
sion) . It is considered potentially applicable when the
goal has the form Γ, ℎ : * , Δ ⊢ + and * uni�es with
) . We use this scheme for cases and forward rules.
For forward rules, we take as the pattern ) the last
immediate argument of the rule, since later arguments
are often more speci�c than earlier ones.

• Disjunction: the rule speci�es a list of indexing schemes.
It is considered potentially applicable when any of the
schemes match the goal. We use disjunctive index-
ing for constructors rules (one by-target scheme for
each constructor) and for cases rules with multiple
patterns (one by-hypothesis scheme for each pattern).

The �rst two schemes are implemented by one discrim-
ination tree each. A discrimination tree is a trie-like data
structure that maps expressions ) to arbitrary data (here:
rules) and enables e�cient retrieval of all values in the map
whose key ) may unify with a query expression * [16]. (In
Lean 4, discrimination trees are also used to index typeclass
instances and simpli�er lemmas.) For the by-target scheme,
we query the discrimination tree with the goal’s target. For
the by-hypothesis scheme, we query the discrimination tree
once per hypothesis. The disjunction scheme is implemented
by inserting the rule into the relevant discrimination trees
multiple times with di�erent keys.
Most rule builders have a natural indexing scheme. The

exception is the tactic builder, which wraps arbitrary tac-
tics. For tactic rules, users can specify a suitable indexing
scheme themselves, if there is one.
When an indexed rule matches a goal, we communicate

to the rule the set of match locations. Each match location
is either the goal’s target or a speci�c hypothesis. Using the
match locations, a cases rule, for example, does not need
to scan the hypotheses of the goal to �nd those of the right
type. Instead, it can immediately focus on the hypotheses
that were matched by its indexing scheme.
Like other Lean proof methods, notably the simpli�er,

our indexing schemes perform uni�cation up to reducible
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computation. Each Lean de�nition is annotated with one
of several transparency modes, which govern how eagerly
the de�nition is unfolded during uni�cation. Most de�ni-
tions have default transparency and are not unfolded by
the uni�cation methods used by automation tactics; only
those with reducible transparency are. Aesop’s indexing
follows this scheme. This, along with a convention that only
non-recursive de�nitions are tagged as reducible, ensures
that discrimination tree indexing does not miss any possible
matches (with rare exceptions), but it also weakens certain
rules. For example, a rule which proves the goal a :: as =
b :: bs could also prove [a] ++ as = [b] ++ bs since
the two goals unify once we unfold the list concatenation
operator ++. But ++ has default transparency, so our index
does not unfold it and the rule is never tried on the second
goal. To compensate, we could register a simpli�cation rule
which normalises [a] ++ as to a :: as.

3.4 Default Rules
Aesop’s default rules perform uncontroversial reasoning
steps, mostly pertaining to the logical connectives. Hypo-
theses ℎ : % ∧& are eliminated during normalisation, yield-
ing separate hypotheses ℎ1 : % and ℎ2 : & , and similar for
products % × & . Goals of the form Γ ⊢ % ∧ & are reduced
to Γ ⊢ % and Γ ⊢ & by registering ∧-introduction as a low-
priority safe rule. For sum-like types such as disjunction, the
respective elimination rule, which splits the goal into two
subgoals, is safe with low priority. The respective introduc-
tion rules, which select one branch of the sum, are unsafe
with 50% success probability.

Universally quanti�ed goals Γ ⊢ ∀®G : ®), % ®G are normal-
ised to Γ, ®G : ®) ⊢ % G . When a goal with target % ®G contains
a hypothesis ℎ : ∀®~, % ®~, ℎ is applied as an unsafe rule. We
give this rule 75% success probability, assuming that when
a local hypothesis can be applied, it is usually a good idea
to do so. In the special case where ℎ has no premises, it is
applied safely and proves the goal.
Existentially quanti�ed hypotheses are split eagerly. For

goals with an existentially quanti�ed target, we register ∃-
introduction, which creates a metavariable for the witness,
as an unsafe rule. (See the next section for details on how
we handle metavariables during the search.) It is important
that this rule is unsafe because the goal’s context determ-
ines which hypotheses can be used in the assignment of the
witness metavariable. Thus, if we create this metavariable
too eagerly, hypotheses which are added afterwards, e.g. by
an unsafe cases rule, cannot be used in the metavariable’s
assignment.

Goals whose target is an equation C = D are proved by re-
�exivity if C andD are already de�nitionally equal. Equational
hypotheses ℎ : C = D are by default rewritten left-to-right
during normalisation, as described in Sec. 3.2. In the spe-
cial case where C is a local hypothesis, we substitute D for C

everywhere in the goal and remove both C and the equation
ℎ. This is safe since C , having been removed from the goal,
can never appear in a subgoal again, so the equation ℎ has
become super�uous. Symmetrically, ifD is a local hypothesis,
we substitute C for D and remove D and ℎ.

Goals of the form Γ ⊢ % ↔ & are split into subgoals
Γ ⊢ % → & and Γ ⊢ & → % . Hypotheses of type % ↔ & are
treated like equalities % = & by appealing to propositional
extensionality, an axiom which Lean uses pervasively.
The only default rule which does not pertain to logical

connectives (apart from some rules for technicalities) is a low-
priority safe case-splitting rule. If a goal’s target contains an
expression of the form if t then ... else ... or match t
with ..., then this rule performs a case split on C , producing
a simpler goal for each possible case. A similar rule applies to
hypotheses containing if or match expressions, with even
lower priority.
Designating so many default rules as safe can lead to

unintuitive results. For example, as mentioned in Sec. 2.4,
splitting a goal with target % ∧& into goals with targets %
and & is unsafe if the rule set contains an unsafe rule which
proves % ∧& , but not rules which prove % and & . However,
we believe it would be worse to make these rules unsafe,
both for performance and because the printing of safe goals,
which is an important debugging aid, becomes less useful if
our safe rules are overly conservative.

4 Best-First Proof Search with
Metavariables

Wenow extend the search algorithm to support goals contain-
ing metavariables. A metavariable (sometimes called schem-
atic variable, existential variable or just free variable) is an
expression which represents a typed term to be determined
later. For instance, the goal ?m > 0 ∧ ?m < 3, where ?m is a
metavariable of type N, can be proved if ?m is assigned the
value 1 (?m ≔ 1) or if ?m is assigned the value 2.

In interactive proofs, metavariables are created when we
use a tactic without specifying all relevant information. A
typical example is ∃-introduction, which reduces a goal
∃F, % F to % ?w, leaving the witness ?w to be determined
later. Of course, we can also specify the witness up front,
but using a metavariable can be convenient: perhaps we can
reduce % ?w to ?w = 0, in which case we can appeal to the
re�exivity of equality to prove the goal, assigning ?w ≔ 0
as a side-e�ect.
Mirroring the interactive use of metavariables, Aesop al-

lows rules like ∃-introduction to create and assign metava-
riables. This way of handling existential quanti�cation is
obviously incomplete since only witness terms induced by
a subsequent rule application are considered. But it is also
cheap, reasonably e�ective and familiar to users from their
interactive proofs.
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Another important class of rules which create metavari-
ables are transitivity rules, which reduce a goal G ≤ I to
subgoals G ≤ ?y and ?y ≤ I. These rules illustrate the main
challenge of dealing with metavariables: they couple goals.
A metavariable represents the same term everywhere it ap-
pears. So when we apply, say, re�exivity to the �rst subgoal
G ≤ ?y, we assign ?y ≔ G as a side-e�ect and the second
subgoal becomes G ≤ I. How we prove the �rst subgoal
now determines how, and indeed whether, we can prove the
second.
This is a problem because our search procedure assumes

that goals are independent. When we apply the re�exivity
rule to G ≤ ?y, we do not intend to commit to the resulting
assignment ?y ≔ G for the remainder of the search. We may,
after all, have an assumption G ≤ 0 in the context which
induces another instance of the second subgoal: 0 ≤ I with
?y ≔ 0. And since we are doing best-�rst search, we may
visit the second subgoal �rst and apply a rule which assigns
?y ≔ 1, changing the �rst subgoal to G ≤ 1. Our search
procedure should consider all these possibilities.

If we were to use a search strategy based on backtracking,
such as depth-�rst search, this would be easy. We would
merely have to ensure that when a rule application is back-
tracked, any metavariable assignments it has performed are
erased. But for best- or breadth-�rst search, all assignments
must be considered in parallel. So for the above example,
the search tree must re�ect the fact that we may prove any
of the sets of goals {G ≤ G, G ≤ I}, {G ≤ 0, 0 ≤ I} and
{G ≤ 1, 1 ≤ I}. In the remainder of this section, we present
an extension of our search algorithm which achieves just
that.

4.1 Overview
To see the core issue with metavariables, suppose we have
a rapp ' with subgoals � [?x] and � [?x] that depend on ?G .
We say that� and � are m-coupled (‘metavariable-coupled’)
since they share a metavariable ?x such that if� is proved for
some assignment ?x ≔ 0, then we must also prove � [?x ≔
0] (i.e.� with 0 substituted for ?x) to get a proof of the parent
rapp '. We can view � [?x ≔ 0] as a “virtual subgoal” of the
rule which proves � .
Our solution for this issue is simply to make the virtual

subgoal an actual subgoal: when a rule ( is applied to � and
assigns ?x ≔ 0, then � [?x ≔ 0] is added as an additional
subgoal of the ( rapp. We call this additional subgoal an m-
copy of � . Symmetrically, when a rule ) is applied to � and
assigns ?x ≔ 1, then � [?x ≔ 1] is added as an additional
subgoal of ) .

More generally, it is not only the siblings of � which may
need copying. Suppose we �rst apply a rule to� which does
not interact with ?x and produces a goal � ′[?x]. We then
apply'′ to� ′, assigning ?x ≔ 0. Then� [?x ≔ 0] still needs
to be copied even though it is not a sibling of� ′. Accordingly,
we expand our notion of m-coupled goals. Let �1, . . . ,�= be

'

� [?x]

'1

� ′[?x]

'′ : ?x ≔ 0

. . . � [?x ≔ 0]

� [?x]

Figure 1. Copying of m-coupled nodes

the path from � ′ (so �1 = � ′) towards the root of the tree
such that �= is the �rst goal in which ?x appears. Each goal
� which depends on ?x and which is a sibling of a goal�8 on
the path is m-coupled to � ′ and is therefore copied.
Fig. 1 visualises this example, showing the incomplete

search tree with root '. Here and in the next �gure, rapp
nodes are displayed as rectangles and are annotated with the
metavariables they assign. Goal nodes are annotated with the
metavariables they depend on, including the metavariables’
assignments. Dashed arrows point from each copied goal to
the goal it was copied from.

Oncewe perform copying, wemust alsomodify our notion
of when a goal is proved. Suppose we have three subgoals of
a rule ':�1 [?x],�2 [?x, ?y] and�3 [?y]. If we prove�3, then
?y must be assigned somewhere in this proof, say to ?y ≔ 0.
At this point, �2 is copied since it also depends on ?y, so
the proof of �3 contains a proof of the goal�2 [?x, ?y ≔ 0].
This proof, in turn, must assign ?x, say to ?x ≔ 1, at which
point �1 is copied, so the proof of �3 also contains a proof
of �1 [?x ≔ 1]. In general, any goal that is m-coupled to
�3 must already be included in a proof of �3. To prove ',
therefore, it su�ces to prove �3 (plus any other subgoals of
' that are not m-coupled to �3).

Fig. 2 visualises this example. Proved nodes are underlined.
The dotted boxes around goals will become relevant shortly.
We have added an additional subgoal of ', �4, which is not
m-coupled to�3 and therefore needs to be proved separately.
To keep the �gure simple, each goal is proved by a single
rule application with one subgoal, but in general, there could
be an entire subtree between, say, �3 and '1. Moreover, the
�gure shows a proof attempt in which we happen to apply
exactly those rules which lead to a proof. A less fortunate at-
tempt would explore subtrees below the various goals before
it �nds the closing rapps '3 and '4.

Our modi�ed de�nition of when a goal is proved relies on
a crucial assumption: when we apply a rule ' to a goal� [?x],
then either ' must assign ?x or at least one of the subgoals
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'

�1 [?x] �2 [?x, ?y] �3 [?y]

'1 : ?y ≔ 0

�2 [?x, ?y ≔ 0]

'2 : ?x ≔ 1

�1 [?x ≔ 1]

'3

�4 [?z]

'4 : ?z ≔ 2

Figure 2. Proved nodes with copying

generated by ' must also contain ?x. Otherwise, we say that
?x has been dropped. If we were to allow dropped metavari-
ables, a proof of � [?x] would not necessarily have to assign
?x and an m-coupled sibling � [?x] would not necessarily
be proved. However, completely disallowing dropped meta-
variables turns out to be too strict for some applications, so
we revisit this restriction in Sec. 4.6.

4.2 Search Tree
To support metavariables, we �rst augment the search tree
to track some metavariable-related information. These data
could also be computed on demand; we only cache them for
e�ciency.

In each goal node, we store the set of metavariables which
the goal depends on. These are the metavariables which oc-
cur in the goal’s hypotheses and in its target type.We assume
for simplicity that assigned metavariables are immediately
substituted everywhere, so only unassigned metavariables
can occur in a goal. Additionally, the metavariables which
occur in the goal may in turn depend on other metavariables
since the type or context of a metavariable may contain other
metavariables. We collect these recursively. The recursion
terminates since cyclic dependencies between metavariables
are not allowed. Obtaining the metavariables which occur in
an expression is cheap since Lean optimises the common case
in which an expression does not contain any metavariables.
In each rapp node, we store two additional pieces of in-

formation. First, we store the metavariables created by the
rule application, which are those metavariables which the
reported subgoals depend on and which the initial goal does
not depend on. Second, we store the metavariables assigned
by the rule application, which are those metavariables which
the initial goal depends on and which are assigned after the
rule has been run. We thus assume that rules do not assign

metavariables which are not reachable from the initial goal,
which is true for all (bug-free) Lean tactics.

We also need to keep track of which goals are m-coupled.
This requires a more substantial augmentation of the search
tree: we partition each rapp’s set of subgoals {�1, . . . ,�=}
into metavariable clusters, which are, informally, sets of tran-
sitively m-coupled sibling goals. For example, suppose we
have subgoals �1 [?x], �2 [?x, ?y], �3 [?y] and �4 [?z] as in
Fig. 2. Then we partition these subgoals into metavariable
clusters {�1,�2,�3} and {�4}. Note that �1 and �3 do not
have a metavariable in common, but they are still transitively
m-coupled via �2. In the �gure, metavariable clusters are in-
dicated by dotted boxes around sets of goals, but all clusters
except for one are trivial, containing only one goal each.

Formally, for two goals� and� we write� ∼ � if there is
a metavariable on which both� and � depend. We de�ne ≈
as the transitive closure of ∼. Since ∼ is already re�exive and
symmetric, ≈ is an equivalence relation. The metavariable
clusters of a rapp are the equivalence classes of the rapp’s
subgoals with respect to ≈.

We can view metavariable clusters as a third type of node
in the tree. The children of a rapp are then metavariable
clusters; the children of a metavariable cluster are the goals
contained in it; and the children of a goal are (still) rapps.
This view leads to a natural generalisation of the node states:

• proved: as before, a goal node is proved if at least one
of its child rapps is proved; a rapp node is proved if all
its children are proved. But the children of a rapp are
now metavariable clusters, and a metavariable cluster
is proved if at least one of its goals is proved. This is
motivated by the observation we made above: if we
have a metavariable cluster with goals {�1, . . . ,�=}
and we prove some�8 , then all the� 9 with 9 ≠ 8 must
have been proved as part of the proof of �8 .

• stuck: as before, a goal node is stuck if all its child
rapps are stuck and there are no more rules which
could be applied to it; a rapp node is stuck if at least
one of its children is stuck. A metavariable cluster is
stuck if all its goals are stuck. This is because even
if a goal � [?x] is stuck, as long as some other goal
� in the same metavariable cluster is non-stuck, it is
still possible that the proof of � will discover a new
assignment ?x ≔ 0 and we can prove � [?x ≔ 0].

• unknown: as before, a node is unknown if it is neither
proved nor stuck.

The de�nition of irrelevance also remains unchanged: a node
(which can now also be a metavariable cluster) is irrelevant
if any of its ancestors, including the node itself, is proved or
stuck.

When a search tree contains no metavariables, each goal is
only m-coupled to itself, so there is one metavariable cluster
per goal. The metavariable-free version of our algorithm
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from Sec. 2 then emerges as a special case of themetavariable-
encumbered one.

4.3 Copying
The search procedure with metavariables is largely the same
as without metavariables. The only change is that when we
add a rapp which assigns a metavariable, we must copy the
m-coupled goals.
To see how, suppose we are adding a rapp ' with parent

goal � [?x1, . . . , ?x=, ?®~] such that ' assigns ?x8 ≔ 08 for
1 ≤ 8 ≤ =. Aesop then walks the path from � up the tree
towards the root goal, stopping at the topmost rapp node
'< that creates any of the metavariables ?x8 . (Thus the ?x8
can only appear in the subtree below '< .) Let this path be
�1, '1,�2, '2, . . . ,�<, '< , where �1 = � and for each 8 , '8
is the parent rapp of �8 and �8+1 is the parent goal of '8 .
Aesop then copies every sibling � of the �8 which depends
on any of the ?x 9 , adding � [?x1 ≔ 01, . . . , ?x= ≔ 0=] as an
additional subgoal of '.
However, there are two special cases in which it is not

useful to copy a sibling goal � . First, � may be a copy of
one of the �8 on the path. This means we are already in the
subtree that will serve as a proof of�8 , so adding � as a sub-
goal would be pointless. Second, we may discover multiple
goals �1, . . . , �: which are copies of the same original goal.
In this case, we only need to copy one of them.
Note that we copy only the sibling goals themselves and

not their subtrees. This means that any rules which were
applied to the sibling goals must be re-applied to their copies.
In general, this is necessary because the copied goals have
di�erent types and hypotheses (on account of the metava-
riable substitution we applied to them), so re-applying the
rules may yield di�erent results. But it is still somewhat
ine�cient. We discuss a possible solution to this issue in
Sec. 4.7.

4.4 Interaction with Safe Rules
Most safe rules become unsafe if they assign metavariables.
This applies even to such unassuming rules as proof by as-
sumption. Suppose we have goals ℎ1 : U, ℎ2 : V ⊢ ?x and
⊢ V → ?x. If we prove the �rst goal via ℎ1, the second
goal may well become unprovable. If we use ℎ2 instead, the
second goal is trivial. So proof by assumption does not pre-
serve provability in the presence of metavariables.

Accordingly, Aesop treats any safe rule that assigns ameta-
variable as unsafe. This means that when we expand a goal� ,
we �rst run the safe rules applicable to� , as usual. Whenever
one of these rules assigns at least one metavariable, we do
not add the rule to the search tree. Instead, we treat the rule
as failed but store its result (subgoals and some metadata)
in a list of postponed safe rapps. We then continue to apply
the remaining safe rules. If one of them succeeds without
assigning metavariables, we apply it directly and throw away
the postponed rapps. Otherwise — if all safe rules either fail

or assign metavariables — we apply the unsafe rules as usual,
but we also add the postponed rapps as unsafe rules with
success probability 90%. When Aesop selects a postponed
rapp to be applied as an unsafe rule, it does not re-execute
the rule but simply adds its stored result to the search tree.

In principle, one could imagine situations in which a safe
rule assigns metavariables in a safe manner and thus does
not need to become unsafe. But in practice, we have yet to
encounter such a situation.

4.5 Interaction with Normalisation Rules
For normalisation rules, we need to restrict metavariable
assignments even more than for safe rules. Since normali-
sation rules must also be safe, we have the same issue as
with safe rules. Additionally, normalisation rules are applied
in a �xpoint loop, so there is no natural way to postpone a
normalisation rule. So we simply forbid normalisation rules
from creating or assigning metavariables.

This restriction is, for the most part, unobtrusive in prac-
tice, with one unfortunate exception. Our implementation of
cases rules uses Lean’s built-in cases tactic to perform case
analysis. When a goal contains a metavariable, cases may
replace this metavariable with a new one, which to Aesop
looks as if an existing metavariable had been assigned and a
new one created. We have not found a reliable way to detect
this situation, so we currently do not allow cases normali-
sation rules (which could otherwise be used to, for example,
split a hypothesis ℎ : � ∧ � into ℎ1 : � and ℎ2 : �).

4.6 Synthesis of Dropped Metavariables
Recall that when a rule ' is applied to a goal � [?x], there
must be at least one subgoal of ' which depends on ?x. If
this is not the case, we say that ?x has been dropped, and so
far we have disallowed dropped metavariables.
However, this restriction turns out to be too harsh. One

application — Jesse Vogel’s Duck tool3, which aims to use
Aesop to �nd examples of structures with certain properties
in algebraic geometry — provided this trivial test goal: under
the assumption that the integers form a ring and that every
ring ' has a ring automorphism id : ∀' : Ring, RingHom' ',
show

∃' : Ring, RingHom' '.
To prove this goal, Aesop �rst applies ∃-introduction, ob-

taining the goal RingHom ?R ?R. It then tries to apply id,
which proves the goal without assigning ?R, so ?R is dropped.
Since this is forbidden, the application of id fails and the
goal cannot be proved.

To address this obvious de�ciency, we must allow dropped
metavariables. But at the same time, we must take care not
to violate the conditions that led us to disallow them in the
�rst place:

3h�ps://github.com/jessetvogel/duck
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• Dropped metavariables must be assigned eventually.
This is necessary in dependent type theory since the
type of a metavariable could be uninhabited. An un-
assigned metavariable of type ) corresponds to an
assumption that we can inhabit ) . (The situation is
di�erent for logics in which all types are inhabited,
such as the logic of Isabelle/HOL.)

• When we prove a goal� [?x] and drop ?x in the pro-
cess, we must ensure that related goals containing ?x
are proved as well.

To address the �rst requirement, when a rule ' is applied
to a goal � [?x] and drops ?x, we add an additional subgoal
to ' which corresponds to ?x. In our ring example, applying
id proves the goal RingHom ?R ?R, but since ?R : Ring is
dropped, we add an additional subgoal of type Ring, which
is then proved by assumption.
To address the second requirement, we modify the pro-

cedure for copying metavariable-related goals such that it
treats dropped metavariables as assigned for the purposes
of copying. So if, in our example, we had an m-coupled goal,
say RingHom ?R Z, then the id application would copy this
goal as an additional subgoal. Thus, the proof of the original
goal, RingHom ?R ?R, again contains proofs for all m-coupled
goals.
Importantly, whether a dropped metavariable appears in

the subgoals of a rapp — and therefore whether a subgoal
for it is added — is determined after copying. This ensures
that a subgoal for a metavariable ?x is only created once we
can no longer obtain an assignment from the proof of any
goal in this branch of the search tree. If this were not the
case, we could end up with a solution 0 for the subgoal ?x
which is di�erent from an assignment ?x ≔ 1 performed by
a later rapp.

4.7 Discussion
Our algorithm is conceptually attractive for two reasons.
First, it is a strict and fairly simple generalisation of the al-
gorithm without metavariables. Second, it is very general: it
works for any search strategy and makes almost no assump-
tions about how rules interact with metavariables. We only
require that rules limit their assignments to metavariables
appearing in the goals to which the rules are applied.
The downside of this generality is some ine�ciency. In

particular, as mentioned in Sec. 4.3, our algorithm treats goals
which are m-copies of each other as entirely independent,
so a rule applied to one has no e�ect on the others. For an
example of how this leads to ine�ciency, suppose the goal
ℎ : = < ?x ⊢ � appears in the search tree. Then, during
the search, we likely create a number of m-copies of this
goal with di�erent instantiations for ?x. Now suppose we
have a rule ' : � → �. When this rule is applied to one
m-copy of the goal, we could recognise that ' is independent

of the instantiation of ?x and therefore applies to every m-
copy. As it stands, our algorithm does not take advantage
of this optimisation opportunity. However, the optimisation
is also valid only for certain rules. A rule which searches
for contradictory hypotheses = < 0 (where = is a natural
number) is not independent of the instantiation of ?x and
therefore cannot be shared between m-copies of the goal.

We believe that despite its generality, our algorithm is as
complete as possible, in the following sense. Suppose we use
a fair search strategy, i.e. one which guarantees that every
rule will eventually be applied to every goal. Now take a goal
� that can be proved by applying a sequence of rules from
the rule set, creating and assigning arbitrary metavariables
in the process. Then, we conjecture, our algorithm will also
�nd a proof of� . Intuitively, this is because our algorithm
only adds to the search tree, so it is not possible to apply a
rule in such a way that another rule cannot be applied any
more. Thus, since we assume a fair search strategy, each rule
in the proving sequence of rules is applied eventually (unless
the goal to which it would be applied is already proved). We
plan to prove this conjecture in future work.

5 Case Studies
As evidence that Aesop provides a reasonable level of auto-
mation, we present two case studies: one in which we prove
a variety of basic theorems about lists and one in which we
formalise a simple automated theorem prover for intuition-
istic propositional logic. Both case studies are available in
the supplement to this paper.4

Ideally, we would evaluate Aesop on a standardised bench-
mark such as the TPTP problem set [21]. But this is concep-
tually di�cult: without an extensive rule set, Aesop is not
expected to provemany theorems, and with an extensive rule
set, we could game many benchmark problems by providing
just the right rules. Perhaps as a result, there is currently no
standard benchmark for white-box proof search tools.

5.1 Lists
As a �rst test of Aesop, we port some lemmas about lists
from Lean 3 to Lean 4. We consider a �le from mathlib,
data/list/basic.lean. This �le contains a large number
of lemmas about basic list functions such as length, append
and reverse, and about predicates such as subset and mem-
bership. We take the �rst 200 of these lemmas and port them
to Lean 4.

Of the 200 lemmas, we exclude 16whichmerely state de�n-
itional equations. (Such lemmas are used to register de�ni-
tional equations with the simpli�er.) For lemmas which ref-
erence notations or concepts that are not available in Lean 4,
we either add the necessary de�nitions or, in 11 cases, ex-
clude the lemma from our case study. Some of the remaining
173 lemmas are already proved in Lean 4, in which case we

4h�ps://doi.org/10.5281/zenodo.7424818
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re-prove them. If these lemmas are registered as global sim-
pli�er rules, we remove them �rst; otherwise Aesop’s job
would be a bit too easy.

Whenever we prove a lemma which makes a good global
Aesop rule, we add the lemma to the global Aesop rule set.We
also add a small number of lemmas about other concepts (in-
jective/surjective/involutive functions and the Option type)
which could sensibly be included in a library-wide Aesop
rule set.

With this setup, Aesop proves 109 (63%) of the list lemmas
outright. If we manually perform induction where necessary
(which Aesop by design does not do), Aesop proves 163 (94%)
of the lemmas. Speci�cally, for lemmas which require induc-
tion, we either add one or more calls to the induction tactic
(after possibly unfolding some de�nitions and introducing
hypotheses) or we write the lemma as a match statement,
use a recursive call to prove the induction hypotheses and
let Aesop do the rest. The latter is the most ergonomic way
to perform functional induction in Lean.
Of the 10 lemmas Aesop cannot prove, 4 involve exist-

entially quanti�ed statements with non-trivial witnesses,
e.g.

∀ (a : α) (l : List α), a ∈ l →
∃ (s t : List α), l = s ++ a :: t

Aesop’s quanti�er instantiation method, which relies solely
on uni�cation, is too weak to determine the proper witnesses
for each case of the induction. The other 6 unsolved lemmas
fail either because a lemma is missing from the library (2) or
because Aesop’s rule set mis�res in speci�c situations (4).
Of the 163 lemmas Aesop (plus induction) can prove, 48

(29%) require local rules; the rest are solved using only global
rules. By far themost common local rule, with 25 occurrences,
is a low-priority unsafe rule which performs a case split on
hypotheses of type List. Since each such case split produces
another hypothesis of type List, this rule can loop, so it is
not suitable as a global rule. But for lemmas which require
such a case split, we can add the rule and due to its low
priority, Aesop applies it only as a last resort. This makes
sure that if a proof is found, it is found quickly.

Another notable local adjustment involves Aesop’s simpli-
�er integration. As we discussed in Sec. 3.2, Aesop by default
rewrites with equations in the local context. This can be
dangerous because such equations are not necessarily prop-
erly oriented. For example, a hypothesis of type = = = + 0
would, together with the global rule = + 0 = =, send the
simpli�er into a loop. In our case study, this happens two
times; in both cases, Aesop succeeds once we disallow the
use of hypotheses during simpli�cation.

To get a broad idea of how fast Aesop is, we also ran a small
benchmark involving this case study. For the benchmark, we
prepared a version of the case study in which all lemmas
are proved by hand. The proofs are written in the runtime-
e�cient style of mathlib (most proofs are translated from

Lean 3), meaning they involve no expensive tactics except
the simpli�er, which moreover is always given the exact set
of lemmas it should simplify with. Thus, we believe that this
hand-written version of the case study has close to optimal
performance. We then compared the total time Lean takes to
typecheck the hand-written version and the Aesop version of
the case study, averaging over 10 runs each. On one particular
machine, the hand-written version took on average 2.48
seconds to typecheck (min = 2.46, max = 2.50, σ = 0.015)
whereas the Aesop version took 6.25 seconds (min = 6.17,
max = 6.32, σ = 0.045). This means delegating all proofs to
Aesop resulted in a slowdown of 2.53x. When run on other
machines, the benchmark yielded slowdowns of 2.59x and
2.60x.

It is perhaps not surprising that Aesop is fairly successful
in this case study: most of the lemmas we consider are very
simple. But automating trivial goals about basic data struc-
tures is still an important part of making interactive theorem
provers less onerous to use. And many lemmas which are
straightforward consequences of facts known to Lean would
not have had to be written if Aesop had been available at the
time.

5.2 Propositional Sequent Calculus Prover
As a second test of Aesop, we have programmed a small
prover for propositional logic [22] in Lean 4 and used Aesop
to verify the soundness and completeness of both the prover
and the sequent calculus proof system it is based on.

To that end, we �rst de�ne the type Form of propositional
formulas. Given an interpretation i of propositional vari-
ables Φ, the predicate Val : Form Φ → Prop gives the
truth value of a formula. Aesop proves, after manual induc-
tion over Form, that if i is decidable, then so is Val.
Satis�ability of formulas extends to satis�ability of se-

quents: a sequent with premises Γ and conclusionsΔ is valid
if, whenever all premises are true, at least one conclusion
is true. Formally, All (Val i) Γ implies Any (Val i) Δ.
We saw All earlier; Any is similar but encodes the fact that
some element in the list satis�es the predicate. The cases
rule for Any makes good use of patterns: case analysis on
a hypothesis which matches the pattern Any _ [] is safe
since the hypothesis is contradictory; case analysis on a hy-
pothesis which matches Any _ (_ :: _) is unsafe but often
useful.
With the help of this cases rule, we prove some funda-

mental lemmas about All and Any, such as a weakening
lemma for All:

(∀ x, P x → Q x) → All P xs → All Q xs

After induction on the All premise, Aesop �nishes the proof.
We use this weakening lemma to prove that all elements
of a list are members of that list: All (• ∈ xs) xs. The
application of weakening requires support for metavariables
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since P is unconstrained and becomes a metavariable. Sim-
ilarly, metavariables are crucial when proving existentially
quanti�ed lemmas, e.g.

Any P xs ↔ ∃ a : α, P a ∧ a ∈ xs

The prover itself, Cal, attempts to prove a sequent by
breaking down connectives according to the classical se-
quent calculus rules and collecting lists of positive and neg-
ative propositional variables when they appear on either
side of the sequent. A branch of the proof terminates suc-
cessfully when the same variable occurs both positively and
negatively, corresponding to the usual Axiom rule. We use
Any (• ∈ ys) xs to check if two lists xs and ys share a
common element. The computational behaviour of Cal thus
depends on the decidability of Any, which is proved using
Aesop. We verify soundness and completeness of the prover
simultaneously, using induction on the call structure of Cal.
The main theorem states that Cal proves a sequent if and
only if the sequent is valid for all decidable interpretations.

Since the prover rearranges formulas, the proof relies on
the fact that All and Any respect list permutations, as en-
coded by an inductive predicate taken from the Agda stand-
ard library.5 Here, Aesop signi�cantly reduces our workload:
that permutations are symmetric, that they are preserved
by map and that All and Any respect permutations can be
proven automatically after we perform induction.
As a consequence of the soundness and completeness of

Cal, we additionally obtain soundness and completeness
of its underlying proof system, formulated as an inductive
predicate Proof Γ Δ. A key ingredient of the proof is this
weakening lemma:

Proof Γ ∆ → Proof Γ (δ :: ∆)

After induction on the premise, Aesop proves the lemma
automatically, apart from one case which requires an expli-
cit application of the induction hypothesis. This is because
two of the constructors of Proof allow us to apply arbitrary
permutations to the sequents, which Aesop’s metavariable
handling is too weak to �nd. These constructors also apply
to every goal, so it is important that Aesop is not limited to
depth-�rst search, which might get lost in in�nite permuta-
tions.

6 Related Work
The closest relative of Aesop is Isabelle’s auto [18, 20]. Like
Aesop, it performs a tree-based search with integrated sim-
pli�cation and it distinguishes between safe and unsafe rules.
Aesop adds a best-�rst strategy (auto is depth-�rst) and nor-
malisation as a separate phase. It also adds a number of rule
builders apart from auto’s intro, elim and destruct rules,

5h�ps://github.com/agda/agda-stdlib/blob/
ebfb8814b4330b314da8fb9cae527e6a6fab01aa/src/Data/List/Relation/
Binary/Permutation/Propositional.agda

though some of these can be emulated with auxiliary Isabelle
tools.

More fundamentally, auto is used as a semi-black-box tool
in practice. It is essentially undocumented, so it is di�cult
to understand the details of its search procedure, e.g. how
exactly the simpli�er is invoked, how it integrates blast [19]
(a tableau prover) and how metavariables interact with safe
rules. Indeed, our conversations with experienced Isabelle
users indicate that they are unaware of these details and that
as a result, their interactions with auto are partly based on
trial and error, adding and removing rules until auto is able
to prove a goal.

Other semi-black-box proof tools include PVS’s grind [5]
and the ‘waterfalls’ of ACL2 [11] and its descendants. While
these tools are based on simple search algorithms and are
extensively documented, they use, at least in their default
con�gurations, a large number of proof methods (e.g. sev-
eral forms of simpli�cation; decision procedures for certain
fragments of the logic; several methods for quanti�er in-
stantiation) in a �xpoint loop surrounded by pre- and post-
processing steps. As a result, it again becomes somewhat
di�cult for users to predict and adjust their behaviour.
Aesop, by contrast, attempts to remain �rmly white-box

by limiting itself to a small number of simple concepts (essen-
tially: normalisation, safe and unsafe rules) with no opaque
heuristics and no pre- or post-processing. This should make
it possible to design predictable special-purpose rule sets
for speci�c domains. With larger rule sets, Aesop may also
become somewhat unpredictable, but at least its transpar-
ency should make it easier to debug unexpected failures
or performance issues. Of course, the downside of Aesop’s
simplicity is that it is considerably less powerful than, say,
grind; for example, it does not currently have any support
for arithmetic beyond that provided by Lean’s simpli�er.
Even farther towards the white-box end of the scale lie

Coq’s auto and eauto. These tactics perform backtracking
depth-�rst search (up to some con�gurable depth limit) with
arbitrary rules, so they are essentially Aesop without safe
or normalisation rules and with a di�erent search strategy.
Matita’s auto [1] augments eauto with a superposition cal-
culus for equational reasoning and provides a GUI which
allows users to inspect the search tree.

A rare white-box tool not based on tree search is Isabelle’s
auto2 [23], which uses a saturation algorithm instead. This
means that rules can be applied without backtracking, but
the proof procedure is also farther removed from interactive
proof and therefore perhaps less easy to customise.
There are also black-box tools based on tree search, no-

tably Coq’s sauto [6] and the Agsy tool [14] for Agda [17].
These tools use fairly strong default rules, some of which
could also be interesting for Aesop. But since they are push-
button tools, their rules are also quite opaque.

For Lean 3, mathlib [4] already contains some search tac-
tics which are currently being ported to Lean 4: continuity,

265



CPP ’23, January 16–17, 2023, Boston, MA, USA Jannis Limperg and Asta Halkjær From

measurability, tidy, tautology and finish. These tac-
tics perform essentially depth-�rst search with various rule
sets, so Aesop should supersede them. However, finish uses
e-matching and so makes better use of unoriented equations.
Our handling of metavariables is most closely related to

that of TH∃OREM∀ [12], which, like Aesop, uses an AND/OR
search tree. Variations of the TH∃OREM∀ algorithm are
also used for tableaux with metavariables (‘free variable
tableaux’) [9]. However, these algorithms are speci�c to �rst-
order logic and do not obviously generalise to our setting.
In particular, they require that rules behave uniformly for
di�erent metavariable assignments.

7 Conclusion
We have presented Aesop, a white-box proof search tactic for
Lean. Starting with a straightforward tree search framework,
we have added features that increase the power of the search
while keeping its semantics simple and transparent: best-
�rst search with customisable prioritisation, which lets us
e�ectively use rules that are only occasionally useful or that
may loop; safe rules, which are useful both for performance
and for debugging; normalisation, to establish invariants
which other rules can rely on; and simpli�cation, which
enables equational reasoning. Taken together, these features
should allow users to design e�ective and predictable rule
sets.

To support goals with metavariables, we have developed a
generic algorithm for tree-based search with metavariables.
The algorithm is independent of the search strategy and of
the underlying logic and is, we believe, as complete as the
given rule set allows.

Acknowledgments
We thank Jasmin Blanchette for advising us throughout the
development process and giving detailed comments on drafts
of this paper; Sebastian Ullrich for providing excellent feed-
back on early versions of Aesop; Gabriel Ebner for helping
with Aesop’s implementation; and the anonymous reviewers
for providing comprehensive and insightful reviews.
Limperg was funded by the NWO under the Vidi pro-

gramme (project No. 016.Vidi.189.037, Lean Forward).

References
[1] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico

Tassi. 2011. The Matita interactive theorem prover. In CADE 2011.
64–69. h�ps://doi.org/10.1007/978-3-642-22438-6_7

[2] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and
Stewart Wilcox. 2019. HOList: an environment for machine learn-
ing of higher order logic theorem proving. In ICML 2019. 454–463.
h�ps://proceedings.mlr.press/v97/bansal19a.html

[3] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson,
and Josef Urban. 2016. Hammering towards QED. Journal of Formalized
Reasoning 9, 1 (2016), 101–148. h�ps://doi.org/10.6092/issn.1972-
5787/4593

[4] The mathlib Community. 2020. The lean mathematical library. In CPP
2020. 367–381. h�ps://doi.org/10.1145/3372885.3373824

[5] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and
Mandayam Srivas. 1995. A Tutorial Introduction to PVS. In Work-
shop on Industrial-Strength Formal Speci�cation Techniques 1995. h�p:
//www.csl.sri.com/papers/wi�-tutorial/

[6] Łukasz Czajka. 2020. Practical proof search for Coq by type inhabita-
tion. In IJCAR 2020. 28–57. h�ps://doi.org/10.1007/978-3-030-51054-
1_3

[7] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 theorem
prover and programming language. In CADE 2021. 625–635. h�ps:
//doi.org/10.1007/978-3-030-79876-5_37

[8] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and
Michael Norrish. 2021. TacticToe: Learning to prove with tactics.
Journal of Automated Reasoning 65, 2 (2021), 257–286. h�ps://doi.org/
10.1007/s10817-020-09580-x

[9] Martin Giese. 2001. Incremental closure of free variable tableaux. In
IJCAR 2001. 545–560. h�ps://doi.org/10.1007/3-540-45744-5_46

[10] Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and
Stanislas Polu. 2021. Proof artifact co-training for theorem proving
with language models. h�ps://doi.org/10.48550/ARXIV.2102.06203

[11] M. Kaufmann and J. Strother Moore. 1996. ACL2: an industrial strength
version of Nqthm. In COMPASS 1996. 23–34. h�ps://doi.org/10.1109/
CMPASS.1996.507872

[12] Boris Konev and Tudor Jebelean. 2005. Solution lifting method for
handling meta-variables in TH∃OREM∀. Journal of Mathematical
Sciences 126, 3 (2005), 1182–1194. h�ps://doi.org/10.1007/s10958-005-
0090-6

[13] Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Mar-
tinet, Amaury Hayat, Gabriel Ebner, Aurélien Rodriguez, and Timothée
Lacroix. 2022. HyperTree proof search for neural theorem proving.
h�ps://doi.org/10.48550/ARXIV.2205.11491

[14] Fredrik Lindblad and Marcin Benke. 2004. A tool for automated the-
orem proving in Agda. In TYPES 2004. 154–169. h�ps://doi.org/10.
1007/11617990_10

[15] Conor McBride and James McKinna. 2004. The view from the left.
Journal of Functional Programming 14, 1 (2004), 69–111. h�ps://doi.
org/10.1017/S0956796803004829

[16] WilliamMcCune. 1992. Experiments with discrimination-tree indexing
and path indexing for term retrieval. Journal of Automated Reasoning
9, 2 (1992), 147–167. h�ps://doi.org/10.1007/BF00245458

[17] Ulf Norell. 2007. Towards a practical programming language based on
dependent type theory. Ph. D. Dissertation. Chalmers University of
Technology, Göteborg, Sweden. h�ps://www.cse.chalmers.se/~ulfn/
papers/thesis.pdf

[18] Lawrence C. Paulson. 1996. Generic automatic proof tools. Technical
Report UCAM-CL-TR-396. University of Cambridge. h�ps://doi.org/
10.48456/tr-396

[19] Lawrence C. Paulson. 1999. A generic tableau prover and its integration
with Isabelle. Journal of Universal Computer Science 5, 3 (1999), 73–87.
h�ps://doi.org/10.3217/jucs-005-03-0073

[20] Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. 2019.
From LCF to Isabelle/HOL. Formal Aspects of Computing 31, 6 (2019),
675–698. h�ps://doi.org/10.1007/s00165-019-00492-1

[21] Geo� Sutcli�e. 2017. The TPTP problem library and associated infra-
structure: from CNF to TH0, TPTP v6.4.0. Journal of Automated Reas-
oning 59, 4 (2017), 483–502. h�ps://doi.org/10.1007/s10817-017-9407-7

[22] Jørgen Villadsen. 2020. A micro prover for teaching automated reas-
oning. In PAAR 2020.

[23] Bohua Zhan. 2016. AUTO2, a saturation-based heuristic prover for
higher-order logic. In ITP 2016. 441–456. h�ps://doi.org/10.1007/978-
3-319-43144-4_27

Received 2022-09-21; accepted 2022-11-21

266



Chapter 8

An Abstract Framework for
Synthetic Completeness

The Axiom of Choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?

—Jerry L. Bona

In this chapter I present an abstract framework for synthetic completeness proofs
formalized in Isabelle/HOL. By working abstractly we avoid relying on the
features of a particular calculus and are instead forced to focus on the actual
essence of the completeness argument. This allows us to reuse the results for a
large class of proof systems. The constructions and theorems are all available
in the Archive of Formal Proofs in my entry “Synthetic Completeness” which
is listed on page 167. However, at time of writing, the Isabelle listings below
differ cosmetically from the online entry: I have changed some names to ease
the presentation. Isabelle has also verified the version below.
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8.1 Introduction

We have seen several synthetic completeness proofs so far: for an axiomatic
system for propositional logic in chapter 2, an axiomatic system for first-order
logic in chapter 3, a tableau system for hybrid logic in chapter 5 and a range of
epistemic logics in chapter 6. In each of these chapters, I formalized Lindenbaum’s
lemma separately in order to build maximal consistent sets (MCSs) with or
without saturation. Moreover, I defined Hintikka sets from scratch for each logic
to prove a truth lemma: formulas in MCSs have a satisfying model. In this
chapter I provide an abstract, formalized framework for synthetic completeness
proofs. The framework builds (saturated) MCSs for any calculus that satisfies a
few properties, and provides a way of deriving Hintikka sets mechanically from
the logic’s semantics and the models induced by the MCSs: given the canonical
models, it says what we need to prove about the MCSs for each constructor to
prove model existence. With this framework, I make the following contributions:

• I formalize a transfinite, reusable version of Lindenbaum’s lemma applicable
to languages of any cardinality.

• My framework builds saturated maximal consistent sets, as long as the
cardinality of the type of parameters (e.g. constant symbols) is large enough.

• I provide a Hintikka equation that describes sets which are often useful
when proving the truth lemma.

I have instantiated this framework to the following logics, proving strong com-
pleteness for each of them:

• A propositional tableau system.

• A propositional sequent calculus.

• A natural deduction system for first-order logic.

• An axiomatic system for modal logic.

• A natural deduction system for hybrid logic.

Except for the tableau system, where the Hintikka sets model the rules of the
calculus rather than the semantics of the logic, all examples derive the Hintikka
sets from the semantics and MCS-induced models in the style of the framework.
I will use the term formula broadly. In the hybrid logic example, we actually
work with labelled formulas which are formulas paired with a nominal.
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8.1.1 Related work

The previous chapters in this thesis contain a lot of related work when it comes
to formalized completeness proofs. The work below deserves a special mention.

Blanchette et al. [10] have formalized an abstract framework for analytic com-
pleteness proofs in Isabelle/HOL. Their work formalizes infinite derivation trees
in the abstract and proves various useful properties about them. It can be easily
used to create executable provers, but targets tableaux and sequent calculus
more than axiomatic and natural deduction systems.

Fitting employs abstract consistency properties in his completeness proofs for
tableaux, resolution and axiomatic systems. These are a different way of working
with an abstract notion of consistency from which the model existence theorem
can be proved. Fitting gives the abstract consistency properties for propositional
and first-order logic and shows that the various proof systems live up to the
requirements. My trick for deriving Hintikka sets can be seen as a different way
of decomposing derivational consistency into conditions that are easier to connect
with the semantics.

Schlöder and Koepke [8] used Mizar to formalize a completeness theorem for
first-order logic for uncountably large languages.

8.2 Maximal Consistent Sets

Consistency of a set of formulas S wrt. a logical calculus typically means that
we cannot refute, derive a contradiction from, any subset of S. Maximality of S
means that any formula consistent with S is contained in S. The constructions
and proofs below are adapted from Chang and Keisler [1] with two main differ-
ences. One, they work in set theory, where I work in the weaker higher-order
logic (HOL), which for instance, cannot express the type of all ordinals. Two, to
ensure saturation, they extend the language they are working with, which from
a HOL perspective means changing its type. Instead, I assume that there are
enough parameters from the beginning (Berghofer [6] uses the same trick in his
Isabelle/HOL formalization).

It is intuitively simple to extend a consistent set S to a maximal consistent one.
Take the countable case as a demonstration. First, we assume that we have an
exhaustive enumeration of formulas pn for each n. Next, we build a sequence of
consistent sets Sn for each n with S0 = S as our starting point. To form Sn+1
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we simply take pn together with Sn, if this is consistent, or Sn alone if not. The
MCS is then the infinite union

⋃
n Sn. Henkin’s idea [5] to ensure saturation is

equally simple. Saturation of S means that for every existential formula in S,
S also contains a witness of that formula. Adding these witnesses at the end
can be difficult, since we need to show that there are still consistent witnesses
available. Instead, whenever we add an existential formula, we also add suitable
witnesses for that formula.

To formalize this process in the abstract and prove that the result indeed is a
maximal consistent saturated set, we need to make some assumptions. Isabelle’s
locale mechanism is excellent for this. It allows us to work in an abstract context
with e.g. a predicate consistent that obeys certain assumptions. Interested
logicians can then instantiate the locale with their own concrete consistency
predicate, prove that it fulfills the requirements and obtain specialized versions
of all the definitions and proofs that I have given abstractly.

8.2.1 Ordinals and Cardinals in Isabelle/HOL

I rely on Isabelle/HOL’s support for ordinals and cardinals, developed by
Blanchette et al. [9], to support uncountable languages. Here, an ordinal is
simply a set of pairs that represents a wellorder relation. Being a wellorder,
every non-empty subset of an an ordinal has a least element. The set of elements
related by the wellorder is called its Field. Due to the axiom of choice, we can
impose a wellorder on any set and thus think of it as an ordinal. The cardinal of
a set is an ordinal for that set that is no greater than any other ordinal for that
set. Here, ordinal r is no greater than ordinal r′, r ≤o r ′, when r embeds into
r′ (there is a map which both respects and reflects the order). Again due to the
axiom of choice, there is a cardinal for any set X, which we denote |X|.

Since an ordinal (and thus cardinal) is simply a wellorder, we can relate the
elements of its Field. The function under r n gives the set of elements smaller
than n in the wellorder r, while its strict counterpart underS r n excludes n
itself. Any wellorder has a least element, which means any ordinal has a zero
element. The successor of an element n, is the smallest element m > n by the
wellorder. If an element in an ordinal is the successor of some other element,
we call it a successor element. Finally, limit elements are those elements that
are not successor elements, for instance ω wrt. the natural numbers, which is
greater than any natural number but not the direct successor of any of them.
Limit ordinals are ordinals with the property that every element has a successor.
Any cardinal over an infinite Field is a limit ordinal.

Wellorder recursion is an elimination principle for elements of a wellorder, akin to
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Table 8.1: Assumptions for enumerating formulas of type ′a.

• A relation over the formulas: r :: ′a rel

• The relation is a wellorder: Well-order r

• The relation is an infinite cardinal: Cinfinite r

primitive recursion on natural numbers. More precisely, when defining a function
f n by wellorder recursion, we need to provide three cases for the type of n:
when it is a zero, successor and limit element, respectively. Zero elements are
the starting point, so f 0 must be defined outright. When defining f (n+ 1),
for successor elements n+ 1, we get to assume f n. When defining f n for limit
elements, we can make use of f m for any m < n that is strictly smaller by the
wellorder. Wellorder induction provides the complementary proof technique.

The Isabelle/HOL cardinal library provides recursion over wellorders, worecZSL,
split into the three cases: zero (Z ), successor (S ) and limit (L) elements.

8.2.2 Enumeration

We need an enumeration of the formulas we want to build MCSs of. We want to
support uncountably large languages, so we cannot simply assume a surjective
function from natural numbers to formulas, and higher-order logic is not strong
enough to express a function from ordinals to formulas. Instead, we assume a
wellorder relation over formulas (one can always be imposed). This provides
enough structure that we can use the formulas themselves as numbers. We can
then use wellorder recursion to construct each set Sn in our sequence, where n
is a formula serving double duty as a number (and the target of the recursion).
Wellorder induction provides the complementary proof technique, allowing us to
prove results about each set Sn.

To prove maximality we require that every formula has a successor (since formula
n only gets added at stage Sn+1). Therefore, our wellorder must be an infinite
cardinal so that it is a limit ordinal and has this property (an infinite cardinal
be found for any infinite set). In total, we can work with anything satisfying
table 8.1. Note that infinite cardinals are always wellorders, but table 8.1 is
written such that it corresponds to the existing locale wo-rel with an additional
infinity assumption.
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Table 8.2: Assumptions for building maximal consistent sets.

• A consistency predicate: consistent :: ′a set ⇒ bool

• Subsets preserve consistency:∧
S S ′. consistent S =⇒ S ′ ⊆ S =⇒ consistent S ′

• Inconsistencies are finite:∧
S . ¬ consistent S =⇒ ∃S ′ ⊆ S . finite S ′ ∧ ¬ consistent S ′

Table 8.3: Additional assumptions for building saturated MCSs.

• A function that returns the parameters in a formula:
params :: ′a ⇒ ′i set

• A function that returns witnesses for a formula (fresh wrt. the given set):
witness :: ′a ⇒ ′a set ⇒ ′a set

• Formulas contain finitely many parameters:
∧
p. finite (params p)

• Sets of witnesses contain finitely many parameters:∧
p S . finite (

⋃
q ∈ witness p S . params q)

• Witnesses preserve consistency (when free parameters are available):∧
p S . consistent ({p} ∪ S )

=⇒ infinite (UNIV − (
⋃
q ∈ S . params q))

=⇒ consistent (witness p S ∪ {p} ∪ S )

8.2.3 Lindenbaum’s Lemma

Table 8.2 lists the basic assumptions we need, besides table 8.1, to build maximal
consistent sets (

∧
is Isabelle’s metalogical universal quantifier). We need a con-

sistency predicate where subsets of consistent sets are consistent and inconsistent
sets have a finite inconsistent subset. This last assumption is usually satisfied
by the finiteness of proofs. Table 8.3 lists the extra assumptions necessary to
ensure saturation. In order to add witnesses, we need a function that gives us the
parameters in a formula and a function that generates witnesses for a formula,
given a set of formulas whose parameters cannot be used. For non-existential
formulas, this witness function returns an empty set. To ensure that we do
not use up all the parameters, we need that formulas and sets of witnesses
contain only finitely many parameters. Finally, to prove consistency, we need
that witnesses, built from unused parameters, preserve consistency.
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8.2.4 Lindenbaum’s Extension

As described above, we construct a sequence of sets Sn from an initial set S.
For n we use the elements of our wellorder: formulas, serving a double purpose
as numbers. In the following, we are working inside this abstract wellorder, r,
which we assume to be a limit ordinal such that every element has a successor.
This is especially apparent in the Isabelle definitions where we often have to
reference the Field of the wellorder explicitly.

Definition 8.1 (Constructing Sn) Assume an initial set S. We use
wellorder recursion to construct Sn by cases on n. When n = 0, a zero element,
S0 = S. When it is n+ 1, a successor element, Sn+1 = witness n Sn ∪ {n} ∪ Sn

when {n}∪Sn is consistent and Sn+1 = Sn otherwise. When n is a limit element,
Sn =

⋃
m<n Sm is built from the sets of strictly smaller elements.

In Isabelle this becomes:

definition extend S n ≡ worecZSL r S extendS extendL n

definition extendS n prev ≡ if consistent ({n} ∪ prev) then witness n prev ∪
{n} ∪ prev else prev

definition extendL rec n ≡ ⋃m ∈ underS r n. rec m

The above definition is admissible, since the limit case only relies on strictly
smaller elements.

Definition 8.2 (Constructing
⋃

n Sn) The maximal consistent satu-
rated set for S is now

⋃
n Sn.

definition Extend S ≡ ⋃n ∈ Field r . extend S n

Lemma 8.3 (Properties of the extension) The initial set S is in-
cluded in any extension Sn (when n is in the Field of our wellorder). This means
that when the Field is not empty, S is included in

⋃
n Sn. For m ≤ n, Sm ⊆ Sn.

shows n ∈ Field r =⇒ S ⊆ extend S n
shows Field r 6= {} =⇒ S ⊆ Extend S
shows m ∈ under r n =⇒ extend S m ⊆ extend S n

Proof. Either directly or by wellorder induction. �
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8.2.5 Consistency

The trickiest part of proving consistency is ensuring that we have fresh parameters
available for the witnesses. First note that any parameter in a set Sn comes
either from the initial set S, from a formula m < n or from the witnesses of a
formula m < n. To ease notation, let paramss S ≡ ⋃ p ∈ S . params p be all
the parameters in the set S.

Lemma 8.4 (Consistency of Sn) Assume that S is consistent and that
|UNIV − (paramss S)|, the cardinality of unused parameters, is at least the
cardinality of our wellorder of formulas. Then Sn is consistent.

assumes consistent S and r ≤o |UNIV − paramss S |
shows consistent (extend S n)

Proof. By wellorder induction on n. S0 = S is consistent by assumption.

For n + 1, note first that the cardinality of formulas seen so far is strictly
smaller than the total number of formulas in our wellorder: |{m | m < n}| < r.
Since the parameters of a formula or a set of witnesses is finite, the cardinality
of all the parameters added so far, call it X, is strictly smaller than r. By
assumption it is then strictly smaller than |UNIV− (paramss S)|. This means
that |UNIV − (paramss S ∪ X)|, the cardinality of parameters that were not
there initially and have not been added, is at least r. Since every parameter in
Sn comes from either paramss S or X, there must be infinitely many unused
parameters in Sn. By assumption, adding witnesses thus preserves consistency.

For n a limit ordinal, assume towards a contradiction that Sn is inconsistent.
Then a finite subset of

⋃
m<n Sm is inconsistent. But the finite subset is built

from finitely many elements, so we have a finite subset M ⊆ {m | m < n} such
that

⋃
m∈M Sm is inconsistent. Since M is finite, and Si ⊆ Sj for i ≤ j, we must

have an upper bound k < n such that
(⋃

m∈M Sm

)
⊆ Sk. But Sk is consistent

by the induction hypothesis, so it cannot contain an inconsistent
⋃

m∈M Sm. �

Lemma 8.5 (
⋃

n Sn is consistent) If S is consistent and the cardinality
of unused parameters in S is at least r, then

⋃
Sn is consistent.

assumes consistent S and r ≤o |UNIV − paramss S |
shows consistent (Extend S )

Proof. Assume towards a contradiction that
⋃

n Sn is inconsistent. Then a
finite subset S′ ⊆ ⋃n Sn is inconsistent. Since S′ is finite, there must be an m
such that S′ ⊆ Sm. By lemma 8.4, Sm is consistent, causing a contradiction. �
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8.2.6 Relative Maximality

We are now ready to prove maximality wrt. our Field.

Definition 8.6 (r-Maximality) A set S is r-maximal if it contains every
formula in the Field of r that is consistent with S.

definition maximal ′ S ≡ ∀ p ∈ Field r . consistent ({p} ∪ S ) −→ p ∈ S

Lemma 8.7 (
⋃

n Sn is r-maximal) The set
⋃

n Sn is always r-maximal.

shows maximal ′ (Extend S )

Proof. Assume p is in the Field of r and consistent with
⋃

n Sn. Then it
is consistent with Sp. Moreover, since r is assumed to be a limit ordinal, the
successor p+ 1 is also in the Field of r. In combination, p ∈ Sp+1 ⊆

⋃
n Sn. �

8.2.7 Relative Saturation

Saturation is as simple to define and prove as maximality.

Definition 8.8 (r-Saturation) A set S is r-saturated if, for every for-
mula p in both S and the Field of r, S contains witnesses for p.

definition saturated ′ S ≡ ∀ p ∈ S . p ∈ Field r −→ (∃ S ′. witness p S ′ ⊆ S )

Lemma 8.9 (
⋃

n Sn is r-saturated) When
⋃

n Sn is consistent, it is also
r-saturated.
assumes consistent (Extend S )
shows saturated ′ (Extend S )

Proof. Like the proof of lemma 8.7, but noting that the witnesses of a formula
get added alongside the formula. �

8.2.8 Concrete Limit Ordinals

So far, we have worked with an abstract infinite cardinal over some arbitrary
Field. This allows us to build MCSs over only a subset of formulas, in case we
need to do that. However, we typically work with the full universe of formulas.
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In this case we can replace the assumptions in table 8.1 with a single assumption
that the universe of formulas is infinite. We then instantiate r as the cardinality
of this universe, which is trivially a wellorder and an infinite cardinal. Under
this assumption that the wellorder r contains every formula, r-maximality and
r-saturation reduce to simpler definitions.

Definition 8.10 (Maximality) A set S is maximal if it contains every
formula that is consistent with S.

definition maximal S ≡ ∀ p. consistent ({p} ∪ S ) −→ p ∈ S

Definition 8.11 (Saturation) A set S is saturated if, for every formula
p in S, S contains witnesses for p.

definition saturated S ≡ ∀ p ∈ S . ∃S ′. witness p S ′ ⊆ S

We get the following theorem in conclusion.

Theorem 8.12 (
⋃

n Sn is maximal, consistent, saturated)

Assume tables 8.2 and 8.3 and that the universe of formulas is infinite. If S is
consistent and the cardinality of unused parameters in S is at least the cardinality
of all formulas, then

⋃
n Sn is a maximal consistent saturated set.

assumes consistent S and |UNIV :: ′a set | ≤o |UNIV − paramss S |
shows consistent (Extend S )
and maximal (Extend S )
and saturated (Extend S )

Proof. Follows from lemmas 8.4, 8.7 and 8.9 and the simplifying assumption
that the Field of r contains every formula. �

If the logic does not require saturation, we can trivially satisfy table 8.3: by
letting both params and witness return empty sets, the assumptions about them
become trivial. For logics without existential formulas, we just need to fulfill the
assumptions in table 8.2 and prove that the universe of formulas is infinite.

Theorem 8.13 (
⋃
Sn is a maximal consistent set)

Assume table 8.2 and that the universe of formulas is infinite. If S is consistent,
then

⋃
n Sn is a maximal consistent set.

assumes consistent S
shows consistent (Extend S ) and maximal (Extend S )

Proof. Special case of theorem 8.12. �
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Table 8.4: Assumptions about refutational proof systems (wrt. table 8.2).

• A refutation predicate: refute :: ′a list ⇒ bool

• That is invariant under all structural rules:∧
A B . refute A =⇒ set A ⊆ set B =⇒ refute B

• Where consistency means that no list of elements can be refuted:∧
S . consistent S = (@S ′. set S ′ ⊆ S ∧ refute S ′)

8.3 Refutations, Derivations and MCSs

I now briefly consider abstract proof systems and how they relate to maximal
consistent sets. That is, what knowing a little bit more about the abstract
consistency predicate tells us. In particular, for the proof of the truth lemma it
is useful to know when a formula is included in an MCS and when it is absent. I
assume proof systems that work with lists, since lists can easily be converted to
sets or multisets, for calculi that are implemented using these structures instead.

8.3.1 Refutations

Table 8.4 assumes a predicate that tells us whether a list of formulas is refutable
and asks that any permutation, contraction and weakening of a refutable list
is refutable. Finally, it stipulates that consistency of a set means that no list
of elements can be refuted (the Isabelle function set turns a list into a set).
Note that Isabelle lists are inductive structures built from an empty list [] and a
prepend operation #. This makes them finite by definition.

Theorem 8.14 (Refutability and MCSs) Assume the basic MCS as-
sumptions in table 8.2 and the refutational assumptions in table 8.4. Formula p
is absent from a maximal consistent set S if and only if there is a list of elements
S′ from S such that p, S′ is refutable.

assumes consistent S and maximal S
shows p /∈ S ←→ (∃S ′. set S ′ ⊆ S ∧ refute (p # S ′))

Proof. Assume p /∈ S. By maximality, adding it yields a refutable list of
elements and by the structural rules, we can rearrange this to put p at the front.
For the other direction, assume p, S′ is refutable for some list of elements S′

from S. Then p /∈ S as this would contradict the consistency of S. �
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Table 8.5: Assumptions about derivational proof systems (wrt. table 8.2).

Basic assumptions:

• A derivation predicate: derive :: ′a list ⇒ ′a ⇒ bool

• A falsity element: fls :: ′a

• Where the derivation predicate is invariant under all structural rules:∧
A B p. derive A p =⇒ set A ⊆ set B =⇒ derive B p

• And consistency means we cannot derive falsity from any list of elements:∧
S . consistent S = (@S ′. set S ′ ⊆ S ∧ derive S ′ fls)

Additional assumptions:

• We can derive any assumption:∧
A p. p ∈ set A =⇒ derive A p

• We have the Cut rule:∧
A B p q . derive A p =⇒ derive (p # B) q =⇒ derive (A @ B) q

8.3.2 Derivations

Table 8.5 assumes a predicate that tells us whether a formula can be derived from
a list of assumptions and asks that any permutation, contraction and weakening
of the list of assumptions does not change derivability. It also assumes a falsity
element and stipulates that consistency of a set means that we cannot derive
falsity from any list of elements. Additionally, we may assume that we can derive
any assumption and that we have the Cut rule: if we can derive p from A and q
from p,B then we can cut out p and derive q directly from A,B (in Isabelle, @
denotes list concatenation).

The first theorem mirrors its refutational counterpart.

Theorem 8.15 (Derivability of falsity and MCSs) Assume both
the basic MCS assumptions in table 8.2 and the basic derivational assumptions
in table 8.5. Formula p is absent from a maximal consistent set S if and only if
there is a list of elements S′ from S such that we can derive falsity from p, S′.

assumes consistent S and maximal S
shows p /∈ S ←→ (∃S ′. set S ′ ⊆ S ∧ derive (p # S ′) fls)

Proof. Analogous to the proof of theorem 8.14. �

The second theorem relies on having the Cut rule.
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Theorem 8.16 (Derivability and MCSs) Assume the basic MCS as-
sumptions in table 8.2 and all the derivational assumptions in table 8.5. Formula
p is included in a maximal consistent set S if and only if we can derive p from
some list of elements from S.

assumes consistent S and maximal S
shows p ∈ S ←→ (∃S ′. set S ′ ⊆ S ∧ derive S ′ p)

Proof. Assume p ∈ S. Since we can derive any assumption, we can just pick a
list of elements from S that includes p.

Assume we can derive p from some list of elements A from S. We want to show
that {p} ∪ S is consistent, in which case p ∈ S follows from maximality. Assume
towards a contradiction that we can derive falsity from p and a list of elements
B from S. Then by the Cut rule, we can derive falsity from A,B. But A,B is a
list of elements from S, contradicting its consistency. �

8.4 Truth Lemma

I will now demonstrate a technique for deriving Hintikka sets from a logic’s
semantics and the models induced by the maximal consistent (saturated) sets.
This technique works for compositional semantics, where the truth value of a
formula is defined by the truth values of its subformulas (but potentially in a
different context). Note that Smullyan [3] defines Hintikka sets to be saturated
downwards only. My (derived) Hintikka sets are fully saturated, downwards and
upwards, which Smullyan calls saturated sets. Since my Hintikka sets are also
Hintikka sets by Smullyan’s definition and I already use saturation for something
else, I use the term Hintikka sets. I first demonstrate the technique informally,
using propositional logic as an example, before explaining the Isabelle/HOL
formalization Isabelle/HOL and applying it to a range of examples. I use the
term truth lemma, but model existence theorem would also be appropriate.

8.4.1 Introduction

We want to prove a truth lemma: any maximal consistent (saturated) set S
induces a model that satisfies all formulas in S. As a stepping stone, we want
to use Hintikka sets to classify MCSs not by the consistency predicate, but by
conditions on subformulas. We thereby split the proof into two smaller steps:
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proving that any MCS is a Hintikka set and that any Hintikka set induces a
model that satisfies the formulas it contains.

8.4.1.1 Example Language

Take the following language for formulas p, q over propositional variables P :

p ::= P | ⊥ | p→ p

Our models are interpretations I that assign either true or false to each proposi-
tional variable and our semantics is as follows:

I |= P ←→ I P

I |= ⊥ ←→ False
I |= p→ q ←→ I |= p −→ I |= q

8.4.1.2 Manual Hintikka Sets

We can manually define Hintikka sets H for our logic with the conditions:

⊥ /∈ H
p→ q ∈ H ←→ p ∈ H −→ q ∈ H

This makes it easy to show that p ∈ H ←→ IH |= p where IH P = (P ∈ H) is
the canonical model. We would also have to fix a proof system and show that
any MCS satisfies the above Hintikka conditions, but we leave this for later.

8.4.1.3 Derived Hintikka Sets

To begin, note that we can take a compositional semantics like the one above
and punch a hole in it by replacing all recursive calls with calls to some relation.
The resulting non-recursive semantics allows us to capture the idea that Hintikka
sets are defined by conditions on subformulas.

For our example, we obtain a new predicate semics (the word semantics with a
hole in it) over the relation rel :

semics I rel P ←→ I P

semics I rel ⊥ ←→ False
semics I rel (p→ q) ←→ rel I p −→ rel I q
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Table 8.6: Assumptions for proving a truth lemma (wrt. tables 8.2 and 8.3).

• A semantics with a hole in it:
semics :: ′model ⇒ ( ′model ⇒ ′fm ⇒ bool) ⇒ ′fm ⇒ bool

• A semantics: semantics :: ′model ⇒ ′fm ⇒ bool

• The MCS-induced models: models-from :: ′a set ⇒ ′model set

• A relation between MCSs, models and formulas:
rel :: ′a set ⇒ ′model ⇒ ′fm ⇒ bool

• Filling the hole in semics with semantics gives the semantics:
semantics M p ←→ semics M semantics p

• Hintikka sets give rise to satisfying models:∧
H M p. ∀M ∈ models-from H . ∀ p. semics M (rel H ) p ←→ rel H M p

=⇒ M ∈ models-from H =⇒ semantics M p ←→ rel H M p

• Maximal consistent saturated sets are Hintikka sets:∧
H . consistent H =⇒ maximal H =⇒ saturated H =⇒
∀M ∈ models-from H . ∀ p. semics M (rel H ) p ←→ rel H M p

We noticed above that the model induced by an MCS/Hintikka set for our logic
is IH P = (P ∈ H). The truth lemma we want to prove should hold for formulas
in the MCS, so we should take relH IH p = (p ∈ H). The following equation
then simplifies to the manual Hintikka set above:

semics IH relH p ←→ relH IH p

In the propositional symbol case it reduces to the trivial P ∈ H ←→ P ∈ H. In
the falsity case we get the condition False ←→ ⊥ ∈ H which is equivalent to
⊥ /∈ H. In the implication case we get p ∈ H −→ q ∈ H ←→ p→ q ∈ H.

For propositional logic, the MCS shows up only once in the canonical model IH ,
but for modal logic, the canonical model consists of a set of MCSs, where we
need to know that all of them are Hintikka sets. This motivates the following
extension to the equation, where M(H) are the models induced by the MCS H:

∀M ∈M(H). semics M relH p ←→ relH M p

In the examples, I demonstrate that this Hintikka equation works for first-order
logic, modal logic and hybrid logic too.
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8.4.2 Formalization in Isabelle/HOL

Table 8.6 formalizes the informal process above. We need a semantics with a
hole in it, semics, and one without, semantics. Then we need the models arising
from an MCS, models-from, and a relation between MCS, models and formulas,
rel. The semantics with a hole in it should be faithful to the intact one. If a
set H behaves Hintikka-like wrt. all models arising from it, i.e. rel holds on a
formula exactly when it holds on its subformulas, then rel should correspond
with the semantics on H. Finally, all maximal consistent saturated sets should
behave Hintikka-like with respect to the models they induce.

Note that the type ′a is what the MCSs consist of, while ′fm is the formula type
supported by the semantics. These can differ, as for the hybrid logic calculus
below where we build MCSs of labelled formulas, but evaluate plain formulas.

Theorem 8.17 (Truth Lemma) Assume table 8.6, a maximal consistent
saturated set H and a model M based on H. A formula p is true under M
exactly when rel H M p.

assumes consistent H
and maximal H
and saturated H
and M ∈ models-from H

shows semantics M p ←→ rel H M p

Proof. By assumption, the MCS forms a Hintikka-like set wrt. rel, which, by
assumption, has a model. �

It is evident from the proof above, that I am using the Isabelle locale differently
from earlier: here it is simply used for structuring a proof. The use of the locale
has a technical advantage, however: it allows Isabelle to write out the Hintikka
equation for us, after we have provided its components. The method works for
MCSs without saturation by simply omitting the assumptions of saturation.

8.5 Examples

In this section I introduce the languages and proof systems along with their
consistency predicates, before I dive into each logic and prove strong completeness
using the framework above.
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8.5.1 Languages and Proof Systems

Table 8.7 lists the languages of the five logics I have instantiated the framework
with. ‡ serves as formal markers for propositional symbols P and likewise for ·
and nominals i, k. For first-order logic, ‡ marks predicate symbols P with a list
of argument terms ts, # marks variables n and † marks function symbols f with
argument terms ts. Here, the variables are natural numbers used as de Bruijn
indices. The modal logic is really a multimodal logic with an indexed necessity
operator, but I will not emphasize this point further. The types of propositional
symbols, predicate symbols, function symbols and nominals are all parametric
and can be instantiated to anything from strings to predicates on real numbers.

Table 8.8 lists the consistency predicates for the five examples. In all cases, it
says that a set is consistent when no list of elements from that set can be refuted
(tableau) or used to derive a contradiction (the rest). The definitions rely on
the concrete proof systems in tables 8.10 to 8.14. It is easy to prove by rule
induction, that each proof system is sound for that logic’s semantics. Note that
the hybrid logic proof system uses labelled formulas, pairs of a nominal and a
formula, rather than plain formulas. The framework supports this.

Table 8.9 lists the witness functions for first-order and hybrid logic. They use
Hilbert’s choice operator (SOME ) to pick fresh parameters for the witnesses.

It is not hard to prove for each example that it lives up to the assumptions in
table 8.2 and, for first-order logic and hybrid logic, those in table 8.3. Note that
the params of a first-order logic formula is its set of function symbols and the
params of a hybrid logic formula is its set of nominals. We can therefore build
maximal consistent (saturated) sets for each logic. Likewise, the tableau system
in table 8.10 meets the requirements for refutational systems in table 8.4 and
the rest of the proof systems meet all the derivational requirements in table 8.5.
This allows us to use theorems 8.14 to 8.15 about the presence and absence of
formulas in maximal consistent sets. The next sections cover how to prove the
truth lemma in each case.

Table 8.7: The languages of the five examples.

Logic Syntax

Prop. Logic (Tableau) ‡P | ¬ p | p −→ p
Prop. Logic (Seq. Calc.) ‡P | ⊥ | p −→ p
First-Order Logic ‡P ts | ⊥ | p −→ p | ∀ p (and #n | †f ts)
Modal Logic ‡P | ⊥ | p −→ p | 2 i p
Hybrid Logic ‡P | ·i | ⊥ | p −→ p | 3 p | @i p
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Table 8.8: Consistency predicates for the five examples (cf. tables 8.10 to 8.14).

Logic Consistency predicate

Prop. Logic (Tableau) consistent S ≡ @S ′. set S ′ ⊆ S ∧ `T S ′

Prop. Logic (S. C.) consistent S ≡ @S ′. set S ′ ⊆ S ∧ S ′ `S [⊥]
First-Order Logic consistent S ≡ @S ′. set S ′ ⊆ S ∧ S ′ `∀ ⊥
Modal Logic consistent S ≡ @S ′. set S ′ ⊆ S ∧ S ′ `2 ⊥
Hybrid Logic consistent S ≡ @S ′ a. set S ′ ⊆ S ∧ S ′ `@ (a, ⊥)

Table 8.9: Witnesses for first-order and hybrid logic.

Logic Witness function

FOL witness (¬ (∀ p)) S = {¬ 〈?(SOME a. a /∈ params ′ ({p} ∪ S ))〉p}
HL witness (i , 3 p) S = (let k = (SOME k . k /∈ nominals ({(i , p)}

∪ S )) in {(k , p), (i , 3 (·k))})

8.5.2 Propositional Tableau

Table 8.10 gives the tableau rules as an inductive predicate (`T - :: ′p fm list ⇒
bool) that states whether a (conjunctive) list of formulas can be refuted.

The semantics for this example are based on interpretations I of the propositional
variables. Semantic brackets turn the interpretation into a predicate on formulas:

[[I ]] (‡P) ←→ I P
[[I ]] (¬ p) ←→ ¬ [[I ]] p
[[I ]] (p −→ q) ←→ [[I]] p −→ [[I]] q

We define the Hintikka sets manually, with the goal of having them model
irrefutable lists. Each proof rule, other than Weak, has a dual Hintikka condition:

AxiomH :
∧
P . ‡P ∈ H =⇒ ¬ ‡P ∈ H =⇒ False

NegIH :
∧
p. ¬ ¬ p ∈ H =⇒ p ∈ H

ImpPH :
∧
p q . p −→ q ∈ H =⇒ ¬ p ∈ H ∨ q ∈ H

ImpNH :
∧
p q . ¬ (p −→ q) ∈ H =⇒ p ∈ H ∧ ¬ q ∈ H

For the model lemma we use the interpretation hmodel H ≡ λP . ‡P ∈ H.

Lemma 8.18 (Hintikka model) The Hintikka set H is satisfiable.

assumes Hintikka H
shows (p ∈ H −→ [[hmodel H ]] p) ∧ (¬ p ∈ H −→ ¬ [[hmodel H ]] p)

Proof. By structural induction on the formula. �
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Table 8.10: Propositional tableau proof system.

Axiom: `T ‡P # ¬ ‡P # A
NegI : `T p # A =⇒ `T ¬ ¬ p # A
ImpP : `T ¬ p # A =⇒ `T q # A =⇒ `T (p −→ q) # A
ImpN : `T p # ¬ q # A =⇒ `T ¬ (p −→ q) # A
Weaken: `T A =⇒ set A ⊆ set B =⇒ `T B

Table 8.11: Propositional sequent calculus proof system.

Axiom: p # A `S p # B
FlsL: ⊥ # A `S B
FlsR: A `S ⊥ # B =⇒ A `S B
ImpL: A `S p # B =⇒ q # A `S B =⇒ (p −→ q) # A `S B
ImpR: p # A `S q # B =⇒ A `S (p −→ q) # B
Cut : A `S p # B =⇒ p # C `S D =⇒ A @ C `S B @ D
WeakenL: A `S B =⇒ set A ⊆ set A ′ =⇒ A ′ `S B
WeakenR: A `S B =⇒ set B ⊆ set B ′ =⇒ A `S B ′

Table 8.12: First-order logic natural deduction proof system.

Assm: p ∈ set A =⇒ A `∀ p
FlsE : A `∀ ⊥ =⇒ A `∀ p
ImpI : p # A `∀ q =⇒ A `∀ p −→ q
ImpE : A `∀ p −→ q =⇒ A `∀ p =⇒ A `∀ q
UniI : A `∀ 〈?a〉p =⇒ a /∈ params (p # A) =⇒ A `∀ ∀ p
UniE : A `∀ ∀ p =⇒ A `∀ 〈t〉p
Clas: (p −→ q) # A `∀ p =⇒ A `∀ p
Weak : A `∀ p =⇒ q # A `∀ p

params returns the set of all function symbols in a set of formulas.
〈t〉p instantiates the formula p with the term t. ?a is shorthand for †a [].

Table 8.13: Modal logic system K proof system.

A1 : tautology p =⇒ `2 p
A2 : `2 2 i (p −→ q) −→ 2 i p −→ 2 i q
R1 : `2 p =⇒ `2 p −→ q =⇒ `2 q
R2 : `2 p =⇒ `2 2 i p

tautology is true for propositional tautologies.
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Table 8.14: Hybrid logic labelled natural deduction proof system.

Assm: (i , p) ∈ set A =⇒ A `@ (i , p)
Ref : A `@ (i , ·i)
Nom: A `@ (i , ·k) =⇒ A `@ (i , p) =⇒ A `@ (k , p)
FlsE : A `@ (i , ⊥) =⇒ A `@ (k , p)
ImpI : (i , p) # A `@ (i , q) =⇒ A `@ (i , p −→ q)
ImpE : A `@ (i , p −→ q) =⇒ A `@ (i , p) =⇒ A `@ (i , q)
SatI : A `@ (i , p) =⇒ A `@ (k , @i p)
SatE : A `@ (i , @k p) =⇒ A `@ (k , p)
DiaI : A `@ (i , 3 (·k)) =⇒ A `@ (k , p) =⇒ A `@ (i , 3 p)
DiaE : A `@ (i , 3 p) =⇒ k /∈ nominals ({(i , p), (j , q)} ∪ set A) =⇒

(k , p) # (i , 3 (·k)) # A `@ (j , q) =⇒ A `@ (j , q)
Clas: (i , p −→ q) # A `@ (i , p) =⇒ A `@ (i , p)
Weak : A `@ (i , p) =⇒ (k , q) # A `@ (i , p)

nominals returns the nominals in a set of labelled formulas.

It is harder to see that MCSs are Hintikka sets.

Lemma 8.19 (MCSs are Hintikka) If H is a maximal consistent set,
then it satisfies all Hintikka conditions.

assumes consistent H and maximal H
shows Hintikka H

Proof. AxiomH is fulfilled since the list [‡P, ¬ ‡P ] is refutable with the Axiom
rule, so any set with both elements must be inconsistent, but H is consistent.

NegIH asks us to assume ¬ ¬ p ∈ H and prove p ∈ H. If p /∈ H then by
theorem 8.14, we can refute p,H ′ where H ′ is a list of elements from H. With
NegI, we can then refute ¬ ¬ p, H ′. This contradicts the assumption ¬ ¬ p ∈ H.

ImpPH and ImpNH have similar proofs. Assume that the premise formula is in
H and assume towards a contradiction that the conclusion formula is not. Use
theorem 8.14 to obtain a refutation with the conclusion formula and use the
proof rules to refute the premise formula instead. �

The proof above demonstrates the utility of theorem 8.14: it connects the MCS
with the proof system in exactly the way we need.

Strong completeness follows in the usual way:

Theorem 8.20 (The tableau system is strongly complete)
If p is valid under assumptions X, then we can refute ¬ p and a list of elements
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from X.

assumes ∀M :: ′p model . (∀ q ∈ X . [[M ]] q) −→ [[M ]] p
shows ∃A. set A ⊆ X ∧ `T ¬ p # A

Proof. Assume towards a contradiction that there is no such list of elements
refutable in conjunction with ¬ p. Then the set {¬ p} ∪X is consistent and can
be extended to an MCS by theorem 8.13. This gives us a model for ¬ p and all
of X, contradicting the validity of p under X. �

We made no assumptions about the type ′p of propositional symbols in the above
theorem. This means that we have shown completeness regardless of what we
instantiate the type with: strings, real numbers, sets of sets of real numbers, etc.
are all possibilities.

8.5.3 Propositional Sequent Calculus

Table 8.11 gives the rules of the two-sided sequent calculus in the form of an
inductive predicate (- `S - :: ′p fm list ⇒ ′p fm list ⇒ bool) that tells us whether
a (conjunctive) list of premises implies a (disjunctive) list of conclusions.

The semantics are again based on interpretations I of the propositional variables.
The language is slightly different this time. Semantic brackets still turn an
interpretation into a predicate on formulas:

[[I ]] ⊥ ←→ False
[[I ]] (‡P) ←→ I P
[[I ]] (p −→ q) ←→ [[I ]] p −→ [[I ]] q

This time, we derive the Hintikka sets from the general equation:

∀M ∈M(H). semics M PH p ←→ PH M p

The semantics with a hole in it looks like this:

semics I rel ⊥ ←→ False
semics I rel (‡P) ←→ I P
semics I rel (p −→ q) ←→ rel I p −→ rel I q

We use the same MCS-induced model as for tableau, hmodel H ≡ λP . ‡P ∈ H,
and instantiate the relation with rel H - p = (p ∈ H ). Inserting these into the
general equation gives us:

∀M ∈ {hmodel H}. semics M (rel H) p ←→ rel H M p
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A little bit of simplification yields the following Hintikka equation:

semics (hmodel H) (rel H) p ←→ p ∈ H

We need to show that we can satisfy formulas in sets H that satisfy this equation.

Lemma 8.21 (Hintikka model) Assume H satisfies the Hintikka equa-
tion. Any formula p is in H if and only if it is satisfied by hmodel H.

assumes
∧
p. semics (hmodel H ) (rel H ) p ←→ p ∈ H

shows p ∈ H ←→ [[hmodel H ]] p

Proof. By structural induction on p.

For ⊥ we need to prove ⊥ /∈ H. This is exactly what our assumption gives us.

For ‡P, we need to prove ‡P ∈ H if and only if ‡P ∈ H, which is trivial.

For p −→ q, we need to prove p −→ q ∈ H if and only if [[hmodel H ]] p implies
[[hmodel H ]] q. The assumption gives us that p ∈ H −→ q ∈ H if and only if
p −→ q ∈ H. Here, we can use the induction hypothesis to rewrite p ∈ H to
[[hmodel H ]] p and q ∈ H to [[hmodel H ]] q, giving us exactly what we need. �

In practice, Isabelle/HOL can prove this lemma automatically and its formulation
is given to us when we instantiate the locale described by table 8.6. The equation
is directed in the way it is to avoid making Isabelle’s simplifier loop.

We now need to prove the other half of the truth lemma.

Lemma 8.22 (MCSs are Hintikka) Assume H is a maximal consistent
set. Then the Hintikka equation holds for H.

assumes consistent H and maximal H
shows semics (hmodel H ) (rel H ) p ←→ p ∈ H

Proof. By cases on the formula p.

For ⊥, we need to show ⊥ /∈ H. This follows from the consistency of H.

For ‡P, we need to show ‡P ∈ H ←→ ‡P ∈ H which is trivial.

For p −→ q, we need to show that p ∈ H −→ q ∈ H if and only if p −→ q ∈ H.
We show both directions.

Assume p ∈ H −→ q ∈ H. We proceed by cases on whether p ∈ H. When
p ∈ H, we have q ∈ H. By theorem 8.16 in one direction, we can then derive q
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from some list of formulas from H. Then we can also derive p −→ q from that
list using the ImpR and WeakenL rules. By theorem 8.16 in the other direction,
we must therefore have p −→ q ∈ H. When p /∈ H, by theorem 8.15, we must
be able to derive ⊥ from p and some list of elements from H. But then we can
also derive p −→ q from this list using the FlsR, ImpR and WeakenR rules. By
theorem 8.16, p −→ q must be in H.

Assume p −→ q ∈ H and p ∈ H. By theorem 8.16 and the Cut rule, q ∈ H. �

This proof shows how useful theorems 8.15 and 8.16 are.

Theorem 8.23 (The sequent calc. is strongly complete)
If the formula p is valid under assumptions X, then we can derive p from a list
of formulas from X.

assumes ∀M :: ′p model . (∀ q ∈ X . [[M ]] q) −→ [[M ]] p
shows ∃A. set A ⊆ X ∧ A `S [p]

Proof. Analogous to the proof of theorem 8.20. �

8.5.4 First-Order Logic

Table 8.12 gives the natural deduction rules in the form of an inductive predicate
(- `∀ - :: ( ′f , ′p) fm list ⇒ ( ′f , ′p) fm ⇒ bool) that tells us whether a formula
can be derived from a list of assumptions.

Having a list of assumptions is somewhat strict compared to having a multiset
or similar. The only structural rule that I have included directly is weakening
with a formula at the front of the list (Weak). From this, it is easy to prove that
we can also permute and contract elements using the following trick with the
ImpI and ImpE rules.

Lemma 8.24 (Structural rules) If we can derive p from assumptions
A then we can also derive p from any list B that contains all elements in A.

shows A `∀ p =⇒ set A ⊆ set B =⇒ B `∀ p

Proof. By induction on the list of assumptions A for an arbitrary p.

In the base case, we can derive p from no assumptions. By repeated invocations
of the Weak rule (a nested induction on B) we can derive p from B as desired.
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In the inductive case, we can derive p from the list q, A for some formula q and
the induction hypothesis says that anything we can derive from A alone, we can
derive from B. We can derive q −→ p from A using the ImpI rule, so we can
derive q −→ p from B. Using Assm we can also derive q from B, since B is a
superset of q,A. By the ImpE rule, we can then derive p from B as desired. �

The semantics of our first-order logic is based on an implicit domain and a
triple of denotations: a variable denotation E, a function denotation F and
a predicate denotation G. I use semantic parentheses to turn a variable and
function denotation into a function from terms to the domain:

(|(E , F )|) (#n) = E n
(|(E , F )|) (†f ts) = F f (map (|(E , F )|) ts)

In the function case, the definition uses map over lists to recursively evaluate
the subterms. I use semantic brackets to turn the triple of denotations into a
predicate on formulas:

[[(E , F , G)]] ⊥ ←→ False
[[(E , F , G)]] (‡P ts) ←→ G P (map (|(E , F )|) ts)
[[(E , F , G)]] (p −→ q) ←→ [[(E , F , G)]] p −→ [[(E , F , G)]] q
[[(E , F , G)]] (∀ p) ←→ (∀ x . [[(x o

9 E , F , G)]] p)

In the quantifier case, x o
9 E adds the element x to the front of the denotation E

such that variable 0 maps to x and any variable n+ 1 maps to E n, taking into
account that we crossed a binder.

The semantics with a hole in it becomes, as expected, the following:

semics (E , F , G) rel ⊥ ←→ False
semics (E , F , G) rel (‡P ts) ←→ G P (map (|(E , F )|) ts)
semics (E , F , G) rel (p −→ q) ←→ rel (E , F , G) p −→ rel (E , F , G) q
semics (E , F , G) rel (∀ p) ←→ (∀ x . rel (x o

9 E , F , G) p)

For the MCS-induced model, we use the term model based on the variable
constructor # and function constructor †:
hmodel H ≡ (#, †, λP ts. ‡P ts ∈ H )

Terms evaluate to themselves under this denotation: (|(#, †)|) t = t. This allows
us to evaluate predicates by simply looking them up in the MCS.

To write up the Hintikka equation, we need a relation to plug the hole in the
semantics with. We could take rel H (E,F,G) p = (p ∈ H), but this would not
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work, as we are throwing away information. In the first-order logic semantics, we
cannot understand a formula in isolation but need to take the variable denotation
into account since it carries information from the binders we have met so far. In
the term model, the variable denotation is a function from variables to terms, so
we can apply it as a substitution. The correct relation becomes:

rel H (E , -, -) p = (sub-fm E p ∈ H )

The function sub-fm simply applies a substitution to a formula in the proper,
capture-avoiding way.

The Hintikka equation becomes:

semics (hmodel H) (rel H) p ←→ sub-fm # p ∈ H

It is easy to prove that sub-fm # p = p, which simplifies the right-hand side to
p ∈ H. We have seen by now that this equation works for falsity, predicates and
implication. For the universal quantifier it reduces to:

(∀t. 〈t〉p ∈ H) ←→ (∀ p) ∈ H

That is, a universally quantified formula appears in the Hintikka set if and only
if all its instances do too. This is perfect for the Hintikka model lemma.

Lemma 8.25 (Hintikka model) Assume H satisfies the Hintikka equa-
tion. Any formula p is in H if and only if it is satisfied by hmodel H.

assumes
∧
p. semics (hmodel H ) (rel H ) p ←→ p ∈ H

shows p ∈ H ←→ [[hmodel H ]] p

Proof. By structural induction on p. �

Maximal consistent saturated sets satisfy the Hintikka equation.

Lemma 8.26 (MCSs are Hintikka) Assume H is a maximal consistent
saturated set. Then the Hintikka equation holds for H.

assumes consistent H and maximal H and saturated H
shows semics (hmodel H ) (rel H ) p ←→ p ∈ H

Proof. By cases on the formula p. Falsity, predicates and implication are as in
the proof of lemma 8.22 for sequent calculus. We prove both directions of the
quantifier case.

Assume first that ∀t. 〈t〉p ∈ H. Assume towards a contradiction that (∀ p) /∈ H.
Then {¬ ∀ p} ∪ H must be consistent, so by maximality {¬ ∀ p} ∈ H. By
saturation, this existential formula has a witness which is also in H: ¬ 〈?a〉p ∈ H
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for some a. But by our assumption, 〈t〉p ∈ H for all terms t, including ?a. This
contradicts the consistency of H.

Assume next that (∀ p) ∈ H. We need to show ∀t. 〈t〉p ∈ H. It is easy to prove
that when ∀ p is in a consistent set, it is consistent to also add any instance 〈t〉p
since the instance can already be derived from the quantified formula using the
UniE rule. From here, maximality proves the thesis. �

Strong completeness follows as earlier, but with extra concerns about cardinalities.
Since we rely on saturated MCSs, we need to ensure we have enough parameters
available. Theorem 8.12 asks that the cardinality of unused parameters is at least
the cardinality of the universe of formulas, but what exactly is the cardinality of
the universe of formulas? Note that our first-order logic syntax can be written
down, linearly, as a list of symbols. The set of lists over some type has the
same cardinality as the type itself, since lists are finite. We need finitely many
symbols for parentheses and infix operators, so what actually contributes to the
cardinality is function symbols, predicate symbols and de Bruijn indices (natural
numbers). Natural numbers have the lowest infinite cardinality, so assuming we
have infinitely many function symbols, we can disregard the natural numbers.
This means that the cardinality of our formulas is bounded by the sum of the
cardinalities of the function and predicate symbols.

Theorem 8.27 (The FOL calculus is strongly complete) As-
sume p is valid under assumptions X, that the universe of function symbols is
infinite and the cardinality of unused parameters in X is at least the sum of the
cardinalities of function and predicate symbols. Then we can derive p from a list
of formulas from X.

assumes ∀M :: ( ′f tm, ′f , ′p) model . (∀ q ∈ X . [[M ]] q) −→ [[M ]] p
and infinite (UNIV :: ′f set)
and |UNIV :: ′f set | +c |UNIV :: ′p set | ≤o |UNIV − params ′ X |

shows ∃A. set A ⊆ X ∧ A `∀ p

Proof. Analogous to the proof of theorem 8.20. �

Weak completeness allows us to state the cardinality assumption in a slightly
neater fashion. The predicate valid p ≡ ∀M :: ( ′f tm, -, -) model . [[M ]] p simply
abbreviates validity in the correct domain.

Corollary 8.28 (The FOL calculus is complete) If p is a valid
formula, the universe of function symbols is infinite and there are at least as
many function symbols as predicate symbols, then we can derive p.
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assumes valid p
and infinite (UNIV :: ′f set)
and |UNIV :: ′p set | ≤o |UNIV :: ′f set |

shows [] `∀ p

Proof. With an empty set of assumptions, to apply theorem 8.27 we simply
need to prove that the universe of function symbols is at least as large as the sum
of function and predicate symbols. This holds when there are no more predicate
symbols than function symbols. �

We can do away with the cardinality assumptions completely by using the same
type for function and predicate symbols. Then we just need it to be infinite.

Corollary 8.29 If p is valid and the universe of function/predicate symbols
is infinite, then we can derive p.

fixes p :: ( ′f , ′f ) fm
assumes valid p and infinite (UNIV :: ′f set)
shows [] `∀ p

8.5.5 Modal Logic

Table 8.13 gives the axiomatic proof system in the form of an inductive predicate
(`2 - :: ( ′i , ′p) fm ⇒ bool) that tells us whether a formula can be derived. In
practice, I use lists of assumptions to mimic a natural deduction system:

A `2 p ≡ `2 A ; p

Here, the arrow, ;, builds a chain of implications from the list on the left to
the formula on the right.

The semantics is based on Kripke models consisting of a set of worlds, an
accessibility relation for each agent and a valuation of propositional symbols at
each world:
datatype ( ′i , ′p, ′w) model =

Model (W: ′w set) (R: ′i ⇒ ′w ⇒ ′w set) (V: ′w ⇒ ′p ⇒ bool)
I use an explicit set of worlds to avoid subtypes later, where we will use the set
of all MCSs as the set of worlds.
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Formulas are evaluated in a context consisting of a model and a world:

(M , w) |= ⊥ ←→ False
(M , w) |= ‡P ←→ V M w P
(M , w) |= p −→ q ←→ (M , w) |= p −→ (M , w) |= q
(M , w) |= 2 i p ←→ (∀ v ∈ W M ∩ R M i w . (M , v) |= p)

For the necessity operator, 2, we make sure to only quantify over worlds that are
both in the model and reachable by the agent. We could also assume wellformed
models, where agents can only reach worlds that are actually in the model, but
this trick saves us that worry.

The semantics with a hole in it becomes the following:

semics (M , w) rel ⊥ ←→ False
semics (M , w) rel (‡P) ←→ V M w P
semics (M , w) rel (p −→ q) ←→ rel (M , w) p −→ rel (M , w) q
semics (M , w) rel (2 i p) ←→ (∀ v ∈ W M ∩ R M i w . rel (M , v) p)

We base the MCS-induced models on the usual canonical model [2]:

• The set of worlds consists of all MCSs (mcss).

• World W is reachable from V by agent i if everything that i finds necessary
at V is in W : {p. 2 i p ∈ V } ⊆W .

• Proposition P holds at world V if P ∈ V .

Since we have a whole set of MCSs this time, we want Hintikka-like qualities for
all them. Our semics function takes a complete context of model and world, so
we can achieve this by pairing the canonical model with every MCS (ignoring
the concrete MCS that was given to us):

models-from = λ-. {(canonical , V ) |V . V ∈ mcss}
When plugging the hole in the sem(ant)ics, we again ignore the given set H and
instead consider the world in the current context:

rel - (-, w) p = (p ∈ w)

The Hintikka equation becomes, after a bit of simplification:

∀V ∈ mcss. semics (canonical, V ) (rel H) p ←→ p ∈ V

This equation reduces to the usual cases for propositions, falsity and implication.
For the necessity operator, it reduces to:

∀V ∈ mcss. (∀W ∈ mcss. {q. 2 i q ∈ V } ⊆W −→ p ∈W ) ←→ (2 i p) ∈ V
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This states that a boxed formula 2 i p occurs in a world/MCS V exactly when p
occurs in all the worlds reachable from V with the canonical accessibility relation.
The equation is derived from the semantics, so the model lemma is trivial.

Lemma 8.30 (Hintikka model) Given the Hintikka equation, the for-
mula p is satisfied at V in the canonical model exactly when p ∈ V .

assumes
∧

(V :: ( ′i , ′p) fm set) p. V ∈ mcss =⇒
semics (canonical , V ) (rel H ) p ←→ p ∈ V

shows V ∈ mcss =⇒ (canonical , V ) |= p ←→ p ∈ V

Proof. By structural induction on the formula. �

Any maximal consistent set satisfies the Hintikka equation.

Lemma 8.31 (MCSs are Hintikka) Assume V is a maximal consistent
set. Then the Hintikka equation holds for V .

assumes V ∈ mcss
shows semics (canonical , V ) (rel H ) p ←→ rel H (canonical , V ) p

Proof. By cases on the formula p. Falsity, predicates and implication are as in
the proof of lemma 8.22 for sequent calculus. The modal case follows the proof
by Fagin et al. [2]. �

We easily obtain strong completeness.

Theorem 8.32 (System K is strongly complete) If p is valid un-
der assumptions X, then we can derive p from a list of formulas from X.

assumes ∀M :: ( ′i , ′p, ( ′i , ′p) fm set) model . ∀w ∈ W M .
(∀ q ∈ X . (M , w) |= q) −→ (M , w) |= p

shows ∃A. set A ⊆ X ∧ A `2 p

Proof. Analogous to the proof of theorem 8.20. �

8.5.6 Hybrid Logic

Table 8.14 gives the natural deduction proof system in the form of an inductive
predicate (- `@ - :: ( ′i , ′p) lbd list ⇒ ( ′i , ′p) lbd ⇒ bool) that tells us whether
a labelled formula can be derived from a list of (labelled) assumptions. This
system is inspired by Braüner’s calculus [7]. The trick in lemma 8.24 to prove all
the structural rules admissible from Weak, ImpI and ImpE applies here too, with
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some additional use of SatI and SatE to shift nominals between the metalogical
labels and the object logic.

The semantics is again based on Kripke models, but this time we implicitly use
the type ′w as the set of worlds, since the canonical model we build will be over
a full type, rather than a subtype:

datatype ( ′w , ′p) model =
Model (R: ′w ⇒ ′w set) (V : ′w ⇒ ′p ⇒ bool)

Formulas are evaluated in a context consisting of a model, an assignment which
maps nominals to worlds, and a world:

(M , g , w) |= ⊥ ←→ False
(M , g , w) |= ‡P ←→ V M w P
(M , g , w) |= ·i ←→ w = g i
(M , g , w) |= (p −→ q) ←→ (M , g , w) |= p −→ (M , g , w) |= q
(M , g , w) |= 3 p ←→ (∃ v ∈ R M w . (M , g , v) |= p)
(M , g , w) |= @i p ←→ (M , g , g i) |= p

For the modal operator, here 3, we no longer need to worry about reaching
worlds outside the model, since we use the full type ′w. Other than that, we
have two new cases compared to modal logic. A nominal i is true at a world w
when the assignment g maps i to w, that is, when i is naming the world we are
currently at. The satisfaction operator, @i shifts evaluation to the world named
by nominal i.

The semantics with a hole in it becomes the following:

semics (M , g , w) rel ⊥ ←→ False
semics (M , g , w) rel (‡P) ←→ V M w P
semics (M , g , w) rel (·i) ←→ w = g i
semics (M , g , w) rel (p −→ q) ←→ rel (M , g , w) p −→ rel (M , g , w) q
semics (M , g , w) rel (3 p) ←→ (∃ v ∈ R M w . rel (M , g , v) p)
semics (M , g , w) rel (@ i p) ←→ rel (M , g , g i) p

For the MCS-induced models, we need to give a type of worlds, a reachability
relation, a valuation and an assignment. We use representatives of equivalence
classes of nominals as worlds (i.e. simply nominals). This is justified by the Ref
and Nom rules which ensure that the following relation between nominals is an
equivalence when H is a maximal consistent set:

definition hequiv H i k ≡ (i , ·k) ∈ H
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Say that a formula p is derivable at a nominal i when (i, p) can be derived. Then,
for equivalent nominals i and k, any formula derivable at i is also derivable at k.

The canonical assignment needs to assign to each nominal its corresponding world
(also a nominal). It simply takes the smallest element of the set of equivalent
nominals and uses it as representative:

definition assign H i ≡ minim ( |UNIV | ) {k . hequiv H i k}
This definition is possible due to the axiom of choice, with which we can wellorder
any set and wellorders have minimum elements. Informally, I write [i] for the
representative of i’s equivalence class, with H being clear from the context.

Reachability is based on this assignment and the possibility operator:

definition reach H i ≡ {assign H k |k . (i , 3 (·k)) ∈ H }
From world i, we can reach all worlds [k] where (i,3k) ∈ H witnesses the
reachability.

The valuation is much simpler:

definition val H i P ≡ (i , ‡P) ∈ H

It is parameterized by the MCS H and simply says that proposition P holds at
world i when this is witnessed by H.

This time, canonical gives the full context to evaluate a formula under:

definition canonical H i ≡ (Model (reach H ) (val H ), assign H , assign H i)

We just need one more definition to write up the Hintikka equation:

definition rel H (-, -, i) p = ((i , p) ∈ H )

Once again, we cannot understand a formula out of context, so we pair it with
the current world, a nominal.

Since we only have one model per MCS, we can simplify the Hintikka equation:

semics (canonical H i) (rel H) p ←→ ([i], p) ∈ H

Let us once again look at the new cases and what the equation reduces to. For a
nominal k, we get that the equivalence classes should be the same, exactly when
this is witnessed by H.

[i] = [k]←→ ([i], k) ∈ H
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For 3 p, we get that it occurs at [i] in H, exactly when p can be found at some
nominal k reachable from [i]:

(∃k ∈ reach H [i]. (k, p) ∈ H)←→ ([i],3 p) ∈ H

Finally, @k p occurs at [i] in H, exactly when p occurs at [k] in H:

([k], p)←→ ([i],@k p) ∈ H

We reach the Hintikka model lemma.

Lemma 8.33 (Hintikka model) If H satisfies the Hintikka equation for
all nominals and formulas, then formula p is satisfied at i in the canonical model
exactly when ([i], p) ∈ H.

assumes
∧
i p. semics (canonical H i) (rel H ) p ←→ rel H (canonical H i) p

shows (canonical H i |= p) ←→ rel H (canonical H i) p

Proof. By structural induction on the formula. �

We now need to show that a maximal consistent saturated set satisfies the
Hintikka equation for all nominals and formulas.

Lemma 8.34 (MCSs are Hintikka) Assume H is a maximal consistent
saturated set. Then the Hintikka equation holds for H, for any i and p.

assumes consistent H and maximal H and saturated H
shows semics (canonical H i) (rel H ) p ←→ rel H (canonical H i) p

Proof. By cases on the formula p.

The nominal case holds since the relation is an equivalence relation.

For the diamond case, we prove both directions. I omit the formal marker · in
front of nominals. In the first direction, assume that there is a nominal k reachable
from [i] such that (k, p) ∈ H. By reachability, we must then have some k such
that ([i],3 k) ∈ H and ([k], p) ∈ H. By the nature of the equivalence classes,
we must directly have (k, p) ∈ H for that k. By the derivability theorem 8.16,
we must have some list of elements A from H, from which we can derive both
([i],3 k) and (k, p). By the DiaI rule, we can then derive ([i],3 p) from A. By
theorem 8.16 again, this proves that it is in H as desired. In the second direction,
assume that ([i],3 p) ∈ H. By saturation we must then have some k such that
([i],3 k) ∈ H and (k, p) ∈ H. This time, we use the nature of equivalence classes
to switch from (k, p) ∈ H to ([k], p) ∈ H. This now matches the definition of
reachability, so we have some k reachable from [i] with (k, p) ∈ H.
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For the satisfaction operator, we can directly notice that ([k], p) ∈ H if and only
if ([i],@k p) ∈ H from theorem 8.16, the SatI and SatE rules and the nature of
equivalence classes. �

Like for the first-order logic syntax, we notice that the cardinality of our universe
of formulas is bounded by the cardinalities of propositional and nominal symbols.

Theorem 8.35 (The HL calculus is strongly complete)

Assume p is valid under assumptions X, that the universe of nominals is infinite
and the cardinality of unused nominals in X is at least the sum of the cardinalities
of nominals and propositional symbols. Then we can derive (i, p) (for any i)
from a list of labelled formulas from X.

assumes ∀M :: ( ′i , ′p) model . ∀ g w .
(∀ (k , q) ∈ X . (M , g , g k) |= q) −→ (M , g , w) |= p

and infinite (UNIV :: ′i set)
and |UNIV :: ′i set | +c |UNIV :: ′p set | ≤o |UNIV − nominals X |

shows ∃A. set A ⊆ X ∧ A `@ (i , p)

Proof. Analogous to the proof of theorem 8.20. �

Again, weak completeness allows us to state the cardinality assumption in a
slightly neater fashion. The predicate valid p ≡ ∀ (M :: ( ′i , ′p) model) g w . (M ,
g , w) |= p simply abbreviates validity in the correct domain.

Corollary 8.36 (The HL calculus is complete)

If p is a valid formula, the universe of nominals is infinite and there are at least
as many nominals as propositional symbols, then we can derive (i, p) for any i.

assumes valid p
and infinite (UNIV :: ′i set)
and |UNIV :: ′p set | ≤o |UNIV :: ′i set |

shows [] `@ (i , p)

We can do away with the cardinality assumptions completely by using the same
type for nominals and propositional symbols. We just need it to be infinite.

Corollary 8.37 If p is valid and the universe of nominals / propositional
symbols is infinite, then we can derive (i, p) for any i.

fixes p :: ( ′i , ′i) fm
assumes valid p and infinite (UNIV :: ′i set)
shows [] `@ (i , p)
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8.6 Conclusion

We have seen how to build maximal consistent saturated sets for any logic that
satisfies a reasonable set of assumptions. Moreover, we have seen how to connect
MCSs with refutational and derivational proof systems, respectively, to obtain
useful lemmas about when formulas are absent from and present in MCSs. I have
instantiated the abstract framework with five different logics, demonstrating its
usability in practice. The Hintikka equation that I have provided guides the
completeness proof: if we know the canonical model, we automatically find out
what we need to prove about the MCSs to prove consistency.

Some future work remains. I would like to provide a similar solution to deriving
Hintikka sets for tableaux, for which they were first invented. Due to its
refutational nature, the manual Hintikka sets rely on downwards saturation
only and heavy use of object logic negation. Maybe there is a way to punch
a hole in the calculus, rather than the semantics, to obtain a useful Hintikka
equation. In a similar vein, I rely heavily on the structural rules, but Berghofer’s
formalization [6] of Fitting’s book [4] does not include any such rules for its
natural deduction system. It would be interesting to see if the examples above
can be similarly simplified, perhaps by refining the theorems about proof systems
and maximal consistent sets. Other than this, it seems obvious to prove the
completeness of more logics using the framework. I am not aware that anyone has
formalized a transfinite version of Lindenbaum’s lemma in Isabelle before. My
contribution enables us to formalize the completeness of logics with inherently
uncountable languages.
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