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Summary (English)
This dissertation is a collection of publications that researched the operation of district heating
networks. The district heating sector will contribute significantly to the future smart energy
integration of renewable energy into the power system due to its high efficiency and flexibility
in converting power into heat and its thermal energy storage properties. However, reaching
optimal district heating operation for both individual and overall energy systems (sector cou-
pling) involves many complex tasks, the solution of which is of great importance. One of them
is to operate the district heating network efficiently. This is done by keeping the supply tem-
perature as low as possible without violating any restrictions (e.g. maximum flow, variation of
supply temperature) while at the same time meeting the heat load. This results in lower produc-
tion costs and reduced heat losses in the network. Lowering the temperature in the network also
leads to better investment feasibility for power-to-heat units (e.g., heat pumps), low-temperature
geothermal wells, and recycling of waste heat. Without lowering the temperature, these sources
would result in lower efficiency or even be disregarded.

Hence, to enhance the operational efficiency of the district heating system, the network must be
operated in an optimal mode. Many district heating networks are operated by operators who use
their experience and ”scarce” data to select the set points for the supply temperature. This usu-
ally leads to suboptimal operation because the network characteristics are complex, and many
variables have to be taken into account, e.g. the future heat load and time delays in the net-
work. The objective of this thesis is to propose data-driven methods that can support operators
in decision-making. In particular, mathematical data-driven models will be developed based on
physical knowledge and designed for use in real-time applications to increase the efficiency of
operations.

Various studies have been carried out as part of the project to investigate state-of-the-art and
sub-sequentially propose new methods to highlight the importance of data-driven methods to
obtain optimal operation. For instance, heat load forecasting is crucial for overall district heat-
ing operations as it gives operators insight into future consumption. This gives operators the
essential information to support their decisions to minimise the costs of operating the district
heating system. The more accurate the forecasts, the better the operators can make their deci-
sions. This thesis discusses the essential features for building an accurate and robust heat load
forecasting model. It is shown that the localisation of the input variables and heat load has an
impact on the accuracy of the heat load forecast. In addition, new methods are presented to
increase the accuracy of the current operational forecasts. The proposed methods use and ex-
tend state-of-the-art methods for hierarchical forecasting. Both temporal and spatial hierarchies
of district heating are considered in order to investigate the possibilities for improving today’s
state-of-the-art operational forecast. It is shown that the proposed method can improve the ac-
curacy of current operational forecasts by about 15%. These methods will be indispensable in
future decentralised district heating systems as the suggested methods both increase accuracy
and make them coherent across the considered temporal and spatial aggregation levels.

Methods for temperature optimisation for the district heating network are presented and dis-
cussed. A set of controllers are used in the optimisation, supply temperature controllers and
flow controllers. The supply controller ensures that the temperature is sufficient at a set of se-
lected critical points of the network. These critical points are selected such that if the temperature
is sufficiently high at the critical points, then the temperature is sufficiently high everywhere.
The flow controller ensures that the flow restrictions in the system are not violated, and here
the time-varying electricity prices can be taken into account. Measurements at the critical point
are needed to serve as temperature feedback for the controller. Typically, measurement wells
are installed in areas near a group of end-users, but these measurements come with an associ-
ated cost, and the equipment needs to be maintained to ensure reliability and high precision, i.e.
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temperature sensors must be finely calibrated.

This work proposes that smart meter readings can replace these measurement wells to establish
the needed temperature feedback for the supply temperature controllers. Both simple and com-
plex methods are presented. The simple method is easy to understand and can be implemented
with little computational effort. On the other hand, the complex method is more robust but re-
quires more fine-tuning. The potential savings from implemented temperature optimisation are
discussed and demonstrated in a case study where the temperature is kept as low as possible.
Based on real-life implementations, it is demonstrated that the precision is increased. The use
of smart meters also leads to additional information about the district heating network since the
network of the individual users is also taken into account. It is argued that the suggestedmethods
give new possibilities for adaptive zonal temperature control, which could lead to further savings
on heat loss and better integration of heat pumps and the use of excess heat from supermarket
cooling, etc.

Finally, the potential of integrating the consumers’ heating system into the network operation
through the smart operation with predictive controllers that can, for example, receive signals
from the district heating system to influence its heating consumption (peak shaving) is discussed.

In summary, several new methods for data-driven optimization of district heating systems are
suggested. These methods can be integrated with existing methods and lead to further savings,
better energy efficiency and flexibility. The suggested methods range from simple to more com-
plex methods, but all of the methods are intended to improve online operations.
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Resumé (Danish)
Denne afhandling består af en samling af publikationer, der omhandler driften af fjernvarmenetværk.
Fjernvarmesektoren vil bidrage væsentligt til den fremtidige intelligente integration af vedvarende
energikilder i elsystemet på grund af dens høje effektivitet og fleksibilitet i forbindelse med om-
dannelse af strøm til varme og dens termiske energilagringsegenskaber. At opnå optimal fjern-
varmedrift for både individuelle og koblede energisystemer indebærer imidlertid mange kom-
plekse opgaver, hvis løsning er af stor betydning. En af dem er at drive fjernvarmenettet effek-
tivt. Dette gøres ved at holde fremløbstemperaturen så lav som muligt uden at overtræde nogen
begrænsninger, så som maksimalt flow og variationer i fremløbstemperaturen, samtidig med at
varmeefterspørgslen bliver opfyldt. Resultatet af dette er lavere produktionsomkostninger og
mindre varmetab i nettet. En lavere temperatur i nettet fører også til bedre investeringsmu-
ligheder for kraftvarmeenheder (f.eks. varmepumper), geotermiske brønde med lav temperatur
og genanvendelse af spildvarme. Uden en temperatursænkning ville disse kilder have en lavere
effektivitet eller slet ikke være rentable.

For at øge fjernvarmesystemets driftseffektivitet skal nettet derfor drives optimalt. Mange fjern-
varmenetværk drives af operatører, som bruger deres erfaring og ”sparsomme” data til at vælge
indstillingsværdierne for fremløbstemperaturen. Dette fører normalt til suboptimal drift, fordi
fjernvarmenetværk er komplekse, og der skal tages hensyn til mange variabler, f.eks. den frem-
tidige varmebelastning og tidsforsinkelser i nettet. Formålet med denne afhandling er at foreslå
datadrevne metoder, der kan støtte operatørerne i deres beslutningstagning. Der vil navnlig
blive udviklet matematiske datadrevne modeller baseret på fysisk viden og udviklet til brug i
realtidsanvendelser for at øge effektiviteten af driften.

Som led i projektet er der gennemført forskellige undersøgelser for at undersøge den nyeste
teknologi og efterfølgende foreslå nyemetoder for at fremhæve betydningen af datadrevnemetoder
for at opnå optimal drift. For eksempel er prognoser for varmebelastningen afgørende for den
samlede fjernvarmedrift, da de giver operatørerne indsigt i det fremtidige forbrug. Dette giver
operatørerne de nødvendige oplysninger til støtte for deres beslutninger om atminimere omkost-
ningerne ved driften af fjernvarmesystemet. Jo mere præcise prognoserne er, jo bedre kan oper-
atørerne træffe deres beslutninger. I denne afhandling diskuteres de væsentligste elementer til
opbygning af en præcis og robust prognosemodel for varmebelastning. Det påvises, at lokalis-
eringen af inputvariablerne og varmeefterspørgslen har betydning for nøjagtigheden af varme-
lastprognosen. Desuden præsenteres der nye metoder til at øge nøjagtigheden af de nuværende
operationelle prognoser. De foreslåede metoder anvender og udvider de nyeste metoder til hier-
arkiske prognoser, og der tages hensyn til både tidsmæssige og rumlige hierarkier for fjernvarme
for at undersøge mulighederne for at forbedre de nuværende operationelle prognoser. Det vises,
at den foreslåede metode kan forbedre nøjagtigheden af de nuværende driftsprognoser med ca.
15%. Disse metoder vil være uundværlige i fremtidige decentraliserede fjernvarmesystemer, da
de foreslåede metoder både øger nøjagtigheden og gør dem sammenhængende på tværs af de
betragtede tidsmæssige og rumlige aggregeringsniveauer.

Derudover det blive præsenteret og diskuteretmetoder til temperaturoptimering for fjernvarmenet-
tet. Der anvendes et sæt regulatorer i optimeringen, fremløbstemperaturregulatorer og flowregu-
latorer. Forsyningsregulatoren sikrer, at temperaturen er tilstrækkelig på et sæt udvalgte kritiske
punkter i nettet. Disse kritiske punkter er valgt således, at hvis temperaturen er tilstrækkelig
høj på de kritiske punkter, er temperaturen tilstrækkelig høj overalt. Strømregulatoren sikrer, at
strømningsrestriktionerne i systemet ikke overtrædes, og her kan der tages hensyn til de tidsvari-
erende elpriser. Målinger ved det kritiske punkt er nødvendige som temperaturfeedback til reg-
ulatoren. Typisk installeres der målebrønde i områder nær en gruppe slutbrugere, men disse
målinger er forbundet med omkostninger, og udstyret skal vedligeholdes for at sikre pålidelighed
og høj præcision, dvs. at temperaturfølerne skal være finkalibrerede.
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I dette arbejde foreslås det, at aflæsninger fra intelligente målere kan erstatte disse målebrønde
for at etablere den nødvendige temperaturfeedback til temperaturregulatorer for forsyningstem-
peraturen. Der præsenteres både enkle og komplekse metoder. Den enkle metode er let at
forstå og kan gennemføres med en lille beregningsindsats. På den anden side er den kom-
plekse metode mere robust, men kræver mere finjustering. De potentielle besparelser som følge
af den gennemførte temperaturoptimering diskuteres og demonstreres i en case-undersøgelse,
hvor temperaturen holdes så lav som muligt. På grundlag af virkelige implementeringer påvises
det, at præcisionen øges. Brugen af intelligente målere fører også til yderligere oplysninger om
fjernvarmenettet, da der også tages hensyn til nettet til de enkelte brugere. Det anføres, at de
foreslåede metoder giver nye muligheder for adaptiv zonetemperaturstyring, hvilket kan føre
til yderligere besparelser på varmetabet og bedre integration af varmepumper og udnyttelse af
overskudsvarme fra supermarkedskøling osv.

Endelig diskuteres potentialet i at integrere forbrugernes varmesystem i netdriften gennem intel-
ligent drift med forudsigelige styringer, der f.eks. kan modtage signaler fra fjernvarmesystemet
for at påvirke dets varmeforbrug til at yde for eksempel peak shaving.

Sammenfattende foreslås der flere nye metoder til datadrevet optimering af fjernvarmesystemer.
Disse metoder kan integreres med eksisterende metoder og føre til yderligere besparelser, bedre
energieffektivitet og fleksibilitet. De foreslåede metoder spænder fra enkle til mere komplekse
metoder, men alle metoderne har til formål at forbedre online-driften.
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1 Introduction
Methods for efficient and flexible operation of the energy sector are currently the focal point due
to increasing shares of renewable energy sources across all sectors. The increase in renewables is
expected to lead to sustainable energy production by enabling the phasing-out of fossil fuels and
other greenhouse gas-emitting energy sources as climate change becomes more threatening due
to fossil fuel energy production. However, the implementation of future weather-driven energy
systems poses a challenge for every sector in terms of how to make the switch due to its inter-
mittent nature, while a combustion plant driven by fossil fuels is a robust and steady method of
generating energy on demand. Thus, efficient implementation of weather-driven energy systems
calls for methods for unlocking flexibility everywhere in the energy system. Sector coupling and
energy storage solutions are key elements for the needed transition. The challenge is also not
identical when comparing the same sector between countries. It depends on the climate zone and
the portfolio of energy sources for the particular geographical location and its energy sector.

For example, heat demand in Iceland is mainly provided by geothermal heat sources [1]. In
contrast, heat generation in Denmark typically represents a more extensive portfolio of heat
sources to fulfil the heat load, e.g., biomass, natural gas, oil, solar thermal or power-to-heat units
[2]. Thus, district heating can either be operated with constant energy sources (e.g. geothermal
production) or with variable renewable energy sources that are not always available (e.g. solar
thermal) or are too expensive (heat pumps when electricity prices are high). Energy systems
could also produce energy using a mixture of constant and variable energy sources. However,
having variable energy sources, accurate methods must be applied to achieve optimal operation.
For example, sincemost renewable energy sources are only available irregularly, another problem
that needs to be solved in the transition of the energy sector to 100% renewable energy is how to
store energy in periods of time when renewable energy sources produce more than the demand
requires, i.e. when there is an energy surplus. For instance, in a country with a large installed
wind power capacity, high wind power generation at night becomes a problem when there is
low demand. There are several possibilities, e.g. it could be sold to another country, stored in
batteries, or used to produce heat for district heating, either with electric boilers or heat pumps.
This is a challenging problem, as a market player (the utility) has to evaluate which strategy is
optimal to satisfy consumer demand and reduce operating costs.

At the same time, district heating systems are increasingly becoming more decentralized due to
the newly available heat sources. For instance, industrial waste heat can be used either directly
or with the help of heat pumps to raise the temperature before being fed into the network [3].
Solar thermal plants are designed to supply part of the entire network or are stored in seasonal
TES systems [4]. Heat pumps are integrated into the network where they use an available heat
source, e.g. ambient water [5]. Therefore, district heating is becoming more decentralized by in-
tegrating more local heat sources into the network. Exploiting these potentials of district heating
can improve the overall efficiency of the smart energy system [6]. This can also incentivize the
establishment of multi-temperature zones within the network, where different areas are operated
with different supply temperatures with local heat units that can increase the supply tempera-
ture quickly by mixing. Areas with low-energy buildings can be operated with lower supply
temperatures, where the primary heat source could be, e.g. heat pumps.

High energy conversion and energy storage efficiency are desirable as society becomes more
reliant on electricity and requires flexibility due to the increasing share of intermittent energy
sources. It is often mentioned that district heating will be one of the most crucial elements
of future energy systems due to its high efficiency in converting other energies into heat and
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its ability to store energy in its thermal energy storages [7]. It is a collective system that can
efficiently supply heat from multiple heat units to many consumers in densely populated areas.
District heating usually has several different heat generating units in its portfolio and selects the
heat units to be used in order to keep production costs low depending on the future scenario,
i.e. production optimization [8]. The future district heating will have even more heat units
and more units that are driven by renewable sources. District heating systems offer a range
of possible storage solutions, including the possibility of having several thermal energy storage
(TES) systems in the network. Therefore, district heating can increase the flexibility of the overall
energy system by taking advantage of fluctuating renewable energy production by generating
heat with power-to-heat units when there is a surplus. Thus, when the heat demand is low,
electricity can be converted to heat and efficiently stored in TES and discharged later to reduce
peak load or electricity-based generation when the prices are high.

Hence, converting the surplus electric energy into heat is very attractive due to its high effi-
ciency, e.g., using heat pumps, which can then be used directly to meet the heat load or stored as
heat. Storing the surplus as heat in thermal energy storage systems is very effective, as it can be
stored for a few days or long-term in large storage tanks. Hence, district heating systems offer
opportunities for providing needed storage and flexibility to balance the fluctuating wind and
solar power generation, especially if the network is operated optimally [9]. Optimal decision-
making and operation of the district heating system are required to make this practical and as
effective as possible.

Therefore, future district heating systems will become a very complex process to achieve opti-
mal operation, increasing sector coupling and providing flexibility to the overall energy system.
The system will become decentralized with the new additional heat sources and TES. Different
supply temperatures will apply to different areas, depending on the ability of the areas to have
low temperatures and the heat source. Residential Buildings have different energy efficiency lev-
els and different dimensions, e.g. the radiators, and consequently different supply temperature
requirements than industrial and commercial areas, e.g. hospitals. Figure 2.2 shows this type
of system with a common heat production area connected to the different temperature zones
via a transmission network, using heat exchangers to transfer the heat to the local distribution
network. Each distribution line would have its local temperature levels zones, depending on the
needed supply temperatures. For example, areas with new houses are generally more energy
efficient. They therefore do not require as high temperatures as older, insufficiently insulated
dwellings. Primarily, new houses with floor heating can be supplied with sufficient heat even
with low supply temperatures.

District heating must be operated optimally to ensure that its flexibility potential is maximized,
and a decentralized district heating system with several temperature zones requires data-driven
methods for operation in order not to risk the main objective of district heating, namely to ensure
that consumer heat load is met at the lowest possible cost. Accurate data-driven methods are
necessary to support the district heating for making decisions or supporting the operations in
decision-making. Operators need accurate forecasts (demand, prices, production plans, etc.) to
take the optimal path for the operation. Therefore, the data and methods used in operations
must be accurate and robust to achieve optimal operations. State-of-the-art methods must be
challenged constantly, and new data-driven methods must be studied when, e.g., new sensors
or data become available. However, it is also important to present the current district heating
operation to establish a baseline, share knowledge and discuss the advantages and disadvantages.

This thesis presents novel data-driven methods to increase the efficiency and flexibility of the
operation of district heating networks. Additional data on district heating from the digitalization
transformation are presented, e.g., measurements from smart meters. It is shown how these can
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be used to increase the efficiency of district heating operations. The focus will be on heat load
forecasting and temperature optimization of the network. Both forecasting and temperature
optimization are essential to improve network operation and exploit the flexibility potential.
For instance, the efficiency of heat pump operation can be increased by lowering the supply
temperature of the network using data-driven temperature optimization.

1.1 ResearchQuestions
There are two main research questions (RQ) that form the basis of this PhD thesis:

RQ1: How can the current state-of-the-art heat load forecast be improved?

(a) What are the potential accuracy improvements of using temporal hierarchy for heat
load forecast by using forecast information at different resolutions?

(b) What are the potential accuracy improvements of using spatial hierarchy for heat
load forecast by using aggregated forecast information at different areas?

RQ2: Can the data from the digitisation of district heating systems be used to improve the oper-
ation?

(a) Can data-driven methods be developed that use measurements from smart meters at
the consumer level to reliably estimate network temperature such that it can be used
in temperature control?

(b) What are the potential savings to current network operations from using data-driven
temperature optimisation to control the supply temperature?

(c) What are the benefits of developing data-driven methods to describe thermal dy-
namics in buildings in a form that can be used for predictive control of the heating
system?

(d) Are local climate stations beneficial for district heating operations?

RQ1, aims to investigate how to improve the state-of-the-art operational heat load forecasts. Im-
proving the accuracy of heat load forecasting is highly desirable in order to be able to increase the
utility’s operational efficiency. Forecast hierarchies were investigated to see if accuracy could
be improved by using temporal or spatial hierarchies. First, additional heat load forecasts had to
be made at new temporal or spatial aggregation levels. A grey box method is proposed to build
a heat load forecasting model using physical knowledge of the system to improve model perfor-
mance. Forecast hierarchies are proposed to improve operational heat load forecasts, which has
the added benefit of imposing coherent constraints on the forecasts on various aggregation levels.
For example, with temporal hierarchies, the short-term (half-hourly, hourly, etc.) and long-term
(day, week, etc.) forecasts are coherent, facilitating improved decision-making for, e.g. energy
production planning. For spatial hierarchies, the forecasts are coherent for the total and the sub-
areas consumption, which improves decision-making in terms of production and temperature
optimisation. Paper I describes an R package that produces online forecasts using recursive and
adaptive methods, emphasising grey-box methods. Paper A proposes a new method for provid-
ing adaptive temporal hierarchies, and it is demonstrated that the adaptivity leads to significant
improvements for heat load forecasts. Paper J explores the benefits of using spatial hierarchies
and demonstrates significant accuracy improvements. Also, adding a new aggregation level to
the hierarchy further improves accuracy and optimises the forgetting factor for each forecast
horizon.

RQ2 aims to explore the possibilities arising from the digitalization of the district heating sector,
e.g. smart meters installed at consumers’ premises. Also, the frequently available data that is not
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heat-related can be useful for operations. For instance, information from local climate stations
is often available at several locations in urban areas. This information is precious to utilities as
heat consumption follows the local temporal and spatial variations of the weather. Therefore, it
has to be investigated how additional data to the standard data available (e.g. SCADA measure-
ments) can be used to improve district heating operations. The potential savings from having
data-driven temperature optimisation is also discussed and demonstrated in an online demo case
by comparing it to a traditional temperature optimisation that is purely physically simulated
driven. In Paper G, a case study is presented that investigates whether new additional data, mea-
surements from smart meters and local climate stations, can be used to improve the operation
of the network. Paper B and Paper C present novel methods for estimating network tempera-
ture using measurements from a set of smart meters. It is concluded that the estimated network
temperature can be used, e.g., for temperature feedback for network temperature optimisation.
Paper H suggests and demonstrates improvements for the heat load forecasting model accuracy
by localising the weather forecast (the models’ inputs) using climate station measurements. Pa-
per D and Paper E propose novel methods for modelling the thermal dynamics of a building and
using the model for predictive control of the building’s heating system.

1.2 Overview
The thesis is structured in two parts. First, Part I introduces and summarises the s embedded in
the thesis. Within this part, Chapter 2 introduces the state-of-the-art operation of district heating
and explains which factors are essential for an efficient operation of a district heating network.
In the next two chapters, the two main topics of this thesis are introduced and discussed with
a focus on the outlined research questions. 1) Chapter 3 presents heat load forecasting and the
suggested methods to improve today’s state-of-the-art forecasts, 2) Chapter 4 gives an overview
of data-driven temperature optimisation and presents how new additional data in district heating
can improve the optimisation. Finally, Chapter 5 concludes Part I by discussing and summarising
the results of this thesis. It also presents further research that is in line with the results.

Part II contains a collection of the articles included in this thesis.
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2 Background
This chapter is intended to introduce the district heating system by explaining the technical as-
pects of the system. It will also present some of the challenges and opportunities of the system.
The overview of the district heating system will be described from a Danish perspective, as dis-
trict heating systems are different in different countries; it can be said that each district heating
system is unique. This is due to the system characteristics, e.g. the heat units used, the pricing
scheme, the characteristics of renewable generation (wind, solar, hydro, geothermal, etc.), and
the social component, e.g. how the heat is consumed. However, the methods presented in this
thesis are generalisable and should be suitable for any district heating system with minor adjust-
ments to the local environment. Past, present and future district heating systems are discussed
to provide a basis for the papers presented in this thesis and to demonstrate the importance of
data-driven methods for district heating. First, the general district heating operation is presented
in Section 2.1. Then, in Section 2.2, weather in cities is presented as it is the driving factor for
heat consumption. Digitalisation in the district heating sector is introduced in Section 2.3, and it
is explained why it will play an essential role in future district heating systems. Finally, Section
2.4 presents the future of the district heating system, and it is argued why data-driven methods
will be a prerequisite for an efficient operation.

2.1 District Heating
The concept of district heating is to establish a centralised system for the efficient production
and distribution of heat. District heating is made up of three main components, heat generation
units (production), network of pipes (distribution), and consumers (consumption), as shown in
Figure 2.1. This is the basis of district heating; this is how it was developed and how it is still
operated today. The primary purpose is to deliver heat conveniently, efficiently, and safely to
consumers. However, how heat is produced, delivered and consumed has changed over time
and will continue to evolve to make operations more efficient and with the transition to more
weather-driven energy production. District heating systems can become more efficient by either
improving the currently available methods for using data (identifying problems, e.g. leaks) and
using data-driven methods (e.g. temperature optimisation) or by updating their hardware by
replacing old heating units with more efficient units, replacing old pipes (reducing heat losses)
or adding new technologies to the system (e.g. heat pumps and storage solutions).

Figure 2.1: Traditional district heating system with central production, network and consumers.

District heating has undergone various generational phases in which operational efficiency has
improved, as described in Lund et al. [6]. The first generation of district heating distributed heat
in the form of steam generated by fossil fuels, primarily coal. This resulted in a system with low
efficiency and high heat losses in the network, as the steam temperature was usually very high
(up to 200℃). The second generation moved away from steam and towards pressurised hot water
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with a temperature of about 100℃ (usually higher). In the third generation, the hot water tem-
perature was lowered, usually to below 100℃. In addition, different heat units were introduced
between generations by adding waste, biomass and solar thermal plants to the portfolio of fossil
fuel plants. The 2nd generation also introduced combined heat and power (CHP) plants, which
produce electricity and heat simultaneously. The residual steam from the electricity turbines
that produce electricity is used to heat the water in the district heating network. These plants
are also called cogeneration plants. During the 3rd generation, the CHP plants moved from oil
due to the energy crisis (high oil price) to cheaper fuel, e.g. coal or biomass. So the general
trend between generations is to lower distribution temperatures, improve generation flexibility,
improve materials and expand the portfolio of heat units.

The fourth and current generation aims to keep the supply temperature below 70℃ and to contin-
uously improve the pipe properties and the design of the supply and return pipes in the network
to achieve higher efficiency. Buildings also need to make a greater contribution by increasing
their energy efficiency through better-insulated envelopes and new methods of heating build-
ings, such as floor heating that can maintain thermal comfort with a lower supply temperature
level than conventional radiators. Reducing the heating load for the individual buildings also
makes it possible to have lower temperatures in the system. In addition, the term smart is of-
ten associated with the fourth generation as it focuses on operating the system intelligently,
using data and data-driven methods to improve operations. For instance, Nielsen and Madsen
[10] identifies a model that describes the heat consumption dynamics based on consumption
measurements, which can be extended into a forecasting model to predict the heat load. It also
drives the integration of different energy sectors so that they work together, i.e. smart energy
systems by integrating electricity, gas and heat grids to achieve optimal operation for the indi-
vidual and the overall system [6]. Moreover, energy systems are coupled with integrating heat
with electricity supply, i.e. CHP plants or heat generation with heat, e.g. heat pumps. This type
of sector coupling is becoming increasingly important. It will play an important role in providing
flexibility in power consumption for balancing large fractions of wind and solar power. Future
energy systems will have a high share of renewable energy systems (RES) to produce energy.
The overall energy system needs to focus on flexibility to maximise the potential of intermittent
energy sources, for instance, as described in Dominković et al. [11] where electricity and district
heating networks are coupled to increase savings by utilising the flexibility of hot water storage
in the network. Also increase flexibility and efficiency with a combination of residual resources,
e.g. waste and biomass. Therefore, intelligent decision-making in system operation is required,
considering several signals before making an optimal decision, e.g. a combination of historical
measurements, weather forecasts, price signals and future load on the system to achieve optimal
operation.

Regardless of their generation, district heating systems are usually physically large and complex
to operate. However, it can be argued that the latest generation is even more complex to operate
due to the coupling of the sector with other energy sectors. The operation is driven by the heat
consumption of the consumers, which is momentarily and can change quite abruptly. The system
is physically large as many kilometers of pipes are used to transport hot water to consumers to
satisfy the load. For instance, the total length of the district heating system in Lund, Sweden, is
around 2000 km. Transporting heat to consumers is a complicated process as two variables are
regulated to fulfil the heat load: the supply temperature and the flow rate (assuming the return
temperature is constant). Changes in flow (and pressure) in the network are 1000 times faster
than changes in temperature, but there is a limit to the maximum flow in the system. If the flow
is above the maximum for too long, the consumers at the end of the network will not receive
enough heat. Therefore, the time τ it takes to send one unit of hot water from point A to point
B must be known so that the hot water arrives with sufficient temperatures before the flow limit
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is reached. Therefore, due to the time delays, the expected future heat load at time t+ τ governs
the operation at time t. Accurate prediction of heat load facilitates the operation. However,
production optimisation must then be done to select which heat units should be used to produce
the heat to minimise production costs. Also, the operation of the pumps (adjusting the flow)
needs to be considered during periods of extremely high electricity prices. Hence, electric price
forecasts and bidding strategies are also required, e.g. considering the time-varying costs for the
pumps and if the district heating also produces electricity.

Thus, several complex decisions have to be made to find an optimal strategy to meet the heat load
at the lowest possible cost. This must be done without violating the requirements or technical
constraints of the system. Due to the system’s complexity, the three main systems (production,
network and consumers) are presented separately in the following section. However, it is impor-
tant to realise that the performance of each component affects the other components, and the
others constrain each component. Consequently, if you improve one component without vio-
lating a constraint, another component will also benefit. For instance, if the supply temperature
in the network is lowered, the amount of heat that needs to be generated in production will be
reduced due to the reduced heat loss in the network. Therefore, it will also reduce the heating
cost for the consumer.

2.1.1 Heat Production Operation
Heat production generates heat, which is then delivered to consumers using the hot water in the
network. The heat can be generated with several different heat units, which can be centralised
or decentralised across the network. For instance, CHP plants, solar thermal plants, peak load
boilers, power-to-heat (e.g. heat pumps) or industrial waste heat can be used to generate heat.
The combustion-driven heat units can use different fuels as input, e.g. coal, natural gas and
wood chips. Cogeneration of electricity and heat leads to high efficiency because the steam from
combustion that powers the turbine drives the generator producing electricity, which must then
be condensed before it is reused in the cycle. The return water in the district heating network can
therefore be used as a coolant in the condensation and reheated. As a result, the efficiency of the
CHP plant can be very high (> 90%). In contrast, the combustion process without heat generation
for pure electricity generation would be about 40% for coal-fired power plants and about 60% for
gas-fired combined cycle power plants. However, there are some limitations for CHP plants, e.g.
the supply temperature can reduce electricity generation if it needs to be high. If the return
temperature is too high, the condensation process is less efficient [12]. As society becomes more
and more electricity-dependent, district heating production needs to follow the unbalance in
electricity generation and load due to the shares of RES so that the electricity system can take
advantage of the flexibility of district heating, the ability to store heat and the high efficiency
of converting electricity into heat. Therefore, district heating production needs to consider both
electricity and heat load profiles, which are somewhat similar. The diurnal profile of heat load
is usually low at night, with a peak in the morning and then again in the evening. At the same
time, the electricity load is also low at night, rises to some level in the morning and usually stays
there over the day, then peaks in the evening.

Optimisation of district heating production is necessary to minimise production costs while
meeting the desired heat load and maximising flexibility potential [2]. It consists in selecting
the different heating units that need to be activated to fulfil the load at a given time. There may
also be TES systems that can be charged and discharged to the network. Therefore, several factors
influence the production costs, e.g. the cost per unit of energy for each heating unit, the price of
electricity, the bidding strategy for electricity generation and the heat load. The future weather
forecast and its uncertainty are crucial factors that need to be taken into account, as it affects all
the previously mentioned factors. System-related constraints must also be taken into account,
e.g. the desired supply temperature, which limits electricity generation. The planning horizon
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is also important for bidding on the electricity markets (day-ahead and balancing market) and
the long time span of start/stop planning of heating units. In addition, due to the time lag in
the system, heat production has to take place several hours in advance (in some large systems,
even for days) to meet the load at a later point in time. Accurate heat load forecasts and a good
understanding of the forecast’s uncertainty will improve production optimisation [13].

Furthermore, the power production from CHP plants can be traded on the electricity markets,
which can generate additional revenue and thus reduce overall costs. However, they also have
to buy electricity for their power-to-heat plants on the market. Clearly, production optimisa-
tion is a complex process that will increase in complexity and uncertainty with a larger share of
RES plants, power-to-heat and bidding on the electricity markets. In short, production optimi-
sation is about identifying a cost function for operating a district heating system and choosing a
strategy to meet the heat load of consumers while minimising costs. A further and more detailed
introduction to production optimisation for district heating can be found in Guericke, Schledorn,
and Madsen [2] and Blanco [14]. Also, the complexity of electricity price forecasting due to the
volatility of RES can be found in Jónsson et al. [15].

2.1.2 Network Operation
A district heating network consists of a mixture of pipelines with different pipes and pumps that
transfer the water through the pipes. These pipes consist of two main loops, the supply and the
return water loop, which supply hot water to the consumer and return it after the heat has been
transferred over to the substations. These loops are usually laid at a depth of about one meter
underground. The depth and total length of the network depend on the system, but they are
generally very long, hundreds to thousands of kilometres. The pipes are usually made of steel.
However, for a network with very low temperatures, it has been suggested to use pipes made
of plastic [16]. The network pipes are pre-insulated to minimise heat loss in the network, but
there will always be some heat loss. However, with an intelligent operation, this can be kept to
a minimum.

Because of the enormous length of the network, heat loss is an essential factor in operating the
network. A rule of thumb states that heat loss is at least 5% of the total heat load, and more
often, it is between 10% and 20%, depending on the system and operation. The heat loss is highly
dependent on the supply temperature and is proportional to the difference between the water
temperature to the surrounding ground temperature. So the higher the supply temperature,
the higher the heat loss. The heat loss also depends on the condition of the pipes (e.g. age,
insulation, etc.) and the surrounding soil (humidity and temperature). Keeping the heat loss low,
the supply temperature must be kept as low as possible while varying the flow to fulfil the heat
load. However, there are limitations to how low the temperature can be due to e.g. temperature
restrictions and the risk of legionella. Also, lowering the temperature results in a higher flow, and
the system has a maximum flow limit based on the pressure limit of the hydraulics. In practice,
the maximum flow limit also depends on the pumping costs. There is also a risk of cavitation in
pumps and substations. Reducing heat losses is very important for the operation of the district
heating network, as it reduces the amount of fuel required. Also, for CHP plants, lowering the
supply temperature results in an increase in the ratio of power to heat output, and electricity is
more valuable than heat [12]. This improves the economic and environmental operation of the
district heating network.

Network operators usually only adjust the supply temperature in the network, while the flow
rate and return temperature depend on the consumer operation, the load and the operation of
their heating system. While the supply temperature is adjusted, the flow through the substations
is regulated to fulfil the load. The return temperature depends on the ability of the substations
to cool down the hot water. District heating networks are usually designed to maintain a fixed
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differential pressure in the network, which the pumps try to maintain by varying the flow. Due
to physical limitations, changing the supply temperature at one point in the network also takes
time (time delay). If the supply temperature is set too low, this can cause damage to the pumps
and substations if they are operated at high flow for a long time. The time delay is therefore an
important variable for the network operators. Furthermore, the time delay is also time-varying,
as it depends on the flow in the system. These factors, time delay, heat loss and pressure (also
friction losses, but these are usually negligible) affect the two main components used to meet the
heat load, temperature and flow.

A district heating network operation requires an advanced method that uses physical knowledge
to optimise the supply temperature to minimise costs while providing sufficient temperature to
consumers. This must consider the system’s physical nature (network characteristics), measure-
ments of the network (temperature feedback) and future heat loads to find optimal future set
points for the network temperature. A good understanding of the physical limitations of the
network and the characteristics of the buildings to which the network supplies heat. Then, mea-
surements can be used to estimate all the non-linear relationships between all the variables, e.g.
the time delay varies with the change in flow, and the time delay affects the heat loss, or the longer
it takes to transport the water, the higher the temperature loss will be. The ability to operate the
network with high precision and thus keep the temperature low and not have a too high strain
on the network without violating any requirements has significant advantages for the utility. In
the future, district heating will be strongly integrated into smart energy systems and introduce
a higher proportion of RES units, which usually have higher operating efficiency at lower tem-
peratures in the network. The introduction of more power-to-heat and solar thermal units into
the system, together with TES, will increase the complexity of temperature optimisation of the
network as these units will operate in a more decentralised way in the future, e.g. district heating
network with multi-temperature zones. A hierarchy of controllers will be required to perform
adequate temperature optimisation of the network.

2.1.3 Consumer Operation
The consumer operation consists of a substation located at the consumer and transferring heat
from the primary side (district heating) to the secondary side (building) to maintain thermal
comfort (indoor air temperature) and deliver domestic hot water. There are usually two heat
exchangers at each substation, one for space heating and one for domestic hot water. A hot water
tank can also be installed at the consumer. Depending on the situation, the consumer may need
to maintain both the house’s substation and water-based heating system, e.g. pipes, radiators,
floor heating, etc. From a district heating point of view, an adequate substation cools down the
hot water to an acceptable level before returning it to the network. An adequate substation for
the consumer maintains the indoor air temperature within the thermal comfort level and the
constant temperature of the domestic hot water consumption and is reliable and inexpensive.

The consumer’s heat load consists of space heating and domestic hot water, while district heating
is the consumer’s total heat load plus the system’s heat loss. A significant part of the heat load
originates from space heating to maintain thermal comfort. The heat load varies over the day
(diurnal profile), the week (weekly profile) and the year (annual profile), creating a complex time-
varying process. This time-varying behaviour coincides with the climate and social consumption
behaviour in the place where the district heating is applied. The ambient air temperature is the
most significant climate variable that drives the heat load. Heat is used tomaintain certain indoor
air temperatureswhen the ambient air temperature is low to compensate for heat loss through the
building envelope. This is referred to as physical heat dependency. The social component drives
the heat peaks in the diurnal profile and the different profiles between days (e.g. the difference
between weekdays and weekends). Social heat consumption is driven by the area’s cultural
behaviour, for instance, showering before work at certain hours (hot tap water consumption)
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and the perspective of thermal comfort.

A well-calibrated substation satisfies the consumer’s heat load and cools the hot water on the
district heating side to the accepted temperature. The lower the return temperature, the better
the network will perform, e.g. by decreasing the heat loss and reducing the necessary flow for
satisfying the consumer heat load. This makes it feasible to reduce the supply temperature in
the network. The typical operation of substations consists of pumping the hot water through
the heating system to maintain thermal comfort based on the radiator thermostat setting. In this
way, the space heating is cut off when it is not needed. Sometimes a schedule management tool is
also installed in the substation to use different setpoints for different periods, e.g. a night setback
schedule. The night setback lowers the setpoints of the heating system during the night, as it is
assumed that this will not affect thermal comfort during sleep. This results in energy savings for
the buildings and lower consumer heating costs. However, this can increase the heat load during
peak hours, as more heating is needed when people wake up to achieve normal thermal comfort
[12]. In addition, buildings today are better insulated, which leads to higher time constants.
Therefore, the indoor air temperature does not drop as quickly, so less heating is needed during
the night.

Future district heating systems require buildings to become more low energy driven by con-
structing new energy-efficient buildings or renovating them (e.g. through better insulation) to
ensure optimal operation of the low-temperature networks. Then less heat is needed to main-
tain thermal comfort, and the supply temperature can be lowered so that other heat units, such
as heat pumps, can better be used. Also, intelligent control that uses data and advanced pre-
dictive methods are becoming more popular as awareness of inadequate and inefficient heating
operations in buildings grows. In addition, more measurements are available (and cheaper), e.g.
indoor air temperature, CO2 and humidity, which can be used to improve heating operations.
There is always a meter in the substations to track energy consumption, which is used for billing
the consumer for heating consumption. The heat consumption is calculated based on the sub-
station’s temperatures and flow measurements on the district heating side. Other sensors can
be attached to the building’s heating system, radiators and indoor climate to measure important
variables and optimise the heating system with various cost functions, e.g. to maintain thermal
comfort or reduce heating costs. There may also be some motivating tariffs from district heating,
e.g. bonuses or penalties based on the return temperature. In the future, time-variable prices for
district heating may also become common, like in the electricity and gas sectors.

2.2 Weather in Cities
The operation of the district heating system is highly dependent on the climate in which the con-
sumer is located. Therefore, the climate’s effects on the consumers’ heat consumption must be
analysed and understood to achieve optimal operation. In particular, the ambient air temperature
is the most important single factor determining heat consumption. Most of the heat consump-
tion is used to maintain the indoor air temperature within the thermal comfort of the building.
However, many different aspects affect the influence of climate on heat consumption in different
areas, cities, countries and continents, such as building infrastructure and social behaviour - or,
as mentioned before, Physical and Social heat load.

Nielsen and Madsen [10] identify which and how climate variables can be used to model heat
consumption in a district heating system. Three climate variables are proposed for use, Ambient
Air Temperature, Solar Radiation and Wind Speed. A detailed physical description of how these
climate variables influence heat consumption based on physical and steady-state considerations
is proposed. The physical relationship between maintaining thermal comfort and heat transfer
in buildings through walls, windows and ventilation is described. A physical derivation model is
proposed and then translated into a model that can be identified with the available measurements
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since the model must be structurally identified and estimated to be of any use. Nielsen and
Madsen [10] propose to use a rational transfer function to estimate the effect of climate on indoor
air temperature as filters. The instantaneous effect of climate values is also important. Themodel
and the proposed method for building an online heating load prediction model are shown to
perform adequately. Therefore, an important step in building a model that accurately captures
heat consumption is to identify which climate variables affect heat consumption and how they
affect it. It is important to recognise what drives the consumption for each district heating system
as it can vary between systems, especially between countries with different climates.

A detailed understanding of the impact of climate on heat consumption at the district heating
plant site is therefore essential for optimal operation. This knowledge can then be used to create
a heat load forecast model that is used as input for all operations, e.g. temperature control and
production planning. The temperature optimisation of the network is also strongly influenced
by the climate. However, to be able to forecast the future heat load, future values of the climate
variables are needed as inputs.

Therefore, a weather forecast of the essential climate variables is required, and the correlation
between the weather forecast and the heat consumption must be taken into account when build-
ing forecast models. Numerical Weather Prediction (NWP) is used to forecast the weather by
simulating physically based partial differential equations of atmospheric processes [17]. How-
ever, weather forecast models are usually tuned to rural areas and not urban areas where district
heating is used. The difference between the climate in rural and urban areas is considerable.
Research shows that the ambient air temperature in urban areas is usually higher than in rural
areas [18]. This effect is termed urban heat island (UHI). A UHI is an urban area that is warmer
than the surrounding rural areas due to human activities or human building infrastructure. In
most cases, the NWP does not represent the UHI effect and thus the weather within cities, so
a systematic bias between the NWP and the local weather stations is often observed [19]. It
would therefore be beneficial to localise the weather forecast to remove bias and thus reduce the
forecast uncertainty of weather forecasts for DH applications.

2.3 Digitalization in District Heating
Almost all industries have or are going through a transition where sensors are installed at key
locations where measurements are required. The district heating sector is also going through
this transition, where more and more data is becoming available from places that were not avail-
able before. For instance, heating-related measurements at the consumers and the city climate
are measured through smart meters and local climate stations. Previous generations of heating
meters were usually only used to measure energy consumption in order to bill the consumer.
However, the European Union started to require that houses which are connected to a district
heating network are equipped with smart meter devices where feasible [20]. Smart meters are
IoT sensors that regularly send data back to a centralized database. In district heating, measure-
ments from these smart meters are still used to generate bills based on consumers’ consumption.
However, these measurements are now available more frequently and often in near real-time,
and in addition, the consumers also have the possibility to view them.

It has taken some time for the district heating sector to reap the benefits of frequent measure-
ments, but recently these measurements have become attractive to research and industry. New
generation measuring devices have proven helpful in identifying leaks with high precision of the
leakage location [21, 22]. Fast and accurate leak detection in district heating can save the utility a
lot of money and time. Intelligent control of building heating systems also needs these readings
to determine optimal setpoints to minimise the cost function based on user requirements, such
as reducing energy consumption or lowering the return temperature.
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Weather measurements and forecasts are also part of this digitalization and are very important
for the operation of district heating. More and more local climate stations are being installed
as these measurements are becoming increasingly important for several different sectors. For
instance, the local climate stations can be used to determine the uncertainty of the NWP (i.e. the
reliability of the forecast for the area), which can be used in the heat load forecasts to improve the
uncertainty of these forecasts for decision-making in temperature and production optimisation.
In addition, more detailed information on the local climate will increase the knowledge of how
heat consumption is related to climate. This can improve district heating operations by using
this knowledge, e.g. as a more accurate input for heat load forecasting models.

IoT sensors are attractive to all sectors, especially the renewable energy sector. These sensors and
measurements have the potential to improve operational efficiency and thus reduce operating
costs. However, big data can be a burden for companies, handling large amounts of data and
extracting valuable information from the data. Therefore, it is now important to derive useful
information from these measurements to improve operations and thus reduce costs. Data-driven
methods can benefit from these measurements to enrich them with additional information that
makes them robust or even enables the use of data-driven methods.

2.4 Future District Heating Systems & Data-Driven Methods

TES

Heat Exchanger

Waste HeatWaste Heat

Solar Thermal

Figure 2.2: Decentralised district heating system with local heat units and TES for each area
along with one main production site. Here multi-temperature zones could be used by optimising
the heat exchangers with different supply temperatures.

District heating is an essential component of current and future smart energy systems due to
its unique ability to store heat using thermal energy storage (TES) systems. It also has high
efficiency in converting electricity into heat, e.g. using heat pumps (power-to-heat). Therefore,
district heating has a high potential to make the energy system more flexible. However, the
higher the temperature of the hot water in the system, the lower the efficiency, as is the case with
heat pumps [5], TES [7], and CHP plants [12]. Thus, operating the district heating network with
low hot water temperatures to fulfil the heat load of the consumers has significant advantages
for the district heating utility and the overall energy system, as district heating maximises its
flexibility potential. Also, as more data is available than ever in the district heating sector, the
new data could have the potential to increase operational efficiency. Data has the unique ability
to improve operations as it provides the ability to measure performance and react to changes.
More importantly, it provides the ability to understand the system’s dynamics to build models
that predict the future andmake intelligent decisions based on this knowledge. As district heating
systems become an important player in the transition to the future energy system driven by
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renewable energy, it is important that operational efficiency is also improved for the existing
systems, opposite to purely focusing only on the new district heating systems. For instance,
installing heat pumps in a current high-temperature district heating systemwould lead to a lower
operational performance due to inefficient temperature optimisation.

Traditional district heating systems, as discussed in Section 2.1, are operated in a conservative
manner without attempting to use new methods to improve efficiency. District heating is also
becoming more data-rich as more IoT sensors are installed, e.g. smart meters and local climate
stations. This makes it possible to use data-driven methods to enhance their operation in terms
of delivering the heat load at minimal cost, thereby increasing savings. It can also improve the
efficiency of operations in other energy sectors. District heating systems are changing from a
traditional system with centralised operation and large production units to a system with still
large production units but also new additional heat sources and thermal storage, i.e. a more
decentralised system. Hence, moving from the system shown in Figure 2.1 to an example of
a decentralised system with several areas and heat sources (with thermal storage) as shown in
Figure 2.2. The decentralised system can have multiple temperature zones, as it can be divided
into low-energy buildings, old buildings with insufficient thermal insulation or industries with a
high heat load. Within these areas, different heat sources can be used to satisfy the heat demand
- with the help of thermal energy storage. Also, with the mixing of temperature, the supply
temperature can be increased rather fast by using e.g. residual heat from supermarkets compared
to raising the temperature at the plant due to the time delay. Large production plants, such
as CHP plants, can still be beneficial for the system to improve sector coupling by producing
electricity when prices are profitable at low RES periods, as highlighted in David et al. [5], and
using power-to-heat technologies at high RES production when electricity prices are low.

In summary, the operation of the district heating system is complex and consequently calls for
data-driven methods as energy operators of district heating have the difficult task of finding
the optimal strategy for the utility. First, the operational production planning of the system
has to be optimised. Decision-making is complex as several things need to be considered, e.g.
which heat units to produce the heat, operate the network, act on the electricity market, etc.
In addition, the systems often contain TES that need a plan for when to charge and discharge.
Hence, optimising production becomes a highly complex problem to solve. Secondly, the network
must be efficient to improve production operations by keeping the temperature stable and as
low as possible by using data-driven temperature optimisation. The district heating sector is
becoming more decentralised with more heat units in the network and waste heat from industry,
increasing temperature optimisation complexity. Thirdly, the heat consumption behaviour of
consumers is also changing as there are more incentives to keep heat consumption low and to
operate their substations optimally. Efficient operation of the consumer’s heating system has
become easier due to new technologies (efficient thermostats, availability of data) and greater
awareness among people to operate the heating system sufficiently.

This complexity of operating a district heating system shows thatmore advanced tools are needed
to help operators meet heating needs while minimising costs. While district heating is becom-
ing more complex, more data is available to support decision-making for each operation. At
the same time, advanced methods and a better understanding of them and the system can make
decisions more accurate. However, the rapid changes in the district heating industry can be a
burden for a utility. There is a need to build robust and precise production optimisation, tem-
perature optimisation and efficient substation operation for the consumers. This thesis focuses
on heat load forecasting and temperature optimisation and how new data sources can be used to
improve district heating operations using data-driven methods. Accurate heat load forecasts are
essential for all operations as input for the three main components of district heating in order
to optimise their operation. Temperature optimisation is required to increase production opti-
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misation’s flexibility and ensure that consumers receive the desired heat without violating any
constraints.
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3 Heat load Forecast

Forecasts for the district heating sector are essential to achieve optimal operation of the system.
As the district heating operation will become essential in providing flexibility for future energy
systems, an optimal operation must be achieved to maximise its potential. Forecasts of the heat
load are therefore necessary to enhance the decision-making for district heating systems. It
prepares the operation for the expected load, and the more accurate they are, the better decisions
are made. For instance, temperature optimisation needs a heat load forecast at time t for the
future time to select optimal temperatures that will reach the consumers at time t+ τ as it takes
time to transport the hot water. Hence, the physical nature of the system requires an accurate
expectation of the future such that the system operates efficiently.

Traditional district heating systems are usually operated with only one central production area
with multiple heat units, e.g. CHP plant and solar thermal plant, also perhaps one or two peak
boilers in the network to operate during peak hours. Thus, a forecast of the total heat load of
the system would be sufficient where the inherent nature of heat load is adequately modelled,
i.e. the non-linearity and non-stationarity. However, as mentioned in Section 2.1, district heat-
ing systems are becoming more complex. The systems are becoming more decentralised with
areas by operating with their different temperature levels, TES systems, and local heat units,
e.g. heat pumps. Thus, more localised operations are needed with multiple temperature optimi-
sations and local heat load forecasts. Since heat load is mainly determined by dependence on
the weather and the rest by the consumer’s dynamics, a localised heat load forecast is needed to
incorporate the local climate and social patterns. Also, continuous improvements to the current
state-of-the-art forecasts are needed as better forecast accuracy will increase savings through
better decision-making and increase the flexibility potential of district heating. New methods
are constantly being proposed to challenge the current state-of-the-art. However, it has been
shown that higher accuracy is achieved when multiple forecasts are used than compared to use
only one forecastingmethod is used [23, 24]. A newmethod, hierarchical forecasting, has demon-
strated potential in energy forecasting by exploiting information sharing between either tempo-
ral, spatial, or temporal-spatial hierarchies. It is a special branch of combination forecasting by
reformulating it into a combination of direct forecasts using the linear coherent constraints [25].

This chapter presents heat load characteristics and forecast methods. Section 3.1 explains how
the heat load models were built in this thesis by using physical knowledge of the system and
use statistical methods to estimate model coefficients, i.e. grey-box modelling. The grey-box
method is also used for model building and system identification using physical insights to find
a relationship between the response and the input variable. Also, the model coefficients are
updated recursively, and past information is down-weighted using exponential weights. Section
3.1 is based on the results from Paper F and Paper I. Section 3.2 introduces a localised forecast for
district heating, where an individual model for each area is shown to be important, based on the
results from Paper G. As mentioned in Section 2.2, an accurate forecast of the weather in the heat
consumption areas has the potential to improve the accuracy of the heat load forecast. Therefore,
in Section 3.2, the adjustment of the NWP by adapting to the local climate is presented based on
the results from Paper H. Finally, hierarchical forecasting is presented in Section 3.3 with the
aim of improving the state-of-the-art in operational heat load forecasts by sharing information
between forecasts with temporal and spatial hierarchies based on the results in Paper A and
Paper J.
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3.1 Heat Load Characteristics and Forecasting
Paper F & Paper I
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Figure 3.1: The figure shows heat load from one area in Brønderslev. The top plot shows the daily
average of the heat load and the ambient temperature over one year, while the lower plot shows
the hourly consumption over one week and the ambient temperature.

The heat load consists of two components, space heating and domestic hot water. It can also be
argued that heat loss in the system should also be taken into account. Bacher et al. [26] divides
the heat load in a single-family building into two components, space heating and domestic hot
water usage. Space heating is described as a slow-moving component because it responds to a
low-pass filtered response to ambient air temperature and solar radiation, i.e. a smooth pattern
due to the thermal insulation of the envelope. Hence, the non-linearity part of the heat load
as the demand does not react instantaneously as the weather changes. On the other hand, the
domestic hot water component is noisy and has a high frequency. The dynamics of the heat load
are therefore unique for each area as it is strongly influenced by the local climate, space heating,
and the noisy component of the local consumption pattern, domestic hot water. The heat load
also varies over time as the climate changes; e.g. during warm periods, space heat is unnecessary,
while during cold, the heat load is governed by space heating.

Consequently, heat load dynamics vary between countries, within countries and even within
cities. The within-city variation is due to differences in building infrastructure and occupancy
behaviour. For example, the requirements of industrial areas, old residential buildings and low-
energy houses are vastly different. Knowledge of the local climate is crucial for understanding
the dynamics of space heating, as heat load is strongly correlated with climate, e.g. ambient air
temperature. At the same time, domestic hot water is driven by occupancy behaviour, e.g. show-
ering in the morning. Figure 3.1 shows in the upper plot the time-varying relationship between
the heat load and the ambient temperature, where the heat load is high in cold periods and low
in warm periods. The lower plot shows the hourly consumption over a week with the ambient
air temperature to illustrate the daily and weekly profiles. The daily heat load profile usually
has two significant peaks, but only the morning peak is significant in this example. Thus, this
demonstrates the difference in heat load between areas. The weekly profile shows the differ-
ence between days, especially between weekdays and weekends. This indicates that heat load
is a non-stationary (time-varying) and non-linear process driven by weather factors and social
behaviour.
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District heating operation is thus mainly determined by physical components. Therefore, it can
be argued that applying grey-boxmodelling to build amodel for heat load, where the components
of the model are found using physical intuition, together with statistical techniques to identify
other components and estimate the parameters of the model, is beneficial. Nielsen and Madsen
[10] propose to use grey-boxmodelling to build a model for heat consumptionwhere steady-state
physical relationships (the dynamic response to changing climate conditions) are used together
with calendar information and social behaviour to build the model structure. They also distin-
guish between the full physical model and an identifiable model where the model coefficient can
be estimated from available measurements. This modelling approach for heat consumption and
the proposed forecasting method is described in more detail in Nielsen and Madsen [27]. Using
this physical knowledge of how the response variable reacts to changes from the input variables
will improve the model accuracy in capturing the dynamics of the system, i.e. grey-box mod-
elling. The coefficients of the models are then estimated using statistical methods, e.g. Ordinary
Least Squares (OLS) or Maximum Likelihood (ML). The heat load forecasting framework must be
computationally fast and adaptive, i.e. as new information becomes available, the model must
be updated and produce new forecasts. The framework must also be able to handle the non-
stationarity and non-linearity that is prevalent in heat load. Thus, the framework needs to be
robust and simple so that it can be reconfigured when new information becomes available. In
addition, the framework creates a model for each horizon, such that the models are tuned for
each horizon. This thesis proposes to use recursive and adaptive regression models to produce a
robust and accurate heat load forecast. The model framework described below is the framework
that is used in all publications in this thesis regarding forecasts.

The proposed framework is a regression model with a dependent variable Yt and p independent
variables, X1t, . . . , Xpt, and its general form is written,

Yt = f(Xt, t, θ) + ϵt (3.1)

where f(Xt, t, θ) is a known mathematical function of the p + 1 independent variables, Xt =
(X1t, . . . Xpt)

T and t where t is the time index but with unknown coefficients θ = (θ1, . . . , θm).
ϵt is a random variable with E[ϵt] = 0, Var[ϵt] = σt, and Cov[ϵt,i, ϵt,j] = σ2Σi,j.

Regression models usually take the form of a general linear model,

Yt = xT
t θ + ϵt (3.2)

where the model is now a linear combination of the independent variables, and the coefficients
can be estimated using maximum likelihood methods. However, suppose the assumptions of
independent and/or normal distributed observation are disregarded. In that case, the estimates
can still be found using least squares methods, e.g. OLS or Weighted Least Squares (WLS), and
be unbiased. The estimates can thus be found,

θ̂ = [XTΣ−1X]−1XTΣ−1Y, (3.3)

where it minimises the sum of squared errors,

S(θ) = (Yt −Xθ)TΣ−1(Yt −Xθ) (3.4)

The OLS estimate has Σ = I (i.e. unweighted), while the WLS estimate has known weights in Σ.
From the estimates, the prediction of future values of Y at time t+ k is calculated as a function
of the independent variable xt+k,

Ŷt+k = E[Yt+k|xt+k] = xT
t+kθ̂ (3.5)
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Heat load forecasting models from this methodology are widely used, e.g. Dotzauer [28] creates
a forecasting model from a linear combination of the relationship between ambient temperature
and load and the social profile component of heat load. The coefficient is estimated using the OLS
method. The proposed forecasting model is very simple; nonetheless, it demonstrates accurate
predictions of heat load. In Dahl et al. [29], three machine learning methods are proposed, one
of which is an OLS regression model. The OLS model performs the worst of the three methods.
However, the inputs in the OLS model were treated as linear dependence on heat load due to its
linear structure, while the other two methods are non-linear models.

The estimates of these methods lead to static estimates and only allow a linear combination of
the independent variables for the OLS. Therefore, they are not ideal for heat load prediction as
it is a non-stationary and non-linear system. Furthermore, heat load forecasts are needed for
the online operation of the system, e.g. temperature optimisation is usually evaluated hourly or
when new observations are available. Due to the non-stationary heat load, it is also desirable
to give less weight to past observations or even remove them from the estimation procedure to
obtain adaptive estimation. In addition, heat load forecasting models have been widely studied
in the literature, but the operational aspect is often ignored. It is sometimes unclear whether
the errors and error evaluations are performed in-sample or out-of-sample, where an in-sample
should be used to tune the parameters of the model (model building), while an out-of-sample
should be used to investigate the forecasting performance of the model. Also, the robustness of
the proposed forecasting model, how it performs over a long period during online operation, and
how much data is needed for estimation. A discussion of how robust the coefficients are or how
they change over time is frequently not included. This and other information is required in order
to build a robust operational online forecasting model.

Online and adaptive forecasting methods imply a framework that allows model estimates to
adapt to slow changes in the system during operation. This thesis proposes to use the regression
model in Eq. 3.1 estimated by adaptive recursive estimation with exponential forgetting. To
recursively estimate the parameters of Eq. 3.2 so that the parameter estimates are updated as
new observations become available. Start from the parameter estimate in Eq. 3.3, but rewrite it
as,

θ̂t = R−1
t ht, (3.6)

where

Rt =
t∑

i=1

xix
T
i , and ht =

t∑
i=1

xiyi. (3.7)

The recursive update of these two matrices becomes,

Rt = XT
t Xt =

t∑
i=1

xix
T
i = xtx

T
t +

t−1∑
i=1

xix
T
i = xtx

T
t +Rt−1, (3.8)

ht = XT
t Yt =

t∑
i

xiyi = xtyt +
t−1∑
i

xiyi = xtyt + ht−1. (3.9)

Eq. 3.6 then becomes,

θ̂t = R−1
t ht = R−1

t (xtyt + ht−1) = R−1
t (xtyt +Rt−1θ̂t−1) (3.10)

= R−1
t (Rtθ̂t−1 − xtx

T
t θ̂t−1 + xtyt) (3.11)

= θ̂t−1 +R−1
t xt(yt − xT

t θ̂t−1). (3.12)
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Thus, Recursive Least Squares (RLS) estimation. However, all observations are given the same
weight; therefore, the estimation will become less adaptive as more observations become avail-
able. Ljung and Söderström [30] propose an RLS scheme with exponential forgetting, where past
observations are exponentially down-weighted. Eq. 3.4 therefore becomes,

St(θt) =
t∑

i=1

λt−i(yi − xT
i θt)

2, (3.13)

where the Σ in Eq. 3.4 is now a diagonal matrix with the diagonal given by diag(Σt) = λt−i, i =
1, . . . , t. The estimates are then updated following the same steps in Eq. 3.6 to Eq. 3.12,

θ̂t = θ̂t−1 +R−1
t xt(yt − xT

t θ̂t−1), (3.14)
Rt = λRt−1 + xtx

T
t . (3.15)

This method thus recursively estimates the parameters and down-weights past observations,
making it online and adaptive. Further information and amore detailed explanation of regression
models can be seen in Madsen [31].

It is also proposed that an individual model is created for each forecasting horizon, Eq. 3.1 there-
fore becomes,

Yt+k|t = f(Xt+k|t, t, θk) + ϵt+k|t (3.16)

where k indicates the forecasting horizon and the interpretation of the subscript notation t+k|t
on a variable is that it is the k-step prediction calculated using only available information at time
t, i.e. conditional on time t. Thus, each model tunes its coefficients using the corresponding
respond variable, Yt+k|t and input matrix, Xt+k|t. Further details can be seen in Paper I.

RLSwith an exponential forgetting factor has been used in numerous studies, usually for dynamic
systems for control and forecast purposes. Bacher, Madsen, and Nielsen [32] propose to use this
forecasting framework for online prediction of PV systemswith 15-min resolutionmeasurements
to handle changing conditions of a PV system. Pinson et al. [33] propose to use recursive and
adaptive methods to estimate the coefficient of a transfer function that describes the relationship
between hot water at the plant and a point in the network to be used for temperature control.
Therefore, the coefficients can vary over time as the dynamics change, including the time-delay
coefficient. Palsson, Madsen, and Søgaard [34] propose a control scheme that allows the system’s
parameters to vary over time to control supply temperature in a district heating network.

The non-linear relationship between the heat load and the independent variables in Eq. 3.1 re-
sults in the parameters entering the model in a non-linear way. Therefore, the response cannot
be written as a linear combination of the independent variables. However, if the independent
variables are transformed beforehand, it can be rewritten as a linear model with a closed-form
solution of the parameter estimates.

A framework is therefore proposed that uses the above methods to produce forecasts. Using
the methods described above, the framework consists of two stages, transformation stage and
regression stage. The framework can therefore handle both non-stationarities and non-linearities
to produce accurate forecasts.

In the first stage, transformation, the independent variables are mapped either using a function
(e.g. splines, Fourier Harmonics, etc.) or as instant effects of them. After the transformation, it
should be possible to capture the dynamics between the response and the independent variables
with a linear model. Therefore, in the second stage, regression, the parameters of the regression
model are estimated using a least squares method.
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In Paper I, this forecasting framework methodology has been implemented as an R package, the
onlineforecast, for ease of use. Section 3.1.1 demonstrates the heat load forecasting model
using the onlineforecast R package with code snippets.

3.1.1 onlineforecast Example
This section presents a brief modelling example to demonstrate how grey-box modelling works
in practice with physical knowledge and statistical methods. The R package, onlineforecast
from Paper I is used to estimate the coefficients of the models and produce online forecasts.

Themeasurements used are from one of the areas of the district heating utility Brønderslev Forsyn-
ing, and the Numerical Weather Predictions (NWPs) used as input for the forecast models were
provided by MetFor™1.

The first suggestion for a model would be to include components that model both the social
and climatic parts of heat load. To model the social dynamics, it is proposed to use the Fourier
series to capture the diurnal variations and forecasts for ambient air temperature. So, Model 1 in
regression form is given by,

Ŷt+k|t = θ0,k + θ1,kT
a,NWP
t+k|t + µ(t, nhar,αααdiu), (3.17)

where θ0 is the intercept, T a,NWP
t+k|t is the NWP prediction of the ambient air temperature, and µ(·)

is the Fourier series,

µ(t, nhar,αααdiu) =

nhar∑
n=1

α1,n sin
(2π
P

nt
)
+ α1,2 cos

(2π
P

nt
)
. (3.18)

P is the period of the series; in this case, the diurnal heat pattern is modelled, so it is 24, and t is
the time of day in hours. nhar is the number of harmonics, and ααα is the coefficient vector for the
harmonics. The onlineforecast code snippet for Model 1,

1 #### Model 1
2 model <- forecastmodel$new()
3 model$output <- "Y" # The response variable , Y (heat load)
4 ## Inputs
5 model$add_inputs(Ta = "Ta", # NWP of the air temperature
6 mu_tday = "fs(tday/24, nharmonics = 3)", # Harmonics
7 mu = "one()") # Intercept

See the rest of the code in Appendix A where e.g. how to optimise the forgetting factor.

Using the forecasting framework proposed in Section 3.1 and Paper I, the offline parameters must
be first optimised. In this model, the offline parameters consist only of the forgetting factor λ.
The training period is from 2020-02-01 to 2020-12-31 and the scoring period is from 2020-03-01
to 2020-12-31, which is the period where the RMSE is to be calculated and minimised. The first
month is therefore a burn-in period for initialising the model.

The residual analysis of the one-step prediction (ϵ̂ = Yt − Ŷt|t−1) of Model 1 is performed in
Figure 3.2 to validate the model. The plot on the left shows the autocorrelation (ACF) of the
residuals of the one-step predictions. It shows that there are still dynamics to be modelled due
to the significant correlation for all lags. To investigate whether the model captures the diurnal
variation, a boxplot of the residuals for each hour of the day is shown in the middle graph. The
boxplot shows that there is still some modelling to be done. It could be more harmonious or
the diurnal profile between weekday and weekend needs to be modelled separately. Since it is
known that the heat consumption does not react immediately when the ambient temperature

1https://enfor.dk/services/metfor/
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Figure 3.2: Figure shows the residual analysis of Model 1, where the left plot shows the ACF, the
middle shows the residuals per hour of the day, and the right plot shows the CCF plot of the
residuals and the observed ambient air temperature

changes as modelled in Model 1, the cross-correlation function (CCF) between the measured
ambient temperature and the residuals is investigated to see if there is still a structure. The CCF
is shown in the right plots and illustrate that there are still dynamics that need to be modelled.

From this, it can be argued that several components can be added toModel 1 based on the residual
analysis. When performing forward selection, one should try all possible additions of a compo-
nent and select the one with the lowest RMSE and perform further residual analysis to continue
the modelling procedure. However, this example aims to demonstrate how physical knowledge
can help the model-building procedure. Thus, Model 2

Ŷt+k|t = θ0,k + µ(t, nhar, αdiu) + θ1,kHa(q)T
a,NWP
t+k|t , (3.19)

where the filter is
HaTa (q) =

1− aTa

1− aTaq
−1

. (3.20)

The filter models the slow reaction by smoothing the temperature with a time constant aTa . The
time constant is also optimised offline with the forgetting factor. Figure 3.3 shows the same
residual analysis of Model 1 performed for Model 2. Note that the CCF now has a much lower
correlation between the temperature and the residual. The onlineforecast code snippet for
Model 2,

1 model2 <- forecastmodel$new()
2 model2$output <- "Y" # The response variable , Y (heat load)
3 ## Inputs
4 model2$add_inputs(Ta ="lp(Ta, a1 = 0.9)",#low pass of the NWP of the air temp.
5 mu_tday = "fs(tday/24, nharmonics = 3)", # Harmonics
6 mu = "one()") # Intercept

See the rest of the code in Appendix A where e.g. how to optimise the forgetting factor and the
time constant for the low-pass filter.

The comparison of the two models using the RMSE over the test period for each horizon from 1
to 72 steps ahead is shown in Figure 3.4. It shows that modelling the slow response of heat load
and ambient air temperature significantly improved the model accuracy. These physical insights
can help make the model more appropriate by using simple methods, e.g. filters. However,
the residual analysis of Model 2 shows that there are still some dynamics to be captured, e.g.
the modelling of weekends and weekdays mentioned earlier. The modelling procedure is not
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Figure 3.3: Figure shows the error analysis of Model 2, where the left plot shows the ACF, the
middle plot shows the residuals per hour of the day, and the right plot shows the CCF plot of the
residuals and the observed ambient air temperature.

further elaborated here, but a good example of the modelling and validation procedure is shown
in Bacher et al. [35].
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Figure 3.4: The figure shows the RMSE for the two models for each horizon from one to 72.

To illustrate the need for a recursive and adaptive forecasting frameworkwhen the response vari-
ables have non-stationary dynamics, two of the estimates (θ0, θ1) of both models are presented in
separate plots in Figure 3.5. The Fourier series estimates are disregarded to simplify the explana-
tions. These plots show how quickly the dynamics change over time, as the estimates frequently
change except in summer. Unfortunately, measurements over a long period are missing for the
summer period. However, from the available measurements, it appears that the estimates are
relatively more constant than the estimates in winter, as shown in Figure 3.5. This can be ex-
plained by the fact that the heat load is more constant in summer and therefore the changes in
the dynamics between heat load and input variables are small.

3.2 Localized Forecast
Paper H & Paper G

Accurate knowledge of consumer heat consumption is essential for efficient network operation
and production. As mentioned earlier, consumption includes both space heating and domestic
hot water usage, where space heating is strongly correlated with the climate. As space heating
is used to maintain thermal comfort, it depends on the energy efficiency of the building and
the local climate. Therefore, an accurate representation of space heating load is more focused
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Figure 3.5: The two plots in this figure shows how the coefficient estimates vary over time as
they are updated when new information is available. The top plot shows the intercept estimate,
θ0, and the bottom plot shows the ambient air temperature estimate, θ1.

on individual houses/apartments. In this thesis, it has been assumed that aggregating individual
consumption into local area consumption is reasonable. Creating and maintaining a heating load
forecast for each smart meter would be too time-consuming and computationally expensive to
achieve high accuracy. It can also be argued that smart meter data is too noisy to produce an
accurate heat load forecast, i.e. long periods without consumption and changes in the diurnal
profile. This might be too difficult to make forecasts with high accuracy that provide sufficient
information to district heating operators. However, the aggregated heat load for a specific area,
e.g. an area controlled by a heat exchanger which supplies heat from the transmission network to
the distribution network, is sufficient to create an accurate forecast model to operate the network.
Therefore, a forecast model is needed that represents the heat load in a local area, i.e. a localised
forecast model.
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Figure 3.6: Urban Heat Island: Copenhagen demonstrates using three climate stations located in
different proximity to the centre of Copenhagen: in the centre (Frederiksberg), in the outskirts
(Jægersborg) and in a rural area (Sjælsmark), as shown in the map and the plot showing the
difference in monthly average temperature for the three stations. Figure from Paper G.
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Furthermore, not only does the difference in buildingmass affect howmuch heat load is needed to
maintain thermal comfort but there is also research that has shown that ambient air temperature
can vary within a large city, see, e.g. Steeneveld et al. [18]. Therefore, measuring the temperature
in the area where the district heating network is located is important. Traditionally, the ambient
air temperature has only been monitored in rural areas, but with digitalization using cheap IoT
sensors, these temperatures are also measured within cities. TheDanishMeteorological Institute,
for example, has recently started giving the public access to its climate stations located all over
Denmark. However, it is important to know that the air temperature measured at airports may
differ from the temperature in cities, where the air temperature is exposed to human activities
and the built environment. Research shows that the ambient air temperature in urban areas is
usually higher than in rural areas [18]. This effect is termed urban heat island (UHI). Research
related to UHI’s has recently gained more attention due to concerns that climate change, with
an average temperature increase of 2 to 3 K, will cause more severe heat waves in the future
and place a significant burden on urban populations. However, this problem is mostly relevant
for hotter climates with no district heating or at least outside the heating season. It is, however,
appropriate to the energy sector as a whole, as there is a significant demand for cooling during
a heat wave. Unfortunately, there is not the same interest in studying temperature differences
between urban and rural areas in winter that would be relevant for the district heating sector.

Figure 3.6 shows the temperature differences of three different climate stations in Denmark, of
which 1) a climate station is located in Frederiksberg, which is close to the city centre; a densely
populated area, 2)The climate station Jægersborg is located in the outskirts of Copenhagen and 3)
the climate station Sjælsmark located in a rural area north of Copenhagen. The data were taken
from the Open Meteorological Data provided by the Danish Meteorological Institute (DMI) [36].
For each climate station, the past hourly mean temperature from January 2004 to December 2020
was extracted, and then the monthly average ambient air temperature for the same period was
calculated. The locations of the climate stations are shown in the left plot in Figure 3.6, while
the monthly average temperature for the climate stations is visualised on the right plot. The
monthly average temperature shows the UHI effect as the climate station in the city has the
highest average temperature, then the climate station between urban and rural areas and finally,
the climate station in a rural area has the lowest average temperature. This shows that different
temperatures in the city need to be considered for optimal heat load forecasting, temperature
and production optimisation.

Therefore, a localised forecasting model of district heating can enable more precise operation.
The localised forecast model uses observations of the heat load in a specific area and input vari-
ables representing the area, e.g. a localised weather forecast. The localised weather forecast
represents the climate in that particular area. However, these local weather forecasts are usually
unavailable because NWPs are designed for rural areas, as mentioned in Section 2.2. Therefore,
they do not provide an optimal representation of the local climate. Thus, the measurements from
the local climate stations can be used to adjust the NWP to provide accurate information about
the climate.

The motivation for the following subsection was to investigate both the performance of heat
load forecasts scaled from larger areas to smaller areas and the improvement of the accuracy of
heat load forecasts by localising weather forecasts with measurements from a climate station.
The following methods and results are from Paper G and from Paper H. Both papers use the
same case study as part of the IDASC project. The project investigated the operation of a district
heating network in Copenhagen. The Tingbjerg area was chosen because it can be considered
a district heating island within the whole system. It has only one heat exchanger between the
Tingbjerg area and the transmission lines to deliver heat to the consumers. Furthermore, it is a
small area. For a more detailed summary, see Paper G.

26 Data-Driven Methods for Enhancing District Heating Network Operation



Time [Day]

0
50

0
10

00
20

00
30

00
B

rø
ns

hø
j H

ea
t D

em
an

d 
[M

W
]

2019−01−01 2019−04−01 2019−07−01 2019−10−01 2020−01−01 2020−04−01 2020−07−01 2020−10−01 2021−01−01

0
50

10
0

15
0

20
0

25
0

T
in

gb
je

rg
 H

ea
t D

em
an

d 
[M

W
]

0.
00

0.
15

Time [Day]

F
ra

ct
io

n 
of

 
 C

on
su

m
pt

io
n

2019−01−01 2019−04−01 2019−07−01 2019−10−01 2020−01−01 2020−04−01 2020−07−01 2020−10−01 2021−01−01

8%

Figure 3.7: The daily heat load of Brønshøj and Tingbjerg, a small area within Brønshøj. The
fraction of Tingbjerg’s daily consumption compared to Brønshøj’s consumption is shown in the
plot below. From Paper G.

3.2.1 Scaling Heat Load Forecast
Sometimes heat load forecasts are scaled from total consumption to smaller areas within the net-
work. This is usually done when the district heating system has a transmission and distribution
system where heat exchangers transfer heat between the transmission and distribution pipes.
Therefore, temperature optimisation on the secondary side is required, and heat load forecasts
are needed to find the optimal supply temperatures needed to satisfy demand while minimising
costs.

In Paper G, a case study was carried out to investigate the operation of a small distribution net-
work in Copenhagen inside an area which is called Tingbjerg. The network had a heat exchanger
to transfer the heat. However, the heat load forecasts used for the heat exchanger operation were
scaled from a larger area, namely Brønshøj. The forecast was scaled down using a fixed fraction
between the historical Tingbjerg consumption and the historical Brønshøj consumption. The ra-
tio estimated by the district heating utility was that Tingbjerg consumption was 8% of Brønshøj
consumption. Figure 3.7 shows the historical load of the two areas over two years in the upper
plot and the computed fraction between them in the lower plot. The fraction from this historical
data is closer to 7% than 8%. Since Tingbjerg is a small area with low heat consumption, the
measurements are noisier and therefore more difficult to predict.

The compared the previous operational heat load forecast with the new localised forecast, which
uses Tingbjerg’s consumption measurements and localised inputs to predict future load. This
was done to illustrate the importance of a localised forecast, especially to improve temperature
optimisation. The new localised forecast was provided by the HEATFOR™2 software. The new
forecasting model is tailored to social consumption patterns and the relationship between build-
ing mass and local climate, as shown in Figure 3.8. The RMSE for each horizon was then calcu-
lated using a scaled forecast using the 8% and 7% ratios and the new localised heat load forecasts.
The results are shown in Figure 3.9. The top plot shows that the localised forecast is significantly
more accurate than the scaled forecasts. The lower plot highlights how the localised forecast per-
forms significantly better for prediction horizons up to eight steps ahead. These short horizons

2https://enfor.dk/services/heatfor/
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are the most crucial since they match the longest time delay for water to reach the consumers,
which is essential for temperature optimisation. Depending on the heat load prediction at time
t for the future time t+τ , the temperature optimisation ensures that the hot water temperature
leaving the plant at time t will be sufficient when it reaches the consumer at time t+τ .
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Figure 3.10: Figure shows the location of the climate station and Tingbjerg, where the district
heating is located. The distance between the two places is approximately 6 km apart. Figure from
Paper H.

3.2.2 Localize Inputs
As mentioned earlier, the UHI requires the operation of the district heating network to consider
the local climate for each area where district heating is operated. In Paper H, it is proposed to
adjust the NWP using a local climate station in Copenhagen, which is approximately 6 km away
from Tingbjerg, as shown in Figure 3.10. The proposed method is simple and will recursively
and adaptively update the coefficient estimates of the adjustment model to adapt to the current
climate in the area.

The raw NWP of the ambient air temperature does not consider the local climate in the area
where the heat load forecast is needed. However, by using a local climate station, it can be
adjusted to the local climate. In Paper H, the Model Output Statistics method proposed by Glahn
and Lowry [37] is used to adjust the NWP through a regression model,

yt = β0 + β1T
nwp
a + ϵt, (3.21)

where the dependent variable is the observed weather variable y at the local weather station, and
the explanatory variable is the weather forecast variable T nwp

a . The forecasts of this regression
model are then used as inputs to the heat load forecast model proposed in Paper H, or

ŷt+k|t =β0,k + β1,kyt + µk(t, nhar, αdiu)+

β3,kH(q)T
obs,nwp
a,t+k|t + β4,kH(q)W

nwp
s,t+k|t + β5,kH(q)G

nwp
t+k|t,

(3.22)

where the coefficients of themodel are, the NWPofwind speed (m/s),W nwp
s,t+k|t, the NWPof global

radiation (W/m2),Gnwp
t+k|t and µ(t, nhar, αdiu)which describe the diurnal curve using Fourier har-

monic series, where t is the time of day (hour), nhar is the number of harmonics, αdiu is a vector
consisting of the coefficients for the included harmonics, and finally T

obs,nwp
a,t+k|t is a combined se-

quence of measured and forecasted ambient air temperatures (℃), including observed measure-
ments and NWP of the ambient air temperature, i.e.,

T
obs,nwp
a,t+k|t = {. . . , T obs

a,t−1, T
obs
a,t , T

nwp
a,t+1|t, T

nwp
a,t+2|t, . . . , T

nwp
a,t+k|t}. (3.23)

H(q) in Eq. 3.22 is a transfer function acting as a low-pass filter with a stationary gain equal to
one,

H(q) =
1− a

1− aq−1 , (3.24)
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where a is the time constant describing how the buildings are affected by changes in the corre-
sponding climate variables, e.g. ambient air temperature.

In Paper H, three different localised NWPs were created using Eq. 3.21,

• Parameters estimated using OLS estimation, i.e. constant parameters (lm)

• Parameters estimated using RLS with forgetting factor (λ = 0.994) (rls)

• Parameters estimated using RLS with forgetting factor (λ = 0.998), i.e. whereby the pa-
rameters change more slowly over time than in case 2 (rls2)

The proposed method offers the possibility to adjust the NWP to the local climate by updating
it with local measurements, providing better information for predicting heat load. It also offers
the possibility to estimate the uncertainty of the NWP for that location[19].
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Figure 3.11: Figure shows the accuracy of the NWPs in Tingbjerg, with the in-sample in the left
plots and the out-of-sample in the right plots. The RMSE is shown in the top and ME in the
bottom plots. Figure from Paper H.

Figure 3.11 shows the result of localising the NWP to a local climate station. The left plots show
the results from the in-sample period, while the right plots show the results of the out-of-sample
period. Two error scores are used: the RMSE in the upper plots and the Mean Error (ME) in the
lower plots. The plots show that the proposed method for locally adjusted forecasts performs
much better than the forecasts based directly on the NWP. From the ME, it can be seen that the
NWP is biased; it underestimates the temperature in the city, as expected, due to the UHI effect.
The rls method with the optimised forgetting factor shows the best performance.

These three ambient air temperature-adjusted NWPs and the raw NWP are then used in Eq. 3.23
to predict the heat load in Tingbjerg. To benchmark the performance of using different inputs
into the same forecasting model, the relative root mean squared error (RRMSE) is used,

RRMSE =
RMSE

RMSEbase
− 1. (3.25)

The RRMSE demonstrates either improvement or decline in performance compared to the base
forecast, where negative values correspond to improvements in accuracy over the base forecast.
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The RMSE is when the adjusted NWP is used as input to the forecasting model, while RMSEbase
is when the raw NWP is used. The results presented in Figure 3.12 show that all three localised
predictions improved the accuracy of the heat load predictions compared to the raw NWPmodel.
The rlsmethod, which adapts faster, has the best performance overall, especially for the horizons
up to 12 hours ahead. As mentioned earlier, it is a very important horizon to improve due to the
nature of temperature optimisation. For the last horizons, rls performs similarly to the other
localised predictions but still shows about 1.5% higher accuracy than using the raw NWP as
input.
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Figure 3.12: The plot shows the RRMSE of the proposed method using three different methods to
estimate the coefficient of the adjusting model in Eq. 3.21 for the same forecasting model using
the raw NWP as inputs. Figure from Paper H.

3.2.3 Main Findings
Based on the results of Paper G and Paper H, and highlighted in the above subsections, the impor-
tance of accurately representing local climate and knowledge of social behaviour is emphasised.
First, it was shown that using scaled heat load forecasts from a large area does not accurately
represent the dynamics in a smaller area. Social behaviour is different, the daily heat load profile
is not the same, and the fraction used to scale the forecast varies over time, e.g. different sea-
sonal heating effects in the area. It has also been shown that a good understanding of the local
climate leads to higher accuracy of the heat load forecast by comparing the performance of using
raw NWP as inputs versus adjusting the raw NWP to a local climate station within the city and
using them as input to the same forecasting model. The higher accuracy is due to the fact that
the NWPs were developed for rural areas and not for urban areas, so the NWPs do not consider
the urban climate. Therefore, the heat load forecast benefits from localisation and shows an im-
provement in accuracy for all forecast horizons. There is a significant improvement in accuracy
for the shorter horizons, e.g. from one-hour to eight hours ahead. The short horizon is crucial for
the operation of the district heating network, as data-driven temperature optimisation becomes
more efficient when the consumption can be predicted with high accuracy. The optimisation
can deliver the desired hot water temperature at time t and reach the consumer at time t+ τ . τ
is the time delay of sending one unit of water from the plant to the consumer to fulfil the heat
load at the future time using the heat load forecast. Temperature optimisation will be able to
select future set-points with high precision and minimise costs by using more accurate heat load
forecasts.

Accurate localised heat load and weather forecasts are important for the efficient operation of
district heating. The benefits come from the potentially higher precision in temperature optimi-
sation, as the future load can be predicted more accurately, thus keeping the supply temperature
as low as possible. This reduces both costs and heat losses in the system. The accuracy improve-
ments for heat load forecast will also have benefits for production optimisation as the planning of
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heat units can be done with more precision. District heating systems that are decentralised with
heating units and multiple temperature optimisations in the network need this to operate each
area optimally. Digitalisation will also play a major role in enabling this, as more climate stations
will be available and more detailed information on how heat consumption reacts to changes, e.g.
through smart meters.

3.3 Hierarchical Forecast
Paper A & Paper J

A hierarchy is the definition of a certain rank structure. In the world of data (in this context, time
series), this can be one of two structures: the spatial (cross-sectional) or the temporal hierarchy.
The spatial hierarchy is the structure of groups or aggregations, e.g. from the heat load in a
building in an area (aggregation of all heat load in buildings in this area) to the entire district
heating system (aggregation of areas). The temporal aspect is the resolution of the data, e.g. the
heat load in one hour, in 12 hours (aggregation of the 12 one-hour loads) and for the whole day
(aggregation of the two 12-hour periods of a day). So the commonality is that there is a bottom
level and a predefined structure for the upper levels and that they must be coherent, i.e. the
summation of the lower group must be consistent with the next level in the hierarchy.

Forecasts usually have to be produced in a hierarchical structure and are typically independent,
so they are not necessarily coherent. For example, heat load forecasts for different areas of a
district heating network and the total system are usually prepared separately. This is sub-optimal
for the district heating as the forecasts are not coherent, and the operation will be operated on
information that is not aligned. However, hierarchy forecasting has been proposed to make
individual forecasts coherent and has demonstrated promising results in improving individual
forecast accuracy by sharing information through the hierarchy.

The original proposal for using hierarchical forecasts was to use Bottom-Up, Top-Down, or
middle-out to make them coherent. These proposals have drawbacks, and one of the biggest
is using only individual forecasts at one level of the hierarchy to distribute to other levels. Hyn-
dman et al. [38] propose to make individual forecasts coherent at all levels using the least squares
method. These individual forecasts are called base forecasts in the reconciliation process. They
can be made by any method for any group at any level of the hierarchy as long as they pro-
duce numerical values used in the reconciliation. This method of estimating the weights in the
reconciliations is referred to as optimal because it creates an optimal combination of the base
forecasts. In Hollyman, Petropoulos, and Tipping [25], it is shown that forecast reconciliation is
a special case of forecast combinations by reformulating it into a combination of direct forecasts
using linear coherent constraints. It is also discussed that a forecast combination tends to have
higher accuracy than using only a single forecasting method.

As mentioned, Hyndman et al. [38] propose a regression approach to estimate the mapping ma-
trix G which maps the base forecast to a vector of bottom forecasts using generalised least
squares estimation in which the coherence errors are used to estimate the covariance matrix.
The base forecasts are then written in the regression form,

Ŷt+k|t = Sβ(k) + ϵ(k), (3.26)

where β(k) = E[Yℓ,t+k|Y = y1, . . . , yt] is the unknown conditional mean of the future values of
the most disaggregated observed series, i.e. the reconciled forecasts. S is the summation matrix
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which is used to describe the structure of the hierarchy; see, e.g. Figure 3.13, which results in

S =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.27)

The ϵ(k) represents the error between the base forecasts and their expected value, the coherence
error Ŷ − Ỹ . It is assumed that the error ϵ(k) has a mean of zero and a covariance matrix
Σ. Therefore, it is possible to use the generalised least squares estimation to estimate β(k) in
Eq. (3.26). If Σ is assumed to be known and the base forecasts are unbiased, the reconciled
forecasts can be estimated as

ỹ = S(STΣ−1S)−1STΣ−1ŷ, (3.28)

where the mapping matrix for the reconciliation forecasts is G = (STΣ−1S)−1STΣ−1. Hence,
then the multiplication of the summation matrix and mapping matrix is the projection matrix,
P = SG

However, estimating the covariance matrix from coherency errors is impossible because it is not
identifiable, as shown inWickramasuriya, Athanasopoulos, and Hyndman [39]. Therefore, it has
been proposed to use the errors from the base forecast to estimate a covariance matrix to be used.
Several suggestions for the covariance estimator have been proposed. Hyndman et al. [38] uses
OLS to estimate the covariance estimator, i.e. an identity matrix that leads to an equal weighting
of all base forecasts. In Hyndman, Lee, and Wang [40], the OLS method is then extended to
WLS, where the base forecasts are weighted according to the variance of their residuals, i.e.
replacing the identity matrix with the corresponding variance. Three different WLS methods are
proposed in Athanasopoulos et al. [41]. However, these are naive methods as they disregard any
cross-correlation between levels. In Wickramasuriya, Athanasopoulos, and Hyndman [39] and
Nystrup et al. [42], it is shown that higher accuracy is obtained when the full covariance matrix
of the base forecast errors is used compared to using only the variance.

Therefore, a covariance matrix must be estimated for hierarchical forecasts to produce optimal
coherent forecasts. It is proposed to use the base forecast errors to estimate the covariancematrix,
as it is not identifiable from the coherency errors. Several different methods for estimating the
covariance matrix have been proposed, with varying degrees of success. However, it has been
shown that using the full matrix leads to the highest improvements in accuracy. Nevertheless,
all the proposed methods have shown an improvement in accuracy. Thus, the optimal estimation
method must be found for each process to achieve optimal improvements.

Several recent studies have demonstrated accuracy improvements and the benefits of the rec-
onciliation process to produce coherent forecasts in the energy sector [43]. For instance, Nys-
trup et al. [42] demonstrates the improvement for short-term electricity load forecasts, and Jeon,
Panagiotelis, and Petropoulos [44] demonstrates the reconciliation process for probabilistic fore-
casting of wind power and electric load to ensure coherence, resulting in higher accuracy. Im-
provements in power forecast for PV systems have also been demonstrated in Yagli, Yang, and
Srinivasan [45] where spatial-temporal hierarchy is imposed.

3.3.1 Hierarchical Forecast in District Heating
Hierarchies could be a beneficial tool for district heating to improve its forecasts and thereby
the operation. For instance, temporal hierarchies can be used to improve forecasts for energy
operator operators and, above all, make themmore coherent and, hopefully, more accurate. These
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Figure 3.13: Example of the structure of a spatial hierarchy within district heating. Figure from
Paper J.

operators must consider decisions for the next hour, the next day, the next weeks, and extended
periods. They use forecasts for these different periods, usually divided into short, medium and
long-term, and it could be beneficial to link them together and make them coherent. This will
lead to optimal decision-making instead of making decisions based on forecasts that are not
coherent. As district heating becomes increasingly decentralised, areas will need localised heat
load forecasts to optimally operate the area’s network. The heat load forecasts are then made
for the total heat load and each area, which are therefore not necessarily coherent. Figure 3.13
demonstrates the natural spatial hierarchy of a district heating system. Hierarchical forecasting
is ideal for production and network operators as the reconciled forecasts will be coherent for their
optimisation. Furthermore, hierarchical forecasting has demonstrated that they usually improve
accuracy, which is an important advantage.

However, there is little or no discussion in the literature about the empirical covariance matrix
for non-stationary data, which must be robust and stable in order to produce an accurate, rec-
onciled forecast. The covariance matrix for non-stationary processes must be able to adapt to
any changes in the system in order to react accordingly. This is the same argument as when
producing heat load forecasts using the method in Section 3.1, as these are produced recursively,
and past information is exponentially down-weighted. Two papers have been made in this the-
sis where it is proposed to estimate the covariance matrix based on non-stationary requirements
and demonstrate that the method results in high accuracy improvements for both papers. The
first paper, Paper A, explores the use of a temporal hierarchy constraint for the 24-hour forecast
with a full natural structure between the hourly and daily forecast levels, i.e. the levels in the
hierarchy is thus ℓ = {1, 2, 3, 4, 6, 8, 12, 24}. In Paper J, the spatial hierarchy was studied using
two different district heating systems. One has few areas, and the other has many to demonstrate
the potential of the hierarchy framework. In both papers, the heat load is predicted over long
periods of time, and the measurements are therefore not stationary. Therefore, in Paper A and
Paper J, it is proposed to use a recursive and adaptive covariance estimator estimated from the
in-sample base forecast errors. Three different estimators are proposed in Paper A,

Expanding Window: Σ̂t =
1

t
ete

T
t +

t− 1

t
Σ̂t−1, (3.29)

Rolling Window: Σ̂t =
1

t− j

t∑
i=t−j

eie
T
i , (3.30)

Exponential Smoothing: Σ̂t = λΣ̂t−1 + (1− λ)ete
T
t . (3.31)

The first method is expanding window, where all available past errors are used to estimate the
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estimator. The second is rolling window, where a fixed window of some of the available errors
is used, and the third is exponential smoothing, where past information is exponentially down-
weighted using a forgetting factor. It has also been suggested to shrink the covariance matrix
to ensure that it is well-defined and does not become singular, for example. This has been done
in some other hierarchy studies, e.g. Wickramasuriya, Athanasopoulos, and Hyndman [39] and
Nystrup et al. [42]. Thus, a shrinkage method is also proposed, where the covariance estimator is
shrunk (e.g. using the three methods mentioned above) by using a shrinkage method proposed
by Ledoit and Wolf [46]. This method (optimal shrinkage intensity) tends to shift the extreme
values towards central values, which reduces the estimation error,

Shrinkage: Σ̂∗
t = λ∗

shrinkΣ̂
d
t + (1− λ∗

shrink)Σ̂t, (3.32)

where Σ̂d
t are the diagonal entries from the covariance estimator. Thus, as λ∗

shrink increases,
the off-diagonal elements are shrunk towards zero since the shrinkage target is the diagonal
variance of the levels in the hierarchy. The shrinkage intensity parameter λ∗

shrink has a closed-
form solution where the mean squared error is minimised,

λ∗
shrink =

∑
i ̸=j V̂ar(σ̂ij)∑

i ̸=j σ̂
2
ij

, (3.33)

where σ̂ij is the i, j’th element of the covariance estimator.

In Paper A, recursive and adaptive estimation of the variance of the covariance estimator is
proposed,

V̂ar(Σ̂t) = λ(1− λ)2(e2t(e
2
t)

T − Σ̂2
t) + λ2V̂ar(Σ̂t−1). (3.34)

The shrinkage parameter can then be updated easily at each time step,

λ∗
shrink,t =

∑
i ̸=j V̂ar(Σ̂t)ij∑

i̸=j(Σ̂t)2ij
. (3.35)

Thus, the shrinkage intensity parameter can be re-estimated whenever new information becomes
available, and the past information is down-weighted using exponential weights with the forget-
ting factor λ. This is done to replace the variance estimation of the covariance estimator as
proposed by Schäfer and Strimmer [47] in Appendix A.

3.3.2 Workflow of the online reconciliation process
To get a better overview of hierarchical forecasting, Figure 3.14 depicts a workflow of the rec-
onciliation process. It shows a generalised overview of the process and is described in detail
below. However, before the reconciliation process is started, the base forecast models and the
covariance matrix have to be initialised.

1. Generate base forecasts. Base forecasts can be generated from the desired model forecast
for any level and horizon. The only requirement is that you have a numerical value for each level
and forecast horizon. Then, a base forecast vector at time t, Ŷt+1|t, is created containing each
aggregation level forecast with the corresponding forecast horizon. An example of this vector is
a case for a temporal hierarchy where the top level is the 24-hour, then the 12-hour, and at the
bottom the 4-hour forecasts,

Ŷt+1|t =

 Ŷ 24h
t+k|t = [ŷ24h

t+1|t]
T

Ŷ 12h
t+k|t = [ŷ12h

t+1|t, ŷ
12h
t+2|t]

T

Ŷ 4h
t+k|t = [ŷ4h

t+1|t, ŷ
4h
t+2|t, . . . , ŷ

4h
t+6|t]

T

 (3.36)
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Figure 3.14: Overview of the reconciliation process. The first iteration of this figure is from Paper
A.

2. Update the covariance matrix. A covariance matrix is needed to combine the base forecasts
for the reconciliation process. It is proposed that for online forecasts, the covariance matrix is
updated recursively using either Eq. 3.29 or Eq. 3.31. Since the covariance matrix is updated re-
cursively, the previous covariance matrix must be retained for updating when a new observation
becomes available. However, other methods could be used if the estimator does not need to be
updated recursively, e.g covariance in Eq. 3.30.

3. Shrinkage. If the covariance matrix is to be shrunk before the reconciliation process, then
this should be done after the matrix has been recursively updated. In Paper A, it is suggested
that if there is a shrinkage for online forecasts, it should then be the recursive shrinkage method
as suggested in Eq. 3.34 and Eq. 3.35.

4. Generate reconciled forecasts. When the base forecasts and the covariancematrix are ready,
the reconciled forecasts are calculated using Eq. (3.28).

5. Compute forecast error when observations become available. As new observations be-
come available, the base forecast residuals et = Yt − Ŷt|t−1 are calculated, and the covariance
matrix is updated. The updated covariance matrix is then used to generate new reconciled fore-
casts.

Optimization of hyperparameters. If the reconciliation procedure has hyperparameters, then
these must be optimised to make the reconciliation forecast as accurate as possible. Therefore,
the hyperparameters are trained over the training period to find the parameters that minimise
the RMSE. For instance, the forgetting factor for the covariance estimator in Eq. 3.31 must be
optimised.

Therefore, the proposed reconciliation prediction workflow must have a low computation time
for all steps, and the pipeline must be aware of any delays. First, the input variables can arrive at
any hour (since the resolution of the forecast is hourly). Second, the calculation time for the base
forecasts. Third, when new observations become available for updating the covariance matrix.
Fourth, the calculation time for updating the covariance matrix and, finally, the calculation time
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for producing the reconciliation forecasts.

This proposed framework for the online reconciliation process is ideal for real-world operations
as not much information needs to be stored. A new reconciliation forecast can be generated
when new information is available in a short time, as the computation time is short. It is also
suitable for a non-stationary process as the covariance estimator can be adaptive.

3.3.3 Results: Main Findings
Two separate papers, Paper A and Paper J explore the possibility of improving the heat load
forecasts using temporal and spatial hierarchy. In both papers, the prediction horizon ranged
from 1-step to 24-steps ahead, with hourly resolution. The objective was to improve the state-
of-the-art operational heat load forecast from the HeatFor™3 software.

Paper A investigates the improvements potential of using temporal hierarchies for heat load
forecasts for the heat production planner for the district heating system in Greater Copenhagen,
Varmelast. The temporal hierarchies improved the heat load forecast by about 15% on average
over three years by sharing information between different temporal resolution levels. Three
different covariance estimators were compared, with all estimators showing an improvement
in accuracy over the base forecast. The adaptive estimator provided the most significant im-
provements. The improvements result either from the truncation in the AR process or from the
different levels of aggregation of the forecast using different memories when producing the base
forecasts. For example, rapid changes in the heat load or ambient air temperature do not imme-
diately affect heat load forecast if they have high memory, while having a lower memory would
have a more significant effect. Thus, in the reconciliation process, it can react faster to rapid
changes as the weights in the reconciliation will rely more on forecasts that have lower memory
and can adapt faster to the changes in heat consumption.

Paper J, the improvements of spatial hierarchies are investigated using heat load forecasts from
two different district heating utilities in Denmark. First, the utility Brønderslev Fjernvarme system
is used, as it has only a few areas, namely only three. The second utility is Fjernvarme Fyn, which
has several smaller areas, 12 in total. Therefore, two different hierarchy structures are used, and
it is also proposed to add a new additional level of aggregation to the hierarchy in Fjernvarme
Fyn. This study also used a state-of-the-art hourly operational heat load forecast from the same
software as in Paper A. It was found that the accuracy could be significantly improved depending
on the forecast horizon, ranging from 2% to 15%. The higher the horizon, the higher the accuracy
improvements were achieved for both utilities. In addition, adding a new level of aggregation to
the hierarchywas shown to increase accuracy improvements. The improvements in this study are
due to the small forgetting factor used in the covariance estimator so that it can respond quickly
to any rapid changes in the system. This allows the weights in the reconciliation to be changed
quickly if needed. It was also demonstrated using a simulation study to show the effects of using
a small forgetting factor. It is also discussed that the optimal forgetting factor for operational
reconciliation prediction might be too low due to possible very large prediction errors due to
overshoot/undershoot, as shown in the simulation study. Therefore, more robust results could
be obtained by choosing a slightly higher forgetting factor but with a smaller improvement in
accuracy. The higher and more robust forgetting factor reduces the probability of high prediction
errors.

Figure 3.15 shows the accuracy improvements for the total heat load in the spatial hierarchy
forecast at Fjernvarme Fyn utility from Paper J to highlight the potential accuracy improvements
from hierarchical forecasting. The Oper. Base is the base forecast from the software HeatFor™,
Oper. Rec and Oper. Agg Rec are the reconciliation forecasting using two different hierarchical

3https://enfor.dk/services/heatfor/
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Figure 3.15: The plots show the accuracy improvements of the base forecast in Fjernvarme Fyn,
where two different hierarchies are investigated. The top plots show the RMSE, and the bottom
plots show the improvements using the RRMSE, while the left and right plots show the result in
the in-sample and out-of-sample periods. Figure is from Paper J.

structures. Oper. Rec uses the simplest form of hierarchy with the total heat load and, at the
bottom, the heat load from all 12 areas, while Oper. Agg Rec hierarchy has added an additional
level with three new aggregation groups, which aggregate four bottom areas. Finally, the number
1 or 2 in the legend for the reconciliation forecasts refers to whether the forgetting factor was the
same for all horizons or whether it was optimised for each horizon. The plots demonstrate that
the spatial hierarchy can improve forecast accuracy however to ensure always improvements,
the forgetting factors must be optimised for all horizons. Further improvement in accuracy is
also possible by adding more levels to the hierarchy, as shown in Figure 3.15 by comparing the
results of the two hierarchy structures used. In this case, the improvements are almost doubled
by adding an additional level.

It is shown that significant accuracy improvements in heat load forecast can be achieved through
temporal and spatial hierarchy forecasting. Thus, sharing all available information through the
hierarchy increases forecast accuracy. Accurate heat load forecasts have a high potential to im-
prove all operations and decision-making in district heating, reducing costs and increasing the
safety of fulfilling the consumer’s heat load. In addition, the reconciliation process makes the
forecast coherent in the hierarchy, which is also beneficial for operators, especially production
operators and energy planners. Thus, both main objectives of operating a district heating system
are improved by hierarchical forecasting. Also, it increases the feasibility of operating district
heating decentralised, e.g. multi-temperature level zones.

In summary, using hierarchies and reconciliation with an adaptive covariance estimator is shown
to improve state-of-the-art operational heat load forecasting in three different cases when either
a temporal or a spatial hierarchy is used. The significant improvements will positively impact
reducing operating costs and meeting the heat load of consumers through more efficient district
heating operations.
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4 Temperature Optimisation in District
Heating Networks

The main objective of district heating is to fulfil the heating needs of consumers at all times
while minimising costs. The supply temperature is an important variable to minimise the costs,
as keeping it low as possible lowers costs and reduces heat losses while also having positive
benefits for other parts. For instance, efficient operation of the network temperature is essential
to maximise the flexibility potential of district heating. The lower the supply temperature, the
more likely it is that heat from new sources can be used, e.g. excess heat from supermarkets that
otherwise could not be used due to too low temperatures entering the network. The operation
of heat pumps also becomes more efficient, making it a better investment opportunity for them.
Therefore, efficient operation of the supply temperature in district heating is crucial to reduce
costs and maximise flexibility. There are robust methods for operating the network temperature,
i.e. temperature optimisation. Temperature optimisation determines the optimal set points for
the supply temperature that simultaneously satisfy the heat load, do not violate any system re-
quirements and reduce heat production costs and heat losses in the network. Precision is also an
important variable for optimisation so that temperatures are operated as close as possible to the
constraints without violating them and that the temperatures are not fluctuating too much.

In this chapter, data-driven temperature optimisation is introduced and discussed. It also intro-
duces newmethods developed in this PhD thesis to make temperature optimisationmore feasible
for district heating networks. First, Section 4.1 briefly presents how the supply temperature could
be optimised and what needs to be considered while creating data-driven temperature optimi-
sation. For a detailed explanation of data-driven temperature optimisation, see Section 4.2 in
Paper F, which goes into more detail with references to studies. However, in this PhD study,
no temperature optimisation was created. The motivation was to investigate the savings from
state-of-the-art temperature optimisation and compare it to a more traditional control method.
It was also to investigate whether the new additional data in district heating that has become
available through digitalization (e.g. smart meters ) can be used for optimisation. Section 4.1
presents the results of Paper B and Paper C describing new methods to estimate the temperature
feedback of the network. Savings from temperature optimisation and comparing different op-
erations in district heating are discussed in Section 4.2, where the results of using a data-driven
method and a non-data-driven method are compared using results from Paper G and Paper B.
Finally, Section 4.3 presents the results from Paper D and Paper E, which address grey-modelling
of a school building and control of the heating system to achieve efficient heating operation. In-
telligent control of the consumer heating system is also discussed in the context of increasing
the flexibility of the network.

4.1 Temperature Control in DH
Paper F & Paper G

Section 2.1.2 describes the operation of district heating networks; this knowledge can be used
to create accurate data-driven temperature optimisation. First, by investigating the physical
relationship between the supply temperature [Ts], the return temperature [Tr], the flow rate [ṁ],
and the heat load Q is

Q = ṁcp(Ts − Tr), (4.1)
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Figure 4.1: An example of a reference curve used to control the network’s supply temperature
for the given ambient air temperature. From Paper C.

with the specific heat constant of the water [cp] to identify which variable can be used as a
control variable. The supply temperature, return temperature, and flow rate can be varied to
satisfy the heat load in the district heating network, i.e. possible control variables. However, the
supply temperature is usually varied, while the flow rate and return temperature depend on the
consumer’s operation, the load and the heating system’s operation. Other physical influences
must also be taken into consideration. For instance, the network is usually physically large,
and the time delays are usually more than three hours, so the temperature optimisation needs
must also consider the time delay. Furthermore, since the time delay varies depending on the
flow, the optimisation becomes even more complex [33]. The temperature optimisation must
also have a heat load forecast to ensure sufficient temperatures in the network without violating
constraints, e.g. too high flow rate due to too low temperatures. Heat load forecasting is also a
highly complex task because, as discussed in Section 3.1, it is driven by the physical and social
components [10]. Climate and social behaviour are the driving factors of heat consumption in
the places where district heating is used, e.g. how the ambient air temperature influences the
space heating to maintain thermal comfort (physical) and when people use hot tap water (social).
Therefore, temperature optimisation is a complex task, and advanced data-driven methods are
needed to make it accurate and robust to maximise cost savings and ensure consumers receive
sufficient heat.

Traditionally, supply temperatures have been controlled based on rules that depend on the am-
bient air temperature, i.e. a reference curve [48]. Figure 4.1 shows an example of a reference
curve. Alternatively, it was controlled based on the operator’s experience. However, a combi-
nation of both is usually used. A reference curve is a method in which the supply temperature
is determined as a function of the current ambient air temperature or as a constraint that the
supply temperature must not be lower than the reference curve at the given ambient air temper-
ature. The supply temperature is kept low and constant at high ambient temperatures in order
to provide sufficient temperature for domestic hot water usage during non-heating periods. The
temperature is kept high enough to eliminate any risk of bacteria. When the ambient air tem-
perature drops below a certain value, the supply temperature starts to increase linearly with the
falling ambient air temperature until the maximum supply temperature of the system is reached.
This control scheme is designed to ensure that the consumers receive sufficient heat, as it models
the relationship between supply temperature and ambient air temperature as a worst-case sce-
nario, i.e. the temperature should not be below the reference curve. The curve also takes into
account that the supply temperature has a sufficiently large safety margin for the given ambient
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air temperature. The flow rate is then determined based on the current supply temperature in
the network and the heat consumption. However, a more optimal approach would vary the flow
until it approaches the maximum flow of the system before increasing the temperature of the
network, as increasing the temperature is more expensive than the electricity needed to increase
the flow rate. The precision of the traditional method is low as it does not use temperature feed-
back of the system in the temperature optimisation, only as validation that is not violating the
reference curve. It is also not a predictive controller and only considers one climate variable to
vary the supply temperature. Due to not having feedback from the system, there is no direct
constraint that ensures that the supply temperature in the network is not below the reference
curve; see Figure 4.8 in Section 4.2 for demonstration.

Using a single reference curve in the system usually results in a high supply temperature, enough
to disregard any other known factors that influence heat consumption. This scheme is therefore
a conservative estimate as it only takes one variable into account to ensure that the heat supply is
sufficient at all times, which often leads to an unnecessarily high supply temperature. This leads
to higher costs and more heat losses in the system. The curve is therefore not an optimal strategy,
as it does not take into account other climate variables known to influence heat consumption,
such as wind speed, wind direction and solar radiation. It also ignores the social behaviour of
heat load and the time-varying relationship. One of the important time-varying relationships
is the time lag between when the water is produced and when it reaches the consumers, the
time delay. It is also not a predictive control, i.e. it does not look into the future when choosing
the supply temperature. Also, the effects of weather on heat load do not occur immediately,
as buildings are known to have a slow thermal response. The slow thermal response in a sin-
gle building is demonstrated in Madsen and Holst [49]. Preferably, the controller should take
into account predictions for the heat load and the network characteristics of the system (time
delay, heat loss). When all of the above factors are included in a control scheme using predic-
tive methods, new opportunities arise to lower the supply temperature without violating any
constraints and increase the supply temperature’s precision while lowering costs and reducing
heat losses. It is also important to note that the hydraulic limitation of the DHN imposes some
restrictions on the minimum supply temperature to ensure that the flow is below the maximum
limit with a specific safety margin. Hence, the supply temperature should be decided based on
these points mentioned above, e.g., flow, time delay, heat load, and weather forecast, where the
supply temperature at the plant is the control variable, and the network temperature is the re-
sponse variable. Therefore, a predictive method is required to select optimal supply temperature
set points to satisfy the consumer heat load without violating any constraints and increase the
savings. Otherwise, the consumers at the end of the network will not be supplied with sufficient
heat.

The DHS usually also has restrictions based on the above factors on the operation of the network
due to physical limitations and additional constraints made by the utility. Nielsen [50] describes
the following usual restrictions:

• A maximum allowable flow rate in the system: The restrictions in the flow rate are due
to the (always) limited pumping capacity, the risk of cavitation in heat exchangers and
difficulties maintaining a sufficiently high differential pressure in the remote parts of the
network during periods with high flow rates.

• Aminimum guaranteed inlet temperature at the consumers: This restriction is due to limita-
tions in the consumer installations as well as minimum domestic water usage temperature
requirements imposed by hygienic concerns.

• A maximum allowable supply temperature: This restriction is put on the systems in order
not to damage pipelines and consumer installations.
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• Limited short-term variation in the supply temperature: The stresses inflicted on the network
by large and frequent fluctuations in the supply temperature dictate that the short-term
variations in supply temperature should be limited.

• Maximum allowable diurnal variations of the supply temperature: In some systems, the size
of the expansion tanks may impose limitations on the allowable diurnal variation of the
supply temperature.

Thus, there are many constraints and physical limitations in the context of temperature control,
so several aspects must be considered when operating a network to ensure optimal operation.
Optimal operation of the network is achieved by minimising production costs without compro-
mising the safe operation of the system, negatively affecting the system’s maintenance costs or
compromising consumer satisfaction. Note that the physical descriptions and system limitations
listed here do not apply to every system. Each network is unique and subject to different physical
constraints or limitations. However, they must be considered before implementing temperature
optimisation to reduce the risk of failure and achieve optimal network operation.

Madsen et al. [51] propose a data-driven temperature control scheme that uses measurements of
network temperature, heat load forecasts, and return temperature forecasts to select the optimal
future set points of temperature. Any heat load forecasting model can be used, but accuracy is
critical for optimal control. For instance, the forecasting model framework proposed in Chapter
3 is an appropriate choice as it is an adaptive and recursive method where new information is
weighted higher than older information when updating the forecast. Hence, newer measure-
ments are given more weight when selecting the temperature set points. A model of the tem-
perature relationship between the production and the critical points is important because it can
be used to determine the characteristics of the network, e.g. time-constant and temperature loss.
Thus, knowing that the supply temperature leaving the plant at time t arrives at the critical point
at time t+ τ and satisfies the reference curve (the guaranteed temperature given by the utility)
and heat load condition. The heat load condition is that the supply temperature is high enough
so that the flow rate is not above the maximum limit. It also uses probability constraint to en-
sure that the supply temperature does not violate the reference curve too frequently and that the
variation of the supply temperature over time is kept as small as possible [52]. The same refer-
ence curve is used as described above, but it is used at the critical points by using temperature
feedback from the critical points for validation. Intelligent methods are also used to minimise
the temperature variation at the critical point, keeping it close as possible to the reference curve.

Søgaard [53] and Madsen et al. [51] propose to use a statistical transfer function model to model
the relationship between temperatures at the plant and critical points. For instance, a single-input
single-output AutoRegressive-eXtraneous (ARX) structure with time-varying coefficients can be
used to model the relationship. Here, the coefficients of the model are estimated recursively. In
addition, the time delay is also recursively estimated, which is essential as it frequently changes
due to its dependencies on the flow. Then, a controller can be created using the transfer function
to select the optimal set points of the temperature to ensure sufficient temperature at the critical
point, e.g. an eXtended Generalised Predictive Controller (XGPC) as proposed in [34] and [52].
The XGPC was proposed as an extension of the GPC controller because the controller needs to
handle the time-varying process. The time-varying process is needed due to the time-varying
relationship between the temperature at the plant and netpoint due to the time delay caused by
flow rate changes, which the GPC cannot handle.

A schematic view of the proposed controller from Madsen et al. [51] is shown in Figure 4.2 with
the addition of the NWP and load forecast, which are also required. The temperature set point at
the plant is selected by the overall controller (OC), which selects the highest set point from the
sub-controllers, the temperature sub-controllers (SC) and the flow sub-controller (FSC). The sub-

42 Data-Driven Methods for Enhancing District Heating Network Operation



FSC

SC1

SC2

SC3

OCLoad
Forecast

NWP

Figure 4.2: Figure shows a schematic view of the proposed temperature control from Madsen
et al. [51]. It shows the two sub-controllers, the temperature sub-controller (SC), which models
the relationship between the production and the network temperatures. The flow sub-controller
(FSC) estimates the supply temperature based on the heat load forecasts and the flow limits.
The overall controller (OC) then selects the highest set point supply temperature from the sub-
controllers to use.

controller uses the information andmethods described above to find the optimal future set points.
One of the key elements here is the temperature feedback (the response variable) to model the
network’s time-varying characteristics and have a closed-loop control. Therefore, measurements
at a critical point in the network are one of the most important parts of efficient data-driven
temperature optimisation as it is vital to ensure sufficient temperature for the consumer at the
same time lowering costs.

Usually, these critical points are typically close to consumers where the largest temperature loss
occurs in the system. The location of these points can change over time as a consequence of the
diurnal variations, leakage, the age of the pipes, etc. Therefore, several (e.g. five) critical points
are typically used. A measurement well is installed at these points to measure the data and send
it back to production. These wells are time-consuming to plan, install and maintain and very
expensive.

4.1.1 Temperature Feedback
Paper G & Paper C & Paper B

Temperature feedback for data-driven temperature optimisation is necessary because it provides
important information about network characteristics, such as losses and time delays between
production and specific points in the network. In addition, this information can be used to en-
sure that consumers receive a temperature of hot water acceptable for the given operation. These
measurement points that provide temperature feedback from the network can be referred to as
critical points, as they are usually located where the system operators believe the lowest network
temperature occurs, i.e. the highest temperature loss in the system. Therefore, if the tempera-
tures at these critical points are sufficient, the temperatures at all other points in the network
should also be sufficient. In the following, these locations are referred to as critical points. Op-
erators can therefore use this information to adjust their set points for the supply temperature
in the system. However, it would be more advantageous to have a closed-loop controller of the
temperature in the plant by using the network temperature as feedback.
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Figure 4.3: Illustration of moving away from traditional temperature feedback through the use of
measurement wells at critical points to the use of smart meter readings at consumers to provide
temperature feedback from the network. Figure from Paper G.

Usually, a measurement well is installed where the network’s critical points are suspected. Mul-
tiple critical points are also desirable, as the location of the points may change over time as
a consequence of the diurnal pattern. Therefore, multiple (e.g. three) critical points are nor-
mally used. The network can also change, e.g. pipes get older, pipes are replaced, new areas are
connected to the network, buildings are renovated, etc. Therefore, it would be beneficial if the
system feedback could be adapted by receiving feedback from any desired particular location in
the network. As mentioned in Section 2.3, smart meters will be available in almost every house
connected to the district heating network. Therefore, measurements from multiple locations in
the network are available and could be used to establish temperature feedback of the network.
This approach also eliminates the need to install temperature sensors in measurement wells.
Figure 4.3 illustrates the proposal to use the digital transformation of multiple smart meters and
use the measurements from these meters with machine learning to estimate a robust network
temperature that can be used as feedback, replacing the measurement well.

H1
H2

H3
H4

H5
H6 

H7 
H8 

 

Figure 4.4: Groups of houses connected to the same distribution pipe can be used to establish
netpoint temperature using smart meter readings from these houses.

In Paper B, a method is proposed that uses smart meter measurements to estimate the network
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temperature. Two cases are distinguished: first, the use of smart meters in single-family homes
to determine the network temperature (as illustrated in Figure 4.4), and second, the use of smart
meters in large apartment buildings as direct feedback for an online temperature optimisation
study. This is also discussed in Paper G, which discusses smart meters and temperature optimi-
sation of an online case study and presents the results.

Algorithm 1 Simple algorithm to establish network temperature from smartmetermeasurements
Input

T matrix [n × N ] of supply temperature measurements between time t − 15 min and
t+ 15 min

Q matrix [n×N ] of flow measurements between time t− 30 min and t+ 30 min
n Number of smart meters
N Number of time steps
mQ Numerical value of minimum flow allowed
q Numerical value of the desired quantile

Output
Ts Estimate network temperature at time t

procedure Estimate netpoint tempeRatuRe at time t
Tvec← vector
for i = 1, 2, . . . , N do

for j = 1, 2, . . . , n do
if Q[i, j] <= mQ then ▷ If the flow is lower than the minimum, then the

temperature value is replaced with NA
T [i, j]← NA

end if
end for
Tvec[i]← median(T [i, :], na.remove = TRUE) ▷ Median of all temperature readings

for each smart meter for the time t is computed
end for
Ts← quantile(Tvec, q) ▷ Netpoint temperature estimated from the median

temperatures from all smart meters at time t using the quantile
end procedure

The proposed algorithm uses the measurements of a group of smart meters at the consumer,
which are close to each other, to estimate the network temperature in the distribution pipe in
the street to which the consumer is connected, see Figure 4.4. The algorithm is demonstrated
in Algorithm 1, where the input is the flow rate, the supply temperature and the timestamp
of the readings from the smart meters. Unfortunately, the readings from the smart meters do
not necessarily come at the same time, and the readings may differ by 30 minutes between the
smart meters. Figure 4.5 illustrates this by showing the discrepancy in the data from a group of
smart meters where the frequency and resolution between the meters are entirely different. So
before estimating the network temperature, the readings need to be cleaned up. It is suggested
to aggregate the readings within the same 30 minutes by taking the median of the temperature
readings from the same meter within the time interval. However, first temperatures with low
flow readings are removed as they do not represent the temperature in the network when the
water in the service pipe is still. Then the median temperatures at the new time stamp for each
smartmeter are used to estimate the network temperature. The network temperature is estimated
by calculating the corresponding quantile of the new temperatures.

Algorithm 1 receives measurements of temperature T and flow Q from all smart meters that
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Figure 4.5: The plot demonstrates an interval of one hour. It shows the discrepancy in frequency
and resolution of smart meter data. From Paper C.

have readings in the period [t− 30 min, t+ 30 min]. n is the number of smart meters, and N
is the number of readings. The input variables mQ and q are the minimum accepted flow mea-
surement constraint and the desired quantile to be used when estimating the network temper-
ature at time t from a vector of the median temperature of all smart meters during the period
[t− 30 min, t+ 30 min].

The proposed algorithm determines a network temperature when measurements from the smart
meters are available. Therefore, the proposed method can only estimate the temperature in the
past. Usually, smart meters log values with high resolution (e.g. hourly), but they are usually sent
once a day with readings from the last 24 hours. As a result, the estimated network temperature
is only available for the past day when the data arrives. Also, the estimated temperature is
unreliable if the quality of the measurements is low (e.g. if there are only a few temperature
measurements or most of the measurements have a low flow).

In Paper C, a new method was proposed to make a more robust estimate of the network temper-
ature when the measurements are of low quality. The grey-box method was applied by creating
stochastic differential equations of the system, as shown in Figure 4.6. Here, physical knowledge
was used to estimate the network temperature in the street [T (s)

t ] by starting from measure-
ments in smart meters and describing the heat dynamics in the service pipe with heat losses to
the surroundings. The following partial differential equation (PDE) describes the heat transfer
and associated heat losses to the surroundings in a pipe as proposed by van der Heijde et al. [54],

∂(ρcvTA)

∂t︸ ︷︷ ︸
time

derivative

+
∂(ρv(cvT + p/ρ)A)

∂x︸ ︷︷ ︸
spatial

derivative

=

vA
∂p

∂x︸ ︷︷ ︸
pressure
difference
energy

+
1

2
ρv2|v|fDS︸ ︷︷ ︸

wall friction
dissipation

+
∂

∂x
(kA

∂T

∂x
)︸ ︷︷ ︸

axial heat
diffusion

− q̇e︸︷︷︸
heat
loss

,
(4.2)

where ρ [kg/m3] is the mass density of the fluid in the pipe, cv [kJ/(kgK)] is the specific heat
of the fluid in the pipe, A [m2] is the cross-sectional area of the pipe, v [m/s] is the flow velocity,
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Figure 4.6: Schematic of the layout of the system in which the smart meter is located at the
house, measuring all the necessary information. A service pipe transports the hot water between
the distribution pipe, which is normally located on the street in front of the house, and the
consumer. There is a heat loss between the service pipe and the surroundings, which depends
on the temperature in the pipe and in the ground.

p [kg/m3] is the absolute pressure, fD [−] is the Darcy friction coefficient, S [m] is the pipe
circumference, k [W/(mK)] is the thermal conductivity, T [℃] is the temperature inside the
pipe, and q̇e [W/m] is the heat loss per unit length.

From the PDE in Eq. 4.2 and a few assumptions as shown in Paper C, it is possible to formulate
a stochastic differential equation that describes the heat dynamics over a pipe,

dTt = C−1
(
cvQt(T

(s)
t − Tt)−R−1(Tt − Tg)

)
dt+ σ dωt. (4.3)

Jointly with the observation equation, this type of model is also referred to as a grey-box model
in the literature; see, for instance, Madsen and Holst [49].

Eq. 4.3 models the heat dynamics over the service pipe, i.e. the temperature loss from the net-
work pipe to the smart meter. However, there is no information about the temperature at the
network pipe, T (s)

t , and the only information available is the temperature measured at a group of
smart meters that are located close together. The street temperature must, in principle, be greater
or equal to the highest observed house temperature. Using this fact, the street temperature dy-
namic is modelled by a random walk process. Hence, no real drivers for the street temperature.
Combing this with the model of the service pipe gives the system of equations

dT (i)
t = C−1

i

(
cvQ

(i)
t (T

(s)
t − T

(i)
t )−R−1

i (T
(i)
t − T

(g)
t )

)
dt+ σi dω(i)

t , (4.4a)

dT (s)
t = σs dω(s)

t , (4.4b)

as illustrated in Figure 4.6.

The individual house temperatures T (i)
t are directly observed by the meter T (i,obs)

t and it is as-
sumed that the uncertainty of these measurements can be approximated by Gaussian noise,

T
(i,obs)
t = T

(i)
t + e

(i)
t , e

(i)
t ∼ N(0, V i

t ), (4.5)
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Since the quality of the temperature measurement depends on the flow, a flow-dependent vari-
ance construction was made using the logistic function S,

V i
t = V

[
e
(i)
t

]
= σ2

obs + S(−Qi(t) + b) = σ2
obs +

K

1 + ea(Qi(t)−b)
, (4.6)

This variance construction aims to reduce the weight of observations collected under low flow
conditionswhere the observations contain very limited information about the street temperature.
The parameters of the logistic function are a is the curve’s steepness, b is the midpoint, and K is
the maximum value of the function. The flow-dependent variance constructor proved necessary
when houses shut off the heating for long periods of time, as the temperature quickly converged
to a low-temperature value. This affected the network temperature estimate and introduced
more uncertainty into the process. The values of the variance construction should be estimated
separately for each cluster of smart meters, as the low flow threshold can change from area to
area.

In Paper C, the parameter estimation was done using the maximum likelihood approach with
two different approaches. The first method uses the R package Template Model Builder (TMB) [55]
methodology, which uses a generalised mixed effects model using the Laplace approximation to
integrate the states in the system. The latter method uses a discrete Kalman filter. However, the
filter was implemented with the TMB package to take advantage of the automatic differentiation
of the package, which reduces the computation time by using the gradient and the Hessian with
respect to the parameters of the likelihood function.

The computation time for parameter estimation must be fast because the system is large and
scales with the number of smart meters used. Therefore, for each smart meter, a new equation
from Eq. 4.3 is added to the system, adding three new parameters to the system equation and one
to the observation equation. However, the observation variancewas proposed to be fixed in Paper
C as it is quite stable and reduces the computation time. Therefore, the number of parameters
was 3M + 1, where M is the number of smart meters, and one represents the variance of the
random walk process. Thus, 46 parameters had to be estimated for a group of 15 houses and data
with a resolution of 5 minutes for one month was used. The two methods were compared. The
Kalman filter method using the automatic differentiation from TMB package was about ten times
faster and gave almost the same estimate of the parameters.

4.1.2 Main Findings
In Paper B and Paper C, two different methods were proposed to estimate the temperature of
the network, considered as the critical point for the temperature feedback of the network. In
Paper B, an additional method is presented using three smart meters as the critical point so that
the temperature readings are directly used as feedback. Measurements from smart meters in
buildings that consume a lot of heat (e.g. hospitals, industry, large apartment buildings, etc.) are
ideal for use as temperature feedback because they are robust. The flow is often high, so the
temperature measurements should be of good quality as they represent the temperature in the
distribution pipe in the network adequately. However, these types of consumers are not present
at all points in the network, and smart meters need to be used from single-family buildings that
consume less heat. Themeasurement from buildings that consume heat irregularly is not optimal
for temperature feedback, as the hot water in the service line to the house becomes still, and the
temperature starts to drop. Therefore, low supply temperature measurements do not give an
accurate signal of the hot water temperature in the distribution pipe in the street.

The two proposed methods were developed to use irregular and low-quality measurements from
smart meters in single-family buildings to create accurate temperature feedback of the hot water
temperature in the distribution pipe. The first method from Paper B is simple and can be easily
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Figure 4.7: Figure shows the measured house temperatures (grey lines) together with the mea-
sured critical point temperatures (black line). The estimated temperatures were calculated using
either the method proposed in Paper B (orange line) or the method proposed in Paper C. The
measurements used here are from Area 1 from Paper C.

implemented to create temperature feedback from a group of smartmeters. Themethod estimates
the temperature by taking, for example, the 90th percentile of the temperature readings from the
smart meters that have been cleaned as described above. The second method from Paper C is
a more robust method that uses SDEs and Kalman filter to estimate the temperatures from the
smart meters. However, this method is complex and requires more computation time. The first
method is also a non-parameter method with one ”parameter” that needs to be adjusted, namely
the quantile. In contrast, the second method has multiple parameters and scales with the number
of smart meters used.

Due to the complexity and advance of the second method, it leads to a more robust and precise
temperature estimate, as shown in Figure 4.7. The temperature estimation of the two methods
is shown; the ”Quantile Est. Temp.” is from the first method, and the ”SDE Est. Temp.” is from
the second method. The estimated temperatures can then be compared to the measured tem-
perature at a critical point. The critical point, in this case, is just outside the area where the
buildings are located that provide the smart meter readings. The temperature readings from the
smart meters are also visualised to show the difference between the two methods. The estimated
temperature from the second method (”Quantile Est. Temp.”) is more accurate and precise as it
does not fluctuate as much as the estimated temperature from the first method. While the esti-
mated temperatures from the first method (Quantile Est. Temp.) follow the smart meter readings
reasonably closely and are therefore more affected by the irregular heat consumption.

The estimated temperature from these two methods can be used as temperature feedback, which
can either be used only to determine whether the temperature in the network is high enough
or can be used for more intelligent operation, e.g. temperature control. This will give network
operators a better understanding of the network and its characteristics. It also increases the
feasibility of a district heating network with multiple temperature zones, as it is possible to get
temperature feedback from anywhere in the network, i.e. a decentralised network. Finally, using
smart meters instead of installing and maintaining a measurement well will increase the utility’s
savings, as installing and operating these chambers are time and cost-consuming.
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4.2 Savings
Paper G

The most significant savings from data-driven temperature optimisation to control the supply
temperature in the network come from lowering the supply temperature. This reduces produc-
tion costs as not as much heat needs to be generated, as lowering the supply temperature means
less heat loss in the system and an increase in the ratio of electricity to heat output in CHP-
powered district heating systems [12]. This is beneficial for the utility as electricity is more
valuable than heat, thus allowing for more profitable operation. As mentioned in Chapter 2,
lowering the supply temperature in the network also increases the flexibility of the system, e.g.
the operation of heat pumps becomes more feasible [5].

However, lowering the supply temperature results in a higher flow, as the heat load remains the
same, so pumping costs increase when the supply temperature is lowered. This is reasonable
as the electricity cost of running the pumps is negligible compared to the cost of producing a
higher supply temperature. In Nielsen and Madsen [56], an online operation of temperature op-
timisation in the district heating network in Roskilde, Denmark, was carried out. An economic
analysis was done to reduce the supply temperature and increase the flow, which showed that
large savings could be achieved through data-driven temperature optimisation. Although pump-
ing costs increased, they were negligible compared to the savings from the reduction in supply
temperature1.

An additional advantage of data-driven temperature optimisation, which uses feedback from
the critical points, is that it uses a reference curve as a constraint that the temperature at these
points must not be below the reference (with a probability of, e.g. 99%) [51]. This ensures that
consumers get what they were promised. In addition, the load on the system is improved because
the fluctuations in the supply temperature in the system are limited, i.e. it must not fluctuate too
much. Suppose the supply temperature fluctuates too much over long periods of time. In that
case, this increases the maintenance costs of the network, as the pipes are subjected to too much
stress as they expand and contract with temperature fluctuations Nielsen et al. [57].

The Paper G and Paper B were produced as part of a small project on data-driven temperature
optimisation of a small district heating network. One of the tasks was to compare traditional
control operations and data-driven temperature optimisation operations in an online setting.
Thus, the data-driven temperature optimisation controlled the temperature of a network in a real-
world case study for a heating season that started on 1 November 2020 and lasted until 1 April
2021. One of the main tasks of this project was to investigate whether smart meters could be used
as feedback from the network for control. Smart meter measurements were investigated to see
if a group of smart meters could be used to estimate network temperature as shown in Section
4.1.1. However, the buildings inside the district heating network are mainly large apartment
buildings therefore temperature readings from their smart meters could be used directly. Large
apartment buildings usually have constant heat consumption; therefore, temperature readings
are quite reliable as the hot water does not become still as for single-family buildings. In this
project, three apartment buildings were selected that had the most reliable measurements in the
past to be used as temperature feedback for data-driven temperature optimisation.

The previous operation used an open-loop temperature optimisation based on a purely physical
simulated-driven model (i.e., white-box model) to estimate the supply temperature set points
at the heat exchanger supplying heat to Tingbjerg. The open-loop refers to that no feedback

1Note: The electricity price influences pumping costs, and at the time of writing, the electricity price market
is historically high and very volatile. An additional signal (electricity price) for the controller might be needed to
compare the economic costs of running the pumps at high flow or reducing the supply temperature. This also strongly
depends on which heat production units are available.
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Figure 4.8: Figure compares the operation between the two controllers at the three critical points
in the Tingbjerg district heating network by plotting the supply temperature against the rolling
average of the ambient air temperature for the last 24 hours. The reference curve and the esti-
mated confidence interval of the operation are shown. Figure from Paper B.

from the system was used, i.e. no temperature feedback. The white-box model is based on the
knowledge of the network in the area (combined with the operator’s experience) using the scaled
heat load forecast from Section 3.2.1 and the ambient air temperature as inputs to estimate the set
points. In the new operation, state-of-the-art temperature optimisation was used, HEATTO™2 to
compare the advantage of using a data-driven method. Figure 4.8 shows the supply temperature
at the three critical points for both operating periods compared to the rolling average of the
ambient air temperature for the last 24 hours. The reference curve used for both operations is
also plotted with the points along the confidence intervals of the points obtained using the non-
parametric quantile regression with the 10th and 90th percentiles. Analysis of this figure shows
that the data-driven operation with feedback operates with higher precision and rarely violates
the reference constraint, while the previous operation violates it quite frequently. The dispersion
is significantly larger during the previous operation, which is evident from the data points and
the comparison of the confidence intervals.

Figure 4.8 shows that the previous operation was allowed to violate the reference curve without
receiving complaints from consumers, so the reference curve is too high. Therefore, a ”what if”
scenario was created where the data-driven operation was adjusted downwards by 5℃, and a
new reference curve was proposed that fits as a constraint based on the previous operation. The
”what if” scenario is shown in Figure 4.9. The figure shows that the temperature can be lowered
significantly using a data-driven method if the constraints are similar to those under which the
previous operation could be performed without complaint.

Since it is impossible to run two online operation controllers simultaneously, the comparison
between the two operations must be made between the different heating seasons. Usually, degree
days are used to compare the two operations. Degree days are often used for calculations on the
effect of ambient air temperature on energy consumption. In this case, degree days compare the
supply temperature between heating seasons. Degree days, T dd, are calculated as the positive
difference between the average ambient temperature (T̄a) over a day and a cut-off of heating

2https://enfor.dk/services/heatto/
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Figure 4.9: Figure demonstrate the ”what if” scenario by adjusting the data-driven operation by
5℃ to show that perfroamnce of the operation when is not constrained by a reference curve that
is too high. Figure from Paper B.

demand from buildings (17℃ is used here), i.e.

T dd = max(0, 17− T̄a). (4.7)

Therefore, it is then possible to compare the operation using the network’s average daily supply
temperature as a degree day function. Figure 4.10 shows the performance for both operations and
the ”what-if” scenario in the right-hand plots for both the supply and return temperatures. The
data-driven operation (the new controller) performs worse than the previous operation (old con-
troller), as expected because the data-driven operation is subject to higher constraints as it does
not violate the reference curve. To compare the operations more accurately, a regression model
was fitted for each operation using Ordinary Least Squares (OLS) to estimate the parameters of
the model with an intercept and slope, as shown in Figure 4.10 and rewritten here below,

New controller: Tsupply = 68.48 + 0.71T dd, (4.8)
Old controller: Tsupply = 62.61 + 0.97T dd, (4.9)

New adjusted controller: Tsupply = 63.48 + 0.71T dd. (4.10)

The slope of the two operations shows us that the data-driven operation gives lower temperatures
on days with higher degrees. However, there is a large difference in the intercept due to the
reference curve. The data-driven operation may not fall below it, while the previous operation
is scattered around it. It can therefore be assumed that the data-driven operation would perform
better if the reference curve were lower than the current one, matching what appears to be the
”real” reference curve from the previous operation. This is also evident from the model for the
adjusted controller (the ”what-if” scenario) and the data points of the supply temperature as a
function of degree days in Figure 4.10.

Figure 4.10 also shows the controllers’ precision in the plots on the left, where the ambient air
temperature and the supply temperature are shown together over the operating periods. The
lower plot on the left shows the difference series (current value minus past value) of the supply
temperature for both operations over time. These plots show that the data-driven operation is
more precise, as the supply temperature has a significantly lower variance in the difference series.
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Figure 4.10: Figure shows different plots comparing the two operations in Tingbjerg. The plots
on the left compare the robustness of the operations, while the plot on the right shows the perfor-
mance of the operations with respect to supply and return temperatures. The plots on the right
also show the ”what if” scenario, where all supply temperatures are reduced by 5℃, as discussed
previously. Figure from Paper B.

This can also be seen visually, although it was significantly colder and more volatile during the
data-driven operation period.

The savings estimate from lowering the supply temperature between two heating seasons is an
approximation if only supply temperature and ambient air temperature data are used. However,
it gives a good idea of the potential savings, as lowering the supply temperature increases the
utility’s savings. Madsen et al. [58] suggests a rule of thumb for the savings that result from
lowering the supply temperature in the CHP plant; For each degree lowered, the saving for heat
loss in the network is 0.5%, and the saving from more efficient production is 1%, so the savings
can be calculated as follows

Savings = (Costbefore ∗ x [◦C] ∗ 0.5%) + SharesProduction(Costbefore ∗ x [◦C] ∗ 1%) (4.11)

where x is the supply temperature difference between the operations to evaluate the savings

Estimating the savings in Tingbjerg using data-driven temperature optimisation compared to
the previous operation would not result in any savings, as Figure 4.10 shows that the supply
temperature has increased on average. However, analysing the ”what if” scenario, it can be
assumed that the supply temperature could be reduced by about 3℃ on average. By using the
rule of thumb, the savings would be about 4.5%.

4.2.1 Main Findings
In Paper G, it was shown that it is possible to use smart meters as feedback of the temperature
network. To demonstrate this, data-driven temperature optimisation using smartmetermeasure-
ments as feedback was performed in an online experiment. Savings and improvements for the
operation of a district heating network by reducing the supply temperature were also discussed.
A comparison between open-loop (old controller) and closed-loop (new controller) controllers is
carried out to demonstrate the potential of a closed-loop controller where the network character-
istics are taken into account when calculating the future set points for the supply temperature.

Unfortunately, the reference curve imposed on the data-driven operation was too high compared
to the previous operation. Due to not having feedback on the critical points in the previous op-
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eration, it was not recognised that the reference curve constraint was frequently violated. This
led to difficulties in comparing the two operations because the data-driven operation uses the
reference curve as a constraint that must not be violated. Therefore, comparing the supply tem-
perature would not be an accurate performance measurement. However, it can be seen that the
data-driven operation is more efficient and accurate when comparing the supply temperatures
between the operations, as it rarely violates the reference curve while keeping the temperatures
very close to it. This positively impacts operations as frequent and rapid changes in supply tem-
perature are reduced. This reduces maintenance costs for the utility and increases the certainty
that the correct temperature is delivered without too much uncertainty.

In the Tingbjerg study, no savingswere demonstrated because the supply temperaturewas higher
for the data-driven operation. However, other studies have demonstrated this. For instance, a
study at Brønderslev Forsyning showed a temperature lower by about 7℃ for a degree day of 10,
as shown in Paper F in Figure 5, and the savings for a 7℃ lower temperature would be 10.5%.
Another study was carried out at Svebølle Viskinge Fjernvarmeselskab, where the temperature
was lowered by 8℃ on average, and the savings would then be 12%, as shown in Paper G in Figure
A.1.

4.3 Smart Network
Paper D & Paper E & Paper F

The optimal operation of district heating systems also requires ”smart” consumers to achieve
optimal operation. Consumers can make their buildings more energy efficient by better ther-
mal insulation (i.e. storing heat more efficiently) or by using smart control of their heating, or
optimally would be doing both. Smart control reduces energy consumption and/or increases
the flexibility of the buildings by shifting the load by preheating the houses before peak hours.
Buildings can be considered as heat reservoirs that consume more heat and increase the indoor
air temperature to the maximum thermal comfort when the flexibility signal from the district
heating indicates it. The flexibility signal from the district heating could be a price signal or just
a signal indicating a surplus of heat in the system. For instance, the indoor air temperature can
be raised to a maximum, e.g. one or two hours before people wake up and start to use the domes-
tic hot water, so there is no heating during these peak times in the morning, i.e. peak shaving.
This can be done through the use of intelligent control, using multiple input signals to maximize
the flexibility of district heating while maintaining a comfortable indoor environment for con-
sumers. However, flexibility and peak shaving do not reduce the overall heat load; it reduces the
peak load, but the base load is increased [9]. Using heat intelligently increases the possibility of
lowering the supply temperature in the network, thus making the operation more efficient by
reducing operating costs and heat losses. This also means that additional heat sources for the
area are feasible and thus more operationally efficient. Another advantage of smart controlling
the heat consumption is that it can lower the return temperatures, which makes the operation
of the heat units, especially the CHP unit, more efficient [12].

Thus, if buildings are operated more intelligently and made more energy efficient (e.g. better
thermal insulation), the possibility of decentralising district heating increases as the supply tem-
perature of the network can be lowered. It will also increase the efficiency of sector coupling.
Thus, additional heat sources, such as heat pumps, can be used efficiently to cover the heat load.
In Paper D, it is proposed to use a non-linear grey-box model with stochastic differential equa-
tions to describe the heat dynamics of a school building in Denmark. Heating is provided by
a hydraulic heating system that delivers heat to each room via radiators. IoT sensors are used
to collect data to estimate the model parameters, e.g. the indoor temperature of the room is
measured and controlled thermostatic radiators are used to change the indoor temperature. The
model was identified using data from an experiment conducted to generate suitable data for iden-

54 Data-Driven Methods for Enhancing District Heating Network Operation



tification. The experiment is described in detail in Paper D. For simplicity, the mean indoor air
temperature of the rooms is modelled, not that of individual rooms (the control of individual
rooms is done in Thilker et al. [59]). The variables that should be modelled to predict the build-
ing’s heating system are 1) the mean indoor air temperature (T i

t ), 2) the heat load of the building
(ϕh

t ), 3) the temperature of the return water of the heating system (T ret
t ).

The proposed model was found by splitting the system into two parts: 1) identifying the model
that predicts only the indoor air temperature based on the measurements of the delivered heat
from the primary side of the building’s heat exchanger (i.e. the district heating side), 2) identify-
ing the model that predicts the heat load from the primary side (district heating) to the secondary
side (building heating) based on the measured indoor air temperature and set points while keep-
ing the parameters fixed that were estimated in 1). After identifying a suitable model for these
two objectives, it is possible to combine these twomodels into one and estimate the coefficients of
the combined model using the maximum likelihood estimation procedure with the continuous-
discrete extended Kalman filter to update and predict the states of the system.

An additional part of the model that needs to be highlighted is the way in which the radiator flow
is modelled for thermostatic control. Thus, the amount of heat the radiator emits to regulate the
indoor air temperature results from the relationship between the flow rate and the temperature
difference across the radiator. In Paper D, it is proposed to estimate the flow by modelling the
state of the thermostatic valve between 0 (closed, no flow) and 1 (fully open, maximum flow)
using the sigmoid function and set point and the measured indoor air temperature. An offset is
also proposed, as the indoor air temperature is not measured directly next to the radiators. It
follows that,

fvalve
t =

1

1 + exp
(
−α(T set

t + Toffset − T i
t )
) , (4.12)

where α is the slope that determines how fast the heating systems turn on and off.

The final proposed combined model,

dT i
t =

1

Ci

(
1

Rih

(
T h
t − T i

t

)
+

1

Riw

(
Tw
t − T i

t

)
+Awϕ

s
t

)
dt+ σ1dω1

t , (4.13a)
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dΦt =
1
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(Φmaxfvalve − Φt) dt+ σ3dω3

t , (4.13c)
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dT ret
t =

1

Ch

(
1

Rfr

(
T h
t − T ret

t
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dt+ σtdω5

t . (4.13e)

where Φ is the flow rate of the water on the building site. The observation equations are

yik = T i
tk
+ v1 , v1 ∼ Niid(0, R1) , (4.14a)

yhk = Φtcp,w

(
T for
t − T ret

t

)
+ v2 , v2 ∼ Niid(0, R2) , (4.14b)

yret
k = T ret

tk
+ v3 , v3 ∼ Niid(0, R3) . (4.14c)

Thus, the proposed model is used to describe the heating dynamics of school buildings using a
physically inspired nonlinear SDE model to predict the indoor air temperature, heat load and
return temperature of space heating. This model can then be used for smart building control, e.g.
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to reduce energy costs, increase the flexibility of the district heating network (peak shaving),
reduce CO2 emissions or create better thermal comfort in the building.

This can be donewith the help of model predictive control (MPC), which uses the proposedmodel
to achieve one of these goals. Paper E demonstrates the potential of detailed modelling of the
school building and MPC to reduce the operating costs and maximise the flexibility potential.
The reduction in operating costs was demonstrated by simulating the control strategy with the
aim of reducing the return temperature based on the district heating utility requirement that
the consumer must pay an additional charge if the return temperature is too high. The analysis
showed that if the return temperature is above 40℃, the heat prices increase by 2% per additional
degree of return temperature. The analysis showed that economic savings of 10% can be achieved
by using smart control. The flexibility study of the smart control demo is demonstrated by sim-
ulating a heating price signal from the district heating utility. The results show that the smart
control can unlock the flexibility of the building by preheating the building before the peak hours
(defined as the most expensive heating hours) without violating the thermal comfort constraints
of the indoor air temperature, both before the peak hours and during.

4.3.1 Main Findings
Paper D and Paper E show how buildings can become smart by modelling heat dynamics using
physically driven equations and installing IoT sensors to measure the desired variables. It will
also show how to set up the desired control cost function to achieve optimal heating operation.
Smart buildings can then be used to increase network operation efficiency by receiving a signal
from the utility (e.g. a price signal, a penalty signal, etc.) and allowing the building’s control
system to respond based on this signal, i.e. increase the flexibility potential of district heating.
However, the building’s individual control system should regulate the heating to meet the con-
sumer’s wishes in terms of thermal comfort and economy. There must therefore be some kind of
coordination between the consumer and the district heating utility in order to achieve optimal
cooperation between the two systems.

Hence, consumers are important actors on the way to decentralised district heating systems and
maximise their flexible potential, as the higher energy efficiency of buildings leads to lower heat
load and peak shaving. Therefore, more local heat sources can be used, and the utility’s operating
costs can be reduced.

56 Data-Driven Methods for Enhancing District Heating Network Operation



5 Conclusion and Perspectives
This PhD thesis aims to investigate the value and benefits of new additional data sources and to
apply new data-drivenmethods to enhance the operation of a district heating network. The focus
was on improving the current state-of-the-art methods for heat load forecasting and temperature
optimisation using new methodologies and new data.

A data-driven heat load forecasting model is presented, and a framework for dealing with the
non-stationary and non-linear characteristics of the heat load is introduced. Also, an individ-
ual forecasting model is created for each desired forecast horizon. The framework consists of
two stages, the transformation stage and the regression stage. In the transformation stage, the
independent variables are modified to account for the non-linearity between them and the re-
sponse variable, while in the regression stage, the parameters of the model are estimated using
a least squares method. A recursive least squares method with forgetting is proposed to allow
the parameters of the model to adapt over time to account for the non-stationarity in the heat
load. As district heating becomes increasingly decentralised, with sub-networks having their
own temperature optimisation and heat units, the importance of localised heat load forecasting
is introduced. Its importance is demonstrated by localising the forecast model using area mea-
surements and the weather input variables by adjusting them to the area’s climate using local
climate measurements. It is shown that the proposed localisation can increase the accuracy of
the heat load forecast. Furthermore, the value of accurate heat load forecasts is discussed with re-
gard to the operation of a district heating network, e.g. when optimising the supply temperature
provided by a heat exchanger.

Finally, operational state-of-the-art heat load forecast improvements are demonstrated using hi-
erarchical forecasting techniques where individual forecasts share information across the hier-
archy. Both temporal and spatial hierarchies are suggested. A recursive and adaptive covariance
estimator is proposed for the reconciliation process to achieve optimal improvements due to the
non-stationary nature of the heat load. With spatial and temporal hierarchies, significant im-
provements in heat load forecast accuracy can be achieved, on average, about 15%. For future
energy systems, accurate forecasts will be very valuable, especially for district heating and un-
locking the potential flexibility to maximise energy system efficiency. More granulated forecasts
for local heat load will also be needed as district heating systems become more decentralised and
include more local heat units. Therefore, more accurate forecasts will benefit the optimisation of
both temperature levels and production.

Data-driven temperature optimisation is introduced and demonstrated through a comparison
with traditional optimisation. Traditional optimisation is based on a purely physical simulation-
based model, where no network feedback is considered. In contrast, data-driven optimisation
uses physical insights to operate the system using measurements to estimate the parameters of
the model using statistical methods and exploiting the temperature feedback of the network to
gain knowledge of the network characteristics. It is shown that data-driven optimisation can
significantly reduce the supply temperature and increase precision, hence reducing operating
costs. The potential savings from data-driven temperature optimisation and lowering the supply
temperature for district heating networks were discussed. It is shown that network temperature
feedback is an essential part of temperature control to increase accuracy by actively learning
about the characteristics of the network and ensuring that consumers receive sufficient temper-
atures. Nowadays, there are smart meters in every house connected to a district heating network,
which offers the possibility to determine the network temperature using the measurement from
the meters and use it as feedback. Two methods for estimating network temperatures from a
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group of smart meters from single-family houses are presented to increase the potential of data-
driven temperature optimisation and the possibility of zones with multiple temperature levels.
Since the network is dynamic, the critical points may change over time, so the location of the
feedback needs to be changed, which can be done by selecting a new group of smart meters.
One of the two proposed methods can be implemented easily where the temperature measure-
ments are cleaned, and the network temperature is estimated by computing the 90th percentile
of smart meter temperatures at the same time. While the other method is more complex, using
the grey-box modelling approach to estimate the network temperatures. This is a more accurate
and robust approach to estimating the network temperature due to the quality of smart meter
measurements, as temperature readings are not accurate when the heat consumption is low. It
is therefore proposed and demonstrated that smart meter measurements can be used as temper-
ature feedback for temperature optimisation.

This thesis demonstrated that meter data could be used as the source for feedback for temperature
control through an online case study where smart meter measurements from users with high
heat consumption (large apartment buildings) were used directly as feedback. The precision of
temperature optimisation using smart meters as the feedback has been shown to be higher than
the previously used simulation-based approach. It is also worth mentioning that the percentile
method for estimating the network temperature from the smart meter measurements has been
integrated into the HEATTO temperature optimisation software and has been in operation for
more than a year with promising results.

Finally, it is shown that smart control of the district heating consumer’s heating system can
improve its operation, either by improving thermal comfort or economic aspects, by creating a
grey-box model of the thermal dynamics of the buildings. In addition, the consumers can play an
important role in improving the operation of the network, e.g. by delivering flexibility for reduc-
ing the load during peak hours through interaction with the district heating. This can be done
e.g. with time-varying heat prices. The future operation of district heating with the decentralised
system (with local heat units and TES systems) and the interaction with the consumer buildings
will be complex and challenging to operate all of its components (production, network, consumer)
optimally. This complexity calls for the widespread utilisation of data-driven methods.

The results of this thesis can be summarised as follows: Data-drivenmethods and physical knowl-
edge of the system are essential for improving network operation, and digitalisation is playing
an important role in the future weather-driven energy system. The efficiency of district heat-
ing network operation is crucial for the energy transition, where the share of renewable energy
sources is increasing. District heating is recognised as an essential player in the energy transi-
tion due to its energy flexibility through efficient heat storage and conversion of electricity into
heat. However, robust and accurate methods are needed to maximise the flexibility potential
of district heating by improving decision-making and operations. The methods presented here
have proven to be robust and accurate in real-life tests and implementations. As they exploit the
physical nature of the system, they are considered suitable (reliable) for operating the system in
a real-life online environment.
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Abstract

Heat load forecasts are crucial for energy operators in order to optimize the energy production at district heating plants for the
coming hours. Furthermore, forecasts of heat load are needed for optimized control of the district heating network since a lower
temperature reduces the heat loss, but the required heat supply at the end-users puts a lower limit on the temperature level. Con-
sequently, improving the accuracy of heat load forecasts leads to savings and reduced heat loss by enabling improved control of
the network and an optimized production schedule at the plant. This paper proposes the use of temporal hierarchies to enhance
the accuracy of heat load forecasts in district heating. Usually, forecasts are only made at the temporal aggregation level that is
the most important for the system. However, forecasts for multiple aggregation levels can be reconciled and lead to more accurate
forecasts at essentially all aggregation levels. Here it is important that the auto- and cross-covariance between forecast errors at the
different aggregation levels are taken into account. This paper suggests a novel framework using temporal hierarchies and adaptive
estimation to improve heat load forecast accuracy by optimally combining forecasts from multiple aggregation levels using a rec-
onciliation process. The weights for the reconciliation are computed using an adaptively estimated covariance matrix with a full
structure, enabling the process to share time-varying information both within and between aggregation levels. The case study shows
that the proposed framework improves the heat load forecast accuracy by 15% compared to commercial state-of-the-art operational
forecasts.

Keywords: Heat load forecast, Adaptive forecasting, Temporal hierarchies, Forecast reconciliation, Adaptive estimator, Recursive
shrinkage estimator

1. Introduction

Energy forecasting has become an essential method in the
green transition due to the increased complexity of energy sys-
tems required to achieve high energy efficiency. This is high-
lighted in Hong et al. [1], who give an extensive historical
overview of energy forecasting, including current trends. The
authors point to the significant growth of research related to
renewable energy forecasts during the past decade. Energy sys-
tems that rely on renewable energy sources, e.g., wind and so-
lar, to produce either electricity or heat need an accurate predic-
tion of the energy demand for the upcoming days to ensure that
they can fulfill the demand and optimize their operation accord-
ingly. Planning needs to take into account that wind and solar
as energy sources can not always provide the required energy
demand due to their weather dependency. Therefore, they are
integrated with other energy sources to ensure that the energy
demand is met. However, wind and solar are an important part
of the green transition. The share of renewable energy in the
European Union is expected to increase to 70% by 2050 [2].
Therefore, accurate forecasts are becoming increasingly valu-
able for the energy sector.
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Many different forecasting models have been proposed in
recent years for the energy sector. From classical methods,
e.g. Taylor [3] using double-seasonal Holt-Winters exponential
smoothing to forecast electricity demand, to more complicated
models, e.g. Nielsen and Madsen [4] using a grey-box model to
forecast heat consumption. However, there is probably not one
unique forecasting model that can provide the best forecast in
all situations for every energy system. Therefore, frequent stud-
ies suggest using multiple models, and combining forecasts typ-
ically gives better overall forecasts than using only one model
[1, 5]. There has also been a significant increase in the num-
ber of studies using temporal hierarchies to improve forecast
accuracy by utilizing the information between different aggre-
gation levels and by optimally combining them with reconcil-
iation [6, 7]. Using temporal hierarchies could be a beneficial
approach to improve the accuracy of energy forecasts because
they use both short-term and long-term forecasts to improve
forecast accuracy and consequently give coherent forecasts on
all aggregation levels. For example, district heating plants need
short-term forecasts for operational optimization, such as sup-
ply temperature control, while long-term forecasts are used for
planning, e.g. biomass supply planning. The district heating
sector can gain heavily from the temporal hierarchies, as they
need accurate and coherent short-term and long-term forecasts
for control and planning.
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1.1. District Heating
District heating is an efficient way to provide heat to build-

ings in densely populated areas. Due to its flexibility, district
heating has become a crucial part of the agenda to reach a re-
newable, non-fossil heat supply in the future. Additionally, dis-
trict heating increases the flexibility of the overall integrated en-
ergy system by storing energy. For example, excess wind power
during low-electricity-demand periods can be used to heat wa-
ter with heat pumps or electric boilers that can be stored to re-
duce pressure on the heating system during peak hours [8]. The
change from traditional fossil fuels to renewable district heat-
ing embedded in a smart energy system is referred to as 4th

generation district heating [9]. To pave the way, district heat-
ing systems are currently undergoing a digital transformation.
Along with this transformation, the district heating systems are
continuously improving the efficiency of their operations. An
important prerequisite for operating a district heating system
efficiently is the accuracy of heat load forecasts. Being able to
look accurately into the future demand enables the operators to
run the system with more precision, resulting in a more efficient
operation, hence lowering the system costs.

Lowering the supply temperature in the district heating net-
work using control methods has substantial potential for cost
savings, since lower supply temperatures lead to lower heat
production costs as well as reduced heat losses in the transmis-
sion and distribution network [10, 11]. The supply temperature
from the plant and flow in the network are controlled by using
feedback from the critical points in the network. The feedback
is typically based on an adaptively estimated model describ-
ing the time-varying time-delay in the network, as well as the
heat loss between the plant and the critical points in the net-
work [4, 10, 12]. The controller uses predictions of the future
heat load to adjust the supply temperature in order to reach the
lowest possible temperature which still ensures that the temper-
atures are as required at the critical points. The flow is typically
regulated to match the required heat demand while keeping the
supply temperature as low as possible [10, 13].

The European Union has set a target of 5% for the share
of solar thermal production in district heating systems in 2050
[14]. Tschopp et al. [15] provide an extensive review of the
performance and future of solar thermal production in district
heating. Current developments in the performance of collectors
and control strategies make the use of solar thermal units more
attractive for the district heating sector. District heating systems
generally design the size of solar farms to cover the heat de-
mand in summer periods without production from other units.
By using thermal storage and appropriate control strategies at a
solar farm, district heating operators have the flexibility to store
heat from surplus production and use this stored heat in periods
with low solar radiation [16]. The control strategies for a solar
farm require accurate heat load forecasts for optimal utilization
of solar heat.

Furthermore, the overall production optimization of district
heating systems is highly dependent on forecasts of the heat
load [17]. Since production is optimized for the heat load fore-
cast, accurate forecasts result in reliable optimal production
planning for the system, with a larger potential for savings and

utilization of green energy. Without an accurate forecast, the
determined production schedule will be inefficient, costly, and
maybe even infeasible. To summarize, the presented scenarios
on how heat load forecasts are used to operate district heating
more efficiently exemplify why improved heat load forecasts
are highly desired and beneficial for the district heating sector.

1.2. Heat Load Forecasting
Heat load forecasting has been frequently studied, and sev-

eral methods have been proposed along with a selection of vari-
ables that influence heat demand as inputs to the forecasting
model. Dotzauer [18] suggest using a simple regression model
including forecasts of outdoor temperature and heat demand of
consumers. This simple regression model gives an accurate pre-
diction of the future heat load by creating a piecewise linear
function linking the heat demand to the outdoor temperature
and using seasonal profiles of the heat demand. Dahl et al. [11]
use the weather forecast uncertainty and an ARX (autoregres-
sive exogenous) model to forecast the heat load using outside
temperature, wind speed, and solar irradiance as inputs. The in-
put variables are determined using model selection of different
input variables. Their results show that the time-varying uncer-
tainties improve the supply temperature control of a heat ex-
changer, thereby lowering the supply temperature and increas-
ing savings by reducing heat losses to the surroundings in the
transportation pipes.

Nielsen and Madsen [4] model heat consumption using the
grey-box modeling approach to take advantage of combining
physical and statistical modeling of district heating system.
They also propose which input variables to use for heat load
forecasting, and in some cases they suggest filtering the input
variables due to e.g. the thermal inertia of buildings. The fore-
casting models presented in this paper are based on the method-
ology proposed in Bacher et al. [19]. Bacher et al. [19] pro-
pose an adaptive and recursive method to forecast heat load for
single-family houses. Their method uses recursive least squares
(RLS) to estimate the coefficients in the forecasting model. This
allows the model coefficients to change over time and adapt
to changes. The model is therefore self-calibrating, which is
important because heat load is a nonlinear process, highly de-
pendent on weather conditions. Therefore, the coefficients of
the model change as the heat load dynamics change over time
along with the weather. Bacher et al. [20] use the same RLS
scheme for solar-power forecasting of a PV system, and Ras-
mussen et al. [21] use it to forecast electrical load for supermar-
ket refrigeration after demonstrating how to incorporate non-
linearity into the linear regression model.

1.3. Temporal Hierarchies
Temporal hierarchies have not been applied to heat load fore-

casts, although such hierarchies have shown promising accu-
racy improvements in other areas, such as tourism and electri-
cal load forecasting [6, 7]. In temporal hierarchies, the hier-
archy levels are different, non-overlapping temporal aggrega-
tions. For example, the total heat load of a single-family house
over a week can be disaggregated into the total heat load for
each day of the week. The heat load for each day can then be
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disaggregated into the demand per hour of the day. Here, the
top level of the temporal hierarchy is the total weekly heat load,
which is the aggregation of the daily heat load for the days in
the week, which themselves are aggregations of the hourly heat
load for each hour of the day.

Athanasopoulos et al. [6] state that forecasting different tem-
poral aggregation levels reveals different information in the
data. They demonstrate that on a lower resolution frequency,
e.g. the weekly heat load, the trend in the load could be more
dominant, while on a higher frequency, e.g. hourly heat load,
seasonality can be more dominant. Hierarchical prediction
models on different aggregation levels can capture this differ-
ent behavior in the data. The information at each level is shared
between levels using forecast reconciliation. Forecast reconcil-
iation is the process of optimally combining hierarchical fore-
casts to yield coherent forecasts. A coherent forecast fulfills the
constraints defined by the temporal hierarchy framework pro-
posed by Athanasopoulos et al. [6], i.e. any forecast at an ag-
gregate level is equal to the sum of the respective subaggregate
forecasts from the level below.

The bottom-up method is a simple approach to generate co-
herent forecasts where the forecasts from the lowest aggrega-
tion level are aggregated to fit the hierarchical structure cre-
ated beforehand. The top-down method disaggregates forecasts
from the highest aggregation level using probabilities or past
experiences to divide the forecasts into lower levels. Neither of
these methods takes the relationship between aggregation levels
into consideration. Therefore, information is lost between the
levels, leading to a sub-optimal result. A detailed summary of
traditional hierarchical forecasting is given in Athanasopoulos
et al. [22].

Recent studies propose different methods to optimally rec-
oncile forecasts in a temporal hierarchy. Hyndman et al. [23]
create an independent forecast for each level, which is referred
to as the base forecast and can be created from any model.
The base forecasts are then reconciled to yield coherent fore-
casts. The reconciled forecasts are linear combinations of the
base forecasts computed using generalized least squares (GLS)
based on the covariance matrix Σ. Wickramasuriya et al. [24]
show that the covariance matrix estimated from the coherency
errors is nonidentifiable and therefore impossible to estimate.
Hyndman et al. [25] propose using a diagonal covariance matrix
estimated from the base forecast errors leading to a weighted
least squares estimate of the reconciled forecasts. Wickrama-
suriya et al. [24] provide theoretical justification for using the
empirical covariance matrix for the base forecast errors, Σ̂, as
an estimator for Σ. Nystrup et al. [7] demonstrate that using
the full covariance matrix for the base forecast errors results in
significantly more accurate reconciled forecasts than assuming
no auto- and cross-correlation between aggregation levels.

Temporal hierarchies have been applied for several types of
energy forecasting. Nystrup et al. [7] use temporal hierarchies
to improve short-term electricity load forecasts. Jeon et al. [26]
apply the temporal hierarchy framework to ensure coherence
of probabilistic forecasts of wind power production, using a
cross-validation method to find the weights in the reconcilia-
tion process. Yagli et al. [27] and Yang et al. [28] use temporal

hierarchies to improve the accuracy of solar power production
forecasts for PV plants. These results demonstrate a promising
potential of applying a temporal hierarchy to improve heat load
forecasts.

The temporal hierarchy frameworks in literature frequently
do not take the covariance into account and thereby result in
lower accuracy improvements when dismissing the connection
between aggregation levels [7]. There have also been no at-
tempts to extend the framework to have adaptive and recursive
updates of the covariance matrix. In this paper, we suggest a
method to overcome these issues.

1.4. Contribution
This paper proposes a novel framework based on temporal

hierarchies to improve the accuracy of heat load forecasts. This
is done by combining forecasts from multiple temporal aggre-
gation levels using an adaptive forecast reconciliation method.
We propose three different approaches to update the covari-
ance matrix, and hence the weights in the reconciliation pro-
cess change over time to handle the time-varying dynamics of
the heat load. The first method recursively updates the covari-
ance matrix without any forgetting, the second method uses a
rolling window with fixed width and equal weights to forget
past information, and the third method uses exponentially de-
caying weights on past information to increase the importance
of the most recent observations. All three covariance matrices
use a shrinkage estimate of the full matrix structure based on
the in-sample prediction errors. This enables the framework to
share information both within and between aggregation levels.

We demonstrate the usefulness of the framework by improv-
ing the accuracy of state-of-the-art operational heat load fore-
casts for the Danish district heating planner, Varmelast. The
operational forecasts were provided to Varmelast by a com-
mercial forecast provider. The objective is to increase the ac-
curacy of the hourly heat load forecasts (i.e., the operational
heat load forecasts) for day-ahead operational planning using
the proposed framework. Forecasts of the heat load for all ag-
gregation levels for the next 24 hours are issued at 23:00 every
night. The base forecasts are used in the reconciliation process
to generate reconciled forecasts. These forecasts are then used
to demonstrate the accuracy improvements for the Varmelast
case study. The usage of the commercial state-of-the-art fore-
casts is discussed by comparing them to our own simple fore-
casting model and the benefit of improving the forecasts using
the proposed framework.

The contribution of this article is fourfold: 1) To the best of
our knowledge, this is the first article to apply a temporal hi-
erarchy to improve heat load forecasts. 2) We propose three
adaptive and recursive methods to estimate the covariance ma-
trix, which is used to reconcile the forecasts across the hierar-
chy. By allowing for time-varying weights, the approach is able
to handle non-stationary processes by adapting to changing dy-
namics when required. This improves the potential for achiev-
ing more accurate forecasts in practical applications where sta-
tionary is often an issue. 3) We shrink the covariance matrix
before reconciling the heat load forecasts. In order to do so, we
extend the Ledoit and Wolf [29] closed-form solution for the
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optimal shrinkage intensity parameter by deriving a recursive
estimation method. 4) This is the first article to include a com-
mercial state-of-the-art operational forecast in the hierarchy and
demonstrate accuracy improvements while using simple fore-
casts on the other temporal aggregation levels. Our results show
that the suggested approach is able to improve state-of-the-art
forecasts that have a direct influence on the operation of the
system through optimal control of the network supply tempera-
ture. In addition to improving the current state-of-the-art fore-
cast, our method yields coherent forecasts at multiple temporal
aggregation levels which are useful for planning, e.g. purchases
of biomass for a combined heat and power plant [7, 30].

The remainder of this article is organized as follows. The
data is presented in Section 2. In Section 3, the base fore-
cast models used to generate forecasts for the aggregation levels
above the operational forecast are presented. Section 4 outlines
the theory of forecast reconciliation and proposes three differ-
ent covariance estimators. The results are presented in Section
5 and discussed in Section 6. The paper is concluded in Section
7 with a summary.

2. Data

The data for this study is the heat load in the Greater Copen-
hagen area in Denmark. The data was provided by Varmelast,
who deliver heat production planning for the district heating
plants within this area. The data is the hourly heat load from 1
January 2016 to 31 December 2019, denoted by

{Y t; t = 1, . . . ,N} , (1)

with the total number of observations N = 35064. The mea-
surements are visualized in Figure 1 and the seasonal dynamics
of the heat load can clearly be seen. The top plot visualizes the
heat load over the four years, showing the yearly seasonality.
The yearly dynamics are the result of increased heating demand
in the winter when the ambient temperature decreases and de-
creased heating demand in the summer when the ambient tem-
perature increases. The lower plot shows one winter week to
demonstrate the weekly and daily seasonality in the heat load.
The weekly and daily patterns can be explained by consumer
behaviour, as the demand peaks in the morning and evening
when consumers leave for work and return home, respectively.
The weekends have a different pattern than the weekdays as
the morning peaks disappear, which can be explained by fewer
people going to work on the weekend.

2.1. Numerical Weather Prediction
The numerical weather predictions (NWPs) used as input to

the forecasting models were provided by MetForTM from the
commercial forecast provider.1 The NWPs consist of climate
variables with an hourly resolution that are updated every hour
and are available to forecast the heat load, Ŷ t+k|t.

An example of an NWP for the kth forecast horizon is the
predicted ambient temperature [in ◦C] denoted by{

T a,NWP
t+k|t , t = 1, . . . ,N, k = 1, . . . , 24

}
. (2)

1https://enfor.dk/services/metfor/
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Figure 1: Time series plot of the heat load over the four-year period and of one
week to visualise the seasonal dynamics in the data.

2.2. Operational Heat Load Forecasts
Varmelast uses forecasts with an hourly resolution for mul-

tiple steps ahead to create the operational plan for the dis-
trict heating plants. It is crucial to increase the accuracy of
these forecasts, since this will allow more accurate planning.
The commercial forecast provider supplies the hourly heat load
forecasts to Varmelast. The heat load forecasts are supplied by
HeatForTM.2 The heat load forecast, Ŷ t+k|t, is updated every
hour for k-steps ahead, as shown below,{

Ŷ t+k|t, t = 1, . . . ,N, k = 1, . . . , 24
}
. (3)

The objective of the paper is to improve the accuracy of the
day-ahead hourly heat load forecasts using forecast reconcili-
ation. The forecasts made at 23:00 each night for the next 24
hours will be used to see if the proposed method can improve
the accuracy of the hourly forecasts. Thus, the predictions hori-
zon of interest in improving the hourly forecast accuracy is
k = 1, 2, . . . , 24.

3. Base Forecasts

Base forecasts for each aggregation level are required for
the proposed method. We will create base forecasts using the
method proposed in Bacher et al. [19], i.e., recursive and adap-
tive regression-based models, and use some of the proposed in-
put variables from Nielsen and Madsen [4], including their sug-
gestions for filtering of some input variables. The filtering com-
pensates, for instance, the thermal inertia of buildings, where

2https://enfor.dk/services/heatfor/
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only slow variations in the outdoor temperature are reflected
in the heat needed to maintain a particular indoor temperature.
The hourly heat load forecasts are supplied by the commercial
forecast provider, but forecasts on the other temporal aggrega-
tion levels are needed. As focus is on the day-ahead operation,
the temporal hierarchy will span from the daily level at the top
level to the hourly level at the bottom. The aggregation lev-
els are ` = {24, 12, 8, 6, 4, 3, 2, 1}. A total of eight different
base forecast models will be created, including a simple model
for the hourly level to demonstrate the difference between fore-
casts from a simple model and the commercial state-of-the-art
forecasts.

The models will use regression form, for example

Yt+k = θ0 + θ1T a,NWP
t+k|t + εt+k, (4)

where Y is the heat load, θ are the coefficients, and ε is the
residual. The predictors in this model are the intercept and the
ambient temperature from the NWP. Therefore, the regressor at
time t is

XT
t = (1,T a,NWP

t+k|t ), (5)
and the parameter vector,

θT =
(
θ0, θ1). (6)

Hence, the model can be written as
Yt+k = XT

t θt+k + εt+k. (7)

The base forecasts are generated using adaptive methods
where the coefficients of the model are time-varying, i.e. they
are updated every time a new observation becomes available.
In addition, the model uses a forgetting factor to discount old
information and increase the importance of the newest observa-
tions. This type of forecasting model is referred to as a recursive
least squares model with a forgetting factor λ [31]. The solution
at time t can be written in a recursive form. The RLS updates
the coefficients when new information becomes available using:

θ̂k,t = θ̂k,t−1 + R−1
k,t Xt−k[Yt − XT

t−kθ̂k,t−1], (8)

Rk,t = λRk,t−1 + Xt−k XT
t−k. (9)

That is, the coefficients are recursively updated by weighted
least squares estimation with the weights exponentially decay-
ing over time. The rate of decay is determined by the forget-
ting factor, λ. Xt−k is the regressor vector, θ̂t,k is the coefficient
vector, and Yt is the dependent variable. The subscript k repre-
sents the unique coefficient estimates for each k-step prediction
model. The regressor vector only uses information available
at time t − k to forecast the dependent variable at time t when
updating the coefficients.

Each aggregation level has its own unique model that is es-
timated independently of the other aggregation levels. This is
due to the fact that each aggregation level has unique dynam-
ics. Thereby, each model structure is made in the regression
form with the k-step prediction at time t being

Ŷ`
t+k|t = X`T

t θ̂
`

k,t, (10)

Table 1: The base forecast models for all aggregation levels and their corre-
sponding inputs and steps ahead. Note that the hourly model is the simple
model and not the forecast provider model.

Model
Aggregation level [`] Inputs Steps ahead

Daily T a,NWP
t,k , θ0, AR(1) k = {1}

Twelve-hourly T a,NWP
t,k , θ0, AR(1) k = {1, 2}

Eight-hourly T a,NWP
t,k , θ0 k = {1, 2, 3}

Six-hourly T a,NWP
t,k , θ0, µ(t, nhar, αdiu) k = {1, 2, 3, 4}

Four-hourly T a,NWP
t,k , θ0, µ(t, nhar, αdiu) k = {1, . . . , 6}

Three-hourly T a,NWP
t,k , θ0, µ(t, nhar, αdiu) k = {1, . . . , 8}

Two-hourly T a,NWP
t,k , θ0, µ(t, nhar, αdiu) k = {1, . . . , 12}

Hourly T a,NWP
t,k , θ0, µ(t, nhar, αdiu) k = {1, . . . , 24}

where the ` superscription refers to the target aggregation level
of the forecast.

The regression vector, X, is created using filtered and non-
filtered inputs to describe the heat consumption dynamics ade-
quately for each aggregation level. Table 1 shows the models
for each aggregation level with the inputs used and the predic-
tion steps. The ambient temperature forecast, T a,NWP

t+k|t , is filtered
using a low-pass filter with a stationary gain of one. The sys-
tematic heat load peaks in the data are modeled using a diurnal
curve model from a harmonic function using a Fourier series,
µ(t, nhar, αdiu). The index t is the time of the day in hours, nhar is
the number of harmonics, and αdiu is a vector consisting of the
coefficients for the harmonics. An auto-regressive (AR) term is
included in the model when needed to remove auto-correlation
in the error. Finally, θ0 is the intercept in the model.

In total, eight different models are created, and each of them
has a different number of prediction steps for the next day. The
prediction steps for each aggregation level are shown in the last
column in Table 1. For example, the top level is the daily ag-
gregation and the prediction is therefore only one step ahead.
The other, lower aggregation levels need to deliver forecasts
that cover the entire day. For example, at the eight-hourly level,
forecasting three steps ahead is necessary to match the 24-hour
cycle. We give the daily model in Eq. (11) as an example of a
model:

Ŷ`=24,t+k|t = θ0,k + θ1,kY`=24,t + θ2,kHaTa
(q)T a,NWP

`=24,t+k|t, (11)
where the filter

HaTa
(q) =

1 − aTa

1 − aTa q−1 . (12)

The θs are the coefficients of the regression model and HaTa
(q)

is the first order low-pass filter of the ambient temperature
forecast, T a,NWP

t,k . The q−1 is the backward shift operator, i.e.
q−1xt = xt−1, and aTa ∈ [0, 1] is a parameter which corresponds
to the time constant between the heat load and ambient temper-
ature.

The forgetting factor, λ, and the time constant, aTa , are pa-
rameters that are estimated in an offline setting for each aggre-
gation level by minimizing the root mean square error (RMSE)
using the optim() function in R [32]. The model coefficients,
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θ, are updated online whenever a new observation is available
using Eq. (8) and Eq. (9).

4. Forecast Reconciliation

The reconciled forecasts are computed from the base fore-
casts using a temporal hierarchy. In a temporal hierarchy, each
aggregation level is the total heat load for the given time reso-
lution, i.e. Y`

t is the total heat load for the period (t − `, t] where
` is the aggregation level. As the objective of this paper is to
improve the hourly day-ahead heat load forecasts, the hierarchy
structure was chosen as the full natural structure with all aggre-
gation levels between the hourly aggregation at the bottom and
the daily level at the top, i.e., ` = {24, 12, 8, 6, 4, 3, 2, 1}. If an
aggregation level is removed from the hierarchy it can result in
lower accuracy when the true dynamics of the system are un-
known. We consider the full natural hierarchy rather than only
a subset of the aggregation levels, as this leads to the largest
improvements in accuracy.

The number of aggregation levels could be increased by
adding half-hourly or quarter-hourly forecasts; however, the
NWPs that are used as inputs to the base forecast models have
an hourly resolution, which is also the granularity of interest for
the district heating operation. The NWPs would therefore need
to be interpolated and it is not clear that this would lead to fur-
ther improvements. It would also increase the dimension of the
hierarchy significantly, which could become an issue. See Nys-
trup et al. [33] for a discussion of the trade-off between dimen-
sionality and accuracy. We leave it for future work to consider
the optimal number of aggregation levels in greater detail.

To demonstrate the concept of a temporal hierarchy, we use
an example of a temporal hierarchy with only three levels, as
shown in Figure 2. The lowest aggregation level is ` = 4h, the
second-lowest is ` = 12h, and the top level is ` = 24h. The top
level is the sum of the two 12-hour periods, which are the sum
of three different four-hour periods.

Figure 2 can be seen as the summation matrix, S, for the
hierarchy. The summation matrix corresponding to Figure 2 is
given by

S =



1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(13)

The general definition of the summation matrix is given in
Nystrup et al. [7] as

S =


Im/`1 ⊗ 1T

`1
...

Im/`L ⊗ 1T
`L

 (14)
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Figure 2: Example of a temporal hierarchy structure. The plot shows three
different levels, ` = {24, 12, 4} and how they are aggregated.

where ⊗ denotes the Kronecker product, Im/` is an identity ma-
trix of order m/`, and 1` is an `−vector of ones. The summation
matrix is used to reconcile the forecasts in order to fulfill the co-
herency constraints of the temporal hierarchy. The aggregation
levels are a factor of m, which is the sampling frequency of the
lowest level. In the example above, `1 = m, `L = 1, and m/`
is the number of observations at the aggregation level `. Using
Figure 2 to illustrate this, the hierarchy has aggregation levels
`1 = 6, `2 = 2, and `3 = 1 with m = 6 and the number of nodes
in the structure is n = 9.

The base forecast models are created independently for each
aggregation level. They are defined as Ŷ`

t+k|t for the temporal
hierarchy. The number of steps ahead, k, of the prediction is the
vector of 1, . . . ,m/`. The forecasts are generated at time t for
the hierarchy. The levels ` = {24, 12, 4} would result in Figure
2. Thus, we have nine base forecasts in total: six for ` = 4h,
two for ` = 12h, and one for ` = 24h at these timestamps. The
base forecasts are not necessarily coherent, i.e. the sum of the
first three four-hour forecasts is not necessarily equal to the first
12-hour forecast. However, the reconciled forecasts, Ỹ`

t+k|t, are
coherent.

The vector Ŷt+k|t consists of all base forecasts for all aggrega-
tion levels. An example of this using the same hierarchy from
Figure 2 is

Ŷt+1|t =


Ŷ24h

t+k|t = [ŷ24h
t+1|t]

T

Ŷ12h
t+k|t = [ŷ12h

t+1|t, ŷ12h
t+2|t]

T

Ŷ4h
t+k|t = [ŷ4h

t+1|t, ŷ4h
t+2|t, . . . , ŷ4h

t+6|t]
T

 (15)

which contains predictions from the three aggregation levels.
The order of the vector is that the top row is the highest
aggregation level and the corresponding prediction steps; in
this case, the daily and the one-step ahead prediction. Then
come the lower aggregation levels with their k predictions until
the lowest level, which is the four-hourly aggregation with the
one-step to six-steps ahead predictions. The same holds for
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the reconciled forecasts, Ỹt+k|t. In this paper, the reconciled
forecasts are only computed daily at 23:00 for the next day
to demonstrate the accuracy improvements. Therefore, the
base forecasts generated at 23:00 are used in the reconciliation
process. Consequently, Ŷt+k|t and Ỹt+k|t are updated daily when
the base forecasts are generated and reconciled.

There are multiple ways to make hierarchical forecasts co-
herent. The simplest ways are the bottom-up and top-down
methods, where forecasts are made either at the lowest or high-
est aggregation level, respectively. The bottom-up method is
defined as

Ỹ = SGŶ , (16)

G =
[
0m×(n−m)|Im

]
, (17)

where Ŷ is the base forecast made at the lowest level, S is the
summation matrix matching the hierarchy structure, and G is a
matrix of order m × n, which extracts the m bottom-level fore-
casts, transforming it to the correct form for the summation ma-
trix. The matrix SG can be seen as the projection matrix. This
method does not use any information between different aggre-
gation levels, but can be used to demonstrate the reconciliation
process. The process, as shown in Eq. (16), is a linear combi-
nation of the base forecasts where G extracts and combines the
base forecasts into a vector of size m of disaggregated forecasts.
The summation matrix, S, then creates the reconciled forecasts
from the disaggregated vector. In an example using the hierar-
chical structure in Figure 2, the bottom-up method would only
extract the four-hourly base forecasts from Ŷ . The reconciled
forecasts, Ỹ , would then be created using the summation matrix
from the four-hourly forecasts. Base forecasts from the other
two aggregation levels would therefore not be used, and the rec-
onciliation process would not use information from the higher
levels. However, this can be changed by modifying the projec-
tion matrix. Hence, every reconciliation process can be written
using this form with different G.

Van Erven and Cugliari [34] propose a game-theoretical ap-
proach to estimate the optimal reconciled forecasts in two in-
dependent steps. They prove that their reconciliation method
improves any base forecast or is at least as good as the base
forecast. The steps are 1) creating the best possible predic-
tions without coherency constraints and 2) mapping them to
new predictions that are coherent. They formulate the prob-
lem of computing the reconciled forecasts as a minimax opti-
mization problem that can be solved using convex optimization.
Unfortunately, the problem does not have a closed-form solu-
tion. Hyndman et al. [23] and Athanasopoulos et al. [6] pro-
pose a closed-form solution using linear regression to estimate
the reconciled forecasts for structural and temporal hierarchies
using generalized least squares estimation. The base forecasts
are written on the regression form,

Ŷt+k|t = Sβ(k) + ε(k), (18)

where S is the appropriate summation matrix; β(k) =

E[Y`,t+k |Y = y1, . . . , yt] is the unknown conditional mean of the

future values of the most disaggregated observed series, i.e. the
reconciled forecasts; and ε(k) represents the error between the
base forecasts and their expected value, i.e. the coherency er-
ror Ŷ − Ỹ . The error ε(k) is assumed to have zero mean and
covariance matrix, Σ. Hence, the generalized least squares es-
timation of β(k) in Eq. (18). If Σ is assumed to be known and
the base forecasts are unbiased, the reconciled forecasts can be
estimated by

ỹ = S (S TΣ−1S )−1S TΣ−1ŷ, (19)

where the matrix G = (S TΣ−1S )−1S TΣ−1.
It has been shown that Σ is never known nor identifiable [24].

Therefore, it is proposed to estimate it from the in-sample base
forecast errors while imposing additional structure on the ma-
trix. Numerous different methods have been proposed to use the
Σ̂ estimator instead of Σ. Hyndman et al. [23] suggest using or-
dinary least squares (OLS), i.e. an identity matrix, which results
in the equal weighting of all base forecasts. In Hyndman et al.
[25], weighted least squares is used as an estimator by using the
variance of the base forecasts to create the weights. In Athana-
sopoulos et al. [6], three different weighted least squares esti-
mators, Hierarchy Variance Scaling, Series Variance Scaling,
and Structural Scaling are presented. These are naive methods
for creating the estimator as the off-diagonal entries are zero,
thus dismissing any cross-correlation between levels. Wickra-
masuriya et al. [24] propose the minimum trace (MinT) estima-
tor, which uses all information between levels by using a full
covariance matrix of the base forecast errors. Nystrup et al. [7]
present four covariance estimators that account for the cross-
correlation between levels.

In this study, the full covariance matrix will be used to gen-
erate the reconciled forecasts. The matrix shares information
within levels and between levels. Recent results have shown
that using the auto- and cross-covariance leads to significant
improvements in forecast accuracy [7, 24]. The covariance ma-
trix is estimated from the past base forecast errors,

Σ̂t =
1
t

t∑
i=1

eieT
i , (20)

where e is the vector of the base forecast error for each aggre-
gation level and step-ahead prediction at each time step. It is
assumed that the forecast errors are unbiased, i.e., E[ei] = 0.

It is known that heat load follows seasonal patterns as the
ambient temperature changes and space heating increases or de-
creases. The heat load is also more stationary over the summer
period as there is no space heating. Therefore, two of the co-
variance estimators proposed include a forgetting factor. This
allows them to forget past errors as the dynamics of the heat
load changes between seasons and throughout the years. The
third estimator is the full covariance matrix that uses all of the
past available base forecast errors.

4.1. Method 1: Expanding Window Covariance Matrix
The first method proposed is the approach where the covari-

ance matrix estimator is based on all past available errors. The
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estimator includes both the auto- and cross-covariance between
all aggregation levels. Nystrup et al. [7] applied this estimator
of the covariance matrix and concluded that using all informa-
tion between levels improves the forecast accuracy on all ag-
gregation levels.

This estimator will be recursively updated every day when
new observations are available and the error of the forecast can
be computed,

Σ̂t =
1
t

eteT
t +

t − 1
t

Σ̂t−1. (21)

Initially, this will update the covariance matrix quickly as new
information becomes available, and the updating will be slowed
down later.

4.2. Method 2: Rolling Window Covariance Matrix
The second proposal is to estimate the covariance matrix us-

ing a rolling window. The estimation is performed on a fixed
window of past errors where they all have equal weight. The
rolling window adds new errors to the estimation when they be-
come available and removes the oldest errors from the window.
The length of the window or the memory is optimized by find-
ing which memory yields the highest accuracy improvements
of the operational heat load forecasts over the in-sample period.

The rolling window estimator is given by

Σ̂t =
1

t − j

t∑
i=t− j

eieT
i , (22)

where the index j is the length of the rolling window, i.e., the
memory.

4.3. Method 3: Exponential Smoothing Covariance Matrix
The exponential smoothing covariance matrix is a recursive

and adaptive estimator. It is updated when a new observation is
available, and every observation is weighted differently using a
forgetting factor, λ. The weights are normalized to ensure that
the sum of the weights is one [31]. The exponential smoothing
estimator is given by

Σ̂t = λΣ̂t−1 + (1 − λ)eteT
t . (23)

When λ → 1, the covariance is not updated, and when λ → 0,
the covariance is highly influenced by the newest observations.
The initial covariance matrix for Σ̂0 is usually initialized by
computing the sample covariance over an initialization period
in an offline setting. The forgetting factor and the initial period
for the covariance are optimized to maximize the improvement
in the accuracy of the operational heat load forecast as for the
rolling window method.

4.4. Shrinkage
The fourth proposal is to shrink the estimated covariance ma-

trices. Shrinking the covariance estimate has been shown to
improve forecast accuracy considerably [7, 24]. The shrinkage
method used is the scale and location invariant shrinkage pro-
posed by Ledoit and Wolf [29]:

Σ̂∗t = λ∗shrinkΣ̂d
t + (1 − λ∗shrink)Σ̂t, (24)

where Σ̂d
t is the diagonal entries from the covariance matrix Σ̂t.

The shrinkage target is the diagonal variance of the levels since
the off-diagonal elements of the covariance matrix are shrunk
towards zero as λ∗shrink increases. Ledoit and Wolf [29] derived
a closed-form solution for the optimal value of λ∗shrink by min-
imizing the mean squared error. This shrinkage estimator of
the covariance matrix is ideal for a small number of data points
with a large number of parameters. If the variance is assumed
to be constant, then the optimal shrinkage parameter is given by

λ∗shrink =

∑
i,j V̂ar(σ̂i j)∑

i,j σ̂
2
i j

, (25)

where σ̂i j is the i jth element of the covariance matrix from the
base forecast errors. The variance of the estimated covariance,
σ̂i j, from the covariance matrix, Σ̂, is computed as shown in
Appendix A in Schäfer and Strimmer [35].

We extend the work by Ledoit and Wolf [29] and Schäfer
and Strimmer [35] such that the variance of the empirical co-
variance matrix is estimated recursively. A recursive estimate
of the variance of the covariance matrix is found to be

V̂ar(Σ̂t) = λ(1 − λ)2(e2
t (e2

t )T − Σ̂2
t ) + λ2V̂ar(Σ̂t−1). (26)

The shrinkage parameter can then be recursively updated at
each time step using

λ∗shrink,t =

∑
i,j V̂ar(Σ̂t)i j∑

i,j(Σ̂t)2
i j

. (27)

The proof is given in Appendix A and the algorithmic solu-
tion is used in a recursive scheme. The recursive shrinkage will
be imposed only on the exponential smoothing estimator. The
other two estimators will be shrunk using Eq. (25). Hence, the
estimate will be updated at each time step and shrunk before
being used to reconcile the forecasts.

4.5. Optimization of Memory Parameter
For two of the covariance estimation methods, the rolling

window and exponential smoothing, the memory parameter
needs to be optimized to give the largest improvements. The
expanding window estimator does not have a memory parame-
ter. The initialization period for the sample covariance matrix
also needs to be determined.

The initialization period and the memory parameter will be
optimized to maximize the accuracy improvements of the op-
erational heat load forecasts. The metric used to measure the
accuracy improvements is the relative root mean squared error
(RRMSE) that is frequently used to compare accuracy improve-
ments of reconciled forecasts [6, 7]. It was recommended by
Hyndman and Koehler [36] due to the interpretability of the rel-
ative measure when considering accuracy improvements. The
RRMSE is defined as

RRMSE =
RMSE

RMSEbase − 1, (28)
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1. Generate
base forecasts

Input variables

5. Compute forecast error when 
observations become available

4. Generate
reconciled forecasts

3. Shrinkage
2. Update the

covariance matrix

Figure 3: Overview of the workflow of the proposed method.

where negative values describe a percentage improvement of
the reconciled forecasts over the base forecasts. In this paper,
the RRMSE is only computed for each aggregation level. The
RMSE is computed as the average error for all prediction steps
for the corresponding aggregation level:

RMSE =

√√√
1
T

T∑
t=1

1
m/`

m/∑̀
k=1

(Yt+k − Ŷt+k|t)2 (29)

where T is the number of days forecasts are generated, m is the
number of forecasts at the bottom level, ` is the aggregation
level, k is the prediction horizon, Y is the heat load observation
and, Ŷ is the heat load forecast.

For the rolling window, the memory is defined as the num-
ber of past days. These past days will be used to estimate the
covariance at each time step using the error from those days.
The window for the rolling window has a fixed length where
the errors have equal weights. The memory for the exponential
smoothing is computed from the forgetting factor λ as

Neff =
1

1 − λ
. (30)

where Neff is the effective memory for the exponential smooth-
ing. The memory for the exponential smoothing is not a fixed-
length window as for the rolling window due to exponential
decay.

The initial sample covariance matrix needs to be invertible
such that the reconciled forecasts can be estimated as shown in
Eq. (19). Thus, an optimal initial period needs to be defined
to make this feasible. The shrinkage will also ensure that the
covariance is invertible when λ∗shrink > 0 [29].

4.6. Workflow of Forecast Reconcilation
The workflow of the method proposed in this paper is illus-

trated in Figure 3 and described in the following. Before the
workflow is started, the base forecast models and the covari-
ance matrix are initialized.

1. Generate base forecasts. The base forecasts in this paper
are generated from the RLS regression models as introduced

in Section 3 using the corresponding input variables for each
aggregation level. A base forecast vector at time t, Ŷt+1|t, is cre-
ated which includes every aggregation level forecast with the
corresponding forecast horizon as shown in Eq. (15). When the
commercial state-of-the-art forecasts are used, they are com-
bined with the higher aggregation base forecasts, and the au-
thors’ hourly base forecasts are removed before the reconcilia-
tion process.

2. Update the covariance matrix. A covariance matrix is
needed for the reconciliation process to combine the base fore-
casts. In this paper, the covariance matrix is updated recursively
using one of the three methods proposed. As the covariance
matrix is recursively updated, the previous covariance matrix
needs to be kept for the update when a new observation be-
comes available.

3. Shrinkage. The covariance matrix is shrunk before the
reconciliation process using either of the two shrinkage meth-
ods suggested in Section 4.4. One of the methods recursively
updates the shrinkage parameter using Eq. (26) and Eq. (27)
while the other estimates it directly from the current covariance
matrix using Eq. (24).

4. Generate reconciled forecasts. When the base forecasts
and the covariance matrix are ready, the reconciled forecasts
are computed using Eq. (19).

5. Compute forecast error when observations become avail-
able. When new observations become available, the base fore-
cast errors, et = Yt − Ŷt|t−1, are computed and the covariance
matrix is updated. The updated covariance matrix is then used
to generate new reconciled forecasts.

5. Results

In this section, the results from the proposed method, using
three different covariance estimators, are presented and evalu-
ated. The results will be discussed in terms of improving the
accuracy of the operational forecast using the temporal hierar-
chy. The benefits of having a state-of-the-art forecast in the
proposed method will be discussed by comparing the accuracy
result with the result of using the authors’ simple model pro-
posed in this article.

The optimization of the hyperparameters for the covariance
estimators is presented in Section 5.1. The estimators are then
used with the selected hyperparameters to create reconciled
forecasts from the base forecast for the Varmelast case study.
The results for the reconciled forecasts are presented in Sec-
tion 5.2.

5.1. Hyperparameter Optimization
As described above, the memory and initialization period for

the covariance estimators need to be optimized. They are deter-
mined by minimizing the RRMSE. The year 2016 will be used
as initialization period and years 2017 and 2018 as in-sample
training period to estimate the optimal initial period and mem-
ory. Data from year 2016 is only available from 17 January until
the end of the year, as the first 16 days are used for initialization
of the base forecasts.
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Figure 4: Optimizing the memory for the Exponential Smoothing and Rolling Window estimators using three different initial periods for the sample covariance for
two different in-sample years. The optimization is done on the hourly aggregation level.

Figure 4 shows the RRMSE of the operational heat load fore-
casts for different memories and initial periods for all three
methods in the two in-sample years. The rolling window and
exponential smoothing methods test three different initializa-
tion periods of 100, 200, and 350 days. The initialization pe-
riod does not seem to affect the results for the rolling window,
as it results in the same accuracy improvements for the three
initial periods. However, the initialization period affects the ex-
ponential smoothing, as the plot for 2017 demonstrates. When
comparing the result between the two years, it can be seen that
the results are sensitive to the initialization period and the mem-
ory length. The 2017 test year is closer to the initial sample
covariance, Σ̂0, which results in three different curves based on
the initial period while the curves for 2018 are more similar.
When the memory is longer than what is optimal, the improve-
ments seem to decrease again. The rate of deterioration after
the optimal point depends on the initial period for which the
sample covariance is estimated. Figure 5 demonstrates the ef-
fects between the memory and the initialization period for the
exponential smoothing method. The plot shows the influence of
the older observations, depending on the memory. The longer
the memory is, the more influence older observations have. In
other words, the initial sample covariance matrix will influence
the current estimator, and the magnitude of the influence de-
pends on the memory. Hence, when the memory is long and
the initial period is 100 days, then the initial sample covari-
ance has a considerable impact on the covariance matrix many
months later. For example, the influence of the initial sample
covariance on the current covariance after one year is close to
0.16 with a memory of 200 days, as the green curve in Figure 5
shows.

The rolling window does not outperform the other two meth-
ods as the memory increases. Figure 4 shows that the rolling
window converges to the same accuracy improvements as the
expanding window method with increasing memory size. This
is not the case for the exponential smoothing method, as it
seems to have an optimal point where it yields the maximum
improvement. Based on these results, the initial period was set
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Figure 5: Influence of older observation for different memory lengths for expo-
nential smoothing. The weights are normalized by 1 − λ.

to the first 350 days, i.e. the entire year of 2016 after removing
the first 16 days for the base forecast initialization to compute
the initial sample covariance. The memory for the exponential
smoothing was set to 365 days, i.e. a full year, as these pa-
rameters are hyperparameters and have a flat curve around the
optimal point. The memory for the rolling window is the same
as for exponential smoothing.

5.2. Empirical Results
The results for the three years, 2017, 2018, and 2019 are pre-

sented in Table 2 along with the result for all three years com-
bined. The 2017 and 2018 data were used to optimize the hyper-
parameters as shown in Section 5.1, while out-of-sample data
from 2019 is used to validate the results. The hourly results in
the table are for the commercial state-of-the-art forecasts. The
hourly improvements are highlighted in Table 2 to emphasize
that they are of most importance in this case. They are the op-
erational heat load forecasts used to operate the district heating.
The higher aggregation levels are included in the result for com-
pleteness. The RMSE of the base forecasts is shown in the first
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Table 2: RMSE for the base forecasts and RRMSE for the reconciled forecasts for daily heat load in the Greater Copenhagen area. Results are shown for three
different years and the whole period from 2017 to 2019. The years 2017 and 2018 were used to optimize the hyperparameters while 2019 is the out-of-sample year.
The result from the hourly forecasts is highlighted using grey-background to emphasize that the objective is to improve the hourly forecasts.

2017 2018
Base RMSE Expanding Window Rolling Window Exp. Smoothing Base RMSE Expanding Window Rolling Window Exp. Smoothing

Daily 0.5585 -17.88 -17.7 -18.1 0.6218 -23.02 -19.56 -22.94
Twelve-hourly 0.3151 -17 -16.72 -17.19 0.3766 -25 -22.25 -25.01
Eight-hourly 0.3333 -39.78 -39.61 -39.9 0.3508 -40.24 -38.56 -40.48
Six-hourly 0.2628 -41.07 -40.77 -41.17 0.2876 -42.16 -40.21 -42.23
Four-hourly 0.1715 -35.24 -34.86 -35.34 0.1725 -31.81 -30.16 -32.32
Three-hourly 0.1273 -31.98 -31.62 -32.09 0.1315 -30.34 -28.62 -30.75
Two-hourly 0.0846 -29.07 -28.64 -29.16 0.088 -27.99 -26.33 -28.51
Hourly 0.0372 -14.83 -14.26 -14.92 0.0389 -14.77 -12.91 -15.44

2019 2017–2019
Base RMSE Expanding Window Rolling Window Exp. Smoothing Base RMSE Expanding Window Rolling Window Exp. Smoothing

Daily 0.6058 -29.6 -30.21 -30.41 0.596 -23.75 -22.49 -23.93
Twelve-hourly 0.3602 -28.91 -28.54 -29.1 0.3516 -24.08 -22.83 -24.2
Eight-hourly 0.3759 -49.82 -49.36 -50.01 0.3538 -43.51 -42.72 -43.69
Six-hourly 0.3106 -49.67 -49.36 -49.87 0.2876 -44.64 -43.75 -44.76
Four-hourly 0.1852 -40.74 -40.22 -41.05 0.1765 -36.06 -35.19 -36.37
Three-hourly 0.141 -36.36 -35.56 -36.54 0.1334 -33.03 -32.05 -33.26
Two-hourly 0.0924 -32.94 -32.02 -33.13 0.0884 -30.09 -29.07 -30.36
Hourly 0.0389 -14.67 -13.3 -14.83 0.383 -14.75 -13.46 -15.07

Bold values represent the best performance for each aggregation.

column for each year followed by the RRMSE for the three pro-
posed covariance estimators: expanding window, rolling win-
dow, and exponential smoothing. The table shows that, for
all aggregation levels and for both the in-sample and out-of-
sample years, the reconciled forecasts using any of the estima-
tion methods improve the base forecasts. The improvement of
the operational heat load forecasts is consistently around 15%
in all years. The improvement of the other levels varies more
between years and the improvements are even higher in the out-
of-sample year. The reconciliation approach performs at least
as well out-of-sample as in-sample, which highlights its robust-
ness. Each level has an improvement ranging from 10% to
50%, with the six- and eight-hourly aggregation levels having
the largest improvements. These large improvements compared
to the base forecasts could indicate that the model is not able to
capture the seasonal behavior in the data.

Based on the results in Table 2, we can summarize the fol-
lowing for three estimators:

Expanding Window. The covariance matrix grows over time
and always improves the base forecasts at all aggregation levels.
The expanding covariance matrix does not require optimization
of the hyperparameters, which makes it favorable when few
data points are available.

Rolling Window. The covariance matrix with fixed window
size and equal weighting performs the worst out of the three
methods. Optimization of the hyperparameters showed that the
rolling window will converge to the same result as the expand-
ing window with increasing memory, but it never outperforms
the expanding window method.

Exponential Smoothing. The adaptive and recursively up-
dated covariance that exponentially weights past errors yields
the largest accuracy improvements. Having an adaptive and
recursive covariance matrix results in the best performing es-
timator, as it always gives the largest accuracy improvements
for the operational heat load forecasts. It also gives the largest
improvements on the other levels in nearly all cases. Across all

three years, it outperforms on all aggregation levels.
Figure 6 shows the heat load observations, base forecasts,

and reconciled forecasts using the exponential smoothing esti-
mator for four of the aggregation levels. The grey dashed ver-
tical lines represent the hour 23:00 every day when the models
are updated and forecasts are generated for the next day. The
plots show that the reconciled forecasts are frequently better
than the base forecasts. There are, however, a few time peri-
ods where the reconciled forecasts are worse. Yet, overall the
reconciled forecasts result in higher accuracy, as the RMSE in
the lowest plot shows for the operational level. It is difficult to
understand where the improvements at the lowest aggregation
level come from. The improvements could come from trunca-
tion in the AR process and different memory in the forecasting
models for the higher aggregation levels. The higher the aggre-
gation level, the shorter the memory, and therefore it can react
more rapidly. For example, rapid changes in the heat load or
the outdoor temperature are shared with the lower levels.

The eight-hourly plot shows that the base forecast is only
able to capture the trend, not the daily seasonality. However,
the reconciled forecasts capture both the trend and seasonality.
The reconciled forecasts are able to share information with the
lower aggregation levels, where the seasonality is more dom-
inant. The forecasts for the higher aggregation levels benefit
from sharing information with the lower levels when they are
not able to capture the seasonality. The lower aggregation levels
benefit from sharing information with higher levels as they can
capture the trend more accurately. Thus, temporal hierarchies
using the covariance matrix with auto- and cross-covariance,
which shares information both within each level and between
levels in the reconciliation process, significantly improves the
accuracy of all forecasts, including the operational heat load
forecasts.

Figure 7 shows four different error measures for each predic-
tion horizon for the hourly day-ahead forecasts. The top plot
shows the RMSE in 2019 for each prediction step. Reconciling
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Figure 6: Plots of the observations, base and reconciled forecasts showing the
improvements of the reconciled forecasts.

the forecasts using the proposed exponential smoothing covari-
ance improves accuracy for each step. The second plot shows
the difference in RMSE between the base and reconciled fore-
casts for each prediction horizon. The plot shows that the rec-
onciled forecasts improve the base forecast for all horizons. In
general, the differences are quite similar in size except for the
peak around k = 6. The third plot shows the root mean scaled
squared error (RMSSE),

RMSSE =
RMSE√

1
N−1

∑N
t=2(yt − yt−1)2

, (31)

for each prediction step. Similar results are seen when com-
paring the RMSSE and RMSE plots. The reconciled forecasts
improve accuracy for all prediction horizons, as shown in the
bottom plot, where the RRMSE is plotted for each step k. The
plot also demonstrates that the accuracy improvements using
the proposed method are consistent over the three years. Gen-
erally, the error should increase with the forecast horizon. This
is not always the case, as the two top plots show some varia-
tion over the horizons due to the diurnal variation of heat load.
This is can be seen in the RMSE and RMSSE plots, where the
shape of the error follows the daily heat load profile, i.e. the
error peaks in the mornings and afternoons when the heat load
starts to increase. The horizon accuracy from the NWPs used
as inputs to the models could also be a contributing factor here,
combined with the daily profile. Comparing the RRMSE of

the k = 1 horizon between the years shows that accuracy is
improved the least in 2019. For the first six steps ahead, the
RRMSE varies between the years, while the RRMSE for the
longer horizons is more consistent across the years. A possible
explanation for this is that the first six hourly forecasts are the
heat load between 23:00 and five in the morning where the heat
load is relatively stationary.

The heating season can be split into three different periods.
The first period is the first four months of the year, when the
heat load is quite high and the transition from winter to sum-
mer occurs. The second period is the summer months from
May through the end of August, when the heating demand in
the Greater Copenhagen area is low. The third period is the last
four months of the year, when the heat load starts to increase
again as outdoor temperature decreases. Figure 8 shows the
cumulative squared error of the operational heat load forecasts
for the year 2019 split into these three periods. The three plots
show that the temporal hierarchy improves the accuracy in all
three periods. Hence, the methods can perform even though
the heat demand changes concurrently with the outdoor tem-
perature. The largest accuracy improvements occur around the
times when the heat load changes the most. For example, after
October the heat load starts to increase as shown in Figure 1,
and that is also when a significant change in accuracy improve-
ment happens. The same occurs in the transition period in the
spring. In the summer period, when the heat load is stationary,
there are only small improvements using the proposed method.
All of the three covariance estimators outperform the commer-
cial state-of-the-art base forecast in all three periods, with the
exponential smoothing method performing the best.

To demonstrate how powerful temporal hierarchies are, we
compare reconciled forecasts based on our own simple base
forecasts from Section 3 for all aggregation levels to the state-
of-the-art base forecast from the commercial provider. The sim-
ple model is the hourly model from Table 1. Note that this
model uses accurate weather forecasts provided by the fore-
cast provider as input. Figure 9 shows that the state-of-the-art
base forecast is significantly better than our own hourly base
forecast. Yet, when applying the proposed adaptive and recur-
sive covariance estimator to our base forecasts, the resulting
reconciled forecasts outperform the commercial base forecasts
slightly. Thus, creating forecasts from simple models at multi-
ple aggregation levels can compete with state-of-the-art opera-
tional heat load forecasts in terms of accuracy. As expected, the
reconciled forecasts based on the commercial state-of-the-art
base forecasts are even more accurate than those based entirely
on our own base forecasts. In other words, using more accurate
base forecasts results in more accurate reconciled forecasts.

6. Discussion

In this work, we have suggested recursive and adaptive meth-
ods to update the covariance matrix used in forecast reconcil-
iation, and we have shown that the suggested methods lead to
significant improvements of the accuracy of operational heat
load forecasts. The covariance estimator in the reconcilia-
tion process uses the auto- and cross-covariance to connect the
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Figure 8: Cumulative squared error of the base forecasts and the reconciled
forecasts from the three covariance estimators. The three plots divide the year
2019 into three different periods with respect to heating demand and transition
period.

base forecasts from all aggregation levels, and this improves
the forecasts by sharing information within and between the
hierarchy levels. The covariance matrix was made recursive
and adaptive as the heat load is a time-varying process due to
changes in the outdoor temperature. The results show that the
covariance method needs an entire year of in-sample data for
initialization and a long memory to yield the largest improve-
ments. However, it only needs to store the previous covariance
matrix and current errors for the reconciliation procedure.

We focused solely on improving the base forecasts for the
next day that were generated at 23:00 every night. The pro-
posed method could easily be applied to recursively reconcile
new base forecasts generated every hour for the next 24 hours
using the same hierarchy. If only interested in one-hour ahead
forecasts a different temporal hierarchy would be more benefi-
cial. The strength of the proposed method is its adaptive prop-
erty for the covariance matrix and the proposed recursive esti-
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Figure 9: Cumulative squared error comparing state-of-the-art hourly forecasts
from the commercial provider and forecasts created using the authors’ simple
model for the operational level. More accurate base forecasts lead to more
accurate reconciled forecasts.

mation of the shrinkage parameter. The weights for the recon-
ciliation process and the shrinkage parameter are able to change
over time when new information becomes available. This is
highly relevant for systems that are governed by non-stationary
processes.

Regression models were used to generate base forecasts for
all aggregation levels above the operational hourly level for dis-
trict heating. However, any forecast model could have been
used to generate the base forecasts. Information is shared be-
tween the base forecasts through the covariance matrix, and
different levels contribute with different information, e.g. the
trend from higher levels and seasonality from the lower levels,
to achieve accuracy improvements. Therefore, the temporal hi-
erarchy structure needs to be chosen based on the application
and the dynamics of the system. Commercial base forecasts
were used to demonstrate the ability of the proposed method
to achieve large accuracy improvements, even when combining
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state-of-the-art forecasts with simple forecasts on higher levels.
Similar findings of accuracy improvements when forecast-

ing for different temporal levels and using auto- and cross-
covariance matrices to compute the reconciled forecasts are re-
ported in other applications. Wickramasuriya et al. [24] pro-
pose using the full covariance matrix estimated from the base
forecast errors and the same shrinkage as used in this paper in
the forecast reconciliation process. They benchmark different
structures of the covariance matrix to demonstrate the impor-
tance of using all of the information in the covariance matrix
by sharing it within and between aggregation levels. Nystrup
et al. [7] has suggested various structures and regularization for
the auto- and cross-correlation to maximize the accuracy im-
provements when reconciling forecasts in a temporal hierarchy.

Improving commercial state-of-the-art operational forecasts
will result in more reliable operational planning of the district
heating system. It will help to find the optimal production
schedule of the units and improve control of the heat delivered
to the network. Blanco et al. [17] propose a method that opti-
mizes the production and creates bids for the day-ahead and bal-
ancing electricity markets using stochastic programming that
needs an accurate heat load forecast. Thus, by improving oper-
ational heat load forecasts, the system can be optimized more
accurately and the overall system cost can be reduced by prof-
iting from the electricity market.

7. Conclusion

We demonstrate how temporal hierarchies can be used to im-
prove the accuracy of operational heat load forecasts. The heat
load forecasts are generated each day at 23:00 for the next 24
hours. State-of-the-art heat load forecasts from a commercial
energy forecasting provider are included to see if accuracy im-
provements are possible.

The empirical results are based on four years of heat load
data. The first year is used to initialize the method and the next
two years to find the optimal hyperparameters for the covari-
ance estimators. The last year is used to show the accuracy
improvement on out-of-sample data.

Three covariance estimators are presented based on the base
forecast errors from the different aggregation levels. The first
estimator is recursively updated and uses an expanding window,
meaning that all past errors are used with the same weight. The
second estimator uses a rolling window with a fixed number of
past errors having the same weight. The third estimator uses
exponential smoothing to put weights on past errors. This is
the estimator that we propose for the reconciliation process to
improve the accuracy of heat load forecasts. The covariance
matrix estimate is shrunk before it is used to compute the recon-
ciled forecasts. The shrinkage parameter is recursively updated
using the method proposed.

The hyperparameters for the estimators are selected by mini-
mizing the RRMSE over two years. The three different estima-
tors are tested and compared using RRMSE. The exponential
smoothing estimator yields the largest accuracy improvements
in the reconciliation process in our case study. This estimator

improves the accuracy of the commercial state-of-the-art oper-
ational heat load forecasts by, on average, 15% over the three
years. The proposed method improves the base forecasts at
all aggregation levels and for all forecast horizons considered.
When using only simple base forecasts as inputs at all aggre-
gation levels, the reconciled forecasts have similar accuracy to
the commercial state-of-the-art base forecast. However, using
the state-of-the-art base forecast as input, the reconciled oper-
ational heat load forecast becomes significantly better. Hence,
it is necessary to include a state-of-the-art forecast to get maxi-
mum accuracy.

There are several possible directions for future research on
improving heat load forecast accuracy using temporal hierar-
chies. One possibility is to investigate the optimal number of
aggregation levels in greater detail, including an analysis of
how longer-term forecasts (e.g., one-week ahead) would per-
form. Another option is to improve the covariance estimator
used in the reconciliation process, e.g. through dimensionality
reduction or by imposing additional structure on it. Finally, it
is possible that the accuracy of the reconciled operational heat
load forecasts could be further improved by improving the ac-
curacy of the base forecasts.
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Appendix A. Recursive Shrinkage

Computing the optimal estimated shrinkage intensity, λ̂∗shrink,
as Schäfer and Strimmer [35] demonstrate in Appendix A,
while doing recursive and adaptive estimation of the covariance
matrix is infeasible. Here we show how to recursively estimate
the empirical variance and covariance of the individual entries
of the recursive and adaptive covariance matrix Σt.

The recursive and adaptive covariance matrix is defined as

Σ̂t = (1 − λ)
t∑

i=0

λiet−ieT
t−i, (A.1)

where λ is the forgetting factor and et−i is the base forecast er-
ror vector at time t − i. We will assume that the error is nor-
mally distributed with zero mean and covariance, V . Then, we
can assume that Eq. (A.1) comes from the Wishart distribution.
Therefore, the matrix from the Wishart distribution computes
the variance of the individual entries.
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The variance and covariance of the individual entries of Σt
are computed by taking the variance of each term in Eq. (A.1),

Xt−i,k j = et−i,keT
t−i, j, (A.2)

Var(Σt,k j) = Var

(1 − λ)
t∑

i=0

λiXt−i,k j

 , (A.3)

assuming independence,

Var(Σt,k j) = (1 − λ)2
t∑

i=0

λ2iVar[Xt−i,k j], (A.4)

Var(Xt−i,k j) = E[(Xt−i,k j − E[Xt−i,k j])2], (A.5)

= E[X2
t,k j − 2Xt−i,k jE[Xt−i,k j]+

E[Xt−i,k j]2],
(A.6)

= E[X2
t,k j] − 2E[Xt−i,k j]E[Xt−i,k j]+

E[Xt−i,k j]2,
(A.7)

= E[X2
t,k j] − E[Xt−i,k j]2, (A.8)

= E[X2
t,k j] − σ

2
t,k j, (A.9)

Var(Σt,k j) = (1 − λ)2
t∑

i=0

λ2i(E[X2
t,k j] − σ

2
t,k j). (A.10)

With this we have an analytical solution to estimate the vari-
ance and covariance of the indivudual entries of Σt. We also
present an algorithmic solution of Eq. (A.10) where the objec-
tive is to have the result in a matrix. The method is shown here

V̂ar(Σt) = (1 − λ)2
t∑

i=0

(λ2ie2
t−i(e

2
t−i)

T − Σ̂2
t ), (A.11)

where et is the vector of all base forecast errors at time t and
the squared values are element-wise. We can now rewrite
Eq. (A.11) to get a recursive estimate of variance and covari-
ance of the individual entries of Σt, as demonstrated below:

V̂ar(Σt) = (1 − λ)2λ(e2
t (e2

t )T − Σ̂2
t )+

λ2(1 − λ)2
t−1∑
i=0

λ2i(e2
t−i(e

2
t )T − Σ̂2

t ),
(A.12)

V̂ar(Σt−1) = (1 − λ)2
t−1∑
i=0

λ2i(e2
t (e2

t )T − σ̂2
t,k j), (A.13)

V̂ar(Σt) = (1 − λ)2λ(e2
t (e2

t )T − Σ̂2
t ) + λ2V̂ar(Σt−1) (A.14)
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Abstract

Smart meters implemented at the end-user in the energy sector create the opportunity to develop data-intelligent methods for
district heating systems by using a large amount of fine-granular heat consumption time series from end-users. The current
state-of-the-art methods for temperature control in district heating systems rely on predefined critical points in the network and a
set reference temperature curve that expresses the minimum forward temperature as a function of the outdoor temperature at the
end-users. The critical points are used to ensure that the consumers’ supply temperature requirements are met all times. To
predefine the critical points at the network, the location of the lowest temperature in the grid needs to be identified at any point in
time. Since the lowest temperature often varies over time, one must have a set of critical points in a district heating network. This
paper proposes a method to estimate the temperature at an artificial critical point for the network using time-wise quantile
estimation using smart meter data at end-users. This novel approach eliminates the need for physical critical points in the net or
sensors in wells and creates the possibility of changing the critical point location if needed. The benefits for the provider of using
smart meters as feedback, makes the measurement wells redundant and flexibility of the location. The location of low
temperature areas in the network can change overtime hence the flexibility of being able to change where the feedback is located.
The proposed method to replace the well measurements to provide feedback for temperature control at the production site groups
a predefined set of smart meter readings together for each point in time. The grouping is done to have reliable measurements
from each smart meter device, excluding some of the meters when a faulty reading occurs. The set of acceptable readings is used
to estimate the street pipe's temperature using the estimated quantile of the forward temperature. The approach is tested on two
demo cases. The first demo consists of smart meters to estimate the forward temperature of the main street pipe. The second
demo uses three smart meters at large apartment buildings as feedback for the control. Initial results show that the estimated
temperature of the network can replace the well-measurements which traditionally are used as feedback for temperature control
and give a better and more flexible control.

Keywords: District Heating, Temperature Control, Smart Meter Data, Quantile Estimation, Estimated Network Temperature.

1. Introduction

The European Union requires houses connected to a district heating network to be equipped with smart meter
devices where feasible [1]. This allows linking the consumption to billing from the district heating and enables the
end-user to be more aware of their energy consumption. In Denmark, the digitalization of district heating has been
occurring in the past decade by installing smart meters and weather stations in the cities. This digital transformation
has given rise in studies relating to district heating and investigating how smart meters data can be used to give
valuable insight into the network performance and building energy efficiency, i.e. leakage in the systems or
insufficient cooling of the water from inlet to outlet in some buildings. Kristensen and Petersen [2] use smart meter

1 * Corresponding author. Tel.: +45-45253095
E-mail address: hgbe@dtu.dk
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data to derive three heating efficiency indicators of buildings and give an overview of the smart meters system at the
district heating utility in Aalborg in Denmark. The same study estimated that 54% of the building area in Denmark is
supplied with district heating. Bacher et al. [3] propose a method to separate the total heat load from a single-family
residential building into domestic hot water heating and space heating using a non-parametric method to identify the
domestic hot water heating. Hence, smart meter data has been studied to improve building performance. However,
there have not been any studies on using smart meter data to operate the network and production more efficiently.
Smart meter data opens up the possibility to use it as feedback of the network for temperature control at the
production site. This is highly valuable for the district heating sector as it is changing from traditional fossil fuels to
renewable sources in district heating and is more and more connected to other energy sectors. Therefore, the district
heating utilities need to be operated efficiently, utilizing periods when intermittent renewable energy sources (e.g.
wind and solar) are available to be used for producing heat, and CO2 reduction. Hence, smart meters can increase the
possibility of making the district heating sector more sustainable and flexible.

Operating the district heating network adequately can be done by implementing a control strategy with the
objective of reducing heat production and heat losses in the network by minimizing the supply temperature at the
production site. Using data-driven temperature optimization in district heating could reach between 240 and 790
million DKK in yearly savings by lowering the supply temperature between 3 and 10 degrees [4]. Madsen et al [5]
propose a novel method to introduce a control strategy that minimizes the supply temperature by regulating the flow
to match the consumers’ heat demand without violating any requirements, i.e. minimum supply temperature to the
end-user. The temperature control strategy needs feedback on how the network reacts to changes at the production
site to vary the supply temperature adequately; therefore, measurement wells are installed in the network where the
network operators believe are the critical points, i.e. where the lowest temperature of the network is. A network
usually has only a few of these critical points as they are expensive and need to be maintained regularly. Nielsen and
Madsen [6] demonstrate the energy savings at a district heating utility by using data-driven temperature control that
is based on Madsen et al [5]. We propose to use smart meters at end-users as feedback of the network's supply
temperature for temperature control to get the response characteristics of the network back to production. This novel
approach makes the measurement wells redundant and the critical points flexible. For example, as the networks get
older or new areas are added to the network, the location of a critical point could change. Therefore, using smart
meters to create temperature feedback allows them to change the critical point location when needed.

We used two case studies to demonstrate how smart meters can be used as feedback for temperature control. The
first case study used data from a group of single-family houses' smart meters to estimate the network’s temperature.
This estimated network temperature would then be used as feedback for temperature control. We compared the
estimated network temperature to the supply temperature measured at a measurement well that is located before the
group of houses that were used to create the estimated temperature. The second case study demonstrates how to use
three different smart meters from large apartment buildings as feedback of the network for temperature optimization.
A temperature controller uses these three smart meters as input to optimize the supply temperature for the network.
We then demonstrate the results of having temperature optimization that uses smart meters as feedback in an online
operation. The novelty in this paper is to demonstrate that smart meters can be used as the feedback of the network
characteristics either by using a group of meters to estimate the temperature or using them directly.

2. Methodology: Dynamics of Smart Meters in District Heating

The proposed algorithm uses data from a group of smart meters at the end-user to estimate the supply
temperature in the main distribution pipe in the street where the end-users are connected to. The mass flow, supply
temperature, and timestamp of the readings are the only variables used from the data-set for the algorithm. The flow
is used to estimate if the temperature at the smart meter is reliable or not. When there is almost no flow, the water in
the pipe leading into the end-user’s house becomes still, and the temperature starts to drop due to the heat loss to the
surroundings. Therefore, readings with a low flow are removed from the data set and not used to estimate the supply
temperature in the main pipe as they do not represent the temperature in the distribution pipe due to the heat loss in
the service pipe leading into the end-users. If the data from the smart meters do not send data with fixed time
intervals and do not send them at the same time, but rather at random times and different frequencies. The data
needs therefore to be aggregated and filled such that they have the same time points and resolution. The readings
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from each smart meter are therefore aggregated with a fixed interval by aggregating the readings within the interval
to timestamp. The median is computed from those readings to represent the temperature at the timestamp at the
given smart meter. For example, for 30 minutes resolution, the rounding will be to 30 minutes and the time is
rounded to the nearest hour or half-hour. Thus, timestamps between 45 and 15 are rounded to the hour, and between
15 and 45 are rounded to the half-hour. After rounding the readings for all smart meters, readings with the same
timestamps from every smart meter are grouped, and an appropriate quantile of the grouped temperatures is
computed. This approach creates an estimation of the distribution pipe temperature using the smart meters at the
end-user. Note, it is not recommended to use too high quantile for the estimation. For example, the 90th quantile is
more suitable instead of using the 100th quantile, i.e. the maximum temperature of the dwelling for the given
timestamp. It is done to remove any measurement noise, or faulty readings thus creating more robust feedback of the
street pipe temperature.

For the second case study, a trial was carried out during the heating season 2020/2021 to demonstrate how
digitalization can improve the operation of existing district heating networks. The temperature control was
conducted using the HeatTOTM software provided by ENFOR that was installed to optimize the supply temperature
from the heat exchanger to lower the supply temperature without breaking any restrictions, i.e. minimum supply
temperature at the consumer2. The methodology behind the temperature controller will not be introduced here as it is
quite complex. It can be found in Madsen et al [5] and Madsen et al [7]. However, the temperature controller needs
feedback of the network to estimate the network's characteristics, i.e. time-delay in the network and heat losses.
Here, data from smart meters are used directly as feedback to the production to optimize the temperature. Hence the
data needs to be of high quality and represent the network such that the network characteristics can be estimated and
used to optimize the supply temperature and minimize the production cost. To estimate the performance of the new
controller, degree days are used to compare supply temperature between two seasons. Degree days are used to
compare supply temperature between different heating seasons. The degree days, are computed by estimating𝑇𝑑𝑑

the difference between the average ambient temperature, over one day, and using 17 °C as the cut-off of heating𝑇
𝑎 

demand from buildings,

𝑇 𝑑𝑑 =  𝑚𝑎𝑥(0,  17 − 𝑇
𝑎 

)

The degree days gives the possibility to quantitative the performance between operations as two controllers can not
be operated at the same time.

3. Description of Case Studies

3.1. Case study 1: Group of smart meters

In this case study, we apply the smart meter heating data to create an estimated network temperature to be used as
temperature feedback of the network to the production. The data is from a district heating network in Brønderslev
that is located in the northern part of Jutland in Denmark. The district heating utility, Brønderslev Forsyning has
supplied smart meter data from one area in their network. The data set consists of measurements from 15
single-family houses that are also located close to a measurement well. They have also supplied data from the
measurement well. Thus, we can compare the result from the proposed algorithm to the measured supply
temperature in the network. In order not to violate privacy and comply with GDPR, the smart meter data was
anonymized as only Brønderslev Forsyning knows which houses the data belongs to. Hence, the location is
unknown and the only information about their location is that each house in the data set is located close to each
other. Fig. 1 shows the raw data from the smart meter data set, the plots to the left show the supply temperature and
the flow in a winter period while the plots located on the right show the same in a summer period. The bold red line
in the temperature plot is the supply netpoint temperature measured at a measurement well that is located close to
the houses, or the supply netpoint temperature that is typically used to see how the network is performing. The other
lines are the supply temperatures from the smart meters measured at the end-users. The flow is also measured at the

2 https://enfor.dk/services/heatto/
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end-user shown in the lower plots. We can see from the temperature plots that the smart meter temperatures follow
the dynamic of the netpoint temperature but there is a temperature level offset. The offset can be explained as the
temperature drop due to heat loss to the surroundings in the service pipe from the street to the end-user. The
difference between winter and summer can be seen when the flow is compared between the seasons. During the cold
months in the winter, houses usually have constant space heating, and thus have a constant flow. However, during
summer periods in Denmark, there is no need for space heating. Therefore, the flow during the summer is frequently
close to zero except for the peaks as the plot shows, which can be explained by consumers’ domestic hot water
usage.

Fig. 1. The temperature and flow of 15 consumers from the district heating network in Brønderslev Forsyning for the winter and summer seasons.
The bold red line shows the netpoint temperature measured at a measurement well in the network and used for feedback of the network.

The readings from the smart meters occur with different frequencies and time-interval. This is more visible in Fig. 2
where the plots to the left show temperature and flow readings over two days from two different smart meters. We
can see from the plots that readings come at different times, and the frequency is also different. The plot on the right
side demonstrates this in more detail, visualising temperature readings from all 15 meters between 17:30 and 18:30.
The frequency of the meter readings differs - some give multiple readings in this interval, while some just one, and
from one of the smart meters there is no reading at this specific time interval. Hence, it is essential to aggregate the
data to a specific resolution before using it to create an estimated supply temperature.
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Fig. 2. Differences among the readings (frequency, time of the reading) from smart meters when compared to each other.

3.2. Case study 2: Three large apartment buildings as feedback

This case study is located in the Tingbjerg area in Copenhagen, a small area with large apartment buildings. The
network is thought of as an island within HOFORs district heating network as the area is isolated and only supplied
with heat from a heat exchanger. HOFOR is Copenhagen's district heating supplier as it both produces heat and
operates the distribution network. The network in Tingbjerg is small and has a short time delay, so a measurement
well has not been deemed necessary for controlling the supply temperature from the heat exchanger. Consequently,
the control of the supply temperature has been operated as an open-loop system, and the temperature is usually
determined conservatively to ensure sufficient supply temperature to the consumers. Hydraulic simulation of the
system and current ambient temperature were therefore used to optimize the temperature. Hence, no feedback of the
network on how it adapts to changes at production and if the requirements are fulfilled. The Tingbjerg area is an
ideal case study to demonstrate how to use the digitalization of the network to improve the network's operation as
feedback for temperature control. In this study smart meters are used as feedback from large apartment buildings for
the temperature control at the heat exchanger. HOFOR supplied smart meter data from 38 apartment buildings inside
the Tingbjerg network to be considered as the network’s feedback. The data collection started at the beginning of
2020 and data is still being collected as input for the controller that is still in operation. The data in an hourly
temporal resolution was supplied once a day, containing readings from each meter since the previous data dump. In
November 2020, the data collection changed - now the data is sent every hour with a 15 minutes temporal
resolution. Thus, the controller relies on newer and more frequent data. Three smart meters were selected based on
the measurements’ reliability to give accurate temperature feedback of the network to the controller. The selected
meters have relatively constant flow; therefore, the forward temperature signal is of high quality (i.e. the water does
not become still in the pipe leading to the house), and measurements from these meters can be used for temperature
control. Temperatures from the three meters to be used as feedback are shown in Fig. 3, where it can be seen that
they are of good quality despite some peaks in the winter period.

Fig. 3. Supply temperature from three smart meters in Tingbjerg used as feedback for temperature control. The upper and lower plots show the
temperature at two different seasons, winter and summer.

4. Discussion and Results

Fig. 4 shows the result from the first case study in Brønderslev where we use a group of smart meters to estimate
the netpoint temperature. The grey lines represent the temperature from the end-users. The blue line is the netpoint
temperature measured at a measurement well in the network. The well is located before the dwellings that supplied
the smart meter data. The red line is the estimated network temperature using the smart meter data using the
proposed algorithm from Section 2. We have aggregated the data to 30 minutes resolution and used the 90th quantile
to estimate the netpoint temperature from the smart meters. The estimated temperature mimics the measured
netpoint temperature adequately over the wintertime. However, it does not perform as well over the summer month.
The metric scores, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are given in the plots to
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illustrate the performance of the algorithm and the difference between the two seasons. The accuracy difference
between the heating season and the summer months can be due to fewer consumers that use space heating when the
air temperature increases - the remaining usage is then domestic hot water, i.e. showering. Thus, the hot water in the
pipe into the house is not in constant use; therefore, the water becomes still, and the temperature drops due to the
heat loss to the surroundings. This can be seen in Fig. 1 when comparing the flow between the seasons and in Fig. 4
when looking at the different dynamics between the seasons. In the summertime, the temperature tends to drop
exponentially and rise quite fast in a short time. The algorithm is however able to capture the street temperature
accurately even though it has less information than the winter months due to infrequent usage of space heating.
Notice that we are not trying to estimate the supply temperature measured at the well, it is only used to benchmark
the performance of the estimated temperature in the street pipe outside the dwellings. Therefore, the algorithm is not
optimized to have a perfect representation of the well measurement instead it is used to represent the temperature in
the street, which can have different dynamics than the well because of heat loss between the well and dwellings.

Fig. 4 The estimated network temperature from the proposed method as the red line and the measured netpoint temperature as the blue line. The
grey lines are the temperature from the smart meters used in the proposed method.

Fig. 5 shows the result from the second case study in Tingbjerg where it is presented by comparing supply
temperature from the previous operation and trial using the new temperature controller and smart meters as feedback
of the network. The top-left plot shows the supply and ambient air temperatures for the previous operation when an
open-loop controller was in operation, and the middle-left plot shows it for a period when the new controller was
used. The bottom plot shows the difference between current and previous supply temperature from the periods in the
plots above. The difference plot shows that using the new controller gives a more robust temperature, i.e. the
temperature is not changing rapidly as can be seen also when comparing the top and middle-left plots. The variance
of the two difference time-series is also given in the plot to illustrate how stable the supply temperature has become
using the controller. Hence, having a more stable supply temperature is beneficial for the control of the heating unit
at the consumers’ and the network's equipment. Large and frequent fluctuations in the supply temperature should be
avoided as it increases the maintenance costs compared to stable operations [6].

The plots on the right side of Fig. 5 demonstrate the performance of the control by comparing the supply and return
temperature against the degree days. The average supply and return temperature for each day is then computed and
plotted against its corresponding degree day as shown in the top and middle-left plots. We can see that the supply
temperature is higher when the new controller is in operation as the regression lines also demonstrate. The
regression lines (with intercept and slope) are used to highlight the difference between operations. This is a result of
the reference curve that was used for the netpoint temperature was transferred from the previous open-loop
operation to control the supply temperature to be used when the new controller was operating. The reference curve
at the netpoint is to ensure that consumers will receive the required supply temperature as a function of the ambient
air temperature.
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In the past, the supply temperature control at production did not have any feedback from the network and therefore
the reference curve was stated quite conservatively to ensure that the consumers would receive the required supply
temperature.  Notice that the slope is lower for the new controller hence for colder days the new controller will
operate more efficiently even for suboptimal restrictions. The return temperature was also not affected by the new
controller as shown in the right bottom plot in Fig. 5. Fig. 6 shows the supply temperature at the three netpoints for
both periods. The plots demonstrate that the new controller can maintain the temperature at the netpoints with less
spread and a better level of security than what was possible with the previous operation. This can be seen when
comparing the prediction intervals (PI) between the two periods in Fig. 6. The intervals were estimated using
nonparametric quantile regression using the 10th and 90th quantiles as the lower and upper bounds. The lower
bound for the new controller rarely violates the restriction. Hence, it would have been possible to have a lower
reference curve during the trial, and still maintain the same level of supply security at the consumer as with previous
control. However, this potential for savings was not realized during the trial. The top right plot in Fig. 5 also shows
an adjusted supply temperature for the new controller to demonstrate a “what if” situation. The adjusted supply
temperatures are lowered by moving the reference curve down such that temperatures from previous operations are
above it, we estimated it would by lowering it by 5°C from Fig. 6. The supply temperature for the new control
would therefore be 3°C lower compared to the previous operation as can be seen in the regression lines.

Fig. 5. The result of using temperature control using three smart meters as feedback of the network. The plots to the left show that the supply
temperature at the production is more robust with the controller. The plots to the right demonstrate that the supply temperature at the production
was higher when the new controller was in operation. The top right plot also shows the supply temperature adjusted by lowering them by 5°C.

Fig. 6. Supply temperature at the three netpoints (the smart meters) plotted against the rolling average of the ambient air temperature with
window length of 24. The reference curve constrains the controller to supply the consumer supply temperature for a given ambient temperature.
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5. Conclusion

In this paper, smart meters were used to demonstrate that they can add value to the district heating production and
network. A novel algorithm was presented to create feedback of supply temperature from the network using smart
meters located at single-family buildings. The estimated network temperature from the algorithm adequately mimics
the netpoint temperature measured at measurement well located close to the buildings. Therefore, district heating
utilities can reduce their cost by making measurement wells redundant and the corresponding maintenance of the
well. The location of the predefined critical points becomes more flexible when using the smart meters as feedback.
Using a few smart meters from large apartment buildings that have reliable measurement can be used as direct
feedback to be used for temperature control. Results from an online operation of using three smart meters as
feedback of the network to temperature control were presented. The results showed that the supply temperature is
more robust than without the controller. Unfortunately, restrictions on the supply temperature at the consumer side
were set slightly higher than without the new controller and as a result, the supply temperature at the production was
higher when the controller was in operation. However, if the restrictions at the consumer were lower during the trial,
then the supply temperature at the production side would at least perform with a similar temperature as when the
controller was not in operation, and the temperature would also be more robust - with expected savings in network
maintenance costs to follow in the longer term. Furthermore, using smart meters as feedback for network operation
reduces the need of installing new measurement wells or maintaining the existing ones.

Future research on digitalization in district heating should focus on how to quantify the operational savings for
district heating when incorporating digitalization into their operations. Digitalization can have s direct impact on the
operational savings for district heating yielding better operation of the system, i.e. temperature optimization in the
network, lowering return temperature by identifying bad coolers in the network, improving weather forecast with
local climate stations, and leakage in the network.
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Abstract

Smart meters at consumers create opportunities to improve operation of the district heating sector using data-driven methods.
Information from these meter measurements carries the potential to increase the energy efficiency of both individual houses and the
utility network, for example by identifying buildings with too high return temperature, or by detecting leakage in the network. This
paper proposes a method for using meter data to estimate network temperatures. Network temperatures can subsequently be used
to estimate the network characteristics, namely the nonlinear relationship between network temperature and the plants’ temperature
and flow. A description of the network characteristics is needed for most temperature-optimisation methods to keep the supply
temperature as low as possible without violating the system constraints. Traditionally, measurement wells located in the network
have been used. These wells are located at critical points in the network where the largest temperature losses occur. Since the
lowest temperature often varies over time, multiple critical points are necessary. The method presented in this paper eliminates the
need for these physical critical points in the network. It also makes it possible to change the location of the critical points if needed.
The network temperature is estimated using a stochastic state-space model of the heat dynamics from the street level distribution
pipe over the service pipe and into individual houses. The parameters in the model are estimated using a maximum likelihood
approach, and the Kalman Filter is used to evaluate the likelihood function. The estimation process takes advantage of automatic
differentiation using the R package Template Model Builder (TMB) to reduce the computational workload. The proposed method is
validated by comparing the estimated temperature with the temperature measured from a measurement well.

Keywords: Temperature Optimisation, Estimating Network Temperature, Grey-Box Modelling, Kalman Filter, Automatic
Differentiation

1. Introduction

Future energy systems need to be flexible because of increas-
ing shares of renewable energy sources that are typically inter-
mittent due to their direct weather dependency. Furthermore,
new regulation continues to emerge and awareness of green-
house gas emissions is increasing, with a consequential tran-
sition to more renewable energy. For these reasons, more so-
phisticated methods are needed to deliver the required energy
demand without using fossil fuels. Energy systems for gas,
heat and electricity need to be integrated to phase out fossil fu-
els. Because of their unique capability to store energy, district
heating systems play a key role in the transition towards more
flexible energy systems [1]. An example is that wind power
can be used for heating water to be delivered either directly or
stored when the electricity demand is lower than the generated
wind power. Hence, in order to fully maximise the flexibility
potential of energy systems, they must be integrated. In addi-
tion, each energy system needs to perform efficiently to deliver
an optimal energy integration. Mathiesen et al. [2] gives an ex-
tensive discussion on the integration of all energy systems to
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increase the flexibility of the system and reach 100 % renew-
able energy supply.

The work presented here focuses on methods for optimis-
ing the temperature control in district heating systems based
on information from smart meters installed at consumer level.
Today, smart meters that can take very frequent readings are in-
stalled in many buildings. This paper suggests methods to take
advantage of frequent readings by smart meters.

The role of district heating systems is to meet consumer heat
demand while simultaneously minimising both production and
operation costs. Optimisation of production planning is con-
cerned with scheduling heating unit operation in order to pro-
duce the desired heat demand at the lowest cost [3]. In Den-
mark, heat is often co-generated (combined heat and power
(CHP) production). CHP units typically run during periods
with high electricity prices. Any heat that is not used during
these periods is stored in the system. During low electricity
price periods, district heating operators either use this stored
heat or run heat-only units, e.g. gas boilers, heat pumps or so-
lar heat [4]. Hence, the plant’s objective is to generate as much
power as possible during periods with high electricity prices
while satisfying the heating demand. This is achieved by keep-
ing the supply temperature as low as possible. Consequently,
lowering the temperature will also reduce heat loss in the net-
work and production cost [5]. Hence, it is crucial to lower the
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Nomenclature

Abbreviations
SDE Stochastic Differential Equation
TMB Template Model Builder
CHP Combined Heat and Power
ODE Ordinary Differential Equation
PDE Partial Differential Equation
GDPR General Data Protection Regulation
Mathematical notation
ω Wiener process
σ diffusion coefficient
V observation covariance matrix
e innovation
S logistics function
L likelihood function
L log-likelihood function
U random effects
θ fixed effects
f drift term
g diffusion term
h observation function
x system states
u external inputs
N normal distribution
K Kalman gain
P state covariance matrix
Σ observation covariance matrix

Physical parameters
Q mass flow rate [kg/s]
ρ mass density [kg/m3]
cv specific heat capacity [kJ/(kg K)]
A area [m2]
v flow velocity [m/s]
p absolute pressure [Pa]
fD darcy friction coefficient [-]
S circumference [m]
k thermal conductivity [W/(m K)]
T temperature [°C]
q̇e heat loss per meter [W/m]
C heat capacity per meter [J/mK]
λp thermal conductivity [W/(m K)]
τ time constant [s]
do outer diamter [m]
L length of pipe [m]
R thermal resistance per meter [(K m)/W]
xa insulation thickness [m]
Subscripts
t Time
g Ground
Superscripts
s Street
(i) House index

supply temperature in order to optimise the operation of the en-
tire district heating system.

A lower temperature in the network will translate to lower
production costs as the operation of most power producing de-
vices can be more efficient. For example, in a CHP plant, lower-
ing the temperature results in increase in ratio of power to heat
output, and electricity is more valuable than heat [6]. Also, if
the utility uses several energy sources then lowering the tem-
perature will also increase the flexibility of utilising the optimal
energy sources at given time-point due to the different limita-
tion of each energy sources. Thus, this makes it possible to
utilise heat from new sources like excess heat from comfort
cooling. Without a lowering of the temperature these sources
which would otherwise have been disregarded due to too low
temperatures for entering the network. Likewise, it will be
more efficient to operate heat pumps in the network. This in-
creased efficiency will result in better investment feasibility for
heat pumps. Heat pumps are likely to play a bigger role in sup-
plying heat to the network as they can utilise heat sources with a
low-temperature range, e.g. wastewater, ambient water, indus-
trial heat waste, and solar heat storage [7]. Therefore, for op-
timal operation of a district heating network with multiple heat
sources (e.g. heat pumps and solar heat), temperature optimisa-
tion is needed in order to keep the supply temperature as low as

Ambient Air Temperature [°C]

S
up

pl
y 

Te
m

pe
ra

tu
re

 [°
C

]

yref

Figure 1: Reference curve, yref shows the desired supply temperature of hot
water for given ambient air temperature.

possible while increasing both the efficiency and feasibility of
heat sources. The complexity of the dynamics of district heat-
ing networks implies that data-driven models for temperature
optimization are needed to lower the supply temperature in the
network.

Traditionally, the optimisation of supply temperature has
been controlled using a reference curve based on the ambient
air temperature, as indicated in Figure 1 [8]. The reference
curve dictates the minimum allowed supply temperature as a
function of the ambient air temperature. The maximum at the
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left endpoint of the curve is related to the physical limitation of
the system, and the minimum temperature to the right ensures a
high enough temperature for domestic hot water usage without
risking the formation of bacteria, e.g. legionella. However, this
control scheme is a conservative estimate since it only consid-
ers one variable to ensure that the heat supply is sufficient at
any time, and this often leads to an unnecessarily high supply
temperature. Obviously, heat demand is not only dependent on
the ambient air temperature but also by other climate variables,
e.g. solar radiation and wind. The weather effect on heat de-
mand is also not instantaneous, as buildings are known to have
slow thermal reactions. The slow thermal reaction in a single
building is demonstrated in Madsen and Holst [9]. In Nielsen
and Madsen [10] it is shown how the physical knowledge about
heat consumption in buildings can be used to establish a heat
consumption model for the district heating network. Prefer-
ably, the controller should include heat demand forecasts and
the network characteristics of the system (transportation time,
heat loss).

Madsen et al. [5] propose a control strategy for the supply
temperature at the plant by utilising heat demand forecasts and
network characteristics. The strategy estimates future set-points
of the supply temperature at the production plant by using a
model for the network characteristics determined from receiv-
ing feedback of the network temperatures, and the approach al-
lows the system to adapt to changes in the system. This stochas-
tic time-varying system is both nonlinear and non-stationary,
and consequently, a nonlinear and time-varying transfer func-
tion was proposed in order to model the relationship between
the supply temperature and flow at the plant and the network
temperature from a critical point in the network. This strategy
has been demonstrated to lower the supply temperature at the
district heating plant and thereby reduce production costs and
the heat losses in the system [11].

This control strategy requires feedback from the system.
Usually, this information is measured at a selected number of
so-called critical points in the network at street level using sen-
sors in measurement wells. A critical point in the network
is typically located close to the end-users showing the largest
temperature losses in transportation from the plant. A single
critical point is sub-optimal, since the location of the critical
points in the network can change over time as a consequence
of the diurnal pattern and consequently several (e.g. five) crit-
ical points are normally used. However, networks change, e.g.
pipes get older, pipes are replaced, new areas are connected to
the network, buildings are refurbished and so forth, and hence
it would be advantageous if system feedback could be received
at any particular location in the network. This is possible by us-
ing data from smart meters installed at consumers, to establish
temperature feedback. This approach furthermore eliminates
the need to install temperature sensors in measurement wells.
For a number of years, smart meters have been installed, allow-
ing consumers to link their consumption to bills from the dis-
trict heating utility. There is a requirement from the European
Union that all buildings have individual energy meters where
feasible, including heat meters for houses connected to district
heating networks [12].

Smart meters create new opportunities to develop data-
intelligent methods for district heating operations. This digi-
tal transformation has fostered research related to district heat-
ing at consumers. Data from smart meters can be used to give
valuable insight into network performance and building energy
efficiency through investigations of possible leakage in the net-
work or insufficient cooling at consumers. For example, Kris-
tensen and Petersen [13] use smart meter data to derive three
heating efficiency indicators of buildings to compare the en-
ergy performance of the buildings, and also give insights on
district heating and smart meters in Denmark. However, the
feedback of the network temperature needs to be robust, and us-
ing measurements from smart meters from single-family houses
without a quality check could give a wrong representation of
the network characteristics. Bergsteinsson et al. [14] propose a
simple method to estimate the network temperature by resam-
pling and aggregating data from a group of smart meters. Based
on this data, an artificial network temperature is estimated us-
ing time-wise quantile estimation at each time step. However,
the method is quite naive and is not robust when the measure-
ments are either of bad quality or they lack extended periods
of time. A more advanced model is therefore required to give
more accurate and reliable continuous feedback of the network.
Hence, a model derived from physical knowledge of the sys-
tem is needed which uses meter measurements to estimate the
parameters of the network, i.e. grey-box modelling.

Hence, by establishing a robust method to estimate the net-
work temperature at multiple points in the network by using
smart meter data will enable feedback options which again
makes it possible for utilities to implement controllers for tem-
perature optimization. Data-driven temperature optimization
lowers supply temperature in the network, thus decreasing the
production cost and reducing heat losses in the network.

1.1. Pipe dynamics and grey-box modelling in district heating
networks

Thermodynamics modelling of hot water pipes in district
heating has been studied extensively, both to provide a deeper
understanding of the dynamics and to obtain information that
can be used to minimise cost: e.g. by selecting the optimal size
of pipes or by reducing heat losses in the network. For planned
new district heating systems, models of the network can be used
to simulate scenarios for the design of new pipelines and to
analyse the hydraulic and thermal behaviour for the purpose
of minimising the costs of establishing the new networks and to
decide on their operation. For already established systems, the
methods can be used to simulate different scenarios, e.g. peak
loads or to identify locations where maintenance is needed.
Hence, adequate physical models of district heating networks
are important for efficient operation. There are studies that
have proposed different methods for modelling the thermody-
namics in hot water pipes for operational purposes. The most
widespread approach is a finite element method in which the
pipe is divided into infinitesimal segments in order to solve a
governing partial differential equation for computations of the
temperature difference and heat loss in the pipes.
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This can be solved using finite volume schemes, e.g. in Van-
dermeulen [15] the first-order upwind finite volume model is
used to study district heating network flexibility by storing heat
in the network by altering the supply temperature. Other stud-
ies have proposed using a finite element method to simulate the
thermodynamics of having the temperature distribution from
plant to end-user for operation during changes in the system
[16]. Benonysson et al. [17] propose a node method and derive
a mathematical model of the pipes using heat transfer equations
to compute the outlet temperature of the pipe when the inlet
temperature is measured. Søgaard [18] propose modelling the
network as a dynamic input-output system, describing the net-
work response characteristics between measurements from the
plant and a point in the network. Hence, different possibilities
have been proposed in the literature to describe the network
dynamics, from white-box methods entirely based on physics
to black-box models based solely on measurements. There is
no globally optimal method to describe the dynamics, as each
method has its pros and cons. White-box modelling is suit-
able for network design and flexibility/peak-shaving simula-
tions. White-box methods are usually computationally heavy
and require human maintenance to validate and select appro-
priated values, while black-box methods are fast and usually
need no maintenance. Therefore, black-box methods are bet-
ter suited for control applications where the computation time
needs to be low such that the control can respond quickly to
changes, as proposed in Madsen et al. [19]. An extensive sum-
mary of hot water pipe dynamics is given in van der Heijde [20]
and Vandermeulen [15].

The method proposed in this paper, will take advantage of
this physical knowledge of pipe thermodynamics to estimate
street-level network temperature (critical point) using smart-
meter measurements. This will be done using statistical meth-
ods to estimate the parameters of equations that are derived
from physics, i.e. by using a grey-box modelling approach.
Grey-box models bridge the gap between physical and statis-
tical modelling and are frequently studied in literature and have
shown promising results for parameter estimation and control
purposes. Madsen and Holst [9] demonstrates how grey-box
models can be used to describe the dynamics of the indoor air
temperature in buildings and its dependency on weather and
heat input. The forecasting ability of the method has proved
to have high accuracy. Bacher and Madsen [21] describe an
approach for using data for optimal model selection of grey-
box models and for estimating model parameters for a partic-
ular building. They also discuss grey-box model applications
for validating the energy performance of buildings, energy con-
sumption forecasting and indoor climate control. Thilker et al.
[22] propose a grey-box model to describe the heating dynamics
of an old school building, and Thilker et al. [23] demonstrates
the potential of using the grey-box model to control the return
temperature to lower the operational cost of the building.

1.2. Contribution of the paper and overview

The main contribution of this work is the formulation and
application of a set of partially observed stochastic differential

equations to be used for inference on the temperature of the dis-
tribution network at street level based on smart-meter readings
from individual consumers. The system of stochastic differen-
tial equations SDEs is derived from partial differential equation
PDE) that describe the heat transfer dynamics from the distri-
bution pipe into single-family houses over a service pipe. The
estimated network temperature can be used to gain information
about the network response characteristics; i.e. how the net-
work reacts to changes in temperature or flow at the plant. This
information can be used as feedback for temperature control,
for example. Thus, this result makes physical measurement
wells redundant, as a group of houses with smart meters can
be used to estimate the network temperature.

The paper is organized as follows. Section 2 presents the
reasoning behind the chosen SDE formulation and explains the
chosen estimation method used for both parameter and state es-
timation. Section 3 presents the result from applying the meth-
ods to the presented data, including parameter interpretation.
Finally, Section 4 and Section 5 discuss the presented results
and draw some general conclusions.

2. Methods

In this section, a model will be established which describes
the heat transfer between the distribution pipe and houses
through a service pipe. The model is derived from physics and
takes the form of a partial differential equation which is subse-
quently approximated by a stochastic differential equation for
continuous temperature estimates in order to incorporate the in-
formation from smart meters. The heat dynamics is affected by
the thermodynamic properties of the pipes and their relationship
to the surroundings.

2.1. Stochastic differential equations

The models consider in this paper, will be on the following
continuous-discrete time stochastic state space form [24],

dxt = f (xt, ut, θ) dt + g(θ) dωt (1)

ytk = h(xtk ) + etk (2)

where the system state xt evolves in continuous time as deter-
mined by the drift f and the diffusion g. The observation func-
tion h relates measurements to system states. The drift function
depends on the state itself, external inputs ut and the system
parameters θ. The drift term, accounts for most of the known
phenomena of the system and draws on physical knowledge,
while the diffusion relates to unaccounted for and unknown sys-
tem drivers as well as noise. The aim is to describe these ef-
fects by the random perturbations imposed by the Wiener pro-
cess ωt whose non-overlapping increments are independent and
Gaussian-distributed i.e. ωt − ωs ∼ N(0, t − s). The (hidden)
state xt is observed (indirectly) through the measurements ytk
which become available at certain discrete times t = tk. In this
paper, it will be assumed that a subset of the states (the individ-
ual smart meters) are directly observed, although contaminated
by Gaussian noise etk .
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2.2. Pipe modelling
The thermodynamics modelling of the processes inside a

pipe is rather complicated, and consequently a number of as-
sumptions are introduced to approach the problem and make it
feasible. The water in the pipes will be assumed to be incom-
pressible, the pipe is a grounded, insulated single pipe (which
implies no influence from the return pipe), and that the system
is in a steady-state. It will also be assumed that the ground
temperature is constant throughout each month using the infor-
mation from Grunnet Wang et al. [25].

van der Heijde et al. [26] uses a dynamic thermo-hydraulic
pipe model for district energy systems for the purpose of creat-
ing dynamic simulations of the temperature in district heating
networks and cooling pipe systems. The pipe model is a par-
tial differential equation describing the temporal evolution (t)
of the energy across the axial dimension (x) in the pipe. The
PDE describes the heat transfer and the associated heat losses
to the surroundings through a combination of the energy and
the continuity equation. The equation is

∂(ρcvT A)
∂t︸      ︷︷      ︸

time
derivative

+
∂(ρv(cvT + p/ρ)A)

∂x︸                   ︷︷                   ︸
spatial

derivative

=

vA
∂p
∂x︸︷︷︸

pressure
difference

energy

+
1
2
ρv2|v| fDS︸        ︷︷        ︸

wall friction
dissipation

+
∂

∂x
(kA

∂T
∂x

)︸       ︷︷       ︸
axial heat
diffusion

− q̇e︸︷︷︸
heat
loss

,

(3)

where ρ [kg/m3] is the mass density of the fluid in the pipe,
cv [kJ/(kgK)] is the specific heat of the fluid in the pipe, A [m2]
is the cross sectional area of the pipe, v [m/s] is the flow veloc-
ity, p [kg/m3] is the absolute pressure, fD [−] is the Darcy fric-
tion coefficient, S [m] is the pipe circumference, k [W/(mK)] is
the thermal conductivity, T [°C] is the temperature inside the
pipe, and q̇e [W/m] is the heat loss per unit length.

van der Heijde et al. [27] and Vandermeulen [15] argue that
most of the terms in Eq. (3) can be assumed to be negligible, and
with the additional assumption that the water is incompressible
the equation simplifies to

∂(ρcvAT )
∂t

+
∂(ρcvAvT )

∂x
= −q̇e. (4)

The equation remains a PDE which describes the heat trans-
fer through a pipe in the form of an advection equation with the
loss term −q̇e. The equation can be solved analytically when
assuming steady-state operation, but it is a challenging task.
Hence, it is usually solved instead by using finite volume meth-
ods, where the pipe is split into multiple smaller sections. The
solution is then obtained by integrating across each of these sec-
tions. For further details, see van der Heijde et al. [26], Dénarié
et al. [28], and Grosswindhager et al. [29].

Eq. (4) will be used to estimate the supply temperature in
the distribution pipe in the street before entering the service

pipe into the house. This is illustrated in Figure 2, where the
street hot water T (s)

t enters the service pipe and the temperature,
T (i),obs

t is measured by the smart meters after travelling over the
service pipe. The temperature loss in the system is assumed to
be caused by heat loss to the surroundings. The flow is assumed
to be constant through the service pipe. The only information
that is known is the measurements from the smart meters and
the assumed constant ground temperature for each month us-
ing the average temperature given by Grunnet Wang et al. [25].
The goal is to use only the smart meter data to estimate the
street temperature. The data-driven model is a reformulation
of Eq. (4) using a stochastic differential equation as shown in
Section 2.1.

The first step is to transform Eq. (4) into a standard
Resistance-Capacitance (RC) form. First, the heat capacity
over the service pipe per unit length of the water is defined as
C = Acvρ [J/mK]. Next, it will be assumed that the mass flow
is constant through the service pipe, Q = ρAv [kg/s]. The fi-
nal assumption for this model derivation is that the heat loss
is proportional to the temperature difference between the water
and ground with the proportionality constant being the inverse
thermal resistance (between pipe and ground) as shown in Wal-
lentén [30]. Hence, Eq. (4) becomes,

C
∂T
∂t

+
∂(cvQT )
∂x

=
Tg − T (i)

R
. (5)

The next step is to discretise the equation in space

∂(cvQT )
∂x

−→︸︷︷︸
discretisation

cvQ∆T
∆x

. (6)

Thus, the temperature difference is that between the street and
house ∆T = T (s) − T (i) over the service pipe length ∆x. The
length of the pipe is then multiplied through the equation, which
redefines the heat capacity as C = C∆x and the thermal resis-
tance as R = R/∆x. The system now becomes

∂Tt

∂t
= C−1

(
cvQt(T

(s)
t − Tt) − R−1(Tt − Tg)

)
. (7)

This differential equation describes how the house tempera-
tures change with time. It is now straight-forward to formulate
the proposed stochastic differential equation (for one house)

dTt = C−1
(
cvQt(T

(s)
t − Tt) − R−1(Tt − Tg)

)
dt + σ dωt, (8)

where σ is the diffusion coefficient and ωt is a standard Wiener
process, i.e. the source of the noise in the system. Hence, we
have established a time-dependent stochastic state space model
to describe the energy exchange between the street and individ-
ual houses. Jointly with the observation equation, this type of
model is also referred to as a grey-box model in the literature,
see for instance [9].

As already mentioned, the only information available is the
smart-meter data, and the objective of this study is then to esti-
mate the supply temperature at the distribution pipe in the street
before the water enters the houses. To clarify; the information
available is from multiple smart-meter measurements installed
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Figure 2: A drawing that demonstrates the interaction between street, house,
and ground with labels for states, observations, and inputs. The modelled sys-
tem is that of the proposed model and it is centred around the pipe. The tem-
perature of the water travelling through the pipe is the result of mixing the
already present water of temperature T (i)

t with that of the street of temperature
T (s)

t , while heat is transferred through the pipe to the surrounding colder ground
proportional to the temperature difference T (i)

t − Tg.

in houses connected to the same street, but there is no infor-
mation on the street temperature. The street temperature must
in principle be greater or equal to the highest observed house
temperature, although estimated values of it can be lower when
accounting for measurement uncertainty. The actual behaviour
of the street temperature is determined by the plant output and
the network characteristics. However, in order to keep the spec-
ifications simple, these detailed descriptions are considered to
be outside the scope of the current model, and, in the absence
of any ”real” drivers for the street temperature, its dynamics
are simply modelled by a random walk. The model for the for-
warded water temperature at the individual houses T (i)

t is that
presented in Eq. (4). These equations are combined to obtain
the considered system of equations

dT (i)
t = C−1

i

(
cvQ(i)

t (T (s)
t − T (i)

t ) − R−1
i (T (i)

t − T (g)
t )

)
dt + σi dω(i)

t ,

(9a)

dT (s)
t = σs dω(s)

t , (9b)

which is illustrated in Figure 2. The model takes as inputs the
mass flow rate Q(i)

t [kg/s], and the ground temperature Tg [◦C].
The constant cv ≈ 4.186 [kJ/(kgK)] is the specific heat capac-
ity of water. In this formulation, three parameters are associ-
ated with each house - namely the thermal capacity Ci [J/K],
the thermal resistance Ri [K/W], and the diffusion scaling σi
[◦C/
√

s]. The individual house temperatures T (i)
t are observed

directly by the measurement device T (i,obs)
t , but it is assumed

that the uncertainty of these measurements can be approximated
by Gaussian noise, which gives rise to the following observa-
tion equation

T (i,obs)
t = T (i)

t + e(i)
t , e(i)

t ∼ N(0,V i
t ), (10)

In order to establish a flow-dependent variance construction, the
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Figure 3: A plot of the logistics function in (11) with parameters K = 1, a = 0.5
and b = 15 (as used in this work) which approximates to a step-function at b.
The variance increases towards K for Q→ 0 and vanishes for Q→ ∞.
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Figure 4: A histogram of the flow rates for a specific house which illustrates
the location of the cut-off level as determined by the value of b in (11).

logistics function S is used

V i
t = V

[
e(i)

t

]
= σ2

obs + S (−Qi(t) + b) = σ2
obs +

K
1 + ea(Qi(t)−b) ,

(11)

which acts as a smooth approximation to the Heaviside step
function H(Q) = 1Q< b, as illustrated in Figure 3. The purpose
of this variance construction is to decrease the weight of obser-
vations that are gathered under low flow conditions, where the
observations obviously contain very limited information about
the street temperature - as is illustrated in Figure 6 and Figure 7.
This construction was seen to be necessary in order to prevent
the street temperature estimates from decreasing according to
the decreasing house temperatures during such periods of low
flow, i.e. no energy consumption. The parameter b in Eq. (11)
was chosen based on inspection of flow rate histograms for the
buildings in that neighbourhood. An individual neighbourhood
assessment must be performed, since the lower flow rate thresh-
old at which rapid temperature decreases occur varies. A typi-
cal bi-modal flow histogram from one particular house is shown
in Figure 4. The red dashed line marks the threshold value of
b = 15 below which a given observation whose flow satisfies
Q ≤ b will have its variance increased. The magnitude of this
increase lies in the range k ∈ [K/2,K). Figure 5 demonstrates
the correlation between temperature and flow rate, by marking
with black dots the observations with flow rates below the set
threshold. In this study, the parameters of the logistics function
will be set to; K = 10000 (maximum value), a = 0.25 (steep-
ness of the curve), and b = 15 (midpoint of the function).

The house-specific thermal parameters C and R summarise
the thermal properties of the transportation system between
street and house. The system here should be interpreted as
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Figure 5: Observations of temperatures for two houses with indication (black
dots) of the observations where the flow rate is less than Q ≤ 20L/h in corre-
spondence with the cut-off level seen in Figure 4 and the associated curve in
Figure 3.

an idealisation of the entire pipe installations and the different
environments that those are embedded in. The underlying as-
sumption that the potentially huge variety of such installations
can be described by the simple model in Eq. (9a)-(9b) enables a
crude way of analysing houses for potential issues, like detect-
ing poorly insulated pipes or potential leakages.

2.3. Parameter estimation
The parameter estimation is carried out using the maximum

likelihood approach. In this paper, two slightly different com-
putational methods are applied, both of which rely on the R-
package Template Model Builder (TMB) [31]. The first method
applies the intended methodology of TMB which is that of a gen-
eralized mixed-effects model, while the latter method employs
the discrete Kalman filter. The filter is also implemented with
TMB simply to draw on the package’s employment of automatic
differentiation which yields the gradient (and also the hessian
with respect to the parameters) of the likelihood function which
drastically reduces computation times. A comparison between
these methods will be presented here in terms of speed, param-
eter estimates and uncertainty.

In the mixed effects formulation, TMB employs the Laplace
approximation to integrate out the states Eq. (9a)-(9b) which
are considered random effects in this framework. The TMB pro-
cedure; the marginal likelihood L(θ) of the fixed effects θ by in-
tegrating out the random effects U of the joint likelihood L(U, θ)
using the Laplace approximation. The marginal likelihood is

L(θ) =

∫
L(U, θ) dU, (12)

and the log-likelihood L is therefore

L(θ) = log
∫

expL(U, θ) dU. (13)

A second-order Taylor expansion around the random effects
maximum Û

Û = arg max
U

L(U, θ), (14)

of the joint log-likelihood L is

L(U, θ) ≈ L(Û, θ) +
1
2

(U − Û)H(Û, θ)(U − Û)T . (15)

where H(Û, θ) is the hessian. The integral in Eq. (13) can then
be approximated by inserting Eq. (15), which evaluates to unity
(after having corrected for the missing factor of the normal dis-
tribution), since the integrand is then a multivariate normal den-
sity with mean Û and covariance matrix H. The approxima-
tion is only exact if the joint distribution is also Gaussian. The
marginal likelihood can now be computed as

L(θ) ≈ L(θ, Û) +
(M + 1)N

2
log 2π −

1
2

log det H(Û, θ), (16)

where M is the number of smart meters and N is the number of
observations. For additional information about the Laplace ap-
proximation and its properties, see e.g. Madsen and Thyregod
[32].

In practice, when employing the TMB framework, the user
writes the negative log-likelihood as a C++ file which is then
compiled and imported as a function into R. In the present case,
the likelihood contributions from a stochastic differential equa-
tion system come from 1) the (hidden) state transitions and 2)
the state observations. The former contribution is given by

Ut ∼ N(Mt, Pt), (17)

where Ut =
[
T (1)

t T (2)
t . . . T (M)

t T (s)
t

]
T is the random ef-

fects state vector with mean Mt and covariance Pt (see Eq.
(30)) which directly depend on Ut−1 through the one-step tran-
sition density. The contribution from the observations is given
by

Yt ∼ N(Ut,Vt), (18)

where Vt is given by (11).
In the case of the Kalman filter there is only one contribution

to the likelihood, due to the state updating scheme. The pos-
terior state Xt|t and covariance Pt|t estimates are obtained from
updating the prior estimates Xt|t−1 and Pt|t−1 once new informa-
tion Yt becomes available. The updating scheme is

Xt|t = Xt|t−1 + Ktet, (19)

Pt|t = (I − KtH)Pt|t−1(I − KtH)T + KtVtKT
t , (20)

where Kt is the associated Kalman gain given by

Kt = Pt|t−1HT ΣY,t
−1, (21)

ΣY,t = HPt|t−1HT + Vt, (22)

with innovation

et = Yk − h(Xk|k−1), (23)

and with H =
dh(u)

du
. The likelihood contribution arises from

the innovation et and the covariance matrix ΣY,t as

L(θ)t =
1
2

[
log det ΣY,t + dt log 2π + etΣY,teT

t

]
, (24)

where dt is the number of available observations at time t.
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2.4. Theoretical Resistance-Capacitance Parameters in Pipe
The theoretical values of the Resistance-Capacitance (RC)

model of a pipe can be computed based on physical knowledge
of the pipe. The thermal capacitance of water in the service
pipe is computed as

C = Acvρ. (25)

The pipes from the distribution pipe to the substation are usu-
ally DN25 pipes. If it is assumed that the inner diameter of the
pipe is 0.0273 [m] then C = 2.45 [kJ/mK].

The resistance of the pipe is

R =
1

2πλp
ln

do + 2xa

di
, (26)

with the thermal conductivity of insulation of the pipe as, λp =

0.028 [W/mK], outer diameter do = 0.0337 [m], and insulation
thickness xa = 0.0182 [m], which gives a resistance of R =

4.16 [mK/W].
The theoretical estimates of the RC parameters will be used

to compare them to the estimated RC parameters.

2.5. First and second-order moments
The likelihood contributions of the stochastic differential

equation require computing the expectation and variance of the
one-step predictions regardless of the use of the two methods.
In the case of TMB, this amounts to computing Mt and Pt and
similarly for the Kalman filter Ut|t−1 and Pt|t−1. This will gen-
erally require integrating the first and second-order moments
of the SDE forward in time, and while that is possible using
standard ordinary differential equation (ODE) solvers, such an
approach introduces both the choice of integral method and a
time-step ∆t. The accuracy of the integration will depend on
both, but since integration methods are standard (e.g. a 4th or-
der Runge-Kutta method), the time-step will introduce a trade-
off between computing time and integration accuracy. How-
ever, this can be avoided altogether if the moment equations
can be solved analytically, and that is possible for the presented
model. In particular, the system in Eq. (9a)-(9b) is linear but
parameters are time-dependent due to the flow rate, and an an-
alytical solution is therefore not tractable. A common solution
is to impose a zero-order hold (ZOH) condition on the time-
dependence (i.e. Qi(t) = Qi,k for t ∈ [tk , tk+1]) such that the
system becomes piece-wise linear and time invariant. Imposing
this on the system in Eq. (9a)-(9b) for the M houses yields the
matrix-vector form

d

 Tt

T (s)
t

 =


A1 S

0 0

︸   ︷︷   ︸
A

 Tt

T (s)
t

 +

B1

0

 Tg︸  ︷︷  ︸
B

 dt +

σ 0

0 σs

︸    ︷︷    ︸
G

 dωt

dω(s)
t


(27)

=

A

 Tt

T (s)
t

 + B

 dt + G

 dωt

dω(s)
t

 , (28)

where the auxiliary matrices and vectors have been introduced,

A1 =



a1 0 0 0 0
0 a2 0 0 0

0 0
. . . 0 0

0 0 0 aM−1 0
0 0 0 0 aM


, S =



s1
s2
...

sM−1
sM


,

B1 =



b1
b2
...

bM−1
bM


, σ =



σ1 0 0 0 0
0 σ2 0 0 0

0 0
. . . 0 0

0 0 0 σM−1 0
0 0 0 0 σM


,

with the lowercase variables given as

ai = −(si + bi), si = C−1
i Qi,kcp, bi = (CiRi)−1 ,

and where

Tt =
[
T (1)

t ,T (2)
t , . . . ,T (M)

t

]T
, dωt =

[
dω(1)

t , dω(2)
t , . . . , ω(M)

t

]
.

The solution to this (M + 1)-dimensional system of stochastic
differential equations from time t = tk to t = tk+1 can be written
using the Itô interpretation of the stochastic differential equa-
tion as

xk+1 = eA∆t xk +

∫ tk+1

tk
eA∆ts B ds +

∫ tk+1

tk
eA∆tsG dωs, (29)

using the time differences ∆t = tk+1−tk and ∆ts = tk+1−s and us-
ing the zero-order hold assumption across these time intervals.
Only the transitional mean and covariance must be computed
and these remain Gaussian by the linearity of the system. They
are given by

E[xk+1] =ÂE[xk] + B̂, (30a)

V[xk+1] =ÂV[xk] ÂT + Q̂, (30b)

where the involved matrices are

Â = eA∆t, (31)

B̂ =

∫ tk+1

tk
eA∆ts B ds, (32)

Q̂ =

∫ tk+1

tk
eA∆tsGGT eAT ∆ts ds, (33)

which can be calculated by computing the matrix exponential
of the augmented matrices

exp
([

A B
0 0

]
∆t

)
=

[
Â B̂
0 I

]
, (34)

exp
([
−A GGT

0 AT

]
∆t

)
=

[
V11 V12
0 V22

]
, (35)

8



and subsequently extracting the variance as Q̂ = VT
22V12 [33].

The elements of these matrices are

Q̂i,i =
s2

i

2a3
i

σ2
s

[
e2ai∆t − 4eai∆t + 2ai∆t + 3

]
+

1
2ai

σ2
i

[
e2ai∆t − 1

]
, (36)

Q̂i, j =
sis j

(ai + a j)a2
i a2

j

σ2
s ·

(
e(ai+a j)∆taia j − eai∆ta j(ai + a j)

(37)

− ea j∆tai(ai + a j) + a2
i (a j∆t + 1) + (a2

j∆t + a j)ai + a2
j

)
,

Q̂M+1,i =
si

a2
i

σ2
s

[
eai∆t − ai∆t − 1

]
, (38)

for i = 1, 2, ...,M and j = i + 1, i + 2, ...,M. The last diagonal
element is Q̂M+1,M+1 = σ2

s∆t. The non-zero elements of Â lie
on the diagonal and the last column i.e.

Âi,i = eai∆t, (39)

ÂM+1,i =
si

ai
(eai∆t − 1), (40)

for i = 1, 2, ...,M. The last diagonal element is ÂM+1,M+1 = 1.
The first M entries of B̂ are

B̂i =
bi

ai
(eai∆t − 1)Tg, (41)

for i = 1, 2, ...,M, and BM+1 = 0.
The likelihood computations can therefore be carried out

without having to invoke costly integration techniques, simply
by computing the one-step moments in Eq. (30) by calculating
these elements necessary to directly construct Â, B̂ and Q̂. The
source code for the implemented likelihood functions for the
two methods is available through a GitHub repository1.

3. Results

This section presents the results in terms of parameter esti-
mation using the two proposed approaches, the TMB and Kalman
filter to estimate the street temperature from smart meter data.
Computation time and difference between the parameter esti-
mations will be compared between the two approaches to in-
vestigate if one method is more advantageous. The results be-
tween the two different areas are also compared to validate the
model’s generalizability as the dynamics between the areas are
different. The performance of the model in different seasons
is also investigated. Finally, the challenges of the model are
discussed. The data used in this paper is presented before the
results from the proposed approaches are discussed.

1https://lab.compute.dtu.dk/hgbe/smartmeters-kalmanfilt

er-tmb

3.1. Data

The data used in this study was provided by the district heat-
ing utility in Brønderslev, Brønderslev Forsyning. The data con-
sists of measurements from smart meters in individual build-
ings and measurement wells from two critical areas inside the
Brønderslev district heating network. Only a subset of the smart
meters is needed for the proposed method. The smart-meter
measurements used in this study are from 30 different single-
family houses: 15 from each area. They consist of time se-
ries of supply temperature [°C], return temperature [°C], flow
[L/h], energy [kWh], volume [m3] with associated timestamps.
The measurement wells are located in the distribution network
at street level before the houses and they measure the forward
temperature [°C] and the return temperature [°C]. In order not
to violate privacy and comply with the General Data Protection
Regulation (GDPR), Brønderslev Forsyning made the smart-
meter data anonymous before making it available for the study
by not disclosing the location of the houses. Hence, the only
information given in the data is which of the two areas the
house belongs to, and that houses are grouped closely together
for each area. Only metering data has been used to estimate
the distribution network temperature at street level, whereas the
temperature measurement from the wells has only been used to
validate the results.

3.2. Measurements from smart meters and measurement Wells

In this paper, only temperature and flow measurements from
the smart meters are used. The objective of this study is to esti-
mate the supply temperature in the distribution pipe in the street
that feeds into the houses where the smart meters are installed,
without using the nearby measurement well. The temperature
measurements from the well will only be used for model vali-
dation. The measured variables are denoted as follows:

Network Temp. (Street) : T s
t , t = 1, . . . ,N, (42)

Temp. at houses : T (i)
t , t = 1, . . . ,N, i = 1, . . . ,M, (43)

Flow at house : Q(i)
t , t = 1, . . . ,N, i = 1, . . . ,M, (44)

where the subscript t is the time index (N number of observa-
tions), and the superscript i is a label of the smart meter (or
house) number and M is the number of smart meters. The mea-
surements from the smart meters in Area 1 and Area 2 were ob-
tained from 1 July 2018 to 1 July 2019, and 1 January 2018 to
25 September 2020, respectively. The resolution of the smart-
meter data is not fixed and the number of readings each day
changes over time. The measurements from the wells that rep-
resents the temperatures in the streets from Area 1 and Area 2
are on two minutes resolution, and the periods are from 4 De-
cember 2018 to 8 January 2020 and 12 September 2019 to 12
September 2020.

Smart meters are usually located close to the substation in-
side the houses where they measure district-heating informa-
tion. The hot water is delivered to the substation by a service
pipe that is connected to the district heating distribution net-
work at street level as shown in Figure 2. Measurement wells
are located at the critical areas in the distribution network and
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Figure 6: The plot demonstrates for an interval of one hour, a different number of readings at different timestamps when comparing smart meter data from each
house. Two houses are shown with colours while the other houses are illustrated as grey. The two houses are highlighted with colour to illustrate the difference in
the dynamics between the two areas.

are usually placed before the hot water enters the first house in
the area at street level. Unfortunately, the measurements from
the two wells do not overlap during a cold period (January) or
warm period (summer) as Figure A.15 shows. Also, there are
some errors with the measurements over a longer period for
both areas.

Time series plots of the supply temperature and flow from the
smart meters at the houses in both areas for a subset of the data
are shown in Figure 6. Two random houses from both areas
are visualised with coloured lines, while the rest are presented
as grey. These two houses are selected to highlight the differ-
ent dynamics between the areas and seasons. The dynamics are
very different between the areas, while houses in the same area
tend to show similar behaviour, i.e. similar houses with similar
control strategies. There are also seasonal patterns, e.g. usu-
ally there is no need for space heating during summer so the
temperature is lower during summer as the heat demand is sig-
nificantly lower compared to cold periods, e.g. January. This
can also be seen in Table 1, which lists the quantiles of the
temperature and flow measurements in January and June. As
expected, the temperatures are higher during January. Due to
the significant difference between the areas, each area will be
discussed separately in the following.

Area 1: demonstrates rather constant temperature, especially
during cold periods, as shown in both Figure 6 and Table 1.
Hence, there is always some consumption of heat, as the flow is
almost never zero (see Q5 for flow in Table 1). However, during
a warmer period, less heat consumption is needed and therefore
there is frequently no heat consumption.

Area 2: demonstrates a more dynamic operation where the
flow is frequently turned on and off (see Figure 7 for an exam-
ple). The hot water in the service pipe frequently loses heat to
the surroundings, as it becomes still in the pipe for long peri-
ods when the flow is low. Hence, there is frequent temperature
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Figure 7: The plots visualise how the resolution of the aggregation can result in
less information on the temperature dynamics of the pipe. The upper and lower
plots show data from Area 1 and Area 2. The raw supply temperature and
flow with two different aggregation resolutions, 5 minutes and 30 minutes are
visualised together. The flow demonstrates the heating dynamics in more detail,
i.e. how the temperature increases and decreases with the flow behaviour.

drops in Figure 6 and a large gap in the quantiles in Table 1,
most notably during January.

Area 1 has a more constant behaviour, as both the temper-
ature and flow do not change rapidly. Area 2 shows more of
an on/off behaviour, i.e. turning on and off the heating over
time. There is a significantly larger variability in Area 2 in the
temperature readings. Area 2 might therefore be low-energy
buildings where the substation is controlled intelligently com-
pared to the traditional operation of substations where only the
outside temperature is used. It can be assumed that Area 1 uses
traditional operations and the buildings are likely to be older.

10



Table 1: The table presents flow and temperature measurement quantiles from
both areas for the periods January and June in 2019. The differences in both
flow rate and temperature between June (summer) and January (winter) are very
noticeable for all shown quantiles.

Q5 Q25 Q50 Q75 Q95

January

A
re

a
1 Flow [L/h] 53.36 87.67 107.5 133.09 182.5

Temp [°C] 66.10 68.30 69.7 71.30 72.9

A
re

a
2 Flow [L/h] 3.59 12.73 40.75 94.0 172.30

Temp [°C] 43.34 55.70 61.10 65.1 68.70

June

A
re

a
1 Flow [L/h] 13.00 21.00 30.0 46.09 83.0

Temp [°C] 52.50 56.80 59.5 61.20 63.3

A
re

a
2 Flow [L/h] 7.00 13.00 17.33 22.0 56.37

Temp [°C] 42.80 48.90 50.30 51.8 56.60

Therefore, they usually have lower energy efficiency and need
more heat to keep the indoor climate comfortable. The on/off

control strategy impairs the quality of the temperature measure-
ment from the smart meters. The water in the service pipe be-
comes still and therefore it does not give an accurate represen-
tation of the temperature in the distribution pipe. Consequently,
this needs to be considered when estimating the temperature, to
avoid including these periods where the signal becomes unreli-
able. The seasonal behaviour demonstrated in both areas occurs
when the ambient air temperature has increased above a certain
cutoff temperature where no space heating is required to feel
comfortable inside, as space heating is highly correlated with
the ambient air temperature. Hence, the quality of the tempera-
ture signal is also seasonal-dependent, as the amount of flow is
affected by the desired space heating.

Bergsteinsson et al. [14] describe that each smart meter is
unique, as the quality of the signal depends on the smart me-
ter and the quality of the temperature signal is flow-dependent.
Smart meters send instantaneous values with different resolu-
tions, as is highlighted in Figure 8. The plot visualises the tem-
perature readings from all houses in Area 1 over a one-hour
period. Note that one house did not send any readings during
this period. Some meters only send one value, while others
send multiple. Therefore, the data from the smart meters needs
to be resampled, as required by the method used to estimate the
supply temperature.

In this study, the discrete-time Kalman filter is used to esti-
mate the house and street temperatures. It is therefore conve-
nient to have the smart-meter data resampled at the same time
points. As demonstrated in Figure 8, the data does not have
a fixed resolution. The purpose of this method is to estimate
the temperature in the street distribution pipe from historical
data, but it is not used to predict future temperature values. The
smart-meter data is therefore aggregated with the desired res-
olution by rounding to the nearest time point. An appropriate
resolution needs to be used such that as little as possible of the
information vital for the analysis is lost. Figure 7 shows the
time series of the raw supply temperature data and aggregates
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Figure 8: The plot demonstrates an interval of one hour. There is a differ-
ent number of readings with different timestamps when comparing smart-meter
data from each house. There is also one house missing in this period.

by rounding to 5 minutes resolution and 30 minutes. The flow
is also plotted to highlight the heating dynamics of the houses
and between the areas. Because of the on/off dynamics of the
heating for House 5 in Area 2, the importance of the resolution
can be seen more clearly than in Area 1. When the flow is shut
off, the temperature starts to decrease and the rapid drop hap-
pens quite fast. Therefore, having all information on how the
temperature decreases is important. Hence, using the correct
aggregation resolution becomes essential to capture the heat dy-
namics of the service pipe. Investigating the difference between
5 minutes and 30 minutes in the drop, the 30 minutes resolution
results in less information, as expected.

The smart-meter data in this study will be resampled to the
same 5 minutes resolution and using one month from cold and
warm periods to demonstrate the performance of the proposed
method of estimating the distribution network temperature at
street level. In Area 1, measurements from January 2019 and
June 2019 will be used to estimate the parameters of the model.
The estimated temperature will be validated by comparing it to
the measured temperature from the well. The validation will be
done in the same period as the parameters are estimated, as the
well temperatures are not used in the model estimation and this
method’s purpose will only be used to estimate the temperature
from the previous day when the smart-meter data arrives. Area
2 will use January 2020 and June 2020 to estimate the model
parameters. However, during January it is not possible to vali-
date the estimated temperature, as the measured temperature at
the well for this period is wrong, as seen in Figure A.15.

3.3. Settings and procedure

The results presented in the following section were obtained
using the Kalman Filter method, which proved the fastest and
most robust. The parameter estimation is carried out using the
Kalman Filter and the smoothed estimate of the states and un-
certainties are then found with the mixed-effects method by
supplying the estimated parameters. The parameter estimation
is roughly ten times faster using the Kalman filter method, as
shown in Table A.2. A linear fit to this data in the log-log do-
main shows that the computation time for the Kalman filter and
mixed-effects method grows by M2.6 and M2.2 respectively. The
faster computation time using the Kalman Filter is explained by
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Figure 9: Plots showing the estimated street temperature and the measured house temperatures. The top and bottom plots show the estimation from winter and
summer respectively, and plots on the left and right belong to Area 1 and Area 2 respectively. The measured street temperature that is the critical point (CP)
temperature is plotted for Area 1 to demonstrate the performance of the proposed method. These measurements were not available for Area 2.

a much lower intercept. There was no drawback to the faster pa-
rameter estimation, since results were consistent regardless of
the method used (Table A.3). A total of fifteen houses were
used, and data from a one-month period containing 15 × 8353
observations of the house temperatures (≈ 80% are NA-values)
and the same amount of house flow rate observations.

The following upper and lower parameter bounds were used

θ(i)
upper =

[
C(i)

upper,R
(i)
upper, σ

(i)
upper

]
= [500, 1500, 2] , (45)

θ(i)
lower =

[
C(i)

lower,R
(i)
lower, σ

(i)
lower

]
=

[
1, 1, 10−5

]
, (46)

for each house to ensure realistic estimates (see Eq. (25) and
Eq. (26)). The parameter bounds were imposed naturally by
introducing the inverse logit domain transformation

θ =
(
θupper − θlower

)
S (θlogit) + θlower, (47)

where S (x) = (exp(−x) + 1)−1. The diffusion parameters σi

were generally very uncertain, thus difficult to estimate. It was
necessary to introduce a lower bound constraint to avoid numer-
ical instability as a consequence of diffusion parameters tend-
ing towards zero. The observation variance behaved in a similar
fashion and was fixed at σ2

obs = 1 (which amounts to allowing

temperature fluctuations on the order of ±2 degrees). The un-
certainty is a rough approximation of the uncertainties informed
by a specific smart meter manufacturer [34], and is reported to
be 3-5 % (depending on the flow), which amounts to 1.5 - 2.5
◦C assuming a temperature of 50 ◦C.

3.4. Empirical results
The smoothed-state reconstructions for the two areas are pre-

sented along the rows, with an estimate for a winter month (Jan-
uary) and a summer month (June) along the columns, in Figure
9. A pronounced difference can be seen between the dynam-
ics in the two areas; Area 1 displays rather stable house tem-
peratures relative to Area 2 where they surge up and down.
This surging is driven by similar behaviour in the flow, as
discussed in Section 3.1. Hence, the necessity of having the
flow-dependent observation noise as shown in Eq. (11) is clear.
One advantageous effect of the flow-dependent implementation
is that the street temperature estimate is less prone to rapid
changes during periods where all flows simultaneously decrease
below the set threshold. This occurs because the estimated
street temperature attempts to follow the fast dynamics of the
houses, but such behaviour is contrary to its slower tempera-
ture dynamics. The implementation was therefore necessary in
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Figure 10: The estimated street temperature using all houses and after removing
the two houses whose thermal resistance estimates hit the boundary Ri = 1500.
The estimate is not significantly improved until the second house is removed.

order to achieve more realistic and accurate results. It can be ar-
gued that, even though increasing the number of houses would
decrease the probability that all flows decrease below the set
threshold simultaneously, the implementation remains valuable
in order to appropriately penalize the impact of low-flow obser-
vations.

The model performance can be validated by comparing the
estimated street temperature with the critical point measure-
ments in Area 1. The street temperature predictions seem to
have captured the overall trends and oscillations quite well, al-
though a systematic bias is evident during summer, and in win-
ter a slight temporal delay is seen. Comparing the two areas,
the effect of having accurate information (due to the high flow)
is evidently a smoother temperature curve for all houses and
the street. The estimation in Area 2 displays faster variations
as a result of the rapid variance changes and differences in the
number of houses that provide information. In particular, in-
specting the two highlighted temperatures (T (1)

t and T (2)
t ) em-

phasises that whenever information becomes available (and the
flow is high) the individual houses surge upwards to some limit
from where they determine the street temperature estimate. A
primary challenge with the estimation in Area 2 is to prevent
the slower dynamics of the street from being controlled by the
much faster dynamics of the houses. This is a trade-off between
measurement variance and obtaining what appears to be ade-
quately slow changes in the street temperature estimates. The
effect of the variance increase cannot be assessed due to the lack
of critical point measurements in this area.

It was discovered that the estimation accuracy is sensitive to
temperature observations that are much higher than expected,
e.g. from poorly calibrated sensors. The challenge of detecting
such problematic houses is difficult to solve in general. These
houses are identified by inspection of the thermal resistances Ri
because they tend to hit the upper bound. The modeller should
be aware of the possibility that such houses have a controlling
influence on the street temperature. In this particular case, the
thermal resistances of both House 8 and House 4 were converg-
ing to the boundary, although only the former had observations
that were much above the critical point measurements. The ef-
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Figure 11: Boxplots of estimated thermal capacities C for the two areas and
two months. The median values are clearly largest in Area 1 during the winter
month but a few outliers are seen in Area 2 regardless of season.
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Figure 12: Boxplots of the logarithmic value of the thermal resistance R. There
is a clear difference between the two areas, and generally speaking the in-
terquartile range is larger during the summer.

fect of omitting these two houses from the estimation was in-
vestigated after omitting none, one or both. The estimated street
temperatures are compared to the critical point temperatures in
Figure 10, and the associated mean average errors (MAEs) are

None : MAE = 0.46
House 4 : MAE = 0.76
House 8 : MAE = 0.50

House 4 & 8 : MAE = 0.32

This shows that the MAE increases (0.3/65%) after removing
House 4, increases slightly (0.04/8%) after removing House
8 and decreases (0.14/30%) after removing both House 4 and
House 8. The surprising outcome in the former case was fur-
ther investigated and apparently it occurs because only a single
house will act as a controller of the street temperature. In this
case, House 4 dominates the street temperature estimation, so
if removed House 8 will start to dominate the temperature es-
timation which has significantly higher observations and thus
pulls the estimated street temperature up towards itself. In con-
trast, there is no effect from omitting House 8, because House
4 remains in control.

3.5. Thermal parameters and house dynamics

A statistical overview of the obtained values of Ci and Ri is
provided in Figure 11 and Figure 12, respectively. The former
figure shows that the estimated winter capacities from Area 1
stand out from the others by having a significantly higher me-
dian value, and the parameters are generally more dispersed in
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Figure 13: The decaying exponential functions exp(−t/τ) which depict how fast
the temperature decreases from some initial set-point temperature down to the
ground temperature Tg in the individual house systems. The dashed line shows
when it has decayed to 37% of its initial value.

Area 1 regardless of period (as evident from the interquartile
ranges of 131, 81, 114 and 47, respectively). Comparing areas
shows that the dispersion is high during winter and low during
summer. This conclusion is reversed when inspecting the esti-
mated resistances, but could not be explained by strong correla-
tions between Ri and Ci. The estimates and the estimated confi-
dence intervals for winter and summer estimation are shown in
Table A.4.

The stochastic differential equations describing each house
give rise to time constants (τ) which can be interpreted as the
duration after which the temperature has decreased by roughly
36%. This yields a straight-forward way to compare and char-
acterise the thermal properties of the service pipe at each house
in a single quantity, and this enables quick identification of e.g.
bad insulation, leakage or out-dated installations. The time con-
stants are the eigenvalues of the system matrix A in Eq. (27)

τi =

(
cp

Qi

Ci
+

1
RiCi

)−1

≈ RiCi. (48)

The approximation is only valid when the flow is low (ap-
proaching zero), since the former term then becomes very
small. The time constants are illustrated as decaying expo-
nential functions in Figure 13 for the two areas in the winter
month. Evidently, certain houses can be identified as cooling
down much more rapidly than the others; the houses where tem-
perature converges to zero instantly. In Area 2, there seems to
be two groups of houses: one which slowly converge to zero
and another which cool down faster. There also seem to be two
houses that cool down faster than other houses in the same area.
This information could be used to investigate whether there is a
problem with the service pipe.

3.6. Model validation
Model validation is always important, but in the presented

case there are a few challenges of applying e.g. the autocorre-
lation function (ACF). One is that the data used in this study
does not have a fixed resolution (Figure 8), and the more diffi-
cult one is that the model does not try to capture the behaviour
at all times. When the flow is low, the dynamics of the temper-
ature is not captured well by the model, as the dynamics will
be more influenced by e.g. the placement of the smart meter
inside the house and higher heat loss in the service pipe due
to the slow transportation time. In the model, this is handled
by increasing the observation variance. However, the 1-step
residuals will show a very large autocorrelation in these situ-
ations (Figure A.16 and Figure A.17) leading to a very large
lag-one autocorrelation for the overall data. Disregarding data
when the flow is high results in smaller autocorrelation (Figure
14). Even with these reservations, it seems clear that, at least
for some houses, the lag-one autocorrelation is high, indicating
that some model deficiencies could be addressed in future work.

Also, as an approximation, the temperature distribution over
the service pipe is is assumed to be uniform; i.e. the discreti-
sation which results in Eq. (7). This assumption is only valid
when flow is high. Hence, the temperature distribution is not
uniform during situations when flow is low. Also, the trans-
portation time of the water moving will therefore take longer. It
can be calculated from

Q = ρV =
ρAL

t
→ t =

ρAL
Q

, (49)

where Q [kg/s] is the mass flow rate, ρ [kg/m3] is the density
of the water, V [m3/s] is the volumetric flow rate, A [m2] is
the cross sectional area of the pipe, L [L] is the length of the
pipe, and t [s] is the time. Some of the pipe properties needs
to be assumed, for instance that the pipe is a DN25 with inner
diameter of 0.0273 [m], the length of the pipe is 10 [m] and the
flow is 50 [kg/h], then the transportation time can be computed,

t =
997[kg/m3](π(0.0273[m])2/4)10[m]

50[kg/h]/60[h/min]
≈ 7 min. (50)

In this example, the transportation time is longer than the
resolution time of the data used in this study, which indicates
that the uniform temperature distribution is not valid and could
lead to higher autocorrelation in the errors.

4. Discussion

This paper modelled the thermodynamics of a service pipe
that delivers heat from a distribution pipe in a district heating
network to consumers’ substations. A partial differential equa-
tion of the thermodynamics in the service pipe was presented,
and then approximated by a stochastic differential equation. Us-
ing this set of equations, an approach was established to obtain
temperature feedback at arbitrary points in the district heating
network by using measurements from a group of smart meters
located inside single-family houses close to the chosen point.
The network temperature is the temperature of the hot water

14



House

A
C

F
(la

g=
1)

Area 1

W
in

te
r

1 3 5 7 9 11 13 15

−
0.

5
0.

0
0.

5
1.

0

All Obs.
Obs. with flow > 15 L/h
Obs. with flow > 50 L/h

House

A
C

F
(la

g=
1)

Area 2

1 3 5 7 9 11 13 15

−
0.

5
0.

0
0.

5
1.

0

Figure 14: The figure shows the one lag value of the ACF from the prediction
errors for each house for the two areas in separate plots. It highlights that, when
the flow is low, the model does not capture the dynamics of the temperature
adequately.

inside the distribution pipe before it delivers hot water to the
consumers’ service pipe. The street temperature was modelled
as a random walk. A combined SDE model composed of the
street temperature connected to all of the houses’ service pipes
through identical Resistance-Capacity SDEs was constructed.
This automatically restricts the street pipe temperature to at
least as high as the temperature measurements from the smart
meters. It was shown that the presented methodology produced
accurate results when compared to the measured network tem-
peratures in a single area with fifteen houses. In another area
of fifteen houses, it was shown how to deal with rapidly de-
creasing temperatures when the flow rates become too low, by
increasing the uncertainty of these observations.

The parameter estimation was carried out using two different
methods, namely a discrete Kalman filter and a mixed-effects
method, both implemented as C++ files and used with the R
package TMB. The latter was the intended formulation using TMB
while the former only took advantage of the automatic differ-
entiation provided by TMB. The speed-up gained using C++ to-
gether with automatic differentiation is substantial, and results
showed that the computation time for the Kalman filter method
was approximately ten times faster than that of the mixed-effect
formulation. For this reason, parameter estimation was carried
out using the Kalman filter, while smoothed-state estimates and
variances were calculated using the mixed-effects formulation.

The smoothed-state estimates are presented here since these
are more appropriate than one-step prediction estimates due to
the in-sample use case. Thus, because the model is intended
to assess the feedback from the network for computing a trans-
fer function for the network characteristics, e.g. time delay and
temperature loss in the system, the posterior state estimates that
use all available information are appropriate. In a concrete sce-
nario, one could imagine that the previous 24 hours of data are
sent from the smart meters once per day. This information can
then be used for temperature optimisation of the supply tem-
perature at the plant with the aim of reducing the heating cost
and heat losses in the system by lowering the supply tempera-
ture at the plant. The ability to establish temperature feedback
in district heating networks opens many possibilities for util-
ity companies to improve their operation. Most importantly, it

gives the ability to use controllers for data-driven temperature
optimization of the network. Temperature optimization reduces
the heat loss and lower the needed network supply tempera-
ture, and thereby the operational cost of the heat production is
reduced. It furthermore makes physical measurement wells in
the network redundant, reducing costs, planning time, installa-
tions and maintenance. The feedback becomes flexible since
any group of houses can be selected to establish a new network
temperature. This is highly beneficial for the utility company,
since the location where the highest temperature loss in the net-
work will vary across time, due to deterioration of pipes, re-
placement of older pipes with newer ones, leakage and so forth.
Finally, using smart meters can make multi-temperature zones
inside the network more feasible, where more local heat sources
can be added to the network. Thus, lowering the operating tem-
perature in the grid using temperature optimisation and having
more detailed information from the grid will give rise to more
decentralised heat sources. For instance, heat sources such as
heat pumps, waste heat from industries, and solar thermal col-
lectors (with thermal storage systems) can be included to pro-
vide heat to consumers. This will also increase the efficiency of
sector coupling with the electricity sector, where the renewable
energy systems are better utilised.

The authors argue that the presented model is advantageous
due to 1) its relative simplicity, 2) its ability to handle scenarios
with a lot of information, and 3) its ability to assess thermal
properties and the outlier detection possibilities that this en-
ables. In particular, it was proposed that houses with resistance
lying on the upper boundary should be omitted from the analy-
sis. A few issues are, however, worth mentioning: Firstly, the
choice of a random walk to estimate the street temperature gen-
erally creates poor conditions for long-term forecasting because
its variance increases linearly with time. While this is of no con-
cern here due to the in-sample model purposes, should one use
the model for predictions it is crucial that the uncertainty assess-
ment is corrected. Therefore, in order to improve the forecast-
ability of the proposed method, it would be necessary to replace
the random walk using some model. For instance, the Ornstein-
Uhlenbeck process could be used, although that would require
some assumptions or knowledge about the parameters that will
have to be derived from the forwarded temperature at the dis-
trict heating facility. A second issue is the assumption that the
temperature distribution over the service pipe is uniform. how-
ever, this assumption is not valid when the flow is low as the
flow would also not be constant through the service pipe. It
also depends on the properties of the pipe, e.g. the diameter
and length. One suggestion for model extension would be to
increase the model order by dividing the pipe into multiple seg-
ments to model the temperature distribution over the pipe. This
extension could lower the autocorrelation of the prediction er-
rors.

5. Conclusion

This paper has demonstrated how smart-meter data can be
used to improve the operation of a district heating network by
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establishing temperature feedback of the network. Tempera-
ture feedback is highly valuable for temperature control of the
network. Simplified descriptions using stochastic differential
equations are formulated from considering partial differential
equations that describe the thermodynamics of the hot water in
the service pipe from the distribution pipe to consumer substa-
tions. A random walk is used to model the temperature varia-
tions in the distribution pipe that is connected to all houses. The
street temperature and thermal parameters of the model are esti-
mated by minimizing the negative log-likelihood function using
a discrete Kalman filter. Smoothed state estimates are subse-
quently computed using the mixed-effects formulation in TMB.
The results show that the proposed method can mimic the mea-
sured street temperature accurately when compared to observa-
tions. It is important that houses whose thermal parameters hit
the upper boundary are removed to reduce the estimation bias
in the street temperature. The estimation procedure entails that
smart-meter data arrives daily and contains measurements with
same resolution from the past 24 hours. The procedure uses this
information to estimate the network temperature for the past 24
hours. The proposed method further allows for potential iden-
tification of houses with e.g., bad insulation or leakages. They
can be identified by inspecting whether the estimated thermal
resistance, capacity and resulting time constant of a particular
house, lie outside of the expected range.

The possibilities for future work for using smart meters to
enhance the operation of district heating networks are endless.
Hence, the utilities have become very data-rich and can use this
information to learn how the network is performing. Utilis-
ing this opportunity will help district heating to become more
energy efficient in the transformation to RES and increase its
flexibility. The extension of the proposed method in this paper
would be to improve the forecasting ability and validate its po-
tential for on-line control of supply temperature at the plant. In
future work, the authors also aim to investigate model exten-
sions e.g., by dividing the service pipe into multiple segments.
Furthermore, a simulation study could be beneficial to investi-
gate the estimation of R and C parameters of the service pipe.
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Figure A.15: The figure shows the time series of the available temperature
measured at the wells for both areas. The wells are located before the houses.
Notice, that there are some problems with the measurements, e.g. during Oc-
tober 2019 for Area 1 and during December 2019 and January 2020 for Area
2.

Table A.2: The approximate computation times (seconds) for parameter esti-
mation using either the Kalman Filter or the mixed-effects method as a function
of the number of houses M. The dimensions of the system are M + 1 and the
number of parameters are 3M + 1. The estimation is based on one month of
data with a sampling time of 5 minutes, which corresponds to 8350 tempera-
ture observations for each house, although roughly ≈ 80% are missing values
(NA-values).

Number of Houses [M] Kalman Mixed-Effects Ratio

2 1 29 1:22
3 4 59 1:15
4 6 101 1:18
5 11 140 1:13
6 16 206 1:13
7 26 282 1:11
8 33 416 1:13
9 54 518 1:10
10 69 685 1:10
11 86 829 1:10
12 118 1157 1:10
13 143 2112 1:15
14 168 2273 1:14
15 198 2266 1:11
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Table A.3: The thermal parameter estimates for 10 houses using the Kalman
or the mixed-effects model formulations. The estimates are seen to be identical
for all practical purposes.

Parameter Kalman TMB Difference

C1 153 155 2
C2 11 12 1
C3 254 258 3
C4 29 30 1
C5 355 358 3
C6 472 478 6
C7 5 5 0
C8 8 14 5
C9 335 341 6
C10 238 240 2
R1 245 245 0
R2 648 648 0
R3 219 219 0
R4 1085 1084 1
R5 185 185 0
R6 125 125 0
R7 619 619 0
R8 1501 1501 0
R9 266 266 0
R10 450 450 0
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Figure A.16: The figure displays difficulties in validating the model by doing
residuals analysis on the one-step predictions in Area 1. The top plot shows
the measured temperature (black solid line) and the one-step prediction (blue
points). The flow for the same period is illustrated in the second top plot. In the
bottom are three plots that show the residuals analysis of the one-step prediction
errors. The first plot on the bottom shows the residuals over time, the next plot
shows the residuals versus the flow, and the last plot shows the autocorrelation
function (ACF) of the residuals.
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Figure A.17: The figure displays difficulties in validating the model by doing
residuals analysis on the one-step predictions in Area 2. The top plot shows
the measured temperature (black solid line) and the one-step prediction (blue
points). The flow for the same period is illustrated in the second top plot. In the
bottom are three plots that show the residuals analysis of the one-step prediction
errors. The first plot on the bottom shows the residuals over time, the next plot
shows the residuals versus the flow, and the last plot shows the autocorrelation
function (ACF) of the residuals.
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Table A.4: Parameters and their confidence interval for the winter and summer estimation for both areas. For Area 1, there is no CI as the hessian could not be
computed for the summer period.

Area1 Area2

Winter Summer Winter Summer
Parameter Estimate (CI) Estimate (CI) Estimate (CI) Estimate (CI)

C1 101.9 (95.56, 108.55) 23.18 (, ) 1 (1, 501) 63.31 (36.46, 105.9)
C2 1 (1, 501) 1 (, ) 14.92 (13.23, 16.83) 28.31 (19.14, 41.72)
C3 173.1 (165.92, 180.43) 34.48 (, ) 33.3 (33.16, 33.45) 38.28 (37.87, 38.69)
C4 (,) (,) 209.22 (201.04, 217.5) 44.98 (44.24, 45.73)
C5 245.16 (232.6, 257.76) 94.28 (, ) 13.69 (13.56, 13.83) 3 (1.01, 215.3)
C6 276.88 (256.16, 297.25) 501 (, ) 6.9 (6.37, 7.47) 260.84 (238.7, 282.82)
C7 1.91 (1, 482.67) 1 (, ) 26.77 (26.65, 26.89) 32.02 (31.8, 32.25)
C8 (,) (,) 21.09 (20.58, 21.6) 11.68 (6.21, 22.63)
C9 245.27 (234.49, 256.07) 92.26 (, ) 6.53 (6.12, 6.97) 16.62 (7.25, 38.95)
C10 188.13 (175.59, 201.01) 103.34 (, ) 424.55 (386.15, 451.75) 325.95 (316.36, 335.29)
C11 108.01 (103.37, 112.79) 61.95 (, ) 501 (1, 501) 374.99 (356.71, 391.66)
C12 215.99 (207.73, 224.32) 12.88 (, ) 501 (1, 501) 60.27 (58.5, 62.09)
C13 55.7 (47.37, 65.31) 13.16 (, ) 23.83 (22.2, 25.58) 10.44 (8.32, 13.17)
C14 84.73 (74.02, 96.66) 31.55 (, ) 24.55 (24.32, 24.79) 25.76 (23.5, 28.24)
C15 214.41 (210.22, 218.61) 151.78 (, ) 47.72 (47.37, 48.06) 13.17 (9.27, 18.85)
R1 325.13 (324.43, 325.82) 376.67 (, ) 802.19 (796.28, 808.1) 1501 (1, 1501)
R2 1144.12 (1101.73, 1183.31) 1501 (, ) 334.75 (334.42, 335.08) 505.99 (504.8, 507.19)
R3 316.06 (315.02, 317.1) 413.17 (, ) 248.26 (248.06, 248.47) 369.16 (367.44, 370.89)
R4 (,) (,) 187.79 (187.53, 188.05) 295.92 (295.72, 296.12)
R5 249.1 (248.48, 249.72) 383.63 (, ) 511.81 (511.11, 512.52) 662.55 (659.75, 665.35)
R6 149.37 (149.27, 149.46) 178.89 (, ) 214.6 (214.54, 214.66) 336.28 (335.31, 337.24)
R7 863.29 (858.63, 867.94) 1344.51 (, ) 242.79 (242.52, 243.05) 315.6 (315.07, 316.13)
R8 (,) (,) 255.48 (255.43, 255.54) 359.45 (358.9, 359.99)
R9 423.67 (420.63, 426.72) 702.91 (, ) 843.58 (840.51, 846.64) 1376.71 (982.53, 1478.17)
R10 790.97 (768.8, 813.06) 1314.43 (, ) 113.28 (113.12, 113.43) 121.07 (121.03, 121.12)
R11 962.96 (921.01, 1003.51) 911.85 (, ) 121.09 (120.94, 121.25) 126.53 (126.49, 126.58)
R12 243.45 (243.17, 243.73) 402.5 (, ) 97.4 (97.26, 97.53) 228.06 (227.93, 228.19)
R13 722.03 (711.75, 732.32) 917.09 (, ) 318.39 (318.29, 318.49) 438.79 (437.89, 439.69)
R14 856.07 (822.25, 889.46) 1292.8 (, ) 166.48 (166.43, 166.52) 236.79 (236.63, 236.96)
R15 313.96 (313.48, 314.44) 371.96 (, ) 162.23 (162.13, 162.33) 253.68 (253.45, 253.91)
σ1 1.005e-05 (1.000e-05, 2.000e+00) 2.908e-02 (, ) 2.456e-01 (2.363e-01, 2.553e-01) 1.014e-05 (1.000e-05, 2.000e+00)
σ2 1.123e-05 (1.000e-05, 2.000e+00) 1.000e-05 (, ) 2.406e-02 (1.911e-02, 3.027e-02) 1.202e-05 (1.000e-05, 2.000e+00)
σ3 1.001e-05 (1.000e-05, 2.000e+00) 4.019e-02 (, ) 8.904e-02 (8.872e-02, 8.937e-02) 1.083e-01 (1.076e-01, 1.090e-01)
σ4 (,) (,) 4.869e-02 (4.851e-02, 4.886e-02) 1.151e-05 (1.000e-05, 2.000e+00)
σ5 6.549e-03 (5.815e-03, 7.376e-03) 2.245e-02 (, ) 4.023e-02 (3.938e-02, 4.109e-02) 8.395e-05 (1.000e-05, 2.000e+00)
σ6 1.180e-05 (1.000e-05, 2.000e+00) 4.628e-02 (, ) 7.117e-02 (6.957e-02, 7.279e-02) 1.981e-02 (1.950e-02, 2.012e-02)
σ7 1.026e-05 (1.000e-05, 2.000e+00) 1.445e-05 (, ) 1.117e-01 (1.113e-01, 1.120e-01) 6.177e-02 (6.088e-02, 6.267e-02)
σ8 (,) (,) 1.001e-05 (1.000e-05, 2.000e+00) 1.232e-05 (1.000e-05, 2.000e+00)
σ9 1.002e-05 (1.000e-05, 2.000e+00) 1.013e-05 (, ) 1.006e-05 (1.000e-05, 2.000e+00) 1.158e-05 (1.000e-05, 2.000e+00)
σ10 1.006e-05 (1.000e-05, 2.000e+00) 1.014e-05 (, ) 4.317e-02 (4.309e-02, 4.325e-02) 1.545e-02 (1.539e-02, 1.551e-02)
σ11 1.002e-05 (1.000e-05, 2.000e+00) 1.010e-05 (, ) 3.288e-02 (3.283e-02, 3.294e-02) 1.149e-02 (1.139e-02, 1.159e-02)
σ12 1.002e-05 (1.000e-05, 2.000e+00) 2.857e-02 (, ) 4.341e-02 (4.336e-02, 4.345e-02) 1.170e-05 (1.000e-05, 2.000e+00)
σ13 1.001e-05 (1.000e-05, 2.000e+00) 1.025e-05 (, ) 1.000e-05 (1.000e-05, 2.000e+00) 1.409e-05 (1.000e-05, 2.000e+00)
σ14 1.004e-05 (1.000e-05, 2.000e+00) 1.050e-05 (, ) 6.046e-02 (5.997e-02, 6.096e-02) 1.149e-05 (1.000e-05, 2.000e+00)
σ15 1.000e-05 (1.000e-05, 2.000e+00) 1.690e-02 (, ) 9.479e-02 (9.456e-02, 9.501e-02) 1.208e-02 (1.759e-05, 1.813e+00)
σ16 0.01 (0.01, 0.01) 0.01 (, ) 1.542e-02 (1.540e-02, 1.544e-02) 1.479e-02 (1.471e-02, 1.487e-02)
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[28] A. Dénarié, M. Aprile, M. Motta, Heat transmission over long pipes:
New model for fast and accurate district heating simulations, Energy 166
(2019) 267–276. doi:https://doi.org/10.1016/j.energy.2018.
09.186.

[29] S. Grosswindhager, A. Voigt, M. Kozek, Linear finite-difference schemes
for energy transport in district heating networks, in: Proceedings of
the 2nd international conference on computer modelling and simulation,
2011, pp. 5–7.

[30] P. Wallentén, Steady-state heat loss from insulated pipes, Ph.D. thesis,
Division of Building Physics, Lund University, 1991.

[31] K. Kristensen, A. Nielsen, C. W. Berg, H. Skaug, B. M. Bell, Tmb: Au-
tomatic differentiation and laplace approximation, Journal of Statistical
Software 70 (2016) 1–21. doi:10.18637/jss.v070.i05.

[32] H. Madsen, P. Thyregod, Introduction to General and Generalized Linear
Models, Texts in Statistical Science Series, CRC Press, 2010.

[33] C. Van Loan, Computing integrals involving the matrix exponential, IEEE
Transactions on Automatic Control 23 (1978) 395–404. doi:10.1109/TA
C.1978.1101743.

[34] 5810827 Z2 GB 06.pdf, Kamstrup, 2021. URL: https://koce1-kams
trup.ocecdn.oraclecloud.com/content/published/api/v1.1

/assets/CONT4AA1D9C46651406CA6AC17F2FAAFCC99/native/58

10827 Z2 GB.pdf?channelToken=ed241bbb18f444908a8fc9ed97

ca5d5b, accessed: 2021-12-20.

19



Paper D

NON-LINEARGREY-BOXMODELLINGFORHEATDYNAM-
ICS OF BUILDINGS

Authors:
Christian Ankerstjerne Thilker, Peder Bacher, Hjörleifur G.
Bergsteinsson, Rune Grønborg Junker, Davide Cali and Hen-
rik Madsen.

Published in:
Energy and Buildings.

110 Data-Driven Methods for Enhancing District Heating Network Operation



Non-Linear Grey-Box Modelling for Heat Dynamics of Buildings

Christian Ankerstjerne Thilker, Peder Bacher, Hjörleifur G. Bergsteinsson, Rune Grønborg Junker, Davide Cali, Henrik Madsen

Technical University of Denmark, Department of Applied Mathematics and Computer Science,
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Abstract

This paper introduces a non-linear grey-box (GB) model based on stochastic differential equations that describes the heat dynamics
of a school building in Denmark, equipped with a water-based heating system. The building is connected to a local district heating
network through a heat exchanger. The heat is delivered to the rooms mainly through radiators and partially through a ventilation
system. A monitoring system based on IoT sensors provides data on indoor climate in the rooms and on the heat load of the
building. Using this data, we estimate unknown states and parameters of a model of the building’s heating system using the
maximum likelihood method. Important novelties of this paper include models of the water flow in the circuit and the state of the
valves in the radiator thermostats. The non-linear model accurately predicts the indoor air temperature, return water temperature
and heat load. The ideas behind the model lay a foundation for GB models of buildings that use different kinds of water-based
heating systems such as air-to-water/water-to-water heat pumps. Such GB models enable model predictive control to control e.g.
the indoor air climate or provide flexibility services.

Keywords: Grey-box models, Stochastic differential equations, Non-linear models, District heating, Smart energy systems

1. Introduction

The use of fossil-based energy sources does not belong in
a sustainable future [1]. Society must shift to energy sources
where CO2-emissions lie within the planetary boundaries; i.e.
we need to use resources that are renewable [2]. This future5

low-carbon society calls for fundamental changes of the energy
system. Today the systems are operated such that the produc-
tion follows the demand. However, an efficient implementa-
tion of a low-carbon society calls for a system where the de-
mand follows the weather-driven energy production. Most im-10

portantly we need methods for unlocking the flexibility at all
levels of the society; examples being buildings, supermarkets,
wastewater treatment plants, industrial process facilities, dis-
tricts, municipalities and cities. A lot of recent work, therefore,
centres around the concept known as energy flexibility [3, 4].15

The core idea is to control the energy consumption to align it
with energy production. For this purpose, model-based predic-
tive control is a very promising control framework [5]. This pa-
per introduces a novel grey-box (GB) model based on stochas-
tic differential equations (SDEs) that is designed for controller20

based optimisation of the heat load of buildings. The ultimate
purpose of developing such a GB model is to intelligently con-
trol buildings in order to minimise the CO2-emissions and un-
lock the flexibility. A reliable model (together with weather
forecasts) is essential for a good performance of model predic-25

tive control (MPC) for buildings [6].

Email addresses: chant@dtu.dk (Christian Ankerstjerne Thilker),
pbac@dtu.dk (Peder Bacher), hgbe@dtu.dk (Hjörleifur G. Bergsteinsson),
rung@dtu.dk (Rune Grønborg Junker), dcal@dtu.dk (Davide Cali),
hmad@dtu.dk (Henrik Madsen)

MPC for control of buildings’ indoor climate requires reli-
able building models that describe the heat dynamics. Com-
plex building energy performance models based exclusively
on physical equations, known as white–box models, are of-30

ten used for providing simulations. Occasionally, in white box
building models, stochastic models are used to simulate occu-
pants behaviour, as in [7, 8]. However, they are demanding
to build, computationally heavy, and difficult or impossible to
tune to real-world data, which makes them infeasible for con-35

trol. Especially for the existing building stock. On the contrary,
black–box models can be fast in terms of simulation time. But
they do not include laws of physics, and thus may be hard to
interpret and lack the ability to extrapolate and generalise be-
yond training data. GB models bridge the gap between white-40

and black-box models by leveraging both physical and statisti-
cal properties [9]. They are based on simple physical principles
and considerations of the system, which make them computa-
tionally light and ideal for parameter calibration using available
data. Linear GB models for buildings are widely seen in the45

literature [10]. Wang and Xu [11] use a genetic algorithm to es-
timate a linear heat dynamics model that describes the thermal
conditions in the wall envelopes and internal mass for an office
building. The goal is to predict the heat load and the indoor air
temperature. Massano et al. [12] uses an unscented Kalman fil-50

ter to estimate parameters in a linear RC-inspired model to pre-
dict the indoor air temperature. Bacher and Madsen [13] out-
lines a model development procedure for SDE-based GB mod-
els. However, it is a well known fact that non-linear systems ex-
hibit vast richness in the solution structure, far beyond what is55

seen in linear systems [14]. For instance, non-linear models are
necessary to sufficiently describe the heat dynamics of build-

Preprint submitted to Journal of LATEX Templates October 21, 2022



ing integrated photo-voltaic modules [15, 16]. Non-linear GB
models can also be found within industrial robotics [17] and in
aquatic ecosystems modelling [18], just to mention a few areas.60

To the knowledge of the authors, the literature on non-linear
GB models for radiator-based heating systems is scarce.

We propose SDEs as the modelling framework for the build-
ing model [19]. This has many advantages: First, SDEs pro-
vide a natural method to model physical phenomena as they65

are formulated in continuous-time. Second, they include proba-
bilistic uncertainty that accounts for modelling approximations,
unrecognised exogenous variables, and uncertainty related to
the provided input variables. Last, they lay a solid foundation
providing predictions of the system behaviour and for model-70

based optimal control, to predict system behaviour. It is well-
know that solutions to Ordinary Differential Equations (ODEs)
are functions of time, and this implies that an ODE modelling
framework assumes that we are able to predict the exact evo-
lution in time of the states. Solutions to SDEs are stochas-75

tic processes, which are characterised by the family of finite-
dimensional densities, and this implies that the future evolu-
tion of the states is encumbered with uncertainty, and this un-
certainty can be quantified. Optimal control theory based on
SDEs is well-established in the literature with numerous exam-80

ples of applications, e.g. for control of glucose concentration
in humans [20], building thermal control [21], and operation of
waste-water treatment plants [22].

1.1. Main contributions
The existing literature contains various examples of linear85

GB models of the heat dynamics of buildings. However, the lit-
erature seems to contain limited work on SDE-based non-linear
GB models for water-based heating systems, especially related
to district heating (DH). This paper presents and analyses the
development of a non-linear GB model for a school building90

in Denmark with water-based heating. We base the analysis
and estimation on a single week of data using meteorological
weather observations as inputs, and we will demonstrate that
one week of data is sufficient for identifying a good model. Due
to the generality of the model, it is argued that the model is ap-95

plicable to a wide range of buildings with water-based heating
systems and different heat sources (including heat pumps).

An important contribution of this paper is the model of the
thermostatic valves of the radiators. The radiator valves are me-
chanically adjusted by the thermostats that are configured with100

a set-point. The valves open and close proportionally to the dif-
ference between the set-point and actual air temperature. The
valves naturally do not behave discontinuously when heat is or
is not needed. Models for thermostatic valves exist in applica-
tions of white-box models [23]. Most are modelled as P, PI,105

or PID-based controllers for white-box building models [24].
Hansen [25] suggested detailed physical models of radiators
and thermostats. However, the models end up being too large
and detailed for grey-box purposes. To the knowledge of the
authors, the literature contains no examples of models for ther-110

mostat valves formulated as GB-models. This paper presents
a sigmoid-function to describe the continuous sensitivity of the
valves due to changes in the indoor air temperature according

to the set-point. Another important contribution is a model of
the water flow in the building heating system.115

1.2. Structure and outline of the paper

This paper has the following structure. Section 2 introduces
the building and its engineering systems, together with the over-
all experiment. Here, we also describe the data and how it was
gathered. Section 3 describes the model development process120

and the ideas behind the suggested model. Next, we present
and discuss the results; the parameter estimates, a simulation of
the variables compared to data, and a 1-step residual analysis.
Lastly, Section 6 sums up the essential findings of the paper.

2. The building and the experimental setup125

This section introduces the building and describes the exper-
imental data and the generation process.

2.1. The building

The building, a school with three floors and a basement, is
located in Høje Taastrup, Denmark. The uppermost floor is a130

part-refurbished roof attic. Bruun [26] provides all technical
information about the building.

Being built in 1929, the building is not insulated according
to modern standards. Figure 1 shows a digital reconstruction
and a photo of the building. It includes 10 classrooms that135

are ventilated by mechanical ventilation using an air handling
unit (AHU) for air circulation. The facade and internal walls
consist of solid bricks (300 mm and 180 mm thickness, respec-
tively). The windows have wooden frames and double-paned
low-E glazings. Floors are made from wood joists and the roof140

is partly uninsulated and partly insulated slate roof. The build-
ing is connected to the local electricity and heat grid, where
the ladder is a DH system. The building uses district heating
for domestic hot water (DHW), the AHU, and space heating.
The latter term governs the heating (and cooling) system of the145

indoor air. For this building, the space heating is a separate
water-based circuit with dedicated pumps. Radiators of differ-
ent types (cast-iron, panel convectors, plane conductors) with
individual thermostats establish the space heating system in the
individual rooms of the building. Individual thermostatic valves150

automatically regulate the water flow into the radiator units as
to maintain a pre-defined set-point. The space heating system
is separated from the DH system by a plate heat exchanger. In-
dependent PI-controllers regulate the water flow on both the
district heating and the building side of the heat exchanger.155

2.2. The experiment

The experiment carried out was planned in advance and de-
signed to generate data suitable for system identification pur-
poses. The main focus was to change the control input, the
thermostat set point, such that information about the essential160

dynamics of the system can be estimated. A sequence of the
set point was designed with four different parts. First part con-
tains a few long steps with set points set to a minimum (10 ◦C)
and back again to a base level (21 ◦C) to get information about

2



Figure 1: Visual illustrations of the building site. The upper digital reconstruc-
tion is supplied by [26]

the dynamics governing the system. Second part is a multi-165

level signal, where the extremes (14 and 27 ◦C) are kept for
the longest time and then shorter periods are kept for relatively
shorter time. Third part contains short periods with drops to a
minimum from the base temperature. Finally, a step sequence
where the set point is stepped from 23 ◦C in two hours steps170

down to 17 ◦C and up again. The forward temperature of the
space heating water is set constant to 55 ◦C at all times. The
entire sequence was slightly shorter than 7 days and was ex-
ecuted during the Christmas vacation, where the building was
unoccupied.175

2.3. The data

Table 1 lists all the variables of the data. Figure 2 shows the
experimental data in the period December 21 through Decem-
ber 27. The upper graph displays the heat load of the building.
It seems to be characterised by a large peak whenever the heat180

turns on, before reverting to a lower and steady level. The sec-
ond graph shows the forward- and return water temperature,
which go to and from the space heating system. The forward
temperature fluctuates a lot when the thermostat set point is set
very low – because the thermostat valves are closed and thus185

the flow in the radiator circuit is nearly stopped, which results
in poor control of the forward temperature since the control was
not designed for this situation. The return temperature quickly
becomes large when the space heating is turned on. In absence
of heat load, the return temperature quickly decreases. But,190

the reversion and behaviour in absence of heat load seem to be

rather inconsistent. The third graph shows the indoor tempera-
ture of each room (in grey) and the mean of all rooms (in black).
Lastly, the bottom graph shows the exterior weather conditions,
i.e. the ambient air temperature and the global solar radiation.195

The latter is relatively small throughout the period, which com-
plicates the estimation of the solar radiation gain for the model.
We return to this matter later in Section 5.

The variables of the building we wish to be able to predict
are the following200

• The mean indoor air temperature, T i
t .

• The heat load of the building delivered by the DH system,
φh

t .

• The temperature of the returning water in the SH system
of the building, T ret

t .205

The subscript t indicates the dependence on time. These vari-
ables are of special interest when it comes to optimal control
of the indoor climate. In Denmark, building operators pay for
the amount of heat they consume. Additionally, the operators
pay fees for too high return temperatures since it is a source of210

poor energy efficiency in the DH network. First, the DH op-
erators have to increase the mass flow rate of the water, if the
users do not cool the return water. Secondly, if the return wa-
ter to the DH facilities is too hot, the efficiency of the central
heat production plant decreases. This payment scheme makes215

it economically advantageous for the building operators to use
heat when it is cheap and minimise the return temperature.

Table 1: Data interpretation.
Name Quantity Unit
T (i, j)

t Indoor air temperature in room j [◦C]
T i

t Mean indoor air temperature in the building [◦C]
T for

t Forward temperature [◦C]
T ret

t Return temperature [◦C]
T set

t Temperature set-point [◦C]
φh

t Delivered heat to the building [kW]
T a

t Ambient air temperature [◦C]
φs

t Solar radiation on a horizontal surface [kW/m2]

3. Model development

This section describes the model development process.
Due to the large parameter and state space, it is advantageous220

to perform the modelling in small steps. The main idea is to
split up the modelling processes into two parts. To identify the
steps, we need to realise that the building heat dynamics consist
of two parts (as a first simple assumption). The delivered heat
from the water in the radiator system operates independently225

and only interacts with the indoor air temperature of the build-
ing by the radiators themselves. This interaction involves only
two parameters. Therefore, we split the modelling part into the
following three steps:

3
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Figure 2: The data from the experiment performed in December 2019.

1. Given the observed time series of the delivered heat from230

the district heating system, we develop a model that pre-
dicts only the indoor air temperature of the building.

2. Given the observed time series of the indoor air tempera-
ture and set point, we develop a model that predicts only
the heat load from the district heating system to the build-235

ing. That is while keeping the parameters fixed, that con-
cerns the indoor air temperature model obtained in step 1.

3. We combine the two models and start the parameter opti-
misation from the results of the two independently suffi-
cient models to obtain a combined model structure.240

By developing the two system models individually at first, it
also becomes much easier to identify the necessary dynamical
features that govern the systems.

3.1. Stochastic differential equations
The model will be formulated using SDEs. A SDE typically

has the following form

dXt = f (Xt, t)dt + g(Xt, t)dωt (1)

where f and g are the drift and diffusion terms, respectively, and245

the subscript t denotes the dependence on time. The diffusion

term makes a SDE differ from an ordinary differential equation.
ωt is known as Brownian motion and is a fundamental process
for stochastic calculus. It is governed by independent Gaussian
increments; ωt−ωs ∼ N(0, t− s), for s ≤ t. This has remarkable250

consequences and relates it to the physical diffusion equation.
The purpose of the diffusion term is to describe chaotic phe-
nomena that are too complex to include in the drift part of the
model structure.

3.2. The building heat dynamics model255

The literature contains numerous examples of developing
heat dynamic models for buildings using continuous-time GB
models, see e.g. [27–31]. We do not give the model identifica-
tion steps explicitly for our case though but simply report the
final result.260

Figure 2 gives insights into what elements the building model
should include. Inspections of the two long periods, where the
heat is turned off, show that the mean indoor temperature seems
to drop fast at first and then flatten to a certain decay rate. This
indicates that we should include two time constants; one for the265

fast and initial drop and one for the slow long-term decay. We
may interpret these fast and slow dynamics as the temperature
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Figure 3: The model structure of the building heat dynamics. The model pre-
dicts the indoor air temperature, T̂i, given the delivered power φh.

of the indoor air and the temperature of the building walls. For
this reason, the wall temperature state exchanges heat with the
ambient air temperature and acts as a low-pass filter between270

the interior and exterior. We also choose to model the radiators
as an accumulating medium where the heat input enters directly.
The solar radiation gain enters the room air directly through
windows.

Figure 3 shows the heat dynamics structure for the building
as an RC-diagram. The equivalent SDE model has the follow-
ing form

dT i
t =

1
Ci

(
1

Rih

(
T h

t − T i
t

)
+

1
Riw

(
T w

t − T i
t

)
+ Awφ

s
t

)
dt + σ1dω1

t ,

(2a)

dT w
t =

1
Cw

(
1

Riw

(
T i

t − T w
t

)
+

1
Rwa

(
T a

t − T w
t
))

dt + σ2dω2
t ,

(2b)

dT h
t =

1
Ch

(
1

Rih

(
T i

t − T h
t

)
+ φh

t

)
dt + σ3dω3

t . (2c)

(2d)

3.3. The radiator circuit dynamics model275

The thermostatic valves regulate the water flow through the
radiators. An important novelty of this paper is to model the
thermostatic valves using the non-linear sigmoid function. The
idea is that the vales open when it is too cold and close when
it is too warm. Assuming that the valves react continuously to280

the indoor air temperature, the sigmoid function corresponds to
some kind of proportional control (0 being closed and 1 being
open).

3.3.1. The thermostatic valve function
To describe the thermostatic control, i.e. the amount of heat

that the heat exchanger delivers, we use a sigmoid function. To
be specific, it describes the sensitivity of the heating system to
deviations in the mean indoor temperature. We use the follow-
ing formulation

f valve
t =

1

1 + exp
(
−α(T set

t + Toffset − T i
t )
) . (3)

ChCh

Tret
Rr f Th

∼ 1/Φcp,w

Rih

−

+
Ti

−

+
Tfor

Figure 4: The radiator circuit dynamics model visualised as an RC-diagram.
The flow, Φt , acts as a heat transfer coefficient in the radiator temperature state.
We simply write the resistance as the flow state Φt .

α is the slope of the sigmoid function and determines how285

quickly the heating system turns on and off. Toffset acts as an
offset: since the observations of the indoor temperature typi-
cally is taken some place in the rooms (probably not right next
to the radiators), the thermostats may respond to a temperature
that is warmer or colder than the observed one.290

The sigmoid function has the disadvantage that it cannot
reach 1 nor 0. For the purpose of this paper, it means that even
though the set-point is, say, 18 and the observed temperature is
20, the model predicts that the radiators still deliver some heat
(depending on the slope and offset). Depending on the specific295

thermostats and the valves in the radiators, this prediction may
be wrong. We address this problem further in Section 5.

3.3.2. Derivation of the space heating model structure
The space heating system proved hard to model. It is difficult

to describe all necessary dynamics in a simple manner. How-
ever, we found it fruitful to model the water flow in the radiator
circuit as a dynamical equation governed by a time-delay. The
governing physical equation of the net energy transferred to the
radiator, Qh

t , from the water is [24]

dQh
t = Φtcp,w(T for

t − T ret
t )dt (4)

where Φt is the flow of the water in the SH system, cp,w is the
specific heat capacity of water.300

As Section 2.1 describes, pumps that are controlled by some
PI controllers regulate the water flow in the SH system to main-
tain a certain pressure. Therefore, there is a delay from when
the valves open until the pumps increase the water accordingly.
For this reason, it seems reasonable to model the water flow as305

a differential equation itself.
To model the return temperature, a few observations are im-

portant. It is obvious that when the space heating system deliv-
ers heat, the hot/cold water has been round in the radiator cir-
cuit and returns to the heat exchanger in a colder state. This is310

clearly visible in Figure 2 that the return temperature varies be-
tween 40-50 ◦C when heat is delivered. However, when the heat
load equals zero, the return temperature acts rather inconsis-
tently. At these times, the return temperature mostly responds
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with a quick decay to below 30 ◦C. But as Figure 2 shows,315

it sometimes drifts indescribably. Most times, when the wa-
ter flow stops, the water in the return pipes quickly delivers its
heat to the surroundings and arrives at some equilibrium. But
when no heat is delivered, the building operators do not pay
for larger return temperatures and gives no additional insights320

into the system. Therefore, we have no means to model the re-
turn temperature, when the heat load is zero. We thus disregard
the return temperature observations when the flow is zero for
simplicity. Section 5 explains how we implement this in the
parameter estimation.325

To recap the above thoughts; when heat is needed, the water
flows into the radiators to deliver heat and afterward returns to
the heat exchanger to be heated again. By combining (4) with
a state for the flow and the return temperature, we arrive at the
following model

dΦt =
1

C f
(Φmax fvalve − Φt) dt + σ3dω3

t , (5a)

dT h
t =

1
Ch

(
Φtcp,w

(
T for

t − T h
t

)
+

1
Rih

(
T i

t − T h
t

))
dt + σ4dω4

t ,

(5b)

dT ret
t =

1
Ch

(
1

R f r

(
T h

t − T ret
t

))
dt + σ5dω5

t . (5c)

where Φmax the maximum attainable flow of the radiator circuit
water. Figure 4 depicts the structure as a RC-diagram.

3.4. Heat load estimation equation

From (4) we estimate the heat load, i.e. the power from the
DH to the indoor air, as

φh
t = Φtcp,w

(
T for

t − T ret
t

)
. (6)

It should be natural to assume that the heat difference between
the forward and return water is due only to the delivered heat330

by the space heating system. The temperature difference multi-
plied by the flow and the specific heat capacity of water is thus
an estimate of the heat load. The flow state creates a time delay
on the heat load. The term

(
T for

t − T ret
t

)
is almost always large

when the heat is turned off. Had there been no delay, e.g. for335

the equation C1 fvalve

(
T for

t − T ret
t

)
, where C1 is an arbitrary pa-

rameter, the heat load would immediately spike when the valves
open. However, the heat load data is governed by delay which
suggests that such time delay is needed.

3.5. The combined model340

The combined model has the form

dT i
t =

1
Ci

(
1

Rih

(
T h

t − T i
t

)
+

1
Riw

(
T w

t − T i
t

)
+ Awφ

s
t

)
dt + σ1dω1

t ,

(7a)

dT w
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1
Cw

(
1

Riw

(
T i

t − T w
t

)
+

1
Rwa

(
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t − T w
t
))

dt + σ2dω2 ,

(7b)

dΦt =
1

C f
(Φmax fvalve − Φt) dt + σ3dω3

t , (7c)

dT h
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1
Ch

(
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(
T for

t − T h
t

)
+

1
Rih

(
T i

t − T h
t

))
dt + σ4dω4

t ,

(7d)

dT ret
t =

1
Ch

(
1

R f r

(
T h

t − T ret
t

))
dt + σtdω5

t . (7e)

where Φmax are the flow speed of the water on the building site.
The observation equations are

yi
k = T i

tk + v1 , v1 ∼ Niid(0,R1) , (8a)

yh
k = Φtcp,w

(
T for

t − T ret
t

)
+ v2 , v2 ∼ Niid(0,R2) , (8b)

yret
k = T ret

tk + v3 , v3 ∼ Niid(0,R3) . (8c)

4. Model identification and estimation

This section describes the identification method and the de-
tails governing the parameter estimation process. This paper
proposes maximum likelihood inference for parameter estima-
tion in stochastic differential due to its ability to estimate noise345

parameters. See e.g. Madsen [32] or Pawitan [33] for an intro-
duction to maximum likelihood methods.

4.1. The maximum likelihood principle
Given the sequence of observations YN = {Yi}

N
i=1, Yk =

[yi
k, y

h
k , y

ret
k ]ᵀ ∈ Rny , and set-pointsUN−1 = {Tset,i}

N−1
i=0 , define the

likelihood function as the product of the one-step ahead condi-
tional densities:

L(θ|YN ,UN−1) = p(X0)
N∏

k=1

p(Yk |Yk−1,Uk−1, θ) . (9)

Here, p is the probability of observing Yk given the previous
observations, set-points, and parameters θ. For linear stochastic
differential equations, where the noise is state-independent and
driven by Brownian motion, the conditional densities are also
Gaussian. For non-linear systems though, this is not the case
and the analytical density is in general hard (or impossible) to
find. But when the time between observations are small, the
Gaussian density approximates the analytical (unknown) den-
sity well. This motivates our choice of using the Gaussian den-
sity in the likelihood function. The Gaussian density is com-
pletely characterised by its conditional mean and variance; by
introducing the one-step prediction error

εk = Yk − Ŷk|k−1 , (10)
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where Ŷk|k−1 = E[Yk |Yk−1,Uk−1, θ], and the associated covari-
ance Rk|k−1 = Var[Yk |Yk−1,Uk−1, θ], we can write the likeli-
hood function as

L(θ|YN ,UN−1) = p(X0)
N∏

k=1

exp
(
− 1

2ε
ᵀ
k|k−1R−1

k|k−1εk|k−1

)
√

det(Rk|k−1)(2π)ny
. (11)

Taking the logarithm on both sides, we obtain the log-likelihood
function

`(θ|YN ,UN−1) = log (p(X0|θ)) −
1
2

N∑
k−1

εᵀk|k−1R−1
k|k−1εk|k−1

+ log
(
det(Rk|k−1)(2π)

ny
2

) (12)

The log-likelihood has some attractive advantages over the or-
dinary likelihood when it comes to numerical properties, which
is why it is often preferred. The parameter estimates θ̂ is found
by maximising the log-likelihood function

θ̂ = arg max
θ

`(θ|YN ,UN−1) (13)

To evaluate the log-likelihood function, we need to com-
pute the one-step prediction errors, εk, and the associated co-350

variance Rk|k−1 (due to our assumption of Gaussian densities).
The continuous-discrete extended Kalman filter supplies ex-
actly these.

4.2. The continuous-discrete extended Kalman filter

The continuous-discrete extended Kalman filter (CDEKF) is355

a variant of the celebrated Kalman filter [34]. It considers sys-
tem models governed by continuous-time dynamics where the
observer observers parts of the system at discrete times. In
short, the CDEKF consists of a prediction step and an update
step. The extended Kalman filter relies on a linearisation of360

the non-linear system (1), which causes troubles if g is state-
dependent. In such cases, the Lamperti-transformation is an
important tool to transform (1) into a state-independent SDE
[35, 36]. The literature contains many introductions and appli-
cations to Kalman filtering and the CDEKF, see e.g. [19, 37].365

4.2.1. The prediction scheme
In this step, the CDEKF predicts the state of the building

X̂k|k−1 = E[Xk |Yk−1,Uk−1, θ̂], Xk =
[
T i

tk ,T
w
tk ,Φtk ,T

h
tk ,T

ret
tk

]ᵀ
, to-

gether with the state covariance P̂k|k−1 = Var[Xk |Yk−1,Uk−1, θ̂]
at the next time step tk given the estimated state at time tk−1,370

X̂k|k−1. This involves solving a set of coupled ordinary differ-
ential equations (ODEs). Any ODE-solver is sufficient for this
task.

4.2.2. The update scheme
The updating scheme is about estimating the underlying state

and its covariance, denoted X̂k|k and P̂k|k, at the next time in-
stance tk, given our predictions, X̂k|k−1 and P̂k|k−1, and an ob-
servation Yk. Informally speaking, the updating scheme finds a
weight K, typically called the Kalman gain, which ”measures”

how much weight the observation should have on the estimate
X̂k|k. Consider the update equations for the state estimate

X̂k|k = X̂k|k−1 + Kεk . (14)

If K is small, the prediction weights more compared to the ob-375

servation in the estimate of the state. The covariance of the
one-step prediction error, Rk|k−1, is usually calculated in the
updating scheme as well. With εk and Rk|k−1 at hand, we can
evaluate the conditional density associated with the k’th obser-
vation. This recursion is applied to all observations in YN , and380

with a given initial condition X0, the log-likelihood in (12) can
be computed.

4.3. Details in the parameter estimation
As previously described, the return temperature exhibits in-

consistent behaviour when the heat load is zero. Also, at these385

times, the return temperature is not of interest for control pur-
poses. For these reasons, we choose to disregard the return
temperature in the parameter estimation at times where the heat
load is zero. That is, we need to ensure that the return tem-
perature for these times does not affect the likelihood function.390

We thus add a very large constant (say 1020) to the observation
variance in the Kalman filter when the heat load is close to zero
(say < 0.01 [kW]). As a result, the observed return temperature
has negligible effect on the likelihood estimates during these
times. Such actions are crucial to implement for applications395

in general, e.g. MPC, where indescribable dynamics occur or
observations are not of interest and a Kalman filter is applied
for state estimation. The larger variance on the observed return
temperature ensures that it contributes very little to the state es-
timate at that point in time.400

To evaluate the log-likelihood in Eq. (12), this paper uses
the software CTSM-R [38]. To maximise Eq. (13), we use the
NLopt optimisation library in R [39].

5. Results and discussion

This section presents the results in terms of parameter esti-405

mates, simulation of the model, and residual analysis. We com-
pare a simulation of the model with the experiment data to see
the model’s performance over the entire data set given only the
initial conditions. For the simulations, we use the same weather
observations and set-points as inputs. Finally, we discuss the410

capabilities and strengths/weaknesses of the model.

5.1. Simulation results
Table 2 displays the parameter estimates for the model pre-

sented in Section 3. All parameters are strongly significant,
except the solar radiation gain As. The explanation is likely that415

the data contains no significant solar radiation. The parame-
ter thus becomes hard to determine without large uncertainty.
But the solar radiation gain is an important disturbing factor
for building climate control [40]. We thus intend to describe
the solar radiation gain better in the future, when more experi-420

ments/data are available. The literature contains interesting ap-
proaches to model this, such as using B-splines to describe the
varying solar gain during the day [41].
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Figure 6: The estimated valve function

Figure 5 shows a simulation of the experiment given only the
initial states. The model does a good job for all three variables.425

It predicts long into the future and still shows good accuracy
without large drifts. That is, the model performs very well on
long prediction horizons. This is crucial for the performance of
MPC. This simulation, however, uses the same weather distur-
bances as the data. For practical purposes, weather forecasts are430

not perfect, which affects the prediction performance [42, 43].
The predicted heat was a challenge to model, but the simula-

tion suggests that the model captures the most crucial dynamics.
However, the simulation also indicates that the model is not able
to ”turn off” the delivered heat fast enough compared to data,435

as it seems to go slower to zero. This flaw comes from the fact
that we model the flow as an SDE itself, Φt. Thus, the flow goes
exponentially towards the term Φmax f valve

t (which never equals
zero due to the sigmoid curve).

We found that the dynamics of the return temperature were440

hard to mimic and capture, especially when the heat is turned
off. Figure 5 confirms that we are somewhat capable of pre-
dicting the return temperature whenever the heating system is
turned on.

The indoor air temperature in Figure 5 seems to catch the445

overall dynamics of the data. The building model, however,
does seem to be a bit too well insulated by the looks of the long
periods where no heat is delivered. The simulated tempera-
ture decreases slower compared to data. Also, from around De-
cember 25th and onwards, the simulated indoor air temperature450

seems to drift a bit upwards compared to data. In this period,
the estimated valve states are never fully opened, indicating that
the set-point and observed temperatures are very close. Thus,
the upwards drift of the simulation could come from the sig-
moid curve of the valve function, since it never fully closes and455

is still open even when the observed temperature is above the
set-point.
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Figure 7: The estimated autocorrelation function and the cumulated periodogram of the 1-step prediction errors. Each column corresponds to a variable.

5.2. Residual analysis

Figure 7 shows the estimated autocorrelation function and
the cumulated periodogram of the 1-step prediction errors for460

each of the variables. Both the autocorrelation function and the
cumulated periodogram indicate that the residuals of the indoor
air temperature and the return temperature can be classified as
white noise. However, the heat load residuals are governed by
some minor autocorrelation in the first few lags. Inspection of465

the spectral density and the residual plots confirms that non-
uniformity of the spectrum primarily comes from the heater
state’s exponential decay towards zero when the heat is turned
off. However, this is a minor autocorrelation that is not going
to impact MPC performance significantly.470

5.3. Future work

Since the experiment took place during the Christmas holi-
day, the building was not occupied at any time. However, hu-
man occupancy/behaviour is important to model and include in
MPC [44]. Also, due to the lag of occupancy, we do not know475

how open windows affect the indoor air temperature. These are
important topics to investigate further to accurately model the
thermal dynamics of the building [45].

6. Conclusion

This paper introduced a physically inspired SDE-based non-480

linear model to describe the complex heat dynamics of a school
building with water-based heating. The purpose of the model
is to predict the indoor air temperature, the heat load, and the
return temperature of the water in the space heating (SH) sys-
tem. We model the thermostats in the radiators using a Sig-485

moid function to describe the level of water flow through the
radiators. We fitted the parameters in the model from time-
series data using maximum likelihood estimation. To validate
the estimated model, we compared a simulation of the model,
only given the initial conditions and disturbances, to data. This490

showed great accuracy over an entire week. The residual analy-
sis indicated that the model lacks some dynamical descriptions
of the heat load. We believe the reason might be that the model
does not shut down the heat load fast enough. Beside this, the
model looks promising for enabling MPC and e.g. embedded495

forecasts.
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Table 2: The parameter estimates together with their statistical properties
Parameter Estimate 95% confidence interval Unit
Toffset -0.101 [-0.081, -0.121] [◦C]
Ch 0.134 [0.128, 0.140] [kJ/◦C]
C f 0.198 [0.194, 0.202]
R f r 2.030 [1.898, 2.162] [◦C h / kJ]
Ci 9.57 [9.40, 9.742] [kJ/◦C]
Cw 45.36 [42.80, 47.92] [kJ/◦C]
Rih 2.151 [2.121, 2.181] [◦C h / kJ]
Riw 0.199 [0.195, 0.203] [◦C h / kJ]
Rwa 2.251 [1.775, 2.727] [◦C h / kJ]
As 7.600 [-1.443, 16.64] [m2]
σ1 8.6e-4 [9.7e-5, 0.008] [◦C]
σ2 0.429 [0.419, 0.439] [◦C]
σ3 111.6 [107.6, 118.0] [kg/h]
σ4 1.647 [1.144, 2.370] [◦C]
σ5 6.469 [6.327, 6.612] [◦C]
R1 9.6e-7 [1.1e-7, 8.5e-6] [◦C]
R2 2.7e-4 [5.2e-6, 0.014] [kW]
R3 5.4e-3 [1.4e-3, 0.021] [◦C]
Φmax 1145.3 [1133.5, 1157.1] [kg/h]
α 1.592 [1.550, 1.634] [1/◦C]

(DSF 1305-00027B), Top-Up (Innovation Fund Denmark
9045-00017B), SCA+ (Interreg Öresund-Kattegat-Skagerrak),
Research Centre on Zero Emission Neighbourhoods in Smart
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E. P. Ollé, J. Oravec, M. Wetter, D. L. Vrabie, L. Helsen, All you need
to know about model predictive control for buildings, Annual Reviews in525

Control (2020).
[7] D. Cali, D. Müller, H. Madsen, Benefits of the inclusion of occu-

pant behaviour profiles in the simulation of the energy performance
of buildings, in: Proceedings of 16th IBPSA International Confer-
ence & Exhibition Building Simulation 2019, 2019. URL: http://530

buildingsimulation2019.org, building Simulation 2019, BS 2019
; Conference date: 02-09-2019 Through 04-09-2019.

[8] S. Wolf, D. Cali, M. Alonso, R. Li, R. Andersen, J. Krogstie, H. Madsen,
Room-level occupancy simulation model for private households, volume
1343, IOP Publishing, 2019. URL: https://cisbat.epfl.ch/, cIS-535

BAT 2019 : Climate Resilient Cities - Energy Efficiency &amp; Renew-
ables in the Digital Era, CISBAT 2019 ; Conference date: 04-09-2019
Through 06-09-2019.

[9] A. Duun-Henriksen, S. Schmidt, R. Røge, J. Møller, K. Nørgaard,
J. Jørgensen, H. Madsen, Model identification using stochastic differen-540

tial equation grey-box models in diabetes, Journal of diabetes science and
technology 7 (2013) 431–440. doi:10.1177/193229681300700220.

[10] A. Afram, F. Janabi-Sharifi, Gray-box modeling and validation of
residential HVAC system for control system design, Applied Energy
137 (2015) 134 – 150. doi:https://doi.org/10.1016/j.apenergy.545

2014.10.026.
[11] S. Wang, X. Xu, Simplified building model for transient thermal per-

formance estimation using ga-based parameter identification, Interna-
tional Journal of Thermal Sciences 45 (2006) 419 – 432. doi:https:
//doi.org/10.1016/j.ijthermalsci.2005.06.009.550

[12] M. Massano, E. Macii, E. Patti, A. Acquaviva, L. Bottaccioli, A grey-box
model based on unscented kalman filter to estimate thermal dynamics in
buildings, in: 2019 IEEE International Conference on Environment and
Electrical Engineering and 2019 IEEE Industrial and Commercial Power
Systems Europe (EEEIC / I CPS Europe), 2019, pp. 1–6.555

[13] P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics
of buildings, Energy and Buildings 43 (2011) 1511 – 1522. doi:https:
//doi.org/10.1016/j.enbuild.2011.02.005.

[14] A. Scott, The Nonlinear Universe, Springer, Berlin, Heidelberg, 2007.
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Non-linear Model Predictive Control for a Smart Heating System of old Danish School
Building

Technical University of Denmark, Department of Applied Mathematics and Computer Science,
Asmussens Allé, Building 303B, DK-2800 Kgs. Lyngby, Denmark

Abstract

Intelligent and flexible operation of components in district heating systems can play a crucial role in integrating larger shares of
renewable energy sources in energy systems. Buildings are one of the crucial components that will enable flexibility in the district
heating by using intelligent operation. Recent work suggests that such improved operation at the same time can increase thermal
comfort and lower economic costs. We have digitalised the heating system in a Danish school by adding IoT devices, such as
thermostats and temperature sensors to demonstrate the possibilities of making buildings intelligent. Based on experimental data,
this paper introduces a non-linear grey-box model of the thermal dynamics of the building based on results from Thilker et al. [1].
A non-linear model predictive control method is presented for the thermostatic set-point control of the building’s radiators. Based
on the building model and the control algorithm, simulation studies are carried out to show the flexibility potential of the building
– when used for lowering the return temperature the results suggest that economic costs can be lowered by around 10% using
predictive control.

Keywords: Grey-box models, Stochastic differential equations, Non-linear model predictive control, District heating, Smart
energy systems

1. Introduction

Digitisation of heating systems, i.e., smart thermostats and
indoor climate sensors creates the possibility of making build-
ings smart by having heating data. This, however, does not
yet make the building (or the heating system) smart as it does5

not yet use the data to make the system efficient or flexible.
Without intelligence, the system is just data-rich. The system
becomes intelligent when it uses the data to e.g. lower some
cost functions, i.e. lower the heating costs without violating
thermal comfort or reduce heat consumption during peak hours10

(known as peak shaving). Model Predictive Control (MPC) is
a method that enables a system to become intelligent [2]. It is
a control method that minimises some predefined cost function
while satisfying a set of constraints. MPC has become very
popular for the HVAC sector in the past years as it makes the15

system intelligent by making it either efficient or flexible [3–
5]. The advantage of the MPC over other control methods is its
ability to predict the future behaviour of the system. Thereby,
the MPC can take weather predictions and future activities into
account when optimising the manipulated variables (e.g., desire20

temperature in a room) of the system [6]. MPC setups usually
run in a closed-loop where the controller gets feedback on how
the system reacted to the latest input or disturbance. The MPC
is based on a model (e.g. a set of differential equations) that
describes the behaviour of the system and generates predictions25

of the system’s future behaviour. This paper considers the heat-
ing system of an old Danish school building that has been digi-
talised with the objective to make it intelligent using MPC. For
this building, a non-linear grey-box model is presented based

on physics and data to describe the behaviour of the building’s30

heat dynamics. Grey-box modelling is a well-known procedure
used for system identification and modelling the dynamics of
buildings [7, 8]. The parameters of the building model are esti-
mated using the CTSMR software [9]. A non-linear MPC uses
the grey-box model to control the heating system according to35

some thermal comfort constraints. The MPC utilises weather
predictions of the solar irradiance and ambient air temperature
to compute the optimal radiator set-points to obtain a desired in-
door air temperature. The objective of the controller presented
in this paper is to lower the heating cost of the building. This40

enables us to use various price signals that reflect how expen-
sive heat is at any given time. Consequently, the controller min-
imises the heating costs by heating when the price is low. This
methodology has shown to be fruitful for lowering the electric-
ity consumption of a smart solar tank modelled by a grey-box45

model, where the MPC takes advantage of future disturbances
and its flexibility [10]. Another example is electrical heating of
a residential house equipped with a heat pump where the goal
is to lower the electricity costs with varying electricity prices
[11].50

The main contribution of this work is to demonstrate how to
use a non-linear grey box model for model predictive control.
We present a multiple shooting method to solve the optimal
control problem related to the MPC and incorporate numerical
weather forecasts as future inputs. Another contribution is to55

illustrate the effects of two different price signals for the MPC
in simulation studies. The first shows how to make the building
flexible by utilising the right price signal. The second shows
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Table 1: The parameter estimates together with their statistical properties
Parameter Estimate Unit
Toffset -0.101 [◦C]
Ch 0.134 [kJ/◦C]
C f 0.198
R f r 2.030 [◦C h / kJ]
Ci 9.57 [kJ/◦C]
Cw 45.36 [kJ/◦C]
Rih 2.151 [◦C h / kJ]
Riw 0.199 [◦C h / kJ]
Rwa 2.251 [◦C h / kJ]
As 7.600 [m2]
σ1 8.6e-4 [◦C]
σ2 0.429 [◦C]
σ3 111.6 [kg/h]
σ4 1.647 [◦C]
σ5 6.469 [◦C]
R1 9.6e-7 [◦C]
R2 2.7e-4 [kW]
R3 5.4e-3 [◦C]
Φmax 1145.3 [kg/h]
α 1.592 [1/◦C]

how to optimally control the building in order to minimise the
economic costs associated with heating a Danish building in a60

District heating network. The result of the MPC is compared
to a simple control strategy which is among the current stan-
dards in buildings and the influence of different price signals is
investigated.

1.1. Structure and outline of the paper65

The remainder of this article is organized as follows. Section
2 presents the building and modelling scheme along with the
parameter identification method and its results. In Section, 3
introduces the non-linear MPC method that is used to control
the building. The simulation results are presented and discussed70

in Section 4. The paper is then concluded in Section 5.

2. Non-linear building model

This section introduces the non-linear building model used
in the present paper. The model is thoroughly introduced and
discussed in Thilker et al. [1] and it is recommended that the75

reader reads it for further details on the building and model. The
building acts as a school and has 17 rooms in total divided over
three floors. Fig. 1 displays a picture and an electronic recon-
struction of the building. The building was built in 1929, and
the insulation has not been renovated to meet today’s standards.80

The building is supplied by water-based heating from the local
district heating service. To distribute heat to the rooms, radia-
tors are placed in the rooms that are connected to the building
heat exchanger. Analyses of the building performance indicate
that the heating power of the radiators are under-dimensioned85

in some rooms, meaning that they do not get a sufficient amount
of heat to maintain a comfortable temperature [12].

To make the building intelligent and enable real-time control,
sensors are needed to measure various attributes of the building.
Accordingly, temperature sensors have been installed in each90

room (which are also able to measure CO2-levels and humid-
ity), equipped each radiator with an electronic thermostat, and
installed heat load-meters in the BMS-system. Furthermore,
the temperature of the water is measured both when it returns
to- and leaves the heat exchanger, which is connected to the95

district heating. All sensors are connected to the cloud and the
system receives data frequently. This setup allows the building
operator to monitor and control all of the components related to
the heating system in the building.

2.1. Building model100

We consider a non-linear model on the form

dx(t) = f (x(t), u(t), d(t))dt + g(x(t), u(t), d(t))dω(t) , (1a)
yk = h(x(tk)) + wk, wk ∼ N(0, R) , (1b)

where x(t) is the state vector, u(t) is the control input, d(t) is the
disturbances, and R is the observation covariance. ω(t) is Brow-
nian motion and reflects the uncertainty of the model. Eq. (1) is
structurally similar to ordinary differential equations except for
the diffusion term. It has the advantages that it describes ran-105

dom effects that are too complex to model deterministically and
it predicts uncertainty as well, e.g. the variance of the estimates
Øksendal [13].

We simplify the thermal control problem by considering the
average of the measured temperature in all 17 rooms

Ti =
1
n

n∑
k=1

Tk. (2)

Consequently, some rooms are going to be warmer or colder,
however the problem is simplified significantly in terms of di-
mensionality. It is important for real-time MPC that the model
is small enough to compute the control input without too much
delay. In the following, we consider a system with the states
x(t) = [Ti(t),Tw(t),Φ(t),Th(t),Tret(t)], where Ti is the average
indoor air temperature, Tw is the temperature of the building
wall, Φ is the flow of the water in the radiator circuit, Th is the
temperature of the radiators, and Tret is the temperature of the
returning water (going to the heat exchanger of the building).
The control input to the model, u(t), is the set-points of the ra-
diator thermostats. To estimate the valve-opening state of the
thermostats, the following sigmoid function is used:

fvalve(t) =
1

1 + e−α(u(t)−Ti(t)+Toffset(t))
, (3)

where u is the thermostat set-point, α determines the slope of
the sigmoid function, and Toffset(t) is an offset that models the110

physical distance between the temperature sensors in the room
and the thermostats of the radiators. fvalve therefore estimates
how open the radiator valves are (1 being fully open and 0 being
fully closed), i.e. how much water flows through the radiators.
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Figure 1: The building in question

The disturbances include the ambient air temperature and solar115

irradiance d(t) = [Ta(t), φs(t)]ᵀ.
The building dynamics model is
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(4)

In Eq. (4), Aw is the effective area of the solar radiation gain,
cp,w is the specific heat capacity of water, and Φmax is the max-
imum water flow in the radiator circuit. Tfor is the temperature
of the forward going water on the building side of the heat ex-
changer and is kept constant at 55 ◦C at all times. The diffusion
term in (1), g, has the simple form

g(x(t), u(t), d(t)) = diag(σ1, σ2, σ3, σ4, σ5) . (5)

Naturally, not all states of the building are observed. Instead,
we are limited to the information available in the non-linear
observation equation (1b):

yk = h(x(tk)) =
[
Ti(tk), φh(t), Tret(tk)

]T . (6)

That is, we observe the average indoor air temperature Ti(tk),
the heat load φh(tk) = Φ(tk)(Tfor − Tret(tk)), and the return tem-
perature Tret(tk). Recall that the forward temperature is known
and is Tfor = 55 ◦C.120

2.2. Model parameter estimation

We use CTSMR [9] to estimate the parameters in the
continuous-time stochastic model. The parameter estimation
is based on the maximum likelihood principle [14]. That is,
we maximise the likelihood function, which is a function of the
parameters

L(θ) = p(x0)
N∏

k=1

p(yk |θ) (7)

where p is the probability of observing Yk with the model in
Eq. (4) and Eq. (5) given the parameters θ. Given the model
structure in Eq. (4) and Eq. (5), as well as appropriate informa-
tive data, any unknown parameters can be estimated.125

Table 1 lists the parameter estimates from the estimation pro-
cedure. Fig. 2 compares the fit of the resulting model to the data
and indicates a good match. It shall be noted, that the return
temperature measurements are not representative when the heat
load is zero and the water flow in the building is zero. We thus130

put very low weight on the return temperature observations in
the estimation procedure in these time intervals (indicated by
the greyed-out periods in the figure).

3. Non-linear Model Predictive Control: a multiple shoot-
ing method135

This section introduces a direct multiple-shooting method for
solving the particular non-linear MPC problem. It also dis-
cusses a method to discretise the optimisation problem to make
it numerically tractable. The optimisation problem lies the basis
for computing the set-points for the radiators. However, solving140

the optimisation problem requires us to know the entire state of
the system, x. Reconstructing the system states based on ob-
servation, y, the continuous-discrete extended Kalman filter is
used [15].

This paper considers an optimal control problem on the fol-
lowing form

min
x,u

ϕ =

∫ tk+T

tk
`(x(t), u(t), d(t)) , (8a)

s.t. x(tk) = x(0) , (8b)
ẋ(t) = f (x(t), u(t), d(t)) , (8c)
umin(t) ≤ u(t) ≤ umax(t) , (8d)
Tmin(t) ≤ Ti(t) ≤ Tmax(t) , (8e)

where T is the prediction and control horizon, ` is cost function,145

and f (x(t), u(t), d(t)) is the model equations in (4).
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Figure 2: Experimental data together with the estimated heat load, air temperature, and return water temperature by the model. The greyed-out periods in the second
graph indicates periods where the return temperature is disregarded, because the observations do not represent the actual return temperature.

3.1. Discrete-time approximation of the optimal control prob-
lem

To make the optimal control problem in Eq. (8) numerically
tractable, we propose a multiple shooting method to discretise150

the problem. Multiple shooting is a simultaneous method in the
sense that the state variables also are a part of the optimisation
problem.

The problem is discretised in the sense that the system con-
sider x at discrete time points tk, tk+1, . . . , tk+N starting from the
initial time tk till tk +T . Now, define a function φ(x(t), u(t), d(t))
that computes the solution to the following initial value problem

ẋ(t) = f (x(t), u(t), d(t)) (9a)
x(tk) = xk , (initial condition) (9b)

at time tk+1. Hence, φ(x(tk), u(t), d(t)) = x(tk+1) is a func-
tion that integrates the system forward to the next time in-
stance given the input and disturbances in the time interval
[tk+i, tk+1+i[,∀i. To simplify the optimisation problem, we as-
sume that the set-points, u(t), and the disturbances, d(t), are
piece-wise constant in each time interval [tk, tk+1[

u(t) = uk, t ∈ [tk, tk+1[ , (10)
d(t) = dk, t ∈ [tk, tk+1[ . (11)

The optimal control problem therefore simplifies to

min
{xk}

N
i=0, {uk}

N−1
i=0

ϕ =

N−1∑
i=0

Lk(xk, uk, dk) , (12a)

s.t. xk+1 = φ(xk, uk, dk) , (12b)
umin,k ≤ uk ≤ umax,k , (12c)
Tmin,k ≤ Ti,k ≤ Tmax,k . (12d)

In the above,

Lk = {

∫ tk+1

tk
`(x(t), uk, dk)dt : xk+1 = φ(xk, uk, dk), x(tk) = xk}

(13)
is the quadrature of x(t) w.r.t ` in the time interval [tk, tk+1].

For numerical computation of the minimisation problem in155

(12), we use CasADi [16], which offers easy numerical im-
plementation and automatic differentiation for optimal control
problems.

4. Simulation results

This section presents the results of two simulation studies.160

The first simulation investigates the flexibility of the building.
The second investigates the ability to minimise the economic
operational costs of heating the building using NMPC. We use
the Euler-Maruyama simulation scheme to simulate from the
SDE-model and the continuous-discrete extended Kalman filter165

to reconstruct the system state.
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Figure 3: A small simulation of thermostatic set-point control of the building using a price signal that reflects peak hours and displays flexibility. The controller
keeps the heat usage to a minimum during peak hours where the heat is expensive.

4.1. Simulation: Flexibility of the building
To investigate the flexibility of the building in a smart energy

grid, we use a cost function in the MPC that takes a price signal.
In a flexibility setting, the price signal reflects how ”expensive”
it is to heat the building at any given time. The cost function is
defined as

`1(x(t), u(t), d(t), s(t)) = c(t)Φ(t)(Tfor − Tret(t)) + ρs(t) (14)

where c is the price signal, s is a slack variable to soften the
indoor air temperature constraints and ρ is the slack penalty.
Fig. 3 presents a simulation of the building model in Eq. (4) us-170

ing the optimal control problem in Eq. (14) in a closed-loop
setting with the time between control inputs and the predic-
tion horizon equal to one hour and 24 hours, respectively. Fur-
thermore, the controller has access to the future weather dis-
turbances. In the simulation, the heating price is simply de-175

signed in order to see the effect of the MPC: it is most expen-
sive at 100 DKK per kWh during peak hours in the mornings
and evenings. The heat price is otherwise low at 10 DKK per
kWh. As a result, the controller mainly heats outside peak hours
and only does so if the temperature gets too low. Due to the180

under-dimensionality of the heating system and the building’s
poor insulation level, the controller still needs to supply some
heat during the peak hours to maintain the desired temperature.
The results suggest that the building can supply some flexibility
under these circumstances. However, considering that the out-185

door temperature in Denmark can become even lower than in

the present simulation, the building will have less flexibility in
such situations.

4.2. Simulation: Minimisation of operational costs by lowering
return temperature190

As a building owner in the danish district heating, one pays
an additional fee if the return temperature is high since it is a
source of heat loss in the grid. The pricing scheme is very dif-
ferent between district heating areas, both the price of heat and
the penalty for not cooling the return adequately. In the present
analysis, we set it quite progressively, namely as follows: if the
return temperature is above 40 ◦C, the heat price increases 2%
per extra degree Celsius of the return temperature. The cost-
function where this is accounted for is

`2(x(t), u(t), d(t), s(t), v(t)) = c(t)Φ(t)(Tfor−Tret(t)) (1 + 0.02v(t))+ρs(t)
(15)

where v is a slack variable that softens the upper constraint at
40 ◦C on the return temperature and 0.02 is the percent-wise
increase in heat cost.

Fig. 4 displays a simulation study of the building model in (4)
using the optimal control problem Eq. (15). The figure also de-195

picts a baseline, which uses a simple set-point control that turns
down the temperature during the night and back on during the
day. The baseline represents the current practice in most build-
ings using rule-based control: a fixed set-point pattern used ev-
ery day. This experiment reflects the actual economic costs of200
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Figure 4: A simulation study that compares a current standard set-point control in today’s buildings (Baseline) and the NMPC presented in this paper. The heat
costs are constant at 0.1 EUR/kWh plus a penalty of 2% for each ◦C the return temperature is above 40 ◦C. Results suggest an economic reduction by around 10%.

operating the building together with the extra fee when the re-
turn temperature is too high. The results demonstrate the em-
phasis the controller puts on keeping the return temperature be-
low 40 ◦C while supplying enough heat to comply with the con-
straints. The actual economic costs associated with each con-205

trol strategy during the one simulated month are 4522.9 DKK
and 4066.6 DKK for the baseline and MPC, respectively. This
points toward economic savings of around 10% by using the
proposed control strategy. Much of this reduction is explained
by the ability of the controller to lower the return temperature210

and avoid extra penalties, which account for 382.2 DKK and
89.5 DKK, respectively. Especially during the cold periods,
where extra heat is needed, the economic savings are high dur-
ing those periods. Heat load is reduced from and 5891.4 kWh
to 5742.5 (around 2.5 %) kWh by the MPC, which comes from215

the ability of the MPC to lower the temperature closer to the
constraints. This optimisation not only benefits the building op-
erators, but also benefits the district heating operators by signif-
icantly decreasing the amount of heat loss in the district heating
system.220

It should be stressed that these results apply only to the cur-
rent settings and may vary according to different district heat-
ing areas and pricing schemes. Also, in a realistic setup with
meteorological weather forecasts, building occupants, etc., the
control performance may also be affected.225

5. Conclusion and future work

This article introduced a non-linear grey-box model describ-
ing the heat dynamics of a large building. This model enabled
us to predict and control the future evolution of temperatures
and heating in a building. We presented a non-linear model pre-230

dictive control method and used it in a simulation study to show
it behaves. The results suggest that intelligent control of the
heat supply unlocks the building’s flexibility and supplies eco-
nomic savings under a particular, but realistic, pricing scheme
of up to 10% are available. The specific savings may vary de-235

pending on the district heating area since pricing schemes vary.
Also, the controller had access to future weather, which in a
realistic setting must be replaced with weather forecasts poten-
tially decreasing the savings.

6. Acknowledgements240

The research was supported through the project “Smart Cities
Accelerator 2016–2020” funded by the EU program Interreg
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Abstract. In this chapter, data-driven methods for the efficient oper-
ation of DHSs are described. DHSs are inherently non-linear and time-
varying systems as the heating demand is highly influenced by non-linear
dependencies on the weather conditions as well as the occupancy be-
haviour. Furthermore, the dependency on flow and temperature in deliv-
ering the needed heat demand using the district heating network gives a
non-linear dependency on these two signals. This chapter presents several
data-driven models to handle the non-linear and time-varying phenom-
ena in order to ensure an efficient operation. First, we introduce forecasts
that are used to reach an optimal operation as forecasts are needed for
both control and production planning, e.g heat demand and electricity
price forecasts. Second, temperature control of a DHN will be introduced
with a focus on how the physical characteristics of the network can be
incorporated into a control scheme. A special focus will be on how to
ensure that the temperatures in the network are high enough to ensure
the needed heat supply for the attached buildings in the entire district
heating network is met. We shall also briefly look at the role of smart
buildings integrated into a DHN that can be used to enhance the effi-
ciency and flexibility of a DHS.

Keywords: Data-Driven Methods · Adaptive Control · Heat Load Fore-
casting · Temperature optimization · Sector Coupling · Renewable En-
ergy · Flexibility.

1 Introduction

The transition to a low-carbon society calls for fundamental changes in the en-
ergy system. Today energy systems are operated and planned such that the
production follows the demand. However, an efficient implementation of a low-
carbon society calls for the exact opposite approach, namely systems where de-
mand follows production which will be dominated by renewables. This highlights
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a need for new methods for planning and operation of energy systems. Most im-
portantly the flexibility at virtually all types of end-users on all aggregation
levels has to be unlocked. The typical variation in time of the energy produced
by wind and solar power implies a need for flexibility that can be offered by well
designed district heating and district cooling systems, and with the increased siz-
ing of the district heating systems even seasonal energy storage solutions often
become feasible.

The examples used in this chapter originate from Denmark. The history of
Danish district heating is more than 100 years old and today about 65% of the
households in Denmark are supplied with district heating. What started as a way
of getting rid of waste in an efficient way is today a billion-dollar business and a
cornerstone in the Danish energy system. In Denmark in 2020 more than 50% of
the electricity load was covered by wind power, and this implies a further need
for flexibility which effectively can be offered by the district heating system. The
methods and results described in this chapter originates from a large number
of national research and innovation projects like HEAT 4.0, CITIES, FED and
IDASC3. We refer to the homepage of these projects for further information.

In the first generation of energy systems, central power plants were estab-
lished to deliver electricity, leading to huge energy losses in the form of waste
heat. In the next step, this ’waste heat’ was utilised in the form of district heat-
ing by introducing combined heat and power plants (CHPs), an environmental
leap step towards a sustainable future. District heating developed since to a 4th

generation, where intermediate renewable energy sources and waste heat from
industrial and other sources are utilised. To accommodate the mentioned sources
efficiently, the district heating operation has to be adjusted to low-temperature
operation, improving the efficiency of the whole system.

Diversity in production, large district heating networks, advanced distribu-
tion and time-varying demand side characteristics, result in increased complexity.
Digitalisation is proposed to facilitate the transformation from a rather simple to
a highly complex system. Digitalisation introduces new possibilities and hereby
complexities, naming wireless monitoring with IoT, increased connectivity and
communication, AI and big-data analytics, systems-of-systems, and distributed
system layouts with cloud-, fog- and edge computing. Digitalisation and the in-
creased possibility of getting frequent sensor and meter data open up for the next
generation of data-driven methods for the operation of district heating systems.

Common for the data-driven methods is, that the methods involve dynamical
modelling based on grey-box and data-driven digital twin techniques, which
again leads to new methods for real-time forecasting, control and optimization.
The methods are adaptive, i.e. that they are automatically adapted to observed
changes which can be deduced based on the received data from the system.

3 CITIES: https://smart-cities-centre.org/, HEAT 4.0 will get a subpage on CITIES
homepage, FED: https://www.flexibleenergydenmark.com/ and IDASC: Pamphlet
at https://orbit.dtu.dk/en/publications/digitalisering-af-fjernvarme-erfaringer-der-
luner.
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Adaptive methods are crucial in order to handle the inherently non-linear and
time-varying characteristics of heat loads and the district heating system.

State-of-the-art methods for forecasting are crucial for efficient operation of
district heating systems. This is partly due to the fact that often the heat has to
be produced several hours (or days) before the heat is delivered in the houses.
Methods for forecasting are outlined in Section 2.

Obviously, methods for heat load forecasting have to be based on methods for
weather forecasting supplied by meteorological weather forecast services. Stan-
dard MET forecasts are targeting rural areas whereas district heating systems
most often are seen in highly populated areas, and in Denmark, all the largest
cities are supplied with district heating. Since the city weather often is rather
different from the weather in nearby rural areas methods for forecasting city
weather have to be considered, and such methods are briefly discussed in Sec-
tion 3.

The heating is supplied by controlling the supply temperature at all plants
and by controlling the flow in the network. In general, efficient operations of
district heating networks call for data-driven methods for keeping the network
temperature as low as possible, yet the temperature must be high enough to
ensure that the heating systems of the supplied buildings are able to ensure
a reasonable indoor temperature and a minimum temperature of the hot wa-
ter. The temperature level is decisive for the efficient utilisation of renewable
energy sources via e.g. heat pumps and for effective use of waste heat from
low-temperature sources, e.g. from the cooling of data centres. Methods for tem-
perature optimization are described in Section 4.

Section 5 briefly presents methods for the operation of buildings connected
to a district heating network. The term Smart buildings is applied to highlight
that it is necessary to be able to control the buildings if they have to play
an active role in the optimisation and control of the overall district heating or
power system. For smart buildings, the heat load can be partly controlled by the
operator of the district heating network, and hereby we will be able to avoid or
reduce peak demands and solve issues with bottlenecks in the district heating
or the local power network.

Most of the examples in this chapter originates from studies conducted in
HEAT 4.0 using data from the district heating system in Brønderslev, Den-
mark. This heating system is servicing approx. 5,000 customers in 3 subnets.
The heat production is characterised by several different units such as CHP
units, gas boiler, electric boiler, ORC, heat pumps, and concentrating, tracking
solar thermal units and a large thermal storage capacity.

Some of the methods presented in this chapter links to Chapter 8 which
considers a method for optimal production planning and power market bidding.

2 Forecasting for DHS

Forecasts are needed for optimal operation of DHS, e.g. for preparing the system
for the future load by investigating future scenarios and selecting the appropriate
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strategy, e.g. what heating units to produce the heat, and what supply temper-
ature to push into the DHN. Three forecasts usually are needed: heat demand,
electricity price and weather. Heat demand forecasts play a crucial role in en-
hancing the operation of DHS as it is needed in both production and network.
Weather forecasts are used as inputs for the heat demand model therefore accu-
racy of them in predicting the future weather inside cities is crucial. Electricity
price forecasts are used for bidding strategy into the electricity market, hence
an important task when scheduling the production and creating bids for the
day-ahead and balancing electricity markets. The focus of this section will be
on methods for heat load forecasting, while electricity price forecasting will be
briefly considered.

Section 2.1 will introduce what drives heat consumption. This will be used to
identify a heat load model and to introduce a suitable framework for producing
online heat load forecasts. Section 2.1.1 introduces the forecasting toolbox and
framework of producing an online forecast for heat demand using a linear re-
gression model that adapts over time to handle the non-stationary. Section 2.1.2
describes the identification of important model elements using physical knowl-
edge of the system, and it describes how this knowledge can be used in grey-box
modelling procedure for identifying an optimal model for heat load forecasting.
Finally, an example of a heat demand forecast is introduced in Section 2.1.3 to
demonstrate the benefits of understanding the underlying physics of the dynam-
ics.

District heating is mostly applied in cities where the climate is quite different
to rural areas. A procedure to localize NWP to the climate in cities is proposed
in a subsequent section. Section 2.2 introduces briefly the need for them and
a short introduction to the paper for further reading. In addition, Section 2.3
discusses other frameworks to produce heat demand forecasts.

2.1 Heat Load Forecast

Heat load in district heating consists of two components at the demand side;
space heating and domestic hot water, plus related heat losses in the DHS. Due
to the nature of the heat load, it varies during the day (the diurnal profile),
week, and year creating a time-varying process. [20] splits the heat load into
two categories, physical heat load and social heat load. The physical heat load
depends on the climate and heat losses in the system, while the social heat load
depends on the occupancy behaviour of the consumers and includes the usage of
domestic hot water. Furthermore, the variation in heat load is described in [20]
as follows:

– Seasonal Heat Load Variation: The physical heat load follows the increase
and decrease in ambient air temperature throughout the year with a negative
correlation. The social heat load also has a seasonal component, since, e.g.,
people tend to stay outside or away for longer periods during summer while
people stay inside and consume more hot water during winter.
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– Daily Heat Load Variation: The magnitude of the heat load during the day
follows the ambient air temperature however the shape of it depends on the
social behaviour. Social heat demand variations are explained by individual
and collective social heat behaviour, e.g., harmonised working hours. The
daily variation usually has two peaks, in the morning and the late afternoon.

Regional climate affects the individual district heating case, and the heat load
related social behaviour can vary between systems. For example, a coastal local-
ity is influenced by the damping thermal inertia of the sea. Taking into account
the climate is very important to achieve efficient operation of DHS. Since DHSs
are mostly used in urban areas, we will introduce the climatic characteristics
inside cities and highlight the effects of climate variables on heat consumption
in Section 3.

Thus, when developing a model to describe the dynamics of a system, it is
important to understand the underlying process that drives the system. For DHS
systems it is the physical description of how the weather influences the heat con-
sumption through the buildings properties, e.g. walls and windows. Also, social
heat consumption usually drives the peak consumption, e.g. in the mornings and
evenings. A clear understanding of what drives the consumption from physics
and social components will improve the models’ performance in forecasting the
future load of the system.

We will focus on utilizing the grey-box methodology which is using the phys-
ical understanding of the system, along with statistical methods to identify and
estimate parameters of the model to establish an adequate forecasting model
to predict the heating load. First, the heat load forecast framework for produc-
ing the predictions needs to be robust and simple to update the model and the
predictions when new information is available. It needs to be stable and han-
dle the non-stationary variation in the heat demand due to the weather-driven
consumption of space heating. Also, being able to translate the nonlinear rela-
tionship between the effects of the weather on the consumption. This is addressed
in Section 2.1.1 where the first part introduces a linear regression model where
the parameters of the model are updated recursively and past information is ex-
ponentially down-weighted, i.e. addresses the non-stationarity. The second part
proposes using a two-stage modelling procedure to be able to transform inputs
that have a non-linearity relationship to the heat demand such that the coeffi-
cients of the linear model can be estimated. The second is the identification of
the optimal model to be used in the forecasting framework. In Section 2.1.2, we
introduce a model with a full physical representation of the heat consumption in
a DHS. However, the full physical model is too computational heavy and would
probably not be able to produce the forecasts before they become invalid. There-
fore, an adequate heat load forecast model that uses parts of the physical insights
of the consumption and what variables are known to influence the demand (e.g.
ambient air temperature, wind, and solar radiation). Then combine this knowl-
edge with statistical methods to identify the optimal forecasting model. Hence,
it is preferable to use a model, which gives physically inspired descriptions of
known relationships between climate variables and historical data to forecast the
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heat load. The coefficients are then estimated using data-driven methods based
on a time series of observations from the system where the model will be used.
However, in order to formulate such a data-driven digital twin model, where the
parameters can be assimilated based on observed time series, the model cannot
be too complex. Basically, the model has to be structurally identifiable.

2.1.1 Framework for Heat Load Forecasts

We will present here the framework of establishing heat load forecasts that can
handle the non-stationary and non-linearity that comes with the heat load. This
type of forecasting framework has been proven accurate and able to perform in
online operations [39] [41]. The framework allows the forecasting model to adapt
to the changes in the parameters of the model for heat load forecasting, like
the transitioning from cold (winter) to warm periods (summer). This adaptive
method has shown adequate results in multiple research fields, especially in en-
ergy applications that are greatly dependent on physical behaviour. See e.g. [41]
[5] [9] for heat load forecasting, [4] for solar power forecasting, and [64] [46] for
wind power forecasting.

The model used in the framework is a linear regression model that can be re-
cursively updated when new information arrives and exponentially down-weights
past information. The model is also able to handle dynamical and non-linear ef-
fects, e.g. the ambient air temperature influence on heat load. There will also
be an emphasis on creating individual models for each k-step prediction horizon
since the lagged values in the model have to be tailored to the horizon, i.e. a
unique model with its own coefficients is created for each k-step forecast.

Linear regression models are well known and frequently used for statistics
and forecasting. Regression models as defined in [35] are used to describe a
static relationship between a dependent variable Yt and p independent variables,
xt = {x1,t, . . . , xp,t}. Therefore, an index t is introduced to denote the variable
at time t. A regression model can be written as

Yt = f(xt, t;θ) + εt (1)

where f(xt, t;θ) is a known mathematical function of the p + 1 independent
variables and t, but with unknown parameters θ = (θ1, . . . , θm)T . εt is a random
variable with mean E[εt] = 0 and variance Var[εt] = σ2

t . In many applications the
function f is linear, and the models describe how the parameters θ, are defining
a linear combination of the independent variables, xt. Given N observations of
the dependent variable and the p explanatory variable, we are able to estimate
the model parameters.

Estimation of the parameters of a linear regression model is usually done with
either Least Squares (LS) or Weighted Least Squares (WLS) methods. Given

the estimated parameters θ̂, we are able to predict a future value Yt+k|t given
the independent variable xt+k. However, this type of forecasting model will not
perform well for heat loads as it lacks adaptive properties to update when the
system changes. This is necessary for heat load forecast due to the time-varying
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and non-linear characteristics of the heat load. Therefore, the model needs to be
extended allowing for time-varying parameters that can adapt to changes and
transformations of the input variables.

Hence, an ordinary linear regression model will not perform well for heat load
forecast as it lacks adaptation as the heat load changes over time. [33] propose
an adaptive method that uses exponential weights using a forgetting factor, λ to
discount old information. For auto-regressive models with exogenous input, this
is called Recursive Least Squares (RLS) method with exponential weighting. It
allows the model parameters to adapt over time when new information becomes
available, therefore making it feasible to handle time-varying phenomena. The
algorithm updates the parameters every time new information becomes available
and uses the forgetting factor to discount old information and thereby increase
the relative importance of the most recent observations. That is, the coefficients
are recursively updated by an LS estimation with the weights exponentially de-
caying over time. The rate of decay is determined by the forgetting factor. The
forgetting factor can change over time, but usually, it is set constant. The forget-
ting factor is between 0 and 1 and controls the level of adaptivity, where values
close to 1 implies more weight equal weight on both new and older observations.
While values of the forgetting factor close to 0 emphasise more on newer obser-
vations in the estimation. The optimal λ is found by minimizing the Root Mean
Square Error (RMSE) as shown in [41]. This proposed method of allowing the
parameters to update as new information becomes available and discount old
observation is desired for online operations, as recursive methods offer relatively
simple and few computations to estimate the parameters for every iteration.

Apart from the time-varying dynamics of the heat load, the non-linear depen-
dency between the heat load and suggested input variables need to be considered
and combined with the recursive update. For this, a two-stage modelling pro-
cedure can be used as proposed in [44] and [53]. Before estimating the model,
the observed input variables are used either by mapping input variables by us-
ing some function (e.g. splines) or by using them directly (instant effect of the
independent variables) in a so-called transformation stage. After the transfor-
mation, it is possible to create a linear model of the transformed data to predict
the dependent variable by using the RLS scheme to recursively estimate the
parameters in the so-called regression stage.

In the transformation stage, transfer functions (e.g., low-pass filter), basis
splines, and Fourier harmonic series can be used to transform the non-linear
relationship between the independent and dependent variables, to a linear rela-
tionship. Other functions can also be used to create the regression vector, e.g.,
kernels. The low-pass filter has proven a useful tool for explaining the effect of
climate variables on the heat dynamics of buildings. As buildings are insulated
and have thermal mass, they do not react instantaneously to changes in am-
bient air temperature. Hence, low-pass filtering of the ambient air temperature
leads to a better description of the temperature effect on the heat consumption.
Climate variables are typically transformed using rational transfer functions to
model their effect on heat demand adequately [5] [41]. Low-pass filters can be
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created from rational transfer functions with a stationary gain equal to one. For
example, the simple first-order transfer function,

HaT(q) =
1− a

1− aq−1
. (2)

where q−1 is the backward shift operator, i.e. q−1xt = xt−1, and a ∈ [0, 1] is
the time constant, can be used to describe the dynamics between the dependent
variable and independent variable that is being filtered. For instance, in a model
describing heat transfer between indoor air temperature in a building and am-
bient air temperature, a high time constant would mean that the building has a
high thermal mass and good insulation.

2.1.2 Model Identifications Procedure

Model identification of a system is a tedious process, as many things need to
be considered. For instance, for model identification of heat consumption, ques-
tions arise on how to model the diurnal variation, is there a weekly tendency
that needs to be modelled specifically, which climate variables are significant,
how to translate their relationship to the heat consumption, and how to con-
sider the physical representation of heat consumption to keep the desired indoor
temperature in buildings. Here, we will first investigate the heat consumption
from a physical point of view of the system, then we will demonstrate the use of
statistical methods to enhance the model.

During winter in cold regions, the heat load is dominated by the demand for
space heating, i.e. keeping the indoor temperature at the desired level to satisfy
the thermal comfort of the consumers. Therefore, the physical model of heat
demand can be viewed according to the heat loss characteristics of a building,
the passive heat loss through the construction and the active contributions due
to ventilation. These characteristics can then be used to suggest a forecasting
model of a total heat load for a district heating network where other heat losses
are added, e.g., losses related to the transportation of heat from production to
consumer. This is the first step of establishing a grey-box model, identifying
a model from physical knowledge. For instance, [34] demonstrate a grey-box
modelling approach for the heat dynamics of a building using a continuous-time
model based on stochastic differential equations. The final model is validated by
both simulation and forecasting of the indoor temperature. In [42] this analysis
is extended by considering the physical knowledge not just on a single building
level but also the thermal characteristic of the entire DHS to create a model
of the total consumption in the DHS. Climate measurements of ambient air
temperature, wind speed, and global radiation are used to create an appropriate
model. We will present the results from [42] on creating a heat load model of a
DHS, first from a purely physical derived model then introduce their proposal
of a model where the parameters of the model can be estimated by statistical
methods. Thus, utilizing the Grey-box methodology of using physical knowledge
and statistical information embedded in data to reduce the model-space of a
purely physical model to describe the dynamics of the system.
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(a) Heat transfer through a wall. (b) Solar Radiation through a window.

Fig. 1: The figures demonstrate the stationary heat transfer through wall and
window of a building. Missing is the effect of the ventilation. The source of these
figures are found in [41].

[41] uses Figure 1 to illustrate the heat dynamics of houses by describing
the heat transfer through a wall and a window. The figure demonstrates the
stationary heat transfer of a building without considering ventilation. Plot (a)
shows the energy exchange through a wall as the heat flux, Q̇ which is found
from the stationary relation between the outdoor, wall and indoor environment,

Outdoor: Q̇ = ho(Ts,o − Ta)− εR0, (3)

Wall: Q̇ = Uw(Ts,i − Ts,o), (4)

Indoor: Q̇ = hi(Ti − Ts,i), (5)

Overall: Q̇ = U(Ti − Ta)− U ε

ho
R0, (6)

where Ta is the ambient air temperature, Ti is the indoor temperature, Ts,o
is the temperature of the outdoor surface of the wall, Ts,i is the temperature
of the indoor surface of the wall, R0 is the solar radiation orthogonal to the
wall, and U = (1/Uw + 1/hi + 1/h0)−1. The heat is transferred as convection,
thus from warmer to colder areas and the h coefficients are the convection heat
coefficient of the outside of the wall and inside the wall. They describe the impact
of a boundary layers on the outer and inner wall surface where the former is
influenced by wind speed and wind direction while the latter can be assumed
constant due to the constant indoor environment. Uw is the thermal conductivity
of the wall divided by the wall thickness. Hence, the overall stationary heat flux
through the wall is described from the stationary relation between the ambient
air temperature, indoor temperature, the solar radiation orthogonal to the wall
by convection.

The energy transfer through the window (Figure 1 (b)) consists of both
convection and conduction. Thus,

Q̇ = −εR0 + U(Ti − Ta) (7)
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where ε is the fraction of solar radiation orthogonal to the window (R0) is not
reflected by the window and the U(Ti − Ta) describes the energy conduction
through the window between the ambient air temperature and indoor tempera-
ture, and U = (1/Uwin + 1/hi + 1/h0)−1. Uwin is the thermal conductivity of the
window divided by the window thickness.

Ventilation, where the warm air from the buildings is replaced by the cold
air gradually, also needs to be considered. The heat flux of the ventilation is

Q̇ = CV̇ (Ti − Ta) (8)

where C is the product of the specific heat capacity of the air and the mass
density of the air and V̇ is the flow of air through the building.

Heat load of an area can therefore be assumed to be the heat loss of the heat
transfer through walls, and windows and by ventilation, thus QL,t = QWall,t +
QWindow,t +QV entilation,t plus the energy needed for domestic hot water usage,
QW,t for all buildings in the area. There is also ”free” heat QF,t that contributes
to the indoor temperature coming from e.g. electrical equipment but also hu-
mans. Thus, energy needed for space heating QH,t can be expressed as,

QH,t = [QL,t −QF,t]+. (9)

The truncation of negative values is used since when the quantity inside the
squared brackets gets negative the indoor temperature will increase or ventilation
will be used to prevent this. Considering the total heat consumption as

Qt = δc,t[QL,t − δp,tQF,t]+ + δp,tQW,t (10)

where δc,t is the fraction of the consumer heat load reacting to the climate.
δp,t is the fraction of the potential consumption active at time t. This means
δp,t accounts for holidays and δc,t accounts for the fact that during the summer
almost no consumers react to the climate and that they do not all start/stop
reacting on the climate at the same time of year. The dependence on holidays
might be negligible since it will to a large extent only affect the demand for
domestic hot water.

In [42] it is argued that these quantities of the model above can not be
estimated using available measurement, i.e., the total heat consumption, ambient
air temperature, wind speed and global radiation. Therefore, it is suggested to
create a model structure, inspired by the physical quantities of the heat transfer
qualities, that can be estimated only from data. Detail explanation of how to go
from the physical orientated equation in Eq. (10) to the model in the equation
below is found in [41],

Qt = µ(h24t , Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1 + et,

(11)
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the filters H1(q) and H2(q) are found to be

H1(q) =
0.066

1− 0.934q−1
, (12)

H2(q) =
0.350 + 0.612q−1 − 0.226q−2

1− 1.703q−1 + 0.739q−2
. (13)

The function µ(·, ·) models the diurnal variation, Rt is the solar radiation on
a square pillar (see [41]), Wt is the wind speed, Ta is the ambient air tempera-
ture, et is the model error (iid and N(0, σ2)), a. are the coefficients of the model.
The filters H1(q) and H2(q) are rational transfer functions and are proposed to
filter the climate variables to model their effect on them to heat load. [41] ar-
gues for instance that constant indoor temperature will effectively eliminate the
heat storage capacity of the floor and internal walls, it seems therefore reason-
able to use a rational transfer function when filtering the climate variables for
heat demand modelling. Also, low-pass filtering is ideal as the dynamics at the
boundary layers of the wall can be neglected however the conduction through
the wall needs to be modelled. The inertia due to thermal mass indicates a slow
response which again suggests that low-pass filtering of the climate variables is
preferable.

This model is proposed to be used to predict the future heat consumption
and is demonstrated to perform adequately, however it was shown that there
was auto-correlation in the errors. A noise model was included in the model
to remove the correlation using an auto-regressive model on the errors using
lagged error on the past; 1, 2, 3, 23, and 24 lagged errors. The model including
auto-regression on the noise showed that the auto-correlation of residuals was
removed. When comparing the result between the model in Eq. (11) and the
same model using the noise model, it showed that for online applications the
model including auto-regressive terms performed significantly better for short-
term horizons while the model without auto-regressive terms performed better
for longer horizons. Hence, using information from the prediction errors of the
model can improve the predictions on shorter horizons. The model in Eq. (11)
was used for demonstrating online prediction and adaptive RLS update on pa-
rameters, it showed high accuracy for forecasting the heat consumption for a
large area where the different methods of modelling diurnal profile and different
forgetting factors are compared.

Model identification of a heat load model can also be done using traditional
statistical approaches, thus finding the optimal structure of the forecasting model
by finding which independent variables that describe the heat load adequately.
Also, how those independent variables enter the model, i.e. how they are mapped
in the transformation stage, here the physical understanding of the system will
be helpful. Model building procedure is described in detail in [35, Ch. 6] along
with the estimation of parameters and validating the model (model checking).
Model building is an iterative process where the model is changed until it is
adequate for its purpose, e.g. forecasting. The initial step of the identification
procedure for heat load is to find a suitable initial model describing the response
variable, the heat load. For instance, a model that includes an intercept and some
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factor that models the social effect of the heat load, i.e. the diurnal profile. It is
recommended not to include climate variables in the initial model so that one can
use the initial model to identify which climate variables are significant. Modelling
the social effect in the initial model is necessary as it is common knowledge that
the heat demand has a diurnal profile. The profile can be modelled using Fourier
harmonic functions [41] [5], splines or even using the hour of the day as input
[17]. After modelling the social component, it is necessary to identify which
climate variables influence the heat load and how to include them. The cross-
correlation function can be used to identify what climate variable to include by
computing the cross-correlation between the prediction residuals (e.g. one-step-
ahead prediction) from the initial model and the climate variable time series.
The climate variable with the most significant correlation is then added first
to the initial model. Selecting what transfer function to use can be done by
computing an error metric score that is suitable, for instance, the RMSE score.
The model extensions are then compared to find which function (or the instant
effect, i.e. no mapping function) describes the dynamics between the climate
variable and heat load adequately. After finding the optimal function, these steps
are iteratively repeated until the final model accuracy can not be improved. This
model identification process is demonstrated in [5] where the climate variables
are used to find the ideal model of the heat load of single-family houses. This
procedure is data-driven as the variables are added or transformed and then
the results are investigated to see if an adequate model has been found, this is
repeated until the result is satisfactory. Here, the understanding of the physical
nature of the system dynamics is an advantage, as it gives insight on what
variables to be included and how they affect the system, e.g. low-pass filter of
the ambient temperature to describe the heat consumption. We will present an
example of forecasting performance by including a low-pass filter of the ambient
temperature in Section 2.1.3. Additionally, the performance of a state-of-the-art
forecasting model is also illustrated.

2.1.3 Demo: Brønderslev

In this section, we will demonstrate the performance of a forecasting model that
is created based on the methodologies discussed earlier in a real district heating
case. We will highlight how the model can be improved by implementing physical
knowledge of the relation between heat consumption and weather. A state-of-the-
art forecasting model supplied by HeatFor™4 will be compared with the simple
model proposed here.

A first attempt to forecast the heat load in Brønderslev would be to include
an intercept, Fourier harmonics series to describe the diurnal variations and
NWP of the ambient air temperature. Hence, an initial model is

Ŷt+k|t = θ0,k + µ(t, nhar, αdiu) + θ1,kT
a,NWP
t+k|t , (14)

4 https://enfor.dk/services/heatfor/
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where the subscripts t is the time and k is the prediction horizon. This model will
be referenced as Model 1. The estimation and forecast of this model is done using
the R package, onlineforecast [3]. The package gives the opportunity to create
forecasting models with estimated coefficients for each prediction horizon and
estimates the coefficients adaptively using recursive least squares with an expo-
nential forgetting factor as described in Section 2.1.1. Model 1 will be extended
to model the physical knowledge on how changes in ambient air temperature
affect the heat consumption’s by using the low-pass filter Ha(q),

Ŷt+k|t = θ0,k + µ(t, nhar, αdiu) + θ1,kHa(q)T a,NWP
t+k|t , (15)

and will be referenced as Model 2. The results are shown in Figure 2 where
on the left plot, the RMSE for prediction horizons from one to 72 hours ahead
is illustrated. The improvement of including the low-pass filter is significant as
the RMSE for all horizons has decreased. The right plot in Figure 2 shows one
realizations of the forecasts into the future made at 2021-01-10 12:00 (vertical
grey dashed line). This is only one realization and therefore should not be used
to compare the accuracy between the models (use the RMSE plot). These plots
clearly show that the improved model represents the dynamic changes in more
detail. Thus, exploiting the physical dynamics will improve the forecast accu-
racy. The state-of-the-art performance is also visualized and a quite significant
improvement in accuracy is clear when compared to the simple models where
the most significant difference is in the short term forecast. High accuracy in the
short term forecast is crucial for enhancing the temperature optimization of the
network, i.e. lowering production cost and reducing heat losses by keeping the
supply temperature low.
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Fig. 2: Figure demonstrates performance of three heat demand forecast models.
The left plot shows the RMSE for different k-step prediction horizons while on
the right plot shows realizations of the forecast from the models.
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2.2 Electricity Price Forecast

Here, we will briefly describe the forecast of electricity prices to optimize the
economic performance of district heating with respect to the production bal-
ancing of heat and electricity, see further information in Chapter 8. In the case
of electricity markets dependent units such as CHP or heat pumps, successful
trading on the electricity market is important for the district heating operator.
Most of the electricity is usually traded on the day-head market or wholesale
markets and prices are often quite volatile and not determined by physical laws.
The volatility and complexity increases also with the increasing share of decen-
tralized RES. Therefore, electricity price forecasts are generally only based on
data-driven models. [28] propose a two-step method to forecast the electricity
price and its dependency on forecasts of load and wind power production. Un-
certainty of the price forecast is not given in [28], however information on the
uncertainty is often beneficial and needed e.g. for including the forecast into
stochastic optimization methods [11] [56] [19]. There is a trend towards research
on electricity price forecasting including uncertainties and probabilistic forecasts
are gaining interest [47]. For an overview and more detailed information, we refer
the reader to the review papers [31], [47], [65] or [1].

2.3 Further Heat Load Forecast Models

We have proposed grey-box modelling in order to formulate a model for heat load
forecasting and a framework to deliver online predictions of the heat load in this
section. However, black-box models that are purely driven by data are often also
suggested for heat load forecasting. For example, linear models where coefficients
are estimated using ordinary least squares [14] [17]. Autoregressive Integrated
Moving Average (ARIMA) models are also a common method, often with a
seasonal component. In [23] it is proposed to use seasonal ARIMA (SARIMA)
models using a state-space framework. Using the state-space formulation implies
that they are able to produce online predictions using the Kalman filter to update
the forecasts and generate new forecasts when new information is available.
These methods are easy to understand and computationally fast however they
fail to describe the nonlinear dependency without applying transformations of
the input. More advanced black-box models, e.g. machine learning methods,
have demonstrated that they can capture the complex non-linear dependency
that can be difficult to model using linear models.

In [57] it is proposed to use a feedforward neural network using two layers
of neurons and using a sigmoid as the activation function. The neural network
is applied without using any physical knowledge about the DHS. The results
from the neural network are compared to a grey-box model where the nonlinear
relationship between demand and weather variables are taken into account by
transfer functions to create a linear regression model. Similar inputs are used
for both models however the number of coefficients is significantly higher for the
neural network with two layers of five and two neurons. In this case, the grey-box
model has a better performance in the out-of-sample comparison.
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[15] compares a linear model, a feed-forward neural network, and Support
Vector Regression (SVR) where the input variables are also investigated. They
find that the SVR has the highest accuracy. Additionally, the results show that
including holidays and calendar data as inputs improved all models. However,
this method has problems with the time-varying dynamics of the heat load.
Recurrent Neural Network (RNN) have been proposed to solve the time-varying
issue as demonstrated in [29] where it is shown that RNN handles trends in heat
demand data while a feedforward neural network cannot.

3 City Weather Forecasting

Both heat load forecast and temperature control are heavily dependent on the
most recent weather observations, in particular, the ambient temperature is im-
portant for the operation. The climate where the district heating system is lo-
cated needs to be analyzed to operate the network in an optimal setting as
mentioned at the beginning of this section. [41] and [39] suggest that the climate
variables: ambient temperature, solar radiation, and wind speed (including di-
rection) have the largest effect on the heating demand (in order of decreasing
importance). [41] gives a detailed description of how these climate variables in-
fluence heat consumption based on physical and stationary considerations:

– Ambient Temperature: The ambient temperature affects the indoor climate
through heat conduction in the outer walls and windows, but also through
ventilation. It is shown that the outdoor temperature affects the indoor tem-
perature through a low-pass filtered signal, and a simple transfer function
model is suggested to describe how the variations in the outdoor temperature
affect variations in the indoor temperature.

– Solar Radiation: The solar radiation affects the indoor climate based on
the angle of beams hitting the building, where the orientation of the beams
through the windows and the window area are most important. Basis func-
tions are used to translate the non-linear dynamics of the solar radiation to
its contribution to heating consumption.

– Wind Speed: Wind speed and wind direction affect the indoor climate as
natural ventilation, the effect is depending on the tightness of the building.
The wind speed also affects the convection heat coefficient on the outside of
the buildings. It is therefore modelled using a low-pass filter for describing
the contribution to the consumption.

Hence, in order to use these climate variables for enhancing the operational
performance of the district heating system, both a clear understanding of how
these variables affect the heat consumption and a forecast of them is needed.
However, weather forecasts models are usually tuned for rural areas, not urban
areas where district heating is applied. The difference between the climate in
rural and urban areas is quite significant. Historically climate variables have
been measured in rural areas. For instance, airports usually have climate stations
and they are usually located outside the cities in an open area, where the only



16 H. G. Bergsteinsson et al.

impact is from the natural environment including lack of woody vegetation and
directly exposed to natural rain, sun, and wind. However, climate inside cities
is different from rural areas and therefore variables like the air temperature
measured at the airports may deviate from the temperature inside cities, where
the air temperature is exposed to human activities and the built environment.
Research shows that the ambient air temperature typically is higher in urban
areas than in rural areas [59]. The effect is termed urban heat island (UHI). A
UHI is an urban area that is warmer than its surrounding rural areas due to
human activities or build human infrastructures. The variation of outdoor air
temperature data is both spatial and temporal. Several studies point towards a
typical average difference in urban and rural temperatures of 2-3 K. For instance,
[8] investigates the UHI phenomenon in Copenhagen and demonstrate it by using
three climate stations that are located inside the city, in the outskirts and in a
rural area outside of the city. The hourly temperature average from the climates
stations is computed and illustrates that the temperature measured at each
station is different. The climate station inside the city always has the highest
temperature, whereas the station in the rural area has the lowest. It is also shown
that the spatial temperature has time-varying characteristics, both a diurnal and
an annual variation is seen. For example, comparing the result during summer
shows that the average temperatures in the mornings are very similar. However,
later in the day, it differs, with higher temperature difference in the city, and
during the night it gets colder at the rural side. Thus, the city does not lose heat
as fast as the rural part. While during winter, there is quite a constant offset
between the stations.

3.1 Localizing Numerical Weather Predictions

NWPs are obtained by a physical model of the atmosphere and ocean to predict
climate variables. They are computed over a grid of the earth and are then in-
terpolated to a specific location where weather predictions are needed. However,
NWPs are designed for rural weather forecasting, and they often have problems
adjusting to the local climate in cities due to the local climate phenomenon.
The models seem to have trouble adjusting to local heat contributions, e.g., so-
lar heat in the street, heat from buildings, etc. DHS relies heavily on NWP to
operate their system efficiently, therefore it is important to correct the NWPs
before using them as input e.g. models for heat load forecasting. Especially, for
temperature control of the district heating system as it is done on a short-term
horizon (between one and 24 hours) and is heavily dependent on the current
local climate. Using a local climate station to localize the NWP, corrects the
short term NWP by adapting them to the climate using real-time climate mea-
surement [41]. Hence, this yields an optimal weather forecast for a certain area
that can be used to operate the temperature control in the most optimal setting.
In [22] it is proposed to use Model Output Statistics (MOS) to bind NWP to
local climate stations observations, e.g., localize the forecasts. The MOS is a
simple technique that uses linear regression where the observed climate variable
is the response variable and predictors are the NWP variables which therefore
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bind the NWP to the local climate. It is a simple and frequently used method
that will reduce systematic bias in the NWP if there is any. [13] propose using
an adaptive method to reduce the systematic bias and lower the RMSE of the
NWP.

4 Temperature Optimization

Efficient operation of district heating networks implies an objective to mini-
mize production cost of the heat production and reduce heat waste without
compromising the consumer comfort. For most district heating systems, this is
achievable by minimizing the supply temperature at the production site while
providing the total desired heat and fulfilling the requirement of minimum sup-
ply temperature at any time point at all points in the district heat network.
Decreasing the supply temperature is also highly valuable for heat production
sites where electricity is also produced (e.g. with CHP units) since it implies an
increase in the ratio of power to heat output, and, as electricity is more valuable
than heat, a more profitable operation is achieved.
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Fig. 3: Example of an reference curve for controlling the supply temperature at
the production site.

Temperature Optimization aims at optimizing the supply temperature. Tra-
ditionally, the supply temperature has been either controlled using a reference
curve schema or experience of the network operators [48]. A typical reference
curve is illustrated in Figure 3 where the supply temperature is determined as a
function of the current ambient air temperature. The supply temperature is kept
constant during high ambient temperature for providing solely heat for domes-
tic hot water during non-heating periods. The temperature is set high enough
to reduce any bacteria risk. As the ambient temperature decreases the supply
temperature is increased until the maximum supply temperature of the system
is reached. This control schema aims at ensuring that the consumers receive
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sufficient heat as it models the relationship between supply temperature and
ambient air temperature as a worst-case scenario, i.e. the temperature should
not be lower than the reference curve. The curve also considers that the supply
temperature for the given ambient temperature will have sufficiently large safety
margin for the flow to be adjust to satisfy the heat demand before it reaches the
maximum limit of the system.

The use of a single reference curve at the plant usually results in a high supply
temperature which is high enough to account for all other variables not taken into
account. This results in higher costs and more heat losses in the system. Thus,
the curve is not an optimal strategy as it does not consider other climate variables
that are known to influence heat consumption like wind speed, wind direction and
solar radiation. Furthermore, it ignores the social behaviour and the time-varying
relationship to demand. One of the important time-varying relationships is the
time-varying time delay between time of production and the time when the water
reaches the end-users. It is also not a predictive controller, i.e. it does not look
into the future while selecting the supply temperature. Even though this method
is naive, it is more advantageous than operating the supply temperature at the
maximum limit and allowing the flow to vary. However, the supply temperature is
kept unnecessarily high when discarding other factors. When including all of the
above factors into a control schema using predictive methods, new possibilities of
lowering the supply temperature without violating any restrictions are possible.
It is also important to point out that the hydraulics limitation of the DHN
implies some restrictions on the minimal supply temperature in order to ensure
that the flow is below the maximum limit with some safety margins. Thus, then
the supply temperature should be increased to meet the demand thus a predictive
method is needed to optimal select supply temperature before the flow reaches
the maximum.

With the increase in both computational power and research in adaptive
control during the 1980s, more sophisticated methods for DH have been de-
veloped. Adaptive controllers are able to operate time-varying and non-linear
systems since they can adapt to changes based on the output feedback of a sys-
tem (see, e.g., [2] for further reading). For DH, this improvements in research
related to control theory was necessary as the system is inherently non-linear
and non-stationary.

In this chapter, we will focus on temperature optimization based on adaptive
control using feedback from critical points in the DHN. Our description is based
on the research published in amongst others [36], [39], [40], [43] and [52]. The
described method also resulted in commercial software that is used for temper-
ature optimization in DHN in Denmark5. The method has proven to be able to
provide significant reductions.

Section 4.1 will introduce and describe the characteristics of a DHN. Sec-
tion 4.2 will build on the knowledge of the network characteristics to introduce
temperature optimization and control. A demo case will be used in Section 4.3

5 https://enfor.dk/services/heatto/
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to demonstrate the performance and savings. Finally, we give an overview of
additional work on temperature optimization in Section. 4.4.

4.1 DHN Characteristics for Control

The dynamics in a DHN are driven by the physical dynamics and the consumer
consumption, i.e., the heat load. As discussed in Section 2, consumption is driven
by intra-day variations, climate, and local social behaviour. [7] propose an ex-
tensive physical-simulation model of a DHN and describe the important physical
factors to consider. The physical factors are time delay, heat loss, pressure, and
friction loss. These factors are very important for accurate simulation and un-
derstanding of the DHN to maintain acceptable temperature and differential
pressure in the network. Thus, they are used to operating the network efficiently
by delivering the desired heat to the consumer while minimizing the operation
cost. Heat loss from pipe to surroundings is determined by the time of being
transported in the DHN from production to consumer (time delay), along with
the temperature of the hot water and the resistance of the pipe insulation. The
time delay or the transport time of sending hot water to a point in the network
is determined by the flow that is controlled by pumps based on the differential
pressure applied in the system. The pressure in the system controls how fast
the hot water travels in the network. Hence, the temperature loss between con-
sumers and the production plant depends on these variables. Pressure loss in the
system depends on the fiction which is a function of flow rate and other pipe
properties. The network is designed to maintain fixed differential pressure in the
network which the pump control tries to maintain by adjusting the flow in the
system. If the flow becomes too high then it becomes impossible to maintain the
needed differential pressure due to limitation of the pump. In these cases, the
differential pressure over the substations at the consumers will start to decrease,
and the consumer will then not receive the desired heat. Thus, these four factors
contribute to the two main components of delivering heat to the consumer; tem-
perature and flow. They are jointly linked together in a nonlinear relationship.
For instance, heat losses in the system are based on the temperature and the
flow, hence, the temperatures in the network are determined by the temperature
and the flow in the system.

The DHS usually also has restrictions based on these factors on the operation
of the network due to physical limitations and additional constraints made by
the utility. [43] describes the following usual restrictions:

– A maximum allowable flow rate in the system: The restrictions in the flow
rate are due to the (always) limited pumping capacity, the risk of cavitation
in heat exchangers and difficulties maintaining a sufficiently high differential
pressure in the remote parts of the network during periods with high flow
rates.

– A minimum guaranteed inlet temperature at the consumers: This restriction
is due to limitations in the consumer installations as well as minimum do-
mestic water usage temperature requirements imposed by hygienic concerns.
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– A maximum allowable supply temperature: This restriction ensures not to
damage pipelines and consumer installations.

– Limited short term variation in the supply temperature: The stresses inflicted
on the network by large and frequent fluctuations in the supply temperature
dictate that the short term variations in supply temperature should be lim-
ited.

– Maximum allowable diurnal variations of the supply temperature: In some
systems the size of the expansion tanks may impose limitations on the al-
lowable diurnal variation of the supply temperature.

Hence, the framework of the temperature control has many constraints and
physical limitations, thus operating a network consequently needs to consider
multiple aspects to result in an optimal operation. Optimal operation of the
network is achieved by minimizing the production cost without; compromising
the safe operation of the system, adversely affecting the maintenance cost of the
system, or sacrificing consumer satisfaction. Note that the physical description
and system restriction listed here are not valid for every system. Each network
is unique with different physical limitations or restrictions. However, they need
to be considered before implementing the temperature control to reduce the risk
of failure and achieve optimal operation of the network.

4.2 Controlling the Supply Temperature

In this section, we will introduce a control schema for the optimal operation of
the DHN. To simplify the schema, we will only present a DHS that is supplied
from a single station. We also assume that the return temperature and the
diurnal peak load are not affected by the optimization. The operation costs can
then be minimized by minimizing the supply temperature without violating the
requirements discussed in previous sections. The methodology introduced here
is a statistical approach of estimating the supply temperature by using adaptive
estimation and transfer functions to model the network as initially proposed by
[58], [39] and [40] and extended in [43] and [52]. Hence, we do not use a detailed
physical model of the network, but statistical methods along with measurement
data to describe the dynamics.

Since the adaptive controller incorporates feedback information, the DHN
needs to have some measurement wells in the network so that the controller gets
feedback from the network. The placement of the wells should be located at
points with the lowest temperature in the network, i.e. largest temperature loss.
These wells are usually decided at the time of the design of the network or added
later in the network when needed. Hence, if the supply temperature requirement
is satisfied at those points in the network, we expect that the requirements of all
consumers in these areas are satisfied. These measurement points will be referred
to as critical netpoints. A more recent study outlines how to use frequent meter
readings at the consumer as a cheaper and flexible alternative to measurement
wells in the network [10].
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Fig. 4: Schematic view of the proposed controller: The supply temperature sub-
controller (SC) which models the relationship between supply temperature, Ts,t
at the production and netpoint temperature, Tn,t. The flow sub-controller (FSC)
that uses heat load and flow to estimate the supply temperature. Finally, the
overall controller (OC) that select the highest supply temperature, T ∗s,t+1 from
the sub-controllers.

The main concept of the proposed control strategy is illustrated schematically
in Figure 4. The overall controller (OC) selects the highest supply temperature
from the flow sub-controller (FSC) and the supply temperature sub-controllers
(SC) at the critical netpoints to be used in the next time step. The SCs estimate
the lowest possible supply temperature from the plant using statistical identified
transfer function without violating any restrictions at the consumers. The FSC
computes the supply temperature without violating the maximum flow limit. The
main principle of the proposed control schema is to keep the supply temperature
as low as possible. The heat demand can be satisfied, by varying the mass flow
through the network and by varying the supply temperature,

pt = qtcw(Ts,t − Tr,t), (16)

where pt is the heat load, qt is the flow, cw is the specific heat constant of
the water in [Jkg−1

◦
C−1], Ts,t is the supply temperature and Tr,t is the return

temperature.
The proposed control strategy here ensures the heat demand is met by vary-

ing the mass flow before increasing the supply temperature. Thus, the supply
temperature is kept as low as possible while the flow is varied, the temperature is
only increased when the flow is at the maximum value. The methodology behind
the controllers and the transfer function between the production and network
to establish a temperature controller is introduced briefly below. More detailed
explanation can be found in [38], [39], [40], [36], [43], [49], [57], [45], and [52].

Flow Sub-Controller (FSC): The FSC is to perform an online control
of the supply temperature in order to ensure that the flow rate q is kept close
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but below a maximum value qmax. The controller uses prediction models of the
heat load to find the optimal supply temperature while keeping the flow as high
as possible. The future control signal, Ts,t+1 is found by solving for the supply
temperature in Eq. (16),

Ts,t+1 = T̂r,t+1|t +
p̂t+1|t

cwq
ref
t+1|t

(17)

where T̂r,t+1|t is the forecasted return temperature, p̂t+1|t is the forecasted heat

load, qreft+1|t is the mass flow from a reference that is a prediction of the flow and it

is below the maximum flow, qmax with a large probability, e.g. 99%. This simple
controller only considers one-step ahead into the future however the change of
supply temperature will affect the consumers after different time delays. [38]
propose to use weights on the j-step predictors to estimate the desired supply
temperature, Ts,t+1. More advanced flow controllers are proposed in [43] and [36]
where the uncertainty from prediction of heat load and return temperature are
considered.

The Transfer Function Model: An important aspect of the supply tem-
perature sub-controllers based on a statistical approach is to identify the dynamic
relationship between the temperature at the critical netpoints in the network and
the supply temperature and flow rate at the plant for the supply temperature
sub-controller. An accurate estimate of the network characteristics, including the
time-delay is important for enhancing the controller. Hence, a model of the dis-
trict heating network is needed for optimal control. A pure physical model of the
network (white-box) is almost impossible to establish and would also be likely to
be too complex for control purposes. The white-box models can be adjusted in
operational settings when calibrating the models based on previous operational
data however it can take too long due to the complexity of the model or the
assumptions being wrong.

We therefore propose, a model of the network that is simple and is easily
updated when new information or data is available about the network charac-
teristics. The model is found by identifying a statistical transfer function of the
network. It can be modelled using a single-input single-output AutoRegressive-
eXtraneous (ARX) structure using a fixed time delay. An example of a model
for a DHN is given here

Tnp,t = a1Tnp,t−1 + b0,t−τTs,t−τ + b1,t−τ−1Ts,t−τ−1 + b2,t−τ−2Ts,t−τ−2 + εt,
(18)

where Tnp is the netpoint temperature, Ts is supply temperature, ε is the noise,
and τ is the time-delay between the two temperatures (at the plant and the
critical point). The coefficients; b0, b1, and b2 describe the diurnal variation in
the system, see [58] for further details. The model coefficients can be constants,
but since DHS are non-stationary it is better to estimate them recursively. The
model is formulated as a 1-step prediction model. The k-step predictions are
then obtained by recursive use of the 1-step prediction model. [58] propose dif-
ferent advanced methods to estimate the time-delay recursively, however [39]
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and [43] propose a simple scheme to estimate the time-delay for the transfer
function. The simple method estimate the time delay as the lag with the largest
numerical value of the cross-covariance function between the time series of the
supply temperature and the netpoint temperature. [52] suggest more advanced
methods to forecast the netpoint temperature and estimate the time-delay using
conditional Finite Impulse Response (cFIR) as a transfer function of the supply
and netpoint temperature. This allows for a nonlinear estimation of the time
delay depending on the mass flow in the system.

Supply Temperature Sub-Controller (SC): The SC controller focus
on creating a control schema to vary the supply temperature at the produc-
tion without violating the requirements at the critical net points. It utilizes the
transfer function model of the supply temperature and netpoint temperature,
then it is possible to create a control scheme based on the network character-
istics. In [50] and [51] an eXtended Generalized Predictive Controller (XGPC)
is proposed to be used to control the supply temperature based on the transfer
function between the supply and netpoint temperature. The Generalized Predic-
tive Controller (GPC) is modified to handle non-stationary systems as it assumes
that the predicted output can be expressed as a linear combination of present
and future controls. Traditionally, this is obtained by solving the Diophantine
equations as proposed in [12] however these equations are formulated for time in-
variant systems, and hence modifications are needed. [50] propose a modification
of the GPC where the optimal prediction is the general conditional expectation
of the system output. The GPC is only reasonable if the underlying process has
a slow time-variation, while the XGPC can handle time-varying processes. This
is important since the transfer functions that describes the network characteris-
tics are inherently non-stationary due to the flow which results in a time-varying
time-delay and different heat losses as a function of the hot water temperature
and the flow.

The XGPC is based on an ARMAX model with time-varying parameters,
and the transfer function of the network is given by

At(q
−1)yt = Bt(q

−1)ut + Ct(q
−1)et (19)

where At, Bt and Ct are time-varying coefficients polynomials and q−1 is a
back shift operator. The coefficients can be estimated adaptively using recursive
methods. As the model is based on a time-varying process, the j-step predictor
ŷt+j|t is described by the conditional expectation of yt+j given observations of
the output up to time t

ŷt = Htut + vt, (20)

where ŷ is the vector of predicted reference netpoint temperature, u is the vector
of the future control signal (supply temperatures), v is the vector containing
the expected response from the input free system, and Ht is a matrix of size
N×N containing the time-varying impulse response of the system. The N is the
maximum prediction horizon of the controller, N ≥ 1. In relation to an ARMAX
model and Eq. (20), it can be seen that h is the weight of the time-varying
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impulse function on future control values and v is the expected response from
the past, see [50] and [43] for detailed explanation. It is possible to use individual
models for each j-step prediction. Then each row in Ht and v corresponds to
the j-step prediction model.

The object of the controller is to minimize the difference between measured
netpoint temperature and the reference temperature without violating the re-
striction with a certain probability. Additionally, the controllers object function
contains a term with the purpose of minimizing the supply temperature fluctu-
ations. A derivation of the optimization problem using the XGPC control law
and model of the network as shown in Eq. (20) in detailed is provided in [43].
The cost function is optimized over multi-step ahead horizons due to fact that
the time-delay in the system varies, and hence a minimum and maximum time
period is considered for the cost calculation. It is then shown that solving for
the input vector, ut (supply temperature) results in

ut = −[HT
t Ht + FTΛtF ]−1[HT

t (vt − yref
t ) + FTΛtgt]. (21)

At each timestep, the control signal is estimated, therefore only the first
element of the control vector is implemented, i.e.,

ut = [1, 0, . . . , 0]ut (22)

In [36] extended formulations of the XGPC controller are propose. This includes
for instance equality constraints.

Overall Controller (OC): The OC selects the highest supply tempera-
ture, T ∗s,t+1 from the required supply temperatures computed from the FSC and
the SC sub-controllers. This temperature is used as the supply temperature for
the plant in the following hour; the model parameters, the predictions and the
controller signals are updated each hour.

4.3 Temperature Control: Demo Case

Supply temperature at Brønderslev is now being operated by data-driven tem-
perature optimization in an on-line operation. It has been operating since be-
ginning of 2020. Before the data-driven operation, the network was operated by
a simple algorithm that did not receive online feedback from the network. The
data-driven temperature optimization was done with the HeatTO™6. Figure 5
illustrate the results from the previous operation and the current data-driven
operation. The operations are compared using three months (February, March
and April) in 2019 and 2020 for the old and new controller. The plot compares
the performance of the controllers versus the degree days. Degree days are used to
compare supply temperature between heating seasons when comparing different
operations. Degree days, T dd, are computed as the positive difference between
the average ambient temperature (T̄a) over one day, and a cut-off of heating
demand from buildings (we use 17°C here), i.e.

T dd = max(0, 17− T̄a). (23)

6 https://enfor.dk/services/heatto/
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Fig. 5: The figure demonstrates the difference in performance using simple op-
erations of controlling the supply temperature and using advanced data-driven
method.

The average supply temperature for the given day is then computed and
plotted versus the degree day as seen in Figure 5. To compare these operations,
a regression model using Ordinary Least Squares to estimate the parameters of
a model with an intercept and slope have been fitted to each operation as shown
in Figure 5 and the result is,

New controller: Tsupply = 68.05 + 0.04T dd (24)

Old controller: Tsupply = 71.2 + 0.36T dd (25)

We see that the supply temperature regression line is approximately 3°C
lower at y-intercept of for the new controller when T dd = 0, and further the
slope is lower for the new controller resulting in larger differences for higher
T dd. To compare the difference between the two methods, for instance, if we
investigate a degree day of 10 then the difference is around 7°C.

Decreasing the supply temperature for operation leads to an increase in sav-
ings for the utility. [40] suggest a rule of thumb for savings resulting from lower-
ing the supply temperature in CHP plant; For each degree lowered, the savings
for the heat loss in the network is 0.5 % and the savings from more efficient
production is 1 %, thus the savings can be compute as

Savings = (Costbefore ∗ x [◦C] ∗ 0.5%) + SharesProduction(Costbefore ∗ x [◦C] ∗ 1%)
(26)

where x is the supply temperature difference between operations to evaluate the
savings.

Thus, the estimated savings from using data-driven temperature optimization
would be roughly 7°C and the savings would be around 10.5%. The equations are
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just a rule of thumb to demonstrate potential savings when sufficient production
data is not available.

4.4 Further Temperature Optimization Methodologies

[24] propose similar temperature optimization approaches where statistical meth-
ods are used as describe above. They also take advantage of adaptive methods
to model the time-varying behaviour. However, instead of the XGPC and cFIR,
they use fuzzy modeling to describe the response characteristics of the network
when supply temperature and flow are varied. They model the relationship be-
tween the supply temperature and network temperature using multiple local
linear models that are only valid in certain regions, i.e., a fuzzy modeling to
handle the non-linear dynamics of the system.

All above mentioned methods utilize statistical descriptions of the network
to estimate the transfer function between two points (plant and netpoint tem-
peratures) and derive controllers from there. The goal was keeping the supply
temperature as low as possible to minimize the operational production cost for
the system. However, other approached have been suggested in literature on
how to estimate the network characteristics to ensure consumer are receiving
the required temperature. For example, models derived from a purely physical
representation of the network by modelling heat and mass transfer of the hot
water. [7] propose a physical model of the network to describe the dynamics of
it. This is done by predicting the network temperature and flows at nodes in the
network, referred to as the node method. In this, the DHN is represented by a set
of nodes by their physical description, e.g. heat capacities and pipe diameters.
Therefore, it is possible to simulate the network characteristics and estimate
suitable supply temperatures. This model gives promising results in offline set-
tings where it optimize both the production and the network however for online
purposes, the optimization is too computational heavy to deliver on time. [32]
suggest a simplified physical representation of the network by reducing the num-
ber of pipes into a tree structure without a circular loop. They demonstrate this
in a case study where pipe system is reduced from 1079 nodes to approximately
10 nodes without sacrificing any accuracy and reducing the computation time by
99 %. In [54] and [55] also physical models are derived to operate a DHS using
predictive control where the time-delay and temperature are estimated from a
physical simulation model. Additional research where both production and net-
work or only the network are modelled using physical derivation of the network
has been carried out (e.g. frequently, the node-method proposed by [7] is used).
Further Mixed Linear Integer Programming (MILP) is utilized to optimize the
production and network to minimize the cost [6] [21] [54]. [63] gives an extensive
review on DH for further reading.
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5 Smart Buildings in DH Network

Buildings are traditionally controlled to achieve a good indoor environment. This
is done independently from the surrounding energy systems. When introducing
the dependency of building control on its surroundings, a decision has to be
made, whether the building is in charge to meet the demand of e.g. the energy
system (indirect control), or the external system can control the building system
by direct control. The indirect method can be achieved by broadcasting prices
that change according to the energy system demands as described below. In both
schemas, direct and indirect control, the ability to control the many heating-,
cooling- and ventilation devices has to be in place in the involved buildings. The
below introduced MPC demonstrates such an enabling technology for simple
buildings. In general, smart control of buildings require a central monitoring
and control system.

In this section, we describe the interaction of smart buildings with DHN as an
appetiser to this extensive topic. First, we describe the motivations and values
of smart buildings in DHNs. Next, we introduce MPC as a technology to deliver
smart control of thermal dynamics for buildings. We round up the section by
introducing a hierarchical control setup, where buildings work together in the
DHN to deliver flexibility.

5.1 Value propositions by Smart Building to district heating

There are numerous reasons for controlling buildings in smart ways; many of
them targets the efficiency of the building itself, others target the interaction
with the surrounding neighbourhood and infrastructures. In this section, we
give a single example of a control technology, MPC, that enables both, internal
and external smart solutions.

A traditional, non-smart building can be controlled by different means, man-
ual control by the occupants, individual control on each heating and cooling
device (radiators and floor heating) and also individual apartment control in
multi-family buildings. Advanced buildings, such as office buildings and schools,
are controlled by central installations that connect all the controllers and col-
lect data centrally. Such systems are often controlled by skilled professionals
and perform better compared to individual control. However, literature shows
clearly that there are huge improvements to the performance of the latter type
of buildings.

In recent years, the objectives for control are increasingly complex. On top
of a request for the primary goal of optimal indoor climate conditions, energy
efficiency with related CO2-footprints and economical efficiency are the most
dominating of many target objectives of control. Later years, flexibility is added
to the list of objectives for the control. Control strategies that can handle these
diverse demands call for rather advanced control units in buildings, smart build-
ings, that are able to e.g. shift heat demand in time and power, compute advanced
demand patterns that compensate for temporal variations and other things.
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Many methods and solutions have been proposed in the literature. One of
these methods is Model Predictive Control (MPC), which is a well-established
and developed method for building climate control [18]. Its popularity is due
to its simplicity and natural way of incorporating constraints and accounting
for disturbances (such as the weather) in the optimal control problem. And not
at least, the methods can be implemented in almost any hardware with com-
putational abilities that are necessary to do essential predictive computations.
Basically, these computations are very similar to the modelling and forecasting
tasks applied to whole district heating systems and discribed in this book, be-
cause buildings are similarly affected by climate conditions [62]. However, the
number of controllable units may be extremely high compared to district heating
systems and so is the number of sensors involved.

Below, a simple building system is described as an example of the MPC
methodology.

5.1.1 Building Control by MPC-Methodology

We give a brief example of how to model and represent a building in a DH
network to describe the necessary states and properties.

Consider the following system of stochastic differential equations with obser-
vations taken at times tk

dx(t) = f(x(t), u(t),d(t))dt+ g(x(t))dω(t) , (27a)

yk = h(x(tk)) + vk, vk ∼ N(0, R) (27b)

where x, u, and d are the system states, controllable input, and non-controllable
input respectively. f is the deterministic dynamics, g is the diffusion function,
ω is a standard Brownian motion, and vk is the observation noise. The above
model formulation is an example of a grey-box model that includes physical
dynamics in f and describes stochastic elements by the Brownian motion that
are too complex to otherwise model. [60] modelled the thermal dynamics of a
Danish school building in a DH network using a hydraulic heating system with
thermostatic controlled radiators. Such a model enables an MPC to control the
thermal dynamics and perform tasks such as peak shaving or load balancing.
They find the following states useful to include in a grey-box model

– The indoor air temperature, Ti(t). This is typically the variable that is im-
portant to maintain a comfortable indoor climate.

– The temperature of the building envelope, Tw(t). This contains important
information about the insulation-level and how much heat is stored in the
walls.

– The flow of the water in the space heating system, Φ(t); this varies as the
thermostats in the radiators open and closes.

– The temperature of the radiators in the building, Th(t), is the component
that delivers the heat in the rooms.

– The return water temperature, Tret(t), is important since it determines the
amount of heat the building uses.
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Together, the above states form a model that is sufficient in describing the im-
portant thermal dynamics in a large building in a DHN. The controllable input
to the system, u(t), is the set-point to the radiator thermostats in the building.
The map between the difference in set-point and room air temperature and how
open the valves are was modelled using a sigmoid function. Using a system with
the above states, it was possible to optimise the operations of the building while
shifting the loads to desired times [61].

5.2 Implementation of MPC in a Smart Buildings

On a building level, the MPC has the objective to satisfy certain constraints
(e.g. a comfortable indoor air climate at all times) while at the same time min-
imising some objective. For economic MPC [30] [25], the objective typically is
to minimise the cost of the heat consumption while only adjusting the set-point
of the radiator valves (in the case of a building as described above). Such an
optimisation problem can be formulated as

J(x̂k|k,d̂(t)) = min
uk

N−1∑
i=0

ck+iuk+i (28)

s.t. x̂(t0) = x̂k|k , (29)

x̂(t) = f(x(t), u(t),d(t)) , t ∈ [ti, ti+N [ , (30)

ŷk+i = h(x̂k+i) , i = 1, . . . , N , (31)

ŷk+i ≤ ymax,k+i , i = 1, . . . , N , (32)

ŷmin,k+i ≤ ŷk+i , i = 1, . . . , N , (33)

∆umin,k+i ≤ ∆uk+i ≤ ∆umax,k+i , i = 0, . . . , N − 1 , (34)

umin,k+i ≤ uk+i ≤ umax,k+i , i = 0, . . . , N − 1 , (35)

u(t) = ui , t ∈ [ti, ti+1[ . (36)

In the above, N is the prediction horizon, {ck+i}N−1i=0 is the price signal that
reflects the price of the heat. The price indicates the degree to which it is ac-
ceptable to heat at any time. This could be with respect to e.g. a CO2-signal
that carries information about the CO2-density of the heat. The objective of the
MPC is then to minimise this cost while satisfying constraints on the building
states and the controllable input.

A well designed MPC is capable of optimising both the thermal comfort of
the indoor environment and the energy usage [16]. However, the above mentioned
MPC solves only the problem of optimal control on a local building level. The
building does not interact with other nearby buildings and does not necessarily
align their collective heat load. The heat load of an entire district may conse-
quently be unfavourable for the district heating company. Hence, an obvious
question to pose is: How should the heat load of the building stock be shifted to
be optimal for both the building and the network? Somehow, we want the entire



30 H. G. Bergsteinsson et al.

heat load of a larger district to follow some reference heat load. For instance to
follow the power production curve of renewable energy sources.

In the next section, we briefly describe an overall methodology that enables
the application of the presented MPC of buildings to cooperate with the sur-
rounding smart energy networks, amongst these district heating.

5.3 Hierarchical Control

We explained earlier in this book, the complexity of the energy systems are
increasing and the demand for adaptability and flexibility has to follow to ensure
robust user services at any time. In this example, we focus on ’flexibility’ which
is the ability to shift demands in time and power, according to the request by
the surrounding energy systems, i.e., we might be requested to shift the heat
loads of entire building stocks to match some reference heat load on a district
level.

[37] has proposed a hierarchical control approach, where the overall optimi-
sation is distributed between involved ’layers’. One layer could be the electrical
net, another the district heating system, and at the lower end the individual
buildings.

The price signal is determined by a reference type of controller such that
a reference heat load can be followed. This gives possibilities for peak shaving
or for controlling the load such that it matches e.g. the local renewable energy
production.

The goal of a hierarchical control setup is to send out a price signal to the
considered building stock that gives the buildings information about the energy
prices (which could reflect e.g. the CO2-density of the available energy). A flex-
ibility function is a model that determines the heat demand of a building (or
any dynamical system) given a price signal. Figure 6 illustrates this dependence.
In [26], a linear model is suggested, but in [27] it is shown that a non-linear
grey-box model using stochastic differential equations is more appropriate. By
sending out a price signal to the building stock and receiving back the entire heat
demand, the upper-level controller is able to shape the price signal such that the
heat demand of the entire building stock follows for instance a reference heat
load.

Fig. 6: The heat demand of a building can be predicted from the price signal.
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The flexibility function can be determined also for a larger DH network from
which we are able to construct a two-layer control setup. The upper layer solves
the problem of making the heat load of the building stock follow a reference power
signal given by the district heating operators to minimise e.g. the CO2-emissions,
while the lower level consists of individual controllers for each building. The latter
controllers solve the problem of keeping each building comfortably heated, i.e.
maintaining the indoor temperature within the comfort constraint.
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Summary
Operating district heating network using additional data with the traditional data extracted from
the SCADA system at the production is discussed. The benefits of including new data in daily
operation for the utility is demonstrated. For the past decade, more and more data is becoming
available for district heating utilities with the smart meters being installed in every home connected
to the district heating network. More local climate stations inside the city are also being installed,
and made accessible for everyone. In this report, data from smart meters are presented and how
they can be used to operate the network more efficiently. Also, weather forecast in cities is discussed
and how they can be improved by localizing them to the local climate using climate stations.

The case study in this report is a on-line operation of temperature control in Tingbjerg which is a
small area that is operated by HOFOR. HOFOR is a utility company in Copenhagen which handles
for example the district heating, and waste water. They also produce energy for the Copenhagen
area. The case study demonstrate how to localize heat demand forecast and operate closed-loop
temperature control for a small area. The result for the operation is compared to the previous
operation where it was done using open-loop temperature control, i.e. no feedback of the system.
The report emphasizes how current state-of-the-art methods can be improved by using newly
available data (e.g. smart meters as feedback of the network) and thereby enhancing the efficiency
of the operation.

The present report is followed by two other deliverables: the report ”Energy data: mapping, barriers
and value creation” and the report in Danish, entitled ”Digitalisering af fjernvarmen - erfaringer
der luner” (”Digitalization of district heating”).
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Chapter 1

Introduction

The IDASC, Intelligent Data-Anvendelse i Smart Cities (Intelligent Data Use in Smart Cities)
project’s goal is to investigate potentials from several different data sources that are now available
because of digitalization in district heating systems and generally in cities. The overall purpose is to
consider and combine all relevant data from meteorological services, city weather data, production
data, SCADA data, and end-user smart meter data to enhance the operation of a network. We
will evaluate the advantages of combining different data sources and analyze the improvements
compared to the typical situation today using only data from the SCADA system. Data from the
SCADA system are usually measurements measured at the production site, e.g. supply temperature,
return temperature, flow, and ambient air temperature. The focus is to demonstrate the potential
of how the new data sources can improve the operating district heating network, i.e. delivering heat
from production to consumers in a more optimal setting. In this study, we do not directly consider
how digitalization can lead to more optimal production of the heat; however, operating the network
efficiently will obviously also have a positive influence on the possibilities for optimized production
planning, hopefully lowering the production cost. Therefore, in this report, we only consider heat
demand forecast and temperature optimization to increase the operation of the district heating
network. The additional data used in this report are the smart meters at consumers in the area
where the heat is delivered and a local climate station that is located close to the area. In theory,
using this additional data will enhance the operation as it gives more detailed information on the
response characteristics of the network and the local climate in the area. We will demonstrate this
by using state-of-the-art and off the shelves algorithms for forecast and control provided by ENFOR,
an energy forecasting company. ENFOR is a spin-off company from DTU where the initial ideas of
these algorithms were established. We will show how to include the proposed additional data in the
algorithms and demonstrate the improvements in the operation of the district heating network. In
the case study, we will apply these digitalized methods in an on-line operation trial to analyze the
gain of using smart meters when used as feedback to obtain a closed-loop temperature control of
the network, and the importance of binding numerical weather prediction to a local climate using
a local weather station. The trial was conducted in Tingbjerg (Copenhagen), an area which is
operated by the district heating utility, HOFOR.

1.1 District Heating (DH) Operation
During the past decades, the district heating sector has been transformed from using primarily
traditional fossil fuels to using renewable heat sources and biomass. During the same period,
the DH systems have become more digitalized, e.g. with sensors in the district heating net-
work and smart meters at the consumers. At the same time, district heating is becoming a
crucial part of the overall integrated energy system because of its flexibility potential, e.g. by
storing excess energy as thermal energy [1, 2]. Hence, optimal operation of district heating is crucial.

The inherent flexibility of the DH system is highly valuable for the future integrated and low-carbon
energy system. An important aspect is a fact that DH systems can store energy when there is
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Figure 1.1: Simple schematic view of district heating; The heat production, the transmission
lines to heat exchangers then distribution lines that deliver the hot water to the consumer
substations.

a surplus of energy from intermittent renewable energy sources (e.g. wind and solar). However,
to maximize the flexibility potential of district heating, they would need to operate efficiently by
optimizing the production and the temperatures of the network. This report will focus on how to
improve the efficiency of operating an existing district heating network by applying data-driven
methods using additional data.

District heating consists of heat production, a network of pipes (transmission and distribution)
where the hot water is either delivered to substations (heat exchangers) at the consumers and
returned to the production facility, and the final component is the consumers. This is illustrated
in Figure 1.1. The supply temperature is generated at the production by heating the water, for
example, at a Combined Heat and Power (CHP) plant where the temperature is increased by
cooling the steam after it has generated electricity in the turbine. The mass flow in the pipes is
then controlled using pumps at the production plant. Frequently, additional pumps are required in
the network to maintain the desired pressure in the system. First of all, an optimal operation of
DH systems implies that the supply temperature and the network temperature should be kept as
low as possible without violating any requirements, e.g. supply temperature at a given outdoor
temperature. Lowering the supply temperature will reduce the heat loss in the network, and improve
the efficiency of the electricity production at CHP plants [3, 4]. Furthermore, a lower temperature
implies also more optimal use of, for instance, heat pumps.

Delivering the heat demand is controlled by varying the supply temperature [5]. Controlling the
operation of a district heating network rely on either an open-loop or a closed-loop controller to
estimate how the heat should be delivered, by regulating the supply temperature where the flow
is indirectly varied to meet the demand of the consumers. The open-loop controllers use either a
white-box simulation of the system to operate the supply temperature in the network or a simple
algorithm based on the knowledge of the system to regulate the temperature. Hence, the open-loop
operation does not have any feedback from sensors and data in the network and therefore such
controllers can not adapt to any disturbance in the system or changes to the network characteristics.
Thereby, they do not use the information from the network to adapt to achieve more optimal
operation.

There have been proposed control schemes that operate the supply temperature in a closed-loop
[5, 6]. Such a system typically uses a few measurement points located in the network. These
points are usually located in the network where the operator believes that the lowest (critical)
temperature is, i.e. where the largest temperature loss occurs. Therefore, the supply temperature at
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the production site is controlled to satisfy the requirements at these critical points. The controllers
also control the flow in the system to match the heat demand of the system, and therefore the
optimal operation is implemented with a sequence of controllers trying to deliver the heat while
keeping the supply temperature at a minimum.

The approach for temperature control in this report is found by lowering the supply temperature
while keeping the flow close to the operation limit of the system; see [7]. At the same time, a
lower supply temperature will enhance the efficiency of power generation at the CHP plant. Heat
demand forecasts are needed for production optimization, and these forecasts are also used for
finding the optimal supply temperature [8]. The heat demand is highly correlated with ambient air
temperature and therefore usually the forecast model uses numerical weather prediction (NWP)
of the ambient air temperature as input. Accurate NWP will be beneficial to the district heating
operation as they improve the heat demand forecast accuracy. In addition, both smart meter
and local climate station data can help to improve the closed-loop control of the system. The
models used are self-calibrating, and consequently, the models automatically adapt to network
characteristics as well as local climate conditions.

1.2 Structure of this Report
In Section 1.3, we will describe the case study used in this report. In Section 2, we will discuss how
to use data from smart meters and how it can lead to additional cost savings related to district
heating operations. Section 3 describes how Numerical Weather Predictions (NWPs) and local
climate data can be beneficial for the district heating operations. Heat demand forecasting is
characterised in Section 4, while control of district heating network temperatures is described in
Section 5. The report finally concludes in Section 6.

1.3 Case study: Tingbjerg district heating area
The case study used in this report is the district heating network located in Tingbjerg, which is a
small area with large apartment buildings located in the northwestern part of Copenhagen. The
area is supplied by heat from a heat exchanger that connects the central Copenhagen transmission
system operated by CTR to the distribution network in Tingbjerg operated by HOFOR. The
transmission system operated by CTR supplies heat to approximately 250.000 buildings in central
Copenhagen. HOFOR is the distribution network operator, and consequently, HOFOR is the
district heating supplier to buildings in central Copenhagen. There are 45 buildings connected to
the network inside the Tingbjerg area and 39 of them are equipped with a smart meter. Figure 1.2
shows the layout of the network in Tingbjerg.

Previously, HOFOR has operated Tingbjerg as an open-loop system using the TERMIS tool to
simulate and adjust the supply temperature and flow from the heat exchanger. Thus, they had
no knowledge of what temperature consumers were receiving, i.e. how the system was working
except when consumers complained because of too low temperatures. However, each apartment
building in Tingbjerg has a smart meter that is connected to the district heating side. These smart
meters can provide the forward temperature, return temperature, flow, and energy consumption for
each building. HOFOR also needs a heat demand forecast to regulate the temperature for the heat
exchanger, which they get by scaling demand forecasts for a larger area that contains Tingbjerg
heating demand. The scaling factor is the ratio between the larger area’s historical demand and
the historical demand from Tingbjerg.

Therefore, Tingbjerg is an ideal case for demonstrating how the operation of an existing network
can be improved with data-driven methods and digitalization. In this study, the smart meters
will be used to provide feedback for closed-loop control using the data from the smart meters to
increase the efficiency of the network operations and to show potential savings by lowering the
supply temperature at the heat exchanger while satisfying all requirements. Heat demand forecast
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Figure 1.2: Layout view of the district heating network in Tingbjerg. The heat exchanger
is located where the box with the TBW text is located. The other three shows the status
of the smart meters used to give feedback.

for the Tingbjerg area will be created based on the historical demand and NWPs that will be
localized to the area by using a local climate station that is close by. We will then demonstrate
the benefits of using automated feedback techniques from an on-line operation use of our setup.
The period from the start of the on-line operation trial from 1st of November 2020 until 1st of
April 2021 will be used to compare the new data-driven approaches with the methods used previously.
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Chapter 2

Smart Meters in DH systems

This chapter introduces smart meters in district heating and their role in transforming district
heating systems into the digital age. We will also discuss how smart meters can give value for
both consumers, where they are installed, as well as for the district heating utility by enhancing
the network performance. This report will focus on using smart meter data as feedback to the
production and use the response of the network to improve the performance, as the objective of
this report is to increase operational savings for the utility using additional data.

Smart meters are and have been installed at district heating consumers in Europe for the past
decade because of requirements from the European Union. The requirement is that consumers that
are connected to district heating networks have to be equipped with smart meter devices where
feasible [9]. This enables the consumer to be more aware of their current energy consumption and
allows linking the consumption to the billing from the utility. They can now see their consumption
on higher resolution and even in some cases, they have it available on-line. This has prompted a
different payment schema from the district heating operator. For example, consumers are penalized
with a fine if their daily average return temperature in a period is higher than a certain limit because
it is costly to the system. District heating utilities attempt to recover these costs by penalizing
consumers that have a bad cooling effect in their buildings and hence a higher return temperature.
A higher return temperature implies extra heat loss in the return pipes, higher pumping costs, and
less efficient production at the plant [10, 5]. Hence, the large amount of data that is now available
due to the smart meters, that can be used to identify the energy performance of buildings and the
network. This can be used to give valuable insights into the network performance and building
energy efficiency, i.e. leakage in the system or insufficient cooling of the water from inlet to outlet
in some buildings.

Current studies that use smart meter data often only have the building’s energy performance
improvements as the center of attention. Kristensen and Petersen [10] use smart meter data to
derive three heating efficiency indicators of buildings and give an overview of the smart meters
system at the district heating utility in Aalborg in Denmark. The three heating efficiency indicators
are annual heating energy use intensity, daily heat load variation, and cooling efficiency. Thilker
et al. [11] demonstrate that it is possible to lower the operation cost by 10% by a date-driven
control of the heating system of a Danish school building, and they use model predictive control to
estimate future set-points of the thermostats of the radiators to lower the return temperature of
the district heating to the school. Bacher et al. [12] suggest a method to separating the heat load
used to hot tap water from the load needed for space heating. Most of the research is focused on
individual building energy performance. Improving the aggregated performance of a larger network
using smart meters is usually not investigated except for identifying bad coolers in the network, i.e.
high return temperature from substations. Lowering the return temperature from substations in
the building is immensely important for district heating, especially networks that have combined
heat and power production (CHP). As also stated in Arvastson [4] a higher return temperature
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Figure 2.1: Supply temperature and flow from smart meters at Tingbjerg visualized. The
coloured lines are the meters that were selected to be used as feedback for the temperature
optimization.

from the network to the condenser will decrease the efficiency of the operation of the CHP plant.
Lower return temperature will also lower the heat loss in the return pipes. It also implies a lower
necessary flow rate or supply temperature for the given energy.

Data from smart meters have not previously been used to enhance the operation of the network, i.e.
used as feedback of the temperature of the network to the temperature optimization at production.
Until now, for closed-loop temperature control, only data from a few measurement points in
wells have been used. These measurement points are called critical points and selected where the
operators believe to have the highest temperature loss. The temperature control uses the feedback
of the system as input to estimate the model parameters and time delay of the system to control
the supply temperature and flow with the objective of keeping the temperature as low as possible
[5]. Hence, smart meters can be used as a feedback signal to the controller either by estimating
the supply temperature in the street pipe using groups of smart meters or by using a single smart
meter from a large apartment building where the heat loss in the service pipe to the building is
negligible because of the high flow [13].

The smart meter data used in this report will be introduced in Section 2.1 and a more detailed
description of using the smart meter as feedback to the control will be given in Section 2.2.

2.1 Smart meter data
The smart meter data comes from the case study area, Tingbjerg where HOFOR provided access
to on-line smart meter data from 39 meters located in large apartment buildings from January
2020. In the beginning, the data was sent only at 09:00 each morning where the data had an hourly
resolution. These readings contained data from each smart meter for the past 24 hours. However,
by the end of November 2020, the resolution was updated to 15 minutes and the data was sent
each hour containing the past four data readings. Table 2.1 shows the variables that are logged by
the smart meter. Usually, the utility companies use this information to bill the consumers based on
their energy consumption. Moreover, if the return temperature is too high then there could be a
penalty payment scheme in place as discussed before. Otherwise, the data is often not analyzed
further.
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Variables Units

Time Date, Time
Cumulative Energy MWh
Cumulative Volume m3

Supply Temperature °C
Return Temperature °C

Table 2.1: Variables from the smart meters.

Figure 2.1 shows the supply temperature and flow from the smart meters in Tingbjerg. The flow
rate is computed from the cumulative volume by taking the difference between the volume at each
time-step and divide with the corresponding time in seconds between, resulting in a flow rate in cubic
meters per second. Notice, the difference between the readings in the summer and winter periods.
The winter period consists of stable temperatures, it has a quite constant variation and does not drift
off towards zero. In the summer period, the temperature is noisier and fluctuates more. For some
of the meters, the temperature seems to drift off towards zero. The reason for this is the low heat
demand during the summer when there is almost no need for space heating in Denmark because the
ambient air temperature is around 20 °C. Only domestic hot water usage is needed during warm peri-
ods. This seasonal variation of the heating demand can be seen in the flow plot as the flow decreases
over the summer periods. Therefore, when there is no heating consumption, the water in the service
pipe to the building becomes still and the temperature starts to drop because of the heat loss to the
surroundings [13]. Thus, the readings from smart meters over the summer period are more unreliable
compared to the winter periods as they do not give an accurate representation of the temperature of
the hot water in the distribution pipes. When selecting smart meters to be used as feedback to the
controller, this needs to be considered. The selected smart meters need to have a very stable and
constant flow during the summer period, or create an algorithm that addresses the temperature drop.

During a short period at the end of November 2020, readings from the smart meters are missing.
This is happening when HOFOR increased the resolution of the readings from hourly to 15 minutes
and updated the frequency of the readings. Therefore, the period from 2020-11-15 to 2020-11-22 has
almost no information. We also see frequent spikes in the data for both high and low temperatures.
These can be faulty readings in the meters as the figures present the raw data (instantaneous values),
i.e. no quality check of the values has been conducted. There is also a significant peak period in
the flow, just before September 1st, 2020. The peak could be a consequence of the fact that the
ambient temperature dropped rather quickly and the heating demand therefore increased while
the supply temperature at the production has not increased. Notice also that after the increase in
resolution the data seems to be more volatile compared to the hourly resolution period. Higher
resolution leads to an increased risk of outliers and also that we are able to see more dynamics in
the heating demand than before.

2.2 Smart meter data used in the feedback loop
The main objective of this report is to demonstrate the value of smart meter data for operating
the district heating network. More specifically, we will use smart meter data as feedback to
temperature optimization. The feedback will be used to give the controller signal on how the
network is reacting to changes in the supply temperature, and hence creating a closed-loop con-
troller. Previous closed-loop controllers used measurement wells in the network as feedback. This
replacement of a well measurement with the use of meter data constitutes a digital transformation
of the closed-loop control as demonstrated in Figure 2.2. This digital transformation reduces the
need for measurement wells in the network and reduces the maintenance effort. We think that
this gives significant savings potential for the district heating operator as it reduces the cost of
having feedback control for operators without the need of installing measurement wells in the system.
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Figure 2.2: A sketch of DH network demonstrating that the production site uses feedback
from smart meters for the temperature control, instead of the measurement wells (critical
points).

In Tingbjerg, the operation in the past did not allow for a closed-loop installation as the area does
not have any measurement wells in the network to send feedback. In this study, Tingbjerg will
be operated using a closed-loop controller and demonstrate the benefits of having a closed-loop
by comparing the result to the open-loop operation. The controller will use feedback from the
network using data from smart meters at large apartment buildings. The methodology behind the
temperature control is described in more detail in Section 5. However, in short, district heating
systems are complex non-stationary and time-varying systems therefore methods for tracking the
time-varying parameters are needed as a part of the modeling process. In practice, the parameters
are updated based on different input data, and here the feedback from the network data is essential
due to how the system reacts to different flows, e.g. how the time delay varies. Thus, we have to
select smart meters that send reliable signals to guarantee suitable feedback for real-time estimation
of the parameters of the model. As mentioned before, three smart meters were selected as feedback.
More meters could have been used however the Tingbjerg district heating network is rather small
and three feedback or critical points are considered to be sufficient.

Finding suitable meters to be used as feedback is critical. An obvious first task is to identify a
set of meters that we consider ideal for representing the entire district heating area. Ideal meters
are meters that during the summer period, they have a stable supply temperature which implies
that the flow is usually high during longer periods. From this group of ideal meters, three meters
were selected based on a few numbers of missing values and seemed ideal to be used as feedback
as historically they have sent reliable data and usually constant flow, i.e. heating of the house
was not stopped by closing the flow of the water. Figure 2.1 shows data from all of the meters
and the three meters are highlighted with bolder colored lines. Other meters from the ideal group
could also have been used. In the future, other meters can replace the current feedback meters
if deemed necessary for being able to include the lowest temperature in the network at all points
in time. The three selected meters are shown in color in Figure 2.1 to visualize their reliable
signal. The meters were selected without knowing their exact location in Tingbjerg. Knowing the
location of the meters gives additional useful information, as selecting meters that are placed the
furthest away from the production could be ideal for the feedback loop. Usually, the consumers
with the highest transportation time have also the largest temperature loss in the system however
it could be that some part of a network is older and the efficiency of the pipes insulation has been
reduced. Therefore, having larger temperature loss even though they are closer than other areas.
By satisfying the requirements of the consumers with the highest temperature loss (which are the
critical points in the network), the other consumers’ requirements are also therefore fulfilled. An
exception is if other buildings have faulty service pipes into the houses or leakages, but these issues
can be quickly discovered and fixed when investigating the smart meter data.
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Chapter 3

Weather Forecasting for Cities

District heating is mostly applied in urban areas therefore in this section, we will introduce the
climatic characteristics inside cities and highlight the effects of climate variables on heat consumption.
Numerical Weather Predictions (NWPs) are also introduced as they are critical for district heating
operations. They are needed to forecast the future, concerning demands, temperatures, and
production planning, or in short; everything that district heating operates needs weather forecast
as input in order to operate the systems efficiently. We will discuss the advantages of localizing
NWPs to cities, and more specifically, we will look into enhancing short-term heat demand forecast
in cities. The heat demand forecast accuracy is improved by correcting the short-term weather
forecast using real-time measurements of the climate from a local station. Hence, increasing the
accuracy of the short-term forecast is highly desirable for temperature control.

3.1 Urban Heat Island effects
Temperature optimization in the district heating network depends on obtaining reliable and relevant
monitored outdoor air temperature data. The more accurate the air temperature around the district
heating network and the more frequent the temperature measurements, the more accurate the
temperature optimization model can be. Research has shown that the outdoor air temperature can
vary across a large district heating network and it is therefore also important to obtain temperature
data across the network - if possible Steeneveld et al. [14]. Outdoor temperature data are historically
monitored in rural areas at sites where measuring the correct temperature has been easiest. Airports
have been a good choice because they are in a rural setting, where the only impact is from the
natural environment including lack of woody vegetation and directly exposed to natural rain, sun,
and wind. Historically, temperature data from airports are often used as input for the temperature
optimization in operating the district heating network, simply because they are available from the
meteorological institutes. Recently data from other sources are becoming available, e.g. Danish
Meteorological Institute recently started to give the public access to their climate station that
are located everywhere in Denmark. However, it is important to notice that the air temperature
measured in the airports may deviate from the temperature insides cities, where the air temperature
is exposed to human activities and the built environment.

Research shows that the outdoor air temperature typically is higher in urban areas than in rural
areas Steeneveld et al. [14]. The effect is termed urban heat island (UHI). An urban heat island
(UHI) is an urban area that is warmer than its surrounding rural areas due to human activities or
build human infrastructures. Research related to UHI has recently got more attention because of
the concern that climate change with an average temperature increase of 2 to 3 K will cause more
heat waves, becoming more severe in the future, causing significant stress to the urban population.
That problem is however only relevant for hotter climates where there is no district heating or at
least it happens outside of the heating season. It is though still relevant for the energy sector as a
whole with significant cooling demand during a heat wave. Unfortunately, there is not the same
interest in studying temperature differences between urban and rural areas during winter which
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would be relevant for the district heating sector.

The variation of outdoor air temperature data is both spatial and temporal. A number of studies
point towards a typical difference in urban and rural temperatures of 2-3 K. In a study in Barcelona
the city centre was 2.9 K warmer than the airport during nighttime, but during the day the centre is
slightly cooler than the periphery. Annually and overall, Barcelona centre is 1.4 K warmer than the
airport. With regard to the average differences between the minimum at the two places, all are over
2.5 K, reaching 3 K in November and March [15]. Solecki et al. [16] examined the UHI mitigation
potential of two highly urbanized places in the state of New Jersey, areas in and around the cities
of Newark and Camden. Each city and surrounding suburbs included a set of neighborhoods with
widely varying characters. The UHI effect in Newark is estimated to be on average about 3.0
K and for Camden between 1.0 and 1.5 K. Steeneveld et al. [14] has in a comprehensive study
collected data from both private weather enthusiasts and weather stations to determine UHI in
the Netherlands. They report a temperature difference of 2.5K. However, the paper focuses on
UHI and its effects during warm seasons. There is no seasonal evaluation of the differences. It is
therefore not certain that the same temperature difference occurs during the heating season. A
review of research studies and data found that in the United States, the heat island effect results
in daytime temperatures in urban areas about 1–7°F higher than temperatures in outlying areas
and at nighttime temperatures are about 2–5°F higher. Humid regions (primarily in the eastern
United States) and cities with larger and denser populations experience the greatest temperature
differences [17].

For most cities, the difference in temperature between the urban and surrounding rural areas is
largest at night. Throughout the daytime, particularly when the skies are cloudless, urban surfaces
are warmed by the absorption of solar radiation. Surfaces in the urban areas tend to warm faster
than those of the surrounding rural areas. By virtue of their high heat capacities, urban surfaces
act as a giant reservoir of heat energy. As a result, the large daytime surface temperature within
the UHI is easily seen via thermal remote sensing [18]. The typical temperature difference is several
degrees between the center of the city and surrounding fields. The annual mean air temperature
of a city with 1 million people or more can be 1.0–3.0 K warmer than its surroundings. In the
evening, the difference can be as high as 12 K. [17]. This is also shown in the Barcelona study [15].
At night, the situation reverses. The absence of solar heating leads to the decrease of atmospheric
convection and the stabilization of the urban boundary layer which traps urban air near the surface,
and keeping surface air warm from the still-warm urban surfaces, resulting in warmer nighttime
air temperatures within the UHI. Furthermore, the heat retention properties of urban areas, the
nighttime maximum in urban canyons could also be due to the blocking of ”sky view” during
cooling: surfaces lose heat at night principally by radiation to the comparatively cool sky, and
this is blocked by the buildings in an urban area. Radiative cooling is more dominant when wind
speed is low and the sky is cloudless, and indeed the UHI is found to be largest at night in these
conditions [19]. The outdoor air temperature changes from hour to hour, minute to minute, and
even second to second. A change in wind and clouds can change the air temperature very rapidly.

During the last 100 years, cities have not been built with the UHI impact in mind. The main
cause of the urban heat island effect is from the modification of land surfaces, which traps heat
during the day. Waste heat is produced by energy usage as a secondary contributor. Dark surfaces
such as roads and buildings absorb significantly more solar radiation, which causes increased heat
absorption in cities more than suburban and rural areas during the day [16]. Materials commonly
used in urban areas for pavement and roofs, such as concrete and asphalt, have significantly different
thermal bulk properties (including heat capacity and thermal conductivity) and surface radiative
properties (albedo and emissivity) than the surrounding rural areas. This causes a change in the
energy budget of the urban area, often leading to higher temperatures than surrounding rural areas
[20]. It is therefore also clear that mitigating strategies can be applied in city planning to reduce
the UHI. Using lighter, more reflective materials in the built environment will reduce the UHI effect
as well as planting trees will reduce the UHI effect [19].

The Barcelona study [15] also illustrated that the higher outdoor air temperature occurred at the
city center. The further out the less dense the city is and the more trees are part of the build
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Figure 3.1: Urban Heat Island: Copenhagen demonstrated using three climate stations
located with different proximity to the center of Copenhagen; The center (Frederiksberg),
in the outskirts (Jægersborg), and in a rural area (Sjælsmark) as shown in the map and
the plot showing the difference in the average monthly temperature for the three stations.

environment. In cities where the UHI effect is taken into account in the city planning, it is likely
that the impact of the UHI is lower in the newer build districts.

Although as a rule of thumb the temperature is higher in urban areas than in rural areas where the
outdoor temperature data is measured - it is also likely that the temperature difference between
urban and rural is not so high in the outer districts of the city. It is therefore reasonable to have a
number of temperature measurement stations implemented across the city.

3.2 Urban Heat Island: Copenhagen
As discussed, researchers have shown that there is a temperature difference within cities and
between urban and rural areas. We would like to confirm this phenomenon in Copenhagen and
investigate the magnitude of the difference. Our goal is also to discuss the impact on district heating
operations due to different climates within the city. This will be done using three local climate
stations. The data was extracted from the Open Meteorological Data provided by the Danish
Meteorological Institute (DMI) [21]. Figure 3.1 shows a map of Copenhagen and the locations of the
climate stations as red points, also the average monthly temperature from the stations is visualized
in a plot. One climate station, Frederiksberg, is located very close to the city center, a densely
populated area. The Jægersborg climate station is located in the outskirt of Copenhagen, while
Sjælsmark is located in a rural place north of Copenhagen. The past hourly mean temperature was
extracted from January 2004 to December 2020 from each climate station. The monthly average
ambient temperature was then computed over the period. The temperature plot in Figure 3.1
demonstrates the UHI effect in Copenhagen. The temperature difference between the stations
illustrates a significantly higher average temperature in stations that are located closer to the city,
with more population and building mass. The difference is close to 1 K during the heating season
and 1.5 K during summer periods. The difference between the season could be due to the solar
radiation which heats up the buildings, streets while in the rural area, the terrain does not absorb
as much solar gain, thus the temperature average increases over summer. The difference during
heating seasons could be because of the heat from the buildings, transportation, and people as
mentioned in Section 3.1.

Figure 3.2 shows hourly temperature average for four different months computed using same period.
We can see that the climate has a time-varying process, both a diurnal variation and yearly. For
example, comparing the result from July shows that the average temperatures in the mornings are
very similar. However, as time progress, it differs, with higher temperature difference in the city
and during the night it gets colder at the rural side, Sjælsmark. Thus, the city does not lose heat
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Figure 3.2: Urban Heat Island: Copenhagen, where four months are used to demonstrate
time-varying climate for each station and between them. The plot shows the average
temperature per hour for four months computed from the period, January 2004 to December
2020.

as fast as the rural part. January has quite a constant offset between the stations, except during
the day when the temperature at Sjælmark is almost the same as at Jægersborg.

3.3 Numerical Weather Prediction in Cities
We have exemplified that the UHI phenomenon is relevant in Copenhagen where the temperature
inside the city is different compared to the rural areas because of dense population and different
environments (e.g. buildings, roads, etc) which entraps heat in cities. Three climate stations located
in different areas in Copenhagen were used to demonstrate the phenomenon that exhibits higher
temperatures closer to the city. Thus, the climate differs between locations. In Section 5, we will
discuss that the temperature operation of district heating is heavily dependent on the most recent
climate variables, where the ambient temperature is the most important. The climate where the
district heating system is located needs to be analyzed to operate the network in an optimal setting.
District heating is an efficient way to provide heat to buildings in densely populated areas. It
therefore means that it is highly important to have localized climate data that can be used to
analyze the heating demand dependency. For example, see Figure 4.2, to see heating demand vary
over time. The variation can be explained both from the climate variation over time, e.g. high sea
temperature in October contributes to higher ambient temperature during the night, see Figure 4.3.
Hence, we have seen that ambient temperature differs depending on the location, building mass,
sea temperature, i.e. there are many factors that contribute to the temperature. This holds also for
other climate variables like wind and solar radiation. Climate variables are an important factor for
analyzing heating consumption. In Nielsen and Madsen [22] and Madsen et al. [23] suggest that the
climate variables: ambient temperature, solar radiation, and wind speed (including direction) have
the most effect on the heating demand. They are also arranged in decrease importance. Nielsen
and Madsen [22] give a detail description on how these climate variables interact with the heating
consumption based on physical consideration, i.e. stationary relations. Here is a short summary of
the findings;

• Ambient Temperature: The ambient temperature affects the indoor climate through heat
conduction in the outer walls and windows, also through ventilation. It has been shown that
the outdoor temperature affects the indoor temperature with a low-pass filter, a transfer
function to model the variations in the outdoor temperature to variations in the indoor
temperature.

• Solar Radiation: The solar radiation affects the indoor climate based on the angle of beams
hitting the building, where the orientation of the beams through the windows and the window
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area are most important. Basis functions are used to translate the non-linear dynamics of
the solar radiation to its contribution to heating consumption.

• Wind Speed: The wind speed and the direction of the wind affect the indoor climate as
natural ventilation, the effect is depending on the quality of the insulation. The wind speed
also affects the convection heat coefficient on the outside of the buildings. It is therefore
modeled as a low-pass filter as the contribution to the consumption.

Hence, to use these climate variables to describe the heating demand to estimate future supply
temperatures then a forecast of them is needed. NWP is computed as a physical model of the
atmosphere and ocean to predict climate variables. They are computed over a grid of the earth and
are then interpolated together to a specific location where weather predictions are needed. However,
NWPs have problems adjusting to the local climate in cities due to the local climate phenomenon.
Thus, the models seem to have trouble adjusting to local heat contributions, e.g. solar heat in the
street, heat from buildings, etc. District heating relies heavily on NWP to operate their system
efficiently therefore it is important to correct them before using them as input. Especially, for
temperature control of the system as it is done on a short-term horizon (between hourly and 24
hours) and is heavily dependent on the current local climate. Using local climate station to localize
the NWP, corrects the short term NWP forecast by adapting them to the climate using real-time
climate measurement [22]. Hence, this yields an optimal weather forecast for a certain area that can
be used to operate the temperature control in the most optimal setting. This is discussed in more
detailed in Section 4 where local climate station improved heat demand forecast and in Section 5
to improve the temperature control.

3.4 Localize Numerical Weather Prediction
We have discussed that it is important to localize numerical weather prediction to enhance the
operation of district heating systems. Combining weather forecast to a local climate have been
studied for many decades as it can be highly desired to have an accurate forecast to yield optimal
operation. Incorporating certain local climate features into the forecasts is done to adjust the
systematic errors from the NWP model. Glahn and Lowry [24] propose Model Output Statistics
(MOS) to bind NWP to local climate stations observations, e.g. localize the forecasts. The MOS is
a simple technique that uses linear regression where the observed climate variable is the response
variable and predictors are the NWP variables which therefore bind the NWP to the local climate.
It is a simple and frequently used method that will reduce systematic bias in the NWP if there is
any. Crochet [25] propose using an adaptive method to reduce the systematic bias and lowering the
RMSE of the NWP. A Kalman filter is used to localize NWP to the local area. It was demonstrated
that the proposed methods decreased the systematic bias and reduced the error in areas where
systematic bias is high. If there was no systematic bias then the Kalman filter does not significantly
improve the forecast. The Kalman filter also gives useful information about the uncertainty of the
local predictions when localizing the NWP to climate stations. The uncertainty from the weather
forecast can be useful information for both temperature control of the network and production
planning of the plant.
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Chapter 4

Heat Demand Forecasts

Operating a district heating production facility and controlling the network efficiently is a difficult
process. Both tasks need to consider multiple inputs to deliver a feasible production plan and
accurate controller. One of these inputs is the heating demand of the consumers. Satisfying the
consumers’ heating consumption need is the most important requirement for the district heating
utility. To meet these demands, the production planning needs to know the heating demand up
to months ahead, e.g. scheduling biomass purchases to be able to deliver the required demand
(long-term) [26]. While the temperature control of the network tries to meet these demands by
regulating the supply temperature, Ts,t and the mass flow of the water is indirectly varied to satisfy
the demand, ṁt as the heat energy is computed as the temperature difference times the mass flow
and the specific heat constant,

Qt = ṁtcw(Ts,t − Tr,t), cw = 4.186J kg−1°C−1 (4.1)

to satisfy the heating demand, Qt where the objective is to increase savings and reduce heat loss in
the system. Thus, the controller needs to know the future demand between one hour ahead to the
control horizon of the system which is usually the longest transportation time of the system. For
large networks, the transportation time can be up to 24 hours. As the future demand is not known,
a prediction of it needs to be available for the operators. The accuracy of the predictions is of
high importance because the uncertainty of the forecast heating demand needs also be considered
in the production and network operations. Along with the requirement of satisfying the heating
demand of the consumers, the production of heat has become more complicated than firing up
boilers using oil or natural gas. The shift from fossil fuels to renewable energy sources needs to be
taken into account as these energy sources are not always available due to their weather dependency.
Therefore, to utilize renewable energy sources, energy sector coupling is needed between the power
and district heating market, i.e. smart energy system [27]. This makes accurate heat demand
forecast highly valuable for the energy sector. Especially, as district heating plants usually also
produce electricity with their CHP plants, and therefore need to plan their power production for
the next market day. District heating utilities can also store energy as hot water in large thermal
storage tanks when an excess of electricity is available.

Consequently, heat demand forecast is the first aspect that utilities need to have for operating the
system efficiently. However, heating demand is an inherently non-linear and non-stationary process.
The consumption has a non-linear relationship with the ambient air temperature because of the
thermal mass of buildings [22, 5, 11]. The non-stationarity comes from the seasonal variation of
the ambient temperature and social behavior of the consumers, i.e. time-varying demand. Other
weather components than temperature also demonstrate some effect on the heating demand, it is
however not as significant as the temperature and social behavior. Dotzauer [28] suggest a simple
forecasting model that has a future insight into the heating demand for two different systems.
Modeling the ambient air temperature dependency as a piecewise linear relationship to the heating
demand is discussed. The social component was modeled by estimating a daily profile using
the residual after having removed the dependency of the temperature from the heating demand.

Digitalisering af fjernvarmen 15



Time

−
10

0
10

20
30

A
m

bi
en

t T
em

p.
 [°

C
]

Time

H
ea

t L
oa

d 
[M

W
]

0
2

4
6

8
10

12

2020−01−01 2020−03−01 2020−05−01 2020−07−01 2020−09−01 2020−11−01 2021−01−01 2021−03−01

Figure 4.1: Heat load observation from Tingbjerg and ambient air temperature measured
from a local climate station in Copenhagen, Station 06186 [21].

The model demonstrates adequate results however temperature measurements are used instead
of the numerical weather forecast as input to the model. Also, the model does not handle the
time-varying process as the parameters do not change over time as needed for heating demand
systems. Nielsen and Madsen [22] suggest using adaptive methods to change parameters during
the transition periods, i.e. from cold to warm season. They also propose to use on-line numerical
weather predictions as inputs to the model and how to handle the nonlinear dependencies to be
used in linear regression models. Their proposal of using grey-box modeling to describe the known
physical relationship between heating demand and weather has high accuracy and has proven quite
successful. Trying to use new sophisticated models to identify known physical relationships is time-
and computer-demanding and is therefore undesirable.

In this project, ENFOR delivered the heat load forecast to be used for the temperature control
in Tingbjerg. In the following, we shall describe the climate variables that influence the heat
consumption, the consumption in Tingbjerg and compare the localized heat demand forecast from
ENFOR to the scaled forecast that HOFOR used previously.

4.1 Data Exploration
Figure 4.1 shows the observed heat demand from Tingbjerg and the measured ambient air tempera-
ture at the local climate station in Copenhagen. The data from the climate station was extracted
from DMI Open Data [21]. As we mentioned before, heat demand is a non-stationary process due
to the time-varying demand following the climate and social behavior. The figures show that the
heating demand follows the ambient temperature closely. During the heating season, the ambient
temperature has a slow influence on the heating demand, and this influence is usually modeled
using a low-pass filter [22]. As the temperature decreases or increases, the heating demand follows
with a negative correlation as the plot demonstrates. In the summer season, when the temperature
is above 17°C, there is no need for space heating. In these periods, district heating only needs to
fulfill the need for domestic hot water usage, e.g. showering. One of the most difficult periods to
predict the heat demand is during the transition periods from winter to summer and vice versa.
The transition periods are when the temperature starts to increase or decrease, and at the same
point in time, the solar gain starts to change.

In the spring, the solar radiation starts to warm up the buildings and therefore contributing to
heating to maintain a comfortable indoor climate [29]. However, it has a complex relationship
because the penetrating radiation onto the windows is related to the time-varying orientation of
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solar radiation. The orientation changes during the day as the earth rotates around its axis and
has yearly dependency as the earth rotates around the sun. The solar gain does not contribute
as much to the heat consumption during the summer as the ambient temperature is the main
driving contribution and is quite high during warm periods. However, during the fall similar effect
appears as the angle changes and the ambient temperature has decreased. Thus, the climate
variable, solar radiation influences heating consumption. The wind speed and the direction of
the wind also contribute to the heating consumptions during the transition periods with natu-
ral ventilation. The weather is also known occasionally to change rather quickly during these periods.

The time-varying relationship between heat demand and ambient temperature is visualized in
Figure 4.2 where the plots show the heat demand plotted against the temperature for each month.
A reference curve is also plotted in each plot to highlight the difference between months, especially
in the transition months. The piecewise linear reference curve was estimated by tuning the knots to
fit the overall period in the top plot. When investigating the transition months from cold to warm
(the months’ March, April, and May) we can see that the demand tends to be more scattered below
the reference curve between 0 and 10 degrees. In this period, solar radiation could have started
to influence consumption even though the ambient temperature is still quite low. Comparing the
spring transition period to fall, the demand in the fall is more constant, i.e. it has less spread around
the curve. This could be due to the fact that Copenhagen is a coastal city. The sea temperature is
higher in the fall period as it has been warmed up during the summer and it gives a quite constant
heat to the city. Figure 4.3 shows the monthly average sea temperature in Copenhagen over 20
years. The plot shows that the fall periods have a higher temperature than spring. The data was
extracted from the DMI Open Data platform [30]. The social behavior could also vary over time
and that could drive the difference between the transition periods. People probably have a different
perspective on ambient temperature when comparing the periods. Also, sea temperature could play
a big part in keeping the climate milder in the fall.
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Figure 4.2: Time-varying relationship between heat demand and ambient air temperature
demonstrated over different months.

As discussed, solar radiation is an interesting aspect regarding the heating demand during the
transition periods. Figure 4.4 shows the mean solar radiation per month, the mean ambient air
temperature per month, and the mean heating demand vs the mean solar radiation per month.
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Figure 4.3: Monthly average sea temperature in Copenhagen from January 2000 to
December 2020. Station 30336 from DMI Open Data [30]

The data was extracted from the DMI Open Data platform [21]. Investigating these plots together
starting with the lowest plot, you would assume for the transition months that the solar radiation
has less effect in spring. The spring months have similar solar radiation as the fall months but
they require more heat. However, considering the mean ambient temperature it becomes evident
that it is quite warm during the fall months than spring in Denmark. This could be explained
by the fact that during spring and summer the ground and sea temperature have increased and
have slow time variation, i.e. they react to changes slowly. Therefore, in the spring they have yet
to be warmed up and during the fall they give away heat to the air temperature as we see in Figure 4.3.

We do not analyze the wind speed effect on the heating demand in-depth. However, it has an effect
on the consumption, and largely when it is high and the ambient temperature is low [31, 32].

Considering these climate variables and how they influence heating consumption emphasizes the
importance of having an accurate forecast of the heating demand to operate district heating systems.
It shows that accurate numerical weather predictions of these variables and a time-varying model,
that can react to these changes, is needed. Both the rapid changes in how the climate variables
related to the consumption changes over the day and the slow variation in the heating demand
can be explained by, for example, the change in social behavior, renovation of houses, new house
connected to the network, so on and so forth.

4.2 Localized heat load forecast
In the previous subsection, we demonstrate that heat demand is a non-linear and non-stationary
process due to dependencies on climate data and social components. We also learned in Section
3 that NWPs need correction to forecast the climate in specific areas to enhance the accuracy,
especially for the short-term forecast. Therefore, we need to localize the NWP to a specific
area using climate stations to handle the influence of the buildings, humans, cars, pollution that
contribute to the climate. This was done for the heat demand forecast in Tingbjerg. A local
climate station in Copenhagen that is located close to Tingbjerg was used to correct the NWPs.
After the correction, the NWP was used as input to the heat demand forecast model. The model
was therefore both localized to the heating demand in Tingbjerg by estimating the parameters
of the model using historical demand from Tingbjerg and the climate as the NWPs are used as input.

In the previous operation in Tingbjerg, the heat demand forecast from a bigger area, Brønshøj,
was scaled to match the demand in Tingbjerg. We will demonstrate the accuracy difference in
heat demand forecasting by scaling the heating demand versus creating a localized heat demand
forecast for Tingbjerg that uses numerical weather predictions that have been corrected to the
climate in Tingbjerg. The scaled forecast is scaled by dividing the forecast for the large area by the
percentage of Tingbjerg heating demand to the total demand. HOFORs estimation of the fraction
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Figure 4.4: Climate data from the climate station in Copenhagen demonstrate the heating
demand dependency on temperature and solar radiation. It shows the monthly average of
these two climate variables.
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Figure 4.6: Performance of forecasts compared using RMSE for one to 72 steps ahead. The
top plot visualize the results and bottom plot shows the localized forecast to demonstrate
the affect of having local climate station to improve the short term forecasts, i.e. the
forecast horizon between 1 and 8 hours.

of Tingjerg consumption was to be 8% of the total consumption in Brønshøj. Figure 4.5 shows
the daily heat demand from Brønshøj and Tingbjerg in the top plot while the bottom plot shows
the fraction of the Tingbjerg to the Brønshøj. Based on these data, the 8% that previously used,
estimated from older historical data is off by 1% as for the years 2019 and 2020 the fraction of
the consumption is around 7%. Notice, that the heat demand in Brønshøj during summer 2020 is
zero. This could be the result of HOFOR supplying heat to Brønshøj from other heat sources than
usually therefore the measurements are zero in this data-set.

The comparison between the forecasts is demonstrated in Figure 4.6. They are compared using the
Root Mean Square Error (RMSE) metric,

RMSEk =

√√√√ T∑
t=1

yt+k − ŷt+k|t

T
(4.2)

where the metric is computed for each prediction horizon, k. The heating demand observations are
y and predictions are ŷ. This is computed over the whole period. We have also added the heat
demand forecast scaled with the newer update on the fraction between Brønshøj and Tingbjerg
demand than was estimated before. The upper plot demonstrates the RMSE over the first 72 steps
horizon for all three forecasts, where the localized forecast significantly outperforms the scaled
forecasts. This is not surprising as the model has both tuned the parameters to the area and the
NWPs have been adjusted to the climate. Notice, the effect of localizing the weather forecast to
the climate when comparing the localized forecast to the 7% scaled forecast in the first seven steps
ahead. We see that there is a curvature for the localized which is the result of the corrections to
the climate and the dynamic process of the forecast model. This is demonstrated in more detail in
the lower plot in Figure 4.6 where the curvature is seen more easily. Usually, the RMSE over the
horizon demonstrates a straight line with a slope over the horizon however by using the climate
information in the area it is possible to enhance the short-term forecasts as demonstrated and using
historical heat demand observation for the dynamical process of the model.
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Figure 4.7: Figure demonstrate the performance of the three forecasting models. It shows
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Figure 4.7 shows the three forecasts created at 11:00 on the 2021-01-20 for the next 72 hours. We
see that the localized forecast follows the observation significantly better than the other forecasts.
Notice, that the scaled forecast does not resemble the diurnal variation in the Tingbjerg observation.
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Chapter 5

Temperature Optimization and
Control

We have demonstrated that district heating has a difficult task on forecasting the demand because
of the local climate and social components of the consumers. An even more difficult task is to
provide heat to the consumer without wasting heat and minimizing the cost. The process is a
complex procedure as it needs to be delivered through the piping system to the consumer and more
specifically it needs to arrive at the correct time to satisfy consumers demand. Hence, temperature
control is an essential tool for the efficient operation of district heating. The production of heat has
become more challenging as we move away from fossil fuels towards renewable energies. The goal
of temperature control is to reduce heating production costs and heat losses in the network and at
the same time, fulfill the requirements of the network and consumers. Nielsen [8] describes that the
optimal operation of the district heating system is to be achieved by minimizing the production
cost without violating these restrictions;

• A maximum allowable flow rate in the system

• A minimum guaranteed inlet temperature at the consumers

• A maximum allowable supply temperature

• Limited short term variation in the supply temperature

• Maximum allowable diurnal variations of the supply temperature

These restrictions are required to be satisfied by the temperature control and the controller also
needs to reduce the operational costs without violating them. Therefore, it also needs to consider the
heat loss in the pipe, the pumping costs, and maintenance costs of the system. As for all operational
aspects of district heating, temperature control needs to know the future heating demand in order
to minimize the operation costs for the given planning horizon. Thus, depending on the type of
the plant, production will need to have 1) heat demand forecast, 2) supply temperature forecast,
3) future optimal scheduling of the productions, e.g. for a CHP plant needs future sales price for
power, also heat and power production costs, 4) restriction in the system, e.g. hydraulics, minimum
or maximum time-varying heat production 5) flexibility of the system. These factors need to be
considered in advance to optimally achieve minimizing the operation costs. In this part of the
report, we will only focus on finding the optimal future supply temperature to give the operators of
the network, however in Nielsen [8] and Arvastson [4] further readings on how operating district
heating in an optimal setting are given while considering the whole district heating system.

Benonysson et al. [3] formulate a mathematical model of a district heating system for estimating the
optimal supply temperature. The model includes the production, the network, and the consumers
where the objective is to minimize the operational cost while satisfying all requirements of the
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system. They describe a number of items that need to be considered when modeling the dynamics
of a district heating network. We have summarized them here below:

• Time Delay: The transportation time of the DH water from the production plant to the
consumer. The transportation time varies for the individual consumer according to the
distance from the plant and the flow velocity in the pipes. The heat capacity of the DH pipes
also affects the time delays.

• Heat loss: The heat loss is approximately proportional to the difference between the temper-
ature of the DH water and the surrounding temperature. Ground temperature varies over
time, following the ambient air temperature with a slow change in undisturbed ground, i.e.
not heated by the DH pipes.

• Friction loss: When the pumping energy transforms to heat energy due to the friction loss in
the pipes. Most often negligible but when the flow velocity of the water is relatively high
(extreme cases), the produced amount of heat can be of the same size as the heat loss to the
surrounding ground.

• Pressure: The flow in the system changes spread in DH networks around 1000 times faster
than temperature changes. This leads to to the fact that the dynamics of the flow in the
network are of minor importance compared with the dynamics of the temperature changes,
from an operational optimization point of view.

The dynamics of the network are therefore highly important to understand to be able to utilize
these physical facts to enhance the operation of the network. They give the opportunity of keeping
the supply temperature as low as possible when modeling them adequately along with accurate
modeling of the consumers’ dynamics, i.e. accurate heat demand predictions.

Initial controllers to operate the temperature optimally had a reference curve, i.e. a control schema
that changes the set-point of the supply temperature for a given outside temperature. This is a good
restriction on the supply temperature, it is however a naive control strategy. Firstly, it does not
consider the time for the heat to reach the consumer, the transportation time. Secondly, the flow is
usually kept at a low rate, thus the potential of keeping the flow close to the maximum hydraulic
constraint is dismissed, i.e. higher flow results in lower supply temperature. Therefore, when the
heat finally reaches the consumer, the outside temperature could have changed and the supply
temperature is then either too high or too low than required. Also, as the reference curve only
considers the ambient temperature as the meteorological factor that influences heat consumption, it
must necessarily take into account the worst possible condition with respect to other meteorological
factors [33]. This schema also frequently does not consider the social behavior of the consumer,
the diurnal variation. Madsen et al. [5] propose a control schema that utilizes the relationship
of supply temperature and flow in Eq. 4.1 and consider the dynamics of the network and social
behavior of the consumer to increase savings potential. They predict the heating demand using
historical heating demand, and the response of the network to change the supply temperature and
keep the flow high to have the supply temperature as low as possible without violating any of the
restrictions mentioned before. The response of the network is usually done by having measurements
wells within the network, located where the lowest temperature is believed to be, a critical point.
Thus, this critical point is used to give feedback on how the network is responding to changes at
the production, makes it possible to estimate the time delay and heat loss in the network for given
supply temperature and flow.

Madsen et al. [5] suggest controllers for the district heating to have an overall controller, supply
temperature sub-controller, and a flow sub-controller to estimate the future supply temperature at
the production. For each critical point, a sub-controller is developed to compute the lowest supply
temperature from the plant satisfying the reference curve. Flow controller considers the variation of
the heat demand, by varying either the mass flow or supply temperature. It utilizes the possibility
of keeping the flow high as possible as the objective is to maintain as low a supply temperature as
possible without violating the maximum flow constraint due to the hydraulic properties of the pipe
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network. However, as the flow approaches the limit, the flow controller will start to increase its
supply temperature predictions to meet the forecast heating demand. These controllers regulate
the supply temperature and flow without violating any restriction with a certain probability, e.g.
the supply temperature at the consumers needs to be above the reference curve 99% of the time.
The overall controller at the productions then uses the set-points from the sub-controllers to select
the highest supply temperature to generate the heat for the consumer.

In this report, a temperature controller from ENFOR was used, HeatTO™1. It is based on the
methodology mentioned previously in this section, i.e. based on the articles and projects that have
been discussed [8, 5]. Furthermore, in this project, HeatTO™ was extended to receive feedback
from smart meters in large apartment buildings, instead of the normal measurements wells in the
network. In Section 2.1 the smart-meter data and how they were selected to be used as feedback are
described. Feedback from smart meters makes temperature control more desirable to use, especially
for district heating networks that don’t have measurement wells or are poorly calibrated. They
can instead use feedback from smart meters to control the supply temperature at the production.
Another advantage of using smart meters is the ability to change the location of critical points.
District heating network dynamics changes over time due to many reasons, e.g. new areas are
built that are further out in the system, old pipes are replaced with new, and old pipes getting
older, i.e. the characteristics of the network vary over time. As the network dynamics vary, the
critical point changes also, and therefore the critical feedback needs to be moved to give accurate
feedback of the system to satisfy the requirements of the consumers. This is solved by selecting
different smart meters to give feedback on the network. Bergsteinsson et al. [13] suggest how to
use a group of single-family house smart-meters to establish an estimate of the temperature in the
street temperature to be used as feedback. However, in this project, the area used has many large
apartment buildings and it was demonstrated in Section 2.1 that some of the smart meters can be
used to give feedback. Three meters were chosen to be used as feedback for the trial.

5.1 Trial at Tingbjerg
The demonstration of using additional data for the temperature control trial started on 1 November
2020 and lasted until 1 April 2021. The main task of the trial is to demonstrate that smart meters
can be used as feedback of the network for temperature control. The trial was done in the Tingbjerg
area using the HOFOR district heating system where the production unit is a heat exchanger that
supplies the area with heat. Here the focus was on how district heating utilities can create value
from digitalization and use it for control of the network. Three smart meters were selected to be
used as feedback in Tingbjerg to control the distribution supply temperature at the heat exchanger.

Prior to the trial in Tingbjerg, an open-loop control was used to vary the supply temperature. It
was operated by a hydraulic simulation of the system and using a reference curve at the consumers
to estimate the optimal set-points for supply temperature. However, as there was no feedback of the
network on how it reacted to changes or if the consumers were receiving what they are promised,
i.e. the control was open-loop. It also used scaled heat demand forecast as was shown in Section 4
as input. The new controller in the trial is a feedback controller using data from the three smart
meters, a reference curve at the location of each smart meter, localized heat demand forecast, and
a flow controller to achieve the optimal future supply temperature to reduce the operational cost of
the system by lowering the temperature.

Figure 5.1 illustrates the performance at the three smart meters, referenced as netpoints, for the old
and new controller. The supply temperature for both operations is plotted versus the rolling average
of the outside temperature for the past 24 hours. This is to stabilize the time series, smoothing
out any small outliers. The grey solid lines show the reference curve that was used for the new
controller and how it was believed to be for the old controller at the netpoints as it did not have
feedback of the network before. All three plots demonstrate that the supply temperature from the
new controller has less spread and rarely violates the desire reference curve at the netpoints thus the

1https://enfor.dk/services/heatto/
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Figure 5.1: Figure compares the two controller performance at the netpoints. It also
demonstrates the reference curve used and the estimated confidence interval of the supply
temperature for both controllers

system was controlled with more precision. Hence, the new controller gives a better level of security
than what was possible with the previous controller as the previous operation violates it rather
frequently. This is visualized in more detail by comparing the confidence intervals (CI) between the
two operations in the plots. The intervals were estimated using nonparametric quantile regression
and using the 10th and 90th quantiles as the upper and lower bounds. These results indicate that
the new controller can not compete with the old control of lowering the supply temperature as it
can not violate the requirements as frequently as in the previous operation. This suggests that the
reference curve for the new controller could have been lower, resulting therefore in a lower and
more stable supply temperature. We notice that the reference curve can be adjusted 5°C lower
when comparing supply temperature close to the reference curve for the new controller to the
low group points at 10°C for the outside temperature. This suggests that the reference curve can
be adjusted without breaking any requirements when comparing to the previous operation. The
supply temperature will also be adjusted to investigate ”what if” scenario when a more reasonable
reference curve had been used. The suggested reference curve to be used with the new controller is
demonstrated in Figure 5.2. The supply temperature for the trial has also been adjusted with the
5°C. By having more suitable reference curve for the new operation, it could have resulted in lower
supply temperature without violating any constraints and thereby lowering the operational cost.

Figure 5.3 compares the old and the new controller operation at the heat exchanger. They were not
in operation at the same time therefore the months the new controller was varying the temperature
were also selected for the old controller, just one year earlier. The left plots are demonstrating the
stability of the controllers, i.e. the variation in time of the supply temperature. This is important
for the network, as large and frequent fluctuations in the supply temperature should be avoided as
it increases the maintenance costs compared to more stable operation [34]. Comparing the old and
new controller, it is noticeable for the period of the new controller, that the outside temperature
is changing more dramatically. It is has a long period of very cold temperature and quite warm
also. However, for the old controller, the outside temperature is more stable, there are never
significant changes between warm or cold periods. Investigating the supply temperature in these
two different periods it is evident that the new controller gives a more stable operation, i.e. fewer
large fluctuating supply temperatures. This is exhibited in the bottom left plot where the difference
series (subtracting past value with current value) of the supply temperatures are shown. The new
controller difference series is more stable and the plot also show the variance of the differences where
the old controller has around σ2

old = 0.633 and new, σ2
new = 0.345. Hence, with the new controller,

there is less strain to the pipe system due to the slow variation in the supply temperature.
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Figure 5.2: Figures shows the new adjusted reference curve and the supply temperature
from the new controller periods using the 5°C adjustment.

The plots to the right in Figure 5.3 compare the performance of the controllers versus the degree
days. Degree days are used to compare supply temperature between heating seasons when comparing
different operations. The degree days, T dd are computed by estimating the difference between the
average ambient temperature, T̄a an over one day, and using 17°C as the cut-off of heating demand
from buildings,

T dd = max(0, 17 − T̄a) (5.1)

The average supply and return temperature for each day is then computed and plotted against its
corresponding degree day as shown in the top and bottom right plots. The top plots demonstrate
the supply temperature performance of the controllers, and the adjusted supply temperature for
the new controller as suggested before. We see that the new controller has quite a stable but higher
supply temperature than the previous operation as expected because of the high reference curve
as shown in Figure 5.1. Consequently, the new controller results in higher supply temperature at
the production and thereby higher operation cost. However, it is not significantly higher than the
previous operation even though it was penalized by higher restrictions. We see notably improved op-
eration when the adjusted supply temperature is investigated, where the supply temperature is lower.

To compare these operations, a regression model using Ordinary Least Squares to estimate the
parameters of a model with an intercept and slope have been fitted to each operation as shown in
Figure 5.3 and rewritten here below,

New controller: Tsupply = 68.48 + 0.71T dd (5.2)

Old controller: Tsupply = 62.61 + 0.97T dd (5.3)

New adjusted controller: Tsupply = 63.48 + 0.71T dd (5.4)

Hence, that the new controller has a lower slope, which indicates that it does not increase the
supply temperature as fast when the outside temperature decreases compared to the previous
operation. However, the intercept is quite higher, which translates to that the overall expectation
of supply temperature is higher for the given degree day. The adjusted regression lines have a
lower intercept as we have adjusted the data by 5°C however it still has a higher intercept than the
previous operation.

Decreasing the supply temperature for operation leads to an increase in savings for the utility.
Madsen et al. [33] suggest a rule of thumb for savings resulting from lowering the supply temperature
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Figure 5.3: Comparing old and new controller at Tingbjerg. The left plots demonstrate the
stability of the supply temperatures while the right plots compare the supply temperatures
against degree days.

in CHP plant; For each degree lowered, the savings for the heat loss in the network is 0.5 % and at
the production for more efficient production is 1 %, thus the savings can be compute as

Savings = (Costbefore ∗ x [◦C] ∗ 0.5%) + SharesProduction(Costbefore ∗ x [◦C] ∗ 1% (5.5)

where x is the lowered supply temperature for the system. Thus, estimating from Figure 5.3 with
the new adjusted controller, the supply temperature would be 3°C. The savings would be around
4.5% for the operation of the district heating network in Tingbjerg. The rule of thumb and how to
compute the savings are heavily dependent on the system and how the heat is produced. Lowering
the supply temperature for a CHP plant gives the highest savings for district heating. Decreasing
the supply temperature results in an increase in the ratio of the power to heat output for CHP plant,
and as electricity is more valuable than heat, a more profitable operation is achieved [5]. Thus,
the equations are just a rule of thumb to demonstrate potential savings when sufficient production
data is not available.

Concluding this section, we have demonstrated that having feedback of the network improves the
stability of the system, i.e. few and smaller fluctuations in the supply temperature. We saw that
the restrictions of the new operation were probably too high compared to the previous as it was
allowed to violate the restrictions while the new controller tries to satisfy them within a certain
probability. However, adjusting the result with the new controller, we could demonstrate a potential
of 4.5% in savings.
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Chapter 6

Conclusion

In this report, we have demonstrated how digitalization in district heating can improve the operation
of the utility. Smart meters in the network can act as feedback of the system for temperature
control to give response characteristics of the network. Accurate modeling of how the system will
respond to changes at the production will increase the performance of temperature control and
lowering the operation cost. The climate in cities was discussed and the climate in Copenhagen
was used to visualize the temperature differences, i.e. different climates within the city. Therefore,
a local climate station was used to bind weather forecasts to the area’s climate, resulting in more
accurate NWPs for the climate area. The NWPs improvements will result in a more accurate
heat demand forecast, especially for the short-term forecast. An accurate short-term heat demand
forecast is beneficial for the temperature control to deliver the desired consumer consumption and
lowering the operational cost by intelligent control in the next hour.

A trial was conducted to demonstrate these benefits. The focus was to improve the heat demand
forecast and temperature control of the area using additional data than typically is used. We
illustrated the accuracy improvements of localizing heat demand forecast by using the area’s
historical demand and binding the NWP to the area using a local climate station. The local heat
demand forecast was compared to the previous heat demand forecast in Tingbjerg where it was
scaled from a forecast from a large area that contains the Tingbjerg area. This highlighted how
crucial it is to localize heat demand forecast to an area where the temperature control is operating.
The heat demand forecast is used for all operations of the utility, hence the desire of increasing the
accuracy of the forecast that will improve the efficiency of the operations. Temperature control was
in operation on-line during the trial to demonstrate that smart meters can be used as feedback
for closed-loop control. The previous operation in the area was done with open-loop control using
current ambient air temperature and hydraulic simulation of the system to operate the network.
Unfortunately, the reference curve was placed quite conservatively in order to avoid complaints
during the trial. Therefore, the trial operation demonstrated a higher supply temperature than the
previous operation. However, we showed that the closed-loop control usually satisfied the reference
control requirement at the consumer while the open-loop violated it frequently. The closed-loop
operation also demonstrates that it results in higher precision of the supply temperature, e.g. it
does not vary as much for the given ambient temperature compared to the open-loop operation. To
summarize, the proposed data-driven methods lead to higher precision and that it has the potential
of lowering the supply temperature by 5°C, i.e. savings potential of more optimal operation of the
network.

In the report, all of these findings are demonstrated and highlighted, the importance of an accurate
understanding of the area where heat is delivered. Three things are needed to be considered for
efficient operation: 1) The local climate 2) The local social consumption behavior 3) The local
response characteristics of the network. Accurate representation of the heating in the area and the
local climate can be achieved by using data that has become available through the digitalization in
district heating. We therefore conclude that digitalization in district heating will highly benefit the
operation of district heating.
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Appendix A

Temperature Optimization and
Control at Svebølle Viskinge
Fjernvarmeselskab

For the past couple of years, the district heating utility Svebølle Viskinge Fjernvarmeselskab has
been improving its network operation by installing temperature sensors in the network (the critical
points) to have feedback of the network. The previous operation of the supply temperature had
been selected based on an open-loop system. Thus, without considering how the network response
to changes and what supply temperature is received by the consumers. Along with getting feedback,
they have also been using the temperature optimization software from ENFOR, the HeatTO™. The
same software was installed and used in the Tingbjerg network.

The result of the changes made in the network operation can be seen in Figure A.1. In the figure,
heating season is defined as the months; November, December, January, February, and March.
The savings gain of using closed-loop temperature optimization can be seen when comparing the
previous and new controller in the top plot where the average daily supply temperature against
the degree days. The old controller was in operation during the heating season 2018/2019 and the
new controller using the feedback and the HeatTO™ software during the heating seasons 2019/2020
and 2020/2021. The old controller was also kept running during the 2020/2021 heating season
when the new controller was in operation as shown in the figure. It was only used in computing an
alternative setpoints of the supply temperatures, while the new controller was operating the supply
temperature in the network. The flow at the production from the previous and current operation
is shown in the bottom plot. The plot shows that the new controller has a higher flow. Thus, it
increases the flow until it reaches the physical flow maximum of the system before increasing the
supply temperature.

Comparing the new operation to the heating season 2018/2019, it can be condluded that the supply
temperature has been on average lowered by 8°C therefore the savings can be estimated using
Eq. 5.5 to be 12%. However, comparing the new controller to the old controller during the same
heat season (2020/2021), the temperature was decrease by 10°C, and the savings are 15%. Hence,
investing in data-driven methods can increase the savings of the network.
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Figure A.1: Temperature optimization at Svebølle Viskinge for three heating seasons;
2018/2019, 2019/2020, and 2020/2021. The heating season months are November, Decem-
ber, January, February, and March. Average daily supply temperature and flow are plotted
against the degree days in the top and bottom plots.
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ABSTRACT
Weather forecasts are essential for district heating (DH) utility operations as they
prepare the utility for future consumption so that optimal operation is achieved
by supplying sufficient heat while keeping costs low. Weather forecasts are usually
converted into heat demand forecasts which are used for production planning and
control of the temperatures in the DH network. Hence, increasing the accuracy of
weather forecasts will lead to improvements in the system’s operational performance.
However, numerical weather predictions (NWPs) are obtained by complex dynamical
equations that are computed over the earth as grid values, and NWPs are designed
for rural areas, not urban areas. Thus, for DH applications, weather forecasts do
not give an optimal representation of the local climate that drives the local heat
demand in a city. In this paper, we propose a method to localize weather forecasts
and we demonstrate the benefits by quantifying heat demand forecast accuracy
improvements.

KEYWORDS
Localized forecast; recursive estimation; heat demand; weather forecast; NWP;

1. Introduction

The role of district heating is changing dramatically, with more sector coupling and
increasing amounts of energy being generated by renewable energy sources (RES).
Traditionally, the role of district heating was to provide heat to consumers when
needed, and usually by burning fossil fuels. Sometimes, district heating production
plants also produce electricity. These are called cogeneration plants. However, with
awareness of the global climate crisis due to increasing CO2 concentrations in the air,
more climate-friendly operation of energy production is needed. Hence, district heating
needs to shift away from fossil fuels towards RES, and due to its flexibility (energy
storage), district heating has become a crucial element of efficient operation of the
overall integrated energy system. To maximize the potential of district heating, more
advanced methods are needed for its operation. Advanced methods for production
optimization of plants have been proposed for optimal scheduling of heating units
and for bidding into the electricity markets to increase the share of RES and lower
overall system costs [1]. Advanced methods for delivering the heat to consumers have
also been proposed. For instance, Madsen et al. [2] propose advanced optimization
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methods to control supply temperature and flow in district heating networks in order
to reduce heat production costs and heat losses in the network.

Heat demand forecasts are needed for efficient operation of production planning and
for temperature control of the network. For some applications, like for optimal use of
storage systems, the forecasts are most conveniently provided as scenarios. Hence,
accurate future scenarios of heat consumption are desirable to lower the overall cost
of operating a district heating system. Heat consumption is directly related to the
climate, and therefore heat demand forecast models usually use forecasts of weather
variables as inputs. Clearly, the accuracy of heat demand can be increased by improv-
ing the weather forecasts. District heating is typically applied in urban areas where
the climate is generally different from rural areas due to human activities, buildings,
and infrastructures. This effect is termed Urban Heat Island (UHI). Therefore, the
operation of district heating needs to account for this local climate to achieve efficient
operation. Heating consumption is highly correlated with climate variables, especially
the ambient air temperature. Predictions of the weather are therefore desired by dis-
trict heating companies to ensure that heat production is sufficient to meet future
heating consumption and to ensure efficient production. Numerical Weather Prediction
(NWP) is used to forecast the weather by simulating physics-based partial differential
equations of the atmospheric processes [3]. Most often the NWP does not represent
the UHI effect and hence the weather inside cities, and consequently a systematic bias
between the NWP and local weather stations is often observed [4]. It would therefore
be beneficial to localize the weather forecast to remove the bias and hence reduce the
prediction uncertainty of the weather forecasts for district heating applications.

Several studies have investigated the possibility of increasing the forecasting capa-
bilities of NWP by including the UHI effects in the model. See e.g. Ronda et al. [5] for
their suggestion of incorporating UHI in NWP for the city of Amsterdam.

2. Method

Heat demand forecast models have been studied extensively for the past decades and
both grey-box and black-box models have been proposed. Black-box models are meth-
ods where the modeller feeds data through the model, trains or calibrates the model
parameters using these data, and finally produces forecasts without considering any
physical knowledge of the system. As an example, Idowu et al. [6] propose four differ-
ent methods to forecast heat demand. Grey-box models are based on a combination
of physical knowledge and information embedded in data. The methods use statisti-
cal methods to estimate the parameters and reduce the model dimensions compared
to a purely physical model of the system. Aalborg and Madsen [7] have discussed a
physical-based model of the heat consumption in a district heating network and they
suggested a simplified version of the full (complex) model. They demonstrate that a
rather simple model, based on the physical nature but calibrated using data on heat
consumption, is adequate for forecasting heat demand.

The forecasting model that will be used to produce heat demand forecasts is gen-
erated using recursive and adaptive techniques, as implemented in the R package,
onlineforecast [8]. The proposed forecasting method in this paper uses physical knowl-
edge on how heating consumption and weather are linked as suggested by Aalborg and
Madsen [7]. An optimal model was identified using the forward selection approach as
shown in Bacher et al. [9], where inputs are added one-by-one to the model, and for
each input, it is investigated if the forecasting performance increases significantly. The
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Root-Mean-Square-Error (RMSE) is used to compare the forecasting performance for
each k-step horizon. Different transformations of the inputs are also investigated. Mod-
els for heat demand are usually based on weather forecast inputs (e.g., air temperature
and wind) and social components (e.g., Fourier Harmonics). NWPs are created from
a system of nonlinear differential equations created from the laws of physics, and are
used to predict the weather by describing the physical processes in the atmosphere.
These differential equations cannot be solved for each point on the earth, and therefore
a spatial grid of the earth is used as points for the equations to be solved at. However,
these systems model urban areas with the same formulations as rural areas, hence
discarding the Urban Heat Island effect [10].

The raw forecast of the ambient air temperature does therefore not consider the
local climate in the area where the heat demand forecast is needed. However, if there
is a local climate station that measures the temperature inside the area, then it will be
possible to adjust the temperature forecast using such local measurements. Glahn and
Lowry [11] proposed the Model Output Statistics method to localize NWPs using a
regression model where the dependent variable is the observed weather variable at the
local weather station, and the explanatory variable is the forecast weather variable,

y = β0 + β1T
nwp
a + ϵ. (1)

The forecasts of the regression model are then used as inputs for the heat demand
forecast model to quantify the accuracy improvement by localizing the NWP. This
method provides the possibility to locally adjust the NWP and therefore update it with
information on the local climate and hence provide better information for predicting
the heat demand. The method also makes it possible to estimate the uncertainty of
the NWP for this location.

3. Results

Figure 1. Figure shows the location of the climate station and Tingbjerg, where the district heating is located.

The distance between the two places is approximately 6 km. 2

2Figure created using https://maps.google.com/.

3



The demo case used in this project is a small area, Tingbjerg, in Copenhagen
and it mainly consists of apartment buildings. The heat demand data is provided by
the district heating utility company, HOFOR, which operates the network. The heat
demand is used to establish the forecasting model and validate the results. The NWPs
are forecasts obtained using ECFMW and they are updated twice a day; at noon
and midnight3. The local climate station is located in Copenhagen, and the data is
provided by the Open Data platform by the Danish Meteorological Institute (DMI)4.
Unfortunately, the local climate station is not located at the same place as the district
heating network, but it is quite close and also located in the city (Figure 1). It is
therefore expected that the use of data from this city climate station will lead to
improved forecasts of the local climate. However, it would have been optimal to have
the climate station located inside the area where the desired heat demand forecasts
are needed.

The optimal model found for forecasting the heat demand was,

ŷt+k|t =β0,k + β1,kyt + µk(t, nhar, αdiu) + β3,kH(q)T obs,nwp
a,t+k|t +

β4,kH(q)W nwp
s,t+k|t + β5,kH(q)Gnwp

t+k|t,
(2)

where β are the coefficients of the model, T obs,nwp
a,t+k|t is a combined se-

quence of measured and forecast ambient air temperature (℃) including cur-

rent measurements and NWP of the ambient air temperature, i.e. T obs,nwp
a,t+k|t =

{. . . , T obs
a,t−1, T

obs
a,t , T

nwp
a,t+1|t, T

nwp
a,t+2|t, . . . , T

nwp
a,t+K|t}, W nwp

s,t+k|t is the NWP of wind speed

(m/s), Gnwp
t+k|t is the NWP of global radiation (W/m2), µk(t, nhar, αdiu) describes the

diurnal curve using Fourier harmonic series where t is the time of the day (hour), nhar

is the number of harmonics, and finally αdiu is a vector consisting of the coefficients
for the included harmonics. H(q) is a transfer function that acts as a low-pass filter
with a stationary gain equal to one,

H(q) =
1− a

1− q−1
, (3)

where a is the time constant describing how the buildings are affected by changes in
the corresponding climate variable, e.g. ambient air temperature.

The NWPs are localized by estimating parameters in Equation 1 during 2019, and
then used out-of-sample to forecast the weather variables during 2020. The parameters
of the model are estimated and the forecasts of Equation 1 are obtained using the
R-package onlineforecast. This R-package for forecasting uses either least squares
(constant parameters over time) or recursive least squares with exponential forgetting
factor (adaptive parameters, i.e. varying over time). The measured temperature comes
from a climate station located at the Landbohøjskolen in Frederiksberg, roughly 6
km from Tingbjerg. The performance of the raw NWPs and the NWPs that have
been locally adjusted to the climate of the ambient air temperature can be seen in
Figure 2. Three different localized NWPs were created: 1) Parameters estimated using
least squares (LS) estimation, i.e., constant parameters (lm), 2) Parameters estimated
using recursive and adaptive estimation, with forgetting factor (λ = 0.994) (rls), and 3)

3European Centre for Medium-Range Weather Forecasts (ECMWF), HRES - High-Resolution Forecast.
4Danish Meteorological Institute (DMI), Meteorological Observation, Station ID: 06186. Available:

https://confluence.govcloud.dk/display/FDAPI/Meteorological+Observation [Accessed: 05-02-2022]
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Figure 2. Figure shows the accuracy of the NWPS in Tingbjerg. The left plots show the in-sample and the
right plots show the out-sample. The RMSE is shown in the top plots and ME in the bottom plots.

Parameters estimated using recursive and adaptive estimation, with forgetting factor
(λ = 0.998), i.e., making the parameters change slower over time than case 2 (rls2). The
forgetting factor for the second method, rls, was found by minimising the RMSE of the
prediction on horizons, k = {1, . . . , 24} and the forgetting factor in rls2 was selected
by hand. The results from the in-sample period are shown in the left plots, while
the right plots show the out-of-sample results. Two error scores are used; the RMSE
in the top plots and mean error (ME) in the bottom plots. The plots demonstrate
the suggested method for locally adjusted forecasts to perform much better than the
forecasts based directly on the NWP. From the ME, it is seen that the NWP is biased;
it underestimates the temperature in the city, as expected due to the UHI effect. The
rls method with optimal selection of the forgetting factor shows the best performance.

These four NWPs of the ambient air temperature are then used in Equation 2 to
forecast the heat demand in Tingbjerg. The heat demand forecast accuracy improve-
ment was validated by computing the Relative Root Mean Square Error (RRMSE) by
computing the localized forecasting RMSE against the heat demand forecast RMSE-
BASE using the raw NWP as inputs,( RMSE

RMSEBASE
− 1

)
∗ 100 (4)

The results shown in Figure 3 show that all three localized forecasts improved the
accuracy of the heat demand forecasts when compared to the raw NWP model. The
rls method which adapts faster has the best performance overall, especially for hori-
zons up to 12 hours ahead, which are the most important horizons for temperature
optimization, where the objective is to lower the supply temperature. For the last
horizons, the rls performs similarly to the other localized forecasts, although it still
demonstrates around 1.5% higher accuracy than using the raw NWPs as input.
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Figure 3. Accuracy improvements in heat demand forecast by localizing the meteorological forecast of the
ambient air temperature to a local climate station. The RRMSE for the three localized methods compared

against the forecasting model with the raw NWP as inputs.

4. Conclusion

In this paper, we demonstrated that NWP delivers a biased forecast of the temperature
for the location of the climate station, and on average it predicts a lower temperature
than is measured. Therefore, locally combining the NWP to measurements of the
temperature from a climate station in Copenhagen would reduce the bias and give
a more accurate representation of the local climate. Three different methods were
proposed to locally adjust the NWP, one where the parameters are constant and two
methods where the parameters vary over time with different forgetting factors.

Secondly, it is shown that locally combining weather forecasts leads to higher ac-
curacy of the heat demand forecasts. The raw and three locally combined NWPs of
the ambient air temperature were used to forecast heat demand in Tingbjerg (Copen-
hagen). The results show that the use of local climate data combined with NWP
outperforms the forecasts based solely on the raw NWP for all forecasting horizons.
This suggests that having a better understanding and forecasting of the local climate
will improve the heat demand forecast, which in turn will contribute to cost savings
achieved due to better operation of the district heating system.

We conclude that, in order to optimize the operation of the district heating systems,
it would be beneficial to install and use a local climate station to localize the weather
forecast to enhance the heat demand forecasts.
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onlineforecast: An R Package for Adaptive
and Recursive Forecasting
by Peder Bacher, Hjörleifur G. Bergsteinsson, Linde Frölke, Mikkel L. Sørensen, Julian Lemos-Vinasco,
Jon Liisberg, Jan Kloppenborg Møller, Henrik Aalborg Nielsen and Henrik Madsen

Abstract Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, re-
quire frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations
become available, hence in an online setting. We present the R package onlineforecast that provides a
generalized setup of data and models for online forecasting. It has functionality for time-adaptive
fitting of dynamical and non-linear models. The setup is tailored to enable the effective use of forecasts
as model inputs, e.g. numerical weather forecast. Users can create new models for their particular
applications and run models in an operational setting. The package also allows users to easily replace
parts of the setup, e.g. using new methods for estimation. The package comes with comprehensive
vignettes and examples of online forecasting applications in energy systems, but can easily be applied
for online forecasting in all fields.

Introduction

Time series analysis and forecasting are of indispensable importance to numerous practical fields
such as business, finance, science and engineering (Cryer and Chan, 2008). Time series analysis is the
process of statistical modelling of time series, i.e. data which is sampled at different points in time
over a period – often with a constant distance in time, i.e. equidistant. Classical time series models for
a single equidistant time series use past values of the response variable (model output) as predictors
(inputs). In this way, appropriate models describing the inherent auto-correlation structure of the time
series can be realized. Such models are exponential smoothing (e.g. Holt-Winters), AutoRegressive
(AR) and Moving Average (MA), and usually the combination of the latter two as ARMA models.
When multiple correlated time series are at hand, they can be used as model inputs to improve
forecasts. They are then called eXogenous variables and the classical model becomes an ARMAX –
hence the X indicates that input variables are included. ARMAX models are optimal for forecasting
the output of linear time invariant (LTI) systems, however for most forecasting application models for
non-linear systems are needed. A wide range of techniques for modelling non-linear systems exists,
either based on some approach of input transformation or some local fitting method. The onlineforecast
package implements an advanced model setup for modelling and forecasting the output of non-linear
time varying systems. The setup was developed for applications such as forecasting wind power
(Nielsen et al., 2002) and thermal loads in district heating (Nielsen and Madsen, 2006). The significance
of the package is in the “online” term, indicating that at each sampling point the model parameter
estimates are updated in an effective way for generating multi-step forecasts.

The use of ARMAX models and variations thereof for forecasting has been and is still widespread
(De Gooijer and Hyndman, 2006), especially for energy systems due to the high dependency between
e.g. weather, load, renewable generation and periodic phenomena. Load forecasting is an obvious
example. A nice overview for electric load forecasting is given by Alfares and Nazeeruddin (2002)
and Hong and Fan (2016), and for heat load by Dotzauer (2002) who demonstrates the dependency
between the response variable, heat load, and the predictor, ambient temperature, using a piecewise
linear function. It is also proposed to model the daily and weekly diurnal using hours of the week
as inputs. For solar power forecasting (Kleissl, 2013) the improvement from an autoregressive (AR)
to an AR with eXogenous input (ARX), where the ARX model uses numerical weather predictions
(NWPs) as inputs, is demonstrated by Bacher et al. (2009). The ARX model uses past observations and
NWPs of global irradiance to forecast the power production from PV systems and the ARX model
obtains higher accuracy than the AR model. Bacher et al. (2013) identifies exogenous variables that are
suitable for forecasting the heat load of a building, with similar models.

Energy systems are time-varying systems as they usually change over time due to wear and con-
tamination, like dirt on solar panels or changes in usage. For example, with new tenants in a house
the dependency between the heat load and other variables, like calendar and temperature, changes.
Therefore, a forecast model needs to adapt – the model coefficients are not optimal if they are constant,
they need to be updated and allowed to change over time. The Recursive Least Square (RLS) method
provides a recursive estimation scheme for the coefficients in regression models, where they are up-
dated at each step when new data becomes available. Introduction of a forgetting factor in RLS allows
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control on how fast the coefficients can change over time – this is referred to as adaptive recursive
estimation, with exponential forgetting, in linear regression and autoregressive models. The method is
described by Ljung and Söderström (1983), for advances that has been made since then see e.g. (Engel
et al., 2004).

The objective of the onlineforecast package is to make it easy to set up and optimize non-linear models
for generating online multi-step forecasts. The package contains functionalities not directly available
elsewhere:

• Use of forecasts, e.g. NWPs, as input to multi-step forecast models.

• Optimal tuning of models for multi-step horizons.

• Recursive estimation for tracking time-varying systems.

The package provides a framework for handling data and setting up models, which makes it easy to
apply it in a wide range of forecasting applications.

Time series modelling and forecasting in R

A wide range of existing software useful for time series forecasting is currently available – all have
their suitable applications (Chatfield and Xing, 2019; Siebert et al., 2021). In the following an overview
is given of the most relevant R packages for forecasting at the time of writing – generally, the same
functionalities are available in Python packages.

Classical ARMAX models can be fitted with the arima() function from the stats package and the
Arima() function from the forecast package (Hyndman and Khandakar, 2008) provides automatic
model selection with arima(). R Packages like marima (Spliid, 1983), KFAS, sysid and dlm (Petris,
2010) can also be used for fitting ARMAX models. Spliid (1983) proposed a very fast and simple
method for parameter estimation in large multivariate ARMAX models with a pseudo-regression
method that repeats the regression estimation until it converges. The other packages represent time
series and regression models as state-space models and use a Kalman or Bayesian filter to include
exogenous variables in the model, and optimally reconstruct and predict the states. The advances
of the onlineforecast models compared to ARMAX models are first of all a recursive fitting scheme,
which allows for much faster and time adaptive fitting. Furthermore, model coefficients are tuned as a
function of the forecast horizon. This optimize the use of multi-step forecasts as models inputs, such
functionality is not available for ARMAX models.

State-space modelling is frequently used to describe time series data from a dynamical system, e.g. a
falling body, see (Madsen, 2007). The dynamical system can in such cases be written as differential
equations or difference equations. State-space models use filter techniques to optimally reconstruct
and predict the states, e.g. the Kalman filter, the extended Kalman filter or other Bayesian filters. This
gives the possibility of tracking the coefficients over time, i.e. time-varying parameter estimation. The
KFAS package (Helske, 2017) provides state-space modelling, where the observations come from the
exponential family, e.g. Gaussian or Poisson. The ctsm-r package provides a framework for identifying
and estimating partially observed continuous-discrete time state space models, referred to as grey-box
models. This modelling approach bridges the gap between physical and statistical modelling using
Stochastic Differential Equations (SDEs) to model the system equations in continuous time and the
measurement equations in discrete time. Packages for discrete time state-space modelling are: dlm for
Bayesian analysis of dynamic linear models, MARSS and SSsimple for fitting multivariate state-space
models. The onlineforecast models are basically fitted using a Kalman filter, as explained in Section .2,
thus existing packages could be applied. However, the use of forecasts as model inputs would be very
cumbersome and is made very easy with the onlineforecast setup.

For non-parametric time series models, the number of available packages is growing rapidly. NTS
provides simulation, estimation, prediction and identification for non-linear time series data. It also
includes threshold autoregressive models (e.g. self-exciting threshold autoregressive models) and
neural network estimation. tsDyn provides methods for estimating non-parametric time series models,
including neural network estimation. Neural network, deep learning and machine learning methods
are available in R. Recurrent neural networks are in the rnn, the keras and tensorflow packages. Additive
time series models, where non-linear trends are fitted with seasonality patterns, are in prophet. Time
adaptive neural networks, i.e. with recursive updating, can be implemented in various ways (Yang
et al., 2019), however currently no effective implementation is available.

Some packages can be useful for forecast evaluation, e.g. ForecastTB presented in (Bokde et al., 2020).
Packages like forecastML and modeltime (Alexandrov et al., 2020) provide functionality that simplifies
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the process of multi-step-ahead forecasting with machine learning algorithms. This purpose of
handling multi-step-ahead forecasts is also a key feature of the onlineforecast package. The classical
time series models, such as ARMAX and Exponential Smoothing models, are mostly optimal for
modelling Linear Time Invariant (LTI) systems however most systems are not LTI. Furthermore,
since a model is always a simplification of reality, optimal multi-step forecasting is often not possible
with the classical models, especially when using exogenous inputs. For optimal multi-step ahead
forecasting the models must be tuned for each horizon – which is exactly what the onlineforecast
package does.

Functionality of onlineforecast

A model is an approximation to the real world, thus it will always be a simplification and can never
predict perfectly. One of the main challenges of identifying a good forecast model is to find the most
informative input variables and the best structure of the model. The onlineforecast package provides
functionality for defining, validating and selecting models in a systematic way.

To introduce the onlineforecast models consider the simplest model with one input. It is the linear
model for the k’th horizon

Yt+k|t = β0,k + β1,kut+k|t + εt+k|t (1)

where Yt+k|t is the response variable and ut+k|t is the input variable. The coefficients are β0,k and β1,k,
note that they are subscripted with k to indicate that they are estimated for individually for every
horizon. The error εt+k|t represents the difference between the model prediction and the observed
value for the k-step horizon. The interpretation of the subscript notation t + k|t on a variable is, that it
is the k-step prediction calculated using only available information at time t, usually referred to either
“conditional on time t” or “given time t”.

The package offers to estimate the coefficients using either the Least Squares (LS) or Recursive Least
Squares (RLS) method. In the LS method, the coefficients are constant, while the in RLS method the
coefficients can change over time

Yt+k|t = β0,k,t + β1,k,tut+k|t + εt+k|t (2)

as indicated with the t on the coefficients. This allows for tracking changes occurring over time.

The package allows for easy definition of transformations and thus the possibility to fit non-linear
models e.g.

Yt+k|t = β0,k,t + β1,k,t f (ut+k|t; α) + εt+k|t (3)

where the function f (ut+k|t; α) is some non-linear function of the input ut+k|t with parameter α, e.g. a
low pass filter on the outdoor temperature to model building heat dynamics. The package sets up
tuning of the non-linear function parameters, e.g. if the parameter α determines the degree of low-pass
filtering it can be tuned with an optimizer to match the system dynamics inherent in the data at hand.

An example of generated forecasts can be appreciated in Figure 1. Hourly forecasts up to 36 steps
ahead of heat load in a single building are shown for three consecutive steps. This is the typical
structure of forecasts generated with the package. It can be seen how the forecasts change slightly as
they are updated in each step, e.g. around 12:00 the second day, hence horizon k = 23 in the upper
plot, which corresponds to k = 21 in the lower plot.
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Figure 1: Example of hourly load forecasts at three consecutive time steps. The upper is calculated at
12:00, the middle is calculated at 13:00 and the lower at 14:00. It can be seen how the forecasts change
slightly as they are updated in each step, most clearly seen around 12:00 on the second day.

Vignettes

A great way to get actual hands-on experience is through vignettes. They are available when installing
the package and on the website onlineforecasting.org, where also examples of different forecast
applications can be found. The package vignettes are:

• setup-data covers how data must be set up. The vignette goes into detail on how observations
and model inputs (forecasts) are set up. The vignette also focuses on the importance of aligning
forecasts correctly in time.

• setup-and-use-model focus on how to set up a model and use it to generate forecasts.

• model-selection demonstrates how model selection can be carried out.

• forecast-evaluation covers the evaluation of forecasts, and how to use this information to
improve a model.

• online-updating demonstrates how to update a model in actual operation when new observa-
tions become available. This functionality is not described in the R examples in the present
paper.

Furthermore, one vignette is available only on the website:

• nice-tricks provides some useful tips on how to make the workflow easier with the package.

Paper structure

The structure of the paper is the following: In Section 2.2 the notation used in the paper and how to
set up data is introduced. The core methodology is presented in Section 2.3 and important aspects of
forecast modelling are outlined in Section 2.4. In Section 2.5 examples with R code are presented to
provide a short hands-on tutorial. The paper ends with a summary and conclusions in Section 2.6.

In addition, three appendixes are included in the paper. In Appendix .1 some guidelines on mathemat-
ical notation of forecast models are provided. In Appendix .2 the regression schemes are covered in
full detail.
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Notation and forecast matrices

The notation in this article follows Madsen (2007) as close as possible. All time series considered are
equidistantly sampled and the sampling period is normalized to 1. Hence, the time t is simply an
integer indexing the value of a variable at time t. The same goes for k which indexes the forecast
horizon k steps ahead. In the onlineforecast setup, forecasts are calculated at time t for each horizon up
to nk steps ahead. To achieve the desired notation that can deal with overlapping time series, a two
dimensional index is required. The notation used is

ut+k|t (4)

which translates to: the value of variable u at time t + k conditional on the information available at time
t. The conditional term is indicated by the bar |. Thus, for k > 0 this is a forecast available at t and k is
the horizon. When writing a forecast model the following convention is used, here a simple example

Yt+k|t = β0,k + β1,kut+k|t + εt+k|t (5)

where Yt+k|t is the model output, β0,k and β1,k are the coefficients and εt+k|t with Var(εt+k|t) = σ2
k is

the error. The error process and variance σ2
k is thus separate for each horizon. Note, that the model is

fitted separately for each horizon, so the coefficients take different values for each horizon, and the
predictions and errors are separated for each horizon. This was a simplified example, see Appendix .1
on how to write the full forecast models.

Forecast matrix

A forecast matrix is the format of forecast data in the onlineforecast setup. See examples in the
setup-data vignette. Data must have this format in order to be used as model input, and the forecasts
generated are in this format. The forecast matrix holds for any past time the latest available forecast along
the row for the corresponding time

un =

k0 k1 k2 . . . knk → horizon/time ↓



u1|1 u2|1 u3|1 . . . u1+nk |1 1

u2|2 u3|2 u4|2 . . . u2+nk |2 2

...
...

...
...

...

ut−1|t−1 ut|t−1 ut+1|t−1 . . . ut−1+nk |t−1 t− 1

ut|t ut+1|t ut+2|t . . . ut+nk |t t
...

...
...

...
...

un|n un+1|n un+2|n . . . un+nk |n n

(6)

where

• t is the counter of time for equidistant time points with sampling period 1 (note that t is not
included in the matrix, it is simply the row number).

• n is the number of time points in the matrix. Hence, the data is available and can be used as
model input at time t = n.

• nk is the longest forecasting horizon.

• The column names (in R) are indicated above the matrix, they are simply a ’k’ concatenated
with the value of k, e.g. nk in the last column.

Note, that the k0 column holds values with forecast horizon k = 0, which could be real time observa-
tions. Usually, only the horizons to be forecasted should be included, hence often k0 is not needed.
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For example with a prediction horizon nk = 24 at t = 100, we will have the forecast matrix

u100 =

k0 k1 k2 . . . k24 → horizon/time ↓



u1|1 u2|1 u3|1 . . . u25|1 1

u2|2 u3|2 u4|2 . . . u26|2 2

...
...

...
...

...

u99|99 u100|99 u101|99 . . . u123|99 99

u100|100 u101|100 u102|100 . . . u124|100 100

(7)

In Section 2.5.1 examples of how data and forecast matrices are set up in R are given.

Two-stage modelling procedure

A widespread approach to modelling non-linear functional relations between inputs and output is
a two-stage modelling procedure. See, e.g. Breiman and Friedman (1985) and Weisberg (2005) for
direct transformation of predictor variables, and Hastie et al. (2009) for non-parametric transformation
techniques (basis functions). Using transformations allows for fitting complex models with robust and
fast estimation techniques. In the first stage, the transformation stage, the inputs are mapped by some
function – potentially into a higher dimensional space. In the second stage, the regression stage, a linear
regression model1 is applied between the transformed inputs and the output. An exemplification of
this is presented in the following.

As an example a model with two inputs is presented. In this model the transformation stage consists
of generating an intercept and mapping the two inputs (they are set up as forecast matrices u1,t and
u2,t)

Intercept: x0,t+k|t = 1 (8)

Input 1: x1,t+k|t = f1(u1,t+k|t, α1) (9)

Input 2: x2,t+k|t = f2(u2,t+k|t, α2) (10)

where the f ’s are transformation functions that map the inputs to regressors. Note, that the intercept
is simply a constant passed on to the regression. The transformations result in multiple inputs for
the regression – the latter actually as multiple variables indicated by the bold font notation. In the
regression stage the linear model

Yt+k|t = β0,kx0,t+k|t + β1,kx1,t+k|t + βT
2,kx2,t+k|t + εt+k|t (11)

is fitted. The regression is carried out separately for each horizon k. Thus, the combined model has:

• An intercept

• Two inputs: u1,t+k|t and u2,t+k|t

• Output: Yt+k|t

• Transformation functions: f1 and f2

• Transformation parameters: α1 and α2

• Regression coefficients: β0,k, β1,k and β2,k

Some transformation parameters should be optimized for the data at hand, e.g. a low-pass filter
coefficient depends on the system dynamics. The same goes for some parameters related to the
regression scheme, e.g. the forgetting factor (introduced below). We will refer to them together as
offline parameters. The onlineforecast package provides a setup, where the offline parameters can be
optimized using a heuristic optimization (e.g. a BFGS quasi-Newton method). The default score, which

1In the remaining of the text, when the term “regression” is used it is implicit that it is “linear regression”.
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is minimized, is the Root Mean Square Error (RMSE) of the predictions – hence offline parameters in
the model above, given data from the period, t = 1, 2, . . . , n, are optimized by solving

min
α1,α2

1
n− k

n−k

∑
t=1

(yt+k − ŷt+k|t(α1, α2))2 (12)

Naturally, other scores can be minimized (e.g. MAE or the Huber psi-function, however the regression
schemes should be modified accordingly, which is not trivial).

The regression coefficients are calculated with a closed-form scheme: either with the Least-Squares
(LS) or the Recursive Least-Squares (RLS) scheme – in the latter the coefficients are allowed to vary
over time. In both schemes the coefficients are gathered in the vector βk and calculated separately for
each horizon k. In Appendix .2 both schemes are presented in full detail.

In the LS scheme the coefficients are constant during the entire period. The output vector is yk,n and for
a given value of the transformation parameters (i.e. here α1 and α2) the transformed data is calculated
and set up in the design matrix Xk,n. The LS coefficients are then calculated by

β̂k = (Xk,nXk,n)−1Xk,nyk,n (13)

and the predictions calculated by

ŷk,n = Xk,n β̂k (14)

where ŷk,n =
[
ŷ1+k|1 ŷ2+k|2 . . . ŷn|n−k

]T
are the predictions. Note, that for the LS scheme the

predictions are “in-sample”, since data from the entire period is used for the coefficient calculation.

In the RLS scheme the coefficients are calculated recursively, meaning that they are updated in every
time step – the RLS is actually a Kalman filter with the model coefficients in the state vector. At each
time t the coefficients are updated by

Rk,t = λRk,t−1 + xk,tx
T
k,t (15)

β̂k,t = β̂k,t−1 + R−1
k,t xk,t(yt − xT

k,t β̂k,t−1) (16)

and the predictions by

ŷt+k|t = xt+k|t β̂k,t (17)

where xk,t is the data available for horizon k at time t (a row in the design matrix Xk,n), and xt+k|t is
the k’th horizon transformed input forecast available at time t, see the appendix for all details. The
coefficients adapts to data over time and the level of adaptivity is controlled by setting the forgetting
factor λ to a value between 0 and 1. For λ = 1 all past data at t is equally weighted. For λ < 1 higher
weight is put on recent data – the smaller the value the faster the model adapts to recent data. By
optimizing the forgetting factor as an offline parameter the model adaptivity can be tuned.

An important point to notice is, that the offline parameters are always constant for the given period,
hence all predictions are essentially “in-sample”. However, depending on the regression scheme there
is a difference: with the LS scheme the regression coefficients are calculated once using all data, thus
the predictions are (fully) “in-sample”, where as with the RLS scheme they adapt through the period
and the predictions are “out-of-sample” (except for the offline parameters). This makes a difference,
since model over-fitting is less of a problem when using the RLS scheme.

The typical onlineforecast setup is to optimize the (usually few) offline parameters in an “offline” setting,
but calculate the regression coefficients adaptively with the RLS. This has the advantage that the
model adapts and tracks the systematic changes in input-output relations, while keeping the setup
computationally very effective – updating the coefficients and calculating a forecast at each time t
takes few operations. The optimization of offline parameters can be carried when computational
resources are available (e.g. every week for hourly forecasts).

Transformations

In the transformation stage the inputs are mapped using some function as demonstrated above,
for more examples, see the setup-and-use-model vignette. The onlineforecast package has functions
available for most common use, however it is easy to write and use new functions as they are simply
R functions. The main functionality they have to fulfil is to return a forecast matrix (or a list of them),
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which is also the reason why some of the regular R functions and operators has been extended for
the multi-horizon setup, e.g. for splines as explained below. For R examples, see Section 2.5.2 and the
vignettes. The currently available transformation functions are:

• Low-pass filtering, lp(): A low-pass filtering for modelling linear dynamics as a simple RC-
model. See e.g. Nielsen and Madsen (2006) for further information.

• Basis splines, bspline(): Use the bs function for calculating regression splines basis functions.

• Periodic basis splines, pbspline(): Use the pbs function for calculating periodic regression
splines basis functions.

• Fourier series, fs(): Fourier series as periodic regression basis functions.

• Auto-regressive, AR(): For including Auto-Regressive (AR) terms.

• Intercept, one(): Generates a forecast matrix of ones, i.e. intercept.

In the following section, the low-pass filtering is shortly described below. For more examples of
transformations, see the package vignettes.

The implementation in onlineforecast allows all parameters, which are used in some way (except the
regression coefficients), to be included in an optimization – using any available optimizer i R. This
includes e.g. the RLS forgetting factor, knot points or order of splines – hence both continuous and
integer variables. This functionality is achieved using a simple syntax as explained in Section 2.5.

Low-pass filtering

When modelling time series from linear dynamical systems, the classical ARMAX model is often the
optimal choice (Madsen, 2007). However, for multi-step forecasting this is often not the case, especially
for longer horizons. In the onlineforecast setup, where the regression model is fitted for each horizon, a
“trick” can be used for modelling linear dynamics: simply apply a filter on the input and then use the
filtered input in the regression stage. For example, dynamics between ambient air temperature and
heat demand are slow due to the thermal mass of the building. Thus they can be modelled using a
low-pass filter, see Nielsen and Madsen (2006) for modelling heat load in district heating and Bacher
et al. (2013) for forecasting single buildings heat load.

In the package the simple low-pass filter

xt+k|t =
(1− a)ut+k|t

1− axt−1+k|t−1
(18)

is implemented. The filter coefficient a must take a value between 0 and 1 and should be tuned to
match the time constant optimal for the particular data. When the current implemented low-pass
filter is applied in the transformation stage, on some forecast matrix ut+k|t, the filter is applied on each
column. Hence, independently for each horizon k. More advanced filters can be implemented.

Model selection and validation

Model selection

In statistics, different model selection procedures are used (Madsen and Thyregod, 2010). Essentially,
a backward or a forward selection procedure can be applied, or some combined approach. In the
onlineforecast package both procedures are implemented, as well as a combined approach, see the
model-selection vignette for examples.

In each step of the selection process two properties of the model can be modified:

• Model inputs: In each step, inputs can either be removed or added.

• Integer offline parameters: In each step integer parameters, such as the number of knot points
in a basis spline or the number of harmonics in a Fourier series can be counted one up or down.

In each step of the process, the offline parameters are first optimized to minimize the score for each
modified model (in most cases the appropriate score is the RMSE in Equation (12) summed for selected
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horizons). Then the scores of the modified models are compared with the score of the currently
selected model and the model with the lowest score is selected for the next step. This continues until
no further improvement of the score is achieved and the model with the lowest score is selected. It is
important to note, that the implemented procedure should only be used with the RLS scheme, with
the LS scheme the score is calculated fully in-sample leading to over-fitting.

Model validation

The most important aspects of validation of forecast models are discussed in this section, see the
forecast-evaluation vignette for examples.

Training and test set

One fundamental caveat in data-driven modelling is over-fitting. This can easily happen when the
model is fitted (trained) and evaluated on the same data. There are essentially two ways of dealing
with this: Penalize increased model complexity (regularization) or divide the data into a training set
and test set (cross-validation) (Tashman, 2000). In most forecasting applications the easiest and most
transparent approach is some cross-validation – many methods for dividing into sets are possible. In
the onlineforecast setup, when a model is fitted recursively using the RLS only past data is used when
calculating the regression coefficients, so there is little need for dividing into a training and a test set.

The offline parameters (like the forgetting factor and low-pass filter coefficients) are optimized on
a particular period, hence over-fitting is possible, however it is most often very few parameters
compared to the number of observations – so it is very unlikely to over-fit a recursive fitted model in
this setup.

Scoring

Scoring forecasts can be done in many ways, however in the onlineforecast, where the conditional
mean is estimated and when using the RLS scheme, it is straightforward to choose the Root Mean
Square Error (RMSE) in Equation (12) as the best score to use. When using the LS scheme it can be
favourable to include regulation to avoid over-fitting, hence AIC or BIC is preferable. One important
point when comparing forecasts is to only include the complete cases, i.e. forecasts at time points with
no missing values across all horizons and across all evaluated models. A function for easy selection of
only complete cases given multiple forecasts is implemented, see the examples in Section 2.5.4.

Residual analysis

Analysing the residuals is an important way to validate that a model cannot be further improved or
learn how it can improved. The main difference from classical time series model validation, where
only the one-step ahead error is examined, is that multiple horizons should be included in the analysis.
The two most important analysis:

• Plot residual time series to find where large forecast errors occur.

• Plot scatter plots of the residuals vs. other variables to see if any apparent dependencies are not
described by the model.

In order to dig a bit more into the result of a recursive estimation, the regression coefficients can be
plotted over time. In this way, it is possible to learn how the relations between the variables in the
model evolve over time. If drastic changes are found in some periods it might be worthwhile to zoom
into those periods to learn what causes these changes and potentially how to improve the model. In
case auto-correlation is left in the residuals, an error model can be used to improve the forecasts by
applying an auto-regressive model on the residuals. This is somewhat equivalent to include an MA
part in the original model.

As summarizing measures for validation of how well dynamics are modelled:

• Plot the auto-correlation function (ACF) of the one-step residuals.
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• Plot cross-correlation functions from one-step residuals to other variables, see (Bacher et al.,
2013).

Systematic patterns found in these functions lead to direct knowledge on how to improve the model,
see for example the table on page 155 in Madsen (2007).

Example with R code

A short introduction to the functionalities and steps in setting up a model is given in the following –
for more details, see the vignettes listed in Section 2.1.3 and the website onlineforecasting.org.

First, a few remarks on the implementation. onlineforecast models are set up using an object-oriented
R6 class. The main reason for this is that R6 objects are pointed to per reference, which allows to make
minimum changes in computer memory when updating a model fit with new data – this would not be
possible with the regular S3 class objects, as they are always copied in memory when changed inside a
function.

Furthermore, it is noted, that model inputs and transformations simply are defined using R code.
The regular formula class is not used, since it cannot operate as needed on the multi-horizon forecast
matrices. The provided code for the inputs defines the transformations etc. and is executed for each
input to generate the data used for regression.

Setup of data

Data must be set as variables in a list, here we have loaded D with the data for the examples:

class(D)

## [1] "data.list" "list"

As seen its class is data.list, which is inherited from the list class. Hence, it is simply a list
extended with some modified and new functions (can be listed with methods(class="data.list")).

All inputs to be used must be formatted as forecast matrices and set in the list as data.frames. For
example the ambient temperature forecasts:

class(D$Ta)

## [1] "data.frame"

head(D$Ta[ ,1:8], 4)

## k1 k2 k3 k4 k5 k6 k7 k8
## 1 -2.82340 -3.20275 -3.1185 -3.0896 -3.13200 -3.16130 -3.16645 -3.08885
## 2 -2.90405 -3.11850 -3.0896 -3.1320 -3.16130 -3.16645 -3.08885 -2.77165
## 3 -2.93590 -3.08960 -3.1320 -3.1613 -3.16645 -3.08885 -2.77165 -2.32185
## 4 -2.89315 -3.11285 -3.0484 -3.1090 -3.11600 -2.80990 -2.36895 -2.00945

The time must set in a POSIXct vector named t:

D$t[1:4]

## [1] "2010-12-15 01:00:00 UTC" "2010-12-15 02:00:00 UTC"
## [3] "2010-12-15 03:00:00 UTC" "2010-12-15 04:00:00 UTC"

Observations are simply set in a numeric vector:
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D$heatload[1:4]

## [1] 5.916667 5.850000 5.850000 5.883333

For more details on the data.list class, see the setup-data vignette – which demonstrates useful
functions for manipulating, validating and exploring forecast data.

Defining a model

Models are set up using the R6 class forecastmodel. An object of the class is instantiated by:

model <- forecastmodel$new()

It holds variables and functions for representing and manipulating a model.

If we want to forecast the observed heatload variable in the data list D, we set that as the model output
by:

model$output <- "heatload"

The model inputs must then be defined. We can add an input as a linear function by:

model$add_inputs(Ta = "Ta")

The code given as text simply evaluates into the Ta forecast matrix, which will lead to the k-step
forecast of ambient temperature (i.e. a column in Ta) will be set directly into the design matrix for the
k horizon regression (more explanation of this is given in the end of the current section).

Adding an intercept to a model can be done by:

model$add_inputs(mu = "one()")

where the function one() evaluates into a forecast matrix of 1’s, which will be inserted in the design
matrix, see details in Appendix .2.

Functions for a range of useful transformations were already listed in Section 2.3.1. Dynamics can be
modelled using filters, for example low-pass filtering of a variable with:

model$add_inputs(Ta = "lp(Ta, a1=0.9)")

will apply a low-pass filter along each column of Ta and return a forecast matrix with the modified
data. The filter coefficient is set to a = 0.9. To illustrate the effect of this, see the vignette setup-and-
use-model.

Non-linear effects can be modelled using basis functions. For mapping an input to basis splines the
function bspline() is provided. It is a wrapper of the bs() function from the splines package and has
the same arguments. To e.g. include a non-linear function of the ambient temperature:

model$add_inputs(Ta = "bspline(Ta, df=5)")

where df is the degrees of freedom of the spline function.

Functions can be nested, e.g. first a low-pass filter before mapping to basis splines:

model$add_inputs(Ta = "bspline(lp(Ta, a1=0.9), df=5)")

Varying-coefficient models can be realized with multiplication of inputs (Hastie and Tibshirani, 1993).
For more details, see the solar-power-forecasting example on the website. For more examples of input
transformations, e.g. fourier-series and auto-regressive inputs, see the setup-and-use-model vignette.
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Execution of the input transformations

As seen above, R code is given for each input. The code is given as text and will simply be executed to
calculate the data for regression. This is carried out with the function model$transform_data(data),
inside which:

eval(parse(text=frml), data)

is executed for each input. The frml is the R code for the input (as a character e.g. as "Ta" or
"bspline(Ta,df=5)" in the examples) and data is the list containing the variables used in the frml
code (as D in the examples).

This way of defining the input formulas simply as code is very flexible. It also allows for easy
debugging, for example a function used in the code can be set for debug and it is possible to step
through its execution during the transformation – or even by setting "browser();" directly into in the
input code to stop and step through the execution.

The only constraint to an inputs code is that it must just return a forecast matrix as a data.frame (or
list of them). The regression can then be carried out separately for every horizon by, for the k horizon
taking the k column from each of the returned matrices and bind these together into a design matrix,
on which LS or RLS can be applied to calculate the k horizon forecasts.

Model fitting and offline parameter tuning

After setting up a model it can be fitted to data by carrying out the transformation and regression. To
simply the coding functions of fitting a model are provided. Different functions implement different
regression schemes. The two currently available fitting functions are lm_fit() and rls_fit() – they
take offline parameters as a vector, fits a model and returns the RMSE score (summed for all fitted
horizons).

To demonstrate this we replace the inputs on the model defined above with two inputs by:

model$inputs <- NULL
model$add_inputs(mu = "one()",

Ta = "lp(Ta, a1=0.9)")

We also have to set the “score period”, which is simply a logical vector that specifies the observations
to be included in the score calculation. It is useful for defining a burn-in period and dividing in test
and training sets. For the current linear regression we simply include all points by:

D$scoreperiod <- rep(TRUE, length(D$t))

Now the summed RMSE for the horizons 1 to 6 steps ahead can be obtained by:

model$kseq <- 1:6
lm_fit(c(Ta__a1=0.8), model, D, scorefun=rmse, returnanalysis=FALSE)

## [1] 5.039611

The function can be passed to an optimizer, which can then find the parameter value(s) which
minimizes the score.

Any optimizer function in R can be used, but, again to simplify the code, wrappers for optim() are
included – similar wrappers can easily be made for other optimizers. The parameter(s) to optimize
within the wrapper function is defined by:

model$add_prmbounds(Ta__a1 = c(min=0.8, init=0.95, max=0.9999))

Note, the double underscore syntax. The double underscore separates the input name and the name
of the parameter. So in the case above the value of a1 in the R code for input Ta will be optimized,
starting at an initial value of 0.95 and staying within the specified bounds.

We can then run the optimization calculating scores (to save computational time run on only a horizons
3 and 18 steps ahead):
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lm_optim(model, D, kseq=c(3,18))

The lm_optim() function is a wrapper for the R optimizer function optim(). It returns the result from
optim() and sets optimized parameters in:

model$prm

## Ta__a1
## 0.8926346

i.e. a lower low-pass coefficient than the initial value of 0.95.

For more details, see the setup-and-use-model vignette.

Calculating forecasts

While developing models it is most convenient to use the fit functions for calculating predictions, e.g.:

model$kseq <- 1:24
fit <- lm_fit(model$prm, model, D)

will return a list holding the forecasts (in the forecast matrix fit$Yhat) and other useful information.
Forecasts can also be calculated directly with a predict function:

lm_predict(model, model$transform_data(D))

will return a forecast matrix using the input data in D.

Evaluation

Finally, it is time to evaluate the forecasts and potentially get inspired to improve the model. For a
more comprehensive introduction, see the forecast-evaluation vignette.

First, a plot of the forecasts is always a good idea to learn how the model work:

D$Yhat <- fit$Yhat
plot_ts(subset(D,D$scoreperiod), "heatload$|Yhat", kseq=c(1,5,24), p=p)

4
6

8
10

12

2011−01−01 2011−01−15 2011−02−01 2011−02−15 2011−03−01

heatload: 2.4 to 12
Yhat_k1: 3.9 to 6.8
Yhat_k5: 3.9 to 6.8
Yhat_k24: 4 to 6.8

We can plot the ACF of the one-step residuals by:
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acf(residuals(fit)$h1, na.action=na.pass, lag.max=96, main="")
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The ACF plot suggests that there remains a diurnal pattern to be modelled. It can be achieve by adding
a diurnal curve to the model, e.g. with Fourier series basis functions. This is demonstrated in the
vignette setup-and-use-model.

We also want to calculate the score as a function of the horizon:

inscore <- D$scoreperiod & complete_cases(fit$Yhat)
RMSE <- score(residuals(fit), scoreperiod = inscore)
plot(RMSE, ylim=c(0.75,0.88), xlab="Horizon")
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Which is relatively constant, since the model is very simple. The offline parameters were optimized
for k = 3 and k = 18, which can explain why it is not monotonic increasing with the horizon.

Discussion and conclusion

Extending functionality

The current package is designed to make it easy to implement new transformation functions and
regression schemes, as well as using other optimizers for tuning parameters.

Implementing a new transformation function is straight forward. It must receive either a forecast
matrix or a list of forecast matrices and return either after processing. Furthermore, when used in an
operational online setup, where the transformation is executed when new data arrives, it is possible to
save state information inside a transformation function, such that next time the function is called, the
state can be read and used. See the lp() function for inspiration when writing a new transformation
function.

A new regression scheme, e.g. a kernel or quantile regression, can be implemented. A fitting function
should be implemented in similar way as lm_fit() and rls_fit(), such that the first argument is the
parameter vector and it returns a score value, which can be passed to an optimizer.

It is very easy to use other optimizers. The current fitting functions can simply be passed to any
optimizer in R, which follows the optim() way of receiving a function for optimization, see the code
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in lm_optim().

In future versions new regression techniques, e.g. kernel regression (local fitting) and quantile regres-
sion, might be added. The latter opens up the possibilities to calculate probabilistic forecasts, see
(Nielsen et al., 2006) and (Bjerregaard et al., 2021), as well as carry out normalization and Copula
transformations, which can be very useful for spatio-temporal forecast models, see (Tastu et al., 2011)
or (Lemos-Vinasco et al., 2021).

Summary and conclusion

This paper provides an entry point and reference for working with the onlineforecast package. The
paper covers version 1.0 of the package, which has been available on CRAN in almost one year at the
time of writing.

The main contribution of the package is to make it easy to generate online multi-step forecasts in a
flexible way. The package contains functionalities not directly available elsewhere, such as:

• Enabling the use of input variables given as forecasts, e.g. NWPs, in an easy and flexible way.

• Optimal tuning of non-linear models for multi-step horizons.

• Recursive estimation for tracking time-varying systems computationally efficient for multiple
horizons.

The onlineforecast package has a significant value for anyone who needs to carry out operational online
forecasting. For example, in energy scheduling, where recursive updated forecasts are needed as input
to optimal decision making and real-time control of systems. It can also be very useful for companies
that need online forecasts for other monitoring and real-time applications – especially the functionality
for model updating with very little computational costs when new data becomes available, is a unique
feature of the package.

Computational details

We have tried to make the onlineforecast package depend on as few other packages as possible. Only a
few additional packages are used in the core functionalities: R6 for the “usual” OOP functionalities
and Rcpp (Eddelbuettel and Balamuta, 2018) with RcppArmadillo (Eddelbuettel and Sanderson, 2014)
for easy integration of fast compiled code. For extending the modelling possibilities the splines and
pbs packages are essential, and for nice caching the digest package. We acknowledge the devtools
and knitr (Xie, 2015), rmarkdown (Xie et al., 2018), R.rsp, testthat (Wickham, 2011) packages, which
are indispensable for developing a package. We acknowledge the R community and the amazing work
behind R done by many people over the years!

The results in this paper were obtained using R 4.1.3. R itself and all packages used are available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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Forecast model notation

In this section it is shown how to write onlineforecast models in mathematical notation. Both in a full
description and how to write a shorter summarized description. Note, that when variables are noted
in bold font it indicates that they are multi-variate.

A model can be described in full detail as presented in the following.

The transformation stage

Intercept: µt+k|t = 1 (19)

Periodic: xper,t+k|t = ffs(t; nhar) (20)

Part 1: x1,t+k|t = H(B; a)u1,t+k|t (21)

Part 2: x23,t+k|t = fbs(u2,t+k|t; ndeg)u3,t+k|t (22)

Part 3: x4,t+k|t = u4,t (23)

and the regression stage

Yt+k|t = β0,kµt+k|t + βT
1,kxper,t+k|t + β2,kx1,t+k|t + βT

3,kx23,t+k|t + β4,kx4,t+k|t + εt+k|t (24)

Thus the model inputs are:

• t is simply the time value.

• u1,t+k|t some forecast input (e.g. NWP variable).

• u2,t+k|t some forecast input (e.g. could be a deterministic value, e.g. time of day which is always
know (the |t could be omitted)).

• u3,t+k|t some forecast input (e.g. NWP variable).

• u4,t some value at time t (e.g. an observation variable).

The functions which maps the inputs (u’s) to the regression inputs (x’s) are:

• ffs(t; nhar) is a function generating Fourier series of some implicit period length.

• H(B; a) is a low-pass filter.

• fbs(u2,t+k|t; ndeg) is a function generating basis splines.

Their parameters are the transformation parameters:

• nhar is the number of harmonics.

• a is the low-pass filter coefficient.

• ndeg is the degrees of freedom of the spline function.

which must be set or optimized.

The regression coefficients are

βk =
[

β0,k βT
1,k β2,k βT

3,k β4,k

]T
(25)

=
[

β0,k β1,1,k β1,2,k . . . β1,2nhar,k β2,k β3,1,k β3,2,k . . . β3,ndeg,k β4,k

]T
(26)

If the model is fitted with a recursive scheme, thus the coefficients change over time, it should be
indicated by adding a t to the subscript, e.g. β0,k,t. Furthermore, other parameters can exist, which can
enter an optimization at the transformation stage, e.g. the RLS forgetting factor λ. The parameters
which are optimized in the transformation stage should be presented together.

Specifying the model in all details can be cumbersome to include in some texts, so it makes sense to
simplify the notation. When using a simpler notation, as suggested below, it should be stated, what
is implicit (e.g. the regression stage). Referencing the present text should be sufficient when using a
simpler notation. Naturally, all inputs, functions, etc., should be described in some way.
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A model can be specified in a simpler way, e.g. the model above in one equation

Yt+k|t = β0,k + βT
1,k ffs,k(t; nhar) + β2,k Hk(B; a)u1,t+k|t + βT

3,k fbs,k(u2,t+k; ndeg)u3,t+k|t

+ β4,k u4,t + εt+k|t (27)

or writing the regression stage implicitly by removing the regression coefficients where it is meaningful

Yt+k|t = µk + ffs,k(t; nhar) + Hk(B; a)u1,t+k|t + fbs,k(u2,t+k|t; ndeg)u3,t+k|t + βku4,t + εt+k|t (28)

It is then implicit that the functions are different from the previous stated functions, since they include
the regression coefficients. Again, if fitted with a recursive scheme, then it can be indicated by adding
a t subscript, e.g. ffs,k,t(t; nhar).

To simplify further the k on the functions can be implicit

Yt+k|t = µ + ffs(t; nhar) + H(B; a)u1,t+k|t + fbs(u2,t+k|t; ndeg)u3,t+k|t + βu4,t + εt+k|t (29)

and similarly the transformation parameters can be implicit

Yt+k|t = µ + ffs(t) + H(B)u1,t+k|t + fbs(u2,t+k|t)u3,t+k|t + βu4,t + εt+k|t (30)

Then the functions and their parameters, and the fitting scheme (i.e. with either LS or RLS for each
horizon) should be described in some other way.

Finally, the most simplified notation would be to even remove the time indexing

Y = µ + ffs(t) + H(B)u1 + fbs(u2)u3 + βu4 + ε (31)

after making clear how all the variables are defined.

Regression

In this section the two regression schemes implemented in onlineforecast are described. When fitting
a model, thus estimating the regression coefficients, data from a period t ∈ (1, 2, . . . , n) is used and
passed on to either: the lm_fit() function which implements the Least Squares (LS) scheme, or the
rls_fit() function, which implements the Recursive Least Squares (RLS) scheme.

One important difference between the two implementations is that in the LS the coefficients are
estimated using data from the entire period, thus they are constant during the period and the calculated
predictions are “in-sample”. This is opposed to the RLS, where the coefficients are updated through
the period using only past data at each time t. In that case the coefficients vary over time and the
calculated predictions are “out-of-sample”.

This difference is explained in the following and indicated by subscripting the coefficient vector with t
only for the RLS.

Least squares

The regression coefficients for the k’th horizon is set in the vector

βk =
[

β0,k β1,k . . . βp,k

]T
(32)

Note, that t is not included in the subscript.
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The input data for the k horizon is the design matrix

Xk,t =



x0,1+k|1 x1,1+k|1 . . . xp,1+k|1

x0,2+k|2 x1,2+k|2 . . . xp,2+k|2
...

...
...

x0,n−1|n−1−k x1,n−1|n−1−k . . . xp,n−1|n−1−k

x0,n|n−k x1,n|n−k . . . xp,n|n−k


(33)

The output observations are in the vector

yk,n = [y1+k y2+k . . . yn−1 yn]T (34)

The LS estimates of the coefficients are

β̂k = (Xk,nXk,n)−1Xk,nyk,n (35)

The predictions are “in-sample” and calculated by

ŷk,n = Xk,n β̂k (36)

and returned when fitting a model with lm_fit().

The estimated coefficients may now be used for “out-of-sample” prediction (for tnew ≥ n), with the
input

xtnew+k|tnew
=
[

x0,tnew+k|tnew
x1,tnew+k|tnew

. . . xp,tnew+k|tnew

]T
(37)

by

ŷtnew+k|tnew
= xtnew+k|tnew

β̂k (38)

This can be done by providing new data to the lm_predict() function.

Recursive least squares

In the RLS scheme the coefficients are recursively updated through the period. Time t steps from 1
to n and in each step the “newly” obtained data at t is used for calculating updated coefficients. The
coefficient vector has the same structure as for LS

βk,t =
[

β0,k,t β1,k,t . . . βp,k,t

]T
(39)

The only difference is that we now subscript with t because it varies over time.

Only the most recent input data at t (the row at t from the LS design matrix in Equation (33)) is used
in each update

xk,t =
[

x0,t|t−k x1,t|t−k . . . xp,t|t−k

]T
(40)

and similarly the most recent output observation yt. At each time t the coefficients are updated by

Rk,t = λRk,t−1 + xk,tx
T
k,t (41)

β̂k,t = β̂k,t−1 + R−1
k,t xk,t(yt − xT

k,t β̂k,t−1) (42)

Hence, when applying RLS for data from the period t ∈ (1, 2, . . . , n) the RLS provides a new value of
the coefficients for each time t (opposed to LS).

The predictions are calculated recursively as well by using the updated coefficients at each time t.
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Given the inputs

xt+k|t =
[

x0,t+k|t x1,t+k|t . . . xp,t+k|t
]T

(43)

the prediction is

ŷt+k|t = xt+k|t β̂k,t (44)

Only past data has been used when calculating the predictions through the period, hence they are
“out-of-sample” predictions (these predictions are returned by rls_fit()).

The initial value of R is set simply set to a zero matrix with diagonal 1/10000 and β set to a zero vector.

An alternative updating scheme, which is actually the implemented scheme (gives the same results as
the scheme above), is the Kalman gain scheme (Sayed and Kailath, 1994), where matrix inversion is
avoided

Kk,t =
Pk,t−1xk,t

λ + xT
k,tPk,t−1xk,t

(45)

β̂k,t = β̂k,t−1 + Kk,t(yt − xT
k,t β̂k,t−1) (46)

Pk,t = 1
λ

(
Pk,t−1 − Kk,tx

T
k,tPk,t−1

)
(47)

This actually opens up the possibilities for self-tuned variable forgetting (Shah and Cluett, 1991).
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Abstract

District heating is an efficient method of distributing heat in densely populated areas at a low cost. The heat is usually produced at
central production plants and then distributed to consumers through large networks of pipes. However, district heating is gradually
becoming more decentralised with additional heat sources, e.g. heat pumps, solar thermal farms, and industrial waste heat connected
to the network. Therefore, the system is changing from a system with centralised heat sources to a more decentralised system with
several different heat sources within the network, including also still a large production area. Operationally this is more complex
than the previous setup, especially in terms of temperature optimisation. Typically, the temperature must be adjusted for each area
in order to work efficiently with the decentralised heat sources, so a forecast of the local heat demand is required. It is relatively
easy to make a forecast for each area, but they are usually made independently and are therefore not necessarily coherent. This
paper proposes a methodology to spatially reconcile hierarchies of individual localised heat demand forecasts with a coherency
constraint. This results in coherent reconciled forecasts. The suggested methodology has been demonstrated in several case studies
and has been shown to be able to enhance forecast accuracy significantly. This paper will use two case studies to illustrate the
proposed method. One case study has a few areas, while the other case study will have more areas, and here it is proposed to add
a new level of aggregation to the hierarchy to increase accuracy. The results in this paper show that the reconciled forecast, where
information is shared between areas through the spatial hierarchy, improves forecast accuracy by 1% to 20%, depending on the
prediction horizon.

Keywords: Forecast Reconciliation, Adaptive Estimator, Spatial Hierarchy, District Heating

1. Introduction

New methods for the operation of district heating are de-
veloping quite rapidly. The supply temperature in the network
needs to be reduced to increase efficiency and maximise the
flexibility potential of district heating [1]. Improving the effi-
ciency of district heating and maximising flexibility are impor-
tant as they can be seen as a solution to the occasional electricity
surplus that is expected to grow over time with the increase in
the share of intermittent renewable energy sources (RES) [2].
District heating can increase the efficiency of the overall energy
system due to its unique ability to store heat over long periods of
time and its high efficiency in converting electricity into heat,
e.g. through heat pumps [3]. In addition, due to the increas-
ing number of intermittent heat sources, more thermal energy
storage (TES) systems are being installed [4, 5]. These new
changes with additional heat sources and TES systems lead to
more complex systems than traditional district heating systems.
Future district heating systems will become more decentralised,
with more RES sources and a closer coupling with the power
sector.

However, to make this transition more feasible and effi-
cient, the supply temperature of the network needs to be low-
ered to make the integration of the new heat sources, e.g. heat

∗Corresponding Author
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pumps, into the district heating system more effective [3, 6]. In
addition, more detailed knowledge of the system needs to be
acquired as district heating becomes more decentralised with
heat units and TES in the network. For instance, if the district
heating system consists of a large production area with trans-
mission lines and two heat exchangers supplying two distri-
bution networks for heat. The distribution networks could be
equipped with heat pumps and TES. Therefore, the supply tem-
perature for each distribution network area and the transmission
line needs to be optimised precisely in order for the system to
work efficiently. Temperature optimisation requires informa-
tion about future demand to obtain optimal supply temperature
set points [7, 8]. It takes time to send one unit of hot water from
a production plant to the users (the time delay). Therefore, in-
formation about the future heat load and network characteristics
(e.g., time delay, temperature loss) are needed to ensure that
sufficient temperature reaches the consumers [9]. Therefore, an
accurate heat load forecast must be available. In practice, how-
ever, district heating companies usually only produce a forecast
for a large area, or they distribute a forecast for a large area to
smaller areas by scaling it according to a heat consumption ratio
determined in the past [10]. This practice introduces a signifi-
cant error and bias in the consumption forecast, as the dynamics
of the heat load can change rapidly due to climate or changing
behaviour.

Accurate forecasts of the local heat load are therefore im-
portant for district heating utilities for controlling the supply
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temperature. However, the district heating utility needs a to-
tal heat load forecast for its production optimisation and plan-
ning. Therefore, forecasts for the total heat load and the local
areas are needed. Ideally, these forecasts must be coherent, i.e.
the aggregation of the local forecast must be consistent with
the total forecast. However, this is not guaranteed if the fore-
casts are produced independently of each other. Coherence can
be achieved by reconciling forecast hierarchies [11]. Hierarchy
constraints ensure that forecasts are coherent but have also been
shown to lead to more accurate forecasts [12] due to a transfer
of information between hierarchies. Constraints between hier-
archies are used in the reconciliation process, where it uses in-
coherent forecasts and produces coherent forecasts, which are
called reconciled forecasts. This not only solves the problem of
incoherent forecasts but also improves forecast accuracy [13].

1.1. Heat Load Characteristics and Forecasting
Energy forecasting is evolving rapidly, especially for re-

newable energy sources [14]. Energy forecasts are valuable
because they are needed to optimise future strategies for the
sectors. For instance, in a district heating system, it could be
decided if the TES system is charged when electricity prices
are expected to be low during low heat demand or if the Com-
bined Heat and Power plant (CHP) is operated at full capacity
when electricity prices are expected to be high. Even if the heat
demand is low during the operation of the CHP, the TES sys-
tem could be charged. Therefore, a heat load forecast is needed
to support decision-making and production optimisation when
selecting heat units [15], charging/discharging the TES system
[4, 16], or temperature optimisation [8, 17, 18].

Heat load forecast is therefore often studied, and its popu-
larity has increased in recent decades due to the growing impor-
tance of unlocking the flexibility of district heating for energy
systems with a high share of fluctuating renewables. It is im-
portant to understand the characteristics of heat in order to build
an appropriate and robust forecasting model. Heat load can be
divided into two main categories: Space heating and domestic
hot water usage with the addition of heat losses in the systems.
Space heating is about heating the consumer’s home to main-
tain thermal comfort, while domestic hot water usage is about
meeting the consumer’s other needs, such as showering. The
heat demand can also be divided into a physical and a social
heat load, as described in Gadd and Werner [19]. The physical
part is determined by the weather and the thermal insulation of
the building, where the ambient air temperature is a significant
variable for driving the heat consumption [20]. The insulation
of the building envelope acts as a resistance in the heat transfer
between the ambient air and indoor temperature, and the heat
consumption is used to maintain a certain indoor temperature.
Other weather variables also influence heat consumption, e.g.
solar radiation and wind speed. Solar radiation reduces heat
consumption as the solar beams enter through the window and
heat the floor. The effect depends, for example, on the strength
of the radiation, the angle of the rays and the size of the window.
The wind influences the natural ventilation in buildings, and a
higher wind speed increases heat consumption. The social ef-
fect affects heat consumption when hot water is used, e.g. when

taking a shower in the morning before work. The heat load is
not stationary, as heat consumption also changes due to weather
changes. For example, as the ambient air temperature rises at
the beginning of summer, less space heating is then needed until
a certain threshold temperature is reached, at which space heat-
ing is no longer required. Social behaviour also changes over
time, e.g. during the summer holidays when fewer people are
at home. More detailed information about physical and social
heat load dependencies can be found in Nielsen and Madsen
[20] and Gadd and Werner [19].

Knowledge as outlined above can then be used to identify
significant input variables for the model and how they should
be treated (e.g., instantaneous or transformed). Several predic-
tion model methods have been proposed that can be used to
predict heat load. Dotzauer [21] propose a linear regression
model where the relationship between the heat and the input
variables is investigated, e.g. the dependence on the ambient
air temperature is treated by creating a piecewise linear func-
tion. Dahl et al. [22] also uses a linear regression model with
seasonal lags. The inputs are the weather forecasts, where the
aim was to investigate the gain from uncertainty in heat load
forecast by using an ensemble of weather forecasts as inputs.
Grosswindhagera et al. [23] proposes using Seasonal Autore-
gressive Integrated Moving Average (SARIMA) formulated in
a state-space form to produce online forecasts using the Kalman
filter. These methods are simple and neglect the non-linearity
and non-stationarity of the heat load. In Dahl et al. [24] and
Idowu et al. [25], linear regression, neural network and support
vector regression (SVR) are compared, which in Idowu et al.
[25] also is compared with regression tree. The SVR method
provides the best predictive performance with the lowest pre-
diction error. The SVR and the neural network can deal with
non-linearity because they are nonlinear models, whereas the
SVR can use nonlinear kernel values to model the relation-
ship, and the neural network has nonlinear activation functions.
However, these models have problems with the non-stationary
heat load and would therefore often need to be recalibrated fre-
quently. Nielsen and Madsen [26] propose to use the grey-box
method to predict the heat load where physical insights and sta-
tistical methods are used to find an optimal model. A linear
regression model is used for predicting heat load, where the
inputs are transformed to deal with non-linearity. Also, the
coefficients are estimated using recursive least squares (RLS)
with exponential forgetting to deal with non-stationarity, allow-
ing the coefficients to adapt to changes as new observations
become available and exponentially down-weighting the older
ones. Recurrent neural networks (RNN) and convolutional neu-
ral networks, and long short-term memory (CNN-LSTM) have
been proposed to extend the neural network to deal with non-
stationarity, as shown in Kato et al. [27] and Song et al. [28].

1.2. Hierarchical Forecasting and Reconciliation
Reconciliation is the process of making forecasts coherent

according to their hierarchical structure. The individual fore-
casts are usually incoherent, and in many applications, these
forecasts need to be coherent as specified by their hierarchy.
Energy production planning, for example, needs coherent fore-
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casts to make optimal decisions based on forecasts for different
horizons [29]. The reconciliation process not only makes the
individual base forecast coherent but has also been shown to
increase the accuracy of the forecasts [12, 13, 29]. Van Erven
and Cugliari [30] prove that reconciliation forecasts should per-
form at least as well as the base forecast on average. However,
this depends on the quality of the weights in the reconciliation
process, as shown in Nystrup et al. [31], where it is shown that
no improvements can be achieved if the errors of the base fore-
casts, which are used to estimate the weights, are too highly
correlated. Therefore, the independent base forecast at the dif-
ferent levels in the hierarchy cannot come from the same model
using the same information (e.g. input variables) at all levels, as
they have nothing to exchange between levels. Hollyman et al.
[32] show that the reconciliation process is a special case of a
combination forecasting method by reformulating it into a com-
bination of direct forecasts using linear coherent constraints.

Several recent studies have demonstrated the improvement
in accuracy using the reconciliation process, and the benefits
of coherent forecasts in the energy sector [33]. Nystrup et al.
[29] demonstrates the improvement for short-term electricity
load forecasts. Jeon et al. [34] demonstrate the reconciliation
process for probabilistic forecasting of wind power and electric
load to ensure coherence, resulting in higher accuracy of the
forecasts. Ber [12] demonstrate that using temporal hierarchies
with the hierarchy of all-natural levels from one hour ahead to
daily time resolutions leads to 15% higher accuracy compared
with state-of-the-art hourly heat demand forecasting.

Thus, reconciling an independent base forecast of heat de-
mand between different areas inside the district heating network
can result in accuracy improvements for all forecasts. These
improvements will then lead to higher cost savings for the op-
eration of the system since a more precise forecast will improve
the production optimization, temperature optimization and the
operation of the decentralized heat sources, e.g. heat pumps.
It will also increase the possibility of reducing supply tempera-
ture in the network, reducing cost, and reducing heat losses in
the system [8]. This will also increase the efficiency of the heat
sources in the system, e.g. cogeneration plant [35]. More im-
portantly, it will increase the feasibility of power-to-heat units,
and the flexibility of district heating is then leading to a flexi-
bility of the power system [3].

1.3. Contribution
The purpose of this study is to develop a spatial hierarchical

framework that handles the dynamics of heat load to improve
the accuracy of individual forecasts for each area in the hierar-
chy for district heating demand. The proposed method makes
individual base forecasts coherent. It improves accuracy by us-
ing the reconciliation process with an empirical covariance ma-
trix estimator estimated from the base forecast errors. Due to
the nature of the heat demand observations, it is proposed to use
a recursive and adaptive covariance estimator, i.e. the estimator
can be easily updated and weights down previous observations
to give more importance to new observations. We propose us-
ing exponential smoothing with a forgetting factor to estimate
the covariance matrix as suggested in Ber [12].

We propose to estimate an individual covariance matrix for
each prediction horizon and use an optimal forgetting factor for
each horizon. We document the accuracy improvements by us-
ing a covariance matrix estimated for each horizon compared
to only using forecast errors from one-step-ahead predictions.
Also, the accuracy difference between using the same forgetting
factor for all horizons and the optimal factor for each horizon is
also investigated. These results are demonstrated using two dif-
ferent case studies, one with few areas and another with many
areas. For the case study with many areas, it was possible to add
a new level, and it is shown that adding a new level to the hi-
erarchy increases the accuracy. An operational state-of-the-art
heat load forecasting system is used to compare and illustrate
the accuracy improvements possible through the reconciliation
process. The paper also includes a simulation study on heat load
forecasting to investigate the accuracy improvements when the
spatial hierarchy is applied in the reconciliation process.

The paper is organised as follows. The data from the two
case studies are presented in Section 2. Section 3 discusses
the base forecasting model used by the authors to forecast heat
demand. The spatial hierarchies and the reconciliation process
are also presented. The results are presented in Section 4 and
discussed in Section 6. The paper is then concluded in Section
7.

2. Data

The data used in this study is heat load from two district
heating utilities in Denmark; Fjernvarme Fyn and Brønderslev
Forsyning. Both utilities produce and deliver heat to their con-
sumers in Fyn and Brønderslev, respectively. Fjernvarme Fyn’s
heat load data consists of total heat consumption and the twelve
areas into which the total heat consumption is divided, while
Brønderslev Forsyning consists of total consumption and three
areas. The data for both utilities have an hourly resolution from
1 January 2019 to 1 December 2021 for Fyn, while Brønderslev
has data from 1 February 2020 to 1 June 2022. The heat load is
denoted by{

Y i
t ; t = 1, . . . ,T, i = Total,Area1, . . . ,Areag

}
, (1)

where T is the total number of observations, and g is the cor-
responding total number of areas. The measurements are vi-
sualised in Figure A.19 for Fyn over the whole period and in
Figure A.18 for Brønderslev.

The heat consumption from both utilities shows seasonal
variations in heat load as described in Gadd and Werner [19],
correlating with ambient air temperature, i.e. high in cold pe-
riods and low in warm periods. The daily heat demand profile
also correlates with ambient air temperature, but the social be-
haviour of each area also shapes the profile. In addition, there
are some missing values in all series. The magnitude of demand
is not the same in all areas, and the volatility is also different.
The dynamics in the areas at Fyn, as seen in Figure A.19, dif-
fer more than the dynamics between the areas in Brønderslev,
as seen in Figure A.18. The areas in Brønderslev have similar
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Figure 1: Layout of the areas at Fjernvarme Fyn.

dynamics with slight differences in magnitude but almost iden-
tical. The areas on Fyn have both different dynamics and mag-
nitudes. However, some areas are similar and could therefore
possibly be grouped together. Figure 1 shows the individual
areas that Fjernvarme Fyn supplies heat to.

The total heat load in this study is not the total heat load
for the utilities, as the heat loss is discarded here. This ap-
proach is used since otherwise, heat loss would also have to be
included as an area in the hierarchy, and a forecasting model
would have to be created to predict heat loss. It can be diffi-
cult to accurately predict heat loss as it varies depending on the
pipe’s supply temperature and flow and the pipes’ surrounding
temperature. Hence, it was decided not to consider this in this
study for simplicity. Therefore, the total heat load in this study
is only the aggregated load from all areas.

2.1. Operational heat load forecasts
Both Brønderslev Forsyning and Fjernvarme Fyn use fore-

cast with an hourly resolution for several forecast horizons,
which are used to optimise their operations. A commercial fore-
cast provider delivers the hourly heat load forecasts to both util-
ities. The HeatFor™1 solution provides the heat load forecasts.
The heat load forecast, Ŷ i

t+k|t, is updated every hour for k steps
in advance for each group i, as shown below,{

Ŷ i
t+k|t, t = 1, . . . ,T, k = 1, . . . ,K, i = total, area1, . . . , areag

}
. (2)

State-of-the-art operational forecasts are referred to through-
out the text as operational base forecasts. This work aims to
improve the accuracy of the one-step to 24-step forecast. Thus,
the forecast horizon of interest for improving hourly forecast
accuracy is k = 1, 2, . . . , 24.

2.2. Numerical Weather Prediction
The numerical weather predictions (NWPs) used as input

to the forecast models were provided by the MetFor™2; i.e. by
the same commercial forecast provider as for the heat load. The

1https://enfor.dk/services/heatfor/
2https://enfor.dk/services/metfor/

NWPs consist of climate variables with an hourly resolution,
updated every hour and available for forecasting heat load Ŷ i

t+k|t.
An example of an NWP for the kth prediction horizon is the

predicted ambient temperature [in ◦C] denoted by{
T a,NWP

t+k|t , t = 1, . . . ,T, k = 1, . . . ,K
}
. (3)

The NWPs are used to produce the heat load forecasts re-
quired in addition to the operational base forecast.

3. Methods

This section introduces the methods used for generating the
forecasts for the study. In section 3.1, the forecasting method-
ology used in creating the base forecasts is presented, which
are needed additionally with the operational base forecasts. A
grey-box method is used to generate the base forecasts, which
will be referred to as simple base forecast throughout the text.
Section 3.2 presents the methods of hierarchical forecasting
and the linear constraints they impose on spatial aggregation.
Lastly, Section 3.3 defines the reconciliation process, which is
done when the base forecast does not satisfy the coherency con-
straints by the hierarchy.

3.1. Heat Load Base Forecast
Since the operational base forecast is not available for each

level of aggregation, additional forecasts for heat load are needed.
The forecasting method used here is a linear regression model
where the coefficients are estimated using adaptive RLS with
a forgetting factor, where past observations are exponentially
weighted downwards as suggested by Ljung and Söderström
[36]. This forecasting model has shown promising results for
several energy forecast studies. For instance, Bacher et al. [37]
and Bacher et al. [38] use the proposed method to predict the
electricity generation from PV systems and heat load for single-
family homes, Ber [12] to predict the heat load for a district
heating system to be used in temporal hierarchical forecasting,
RAS [39] to predict the electrical load for supermarket refrig-
eration, and Jónsson et al. [40] to predict electricity spot prices.

The forecasts are made using the R- package, onlinefore-
cast [41]. The package provides an ideal forecasting frame-
work for heat load forecasting as it provides the tools to deal
with the non-stationarity and non-linearity of the heat load time
series. Thus, account for the time-varying dynamics and the
non-linear relationship between the load and input variables,
such as NWP and social behaviour. The forecasting methodol-
ogy of the package is only briefly introduced here. For a more
detailed introduction, see Bacher et al. [41] and Bergsteinsson
et al. [42]. The package is based on a regression model that
models the output variable as a linear combination of the in-
put variables. However, it also contains a possibility for map-
ping the input variables to handle non-stationarities and non-
linearities of the output and input variables. The method con-
sists of a two-stage modelling procedure as proposed in [43]
and [39]. This procedure consists of a Transformation Stage
and a Regression Stage. In the Transformation Stage, the input
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variables are transformed either directly by a function or non-
parametrically, e.g. using splines. A linear model is then cre-
ated using the transformed data to predict the heat load. Subse-
quently, in the Regression Stage, the model’s coefficients are es-
timated recursively using the RLS method. The two-stage mod-
elling procedure thus deals with non-linearity and non-stationarity
using the RLS method by recursively estimating the model co-
efficients and transforming the input variables appropriately.

3.2. Hierarchical Time Series Forecasting
Hierarchies for time series define the structure from the most

granulated series to the most aggregated. Hierarchies are di-
vided into three types; temporal hierarchies (see e.g. [44]), spa-
tial hierarchies, in literature sometimes called cross-sectional
hierarchies (see e.g. [45]), and spatio-temporal hierarchies which
combines the two [46].

In spatial hierarchies, the structure is related to either spa-
tial aggregation or some grouping aggregation, e.g. Yang et al.
[47] uses a geographical hierarchy to make PV forecasts coher-
ent across the whole energy system from the inverters on the
PV, subsystems, PV plants and all the way up to the transmis-
sion zones. All these different groups require individual base
forecasts to operate their system and are therefore not necessar-
ily coherent. They argue that if the forecasts are constrained to
be coherent, then the decision-makers in the electricity grid can
improve their planning of the grid due to the intermittent indi-
vidual power injection to the grid. Hence, a more detailed and
coherent overview of when and where the power will enter the
grid is obtained.

Temporal hierarchies consider aggregation in the time do-
main. An example is described in Ber [12] reconciles temporal
hierarchies forecasts to make different heat load resolution fore-
casts coherent. This allows for better alignment of the decision-
making for production scheduling which has a higher tempo-
ral resolution (e.g. day ahead), while temperature optimiza-
tion needs heat load forecasts on lower resolution (e.g. hourly).
Yagli et al. [48] demonstrates a spatio-temporal hierarchy of PV
systems, where the focus is on simultaneously making the fore-
casts spatially and temporally coherent. Petropoulos et al. [49]
discuss this more in detail and refer to multiple studies that use
spatial, temporal or both in their research.

Area 1

Area 2 Area 4

Area 3 Total

Area 1 Area 2 Area 3 Area 4

District Heating 
System

District Heating
Hierarchical Structure

Figure 2: Example of a simple spatial hierarchy structure for heat load forecast-
ing.

This study considers spatial hierarchies of the areas within
district heating networks. In these systems, the total heat con-
sumption should be coherent with the area forecasts, i.e. the

aggregation of area forecasts should equal the forecast total
consumption. For example, a district heating system that has
one production plant, one transmission line and four distribu-
tion systems. Assuming no heat loss, the heat produced at the
production plant is the total heat consumption, and the four dis-
tribution systems are the bottom areas. Figure 2 illustrates this
type of district heating system on the left and shows the corre-
sponding hierarchy on the right. Thus, the total of the four areas
should aggregate to the total demand.

A summation matrix S is used to describe the structure of a
hierarchy. The general definition of the summation matrix for
any balanced hierarchy structure (as shown in Figure 3) is given
in Nystrup et al. [29] as

S =


Im/`1 ⊗ 1T

`1
...

Im/`L ⊗ 1T
`L

 (4)

where ⊗ denotes the Kronecker product, Im/` is an identity ma-
trix of order m/`, and 1` is an `−vector of ones. The aggrega-
tion levels are a factor of m, which is the sampling frequency
of the lowest level. In the example above, `1 = m, `L = 1, and
m/` is the number of observations at the aggregation level `.
Using the hierarchy structure in Figure 2 to illustrate this, the
hierarchy has aggregation levels `1 = 4 and `2 = 1 with m = 4
and the dimension of the base forecasts in the structure is n = 5.
This results in the following summation matrix corresponding
to Figure 2

S =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5)

It is also possible to add additional layers to the hierarchy.
This adds to the complexity of the problem, but assuming that
the forecast errors are not too highly correlated, then the added
information should improve the accuracy of the reconciled fore-
casts [31]. Figure 3 shows the hierarchy from Figure 2 with an
additional layer.

Here a layer has been added between the area forecasts and
the total forecast, which aggregates the area forecasts in pairs;
however non-symmetrical hierarchies are equally valid. Adding
a layer in this manner results in the following summation matrix
corresponding to Figure 3.

S =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(6)

This requires m = 4 bottom-level forecasts and n = 7 base
forecasts.
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Total

Area 1 Area 2 Area 3 Area 4

Agg 1 Agg 1

Figure 3: Example of hierarchy with added aggregation layer between area and
total forecasts

3.3. Reconciling Forecasts
The reconciliation process describes the transformation of

individual time series to be coherent according to the defined
hierarchical structure. In relation to heat demand forecasts, it
results in making them coherent such that the aggregation of
the lower levels match the higher levels and vice versa. Hence,
the process is defined by linear constraints. Thus, for the recon-
ciliation process, a projection matrix is needed that projects the
individual base forecast to a coherent subspace as defined by
the linear constraints [50]. For example, making independent
base forecast reconciled using the bottom-up method,

Ỹ = SGŶ , (7)

G =
[
0m×(n−m)|Im

]
, (8)

where Ỹ is the reconciled forecast, G is a extraction matrix of
order m × n, which extracts the m bottom-level forecasts, Ŷ is
the base forecasts. Here, G extracts the bottom forecasts and
aggregates them up according to the summation matrix and the
SG is the projection matrix in the reconciliation process. The
G matrix is the mapping of the base forecasts to the bottom-
level reconciled forecasts therefore the accuracy of the recon-
ciled forecasts depends on G. Simply choosing G according to
the bottom-up method is inefficient as it disregards all informa-
tion in the higher levels.

Therefore, a more optimal approach is needed where all in-
formation in the hierarchy is shared between the forecasts using
the G and hence the projection matrix to reduce the error of the
reconciled forecast. Hyndman et al. [11] propose a regression
approach to estimate the mapping matrix G using generalized
least square estimation, minimising the coherency errors, i.e.
the error between the base forecast and the reconciled forecast,
subject to the coherency constraint. In this formulation, the base
forecasts are then written in regression form,

Ŷt+k|t = Sβ(k) + ε(k), (9)

where β(k) = E[Y`,t+k |Y = y1, . . . , yt] is the unknown condi-
tional mean of the future values of the most granular observed
series, i.e. the reconciled forecasts. The ε(k) represents the er-
ror between the base forecasts and their expected value, the co-
herency error Ŷ−Ỹ . The error ε(k) is assumed to have zero mean

and covariance matrix, Σ. Hence, the generalized least squares
estimation of β(k) in Eq. (9). If Σ is assumed to be known and
the base forecasts are unbiased, the reconciled forecasts can be
estimated by

ỹ = S (S TΣ−1S )−1S TΣ−1ŷ, (10)

where the matrix G = (S TΣ−1S )−1S TΣ−1. The issue with this
approach is that the covariance of the coherency errors Σ is not
identifiable, as shown by Wickramasuriya et al. [13]. Conse-
quently, multiple authors have suggested possible alternatives.
Hyndman et al. [11] argued that Σ would be difficult to esti-
mate and replaced it with an identity matrix, thus placing equal
weights on all base forecasts. Hyndman et al. [45] proposed
estimating Σ by using weighted least squares where the vari-
ance of the one-step ahead base forecast is used in place of Σ.
Athanasopoulos et al. [44] proposed three different structures of
the estimator based on the in-sample base forecast errors. How-
ever, all of the estimators disregard variance between groups
and levels in the hierarchy. Wickramasuriya et al. [13] intro-
duce what they call the minimum trace (MinT) reconciliation,
which uses the full variance-covariance matrix of the base fore-
cast errors. In Nystrup et al. [29], it is also proposed to use the
full variance-covariance matrix to maximise the accuracy po-
tential of the reconciliation process. While other methods have
since been proposed, e.g. the Combined Conditional Coherent
forecasts (CCC) by Hollyman et al. [32], the MinT has seem-
ingly become somewhat of a go-to method for forecast recon-
ciliation. Hence, the full covariance of the base forecast errors
will be used for the reconciliation process in this study.

Operational forecasts often need to be re-estimated multi-
ple times per day according to the operation it is needed for.
Therefore, the reconciled forecast also needs to be re-estimated
with the same frequency as the base forecast. This requires fast
computations such that the forecasts are available when they are
needed. For example, temperature optimization in district heat-
ing networks is usually done on an hourly resolution based on
new heat demand observations for the past hour. The data needs
to be sent between servers and needs to be quality-checked be-
fore it is used. Input variables also need to be available as soon
as possible, but they also take time. Then the base forecast
needs to be updated and used e.g., for recalculation of the opti-
mal set point of the temperature optimization. Hence, the com-
putation of the reconciliation forecasts needs to be fast.

To ensure rapid computations Ber [12] propose using the
exponential smoothing method to estimate the covariance,

Σ̂t = λΣ̂t−1 + (1 − λ)eteT
t . (11)

where et is the newest base forecast error at time t, λ is the for-
getting factor and Σ̂t−1 is the previously estimated covariance
matrix. Hence, updating the estimator with new information is
quick, and only the previous estimator and current error need to
be stored. This method also makes the estimator adaptive due
to the forgetting factor where past information is exponentially
down-weighted, i.e. newer observations have more influence on
the estimation. This is useful, for instance, when the system is
non-stationary, and forecasts need to adapt quickly to changes
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that occur. We therefore propose to estimate the covariance es-
timator using the exponential smoothing method, as the fore-
casts in this paper are used operationally and are updated on an
hourly basis to handle the non-stationary heat load.

The accuracy improvements achieved using the proposed
reconciliation process will be demonstrated using the Relative
Root Mean Squared Error (RRMSE),

RRMSE =
RMSE

RMSEbase − 1, (12)

where RMSEbase is the Root Mean Squared Error (RMSE) of
the base forecasts, and RMSE is of the reconciled forecast. The
result demonstrates either improvement or decline in perfor-
mance compared to the base forecast, where negative values
correspond to improvements in accuracy over the base forecast.
The RRMSE is frequently used to compare forecasts between
different methods due to its interpretability of the relative mea-
sure [51].

4. Results

This section presents the results of applying the reconcilia-
tion process to the heat demand forecasts for the spatial hierar-
chy. Section 4.1 presents an example of the simple base forecast
model and demonstrates its performance. Section 4.2 shows the
optimisation of the forgetting factor for the covariance estima-
tor. The forgetting factor must be optimised over an in-sample
period to achieve optimal improvement in accuracy over the
out-of-sample period. In Section 4.3 the improvements for the
case study Brønderslev Forsyning are presented. Furthermore,
in Section 4.3.1, the difference in accuracy for the reconcilia-
tion process when using the one-step prediction errors versus
using the corresponding prediction horizon for each horizon for
the estimation of the covariance matrix is investigated. Finally,
Section 4.4 presents the improvements in Fjernvarme Fyn and
demonstrates the difference in accuracy when using different
hierarchy structures.

4.1. Base Forecast
The model identification and validation will follow the steps

described in Bacher et al. [38], find the optimal model by ex-
tending the model by investigating if there are any missing dy-
namics left by residual analysis of the one-step error as well as
investigating if the errors and other inputs are correlated using
the cross-correlation function (CCF) for each modelling step.
The CCF is used to identify any remaining dynamics that an
input variable can explain or if different transformations for the
current inputs can be used to improve the model. The models
are thereby constructed by using the forward selection princi-
ple, i.e. adding new inputs sequentially and examining which
input had the lowest error score during the scoring-period pe-
riod. The same approach will be applied here to find the optimal
models, and using the Root Mean Squared Error (RMSE) will
be used to compare the performance of models. However, this
process will not be shown in this work as explaining the process
is tedious. Similar models have been proposed. For instance,

Ber [12] uses the same method to establish a forecasting model
for each temporal level.

An example of a model created for this study is the total
forecast in Brønderslev Forsyning. The training period is from
2020-02-01 to 2020-05-01, with the first month used as a ”burn-
in” period, i.e., discarded when calculating the error score. The
scoring period is then 2020-03-01 to 2020-05-01. The final
model is,

Ŷt+k|t = θ0,k + θ1,kYt + θ2,kHaT (q)T a,NWP
t+k|t +

θ3,kHaW (q)Wa,NWP
t+k|t + θ4,kHaG (q)Ga,NWP

t+k|t +

θ5,kT a,NWP
t+k|t + θ6,kWa,NWP

t+k|t + θ5,kG
a,NWP
t+k|t ,

(13)

where the filters are of the from

Ha(q) =
1 − a

1 − aq−1 , (14)

with the backward shift operator ([q−1]). The offline coefficients
(i.e. the constants for the model which are estimated in the in-
sample period) of the model are: the time constants for ambi-
ent air temperature ([aT]), wind speed ([aW]), global radiation
([aG]) and the forgetting factor ([λ]). The off-line coefficients
are estimated during the in-sample period from 01/02/2020 to
01/05/ 2020, removing the first month in the scoring period, i.e.
the first month is treated as a burn-in period, while the other
errors are used to calculate the RMSE, i.e. the scoring period.
The forecast horizons used for the estimation of the offline co-
efficients are k = {3, 6, 12, 18, 24}. The offline coefficient esti-
mates are presented in Table 1. The θ coefficients are estimated
recursively as new observations become available, see Bacher
et al. [37] for further details.

Table 1: Estimates of the offline coefficients for the total heat demand forecast
at Brønderslev Forsyning

aT aW aG λ

0.937 0.816 0.980 0.992

The RMSE for each horizon is shown in Figure 4. The top
left and right plots show the performance of the model for the
in-sample and out-of-sample periods. The estimation of the
offline coefficients shows that they are valid estimates, as the
RMSE for the out-of-sample period is similar to that for the in-
sample period and shows no significant increase in error. The
bottom graph in Figure 4 shows a realisation of the model pre-
diction to demonstrate the performance of the model predic-
tion. The grey line in the plot indicates when the prediction
was made, at time t = 2020-11-09 23:00 for the next 24 hours.

4.2. Optimization of hyperparameters
The forgetting factor λ is used to update the empirical co-

variance estimator and needs to be optimised, as discussed in
Section 3.3, to achieve the optimal accuracy improvements. The
forgetting factor is determined by minimising the RMSE of the
reconciliation forecasts for the total and the areas in the hierar-
chy during the training period. It is estimated either as one opti-
mal forgetting factor for all horizons by minimising the RMSE
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shows one forecasting realisation for the total heat load forecast from one to 24
step-ahead created at 2020-11-09 23:00, as highlighted with a vertical dashed
grey line.

for all horizons or as a single optimal forgetting factor for each
horizon by minimising the RMSE for each horizon. The value
of the forgetting factor may vary for the different horizons, as
shown in Nielsen and Madsen [26]. It is therefore important to
investigate whether the optimal forgetting factor is different for
each horizon or whether a global forgetting factor is sufficient.
In this study, horizons from one to 24 hours ahead are investi-
gated. Therefore, the covariance estimator will have either one
forgetting factor or 24 forgetting factors.

The result of the investigation of the forgetting factor for the
Brønderslev Forsyning utility is shown in Figure 5. First, two
cases are examined: 1) The operational base forecast is used
for every level in the hierarchy (case one). The results for case
one are shown in the left plots, 2) The operational base forecast
is used for three areas only, and the total forecast uses the sim-
ple base forecast from the forecast model in Eq. 13 (case two).
The results for case two are shown in the right plots. The top
plots illustrate the performance of the reconciliation forecasts
using a covariance estimator that is estimated for each horizon
with a forgetting factor that was optimised for each horizon,
while the bottom plots illustrate the performance using a single
global forgetting factor for all horizons for the covariance esti-
mation. To investigate the effect of the forgetting factor on the
reconciliation accuracy performance, the profile of the RMSE
is calculated for different forgetting factors and visualised in
Figure 5. The forgetting factor on the interval [0.6, 0.99] with
a step of 0.01 was calculated. Also, two additional forgetting
factors were added for the profile calculation, 0.995 and 0.999.
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Figure 5: Figure shows RMSE of the prediction errors versus the forgetting
factor for each horizon in the top plots while the bottom plots show it for all
horizons for Brønderslev. The shorter the prediction horizon, the longer mem-
ory is needed; as the horizon increases, the memory decreases. The red dots
show the optimal λ, i.e. lowest RMSE for each horizon.

The optimal value was then optimised using nlminb() in R

[52], shown as a red dot for each horizon.
The results show that for the short horizons, the forgetting

factors are found to be optimal with a high forgetting factor
where the RMSE is minimised, as can be seen in the upper plots
in Figure 5. For instance, the first seven horizons for the first
case and the first three for the second case, where the simple
base forecasts are used for the total. At higher horizons, the
forgetting factor is optimal for both cases with a rather small
memory; however, there is a rather flat curve, i.e. the optimum
is not very well defined, especially for the second case. For ex-
ample, a forgetting factor of 0.8 translates to effective memory
of Neff = 5. This is quite a small number of effective obser-
vations that can be used to estimate the empirical covariance
matrix, which could be prone to very large prediction errors.

When comparing the optimal factors between the two cases,
it can be seen that the RMSE is significantly lower when using
the author’s base forecast for the total demand. This can be
seen in more detail in Table 2, where the optimal forgetting fac-
tor and corresponding RMSE are shown for both optimisations,
a single forgetting factor for each horizon and one for all hori-
zons which are shown inside the parenthesis. So, these results
suggest that finding the optimal forgetting factor for each hori-
zon should lead to greater accuracy improvements than using
a single forgetting factor. At the very least, use different for-
getting factors for the lower and higher horizons, as they tend
to cluster together, and the RMSE curves are quite flat around
their optimal points.
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Table 2: The optimal forgetting factors for each horizon and the optimal for-
getting factors for all horizons for both operationa and simple base forecast
are shown in the table with the corresponding RMSE value. The values in the
parenthesis are the result of using a global forgetting factor. Notice that the
forgetting factor and RMSE for the simple base forecast are significantly lower
than for the operational

Horizon Operational Operational & Simple
[k] Forgetting Factor [λ] RMSE Forgetting Factor [λ] RMSE
1 0.9999 (0.9475) 1.345 (1.38) 0.9922 (0.6617) 1.27 (1.403)
2 0.9987 (0.9475) 1.691 (1.723) 0.9898 (0.6617) 1.603 (1.646)
3 0.9995 (0.9475) 1.873 (1.908) 0.979 (0.6617) 1.74 (1.754)
4 0.9997 (0.9475) 1.982 (2.008) 0.7136 (0.6617) 1.759 (1.762)
5 0.9996 (0.9475) 2.055 (2.08) 0.6431 (0.6617) 1.764 (1.764)
6 0.9955 (0.9475) 2.114 (2.131) 0.6515 (0.6617) 1.811 (1.81)
7 0.9953 (0.9475) 2.144 (2.158) 0.6579 (0.6617) 1.832 (1.831)
8 0.9999 (0.9475) 2.17 (2.172) 0.6645 (0.6617) 1.849 (1.848)
9 0.8475 (0.9475) 2.19 (2.199) 0.6696 (0.6617) 1.867 (1.867)
10 0.839 (0.9475) 2.21 (2.226) 0.616 (0.6617) 1.876 (1.877)
11 0.971 (0.9475) 2.252 (2.254) 0.6 (0.6617) 1.87 (1.876)
12 0.9999 (0.9475) 2.28 (2.263) 0.6148 (0.6617) 1.882 (1.885)
13 0.9999 (0.9475) 2.293 (2.27) 0.6389 (0.6617) 1.894 (1.895)
14 0.8062 (0.9475) 2.238 (2.262) 0.6 (0.6617) 1.88 (1.886)
15 0.7282 (0.9475) 2.202 (2.264) 0.6 (0.6617) 1.878 (1.883)
16 0.8363 (0.9475) 2.218 (2.258) 0.6 (0.6617) 1.878 (1.884)
17 0.671 (0.9475) 2.16 (2.257) 0.6136 (0.6617) 1.878 (1.881)
18 0.671 (0.9475) 2.133 (2.25) 0.6607 (0.6617) 1.907 (1.907)
19 0.7587 (0.9475) 2.173 (2.249) 0.638 (0.6617) 1.934 (1.934)
20 0.7418 (0.9475) 2.199 (2.256) 0.6723 (0.6617) 1.949 (1.949)
21 0.7458 (0.9475) 2.213 (2.27) 0.6759 (0.6617) 1.949 (1.949)
22 0.9192 (0.9475) 2.273 (2.279) 0.6318 (0.6617) 1.924 (1.925)
23 0.8679 (0.9475) 2.293 (2.295) 0.6663 (0.6617) 1.917 (1.917)
24 0.9501 (0.9475) 2.32 (2.32) 0.6352 (0.6617) 1.911 (1.911)

4.3. Accuracy Improvements in Brønderslev
Using the forgetting factor found in Section 4.2 to adap-

tively update the covariance estimator for the reconciliation pro-
cess to produce reconciled forecasts as new information be-
comes available. The RMSE of the base and the reconciliation
forecasts for the two cases are calculated for the total area level
and the RRMSE to demonstrate the accuracy performance for
each horizon in percentage. The results for the Brønderslev
Forsyning demo case are shown in Figure 6. The accuracy im-
provements by using forgetting factors optimised for each hori-
zon or a single forgetting factor for all horizons are also shown
in the plots. The two upper plots show the result for the in-
sample period, while the two lower plots show the result for
the out-of-sample period. The lower plots for in-sample and
out-of-sample plots show the improvement in accuracy between
the base forecast and the reconciled forecast using the RRMSE
score. Figure A.17 shows the same plots for the bottom three
areas.

Case two, where the simple base forecast was used for the
total area in the hierarchy, shows significant improvements com-
pared to case one, where the operational base forecast was used
at all levels. Case one shows a lower accuracy for the reconcili-
ation forecast compared to the base forecast for almost all areas
and horizons, the longer horizon however demonstrate a slight
improvement in accuracy), as can be seen in Figure 6 and Fig-
ure A.17. We can also see that using the optimal forgetting
factor for each horizon results in greater improvements for the
first four steps ahead than the single forgetting factor. Using
a single forgetting factor for all horizons usually results in a
worse accuracy than the base forecast for the one-step horizon.
After the first horizon, the improvements in accuracy are sim-
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Figure 6: The upper plots in the in-sample or out-of-sample period illustrate the
RMSE of the total forecast error for the two cases 1) operational for all levels,
2) simple at the top and operational at the bottom. Case 1 is shown in orange,
and case 2 is in black. The base forecast errors for both cases are marked with a
dashed line. Also, the use of either one forgetting factor for each horizon with
a line and dot and a unique forgetting factor for each horizon with a line and a
triangle

ilar to the other horizons. This is consistent with the result of
optimising the forgetting factor in Figure 5. For example, in
case two, the forgetting factor for the first three horizons was
high, and the single forgetting factor was low and similar to the
forgetting factor for the other horizons.

These results become even more apparent when calculat-
ing the cumulative sum of squared errors for the base forecast
and the reconciled forecast with the optimal forgetting factor
for each horizon in the total heat load. This is shown in Fig-
ure 7 for one step and 24 steps ahead for both the in-sample
and out-of-sample forecasts. This shows a significant improve-
ment in the accuracy using the proposed method. It can also
be observed that the gains in accuracy are most significant in
the colder periods. In contrast, in the warm period (summer),
the error slope is similar (flat) when comparing the base and
reconciled errors.

The correlation matrices shown in Figure 8 are calculated
from the covariance estimator at the time shown in the plots
from the 24-ahead forecast errors for both cases, using only
the operational forecast (plots on the left) and the operational
and simple forecasts (the plots on the right) as base forecast.
The upper and lower plots show instances from the summer
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Figure 7: Figure shows the cumulative sum of squared error for the base and
reconciled forecast of the total heat load where the reconciled forecast estimated
using optimal forgetting for each horizon using the authors base forecast of the
total aggregation.

and winter periods. Only using the operational forecast results
in a higher correlation, while using the author forecast results
in a lower correlation. This could indicate that using forecasts
produced with the same model leads to too similar errors and
therefore cannot share any useful information in the reconcilia-
tion process. Similar results are found and discussed in Nystrup
et al. [31].

Figure 9 shows an example of the realisation of the predic-
tion for both the base and reconciled forecast of the one to 24
steps ahead. Each plot shows a different area, e.g. the top left
plot shows total demand. The top plot shows both the base fore-
cast of operational and simple base forecast and the correspond-
ing reconciled forecast with a unique forgetting factor for each
horizon to estimate the covariance matrix. From these plots,
it is difficult to tell which forecast performs best; however, the
base forecasts for the total heat load are quite different.

4.3.1. One-Step Ahead Empirical Covariance Matrix
In the literature, one-step errors are usually used to tune

models, i.e. to estimate the model’s coefficients. These esti-
mates are then used for multi-step predictions. However, this
can lead to sub-optimal results because the correlation between
the output and input variables can change depending on the
horizon. The same is true for the reconciliation forecast, as
the empirical covariance matrix is estimated using forecast er-
rors. The accuracy improvements from the reconciled process
result from the base forecast errors from the recursively esti-
mated empirical covariance matrix. Therefore, having a covari-
ance estimator for each horizon might be beneficial. We used an
empirical covariance matrix for each horizon calculated from
the corresponding k-step prediction error in the previous sec-
tion. However, we would like to investigate whether there is a
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Figure 8: Figure illustrates the correlation between the areas when using only
operational base forecast in the left plots and using operational and simple
forecast as the base in the right plots. The plots show correlation instances at
periods in summer in the top plots and lower plots in winter.
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Brønderslev Forsyning hierarchy.
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Figure 10: The figure shows the difference in accuracy between using errors
from all prediction horizons and using errors only one step ahead when esti-
mating the empirical covariance matrix. Simple Rec 1 and Simple Rec 2 show
the results of using errors from each prediction horizon when a single forget-
ting factor is optimised for all horizons or each horizon has a unique forgetting
factor. Simple Rec 3 and Simple Rec 4 show the result of optimising the single
forgetting factor for all horizons or each horizon has a unique forgetting factor
using only the error from the one step ahead to estimate the covariance matrix
for all horizons. The base forecasts from case two were used here.

significant difference in accuracy when we use either the one-
step error for all horizons or the k-step error for the covariance
estimator. Here we will only use case 2 with the simple total
forecast and the operation forecast for the bottom areas.

The results are shown in Figure 10, which shows the accu-
racy improvements when using the one-step or multi-step pre-
diction errors to estimate the covariance matrix. The top plots
show the RMSE score, and the bottom plot shows the RRMSE,
while the left and right plots show the in-sample and out-of-
sample results. For simplicity, only the results for the total area
are shown. Simple Rec 1 is the result of using errors from all
horizons and only one forgetting factor, while Simple Rec 2 uses
errors from all horizons and has an optimal forgetting factor for
each horizon. Simple Rec 3 and Simple Rec 4 show the same,
but only using the base error from the one-step prediction with
one forgetting factor or optimal for each horizon. The improve-
ments using only the errors from the one-step forecast are sig-
nificantly lower than those using multi-step prediction errors.
You can see the optimised forgetting factors for each horizon
and the forgetting factor for all horizons in Table A.3.

4.4. Accuracy Improvements in FYN and Hierarchy Structure
Investigation

The current hierarchy at Fjernevarme Fyn is the total and
the 12 different areas however due to the high number of areas
and how they are linked together as seen in Figure 1. They are
quite grouped together, with some areas located far from the
central point. Hence, it gives the opportunity to create more ag-
gregation levels to extend the hierarchy structure and hopefully
further enhance the accuracy improvements. An hourly aver-
age of the heat demand for each weekday for the four seasons
is shown in Figure A.16. The four heating demand seasons in
Denmark are listed below,

1. Winter (December, January, February, March) during cold
periods when the heating demand is high due to the high
consumption of space heating to keep the indoor climate
comfortable.

2. Spring (April, May) during the transition period from
cold to warm with the influence of solar irradiance of
warming houses, thus lowering the amount of space heat-
ing needed.

3. Summer (June, July, August, September) when space heat-
ing is usually not needed in Denmark, only domestic hot
water is needed (e.g. hot tap water and showering).

4. Fall (October, November) during the transition period when
space heating is required again due to lowering ambient
air temperatures.

Comparing the areas’ heating dynamics together makes it
evident that each area has unique heat dynamics; however, there
are some possibilities to group some of them depending on their
behaviour from Figure A.16 when comparing their shape. For
instance, Areas 6, 8 and 12 exhibit similar shapes. This anal-
ysis can give an idea of which areas should be aggregated to-
gether. Based on these results, new aggregate levels have been
added. Three new aggregations have been added, which aggre-
gated four areas together. Aggregation 1 is the aggregation of
{ Area 1, Area 2, Area 3, Area 4 }, Aggregation 2 is {Area 5,
Area 9, Area 10, Area 11 }, and Aggregation 3 is {Area 6, Area
7, Area 8, Area 12} based on from the result in Figure A.16 and
the layout in Figure 1.

The base forecast for the new aggregation level is then cre-
ated (simple) while still using the operational base forecast for
the total and the 12 areas. The forecasting model used for the
new aggregation level is similar to the model for the total for
Brønderslev Forsyning as shown in Eq. 13. The prediction hori-
zon will also be the same, one- to 24-steps ahead. We will use
both hierarchies, a total of 12 areas and a total with three aggre-
gations of the bottom 12 areas, to compare the results using a
simple hierarchy and a hierarchy with an additional aggregation
level. Thus, investigate when more information is added to the
hierarchy and how it will affect the accuracy improvements of
the reconciled forecasts.

The accuracy improvements for the total aggregation are
shown in Figure 11 where it shows that the reconciled forecast
for both cases improves the accuracy in almost all cases, espe-
cially in the longer horizons as was the case for Brønderslev
Forsyning study. The reconciled forecasts with Oper. Rec 1
and Oper. Agg Rec 1 shows the reconciled forecast where the
same forgetting factor is optimised for all horizons while Oper.
Rec 2 and Oper. Agg Rec 2 shows the result for optimising the
forgetting factor for each horizon. Oper. Rec is where the sim-
ple hierarchy is used and Oper. Agg Rec is when the additional
aggregation level has been added to the hierarchy. In the top
plots, the RMSE of the forecasts are shown, and in the bottom,
the accuracy improvements as the RRMSE. The left and right
plots show the result in the in-sample and out-of-sample peri-
ods.
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Figure 11: The plots show the accuracy improvements of the base forecast
in Fjernvarme Fyn, where two different hierarchies are investigated. The top
plots show the RMSE, and the bottom plots show the improvements using the
RRMSE, while the left and right plots show the result in the in-sample and
out-of-sample periods.

The results in the plots in Figure 11 demonstrate that the
reconciled forecast for both hierarchy structure cases improves
the accuracy of the base forecasts. The first three horizons
needed to have their own forgetting factor, the same as we saw
for the Brønderslev Forsyning case. The longer horizon other-
wise improves the accuracy for both setups. Adding an addi-
tional aggregation level to the hierarchy structure demonstrates
significant accuracy improvement, almost double the improve-
ment.

5. Simulation Study

To show the effect of the forgetting factors in a controlled
environment, a simulation study is performed. The setup for the
simulation study will consist of three areas and a total of one
year of hourly measurements each. The simulated load from
the three areas are produced by simple Auto-Regressive (AR)
models of lag one with different offsets.

YArea1,t = 0.7YArea1,t−1 + 140 + ε1,t, (15)
YArea2,t = 0.8YArea2,t−1 + 150 + ε2,t, (16)
YArea3,t = 0.9YArea3,t−1 + 158 + ε3,t, (17)

Where total is the aggregation of the areas and εi,t are white
noise

YTotal,t = YArea1,t + YArea2,t + YArea3,t. (18)

Level shifts are added to the simulated heat load at random in-
tervals to introduce some additional complexity and simulate
spikes in heat demand. These are added at randomly sampled
time points. At each sampled time point, the load is increased
for 48 hours by a random amount sampled from the distribu-
tion N(30, 2) and rounded to the nearest integer. The resulting
simulated heat load is visualized in Figure 12 where the raw
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Figure 12: Simulated heat load measurements. Top: raw simulated measure-
ments from AR(1) models. Bottom: simulated measurements with levels shifts.

simulation is shown in the top plot while the lower plot shows
the simulation with level shifts.

To reconcile the spatial hierarchy, base forecasts are, of
course, needed. These are again created using the R package
onlineforecast, where the model coefficients are estimated
using the Ordinary Least Squares method. The models that are
constructed are AR(1) processes for both the areas and the total,
where the coefficients are re-estimated every time a new obser-
vation becomes available. A unique model is created for each
prediction horizon. Hence,

YArea1,t = φ1,t,kYArea1,t−1 + ε1,t, (19)
YArea2,t = φ2,t,kYArea2,t−1 + ε2,t, (20)
YArea3,t = φ3,t,kYArea3,t−1 + ε3,t, (21)
YTotal,t = φ4,t,kYTotal,t−1 + ε4,t. (22)

Where the subscript t is the time and k is the prediction
horizon. The φi,t,k is the AR(1) coefficient of the model and εi,t
is the error term.

When reconciling this simulated hierarchy, an investigation
is performed into the memory used for updating the empirical
covariance matrix when new information is available. This is
done by running the reconciliation process twice, once with a
short memory and once with a longer memory. The short mem-
ory will have the forgetting factor set as λ = 0.8; thus, the
effective memory is the past five time steps, i.e. Neff = 5. The
long memory will have the forgetting factor as λ = 0.99, i.e.
Neff = 100. The RMSE for each horizon for the base fore-
cast and the two scenarios of memory for the reconciled fore-
cast are shown in Figure 13 for each area. The long memory
demonstrates slight improvements compared to the base fore-
cast, while the short memory improves it significantly, except
for the first three horizons, where it has lower accuracy.

Figure 13 shows the accuracy on the one-hour prediction
horizon. This result indicates that a short memory might be
preferable; however this should be investigated further. The
top rows of figures 14 and 15 show a segment of the data along
with the base forecast as well as the two reconciled forecasts for
prediction horizons k = 1 and k = 12 respectively. The bottom
rows of these figures show the corresponding cumulative sum of
squared error for each forecast. It is evident from Figure 14 that
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Figure 13: Accuracy of the base and reconciled forecasts with the two forgetting
factors being investigated for the three areas and the total.
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Figure 14: Top row: Segment of the simulated observations along with base
forecasts and reconciled forecasts with memories λ = 0.8 and λ = 0.99 for the
one-hour prediction horizon. Bottom row: cumulative sum of squared errors
for the three forecasts for each area.

the short memory is very volatile, resulting in lower accuracy
than the base forecast. The longer memory seems to perform
similarly to the base forecast. Short memory significantly out-
performs the base forecast for the longer prediction horizon, as
was also seen in Figure 13. Figure 15 demonstrates that the sig-
nificant accuracy improvements come from sudden changes in
the data. Thus, during the level shift around 7200 hours in Area
3, the short memory is able to track the changes faster, thus re-
sulting in more accurate forecasts. Even though there are no
significant level shifts in Area 1 and Area 2, the short memory
outperforms the other forecasts. Notice the level jump in the
cumulative sum of squared errors in Area 1 and Area 2 for the
base forecast and long memory reconciled forecast, while this
is not noticeable in the short memory forecast. Hence highlight-
ing the power of being able to react quickly to changes in the
data. The short memory reconciled forecasts do however show
a significant overshoot when changes in the base forecast hap-
pen quickly, as seen in Area 3 when the level shift occurs. This
is likely due to the weights used in the reconciliation process be-
ing estimated based on base forecasts from before the change.
It is likely that this could be addressed by improving the base
forecasts or tweaking the memory a bit. Improving base fore-
cast to react to changes in data in a more timely manner would
result in weights not being so far out of scale. Alternatively, the
memory should be tweaked to be a bit longer, thus proving a
middle ground between the two examples shown.

It is clear from this simulation study that choosing a fit-
ting memory for the proposed reconciliation process is vital to
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Figure 15: Top row: Segment of the simulated observations along with base
forecasts and reconciled forecasts with memories λ = 0.8 and λ = 0.99 for the
12-hour prediction horizon. Bottom row: cumulative sum of squared errors for
the three forecasts for each area.

ensuring good performance. Too high memory can result in
reconciled forecasts not being reactive enough, while too short
memory can result in overreacting to changes in the base fore-
cast. As such, the memory should be set based on the data
behaviour to ensure optimal performance.

6. Discussion

This paper proposes to improve state-of-the-art operational
forecast accuracy by using spatial hierarchies with an adaptive
covariance matrix in the reconciliation process to produce co-
herent forecasts for district heating systems. The coherency is
introduced by linear constraints defined by the hierarchy, where
the lower levels are forced to be aggregated equal to the up-
per level. The independent and not necessarily coherent base
forecasts are first created and then projected onto the coher-
ent subspace using a projection matrix. The projection ma-
trix is created from the summation matrix of the hierarchy, and
the covariance estimator is estimated from the errors of the in-
sample base forecasts errors. Due to the non-stationary nature
of the heat load, the covariance matrix must be able to adapt
as the heat load changes over time. Therefore, adaptive and
recursive covariance estimation is performed using exponential
smoothing as proposed by Ber [12]. Additional forecasts were
needed to investigate whether the operational base forecast was
too similar. Also, investigating if adding a new level of aggre-
gation to the hierarchy would enhance the accuracy improve-
ments even further. A linear regression model was proposed
to forecast the additional heat load forecasts. The two-stage
forecasting framework was used, where the input variables are
first transformed, and then the coefficients are estimated using
RLS with exponential forgetting. This framework is ideal for
the inherent non-linearity and non-stationary heat load and for
producing robust online forecasts with high accuracy.

We initially defined the spatial hierarchy of district heating
with the total as the top level and the individual areas as the
lowest levels. This study disregarded heat losses from produc-
tion to areas for simplicity, as heat losses can be challenging to
forecast with high accuracy. The first attempt to make recon-
ciliation forecasts for the Brønderslev Forsyning utility showed
almost no improvements for the in-sample period. It also re-
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sulted in worse accuracy than the base forecast in the out-of-
sample period. It was found that the similarity of the opera-
tional base forecasts between levels was too high by investigat-
ing the correlation matrix. Therefore, no gain in accuracy could
be achieved if the correlation between the base forecasts is too
high as they did not exchange any useful information, as shown
in Nystrup et al. [31]. Replacing the forecast with the simple
base forecast showed high accuracy improvements in both the
in-sample and out-of-sample periods, about 15% depending on
the horizon.

We concluded that the forgetting factor needs to be opti-
mised for each horizon, especially for the short horizons, which
tend to be very high. It was also discovered that the optimum of
the forgetting factor for higher horizons was low and not very
well defined. The low forgetting factor allows the covariance
matrix to react quickly to sudden changes when the base fore-
cast performs poorly. The ability to react quickly to changes,
e.g. level shifts, can be useful when sudden and unexpected
changes in the heat load occur. This was demonstrated in a
simulation study where it was investigated where the accuracy
improvements could come from. The base forecast model used
in this work tends to have a high forgetting factor, which could
be the reason why the low forgetting factor leads to such a sig-
nificant improvement in accuracy. However, choosing a higher
forgetting factor could lead to a more robust estimate and re-
duce the risk of high prediction errors. It is also argued that a
higher forgetting factor enables more robust prediction by re-
ducing overshooting/undershooting of the prediction by having
too low a forgetting factor.

The errors used in the covariance estimation were investi-
gated. Frequently, the one-step errors are used to estimate co-
efficients of forecasting models, which are then used for fore-
casting multiple-step horizons ahead. It could be more ben-
eficial to use a specific forecast model for each k-step ahead
forecast and use the appropriate errors to estimate the coeffi-
cients. We demonstrated that it is important to use the k-step
errors when estimating the covariance estimator to predict the
k-step ahead heat load by comparing the accuracy to when only
using the one-step errors for all horizons when estimating the
covariance estimator. By using the corresponding k-step errors,
almost twice the accuracy is obtained.

Another case study was carried out using the heat load fore-
cast from the Fjernevarme Fyn utility to validate the results
of the case study of Brønderslev Forsyning. It showed simi-
lar accuracy improvements and highlighted the importance of
finding the optimal forgetting factor for each horizon. We also
showed that adding an additional level of aggregation with the
simple base forecasts to the hierarchy significantly improved
the accuracy. Thus, adding more information to the voting pro-
cess shows that more knowledge is shared between levels about
the covariance matrix. This is in line with current literature
that suggests using full hierarchies to achieve optimal improve-
ments.

We therefore conclude that spatial hierarchies improve the
accuracy of state-of-the-art operational heat load forecasting, as
demonstrated in two different case studies with different hierar-
chy structures. This will be important for future energy sys-

tems as an improved heat load forecast increases the flexibility
potential of district heating by providing more information for
decision-making. Furthermore, a coherent forecast for district
heating operations is important for temperature, and production
optimisation as district heating systems are becoming more de-
centralized with multiple areas with local heat units or TES sys-
tems. We also believe that selecting a robust forgetting factor
that reduces the probability of large forecast errors will be im-
portant. Too similar forecasts could be problematic in not im-
proving the accuracy, leading to worse accuracy than the base
forecast. Hence, different forecasting methods for other areas
could be more beneficial and should be investigated in more
detail.

7. Conclusion

We propose a novel method to increase the accuracy of op-
erational state-of-the-art heat load forecasts by exploiting in-
formation between different areas through the spatial hierarchy.
The improved heat load forecasts were computed using a recon-
ciliation process where the individual base forecasts are forced
to be coherent using the predefined hierarchy structure, and the
information is exchanged between them using the proposed co-
variance estimator. It is proposed to estimate the covariance es-
timator recursively and make it adaptive using the exponential
smoothing formula. Based on two case studies, it was shown
that the proposed method significantly increases the accuracy
compared to operational state-of-the-art heat load forecasts for
all horizons used in this work. This is highly desired by district
heating utilities as future systems will be more decentralised
and therefore more local heat load forecasts will be needed. Im-
proving the accuracy of the local heat load forecast will improve
the operation of the district heating by optimising the network’s
temperature levels and production.

It was concluded that the covariance estimator needs to be
estimated for each forecast horizon to achieve the highest ac-
curacy improvements for each horizon. Therefore, using infor-
mation from the same horizon will be more optimal than using
only the one-step-ahead prediction errors, as is the tendency to
do in forecasting.

It was found that optimising the forgetting factor for each
horizon is crucial for covariance estimation to achieve opti-
mal improvement in accuracy. Optimal forgetting factors were
found to be quite small compared to what is commonly used
in research for forecasts, usually around 0.65 compared to the
usual 0.999 for forecasting models. However, a higher forget-
ting factor of around 0.99 was found for shorter horizons. A
low forgetting factor allows the reconciliation process to shift
the weights when the errors of the base forecast start to in-
crease, e.g. due to level shifts in the heat load. We argue that it
might reasonable to select a higher forgetting factor than found
through optimisation. Higher forgetting will lead to a more ro-
bust estimate, as a low forgetting factor might be prone to large
prediction errors.

Even more improvements in accuracy were demonstrated
by adding an additional level of aggregation in the hierarchy.
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This provides more information to share in the hierarchy, lead-
ing to higher improvements than a hierarchy with fewer levels
of aggregation. The definition of the aggregation levels for the
spatial hierarchy is trivial compared to a more straightforward
hierarchy structure for the temporal hierarchy. An investiga-
tion of the optimal hierarchy structure for the spatial hierarchy
could therefore be explored in future research. There are sev-
eral possible directions for future research, but a more detailed
investigation of where these significant accuracy improvements
come from at such a low forgetting factor would be essential
before this can be used operationally.
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Appendix A.

Table A.3: The optimal forgetting factors for each horizon and the optimal for-
getting factors for all horizons for using only one-step ahead errors to estimate
the empirical covariance matrix. Notice how the forgetting factor increases
again for higher prediction horizons

Operationa & Simple
Horizon [k] Forgetting Factor [λ] RMSE

1 0.999 1.2702
2 0.7149 1.5505
3 0.7803 1.7078
4 0.8059 1.7925
5 0.8259 1.8616
6 0.7917 1.9041
7 0.7824 1.9231
8 0.7838 1.9527
9 0.7785 1.9884
10 0.7765 2.0125
11 0.7829 2.0358
12 0.7955 2.0608
13 0.8184 2.0781
14 0.8353 2.0932
15 0.8644 2.1037
16 0.9958 2.1101
17 0.9961 2.1153
18 0.9954 2.1254
19 0.9955 2.1353
20 0.9948 2.1353
21 0.9931 2.1445
22 0.9908 2.1538
23 0.9913 2.1595
24 0.9945 2.1728

Table A.4: The optimal forgetting factors for each horizon and the optimal
forgetting factors for all horizons for both ENFOR and authors base forecast
are shown in the table with the corresponding RMSE value. Notice that the
forgetting factor and RMSE for the simple base forecast are significantly lower
than for the operational. It is not possible to compare the RMSE between the
two case studies in this table as ENFOR Agg has another aggregation level,
thus a higher RMSE.

Operational Operational Agg
Horizon [k] Forgetting Factor [λ] RMSE Forgetting Factor [λ] RMSE

1 0.9861 38718.26 0.9878 88435.2
2 0.9767 49146.8 0.9829 97964.3
3 0.9649 52476.19 0.9753 99853.03
4 0.8701 54040.31 0.9542 99052.69
5 0.693 54598.05 0.9095 96424.64
6 0.6851 54702.81 0.8797 94701.16
7 0.6844 54994.56 0.8618 93483.41
8 0.6596 55289.8 0.8615 93578.51
9 0.659 55938.88 0.8426 93094.56

10 0.6204 55599.19 0.853 93088.3
11 0.6 55853.17 0.8456 93184.57
12 0.8662 57567.87 0.8553 93069.96
13 0.8475 57528.59 0.8753 94143.76
14 0.7152 56412.53 0.8699 93725.18
15 0.6539 55621.23 0.8729 93569.79
16 0.7652 56567.24 0.8846 94219.94
17 0.6842 56327.91 0.8688 94575.05
18 0.7358 56720.07 0.8723 95835.68
19 0.6376 55265 0.8962 98122.15
20 0.603 55002.29 0.9227 99076.89
21 0.6 55236.32 0.9224 99671.8
22 0.6633 55841.8 0.7555 106038.7
23 0.6431 55896.72 0.9059 97152.2
24 0.6392 55781.87 0.8975 96414.18
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Figure A.16: The weekday seasonality for the areas at Fjernvarme Fyn is visualized here by splitting it up into four seasons; Winter (December, January, February,
Mars), Spring (April, May), Summer (June, July, August, September), and Fall (October, November).
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Figure A.17: Figure illustrates accuracy improvements of the reconciled forecast using aggregation hierarchy for in-sample and out-of-sample for all areas and total.
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Figure A.18: Time series plot of the heat load over the two and half year period for each group inside the Brønderslev Forsyning system.
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Figure A.19: Time series plot of the heat load over the two and half year period for each group inside the Fjernvarme Fyn system.
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Appendix A Code Example
The code snippet below shows the onlineforecast heat load forecast from Section 3.1.1.

1 #### Data ####
2 names(D)
3
4 #### Periods ####
5 ## ForecastPeriod is to slice the data frame
6 ForecastPeriod <- c(as.POSIXct("2020-02-01 00:00", tz = "UTC"), as.POSIXct("

2021-12-31 23:00:00", tz = "UTC"))
7 Dfit <- subset(D, ForecastPeriod)
8
9 ## TrainDates is the training period

10 TrainDates <- c(as.POSIXct("2020-02-01 00:00", tz = "UTC"),as.POSIXct("
2020-12-31 23:00:00", tz = "UTC"))

11 Dtrain <- subset(Dfit, TrainDates)
12
13 ## The training period
14 Scoreperiod_start <- as.POSIXct("2020-03-01 00:00", tz = "UTC")
15 Scoreperiod_end <- as.POSIXct("2020-12-31 23:00", tz = "UTC")
16 Dtrain$scoreperiod <- in_range(Scoreperiod_start, Dtrain$t,Scoreperiod_end)
17
18 ## Out-Of-Sample period
19 Scoreperiod_start <- as.POSIXct("2021-01-01 00:00:00", tz = "UTC")
20 Scoreperiod_end <- as.POSIXct("2021-12-31 23:00:00", tz = "UTC")
21 Dfit$scoreperiod <- in_range(Scoreperiod_start, Dfit$t,Scoreperiod_end)
22
23 #### Model 1
24 model <- forecastmodel$new()
25 model$output <- "Y" # The response variable , Y (heat load)
26
27 ## Inputs
28 model$add_inputs(Ta = "Ta", # Air temperature , NWP
29 mu_tday = "fs(tday/24, nharmonics = 3)", # harmonics
30 mu = "one()") # Intercept
31
32 ## Bounds for the lambda in the optimiser
33 model$add_regprm("rls_prm(lambda=0.9)")
34 model$add_prmbounds(lambda = c(0.8,0.99,0.9999))
35
36 ## Which horizons to use for the optimiser , i.e. only uses error from these

horizons
37 model$kseq <- c(6,12,24,48)
38 model$prm <- rls_optim(model, Dtrain , printout = FALSE)$par
39
40 ## Use the optimise forgetting factor to produce forecast for all horizon
41 model$kseq <- 1:72
42 val1 <- rls_fit(model$prm, model, Dfit, returnanalysis = TRUE)
43 ## Save the predictions
44 Dfit$Yhat <- val1$Yhat
45
46 #### Model 2
47 model2 <- forecastmodel$new()
48 model2$output <- "Y" # The response variable , Y (heat load)
49 ## Inputs
50 model2$add_inputs(Ta = "lp(Ta, a1 = 0.9)", # now low pass the temperature
51 mu_tday = "fs(tday/24, nharmonics = 3)", # harmonics
52 mu = "one()") # Intercept
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53 ## Bounds for the lambda in the optimiser
54 model2$add_regprm("rls_prm(lambda=0.9)")
55 model2$add_prmbounds(Ta__a1 = c(0.5,0.99,0.9999),
56 lambda = c(0.5,0.99,0.9999))
57 ## Which horizons to use for the optimiser , i.e. only uses error from these

horizons
58 model2$kseq <- c(6,12,24,48)
59 model2$prm <- rls_optim(model2 , Dtrain , printout = FALSE)$par
60 (model2$prm)
61 ## Use the optimise forgetting factor to produce forecast for all horizon
62 model2$kseq <- 1:72
63 val2 <- rls_fit(model2$prm, model2 , Dfit, returnanalysis = TRUE)
64 ## Save the predictions
65 Dfit$Yhat2 <- val2$Yhat
66
67
68 ### Produce the plots
69 kRanal <- 1
70 Residuals1 <- cbind(t = Dfit$t, residuals(Dfit$Yhat, Dfit$Y))
71 Residuals2 <- cbind(t = Dfit$t, residuals(Dfit$Yhat2 , Dfit$Y))
72
73
74 par(mfrow = c(1,3))
75 par(cex = 1.5, cex.lab = 1.5, cex.axis = 1.5, lwd = 3)
76 par(mar=c(4.5,4.5,1.5,1)) #bottom , left, top and right
77 acf(Residuals1$h1[Dfit$trainScore], na.action = na.pass, xlab = "Lag (hours)")
78 boxplot(Residuals1$h1[Dfit$trainScore] ~ Dfit$tday$k0[Dfit$trainScore], xlab =

"Hours", ylab = "One-Step Error", pch = 16, cex = 0.5)
79
80 x <- Dfit$TaObs[Dfit$trainScore] ## Input to the model
81 y <- Residuals1$h1[Dfit$trainScore] ## Output to the model
82 ccf(x, y, na.action = na.pass, lag.max = 48, main = "", xlab = "Lag (hours)",

ylab = "CCF")
83 mtext(expression("T"["a,obs"]), side = 3, line = -4.5, outer = TRUE, col = 1,

cex = 2, adj = 0.87)
84 mtext("Model 1 One-Step Error Analysis", side = 3, line = -1.2, outer = TRUE,

col = 1, cex = 2)
85
86 par(mfrow = c(2,1))
87 par(cex = 1.5, cex.lab = 1.2, cex.axis = 1, lwd = 3)
88 par(mar=c(4,4.5,0.5,1)) #bottom , left, top and right
89
90 plot(Dfit$t[Dfit$scoreperiod], val1$Lfitval$k4[Dfit$scoreperiod ,ncol(val1$

Lfitval$k4)], type = "l",
91 xlab = "", ylab = expression(theta[0]), axes = F, ylim = c(0,12), col = "

#F17720")
92 lines(Dfit$t[Dfit$scoreperiod], val2$Lfitval$k4[Dfit$scoreperiod ,ncol(val2$

Lfitval$k4)], col = "#0474BA")
93
94 legend("bottomleft", legend=c("Model 1", "Model 2"), ncol = 2,
95 col=c("#F17720", "#0474BA"), lty=1, cex=0.8, bty = "n")
96
97 axis(2, seq(0,12,2))
98
99

100 plot(Dfit$t[Dfit$scoreperiod],val1$Lfitval$k4[Dfit$scoreperiod ,1], type = "l",
101 xlab = "", ylab = expression(theta[1]), axes = F, ylim = c(-0.7,0), col =

"#F17720")
102 lines(Dfit$t[Dfit$scoreperiod], val2$Lfitval$k4[Dfit$scoreperiod ,1], col = "

#0474BA")
103 axis(2, seq(-0.7,0,0.1))
104
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105
106 axis.POSIXct(side = 1, x = Dfit$t[Dfit$scoreperiod], xaxt="s",
107 at = seq(from = Dfit$t[Dfit$scoreperiod][1] ,
108 to = Dfit$t[Dfit$scoreperiod][length(Dfit$t[Dfit$

scoreperiod])] + 60*60*24*2,
109 by = "month"), format = "%Y-%m-%d", mgp=c(3,-0.1,-1))
110
111 Residuals1 <- cbind(t = Dfit$t, residuals(Dfit$Yhat2 , Dfit$Y))
112
113 par(mfrow = c(1,3))
114 par(cex = 1.5, cex.lab = 1.5, cex.axis = 1.5, lwd = 3)
115 par(mar=c(4.5,4.5,1.5,1)) #bottom , left, top and right
116 acf(Residuals1$h1[Dfit$trainScore], na.action = na.pass, xlab = "Lag (hours)")
117 boxplot(Residuals1$h1[Dfit$trainScore] ~ Dfit$tday$k0[Dfit$trainScore], xlab =

"Hours", ylab = "One-Step Error", pch = 16, cex = 0.5)
118
119 x <- Dfit$TaObs[Dfit$trainScore] ## Input to the model
120 y <- Residuals1$h1[Dfit$trainScore] ## Output to the model
121 ccf(x, y, na.action = na.pass, lag.max = 48, main = "", xlab = "Lag (hours)",

ylab = "CCF")
122 mtext(expression("T"["a,obs"]), side = 3, line = -4.5, outer = TRUE, col = 1,

cex = 2, adj = 0.93)
123 mtext("Model 2 One-Step Error Analysis", side = 3, line = -1.2, outer = TRUE,

col = 1, cex = 2)
124
125
126 par(mfrow = c(2,1))
127 par(cex = 1.5, cex.lab = 1.2, cex.axis = 1, lwd = 3)
128 par(mar=c(4,4.5,0.5,1)) #bottom , left, top and right
129
130 plot(Dfit$t[Dfit$scoreperiod], val1$Lfitval$k4[Dfit$scoreperiod ,ncol(val1$

Lfitval$k4)], type = "l",
131 xlab = "", ylab = expression(theta[0]), axes = F, ylim = c(0,12), col = "

#F17720")
132 lines(Dfit$t[Dfit$scoreperiod], val2$Lfitval$k4[Dfit$scoreperiod ,ncol(val2$

Lfitval$k4)], col = "#0474BA")
133
134 legend("bottomleft", legend=c("Model 1", "Model 2"), ncol = 2,
135 col=c("#F17720", "#0474BA"), lty=1, cex=0.8, bty = "n")
136
137 axis(2, seq(0,12,2))
138
139
140 plot(Dfit$t[Dfit$scoreperiod],val1$Lfitval$k4[Dfit$scoreperiod ,1], type = "l",
141 xlab = "", ylab = expression(theta[1]), axes = F, ylim = c(-0.7,0), col =

"#F17720")
142 lines(Dfit$t[Dfit$scoreperiod], val2$Lfitval$k4[Dfit$scoreperiod ,1], col = "

#0474BA")
143 axis(2, seq(-0.7,0,0.1))
144
145
146 axis.POSIXct(side = 1, x = Dfit$t[Dfit$scoreperiod], xaxt="s",
147 at = seq(from = Dfit$t[Dfit$scoreperiod][1] ,
148 to = Dfit$t[Dfit$scoreperiod][length(Dfit$t[Dfit$

scoreperiod])] + 60*60*24*2,
149 by = "month"), format = "%Y-%m-%d", mgp=c(3,-0.1,-1))
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