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SUMMARY

Statistical analysis for populations of networks is widely applicable, but challenging, as
networks have strongly non-Euclidean behaviour. Graph space is an exhaustive framework
for studying populations of unlabelled networks that are weighted or unweighted, uni- or
multilayered, directed or undirected. Viewing graph space as the quotient of a Euclidean
space with respect to a finite group action, we show that it is not a manifold, and that its cur-
vature is unbounded from above. Within this geometrical framework we define generalized
geodesic principal components, and we introduce the align-all-and-compute algorithms, all
of which allow for the computation of statistics on graph space. The statistics and algo-
rithms are compared with existing methods and empirically validated on three real datasets,
showcasing the potential utility of the framework. The whole framework is implemented
within the geomstats Python package.

Some key words: Computational geometric statistic; Geodesic principal component; Graph space; Network data;
Object data; Quotient space.

1. Introduction

Interest in the analysis of tree and network data has soared in recent years due to the
utility of representing certain architectures and processes by graphs. The scientific literature
has so far primarily focused on analysing networks in a first generation (Wang & Marron,
2007) setting, i.e., the analysis and modelling of a single network datum. The second gen-
eration approach refers to the analysis of a population of network-valued data. The need
for second generation modelling arises in a series of applied problems, including analysis
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2 Anna Calissano, Aasa Feragen and Simone Vantini

of brain connectivity (Simpson et al., 2013; Durante et al., 2017), anatomical trees (Wang
& Marron, 2007; Feragen et al., 2013) and mobility networks (von Ferber et al., 2009). In
these works the aim is to analyse, not just one network, but a set, or population, of net-
works. If every network in a particular population has the same nodes, then the problem
can be reframed as the analysis of a set of adjacency matrices; however, if the networks
have different numbers of nodes and different node labels then the mathematical challenges
multiply. Populations of unlabelled networks are common in real-world problems, includ-
ing all those applications where the node matching is nontrivial, e.g., social networks of
different individuals, trade networks of different companies, brain connectivity networks
of different patients. Populations of networks also represent one of the major challenges
in network-valued data analysis. In fact, with different nodes across networks, a concept of
alignment matching should be introduced.

Populations of tree or network data have been studied from different perspectives. A
first approach is to embed trees or networks in Euclidean space, e.g., kernel methods by
Shervashidze et al. (2011), convolutional neural networks by Duvenaud et al. (2015) and
feature selection algorithms by Bunke & Riesen (2011). If one is interested in simple tasks,
such as prediction of class labels, cluster memberships, or a scalar variable, Euclidean graph
embedding is often a scalable and powerful choice. However, Euclidean graph embedding
methods do not ensure that every point in the embedding space is actually a network.
Particularly challenging are network-valued parameters, such as averages, interpolation,
denoising, network-valued regression models and so on. As a response to these limitations,
object-oriented data analysis (Marron & Alonso, 2014) aims to model objects, in our case,
networks, as residing in a space of precisely such objects, ensuring that every point in the
embedding space is a meaningful object. Most existing works in this category have so far
focused on tree-valued data rather than networks in general (Bille, 2005; Feragen et al.,
2010; Garba et al., 2021; Lueg et al., 2021). Among existing models for graphs, Ginestet
et al. (2017) and Severn et al. (2021) proposed a model where networks’ Laplacian matrices
are smoothly injected into a submanifold of a Euclidean space; Simpson et al. (2013) and
Durante et al. (2017) faced the problem of generating and performing tests on a popula-
tion of networks; Lunagómez et al. (2020) provided Bayesian modelling for discrete labelled
graphs and Chowdhury & Mémoli (2019) studied a metric space of networks up to weak
isomorphism, which allows the grouping of similar nodes.

As a precursor to our work, Jain & Obermayer (2009) introduced an interesting and flex-
ible general space of structures, which we call, when restricted to the special case of graphs,
graph space. This is a natural space for graphs with different or equal numbers of nodes, and
with unlabelled nodes. Within graph space, networks can also be weighted or unweighted,
uni- or multilayer, directed or undirected, and with different types of attributes on both
edges and nodes. The same graph space independently appears in the work of Kolaczyk
et al. (2020), who studied the behaviour of the Fréchet mean in the fundamental domain of
graph space, as well as in the work of Guo et al. (2021), who proposed a simpler algorithm
for principal components, analogous to the tangent space approaches known from manifold
statistics (Fletcher & Joshi, 2004).

In this paper we describe graph space and the nonlinear nature of its geometry, and
introduce an intrinsic version of geodesic principal components for a population of unla-
belled networks. We propose the align-all-and-compute statistical algorithm to compute
estimators on the graph space, and prove that it converges to a local minimum in finite
time. We discuss, in particular, the characteristics of the Fréchet mean and geodesic
principal components computed with this algorithm. We compare the proposed method
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Graph space geometry for unlabelled graphs 3

with tangent-like approaches with two illustrative examples. To demonstrate the potential
utility and flexibility of this framework we illustrate our algorithms using three different
datasets. All the proposed theory is implemented in the geometry module GraphSpace
and learning module AAC available within the geomstats Python package (Miolane et al.,
2020).

2. Graph space

We consider graphs as triples G = (V , E, a), where the node set V has at most n elements
and the edge set E ⊂ V2 has maximal size n2. The nodes and edges are attributed with
elements of an attribute space A, which in this paper is assumed to be Euclidean, via an
attribute map a : E → A. Here, the map a allows us to describe attributes on both edges and
nodes, as we use self-loop edges to assign attributes to nodes. From here on, we represent
networks mathematically as graphs, and consider these terms equivalent.

In our modelling we represent graphs with fewer nodes than n as having n − |V | addi-
tional null nodes, allowing graphs to be represented via fixed-size adjacency matrices. More
precisely, a graph with scalar attributes is completely specified by the adjacency matrix of
dimension n × n, residing in a space X = R

n×n of adjacency matrices. If the attributes are
vectors of dimension d, the graph is represented by a tensor of dimension n×n×d, residing
in a space X = R

n×n×d .
In many real-world applications, populations of graphs describe the same type of rela-

tional phenomena in different contexts, e.g., routes of different airline companies, or brain
connectivity networks of different patients. Differences in the labels or order of nodes make
it challenging to investigate similarities between the topology and attributes of different
graphs, and this is often alleviated by explicit or implicit matching of graph nodes. When the
graphs are represented as n×n adjacency matrices, matching two graphs corresponds to find-
ing optimal permutations of their nodes. Group T of node permutations can be represented
by permutation matrices and its action on X in conjugation,

· : T × X → X , (t, x) �→ tTxt,

thus defines an action of group T on X . We call the obtained quotient space X/T graph
space, and each element of X/T is a graph G, represented as an equivalence class [x] =
{tTxt, t ∈ T} that contains all the adjacency matrices obtained from x by permuting nodes.
The canonical projection to graph space X/T is defined as

π : X → X/T , π(x) := [x].

Graph space is a special case of the R
d-attributed 2-structures introduced by Jain & Ober-

mayer (2009). In the implementation the adjacency matrices are converted to flattened
vectors without loss of generality. An example of how to build graph space is available in
Appendix 1.

Remark 1. The choice of the maximum number of nodes n will affect downstream anal-
ysis. In our experiments, the number of nodes is set to n = max(ni). A consequence of this
choice is that any node appearing in any graph will implicitly be matched to a node in the
maximal size graph. To avoid this, users would need to choose a larger maximal number of
nodes.
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4 Anna Calissano, Aasa Feragen and Simone Vantini

3. Graph space is not Euclidean and not a manifold

3.1. Graph space is not a manifold

Graph space X/T is the quotient of the total space X of adjacency matrices with respect
to the node permutation group T . As detailed in Jain & Obermayer (2009), any metric dX
on X defines a quotient pseudometric dX/T on X/T . If dX is isometric with respect to the
group action then it can be expressed as

dX/T ([x1], [x2]) = min
t∈T

dX (tTx1t, x2).

The resulting quotient metric dX/T is indeed a nondegenerate metric, since the permutation
group T is finite. Examples of commonly used metrics on X include the lp metrics for p ∈
(0, ∞], where p = 2 gives the Euclidean distance used in this paper and p = 1 gives the
Manhattan distance.

While graph space X/T is a metric space, it is not a manifold, even with the Euclidean
distance on X . This follows from the fact that the structure of the isotropy subgroup Tx =
{t ∈ T | tTxt = x} varies for different points x ∈ X (Bredon, 1972). One reason why this
happens is that, as explained in the previous section, forcing the networks to all have the
same number of nodes generates networks with a subset of null nodes. As a permutation
t ∈ T that acts only on the null nodes of an adjacency matrix x ∈ X does not have any effect
on the adjacency matrix, such x will have a larger isotropy subgroup than generic points
in X . As a consequence, many well-known tools from manifold statistics (Kendall, 1984;
Fletcher & Joshi, 2004; Srivastava et al., 2005; Pennec et al., 2006; Huckemann et al., 2010;
Fletcher, 2013; Zhang & Fletcher, 2013; Mallasto & Feragen, 2018) are unfortunately not
directly applicable to graph space.

However, as is commonly the case in both general nonlinear statistics (Sturm, 2003; Fer-
agen et al., 2011, 2013; Nye, 2011, 2014; Bacák, 2014; Turner et al., 2014; Miller et al.,
2015; Nye et al., 2017; Duncan et al., 2018; Feragen & Nye, 2020) and in manifold sta-
tistics, we utilize geodesics, or shortest paths, to define and compute statistical properties
in graph space. In the absence of a manifold structure, we define and understand geodesics
and statistical properties built on geodesics by utilizing geometric constructions from metric
geometry (Bridson & Haefliger, 1999). To that end, we dedicate this section to surveying nec-
essary concepts from metric geometry and applying them to uncover geometric properties
of graph space.

3.2. Graph space is a geodesic space

Given a general metric space (X, dX), the length of a path γ : [0, 1] → X is

l(γ ) = sup
{ m∑

i=1

dX (xi−1, xi)

∣∣∣∣ x0 = γ (0), x1, …, xm = γ (1) for some m ∈ N

}
,

where the supremum is taken over all approximations x0 = γ (0), x1 = γ (s1), …, xm−1 =
γ (sm−1), xm = γ (1) of γ of arbitrary finite length m, where 0 < s1 < · · · < sm−1 < 1.
Thus, the length of a path can be thought of as the supremum over lengths of all finite
approximations of the path.

Given two points a, b ∈ X, a geodesic from a to b is a path γ : [0, 1] → X such that
γ (0) = a, γ (1) = b and l(γ ) = dX(a, b). The metric space (X, dX) is said to be a length
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Fig. 1. For any graph [x] with at most n − 2 nodes, we can find two graphs [yε] and [zε] arbitrarily close to it,
which are connected by more than one geodesic.

space if, for every two points a, b ∈ X, we have

dX(a, b) = inf{l(γ ) | γ : [0, 1] → X such that γ (0) = a, γ (1) = b}.
That is, the distance between any two points a, b is the infimum over lengths of paths con-
necting them. Moreover, X is a geodesic space if every two points a, b ∈ X are connected by
a geodesic γ from a to b; that is, there actually exists a path attaining the infimum length.
Using standard properties of metric spaces, we can show the following lemma.

LEMMA 1. Graph space is a geodesic space.

Proof of Lemma 1 can be found in the Appendix along with proofs of all subsequent
Lemmas and Theorems.

While any two points can be connected by a geodesic, we illustrate through a series
of counterexamples that these geodesics are not always unique. The first counterexample,
shown in Fig. 1, shows how near a graph [x] with at most n − 2 nodes you can find a pair
of points arbitrarily close to it that are connected by two geodesics. We formalize this as a
lemma.

LEMMA 2. There exist graphs [x] ∈ X/T such that, for any ε > 0, there exist points
yε, zε ∈ B([x], ε) ⊂ X/T that are connected by more than one geodesic. In particular, the set
of such graphs [x] include all graphs [x] with at most n − 2 nodes, as well as certain symmetric
graphs [x] with up to n nodes.

The first counterexample leading to Lemma 2 can be constructed near any graph [x]
with at most n − 2 nodes. Are nonunique geodesics caused by using dummy nodes with 0
attributes to include graphs with less than n nodes in graph space? First, note that graphs
[yε] and [zε] do have n nodes if [x] has n − 2 nodes. The geodesic connecting them will
pass through nodes with 0 attributes, but if we do not include these points, we would no
longer have a geodesic graph space. Second, in Fig. 2 a similar example is constructed near
graphs [x] with up to n nodes that admit certain symmetries. Here, [x] is constructed from
an arbitrary subgraph [x′] with at most n − 2 nodes. In other words, nonunique geodesics
can also be found arbitrarily close to certain graphs with n nodes. Third, the reader might
wonder whether these nonuniqueness results are just a function of considering graphs with
attributed nodes. Could this be avoided by only allowing attributes on edges? As we show in
Fig. 3, this is also not the case. Indeed, a completely analogous example can be constructed
by building graph [x] from a subgraph [x′] with at most n − 4 nodes, using additional edges
to play the role taken on by nodes with weights k − 2ε and k + 2ε in the previous examples.
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6 Anna Calissano, Aasa Feragen and Simone Vantini
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Fig. 2. There exist graphs [x] admitting particular permutation symmetries, such that we can find two graphs
[yε] and [zε] arbitrarily close to [x], which are connected by more than one geodesic. In particular, nonunique

geodesics can appear even without having to add zero-attributed nodes.
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Fig. 3. For graphs without node attributes, there exist graphs [x] such that we can find two graphs [yε] and [zε]
arbitrarily close to [x], by attaching a new edge in place of the weighted node.

Finally, the reader might ask whether graph space just does not have unique geodesics?
We conjecture that, within sufficiently strong assumptions, generic pairs of graphs with n
nodes may be connected by unique geodesics, in a similar way as is known for unlabelled
trees (Feragen & Nye, 2020). In this paper, however, we take the route of defining statistics
that do not rely on uniqueness of geodesics.

3.3. Graph space curvature

Curvature affects properties that are important for defining and computing statistical
quantities. In particular, the convergence proofs for common statistical estimation algo-
rithms (Sturm, 2003; Chakraborty & Vemuri, 2015; Miller et al., 2015) often rely on assump-
tions of bounded curvature. We show that the curvature of graph space is unbounded from
above according to generalized concepts of curvature from metric geometry (Bridson &
Haefliger, 1999). This will motivate our choice of statistics in the following section.

First consider the graph space where edges and nodes have real attributes a : E → R. We
show that the curvature of this graph space is not bounded from above. In metric geometry,
curvature is approached through comparison with model spaces Mκ of curvature κ. Differ-
ent model spaces are used for negative, zero and positive κ. When κ < 0, the model space
is the hyperbolic space of negative curvature κ, namely, Mκ = Hκ . For κ = 0, the model
space is M0 = R

2, namely, the Euclidean plane. Finally, for κ > 0, the model space is the
sphere of curvature κ, namely, Mκ = S

2
κ . An important property of the model spaces of

curvature κ is that they are each accompanied by a diameter Dκ such that any two points
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Graph space geometry for unlabelled graphs 7
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Fig. 4. A geodesic triangle in X and the corresponding comparison triangles in hyperbolic space H
2, the plane

R
2 and the sphere S2, respectively.

a, b ∈ B(x, Dκ/2) = {x′ ∈ Mκ : dMκ (x
′, x) < Dκ/2} for any x ∈ Mκ can be joined by a

unique geodesic.
We can compare any given geodesic space (X, dX) to any one of the model spaces using

comparison triangles as follows. A geodesic triangle abc in X consists of vertices a, b, c ∈ X

joined by geodesic edges γab, γbc and γac. We assume that a, b and c are all contained in
a ball of diameter < 2Dκ . We can then construct a comparison triangle āb̄c̄ in the model
space Mκ with vertices ā, b̄ and c̄ joined by geodesic edges γ̄āb̄, γ̄b̄c̄ and γ̄āc̄, whose lengths
are the same as the lengths of the edges γab, γbc and γac in abc. See Fig. 4 for an illustration.

DEFINITION 1 (CAT(κ) space, curvature in the sense of Alexandrov). Let (X, dX) be
a geodesic metric space, and let abc be a geodesic triangle in X as described above. Any point x
from segment γbc has a corresponding point x̄ on segment γ̄b̄c̄ in the comparison triangle, such
that dMκ (x̄, b̄) = dX(x, b). If

dX(x, a) � dMκ (x̄, ā) (1)

for every such x, and similarly for any x on γab or γac, then the geodesic triangle abc satisfies
the CAT(κ) condition. The metric space X is a CAT(κ) space if any geodesic triangle abc in
X of perimeter < 2Dκ satisfies the CAT(κ) condition given in (1). Geometrically, this means
that triangles in X are thinner than triangles in Mκ . Metric space X has curvature � κ in the
sense of Alexandrov if it is locally CAT(κ).

The properties of the model space in relation to its diameter Dκ also transfer to geodesic
spaces X that are CAT(κ) (Bridson & Haefliger, 1999, Proposition II.1.4). Given any x ∈ X,
any two points a, b ∈ B(x, Dκ) ⊂ X can be joined by a unique geodesic. In particular,
Dκ = ∞ for κ � 0, meaning that in nonpositively curved spaces, any two points can be
joined by a unique geodesic, regardless of their distance. Moreover, Dκ � π/

√
κ for κ > 0,

meaning that the lower the bound on the positive curvature, the larger the radius within
which all pairs of points have unique connecting geodesics.

THEOREM 1 (The curvature of graph space is unbounded from above). Graph space
does not have curvature � κ in the sense of Alexandrov for any κ ∈ R. In particular, there exist
graphs [x] ∈ X/T such that, for any Rκ > 0, we can find two graphs [yε], [zε] ∈ B([x], Rκ) ⊂
X/T connected by two geodesics.
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8 Anna Calissano, Aasa Feragen and Simone Vantini

X /T

[ y  ]

�n
mid

�n

� e
mid

� e

�[z  ]

Fig. 5. Since geodesics are not necessarily unique in graph space X/T , Fréchet means are not necessarily
unique either.

Remark 2. While all of the results and examples above considered the case where node
and edge attributes were real valued (A = R), the proofs hold equally well for vector-valued
node and edge attributes (A = R

p).

4. Statistics on graph space

4.1. The Fréchet mean

Even though the graph space is not a manifold and its curvature is unbounded from above,
we can take advantage of its relation to its Euclidean total space X to define and compute
intrinsic graph space statistics in a well-defined fashion. Consider the total space X , graph
space X/T obtained by quotienting out the action of the permutation group T on X , and
a set of observations {[x1], . . . , [xk]} ∈ X/T . A basic quantity in nonlinear statistics is the
Fréchet mean.

DEFINITION 2. The Fréchet mean of a sample {[x1], . . . , [xk]} ∈ X/T is

arg min
[x]∈X/T

k∑
i=1

dX/T([x], [xi])2.

The Fréchet mean could be a set with more than one element; in this case we denote any one
of its elements by [x̄].

For any geodesic space, the mean of two points is characterized as the midpoint of any
geodesic connecting the two points. Thus, as illustrated in Fig. 5, we obtain the following
result as a direct consequence of Lemma 2 and Theorem 1.

COROLLARY 1. Fréchet means are not generally unique in graph space X/T. In fact, as
shown by Fig. 5, for any graph [x] ∈ X/T and any radius ε > 0, there will be sets of points in
B([x], ε), e.g., {[yε], [zε]}, whose Fréchet mean is not unique.
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Graph space geometry for unlabelled graphs 9

Although Fréchet means in graph space are not necessarily unique, they are still explana-
tory and useful, just like on manifolds of positive curvature, where they are also not unique
(Huckemann & Eltzner, 2020).

4.2. Geodesic principal component analysis

One approach to defining and computing principal components is to choose node per-
mutations that align each network to a fixed representative of a fixed network, such as the
Fréchet mean μ, and performing principal component analysis in X . This is what was done
by Guo et al. (2021), and this is analogous to tangent space methods from manifold sta-
tistics (Fletcher & Joshi, 2004). However, just like in manifold statistics, the projection to
X based on optimal representatives xi of individual graphs [xi], with respect to a single
graph representative μ ∈ X , leads to distortion of pairwise distances between observations
dX/T([xi], [xj]), which are not guaranteed to coincide with their distance dX (xi, xj) in the
total space X . Thus, in this section, we introduce an intrinsic notion of generalized geodesic
principal components in graph space, following Huckemann et al. (2010).

DEFINITION 3. Denote by �(X) the set of all straight lines in X. Following Huckemann
et al. (2010), a curve δ is a generalized geodesic on graph space X/T if it is a projection of a
straight line on X:

�(X/T) = {δ = π ◦ γ : γ ∈ �(X)}.
Since graph space is not an inner product space, we define orthogonality as follows.

DEFINITION 4. Two generalized geodesics δ1, δ2 ∈ �(X/T) are orthogonal if they have
representatives in δ1 = π ◦γ1, δ2 = π ◦γ2, γ1, γ2 ∈ �(X), which are orthogonal 〈γ1, γ2〉X = 0.

In order to bridge computations in graph space X/T with computations in the total space
X , we introduce a concept of alignment in X . We remind the reader that the metric on graph
space is

dX/T([x1], [x2]) = min
t∈T

dX (tTx1t, x2),

which naturally leads to the concept of optimal position (Huckemann et al., 2010).

DEFINITION 5 (Optimal position). Given x̃ ∈ X and t ∈ T, the point tTx̃t is in optimal
position to x ∈ X if

dX (tTx̃t, x) = dX/T ([x̃], [x]).
That is, the equivalence class [x̃] ∈ X/T contains at least one point tTx̃t ∈ [x̃] that has minimal
distance to x, and this point is in optimal position to x. Next, consider [x] ∈ X/T , t ∈ T,
and δ a generalized geodesic in X/T with representative γ ∈ �(X). The graph representative
tTxt ∈ X is in optimal position to γ ∈ �(X) if

dX (tTxt, γ ) = dX/T([x], δ).
The optimal position to a generalized geodesic and its computation is detailed in Algo-

rithm 2 below. Having concepts of generalized geodesic, optimal position and orthogonality,
we now define a set of geodesic principal components.
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10 Anna Calissano, Aasa Feragen and Simone Vantini

DEFINITION 6. Consider the canonical projection of the graph space π : X → X/T of
X and consider a set {[x1], . . . , [xk]} ⊂ X/T of graphs, [x] ∈ X/T and δ ∈ �(X/T). The
generalized geodesic principal components for the set {[x1], . . . , [xk]} are defined as follows.

(i) The first generalized geodesic principal component δ1 ∈ �(X/T) is the generalized
geodesic minimizing the sum of squared residuals:

δ1 = arg min
δ∈�(X/T)

k∑
i=1

d2
X/T([xi], δ). (2)

(ii) The second generalized geodesic principal component δ2 ∈ �(X/T) minimizes (2) over
all δ ∈ �(X/T), having at least one point in common with δ1 and being orthogonal to δ1
at all points in common with δ1.

(iii) The point [μ] ∈ X/T is called the principal component mean if it minimizes

k∑
i=1

d2
X/T([xi], [μ])2,

where [μ] only runs over points x̃ in common with δ1 and δ2.
(iv) The jth generalized geodesic principal component is a δj ∈ �(X/T) if it minimizes (2)

over all generalized geodesics that meet orthogonally δ1, . . . , δj−1 and cross μ.

Remark 3. Since the geodesics are not necessarily unique in graph space, the generalized
geodesic principal components are nonunique as well.

5. Align-all-and-compute algorithm

5.1. Align all and compute for the Fréchet mean

Intrinsic graph space statistics can be computed iteratively via a combination of choosing
optimal graph representatives in X , not with respect to a single graph, but with respect to the
wanted statistic, and computing Euclidean statistics in X . Based on this derivation, we pro-
pose a general align-all-and-compute strategy for computing graph space statistics, which
we use to compute both Fréchet means and, in particular, generalized geodesic principal
components.

The distance dX/T between two points in graph space X/T corresponds exactly to the
distance in X after bringing one point into optimal position to the other. We now define
the align-all-and-compute algorithm, which is based on iteratively first bringing the obser-
vations into optimal position to the current mean estimate, then re-estimating the mean
based on the aligned observations and repeating until convergence. In the case of computing
Fréchet means of shapes, the align-all-and-compute algorithm coincides with generalized
Procrustes analysis (Gower, 1975).

Algorithm 1. Align all and compute for the Fréchet mean.

Input: {[x1], . . . , [xk]} ⊂ X/T ; a threshold ε > 0.
Initialization: Randomly select x̃ = x̃i ∈ [xi] ∈ {[x1], . . . , [xk]}.
While s > ε:
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Graph space geometry for unlabelled graphs 11

Obtain x̃i optimally aligned with respect to x̃ for i = {1, . . . , k}.
Compute the Fréchet mean x̄ in X of {x̃1, x̃2, . . . , x̃k} ∈ X .
Compute s = dX (x̃, x̄).
Set x̃ = x̄.

Output: [x̄], an estimate of the Fréchet mean of {[x1], …, [xk]} ∈ X/T .

This algorithm provides an estimate of a Fréchet mean that is independent of the order
of the data, and with improved convergence properties.

THEOREM 2. Algorithm 1 converges in finite time for ε = 0. Moreover, assume that graph
space X/T is endowed with a probability measure η that is absolutely continuous with respect to
the pushforward of the Lebesgue measure m on X. In particular, for A ⊂ X/T, we have η(A) =
0 if m{π−1(A)} = 0. Suppose that the dataset [x1], …, [xk] is sampled from η; now, with
probability 1, the estimator found by Algorithm 1 is a local minimum of the Fréchet function

k∑
i=1

d2
X/T([x], [xi]). (3)

Even though we show that the algorithm theoretically converges in finite time, we add a
convergence threshold ε in the implementation of Algorithm 1. An equally valuable stop-
ping criterion is the difference between the Fréchet function evaluated in two consecutive
steps.

All the non-invariant models including our algorithm rely on graph matching, which is
generally NP complete. In practice, we obtain efficient computation by using faster heuristic
algorithms for inexact graph matching, such as the fast quadratic assignment by Vogelstein
et al. (2015) or graduate assignment by Gold & Rangarajan (1996). The graph matching is
the computational bottleneck of the procedure.

5.2. Align all and compute for generalized geodesic principal component analysis

The align-all-and-compute strategy, due to its iterative alignment with the chosen pre-
dictor, helps overcome the nonuniqueness of geodesics. It can readily be extended to other
estimators that rely on geodesics, such as generalized geodesic principal components. The
alignment with a generalized geodesic, see Definition 5, is performed in a two-step alignment
procedure.

Algorithm 2. Optimal position to a generalized geodesic.

Input: a point x ∈ [x], a straight line γ ∈ �(X), the domain [smin, smax], k points to
sample.

For {s1 = smin, . . . , sk = smax} sampled from [smin, smax]:
Find t(si) := arg mint∈T dX {tTxt, γ (si)}.

Compute s̄ = arg minsi∈{s1,...,sk} dX {t(si)
Txt(si), γ (si)}.

Return: t̄ = t(s̄).
Output: t̄ ∈ T such that t̄Txt̄ is in optimal position to γ .

The obtained t̄ ∈ T is the permutation such that the point t̄Txt̄ ∈ [x] is the closest repre-
sentative of [x] to the geodesic γ in the interval selected, which is si ∈ [smin, smax], discretized
into finite steps.
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12 Anna Calissano, Aasa Feragen and Simone Vantini

Algorithm 3. Align all and compute to compute the generalized geodesic principal
components.

Input: {[x1], . . . , [xk]} ∈ X/T , a threshold ε > 0.
Initialization:

Select randomly a candidate [xi] from {[x1], . . . , [xk]} and a representative
x̃i ∈ [xi].

Align [xj] with respect to x̃i, obtaining x̃j ∈ X for j ∈ {1, . . . , k}.
Perform principal component analysis on {x̃1, x̃2, . . . , x̃k} in X , obtaining
γ1, . . . , γk ∈ �(X).
Project onto �(X/T) as δi = π ◦ γi.
Set δ̃1 = δ1, . . . , δ̃k = δk.

While s > ε:
Align [xi] with respect to δ̃1, obtaining x̃i ∈ X for i ∈ {1, . . . , k} using

Algorithm 2.
Perform principal component analysis on {x̃1, x̃2, . . . , x̃k} in X , obtaining
γ1, . . . , γk ∈ �(X).
Project onto �(X/T) as δi = π ◦ γi.
Compute a step distance function s = f (δ̃1, δ1).
Set δ̃1 = δ1, . . . , δ̃k = δk.

Output: geodesic principal components δ1, . . . , δk ∈ �(X/T).

Because of the curvature of the space discussed in § 3, the Fréchet mean is not ensured
to be the same as the principal component mean. A possible choice for the step distance
function f is the proportion of variance explained by the first generalized geodesic principal
component at the current and previous steps.

THEOREM 3. Algorithm 3 converges in finite time for ε = 0. Assume that graph space X/T
is endowed with a probability measure η that is absolutely continuous with respect to the push-
forward of the Lebesgue measure m on X, and let the dataset [x1], …, [xk] be sampled from
η. Now, with probability 1, the estimator of the first generalized geodesic principal component
found by Algorithm 1 is a local minimum of the sum of the squared residuals function

k∑
i=1

d2
X/T (δ, [xi]),

where δ ∈ �(X/T).

In this paper, we selected as the step distance function the proportion of variance
explained. For the case of the higher generalized geodesic principal components, we do not
have a proof of local minimization of (2) and Algorithm 3 should be considered a heuristic.

Remark 4. In the case of Fréchet means of shapes, the align-all-and-compute algorithm
coincides with generalized Procrustes analysis (Gower, 1975). In the statistical literature, a
number of algorithms exist to compute means either approximately (Sturm, 2003; Afsari
et al., 2013; Arnaudon et al., 2013; Bonnabel, 2013; Arnaudon & Miclo, 2014; Bacák, 2014;
Turner et al., 2014; Hauberg et al., 2015; Miller et al., 2015) or via heuristics (Billera et al.,
2001; Jain & Obermayer, 2008; Feragen et al., 2011), whose applicability and efficiency vary
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Graph space geometry for unlabelled graphs 13

with the complexity of the underlying nonlinear data space. A particularly popular strat-
egy for computing Fréchet means in geodesic spaces is the iterative midpoint algorithm that
obtains an updated mean estimate by stepping 1/k along the geodesic from a current mean
estimate to a kth random sample from the dataset. In Euclidean space, this computes the
mean in finite time when samples are made without replacement. The same without replace-
ment strategy is applied for trees in Feragen et al. (2011) and for graphs in Jain & Obermayer
(2008), but these finite-time algorithms do not generally return the mean in tree or graph
space, and should be considered heuristics. When running the algorithm with replacement,
there are a number of scenarios in which it is known to converge towards the Fréchet mean,
including nonpositively curved spaces (Sturm, 2003; Bacák, 2014; Miller et al., 2015) and
certain Riemannian manifolds of bounded curvature (Arnaudon et al., 2013; Arnaudon &
Miclo, 2014; Chakraborty & Vemuri, 2015). For Riemannian manifolds, this algorithm is a
special case of stochastic gradient descent (Bonnabel, 2013). While this algorithm is easy to
generalize to graph space, its convergence proofs usually require bounded curvature to have
some level of uniqueness for geodesics. Moreover, it does not come with an accompanying
algorithmic strategy for computing more general statistics, such as principal components.
This motivates our choice to propose the align-all-and-compute strategy.

6. Comparison with existing methods

Other strategies have been proposed for the computation of the Fréchet mean and prin-
cipal components for a set of graphs. In particular, Kolaczyk et al. (2020) focused on the
understanding of graph space stratified structure and the Fréchet mean properties when
data have the same number of nodes, and are restricted to the fundamental domain. Guo
et al. (2021) proposed an algorithm for the estimation of the Fréchet mean, similar to
the Fréchet mean align-all-and-compute algorithm, and an algorithm for principal com-
ponents. Such an algorithm applies the Euclidean principal component analysis on the set
of graphs aligned with the Fréchet mean estimation and it recalls a tangent space approach
(Fletcher, 2013). In the following illustrative examples, we compare the performance of the
tangent principal component analysis method proposed in Guo et al. (2021) and Algo-
rithm 3. The example is summarized in Fig. 6. Consider a weighted directed graph with
two nodes; this dimension is driven by the possibility of visualizing the results. The permu-
tation group acts on the nodes, resulting in equivalence classes of dimension 2 if the edges
have different values. The edge weights Edge1 and Edge2 are simulated from two indepen-
dent Gaussian distributions; see Fig. 6(b). In experiment 1, the edges’ distributions have
different means and different variances, and in experiment 2 the same mean and differ-
ent variances. As the graphs are considered unlabelled, we randomly choose half of the
graphs to be permuted, obtaining the unlabelled datasets in Fig. 6(c). To perform tangent
principal component analysis, firstly, the Fréchet mean is computed to find an optimally
aligned dataset and, secondly, the Euclidean principal component analysis is computed on
the aligned dataset; see Fig. 6(d). As described in Algorithm 3, align-all-and-compute gen-
eralized geodesic principal components are computed starting from the unlabelled dataset,
without any pre-alignment step; see Fig. 6(e). In experiment 1, the tangent principal compo-
nent analysis and the align-all-and-compute generalized geodesic principal components are
equivalent, as all the data points belong to the fundamental domain of the space (Kolaczyk
et al., 2020). In this context, the tangent space approximation happens to be a good approx-
imation of the space. In experiment 2, the tangent principal component analysis captures
72.98% of the variability, see Fig. 6(d), while the generalized geodesic principal component
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Fig. 6. (a) Visualization of equivalence classes; (b) Generated data; (c) Permuted generated data. (d) Com-
parison between tangent principal component analysis, PCA (Guo et al., 2021) and (e) align-all-and-compute
generalized geodesic principal component analysis, AAC GGPCA. The fast quadratic assignment (Vogelstein
et al., 2015) matcher is used for both simulations. We sampled 100 data points from: Edge1 ∼ N (5, 0.3),

Edge2 ∼ N (25, 7) (Experiment 1); Edge1 ∼ N (1, 0.3), Edge2 ∼ N (1, 7) (Experiment 2).

analysis captures 95.84% of the data variability. This last example shows how the alignment
procedure based on the geodesic alignment, rather than a central point alignment, is able
to capture the complexity of the data structure when the final aim is to fit a geodesic; see
Fig. 6(e). In real-world data, understanding if the data belong to the fundamental domain
is far from trivial (Kolaczyk et al., 2020); thus, the align-all-and-compute generalized geo-
desic principal component analysis is a safe model choice, ensuring a correct fit in the whole
space and for graphs with different numbers of nodes.
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Fig. 7. Data projected along the first two geodesic principal components (0.1, 0.25, 0.5, 0.75, 0.9 percentiles).
Graph density along the components as well as the number of isolated nodes along the components are reported.
The position of the nodes is computed using the spring layout on the generalized geodesic principal component

analysis mean.

7. Experiments on real data

7.1. Case study 1: mammals grooming

This case study focuses on the social interaction of different groups of baboons, col-
lected to observe the effect when an alpha or beta male is excluded from the community.
Social interaction is defined here as grooming interaction between members of the group.
The dataset consists of a set of 26 social interaction networks between baboons, where
nodes are baboons and edges are the number of grooming interactions between baboons.
The networks are naturally unlabelled because the baboons in each network are different,
belonging to different groups. See Rossi & Ahmed (2015) for the data, while more details
about the case study can be found in Franz et al. (2015). The original dataset was filtered,
keeping only the networks with less than 20 baboons. In Fig. 7, we report the first two geo-
desic principal components along with the density and the number of isolated nodes along
the components. Graph density is the number of edges in the graph over the total number
of possible edges, and an isolated node is a node with degree 0, i.e., with no connections
(Wasserman & Faust, 1994). The first geodesic principal components reflect the variabil-
ity in terms of isolated nodes, and the second principal component reflects the variability
in terms of density. The example is able to show how the generalized principal compo-
nent analysis in the graph space setting is capturing social interaction changes that the
original paper (Franz et al., 2015) is not able to capture, by just looking at the networks
indicators.
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Fig. 8. Left: a datum extracted from the A dataset and the Fréchet mean. Every unlabelled node has a
bi-dimensional real-valued attribute, while every edge has a 0, 1 attribute. Right: visualization of the gener-
alized geodesic principal components. We show 0.1, 0.25, 0.5, 0.75, 0.9 quantiles of the projected scores for the

first three generalized geodesic principal components.

7.2. Case study 2: undirected networks with vector attributes

As an intuitive visual example with real data and associated vector attributes, we sub-
sample 20 cases of the letter A from the well-known hand written letters dataset (Riesen &
Bunke, 2008; Morris et al., 2020). As shown in the left panel of Fig. 8, every network has
node attributes consisting of the node x and y coordinates, and binary (0/1) edge attributes
indicating whether nodes are connected by lines. In Fig. 8, the Fréchet mean is shown, under-
lining how the framework is capturing both the topology and the node coordinates. The
right panel of Fig. 8 plots network variation along the three generalized geodesic principal
components. The principal components are capturing the variability in the way the letter
A could be written: the variability of the length and the inclination of the horizontal bar,
the angle between the vertical bars and the reciprocal positions of the bars. While the first
two generalized geodesic principal components both capture a trend of slanting letters, they
differ in whether the slanting is caused by a translated position in the top node and a rotation
of the cross-bar of the letter A, or by a rotation in its legs.

7.3. Case study 3: directed networks with vector attributes

Our final example uses a mobility dataset from Open Data Regione Lombardia
https://dati.lombardia.it/. The dataset consists of origin-destination matrices of the com-
muting flux of people between the 11 provinces of the Lombardia region in northern Italy.
For every hour of a representative day in 2014, the fluxes were collected, counting the num-
ber of people travelling by private mobility mode (car), railway system (train or metro), bus
(public transport system) or bike. This results in a set of 24 multilayer networks, represented
as graphs whose edge attributes are vectors in R

4.
The top panel of Fig. 9 shows the multilevel networks associated with four different hours

on the left, as well as the Fréchet mean on graph space X/T computed with the align-all-
and-compute algorithm, right. The density of the layers are well represented by the mean.
By looking at the permutation of network nodes used to compute the mean and the gener-
alized geodesics, we see that most of the time no permutation is performed, i.e., the node
corresponding to a specific province at one hour is matched to the node representing the
same province at another hour. This means that, even though the provinces information is
not stored in the graph, the provinces are distinguished by their mobility properties. The
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Fig. 9. Top left: network of the fluxes between the Lombardia Region provinces at 2 a.m., 8 a.m., 5 p.m. and 10
p.m. Top right: Fréchet mean in graph space X/T for the four mobility modes: bike, bus, rail and private. Bottom
left: generalized geodesic principal component analysis performed on scaled data. The first generalized geodesic
principal component is shown, by plotting the quantiles of the original data projected along the corresponding
generalized geodesic for each one of the levels (q = 0.1, 0.25, 0.5, 0.75, 0.9). The generalized geodesic principal
component captures the density change along the day for all the transportation modes except for the private car
mode. Bottom right: scores for the first generalized geodesic principal component plotted as a function of time.

only permutation happens at 5 p.m., when the town of Brescia is permuted with the town
of Bergamo. These two towns are both important commuting satellites of Milan, so their
role is interchangeable with respect to the commuting flux in the afternoon. This application
shows how this framework does not suffer the possible risk of overmatching also in the case
where the cardinality of the permutation group is quite high, i.e., even though about 40 mil-
lion possible node permutations are available, no artificial permutations are introduced by
the algorithm. The bottom right panel of Fig. 9 shows that the majority of the variability is
explained by the first generalized geodesic principal component, 81% of the total variance.
By moving along this component, the density of the layers changes, except from the private
mode, which is a complete graph at every hour of the day. As displayed in the bottom right
panel of Fig. 9, the scores reflect an expected time pattern, showing the high explanatory
power of the generalized geodesic principal component analysis: two peaks corresponding
to the morning and evening activities, one small peak at lunch and low activity at night.

8. Future research

A first development of the current work could focus on proving consistency and unbi-
asness of generalized principal components within graph space, following existing results
regarding the Fréchet mean (Jain & Obermayer, 2010a,b; Kolaczyk et al., 2020) and more
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general discussions on asymptotic bias and stability within similar quotient spaces (Hucke-
mann, 2012; Miolane et al., 2017). Regarding the uniqueness of the generalized geodesic
principal component analysis, the results of Kolaczyk et al. (2020) on the fundamental
domain can be potentially extended to the geodesics and the generalized geodesic princi-
pal component analysis estimator. In more general terms, align all and compute is a strategy
that can be extended to different estimators, by correctly combining the estimation step with
the alignment step (Calissano et al., 2022). A further development in this direction is the
extension of the align-all-and-compute algorithm to predictive models tailored for graphs.
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Appendix

Example of graph space construction

Consider the two weighted networks shown in Fig. A1. To represent these as points in graph
space, first add a fictional null node to the first graph, then randomly enumerate the nodes and
finally represent them in two weighted, symmetric adjacency matrices as shown in Fig. A1. The
adjacency matrices can be vectorized as a vector of dimension nine, e.g., the first network becomes
[0, 4, 0, 4, 0, 0, 0, 0, 0]. The space of flattened adjacency matrices X is thus R9, and the two networks
are represented by two points in R

9. The permutation action can be represented as a binary 9 × 9
matrix: the permutation reorders the nodes and, consequently, the edges of the network by permut-
ing the rows and columns of its adjacency matrix, and hence also the positions of the elements in the
flattened matrix representation xi. For example, if nodes 2 and 3 are permuted in the first network,
we obtain the new permuted vector [0, 0, 4, 0, 0, 0, 4, 0, 0]. Each point [xi] in the quotient space X/T
consists of all possible permuted versions of xi, i.e., permuting the rows and columns of the associ-
ated adjacency matrix. Now, the equivalence classes [x1] and [x2] are points in X/T , and the maximal
size of an equivalence class in X/T is 3!. As the graphs are undirected and with only scalar attributes
on the edges, we can represent them as points in R

2. The permutation group acting on x1, x2 has the
effect of inverting the node ordering, i.e., the axes. In Fig. A1, we show the generalized geodesics
connecting the two graphs.

Proof of Lemma 1

This result follows from standard properties of metric spaces. As our total space X is Euclidean,
it is, in particular, a length space. Since graph space X/T is a metric space, X/T is a length space
by Lemma I.5.20 of Bridson & Haefliger (1999). Moreover, as X/T is the quotient with respect to
a finite group, and X is locally compact, the quotient X/T is also locally compact (Bredon, 1972,
Theorem I.3.1). Any Cauchy sequence ([xi])i∈N in X/T is the image under π of a Cauchy sequence
(tT

i xiti)i∈N in X such that, for some M ∈ N and i, j � M, we have dX (tT
i xit, tT

j xjtj) = dX/T([xi], [xj]).
Since X is complete, the sequence (tT

i xit)i∈N converges to some point x ∈ X , and hence the sequence
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Fig. A1. Example of two simple weighted undirected networks x1 and x2, their matrix representations and the
generalized geodesic connecting the two points.
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illustrated via their midpoints γ n
mid and γ e

mid.

([xi])i∈N converges to [x] ∈ X/T . In other words, X/T is complete. Thus, X/T is a geodesic space by
the Hopf–Rinow theorem (Bridson & Haefliger, 1999, Proposition I.3.7).

Proof of Lemma 2

We give an example in the case where node and edge attributes are scalar. The same example can be
adapted to vector-valued node or edge attributes by appending this scalar value with zeros. Consider
ε > 0, c = √

2 and the Euclidean metric on X . Consider the two graphs yε and zε shown in the top
row on the left-hand side of Fig. A2. The corresponding adjacency matrices are

yε =
⎛
⎝ 0 1 + ε 1 − ε

1 + ε cε 0
1 − ε 0 −cε

⎞
⎠ , zε =

⎛
⎝ 0 1 + ε 1 − ε

1 + ε −cε 0
1 − ε 0 +cε

⎞
⎠ .

There are two geodesic paths between these two graphs. The first consists of interpolating the node
attributes with the node matching indicated by the planar embedding of the nodes:

γ n
mid =

⎛
⎝ 0 1 + ε 1 − ε

1 + ε 0 0
1 − ε 0 0

⎞
⎠ , γ e

mid =
⎛
⎝0 1 1

1 cε 0
1 0 −cε

⎞
⎠ .

The midpoint of this geodesic is the graph γ n
mid shown on the left-hand side of the bottom row,

dX/T(yε, γ n
mid) = d(zε, γ n

mid) = 0.2.
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The second geodesic between yε and zε consists of interpolating the edge attributes with the node
matching indicated by the colouring of the nodes. The midpoint of this geodesic is the graph γ e

mid
shown on the right-hand side of the bottom row,

dX/T(yε, γ e
mid) = d(zε, γ e

mid) = 0.2.

The two points connected by two geodesics are illustrated schematically on the right-hand side of
Fig. A2. The same argument can be built by considering the examples in Figs. 1–3. �

Proof of Theorem 1

Let [x], [yε] and [zε] be as in Fig. 1, 2 or 3. For any radius Rκ > 0, there will exist an ε > 0 such
that [yε], [zε] ∈ B([x], Rκ). Moreover, as argued in Lemma 2, there will always be two equally long
shortest paths connecting [yε] and [zε]. Thus, by Proposition II.1.4 of Bridson & Haefliger (1999),
graph space is not locally CAT(κ) at [x] for any κ, and thus cannot have curvature � κ in the sense
of Alexandrov for any κ. �

Proof of Theorem 2

Firstly, we state and prove the following lemma required to prove Theorem 2.

LEMMA A1. Given representatives x1, …, xk of [x1], …, [xk] with mean μ in X, the following holds
with probability 1. For all i = 1, …, k and all t ∈ T \ Txi ,

d(μ, xi) |= d(μ, tTxit),

where Txi is the stabilizer Txi = {t ∈ T | tTxit = xi}.

Proof. In order to prove the lemma, we show that the set

XT = {([x1], …, [xk]) ∈ (X/T)k | there exist some i = 1, …, k and t ∈ T \ Txi

and some representatives x1, …, xk, such that d(μ, xi) = d(μ, tTxit)} has measure ηk(XT) = 0, where
ηk is the product measure induced by η on

X/T × · · · × X/T︸ ︷︷ ︸
k

.

For each element t ∈ T , denote by X t = {x ∈ X | tTxt = x} the fixed point set of t and define the set

Xi\t = X × · · · × X \ X t︸ ︷︷ ︸
ith

× · · · × X .

Note that ηk(XT) = mk{π−1(XT)} and that

π−1(XT) =
k⋃

i=1

⋃
t∈T

Xi,t,

where

Xi,t = {(x1, …, xk) ∈ Xi\t | dX (μ, xi) = dX (μ, tTxit)} ⊂ X × · · · × X︸ ︷︷ ︸
k

.
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The preimage f −1(0) of the function f : X × · · · × X︸ ︷︷ ︸
k

→ R, (x1, …, xk) �→ d2
X (μ, xi) −

d2
X (μ, tTxit), satisfies f −1(0) ∩ Xi\t = Xi,t. We show that f is a submersion on Xi\t by showing that

it has nonzero gradient. We can rewrite

f (x1, …, xk) = tr
{(

1
k

k∑
j=1

xj − xi

)T(1
k

k∑
j=1

xj − xi

)

−
(

1
k

k∑
j=1

xj − tTxit
)T(1

k

k∑
j=1

xj − tTxit
)}

= tr
(

2
k

k∑
j=1

{xT
j (t

Txit) − xT
j xi}

)
.

For j |= i, we obtain

∇xj f (x1, …xk) = tr
(

2
k
(tTxit − xi)

)
,

which is nonzero for (x1, …, xk) ∈ Xi\t. It follows that f is a submersion on Xi\t. As a result, the
set f −1(0) ∩ Xi\t = Xi,t has codimension 1 and, in particular, mk(Xi,t) = mk{f −1(0) ∩ Xi\t} = 0. But

then ηk(Xk) = mk{π−1(XT)} = mk

( ⋃k
i=1

⋃
t∈T Xi,t

)
�

∑k
i=1

∑
t∈T mk(Xi,t) = 0, which completes the

proof. �

We can now turn to the proof of Theorem 2. First, we prove convergence in finite time. Algorithm 1
consists of two steps repeated iteratively. Consider the function

k∑
i=1

d2
X (μcur, xcur

i ), (A1)

where, at any point in time, μcur is the current representative in X of the current estimate of the Fréchet
mean, and xcur

i is the current representative, with current optimal node alignment to μcur, in X of the
sample point [xi]. The first step, aligning data points to the current representative of the current
mean estimate, cannot increase the value of (A1), as an improved alignment would indeed lower the
value of (A1). Similarly, the second step, which is the re-estimation of the Fréchet mean given the
new alignments, also cannot increase the value of (A1) as, again, an improved estimate would lower
its value. Moreover, if the value of (A1) stays fixed for two iterations in a row, the algorithm will
terminate. Thus, the iterative algorithm will never see the same set of samplewise alignments twice.
As there are only finitely many such sets, the algorithm is forced to terminate in finite time.

Next, we move to convergence to a local minimum. Let [μ] ∈ X/T be the estimated mean, let
μ ∈ X be a representative of it and let x1, …, xk ∈ X be optimally aligned representatives of the
sampled graphs, as in the final step of the align-all-and-compute algorithm. We show below that,
with probability 1, there exist some ε > 0 such that, for any μ′ ∈ BX (μ, ε), the representatives
x1, …, xk are also optimally aligned with μ′. In this case, since μ is a local minimizer of (A1) within
B(μ, ε), and dX/T([μ′], [xi]) = dX (μ′, xi) for all μ′ ∈ BX (μ, ε), the estimated mean graph [μ] is a local
minimizer of (3).

As Lemma A1 holds, there exists a ε > 0 and thus we can define

δ = min{d(μ, tTxit) − d(μ, xi) | i = 1, …, k, t ∈ T \ Txi } > 0.
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We now set ε = δ/2 and consider μ′ ∈ BX (μ, ε). We wish to show that, for all i = 1, …, k and all
t ∈ T \ Txi , we have d(μ′, xi) < d(μ′, tTxit), namely, that the optimal representative of [xi] is left
unchanged for all i.

By the definition of δ, we have d(μ, xi) � d(μ, tTxit) − δ, and, by the triangle inequality, we have
d(μ′, xi) � d(μ′, μ)︸ ︷︷ ︸

<ε=δ/2

+d(μ, xi) and d(μ, tTxit) � d(μ, μ′)︸ ︷︷ ︸
<ε=δ/2

+d(μ′, tTxit). We compute

d(μ′, xi) � d(μ′, μ)︸ ︷︷ ︸
<δ/2

+d(μ, xi)

<
δ

2
+ d(μ, xi)

� δ

2
+ d(μ, tTxit) − δ

< − δ

2
+ δ

2
+ d(μ′, tTxit)

= d(μ′, tTxit),

which completes the proof of Theorem 2 under the assumption that Lemma A1 holds.

Proof of Theorem 3

The proof of convergence of align all and compute for generalized geodesic principal component
analysis follows the exact same strategy as for the Fréchet mean in Theorem 2, noting the following.

(i) The algorithm converges in finite time because every step either decreases or leaves unchanged
the value of the sum of squared residuals for representatives in X :

k∑
i=1

d2(xi, γ )

with respect to the first generalized geodesic principal component δ ∈ �(X/T) and its
representative γ ∈ �(X).

(ii) For the first generalized geodesic principal component, the algorithm converges to a local min-
imum of (2) following the same argument as above. Here, the ε neighbourhood of the obtained
estimate δ has to be considered on the Grassmannian manifold of one-dimensional subspaces
of X .
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