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Explainability as statistical inference

Hugo Henri Joseph Senetaire 1 Damien Garreau 2 Jes Frellsen * 1 Pierre-Alexandre Mattei * 2

Abstract
A wide variety of model explanation approaches
have been proposed in recent years, all guided by
very different rationales and heuristics. In this
paper, we take a new route and cast interpretabil-
ity as a statistical inference problem. We propose
a general deep probabilistic model designed to
produce interpretable predictions. The model’s
parameters can be learned via maximum likeli-
hood, and the method can be adapted to any pre-
dictor network architecture, and any type of pre-
diction problem. Our model is akin to amortized
interpretability methods, where a neural network
is used as a selector to allow for fast interpre-
tation at inference time. Several popular inter-
pretability methods are shown to be particular
cases of regularized maximum likelihood for our
general model. Using our framework, we iden-
tify imputation as a common issue of these mod-
els. We propose new datasets with ground truth
selection which allow for the evaluation of the
features importance map and show experimen-
tally that multiple imputation provides more rea-
sonable interpretations.

1 Introduction
Fueled by the recent advances in deep learning, machine
learning models are becoming omnipresent in society.
Their widespread use for decision making or predictions
in critical fields leads to a growing need for transparency
and interpretability of these methods. While Rudin (2019)
argues that we should always favor interpretable models for
high-stake decisions, in practice, black-box methods are
used due to their superior predictive power. Researchers
have proposed a variety of model explanation approaches
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for black-box models, and we refer to Linardatos et al.
(2021) for a recent survey. Finding interpretable models
is hard. The lack of consensus for evaluating an explana-
tion (Afchar et al., 2021; Jethani et al., 2021a; Liu et al.,
2021; Hooker et al., 2019) makes it difficult to assess the
qualities of the different methods. Many leads are explored
such as interpretability for unsupervised models (Crabbé
& van der Schaar, 2022; Moshkovitz et al., 2020), using
concept embedding models to obtain high-level explana-
tion (Zarlenga et al., 2022), global feature selection (Tib-
shirani, 1996; Lemhadri et al., 2021). In this paper, we will
focus on methods that offer an understanding of which fea-
tures are important for the prediction of a given instance
in a supervised learning setting. These types of methods
are called instance-wise feature selection and quantify how
much a prediction changes when only a subset of features
is shown to the model.

Related work Many different rationales enable explain-
ability with feature importance maps with different suc-
cesses.

Gradient-based methods leverage the gradient of the tar-
get with respect to the input to get feature importance.
For instance, Seo et al. (2018) create saliency maps by
back-propagating gradient through the model. However,
many works showed that these methods do not provide reli-
able explanations (Adebayo et al., 2018; Kindermans et al.,
2019; Hooker et al., 2019; Slack et al., 2020).

Other methods proposed to approximate locally a compli-
cated black-box model using simpler models. Ribeiro et al.
(2016) fit an interpretable linear regression locally around
a given instance with LIME while Lundberg & Lee (2017)
approximates Shapley values (Shapley, 1953) for every in-
stance with SHAP. Wang et al. (2021) proposed an algo-
rithm that selects the most probable subset of features max-
imizing the same objective as the predictor called proba-
bilistic sufficient explanation.

In practice, these methods focus on local explanations for a
single instance. An evaluation of the selection for a single
image requires a large number of passes through the black-
box model. To alleviate this issue, (Wang et al., 2021) pro-
posed to combine a beam search with probabilistic circuits
(Choi et al., 2020). This allowed for tractable and faster cal-
culation of the probabilistic sufficient explanations but only

1



Explainability as statistical inference

for specific classifiers thus losing the generality of previous
methods.

It is of particular interest to obtain explanations of multi-
ple instances using amortized explanation methods. The
idea of such methods is to train a selector network that will
learn to predict the selection instead of calculating it from
the ground up for every instance. While there is a higher
cost of entry due to training an extra network, the interpre-
tation at test time is much faster since we do not require
multiple passes through the predictor. Such methods ben-
efit from having a separated predictor and selector as they
can explain pretrained predictors or train both predictor and
selector at the same time with any architecture. Following
Lundberg & Lee (2017), Jethani et al. (2021b) proposed to
obtain Shapley values efficiently using a selector network.
Chen et al. (2018); Yoon et al. (2018) both proposed to train
a selector that selects a minimum subset of features while
maximizing an information-theoretical threshold. Lei et al.
(2016) focused on natural language processing (NLP) tasks
and proposed to learn jointly a predictor and a selector. The
latter selects a coherent subset of words from a given doc-
ument that maximize the prediction objective.

Finally, other methods constrained the architecture of the
predictor to be self-explainable thus losing the modularity
of previous examples. The self-explainable network frame-
work (SENN) (Alvarez Melis & Jaakkola, 2018) requires
a specific structure of predictor to allow self-explainability
by mimicking linear regression where the parameters of the
linear regression can vary depending on the input. More-
over, SENN can be trained directly using the input features
but works better for concept-based interpretation where the
concept and the linear regression are learned jointly.

In this paper, we propose LEX (Latent Variable as Ex-
planation) a modular self-interpretable probabilistic model
class that allows for instance-wise feature selection. LEX
is composed of four different modules: a predictor, a se-
lector, an imputation scheme and some regularization. We
show that up to different optimization procedures, other ex-
isting amortized explanation methods (L2X, Chen et al.
2018; Invase, Yoon et al. 2018; REAL-X Jethani et al.
2021a; and rationale selection Lei et al. 2016) optimize
a single objective that can be framed as the maximization
of the likelihood of a LEX model. LEX can be used ei-
ther “In-Situ”, where the selector and predictor are trained
jointly, or “Post-Hoc”, to explain an already learned predic-
tor. Through the framework formulation, we carefully eval-
uate the importance of each module and identify the im-
putation step as a potential limit. To conduct properly this
empirical assessment, we propose two new datasets to eval-
uate the performance of instance-wise feature selection and
experimentally show that using multiple imputation leads
to more plausible selections, both on our new datasets and

more standard benchmarks. These new datasets could also
be used to assess different intepretability methods beyond
our framework.

Notations Random variables are capitalized, their real-
izations are not. Superscripts correspond to the index of re-
alizations and subscripts correspond to the considered fea-
ture. For instance, xi

j corresponds to the ith realization of
the random variable Xj , which is the jth feature of the ran-
dom variable X . Let j ∈ J1, DK, x−j is defined as the
vector (x0, . . . , xj−1, xj+1, . . . , xD), i.e., the vector with
ith dimension removed. Let z ∈ {0, 1}D, then Xz is de-
fined as the vector (xj){j|zj=1}, where we only select the
dimensions where z = 1, and x1−z denotes the vector
(xj){j|zj=0}, where we only select the dimension where
z = 0. In particular, Xz is ∥z∥0-dimensional and x1−z is
(D − ∥z∥0)-dimensional.

2 Casting interpretability as statistical
inference

Let X =
∏D

d=1 Xi be a D-dimensional feature space and
Y be the target space. We consider two random variables
X = (X1, . . . , XD) and Y ∈ Y following the true
data generating distribution pdata(x, y). We have access
to N i.i.d. realisations of these two random variables,
x1, . . . , xN ∈ X and labels y1, . . . , yN ∈ Y . We want
to approximate the conditional distribution of the labels
pdata(y|x) and discover which subset of features are useful
for every local prediction.

2.1 Starting with a standard predictive model

To approximate this conditional distribution, a stan-
dard approach would be to consider a predictive model
Φ(y|fθ(x)), where fθ : RD → H is a neural network and
(Φ(·|η))η∈H is a parametric family of densities over the tar-
get space, here parameterized by the output of fθ. Usually,
Φ is a categorical distribution for a classification task and a
normal distribution for a regression task. The model being
posited, various approaches exist to find the optimal param-
eters such as maximum likelihood or Bayesian inference.
This method is just a description of the usual setting in deep
learning. This is the starting point for our models, from
which we will derive a latent variable as explanation model.

2.2 Latent variable as explanation (LEX)

As discussed in Section 1, the prediction model Φ(y|fθ(x))
is not interpretable by itself in general. Our goal is to em-
bed it within a general interpretable probabilistic model. In
addition, we want this explanation to be easily understand-
able by a human, thus we propose to have a score per fea-
ture defining the importance of this feature for prediction.
We propose to create a latent Z ∈ {0, 1}D that corresponds
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Figure 1: The LEX pipeline allows us to transform any prediction model into an explainable one. In supervised learning, a
standard approach uses a function fθ (usually a neural network) to parameterize a prediction distribution pθ. In that frame-
work, we would feed the input data directly to the neural network fθ. Within the LEX pipeline, we obtain a distribution
of masks pγ parameterized by a neural network gγ from the input data. Samples from this mask distribution are applied
to the original image x to produce incomplete samples xz . We implicitly remove features by sampling imputed samples x̃
given the masked image using a generative model pι conditioned on both the mask and the original image. These samples
are then fed to a classifier fθ to obtain a prediction. As opposed to previous methods, multiple imputation allows us to
minimise the encoding happening in the mask and to get a more faithful selection.
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Figure 2: Left panel: graphical model of a standard pre-
dictive model. We propose to embed this model in a latent
explainer model using the construction of the right panel.

to a subset of selected features. The idea is that if Zd = 1,
then feature d is used by the predictor, and conversely.

We endow this latent variable with a distribution pγ(z|x).
This distribution pγ is parametrized by a neural network
gγ : X → [0, 1]D called the selector with weights γ ∈ Γ.
To obtain the importance feature map of an input x, we look
at its average selection Eγ [Z|x] (see Figure 8). A com-
mon parametrization is choosing the latent variable Z to be
distributed as a product of independent Bernoulli variables
pγ(z|x) =

∏D
d=1 B(zd|gγ(x)d). With that parametriza-

tion, the importance feature map of an input x is directly
given by the output of the selector gγ . For instance, Yoon

et al. (2018) and Jethani et al. (2021a) use a parametriza-
tion with independent Bernoulli variables and obtain the
feature importance map directly from gγ . L2X (Chen et al.,
2018) uses a neural network gγ called the selector but since
the parametrization of pγ is not an independent Bernoulli,
they obtain their importance feature map by ranking the
features’ importance with the weights of the output of gγ .
FastSHAP (Jethani et al., 2021b) also uses a similar net-
work gγ to predict Shapley values deterministically.

In the next sub-section, we will define how feature turn-
off should be incorporated in the model, i.e., we will de-
fine pθ(y|x, z), the predictive distribution given that some
features are ignored. With these model assumptions, the
predictive distribution will be the average over likely inter-
pretations,

pθ,γ(y|x) =
∑

z∈{0,1}D

pθ(y|x, z)pγ(z|x) . (1)

2.3 Turning off features

We want our explanation to be model-agnostic, i.e., to em-
bed any kind of predictor into a latent explanation. To that
end, we want to make use of fθ the same way we would in
the setting without selection in Section 2.1, with the same
input dimension. Hence we implicitly turn off features by
considering an imputed vector X̃ . Given x and z, X̃ is
defined by the following generative process:

• We sample the turned off features according to a con-
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ditional distribution called an imputing scheme X̂ ∼
pι(X̂1−z|xz).

• Then, we define X̃j = xj if zj = 1 and X̂j if zj = 0.

For instance, a simple imputing scheme is constant im-
putation, i.e., X̃ is put to c ∈ R whenever zj =
0. One could also use the true conditional imputation
pι(X̂1−z|xz) = pdata(X1−z|xz). Borrowing terminology
from the missing data literature, we call single imputa-
tions the ones produced by deterministic schemes like con-
stant imputation and multiple imputations the ones pro-
duced by truly stochastic schemes (when X̂|xz does not
follow a Dirac distribution). A key example of multiple
imputation scheme is the true conditional pι(X̂1−z|xz) =
pdata(X1−z|xz). Denoting the density for the generative
process above p(x̃|x, z), we define the predictive distribu-
tion given that some features are ignored as

pθ(y|x, z) = EX̃∼p(X̃|x,z)Φ(y|fθ(X̃)) (2)

= EX̃∼p(X̃|x,z)pθ(y|X̃) . (3)

Figure 1 shows how the model unfolds. This construction
allows us to define the following factorisation of the com-
plete model in Figure 2:

pγ,θ(y, x, x̃, z) = pθ(y|x̃)pι(x̃|z, x)pγ(z|x)p(x) . (4)

2.4 Statistical inference with LEX

Now that LEX is cast as a statistical model, it is natural to
infer the parameters using maximum likelihood estimation.
The log-likelihood function is

L(θ, γ) =
N∑

n=1

log[EZ∼pγ(·|xn)EX̃∼p(·|(xn),Z)pθ(y
n|X̃)] .

(5)
Maximizing the previous display is quite challenging since
we have to optimize the parameters of an expectation over a
discrete space inside a log. We derive in Appendix E good
gradient estimators for L(θ, γ), and accordingly, the model
can be optimized using stochastic gradient descent.

If pγ(z|x) can be any conditional distribution, then the
model can just refuse to learn something explainable by set-
ting pγ(z|x) = 1z=1d

. All features are then always turned
on. Experimentally, it appears that some implicit regular-
ization or differences in the initialisation of the neural net-
works may prevent the model from selecting everything.
Yet without any regularization, we leave this possibility to
chance. Note that this regularization problem appears in
other model explanation approaches. For instance, LIME
(Ribeiro et al., 2016) fits a linear regression locally around
a given instance and proposes to penalize by the number of
parameters used by the linear model.

The first type of constraint we can add is an explicit
function-based regularization R : {0, 1}D → R. This
function is to be strictly increasing with respect to inclu-
sion of the mask so that the model reaches a trade-off be-
tween selection and prediction score. The regularization
strength is then controlled by a positive hyperparameter λ.
For instance, Yoon et al. (2018) proposed to used an L1-
regularization on the average selection map R(z) = ∥z∥.
While this allows for a varying number of feature selected
per instance, the optimal λ is difficult to find in prac-
tice. Another method considered by Chen et al. (2018) and
Xie & Ermon (2019) is to enforce the selection within the
parametrization of pγ . Indeed, they build distributions such
that any sampled subset have a fixed number of selected
features.

LEX is all around LEX is a modular framework
for which we can compare elements for each of the
parametrizations:

• the distribution family and parametrization for the pre-
dictor pθ;

• the distribution family and parametrization for the se-
lector pγ ;

• the regularization function R : {0, 1}D → R to ensure
some selection happens. This regularization can be
implicit in the distribution family of the selector;

• the imputation function pι, probabilistic or determin-
istic, that handles feature turn-off.

By choosing different combinations, we can obtain a model
that fits our framework and express interpretability as the
following maximum likelihood problem:

max
θ,γ

N∑
n=1

[
logEZ∼pγ(·|xn)EX̃∼p(·|xn,Z)pθ(y

n|X̃)

− λEZ∼pγ(·|xn)[R(Z)]

]
. (6)

Many models, though starting from different formulations
of interpretability, minimize a cost function that is a hidden
maximum likelihood estimation of a parametrization that
fits our framework. Indeed, L2X (Chen et al., 2018) frames
their objective from a mutual information point of view,
while Invase (Yoon et al., 2018) and REAL-X (Jethani
et al., 2021a), whose objective is derived from Invase’s,
frame their objective from a Kullback-Leibler divergence
between Y |X and Y |XZ . We can cast their optimiza-
tion objective as the maximization of the log-likelihood
of a LEX model. Rationale selection in Natural language
processing (Lei et al., 2016) consists in learning a mask-
ing model to select a specific subset of words from text
documents for downstream tasks in NLP. To enforce short
and coherent rationales, they use an explicit regularization
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which is a combination of L1 regularization (which favours
sparsity of the mask) and continuity regularization (which
favours selecting words following each other). The impu-
tation scheme corresponds to either removing the missing
words if the predictor can handle multiple-sized inputs or
constant imputation where missing words are replaced with
the padding value. As opposed to the multiple imputation
scheme that we use (that can be generalized to any modal-
ity), the imputation scheme used in (Lei et al., 2016) is ad-
hoc to text. Such an imputation would not make sense in
computer vision or tabular data as the usual models in such
modalities can only be fed inputs with fixed dimensions and
there are no specific values for padding.

We refer to Table 1 for an overview, and to Appendix A for
the full derivations of these equivalences. Such a unified
framework provides a sensible unified evaluation method
for different parametrizations. This allows us to compare
different modules fairly. In that regard, we propose to study
the imputation module we found most critical, following
notably (Jethani et al., 2021a) in Section 4.

The benefits of casting explainability as inference
LEX is another tool in the rich toolbox of probabilis-
tic models. This means that, while we chose maximum-
likelihood as a natural method of inference, we could train
a LEX model using any standard inference technique like
Bayesian inference or mixup (Zhang et al., 2018), and LEX
will inherit all the compelling properties of the chosen in-
ference technique (e.g. the consistency/efficiency of maxi-
mum likelihood). Beyond inference, LEX can be used in
other contexts that involve a likelihood, e.g., likelihood ra-
tio tests or decision-theoretic problems. A more practical
benefit is that we may use LEX as an interpretable build-
ing block within a more complex graphical model, without
having to change its loss function. One may for instance
use LEX to build an explainable deep Cox model (Zhong
et al., 2022) trained via maximum partial likelihood.

2.5 LEX unifies Post-Hoc and In-Situ interpretations

While our model can be trained from scratch as a self-
interpretable model (we call this setting In-Situ), we can
also use it to explain a given black-box model in the same
statistical learning framework (this setting is called Post-
Hoc). In the In-Situ regime, the selection learns the min-
imum amount of features to get a prediction closer to the
true output of the data, while in the Post-hoc regime, the
selection learns the minimum amount of features to recre-
ate the prediction of the fully observed input of a given
classifier pm(y|x) to explain. The distinction between the
“In-Situ” regime and the “Post-hoc” regime is mentioned,
for instance, in Watson & Floridi (2021) as crucial. We
distinguish four types of regimes:

Table 1: Existing models and their parametrization in the
LEX framework.

Model
Sampling (pγ) &

Regularization (R) Imputation (pι) Training regime

L2X
Subset Sampling

& Implicit 0 imputation Surrogate PostHoc

Invase Bernoulli & L1 0 imputation Surrogate PostHoc

REAL-X Bernoulli & L1
Surrogate

0 imputation
Fixed θ In-Situ /

Surrogate PostHoc

Rationale
Selection

Bernoulli, L1 &
continuity

regularization

Removed or imputed
with padding value Free In-Situ

Free In-Situ regime training an interpretable model from
scratch using the random variable Y ∼ pdata as target.

Fix-θ In-Situ regime training only the selection part of
the interpretable model using a fixed classifier but still
using the random variable Y ∼ pdata(Y |X) as a target.
In that setting, we do not get an explanation of how pθ
predicts its output but an explanation map for the full
LEX model pθ,γ .

Self Post-Hoc regime training only the selection part of
the model using a fixed classifier pθ, but the target is
given by the output of the same fixed classifier when
using the full information Y ∼ Φ(·|fθ(x)). This can
be understood as a Fix-θ In-Situ regime where the
dataset is generated from pdata(x)pθ(y|x).

Surrogate Post-Hoc regime training both the selection
and the classification part but the target Y is follow-
ing the distribution of a given fixed classifier pm(y|x).
The full model pθ,γ is trained to mimic the behaviour
of the model pm(y|x). This can be understood as
a Free In-Situ regime where the dataset is generated
from pdata(x)pm(y|x).

Depending on the situation, there is a more suited training
regime. For instance, when one can only access a fixed
black box model, one should train PostHoc. Depending on
the imputation method, one may choose to train a surrogate
to mimic the original predictor or impute directly with the
evaluated black box model. If the black-box model can be
changed, one may improve and explain predictions using
Fix-θ In-Situ regime. Finally, training a model Free InSitu
allows one to get a self-interpretable model from scratch.

3 How to turn off features?
We want to create an interpretable model where an un-
selected variable is not “seen” by the classifier of the
model. For instance, for a given selection set z ∈ {0, 1}D
and a given predictor pθ, a variable x1−z is not “seen” by
the predictor when averaging all the possible outputs by the

5



Explainability as statistical inference

model over the unobserved input given the observed part:

pθ,ι(y|xz) =

∫
pθ(y|x1−z, xz)pι(x1−z|xz)dx1−z . (7)

Following Covert et al. (2021), we want to use a multiple
imputation scheme that mimics the behaviour of the true
conditional pι ≈ pdata. Chen et al. (2018) and Yoon et al.
(2018) proposed to use 0 imputation to remove some fea-
tures. Jethani et al. (2021a) showed that using such sin-
gle imputation can lead to issues. Notably, training the
selector and predictor jointly can lead to the selector en-
coding the output target for the classifier making the se-
lection incorrect. Rong et al. (2022) also raised this is-
sue showing class information leakage through masking in
many post-hoc methods. Jethani et al. (2021a) proposed
instead to separate the optimization of θ and γ. They first
train pι,θ(y|x, z) = pθ(y|x · z+(1− z)c) by sampling ran-
domly z from independent Bernoulli B(0.5). This training
step should ensure that pθ,ι(y|x, z) approximates the re-
stricted predictor

∫
pdata(y|x1−z, xz)pdata(x1−z|xz)dx1−z .

Note that Olsen et al. (2023) also studies the influence of
imputation but only considers Shapley Values. Then, the
selector part of the model pγ is trained optimizing Equa-
tion (6) with the fixed θ.

However, training pθ,ι(y|x, z) with constant imputation
to approximate the restricted predictor is difficult. In-
deed, Le Morvan et al. (2021) showed that the optimal
pθ,ι(y|x, z) suffers from discontinuities which makes it
hard to approximate with a neural network. If pθ,ι(y|x, z)
is not correctly approximating pdata(y|xz), there is no guar-
antee that the selection will be meaningful. Jethani et al.
(2021a) advocate the use of a constant that is outside the
support. Yet, all the experiments are made using 0 impu-
tation which is inside the support of the input distribution.
Having a constant imputation inside the domain of the in-
put distribution may lead to further discrepancy between
pθ,ι(y|x, z) and the restricted predictor. Indeed, Ipsen et al.
(2022) showed that using constant imputation inside the
domain to learn a discriminative model with missing data
leads to some artefacts in the prediction.

On the other hand, we propose to approximate the true
conditional distribution by using a multiple imputation
scheme. This generative model should allow for fast sam-
pling of the quantity pι(x̃|x, z). Depending on the com-
plexity of the dataset, obtaining an imputing scheme allow-
ing for fast and efficient masked imputation can be compli-
cated. We show that we can come up with simpler imput-
ing schemes that perform as well or better than the fixed
constant ones. For instance, we propose to train a mixture
of diagonal Gaussians to sample the missing values or to
randomly sample instances from the validation dataset and
replace the missing features with values from the validation
sample. We describe several different methods for multiple

imputations in Appendix B.

4 Experiments
There are many different sets of parameters to choose from
in the LEX model. In this section, we want to study the in-
fluence of the imputation method in the LEX models as mo-
tivated in the previous section and in recent papers (Covert
et al., 2021; Jethani et al., 2021a; Rong et al., 2022).

We use an implicit regularization constraining the distribu-
tion pγ to sample a fixed proportion of the features. We
call this proportion the selection rate. This choice of reg-
ularization allows comparing all sets of parameters on the
same “credit” for selection. In Appendix F.2, we provide
more results using L1-regularization and study different
parametrizations in Appendices F.2.1 and F.2.2.

Evaluation of features’ importance map is hard. These
evaluation methods rely very often on synthetic datasets
where a ground truth is available (Liu et al., 2021; Afchar
et al., 2021) or retrain a full model using the selected vari-
ables (Hooker et al., 2019). We consider more compli-
cated datasets than these synthetic datasets. We create
three datasets using MNIST, FashionMNIST, and CelebA
as starting points. These created datasets provide informa-
tion only on a subset of features that should not be selected
since they are not informative for the prediction task. It
allows us to consider any selection outside this remaining
subset as an error in selection. We call this ground truth:
the maximum selection ground truth.

To compare our selections to these ground truths, we look
at the true positive rate (TPR), false positive rate (FPR),
and false discovery rate (FDR) of the selection map. To
that end, we sample at test time a 100 mask samples from
pγ , and we calculate the three measures for each one of
the 100 masks. We then show the average of the selection
performance over these 100 masks. To compare the predic-
tion performance, we consider the accuracy of the output
averaged over the mask samples.

We compare different LEX parameterizations to the
self-explainable neural network (SENN Alvarez Melis
& Jaakkola (2018)) using all the features for regression
instead of learned concepts. Though all our LEX ex-
periments are trained In-Situ, we compare them in the
two image datasets to standard Post-Hoc methods: LIME
(Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), and
FASTSHAP (Jethani et al., 2021b). To do so, we train a
classifier with the same architecture as before and apply
the PostHoc methods on it. Details on the experiments can
be found in Appendix D.
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Figure 3: Performances of LEX with different imputations. 0 imputation (solid orange line) corresponds to the imputation
method of Invase/L2X, Surrogate 0 imputation (blue dashed line) is the imputation method of REAL-X. The standard
Gaussian is the true conditional imputation method from the model (green dotted curve). We also conducted experiments
on self-explainable neural networks (SENN) in dark continuous green. The reported accuracy is obtained using all features.
Columns correspond to the three synthetic datasets (S1, S2, S3) and lines correspond to the different measure of quality of
the model (Accuracy, FDR, TPR). We report the mean and the standard deviation over 5 folds/generated datasets.
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Figure 4: Performance of LEX (mean/std over 5 datasets)
with varying constant imputation (orange solid line) and
surrogate constant imputation (blue dashed line) on S3
using the true selection rate. Though Invase/L2X (resp.
REAL-X) uses constant imputation (resp. surrogate con-
stant), all these methods used only 0 as constant.

4.1 Artificial datasets

Datasets We study 3 synthetic datasets (S1, S2, S3) pro-
posed by (Chen et al., 2018), where the features are gen-
erated with standard Gaussian. Depending on the sign of
the control flow feature (x11), the target will be generated
according to a Bernoulli distribution parameterized by one
among the three functions described in Appendix C. These
functions use a different number of features to generate the
target. Thus, depending on the sign of the control flow fea-
ture, S1 and S2 either need 3 or 5 features to fully generate
the target while S3 always requires 5.

For each dataset, we generate 5 different datasets contain-
ing each 10,000 train samples and 10, 000 test samples. For
every dataset, we train different types of imputation with a
selection rate in [ 2

11 ,
3
11 , . . . ,

9
11 ], i.e., we select 2, . . . , 9

features. We then report the results in Figure 3 with their
standard deviation across each 5 generated datasets. In the
following experiments, we compare a multiple imputation
based on a standard Gaussian and constant imputation with
and without surrogate using a constant (as used by Yoon
et al., 2018; Chen et al., 2018; Jethani et al., 2021a).

Selection evaluation The ground truth selection for S1
and S2 have two different true selection rates depending
on the sign of the 11th feature (shown as two grey lines
in Figure 3). In Figure 3, for S1, using multiple imputa-
tions outperforms other methods as soon as the number of
selected variables approaches the larger of the two true se-
lection rates. For S2, LEX performs better most of the time
when the selection rate is higher than the larger true selec-
tion rate but has a higher variance in performance. LEX
outperforms both a 0-imputation and a surrogate with 0-
imputation on S3 as soon as the selection rate is close to the
true selection rate (shown as the grey line) while still main-
taining a better accuracy. All models outperform SENN
while allowing for better accuracy.

Dependency on the constant of imputation We now fo-
cus on S3 and we consider the same experiment with 5
generated datasets but with a fixed selection rate 5

11 cor-
responding to the true number of features, k = 5. We train
a single model for both the constant imputation with and
without a surrogate varying the constant from −10 to 9.
In Figure 4, the quality of both the selection and the accu-
racy depends on the value of the imputation constant. Both
the surrogate constant imputation and constant imputation
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Figure 5: Performances of LEX on the Switching Panel MNIST dataset with different imputations. Surrogate 0 imputation
corresponds to the parametrization of REAL-X, 0 imputation corresponds to the parametrization of Invase/L2X. We report
the mean and standard deviation over 5 folds/generated datasets. We also report results on Post-Hoc methods (LIME,
SHAP, FASTSHAP) and self-explainable neural networks (SENN). For the Post-Hoc methods, the predictor trained without
any selection module and with full data has an accuracy of 0.97 on average over the 5 folds/generated datasets which is
similar to the result obtained with the method trained In-Situ.

Figure 6: Samples from SP-MNIST and their LEX expla-
nations with a mixture of logistics. The two top images
correspond to a single sample of class 0 and the two bot-
tom to a single sample of class 4.

perform better when the constant is within the domain of
the input distribution. The performance drops drastically
outside the range [−1, 1]. Jethani et al. (2021a) suggested
using a constant outside the domain of imputation, which
is clearly sub-optimal. Further results in Figure 11 explicit
this dependency on all three synthetic datasets.

4.2 Switching Panels Datasets

We want to use more complex datasets than the synthetic
ones while still keeping some ground truth explanations. To
create such a dataset, we randomly sample a single image
from both MNIST and FashionMNIST (Xiao et al., 2017)
and arrange them in a random order to create a new im-
age (Figure 6). The target output will be given by the la-
bel of the MNIST digit for Switching Panels MNIST (SP-
MNIST) and by the label of the FashionMNISTimage for
Switching Panels FashionMNIST (SP-FashionMNIST).

Given enough information from the panel from which the
target is generated, the classifier should not need to see any
information from the second panel. If a selection uses the
panel from the dataset that is not the target dataset, it means
that the predictor is leveraging information from the mask.

We consider that the maximum ground truth selection is the
panel corresponding to the target image.

We train every model on 45,000 images randomly selected
on the train dataset from MNIST (the remaining 15,000 im-
ages are used in the validation dataset). For each model, we
make 5 runs of the model on 5 generated datasets (i.e. for
each generated dataset, the panels are redistributed at ran-
dom) and report the evaluation of each model on the same
test dataset with their standard deviation over the 5 folds.
All method uses a U-NET (Ronneberger et al., 2015) for
the selection and a fully convolutional neural network for
the classification. Note that in practice for MNIST, only
19% of pixels are lit on average per image. The true mini-
mum effective rate for our dataset SP-MNIST should there-
fore be around 10% of the pixels. We evaluate the results of
our model around that reasonable estimate of the effective
rate. The selected pixels around this selection rate should
still be within the ground truth panel.

In Figure 5, we can see that LEX using multiple imputa-
tion with a mixture of logistics to approximate the true con-
ditional imputation outperforms both using a constant im-
putation (L2X/Invase) and a surrogate constant imputation
(REAL-X). The selection also outperforms the Post-Hoc
methods. Indeed, around the estimated true selection rate
(10%), less selection occurs in the incorrect panel while
still maintaining high predictive performance (similar to
the Post-Hoc methods predictive performance). Figure 6
shows that LEX uses information from the correct panel of
SP-MNIST. We highlight further results and drawbacks in
Appendix F.

4.3 CelebA smile

The CelebA dataset (Liu et al., 2015) is a large-scale face
attribute dataset with more than 200, 000 images which
provides 40 attributes and landmarks or positions of im-
portant features in the dataset. Using these landmarks, we
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Figure 7: Performances of LEX on the CelebA Smile dataset with different methods of approximation for the true condi-
tional distribution. For the Post-Hoc methods, the predictor trained without any selection module and with full data has
an accuracy of 0.92 on average over the 5 folds/generated datasets which is similar to the result obtained with the method
trained In-Situ.

Figure 8: Samples from CelebA smile and their LEX ex-
planations with a 10% rate. Using constant imputation
leads to less visually compelling results (Appendix F). The
ground truth masks used for evaluation are available in Ap-
pendix C.

are able to create a dataset with a minimal ground truth se-
lection. The assignment associated with the CelebA smile
dataset is a classification task to predict whether a person
is smiling. We leverage the use of the landmark mouth as-
sociated with the two extremities of the mouth to create a
ground truth selection in a box located around the mouth.
We make the hypothesis that the model should look at this
region to correctly classify if the face is smiling or not in
the picture (see Appendix C and Figure 9 for details and
examples).

In Figure 7, we evaluate two methods of multiple imputa-
tion: the VAEAC (Ivanov et al., 2019), which is a genera-
tive model allowing for the generation of imputed samples
given any conditional mask z, and a marginal multiple im-
putation. Both our multiple imputation methods perform
similarly compared to the constant imputation method both
in selection and accuracy. In Figure 8, we see that LEX
uses the information around the mouth to predict whether
the face is smiling or not which is a sensible selection. See

Appendix F for further results and samples.

5 Conclusion
We proposed a framework, LEX, casting interpretability
as a maximum likelihood problem. We have shown that
LEX encompasses several existing models. We provided 2
datasets on complex data with a ground truth to evaluate the
feature importance map. Using these, we compared many
imputation methods to remove features and showed exper-
imentally the advantages of multiple imputation compared
to other constant imputation methods. These new datasets
can be used for other explanation methods than the amor-
tized ones we focused on here.

The framing of interpretability as a statistical learning
problem allowed us to use maximum likelihood to find op-
timal parameters. One could explore other methods for op-
timizing the parameters, such as Bayesian inference. Inter-
pretation maps are more easily readable when they provide
smooth segmentations for images. Another avenue for fu-
ture work could be to study the use of different parametriza-
tions or regularization that favors connected masks (i.e.
neighbouring pixels have more incentives to share the same
selection) to allow for smoother interpretability maps.
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A Other methods falling into the LEX framework
In this section, we show how to cast three existing models in our statistical learning setting. Though the original papers
framed their wanted interpretabiliy through different points of view, we will show that what they actually optimize can be
seen as likelihood lower bounds of specific LEX models.

A.1 Learning to explain (L2X, Chen et al., 2018)

Let us consider a fixed classifier pm. For a fixed number of features k, we want to train a selector pγ (this corresponds to
V (θ, ·) in the original paper) that will allow selection for this exact number of features (using subset sampling) only and
a predictor pθ (this corresponds to gα in the original paper) such that the full model pθ,γ will mimic the behaviour of pm.
(Chen et al., 2018) uses 0-imputation to parameterize the imputation distribution. We can rewrite Eq. (6) in (Chen et al.,
2018) using our notation as

EX∼pdata,Z∼pγ(·|X)

[∑
y

pm(y|X) log pθ(y|X · Z)

]
= EX∼pdata,Y∼pm,Z∼pγ(·|X),X̃∼pι(·|X,Z)[log pθ(Y |X̃)]

≤ EX∼pdata,Y∼pm
[logEZ∼pγ(·|X),X̃∼pι(·|X,Z) log pθ(Y |X̃)] ,

(8)

where we used Jensen inequality to obtain this last inequality. Thus the L2X objective is a lower bound of the likelihood
in the post-hoc setting as the target distribution comes from the fixed classifier pm we want to explain. The objective
described is shed under the light of the Surrogate Post-Hoc regime. By considering pm as the true data distribution pdata,
this can be extended to the Free In-Situ regime.

A.2 Invase (Yoon et al., 2018)

We consider a selector pγ (this corresponds to πθ(x, s) in the original paper) and a classifier pθ (this corresponds fϕ in
the original paper) using a 0-imputation to parameterise the imputation module. We consider a regularization function
controlled by parameter λ ∈ R such that for any z ∈ [0, 1]D, R(z) = ∥z∥0. They also train a baseline classifier, since this
classifier is simply used to reduce variance in the estimated gradient and does not change the objective for the optimization
in θ and γ. In this paper, they consider only 0 imputation so for any given (x, z) ∈ X × [0, 1]D, x̃ = x · z.

We can rewrite Eq. (5) in (Yoon et al., 2018) using our notation and not considering the baseline as :

l̂(z, x, y) = −
c∑

i=1

yi log pθ(yi|x, z) . (9)

The loss for the selector network (l2(θ) in the paper) is :∫
x,y

pdata(x, y)
∑

z∈{0,1}D

[pγ(z|x)l̂(z, x, y) + λ∥z∥0]dxdy

= EX,Y∼pdataEZ∼pγ(·|X)[l̂(z, x, y) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ(·|X)[− log pθ(Y |X,Z) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ(·|X)[− log pθ(Y |X · Z) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ(·|X)[− logEX̃∼pι(·|x,z)pθ(Y |X̃) + λ∥z∥0]
= EX,Y∼pdataEZ∼pγ(·|X)[− logEX̃∼pι(·|x,z)pθ(Y |X̃)] + λEZ∼pγ(·|X)[∥z∥0]
= EX,Y∼pdataEZ∼pγ(·|X)[− logEX̃∼pι(·|x,z)pθ(Y |X̃)] + λEZ∼pγ(·|X)[R(Z)]

≥ EX,Y∼pdata

[
[− logEZ∼pγ(·|X)EX̃∼pι(·|x,z)pθ(Y |X̃)] + λEZ∼pγ(·|X)[R(Z)]

]
.

Though the loss for the optimisation of the selector with γ and the loss for the optimisation in θ are separated in the original
article, they only differ by the regularization EZ∼pγ [λ∥z∥0] which is independent of θ. Thus, minimizing both θ and γ
using the loss for the selector network is equivalent to the complete minimization set up in (Yoon et al., 2018).
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The last equation is exactly the negative log-likelihood of the LEX model with a parametrization described above. Hence
the minimisation target of INVASE is a minimisation of an upper bound of the negative log-likelihood.

A.3 REAL-X (Jethani et al., 2021a)

Let us consider a fixed classifier pm. Similarly to INVASE, we consider a selector pγ (this corresponds to qsel) and a
classifier pθ (which correspond to qpred) and a regularizer R controlled by λ ∈ R.

We can rewrite Eq. (3) from (Jethani et al., 2021a) in our framework as

EX∼pdataEY∼pm
EZ∼pγ(·|X)[log pθ(Y |X · Z)]− λEZ∼pγ(·|X)[R(Z)]

≤ EX∼pdataEY∼pm [logEZ∼pγ(·|X)pθ(Y |X · Z)]− λEZ∼pγ(·|X)[R(Z)] .

The last equation is a lower bound on the log-likelihood of a LEX model parametrized as described above.

As opposed to the previous method, the predictor is trained on a different loss than the selector:

EX∼pdataEY∼pmEZ∼B(0.5)[log pθ(Y |X · Z)] ,

where B(0.5) is a distribution of independent Bernoulli for the mask.

This loss is completely independent of the selector’s parameters. Thus, training first the predictor network pθ until conver-
gence and then training the selector pγ is equivalent to the alternating training in Algorithm 1 in (Jethani et al., 2021a).

We can consider that the associated LEX model is always trained with a fixed θ and REAL-X is maximizing the lower
bound of the log-likelihood of a LEX parametrization in a fixed θ setting.

A.4 Rationale selection (Lei et al., 2016)

We consider a free classifier pθ (which corresponds to the encoder) and a selector pγ (which corresponds to the generator)
and two regularization functions such that for any z ∈ [0, 1]D R1(z) = ||z||1 controlling the sparsity and R2(z) =∑D

d=1 |zt− zt−1| enforcing continuity of the selection. Their relative strengths are regulated by two parameters λ1 and λ2.
Given a data point (x, y) ∈ X × Y and z ∈ [0, 1]D sampled from pγ(x, y), the classifier is fed x̃ = z · x + (1 − z) · pad
where pad is the padding value of the embedding space. If the classifier pθ can handle multiple dimensions input, then
x̃ = xz .

The objective from (Lei et al., 2016) can be expressed with our notation :

E(X,Y )∼pdata,Z∼pγ(·|x)[log pθ(Y |X̃) + λ1R1(Z) + λ2R2(Z)]. (10)

Using Jensen equation, we get :

E(X,Y )∼pdata,Z∼pγ(·|X)[log pθ(Y |X̃) + λ1R1(Z) + λ2R2(Z)]

≤ E(X,Y )∼pdata

[
logEZ∼pγ(·|X)[pθ(Y |X̃)] + EZ∼pγ(·|X)[λ1R1(Z) + λ2R2(Z)]

]
.

(11)

Thus, the rationale selection objective is a lower bound of the log-likelihood of a LEX parameterization in a free In-Situ
setting with two regularization function.

B Multiple imputation scheme

B.1 VAEAC

VAEAC (Ivanov et al., 2019) is a arbitrary conditioned variational autoencoder that allows us to sample from an approxi-
mation of the true conditional distribution. To impute a single example, we first sample a latent h according to pprior using
a prior network, then sample the unobserved features pgen using the generative network

pι(x̃|x, z) =
∫
h

pprior(h|xz, z)pgen(x̃1−z|xz, z, h)1x̃z=xz . (12)

We only use the VAEAC for the CelebA Smile experiment and leverage the architecture and weights provided in the paper.
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B.2 Gaussian Mixture Model (GMM)

The Gaussian mixture model allows for fast imputation of masked samples for low to medium size dataset when using
spherical Gaussians. Before training, we fit the mixture model to the fully observed dataset by maximizing the log likeli-
hood of the model Equation (13) using the expectation maximization algorithm. In practice, we use the Gaussian Mixture
Model library from (Pedregosa et al., 2011) to obtain the parameters (πk, µk,Σk)K . In the case of spherical Gaussians,
Σk is a diagonal matrix. thus ∀k, µk,Σk are the size of the input dimension D.

LGMM(x) =
∑
k

πkN (x|µk,Σk) . (13)

To obtain a sample imputing the missing variable, we start by calculating p(k|x, z). In the particular case of spherical
Gaussian, this allows us to consider only the unmasked features when calculating this quantity.

p(k|x, z) = N (xz|(µk)z, (Σ
k)z)∑

k′ N (xz|(µk′)z, (Σk′)z)
. (14)

Finally, we sample a center k from the previous conditional distribution and a sample from the associated Gaussian:

pι(x̃|x, z) =
∑
k

p(k|x, z)N (X̃|µk,Σk) . (15)

In practice, to train the Gaussian mixture model on discrete image, we add some uniform noise to the input data to help the
learning of the input data.

B.3 Means of Gaussian mixture model (Means of GMM)

We propose an extension of the previous GMM model to get more in distribution samples from the dataset. After sampling
a center from the conditional distribution Equation (14), instead of resampling the imputed values from the Gaussian
distribution, we can use directly the means of the centers of the sampled center as imputed data.

pι(x̃|x, z) =
∑
k

p(k|x, z)1x̃=µk . (16)

B.4 Dataset Gaussian Mixture Model (GMM Dataset)

In a second extension of the previous GMM imputation we make use of the validation dataset to create imputations. To
that end, we store the quantity presampling(x

i
val|k) for every center k and every data point xi

val in the validation set, where

presampling(x
i
val|k) =

N (xi
val|µk,Σk)∑

j N (xj
val|µk,Σk)

. (17)

After sampling a center from the conditional distribution, we sample one example according to the distribution in Equa-
tion (17). The imputation distribution is :

pι(x̃|x, z) =
∑
k

p(k|x, z)
∑
j

presampling(x
j
val|k)1x̃=xj

val
. (18)

B.5 KMeans and Validation Dataset (KMeans Dataset)

By using the KMeans instead of the GMM for the GMM Dataset, we can obtain a simpler multiple imputation methods.
To that end, we calculate the minimum distance between a masked input xz and the masked centers of the clusters µk. We
select cluster k∗ closest to the input data and we can sample uniformly any image from the validation dataset belonging to
this cluster.

15



Explainability as statistical inference

B.6 Mixture of logistics

We propose to use a mixture of discretized logistic as an approximation for the true conditional distribution. For each
center k of the mixture among K centers, we consider a set of D center µk

d and scale parameters skd which allows the
creation of a discretized logistic distribution for each pixel similar to the construction in (Salimans et al., 2017). We obtain
the parameters by maximizing the log-likelihood of the model Equation (19):

p(x) =
∑
k

πk

∑
d∈[0,D]

logistic(xd|µk
d, s

k
d) , (19)

where logistic(xd|µk
d, s

k
d) = σ((xd +0.5−µk

d)/s
k
d))− σ((xd − 0.5−µk

d)/s
k
d))] and σ is the logistic sigmoid function. In

the edge cases of a pixel value equal to 0, we replace x− 0.5 by −∞ and for 255 we replace x+ 0.5 by +∞.

We initialise the model means and weights by using the K-Means algorithm from Sklearn (Pedregosa et al., 2011). We
then learn the model either by stochastic gradient ascent on the likelihood or by stochastic EM (both methods leads to
similar choice of parameters).

Similarly to the GMM, we sample an imputation by first sampling a center from the mixture using the distribution p(k|x, z),
where

p(k|x, z) =
∑

d∈[0,D] logistic(x|µk
d, s

k
d)∑

k′ πk′
∑

d∈[0,D] logistic(x|µk′
d , sk

′
d )

. (20)

We can then sample the imputed data using the parameters obtained from the subset restricted sample, that is :

pι(x̃|x, z) =
∑
k

p(k|x, z)
∑

d|zd=1

logistic(xd|µk
d, s

k
d) . (21)

B.7 Means of Mixture of logistics

Instead of sampling from the logistic distribution, after sampling a center k from the conditional distribution Equation (14),
we can use directly the means of the sampled centers as imputed data, that is,

pι(x̃|x, z) =
∑
k

p(k|x, z)
∑
d

1x̃d=µk
d
. (22)

B.8 Validation Dataset (Marginal)

We can sample randomly from the validation dataset to replace the missing value from the unobserved dataset. This
corresponds to approximating the conditional true imputation pdata(x1−z|xz) by the unconditional marginal distribution
pdata(x1−z). The imputation distribution is the following :

pι(x̃|x, z) = pdata(x̃1−z) . (23)

C Dataset details

C.1 Synthetic Dataset generation

The input features for the synthetic datasets follow the generation procedure :

{xi}11i=1 ∼ N (0, 1) y ∼ B
(

1

1 + f(x)

)
. (24)

We consider different functions f for different situations:

• fA(x) = exp(x1x2),

• fB(x) = exp(
∑6

i=3 x
2
i − 4),
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• fC(x) = exp(−10 sin(0.2x7) + |x8|+ x9 + ex−10 − 2.4).

This leads to the following datasets:

• S1:

f(x) =

{
fA(x) if x11 < 0
fB(x) if x11 ≥ 0.

(25)

• S2:

f(x) =

{
fA(x) if x11 < 0
fC(x) if x11 ≥ 0.

(26)

• S3:

f(x) =

{
fB(x) if x11 < 0
fC(x) if x11 ≥ 0.

(27)

C.2 Panel MNIST and FashionMNIST

Both dataset MMNIST and FashionMNIST are transformed in the same fashion as (Jethani et al., 2021a) by dividing the
input features by 255. Note that this transformation will affect the choice of the optimal constant of imputation for LEX.
We create the train set and validation set of the panel dataset by using only images from the train datasets of MNIST and
FashionMNIST and the test set by using only images from the test datasets. The split between train and validation is split
randomly with proportion 80%, 20%. Hence, the train dataset of the switching panels input contain 48,000 images, the
validation dataset contains 12,000 images and the test dataset 10,000 images.

C.3 CelebA Smile

Figure 9: Two examples from the CelebA smile
dataset associated with their ground truth selec-
tion.

The CelebA dataset consists of 162, 770 train, 19867 validation and
19962 test color images of faces of celebrities of size 178× 218. Be-
fore training any model, we crop the image to keep a 128×128 pixels
size square in the center of the image (using Torchvision’s Center-
Crop function and we normalize the channels in datasets. Note that
we use this center crop to be able to use directly the weights and
parametrization provided by the author of (Ivanov et al., 2019) with
CelebA for the VAEAC. We define the target of this dataset using the
attribute given for smiling in the dataset.

We can create the maximum ground truth boxes by using the land-
marks position of the mouth. Given the position of both extremities
of the mouth, we can obtain both the direction and the lenght of the
mouth. Supposing not only the mouth but also the region around is
useful for the classifier, we create the maximum ground truth boxes
using a rectangle oriented following the direction of the mouth, cen-
tered at the center of both mouth extremities and with height corre-
sponding to two times the lenght of the mouth and width correspond-
ing to the length of the mouth.

D Experiment Details
For every experiment, we use an importance weighted lower bound with 10 importance samples for the mask and a single
important sample for the imputed values. We estimate the monte carlo gradient using REBAR with the weighted reservoir
sampling and the relaxed subset sampling distribution as control variate. We evaluate the selection by averaging the FPR,
TPR and FDR of a 100 mask samples. The accuracy is calculated using a 100 importance mask sample.

LIME (Ribeiro et al., 2016) is a PostHoc method fitting a linear model in the neighborhood of the target image we want
to explain. This does not allow us to compare directly with the LEX method as the coefficients obtained correspond to the
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weights attributed to each superpixel in the linear regression. In order to compare to LEX’s map of importance feature, we
create a map associating to each feature the absolute value of the corresponding superpixel weight, this value corresponds
to the importance of each pixel. Then we select the features with the highest coefficient until the given selection rate is
reached. If some features have the same importance, we select a random subset to fill in the selection rate. We then used
this selection map to compute the FPR, TPR and FDR. We use the implementation associated with the paper associated
and the quickshift algorithm from Pedregosa et al. (2011) for the segmentation algorithm.

Self-explainable neural networks (SENN) (Alvarez Melis & Jaakkola, 2018) extend regular linear regression θTx (where
θ ∈ Rd) by learning a function giving parameter per instance θ(x)Tx. The magnitude of the parameters θ(x)(y) for a
label y ∈ Y allows us to quantify the importance of each feature for this specific instance. To enforce regularization and
prevent overfitting, a sparsity regularizer (i.e. L1-loss) and a robustness regularizer (i.e. weight decay) are used during
training. In order to compare to LEX, we trained SENN with the this implementation using a large grid of parameters
for both regularizers and chose the hyperparameters maximizing the validation accuracy as proposed in Alvarez Melis
& Jaakkola (2018). We calculate the FPR, FDR and TPR of the selection by choosing, for each rate, the features with
maximum magnitude |θ(x)j |. As opposed to the LEX framework, the number of selected features is not part of the model
but only defined for the evaluation.

SHAP (Lundberg & Lee, 2017) and FASTSHAP (Jethani et al., 2021b) are PostHoc methods that allow to calculate the
Shapley-Values (Shapley, 1953) of a target image. Similarly to LIME, we create the importance feature map by selecting
the features with the highest absolute Shapley-Values until we reach the selection rate. We use the function DeepExplainer
from the implementation of SHAP associated with the original paper. We use the implementation of FASTSHAP associated
with the paper.

Synthetic Dataset The predictor pθ is parameterized with a fully connected neural network fθ with 3 hidden layers
while the selector pγ is parameterized with a fully connected neural network gγ with 2 hidden layers. The hidden layers
are dimension 200 and use ReLU activations. The predictor has a softmax activation for classification while the selector
uses a sigmoid activation. We trained all the methods for 1000 epochs using Adam for optimisation with a learning rate
10−4 and weight decay 10−3 with a batch size of 1000. Both selector and predictor are free during training for experiments
with constant imputation and multiple imputation. When using a surrogate imputation, the surrogate is trained at the same
time as the selector according to the algorithm in (Jethani et al., 2021a).

We evaluate SENN (Alvarez Melis & Jaakkola, 2018) using a neural network with 2 hidden layers of dimension 200 and
ReLU activations. We use a large grid for the sparsity regularizer ([2 × 10−5, 2 × 10−4, 2 × 10−3]) and the robustness
regularizer ([0, 1× 10−3, 1× 10−2, 1× 10−1, 1]) and reported the results with maximum validation accuracy.

Switching Panels The predictor is composed by 2 sequential convolution block that outputs respectively 32, 64 filters.
Each block is composed with 2 convolutional layers and an average pooling layer. We fed the output of the last convolu-
tional block to a fully connected layer with a softmax activation. The selector is a U-Net (Ronneberger et al., 2015) with 3
down sampling and up sampling blocks and a sigmoid activation. The U-Net outputs a 28x56x1 image mask corresponding
to the parameters for each pixel in the image. We trained all the methods for 100 epochs using Adam for optimisation with
a learning rate 10−4 and weight decay 10−3 with a batch size of 64. Both selector and predictor are free during training for
experiment with constant imputation and multiple imputation. When using a surrogate imputation, the surrogate is trained
at the same time as the selector according to the algorithm in Jethani et al. (2021a).

We evaluate SENN (Alvarez Melis & Jaakkola, 2018) using a U-Net with 3 down sampling and up sampling blocks and a
sigmoid activation. The U-Net outputs a 28x56x1 image mask corresponding to the parameters for each pixel in the image.
We use the same large grid for the sparsity regularizer ([2 × 10−5, 2 × 10−4, 2 × 10−3]) and the robustness regularizer
([0, 1× 10−3, 1× 10−2, 1× 10−1, 1]) and reported the results with maximum validation accuracy.

For LIME (Ribeiro et al., 2016), we train 5 different networks fθ on the 5 generated datasets with the same architecture
described above for 1000 epochs with a learning rate 10−4 and a batch size of 64. We parameterized Quickshift with a
ratio of 0.1, a kernel size of 1.0 and a max dist of 10. For SHAP, we use the same networks as LIME and use as background
the validation dataset. This parametrization allow an average of 25 superpixels on the train dataset.

The surrogate and selection networks of FASTSHAP have the same architecture as the network trained for LEX. We train
each network separately for 1000 epochs with a batch size of 64.
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CelebA the predictor neural network fθ is composed by 4 sequential convolution block that outputs respectively 32, 64,
128 and 256 filters. Each block is composed with 2 convolutional layers and an average pooling layer. We fed the output
of the last convolutional block to a fully connected layer with a softmax activation. The selector is a U-Net (Ronneberger
et al., 2015) with 5 down sampling and up sampling blocks and a softmax activation. We lower the number of possible
mask by creating a 32× 32 grid of 4× 4 pixels over the whole image. The U-Net outputs a 32× 32× 1 image where each
feature corresponds to the parametrization of a 4× 4 pixel square in the original image.

For experiments with a constant imputation or a multiple imputation, we train the predictor for 10 epochs. We then train
the selector using the pre-trained fixed classifier for 10 epochs. For experiments with a surrogate constant imputation, we
train the surrogate for 10 epochs using an independent Bernoulli distribution to mask every pixel (this corresponds to the
objective of EVAL-X in Eq (5) in (Jethani et al., 2021a)). We then train the selector using the pretrained surrogate for 10
epochs. We optimize every neural netowrk using Adam with a learning rate 10−4 and weight decay 10−3 with a batch size
of 32

For LIME (Ribeiro et al., 2016), we train fθ with the same architecture described above for 10 epochs with a learning rate
10−4 and a batch size of 32. We parameterized Quickshift with a ratio of 0.5, a kernel size of 2.0 and a max dist of 100.
For SHAP, we use the same networks as LIME and use as background the validation dataset.

The surrogate and selection network of FASTSHAP have the same architecture as the network trained for LEX. We train
each network separately for 1000 epochs with a batch size of 32 and a learning rate 10−4.

E A difficult optimization problem

E.1 An importance weighted lower bound

To maximise Equation (6), one difficulty resides in the two expectations inside the log. Using Jensen inequality, we can
get a lower bound on this log-likelihood.

L(θ, γ) =
N∑

n=1

log[EZ∼pγ(.|xn)EX̃∼pι(.|xn,Z)pθ(y
n|X̃)]

≥
N∑

n=1

EZ∼pγ(.|xn) log[EX̃∼pι(.|xn,Z)pθ(y
n|X̃)]

≥
N∑

n=1

EZ∼pγ(.|xn)EX̃∼pι(.|xn,Z)[log pθ(y
n|X̃)] .

This bound may be too loose and give a poor estimate of the likelihood of the model. Instead, we propose to use impor-
tance weighted variational inference (IWAE) (Burda et al., 2016) so we can have a tighter lower bound than with Jensen
inequality. Note that we have to apply two times the IWAE, for the expectation on masks and on the imputed features. For
each data point xn, we sample L mask importance samples and LK imputations importance samples.

The IWAE lower of the log-likelihood on the mask with L mask samples

L(θ, γ) ≥ LL(θ, γ) , (28)

where

LL(θ, γ) =

N∑
n=1

EZn,1,...,Zn,L∼pγ(.|xn)EX̃n,1,,...,X̃n,L,∼pι(.|Zn,l,xn)[log
1

L

L∑
l=1

pθ(y
n|X̃n,l)] .

For a fixed L mask imputations, the IWAE lower bound with K imputation samples is

LL(θ, γ) ≥ LL,K(θ, γ) , (29)

where

LL,K(θ, γ) =

N∑
n=1

EZn,1,...,Zn,L∼pγ(·|xn)EX̃n,1,1,...,X̃n,L,K∼pι(·|Zn,l,xn)

[
log

1

L

1

K

L∑
l=1

K∑
k=1

pθ(y
n|X̃n,l,k)

]
.
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Theorem 3 of (Domke & Sheldon, 2018) ensures that when L → +∞,

LL(θ, γ) = L(θ, γ) +O

(
1

L

)
,

and, for a fixed L,

LL,K(θ, γ) = LL(θ, γ) +O

(
1

K

)
.

Thus, using a large number of importance samples for both the mask and the imputation ensures that we are maximizing a
tight lower bound of the log-likelihood of the model.

Note that other models falling into the LEX framework are optimizing a lower bound of the log-likelihood (see Appendix A
for details) with the Jensen inequality. However, casting their method into the statistical learning framework motivates to
choose a tighter lower bound of this log-likelihood which improves results in classification and selection.

E.2 Gradient Monte Carlo Estimator

We want to train the maximum likelihood model with stochastic gradient descent. Using Monte Carlo gradient estimator
for θ is straightforward. Finding Monte Carlo Gradient estimator for γ is more complicated because the expectation on
masks depends on γ and we sample from a discrete space {0, 1}D. A simple way of getting an estimator for this gradient
is by using a policy gradient estimator (Sutton et al., 1999) or Score Function Gradient estimator (Mohamed et al., 2020).

On the other hand, by relaxing the discreteness of the distribution, it is possible to reparametrize the expectation in γ and
use a pathwise monte carlo gradient estimator(Mohamed et al., 2020). These estimators introduce some bias but lower the
variance of the estimation. For instance, (Yoon et al., 2018) proposed to use the concrete distribution (Maddison et al.,
2017) which is a continuous relaxation of the discrete Bernoulli distribution. Similarly, (Xie & Ermon, 2019), (Chen et al.,
2018) used some forms of continuous relaxations of subset sampling distribution.

RealX (Jethani et al., 2021a) proposed to use REBAR (Tucker et al., 2019) to further reduce the variance of these gradient
estimators while still keeping an unbiased estimator thereof by using the relaxation of the discrete distribution as a control
variate for a score function gradient estimator.

When using multiple imputation, there is no possibility to use a continuous mask as the imputation distribution. To that
end, we leverage the allowed reparametrization of the continuous relaxation of the discrete distribution but still apply a
straight-through estimator (Bengio et al., 2013). When using independent Bernoulli for pγ , we consider a thresholded
straight through estimator with threshold t = 0.5. For relaxed subset sampling, we use a top K function for the straight-
through estimator with k being the number of features to be selected. Using this new straight-through estimator for the
different continuously relaxed distribution, we can either use a pathwise Monte Carlo gradient estimator or a variation of
REBAR where the relaxation is modified by the straight-through function.
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F Extended results

F.1 Extended results with a fixed sampling rate

Synthethic dataset In Figure 10, we compare different parameterizations of LEX (0 imputation, surrogate 0 imputation
and multiple imputations with standard Gaussian) and SENN using all available metrics (FDR, FPR and TPR). Provided
the chosen selection rate is higher than the actual selection rate of the dataset, multiple imputation outperforms any other
parametrization or SENN on all metrics.

Furthermore, SENN suffers from the same issue as constant imputation raised in (Jethani et al., 2021a). If there is a Control
flow feature (x11 in the tabular datasets we use) there is no guarantee that it will be selected. Indeed, the ”linear regression
parameters” θ(x) will handle the control flow but will not show its importance. On the other hand, multiple imputation
with standard gaussian selects the control flow as soon as the selection rate reaches the true value.

Finally, Figure 11 extends Figure 4 and shows that the performances of the surrogate constant imputation depend on the
choice of the constant. While (Jethani et al., 2021a) recommends in the second footnote to choose a constant outside the
input domain, we obtained the best results using 0 imputation which is exactly the mean imputation of all the synthetic
datasets.

SP-MNIST In Figure 12, we observe results for different constants using a surrogate imputation on SP-MNIST. We see
that changing the constant of imputation may drastically change the performance of the selection. As opposed to synthetic
dataset, the best results are obtained with a 3 imputation. In that experiment, 0 performs poorly even though 0 is a decent
estimation of the mean imputation for MNIST.

On Figure 21, we can observe the average of a 100 samples from a model trained with different constant imputation and a
surrogate function and an average rate of selection of 5%. We can see that the constant imputation drastically changes the
shape of the imputation even though we are using a surrogate function. When using 0, the selection model seems to try to
recreate the full image instead of selecting the correct panel. Using constants 1 and 3 seems to imitate the negative of the
shape of the two on the correct panel. Finally, when using constant −1, the selection recreates the target number in both
panels to facilitate classification. These samples using a surrogate function can be considered cheating as the selection is
used to improve the classification results. As opposed, samples using multiple imputation on Figure 22 are less dependent
on the type of multiple imputation used.

SP-FashionMNIST Following the same procedure as switching panels MNIST, we conduct experiments on the dataset
switching panels FashionMNIST. Since on average 50% of the pixels are lit in FashionMNIST, we expect the true selection
rate to be around 25 % of the total number of pixels in Switching Panels FashionMNIST.

In Figure 14, we compare LEX with two methods of multiple imputation, the Mixture of Logistics and GMM Dataset.
These two multiple imputations outperforms their constant imputation counterparts with and without surrogate near the
expected true rate of selection. Using the mixture of logistics allows to maintain a strong accuracy, similar to the accuracy
of both constant imputation methods. In Figure 15, we can observe that the selections obtained with the surrogate constant
imputation is more robust to the change in constant imputation compared to the switching panels MNIST dataset but the
variations are still higher that the variations obtain with many different multiple imputation in Figure 16.

CelebA Smile On Figure 17, as opposed to the results on SP-MNIST and the synthetic datasets, we see that the perfor-
mance of LEX using a surrogate constant imputation does not depend on the choice of a constant.
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Figure 10: Performances of LEX with different imputations. 0 imputation (solid orange line) corresponds to the imputation
method of Invase/L2X, Surrogate 0 imputation (blue dashed line) is the imputation method of REAL-X. The standard
Gaussian is the true conditional imputation method from the model (green dotted curve). We also conducted experiments
on self-explainable neural networks (SENN) in dark continuous green. The columns correspond to the three synthetic
datasets (S1, S2, S3) and the lines correspond to the different measure of quality of the model (Accuracy, FDR, TPR and
control flow selection). We report the mean and the standard deviation over 5 folds/generated datasets.
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S1 S2 S3

Figure 11: Performances of LEX with different imputation constants using a surrogate constant imputation on the synthetic
datasets. This corresponds to the REAL-X parametrization with different constant imputation. Columns corresponds to
the three synthetic datasets (S1, S2, S3) and lines corresponds to the different measure of quality of the model (Accuracy,
FDR, TPR). [mean ± std over 5 folds/generated dataset]
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Figure 12: Performance of LEX using a surrogate constant imputation for different imputation constants on the SP-MNIST
dataset.

Figure 13: Performances of the LEX method with different methods of multiple imputation on the SP-MNIST dataset.

Figure 14: Performances of LEX on the SP-Fashion dataset with different methods of approximation for the true conditional
imputation.

Figure 15: Performance of LEX using a surrogate constant imputation for different imputation constants on the SP-MNIST
dataset.

F.2 Extended results using L1-regularization

To provide a better analysis of the influence of the imputation method on the performance of LEX, we fixed all the other
parameters hence slightly changing the original methods (Invase and REAL-X). We differed from the original implemen-
tations in two ways, the choice of the regularization method and sampling distribution pγ as well as the choice of the
Monte-Carlo gradient estimator. Finding an optimal λ with L1-regularization is difficult as different ranges of λ lead to

24



Explainability as statistical inference

Figure 16: Performances of the LEX method with different methods of multiple imputation on the SP-FashionMNIST
dataset.

Figure 17: Performances on the CelebA smile dataset with different constant for the surrogate constant imputation.

different performances and different rates of selection depending on the datasets, the imputations (see Appendix F.2.1).
While we can estimate an adequate selection rate with intuition from the dataset, no such intuition is available for λ which
requires a long exploration. In that section, we will study how these choices might affect the performances of LEX and
compare to the original implementations using the SP-MNIST dataset.

F.2.1 ON THE DIFFICULTY OF TUNING λ

We proposed in Section 4 to study LEX with a fixed selection rate because finding an optimal λ requires an extensive
search and makes it difficult to compare the results between sets of parameters. In this section, we study how different λ
lead to very different rates of selection depending on the sets of parameters considered.

Figure 18: Effective selection rate depending on the value of λ of the same LEX model for different types of imputation
trained on the SP-MNIST dataset. Depending on the choice of imputation, different ranges of λ induce different ranges of
selection rate which thwart the comparison between different parameterizations.

We fix the regularization to L1-Regularization and the distribution pγ to be an independent Bernoulli (this is the same set-
ting for distribution and regularization as Invase and REAL-X) and fix the Monte-Carlo gradient estimator to REBAR. We
study the evolution of the rate of selection with parameter λ varying in [0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0, 100.0].
We observe in Figure 18 that depending on the imputation, the evolution of the rate of selection is very different. Since
we want to compare different methods on the same ”credit” of selection (ie the same average rate of selection), we have to
search on very large range of λ in practice.
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F.2.2 INFLUENCE OF THE MONTE-CARLO GRADIENT ESTIMATION

In their original implementation, L2X, Invase and REAL-X use different Monte-Carlo gradient estimators for the opti-
mization. L2X uses Gumbel-Softmax (Maddison et al., 2017) a continuous relaxation of the discrete Bernoulli distribution
which is a biased but low variance estimator. Invase uses the REINFORCE (Sutton et al., 1999) estimator, an unbiased
but high variance estimator. They proposed to control the variance using a baseline network, trained without selection,
as a control variate. REAL-X uses the REBAR (Tucker et al., 2019) estimator, a REINFORCE estimator using Gumbel-
Softmax as a control variate. We chose to focus on REBAR as it can be considered an improvement over REINFORCE
and Gumbel-Softmax.

Figure 19: Comparison of the performance of LEX models with L1-regularization with 3 different Monte-Carlo gra-
dient estimator on the SP-MNIST dataset.. λ varies in [0.1, 0.3, 0.5, 1.0, 3.0, 5.0, 10.0, ]. First column corresponds to
0-imputation mimicking the behaviour of INVASE for different MC gradient estimator, second column corresponds to
surrogate 0-imputation mimicking the behaviour of REAL-X and third column corresponds to multiple imputation with a
Mixture of Logistics.

In this section, we fix the regularization to L1-Regularization and the distribution pγ to be an independent Bernoulli and we
compare the difference in performance depending on the Monte-Carlo gradient estimator (REINFORCE, Gumbel-Softmax,
REBAR) for different methods of imputation. Note that plain REINFORCE slightly differs from Invase (because of the
baseline control variate) but they admitted in the reviews for their paper (Yoon et al., 2018) that using the control variate
did not improve the results. In Figure 19, we observe that changing the Monte-Carlo gradient estimator leads to similar
results in prediction and selection. However, changing the Monte-Carlo gradient estimator changes how the choice of λ
impact the selection rate.

F.2.3 COMPARISONS WITH THE SET-UPS OF L2X, INVASE AND REAL-X

Here we propose a comparison of the original set-ups of L2X, Invase and REAL-X to two parameterisations of LEX models
with multiple imputation. The first one is the same set-up as in 4, using REBAR and an implicit regularization with a fixed
rate of selection. For the second set-up, we train using REBAR but consider an Independent Bernoulli for the selection
distribution regularized by an explicit L1-Regularisation (note that this is the same regularization and distribution of Invase
and REAL-X). λ varies in [0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0] for the method with L1-Regularization.

On Figure 20, we see that our method (i.e. using multiple imputation with a Mixture of Logistics) provides the best
performances in the vicinity of the expected selection rate. On the other hand, even with λ very close to 0, Invase still
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Figure 20: Performances of LEX trained on the SP-MNIST dataset using the same sets of parameters as the original
implementation of L2X, Invase, and REAL-X. We compare them to two sets of parameters with Mixture Of Logistics
imputation (denoted as Ours) using two types of regularization: L1-Regularization and implicit regularization with a fixed
selection rate. The models with L1-regularization were trained on the same grid λ ∈ [0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0, ].

selects a very small subset of the features making it difficult to compare to the other methods. Moreover, the accuracy of
Invase, REAL-X, and L2X do not decrease with the effective selection rate which suggests that these methods encode the
target output in the mask selection.

Figure 21: Each figure corresponds to the average of 100 mask samples from the selector trained using a surrogate constant
of imputation for different constant. From top to bottom, we have the input data, and constants −3,−1, 0, 1, 3. The selector
was parametrized by a subset sampling with a rate of selection of 5%. Not only the selection happen in the wrong panel
for most of the constant, the selected features change drastically with the choice of the constant.
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Figure 22: Each figure corresponds to the average of 100 mask samples from the selector trained using different multiple
imputation. From top to bottom, the different multiple imputation are : KMeans Dataset, Means of GMM, Mixture of
Logitics, means of mixture of logistics. The selector was parametrized by a subset sampling with a rate of selection of 5%.
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Input Image Marginal Imputation Surrogate 0 imputation

Figure 23: Selection obtained averaging over 100 samples from the distribution pγ parametrized by a subset sampling
distribution selecting 10% of the pixels. Marginal imputation consists in replacing the missing pixels with samples from
the validation dataset.
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