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The need for miniaturization and faster communications resulted in the rise of photonics, with the big promise of
light circuits with high speed and low heating. Near-zero-index materials have gained attention due to their pecu-
liar electromagnetic properties, such as enhancement of the electric field and extraordinary transmission inside
photonic waveguides. Furthermore, in such a medium, light propagates with constant phase, thus holding great
promise for the field of quantum photonics, where information is preserved instead of degraded by the environ-
ment, causing decoherence. However, its realization still remains challenging, as it requires very specific geometries
to fulfill some requirements related to the effective medium theory. In this tutorial, we present a theoretical overview
of low-index materials’ most intriguing yet useful characteristics and their prospective applications. ©2023 Optica

PublishingGroup

https://doi.org/10.1364/JOSAB.489055

1. INTRODUCTION

The miniaturization capability and efficiency of electronic
devices have reached the limit regarding power consumption
due to intrinsic material losses and Ohmic heating. As a result,
the field of photonics has emerged as a promise to substitute
microelectronics using mainly optical components, such as opti-
cal fibers, waveguides, and light sources. Just as new prospects
towards light circuits come into play, so do their challenges. As
light interacts with matter, even though Ohmic heating is to
some extent overcome, propagation losses and optical effects
such as absorption, reflection, diffraction, emission, and scat-
tering appear. Although these effects may be relevant for some
experiments, they may also be undesirable for others, as they act
as dissipation channels of radiation, and the information that is
supposed to be transmitted gets lost. As a consequence, research
on not only materials’ intrinsic properties but also engineering
becomes necessary to optimize photonic systems’ performance.
In this context, near-zero (refractive)-index (NZI) materials
bear great potential to allow new features in manipulation with
light wave propagation in photonic chips. For instance, spatial
and temporal characteristics of electromagnetic waves inside an
NZI material can be decoupled. This can be observed through
the wave equation, which describes a propagating wave by

∇
2E−

εµ

c 2

∂2E
∂t2
= 0, (1)

showing the dependence of the field propagation on the relative
materials’ dielectric permittivity and magnetic permeability, ε
and µ, respectively. Considering propagation along one direc-
tion, for example, along x axis [wave vector k= (kx , 0, 0)],

the solution to Eq. (1) is a plane wave with the exponential part
related to the material parameters by

E = E0e i
√
εµk0x
= E0e ikx x , (2)

where kx =
√
εµk0, k0 =ω/c , and ω is an angular frequency.

By looking at the wave Eq. (1), when ε andµ become small, the
temporal term becomes negligible, reducing Eq. (1) to Laplace’s
equation ∇2 E = 0, which governs electrostatics. It effectively
means that the field has a constant amplitude in space while
dynamically oscillating in time [1]. Therefore, there is an appar-
ent decoupling between spatial and temporal parts that describe
the electromagnetic field dynamics. We can find implications of
such an effect in engineering novel resonant cavities. The wave
equation solutions for a specific cavity depend on the boundary
conditions, resulting in cavities operation with a fixed resonant
frequency for a particular shape and size. By decoupling spatial
and temporal components of the electromagnetic field, it is
possible to find the same resonance frequency values for dif-
ferent cavity configurations. Such invariance of the resonance
frequency concerning geometrical transformations is well suited
for applications with deformable and flexible photonics [2].

The rest of the paper is divided into the following sections.
Section 2 deals with the classification of material properties
of NZI materials. Sections 3 and 4 describe the ray-optics and
wave-optics properties of NZI materials. Implications of NZI
media in quantum photonics are discussed in Section 5, while
nonlinear optics with NZI materials is the topic of Section 6,
followed by conclusions.
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2. CLASSIFICATION OF NZI MATERIALS

We start this tutorial by focusing on the fundamental properties
of electromagnetic radiation propagating inside uniform NZI
materials. For simplicity, we take first only the real optical con-
stants. Electromagnetic properties of materials are associated
with relative permittivity ε and permeabilityµ. To differentiate
between vanishing electric and magnetic constants, we refer to
materials with ε→ 0 as epsilon-near-zero (ENZ), with µ→ 0
as mu-near-zero (MNZ), and with both of them tending to
zero as epsilon-mu-near zero (EMNZ) [3]. The properties of
propagating waves are connected with the refractive index or
wavenumber (propagation constants). According to the relation
connecting the refractive index to electromagnetic constants
n =
√
εµ, materials classified as EMNZ must populate the

intersection area of ENZ and MNZ materials [Fig. 1(a)], that
is, the square of sizes 2× 2 around the origin of the coordinate
system with an axis representing the real permittivity and per-
meability values [Fig. 1(a)]. As we plot only the upper part of the
µ-subspace, EMNZ materials occupy only the upper half of the
square. When the refractive index gets significantly lower than
one in absolute value, the more appropriate it is to label such
materials as NZI materials. In the absence of losses, i.e., when
permittivity and permeability are real, all three cases are almost
identical to the NZI configuration as showcased by the deep
blue color field in Fig. 1(a). The yellow-colored field marks the
region where n > 1. Following such a simplified approach, there
is an abundant amount of ENZ materials; see the vertical white
dashed line in Fig. 1(a). Examples are noble metals, such as gold
(Au), silver (Ag), and copper (Cu), and other kinds of metals
such as aluminum (Al) and doped semiconductors. Typically,
these materials exhibit plasmonic properties, for example,
concentrating light on nanoscopic scales.

In reality, all aforementioned materials are well described by
the Drude or more elaborate Drude–Lorentz model for complex
permittivity ε. When the imaginary part of the permittivity is
added to the system, we can see big changes in the n ≶ 1 regions,
as shown in Fig. 1(b). The real part of a Drude metal permittivity
attains zero value in the zero-crossing point close to the plasma
frequency [4]. Nonetheless, metals do not expose low refractive

indices in the visible range [5]. These limitations triggered the
search for novel plasmonic materials. For the visible range, tran-
sition nitrides, such as titanium nitride (TiN) and zirconium
nitride (ZrN), are quoted as valuable substitutes for Au and
Ag due to their plasmonic properties. They have the advan-
tage of being CMOS compatible [6]. For the infrared range,
transparent conductive oxides such as indium tin oxide (ITO)
and gallium- (GZO) and aluminum-doped zinc oxides (AZO)
are preferable materials. However, they still have high intrinsic
losses and cannot be strictly considered NZI, as all-optical
effects related to a near-zero refractive index are worsened. An
interesting illustration between the real and imaginary parts of
material parameters is given in [7], where the coordinates were
chosen as<(n)≡ n′ versus =(n)≡ n′′, and material dispersion
is reflected as curvilinear lines in these coordinates for some
important materials such as Au, TiN, SiN, AZO, ITO, and
GZO.

What will be the implications of taking materials with param-
eters from the blue highlighted areas in Fig. 1? According to the
constitutive relations

D= ε0εE, (3a)

B=µ0µH, (3b)

the induced polarization P=D− ε0E and magnetization
M= B/µ0 −H can compensate for external electric E and
magnetic H fields. A small refractive index value means that
phase velocity v = c/n exceeds the speed of light in vacuum,
and correspondingly, wavelength λ of the propagating waves is
much extended over the vacuum dimension. In the limited case
of ε= 0, the wavelength becomes infinite, providing in-phase
oscillations of the local electric field in all space occupied by such
material; see Fig. 2. The temporal behavior of the electric and
magnetic fields in the case of ENZ and MNZ media is not dis-
turbed, while the amplitude of complementary fields (magnetic
for the ENZ and electric for the MNZ) is constant and with-
out loss of generality may be nullified. As seen previously, the
EMNZ medium supports time-varying but spatially invariant

Fig. 1. (a) Plot of the transition between conductors and dielectrics with their respective propagation properties, where the NZI region is high-
lighted in deep blue and regions with a refractive index above one are highlighted in yellow. The EMNZ region with ε between−1 and+1 is delim-
ited by the white line. The ENZ and MNZ regions are delimited by blue and red lines, respectively. The negativeµ semi-space is not shown for com-
pactness. (b) Plot of the dependence of the absolute value of the refractive index as a function of permittivity εwhen adding losses to the material=(ε).
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Fig. 2. Illustration of the difference between the wavelength in a conventional dielectric with ε > 1 and zero-index materials (ENZ left and
EMNZ right), where the wavelength becomes infinite when ε→ 0.

electromagnetic fields in all internal volumes independent of
their sizes and shapes.

As discussed previously, there are different classes of materials
such as ENZ, MNZ, EMNZ, and NZI, depending on the values
of ε, µ, and, correspondingly, n. Normally, the permeability
is related to magnetic fields with applications in electronics by
manipulating inductance and capacitance. However, MNZ
materials are not easily found in the optical frequency range.
One way to tailor materials’ permeability is by adding dielectric
particles acting as dopants, as described in [8]. Such impurities
modify the effective permeability being able to reach extremely

low values. As many optical effects studied in this tutorial are
related mostly to the electric field, we will give more emphasis to
ENZ materials.

For negligible losses, which are related to the vanishing
imaginary parts of their material parameters, all classes stand
for sufficient conditions to be referred to as NZI materials.
However, such an approximation is crude, as it completely
ignores dispersion. By definition, dispersion occurs when mate-
rial properties of the medium, such as ε and µ, depend on the
frequency. To account for dispersion properties, one needs
to accept complex permittivity and permeability functions
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obeying the Kramers–Kronig relations [9]. For example, the
imaginary part of the permittivity in the Drude model is asso-
ciated with electron scattering through the collision frequency
parameter. In turn, the imaginary part of ε contributes to the
imaginary part of the mode propagation constant, i.e., the
imaginary part of the refractive index in the case of plane waves
in a homogeneous medium. As a consequence, the refractive
index will be different from zero even if the real part of the
permittivity is zero. Hence, as exemplified below, the ENZ
condition loses sense as a sufficient condition of the NZI case.

To elaborate on this point, we look at some ENZ examples
described by the Drude model and compare their optical prop-
erties on ENZ and NZI wavelengths. As µ= 1 is a very good
approximation at optical frequencies, complex permittivity and
refractive index

ε= ε′ + iε′′, (4a)

n = n′ + in′′ (4b)

are connected through n =
√
ε. That gives

n′ =

√
√
ε′2 + ε′′2 + ε′

2
, (5a)

n′′ =

√
√
ε′2 + ε′′2 − ε′

2
. (5b)

In the case of the zero-crossing point, ε′ = 0; thus, the
real and imaginary parts of the refractive index are equalized
n′ = n′′ =

√
ε′′/2. However, it does not automatically mean

that <(n) reaches the minimum. To exemplify this statement,
we use the ellipsometry dataset for the ITO samples from [5].
There is a pronounced difference between the ENZ wavelength
λENZ = 1402 nm and the wavelength of the smallest real part of
the refractive index at λNZI = 1681 nm. The refractive indices
are nENZ = 0.832+ i0.832 and nNZI = 0.612+ i0.919.
While the latter case brings more losses in the propagation of
plane waves, it enables higher efficiency of nonlinear optical
effects. Such a discrepancy between ENZ and NZI wavelengths
is also observed in the aforementioned plot in [7], as typically
the lowest point on the coordinate axis (<(n)) is shifted away
from the highlighted ENZ zone.

ITO is notorious for having its material properties gov-
erned by geometrical parameters, i.e., the thickness of layers
and fabrication method. Thus, we use another dataset for
ITO from [10]. The advantage of such data is that the authors
claim that the permittivity of the 300 nm thick layer of ITO
is accurately described by the Drude model with parameters
ε∞ = 3.8055, ωp = 2π · 473 · 1012 s−1, γ = 0.0468ωp . With
such parameters, λENZ = 1241 nm, while λNZI = 1511 nm. As
mentioned in a recent paper [11], the spin–orbit interactions
facilitated by the ITO film do not occur at the wavelength λENZ,
but at the wavelength redshifted by 80 nm towards lower<(n).

An additional example that illustrates a negative result in a
claim for NZI properties is TiN. Due to its plasmonic behavior,
TiN has been pointed out as an alternative ENZ material for the
visible range [4]. The permittivity of TiN also greatly depends
on the fabrication method and thickness of the sample, most

Fig. 3. Real (n′) and imaginary (n′′) parts of the refractive index
for a 100 nm thin film of titanium nitride as a function of wavelength,
exemplifying the dispersion properties of such a medium. The red
dashed line designates the zero-crossing point<(ε)= 0.

experiments having been conducted at room temperature or
above [12,13]. As shown in Fig. 3 a 100 nm TiN film exhibits
the zero-crossing point of the real part of permittivity in the
visible range [14]. However, its large imaginary part heavily
contributes to the refractive index, especially at the zero-crossing
point, where n′ = n′′ =

√
ε′′/2' 1.5, Fig. 3. Hence, it is clear

that, despite the zero-crossing point, such material cannot be
considered NZI. Moreover, significant losses prevent using such
material at the ENZ wavelength in optical circuits. Another
consequence, which we emphasized with the aforementioned
ITO example, is a pronounced distinction in wavelengths,
where<(ε) and<(n) reach the minimal values (670 nm versus
800 nm).

As an attempt to ameliorate the performance of ENZ TiN
films, their reflection was characterized as a function of tempera-
ture decreasing from room temperature to cryogenic values [15].
We can observe a slight gradual increase in the zero-crossing
wavelength as temperature decreases to∼4 K. This is associated
with counteracting effects of the electron density and effective
mass reduction as discussed in [13]. The imaginary part of ε
linearly decreases with temperature fitted in the range from
4 K to 200 K by the function 0.0056T + 1.37. Even for points
excluded from the fit for temperatures reaching T = 1.5 K, the
imaginary part is still around 1.0.

As described previously, the intrinsic losses related to conduc-
tors make dielectric platforms highly desirable. An alternative
approach to achieve an effective index near-zero regime using
structured materials in a more or less extended frequency range
relies on photonic crystals. Such periodic structures have dis-
crete translation symmetry with lattice sizes close to the free
space wavelength of interest. We recall that, by definition,
permittivity is a measure of the polarizability of charges in the
presence of an electric field, with each atom behaving as an
electric dipole. In the case of discrete objects that compose a unit
cell of a photonic crystal, such as pillars, these polarized dipoles
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collectively yield scattered radiation behaving as nanoscale res-
onators. The radiation emitted by several dipoles interferes and
forms specific field profiles depending on the structure’s size and
shape. Such patterns are known as Mie resonances [16,17], and
the full description of nanoparticle excitation dependent on the
frequency is given by the Mie scattering theory [18]. It is possible
to tune the mode profiles, such as of a dipole, a monopole, and
other higher-order modes, for the desired frequencies by simply
adjusting the structural parameters of the unit cell.

To achieve NZI behavior using a photonic crystal platform,
the system must be optimized to exhibit eigenmodes degener-
ated close to the0 point [19] with specific mode profiles. When
the frequency of such electromagnetic modes is linearly pro-
portional to the wave vector at the Brillouin zone boundaries,
we can observe a cone-like band structure, commonly referred
to as Dirac cones, and the intersection between two cones at
ω0 is called the Dirac point [20]. For a homogeneous material
with both ε(ω0)= 0 and µ(ω0)= 0, the dispersion near ω0 is
linear and associated with Dirac cones. For photonic crystals to
exhibit the behavior of effective NZI materials, the Dirac point
must have an additional mode [21]. In this particular case, a
triple degenerate state is formed. However, some considerations
regarding the nature of excited modes must be considered.
For a system of pillars to exhibit NZI properties, the three Mie
resonances supported by the system must correspond to two
dipoles and one monopole, while in the case of membranes, a
quadrupole, a dipole, and a monopole or hexapole must coexist
[22,23].

For a system consisting of silicon cylinders (ε= 12.5) in a
square lattice and embedded in air, with radius r = 0.2a and
a being the lattice constant, we obtain the band diagram for
transversal magnetic (TM) polarization (electric field along rod
axis) with respective electromagnetic modes depicted in Fig. 4,
where the yellow circle indicates the triple degeneracy point
at 0. The electromagnetic modes corresponding to the three
Mie resonances close to the Dirac point are two dipoles and one

Fig. 4. Band structure for TM polarization of a square lattice
of Si (ε= 12.5) pillars with r = 0.2a . The yellow circle indicates
triple degeneracy at 0 with respective mode profiles along the 0 − X
direction, corresponding to one monopole and two dipoles. The
simulations were performed using the free software MIT Photonic
Bands.

monopole [24]. The additional flatband corresponds to a dipole
mode.

In the case of pillars, when these specific three modes inter-
cept, we can apply the effective medium theory, and at the triple
point’s frequency ω0, the effective constitutive parameters will
be ε(ω0)≈ 0 and µ(ω0)≈ 0. This means that the medium
has an effective zero index, although the bulk material (silicon)
permittivity is pronouncedly different from zero [21]. Special
consideration should be given to the dipole modes excited along
the 0 − X direction. We notice that they have in-plane mag-
netic field components in the same direction of k. This means
that longitudinal modes are also excited within the system,
which disturbs the radiation phase inside the NZI medium, thus
losing its uniformity characteristic. One solution to avoid such
distortion is to excite only the monopole resonance, shifting
the frequency close to the triple point. So, instead of a zero
index, we would have an NZI material with properties sufficient
to manifest low-index phenomena. A uniform phase pattern
brings flexibility in engineering photonic devices, as light expe-
riences neither diffraction nor scattering due to such enlarged
wavelengths in NZI materials. A photonic NZI beam splitter
composed of three waveguides oriented perpendicularly to each
other can still have the same signal intensity in each channel,
which is impossible otherwise due to big reflections originated
by the impedance mismatch. This is illustrated in Fig. 5 where

Fig. 5. Illustration of the simulated nonlinear photonic crystal
configuration. The system is composed of two regions. An NZI pho-
tonic crystal with radius r = 192 nm and lattice constant a = 921 nm
is surrounded by another photonic crystal operating as mirrors with
rm = 145 nm and am = 575 nm. The port excites the system with the
fundamental TM mode (out-of-plane magnetic field). All pillars are
made of Si. The color scheme indicates the magnetic field amplitude.
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a photonic crystal system consists of two regions. First, an NZI
photonic crystal made of Si pillars was designed at Dirac’s triple
point with radius r = 192 nm and lattice constant a = 921 nm.

The second region is composed of Si pillars designed to have
a bandgap at the NZI wavelength, thus working as a mirror.
The dimensions of the radius and pitch for the second region
are rm = 145 nm and am = 575 nm. For the sake of the CPU
processing time, we took a 2D photonic crystal with sizes
17× 17 lattice constants. Four line defects were carved in the
second photonic crystal to work as input/output waveguides.
Intensity monitors were placed in each waveguide near the NZI
region, and a port generates incoming electromagnetic radiation
through its fundamental TM mode (out-of-plane magnetic
field) at the bottom waveguide.

In that sense, we can try to implement the photonic crystal
concept with triple degenerate modes. We check our simulation
results by having a uniform phase in a full photonic crystal plat-
form, as depicted in Fig. 5. The mode from the input channel
enters the NZI domain and fills it with fields exhibiting uniform
phase distribution (colors in the figure designate the modal
phases). The important observation is that the modes in all three
output waveguides have exactly the same phase irrelevant to the
distance they travel inside the NZI patch. Another example of
such equiphase behavior inside the NZI domain is shown in
Fig. 6. Two rectangular patches (parameters given in the figure
caption) are connected with a narrow one-row-thick channel.
The fields in both patches and the linking channel between
them are completely synchronized with zero phase offset. Inside
the narrow channel, we notice a higher electric field, as predicted

Fig. 6. (a) Supercoupling effect for a photonic crystal platform
made of Si pillars (εr = 12.5) where the frequency of operation is close
to the triple point (k = 0.002). The electric field is emitted by a line
source placed in the middle of the left cavity (green arrow) at the wave-
length of 1530 nm. The structure is surrounded by another photonic
crystal with r = 121 nm and a = 367 nm, providing the mirror effect
as its ban gap covers the frequency of the source. (b) Phase distribution
of the same system.

for the supercoupling effect due to energy conservation. The
system is surrounded by another photonic crystal designed to
work as a mirror with r = 121 nm and a = 367 nm, where the
wavelength of the dipole was arranged in the mirror bandgap.
Such a system can be employed for several applications such as
photonic circuitry and optical sensors [25].

3. RAY-OPTICS PROPERTIES OF NZI
MATERIALS

Direct ray-optics features of NZI materials are connected with
Snell’s law and Fresnel’s coefficients when considering the
interfaces of such media with conventional materials. For light
propagating from an NZI material to conventional material
(n2), Snell’s law relates the indices of refraction and refracted
angle by nNZI sin θNZI = n2 sin θ2. The incidence of a plane
wave under any angle from the NZI side of the interface results
in refraction only along the normal to the interface in the second
medium. Reciprocally, refraction of a plane wave incident from
the conventional medium in the NZI space can be correctly
defined only for normal incidence, as oblique incidence will
result in complete reflection. On the contrary, for normal
incidence, Fresnel’s coefficients are defined through intrinsic
impedances η=

√
µµ0/εε0, and in the absence of magnetic

properties can be expressed through the refractive indices of
materials in contact:

r =
η2 − η1

η2 + η1
=

n1 − n2

n1 + n2
, (6a)

t =
2η2

η2 + η1
=

2n1

n1 + n2
. (6b)

Without losses, the transmission (reflection) coefficient
becomes either 2 (1) or 0 (−1) depending on whether a plane
wave incidents from the air (n1) on the NZI medium (n2) or
vice versa. We took the Drude model parameters of an ITO film
from [10] and reduced the collision frequency by 1000 times to
consider an almost lossless material. The real parts of Fresnel’s
reflection and transmission coefficients are plotted in Fig. 7(a)
for the air/ITO boundary case. <(t)= 2 at the zero-crossing
wavelength λ≈ 1240 nm, which can be classified as ENZ and
NZI simultaneously.

However, plotting the transmittance T and reflectance R for
the boundary problem accordingly to formulas

R =

∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2 , (7a)

T =<(n2)

∣∣∣∣ 2n1

n1 + n2

∣∣∣∣2 (7b)

shows that these spectral parameters do not exceed one. For
the case of negligible losses, n2 =

√
ε is purely imaginary at

wavelengths beyond the ENZ point, giving an evanescent wave
with zero transmittance and unitary reflectance. Consequently,
the real picture is not so trivial as the complexity of the mate-
rial function is much extended. In Fig. 7(b), we plot the same
spectra but for normal ITO film. There are no abrupt breaks in
transmission/reflection spectra, slopes become flatter, and no
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Fig. 7. Real parts of the dielectric function, reflection and transmission coefficients, transmittance, and reflectance at the interface between air and
ITO. (a) Lossless case and (b) normal ITO.

extreme behavior is associated with the ENZ wavelength besides
the maximum in the real part of the transmission coefficient.

4. WAVE PHENOMENA IN NZI MATERIALS

A fundamental property of propagating light is its phase,
which is related to the variation of a wave cycle. In the absence
of free charges and considering only time-harmonic fields
(E (t), H(t)∝ e−iωt ), the phase is given by the argument of the
field function (k · r−ωt + φ), where φ is a relative phase term
that influences the spatial distribution of the wave. When the
phase difference between two waves is kept constant, such waves
are coherent and thus able to interfere. Conventionally, deco-
herence mechanisms are related to interaction with matter, with
additional random phase changes modulating the signal. For
a wave propagating inside an NZI material, the phase gets spa-
tially constant due to negligible wavenumber k, having essential
implications in undulatory phenomena such as diffraction and
interference.

As light momentum is connected to the wave nature of
electromagnetic waves, we start this discussion by introduc-
ing the description of momentum inside low-index media.
Typically fundamental radiation processes are described by the
energy exchange between light and matter, as shown by Einstein.
Since the energy and momentum of a photon are directly con-
nected, we can elaborate more on the link between these two
quantities. Considering a simple two-level atomic system, the
processes of absorption and emission of a quantum of energy~ω
coexist with a momentum transfer ~ω/c = ~k between the field
and the atom, where ~ is the reduced Planck constant. Inside
any material, the momentum of electromagnetic radiation
depends on the refractive index. In a dispersive medium, one
should distinguish between the conventional refractive index
n(ω)=

√
ε(ω)µ(ω) known as the phase refractive index, and

the group refractive index ng = c ( dω
dk )
−1
= n +ω dn

dω .
Within such a framework, two formulations of the momen-

tum are important to understand the role of the material
properties (refractive indices) in light–matter interactions. The
Abraham momentum (p A) considers the corpuscular nature
of light, whereas the Minkowski momentum (pM) considers
its wavelike nature. In a dispersive medium, the quantities are
given by

p A =
~ω

ng (ω)c
, (8a)

pM = n(ω)
~ω
c

. (8b)

Although NZI materials represent a wider category of mate-
rials with the real part of the refractive index being less than one,
for the momentum considerations, the values of p A and pM will
vary for ENZ, MNZ, and NZI media. As a consequence, at the
zero-index frequency ωZ , ng =∞ for ENZ and MNZ cases,
and ng =ωz

dn
dω for the NZI one. This also means that the group

velocity will be zero for ENZ and MNZ materials, but nonzero
for NZI. The Minkowski momentum will be zero for all three
categories, as n = 0. Having a zero Minkowski momentum
means that a photon does not transfer momentum to the matter
inside an NZI material. The lack of pM provides the means to
understand the absence of a radiative process inside NZI materi-
als since the momentum exchange between an atom and matter
is forbidden. Such an effect was also described by Lobet et al .
[26] within the framework of energy considerations of radiative
processes.

Exhibiting a nonzero Abraham momentum for NZI mate-
rials means that although radiative processes are inhibited,
electromagnetic radiation is still allowed to propagate inside the
medium. Light–matter interactions demand conservation of
the total momentum, connecting the Abraham and Minkowski
momenta by the expression

pmedium
kin + p A = pmedium

can + pM, (9)

which includes the sum of the kinetic momentum of the par-
ticle (pkin) and the Abraham momentum of light from one
side and the sum of the canonical momentum of the particle
(pcan) and the Minkowski momentum of light from another.
The canonical momentum is related to the de Broglie relation
by pcan = h/λ. Therefore, the solution to the Abraham–
Minkowski debate relies on the NZI environment giving
different results for particle-oriented and wave-oriented experi-
ments. The Abraham momentum considers the particle nature
of light, whereas the Minkowski momentum is related to the
wavelike nature of light. The full resolution to this dilemma can
be found in [27].
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Fig. 8. (a) Incoming electromagnetic wave is sent on a double-slit screen with slit width D. The distance between slits is a , and the distance
to the image plane is L . (b) First diffraction minimum as a function of the refractive index. Wavelength is set to 500 nm for a separation width of
a = 800 nm.

An important observation can be made with the well-known
Young’s double slit experiment. A coherent light source is placed
behind a nontransparent screen with two slits, and the generated
light pattern is recorded at some distance at the other side of the
screen. If the slits are surrounded by a conventional material,
such as air, intensity fringes will appear on the screen due to
diffraction and interference. However, such a pattern disappears
if the surrounding environment is composed of a low-index
material. We can explain this effect by looking at the diffraction
condition. Let us consider the double-slit experiment, with slits
of width D separated by a distance a . The distance between the
screen with the slits and the observing plane is denoted as L , as
illustrated in Fig. 8(a). The full system, including the screen, is
embedded inside a dispersive medium with refractive index n.
For L� a , the angle θ to the first diffraction minimum is given
by the diffraction theory

tan θ =
λ0

2a |n|
. (10)

For media with a positive refractive index (n > 1), the diffrac-
tion angle is lowered by a factor |n|. Consequently, the intensity
fringes get spatially closer, as shown in Fig. 8(b). In this situa-
tion, the corresponding canonical momentum px increases by
the same factor. Nonetheless, if we decrease the refractive index
approaching the NZI regime (n < 1), the canonical momentum
tends to zero, and the first diffraction minimum moves away
from the center, resulting in largely displaced fringes. The inten-
sity distribution of the fringes on the image plane follows the
expression

I (y )=
I0sin2(

πDy
λL )

2(πDy
λL )

(
1+ cos

(
2πay
λL

))
, (11)

where I0 is the intensity of the incident wave, λ is the wave-
length in the medium, and y is the vertical coordinate on the
plane. As the refractive index approaches zero in Eq. (11), the
effective wavelength tends to infinity and the cosine term to
one. Therefore, I→ I0, that is, the intensity on the image plane
appears as a constant distribution, confirming that other orders
of diffraction are removed to infinity. The same conclusions

hold for single-slit experiments. Intuitively, we can think of the
disappearance of the fringes as a consequence of the enlarge-
ment of the wavelength inside NZI materials. It is known that
diffraction occurs on structures with sizes comparable to the
wavelength. As the wavelength tends to infinity for (n� 1),
diffraction effects are lost in the image plane as fringes are more
and more spaced.

Another interesting conclusion arises from Babinet’s prin-
ciple, stating that the diffraction patterns of complimentary
objects (a single slit and a rectangular object) should be similar.
The suppression of the diffraction pattern inside NZI materials
justifies the lack of scattering from an object with the dimen-
sions of the slit. Consequently, the object is rendered invisible,
and NZI material works as a cloaking mechanism. Cloaking cor-
responds to incertitude on the position of the invisible object,
which corroborates the discussion above.

Our considerations of the double-slit experiment were veri-
fied by full-wave simulations as shown in Fig. 9. We simulate the
diffraction pattern with four different surrounding materials: air

Fig. 9. Left panels: Hz field maps; right panels: |H| profile
at the image plane. (a) Air surrounding (ε =µ= 1, n = 1),
(b) glass (ε = 2.25, µ= 1, n = 1.5), (c) negative refractive
index material (ε =µ=−1, n =−1), and (d) NZI material
(ε = 1.0× 10−6, µ= 1, n = 0.001). Wavelength is set to 500 nm for
a separation width of 800 nm.
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(ε =µ= 1, n = 1), glass (ε = 2.25, µ= 1, n = 1.5), negative
refractive index material (ε =µ=−1, n =−1), and an NZI
material (ε = 1.0× 10−6, µ= 1, n = 0.001). As evidenced by
the simulations, the diffraction patterns are not influenced by
the sign of the refractive index but by its absolute value.

As mentioned previously, inside NZI materials, electromag-
netic radiation experiences an enlargement of the wavelength.
Such a spread of the position space brings important considera-
tions in the Heisenberg uncertainty principle1p1y ≥ h . The
canonical momentum of the photon in an NZI material reduces
to zero as 1p = |n|1p0. Since |n| ≈ 0, we have 1p ≈ 0. As
a result, the exact knowledge of the momentum value leaves it
with no uncertainty, imposing an infinite uncertainty in the
position. In other words, the particle is delocalized, confirming
its wavelength is infinite inside the NZI material.

5. APPLICATIONS OF NZI MATERIAL IN
QUANTUM PHOTONICS

In this section, we point out some examples of rich potential
applications of NZI materials for quantum systems, empha-
sizing radiative decay dynamics and coherent communication
between distant emitters embedded in NZI materials.

A. Quantum Emitters and Decay Dynamics in
NZI Materials

We start by considering a quantum emitter, for instance, a
quantum dot, located in a cavity formed by an NZI material.
Such a cavity will have its eigenfrequency overlapping with the
atomic transitions of the quantum emitter. As demonstrated by
Liberal et al., the interaction between a two-level system and the
NZI background becomes equivalent to a single-mode cavity
[2]. As discussed previously, electromagnetic radiation in the
NZI medium exhibits a decoupling between spatial and tem-
poral variables. This means that the shape of the cavity will not
influence the eigenfrequency. In conventional systems, when an
emitter is placed inside a cavity, the population of electronic lev-
els presents reversible dynamics with the Rabi frequency defined
by the size of the cavity. Deforming such a cavity would result
in the weakening of the Rabi oscillations due to the shift in the
resonance frequency. Since the deformation of the cavity shape
in an NZI material will not affect its eigenfrequency, we are able
to tune the Rabi oscillations without detuning its resonance
frequency. Such results bring novel possibilities to manipulate
quantum states and their decay dynamics [28,29].

Another interesting discussion relies on the fundamental
radiative processes inside NZI media and their dependence
on dimensionality. As approached by Lobet et al. [26], mate-
rials with vanishing refractive indices will influence the decay
dynamics of quantum emitters, such as the interaction between
light–matter through spontaneous emission, stimulated emis-
sion, and absorption. Einsteins’ coefficients A21, B21, and B12

calculate the rate of such processes, respectively. Considering
a two-level system described by ground and excited states, the
spontaneous emission was calculated via the Green function
formalism by

A′21(ω)=
2ω2

~ε0c 2
|p|2uz · =(G(r0, r0, ω)) · uz

=<(µ(ω)ε(ω))A21, (12)

where p= puz is the transition dipole moment, G is the Green
function, and A21 =ω

3
|p|2/(3πε0c 3) is the free-space spon-

taneous emission coefficient. For n→ 0, the spontaneous
emission is inhibited in all NZI categories. Stimulated emission
and absorption are also calculated through the Green function
with the complete mathematical description found in [26]. As
both processes are related to the density of states, the conclu-
sion is that for unbounded 3D NZI media, all fundamental
radiative processes are inhibited due to the depletion of optical
modes around the NZI frequency. This result shows how the
environment can tailor the radiative processes. The authors also
introduce a unified framework in terms of dimensionality and
conclude that it is crucial to consider both the number of optical
modes that may couple to an emitter and the coupling strength.
These parameters will depend on the NZI class and the number
of spatial dimensions. For example, when analyzing the Purcell
factor, in most NZI classes, spontaneous emission is inhibited.
However, an enhanced Purcell factor is predicted inside 1D
ENZ materials. Such conclusions have important implications
for manipulating emitters’ properties for quantum technologies.

B. Supercoupling Effect with Distant Emitters

A way to enable communication of separated emitters is
extremely important in quantum information, communication,
and computation. To finalize our considerations regarding
applications of NZI materials in quantum photonics, we look
at the exotic phenomenon known as the supercoupling effect
as a way to allow communication between distant emitters.
Normally dipole–dipole interactions between emitters are
restricted to sub-wavelength distances. The supercoupling effect
is a way to overcome this limitation; see Fig. 6.

Classically, the propagation of electromagnetic modes inside
waveguides depends on the constituent materials and geometry.
Abrupt bends, different cross sections, and unwanted scat-
terers caused by fabrication imperfections can deteriorate the
transmitted signal. A counter-intuitive phenomenon occurs
when very distorted waveguides are filled with an NZI mate-
rial. For such waveguides, we could argue that the wavelength
is extremely large and neither diffraction nor reflection from
such structural parameters is sensed by light [30]. This effect
is known as supercoupling. A stricter explanation lies within
matching the impedance conditions. Impedance is a physical
constant that relates the electric and magnetic fields through the
equation

η=
E
H
=

√
µ

ε
(13)

and is associated with a resistance to the propagation of waves.
When a waveguide has different cross sections, an incoming
wave suffers large reflection due to an impedance mismatch.
However, this can be circumvented by inserting a narrow NZI
material between waveguides, as illustrated in Fig. 10, where the
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Fig. 10. Illustration of the impedance difference at the ports of a
waveguide with a narrow NZI channel of length d + L1 + L2, coded
in orange. The blue color represents a hollow waveguide.

wave tunneling through will experience matching of channels’
impedances.

In this system, an incoming electric field polarized in the
y direction, E y , propagates through a hollow waveguide and
is transmitted through an NZI waveguide with variable cross
sections and lengths. We use Faraday’s law

∮
E · dl=− d8

dt
to calculate the electric field at both ends of a narrow channel.
The complete mathematical derivation of such a system can be
found in [31–33]. The main results show that for waveguides
of arbitrary cross sections (l1 and l2), a general formula for the
reflection coefficient is given by

r =
(l1 − l2)+ ikoµr A
(l1 + l2)− ikoµr A

, (14)

where A= (L1 + L2)l + bd is the cross-sectional area of the
ENZ waveguide. From this equation, it follows that to minimize
reflection, both waveguides should have the same cross section
l1 = l2 at both ends and minimal area A, as predicted before.

The supercoupling effect is also possible even in channels
with several fabrication imperfections due to the ability of waves
not to react to obstacles. As a consequence of the enlargement
of the wavelength, the wave will not experience the medium’s
deformities, therefore exhibiting enhanced transmission prop-
erties inside deformed waveguides [34]. We have performed
simulations for the supercoupling effect using the commercially
available software COMSOL Multiphysics [35], based on the
finite element method.

In Fig. 11, we depict simulation results for tapered wave-
guides filled with an NZI material of refractive index n = 0.001.
Figures 11(a) and 11(b) represent the results for NZI channels
of b = 20 nm and b = 300 nm, where reflectance values of
R = 0.04 and R = 0.39 were obtained, respectively. The same
simulation was also performed for a very distorted waveguide in
Fig. 11(c), where almost the same transmission was observed as
for the straight channel of the same width.

The reflectance through a low-index channel of variable
width (20 nm< b < 300 nm) and fixed length d = 2 µm is
shown in the plot of Fig. 12, with the lowest value of 4% corre-
sponding to the narrowest channel. The blue curve in Fig. 12
represents the analytical results for the reflectance taken from
the reflection coefficient Eq. (14). A small deviation from the
complete transmission is predicted because the channel area
would have to approach zero width. Such a configuration would
make no sense since a waveguide is used to transmit the wave;
thus, a small impedance mismatch is expected. A way to get
around this is also to have µ close to zero, where a very small

Fig. 11. (a) Supercoupling effect observed in a hollow waveguide
with a narrow region filled with an ENZ material of width 20 nm and
2 µm length. For an incident electric field polarized in the y direction,
4% of reflectance was measured, while for a thicker channel of 300 nm,
depicted in (b), the reflectance was 39%. In (c), we show that for the
narrowest channel, even big deformities give a small reflection.

Fig. 12. Plot of the reflectance for an ENZ waveguide with vari-
able cross section b and fixed length d = 2 µm, where the red circles
represent retrieved data from the simulation, and the blue curve is the
analytical solution obtained through the reflection coefficient from
Eq. (14).

value of permeability would be able to match the impedance for
any channel thickness.

As suggested, we can now modify the system used to analyze
the supercoupling effect to include emitters linked by NZI
waveguides. With the direct contact of a source with a dissipa-
tive medium, the power radiated by the emitter has a singularity,
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Fig. 13. Sketch of the system being considered for calculation
of resonance conditions of an electromagnetic point source (red)
placed at the center of a dielectric insertion (ε1) surrounded by an NZI
material (ε2).

so it is not able to sustain its oscillations. Therefore, to allow
continuous emission from a dipole into the NZI channel, it
has to be placed first inside a dielectric insertion [36,37]. The
dielectric material should be surrounded by an NZI material, as
depicted in Fig. 13. Due to the high contrast between refractive
indices, the NZI material will effectively form a cavity where the
emission can be enhanced by fitting the size of the cavity to the
right resonance conditions [28].

An electromagnetic field excited by a dipole can be written
as a sum of transversal electric (TE) and TM modes. When
the dipole is placed inside a dielectric sphere (ε1) of radius r0

immersed in an NZI material (ε2), the internal fields are

Eint =
∑
{q}

[ia lTM
jm Nl

jm − a lTE
jm Ml

jm], (15a)

Hint =
1

η

∑
{q}

[a lTM
jm Ml

jm + ia lTE
jm Nl

jm], (15b)

where {q} = { j ,m, l} are indices for the spherical harmonics.
Ml

jm and Nl
jm are the vectors

Ml
jm =

1

k
∇ × (B̂ j (kr ))T l

jm(r̂)r̂, (16a)

Nl
jm =

1

k
∇ ×Ml

jm, (16b)

and

T l
jm(r̂)= P m

j (cos(θ))[δle cos(mφ)+ δlo sin(mφ)]r̂, (17)

where P m
j are the Legendre polynomials, and B̂ j (kr )=

(1+ c l
jm) Ĵ j (kr )+ i Ŷ j (kr ) is a spherical Bessel function related

by the cylindrical Bessel function of the first kind J j of order n
in the Schelkunoff form with Ĵ j (x )=

√
π x/2J j+1/2(x ). Ŷ j

are the spherical Bessel functions of the second kind, and c l
jm

are coefficients. Indices e and o represent even and odd modes
for the Tesseral harmonics T l

jm [38], respectively. The main idea
behind this calculus is to find the coefficients for both TE and
TM cases that would maximize the fields inside the sphere. This
step is done by applying the boundary condition n̂× E= 0,
which assures that the tangential fields will be continuous on the
surface of the cavity, leading to the following sets of equations:

Ŷ ′j (k2r ) Ĵ ′j (k2r0)− Ĵ ′j (k2r )Ŷ ′j (k2r0)

Ŷ ′j (k2r ) Ĵ j (k2r0)− Ĵ ′j (k2r )Ŷ j (k2r0)
=
η1

η2

Ĵ ′j (k1r0)

Ĵ j (k1r0)
(TM),

(18a)

Ŷ j (k2r ) Ĵ j (k2r0)− Ĵ j (k2r )Ŷn(k2r0)

Ŷ j (k2r ) Ĵ ′j (k2r0)− Ĵ j (k2r )Ŷ ′j (k2r0)
=
η1

η2

Ĵ j (k1r0)

Ĵ ′j (k1r0)
(TE),

(18b)
which represent the characteristic equations for TM and TE
modes, respectively; k1 and k2 correspond to the wavenumbers
for media 1 and 2. In the limit where (ε2→ 0) and the NZI
volume is much bigger than the cavity, the above equations can
be simplified as

−n =
ε2

ε1
(k1r0)

Ĵ ′n(k1r0)

Ĵn(k1r0)
(TM), (19a)

−1

n
=

1

k1r0

Ĵn(k1r0)

Ĵ ′n(k1r0)
(TE). (19b)

These calculations are based on multipole expansions, where
a dipole source corresponds to the first order ( j = 1). For the
TM case, the field reaches the resonance condition with the
highest value, when Ĵ1(k1r0)= 0, while for TE modes, the con-
dition is Ĵ ′1(k1r0)= 0. Therefore, by knowing the characteristic
equations for both modes, we are able to determine the size of
the dielectric sphere to put the system in resonance. In our case,
the simulations of the supercoupling effect were performed
considering the emission spectrum of a typical GaAs quantum
dot [39], where the wavelength of our NZI material should be
around 780 nm. To reach a magnetic dipolar resonance (TM
mode), the radius of the air sphere ε1 = 1 was r = 110 nm. The
NZI material was chosen to have a small permittivity in both
real and imaginary parts (ε= 10−3

+ i10−3).
The width, length, and height of the channel are flexible

parameters, and we fix them to 10 nm, 1µm, and 2µm, respec-
tively. A 100 nm thick layer of Au surrounding the waveguide
was used to prevent radiation leakage to the environment [31].
The system was modeled by the commercially available software
COMSOL [35]. In Fig. 14, we present the results for full 3D
simulations, where the electric field produced by a quantum
emitter simulated as a point source placed at the center of the left
cavity is transmitted through a distorted ENZ waveguide. On
the other side, an empty cavity is placed to monitor the transmit-
ted field. The normalized electric field profile is collected along
the red straight line in Fig. 14(b), displaying a decrease of 14%
from one cavity to another, as shown in Fig. 14(b).

Since NZI channels can transmit electromagnetic radiation
with a uniform phase, the geometry of the system has no strong
influence on the phase distribution. We could have had more
bends and an arbitrary displacement of the second cavity from
the center of the NZI medium, but still achieve the same result
due to the geometry invariance property of the NZI material [2].
Such flexibility enables more extended frames of nanophotonic
device design.

The radiation of a quantum emitter with dipole moment
d transmitted with high efficiency through the deeply sub-
wavelength NZI waveguide makes it possible to excite another
emitter with the same emission frequency in the other cavity. As
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Fig. 14. (a) Electric dipole (blue arrow) is placed inside a spherical
air cavity, of radius 110 nm, embedded in the NZI material, of 2 µm
height. The color scheme represents the normalized electric field
profile. For better visualization, the gold layer is not displayed. (b) The
right figures show the top view with a cut line linking the two cavities
(red) and the electric field profile along the red line.

we know, the quantum emitter can be modeled as a two-level
system, and using the Green function approach combined with
the formalism of master equations [40], we can compute the
decay rate induced by mutual interactions between the two
emitters (d1, d2) due to coupling:

021 =
2k2

0

~ε0
d2 · =(G(r2, r1, ω)) · d1, (20)

where (G(r2, r1, ω)) is the Green’s electric field tensor [41],
calculated with the electric field retrieved by numerical simula-
tions. A frequency shift due to dipole–dipole interactions (the
Lamb shift) was also calculated according to [42,43]

1ω21 =
−k2

0

~ε0
d2 · <(G(r2, r1, ω)) · d1. (21)

The dipoles were placed in cavities with a 2µm distance from
each other. Both functions (the decay rate and Lamb shift) evi-
dence cooperative behavior. Their plots are depicted in Fig. 15,
where the decay rate and Lamb shift related to coupling are
normalized by the free space decay rate. At the plasma frequency,
we observe that the cooperative decay rate reaches a maximum,
so the dipoles are effectively coupled.

The cooperative behavior in a system considering two
emitters can be extended to multiple quantum emitters, as
demonstrated by Mello et al . [44]. Although not subjected to
the supercoupling effect, the authors show the effect of super-
radiance within many-body configurations due to the large
spatial coherence inside NZI materials. An ultrahigh superra-
diant decay rate enhancement is verified. This result opens up
future opportunities for quantum technologies, for example,
decoherence-free quantum computation.

Fig. 15. Decay rate (blue) and Lamb shift (red) of two dipoles,
embedded in an ENZ waveguide, normalized by the free space
decay rate, as a function of the frequency normalized by the plasma
frequency.

6. NONLINEAR PROPERTIES OF NZI
MATERIALS

Nonlinear optical properties of ENZ materials have been in
focus for almost a decade. Several papers provide indisputable
evidence that thin layers of ENZ materials drastically increase
the nonlinear response even without nanoengineering. The
question under discussion is what is the physical origin of the
enhanced ENZ nonlinearities. A thorough analysis of possible
reasons is given in a recent review [7]. Though the review is
dedicated to transparent conducting oxides (TCOs), such as
ITO, AZO, and GZO, its discussion on the nature of ENZ
nonlinearities can be extended to all classes of ENZ materials.
Moreover, as TCOs are behind most advances reported with
ENZ-enhanced nonlinearities, they are currently the main
suspects for all ENZ-related nonlinear optics. This is promoted
by the fact that their zero-crossing point is 1.0–3.6 µm and can
be effectively tuned by fabrication conditions and doping levels.

From the first view, the ENZ and NZI points in TCOs almost
coincide. Thus, the mixing of ENZ and NZI properties looks
reasonable. Most of the nonlinear experiments in the generation
of high harmonics or multi-wave mixing have actually been
done at the ENZ wavelengths assuming that (i) it is very accu-
rately defined, and (ii) losses, especially in pulsed laser deposited
TCOs, are relatively low [45]. However, when nonlinear charac-
terization is extended over a broader spectral range beyond the
ENZ band, new factors pop up.

First, as mentioned in [46], the maximum refractive index
change under Kerr nonlinearity in an AZO sample is recorded
at λ= 1390 nm, or 90 nm redshifted from the ENZ point.
The four-wave mixing (FWM) leading to the emission of back-
propagating phase-conjugated waves and forward-propagating
negative refracted waves reaches its maximal efficiency at
wavelengths longer than the zero-crossing point [47]. A clear
connection with low-index spectral behavior is shown while
comparing the efficiency plot with the ellipsometry-retrieved
refractive index data. The degenerated case of the refractive
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index change under strong pumping is described in [48]. The
difference in the real and imaginary parts of the third-order
susceptibility results in different shifts of the maximum change
in the real and imaginary parts of the refractive index. Both
quantities are shifted towards the longer wavelengths from
the zero-crossing point, being separated by about 100 nm at
rather low pumping intensities in comparison with the non-
degenerated case in [46]. One more reference reporting the
frequency shifting in the degenerated FWM in an AZO film
directly refers to the fact that such a nonlinear process is more
efficient at wavelengths longer than λENZ [49]. In this particu-
lar case, the pump and signal wavelengths were redshifted by
50 nm. Very recently, another paper reported that the ENZ
(zero-crossing point) is not the optimal nonlinear condition. In
[50], the frequency-resolved optical gating technique is used to
present the second and third harmonic generation (THG) in a
270 nm thick AZO film. The operational spectral NZI window
extends for over 268 nm FWHM centering at 1340 nm, and the
THG is evident across the whole window. The clear maximum
in the THG is exposed at somewhere around 1350 nm, which
is probably redshifted from the ENZ wavelength (linear AZO
permittivity data are not provided in the paper).

AZO is not the unique material to exhibit the optimal
efficiency redshifted from the ENZ point. The third and higher-
harmonic generation in an In-doped CdO film extends well
beyond the ENZ wavelength displaying the redshifted peaks
near it [51]. The effect was observed for the third and fifth
harmonics and interpreted as the photoinduced heating of
conducting electrons. The model provides quite close results;
however, we think that it is not the complete description, as
we show the dependence on the refractive index further on. In
support of this thesis, we refer to a recent paper that points to
the enhancement of light–matter interactions over the whole
extent of the low-index domain [11]. There, a linear spin–orbit
coupling effect is studied, and no intensive pumping is applied
to heat the electrons significantly. The spectral behavior of the
right-handed to left-handed conversion efficiency shows that
it extends from around the ITO ENZ wavelength 1240 nm
beyond the red end of the measurement window at 1500 nm
peaking at 1320 nm–80 nm away from the exact ENZ point.
The authors connect such behavior with the complex Fresnel’s
coefficients, namely, with the interplay between the difference
in TE-TM polarization transmission and phases. However, the
effect continues over 1400 nm wavelengths, where, according to
simulations, the difference in TE-TM transmission almost nul-
lifies. We think that the explanation should be connected with
the NZI effect, which spans a bandwidth of more than 300 nm
and more with the very flat real part of the refractive index
(Fig. 16). Moreover, Fresnel’s coefficients in a nonmagnetic
media are conveniently expressed through refractive indices and
not permittivity.

To support this version, we performed brute-force simu-
lations of the THG in a thin layer of AZO at a few different
wavelengths starting from the ENZ point at 1432 nm. As
seen from Fig. 17, the zero-crossing point in no way is the
best choice for the enhanced high-harmonic generation. The
efficiency peak happens at about 70 nm longer wavelengths
(λ= 1500 nm) belonging to the NZI range. The red wing of
the peak is rather flat, as the NZI curve becomes very flat in this

Fig. 16. Spectral behavior of AZO permittivity and refractive index.
The Drude–Lorentz model was applied with coefficients from [6]. The
ENZ point is at λ= 1432 nm. The low-index window extends over
1700 nm.

Fig. 17. Spectral behavior of THG efficiency in the logarithmic
scale. The ENZ point is at λ= 1432 nm. The low-index window starts
around 1500 nm and extends over 1700 nm.

range too. Certainly, the continuous growth of=(n) reduces the
efficiency towards the red part of the spectrum.

One reason for the ENZ enhancement of the nonlinear
effects is connected with the amplification of the normal com-
ponent of the electric field across the boundary. Hence, the
effect can be optimized by changing the angle of incidence as
validated in [10]. In our case, we use the normal incidence of a
plane wave on a uniform layer, so the normal field component is
absent by default, and such an argument in the nonlinear effects
enhancement cannot be applied.

The reasoning behind the NZI enhancement regards the
slow-light effect; see [7,52] and references therein. The group
index is
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Fig. 18. Spectral behavior of the real and absolute values of the
group index, and the real and absolute values of coefficient 1/n<(n).

ng =
ε(ω)+ ω

2
dε(ω)

dω
√
ε(ω)

. (22)

For most TCO materials, permittivity is accurately approxi-
mated by the Drude–Lorentz formula

ε(ω)= ε∞ −
ω2

p

ω2 + iγω
+

f1ω
2
1

ω2
1 −ω

2 − iγ1ω
, (23)

where ε∞, ωp , and γ are conventional parameters of the
Drude model, and ω1, f1 and γ1 are those of the Lorentz term.
Then, the group index Eq. (22) is derived with the following
expression:

nng = ε∞ −
iγωω2

p

2(ω2 + iγω)2
+

f1ω
2
1(2ω

2
1 − iγ1ω)

2(ω2
1 −ω

2 − iγ1ω)2
. (24)

Equation (24) can be drastically simplified to nng = ε∞ as in
[52] in the case of negligible losses (γ �ω) and neglecting the
contribution of bound electrons ( f1 = 0). We took the material
parameters of AZO from [6] and plot the group index’s real part
and absolute value in Fig. 18.

It is obvious that both the real part of the group index and
its absolute value are peaking either even before the ENZ
point (<(ng )) or accurately at the ENZ point |ng |, that is,
<(ng )=max atλ= 1410 nm and |ng | =max atλ= 1432 nm.
Therefore, the slow-light effect cannot unambiguously explain
the nonlinear NZI material enhancement. As a notorious alter-
native explanation of the NZI enhancement, the perturbative
formula

n2 =
3χ (3)(ω)

4n<(n)ε0c
(25)

can be applied within certain constraints. We plot the real
and absolute values of the coefficient 1/n<(n) in Fig. 18 too.
This coefficient, |1/n<(n)|, is a slow function of frequency,
which reaches its maximum at λ= 1481 nm, or about 50 nm
away from the zero-crossing point, actually, very close to the
maximum of THG efficiency. In simulations, we use a direct

Fig. 19. Comparison of THG efficiency versus input power for two
spectral points: ENZ point at λ= 1432 nm and the low-index point at
λ= 1500 nm.

time-domain approach with the instantaneous Kerr nonlinear-
ity realized in the Lumerical software package. Accordingly, no
approximate formulas such as Eq. (25) are involved. The inci-
dent intensity was taken in the range 0.08−1 GW/ cm2, which
exhibits the range of levels where the perturbation theory is not
yet compromised [53]. We think that the nonlinearity enhance-
ment is due to the interplay of a few factors, among which the
low refractive index (under reasonable losses) dominates.

To shed more light on the comparison of THG in a uni-
form sub-micrometer film at different wavelengths, we plot
THG efficiency versus input intensity for λ= 1432 nm and
λ= 1500 nm. As shown in Fig. 19, there is a small but constant
difference in the high-harmonic generation efficiency in favor of
the low-index regime over the ENZ regime.

7. CONCLUSION

In this tutorial, we analyze the behavior of NZI materials. We
start by classifying materials according to their electromagnetic
properties, specifying which conditions represent ENZ, MNZ,
and NZI cases. However, the performance of ENZ materials
is limited by their intrinsic losses related to the imaginary part
of the permittivity, which refrains them from being defined as
NZI materials. Therefore, we explore further an all-dielectric
platform to overcome these losses.

Under the right circumstances, Mie resonances excited in a
photonic crystal may have a degenerate point with three modes.
This intercept is named Dirac’s triple point, and at its frequency,
the modes supported by the whole medium will behave as effec-
tively having an NZI. We show results that prove the appearance
of the effective NZI configuration in a conventional silicon
photonic crystal. As expected, even with some deviations from
the exact Dirac point, a propagating mode still can be charac-
terized by a refractive index close to zero, and as such, exhibits
the supercoupling effect illustrated in brute-force simulations.
We anticipate that dielectric NZI materials represent a new step
towards NZI platforms, where such structures pave the way to
the reproducibility of zero-index effects that were suppressed by
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intrinsic losses. As we illustrated in the tutorial, NZI materials
expose a broad spectrum of interesting properties in different
areas of optics and photonics, spanning from ray optics to non-
linear and quantum optics. In particular, building blocks of such
materials can find implications in on-chip photonic circuitry,
in the fields of biosensing, quantum photonics, and photonic
engineering.
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