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In physics the truth is rarely perfectly clear, and that is certainly universally
the case in human affairs. Hence, what is not surrounded by uncertainty
cannot be the truth.

– Richard P. Feynman, February 1976
Letter to the Editor of California Tech
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Executive Summary

In combination, international regulations and digitalization have led to increasing acqui-
sition of in-service data from ships, including navigational and engine-related recordings.
However, associated analyses are challenging due to the limited availability of reference
data and operation in an environment governed by uncertainty, e.g. related to wind and
waves. The added wave resistance can take up a relatively large proportion of a ship’s
required engine power. Still, its magnitude is notoriously difficult to determine – especially
in short and oblique waves. Hence, the overarching goal of this thesis is to enhance the
predictability and understanding of added resistance in real conditions using statistical and
machine learning methods.

The first part of this thesis addresses the added resistance in regular waves and focuses
on estimating the associated quadratic transfer function. Several machine learning methods
are trained on the results of numerical methods for various hull shapes. The importance
of data preprocessing and the generalization capability of neural networks stand out. A
separate study investigates the uncertainty of the added resistance transfer function and
its estimation via a semi-empirical formula. For this reason, parameter calibration of the
underlying method is performed separately for both blunt-type and slender vessels. The
methodology is based on experimental data, and a 90% prediction interval is implemented
to improve the method’s transparency in an adapted version.

An estimate of the corresponding wave energy density spectrum at the exact spatiotem-
poral point of operation is needed to calculate added resistance in actual seaways character-
ized by irregular waves. Hence, in the second part of the work, in-service sensor data of a
container vessel and different neural networks are utilized for sea state identification. Over-
all, neural networks can produce a satisfactory mapping from measured vessel responses to
sea state parameters.

The third part of the work is about correlating theoretical and empirical estimates of the
mean added resistance in actual conditions using in-service data from a fleet of more than 200
container vessels. Theoretical estimates are calculated in the spectral domain by combining
the adapted semi-empirical procedure and historical wave data. The empirical predictions
are determined using the measured shaft power combined with a resistance decomposition.
It is confirmed that the actual added resistance is highly complex to determine and subject
to significant uncertainty.

In the fourth and final part of the work, synthetic monitoring data of a standard tanker
(KVLCC2) is simulated for varying operating conditions using a semi-empirical framework.
It is shown that the performance data of ships is subject to a distributional shift, and thus
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neural networks are trained adaptively to pinpoint the added power due to biofouling. It
turns out that methods for incremental learning are influenced by data quality and that the
overall methodology may be applicable for determining the effect of energy-saving devices.

In the future, this work may serve the development of digital twins used to assess the
safety and the energy efficiency of ship operations. Due to the sensitivity of machine learning
methods to data quality and availability, it seems favorable to follow a hybrid approach in
combination with established physical models. In a practical context, the findings of this
work are applicable for voyage optimization or performance monitoring and may assist the
maritime industry on its path to becoming sustainable.
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Resumé

Internationale reguleringer og digitalisering har i kombination ført til stigende indsamling af
in-service data fra skibe, herunder navigations- og motordata. Tilknyttede analyser er dog
udfordrende på grund af begrænset tilgængelighed af referencedata og drift i et miljø, hvor
usikkerheder er signifikante, f.eks. relateret til vind og bølger. Således kan den forøgede
modstand et skib oplever under sejlads i bølger optage en relativt stor del af skibets mo-
torkraft, men dens størrelse er vanskelig at bestemme – især i korte og skrå bølger. Derfor
er det overordnede mål med denne afhandling at forbedre forudsigeligheden og forståelsen af
ekstra modstand under virkelig sejlads ved hjælp af statistiske metoder og machine learning
(maskinlæring).

Den første del af denne afhandling omhandler den modstands forøgelse i regulære bølger
og fokuserer på estimeringen af den kvadratiske overføringsfunktion. Adskillige maskin-
læringsmetoder trænes på resultater af numeriske metoder for en række forskellige skrog-
former og vigtigheden af dataforbehandling samt generaliseringsevnen i neurale netværk
viser sig. I en separat analyse undersøges usikkerheden af overføringsfunktionen af den
forøgede modstand og dens estimering via en semi-empirisk formel. Af denne grund udføres
parameterkalibrering af den underliggende metode separat for fyldige og slanke skibe. Meto-
den er baseret på eksperimentelle data og et 90% forudsigelsesinterval er implementeret for
at forbedre metodens gennemsigtighed.

Til beregning af den forøgede modstand i virkelig sø, karakteriseret ved uregelmæs-
sige bølger, er der behov for et estimat af det tilsvarende bølgespektrum ved skibets præcise
geografiske placering i både tid og rum. Derfor anvendes i den anden del af afhandlingen sen-
sordata fra et containerskib og forskellige neurale netværk til identifikation af søtilstanden.
Samlet set viser det sig, at neurale netværk er i stand til at producere et tilfredsstillende
forhold mellem målte skibsrespons og bølgeparametre.

Den tredje del af arbejdet handler om at korrelere teoretiske og empiriske estimater af
den gennemsnitlige forøgede modstand under virkelige forhold ved hjælp af in-service data
fra en flåde på mere end 200 containerskibe. Teoretiske estimater beregnes i det spektrale
domæne ved at kombinere den tilpassede semi-empiriske procedure og historisk bølge data.
De empiriske forudsigelser bestemmes ved hjælp af den målte motorkraft kombineret med
modstandsdekomponering. Det bliver bekræftet, at analyser og beregninger af den forøgede
modstand er komplekse, og estimater er generelt behæftet med stor usikkerhed.

I den fjerde og sidste del af afhandlingen simuleres syntetiske monitoreringsdata for et
tankskib (KVLCC2) for varierende operationsprofiler ved hjælp af en semi-empirisk model.
Det vises, at ydelses data fra skibe er genstand for et distributionsskifte, og derfor trænes
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neurale netværk adaptivt for at lokalisere den krævede ekstra motorkraft som følge af be-
groning. Det viser sig, at metoder til inkrementel læring er påvirket af datakvalitet, og
på samme tid at de udviklede metoder kan være anvendelige til at bestemme effekten af
energibesparende tiltag gennem retrofitting.

I fremtiden kan dette projekts arbejde tjene til udvikling af digitale tvillinger, der bruges
til at vurdere både sikkerhed og energieffektivitet ved skibsoperationer. På grund af maskin-
læringsmetodernes følsomhed over for datakvalitet og tilgængelighed, virker det gunstigt at
følge en hybrid metode, der kombinerer maskinlæring med etablerede fysiske modeller. I
en praktisk sammenhæng er resultaterne af dette projekt anvendelige til ruteoptimering og
ydelsesmonitorering og kan således hjælpe den maritime industri på dens vej mod at blive
bæredygtig.
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Chapter 1

Introduction

The shipping sector is standing at a crossroads. On one hand, around 80% of all traded
goods are handled by seaborne transport and the demand is projected to grow in the coming
decades, UNCTAD [127]. On the other hand, the world fleet contributes approximately
3% to anthropogenic carbon emissions, IMO [53]. Despite the industry’s large share of
global emissions, maritime transport is still considered the most efficient transport mode,
Papanikolaou [98]. Nonetheless, the change in climate and its expected consequences call
for a rapid and substantial reduction in emissions. In this light, the International Maritime
Organization (IMO) proposed its Greenhouse Gas (GHG) strategy (cf. IMO [52]), which
is depicted in Fig. 1.1 on the secondary axis in parallel with the historical and forecasted
transport work of four shipping sectors on the primary axis according to DNV [26].

Figure 1.1: Transport work per ship type as well as historical and estimated CO2 emissions
of the global fleet in comparison to IMO’s GHG strategy, cf. [19], [26], [52] and [53].
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From Fig. 1.1, it is appreciated that maritime transport, as the spine of globalization,
experienced sizable continuous growth in the last 30 years – excluding a few years with
economic contraction. Expectedly, the depicted transport work of the international mer-
chant fleet shows a profound correlation with historical CO2 emissions, taken from Cames
et al. [19] and IMO [53]. As a reaction, IMO ratified the first countermeasures curbing
shipping-related emissions in 2011, and the initial GHG strategy entered into force in 2018.
The respective goals of this legislation are in accordance with the Paris Agreement and are
visualized in Fig. 1.1. It stands out that there is a range of possible decarbonization sce-
narios beyond 2023, which are, in fact, bounded by IMO’s initial GHG strategy aiming at
halving emissions from maritime transport by 2050, with 2008 as the base year. The lower
and more ambitious strategy is preferred by several intergovernmental bodies and shipping
companies that intend to reach carbon-neutral shipping by 2050. Subsequently, discussions
regarding incorporating this progressive target in an amended GHG strategy will be part
of the 80th session of the Marine Environment Protection Committee (MEPC) in summer
2023. Alongside IMO’s ambitions, a business-as-usual (BAU) baseline projected with mod-
erate economic growth (as of 2012) is depicted, taken from Cames et al. [19]. For the sake
of simplicity, the associated prediction interval of the BAU projection is omitted herein. As
can be inferred from Fig. 1.1, a minor disparity in magnitude between the BAU scenario
and emissions manifests itself already in the years after 2012. A similar but even more sig-
nificant emission and corresponding innovation gap stands out in the coming decades when
considering IMO’s GHG strategy and the projected BAU scenario. Hence, when we refer to
the metaphor from the beginning, the case could be made that the shipping industry has
chosen a path, i.e. it follows the BAU scenario – at least in the short term. However, it is
found that the correlation between transport work and CO2 emission is reduced after 2008,
indicating an increase in overall energy efficiency in maritime transport.

Eventually closing the emission and innovation gap seen in Fig. 1.1 will be an enormous
task in the years to come and includes all possible stakeholders in the maritime field. As a
demarcation, the present thesis solely focuses on technical measures. It, therefore, disregards
any logistical and marked-based efforts, even though these three domains may ultimately
complement each other. Bouman et al. [15] conduct a thorough review of available liter-
ature focusing on reducing carbon emissions following novel approaches. Their results are
reproduced in a condensed manner in Fig. 1.2, and three main disciplines are shown: (1)
Ship design aspects, (2) alternative energy sources, and (3) ship operations. For the sake of
clarity, the shown box plots indicate the interquartile range with their body, the median, as
well as the maximum and minimum of the sample distribution. As an immediate finding, the
most promising technical aspect for reducing carbon emissions seem to be novel fuel types,
i.e. biofuels. Additionally, alternative and renewable fuels (or E-fuels) have received much
attention recently since they show an even higher emission reduction potential. Indeed,
these fuel types represent a cornerstone for decarbonizing shipping. Nevertheless, practical
implementation of the corresponding fuels is, up until now, plagued by uncertainty since
both the scalability of production and global availability, i.e. the supply infrastructure, are
still out of reach, disqualifying them as an immediate measure. Furthermore, Lindstad et al.
[78] state that E-fuels are per se not limited to newbuildings, but retrofitting existing vessels
seems to be (as of now) not particularly economically viable. Hence, considering the current
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world fleet composed of ca. 103,000 vessels (cf. [127]), it turns out that the implementation
of energy-saving devices, such as air lubrication and wind propulsion equipment, will be
a critical aspect for lowering carbon emissions in the short term. Subsequently, enormous
research efforts have been invested in the respective areas, and technical solutions show an
increasing level of maturity as well as applicability.

Figure 1.2: Emission reduction potential of several methods of three domains, according to
Bouman et al. [15].

Another observation from Fig. 1.2 is that operational measures and design aspects show
roughly similar magnitudes in CO2 saving potential. It can be seen that economy of scale,
i.e. vessel size, not only leads to a cost reduction from an economic perspective but also
greater energy efficiency. Bouman et al. [15] emphasize that doubling a ship’s cargo capacity
leads, roughly, to an increase of 66% in fuel consumption. Thereby it is understood that a
vessel’s fuel consumption is directly linked to its carbon emissions and also makes up more
than 50% of its operational cost, Perera and Guedes Soares [102]. Moreover, optimizing a
ship’s hull shape for the least hydrodynamic resistance is another important stepping stone
for reducing emissions. In fact, ship design synthesis aims at optimizing vessels for their life
cycle, i.e. tailoring the design in a multi-objective optimization for its actual service task
and environment, Papanikolaou et al. [99]. In doing so, the two disciplines of ship design
and operation, which were handled rather separately in the past, are brought closer together.
For instance, Mittendorf and Papanikolaou [90] present the hull shape optimization of a fast
passenger catamaran for its operational profile, i.e. the resistances at multiple speeds are
considered as objective functions. However, the operational profile includes not only speed
(and draft) variations but also environmental influences caused by the presence of wind and
waves.
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In the domain of ship operations, the voluntary reduction of the vessel’s service speed,
i.e. slow steaming, is a straightforward measure for increasing energy efficiency due to the
proportionality of engine brake power to cubed ship speed. In fact, speed optimization shows
a sizable emission savings potential in Fig. 1.2 with a higher mean than, e.g. optimizing
vessel size (ship design). On a separate note, engine power limitations may be enforced
in case of non-compliance to the newly adopted IMO regulations, leading to involuntary
slow steaming. Still, Taskar and Andersen [121] found in a simulation-based study that the
benefits of speed reduction depend highly on the encountered sea state and the extent of
the added resistance due to waves. In fact, the latter is less affected by ship speed and thus
increases relatively in magnitude as a fraction of the total resistance. It is noted that many
savings estimates for speed optimization from the literature fall outside of the interquartile
range, which indicates low agreement among the individual studies according to Bouman
et al. [15]. Furthermore, voyage optimization is concerned with finding the optimal route
considering economic constraints and maximizing energy efficiency as well as crew and cargo
safety, Perera and Guedes Soares [102]. This is achievable through speed optimization and
the circumvention of harsher weather conditions. In fact, D’Agostini et al. [24] show that
storms may increase in their intensity due to consequences of climate change emphasizing
the necessity of weather routing and accurate estimation methods of added resistance. It is
believed that all three depicted operational measures are, in fact, intertwined and build on
each other. The third operational aspect in Fig. 1.2 is capacity utilization which refers to
exploiting network effects within a fleet of vessels. It shows a high impact, but it is stressed
that only a handful of samples are available, underlining the uncertainty in the presented
data. Another pivotal operational aspect is the utilization of in-service data of ships for the
optimization of trim and maintenance schedules by performance monitoring, i.e. identifying
the effect of marine growth. Overall, these additional operational measures are considered
”low-hanging fruits”, i.e. require little effort, but exhibit an approximate emission savings
potential of 5-25%, according to IMO [55]. Referring to the existing world fleet, it shows
that enhancing operational performance will be a driving factor for cutting fuel consumption
and, thereby carbon emissions while maintaining the level of transport work.

Ultimately, Bouman et al. [15] show that all methods mentioned above in Fig. 1.2
have to be applied in conjunction to realize substantial emission savings for reaching IMO’s
intentions, as shown in Fig. 1.1. Broadly speaking, adopting innovative methods and
technologies in the maritime industry has been regulation-driven for the last decade. As
indicated by IMO [52], the present decade will be characterized by a predominant focus
on reducing carbon intensity, which refers to a vessel’s carbon emissions relative to its
accomplished transport work. Following Lindstad et al. [78], GHG emissions per ton-mile
of transport work must be reduced by at least 75-85% by 2050 to achieve the goal of the initial
IMO strategy under the assumption of continuous growth within maritime transportation.
Consequently, the Carbon Intensity Indicator (CII) came into action in 2023. The CII is an
operational indicator determined annually and is subject to increasingly demanding limits,
IMO [54]. The CII is not free of criticism since it employs the potential transport work by
taking the maximum (or design) cargo capacity for calculation instead of considering the
actual loading condition, cf. Wang et al. [131]. Besides volatile fuel prices and freight rates,
the CII adds to the regulatory pressure and thus, to the overall uncertainty felt by ship
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owners and operators. Still, the CII will act as an essential short-term measure in the IMO
GHG strategy incentivizing shipping companies to streamline their fleet operations.

1.1 Motivation
Traditionally, fundamental ship characteristics, such as hull shape, propeller geometry, and
main engine power, are determined and optimized in calm water conditions under design
speed and draft. However, from the analysis of in-service data of ships, it turns out that ships
have a more widespread operational profile, which is most often determined by economic
circumstances. This hypothesis is solidified in Fig. 1.3, where approximately two years
of ship telemetry data from eight container sister vessels (15,000 TEU) is depicted in two
separate diagrams. In Fig. 1.3a, the mean draft of the vessels is shown for the non-
dimensional advance speed, i.e. the Froude number Fn. In parallel, the initial design
conditions are indicated and it stands out that these have never been experienced during
the observation period. In fact, the vessels sailed predominantly with scantling draft and
a lower service speed, thereby improving energy efficiency. For context, the data originates
from the period between January 2019 and March 2021, i.e. includes the consequences of the
severe disruptions in the global supply chains due to the worldwide COVID-19 pandemic.
Moreover, it underlines that ships – and container ships in particular – do not have one
point of operation, as often anticipated in design stages.

(a) Joint distribution of mean draft Tm and non-
dimensional ship speed Fn. It is noted that the
design conditions are indicated by a blue star.

(b) Encountered absolute wind speed Vw as a
function of significant wave height Hs. The fil-
tering threshold of ISO 19030 is shown.

Figure 1.3: Two joint distributions for eight 15,550 TEU sister vessels compiled from publicly
available AIS and ERA5 hindcast data, as taken from the study presented in [J4]. It is noted
that the figures stack scatter, 2D histogram and kernel density estimate plots.

Interestingly, the re-emergence of vertical bow concepts in contemporary ship design
leads not only to enhanced versatility regarding draft and speed variation, but also shows
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beneficial behavior in case of the added resistance due to waves, as demonstrated by Yu
et al. [132]. When considering environmental influences, such as waves, it stands out that
the actual operational profile of the eight sister ships turns out to be even more complex as
reflected by Fig. 1.3. Here, the encountered absolute (or true) wind speed Vw is displayed
for the significant wave height Hs indicating the experience of relatively severe sea states (up
to Beaufort 7) despite the use of routing optimization. However, for setting viable engine
margins, only a lump-sum allowance (or sea margin) is used during early ship design taking
the added resistance due the ambient environment into account, Strøm-Tejsen et al. [117].
In later design stages, the vessel may be optimized for least added resistance in waves using
numerical methods, but it is rather uncommon to do so. Being a part of the IMO strategy
[52], the Energy Efficiency Design Index (EEDI) and the EEXI (for existing ships) include
the weather factor fw, which expresses the speed loss due to waves in a Beaufort 6 sea state
(corresponding to Hs = 3.0 m and Vw = 12.6 m/s) compared to calm water conditions.
Taking Fig. 1.3b into account, the choice of the reference sea state can be considered as
conservative. However, it underlines that accurate methods for the prediction of added
resistance are required for a rational evaluation of fw. With the introduction of the EEDI
in 2011, the most straightforward measure for compliance was to decrease the installed main
engine power (without any other design changes). In case of a few slower blunt type vessels,
the lack of engine power led in harsh weather conditions to the loss of maneuverability and
subsequently to the endorsement of the Minimum Propulsion Power (MPP) guidelines, IMO
[51]. As stressed by Holt and Nielsen [48], reliable and practical methods for the prediction
of added resistance are of high importance for the MPP assessment and for defining viable
engine/propeller load diagrams.

It shows that the added resistance due to waves is ubiquitous in a ship’s life cycle,
i.e. throughout ship design and operation. As pointed out before, tremendous savings can
be realized from optimizing fleet operations, but the ambient wind and wave conditions
as well as their uncertainty are of great concern. Additionally, the assessment of ship
operations is generally afflicted by the scarcity of reference data, i.e. reliable speed-power
baselines. The use of sea trial or model test curves is often insufficient due to the mismatch
between design and actual operating conditions, cf. Fig. 1.3a. Hence, Berthelsen and
Nielsen [9] perform piece-wise regression on in-service data after imposing strict filtering
criteria for approximating a quasi-calm water speed-power baseline for the assessment of
ship performance. The satisfactory correction for environmental effects related to wind
and waves has been a challenge in the field of vessel performance analysis ever since. In
fact, the industry standard for in-service ship analyses ISO 19030 [58] imposes a draconian
filtering threshold based solely on the measured absolute wind speed (Vw < 7.9 m/s), which
is indicated in Fig. 1.3b. Following Bertram [11], the reasoning behind this threshold was
that most methods were seen as inaccurate or expensive for the prediction of the added
resistance in a practical context. By neglecting any swell waves, it was the aim to disregard
data instances including adverse weather conditions above Beaufort 4. However, as can be
seen in Fig. 1.3b, a large segment of the joint distribution, which could be deemed valid,
is subsequently disregarded. In parallel, a sizeable sample size of severe swell-dominated
sea states remains within the filtered dataset. These two inherent problems of the industry
standard underline two key challenges, which will be addressed in the present thesis: (1) A
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lack of practical methods for the reliable and accurate determination of the added resistance
due to waves and (2) unavailability of sea state information for the exact vessel position.
Physically, both aspects are interrelated when determining a ship’s mean added resistance
in a natural seaway, i.e. irregular waves.

1.2 Objectives and Scope
Stimulated by mandatory data acquisition onboard ships enforced by IMO and the EU
(European Union), the availability of operational data of ships has been increasing and with
it the tendency to utilize the data. Agarwala et al. [1] emphasize that digitalization will
be a driving factor for lowering emissions from the shipping sector. In ship operations,
the recent development in the field of Internet of Things (IoT), i.e. equipping ships (and
other physical assets) with a sensor framework, and the emergence of data science – including
machine learning – will be critical aspects going forward. Furthermore, digitalization enables
the shipping sector to progress from the stages of reporting and monitoring to the third
stage of predictive analysis, which subsequently facilitates the previously shown operational
measures in Fig. 1.2.

The rationale of this thesis is to enhance predictability and understanding of added resis-
tance on ships in all its facets employing data-driven methods. In the first part, regression
models will be established to predict the added resistance in regular waves, i.e. the trans-
fer function. The three overarching goals are: (1) The applicability without detailed hull
shape information, (2) versatility in terms of operating conditions, and (3) the consideration
of arbitrary wave heading angles. In fact, most numerical or experimental investigations
consider exclusively head waves under design conditions and thus show a reduced practical
relevance when referring to Fig. 1.3a.

The second part of this thesis is devoted to determining sea state information for the
vessel’s exact position, employing the wave buoy analogy, as described by Nielsen [95]. In
other words, machine learning techniques will be utilized for mapping the measured ship
responses to the encountered sea state parameters. Obviously, both added resistance transfer
function and sea state data are equally important for estimating the added resistance in
irregular waves. However, sea state information is commonly plagued by scarcity as well
as uncertainty, which underlines the importance of using the ship itself for measuring the
surrounding wave environment.

The third part is concerned with correlating theoretical estimates of added resistance
in irregular waves to empirical predictions derived from in-service fleet performance data
obtained on a large number of container vessels. In fact, investigations in irregular waves are
most commonly conducted either numerically or experimentally under simplified assump-
tions. Herein, however, actual sensor data of ships in operation will be used and a data
fusion concept is applied, i.e. hindcast wave data is used for modeling the ambient wave
characteristics.

The fourth part proposes an adaptive machine learning methodology for ship perfor-
mance monitoring. A synthetic dataset of in-service data for a standard tanker (KVLCC2)
is derived for various conditions. The advantage of using simulation data is that a ground
truth of the actual power increase due to fouling is available, allowing for sufficient model
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assessment. In contrast to other studies, the model will be trained incrementally and the
biofouling indicator will be determined implicitly.

Ultimately, it is the aim to consider the added resistance from different angles with a
primary focus on the application in natural seaways. The present thesis has a strong focus on
machine learning and statistical methods. In addition, the possible influence of uncertainty
within the data will be an essential aspect, as an estimate is usually indispensable for
decision-making.

1.3 Thesis Outline
The present thesis is divided into seven chapters – including this one. The following Chapter
2 covers the physical principles of ship resistance and the added resistance due to waves in
particular. Naturally, not all theoretical details can be conveyed herein; therefore, basic
knowledge of ship hydrodynamics and advanced mathematics are prerequisites. For more
extensive studies of, e.g. individual expressions, reference will be made to relevant literature.

The added resistance of ships is a multi-faceted problem and the present thesis is orga-
nized accordingly. For visualizing the structure of the main part of the thesis, a Sierpiński
triangle is utilized, as can be seen in Fig. 1.4. This thesis is paper-based, i.e. a collection of
articles; hence, the reference of the corresponding journal paper will be indicated in parallel.
As a guide for the reader, each chapter is composed of an introduction, a discussion part
and an appended journal paper. It is recommended to read the journal paper directly after
the introductory section.

Figure 1.4: Composition of the present thesis.

The determination of the added resistance in a seaway involves both information about
the ship’s response and the conditions of the ambient wave system. As a consequence, the
two pillars of the present thesis form the determination of the added resistance operator
and an estimate of the sea state by means of a wave spectrum at the exact ship position:
Chapter 3, which consists of journal paper [J1] and [J2], has its focus on the practical
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determination of the added resistance transfer function. For this purpose, the concepts of
machine learning and empirical risk minimization are introduced. Moreover, Chapter 4 is
devoted to the identification of the sea state using the wave buoy analogy and includes [J3].
In addition, the fundamentals of deep learning and the inherent uncertainty of sea state
estimates are discussed. As indicated in Fig. 1.4, Chapter 5 and [J4] deal with merging the
two initial pillars (or parts) and compare theoretical estimates of the mean added resistance
to empirical data obtained from actual in-service data from a fleet of container ships. In
the present context, Chapter 5 is considered the scientific application, whereas Chapter 6
represents the industrial application of the previous findings. In the latter chapter and
[J5], the added frictional resistance caused by marine fouling is investigated and adaptive
machine learning techniques estimate the corresponding power increase. The structure of
the thesis and Fig. 1.4 also reflect the chronological order in which the papers have been
prepared during the study period. Lastly, Chapter 7 reiterates the findings of the present
thesis, outlines the accomplished contributions and provides recommendations for extending
work in the future.
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Chapter 2

Theoretical Background

An advancing ship experiences a drag force, i.e. the total ship resistance RT , which can be
broken down into several sub-components. The total resistance is crucial for determining the
required engine power and propeller characteristics in both calm water and actual operating
conditions. As can be seen in Eq. 2.1, the engine brake power PB provides a thrust via a
propulsor for balancing RT .

PB = RT U

ηD ηM

(2.1)

From Eq. 2.1, it can be inferred that there is an equilibrium between brake power
and effective power, i.e. the product of RT and the ship’s advance speed U , diminished
by both propulsive ηD and transmission ηM efficiencies. In particular, ηD is a quantity
of utmost importance for evaluating not only propeller properties but also the interaction
between the propeller and hull flow. Both ηD and ηM may change considerably under sailing
conditions in a seaway but are of minor interest in the present thesis. Extensive information
regarding both propeller and engine behavior can be found in Carlton [20]. The propulsive
performance in waves has been thoroughly studied in Saettone [107] and Nakamura and
Naito [93]. As it stands out, the paramount quantity in Eq. 2.1 is the total resistance RT ,
which is transmitted to the vessel by means of pressure p and shear stress distributions,
where the latter is expressed by a matrix τw.

RT =
∫

S
p nx dS +

∫
S

τw × n dS (2.2)

In Eq. 2.2, n indicates a normal vector and the subscript x stresses that only the
longitudinal part of a vector is of interest. The individual hydrodynamic components are
eventually determined by integrating both pressures as well as shear stresses over the wetted
surface area of the ship S. The pressure resistance component, which corresponds to the
first term, is mainly caused by the generation of surface waves and is affected by possible
incident waves. The latter term in Eq. 2.2 corresponds to the frictional resistance due to
the viscosity of the surrounding fluid and the development of a turbulent boundary layer
between the ship hull surface and the far-field. It is noted that each possible sub-component
of RT can be split into both frictional and pressure parts. In addition, both contributions
are linked through an interaction resistance - the viscous pressure resistance, which will be
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described later. Bertram [10] states that resistance decomposition eases understanding and
calculation but generally impedes capturing interaction effects sufficiently.

The reduction in ship advance speed U in waves can be both involuntary and voluntary,
where the latter corresponds to the deliberate reduction in speed for the avoidance of, e.g.
slamming or green water. Contrarily, the involuntary speed loss refers to the negative effect
of the environment on the ship and can also be expressed in terms of a resistance surplus, i.e.
an added resistance. The present work is limited to the latter perspective. A ship in actual
operation is exposed to various additional external forces predominantly caused by wind and
waves. Herein, we adopt a two-dimensional coordinate system, depicted in Fig. 2.1, with
its origin at the vessel’s center of gravity G. Hence, three degrees of freedom (DOF) are
considered, i.e. x, y, and N , where the latter denotes rotations around the z-axis, which is
pointing downwards. The vessel advances with forward speed U , and the possible influence
of a pre-existing incident fluid velocity, i.e. ocean currents, is included in U .

Figure 2.1: Adopted body-fixed coordinate system for a ship and external forces in a realistic
environment under forward speed.

From Fig. 2.1, it is appreciated that the wind and wave directions follow a different
heading convention. In the case of waves, the relative heading β0 = 180 deg. refers to head
waves and 0 deg. stands for following waves, whereas it is vice versa for wind directions. It
is noted that the added resistance due to wind and waves is symmetric regarding the ship’s
center plane (given port/starboard symmetry). Additionally, the vessel may exhibit a drift
(or leeway) angle ξ, and a rudder angle δ may be applied. In addition, drift forces and
moments may act in all mentioned 3 DOF, but the present contribution has a sole focus
on the longitudinal force. Shigunov [111] has shown that the added resistance is generally
of highest importance under forward speed conditions compared to the other contributions.
As another demarcation, the present thesis deals primarily with ship seakeeping and there-
fore disregards maneuvering aspects to a large degree. Nevertheless, knowledge about the
added wave resistance is vital for assessing the maneuverability of ships in waves. For more
information regarding ship maneuvering, see Brix [17].



Chapter 2. Theoretical Background 13

Figure 2.2: Time histories of the ship resistance in calm water and in a seaway considering
steady conditions, adapted from Perez Arribas [103].

The decomposition of calm water and seaway-related ship resistance is shown in a sim-
plified manner in Fig. 2.2, and it stated that both are treated independently. As mentioned
by Blok [12], in case of added resistance, only the time-averaged value of the oscillations
is of importance, as opposed to ship motion analysis. Under the assumption of deep water
and steady conditions, i.e. the disregard of added resistance from steering, shallow water,
and fouling, the total resistance in a seaway can be expressed through Eq. 2.3.

RT = RT,calm +Rwind + R̄AW (2.3)
In the following, the three main contributions will be presented in greater detail. The

calm water resistance is commonly decomposed into four components under the disregard
of the appendage resistance, cf. Eq. 2.4. The fundamentals of resistance and propulsion in
calm water can be found in Molland et al. [91].

RT,calm = RF +RV P +RW +RAA (2.4)
The frictional resistance RF is Reynolds number Rn dependent, i.e. results from the

viscous property of water and the shear stresses on the hull surface caused by the creation
of a boundary layer. Following Froude, RF can be determined by an equivalent plate,
i.e. with the same length and wetted surface area S as the ship. In common practice, the
ITTC (International Towing Tank Conference) 1957 correlation line is used for the empirical
estimation of RF . The overall procedure can be found in the 1978 power prediction method
by ITTC [59]. In calm water conditions, ship-generated waves can be broken down into
primary and secondary wave systems, Bertram [10]. The former has its origin in the pressure
peaks at the stagnation points at bow and stern. The viscous pressure resistance RV P links
fluid viscosity and form effects of the hull shape. In fact, RV P emerges from the primary wave
system and is caused by the fact that the pressure peak in the aft part has a lower magnitude
compared to the corresponding level of bow pressure. The resulting pressure difference stems
from the loss of momentum within the flow along the ship hull contour caused by the presence
of a boundary layer and possible separation bubbles in the stern region or at the transom.
The viscous pressure resistance scales with both the Froude number and the Reynolds
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number and is seen as an interaction term in Eq. 2.2. Following the ITTC’78 method, RV P is
calculated as a function of the frictional resistanceRF using the form factor k. The secondary
wave system corresponds to the Kelvin wave pattern, which is transmitted downstream and
consists of divergent longitudinal as well as transverse waves. The corresponding wave
resistance RW is connected to the lost energy required for maintaining the wave pattern.
In fact, the ship induces multiple wave systems (predominantly in areas of higher pressure
gradients) that interact with each other favorably or unfavorably, giving the wave resistance
curve its characteristic humps and hollows. Thereby it is understood that RW contains
the wave pattern resistance, i.e. the potential (or inviscid) component, and the additional
contributions due to wave breaking and spray, Molland et al. [91]. The wave resistance is
generally determined in model tests and scales with Fn, i.e. it can be directly extrapolated
from model to full scale. In early design stages, empirical procedures, by e.g. Guldhammer
and Harvald [42], are commonly applied for an estimate of RT,calm.

A ship is exposed to a two-phase flow. Even though air density is three orders of
magnitudes lower than seawater density, the aerodynamic resistance (including wind) may
take up a notable proportion of the total resistance in a seaway, which results from the
higher air velocities, and a resistance force is generally proportional to the squared flow
velocity. The air resistance RAA of the ship is, in fact, part of the calm water resistance
(cf. Eq. 2.4) and is generally of minor importance due to the difference in water and air
densities. Typically, the air resistance can be obtained from dedicated wind tunnel tests
or is extrapolated from experimental reference data. In contrast to the base flow of the air
resistance, the flow profile of the separate wind resistance Rwind comprises an atmospheric
boundary layer, Faltinsen [31]. According to the industry standard for conducting sea trials,
ISO 15016 [57], the wind resistance Rwind can be calculated by Eq. 2.5, where the air density
is ρair = 1.22 kg/m3.

Rwind = 1
2ρairAx(CAA(ψr)V 2

w,r − CAA(0deg.)U2) (2.5)

Given Eq. 2.5, it is appreciated that the overall aerodynamic resistance corresponding to
the first term is subtracted by the calm water air resistance, which is defined in the second
term, to obtain Rwind. It is noted that the absolute wind speed Vw and direction ψ, displayed
in Fig. 2.1, have to be mapped from the absolute into the relative domain (with subscript
r). The reference area Ax corresponds to the projected transverse area of the vessel above
the waterline. The wind resistance coefficients CAA are either experimentally determined
or through empirical formulae. The industry standard ISO15016 [57], recommends the use
of experimental data taken from the STA (Sea Trial Analysis) joint industry project or the
regression method by Fujiwara et al. [34].

Similarly, the ISO15016 standard recommends various methods for wave correction in a
natural seaway. The spectral method for the calculation of the mean added resistance R̄AW

builds upon linear superposition and is shown in Eq. 2.6. The Fourier integral has been
proposed by Maruo [83] and is considered the core equation of this thesis.

R̄AW = 2
∫ 2π

0

∫ ∞

0

RAW (ω, β)
ζ2

0
E(ω, β)dωdβ (2.6)
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In view of Eq. 2.6, it can be seen that the mean added resistance in short-crested
waves R̄AW is determined from the product of a quadratic transfer function, RAW , and a
directional wave spectrum, E, which is integrated over both wave frequency ω and wave
direction β. It is noted that ζ0 is the wave amplitude. The following Sec. 2.1 is devoted
to the fundamentals of irregular ocean waves and in Sec. 2.2, the added resistance transfer
function, and its calculation will be dealt with.

2.1 Ocean Waves
It is said that Lord Rayleigh stated that “The basic law of the seaway is the apparent lack
of any law.”, Kinsman [69]. But mathematically, any time history of an irregular wave field
ζ can be described by the superposition of an infinite number of regular harmonic waves
with lengths λ and propagation directions β. The underlying assumptions of the wave
elevation are stationarity, ergodicity, and Gaussianity throughout the observation time,
emphasizing that merely statistical estimates can be made for a natural seaway. Moreover,
it is a prerequisite that the considered water waves exhibit only a moderate steepness, i.e.
follow linear theory. In order to determine the energy per square meter of sea surface area
with angular wave frequency ω = 2πf and direction β, a directional wave energy density
spectrum – or wave spectrum – is introduced. In Eq. 2.7, it can be seen how the directional
wave spectrum E(ω, β) relates to the instantaneous wave elevation in the time domain
following discrete Fourier analysis in real notation.

ζ(x, y, t) =
J∑
j

L∑
l

√
2E(ωj, βl)∆ωj∆βl × cos [ωjt− kj(x cos βl − y sin βl) + εjl] (2.7)

In Eq. 2.7, it can be seen that E relates to half the squared of the wave amplitude as well
as that ∆ωj and ∆βl denote frequency and direction increments, respectively. In addition,
εjl corresponds to a random phase shift distributed in the range [0, 2π] and the wave number
k is defined by the dispersion relation in infinite water depth, i.e. kj = ω2

j/g. Thereby it
is understood that Eq. 2.7 corresponds to the general case of short-crested waves, which
resembles the pattern of ocean waves more closely. In common practice, unidirectional or
long-crested waves are assumed, and the expression in Eq. 2.7 can be simplified accordingly.
The unidirectional wave spectrum F is given in Eq. 2.8.

F (ω) =
∫ 2π

0
E(ω, β) dβ (2.8)

In Eq. 2.8, it is appreciated that F is obtained by integrating E for all directions β.
It is noted that both E and F reflect a short-term description of the sea state and may
be obtained by analyzing finite sequences, e.g. 30 minutes, of measured wave elevation
data. In typical engineering applications, the sea state can be approximated using idealized
design wave spectra, e.g. by Pierson and Moskowitz [104], for obtaining F and a spreading
function D is used for distributing the wave energy density around a mean vector, i.e.
E(ω, β) = F (ω)D(β). For doing so, integral sea state parameters are required as input
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values, and in the following part, the three parameters of most importance for this thesis
will be introduced. The Beaufort scale classifies the sea state according to the prevalent
wind speed Vw and the significant wave height Hs. This sea state parameter is connected
to the energy content of the ambient wave system since it is determined by the zeroth order
spectral moment m0, as can be seen in Eq. 2.9.

Hs = 4√
m0 with m0 =

∫ ∞

0
F (ω) dω (2.9)

It is noted that the zeroth order spectral moments corresponds to the variance σ2 of the
initial time series defined in Eq. 2.7. The peak period Tp is extracted from the integrated
wave spectrum F (ω) and corresponds to the inverse of the frequency where the wave energy
density is largest, see Eq. 2.10. In other words, Tp is an indication for the distribution of
wave energy within a given frequency range.

Tp = 2π
ωp

with F (ωp) ≡ max
ω

F (ω) (2.10)

The peak period Tp (alongside its peak value) and thus the shape of the wave spectrum
is determined mainly by fetch, i.e. the distance over which the wind generates ripples with
a constant velocity and the presence of possible swell waves, which may propagate with
an opposing direction to wind waves. In Eq. 2.11, the mean wave direction µ is obtained
following Longuet-Higgins et al. [82].

µ = arctan(d/c) with
{
d
c

}
=

∫ 2π

0

∫ ∞

0
E(ω, β)

{
sin
cos

}
β dωdβ (2.11)

It is stressed that µ corresponds to the mean direction in a global reference frame and
has a reduced physical relevance in multimodal sea states. For the determination of the
encountered mean wave direction, given in Fig. 2.1, β0 = µ− α has to be applied, where α
denotes the ship’s heading. The intricacies of regular wave theory and the fundamentals of
obtaining E through field measurements can be found in Faltinsen [30], and Kinsman [69],
respectively.

2.2 Added Resistance due to Waves
The added wave resistance RAW is considered the time-averaged longitudinal second-order
force an advancing ship experiences in the presence of incident waves apart from the calm
water resistance. Under non-forward speed conditions, this added resistance and the lon-
gitudinal wave drift force are identical. Following Strøm-Tejsen et al. [117], the added
wave resistance can be considered a non-viscous phenomenon and is most pronounced in
the proximity of head waves. Generally, RAW results from the ship’s generation of unsteady
waves and is considered proportional to the squared wave amplitude ζ0, Faltinsen [31]. The
key driving factors of added resistance can be divided into (1) operational conditions, i.e.
wave length λ, amplitude ζ0, and relative heading β0 as well as ship speed U and (2) aspects
related to the vessel’s hull itself, i.e. main particulars and hull shape. As a result of the ship
size dependency, the quadratic added resistance transfer function is commonly provided for
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a non-dimensional frequency and by the coefficient CAW , which is defined in Eq. 2.12. It is
noted that Lpp is the length between perpendiculars, ρ denotes the water density, g is the
gravitational acceleration, and B refers to the beam of the ship.

CAW = RAWLpp

ρgζ2
0B

2 (2.12)

According to Kashiwagi et al. [66], the added resistance can be decomposed into three
sub-components: Diffraction, radiation, and their interaction. The diffraction component is
caused by the ship’s reflection of incident waves and is of the highest importance in short
relative wave lengths λ/Lpp. It has been shown by Kashiwagi [65] both experimentally and
numerically that the diffraction component of RAW is nearly constant throughout the rele-
vant regime of relative wave lengths considering waves with moderate steepness. However,
with higher wave steepness, an increase in diffraction-related added resistance may occur
in short waves due to non-linear effects, such as wave breaking. Kreitner [70] argued that
the added resistance of ships is solely due to diffraction and derived a corresponding for-
mula. However, Havelock [44] shows in a landmark paper, in which he pioneered calculating
second-order wave forces for a vertical cylinder, that the force due to wave reflection may
be surpassed by a component due to radiation. The contribution from radiation is linked to
the first-order ship motion problem and originates from the lost energy caused by radiated
waves due to damping. Strøm-Tejsen et al. [117] attribute this primarily to heave and pitch
motions, even though other motion components become increasingly relevant in non-head
wave conditions, Valanto and Hong [128]. The translational degrees of freedom (DOF) are
surge, heave, and sway, whereas the rotational elements of the response vector are roll, yaw,
and pitch. Fig. 2.3 illustrates the orientation of the mentioned DOF and the placement
of the inertial coordinate system, which is moving with the ship but not experiencing its
oscillatory motions.

Figure 2.3: Adopted coordinate system with indicated degrees of freedom, adapted from
Grim [41].

The radiation contribution is frequency dependent and reaches its maximum when the
wave length is in the vicinity of the ship length, which corresponds to the peaks of heave and
pitch transfer function. The added wave resistance RAW originates in the lost energy due
to waves transmitted from the ship to the far-field. Thereby, it is understood that incident
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and ship-generated waves interfere with each other. The ship-generated waves are composed
of radiated, diffracted, and Kelvin waves corresponding to the calm-water wave system.
Due to these interaction effects, the radiation component may take negative values with
larger λ/Lpp values, which then leads to an asymptotic behavior of added wave resistance
towards zero in this regime, Kashiwagi et al. [66]. Hence, the ship generates no unsteady
waves in longer relative wave lengths. Referring back to Eq. 2.2, added resistance due to
waves contributes almost exclusively to the pressure component of RT . The viscous added
resistance component caused by an increase in wetted surface area and viscous damping –
mainly caused by roll – is commonly disregarded in head waves but increases in magnitude
in oblique waves.

The added wave resistance can be determined experimentally, numerically, or by regres-
sion analysis. Model tests towards RAW , conducted under Fn similarity, were first initiated
60 years ago and aimed at increasing the understanding of ships in seafaring conditions.
For this purpose, the resistance is measured in calm water and regular waves with different
frequencies at a constant speed. The added resistance is the difference between the time-
averaged longitudinal force in waves and the calm water resistance. Measuring the added
resistance in model tests without interfering with the ship’s motions is delicate. Grim [41]
emphasizes that the inherent uncertainty of experimental data is mainly caused by the small
magnitudes of added resistance in tank tests. Still, the measurement uncertainty of added
resistance is rarely indicated, and the transparent uncertainty bars in the work of Joncquez
et al. [61] are considered as rare in the existing literature. It can be seen that the reliability
decreases drastically in shorter waves, which is due to small magnitudes of measured added
resistance and small wave amplitudes. Additional sources of uncertainty of experimental
studies towards added resistance are elaborated on in Park et al. [100]. Experimental Fluid
Dynamics (EFD) results are seen as ground truth for validating numerical and deriving
empirical methods.

Numerical approaches towards estimating RAW split into viscid and inviscid methods.
The latter pertain to potential flow theory, and the corresponding procedures are divided
into far-field and near-field approaches. The former family of methods relies on energy or
momentum conservation and considers their flux at infinity. The work that was performed
by the ship transmitting unsteady waves to the far-field is determined. Contrarily, near-field
methods build on pressure integration for calculating the longitudinal second-order force.
Under the assumption of an ideal fluid, pressure integration is expressed in the first term
in Eq. 2.2. The steady pressure distribution on the hull’s wetted surface can be obtained
using the first-order potentials. Mathematically, both approaches should converge to the
same results when applied under consistent conditions; however, this is rarely achieved in
practice due to different numerical implementations and simplifications. Perez Arribas [103]
provides a comprehensive overview of both near- and far-field potential flow methods.

In a path-breaking work, Maruo [83] proposed the first far-field method for the calcula-
tion of added resistance for ships with forward speed by using the Kochin function, which
allows the expression of the potentials of incident and radiated waves (caused by body mo-
tions and scattering) at infinity by integration over the ship’s wetted surface. Maruo’s the-
orem is founded on momentum conservation and is valid for all wave lengths and directions.
Still, its practical implementation remained challenging and has been further elaborated on
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in several succeeding publications, e.g. Maruo [84] and Newman [94]. In fact, Gerritsma
and Beukelmann [36] build upon Maruo’s theorem and derive a simplified radiated energy
method using strip theory. However, Strøm-Tejsen et al. [117] report significant discrepan-
cies between corresponding numerical results and model test data. Salvesen [108] presents
increased accuracy by using a related far-field methodology and employing the STF strip
theory by Salvesen et al. [109] for determining the first-order potentials underlining the
importance of accurately solving the ship motion problem for the calculation of added resis-
tance. Amini-Afshar [4] found that considering an initially disregarded term in Salvesen’s
formulation, i.e. the body disturbance, leads to better agreement with experimental data.
But still, two-dimensional potential methods, i.e. strip theory, show reduced accuracy in
the short wave regime, where the diffraction contribution is dominant. Hence, Kashiwagi
[64] proposed his enhanced unified theory combining strip and slender body theory, which
enables him to account better for three-dimensional and forward speed influences.

Boese [13] presented the first near-field method and considered a somewhat simplified
pressure distribution on an average wetted surface area of the ship under forward speed.
Faltinsen et al. [32] derived an analytical expression in short waves based on pressure
integration only considering the diffraction component and its interaction with the base
flow due to advance speed.

Nowadays, linear and (weakly) non-linear three-dimensional panel methods are fre-
quently used for ship seakeeping computations and estimating added resistance. For in-
stance, Joncquez et al. [61] employ a boundary element method in the time domain and
use both near- and far-field methods for determining the second-order forces and moments
acting on a ship – including RAW . Moreover, Liu et al. [81] addressed the added resistance
problem by a hybrid Rankine source Green’s function method considering Maruo’s theorem.
In addition, Söding et al. [119] developed a frequency domain panel method with a non-
linear free surface condition and pressure integration for the calculation of added resistance.
For the sake of brevity, only three examples of panel methods for obtaining added resistance
are presented herein.

Despite the efficiency of potential flow methods, Computational Fluid Dynamics (CFD)
receives growing attention in ship hydrodynamics, which may result from the increasing
availability of computational resources. These viscid field methods allow the numerical
solution of RANS (Reynolds-averaged Navier Stokes) or Euler equations and enable taking
non-linearities, such as wave breaking, into account. However, reliable and accurate results
are primarily determined by the discretization quality in both time and space. Especially,
the short wave application requires a fine discretization of the free surface and small time
steps to prevent numerical diffusion and thereby increase computational cost, Sigmund
[113]. Not only the added resistance in regular (and irregular) waves has been investigated
in arbitrary wave headings using CFD, by e.g. Kim et al. [68], but also the behavior
of propulsive coefficients in waves, by e.g. Mikkelsen et al. [85]. Even the maneuvering
behavior of ships in waves can be modeled with sufficient accuracy, as shown by Uharek
[126]. However, RANS methods are prohibitively expensive for systematic studies of added
resistance in practice, according to Bertram [11].

The ship’s hull geometry is a prerequisite when using the above-mentioned methods,
which does not hold for empirical regression methods, primarily derived from experimental
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data. Jinkine and Ferdinande [60] laid the groundwork with an empirical procedure for the
radiation component of RAW by examining cargo ships in medium to long wave lengths.
In parallel, Fujii and Takahashi [33] derived a semi-empirical asymptotic formulation for
added resistance due to bow wave reflection, which was later adapted and incorporated into
the NMRI (National Maritime Research Insititute) formula, Tsujimoto et al. [123]. The
NMRI formula applies this asymptotic formula as a correction term in short waves to results
obtained from Maruo’s theorem and is also part of the ISO 15016 [57] standard. Boom et
al. [14] proposed the STAwave2 method, which employs an extension of the Jinkine and
Ferdinande [60] method and a constant short wave correction. Liu and Papanikolaou [79]
formulated a semi-empirical method by combining the work of Jinkine and Ferdinande [60]
and a simplified version of Faltinsen’s asymptotic formula for the prediction of added resis-
tance in arbitrary wave heading angles. Moreover, Lang and Mao [74] combine the approach
of Jinkine and Ferdinande [60] and the asymptotic formula of the Fujii and Takahashi [33].
It stands out that nearly all presented empirical methods rely on the exact or an adapted
approach following Jinkine and Ferdinande [60].

In Fig. 2.4, several methods for the determination of added resistance will be shown,
taking the KVLCC2 (KRISO Very Large Crude-oil Carrier 2) as a case ship, their character-
istics will be discussed in the following. The main particulars of the KVLCC2 are listed in
Tab. 2.1. The individual methods are validated against experimental data taken from Lee
et al. [77] and Sadat-Hosseini et al. [106] in Fig. 2.4. Moreover, the examined conditions
correspond to moderate forward speed (Fn = 0.142) and head waves under design draft
conditions. In fact, a two-dimensional far-field method following Salvesen [108] is depicted
(Amini-Afshar [4]), and a three-dimensional near-field method is shown (Söding and Shi-
gunov [118]). Moreover, RANS results from Sadat-Hosseini et al. [106] are included as well
as three of the above-mentioned semi-empirical methods. It can be seen that the maximum
of the non-dimensional added resistance in head waves is located at a slightly larger wave
length than ship length and reaches zero asymptotically in longer waves. The agreement for
λ/Lpp < 1.5 is considered satisfactory for most methods, except the RANS method provides
too high values compared to experimental data. In the proximity of resonance, all methods
show an adequate magnitude in non-dimensional added resistance and also matching peak
frequencies, except Boom et al. [14]. In short relative wave length, the methods exhibit less
agreement. The potential flow methods show pronounced underprediction in the diffraction-
dominated regime. It is noteworthy that the RANS method shows a similar tendency as
the potential flow methods in short waves, and that the empirical approach by Boom et al.
[14] yields too conservative estimates in the respective regime, cf. Fig. 2.4.

Table 2.1: Main particulars of the KVLCC2 in design conditions.

Definition Symbol Unit Magnitude
Length between perpendiculars Lpp [m] 320.0
Beam B [m] 58.0
Draft T [m] 20.8
Block coefficient CB [-] 0.808
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Figure 2.4: Comparison of numerical, experimental and empirical results of added resistance
in case of the KVLCC2 for Fn = 0.142 and β0 = 180 deg. Experimental and RANS data
are indicated by black and red dots, respectively.

Kashiwagi [65] showed experimentally by comparing dynamometer and wave cut mea-
surements (of unsteady waves) that a significant fraction of added resistance in the short
wave region is caused by non-linear wave breaking effects. Hence, it is well-established
that most potential flow theory methods show reduced accuracy in these respective wave
lengths requiring empirical corrections. Söding and Shigunov [118] evaluate two asymptotic
formulae for the application in short waves and found good performance of the asymptotic
method by Faltinsen et al. [32] for application in a natural seaway. In contrast, the cor-
rection method for bow wave reflection by Tsujimoto et al. [123] turned out to be overly
conservative in all cases. In Fig. 2.4, it can be seen that both regression methods by Liu
and Papanikolaou [79] and Lang and Mao [74] are characterized by a good agreement with
model test data in the shorter wave region, which may be a result of the incorporation of
the mentioned asymptotic formulae. However, it is not possible to assess their estimates for
λ/Lpp < 0.3 since no experimental data is available.

Overall, the agreement of most methods to experimental data is considered insufficient
in shorter wave lengths. This has also been concluded in a numerical and experimental
benchmark study, which was part of the SHOPERA (Energy Efficient Safe Ship Operation)
EU project. In fact, Shigunov et al. [112] showed that all considered numerical models in this
benchmark study exhibit great uncertainty in short waves, regardless of which methodology
was chosen. In addition, it was found that an empirical method gave reasonable results for
estimating the longitudinal wave drift force. Regarding experimental data, Sprenger et al.
[115] indicate that generally good agreement between the individual experimental facilities
was found during the SHOPERA benchmark study.
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2.3 Concluding Remarks

This section is devoted to outlining the shortcomings of the state-of-the-art literature and
emphasizing the goals of the present thesis. Referring back to Fig. 1.2, economy of scale has
a tremendous effect on energy efficiency, which led to increasing vessel sizes in recent years.
Following the thoughts of Söding and Shigunov [118], the regime of short waves is of utmost
importance for larger ships as ocean waves generally exhibit lengths between 50 and 150m.
When considering the ship length of the KVLCC2 Lpp = 320m, these conditions correspond
to relative wave lengths λ/Lpp of 0.17 to 0.47. In other words, precisely the regime, where
the agreement among all considered methods is lowest, cf. Fig. 2.4.

The added resistance in very short waves is a highly complex problem. For instance,
Sprenger et al. [115] report based on experimental data that the second-order relationship
between added resistance and wave amplitude was only confirmed in longer waves and
seems questionable in very short waves (and shallow water). Moreover, for a container
vessel in very short head waves (λ/Lpp = 0.2), Sigmund [113] shows that the viscous part
of RAW takes up 28.6% of the added resistance in full scale and 35.3% in model scale,
which indirectly points at scaling issues in very short waves (assuming CFD results to be
a ground truth). The uncertainty surrounding added resistance is a well-known problem
but generally neither rigorously reported nor thoroughly investigated. Therefore, this work
aims to enhance overall transparency for the prediction of added resistance.

The viscid contribution to added resistance increases not only in short waves but also in
oblique waves due to the induced roll motions and the corresponding viscous damping due
to vortex shedding (or oscillatory separation). It has been shown in multiple experimental
studies that added resistance is largest in bow oblique waves (β0 = 150 deg.), e.g. Valanto
and Hong [128] or Fujii and Takahashi [33]. Still, most numerical considerations investigate
head wave conditions exclusively. Moreover, when considering Eq. 2.6, it becomes evident
that the added resistance transfer function must be computed for all heading angles under
the assumption of short-crested waves. Hence, the present thesis considers added resistance
for arbitrary wave heading.

Interestingly, one procedure for obtaining added resistance was omitted in the previous
section: Full scale field measurement campaigns. These systematic studies had significant
relevance before the advent of numerical methods, e.g. Kempf [67]. From the contemporary
literature, however, it can be seen that there is an imbalance between numerical/theoretical
and full scale studies even though data availability of in-service data has been increasing
in recent years. For full scale studies, accurate information on the prevalent sea state is
indispensable, but significant uncertainties plague associated data sources. Therefore, one
chapter of this thesis will be directed toward ship-based sea state identification. In addition,
another part is devoted to assessing full scale in-service data of ships for determining added
resistance.

Empirical regression methods show not only satisfactory accuracy when predicting added
resistance but also direct applicability. Regression is also a core discipline of machine learn-
ing and data-driven methods. Caused by increasing availability of computational power and
data, machine learning is a quickly evolving research discipline with a wide variety of prac-
tical applications. Still, there appears to be a knowledge gap in the field of ship seakeeping
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and added resistance in particular. For this reason, this thesis focuses on using data-driven
methodologies to evaluate its benefits and possible imperfections when applied in the field
of ship hydrodynamics.
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Chapter 3

Determination of the Added
Resistance Transfer Function

In-service analyses of vessel data suffer from a scarcity of reliable reference and sea state
data. Hence, simplified formulae are commonly used in practice for considering the added
resistance in seafaring conditions, e.g. Kreitner [70] and Kwon [73]. However, in combination
with the neglect of swell waves, as suggested by ISO 19030, this may lead to underestimat-
ing added resistance severely. When considering Eq. 2.6, it can be seen that the added
resistance is a function of the alignment of the peaks from a transfer function and a wave
spectrum. In fact, Liu et al. [80] showed that the added resistance in swell waves may
surpass the corresponding value in wind waves due to a wave period closer to the resonance
region of the RAW transfer function. This is certainly dependent on, e.g. ship size, loading
conditions, and prevalent wave period, but most of these factors are not taken into account
in simplified formulae. This in turn, underlines the necessity of the spectral formulation in
Eq. 2.6 in industrial applications. As described in the previous Chapter 2, the practical
and accurate determination of the added resistance transfer function remains challenging.
When considering the assessment of ship operations, it becomes clear that exact hull shape
information might be unavailable. Thus, the present chapter deals with the efficient and
transparent estimation of the RAW transfer function by different regression methods for a
wide range of operational conditions.

3.1 Introduction
In 1959, Samuel [110] described machine learning as the ”[...] field of study that gives
computers the ability to learn without being explicitly programmed.”. Mathematically, a
machine learning model is well-described as a function F having an internal structure θ,
which may be encoded in a parameter vector, e.g. for neural networks or a set of decision
rules in the case of non-parametric tree-based methods.

ŷ = F(x|θ) (3.1)
For finding a suitable internal model structure θ, both input vector x ∈ Rn and output

y must be known in advance. It is stressed that n denotes the dimensions of the feature
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space and that a model only provides an approximation of the target variable ŷ. In the case
of numerical tools (and other computer programs), θ (and F) have to be explicitly defined
and provide ŷ when given independent variables x. In contrast, a machine learning model
is found using an implicit approach without any strong assumptions or biases but under the
condition of sufficient data availability. The actual model architectures are here of lower
interest but will be elaborated on in [J1] and [J2].

In contrast to Samuel’s relatively informal definition, Mitchell [86] postulates that a ma-
chine learning model is asked to ”[...] learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E”. Paraphrasing Mitchell’s definition, a machine learning model
builds on three pillars: (1) The model experiences (E) a representation, which corresponds
to a dataset D characterized by an empirical joint distribution p̂Data. It is, however, vital
to underscore that the training data is nothing but a representation of the actual underly-
ing data-generating process with a joint distribution pData. (2) In the present thesis, the
individual models learn from data in a supervised or inductive regression paradigm or task
(T), i.e. F : Rn → R. This learning paradigm requires a dataset D with sample length m
composed of independent variables (or features) x and dependent variable (or target) y. For
the sake of completeness, the two remaining learning paradigms are unsupervised learning,
where algorithms process data without any given label, and reinforcement learning, where
an agent, i.e. an algorithm, performs actions in an environment optimizing a reward func-
tion. (3) The third pillar of machine learning is the optimization of a performance measure
P for obtaining an internal structure θ maximizing generalization. In fact, P is defined using
an unseen test or validation set and is thus optimized indirectly, which is a crucial difference
to usual optimization procedures. In Eq. 3.2, it can be seen that the cost function J is
defined as an average over the training data with E as expectation and L as an arbitrary
per-sample loss function.

J(θ) = E(x,y)∼p̂data(x,y)L(F(x|θ), y) (3.2)

In the field of machine learning, the term risk is of rather theoretical nature and expressed
similarly as Eq. 3.2, but with respect to the data-generating distribution pData. However, in
Eq 3.2, the empirical data distribution is utilized, and hence the empirical risk is minimized.
In doing so, it is hoped that the actual risk is reduced accordingly. However, overly complex
models can ”memorize” certain training instances leading to a mismatch between risk and
empirical risk, i.e. an increasing generalization error. This is known as overfitting and,
hence in practical machine learning, mostly adapted (or regularized) versions of empirical
risk minimization1 are used for training. Further information about machine learning theory
can be found in Mitchell [86].

In mathematical folklore, the No Free Lunch theorem indicates that, under certain con-
straints, it turns out that no optimization algorithm exists that performs universally better
than any other, Goodfellow et al. [39]. Trivially, the same applies also to machine learning
models, which consequently demands sensitivity studies for model type, complexity, and
associated hyperparameters for reaching a satisfactory model capacity, i.e. optimal general-

1In [J2] on page 7, it must read empirical risk minimization.
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ization. For this reason, [J1] has not only a focus on evaluating several different data-driven
models but also on hyperparameter optimization. Additional features of this article are
assessing the effect of different data preprocessing methods on model performance and com-
paring parametric and non-parametric machine learning models for the prediction of the
added resistance transfer function. For this purpose, the database of the DTU design tool
is utilized, which has undergone several iterations and is still in ongoing development. The
data used builds upon results from three different potential flow theory methods. Hence,
[J1] has a resemblance to the work of Alexanderson [3], where linear regression is applied to
numerical results for the prediction of the radiation component in head waves. Contrarily,
the entire quadratic transfer function is predicted in the head-to-beam wave regime in [J1]
using both artificial neural networks and tree-based ensemble methods.

Cepowski [21] approximates experimental added resistance data in head waves employing
neural networks. In the final step, an analytical formula is derived from the model param-
eters and activations. In doing so, it is shown how closely related empirical procedures and
machine learning models are. Furthermore, both methodologies are inherently dependent on
the training data and thus inherit any possible insufficiencies and uncertainties within the
data. Therefore, it is attempted in [J2] to provide prediction intervals as a trust measure
when estimating the RAW transfer function. In fact, the well-established semi-empirical
formula by Liu and Papanikolaou [79] is considered a model, and its parameters, i.e. the
constants within the individual terms, are optimized (or calibrated) using Eq. 3.2 and
various loss functions L. The work has been disseminated at the DNV Nordic Maritime
Universities workshop 2022 (Mittendorf et al. [89]) and the approach was implemented in
the DTU in-house Ship Simulation Workbench (SSW), cf. Taskar and Andersen [120].

Figure 3.1: LNG carrier in bow oblique waves (β0 = 120 deg.) and Fn = 0.19 with
experimental data (black) and RANS results (red) taken from Kim et al. [68].
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In the following, all developed methods from [J1] and [J2] are demonstrated. Their
results are compared to experimental and numerical RANS data from Kim et al. [68] for an
LNG carrier in bow oblique waves (β0 = 120 deg.). The main particulars of the case ship
are given in Tab. 3.1.

Table 3.1: Design main particulars of the LNG carrier, Kim et al. [68].

Symbol Unit Magnitude
Lpp [m] 290.0
B [m] 45.0
T [m] 11.5
CB [-] 0.77

With attention to Fig. 3.1, a large discrepancy between experimental and RANS results
can be observed. In addition, the herein-developed methods show reasonable agreement
in longer waves but slightly deviant results in the proximity of resonant conditions, both
in terms of peak value and frequency. In contrast, both RANS and EFD data seemingly
agree in their peak frequencies, but a significant offset is observed for all considered λ/Lpp.
In contrast to Fig. 2.4, the developed methods show profound agreement in short relative
wave lengths. This is because all methods rely on the asymptotic method by Faltinsen et
al. [32]. However, the validation in the region of very short waves is not possible due to a
lack of experimental data. The prediction intervals improve transparency notably, but one
experimental sample falls outside the lower uncertainty bound, indicating a non-conservative
estimate in the short wave region. The tree-based ensemble methods, i.e. random forest and
gradient boosting machine, occasionally show a lack of smoothness as opposed to the neural
network, which exhibits good agreement with the mean of the semi-empirical formula.

3.2 Discussion
In essence, in [J1], it has been concluded that neural networks can possess a satisfactory
generalization capability and robustness when applied to unseen data. Moreover, the signif-
icance of data preprocessing and hyperparameter optimization was underlined. Following
Tsujimoto et al. [123], the added resistance in beam-to-following waves is assumed as zero in
the work of [J1] due to typically small magnitudes, but large variance of the added resistance
transfer function in this regime. In fact, similar observations can be made in [J2]. Even
though the underlying method of Liu and Papanikolaou [79] has a dedicated formulation
for wave headings β0 < 90 deg., it appeared that the residual variance was of similar size
as compared to the head-to-beam wave region in spite of the smaller RAW magnitudes. As
mentioned in the previous chapter, the added resistance in following and stern quartering
waves is problematic for all considered methods, and no clear trends can be established in
this wave heading regime when analyzing the experimental database in [J2]. Corresponding
model tests are associated with large complexities and uncertainties – especially in short
waves – due to small magnitudes of measured added resistance and wave amplitude. More-
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over, contemporary ship designs exhibit pronounced transom sterns which may lead to flow
separation under certain conditions, which leads to problems for simplified methods for
estimating added resistance.

In Fig. 3.2, a number of empirical approaches are compared to numerical and experi-
mental data of the Duisburg Test Case (DTC) in stern quartering waves (β0 = 30 deg.) and
low forward speed (Fn = 0.052) being part of the SHOPERA benchmark study, Shigunov
et al. [112]. The main particulars of the DTC are given in Tab. 3.2, and it is noted that
the methods of [J1] are summarized as DTU Design Tool in Fig. 3.2 as the RAW transfer
function is assumed as zero is this scenario. Recently, the DTU design tool2 and its database
have been extended towards the prediction of added resistance in beam-to-following waves,
Eftekhar [29].

Table 3.2: Design main particulars of the DTC, Shigunov et al. [112].

Symbol Unit Magnitude
Lpp [m] 355.0
B [m] 51.0
T [m] 14.5
CB [-] 0.661

Figure 3.2: Model test and numerical data for the DTC in Fn = 0.052 and β0 = 30 deg.
according to Shigunov et al. [112]. It is noted that the numerical range is made of the
extreme results taken from the numerical benchmark study.

2https://gitlab.gbar.dtu.dk/oceanwave3d/DTU_DesignTool

https://gitlab.gbar.dtu.dk/oceanwave3d/DTU_DesignTool
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In view of Fig. 3.2, it can be seen that the herein proposed semi-empirical formula
resembles a derivative of the method by Liu and Papanikolaou [79] but is characterized by
enhanced transparency due to the prediction interval. Moreover, validating the individual
methods is problematic because of the limited coverage of experimental data, which un-
derlines the need for more systematic experimental and numerical studies for these wave
headings. It is noteworthy that both the upper and lower bound of the numerical range
result from different panel methods. The method by Lang and Mao [74] shows a resonant
region in moderate wavelengths and asymptotic behavior in very short waves, as opposed
to the other methods. Maruo’s theorem shows that the added resistance in following waves
depends on the encounter frequency. Simply speaking, the dispersion relation, i.e. the
wave’s phase velocity is inversely proportional to its frequency, leads in following waves to
long waves overtaking the ship and to short waves being overtaken by the ship. Subse-
quently, the added resistance can take negative and positive values dependent on forward
speed and wave frequency. This physical concept is incorporated in the method by Liu
and Papanikolaou [79] in a simplified manner. Consequently, it also seems advantageous to
introduce this principle into machine learning models for increased accuracy. It is believed
that physics-informed machine learning shows strong potential in this respect. Karniadakis
et al. [62] provide an extensive overview of merging ordinary or partial differential equations
and machine learning models.

Overall, it is believed that the predictive performance of the methods presented in [J1]
and [J2] can be improved by considering additional parameters (or features), such as wave
steepness and flare angle above the waterline. In Blok [12], a pronounced correlation be-
tween flare angle and experimental added resistance is shown. Regarding wave steepness,
Hengelmolen and Wellens [45] show an alternative way of normalizing the added resistance
transfer function by wave steepness, which turned out to be beneficial in short waves (for fast
semi-displacement vessels). In fact, Sigmund [113] shows numerically that the magnitude of
added resistance in short waves has a dependency on wave steepness. Incorporating these
additional parameters takes less effort when considering a machine learning method since
entire terms of the semi-empirical formula have to be adjusted (or appended) manually.

The trade-off between accuracy and transparency is the key issue regarding machine
learning. In this respect, it is believed that the generic approach for uncertainty quantifica-
tion shown in [J2] is not only applicable to semi-empirical formulae but also in the field of
machine learning – given that a custom loss function can be implemented and satisfactory
availability of trustworthy reference data.

In the present context, numerical and experimental data have been treated separately,
but the application of transfer learning shows considerable potential for further enhancing
the accuracy and robustness of machine learning models. In other words, a neural network
can be trained on numerical data and afterward retrained (or refined) using experimental
data. Obviously, transfer learning is a discipline within the field of deep learning, i.e.
a separate branch of machine learning focused on neural networks with multiple hidden
layers. In the following chapter, the concept of deep learning will be presented and applied,
although on a slightly different topic – on-site sea state identification.
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A B S T R A C T

The present paper implements machine learning methods for the prediction of the added-wave resistance of
ships in head to beam wave conditions. The study is focused on non-linear regression algorithms namely
Random Forests, Extreme Gradient Boosting Machines and Multilayer Perceptrons. The employed dataset is
derived from results of three different potential flow methods covering a wide range of operational conditions
and 18 hull forms in total. The rational data preprocessing makes up the core part of the paper having its focal
point on practical application. Moreover, a rigorous hyperparameter study based on Bayesian optimization is
conducted, and the validation of the final models for three case studies against numerical and experimental
data as well as two established prediction techniques shows satisfactory generalization in case of the neural
network. The tree-based ensemble methods, on the other hand, are not able to generalize sufficiently from the
given parameter discretization of the underlying dataset.

1. Introduction

The maritime industry is changing: The increased environmental
awareness of society and policymakers has lead to the introduction of
several rules and regulations incentivizing the enhancement of energy
efficiency of ships, e.g. the mandatory compliance of new and existing
ship designs with the Energy Efficiency Design Index (EEDI) base-
line, International Maritime Organization (2011). Broadly speaking,
the EEDI is the ratio of transport work and CO2-emissions, i.e. it sets
the environmental pollution in relation to the socioeconomic benefit,
see Kristensen (2010) for greater detail. The legislation of the EEDI
framework enforced a trend of reducing installed engine power and
slow steaming. The latter (slow steaming) increases the added-wave
resistance fraction of the total resistance which in combination with
the former makes the risk of losing maneuverability in adverse weather
conditions pivotal in ship design and operation. Moreover, the EEDI-
equation includes the weather factor 𝑓𝑤 incorporating the effect of the
added resistance or, rather, the consequent involuntary speed loss in a
seaway due to wind and waves. However, the reliable determination
of the added-wave resistance and hence of the factor 𝑓𝑤 is problematic
both when using model test data and results of numerical calcula-
tions as has been shown by Shigunov et al. (2018). For this reason,
the present work provides a machine learning (ML) approach for the
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prediction of the added resistance in waves and compares the model
estimates to traditional prediction methods. It is stressed that the ML
task itself is considered as a supervised regression approach for an
efficient estimate of the added-wave resistance without any detailed
hull shape information.

1.1. Literature review

In early ship design stages as well as in the assessment of a ves-
sels’ operational performance an efficient prognosis of the added-wave
resistance is essential; hence, it is compelling to pursue an empiri-
cal regression approach in this respect. Empirical formulas were and
are still widely applied in naval architecture, but machine learning
regression techniques are also well established in ship design – e.g.
Bertram and Mesbahi (2000) – and ship hydrodynamics, especially as
surrogate models that approximate results of computationally expen-
sive simulation methods by regression models. For instance, Sclavounos
and Ma (2018) estimate ship roll motions and their decay by a Sup-
port Vector Machine (SVM), which is a non-linear, instance-based
ML-algorithm. Moreover, Mittendorf and Papanikolaou (2021) present
a global surrogate-based multi-objective hull form optimization using a
genetic algorithm applied to Multivariate Adaptive Regression Splines

https://doi.org/10.1016/j.apor.2021.102964
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(MARS) providing the calm water resistance of the case study. Ober-
hagemann et al. (2019) provide an approach for structural hull mon-
itoring including extreme waves by combining Computational Fluid
Dynamics (CFD) calculations with spectral methods and a tree-based
ensemble approach by a Random Forest (RF). In contrast to the above-
mentioned publications, artificial neural networks or rather multilayer
perceptrons (MLP) are predominantly used in state-of-the-art publica-
tions for the prediction of added-wave resistance on ships. Cepowski
(2020), for instance, trains an MLP on benchmark model test data
in head wave conditions and extracts an empirical formula from the
resulting model parameters and activations. Moreover, Herradon de
Grado and Bertram (2016) train a MLP based on CFD results of the
added-wave resistance of one container vessel for headings ranging
from head to following waves. In addition, they consider the added-
wind resistance by training another MLP on data derived from an
empirical formula.

1.2. Motivation and objective

As can be inferred from the presented literature, the individual
approaches are either limited to one case ship or to one wave direc-
tion. Therefore it is the aim of this paper to provide a more widely
applicable surrogate model; both in terms of geometric variation of
the hull and with regards to the relative wave direction. The latter
is of high relevance as model test data suggests that the added-wave
resistance, 𝑅𝐴𝑊 , will be most prominent in head to bow oblique waves,
Valanto and Hong (2015). Another novelty will be the focus on the
data preprocessing (feature engineering) and hyperparameter study
as these steps are highly influential on the model performance and
are not considered in the above-mentioned publications. Moreover,
it is envisioned to investigate a variety of machine learning models,
and not MLP exclusively, since these are characterized by numerous
inherent caveats, such as no scale invariance, general opaqueness and
sensitivity to multicollinearity,1 cf. Hastie et al. (2009). In contrast,
non-parametric tree-based ensemble models, such as random forests
and (extreme) gradient boosting methods are not affected by the men-
tioned drawbacks. Hence, this contribution is focused on a comparison
between MLP and tree-based ensemble methods applied to the pre-
diction of the added-wave resistance of ships based on a database
generated using three different numerical calculation methods in head
and bow oblique waves, i.e. in head to beam seas.

Finally, the goal of this contribution is to illuminate the following
research question: Do tree-based ensemble methods yield higher ac-
curacy and transparency compared to multilayer perceptrons for the
prediction of the added-wave resistance on ships? In this respect, the
developed statistical models will be compared to the semi-empirical
formula of Liu and Papanikolaou (2020), model test data and RANS
(Reynolds averaged Navier Stokes) CFD results for several validation
cases. It is stressed that this study is limited to long-crested and regular
waves; however, the extension to irregular waves is trivial given a
suitable wave energy density spectrum.

1.3. Composition

In Section 2, a brief sketch of the theory behind the added-wave
resistance and the applied machine learning models will be provided.
Section 3 introduces the underlying database and contains the applied
methodology, i.e. data preprocessing, model selection and the overall
training configuration. The main findings and results are displayed
in Section 4. Moreover, the final models will be applied to three
case studies and the models’ performances are discussed. Finally, in
Section 5, conclusions are drawn and several suggestions for future
work are presented.

1 Multicollinearity expresses when two or more predictors are highly related
to each other, i.e. do not provide unique or independent information to the
regression approach and thus negatively impact model performance.

2. Theoretical background

2.1. Added-wave resistance

The added-wave resistance 𝑅𝐴𝑊 is the unsteady longitudinal force
a ship experiences apart from the calm-water and wind resistances
in a realistic seaway. The so-called drift force is of second order and
constitutes three components: Wave diffraction, radiation and their
interaction. Following Faltinsen (2005), the added resistance in waves
results from the ship’s ability of generating unsteady waves. A ship in
resonant heave and pitch conditions generates the most pronounced
waves per unit of wave amplitude due to the large relative vertical
motions. For more comprehensive theoretical considerations regarding
the added resistance in waves reference is made to the literature,
e.g. Strøm-Tejsen et al. (1973).

The added-wave resistance is expressed in non-dimensional form in
Eq. (1).

𝐶𝐴𝑊 =
𝑅𝐴𝑊 𝐿𝑝𝑝
𝜌𝑔𝜁2𝐵2

𝑚
(1)

In view of Eq. (1), the added-wave resistance is dependent on the ship’s
length and the beam denoted as 𝐿𝑝𝑝 and 𝐵𝑚 respectively, as well as
the wave amplitude 𝜁 , the gravity acceleration is 𝑔, and the seawater
density 𝜌. In addition, the ship’s draft 𝑇𝐷, the longitudinal radius of
gyration 𝑘𝑦𝑦, the bow shape as well as the fullness of the hull, i.e. the
block coefficient 𝐶𝐵 , have a pronounced impact on the magnitude of
𝑅𝐴𝑊 . Furthermore, operational conditions, such as loading conditions
(i.e. 𝐺𝑀𝑇 ), Froude number 𝐹𝑛 = 𝑈√

𝑔𝐿𝑝𝑝
, relative wave direction

𝛽, intrinsic wave frequency 𝜔0 and wave steepness 𝐻∕𝜆 are also of
significant importance.

There are two main approaches towards the calculation of the
added-wave resistance using potential flow theory: (1) The far-field
methods and (2) the near-field methods. The far-field methods are
based on energy considerations for the reflected and radiated waves,
the momentum flux at infinity and the work performed by the floating
structure. These calculation methods are split further into two sub-
methods for the determination of added resistance in waves: Maruo
(1957) and Salvesen (1978) proposed approaches based on momentum-
conservation, whereas Gerritsma and Beukelman (1971) formulated a
far-field method based on the radiated energy method. Both approaches
were implemented using the Salvesen, Tuck and Faltinsen (STF) strip
theory developed by Salvesen et al. (1970) and are still widely used
today. Conversely, the near-field methods determine the steady second
order force by integration of the hydrodynamic, steady pressure acting
on the wetted surface of the ship’s hull. This pressure is be calculated
exactly from the first order potential and its derivatives (cf. Boese
(1970)). Faltinsen et al. (1980) proposed a near-field approach by an
asymptotic formula for the added resistance in short waves which is
based on slender body theory. The herein employed dataset consists of
results of three different methods in their respective preferred defini-
tion range: (1) A Green’s Function Method is used for the calculation of
the drift force in non-forward speed conditions, (2) results of Salvesen’s
formulation are employed for the determination of the added-wave re-
sistance in large to medium wavelengths and (3) Faltinsen’s asymptotic
formula is applied in the region of high wave frequencies. Since details
about the dataset are given in Section 3, it is sufficient to mention that
higher wave frequencies have the most practical relevance since ships
sail the majority of the time in low to moderate sea states, (Faltinsen,
2005). Liu and Papanikolaou (2017) show that relatively short waves
𝜆∕𝐿𝑝𝑝 < 0.5 contribute significantly to the added resistance of large
ships in seafaring conditions, but are often neglected.

Ultimately, the inherent non-linear characteristics of the added-
wave resistance lead to major complexities for theoretical calculations.
In fact, the SHOPERA (energy efficient Safe SHip OPERAtion) bench-
mark study revealed remarkable deviations of numerical, theoretical
simulation results and model test data, cf. Shigunov et al. (2018).
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Even though RANS methods are, in fact, able to reproduce non-linear
characteristics such as wave breaking, the accuracy of these methods is
not superior in the above mentioned SHOPERA benchmark study. CFD
simulations require a very fine spatial and temporal discretization in
order to prevent numerical diffusion of the wave elevation in the free
surface region, resulting in a high computational cost. The majority of
studies pertaining the added resistance in waves is focused on head
wave conditions (e.g. Sigmund and el Moctar (2018) or Sadat-Hosseini
et al. (2013)), but recent studies such as Uharek (2019) or Kim et al.
(2021) consider relative wave headings 𝛽 ∈ [180, 0] deg. discretized by
30 deg. increments.

2.2. Machine learning

Mitchell (1997) defines a machine learning task as the following: "A
computer program is said to learn from experience 𝐸 with respect to
some class of tasks 𝑇 and performance measure 𝑃 , if its performance
at tasks in 𝑇 , as measured by 𝑃 , improves with experience 𝐸’’. In
the herein presented work, the task 𝑇 is considered as a multivariate
regression problem, i.e. the learning algorithm is asked to approximate
the function 𝑓 ∶ R𝑛 → R. The supervised machine learning algorithm
experiences 𝐸, a dataset {(𝐱𝐢, 𝑦𝑖)}(|| = 𝑛, 𝐱𝐢 ∈ R𝑑 , 𝑦𝑖 ∈ R), where a
feature vector 𝐱𝐢 is associated with a known scalar target 𝑦𝑖 and the
feature matrix is of shape 𝑛× 𝑑, where 𝑛 corresponds to the samplesize
and 𝑑 reflects the dimensions of the feature space. Moreover, the
approximation 𝑦𝑖 is obtained by training the model, i.e. minimizing
the performance measure 𝑃 which is specific to the task 𝑇 . In the
following, the fundamentals of the individual learning algorithms are
provided. The models are selected such that they are able to handle
high-dimensional, non-linear and continuous data.

2.2.1. Artificial neural networks
Neural networks are widely applied as information processing sys-

tems and common learning algorithms which are inspired by the gov-
erning principles of mammalian brains and their dendrites. These mod-
els are directed acyclic graphs and are used as universal function
estimators, since the combination of affine functions, i.e. matrix oper-
ations, and non-linearities introduced via activation functions, lead to
the Universal Approximation Theorem, cf. Goodfellow et al. (2016). The
most widespread artificial neural network is the multilayer perceptron
(MLP), and in its basic configuration it comprises three layers: An input
layer, a hidden layer and an output layer; hence, it can be considered
as a composite function.

𝑦𝑖 = 𝑓𝐿[𝑊𝐿, 𝑓𝐿−1(𝑊𝐿−1,… , 𝑓1{𝑊1, 𝐱𝐢})] (2)

In Eq. (2), 𝑓𝑖 corresponds to the non-linearity or activation function
applied in layer 𝐿 on the weight matrix 𝑊𝑖. It is noted that the usual
bias term 𝑏 is omitted. The parameters or weight matrices 𝑊𝑖 are
initialized randomly and optimized during training. In general, the
training process of neural networks is formulated as a gradient-based
optimization problem: The loss function 𝑃 is obtained by backpropaga-
tion and minimized by, e.g. a stochastic gradient descent algorithm.
Recently, deep architectures achieved outstanding results in a vari-
ety of different disciplines ranging from image recognition to natural
language processing. In the herein presented work, relatively shallow
MLP architectures are applied for the non-linear regression approach.
Further and more elaborate details of neural networks can be found
in Goodfellow et al. (2016) and Hastie et al. (2009).

2.2.2. Tree-based ensemble methods
Ensemble methods combine predictions from multiple so-called

weak machine learning algorithms or base learners for more accurate

predictions. The building block of the herein employed ensemble mod-
els is the non-parametric Decision Tree. This greedy2 learning algorithm
infers decision rules through features in a supervised environment by
splitting the feature space into cuboid regions maximizing the infor-
mation gain and minimizing impurity in a recursive and progressive
fashion. Impurity – or variance in case of regression – refers to the
homogeneity of the labels at each node and the information gain is the
difference between the parent node impurity and the weighted sum of
the child node impurities, i.e. the variance reduction. In this study, the
CART (Classification and Regression Tree) implementation of Breiman
et al. (1984) is utilized and it constructs binary trees using the feature
and threshold that yields the largest information gain at each node.
In a regression context it is vital to note that predictions of decision
trees are not smooth, but constant and piecewise approximations. For this
reason, TEM (Tree-Based Ensemble Methods) are known – like most
other ML methods – for their insufficient extrapolation capabilities.
For more detailed information about regression trees, cf. Hastie et al.
(2009) or Bishop (2006).

In this study, two different ensemble methods are considered: (1)
In a bagging (bootstrap aggregating) approach, a multitude of weak
learners are trained in parallel on random subsets of the entire training
data with replacement. (2) Boosting, on the other hand, is a sequential
approach and each individual, base learner is influenced by the imper-
fections of the previous model. Due to the sequential manner it allows
the definition and minimization of an arbitrary loss function. However,
boosting does obviously not reach the computational efficiency of
bagging. In the following, additional details and comments about the
considered ensemble methods (Random Forests and Extreme Gradient
Boosting Trees) are given.

Random forests
Random Forest (RF) Regressors were proposed by Breiman (2001)

and grow decision trees in a probabilistic scheme. The algorithm em-
ploys decorrelated decision trees in its CART implementation as weak,
underfitting learners circumventing the pitfall of overfitting. The output
is calculated as the average prediction of the individual decision trees.

𝑦𝑖 =
1
𝑀

𝑀∑
𝑚=1

𝜙𝑚(𝐱𝐢) (3)

As can be inferred in Eq. (3), 𝑀 corresponds to the number of base
learners and 𝜙𝑚 is considered as the output of the decision tree trained
on a bootstrap of the data with a random subsample of the features,
i.e. random variable selection at each node. These two sources of
randomness decrease the variance of the random forest estimator. In
fact, the weak base learners typically show high variance, but the
enforced randomness yields decision trees with decoupled or rather
decorrelated prediction errors. Hence, by averaging (cf. Eq. (3)) the
individual predictions, some errors cancel each other. The variance
reduction leads to increased model generalization and robustness to
outliers, but might in turn slightly increase the bias.

Extreme gradient boosting trees
Extreme Gradient Boosting Regressors (XGBR) are based on the

boosting meta-algorithm, which yields an ensemble model using de-
cision trees as sequential base learners. XGBRs construct an additive,
stage-wise model and it based on the optimization of arbitrary, dif-
ferentiable and regularized loss functions. Gradient descent algorithms
are utilized for the creation of new trees based on the residual errors
of the previous one, i.e. with the addition of each tree, the model
becomes more expressive. In contrast to random forests, each decision

2 Greedy algorithms build a solution to an optimization problem in a
heuristic and recursive multi-step manner by making locally optimal choices
at each level.
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tree contains weights 𝑤𝑗 assigned to each leaf 𝑗 and its value as well
as the tree structure itself are determined by minimizing the objective
function. The loss function  comprises of either the 𝐿1 or 𝐿2 error and
a regularization term penalizing model complexity, cf. Eq. (4).

 =
∑
𝑖
𝑙(𝑦𝑖, 𝑦𝑖) +

∑
𝑘
𝛾𝑇 + 1

2
𝜆‖𝑤‖2 (4)

It is noted that 𝑙 is a differentiable loss function, 𝑇 corresponds to the
number of leaf nodes, whereas 𝛾 and 𝜆 are used as hyperparameters for
regularization. The hyperparameter 𝜆 decreases the risk of overfitting,
whereas 𝛾 penalizes each tree 𝑘 for growing additional leaves. The
optimal 𝑤𝑗 is obtained by using a second-order Taylor expansion of the
formulated loss function (cf. Eq. (4)). The determination of the optimal
tree structure is performed by a greedy method enabling the selection
of the best split candidate for adding new leaves. Lastly, the sequential,
additive prediction process is evident in the following equation due to
the iteration index denoted as 𝑡.

𝑦𝑖
(𝑡) =

𝑀∑
𝑚=1

𝜙𝑚(𝐱𝐢) = 𝑦̂𝑖,𝑡−1 + 𝜙𝑡(𝐱𝐢) (5)

The scores 𝑤𝑗 and respective tree structure are summarized in 𝜙𝑡 in
Eq. (5). Only the fundamentals of XGBR were conveyed herein, detailed
information, such as split finding algorithms, weighted quantile sketch
and system design are presented more elaborately in Chen and Guestrin
(2016). Lastly, the XGBR algorithm is versatile and works well on
structured data; however, its use is problematic for sparse and dispersed
data. In comparison to the random forest, the XGBR algorithm has
more adjustable hyperparameters requiring more computational effort
during the parameter study. Ultimately, this algorithm does not only
reduce variance – similarly to the random forest – due to the ensemble
approach, but in most cases also the bias due to its sequential approach
as every decision tree is affected by the imperfections or errors of the
previous one.

3. Data and methods

3.1. Dataset

The underlying data of the DTU Design Tool, cf. Nielsen (2015)
and Martinsen (2016), was used for the training setup of the machine
learning models. The DTU design tool aggregates results of three
different calculation methods for the determination of the added-wave
resistance 𝑅𝐴𝑊 in irregular waves and employs linear interpolation
on a set of quadratic transfer functions. As mentioned in Section 1,
the momentum conservation method by Salvesen (1978) was used for
low to medium wave frequencies, and the pressure integration method
by an asymptotic formula proposed by Faltinsen et al. (1980) was
utilized for the high wave frequencies. The required quantities, such as
added mass and damping matrices as well as first order potential were
computed by the strip theory solver I-Ship Petersen (2000), which is
based on the STF method (Salvesen et al., 1970). Lastly, the calculations
for zero-forward speed were carried out using the Greens Function
panel method WAMIT (Lee and Newman, 2013). The main particulars
of the target ship and the parameters of a parametric wave energy
spectrum are then specified as an input to the MATLAB tool which
performs the interpolations.

The program constitutes two sets of hull variants: One slender,
relatively fast container vessel type (𝐶𝐵 = 0.58) and a blunt, relatively
slow bulk carrier or tanker type (𝐶𝐵 = 0.84). It is stressed that the
results for the two parent hulls are considered as separate datasets in
the presented work. In addition, both datasets are identical considering
their shape and derivation by numerical tools. One database is set
up for nine scaling variants totaling 18 different hulls and their non-
dimensional main particulars are presented in Table 1. The ratios are
selected for minimizing the epistemic uncertainty, i.e. the entire design
space is taken into account. The hull #9 may appear to be unrealistic,

Table 1
The scaling variants of the parent hulls from Martinsen
(2016).

𝐿𝑝𝑝∕𝐵𝑚 𝐵𝑚∕𝑇𝐷 𝐿𝑝𝑝∕𝑇𝐷
#1 4.0 2.0 8.0
#2 4.0 3.5 14.0
#3 4.0 5.0 20.0
#4 6.0 2.0 12.0
#5 6.0 3.5 21.0
#6 6.0 5.0 30.0
#7 8.0 2.0 16.0
#8 8.0 3.5 28.0
#9 8.0 5.0 40.0

Fig. 1. Sample plot of hull #1 (𝐶𝐵 = 0.84) at 𝐹𝑛 = 0.1 of the non-dimensional
added-wave resistance 𝐶𝐴𝑊 and for various relative wave headings 𝛽.

however, the ratios of the main particulars of contemporary cruise ships
closely match the selected values.

On a sidenote, all nine blunt-type scaling variants share the same
longitudinal radius of gyration 𝑘𝑦𝑦∕𝐿𝑝𝑝 = 0.25, block coefficient 𝐶𝐵 =
0.84 and waterplane coefficient 𝐶𝑊𝑃 = 0.92. The same holds for
the slender container ship hulls with the following characteristics:
𝑘𝑦𝑦∕𝐿𝑝𝑝 = 0.25, 𝐶𝐵 = 0.58 and 𝐶𝑊𝑃 = 0.79. It is noteworthy
that the scaling combinations are chosen to reflect the variety of the
current world fleet, Nielsen (2015). The database consists of a large
set of quadratic transfer functions given for the non-dimensional wave
frequency 𝜔̄ = 𝜔0∕

√
𝑔∕𝐿𝑝𝑝 discretized into 941 values and 𝜔̄ ∈

[0.6, 10.0].
In view of Fig. 1, it becomes clear that assembling the database

using three different calculation method leads to discontinuities in
the slope of the curves and somewhat arbitrary transitions posing a
challenge to the present regression approach. Especially, since the in-
tersection points of the individual quadratic transfer functions between
Faltinsen’s formula and Salvesen’s method lead to inconsistencies, as in
some cases the two curves do not intersect at all. In these rare cases, the
Salvesen estimate is used instead for 𝐶𝐴𝑊 in short waves, (Martinsen,
2016).

Six different ship speeds have been taken into account consider-
ing Froude numbers in the interval 𝐹𝑛 ∈ [0.0, 0.25] with increments
of 0.05. The wave direction 𝛽 ∈ [90, 180]◦ is discretized into 10
directions covering head to beam seas. It is stressed that the added
resistance for beam to following seas is assumed to be zero. More-
over, the slenderness ratio 𝐿∕∇1∕3, where ∇ corresponds to the ship’s
volume displacement, and the following ratios 𝐿𝑝𝑝∕𝐵𝑚, 𝐵𝑚∕𝑇𝐷 and
𝐿𝑝𝑝∕𝑇𝐷 are included in the dataset. Ultimately, each database has a
sample size of 𝑛 = 508, 140 and one exemplary and properly non-
dimensionalized sample in a ML setup has the following shape 𝐱𝐢 =
[𝐿𝑝𝑝∕𝐵𝑚, 𝐵𝑚∕𝑇𝐷, 𝐿𝑝𝑝∕𝑇𝐷, 𝐿𝑝𝑝∕∇1∕3, 𝛽, 𝐹 𝑛, 𝜔̄] and 𝑦𝑖 = 𝐶𝐴𝑊 .
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Fig. 2. The application of the Power Transform to the target distribution in black leads
to the transformed one in orange. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

3.2. Methodology

The applied methodology of the presented work consists of three
parts: The initial data preprocessing and the model selection part in
which the hyperparameter optimization is conducted. The final model
assessment is carried out with respect to accuracy, generalization ca-
pability, and transparency. From a statistical point of view, the dataset
has three distinct characteristics: (1) The target distribution is highly
skewed, (2) the behavior of the target is non-linear and (3) the dataset
is - taking both databases into account - with a samplesize of 𝑛 > 106
relatively rich. Hence, the learning algorithms were selected such that
they are capable of handling non-linear and high-dimensional, tabular
data. It is noted, that the data preprocessing and model selection part is
only carried out for the 𝐶𝐵 = 0.84 dataset and the findings are adopted
for the second database (𝐶𝐵 = 0.58).

A transformation of the dependent variable 𝑦𝑖 is required as the
original target distribution is biased and unbalanced towards lower
𝐶𝐴𝑊 values (cf. Fig. 2). The Gaussianity or normality of the target
distribution is a presupposition of linear regression techniques in sta-
tistical modeling and has also a beneficial effect on the performance
of non-linear machine learning methods. Logarithmic transforms are
monotonic and do not change the locations of optima and also lead to
far more stable numerical algorithms. Thus, prior to the training pro-
cess, the target 𝐶𝐴𝑊 was transformed according to the Yeo and Johnson
(2000) power transformation to 𝐶̃𝐴𝑊 . The Yeo-Johnson transformation
was chosen over the Box–Cox transformation, since it does not impose
any restrictions on 𝑦𝑖. The Yeo-Johnson transformation maximizes the
marginal likelihood function by the modification of the hyperparameter
𝜆 and is defined in the following Eq. (6).

𝑦(𝜆)𝑖 =

⎧⎪⎪⎨⎪⎪⎩

((𝑦𝑖 + 1)𝜆 − 1)∕𝜆 if 𝜆 ≠ 0, 𝑦 ≥ 0
log(𝑦𝑖 + 1) if 𝜆 = 0, 𝑦 ≥ 0
−[(−𝑦𝑖 + 1)(2−𝜆) − 1]∕(2 − 𝜆) if 𝜆 ≠ 2, 𝑦 < 0
− log(−𝑦𝑖 + 1) if 𝜆 = 2, 𝑦 < 0

(6)

It is stressed that the used transformation is more versatile than the
well-known Box-Cox transformation due to the treatment of negative
values. After the first calculation, 𝜆 was set to 𝜆 = 0.1814 in order to
maintain reproducibility. Such a low 𝜆 value indicates that the optimal
transformation is quite close to the logarithm. The effect of the Yeo–
Johnson transformation on the specific target distribution can clearly
be seen in Fig. 2.

Fig. 2 shows that the initial target distribution (black) has been
transformed into a symmetric and asymptotic distribution (orange)

which resembles a standard normal distribution. It is stressed that the
transformation does not impact values equal to zero and thus these
are disregarded in Fig. 2 for the sake of clarity. Neural networks
are not scale invariant, hence a transformation is necessary for their
application. On the other hand, tree-based ensemble methods are scale
invariant, but their performance is negatively affected by dispersed
data. For this reason and in order to maintain a consistent training
methodology across all models, transformed values were fed into both
model types. Due to the evenly discretized dataset only normalization,
i.e. scaling according to the extreme values, is applied to the feature
space.

Furthermore, the polynomial feature expansion up to second order
was applied, in order to capture the non-linear behavior of the target by
extending the initial set of predictors. It is common practice to generate
additional feature incorporating non-linear interactions between the
independent variables 𝐱𝐢. Hence, the dimensions of the feature space
is increased to 𝑑 = 35 due to the linear combination and squaring of
all features. In general, the polynomial expansion is a well-established
approach when applying linear regression to non-linear data, and it
does also have a positive impact on the performance of non-linear
regression algorithms.

Feature importance measures are examined for the examination
of the models’ transparency and the effect of the feature expansion/
elimination. The TEM provide an intrinsic estimate by the mean de-
crease impurity (MDI) method which was proposed by Breiman (2001).
MDI determines each feature importance as the decrease in node impu-
rity weighted by the probability of reaching that node. The probability
can be obtained by dividing the number of samples reaching this
node by the total samplesize. Averaging the estimates of the predictive
ability over several decision trees leads to a variance decrease of the
importance measure and thus it can be used for feature selection.
Since neural networks are in general considered as opaque and do not
provide a built-in feature importance estimate, the permutation feature
importance method is applied. Permutation or mean decrease accuracy
(MDA) feature importance is an iterative, model-agnostic algorithm and
indicates the impact of one particular feature on the model score by
disregarding it during training. The method was proposed by Breiman
(2001) for random forests and it is considered trivial that the computa-
tional effort scales with the dimensions of the feature space. However,
the estimates are not affected by multicollinearity as in the case of
the MDI approach. Ultimately, it is stressed that both methods are not
directly comparable, but complement each other.

The increase in dimensions of the feature space leads to sparsity and
machine learning algorithms are negatively affected by the so-called
curse of dimensionality (for mathematical details cf. Hastie et al. (2009)).
Hence, the number of features will be reduced to the most important
subset in three iterations: (1) Initially, the most unrelated features are
dropped based on a chosen threshold in view of the individual feature
importances. (2) The tree-based methods ‘vote’ via recursive feature
elimination by their cross validation score on the discard of features,
noticing that Recursive Feature Elimination (RFE) was proposed by
Guyon et al. (2002). It is a selection method that fits a model and
removes the weakest feature until the loss function converges. (3) The
previous method is only based on the TEM and thus on the MDI feature
importance estimate which is affected by collinear features, which will
inevitably result from the applied feature expansion technique. The
performance of MLP are negatively influenced by the occurrence of
multicollinearity. For this problem, the iterative variance inflation fac-
tor (𝑉 𝐼𝐹 ) method is used for eliminating highly correlated predictors.
The 𝑉 𝐼𝐹 is defined in Eq. (7).

𝑉 𝐼𝐹 = 1
1 − 𝑅2

𝑖

with 𝑅2 = 1 −
𝛴(𝑦𝑖 − 𝑦𝑖)2

𝛴(𝑦𝑖 − 𝑦𝑖)2
(7)

The 𝑉 𝐼𝐹 approach was proposed by Lin et al. (2011) and is a
measure for the increase in variance of ordinary least squares (OLS)
parameter estimates if an additional variable 𝑖 is added to the linear
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regression model. In Eq. (7), 𝑅2 corresponds to the coefficient of deter-
mination and the overbar indicates the mean. The 𝑉 𝐼𝐹 is a measure of
multicollinearity and the threshold for the 𝑉 𝐼𝐹 of each feature is set
to 𝑉 𝐼𝐹 < 10.

The dataset does not require any further preprocessing such as
filtering or imputation as the data shows only minor variance and no
missing values. Prior to the training phase, the modified dataset is
resampled and split into a training and a test set, where the test set
makes up 20% of the initial data. The hyperparameter study as well
as the model selection is only carried out on the training set and the
considered metrics are the root mean squared error (RMSE) (cf. Eq. (8))
and the mean absolute error (MAE) which is defined in Eq. (9). It
is stressed that both metrics have the same unit and smaller values
indicate more accurate predictions.

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (8)

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (9)

The RMSE puts more weight on outliers and is sensitive to variance,
whereas the MAE expresses the magnitude of the error regardless of the
direction and thus is more robust to noise.

The No Free Lunch Theorem (cf. Goodfellow et al. (2016)) states that
one cannot assume, that one particular architecture or parameter com-
bination performs better on a variety of tasks; hence, it is of paramount
importance to conduct a hyperparameter optimization. Instead of a
uninformed method, such as exhaustive grid search, an informed and
thus more elegant optimization approach by Bayesian optimization
was utilized. Bayesian optimization is a sequential, semi-supervised
method employing Bayes theorem for adaptively approximating the
objective function and obtaining the optimum without considering any
gradient information, but a surrogate of the function of interest by a
Gaussian process. The algorithm requires an exploration as well as an
exploitation phase and initially a prior is forced onto the loss land-
scape. After the function evaluation, or update, the posterior is used
for adjusting the acquisition function. The next candidate is queried
based on the value of the acquisition function. Bayesian optimization
is advantageous for objective function that are expensive to evaluate,
like the model score during hyperparameter optimization. The herein
applied optimization procedure was set up as a minimization problem
of the RMSE of a holdout set (20% of training data) with ten initial
samples (exploration), 20 exploitative iterations maximum and the
model type was a Gaussian Process with Expected Improvement as
acquisition function. The overall objective was to find the optimal
model capacity, i.e. the tradeoff between variance and bias. For more
elaborate details about global Bayesian optimization cf. Mockus (1989).

All calculations were performed on a virtual machine on a server
equipped with two Intel Xeon processors (2.2 GHz), 13 GB RAM and
an NVidia Tesla K80 GPU. The utilized machine learning frameworks
were scikit-learn (Pedregosa et al., 2011), XGBoost (Chen and Guestrin,
2016), GPyOpt (The GPyOpt authors, 2016) for the hyperparameter
tuning and statsmodels (Seabold and Perktold, 2020) for the 𝑉 𝐼𝐹
procedure. It is stressed that both scikit-learn and XGBoost employ an
optimized version of the CART algorithm for the TEM.

4. Results and discussion

4.1. Feature selection

In the present study, the Pearson correlation coefficient is neither
suited for data exploration nor for feature selection, as it is only capa-
ble of expressing linear interdependencies. To pinpoint the non-linear
driving factors of 𝑅𝐴𝑊 , according to the chosen models, the features
are presented according to their relevance obtained from the already
described mean decrease impurity (MDI) and mean decrease accuracy

Fig. 3. Individual feature importance estimates for the expanded dataset including a
threshold (red) for feature selection. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

(MDA) method. The threshold for the sequential feature selection is
set to 2.5% in the first iteration and is given in Fig. 3 alongside the
individual feature influences on the model performance. It is noted
that all values of one model sum up to one and that the results are
computed using the libraries scikit-learn (Pedregosa et al., 2011) and
XGBoost (Chen and Guestrin, 2016).

In view of Fig. 3 it is appreciated that the models’ estimates
agree mostly on the relevance of the predictors. Moreover, exclusively
investigating the initial set of features (i.e. the original database) it
is clear that the operational conditions, such as 𝛽, 𝐹𝑛 and 𝜔̄ are
most influential for the models’ predictions. Furthermore, Fig. 3 shows
that the polynomial expansion leads on one hand to highly expressive
variables as the linear combinations (e.g. 𝜔̄ 𝛽), but also the squared
versions (e.g. 𝛽2) are of great relevance for the models. Hence, the
overall tradeoff between model accuracy and transparency is under-
lined as it can be seen that the machine learning models choose
unphysical, highly abstract features over physical and human-readable
ones. But on the other hand, the feature expansion also leads to
multicollinearity. An indication for that are the discrepancies be-
tween the MDA and MDI estimates (cf. Fig. 3), where the latter
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Fig. 4. Convergence study of the 𝑅𝑀𝑆𝐸 of the validation set applying Recursive
Feature Elimination (RFE) for the tree-based ensemble methods.

is affected by multicollinearity. These differences are visible for in-
stance for 𝐿𝑝𝑝∕∇1∕3 𝐹𝑛 or 𝜔̄ 𝛽. Ultimately, the MDI estimates show
general agreement with the MDA feature importance of the multilayer
perceptron (MLP), underlining the sufficient transparency of the tree-
based ensemble methods (TEM) at much lower computational cost.
The positive effect of the feature expansion was proven and the di-
mensions of the feature space were reduced according to the chosen
threshold of 2.5% from 𝑑 = 35 to 𝑑 = 18. Considering Fig. 3,
the feature vector 𝐱𝐢 has the following shape after the first iteration:
𝐱𝐢 = [𝛽2, 𝐹 𝑛 𝛽, 𝐹𝑛2, 𝜔̄ 𝛽, 𝜔̄ 𝐹𝑛, 𝜔̄2, 𝐿𝑝𝑝∕∇1∕3 𝛽, 𝐿𝑝𝑝∕∇1∕3 𝐹𝑛, 𝐿𝑝𝑝∕∇1∕3 𝜔̄,
𝐿𝑝𝑝∕𝑇𝐷𝐹𝑛, 𝐵𝑚∕𝑇𝐷 𝛽, (𝐵𝑚∕𝑇𝐷)2, 𝐿𝑝𝑝∕𝐵𝑚 𝛽, 𝐿𝑝𝑝∕𝐵𝑚 𝜔̄, (𝐿𝑝𝑝∕𝐵𝑚)2, 𝛽, 𝐹 𝑛, 𝜔̄].
It is stressed that the described first iteration facilitates the second
iteration and saves computational effort considerably.

The second feature selection iteration employs recursive feature
elimination (RFE), i.e. it is based on the individual model MDI estimates
of the TEM. For this purpose, the scikit-learn (Pedregosa et al., 2011)
function including cross validation was employed. The convergence of
𝑅𝑀𝑆𝐸 of both models applied on a cross validation set is presented in
Fig. 4 for the increasing number of variable dimensions 𝑑.

Considering Fig. 4, it shows that there is good overall agreement
between random forest (RF) and extreme gradient boosting regressor
(XGBR) in their convergence behavior and the sensitivity to the indi-
vidual features. According to both models 𝑑 = 14 is optimal and 𝐹𝑛,
𝐹𝑛2, 𝐹𝑛 𝛽 as well as 𝜔̄ were excluded from the feature space based on
the ranking that results from the feature elimination procedure. It is
interesting that operational features, such as 𝐹𝑛 and 𝛽, are disregarded
in this step, even though they appear as highly relevant in Fig. 3.

Subsequently, the application of the variance inflation factor (𝑉 𝐼𝐹 )
procedure is carried out, in order to eliminate highly correlated and
thus redundant features. The feature with the highest 𝑉 𝐼𝐹 is dropped
and the procedure is conducted again with the updated set of features
until all features exhibit 𝑉 𝐼𝐹 < 10. The respective 𝑉 𝐼𝐹 values for all
predictors are presented for all 6 necessary iterations in Table 2. It is
noted that the statsmodels library (Seabold and Perktold, 2020) was
used for computing the variance inflation factor.

Lastly, the final feature vector has the following shape: 𝐱𝐢 =
[𝛽2, 𝜔̄ 𝛽, 𝜔̄ 𝐹𝑛, 𝜔̄2,
𝐿𝑝𝑝∕∇1∕3 𝐹𝑛, 𝐿𝑝𝑝∕𝑇𝐷 𝐹𝑛, (𝐵𝑚∕𝑇𝐷)2, 𝐿𝑝𝑝∕𝐵𝑚 𝜔̄, (𝐿𝑝𝑝∕𝐵𝑚)2]. As only fea-
tures resulting from the polynomial expansion are part of the final
feature space the relevance of this step in the data preprocessing step
is emphasized. Carrying out the feature selection methodology, the
expanded feature space is reduced from 𝑑 = 35 to 𝑑 = 9 (cf. Table 2)
positively affecting computational efficiency. The possible beneficial
effect on model performance of the presented feature selection is
studied in the following part.

Table 2
Results of 𝑉 𝐼𝐹 obtained after iterative multicollinearity analysis.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

𝛽2 19.16 18.49 11.83 11.5 7.12 2.04
𝜔̄ 𝛽 7.09 6.98 6.97 6.66 6.65 6.64
𝜔̄ 𝐹𝑛 1.35 1.35 1.35 1.35 1.35 1.31
𝜔̄2 3.4 3.37 3.36 3.22 3.22 3.05
𝐿𝑝𝑝∕∇1∕3 𝐹𝑛 8.81 8.20 8.2 8.06 8.04 5.4
𝐿𝑝𝑝∕𝑇 𝐹𝑛 6.36 5.69 5.69 5.57 5.55 3.53
(𝐵𝑚∕𝑇𝐷)2 7.26 6.33 6.28 6.01 0.85 0.51
𝐿𝑝𝑝∕𝐵𝑚 𝜔̄ 21.22 19.34 19.32 5.17 5.17 5.14
(𝐿𝑝𝑝∕𝐵𝑚)2 9.69 9.61 2.12 2.06 2.07 1.85
𝛽 11.42 11.12 11.05 11.05 10.97 elim.
𝐵𝑚∕𝑇𝐷 𝛽 50.47 15.42 15.33 14.98 elim. elim.
𝐿𝑝𝑝∕∇1∕3 𝜔̄ 27.6 23.98 23.98 elim. elim. elim.
𝐿𝑝𝑝∕𝐵𝑚 𝛽 137.36 25.24 elim. elim. elim. elim.
𝐿𝑝𝑝∕∇1∕3 𝛽 222.38 elim. elim. elim. elim. elim.

4.2. Model selection

In this section, the final model characteristics are determined using
Bayesian optimization. Moreover, the individual performances of the
methods will be assessed in use of the test set, but initially the baseline
architectures of the considered models are presented. It is stressed that
the naming convention of the employed software packages are used
herein.

The baseline random forest is characterized by 100 estimators,
whereas the hyperparameter min_samples_split, which repre-
sents the minimum number of samples required to split an internal
node, is set to 2. Increasing this parameter, the tree becomes more
constrained as it has to consider more samples at each node. The
parameter min_samples_leafs is defined as 4 and it is similar to
min_samples_splits; however, the latter describes the minimum
number of samples at the leafs. The maximum depth of the tree
max_depth is equal to 10 indicating how deep the tree can be built.
The deeper the tree, the more splits and thus the more information can
be captured. Furthermore, the number of features max_features to
be considered while searching for the best split is specified as 𝑑 - the
number of features. In addition, either the 𝐿1 or 𝐿2 error at the leafs
is minimized.

The initial XGBR model is characterized by 100 n_estimators,
a linear loss function and a learning_rate of 0.1. Moreover,
max_depth is set to 10 and the regularization term 𝛾 = 0.0. The
parameter colsample_by_tree denotes the subsample ratio of fea-
tures for each split at each level and is thus comparable to
max_features. Also, min_child_weight defines the minimum
sum of weights 𝑤𝑗 of all samples required in a child node, i.e. related
to min_child_leaf and capable to prevent overfitting.

The baseline MLP architecture comprises one hidden layer with 100
neurons including 𝐿2 regularization as well as a ReLU (Rectifier Linear
Unit, 𝑥 = 𝑚𝑎𝑥(0, 𝑥)) activation following input and hidden layer. The
output neuron is activated by a linear function and the Adam (Adaptive
Moment Estimation) optimizer (cf. Kingma and Ba (2015)) minimizes
the 𝐿2 error w.r.t. the learning rate.

Throughout the parameter study, the hidden_layer_sizes, the
activation_function as well as the 𝐿2 penalty or regularization
term 𝛼 are optimized for the MLP. All mentioned hyperparameters of
RF and XGBR are variables during optimization. The baseline and final
model hyperparameters as well as their definition range are provided
in Table 3. The default values are adopted from the chosen software
packages scikit-learn (Pedregosa et al., 2011) and XGBoost (Chen and
Guestrin, 2016), whereas the ranges are located around them.

The Bayesian optimization was fed with 10 initial explorative sam-
ples and ran for 20 iterations during the exploitation optimizing the
𝑅𝑀𝑆𝐸 of a cross validation set. In view of Table 3, it is evident
that the resulting parameters mostly correspond to either the upper
parameter bound or the baseline value. For instance, n_estimators
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Table 3
Hyperparameters of the three examined models including baseline and bounding values.

Hyperparameter Baseline Range Result

RF

n_estimators 100 [50, 150] 150
max_depth 10 [1, 30] 30
min_sample_leafs 4 [1, 5] 1
min_sample_split 2 [2, 10] 2
max_features 𝑑 {𝑑,

√
𝑑, log2(𝑑)} 𝑑

criterion 𝑀𝑆𝐸 {𝑀𝑆𝐸,𝑀𝐴𝐸} 𝑀𝑆𝐸

XGBR

n_estimators 100 [50, 150] 150
learning_rate 0.1 [0.05, 0.1] 0.1
max_depth 10 [1, 30] 20
min_child_weight 1 [1, 10] 1
𝛾 0 [0.05, 5] 0.1
colsample_by_tree 1 [0.5, 0.8] 0.8

MLP
hidden_layer_sizes (100) {(100), (50, 50, 50), (50, 100, 50), (100, 100)} (50, 100, 50)
activation ReLU {ReLU, sigmoid, tanh} ReLU
𝛼 10−4 [10−4 , 0.05] 10−4

Fig. 5. Residuals plot for the RF on the 𝐶𝐵 = 0.84 database. Note that the histogram (right-side plot) of the residuals presents the occurrence frequency in logarithmic scale.

in case of the TEM and hidden_layer_sizes reach their upper
constraint after the optimization for the largest model complexity. On
first sight this fact may increase the risk of overfitting (insufficient
model capacity), but the cross validation score is taken into account
in the parameter study in order to prevent overfitting. The possible
occurrence of overfitting and the overall model performance will be
assessed in the following.

In Figs. 5–7 the residuals 𝜖 of the models’ predictions are presented
for both the training and test datasets, accompanied by the histogram
of the residuals in logarithmic scale. It is stressed that only the results
for the 𝐶𝐵 = 0.84 dataset are presented herein and the corresponding
results for the 𝐶𝐵 = 0.58 dataset are placed in the appendix. It is
evident that all three models are biased towards underpredicting the
non-dimensional added resistance 𝐶𝐴𝑊 as the histograms are shifted
towards positive 𝜖 values. Furthermore, considerable heteroskedasticity
is noticeable for all three models, i.e. an increase in variance with
increasing magnitude of the target variable. This phenomenon is also
observed in the residual analysis of the semi-empirical formula of Liu
and Papanikolaou (2020) and results from the non-linear behavior of
the added-wave resistance. However, the heteroskedasticity is most
pronounced for the MLP and decreases for the TEM. Moreover, we see
the largest bias and variance for the MLP. The RF on the other hand,
exhibits robust estimates with little noise; however, it is conspicuous
that the test predictions are more biased towards underpredicting the
target than the training predictions. The discrepancies in the residual
distributions are not as pronounced for the XGBR and the MLP. Whether
this is an indication of overfitting in case of the random forest will
be assessed in the following analysis of the metrics of the test predic-
tions. It is noted that a minor discrepancy between training and test
performance is expected as it is unseen data.

The models are assessed based the metrics 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 using
the out-of-sample (test) dataset in Table 4. It is stressed that (a)
corresponds to the application of the Yeo–Johnson-Transformation and
the described data preprocessing method. In addition, the performance
on a dataset (b) without the described preprocessing methodology,
i.e. only normalizing the target according to the extreme values and the
use of the initial set of features is presented. Hence, the effect of the
preprocessing methodology is examined. In addition, the performance
of the chosen baseline models is given in order to underline the increase
in accuracy resulting from the conducted parameter study. It is noted
that Table 4 presents the model performance for both datasets and that
the metrics for the in-sample set for both datasets are located in the
appendix of this contribution.

The observations from Table 4 are two fold: (1) The performance
increase resulting from the hyperparameter optimization and (2) the
effect of the data preprocessing described in the previous section.
Regarding the first point, the MLP model experiences the largest perfor-
mance gain of 72.7%, whereas the RF and XGBR achieve an increase
of 40.05% and 11.25%, respectively. It is stressed that the presented
percentage increase is an average for both metrics and databases. Re-
garding the second point, it shows that the described data preprocessing
method leads to superior model accuracy in comparison to the dataset
without the applied methodology (b). The performance of the XGBR
is affected the most with 170.5% higher accuracy relating (a) to (b).
The MLP as well as the RF yield a performance increase of 35.51% and
36.87%, respectively. For the sake of clarity the results of Table 4 are
presented in Fig. 8 in histograms.

Ultimately, the RF achieves the highest accuracy according to both
metrics (bold in Table 4). Whether this is an indication of the supe-
rior generalization capability will be assessed in the model validation
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Fig. 6. Residuals plot for the XGBR on the 𝐶𝐵 = 0.84 database. Note that the histogram (right-side plot) of the residuals presents the occurrence frequency in logarithmic scale.

Fig. 7. Residuals plot for the MLP on the 𝐶𝐵 = 0.84 database. Note that the histogram (right-side plot) of the residuals presents the occurrence frequency in logarithmic scale.

Table 4
Metrics of predictions using the test dataset for both datasets.

𝐶𝐵 = 0.84 𝐶𝐵 = 0.58

RF XGBR MLP RF XGBR MLP

Baseline 𝑅𝑀𝑆𝐸 0.0502 0.0789 0.2680 0.0497 0.0727 0.2808
𝑀𝐴𝐸 0.0130 0.0343 0.1304 0.0130 0.0328 0.1392

(a)

𝑅𝑀𝑆𝐸 0.0306 0.0645 0.0730 0.0310 0.0647 0.0611
−38.98% −18.27% −72.74% −37.61% −11.04% −78.25%

𝑀𝐴𝐸 0.0075 0.0310 0.0393 0.0076 0.0308 0.0416
−41.83% −9.65% −69.84% −41.78% −6.07% −70.11%

(b)

𝑅𝑀𝑆𝐸 0.0407 0.1597 0.0878 0.0369 0.1573 0.0848
−18.85% 102.57% −67.23% −25.70% 116.27% −69.80%

𝑀𝐴𝐸 0.0101 0.0921 0.0578 0.0122 0.0906 0.0566
−22.39% 168.60% −55.65% −5.69% 175.96% −59.38%

section. However, it proves that the RF did not overfit on the in-
sample data despite the discrepancies of the residual histograms found
in Fig. 5. In addition, it can be observed that the RF shows the smallest
variance in model performance, cf. Fig. 8. Hence, it is concluded that
the RF is in this case not only the most accurate regressor, but also
the most robust one. The MLP on the other hand shows a considerable
increase in performance after the parameter study and also the data
preprocessing method affects the results noticeably. For the XGBR, the
parameter study has only a small influence on performance and the
poor performance on the (b) dataset is conspicuous. It is assumed that
the dispersed target distribution (cf. upper plot in Fig. 2) is the reason
for this performance drop. Outliers have a negative impact on boosting
as each new tree builds on previous tree residuals. Thus boosting
ensemble methods have a disproportionate bias towards outliers as they
have much larger residuals than other samples. Still, the insufficient

performance on (b) is higher than expected. Lastly, one can conclude
that it is justifiable to only optimize the models using one dataset (𝐶𝐵 =
0.84) as both the performance increase due to the hyperparameter
optimization and the data preprocessing are similar.

4.3. Model validation

In the following, the models are validated on three case studies
against publicly available model test and computational fluid dynam-
ics results — RANS in particular. Additionally, the estimates of the
DTU Design Tool and a semi-empirical formula proposed by Liu and
Papanikolaou (2020) are considered. The following hull forms were
selected as benchmarks from the literature: The full-type KVLCC2
(KRISO Very Large Crude oil Carrier) is investigated in head waves.
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Fig. 8. Histogram of the 𝑅𝑀𝑆𝐸 of the model predictions applied on the test set.

Table 5
Main particulars and operational conditions of the three case studies adopted from
Sadat-Hosseini et al. (2013), Fujii and Takahashi (1975) and Kim et al. (2021).

Unit KVLCC2 S175 LNG-C

𝐿𝑝𝑝 [m] 320.0 175.0 290.0
𝐵𝑚 [m] 58.0 25.4 45.0
𝑇𝐷 [m] 20.8 9.5 11.5
𝐶𝐵 [–] 0.808 0.561 0.79
𝑘𝑦𝑦∕𝐿𝑝𝑝 [–] 0.25 0.24 0.25
𝐹𝑛 [–] 0.142 0.15 0.19
𝛽 [deg.] 180 150 120

On the other hand, the S175 container ship Fujii and Takahashi (1975)
and the LNG carrier of Kim et al. (2021) are considered in bow oblique
waves. The main particulars of the ships as well as their forward speed
and relative wave direction are provided in Table 5.

As can be seen in Table 5, one slender and two full-type vessels
were selected for model validation. All geometries remain within the
definition range of the database (cf. Table 1), but do not exactly match
the scaling ratios of the initial hull forms; thus, the generalization
capability of the data-driven models can be assessed in a proper fashion.
Besides the agreement in the magnitude of 𝐶𝐴𝑊 , the adequate represen-
tation of the resonant conditions is of high interest as the mean added
resistance 𝑅̄𝐴𝑊 in irregular waves is a function of the overlap between
the individual peaks of the prevalent wave energy density spectrum and
the quadratic transfer function.

Initially, the blunt KVLCC2 tanker is considered in head waves
𝛽 = 180◦ at 𝐹𝑛 = 0.142. In Fig. 9, the estimated quadratic transfer
functions of 𝐶𝐴𝑊 are presented vs. the relative wavelength 𝜆∕𝐿𝑝𝑝. The
experimental fluid dynamics (EFD) samples of Lee et al. (2013) and
Sadat-Hosseini et al. (2013) as well as the RANS results of the latter
publication are considered for validation.

In view of Fig. 9, it is stated that all estimates of the ML models
are in accordance with the DTU Design Tool which is expected as the
underlying database is the same. Moreover, the models show quantita-
tive agreement with the CFD as well as EFD samples in long waves and
qualitative agreement with their trend in the short wave regime. How-
ever, both the resonance frequency and the corresponding magnitude
are not very well captured. Lastly, the semi-empirical formula provides
the most appropriate estimate in comparison to the model test and CFD
results. On a sidenote, the two separate experimental datasets show
minor variability or rather uncertainty - especially near resonance. In
addition, the RANS results differ notably from the experimental data in
long and short waves.

The slender S175 container ship is examined in bow oblique waves
(𝛽 = 150◦) at 𝐹𝑛 = 0.15. In Fig. 10, the data-driven models are validated
against the RANS results of Uharek (2019) and the experimental data
of Fujii and Takahashi (1975).

As can be inferred from Fig. 10, none of the ML methods captures
the resonance region correctly as the individual peaks deviate in both
wavelength and in magnitude. Furthermore, the ML models show a
large variation in their accuracy. The MLP exhibits good agreement in
long and short waves and it is evident that the tree-based ensemble
methods (TEM) provide lower 𝐶𝐴𝑊 estimates in the proximity of
resonance compared to the corresponding MLP values. The DTU Design
Tool and the semi-empirical formula by Liu and Papanikolaou (2020)
are in general in agreement with the numerical and experimental
results. Once again, the discrepancy between RANS and EFD data is
noted and the TEM are not able to reflect the resonant conditions
correctly.

The individual results of the twinscrew LNG carrier, which is exam-
ined in oblique waves 𝛽 = 150◦ and moderate forward speed conditions
(𝐹𝑛 = 0.19), are provided in Fig. 11. The benchmark data is established
by numerical and experimental data adopted from Kim et al. (2021).

The immediate observation from Fig. 11 is the discrepancy between
RANS and EFD data. In addition, the MLP, the DTU Design Tool as well
as the semi-empirical formula by Liu and Papanikolaou (2020) show
matching estimates — in resonant conditions in particular. However,
the results of the TEM deviate both quantitatively and qualitatively
in this regime. The data of the tree-based ensemble methods shows
minor irregularities due to the fact that TEM only provide piecewise
approximations. The satisfactory agreement of the ML models and
DTU Design Tool is evident in short waves, where the semi-empirical
formula of Liu and Papanikolaou (2020) yields higher values.

4.4. General discussion

The herein examined data-driven models were able to represent
the frequency coherent character of the added-wave resistance. The
validation shows sufficient performance for the MLP and highlights
its applicability as a design aid and surrogate model. The TEM on
the other hand show deviant results and high bias in resonant con-
ditions when applied on unseen data. In long and even short waves,
the agreement is considered as reasonable in most cases. The MLP
shows overall sufficient resemblance to the two established prediction
methods, i.e. the DTU Design Tool (Nielsen, 2015; Martinsen, 2016)
and the semi-empirical formula by Liu and Papanikolaou (2020). As
the added-wave resistance is generally considered as a non-viscous phe-
nomenon, the application of potential theory methods is appropriate.
However, considering further perspectives and the application to real
data, all of the underlying methods are subject to the limitations of
potential theory, such as the assumption of linearity including only
small perturbations, small amplitudes, moderate wave steepness and
the absence of viscous effects. Salvesen’s method disregards the hull
geometry above the waterline and includes only the Neumann–Kelvin
linearized interaction between the steady and the unsteady flows. In
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Fig. 9. Non-dimensional added-resistance 𝐶𝐴𝑊 of the KVLCC2 tanker for 𝛽 = 180◦ and 𝐹𝑛 = 0.142.

Fig. 10. Non-dimensional added-resistance 𝐶𝐴𝑊 of the S175 containership for 𝛽 = 150◦ and 𝐹𝑛 = 0.15.

addition it is based on strip theory and inherits the corresponding
assumptions and approximations. Similarly, Faltinsen’s formula relies
on the assumption that the ship has vertical walls, i.e. no flare is consid-
ered. Ultimately, the TEM match the abilities of the MLP in numerous
characteristics, for instance capturing non-linear interactions between
the predictors or handling the transition from Salvesen’s to Faltinsen’s
estimate in the underlying database, but essentially the fundamental
tradeoff in machine learning between transparency and accuracy, or
rather in generalization capability, manifests itself in the present study
through the transparent TEM showing inferior results compared to the
opaque MLP. The MLP shows higher model generalization due to its
multilayered architecture, but as the number of hidden layers increases
the estimates and the mathematics behind them get more complex and
opaque. The TEM on the other hand, have a clear and transparent
structure and provide not only a decision path for every prediction,
but also a direct estimate of each feature’s predictive power. Still,
the ensemble methods are affected by the fundamental limitations of
decision trees and the CART implementation. On one hand, the CART
algorithm is known for its transparency and simplicity as it grows
binary tree graphs. In turn, this comes at the cost of instabilities and

inaccuracies as soon as the estimator is applied on unseen data. This
instability is due to the hierarchical structure because the effect of an
imperfection in the top split is propagated down to all child nodes.
The MARS algorithm (cf. (Mittendorf and Papanikolaou, 2021)) has
a mathematical resemblance to the CART algorithm and alleviates its
lack of smoothness, but is not as scalable and hence not considered
in the present work. Lastly, considerable variance in the estimates of
the added-wave resistance was noticeable, not only for data-driven
models, but also in the numerical results and even in the experimental
data uncertainty was present, cf. Fig. 9. This reminds us that both the
experimental and numerical determination of added-wave resistance,
in particular near resonance and in oblique waves, is challenging.
It could be even argued that a deterministic prediction is not yet
suited for practical applications. Park et al. (2015) provide several
sources of uncertainty regarding experiments pertaining to the added-
wave resistance. This motivates dedicated studies for the uncertainty
quantification in the direction of predicting the added-wave resistance
using both numerical and empirical methods. From the literature it is
evident that the uncertainty of added resistance is, indeed, well-known,
but not well characterized.



Applied Ocean Research 118 (2022) 102964

12

M. Mittendorf et al.

Fig. 11. Non-dimensional added-resistance 𝐶𝐴𝑊 of the LNG carrier for 𝛽 = 120◦ and 𝐹𝑛 = 0.19.

5. Conclusions

The prediction of the second order steady wave forces on ships
is a classical hydrodynamics problem and has been addressed in this
contribution using different non-linear machine learning techniques.
This study proposed a data-driven methodology for the estimation
of the non-dimensional added-wave resistance 𝐶𝐴𝑊 based on results
obtained from three different numerical calculation methods based on
potential flow theory. The multivariate regression approach was fo-
cused on the comparison of tree-based ensemble methods and artificial
neural networks in the context of prediction accuracy, robustness and
transparency. Moreover, the data preprocessing and hyperparameter
optimization were key features of the suggested methodology. As a
result, all applied methods were able to produce a non-linear and
consistent mapping from abstract features to the target 𝐶𝐴𝑊 with
sufficient accuracy on in- and out-of-sample data. The application to
real world case studies revealed insufficient results of the tree-based
ensemble methods compared to the neural network. In comparison
to well established design aids, the study proves that the multilayer
perceptron is able to generate 𝐶𝐴𝑊 estimates of similar quality. Lastly,
the present work highlights that the reliable and accurate prediction of
the added-wave resistance is still a challenging task for all examined
methods and will remain a competitive and demanding research topic
in the coming future.

Addressing the research question from the paper’s introduction, it
appears that tree-based ensemble methods show comparable or even
higher precision than the multilayer perceptron on in-sample data;
however, the final validation study revealed that tree-based ensemble
methods are rigid in their application and become unstable applied
on new data differing from the initial discretization or distribution.
This is a result of the inherent drawbacks of the Classification and
Regression Trees (CART) algorithm as its simplicity comes at the cost of
instability and inaccuracies as the weak learners tend to become overly
complex. In fact, this leads to decreased generalization capability and
overfitting. Moreover, tree-based ensemble methods show high bias in
the sense that they underestimate the magnitude of the added-wave
resistance under resonant conditions for most cases. As already noted,
tree-based ensemble methods do not perform sufficiently well on sparse
data, therefore the minimization of epistemic uncertainty is pivotal
for the improvement of the model performance. Thus, the generation
of an updated database with additional parameter combinations and
parameter variation is an important aspect for future work. In addition,

the consideration of different longitudinal radii of gyration 𝑘𝑦𝑦 and
block coefficients 𝐶𝐵 values is required for improving the prediction of
the added-wave resistance and the corresponding resonance frequency.
Lastly, the calibration on experimental data of the models using transfer
learning is a promising aspect of future work.

The implicit feature processing capabilities of deep neural networks
make their application appealing as the herein labor intensive prepro-
cessing is not required using these advanced architectures. Considering
deep learning methods and their ability handling high-dimensional
tensors, it is possible to utilize the hull shape itself as input as has been
proposed in the study by Taniguchi and Ichinose (2020). They employ
a Generative Adversarial Network for the generation of novel hull
shapes and a convolutional neural network as a discriminator trained
on CFD results of the wake profile. Such sophisticated layer types and
architectures have immense potential for future work regarding the
development of initial design aids and also hull shape optimization
approaches.
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Fig. 12. Residuals plot for the RF on the 𝐶𝐵 = 0.58 database.

Fig. 13. Residuals plot for the XGBR on the 𝐶𝐵 = 0.58 database.

Table 6
Metrics for the prediction of the train dataset for both databases.

𝐶𝐵 = 0.84 𝐶𝐵 = 0.58

RF XGBR MLP RF XGBR MLP

Baseline 𝑅𝑀𝑆𝐸 0.0322 0.0634 0.2674 0.0318 0.0596 0.2844
𝑀𝐴𝐸 0.0083 0.0295 0.1299 0.0082 0.0285 0.1393

(a) 𝑅𝑀𝑆𝐸 0.0121 0.0492 0.0726 0.0121 0.0484 0.0605
𝑀𝐴𝐸 0.0029 0.0258 0.0392 0.0029 0.0256 0.0414

(b) 𝑅𝑀𝑆𝐸 0.0154 0.1439 0.0877 0.0150 0.1423 0.0840
𝑀𝐴𝐸 0.0043 0.0870 0.0577 0.0054 0.0859 0.0563

Appendix

A.1. Performance on training dataset

See Table 6.

A.2. Residuals plots for the 𝐶𝐵 = 0.58 database

See Figs. 12–14.

A.3. Additional validation cases

In addition to the three validation cases in Section 4, the models are
validated for four other case studies. The ships are selected such that
they cover different operational conditions and hull shapes. The main

Table 7
Main particulars of the additional four case studies taken from Valanto and Hong
(2015), Shigunov et al. (2018), Yasukawa et al. (2019) and Park et al. (2019).

Unit HSVA DTC S-Cb84 SNU

𝐿𝑝𝑝 [m] 220.32 355.0 178.0 323.0
𝐵𝑚 [m] 32.04 51.0 32.26 60.0
𝑇𝑚 [m] 7.2 14.5 11.57 21.0
𝐶𝐵 [-] 0.654 0.661 0.84 0.83
𝑘𝑦𝑦∕𝐿𝑝𝑝 [-] 0.263 0.27 0.25 0.258
𝐹𝑛 [-] 0.233 0.052 0.0 0.137
𝛽 [deg.] 120 180 150 150

particulars of the hulls are presented in Table 7 and it is evident that
two slender and two full-type ships are chosen.

Initially, the slender HSVA (Hamburg Ship Model Basin) cruise ship
is considered in oblique waves 𝛽 = 120◦ and relatively high forward
speed 𝐹𝑛 = 0.233. In Fig. 15, the transfer function of 𝐶𝐴𝑊 is pre-
sented for the normalized wavelength 𝜆∕𝐿𝑝𝑝 alongside the experimental
samples of Valanto and Hong (Valanto and Hong, 2015).

As can be inferred from Fig. 15, all three ML models are consistent
with both model test results and the semi-empirical formula. However,
it is conspicuous that none of the methods capture the resonance region
correctly as the individual peaks deviate in both wave length and in
magnitude. It is evident that the TEM provide lower 𝐶𝐴𝑊 estimates
in the proximity of resonance compared to the MLP. Lastly, the MLP
provides the most accurate ML prediction considering both model test
data and the formula of Liu and Papanikolaou (2020). One possible
explanation for the deviations in case of the HSVA cruise ship could
be that the 𝑘𝑦𝑦∕𝐿𝑝𝑝 is kept constant in the database at 0.25 and the
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Fig. 14. Residuals plot for the MLP on the 𝐶𝐵 = 0.58 database.

Fig. 15. 𝐶𝐴𝑊 for the HSVA cruise ship for 𝛽 = 120◦ and 𝐹𝑛 = 0.233.

Fig. 16. 𝐶𝐴𝑊 for the DTC container ship for 𝛽 = 180◦ and 𝐹𝑛 = 0.052.

cruise ship has a 𝑘𝑦𝑦∕𝐿𝑝𝑝 = 0.263, (Valanto and Hong, 2015). In
addition, the loading condition (i.e. 𝐺𝑀) is neither variable in the

semi-empirical formula of Liu and Papanikolaou (2020) nor in the used
dataset. The weight distribution in general is a considerable source of
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Fig. 17. 𝐶𝐴𝑊 for the S-Cb84 bulk carrier for 𝛽 = 150◦ and 𝐹𝑛 = 0.0.

Fig. 18. 𝐶𝐴𝑊 for the SNU tanker for 𝛽 = 150◦ and 𝐹𝑛 = 0.137.

uncertainty during model tests as Park et al. (2015) mention. Moreover,
the occurrence of breaking waves as reported by Valanto and Hong
(2015), the relatively high forward speed and potential wall reflections
for oblique waves could be additional driving factors of experimental
uncertainty.

The slim-shaped Duisburg Test Case (DTC) was studied extensively
for its manoeuvering characteristics in waves during the SHOPERA
EU project. The case with head waves (𝛽 = 180◦) and relatively low
forward speed with 𝐹𝑛 = 0.052 was examined. The results for this case
are presented in Fig. 16 with the samples from Shigunov et al. (2018)
as benchmark.

In view of Fig. 16, it is assumed that the ML models provide
reasonable estimates in the regime of long waves due to the asymptotic
behavior, but in short wavelengths drastic deviations are noticeable in
comparison to the benchmark results. Conversely, the semi-empirical
formula captures the added-wave resistance in short waves sufficiently,
but underestimates the magnitude for the resonant frequencies. Also,
the estimates of the TEM – the XGBR in particular – show considerable
variance due the fact that TEM only yield piecewise approximations.

In the following, a case study without forward speed (𝐹𝑛 = 0.0)
is investigated with the full-type S-Cb84 bulk carrier in oblique waves

𝛽 = 150◦ and the results are presented in Fig. 17 together with the
model test data of Yasukawa et al. (2019).

As can be inferred in Fig. 17, the estimates of the ML models
are qualitatively in accordance with the benchmark data and the Liu
Papanikolaou formula. Moreover, the semi-empirical method shows
superior accuracy in long waves, whereas the ML methods exhibit good
agreement in shorter waves.

The last test case is the SNU (Seoul National University) tanker,
which is characterized by high fullness, in oblique waves 𝛽 = 150◦ and
medium forward speed conditions (𝐹𝑛 = 0.137). The experimental data
of Park et al. (2019) is considered for validation.

The ML models show a large variance in their accuracy, viz. Fig. 18.
In particular, the results of the TEM deviate dramatically both quan-
titatively and qualitatively. The predictions of the MLP match the
magnitude of the experimental data, but the peak frequencies differ
slightly. Once again, the data of the TEM shows irregularities in short
waves.
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A B S T R A C T

The present paper examines a semi-empirical framework for the estimation of added resistance in arbitrary
wave heading under consideration of uncertainty quantification. In this respect, the calibration of the formula’s
parameter vector is conducted based on particle swarm optimization as well as a database of model test
results comprising 25 different ships and around 1100 samples. In the first iteration, the minimization of
reducible systematic uncertainty is of interest and the effect of four objective functions on prediction accuracy
is evaluated. Moreover, two different parameter combinations were obtained for blunt (𝐶𝐵 ≥ 0.70) and slender-
type ships. Conversely, the irreducible statistical uncertainty, i.e. the inherent noise of the experimental data,
is taken into account by a quantile regression procedure. Applying this approach, a 90% prediction interval for
the formula’s estimates is implemented using the skewed version of the superior loss function in the previous
iteration. The practical relevance of an uncertainty estimate for the prediction of the added resistance is
emphasized in the final part, in which the proposed approach is validated in regular waves against model
test data and other well-established prediction methods. In general, the validation studies suggest satisfactory
performance and reliability of the adapted semi-empirical formulation.

1. Introduction

The increasing pressure at societal and legislative levels for the
reduction of carbon emissions in the maritime sector makes the accu-
rate and transparent prediction of the actual required engine power in
realistic seaways an imperative throughout the ship’s life cycle. The
added resistance is of high relevance in ship design and operation due
to its impact on safety and energy efficiency. The decrease in service
speed of merchant ships (slow steaming) leads to a larger contribution
of the added resistance to the total resistance in relative terms. Thus,
the added resistance is mainly a concern for energy efficiency consider-
ations in moderate sea states. In severe sea states, however, the risk of
losing maneuverability – for tankers and bulk carriers in particular – is
pivotal due to the prevalent trend of reducing installed engine power, in
order to comply with the enforced energy efficiency regulations such as
the Energy Efficiency Design Index (EEDI), Papanikolaou (2018). This
safety concern motivated the legislation of the Minimum Propulsion
Power (MPP) regulations by the International Maritime Organization
(IMO) for blunt-type ships, in which several semi-empirical formulas
are recommended for the practical determination of the added resis-
tance and the associated speed loss in a seaway, cf. IMO (2013, 2016)
and IMO (2017).

∗ Corresponding author.
E-mail address: mamit@mek.dtu.dk (M. Mittendorf).

The numerical calculation of added resistance has attracted much
attention over last years using not only potential flow theory meth-
ods, such as strip theory (e.g. Amini-Afshar and Bingham (2021))
and panel codes (e.g. Söding et al. (2014)), but also using RANS
(Reynolds-Averaged Navier Stokes) methods for calculating the added
resistance (e.g. Hizir et al. (2019)), the related propulsive coeffi-
cients (e.g. Mikkelsen et al. (2022)) or the maneuvering coefficients
(e.g. Uharek (2019)). However, the estimation of hydrodynamic char-
acteristics in waves, such as the added resistance, is subject to large
uncertainties both in terms of theoretical/numerical and experimen-
tal methods. The SHOPERA (Energy efficient safe SHip OPERAtion)
benchmark study, which was part of the eponymous EU-project, re-
vealed remarkable deviations in relatively short wave conditions be-
tween numerical results and model test data, cf. Shigunov et al. (2018).
As a matter of fact, precisely these conditions (i.e. 𝜆∕𝐿𝑝𝑝 < 0.5) are
nowadays of high importance according to Kwon (1981) and Minsaas
et al. (1983) as ships predominantly sail in these low to moderate sea
states. This is a consequence of increasing ship size (economy of scale)
and also due to the use of routing optimization/weather routing. Still,
short waves impose tremendous challenges on contemporary numerical

https://doi.org/10.1016/j.oceaneng.2022.111040
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methods and push their applicability towards and beyond the limits. On
one hand, the importance of non-linear effects, such as wave breaking
in short waves impedes the use of potential flow methods, such as
strip theory, for the prediction of added resistance. Additionally,
strip theory codes show a lack of accuracy in following and quartering
waves, Park et al. (2019). On the other hand, short waves lead to
a extremely fine spatial discretization of the free surface requiring
immense amounts of computational effort for RANS methods. The
computational cost is amplified by the required small timesteps for the
temporal discretization, in order to prevent numerical diffusion of the
wave elevation (𝐶𝐹𝐿 = 𝑢𝛥𝑡

𝛥𝑥 < 0.5 in free surface region), Sigmund
(2018).

Despite the increase in the availability of computational resources
and the accuracy of high-fidelity Computational Fluid Dynamics (CFD)
calculation tools, semi-empirical formulas are still widely applied for
the transparent and efficient assessment of a ship’s hydrodynamic
characteristics in ship design and operation. The development of (semi-
)empirical methods for the estimation of the added resistance in waves
is a competitive research area and sparked several different studies over
the past years. The application cases for such semi-empirical formulas
are manifold, e.g. the wave correction during sea trials (Tsujimoto
et al., 2021), overall hull and propeller performance monitoring (Taskar
and Andersen, 2021) and for bow shape optimization under realistic
conditions, Bolbot and Papanikolaou (2016). The bow shape and the
stem profile in particular are highly influential on the magnitude of
the added resistance. For instance, Yasukawa and Tsujimoto (2020)
conducted systematic model tests and showed a significant decrease in
added resistance throughout the total range of relative wavelengths for
a vertical stem with no protruding bulb compared to a conventional
stem geometry with a bulbous bow. In the field of ship operation, the
reliable prediction of the added resistance has also considerable influ-
ence on routing optimization (weather routing) as well as monitoring
the ship technical performance over time and scheduling hull/engine
maintenance.

1.1. Literature review

Havelock (1940) pioneered the scientific work of theoretically ap-
proximating second order wave forces by deriving a formulation for the
steady force acting on vertical circular cylinders. Fujii and Takahashi
(1975) proposed their well-renowned formula for the prediction of
added resistance caused by diffraction, i.e. wave reflection, by intro-
ducing two correction coefficients to Havelock’s approach. These two
coefficients take forward speed as well as ‘‘finite draft’’ into account
and their derivation was based on theoretical results from Ursell and
Dean (1947). Takahashi (1988) modified the original formula using
model test data. Later, Tsujimoto et al. (2008) and Kuroda et al. (2008)
fine-tuned the empirical corrections of the two additional parameters
based on experimental data and proposed the so-called NMRI (National
Maritime Research Institute Japan) formula. However, Kwon (1981)
pointed out that the finite draft influences both the partial reflection
effect and energy transmission below the hull. Liu (2020) as well
as Mourkogiannis and Liu (2021) proposed a physically more solid
semi-empirical formula taking the effects of forward speed, partial
reflection and the finite water depth as well as the energy transmission
below the hull into account.

In parallel, Jinkine and Ferdinande (1974) proposed an empirical
method for the calculation of the added resistance of fast cargo ships
due to radiation, i.e. in long waves. The extension of this method for
short waves using experimental data resulted in the STAwaveI and
STAwaveII formula for the estimation of the added resistance, where
the latter was recommended for the use in sea trial corrections by
the ITTC (2014). Lang and Mao (2021) proposed a combined approach
in their CTH formula (Chalmers Tekniska Högskola) by taking the
NMRI formula for short waves and the Jinkine and Ferdinande (1974)
approach for long waves. Furthermore, Lang and Mao implemented

several correction coefficients in short waves based on experimental
data. Faltinsen et al. (1980) developed an analytical asymptotic formula
for the calculation of the added resistance in short waves. Kashi-
wagi et al. (2010) as well as Liu and Papanikolaou (2013) introduced
practical corrections for advance speed and short waves, respectively.
Just recently, Yang et al. (2018) also modified Faltinsen’s asymptotic
formula in order to reflect the three following aspects: finite draft, local
steady velocity, and the hull shape above the waterline.

Liu et al. (2015), Liu and Papanikolaou (2016) and Liu et al.
(2019) established an efficient semi-empirical formula by combining an
enhanced version of the work of Jinkine and Ferdinande (1974) in long
waves and an adapted version of Faltinsen’s asymptotic formula (Faltin-
sen et al., 1980) in short waves simplified for practical use. Valanto and
Hong (2015) show that the added resistance becomes most prominent
in bow oblique waves and thus the consideration of heading angles 𝛽 ≠
180 deg. is vital for practical application. Hence, the approach for head
waves was lately extended to arbitrary heading angles and the proposed
approach was validated against a comprehensive database of model
test results, Liu and Papanikolaou (2020). Upon successful validation
studies, it was recently adopted by ITTC recommended procedure
for analyzing sea trial results, ITTC (2021) and Wang et al. (2021).
Moreover, the MEPC (Marine Environment Protection Committee) 76
circular (IMO, 2016, 2017, 2021) also endorsed this method for the
assessment of the minimum propulsion power of blunt-type ships.
Furthermore, Nielsen (2015) and Martinsen (2016) developed the DTU
design tool, which is a linear interpolation method aggregating results
of three different potential flow theory methods for a wide range of
wave headings and hull shapes. Machine Learning (ML) techniques are
increasingly employed in the realm of ship hydrodynamics. Thus, Mit-
tendorf et al. (2022) compare Artificial Neural Networks (ANN) and
ensemble tree-based methods for the prediction of the added resistance
in head to beam waves using the underlying database of the DTU design
tool. In addition, Cepowski (2020) proposed another solely data-driven
formula by training an ANN on model test data in head wave conditions
and extracted the corresponding equation from the obtained model
parameters and activations.

One can conclude that (semi-)empirical methods for the estimation
of the added resistance in waves have evolved over time. The mathe-
matical frameworks underwent multiple iterations and experienced an
increase in accuracy as more model test data became available and as
data analysis methods became more advanced. Holt and Nielsen (2021)
assessed the recently passed MPP regulations using empirical methods
for the estimation of added resistance. Their study sparked the idea of
the present contribution in adapting the longitudinal radius of gyration
𝑘𝑦𝑦 for the increase in prediction accuracy of the STAwaveII formula.
Just recently, Gatchell (2018) presented a parameter calibration of
the Hollenbach (1998) calm water resistance estimation method for
contemporary RoPax hull shapes using CFD results and Particle Swarm
Optimization (PSO). Nikolopoulos and Boulougouris (2019) on the
other hand employed the multi-objective genetic algorithm NSGA-II
(Non-dominated Sorting Genetic Algorithm) to adapt the Holtrop and
Mennen (1982) framework statistically for blunt ships using model
test data. Moreover, they expressed the uncertainty for each prediction
quantitatively by an analytical equation. Lastly, the rigorous parameter
calibration as well as uncertainty quantification are still unexplored in
the field of added resistance, and hence represent the novelties of the
following contribution.

1.2. Motivation and objective

The majority of estimation methods for the added resistance in
waves only consider head waves and provide deterministic predictions
showing severe practical limitations for these established formulas.
In this work, however, we make use of the formulation of Liu and
Papanikolaou (2020) for arbitrary wave heading and attempt to mini-
mize the reducible uncertainty pertaining the estimation of the added
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resistance and express the irreducible component quantitatively. Quot-
ing the famous aphorism of George Box,1 it is the overall aim of
this paper to enhance the usefulness of the semi-empirical formula
of Liu and Papanikolaou (2020) and accompany the estimates with
uncertainty bounds. In essence, the presented approach combines the
transparency of a simple semi-empirical formula with the accuracy
and predictive power of a supervised machine learning method in a
multivariate regression context. This will be addressed in two stages:
(1) In the holistic parameter calibration or rather training procedure
a metaheuristic optimization algorithm and a dataset of benchmark
model test results are employed. The parameter vector will be adjusted
minimizing, and comparing several different loss functions. (2) In the
second iteration, new parameters are derived using a quantile loss
function for lower and upper bounds establishing a 90% prediction
interval. The resulting framework is comparable to the method of Hol-
lenbach (1998) which provides lower and upper bounds, along with
the actual prediction, for the estimation of the calm water resistance.
Furthermore, it is envisioned to provide a pseudo-stochastic prediction
of the added resistance for arbitrary heading instead of a deterministic
one as a trustworthy representation of uncertainty is an imperative in
safety-critical domains such as wave loads on ships.

1.3. Composition

In the following Section 2, the analysis of the used database and
the residual analysis of the underlying (Liu and Papanikolaou, 2020)
formula will be presented. Section 3 is devoted to elucidate the applied
calibration methodology and presents the adapted and parameterized
semi-empirical formulation as well as the particle swarm optimizer.
Section 4 provides the obtained results and discussion, which includes
the validation in regular waves investigating a number of case studies.
In the final Section 5, conclusions are drawn and suggestions for
extending the work are presented.

2. Data analysis

Experiments on added resistance started in the 1960s and were
exploited to gain understanding of the behavior and performance of
ships in a realistic seaway as well as for the validation of numerical and
empirical tools. Conducting this kind of experiments requires highly
accurate measurement equipment, as the added resistance is a higher
order force and in most cases only of small magnitude compared to the
calm water resistance. In general, the added resistance is seen as a
non-viscous phenomenon and can be obtained from the square of ship-
generated waves, consisting of a linear superposition of diffraction and
radiation waves. Kashiwagi (2013) shows that the diffraction compo-
nent is not frequency dependent and nearly constant throughout the
entire regime of wavelengths. Initially, this may seem contradictory,
however, Kashiwagi et al. (2010) conclude from experimental data in
head wave conditions that the radiation component takes negative val-
ues in longer waves due to the interaction terms. Thus, the sum of both
contributions yield small, but positive values approaching zero with
increasing relative wavelength. The radiation component is, in fact,
frequency dependent and dominant in long to medium wavelengths.
On the other hand, the diffraction part is relatively more pronounced
in shorter waves. Blok (1993) splits the contributions to the added
resistance into (1) operational conditions, i.e. wavelength 𝜆, amplitude
𝜁𝑎 and relative heading 𝛽 as well as ship speed 𝐹𝑛 and (2) driving
factors related to the ship, i.e. main particulars and hull shape.

Table 1 presents an array of experimental data for head, oblique
and following waves and represents the employed database of this
work. The main particulars of the examined ships are indicated and
also the references are given in Table 1. It is stressed that only realistic

1 ‘‘All models are wrong, but some are useful’’.

ship designs are taken into account and mathematical hull definitions,
such as the Wigley hull, are disregarded due to the missing simi-
larity to contemporary hull forms. The database is characterized by
𝐿𝑝𝑝 ∈ [90, 355]m, 𝐶𝐵 ∈ [0.503, 0.858] and 𝐹𝑛 ∈ [0.0, 0.3]. According
to Papanikolaou (2014), the 𝐿∕𝐵 and 𝐵∕𝑇 ratios resemble the current
world fleet only to some extent: The 𝐿∕𝐵 ratios show small variation
𝐿∕𝐵 ∈ [5.05, 7.5] compared to 𝐿∕𝐵 ∈ [4.5, 8.5] for the world fleet.
(2) The 𝐵∕𝑇 ratios are slightly higher than the values of the current
world fleet with 𝐵∕𝑇 ∈ [2.5, 4.7] compared to 𝐵∕𝑇 ∈ [2.1, 4.0]. The
mentioned deviations are the first indications for systematic or rather
epistemic uncertainty of the available data. The decomposition of the
database regarding ship type is presented in Fig. 1(a) and reveals only
minor deviations to the current (2019) composition of the world fleet
according to gross tonnage, cf. Equasis (2019). However, general cargo
ships are over-represented in the present database comparing 24% to
only 4.5% in reality. In addition, the corresponding number of bulk
carriers is too small comparing 16% to 34% for the world fleet as of
2019.

The uncertainty of the added resistance in seafaring conditions is a
well-known problem, but is despite its relevance, not well studied. Park
et al. (2015) provide uncertainty sources of respective model tests
and Papanikolaou and Liu (2021) address this problem qualitatively.
Initially, two uncertainty categories are introduced: (A) Epistemic or
systematic uncertainty results from limitations of the available data,
i.e. missing observations. For instance, in short waves (𝜆∕𝐿𝑝𝑝 < 0.5)
and non-head wave conditions considerable epistemic uncertainty is
present. The database consists of 1127 samples of 25 ships in total, but
for 𝛽 < 180 deg. only 470 samples are included corresponding to 42% of
the total number of samples, whereas the sample size for 𝜆∕𝐿𝑝𝑝 < 0.5 is
even smaller at 231, cf. Fig. 1(b). (B) Aleatoric or statistical uncertainty
on the other hand, is due to the stochastic (non-deterministic) character
of the observations themselves and is thus an inherent part of the data.
Hence, the aleatoric uncertainty does not decrease by increasing the
sample size of the model test results. Soize (2017) and Hüllermeier and
Waegeman (2021) provide comprehensive overviews of uncertainty
quantification and the distinction of uncertainty components.

Park et al. (2015) list five sources of aleatoric uncertainty regard-
ing experiments for the added resistance: (1) Instrument uncertainty,
(2) mass distribution uncertainty, (3) calibration uncertainty, (4) mea-
surement uncertainty and (5) data reduction uncertainty. Papanikolaou
and Liu (2021) also highlight the uncertain influence of wave steepness
on data quality in short waves as well as limitations of towing tanks for
measuring the added resistance in short and especially oblique as well
as following waves due to, for example, wall effects, such as reflection.
Finally, experiments pertaining the added resistance are carried out
under partial dynamic similarity, i.e. constant Froude number. Thus,
viscous forces are, in fact, relatively more pronounced than in full scale,
which might also introduce additional uncertainty in short waves.

Conducting residual analysis of the original approach of Liu and
Papanikolaou (2020), it is observed that the residual variance not only
increases with the magnitude of the added resistance coefficient, but
also with increasing forward speed (𝐹𝑛). This phenomenon is known
as heteroskedasticity, i.e. the variance growth with an increase of a
target variable. The well-established p-test of Breusch and Pagan (1979)
identifies, whether regression models exhibit heteroskedastic residuals
and violate the normality of the residuals and thus the assumption of
linear regression. If the test statistics have a 𝑝-value below a sensible
threshold (e.g. 𝑝 < 0.05), the null hypothesis 𝐻0 of homoskedasticity is
rejected. The residuals of the Liu and Papanikolaou formula resulting
from application to the present dataset have a 𝑝-value of 𝑝 ≪ 0.05,
which proves heteroskedasticity. In the following parameter calibration
we attempt to reduce the degree of heteroskedasticity. Furthermore,
the residual analysis revealed a structural break at 𝐶𝐵 = 0.70, which
is reflected in the experimental data of the bluntness coefficient 𝐵𝑓 of
the original NMRI formula, cf. Fig. 6 in Liu and Papanikolaou (2016).
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Fig. 1. Breakdown per ship type (a) and relative wavelength (b).

Table 1
Database of benchmark model test data.

Ship 𝐿𝑝𝑝 [m] 𝐵 [m] 𝑇 [m] 𝐶𝐵 [–] 𝐹𝑛 [–] 𝛽 [deg.] Reference

170BC 279 45 16.5 0.858 0.128 {180,150,120,
90,60,30,0}

Kashiwagi et al. (2004)

DTC 355 51 14.5 0.661 {0.0,0.052,0.139} {180,150,120,
90,60,30,0}

Shigunov et al. (2018) and
Sprenger et al. (2017)

HSVA cruise ship 220.27 32.04 7.2 0.654 0.233 {180,150,120,
90,60,30,0}

Valanto and Hong (2015)

KCS 230 32.2 10.8 0.651 0.26 {180,90,0} Simonsen et al. (2014) and
Stocker (2016)

KVLCC2 320 58 20.8 0.808 {0.0,0.055,0.11,0.142} {180,150,120,
90,60,30,0}

Shigunov et al. (2018),
Guo and Steen (2010) and
Sadat-Hosseini et al. (2013)

S175 175 25.4 9.5 0.572 {0.15,0.2,0.25,0.3} {180,150,120,
90,60,30,0}

Fujii and Takahashi (1975) and
Nakamura and Naito (1977)

S-Cb84 178 32.26 11.57 0.84 {0.0,0.048,0.099,0.166} {180,150,
90,30}

Yasukawa et al. (2019)

S-LNGC 290 45 11.5 0.79 0.19 {180,150,120,
60,30,0}

Kim et al. (2021)

SNU tanker 323 60.0 21.0 0.83 0.137 {180,150,120,
90,60,30,0}

Park et al. (2019)

Aframax tanker 239 44 13.6 0.835 0.154 180 Oh et al. (2015)
Bulk carrier 285 50 18.5 0.829 {0.0,0.05,0.1,0.15} 180 Kadomatsu et al. (1989)
Container ship 300 40 14 0.66 0.247 180 Tsujimoto et al. (2008)
Product carrier 145.4 23.4 8 0.757 0.177 180 Li et al. (2016)
S.A. van der Stel 152.5 22.8 9.14 0.563 {0.15,0.2,0.25,0.3} 180 Gerritsma and Beukelman (1972)

5.2 0.503 {0.15,0.2,0.25,0.3} 180 Gerritsma and Beukelman (1972)
RIOS bulker 2.0 0.333 0.107 0.8 0.18 180 Kashiwagi et al. (2019)
RoPax 90 17.82 4.2 0.549 0.087 180 Sprenger et al. (2015)
Series 60 (𝐶𝐵 = 0.6) 121.96 16.254 6.492 0.6 {0.266,0.283} 180 Strøm-Tejsen et al. (1973)
Series 60 (𝐶𝐵 = 0.65) 121.96 16.816 6.73 0.65 {0.237, 0.254} 180 Strøm-Tejsen et al. (1973)
Series 60 (𝐶𝐵 = 0.7) 121.96 17.42 6.79 0.7 {0.207,0.222} 180 Strøm-Tejsen et al. (1973)
Series 60 (𝐶𝐵 = 0.75) 121.96 18.062 7.22 0.75 {0.177,0.195} 180 Strøm-Tejsen et al. (1973)
Series 60 (𝐶𝐵 = 0.8) 121.96 18.757 7.495 0.8 {0.147,0.165} 180 Strøm-Tejsen et al. (1973)
SR221C tanker 320 58 19.3 0.803 0.15 180 Kashiwagi et al. (2004)
Supramax tanker 192 36 11.2 0.84 0.17 180 Yu et al. (2017)
ULYSSES tanker 187.3 32 12 0.82 {0.06,0.12,0.17} 180 SSPA (2012)
WILS II container ship 324 48.4 15 0.602 0.183 180 Söding et al. (2014)

This structural break is highlighted in Fig. 2, in which the residuals are
presented for the block coefficient 𝐶𝐵 and the Froude number 𝐹𝑛.

It is assumed that the variance increase with higher forward speed
is the same as for slender ships (i.e. 𝐶𝐵 < 0.70) since they usually
operate under higher speeds compared to more full-type vessels. In fact,
they are subsequently also experimentally examined at these relatively
high speeds. Furthermore, the residuals are reasonably balanced for
𝐶𝐵 ≥ 0.70, whereas the formula provides in general too small values
for slender ships. The biased residuals for the fast and fine ships
strongly motivates splitting the database at 𝐶𝐵 = 0.70 and obtaining
two separate updated parameter vectors for the Liu and Papanikolaou
(2020) method. The resulting two datasets are presented in Fig. 3 and
comprise 598 for 𝐶𝐵 ≥ 0.70 and 529 samples for 𝐶𝐵 < 0.70.

It is appreciated that not only the residuals, but also the slender
ships’ added resistance coefficients are characterized by larger vari-
ance compared to the corresponding values of the blunt-type ships.
Moreover, it is obvious that the database is biased (unbalanced) to-
wards head wave conditions and relative wavelengths 𝜆∕𝐿𝑝𝑝 ≤ 1.0, cf.
Fig. 1(b). In addition, the dataset for the full-type ships is slightly larger,
but in general the database is considered as sufficiently balanced.
Furthermore, it is apparent in Fig. 3 (mainly in (a)) that the maximum
of the non-dimensional added resistance in head waves appears at a
slightly larger wavelength than ship length and reaches zero asymptot-
ically for wavelengths larger than twice the ship’s length. Two possible
reasons leading to the notable variance in head wave conditions may
be attributed to inaccuracies in the experimental setup and the use of
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Fig. 2. Residual analysis 𝜀 for block coefficient 𝐶𝐵 and Froude number 𝐹𝑛. It is noted
that the residuals are defined as 𝜀𝑖 = 𝑦𝑖− 𝑦̂𝑖, where 𝑦𝑖 is considered as the ground truth.

different wave amplitudes and thus wave steepnesses. Additionally, the
incident wave amplitude 𝜁𝑎 is neither spatially nor temporally constant
in a towing tank (not even in one run of experiments). Since, the added
resistance is proportional to 𝜁2𝑎 , spatio-temporal uncertainty of 𝜁𝑎 leads
to large scatter or rather aleatoric uncertainty. The attributed scatter
vanishes when normalizing the experimental data with the measured
𝜁2𝑎 , which is also indicated by Maruo (1957). Another reason for
uncertainty might be different natural frequencies in heave as well as
pitch due to different advance speeds. Despite the theory of Faltinsen’s
asymptotic formula, the non-dimensional added resistance is trivially
zero for 𝜆∕𝐿𝑝𝑝 = 0.0. In short waves, the non-dimensional added resis-
tance reaches nearly a constant value, but in some cases tends towards
large magnitude and variance, which is partly owed to wave breaking
effects at the bow. The latter phenomenon is presumably attributed to
relatively high wave steepnesses 𝐻∕𝜆, as Park et al. (2015) pointed
out. Sigmund (2018) comes to the same conclusion by comparing three
different wave steepnesses and their influence on the non-dimensional
added resistance by conducting RANS simulations. It was found that
increasing the wave steepness in turn slightly decreases the magnitude
of 𝐶𝐴𝑊 in long waves and increases 𝐶𝐴𝑊 in non-linear fashion in
short waves. It is thought that all experiments were carried out with
different wave steepnesses, but more importantly under relatively large
(and varying) wave amplitudes 𝜁𝑎 magnifying small added resistance
values in order to be measured sufficiently. Unfortunately, it is not
possible to study the dependency of the residuals on the wave steepness
or wave amplitude as most publications do not specify these values.
Moreover, the influence of forward speed 𝐹𝑛 ≠ 0 and non-linear
effects, such as wave breaking, contribute to the increase of 𝐶𝐴𝑊 in
relatively short waves. Ultimately, the added resistance is largest in
head to beam waves and only of comparably small magnitude in beam
to following seas. Hence, the DTU design tool (cf. Nielsen (2015) and
Martinsen (2016)) and the NMRI formula (cf. Tsujimoto et al. (2008))
assume the added resistance in waves to be equal to zero for the latter
range of wave headings as it is thought that the degree of uncertainty
exceeds the actual magnitude of the wave-added resistance. However,
the adoption of semi-empirical formulas for the prediction of added
resistance depends on the appropriate representation of physical phe-
nomena including the possibility of estimating a negative value like the
wave drift force in following waves. Therefore, the presented approach
imposes no restrictions of the considered relative wave heading angle
𝛽.

3. Applied methodology

The present parameter calibration procedure requires the minimiza-
tion of one objective, or rather loss, function L which is subject to the
parameter vector 𝑥𝑖 and independent variables 𝜃𝑚. This methodology
can be expressed mathematically as: minL(𝑥𝑖|𝜃𝑚). Herein, the meta-
heuristic Particle Swarm Optimization (PSO) algorithm is applied for
finding the global minimum due to the highly discontinuous and scat-
tered loss landscape, i.e. without a smooth gradient. The randomized,
population-based PSO method was proposed by Kennedy and Eberhart
(1995) and mimics the social behavior of bird or fish swarms. Each
particle is characterized by a position vector 𝑥𝑖 = [𝑥1, 𝑥2,… , 𝑥𝑛]𝑇 in the
𝑛-dimensional search space 𝛺 ⊆ R𝑛 and a corresponding velocity vector
𝑣𝑖.

𝑣𝑘+1𝑗 = 𝛷𝑣𝑘𝑗 + 𝑐1𝑟1(𝑃
𝑘
𝑗 − 𝑥𝑘𝑗 ) + 𝑐2𝑟2(𝐺

𝑘
𝑗 − 𝑥

𝑘
𝑗 ) (1)

In Eq. (1), 𝑗 denotes the 𝑗th particle and 𝑘 is the iteration index. More-
over, 𝛷 is the inertia weight or the momentum term, whereas 𝑐1 and
𝑐2 are two strictly positive weights for balancing the exploitation of 𝑃 𝑘𝑗
and 𝐺𝑘𝑗 – the particle’s best and the global best parameter combination,
respectively. The social behavior is implemented using the globally
or locally best solutions and 𝑐1 and 𝑐2 are considered as cognitive
and social impact, respectively. Hence, the choice of the 𝑐1 and 𝑐2
coefficients is of high importance for the PSO algorithm performing
well throughout the optimization procedure. On the other hand, 𝑟1
and 𝑟2 are two random variables drawn from a uniform distribution
between 0 and 1. The velocity update of the parameter vector 𝑥𝑘+1𝑗 is
defined in Eq. (2).

𝑥𝑘+1𝑗 = 𝑥𝑘𝑗 + 𝑣
𝑘+1
𝑗 . (2)

As has been described, balancing the cognitive and social impact
coefficients is decisive for the convergence of the optimization proce-
dure. Therefore, the adaptive PSO algorithm proposed by Zhan et al.
(2009) is applied in the present work. Ultimately, it suffices to specify
initial values for 𝛷, 𝑐1 and 𝑐2, and after each iteration the corresponding
values are changed dynamically. The updated values are determined by
the spread from the global optimum. In the present paper, the imple-
mentation of the Python software package Pymoo developed by Blank
and Deb (2020) is employed and we choose the following initial values:
𝛷 = 0.9, 𝑐1 = 2.0 and 𝑐2 = 2.0. Moreover, an upper velocity bound is
enforced in order to prevent the rapid movement of particles in the
search space 𝛺, and the corresponding value is defined as 𝑣𝑚𝑎𝑥 = 0.025.
The population size is 25 and termination criteria are the following:
(1) The threshold of the change of objective function is set to 10−6

and (2) the maximum number of generations is 105. Moreover, the
initial solutions are not drawn randomly, but by Latin Hypercube
Sampling which is a stratified sampling technique proposed by McKay
et al. (1979). The computations were performed on an Intel© CoreTM

i7-8565U CPU, 1.80 GHz with 16 GB physical memory (RAM).

3.1. Adapted semi-empirical framework

The mathematical framework for the prediction of the added resis-
tance 𝑅𝐴𝑊 combines a variation of the empirical approach of Jink-
ine and Ferdinande (1974) for long waves and a simplified version
of Faltinsen’s asymptotic formula in the short wavelength regime .
Further simplifications and empirical regression coefficients were in-
troduced, Liu et al. (2015). The original approach originated in the SH-
OPERA EU-project which addressed the rational calculation of the hy-
drodynamic behavior of ships in waves. In the present paper, we make
use of the latest version of this method which imposes no restrictions on
the wave heading, Liu and Papanikolaou (2020). The input vector to the
formula is the following 𝜃𝑚 = [𝜆, 𝐿𝑝𝑝, 𝐵, 𝑇𝑓 , 𝑇𝑎, 𝐶𝐵 , 𝐿𝐸 , 𝐿𝑅, 𝛽, 𝑘𝑦𝑦, 𝐹 𝑛]𝑇 .
It is noted that 𝑇𝑎 and 𝑇𝑓 denote the draft at in aft and forward position,
respectively. Moreover, 𝐿𝐸 and 𝐿𝑅 are the lengths of entrance and
describe the length between the fore- and aft-most position to the start
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Fig. 3. Samples of the 𝐶𝐴𝑊 database. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and end of the parallel midship body. The parameter vector 𝑥𝑖 com-
prises 29 constants of the initial formulation by Liu and Papanikolaou
(2020), which are presented in Table 2 alongside the corresponding
updated values. It is stressed that the signs of the parameters are
not changed and only strictly positive values are considered in the
parameter (or position) vector 𝑥𝑖. For detailed information and guiding
sketches, cf. Liu and Papanikolaou (2020). In contrast to the original
paper, we present the non-dimensional added resistance coefficient
𝐶𝐴𝑊 , cf. Eq. (3).

𝐶𝐴𝑊 =
𝑅𝐴𝑊 𝐿𝑝𝑝
𝜌𝑔𝜁2𝑎𝐵2 (3)

It is noted that 𝑔 denotes the gravity acceleration and 𝜌 reflects the
sea water density. In this work, the non-dimensional added resistance
coefficient 𝐶𝐴𝑊 is decomposed into (1) a base term 𝐶𝐴𝑊 ,𝑀 resulting
from ship motion and (2) a residual term for bow reflection 𝐶𝐴𝑊 ,𝑅 due
to diffraction in short waves. The latter contribution is considered as a
practical correction as the method by Jinkine and Ferdinande (1974)
shows only satisfactory accuracy in medium to long waves. A similar
correction approach is described by Tsujimoto et al. (2008). Following
the approach of Liu and Papanikolaou (2020), the reflection contribu-
tion is calculated using a modified version of Faltinsen’s formula and
takes the following form.

𝐶𝐴𝑊 ,𝑅 =
4∑
𝑖=1

𝐶 𝑖𝐴𝑊 ,𝑅. (4)

The reflection component is expressed in Eq. (4) separately
for each of the four segments 𝑆𝑖. Note that 𝑆1 and 𝑆2 are the port
and starboard parts of the bow, whereas 𝑆3 and 𝑆4 are the port and
starboard parts of the stern part, respectively.

𝐶1
𝐴𝑊 ,𝑅 = 𝑥2

𝐿𝑝𝑝
𝐵
𝛼𝑇 ∗

{
sin2(𝐸1 − 𝛽) +

2𝜔0𝑈
𝑔

× [cos𝐸1 cos(𝐸1 − 𝛽) − cos 𝛽]
}( 0.87

𝐶𝐵

)(1+4
√
𝐹𝑛)𝑓 (𝛽)

(5)

𝐶2
𝐴𝑊 ,𝑅 = 𝑥2

𝐿𝑝𝑝
𝐵
𝛼𝑇 ∗

{
sin2(𝐸1 + 𝛽) +

2𝜔0𝑈
𝑔

× [cos𝐸1 cos(𝐸1 + 𝛽) − cos 𝛽]
}( 0.87

𝐶𝐵

)(1+4
√
𝐹𝑛)𝑓 (𝛽)

(6)

We note that 𝜔0 is the intrinsic wave frequency, the ship’s advance
speed is denoted with 𝑈 in [m/s] and 𝛼𝑇 ∗ is the draft coefficient which

will be defined at a later stage. The form factor
(
0.87
𝐶𝐵

)(1+4
√
𝐹𝑛)𝑓 (𝛽)

,
which accounts for non-linear effects induced by the fore shoulder, is
neglected (i.e. equal to 1) in following wave conditions (cf. Eqs. (7) &
(8)) and not considered in the parameter calibration as its modification
affected convergence behavior negatively.

𝐶3
𝐴𝑊 ,𝑅 = −𝑥2

𝐿𝑝𝑝
𝐵
𝛼𝑇 ∗

×
{
sin2(𝐸2 + 𝛽) +

2𝜔0𝑈
𝑔

[cos𝐸2 cos(𝐸2 + 𝛽) − cos 𝛽]
}

(7)

𝐶4
𝐴𝑊 ,𝑅 = −𝑥2

𝐿𝑝𝑝
𝐵
𝛼𝑇 ∗

×
{
sin2(𝐸2 − 𝛽) +

2𝜔0𝑈
𝑔

[cos𝐸2 cos(𝐸2 − 𝛽) − cos 𝛽]
}

(8)

It is stressed that 𝐶1
𝐴𝑊𝑅 is valid for 𝐸1 ≤ 𝛽 ≤ 𝜋, 𝐶2

𝐴𝑊𝑅 in 𝜋 − 𝐸1 ≤
𝛽 ≤ 𝜋, 𝐶3

𝐴𝑊 ,𝑅 is valid for angles in 0 ≤ 𝛽 ≤ 𝜋 −𝐸2 and 𝐶4
𝐴𝑊𝑅 is defined

for 0 ≤ 𝛽 ≤ 𝐸2. Both 𝐸1 and 𝐸2 are considered as entrance angles of
the aft and bow part of the ship of interest.

𝐸1 = arctan
(
0.99 ⋅ 𝐵∕2

𝐿𝐸

)
(9)

𝐸2 = arctan
(
0.99 ⋅ 𝐵∕2

𝐿𝑅

)
(10)

The non-dimensional added resistance due to motion is calculated
in the following way using several regression coefficients:

𝐶𝐴𝑊 ,𝑀 = 𝑥1𝑎1𝑎2𝑎3𝜔̄
𝑏1𝑒

𝑏1
𝑑1

(1−𝜔̄𝑑1 ). (11)

In the following, the heading dependent regression coefficient 𝑎1
for the calculation of the motion component 𝐶𝐴𝑊 ,𝑀 is presented.

𝑎1

=

⎧
⎪⎪⎨⎪⎪⎩

𝑥3 𝐶
𝑥4
𝐵 (𝑥5 𝑘𝑦𝑦)2

(
𝑥6
𝐶𝐵

)−(1+𝐹𝑛) cos 𝛽 (
ln 𝐵

𝑇𝑚𝑎𝑥

)−1 (1−2 cos 𝛽)
𝑥7

for 𝛽 ∈ [ 𝜋
2
, 𝜋]

linear interpolation between 𝛽 = 𝜋∕2 and 𝛽 = 0 for 𝛽 ∈]0, 𝜋
2
[

𝑓 (𝑈, 𝑉𝑔) for 𝛽 = 0

(12)

The coefficient 𝑎1 requires special attention in beam to following
waves and its determination is described briefly in the next paragraph.
For elaborate explanations and the theoretical derivation consult the
original paper of Liu and Papanikolaou (2020).

The calculation of 𝑎1 in stern oblique waves 𝛽 ∈]0, 90[ deg. is
performed by linear interpolation between the beam and following
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Fig. 4. Ship forward-speed for which the maximum added resistance changes its sign
dependent on the relative wavelength, according to Liu and Papanikolaou (2020). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

sea case. The coefficient 𝑎1 in following waves is highly dependent
on the wave’s phase velocity 𝑉𝑐 as well as the ship advance speed 𝑈 .
The calculation is based on the investigation of the energy exchange
between ship and incident wave, cf. 4. Following the thoughts of Liu
and Papanikolaou (2020): (1) For 𝐹𝑛 = 0, the added resistance and thus
𝑎1 are negative, (2) on the green curve (𝑈 = 𝑉𝑐∕4) it is assumed that
the radiation component vanishes (𝑎1 = 0) and (3) on the orange curve
(𝑈 = 𝑉𝑐∕2) it is thought that 𝐶𝐴𝑊 is equal to the magnitude as in the
head wave case, but for non-forward speed, i.e. 𝑎1 is positive, but calcu-
lated for 𝐹𝑛 = 0. In addition, (4) the value at any condition in between
will be obtained by linear interpolation and (5) conditions above the
orange curve will be approximated using the relative Froude number
𝐹𝑛𝑟 = 𝑈−𝑉𝑐∕2√

𝑔𝐿𝑝𝑝
. The remaining regression coefficients are defined as

follows:

𝑎2 =

{
0.0072 + 𝑥8𝐹𝑛 for 𝐹𝑛 < 0.12
𝐹𝑛𝑥9𝑒(−𝑥10𝐹𝑛) for 𝐹𝑛 ≥ 0.12

(13)

𝑎3 = 1.0 + 𝑥11atan
|𝑇𝑎 − 𝑇𝑓 |
𝐿𝑝𝑝

(14)

𝑏1 =
{
𝑥12 for 𝜔̄ < 1
−𝑥13 elsewhere (15)

𝑑1 =
⎧⎪⎨⎪⎩

𝑥14
(𝐿𝑝𝑝𝐶𝐵

𝐵

)−𝑥15
for 𝜔̄ < 1

−𝑥14
(𝐿𝑝𝑝𝐶𝐵

𝐵

)−𝑥15
×
(
4 − 𝑥16 atan|𝑇𝑎−𝑇𝑓 |

𝐿𝑝𝑝

)
elsewhere

(16)

𝜔̄ = 𝑥17 3
√
𝑘𝑦𝑦

√
𝐿𝑝𝑝
𝜆

[
1 −

𝑥18
𝐶𝐵

(
ln

𝐵𝑚
𝑇𝑚𝑎𝑥

− ln 𝑥19
)](

𝐶𝐵
𝑥20

)𝑥21

×
[(
−𝑥22 𝐹𝑛2 + 𝑥23 𝐹𝑛

) | cos 𝛽| + 𝑥24(13 + cos 2𝛽)
𝑥25

]
. (17)

It is noted that 𝑇𝑚𝑎𝑥 is defined as 𝑇𝑚𝑎𝑥 = max(𝑇𝑎, 𝑇𝑓 ). The remaining
definitions are needed for the calculation of the reflection part, but
are presented in the last part as modifications are introduced in these
equations. Initially, the constraint enforcing the added resistance to be
zero for 𝜆∕𝐿𝑝𝑝 > 2.5 is removed in the draft coefficient 𝛼𝑇 ∗ as it led
to discontinuous results after initial calibration attempts. Instead, the
database was enriched with multiple artificial samples in the respective
range of wavelengths with 𝐶𝐴𝑊 = 0.0 introducing domain knowledge
into the otherwise solely data-driven methodology. Conversely, Ce-
powski (2020) did not include this kind of boundary condition in his
empirical machine learning approach and in some cases the added
resistance showed an unphysical increase in long waves. Referring to
the initially defined uncertainty categories, the epistemic uncertainty

in very long waves is reduced by the definition of artificial samples.

𝑓 (𝛽) =
{
−cos 𝛽 for 𝛽 ∈ [𝜋 − 𝐸1, 0]
0 for 𝛽 < 𝜋 − 𝐸1

(18)

𝛼𝑇 ∗ = 1 − 𝑒
−𝑥26𝜋

(
𝑇 ∗
𝜆 − 𝑇 ∗

𝑥27𝐿𝑝𝑝

)

. (19)

For the bow segments 𝑆1 and 𝑆2 the expression 𝑇 ∗ = 𝑇𝑚𝑎𝑥 is valid. In
the aft part, however, the following Eq. (20) is used. In the original
paper, a condition was imposed at 𝐶𝐵 = 0.75, but in the present ap-
proach, two separate parameter vectors are obtained with the transition
at 𝐶𝐵 = 0.70. Hence, the equation of 𝑇 ∗ for the stern simplifies to:

𝑇 ∗ =
𝑇𝑚𝑎𝑥

(
𝑥28 +

√| cos 𝛽|
)

𝑥29
. (20)

The presented framework acts as a model in the following calibration
or training procedure. Adopting the statistical notation, we consider the
estimate of the semi-empirical framework 𝐶𝐴𝑊 as the approximation
𝑦̂𝑖 and the database presented in Section 2 reflects the ground truth 𝑦𝑖.
Ultimately, the presented formulation as well as the derived parameters
are made publicly available on GitLab.2

3.2. Loss functions

As the performance of the semi-empirical method is not only sub-
ject to the uncertainty of the data, e.g. experimental uncertainty, but
also to model form uncertainty, a parameter calibration approach is
conducted. Essentially, we attempt to deduce an optimized parameter
vector 𝑥𝑖 using an objective or rather loss function and labeled data,
i.e. the database. Generally speaking, this methodology is defined – in
machine-learning terms – as Structural Risk Minimization (SRM) and
its concrete form is defined in Eq. (21), cf. Wang et al. (2020).

min 1
𝑁

𝑁∑
𝑖=1

𝑥𝑖 (𝑦𝑖) where 𝑦̂𝑖 = 𝑓 (𝜃𝑚) (21)

In the above-mentioned equation, 𝑁 corresponds to the number
of samples and 𝑓 denotes the previously presented semi-empirical
formulation. The choice of the loss function  is highly influential on
the quality of the results and is affected by the presence of outliers
and noise in the data. For gradient-based optimization, e.g. stochastic
gradient descent algorithms in deep learning, the differentiability of the
loss function is of high importance. In this work, however, we use a
gradient-free optimizer, i.e. particle swarm optimization. In Section 2
it was stated that the employed datasets are – the one for slender ships
in particular – characterized by large variance and heteroskedasticity.
For this reason, we investigate the effect of four different loss functions:
(1) the squared loss, (2) the absolute loss, (3) the Huber loss and (4) the
log-cosh loss. The latter two are, in fact, hybrid versions of the former
two.

1. Squared Loss

𝐿2 = (𝑦𝑖 − 𝑦𝑖)2. (22)

The squared loss or 𝐿2 error is the most commonly used loss
function and puts strong weight on outliers and variance.

2. Absolute Loss

𝐿1 = |𝑦𝑖 − 𝑦𝑖|. (23)

The 𝐿1 or absolute error is robust and expresses the magnitude
of errors without considering their direction.

Comparing the absolute to the squared loss, it proves that the 𝐿2 error
is more stable and provides a closed form solution due to its continuous

2 https://gitlab.gbar.dtu.dk/mamit/RAW_Formula.
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Fig. 5. Illustration of the behavior of the individual loss functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

derivative, Wang et al. (2020). Essentially, the Huber and the log-cosh
losses are considered as elegant combinations of the 𝐿1 and 𝐿2 losses
by restricting the influence of outliers and by also having a continuous
derivative. Hence, they combine the advantages of both 𝐿1 and 𝐿2 loss.

3. Huber Loss

𝐻𝑢𝑏𝑒𝑟 =
{ 1

2 (𝑦̂𝑖 − 𝑦𝑖)
2 for |𝑦̂𝑖 − 𝑦𝑖| ≤ 𝛿

𝛿|𝑦̂𝑖 − 𝑦𝑖| − 1
2 𝛿

2 otherwise
(24)

The Huber loss function is a piecewise function of squared and
absolute loss. The transition is controlled by the hyperparam-
eter 𝛿 and samples within this boundary use the squared loss,
whereas outside the boundary it is vice versa. In doing so, the
drawback of the squared loss can be diminished, i.e. putting less
weight on outliers and thus avoiding overfitting. The use of the
Huber loss is more complex due to the hyperparameter 𝛿, but
Huber himself suggested the robust value of 𝛿 = 1.35, cf. Huber
(1981).

4. Log-cosh Loss

𝑙𝑜𝑔−𝑐𝑜𝑠ℎ = log(cosh(𝑦̂𝑖 − 𝑦𝑖)). (25)

The Log-cosh loss function is the logarithm of the hyperbolic
cosine of the residual, i.e. when the error is small, the loss is
close to 1

2 𝜀
2 and when the error is large, the loss is approximately

|𝜀| − log 2. Hence, its behavior is very similar to the Huber loss
function, i.e. has all of its advantages, but it does not require the
definition (and optimization) of a hyperparameter.

The individual loss functions are depicted in Fig. 5(a) and it is
visible that the squared loss punishes large errors the most, whereas the
absolute loss is the only discontinuous function. For more information
about the described loss functions, cf. Wang et al. (2020).

The objective or loss function  of the parameter calibration is not
subject to any equality or inequality constraints, but the search space
𝛺 itself is constrained by lower and upper bounds of the variables
𝑥𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑢𝑖 , 𝑖 = 1,… , 𝑛. The constraints of the design space are highly
influential on the quality of the results and were found in an iterative
process. Ultimately, the described methodology has a resemblance to a
supervised regression approach in machine learning.

3.3. Quantile regression

Quantile Regression is a non-linear regression approach proposed
by Koenker and Hallock (2001). Its application is considered herein as

it is robust to the presence of outliers and considered as an extension
to linear regression, i.e. in case the corresponding assumptions are
not valid. This includes linearity, homoskedasticity and normality. As
pointed out it Section 2, none of these prerequisites are met in the
present work. Thus, for the determination of the uncertainty bounds,
SRM is employed again (cf. Eq. (21)) and the quantile loss function is
minimized. In general, this particular loss function is in its original form
an extended version of the absolute loss, which qualitatively matches
Eq. (23) when 𝛾 = 0.5 (i.e. the 50th percentile). The original quantile
loss function as proposed by Koenker and Hallock (2001) is given in
Eq. (26).

𝛾 (𝑦, 𝑦̂) =
{
(𝛾 − 1)(𝑦𝑖 − 𝑦̂𝑖) for 𝑦𝑖 < 𝑦̂𝑖
𝛾(𝑦𝑖 − 𝑦̂𝑖) otherwise where the quantile is 𝛾 ∈ [0, 1]

(26)

Using a tilted or pinball loss function in SRM enables the formula to
reflect a specified quantile instead of the mean. Quantile loss functions
adjust the weight of the individual sample’s error according the given
quantile 𝛾, i.e. a smaller 𝛾 increases the magnitude of the loss of those
samples with a negative residual 𝜀 and introduces more punishment
for overestimation. For large 𝛾 it is vice versa. An illustration of
several quantile loss functions are presented in Fig. 5(b) and for more
elaborate details regarding quantile regression consult Koenker and
Hallock (2001).

In this paper, a 90% prediction interval is desired and thus we
choose two objective functions with 𝛾 = 0.05 and 𝛾 = 0.95. However, the
actual definition of the used quantile loss function is dependent on the
performance of the other four losses in the first stage, i.e. the parameter
calibration. In addition, to the 29 parameters, an offset parameter 𝑥30
is defined and initialized with 𝑥30 = ±0.1, and is bounded by 𝑥30 ∈
[0.0, 0.2]. The updated and newly obtained parameters as well as the
corresponding constraints will be presented in the following section.

4. Results and discussion

4.1. Parameter calibration

The following part presents the obtained results and their inter-
pretation. It is noted that all samples of the S-Cb84 (cf. Table 1) are
left out of the training dataset as it acts as an out-of-sample test case.
Moreover, the training dataset comprises artificial samples in longer
waves 𝜆∕𝐿𝑝𝑝 > 2.5 as an enforced boundary condition. In Table 2,
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Table 2
Initial, bounding and final values of the parameter vector. Note, that the values in the parentheses reflect the parameters of
lower and upper bound, respectively.

Baseline Lower constraint Upper constraint Final parameters

𝐶𝐵 < 0.70 𝐶𝐵 ≥ 0.70

𝑥1 4.0 3.0 8.0 4.06 {3.03,4.27} 6.99 {3.0,4.59}
𝑥2 0.5625 0.42 0.705 0.705 {0.42,0.705} 0.425 {0.420,0.565}
𝑥3 60.3 50 100 56.23 {49.97,55.88} 70.92 {55.84,54.28}
𝑥4 1.34 1 2 1.185 {1.66,1.06} 2.0 {1.329,1.236}
𝑥5 4.0 2.5 5 4.057 {3.466,5.0} 3.013 {4.312,5.0}
𝑥6 0.87 0.65 1.09 0.65 {1.09,0.65} 0.9 {1.09,0.65}
𝑥7 3.0 2.25 5 2.25 {3.53,2.538} 3.726 {3.75,2.25}
𝑥8 0.1676 0.1 0.3 0.134 {0.12,0.21} 0.281 {0.146,0.21}
𝑥9 1.5 1.2 1.9 1.626 {1.483,1.502} 1.388 {1.793,1.549}
𝑥10 3.5 2.5 4.5 3.585 {2.62,3.583} 3.869 {3.566,3.954}
𝑥11 28.7 22 36 29.107 {30.924,27.079} 17.963 {27.628,33.777}
𝑥12 11 8 14 10.868 {12.974,8.2} 11.5 {12.298,14.0}
𝑥13 8.5 5.5 10.7 9.878 {10.7,6.37} 5.589 {10.7,6.37}
𝑥14 566 425 800 480.961 {707.94,425.0} 473.743 {679.27,425.0}
𝑥15 2.66 1.95 3.5 2.62 {1.95,3.5} 2.214 {2.309,3.5}
𝑥16 125 100 200 123.163 {93.535,121.801} 153.646 {130.0,118.02}
𝑥17 2.142 1.6 5.0 1.745 {2.166,2.041} 2.433 {2.231,2.043}
𝑥18 0.111 0.08 0.3 0.107 {0.14,0.0836} 0.0557 {0.083,0.105}
𝑥19 2.75 1.0 3.5 3.5 {2.896,3.5} 2.410{2.638,2.268}
𝑥20 0.65 0.4 0.825 0.825 {0.825,0.639} 0.813 {0.784,0.702}
𝑥21 0.17 0.125 0.3 0.125 {0.131,0.125} 0.3 {0.22,0.125}
𝑥22 1.377 1.03 2.0 1.03 {1.03,1.03} 1.008 {1.351,1.03}
𝑥23 1.157 1.0 1.45 1.201 {1.422,1.134} 1.076 {1.318,1.45}
𝑥24 0.618 0.4 0.9 0.723 {0.632,0.603} 0.778 {0.627,0.647}
𝑥25 14.0 10 20 13.630 {17.286,12.364} 19.241 {15.26,14.423}
𝑥26 4 3.0 5.0 5.0 {3.0,5.0} 3.029 {3.0,3.0}
𝑥27 2.5 1.0 4.0 3.15 {3.114,3.15} 3.845 {2.408,3.15}
𝑥28 {4.0,2.0} 1.0 6.0 2.897 {6.0,1.0} 3.123 {6.0,1.0}
𝑥29 {5.0,3.0} 2.0 7.5 5.552 {2.0,7.5} 4.527 {2.0,7.5}
𝑥30 ±0.1 0.0 ±0.2 ±0.2 ±0.2

the derived parameters as well as the corresponding initial values and
constraints are presented.

The determination of sensible constraints is the most
time-consuming part, as their values affect the balance between over-
and under-fitting, i.e. the bias–variance-tradeoff, cf. Hastie et al. (2009)
for detailed information. Essentially, the presented parameter bounds
were obtained in an iterative manner and the final values are, in fact,
considered as relatively narrow. This is a result of the fact that the
lower bound does not capture the resonance region sufficiently with
broader constraints. Other than that, it seems that the constraints are
chosen well since only a few final parameters reach the lower or
upper bound. Moreover, noticeable differences between initial values
and final parameters are observable underlining the degree of reduced
uncertainty. Also the parameter vectors for 𝐶𝐵 ≥ 0.70 and 𝐶𝐵 < 0.70 –
both of mean and the bounds – differ notably in their magnitudes.

In this contribution, we consider the coefficient of determination
𝑅2, the Pearson correlation coefficient 𝑟 and the variance 𝜎2 as metrics
for the assessment of the prediction accuracy. It is noted that the cor-
responding equations are presented in Eqs. (27)–(29) and that overbar
indicates then mean.

𝑅2 = 1 −
𝛴(𝑦𝑖 − 𝑦𝑖)2

𝛴(𝑦𝑖 − 𝑦𝑖)2
(27)

𝑟 =
𝛴(𝑦𝑖 − 𝑦̄)𝛴(𝑦̂𝑖 − ̄̂𝑦𝑖)√
𝛴(𝑦𝑖 − 𝑦̄)2𝛴(𝑦̂𝑖 − ̄̂𝑦)2

(28)

𝜎2 = 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2. (29)

The performance of the individual loss functions is examined for
the whole database (cf. Section 2) and not the separate sets. It is noted
that the database corresponds to the initial one and not to the training
set. The metrics are presented in Table 3 and the results of the squared
loss are highlighted as the derived parameters are most accurate and
subsequently adopted.

Table 3
Metrics for the performance of individual parameter combinations on the whole
database.

Baseline Squared loss Absolute loss Huber(1.35) loss Log-cosh loss

𝑅2 0.672 0.731 0.711 0.722 0.721
𝑟 0.835 0.856 0.848 0.852 0.852
𝜎2 2.540 2.074 2.174 2.121 2.124

As can be inferred in Table 3, a performance increase of approxi-
mately 8.8% considering 𝑅2 is achieved by the proposed methodology
using parameters of the 𝐿2 procedure and compared to the metrics of
the initial formulation. Moreover, the Pearson correlation coefficient
improved and the variance decreased significantly across the board.
The 𝐿2 loss performs superior compared to the 𝐿1 loss and the metrics
of Huber and Log-cosh losses are of similar character as expected
due to their comparable behavior. Lastly, the Breusch Pagan test is
conducted for the residuals of the updated formula, but they are still
heteroskedastic, since we have to reject 𝐻0 again as the 𝑝-value is
𝑝 ≪ 0.05. The heteroskedasticity is also visible in the residuals plot in
Fig. 6(a), in which the residuals of the original and updated formulation
are displayed in parallel.

In general, the distinction between epistemic and aleatoric uncer-
tainty is imprecise in the context of model assessment, Soize (2017).
Hence, we introduce the term model form uncertainty dividing into
parameter and structural uncertainty, where the latter corresponds to
the model’s bias, e.g. inadequate assumptions. The parameter calibra-
tion leads to a decrease in variance of the residuals, but, as indicated
by the Breusch Pagan p-test, to no reduction in heteroskedasticity,
cf. Fig. 6. Moreover, for low to medium magnitudes of the added
resistance coefficient it is perceptible that the method tends to provide
higher values compared to the database (overprediction). Whereas in
the regime of large 𝐶𝐴𝑊 magnitude, the approach is characterized by
underprediction, cf. Fig. 6(a). This shows strongly biased residuals and
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Fig. 6. Residual analysis comparing the presented approach to the original method. It is noted that the residuals are defined as 𝜀𝑖 = 𝑦𝑖 − 𝑦̂𝑖, where 𝑦𝑖 is considered as the ground
truth. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

therefore considerable structural uncertainty. In view of Fig. 6(b) it is
concluded that the largest residual variance is present in short waves
and in the region close to resonant conditions (i.e. 𝜆∕𝐿𝑝𝑝 ∈ [0.5, 1.5]).
Ultimately, only a minor variance decrease is noticeable considering
the blockcoefficient 𝐶𝐵 and the wave heading 𝛽, cf. Figs. 6(c) and
6(d). However, the residuals are still biased towards lower estimates
for slender hull shapes and also in head oblique wave conditions
(i.e. 𝛽 ∈ [180, 150] deg.) Moreover, we see heavily skewed residuals
for 𝛽 = 30 deg. and a shift in the bias from the original to the
present method in beam waves (𝛽 = 90 deg.). Ultimately, a substantial
variance reduction (parameter uncertainty) was achieved, but the bias
(structural uncertainty) remained stable to a large extend.

Since the parameters derived by minimizing the 𝐿2 loss are adopted,
the squared version of the quantile loss function is used in the second
task: The outlier robust quantile regression. The modified quantile loss
function is defined in Eq. (30).

𝛾,𝐿2(𝑦, 𝑦̂) =
{
(𝛾 − 1)(𝑦𝑖 − 𝑦̂𝑖)2 for 𝑦𝑖 < 𝑦̂𝑖
𝛾(𝑦𝑖 − 𝑦̂𝑖)2 otherwise. (30)

The convergence behavior of the determination of the four necessary
uncertainty bounds is presented in Fig. 7, and it is stated that obtaining
suitable parameters for the 90% prediction interval required more

iterations, i.e. more computational effort, for the slender-type ships.
Moreover, the corresponding values for the blunt-type ships are not
only characterized by fewer iterations, but also by lower magnitude of
the respective loss functions. This is a result of the sensitivity to large
variance (outliers) of squared loss functions and the larger inherent
variance in the case of the slender-type ship database. Ultimately,
all four optimization runs converged successfully and the resulting
parameters are presented in Table 2 in the parentheses.

4.2. Validation in regular waves

In the following, the validation of the developed method against
model test results and other established (semi-)empirical methods for
the determination of the added resistance is carried out. In this respect,
we investigate four ships and illuminate the influence of forward-speed
on the uncertainty, the in- and out-of-sample prediction in various wave
headings as well as the comparison to established methods, e.g. the
DTU design tool. It is noted that the corresponding main particulars of
the individual test cases are listed in Table 1.

As in the original paper we validate the proposed method consid-
ering the S-Cb84 bulk carrier as an out-of-sample test case for the
assessment of the overall generalization capability. The case ship is
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Fig. 7. Convergence study of the quantile loss functions for the individual bounds.
Note that both axes are in logarithmic scale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Assessment of the performance for the out-of-sample test case S-Cb84 at
𝐹𝑛 = 0.1. The uncertainty estimate for the head wave case is excluded, as it almost
maps on top of the one for 150 deg. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

evaluated in several heading angles at 𝐹𝑛 = 0.1 and the model test
data is taken from Yasukawa et al. (2019).

As can be inferred from Fig. 8, the accuracy of the proposed method
appears as sufficient in comparison to the original method. Moreover,
the prediction interval is remarkably accurate and insightful, since
almost all EFD (Experimental Fluid Dynamics) samples stay within the
uncertainty bounds and the interval’s width has a distinct dependency
on the relative wavelength. The largest uncertainty is present in reso-
nant conditions and the width narrows for short and especially for long
waves. It is noted that the uncertainty estimate for head waves is not
included as it intersects with the corresponding one of 𝛽 = 150 deg.
to a large extent. Even though the S-Cb84 was not part of the training
dataset, the mean predictions are of comparable quality to the original
method of Liu and Papanikolaou (2020).

The second case study is the Series 60 ship (𝐶𝐵 = 0.8) and the
behavior of the uncertainty estimate in head waves with increasing
forward speed is studied. The proposed method is validated against the
EFD data from Strøm-Tejsen et al. (1973) in Fig. 9.

In view of Fig. 9, it is stated that all model test results remain
inside the 90% prediction interval and also that the dependency of
the uncertainty on the advance speed is evident. It is appreciated that
the mean estimates of the proposed method provide lower predic-
tions for the entire relative wavelength regime. Moreover, the peak
frequency according to the semi-empirical formula deviates minimally

Fig. 9. Effect of forward speed investigating the S60 ship (𝐶𝐵 = 0.8) in head waves.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. S175 container ship at 𝐹𝑛 = 0.15 for a variety of wave headings. As a
sidenote, all experimental samples are taken from Fujii and Takahashi (1975). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

from the experimental resonance frequency. Lastly, the variance in-
crease with larger advance speed is not only visible for the 90%
prediction intervals, but also in the EFD data itself.

The slender S175 container ship is the third test case and will be
examined for five different heading angles in Fig. 10 at 𝐹𝑛 = 0.15. The
experimental results of Fujii and Takahashi (1975) are considered in
the following.

All of the EFD samples stay well within the uncertainty bounds
and the present method’s mean predictions show sufficient agreement
to the model test results in all considered heading angles, but tend
to underestimate the non-dimensional added resistance in long head
waves. In addition, it evident that the proposed approach provides
higher mean estimates in short waves, but lower ones in resonant condi-
tions compared to the original method. This is the exact opposite to the
observations made for the S-Cb84 bulk carrier. The final case study is a
full-type LNG carrier in oblique waves with 𝛽 = 150 deg. and moderate
forward speed at 𝐹𝑛 = 0.19. The proposed method will be compared
to several well-established approaches, such as the STAwaveII (ITTC,
2017), the DTU design tool, the CTH formula proposed by Lang and
Mao (2021) and the original approach by Liu and Papanikolaou (2020).
All of these formulations were introduced in Section 1.1. The model
test results of Kim et al. (2021) are considered as the ground truth in
Fig. 11.

As one can appreciate in Fig. 11, the uncertainty bounds enclose the
majority of the EFD results. Moreover, the mean estimate of the present
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Fig. 11. Comparison of several prediction methods for the S-LNGC at 𝐹𝑛 = 0.19 in
𝛽 = 150 deg. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

method tends towards the lower bound in very short waves, which
might indicate that the parameter constraints in the above methodology
were selected too narrow as two samples fall outside the prediction
interval in the short wave regime. Other than that, the present method
approximates the non-dimensional added resistance well and is in sat-
isfactory agreement with the DTU design tool. The STAwaveII and the
CTH formula show the tendency to over predict the added resistance
in the resonance region as well as for long waves and the estimates
of the CTH formula even fall outside the 90% prediction interval. It
is assumed that the deviation in case of the CTH formula estimates
results from the two opposing approaches for the calculation of the
reflection contribution as both the CTH and Liu and Papanikolaou
(2020) formulas apply the (Jinkine and Ferdinande, 1974) approach for
the motion component. Furthermore, Lang and Mao (2021) derive a dif-
ferent, simplified methodology for the calculation of added resistance
in oblique and following seas from the analysis of heave, pitch and roll
transfer functions and introduce two additional correction coefficients.
Comparing the original formula of Liu and Papanikolaou (2020) to the
calibrated one, we conclude that the same observations as in the case
of the S60 ship are perceptible, i.e. lower estimates for the whole range
of relative wavelengths. Lastly, it is not possible to properly assess the
performance in very short waves (i.e. 𝜆∕𝐿𝑝𝑝 < 0.3) as there are no
available model test results.

4.3. General remarks and discussion

The mean estimate of the proposed method is of comparable accu-
racy to the original formula; however, the prediction interval proved
to be highly insightful and shows that the reliable and accurate estima-
tion of the second order wave drift force on ships is still a complex
research area. The quantitative prediction of uncertainty around the
added resistance is the main novelty of this contribution. In general,
the shape of the 90% prediction interval matches expectations to a
large extend, but especially in very short waves the uncertainties were
assumed to be larger. In case of the S-LNGC this fact was most striking
as the mean estimate converged towards the lower uncertainty bound
and the EFD data fell out of the prediction interval, cf. Fig. 11. The
narrow bandwidth in the short wave regime results from the epistemic
uncertainty and the limited availability of samples in this range of
relative wavelengths, cf. Fig. 1(b).

Moreover, one can conclude in view of Fig. 10, that the reflec-
tion component 𝐶𝐴𝑊 ,𝑅 has increased for slender ships relative to the
formula of Liu and Papanikolaou (2020), whereas for the motion
contribution 𝐶𝐴𝑊 ,𝑀 it is vice versa. For blunt-type ships, it is visible
that the reflection component has decreased considerably, cf. Fig. 9.

In Section 2, it was assumed that the large variance in the slender ship
(𝐶𝐵 < 0.7) database is attributed to high forward speeds. Additionally,
the variance might result from more pronounced non-linear behavior,
such as wave breaking in short waves, which is mainly due to the hull
shape (and wave steepness): (1) The significant flare angles in the bow
region, (2) the relatively long bulbous bow and (3) extreme 𝐵∕𝑇 ratios
(in case of passenger ships) lead to a considerable reflection contribu-
tion. Hizir et al. (2019) discuss the geometric non-linearity of slender
hulls and Mourkogiannis and Liu (2021) analyze the bow reflection
of ships with high 𝐵∕𝑇 ratios both analytically and numerically. The
accuracy for blunt and slender ships as well as the smoothness of the
method is investigated in Fig. 12 considering the HSVA cruise ship and
the SNU tanker. It is noted that both ships are in-sample testcases and
that the proper assessment and validation of the formula’s accuracy is
not possible using a tilted three-dimensional figure.

It is thought that the presented method provides satisfactory and
smooth estimates, but fine-tuning is needed especially in short waves
as considerable deviations are evident in both Figs. 12(a) and 12(b).
Moreover, conservative estimates for the full-type tanker and underpre-
diction for the fast and slender cruise ship are perceptible. The latter
problem has already been observed in Fig. 2 and similar deviations
for slender ships were also observed by Tsujimoto et al. (2008) using
their NMRI formula. Lastly, the reduction of the residuals’ variance
was achieved and thus it was possible to diminish the parameter un-
certainty. However, even after the parameter calibration, the residuals
revealed significant bias in Fig. 6 indicating strong structural uncer-
tainty. Although it was attempted to lower this uncertainty component
by splitting the method at 𝐶𝐵 = 0.70 and deriving two separate
parameter sets, the impact was negligible. The extension of the un-
derlying semi-empirical framework of Liu and Papanikolaou (2020) is
thus an important aspect for the reduction of structural uncertainty.
As a sidenote, during extensive validation studies it appeared in a few
cases that in following seas and relatively low forward speed (𝐹𝑛 < 0.1)
the uncertainty bounds intersect. It is thought that this results from the
small magnitude of the added resistance for low 𝐹𝑛 and the conditional
calculation of 𝑎1. Ultimately, an exception is included in the developed
code to circumvent this drawback and it also requires further studies
in the future in order to overcome this issue.

The calculation of the added resistance in following and quartering
waves utilizing the Liu and Papanikolaou formula is based on linear
interpolation and dependent on encounter frequency. The formulation
of Maruo (1957), on the other hand, is exact under the assumptions
of an ideal fluid and shows that the sign of the added resistance in
following waves can be obtained by the balance of the magnitude
of three integrals dependent on the encounter frequency. Still, the
drawback of this approach is the required knowledge of detailed hull
form information as well as the increased computational effort for
the calculation of the Kochin function. However, the focus of the
presented formula is on the efficient and practical determination of
the added resistance in waves with rudimentary hull form information,
e.g. in early ship design stages. Therefore, a modified and simplified
reasoning using Maruo’s theory is chosen for the calculation of the sign
of the added resistance in following waves (cf. Eq. (12) and Fig. 4).
In addition, the development of a correction approach dependent on
wave steepness would lead to improved results of the semi-empirical
framework especially in short waves and for slender ships, however,
there is often a lack of corresponding 𝐻∕𝜆 data in publicly available
experimental data.

The previously mentioned assumption of the DTU design tool and
the NMRI formula, i.e. considering the added resistance to be zero in
stern oblique waves due to the surrounding uncertainty is addressed.
From a practical perspective the assumption appears as legitimate in
view of Figs. 8 and 10 as the degree of uncertainty engulfs the actual
magnitude of the predicted added resistance. However, from a scientific
standpoint this observation motivates further rigorous experimental
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Fig. 12. Illustration of the present method compared to model test data for two case studies. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

and numerical investigation of 𝐶𝐴𝑊 in wave headings of 𝛽 ∈ [0, 90]
deg., in order to further reduce the epistemic uncertainty in this regime
of wave headings. In addition, more experimental data for slender
ships, e.g. container and naval ships, are required. It is well known
in statistical modeling that the model itself can only be as good as the
underlying dataset. Hence, the extension of the database with model
test samples showing high data quality in oblique waves is essential
for the enhancement of the Liu and Papanikolaou formula applying the
present approach.

The prediction of uncertainty bounds of the added resistance en-
ables the possible application of the proposed method for the deter-
mination of outliers and erroneous data, i.e. outlier detection, in either
experimental or numerical data. The definition of a corresponding
decision boundary is non-trivial in this case as the added resistance is
inherently non-linear (and heteroskedastic). Hence, a constant (i.e. lin-
ear) criterion for anomaly detection for the entire 𝐶𝐴𝑊 regime derived,
e.g. from either the variance or the interquartile range of the underlying
dataset is considered as not appropriate. In this respect, the application
of unsupervised machine learning methods for classification show po-
tential for accurate non-linear outlier detection for 𝐶𝐴𝑊 . However, this
kind of methods is in general considered as opaque and thus the pro-
posed approach could show better applicability due to its transparency

resulting from the used simple algebraic expressions. Ultimately, an
investigation in this direction is an interesting aspect for further work.

5. Summary and conclusion

The present study proposed a data-driven methodology for param-
eter calibration of a semi-empirical approach for estimation of the
added resistance. The calibration was performed for the reduction of
the inherent uncertainties of the added resistance in a deterministic
manner. In this contribution, the mathematical formulation of Liu
and Papanikolaou (2020) was adjusted and the parameter vector was
optimized with respect to two datasets for full and slender ships con-
sisting of several hundred of data points from publicly available model
tests resembling the current world fleet sufficiently. In doing so, the
method’s transparency is maintained and the advantages of super-
vised regression models are leveraged. The minimization was defined
as a single objective optimization problem and due to the complex
and scattered loss landscape, the stochastic and metaheuristic particle
swarm optimizer was used. It was found that out of four different loss
functions, the squared loss function performed superior according to
the chosen metrics. The calibration of the semi-empirical definition led
to an increase of around 9% in performance and thereby the parameter
uncertainty was diminished significantly. The 90% prediction interval
was established by deriving additional parameter sets which were
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determined by optimizing the tilted quantile version of the squared
loss function. The uncertainty bounds proved to be highly valuable in
a practical context for expressing the inherent irreducible uncertainty
of the added resistance. Finally, the proposed method was validated
against experimental data and several well-established formulas for
the prediction of the added resistance. The validation studies suggest
satisfactory accuracy of the mean estimate and the prediction interval
on in- and out-of-sample data.

The implementation of the uncertainty bounds increases the rele-
vance of the used formula for practical application. In addition, the
described calibration methodology is considered as ‘‘method-agnostic’’
or generic for uncertainty quantification of (semi-)empirical formulas
in general for e.g. the calculation of motion transfer functions using
the closed form expressions of Jensen et al. (2004) as long as enough
experimental data is available. The present study was limited to regular
long-crested regular waves, however, the calculation of the mean added
resistance in irregular waves is trivial given a suitable (directional)
wave energy density spectrum and under the assumption of linear
superposition and time invariance. However, the mentioned prerequi-
sites are invalid under certain circumstances, e.g. in severe sea states
or under changing weather conditions. For this reason, higher order
spectral analysis may be required for an accurate estimate of the mean
added resistance in a realistic seaway as shown by Hasselmann (1966).
Furthermore, a corresponding uncertainty estimate of the prevalent
wave spectrum is necessary for a consistent calculation. Lastly, the
present paper advocates the implementation of a trustworthy represen-
tation of uncertainty when predicting safety-related quantities in ship
hydrodynamics, such as the added resistance or speed loss in a realistic
seaway.

Even though the method has been compared to multiple established
approaches, additional and more rigorous validation studies are nec-
essary for universal applicable recommendations and limitations for
application. Moreover, sensitivity studies for the variation in draft and
trim are important subjects of future work, in order to prove the appli-
cability of the proposed method in ship operation for, e.g. performance
monitoring or weather routing. Moreover, it seems appealing to enrich
the presented database with high-fidelity CFD results – in short and
oblique waves in particular – for further reduction of epistemic uncer-
tainty as model test results from the public domain are scarce in these
specific conditions. In Section 2, it was decided to split the approach
for the block coefficient; however, dividing the method for different
forward speed regimes and deriving updated parameter sets might
have serious potential for further reducing structural uncertainty. The
application of a parameter calibration combined with a bias correction
introduced by an additive discrepancy expression in a probabilistic or
Bayesian methodology could also have a tremendous effect on reducing
and explaining the model form uncertainty, cf. Wu et al. (2021).

Reproducibility

In order to facilitate adoption and adaptation of the presented
approach, the Python code as well as an Excel implementation is
publicly available on https://gitlab.gbar.dtu.dk/mamit/RAW_Formula.
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Chapter 4

Ship-based Prediction of Sea State
Information

Mathematically, estimating the mean added wave resistance in irregular waves is straight-
forward using Eq. 2.6, given a suitable quadratic transfer function and a wave energy
density spectrum. In practice, however, sea state information is sparse and can, thus, be
considered an Achilles heel for the determination of R̄AW in actual conditions, according to
Bertram [11]. Therefore, the present chapter considers the ship as a sailing wave buoy, i.e.
the wave-induced ship response is used for estimating the governing sea state conditions in
an inverse problem. The first studies on the wave buoy analogy started in the 1970s and
Nielsen [95] provides an extensive overview of model-based methods for sea state estimation,
which utilize the ship motion transfer functions. Research pertaining to on-site sea state es-
timation evolved in several iterations, where considering ship forward speed and eventually
beam-to-following waves were considered as separate crucial milestones, Iseki and Ohtsu
[56]. Recently, the application of deep neural networks showed promising results using the
wave buoy analogy concept, e.g. Düz et al. [28].

4.1 Introduction
In his 1950 seminal paper, Alan Turing asked, ”Can machines think?”, Turing [125]. Ad-
ditionally, he stated ”[...] that these machines are intended to carry out any operations
which could be done by a human computer”. Indeed, this is a definition of artificial general
intelligence, i.e. a human-like performance, which is considered the ultimate goal in the
research field of machine learning. Exactly 70 years later, in 2020, Brown et al. [18] pro-
posed an autoregressive language model called GPT3 (Generative Pre-trained Transformer
3), which has an enormous number of 175 billion parameters, and the later ChatGPT ap-
plication built upon this particular model. Brown et al. [18] state that human evaluators
struggled to distinguish between human-written and news articles generated by GPT3, indi-
cating that GPT3 may exhibit human-like behavior in specific disciplines. However, several
insufficiencies and erroneous behavior of GPT3 were reported as well.

Deep learning is the underlying methodology on which GPT3 is founded, and it is con-
sidered a sub-field of machine learning. Formally, deep learning is concerned with neural
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networks with more than one hidden layer and follows connectionism, which attempts to
emulate cognitive processes by an interconnected network of nodes (or simplified neurons).
Thereby it is understood that these connections can be adjusted by weights. In its most
generic form, deep neural networks can be considered composite functions (or acyclic graphs)
of several different units, which can be seen in Eq. 4.1.

ŷ = ϕl[θl, ϕl−1(θl−1, . . . , ϕ1{θ1,x})] (4.1)

As can be inferred from Eq. 4.1, a neural network produces (in this case) a feedforward
mapping, i.e. the information flows in one direction from input to output through hidden
layers. Moreover, each affine layer with index l comprises parameters Θ and a non-linear
activation function ϕ. As a side note, the bias terms are disregarded in Eq. 4.1. The-
oretically, according to the universal approximation theorem, any neural network with a
linear output layer and at least one hidden layer with a sufficient number of neurons can
represent any possible function, Goodfellow et al. [39]. Even though this network may
represent any function, it is uncertain whether the training algorithm is capable of learning
this function either due to overfitting or caused by the optimization algorithm, which may
be unable to find a parameter combination fitting the function correctly. The optimal set
of parameters is obtained by gradient-based optimization, and the gradients are obtained
through backpropagation, which feeds errors from output to input nodes, as proposed by
Rumelhart et al. [105]. Quintessential, the multilayer perceptron in [J1] can already be
considered a deep neural network, but it treats its inputs as spatially invariant. In contrast,
convolutional and recurrent neural networks are able to process higher-dimensional spatially
coherent or even sequential data. Deep neural networks generally exhibit a higher scala-
bility compared to traditional machine learning techniques in terms of input dimensions
and sample size. However, due to the larger number of parameters, both computational
effort and the risk of overfitting (on small datasets) are typically higher in comparison to
other machine learning methods. It is important to stress that the field of deep learning is
still an active research discipline and that certain aspects still lack a thorough theoretical
foundation. A concise overview of the deep learning development is given by LeCun et al.
[76], whereas a theoretical background can be found in Goodfellow et al. [39].

One of the most significant advantages of deep learning techniques is the implicit feature
construction, i.e. the ability to generate meaningful data without any manual preprocess-
ing, which is also known as end-to-end learning. In contrast, traditional machine learning
approaches require time-consuming feature extraction before modeling, as shown by Tu et
al. [124], where they utilize time/frequency domain features for classifying the sea state
according to the Beaufort scale. Following the work of Tu et al. [124], the overall method-
ology is named sea state identification, to differentiate from sea state estimation, where the
entire directional wave spectrum is predicted. Herein, the models are trained for providing
the mean integral sea state parameters. It is noted that these may have a reduced physical
relevance in multimodal sea states. The overarching methodology of this chapter and [J3] is
depicted in Fig. 4.1. Following linear and time-invariant filter theory, the ship acts as a filter
on the unknown instantaneous wave elevation, and the motion/structural ship response can
be measured and acts as input for the neural network. The green arrows indicate a physical
process, whereas the lower opposing red arrows show the data flow in the inverse procedure
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performed by a neural network.

Figure 4.1: Simplified concept of the wave buoy analogy, where green arrows indicate the
filtering effect of a ship and red arrows resemble the inverse mapping problem. It is noted
that the wave elevation is not reconstructed, but the underlying sea state parameters.

Given Fig. 4.1, it can be seen that the model uses the ship response as an input and
maps it back to the governing sea state parameters {Hs, Tp, β0}. Obtaining these quantities
beforehand by, e.g. a wave radar, is seen as most critical for this supervised learning study.
Another key aspect of [J3] is to compare time and frequency domain approaches in terms
of accuracy and computational efficiency. Initially, a study on simulated motion data for a
container vessel in unimodal and unidirectional seas was conducted and presented in [C1].
This study provided evidence that frequency domain models may show a substantially lower
computational cost, allow considering longer time series samples without increasing CPU
time, and are likely of a more robust nature. In agreement with other publications, it
was confirmed that predicting the mean encounter wave direction is delicate and requires
information about the phase relationships of the individual responses. Estimating both
energy content and its distribution within the wave energy density spectrum, i.e. Hs and
Tp, appears relatively straightforward – even under changing forward speed. The enclosed
[J3] builds upon these findings and presents a rigorous comparison of time and frequency
domain models based on actual in-situ data of a container ship operating in the Northern
Atlantic. Contrary to most state-of-the-art publications, it has been found in [J3] that
considering frequency domain features, i.e. cross-spectral analysis, for data preprocessing
shows superior characteristics. The application of multi-task learning, i.e. the simultaneous
consideration of several learning tasks, in the sea state identification domain is considered the
main novelty of this article. The work has been disseminated at the second Marine AI WISE
seminar organized by TUMSAT (Tokyo University of Marine Science and Technology) in
Mittendorf and Nielsen [87]. In addition, an extending study aimed at different preprocessing
methodologies of the mean encounter wave direction is presented in [C3]. Lastly, DTU
has been part of the VALID III JIP (Joint Industry Project), and the work of [J3] has
been applied to two coastguard cutters. The dataset consisted of motion recordings and
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wave hindcast data, and the frequency domain approach showed satisfactory robustness and
accuracy – even in coastal waters with multimodal sea states. The corresponding results
are presented in the final deliverable of the JIP, Drummen and Hageman [27]. During the
individual studies, the versatility and modularity of deep learning stood out very positively,
but the increased computational effort required the use of resources provided by DTU’s
computing cluster.

4.2 Discussion

Knowledge about the ambient wave environment is indispensable for decision support for
seafarers to maintain ship safety and enhance energy efficiency. Generally, the determination
of sea state parameters and especially the estimation of the directional wave spectrum are of
great complexity. Moreover, all possible data sources and their estimates are characterized
by inherent uncertainty. For instance, the used X-band wave radar provides an estimate of
the directional wave energy density spectrum at the exact position of the vessel in time and
space but needs empirical corrections for calibrating the energy content, i.e. the significant
wave height, and may show reduced accuracy due to rain clutter. In fact, Ardhuin et al.
[7] provide a review of different data sources of sea state data with an emphasis on the
associated uncertainties. They postulate that narrower uncertainty tolerances compared to
worldwide standards are needed for satisfactory application in, e.g. coastal areas. Regarding
the three sea state parameters, the presently required accuracy regarding Hs is in the range
of 5–10%, 0.1 to 1.0 s for Tp, and about 10 deg. for β0. With that in mind, the sea state data
from the wave radar is compared to reanalysis data from the public domain ERA5 database,
as proposed by Hersbach et al. [46]. This hindcast service builds upon data assimilation
by using the third-generation numerical ECWAM wave model and calibration by altimeter
or wave buoy data. The sea state parameters along the ship’s route are interpolated using
a bi-linear scheme, as shown by Nielsen [96]. The direct comparison of wave radar and
hindcast data is shown in Fig. 4.2 using separate correlation plots.

Figure 4.2: Comparison of integral sea state parameters Hs, Tp and β0 according to ERA5
and the X-band wave radar mounted on the case ship.
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In the case of peak period and mean encounter wave heading, a low bias but significant
variance can be seen in Fig. 4.2. For Hs, however, a pronounced systematic bias stands
out when comparing hindcast and wave radar data. When considering the ERA5 data as a
ground truth, it is stated that the wave radar data is non-conservative in higher sea states
and vice versa in lower sea states. As mentioned before, wave radars require empirical
procedures for providing Hs correctly, and it was stated in Storhaug et al. [116] that the
installed wave radar was not calibrated for the specific case ship. In fact, this could be a
cause for the matching empirical and long-term joint distribution of Hs and Tp in [J3] since
the use of weather routing would suggest lower values of encountered Hs. Gangeskar [35]
shows that the technology of X-band wave radars improved significantly in comparison to
the used wave radar during the measurement campaign, which was conducted 15 years ago.
But still, the observed differences in Hs and, even more so, the large variance regarding all
sea state parameters in Fig. 4.2 motivate a data fusion approach, i.e. combining several
methods for minimizing uncertainty. For instance, Thornhill and Stredulinsky [122] show a
robust and efficient hybrid methodology for calibrating the estimated significant wave height
by an X-band wave radar using the experienced ship motions from a sailing vessel. More-
over, an ensemble approach using several hindcast vendors shows potential for obtaining
an uncertainty estimate, following Vettor and Guedes Soares [129]. In fact, when calculat-
ing R̄AW with an uncertainty-aware transfer function estimate via the method proposed in
[J2], a consistent calculation must consider uncertainty ranges for the prevailing sea state
parameters as well. It will be an interesting aspect of future work to study deep learning-
based methods for uncertainty quantification parallel to sea state identification. However,
these uncertainty bands would reflect a combination of uncertainty related to data and ac-
tual modeling. Another essential element for further work is predicting the full directional
wave spectrum for more accurate information about sea states comprising wind and swell,
which is a more demanding task when using deep learning. Overall, it is concluded that
deriving reliable sea state data remains challenging. Still, it is believed that the symbiosis
between deep learning and established physical models will lead to an enhanced accuracy
and robustness of corresponding estimates.
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[J3] Sea state identification using machine learning - A
comparative study based on in-service data from a con-
tainer vessel
The paper entitled ”Sea state identification using machine learning - A comparative study
based on in-service data from a container vessel” is published in the Journal of Marine
Structures as:

Mittendorf, M.; Nielsen, U.D.; Bingham, H.B.; Storhaug, G. (2022). Sea State
Identification using Machine Learning - A Comparative Study based on In-service Data from
a Container Vessel. J. Marine Structures Vol. 85, No. 103274 https://doi.org/10.1016/
j.marstruc.2022.103274

The article is published as open access version under the CC BY 4.0 license.
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A B S T R A C T

This paper is concerned with a machine learning-based approach for sea state estimation using
the wave buoy analogy. In-situ sensor data of an advancing medium-size container vessel
has been utilized for the prediction of integral sea state parameters. The main novelty of
this contribution is the rigorous comparison of time and frequency domain models in terms
of accuracy, robustness and computational cost. The frequency domain model is trained on
sequences of spectral ordinates derived from cross response spectra, while the time domain
model is applied to 5-minute time series of ship responses. Multiple deep neural networks
were trained and the sensitivity of individual sensor recordings, sample length, and frequency
discretization on estimation accuracy was analysed. An Inception Architecture adapted for
sequential data yields the highest out of sample performance in both considered domains.
Additionally, multi-task learning was employed, as it is known for increased generalization
capability and diminished uncertainty. Overall, it was found that the frequency domain method
provides both superior performance and significantly less computational effort for training.

1. Introduction

1.1. Motivation

Ship safety and operational efficiency depend to a large degree on the prevalent sea state. As such, on-board identification
of the ambient wave system may assist the crew in the decision making processes for minimizing risks related to critical wave
encounters. For instance, large roll amplitudes are presently an immense concern due to the increasing number of lost containers
at sea over the last couple of years resulting from wave-related impact, Meister et al. [1]. Furthermore, estimates of the sea state
experienced throughout the vessel’s operational profile are of significant importance for shore-based vessel performance analysis
for the assessment of general energy efficiency and scheduling maintenance. Therefore, an accurate and reliable estimate of the
prevailing wave energy density spectrum is the key aspect of on-board decision support systems. In addition, with an ever-increasing
interest in autonomous ships, the significance of real time estimates of the wave environment and the corresponding ship response
grows further as the expertise of seafarers may not necessarily be available, Jalonen et al. [2]. For all of this, it is thought that
ship response-based sea state estimation (SSE) could be an essential building block. Hereby, it is understood that data in terms
of wave-induced responses from the ship is processed, thus facilitating a real-time identification of the sea state at the ship’s exact
position. In fact, this is the underlying idea of the wave buoy analogy, as presented by Nielsen [3]. Broadly speaking, the wave buoy

∗ Corresponding author.
E-mail address: mamit@mek.dtu.dk (M. Mittendorf).

https://doi.org/10.1016/j.marstruc.2022.103274
Received 1 March 2022; Received in revised form 21 June 2022; Accepted 4 July 2022



Marine Structures 85 (2022) 103274

2

M. Mittendorf et al.

analogy considers the ship as a wave rider buoy and establishes an inverse mathematical relationship between measured responses
and the encountered directional wave spectrum or the corresponding integral parameters.

1.2. Literature review

The methods for ship-based sea state estimation are manifold and an overview is given in Nielsen [4]. Initial studies addressing
the wave buoy analogy were carried out in the 1970s by e.g. Takekuma and Takahashi [5], but without considering forward speed,
i.e. the Doppler shift. Iseki and Ohtsu [6] and Nielsen [7] present methodologies based on Bayes theorem for the calculation of
directional wave spectra using both complex-valued transfer functions and cross response spectra under forward speed conditions.
Following the convention of Nielsen [3], the techniques for ship-board SSE are split into non-parametric and parametric approaches:
The former provides the directional or 2D wave spectrum, while parametric techniques by e.g. [8–10] yield input values to
parameterized wave energy density spectra with the possible addition of spreading functions. The applicability and accuracy of
the aforementioned estimation methods inherently depend on the availability of reliable transfer functions, also referred to by
Response Amplitude Operators (RAO). Hence, Nielsen et al. [11] propose a correction or rather calibration methodology for the
pitch RAO using met-ocean hindcast data and in-service ship motion recordings of a container vessel. Mounet et al. [12] extend this
work and merge the correction technique into a sea state estimation approach using a network of ships as observation platforms.
Nevertheless, in individual cases, transfer functions may simply be unknown to the ship operator due to a lack of detailed hull shape
information. Moreover, the presented procedures are premised on the assumptions of linearity for which transfer functions can be
applied. These potential disadvantages of techniques relying on RAOs subsequently motivate data-driven machine learning studies
for the estimation of sea state conditions.

Nowadays, machine learning techniques are universally applied as so-called surrogate models in general ship hydrodynamics,
i.e. the model approximates data of computationally expensive methods in a regression task, e.g. Mittendorf and Papanikolaou [13].
In the field of ship-based SSE, machine learning is increasingly applied as well: Åvist and Pyörre [14], for instance, apply traditional
machine learning – non-parametric regression techniques in particular – for the prediction of the significant wave height and
encountered wave direction based on frequency domain features. Furthermore, Han et al. [15] predict the sea state parametrically
using a research vessel as a case study and compare three different machine learning methods. In addition, the data preprocessing
part is another key aspect and the feature space comprises elements from multiple domains. More importantly, deep learning
methods, i.e. artificial neural networks with more than one hidden layer, achieved significant results in a variety of tasks ranging
from image to speech recognition. The increased accuracy, versatility and scalability compared to traditional machine learning
methods is credited to special layer-types, such as convolutional or recurrent layers. For the theoretical intricacies of deep learning
consult Goodfellow et al. [16]. Its rapid development over the last decade subsequently sparked several studies in the ship-based
SSE domain. Cheng et al. [17] develop an end-to-end classification approach via a multi-channel convolutional network for sea state
estimation using the Beaufort sea scale for dynamic positioning, i.e. without forward speed. Instead of using raw time series data,
Cheng et al. [18] convert the ship motions to spectrograms and train a neural network in an image recognition task predicting the
sea state scale. The work is extended for forward speed cases in Cheng et al. [19] and an advanced architecture is employed. Their
so-called SSENET features attention mechanisms and residual skip connections for enhanced performance. Moreover, Düz et al. [20]
present a real-time multivariate time series regression approach for integral sea state parameters applying multiple deep architectures
on 2.5-min motion samples of a frigate-type ship. One distinct aspect of their work is the procedure of transfer learning: Initially,
the model is trained on simulated data obtained from time domain potential theory calculations and then re-trained on in-situ
measurement data. The displayed results show sufficient accuracy for the prediction of the sea state parameters under forward
speed conditions. Kawai et al. [21] present a simulation-based study of a container carrier in the frequency domain by extracting
sequences of spectral values from a set of cross response spectra. The convolutional neural network predicts the parameters for an
Ochi–Hubble type spectrum, i.e. for both wind and swell waves. Scholcz and Mak [22] extend the work of Düz et al. [20] and present
a deep learning methodology for the non-parametric estimation of the directional wave spectrum based on wave radar data using
a convolutional encoder–decoder network applied to in-service time series data. Lastly, Han et al. [23] provide an investigation for
non-parametric SSE and establish an approach based on a generative adversarial network, in which the generator predicts the 2D
spectrum relying on cross response spectra, and the discriminator classifies the validity of the prediction. This iterative approach is
then compared to a traditional model-based approach and shows satisfactory accuracy in non-forward speed scenarios; emphasizing
that simulated time series data has been considered exclusively.

1.3. Objective

This paper focuses on deep learning methods exclusively, whereas model-based approaches, dependent on availability of RAOs,
are not considered. In view of state of the art literature, it is concluded that the majority of deep learning studies use time domain
data. Thus, the main novelty of this paper is the parallel application of deep neural networks in both the time and frequency
domains. In addition, a large part of the literature’s deep learning studies are based on simulated ship motion data. In the present
paper, however, in-service sensor recordings from a container vessel sailing in the Northern Atlantic are studied. A regression
approach is proposed using sequential data from the time and frequency domain. The inverse mapping from several ship responses
to prevalent sea conditions, i.e. significant wave height, peak period and mean encounter wave direction, is achieved by advanced
deep neural networks, such as residual networks. Additionally, a novel approach for obtaining the optimal combination of ship
responses for sea state identification is demonstrated in a feature importance study. Moreover, the trade-off between sample length
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Fig. 1. Case study in service taken from [24].

Table 1
Main particulars of the Panamax container vessel, cf. [24].
Dimension Unit Magnitude

𝐿𝑝𝑝 [m] 232.0
𝐵 [m] 32.2
𝑇 [m] 10.78
𝐶𝐵 [–] 0.685
𝑑𝑤𝑡 [t] 40,900
𝑃𝐵 (@ 93 rpm) [kW] 25,786

and frequency discretization will be determined in the frequency domain in another sensitivity study. Initially, four multi-output-
regressor architectures are compared in terms of prediction accuracy, and two different multi-task configurations will be applied to
the best-performing model in the first iteration. The application of multi-task learning for sea state estimation is another novelty
of this investigation, as the recent literature is only focused on multi-output estimators. Lastly, a contribution of this work is the
development of data-driven methods for the mapping of in-situ ship motion recordings to sea state parameters derived from data
of a directional wave radar.

1.4. Composition

The remaining sections of the article are organized in the following way: In the upcoming Section 2, the case study, its sensor
infrastructure and the data filtering methodology will be presented. Section 3 has its focus on the proposed methodology and conveys
the applied neural network architectures as well as the concept of multi-task learning. Furthermore, the obtained results are shown
and discussed in Section 4. In the final Section 5, the described work is summarized and suggestions for future work are presented.

2. Data analysis

The employed case ship of the present study is a 2800 TEU Panamax container vessel built in 1998. The vessel is displayed in
Fig. 1 and its main particulars are listed in Table 1. During a four-year period between August 2007 and July 2011, the vessel was
equipped with an extensive sensor framework and sailed in cross-Atlantic service. Even though the actual data acquisition period
was conducted over 4 years, the Miros wave radar Wavex was only installed until March 2009. Hence, the span of the data used
herein is 1.5 years and the GPS position of the vessel during that time is depicted in Fig. 2. Additional details of the measurement
campaign including a study pertaining to structural fatigue due to wave excitations, are described in Storhaug et al. [24].

It is noteworthy that draft and trim were not measured. This sort of epistemic (i.e. systematic) uncertainty within the data may be
influential on the following machine learning approach. In the paper of Storhaug et al. [24], it is stated that the typical transit draft
is approximately 9.5 m and the transit trim lies between 0.5 to 1.0 m. In addition, the loading condition, and thus the transverse
metacentric height 𝐺𝑀𝑇 , is not included in the dataset adding further uncertainty due to the widespread operational profile of
container vessels, in general.

In Fig. 2, the GPS position history of the case ship is visible and the effect of seamanship as well as weather routing stands
out since several routes deviate notably from the shortest distance. In one particular case, the container vessel even sails around
the British islands in order to circumnavigate possible adverse weather conditions. The case ship trades between Western Europe
(France, Belgium, Great Britain and Germany) and Quebec in Canada. Moreover, the ship obviously operates in coastal and restricted
waters, such as the St. Lawrence river; however, the focus of the present study is on deep water conditions. For this reason, samples
possibly influenced by shallow water or refraction from the coastline are disregarded by enforcing spatial boundaries at −55 and
−5 degrees of Longitude as indicated in Fig. 2.
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Fig. 2. Overview of the vessel’s GPS position history (black) and the applied spatial boundaries (red). The yellow dot indicates one particular measurement
sample.

The on-board measurement system comprises: (1) A Miros Wavex directional wave radar providing an averaged spectrum in a
30 min interval based on 1-min sample periods. The directional wave spectrum 𝐸(𝑓, 𝜇) is discretized into 31 frequencies 𝑓 [Hz]
and 36 directions 𝜇 [rad]. X-band marine radars are nowadays frequently applied as ocean remote sensors onboard of vessels due
to their high spatio-temporal resolution. However, the accurate estimation of the significant wave height is a matter of empirical
corrections (cf. Gangeskar [25]) and also the effect of rain clutter on data quality is noteworthy (cf. Chen et al. [26]). The accuracy
of the Wavex radar is in the range of ±10% in case of the three sea state parameters, cf. Miros [27]. The working principles of wave
radars are conveyed in Barstow et al. [28]. (2) The Motion Response Unit (MRU) was located 78.5 m forward of the aft perpendicular
(AP), 11.7 m above base line (BL), and at the centre line (CL). The MRU was installed in a socket filtering high frequency noise in
the range of 50–100 Hz caused by e.g. thrusters or pumps. (3) The bow accelerometer is installed on a vertical pillar in the bosun
store at the forward perpendicular and measures the vertical bow acceleration. (4) Moreover, four strain gauges are attached to
longitudinal stiffeners at port and starboard in the aft section (50.3 m from AP) and amidships (118.7 m from AP). As described
in [24], the port and starboard strain sensors are aggregated into two artificial or virtual sensors indicating vertical bending and
axial stress in the aft and midship section. Lastly, (5) the propeller revolutions (rpm), (6) the rudder angle 𝛿, (7) the GPS position,
as well as (8) the Speed Over Ground (SOG) were obtained during data acquisition period.

The present study is focused on the prediction of the three integral sea state parameters: The significant wave height 𝐻𝑠, peak
period 𝑇𝑝 and mean encounter wave direction 𝛽. The parameters were obtained from the directional wave spectrum provided by
the Wavex wave radar measurements. The significant wave height 𝐻𝑠 relates to the zeroth order spectral moment 𝑚𝑛 (with 𝑛 = 0)
and is defined using Eqs. (1)–(3). It is noted that the angular wave frequency is 𝜔 = 2𝜋𝑓 and the directional wave energy density
spectrum is denoted as 𝐸(𝜔, 𝜇).

𝐻𝑠 = 4
√
𝑚0 (1)

𝑚𝑛 = ∫
∞

0
𝜔𝑛𝐹 (𝜔) 𝑑𝜔 (2)

𝐹 (𝜔) = ∫
𝜋

−𝜋
𝐸(𝜔, 𝜇) 𝑑𝜇 (3)

The peak period 𝑇𝑝 is extracted from the integrated wave spectrum 𝐹 (𝜔) and corresponds to the period at which the wave energy
density is highest, cf. Eq. (4).

𝑇𝑝 =
2𝜋
𝜔𝑝

, 𝐹 (𝜔𝑝) ≡ max
𝜔
𝐹 (𝜔) (4)

The mean encounter wave direction 𝛽 is calculated as the circular mean according to Longuet-Higgins et al. [29] in Eqs. (5)–(7). It
is noted that the direction of the measured wave spectrum is relative to the ship’s heading and, thus, no transformation is necessary.

𝛽 = arctan(𝑑∕𝑐) (5)

𝑑 = ∫
𝜋

−𝜋 ∫
∞

0
𝐸(𝜔, 𝜇) sin(𝜇) 𝑑𝜔𝑑𝜇 (6)

𝑐 = ∫
𝜋

−𝜋 ∫
∞

0
𝐸(𝜔, 𝜇) cos(𝜇) 𝑑𝜔𝑑𝜇 (7)
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Fig. 3. Approaching directional wave spectrum 𝐸 obtained at the yellow dot in Fig. 2. It is stressed that 𝛽 = 180deg. indicates head waves and 𝛽 = 0deg. stands
for following waves; that is, in the polar diagram, the ship can be imagined to have its centre line aligned with the chord (diameter) from 0 to 180 deg.

In Fig. 3, a sample directional wave spectrum is depicted in its approaching form and it was obtained at the yellow dot in Fig. 2
on the 9th April 2008 (01:30 UTC). It is noted that 𝛽 = 180deg. refers to head wave conditions. As can be seen, the ship encountered
bow oblique waves and the calculated parameters using the aforementioned equations are: 𝐻𝑠 = 4.0 m, 𝑇𝑝 = 12.1 s and 𝛽 = 124.8deg.

The available data is preprocessed and filtered in four individual steps: (1) Initially, the wave radar data was merged with the
available GPS data and filtered for deep sea conditions using the enforced geographic boundaries (cf. Fig. 2). This reduced the wave
radar samples from 10 790 to 7051. (2) In addition, the wave radar data was synchronized with the entirety of sensor readings,
but samples with missing or corrupted recordings were disregarded. The majority of the readings had different sample frequencies
ranging from 100 to 1 Hz and hence 25 min time series samples sampled with a consistent frequency of 5 Hz were extracted for
each timestamp, i.e. in a 30 min interval. It is noted that 25 min are chosen as the maximum sample length since recordings close to
the 30 min threshold were frequently missing. In addition, the focus of the herein presented work is on using smaller time frames,
noting that other studies use longer durations, say, from 30 min in [23] to 60 min in [21]. The synchronization step decreased the
size of the dataset further to 5182 samples. (3) Lastly, the data was cleaned manually from erroneous time series and (4) samples
with significant wave heights 𝐻𝑠 < 0.5m were excluded, as the vessel’s response is negligible in this case. Altogether, the final
dataset comprises 4779 samples, and the distributions of the resulting sea state parameters as well as the ship advance speed 𝑈𝑠 are
presented in Fig. 4.

As can be inferred from Fig. 4(a), the probability density of the significant wave height follows an exponential distribution. The
theoretical probability density functions (PDF) Weibull and Gumbel are fitted to the measured data distribution using the Python
library scipy.1 The conclusions drawn in Nielsen and Ikonomakis [30] are also observed in this case: The Gumbel distribution matches
the actual data with higher accuracy than the Weibull PDF. In addition, it is visible that the ship is experiencing harsh conditions
despite seamanship and the utilization of weather routing. The distribution of the peak period, which is depicted in Fig. 4(b), is
symmetrical and centred around 10 s. The histogram of the relative wave direction as shown in Fig. 4(c) conveys that predominantly
head and following wave conditions are encountered which results from the fact that the Northern Atlantic is known for dominant
westerly wind conditions. Furthermore, the speed variation including involuntary and voluntary speed loss due to waves can be
seen in Fig. 4(d), where the data distribution arranges around an mean advance speed of 19 knots. In addition, the measured joint
distribution of 𝐻𝑠 and 𝑇𝑝 is compared to long term wave climate statistics in the Northern Atlantic provided by Söding [31] in
Fig. 5. It is noted that Fig. 5(a) is a combined scatter, kernel density and two-dimensional histogram plot for demonstrating the
overall data distribution as well as possible outliers in parallel.

As can be inferred from the comparison of Figs. 5(a) and 5(b), the joint distributions are in good agreement, in general. However,
the covariance in case of the measurements is slightly larger compared to the modelled long term statistics. It is noted that the latter
is based on hindcast wave spectra determined from wind fields during 10 years, [31]. Hence, different sources and magnitudes of
epistemic (i.e. systematic) measurement uncertainty may be responsible for the minor deviation of both joint distributions. On the
other hand, it is stated in [24] that the calibration of the Wavex wave radar is based on earlier studies and has not been performed for
this particular vessel. Even in case of a slightly biased wave radar, it has no direct impact on the machine learning methodology itself,
as the offset remained the same throughout the measurement campaign. Furthermore, transfer learning enables neural networks to
be retrained and adjusted on newly obtained sea state data — possibly even from different vessels.

1 https://scipy.org/.
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Fig. 4. Data distributions of integral sea state parameters and ship advance speed.

3. Methodology

The surface wave elevation in realistic seaways is often assumed to be stationary, ergodic, and a Gaussian random process
throughout the observation time. Following St. Denis and Pierson [32], a ship can be seen as a linear and time-invariant filter
in the frequency domain under these assumptions. Specifically, this leads to the underlying principle of the wave buoy analogy,
emphasizing a number of associated characteristics and concerns: (1) The filtering characteristics of ships are governed by their
hull geometries and the relative size compared to waves. (2) Generally, a ship acts as a low-pass filter which means that it is
irresponsive to higher wave frequencies. Furthermore, (3) when sailing with non-zero forward speed the Doppler shift is introduced
and (4) the assumption of the ship as a linear and time-invariant filter is subject to uncertainty under severe sea states or changing
wave conditions — especially in case of forward speed. All of these characteristics have an impact on a machine learning-based sea
state identification methodology.

3.1. Data processing

Initially, Mittendorf et al. [33] suggest that transformations to non-linear and skewed target variables positively affect prediction
accuracy even for non-linear regression algorithms, such as neural networks. For this reason, the logarithm is applied to the
significant wave height 𝐻𝑠 as it leads to a more symmetrical shape of the resulting distribution. It is noted that the application
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Fig. 5. Comparison of the wave statistics in the Northern Atlantic.

Fig. 6. Effect of the logarithmic transformation on the 𝐻𝑠 distribution.

of the log-transform is considered as standard practice in statistics and time series analysis for forcing a more symmetrical shape
onto an exponential distribution.

As shown in Fig. 6, applying the logarithm to the 𝐻𝑠 distribution leads, in fact, to a more symmetrical shape, even though it still
shows minor asymmetry in this case. Moreover, the relative mean wave direction 𝛽 is decomposed into corresponding sine and cosine
values, in order to circumvent the circular ambivalence in the machine learning approach. The peak period remains unchanged.
Ultimately, the output vector in both the time and frequency domain methodologies has the shape of {log(𝐻𝑠), 𝑇𝑝, sin(𝛽), cos(𝛽)} and
is passed through a linear activation function. It is noted that input and output data are normalized beforehand, which will be
described at a later stage.

In an earlier study of Mittendorf et al. [34], a time and frequency domain approach were applied based on simulated data of
a vessel in unimodal and unidirectional sea states. In that study, a frequency domain model was trained on spectral moments of
the auto cross response spectra and the peak spectral ordinates, as well as the corresponding peak frequencies obtained from the
off-diagonal cross response spectra. The temporal method, on the other hand, was based on raw heave, pitch and roll time series.
In the present work, raw 5 min acceleration time series with a sample frequency of 5 Hz are fed into the time domain models based
on the findings of [34]. This leads to an input matrix of 1500 ×𝑀 , where 𝑀 is the number of features. A sample plot of 5 min
acceleration time series resulting from the encountered sea state in Fig. 3 is depicted in Fig. 7. It is noted that a coordinate system
is adopted herein, where the 𝑥1-axis coincides with the ship’s centreline (positive forward) and the 𝑥2-coordinate points upwards.
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Fig. 7. Measured accelerations corresponding to Fig. 3 in 6 degrees of freedom, namely surge, heave, sway, roll, yaw and pitch (starting at the upper left plot).

Fig. 8. Pitch-heave acceleration cross response spectrum demonstrating the frequency discretization with 16 spectral ordinates (black) resulting from the conditions
in Fig. 3.

It is stressed that not only the 6 Degree of Freedom (DOF) accelerations – shown in Fig. 7 – are considered in the feature space,
but also the bow acceleration and the strain measurements at the aft and midship sections. The underlying reasons are that both a
second reference point on the ship and an indication of the hull flexure might add value to the sea state identification approach.
The optimal number of features 𝑀 will be determined in sensitivity studies in both the temporal and spectral domain.

The prediction of the relative wave direction is a function of the individual phase differences of accelerations in several degrees
of freedom, which are obviously directly available in the time domain, cf. Fig. 7. In the frequency domain, however, cross spectral
analysis of two individual time series, is used as predictor for 𝛽. In contrast to [34], sequences of spectral ordinates extracted from
cross response spectra are fed into the neural network. This leads to an 𝑁 ×𝑁 complex-valued matrix, where 𝑁 is the number of
the considered DOF. It is noted that only one side of the off-diagonals are taken into account, as the matrix is complex conjugate
symmetric. It is noted that the sensor recordings of the bow acceleration and the strain measurements are also examined in the
sensitivity study and may be part of the final feature space. The matrix of cross-spectral densities is determined using the Welch
algorithm (cf. Welch [35]) with a Hanning window as well as a segment length of 512. The employed software package for the digital
signal processing procedures is scipy. In Fig. 8, the pitch-heave acceleration cross spectrum and the chosen frequency discretization
are visible for the same conditions as in Fig. 3.

In view of Fig. 8, it is appreciated that the discrete spectral ordinates are extracted in the range of 𝜔𝑒 ∈ [0, 2.05] rad/s with a
number of discrete frequencies denoted as 𝛺. The cut off frequency is selected for filtering the measurement noise and for responses
due to excitations which are not related to waves, e.g. hull-structural vibrations. From Fig. 8, it appears that the peak value is
well captured in case of the imaginary part of the cross response spectrum, but not in case of the real part. Thus, the number of
discrete frequencies 𝛺 is part of a second sensitivity study, in which also the effect of the sample length on prediction accuracy
will be investigated. For reference, 71 and 100 discrete spectral ordinates were extracted from individual cross response spectra in
the work of [21,23], respectively. Lastly, the shape of the input matrix for the machine learning model in the spectral domain has
a shape of 𝛺 ×𝑀 , where 𝑀 takes a maximum value of 43. Firstly, 30 real and imaginary sequences from the off diagonals of the
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cross response spectra and 6 sequences from the auto cross response spectra, i.e. the diagonal elements, will be part of the largest
possible feature space (with 𝑁 = 6). Moreover, 2 response spectra from the strain measurements in the aft and midship sections
may be included in the input matrix. In addition, the real-valued response spectrum of the bow acceleration as well as 4 real and
imaginary sequences from the cross spectra of bow and heave/pitch accelerations may be also considered as features. It is stressed
that only real valued numbers are permitted as input to the models. The optimal number of features 𝑀 and thus the shape of the
input matrices in both domains will be obtained in sensitivity studies presented in the further course of this contribution.

Before feeding the data into the neural networks, the dataset is split into training and validation sets, where the latter is
exclusively used for the model assessment. The validation set makes up 20% of the initial dataset and comprises 956 samples. The
training set, on the other hand, has a sample size of 3823. Neural networks are not scale invariant, thus, the individual sequences
as well as the elements of the output vector were normalized according to the extreme values of the training set.

3.2. Model architectures

The machine learning task itself is considered as a supervised regression approach and the models are trained on sequences from
the temporal and spectral domain. As has been stated in Section 1.3, the focus of this contribution is on deep learning methods.
Artificial neural networks are utilized as universal function estimators and are considered as composite functions  of two essential
building blocks: The weight matrix and the non-linear activation function. Concise theoretical considerations of artificial neural
networks are presented in Mittendorf et al. [33] and more detailed information is delivered by Goodfellow et al. [16].

Broadly speaking, deep learning architectures are capable of coping with high dimensional input tensors and have the ability of
implicit feature construction, i.e. derive meaningful data themselves. Additional advantages of deep neural networks over traditional
machine learning algorithms include higher scalability and increased generalization capability. The caveats of deep neural networks
are on one hand the relatively high computational cost of their training process, and on the other hand the tendency of overfitting
on small datasets due to their relatively large amount of trainable parameters. While, one particular problem has been most
influential on the development of deep learning methods: As the name suggests, deep learning achieves its superior performance
by stacking individual layers. However, very deep models suffer from the vanishing gradient problem. The parameters of neural
networks are updated under backpropagation in a gradient-based optimization problem of an arbitrary loss function . However,
with an increasing number of hidden layers, the magnitude of the gradient, i.e. the impact on parameter adjustment, reduces.
Batch normalization as proposed by Ioffe and Szegedy [36] standardizes the output of hidden layers before applying the activation
function mitigating vanishing gradients by resetting the parameter distribution. In addition, batch normalization leads to robust
neural networks reducing the need for hyperparameter optimization. The simplified activation function Rectified Linear Unit
(𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥)) not only decreases the chance of vanishing gradients, but also speeds up the training process, as it is faster
to differentiate in comparison to traditional activation functions, such as the hyperbolic tangent function. Moreover, numerous
advanced architectures, such as the LSTM (Long short-term memory) by Hochreiter and Schmidhuber [37] or residual networks by
He et al. [38], were proposed for alleviating the occurrence of vanishing gradients. In this paper, the residual network as well as the
Inception model proposed by Szegedy et al. [39] are applied.2 The herein employed models feature one-dimensional convolutional
layers, since they are best-suited to sequential data. Convolutional layers utilize spatially shared weights and are often followed
by a pooling or subsampling procedure. In theory, the convolution procedure has a multidimensional tensor as input, which is
modified by a kernel whose parameters are trainable. For more elaborate details consult the work of Krizhevsky et al. [40]. The
concepts and structures of the herein applied models are described in the following paragraphs. Moreover, the model architectures
and hyperparameters are the same in both the time and frequency domain for consistency.

3.2.1. Residual network
The Residual Network (ResNet) features a block-wise architecture and the blocks are bypassed by identity mappings or gates.

The ResNet was proposed by He et al. [38] and its concept draws inspiration from the pyramidal cells of the cerebral cortex and
its skip connections. The feedforward residual network is made out of multiple residual blocks as shown in Fig. 9(a) and the skip
connections allow the development of very deep models without vanishing gradients. The internal shape of the proposed residual
block comprises three convolutional layers of constant filter size, but with 8, 4 and 2 kernels, respectively. Filter size refers to the
number of output dimensions, whereas the kernel size denotes the length of the receptive field, i.e. of the convolutional window.
Lastly, the output of the block is the sum of the last layer’s output and the input matrix gated through the skip connection activated
by ReLU, as can be seen in Fig. 9(a). It is noted that the identity mapping is multiplied by a linear projection for expanding the
channels of the skip gate, in order to match the shape of the residual block’s output. The 4 blocks of the chosen model have filters
with the size of 32, 64, 64 and 64, respectively. The tail part of the ResNet consists of an average pooling layer and a fully connected
layer with a width of 50 neurons. It is noted that batch normalization is applied after each convolutional layer.

2 An early version of the Inception Network, namely the GoogLeNet, and a residual network were the winners of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2014 and 2015, respectively.
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Fig. 9. Underlying concepts of the ResNet (a) and Inception (b).

3.2.2. Inception network
The Inception architecture was initially proposed by Szegedy et al. [39] in an end-to-end image classification procedure. The

model follows a similar block-wise methodology as the ResNet employing the novel Inception module as its building block. The
fundamental idea is that several convolutional layers of constant filter size of 16, but with different kernel sizes, i.e. different
receptive fields, are employed simultaneously at the same level. In doing so, the individual receptive fields capture different patterns
in the feature maps at varying scales. This concept is inspired by principles of the visual cortex in the human brain. The Inception
architecture is named after the eponymous movie3 indicating the common premise of embedding either networks within networks
in case of the model or dreams within dreams as in the movie. The architecture evolved in multiple iterations to Inception-v4, where
the model was extended with residual connections for increased performance, Szegedy et al. [41]. The proposed Inception module
has been adapted for sequential data following Ismail Fawaz et al. [42], i.e. one-dimensional convolutional layers are employed.
As can be inferred from Fig. 9(b), the module splits into four elements: (1) The bottleneck or dimensionality reduction element is
introduced in front of the computationally intensive parallel layers and takes cross-channel patterns into account. The bottleneck
layer reduces computational cost as well as the number of trainable parameters. (2) The second element is made out of the three
parallel convolutional layers with different kernel sizes, i.e. the core part of the Inception module. In the present work, kernel sizes
𝑙 ∈ {16, 8, 4} are applied. (3) The third part of the module is the skip connection, which is inspired by the ResNet, and consists of
a pooling layer and another dimensionality reduction layer. (4) The two gates are concatenated along the depth dimension in the
last element. It is stressed that the Inception architecture has additional outer residual skip connections bypassing entire Inception
modules. The general structure of the proposed Inception network can be inferred from Fig. 9(a) when replacing the residual block
with the Inception module shown in Fig. 9(b). The herein proposed Inception network is defined with filter size of 16 and 8 inception
modules in total with individual residual connections. In front of the output layer, the activations are fed through an average pooling
layer and batch normalization is also applied in the entire model prior to all activation functions.

3.2.3. Benchmark models
For comparison of ResNet and Inception to state of the art literature, two models are adopted as benchmarks: The convolutional

neural network (CNN) from Kawai et al. [21] and the multichannel convolutional LSTM (MLSTM) network as proposed by Düz
et al. [20]. The former network was applied in the frequency domain on cross spectral sequences, whereas the latter one used raw
time series as input for the prediction of sea state parameters.

3.3. Multi-task learning

Multi-Task Learning (MTL) has been pioneered by Caruana [43] and is considered as parallel transfer learning. As opposed to
a multioutput-regression task, each output is now considered as a separate task and has, thus, its own dedicated branch of fully
connected hidden layers and corresponding output layers. In the present paper, it is thought that considering sea state estimation as
a multi-task learning approach may be beneficial as there are obviously physical interdependencies between 𝐻𝑠 and 𝑇𝑝. According
to Ruder [44], a hard parameter sharing configuration is selected herein, as can be seen in Fig. 10, which mitigates overfitting and
improves generalization immensely.

3 Inception is a science fiction movie from 2010 written and directed by Christopher Nolan.



Marine Structures 85 (2022) 103274

11

M. Mittendorf et al.

Fig. 10. Hard parameter sharing concept from Ruder [44].

In view of Fig. 10, it is appreciated that the model is said to learn several tasks at once using a shared latent data representation.
Following [44], MTL improves the model’s generalization capability based on eavesdropping, i.e. the network learns complex
features and the relationships between other dependent variables, instead of receiving them as inputs. In addition, MTL leads to
increased regularization for improving the model’s robustness by reducing Rademacher complexity, i.e. the model’s tendency to fit
to stochastic noise. In this work, each task-related branch consists of two hidden layers with 100 and 50 neurons and an output
layer. Two different MTL architectures are examined in this contribution: (1) The MTL architecture has three branches for each of
the sea state parameters, however, the output layer of the third branch has a length of two, as both the sine and cosine of 𝛽 are
considered. (2) The MTL+ architecture, however, takes the advance speed 𝑈𝑠 as a fourth task into account. It has been demonstrated
by Caruana and de Sa [45] that potential input features with low variance may be better predicted as an additional task instead,
when the overall input data is subject to large variance — as in the present case. In addition, the inclusion of the mean advance speed
in the input space is impractical due to the mismatching dimensions. It is thought that the model is able to derive an understanding
of the Doppler shift and thus the forward speed for the correct prediction of the sea state. Hence, it will be studied herein, whether
the prediction of the forward speed enhances the prediction of the sea state parameters and could act simultaneously as a reliability
indicator. Lastly, the tasks of the two investigated architectures are related or even complementary, however, adversarial training
as in [23] is also feasible using multi-task learning.

3.4. Training setup

In the present work, the ADAM optimizer – proposed by Kingma and Ba [46] – is employed as the learning algorithm. The
ADAptive Momentum estimation (ADAM) optimizer uses the exponential moving average of the gradient and scales the learning
rate, i.e. the step size, according to the squared gradient. Moreover, the applied loss function is the mean squared error, the chosen
batchsize is 64, and the initial learning rate is set to 10−3. Mak and Düz [47] suggest that k-fold cross validation with shuffled
samples leads to increased performance in a sea state estimation methodology. Hence, we apply shuffled 5-fold cross validation
in 300 epochs. The employed model-checkpoint-callback stores the model’s parameters with the smallest cross validation loss, in
order to save the model with the highest generalization capability before overfitting occurs with an increasing number of epochs.
The computations of the training procedures were carried out using a GPU node of the DTU computing center equipped with two
Nvidia© Volta-100 GPUs, each with 16 GB of memory (RAM) and multiple Intel© Xeon© Gold 6126 CPU with 2.60 GHz were used.
Moreover, the utilized programming language is Python 3.6 and the deep learning framework is TensorFlow 2.6 as proposed by
Abadi et al. [48]. For GPU parallelization of the computations CUDA (Compute Unified Device Architecture) was employed.

4. Results and discussion

In the following, the obtained results are presented and discussed. The used metrics are the root mean squared error (𝑅𝑀𝑆𝐸)
and the mean absolute error (𝑀𝐴𝐸), and their definitions are given in Eqs. (8) and (9). It is noted that 𝑦̂𝑖 indicates the model’s
prediction, whereas 𝑦𝑖 refers to the wave radar data.

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (8)

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (9)

The 𝑅𝑀𝑆𝐸 attributes more weight to outliers or variance and the 𝑀𝐴𝐸 indicates the magnitude of the error without considering
the sign. Due to the circular ambiguity in case of the mean encounter wave direction, a similar approach as in Nielsen [49] is
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Fig. 11. Optimal selection of the considered ship responses according to the performance on the validation set. Note that the individual scales on the ordinates
are different.

adopted for error calculation, i.e. absolute values of 𝛽 are considered when calculating the performance metrics. It is stressed that
the accuracy on the validation dataset is assessed exclusively in this section and that the model performance on the training set is
presented in the Appendix.

4.1. Sensitivity studies

Model-based approaches of the wave buoy analogy, e.g. Nielsen [7], traditionally consider heave and pitch as well as one
additional asymmetric motion, such as roll or sway for satisfactory results with a distinguishing between waves approaching from
port or starboard side. The use of surge and yaw, however, is generally not pursued, since the RAOs provided by, say, strip theory
often turn out to be unreliable due to the missing restoring term. However, as the present study is not reliant on RAOs, all 6
DOF accelerations are considered in the sensitivity study. Mittendorf et al. [33] show in multiple iterations that there is an optimal
number of features 𝑀 to be found in a machine learning approach. In this work, the trade-off between accuracy and complexity will
be determined in a convergence study, i.e. the number of features and indirectly the number of measurement devices are increased
incrementally. Therefore, multiple models are trained on varying, expanding input matrices, and their 𝑅𝑀𝑆𝐸 on the validation
dataset is taken as the underlying score for all three sea state parameters. Based on the findings of Mittendorf et al. [34], a ResNet
was chosen as the baseline model using a frequency discretization with 𝛺 = 42 components. In Fig. 11, the following combinations
are considered in individual scenarios: (1) heave and pitch acceleration, (2) + roll acceleration, (3) + sway acceleration, (4) + surge
acceleration, (5) + yaw acceleration, (6) + vertical bow acceleration and (7) + deck strain measurements in the aft and mid-ship
positions.

When comparing Figs. 11(a) and 11(b), it is appreciated that the shape of the individual curves of the scores for 𝐻𝑠, 𝑇𝑝 and 𝛽 is
generally in qualitative agreement — even across domains. Moreover, it stands out that the consideration of all 6 DOF accelerations
yields the lowest scores, i.e. the highest out-of-sample accuracy. Thus, it is concluded from a practical point of view that, in the
present case, only the motion recordings from the MRU are needed; in the sole event of sea state identification. In fact, bow
acceleration and strain measurements do not lead to increased accuracy, but add complexity and noise into the machine learning
model. This may be attributed to the fact that the contained information in the mentioned features is redundant, but a larger input
matrix leads to a larger number of model parameters (i.e. complexity). Interestingly, the magnitude of the 𝑅𝑀𝑆𝐸 of the targets in
the time domain are roughly twice the ones in the frequency domain model, which is likely to be caused by the shorter considered
sample length. As expected, the inclusion of roll acceleration in the second scenario leads to the most significant increase in accuracy
for all sea state parameters. In theory, 𝐻𝑠 and 𝑇𝑝, i.e. the energy content of the spectrum and its distribution, may be determined by
just considering heave and pitch. However, the consideration of an asymmetric acceleration is essential for the sufficient estimation
of 𝛽. Lastly, an aggregated sensitivity indicator is used, i.e. irrespective of different conditions, in this study. However, Montazeri
et al. [50] as well as Andersen and Storhaug [51] indicate that the sensitivity of individual responses is not constant, but variable
under different sea state conditions. For instance, the relative importance of considering the vertical bending moment or its axial
stress in the hull girder increases in relatively low period waves, due to increased bandwidth of these RAOs compared to the motion
response RAOs, [50]. Therefore, [51] suggest an adaptive selection of the optimal responses in case of a model-based methodology.
Yet, it is stressed that a dynamic methodology is not feasible in this case, as the underlying computation graph of neural networks
is static. Ultimately, the optimal number of features is identified as 𝑀 = 𝑁 = 6 in both domains.
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Fig. 12. Sensitivity study for sample length 𝐿 and frequency discretization with 𝛺 indicated in the legend.

Linear spectral analysis is based on the assumption of stationarity, however, it has been shown by Brodtkorb et al. [52] that the
time-invariance of sea state parameters in 30 min samples is subject to uncertainty — even in a simulation-based study under zero-
forward speed conditions. It is thought that forward speed and in-situ measurement data result in additional uncertainty regarding
stationarity. In their work [52], it is deduced that the relative wave direction is most susceptible to instationarity, whereas 𝐻𝑠 and
𝑇𝑝 are seen as more stable. For minimizing this kind of uncertainty, it is the objective of this work to use shorter sample lengths
as compared to 30 min in [23] and 60 min in [21]. However, the uncertainty regarding stable spectral analysis is a counteracting
contribution, which will increase with shorter time series samples. Hence, the upcoming sensitivity study is about obtaining the
compromise of the smallest possible sample length with the most accurate frequency resolution at the same time. The sample
length 𝐿 is discretized as 𝐿 ∈ {5, 10, 15, 20, 25}min. Obviously, the frequency discretization is interrelated and, thus, the number of
frequencies 𝛺 is considered as the second discrete variable in the study, i.e. 𝛺 ∈ {16, 32, 64, 128}. For reference, [21] use 71 and [23]
employ 100 discrete frequencies. It is noted that the 𝑅𝑀𝑆𝐸 of the model applied to the validation dataset is taken as the score.

In view of Fig. 12, the conclusions drawn in Iseki and Nielsen [53] are confirmed, i.e. the longer the time frame, the clearer
the frequency resolution, and thus the higher the model score. For 𝐻𝑠 and 𝑇𝑝, monotone curves with minor variance are apparent,
which is expected as the accuracy obviously will be higher with less variance in the frequency representation. However, the same
is visible in case of 𝛽, even though a local minimum is located at 𝐿 = 15min. This is in contradiction to [52] and results, on one
hand, from the considered conditions, i.e. in deep water and without any major heading changes due to steering (mostly stationary
conditions). On the other hand, the presented sensitivity score is highly biased by the model and its learning algorithm. Thus, the
model not only reflects physical interdependencies, but also model uncertainty, since the loss function, which is minimized during
training, is the sum of the errors of all three target variables. Moreover, it is trivially concluded that, in general, a finer frequency
discretization results in lower error values, i.e. higher model performance or accuracy. However, in Fig. 12 it is visible that 𝛺 = 64
leads to the smallest validation error, which may be explained by the increased complexity of using 128 discrete frequencies. In
the latter case, no additional information is provided to the model, but the large feature space leads to more trainable parameters,
i.e. complexity. Ultimately, 25 min are identified as the best suited sample length and 64 discrete frequencies are chosen as the
dimension of the feature space for the frequency domain model. Subsequently, it can be seen that the uncertainty pertaining to the
spectral analysis is of greater relevance than the uncertainty of the time invariance assumption. The X-band wave radar provides
samples in a 30-min interval at time 𝑡𝑟𝑎𝑑𝑎𝑟. Thus, for consistency, we choose the starting point 𝑡1 = 𝑡𝑟𝑎𝑑𝑎𝑟 − 25 min in the frequency
domain approach, and in the time domain approach 𝑡2 = 𝑡𝑟𝑎𝑑𝑎𝑟 − 5 min. On a side note, it can be inferred that the higher validation
error in the time domain, cf. Fig. 11(b), results from the smaller sample length as the errors using 𝐿 = 5 min are of similar magnitude
in both time and frequency domains.
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Table 2
Metrics of model performance on the validation set in the frequency and time domains. The lowest error values are indicated
in bold font.

Frequency domain Time domain

ResNet Inception MLSTM CNN ResNet Inception MLSTM CNN

𝐻𝑠
𝑅𝑀𝑆𝐸 0.932 0.927 1.089 1.273 1.702 1.345 2.702 1.358
𝑀𝐴𝐸 0.620 0.626 0.767 0.868 0.909 0.916 1.979 0.991

𝑇𝑝
𝑅𝑀𝑆𝐸 0.881 0.878 0.925 1.051 1.253 1.266 2.379 1.300
𝑀𝐴𝐸 0.539 0.529 0.596 0.714 0.935 0.847 2.122 0.975

𝛽
𝑅𝑀𝑆𝐸 11.09 10.50 12.12 14.87 19.03 16.67 95.34 26.00
𝑀𝐴𝐸 12.34 11.29 77.60 16.67 12.33 11.29 77.60 16.67

Fig. 13. Histograms of the model performance on the validation set using the 𝑅𝑀𝑆𝐸. Note that 𝛽 is presented on the secondary axis.

4.2. Model assessment

The performance of frequency and time domain models is presented in the following in parallel. In Table 2, the metrics of the
prediction error for the validation dataset are presented for all four models in both domains. Moreover, the lowest error values,
i.e. the highest accuracy, are indicated in bold font. For the sake of clarity, corresponding histograms of the 𝑅𝑀𝑆𝐸 taken from
Table 2 are provided for all models in Figs. 13(a) and 13(b).

In view of Table 2, it is stated that the Inception network yields the lowest errors, i.e. the highest accuracy, on the validation
dataset in either domain. However, it turns out that the error values of the ResNet are comparable and even lower in certain
cases indicating similar model performance compared to the Inception architecture. The performance of MLSTM and CNN in the
frequency domain are considered as sufficient. However, the MLSTM shows a considerable drop-off in accuracy in the time domain. It
is thought that this results from the parallel architecture, i.e. splitting the model into a convolutional and a recurrent branch, leading
to decreased robustness. In contrast, convolutional layers are frequently used as feature construction layers prior to LSTM cells in
a sequential fashion. Moreover, it is obvious in the spectral approach (cf. Fig. 13(a)) that out of sample accuracy is dependent
on model complexity, as the Inception network comprises the most trainable parameters and the CNN the least. Conversely, in
the time domain, the overall picture is scattered, as the approach is subject to more variance and stochastic noise. The variance
results from the short considered sample lengths and is amplified by the larger number of parameters due to the increased input
matrix compared to the frequency domain approach. Thus, the temporal model is more susceptible to perturbations because of its
complexity. Ultimately, the Inception network is used as the underlying model for the multi-task learning methodology and the
results in both domains are conveyed numerically in Table 3 and visually using histograms in Fig. 14.

In view of Table 3, it is stated that the MTL-Inception models show satisfactory accuracy on the unseen validation dataset in
both configurations. In general, they achieve higher performances than the corresponding multi-output approach as presented in
Table 2. It can be seen in Fig. 14 that multi-task learning, indeed, may have a beneficial impact on model performance in a sea
state identification approach, however, this applies predominantly to the time domain. In Section 3.3 it has been described that MTL
reduces the model’s tendency to fit to stochastic noise, i.e. Rademacher complexity, (cf. Ruder [44]) and that the MTL+ architecture
performs well under noisy conditions, [45]. As can be seen in Table 3, the prediction of advance speed 𝑈𝑠 in the MTL+ architecture
is considered as satisfactory and, in fact, facilitates the prediction of sea state parameters despite the inherent uncertainty in the time
domain approach. The 𝑅𝑀𝑆𝐸 is a measure of the prediction’s variance and decreased consistently applying both MTL approaches.
In turn, the effect of MTL in the frequency domain is not as pronounced, since there is not as large variance as in the temporal
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Table 3
Metrics of model performance on the validation set in the frequency and time domains using multi-task learning.
The lowest error values are indicated in bold font.

Frequency domain Time domain

Inception MTL MTL+ Inception MTL MTL+

𝐻𝑠
𝑅𝑀𝑆𝐸 0.927 0.883 0.871 1.345 1.228 1.248
𝑀𝐴𝐸 0.626 0.582 0.580 0.953 0.885 0.858

𝑇𝑝
𝑅𝑀𝑆𝐸 0.878 0.855 0.903 1.266 1.124 1.087
𝑀𝐴𝐸 0.529 0.472 0.501 0.916 0.752 0.744

𝛽
𝑅𝑀𝑆𝐸 10.50 12.82 11.57 16.67 18.75 16.84
𝑀𝐴𝐸 6.446 6.916 6.767 11.29 11.56 10.33

𝑈𝑠
𝑅𝑀𝑆𝐸 0.322 0.441
𝑀𝐴𝐸 0.227 0.331

Fig. 14. 𝑅𝑀𝑆𝐸 histogram indicating the performance on the validation dataset of different multi-task architectures. Note that 𝛽 is presented on the secondary
axis.

approach. Hence, the spectral approach is considered as more robust and it is concluded that the MTL methodology increases
robustness as well as accuracy for the temporal approach notably. Altogether, the MTL version is taken in the frequency domain
as the final model and the MTL+ architecture is adopted in the temporal approach. In Fig. 15, the predictions on the validation
set of the spectral MTL-Inception model are presented for ground truth values. Additionally, the loss curves of training and cross
validation set are presented on a logarithmic scale. It is stressed that Figs. 15(a)–15(c) are of similar type to Fig. 5(a). Moreover,
corresponding correlation and loss plots of the temporal MTL+-Inception model are depicted in Fig. 16 for comparison.

Generally, it is seen from Figs. 15 and 16 that both model types are capable of providing accurate predictions of the governing sea
state. Moreover, it proves again that the temporal approach is characterized by higher variance compared to the spectral approach.
This applies not only to the prediction of the three target variables, but also to the learning procedure, i.e. the behaviour of the loss
functions. The loss curves are already volatile in the frequency domain due to the application of 5-fold cross validation, however,
the variance is even larger in the time domain. From Fig. 16(d), it can be inferred that the time domain model was trained for
only 200 epochs in order to save computational resources, as it was evident in the spectral approach (cf. Fig. 15(d)) that the model
generalization converged before reaching 100 epochs anyhow. Therefore, implementing an early stopping callback is a key aspect
of extending the proposed training procedure. In case of the peak period 𝑇𝑝, minor heteroskedastic behaviour of the predictions is
visible, i.e. the variance is not constant for the entire definition range, cf. Figs. 15(b) and 16(b). Instead, the variance increases,
as the magnitude of 𝑇𝑝 decreases. It is assumed that this is due to the low pass filtering effect of the vessel, i.e. there is no vessel
response in low-period waves introducing uncertainty. However, in case of higher 𝐻𝑠 and 𝑇𝑝 values, both spectral and temporal
models exhibit reduced accuracy, which is due to the unbalanced training data and amplified by possible non-linear behaviour in
more severe sea states. Furthermore, when comparing both 𝐻𝑠 and 𝑇𝑝 for both models, it shows that the time domain model is
subject to larger uncertainty due to the more widespread joint distributions arranged around the identity line in the figures. In turn,
the variance of 𝛽 reveals only a small increase in the time domain model, when investigating Figs. 15(c) and 16(c). However, several
outliers are visible in Figs. 15(c) and 16(c) in beam-sea conditions, i.e. 𝛽 = ±90deg. It is noted that the scattered squares in Fig. 16
are part of the 2D histogram and their variance stems from the uncertainty of the predictions in the time domain. Obviously, the sea
state identification approach is subject to uncertainty resulting from e.g. the unknown loading conditions, as has been mentioned
in Section 2. Moreover, possible unfiltered measurement errors in both wave radar and MRU, i.e. corrupted samples, increase the
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Fig. 15. Correlation plots of the target variables and the loss curves in the frequency domain. Note that overhat denotes the model predictions.

aleatoric or statistical uncertainty. As discussed in Chen et al. [26], wave radars exhibit significant inaccuracies under precipitation
due to rain clutter.

4.3. General discussions

In the present work, it has been shown that the frequency domain models achieve higher out-of-sample accuracy, i.e. gen-
eralization capability, which is mainly due to the consideration of longer sample lengths as compared to the time domain. It is
stressed that both the computational effort and model complexity in the time domain are proportional to the considered sample
length. Conversely, both of these remain constant in the frequency domain. The computational time for one epoch – using the
exact same hardware and model architecture (ResNet) – was 56 s in the time domain and in the frequency domain one epoch
took 13 s. Specifically, the frequency domain requires approximately 77% less computing time, which is generally in accordance
with the ratio of the numbers of elements of the two input feature spaces, i.e. 1500 × 6 in the time domain and 64 × 36 in the
frequency domain, having obviously a direct impact on the trainable parameters of the model. Ultimately, it is concluded that the
spectral approach is characterized by better accuracy, robustness and computational efficiency. This finding is somewhat consistent
with other recent research on machine learning-driven sea state estimation that focuses on frameworks formulated in the frequency
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Fig. 16. Correlation plots of the target variables and the loss curves in the time domain. Note that overhat denotes the model predictions.

domain, e.g., [21,23]. In this context, it is also noteworthy that the generalization and extension towards methods for estimating
the full directional wave spectrum is an important aspect of future work, such as in [22,23].

The main drawback of frequency domain approaches is considered to be the dependency on relatively long time windows, up
to 25-30 min as found in this study, for a reasonable frequency resolution. Inherently, this can compromise results due to problems
related to nonstationary conditions, emphasizing that even the sea state itself, as encountered from a sailing ship going maybe +20
knots, can vary because of spatial and temporal progression [30,49]. On the other hand, the literature provides promising studies
that could be considered for mitigation of the drawback. For instance, Takami et al. [54] present the use of the prolate spheroidal
wave functions for spectral analysis. Its main advantage over, say, Fast Fourier Transformation (FFT) is to provide a higher frequency
resolution when applied on shorter time series, and with no need for manual choices with respect to smoothing. Alternatively, Cheng
et al. [18] employ a hybrid approach, based on time–frequency representations of ship motions using spectrograms also indicating
promising results.

Generally, sea state estimation is subject to substantial inherent uncertainty of both aleatoric and epistemic type. As such, the
extension of this work towards uncertainty quantification and minimization of sea state estimation seems promising. On one hand,
Mounet et al. [12] provide a methodology using a model-based sea state estimation approach while minimizing epistemic uncertainty
by both reducing the uncertainty of RAOs by tuning, and spatial uncertainty by considering a network of ships at the same time.
On the other hand, Han et al. [55] present an approach of visualizing and expressing the surrounding aleatoric or statistical
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uncertainty in a hybrid approach with a model-based approach and Gaussian process regression. It is thought that the herein
presented methodology may be extended towards both directions, however, the focus will be on the latter as aleatoric uncertainty
was more prominent in the presented results. Thus, two individual approaches show potential for the transparent representation
of uncertainty: (1) Following Mittendorf et al. [56], a quantile regression approach, i.e. training the neural network on quantile
loss functions, seems worthwhile in a deterministic attempt. (2) Conversely, establishing a Bayesian or probabilistic model using
the Monte Carlo dropout method as proposed by Gal and Ghahramani [57] shows great potential for future work, but may also
be limited by increased computational effort. Lastly, Bitner-Gregersen et al. [58] conclude that the identification of the sea state
with its surrounding uncertainty is and will be a vital research area in the maritime sector; and the changing climate contributes
additional relevance to the topic.

5. Conclusions

Real time monitoring of the governing wave environment during a vessel’s passage is directly linked to aspects of safety and
economy. For this reason, the present contribution established a non-linear mapping from in-situ ship responses to prevalent sea
state parameters using machine learning. The case ship was a midsize container vessel trading in Northern Atlantic. The ship was
equipped with a wave radar from which data was collected during 1.5 years. Machine Learning frameworks were formulated in
both the time and frequency domains using four different deep neural network architectures. The Inception model gave the highest
performance and was applied in a multi-task learning setting. The model assessment suggested satisfactory performance of the multi-
task frequency domain model on unseen validation data. The time domain models, on the other hand, exhibited substantial aleatoric
(or statistical) uncertainty due to the considered short sample length. Lastly, the frequency domain model also showed superior
characteristics in terms of computational effort and robustness. From a practical perspective, it was demonstrated that a machine
learning methodology for sea state identification is applicable under realistic conditions, exclusively using response measurements
from a cost effective MRU equipment.

Initially, it was thought that additional sensor recordings, such as relative wind speed and direction, could act as well-suited
predictors for the sea state and for reducing uncertainty. Moreover, the consideration of propeller revolutions and rudder angle (or
rather their variances) could be beneficial in a machine learning-based sea state estimation approach. These sensor readings were
disregarded herein, since they are mostly instationary and filtering these samples reduces the sample size even more. Additionally,
it stood out that a data acquisition period of 1.5 years only leads to approximately 5000 valid samples, i.e. complying to the
enforced boundary conditions defined in Section 2. The major drawback of deep learning methods is definitely the required large
amount of training data as well as limited applicability for extreme events. In turn, this motivates a parallel hybrid approach using a
model-based method relying on RAOs and a machine learning model simultaneously, as investigated by Han et al. [55]. Model-based
methods are not dependent on data availability, except for making the actual estimate, and may be considered as self-supervised in
machine learning terms as they generate their directional wave spectrum estimate from an RAO database, but without any ground
truth information. Therefore, it seems appealing to train a baseline model on results of model-based techniques and re-train an
advanced model on e.g. wave radar data in a transfer learning approach, similar to the work of Düz et al. [20]. Hence, model-based
and machine learning approaches are not seen as competitors, but as complementary — particularly when facing scarcity of sea
state data. Moreover, the methodology is not dependent on wave radar data, but may also be applied to hindcast metocean data,
e.g. from ERA 5 [59] being part of the EU Copernicus programme. Lastly, it is thought that the herein developed model may be
considered as a baseline and could be adapted to other vessels using transfer learning in case of limited data availability. Possibly,
the transfer learning procedure may be carried out in an incremental learning approach, i.e. the model is adapted in an online
fashion, as more data becomes available. All of the above are interesting aspects of extending the present work.
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Table 4
Metrics of predictions using the training dataset in both domains. The lowest error values are indicated in bold font.

Frequency domain Time domain

ResNet Inception MLSTM CNN ResNet Inception MLSTM CNN

𝐻𝑠
𝑅𝑀𝑆𝐸 0.413 0.425 0.649 1.033 1.353 0.883 2.568 1.196
𝑀𝐴𝐸 0.255 0.268 0.492 0.666 1.062 0.631 2.116 0.890

𝑇𝑝
𝑅𝑀𝑆𝐸 0.393 0.381 0.506 0.893 1.022 1.002 1.653 1.276
𝑀𝐴𝐸 0.225 0.216 0.329 0.633 0.768 0.755 1.374 0.956

𝛽
𝑅𝑀𝑆𝐸 5.106 4.910 5.486 10.84 13.49 10.20 31.99 21.38
𝑀𝐴𝐸 2.641 2.372 3.024 6.920 9.261 7.130 20.17 14.16

Table 5
Metrics of predictions using the training dataset in both domains using multi-task learning. The lowest error
values are indicated in bold font.

Frequency domain Time domain

Inception MTL MTL+ Inception MTL MTL+

𝐻𝑠
𝑅𝑀𝑆𝐸 0.425 0.341 0.324 0.883 0.945 0.672
𝑀𝐴𝐸 0.268 0.179 0.171 0.631 0.699 0.461

𝑇𝑝
𝑅𝑀𝑆𝐸 0.381 0.356 0.371 1.002 0.845 0.639
𝑀𝐴𝐸 0.216 0.170 0.192 0.755 0.599 0.463

𝛽
𝑅𝑀𝑆𝐸 4.910 5.031 5.082 10.20 12.75 9.022
𝑀𝐴𝐸 2.372 2.548 2.569 7.130 8.864 5.888

𝑈𝑠
𝑅𝑀𝑆𝐸 0.167 0.378
𝑀𝐴𝐸 0.103 0.282
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Appendix

Model performance on training data

See Table 4 for the results of the four initial models and Table 5 for data pertaining to the multi-task learning approach.
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Chapter 5

Estimation of Added Resistance in
Irregular Waves using In-service Data

Digitalization and imposed regulations are decisive driving factors for increasing data acqui-
sition onboard ships. On the one hand, collecting operational data became mandatory due
to several rules stipulated by IMO and the EU. On the other hand, utilizing performance
data for overall transparency and optimization of fleet operations is another motivation for
shipping companies to equip their fleet with an array of sensors. Aldous et al. [2] show
empirically that the inherent uncertainty of in-situ sensor data is significantly lower than
manually collected noon reports. However, other complexities arise when dealing with high-
frequency data, such as handling and filtering large amounts of data. In this respect, the
work of Dalheim and Steen [25] provides a very detailed preprocessing methodology for, e.g.
filtering for steady conditions. In addition, several sensors are known for their proneness
to error and sensor drift, such as the Doppler velocity log for measuring Speed Through
Water (STW), Ikonomakis et al. [50]. Still, the installation of sensor frameworks on ships
allows for more detailed full scale analyses in comparison to sea trials, which are rather
limited in temporal coverage and do not consider the vessel in actual operation with, e.g.
the experience of harsh weather conditions. Therefore, it is the goal of this chapter to utilize
fleet performance data for an investigation towards the mean added resistance in a seaway.

5.1 Introduction
For reliable performance monitoring and routing optimization, an accurate estimate of the
mean added resistance R̄AW is indispensable. For instance, when optimizing sailing routes
for wind-assisted ships, a sufficient method for estimating added wave resistance is essential
since favorable aerodynamic conditions may correspond to unfavorable hydrodynamic con-
ditions due to the coupling between prevailing wind and wave conditions. The assessment
of the minimum propulsion power requirement for blunt-type ships and the wave correction
as part of sea trial analyses are additional application fields that require accurate estimates
of RAW transfer function and sea state. Still, most numerical studies disregard the appli-
cation in irregular waves entirely, and a majority of studies towards R̄AW employ unimodal
and unidirectional wave spectra, e.g. Nabergoj and Prpić-Oršić [92] or Perez Arribas [103].
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When in fact, it is well-known that a real short-crested seaway comprises several partitions
from wind and swell. In [J4], it is found that 78% of all observed sea states were, in fact,
bimodal assuming hindcast wave data as ground truth. Liu et al. [80] list three require-
ments for estimation methods for practical application in irregular waves: (1) Applicability
to arbitrary wave headings, (2) coverage of a wide range of operating conditions including
advance speed, draft, and trim, and (3) a sufficient accuracy in shorter waves.

The calculation of R̄AW relies fundamentally on Maruo’s formulation given in Eq. 2.6,
which is based on linear spectral analysis. For demonstration, several methods presented in
Fig. 2.4 are applied in an irregular wave scenario for the same case ship – the KVLCC2. In
Fig. 5.1, R̄AW is normalized by the calm water resistance RT,calm, as taken from experiments
conducted by Yu et al. [133], and shown for all mean wave heading angles β0. The considered
sea state is characterized by only wind waves (i.e. unimodal) and approximated by a Pierson
and Moskowitz [104] spectrum with respect to Hs = 4.0 m and Tp = 11.0 s. The Kreitner
[70] and Boom et al. [14] methods are included due to their frequent use in practice for, e.g.
performance monitoring or sea trial analysis. The method by Boom et al. [14] is calculated
for long-crested waves, and the Kreitner [70] method may be outside of its definition range
since Hs > 2 m. However, the specified peak wave period reflects a relative wave length
of λ/Lpp = 0.59 for the KVLCC2, and hence the regime can still be considered diffraction-
dominated, for which the Kreitner [70] is deemed valid. The remaining four methods are
valid for arbitrary wave heading angles and are subsequently applied in short-crested waves,
which is facilitated by overlaying the unidirectional spectrum with a cos2s spreading function.

Figure 5.1: The relative mean added resistance in irregular short-crested waves for the
KVLCC2 at Fn = 0.142 as a function of the mean wave heading β0 using a unimodal
Pierson and Moskowitz [104] spectrum for Hs = 4.0 m and Tp = 11.0 s, i.e. Beaufort 6.

Given Fig. 5.1, it is observed that R̄AW can take up almost 20% of the calm water resis-
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tance in a Beaufort 6 sea state at design speed, and it is emphasized that this fraction may
increase with a decrease in forward speed, e.g. in a slow steaming regime. As anticipated,
the individual methods show a clear dependency on β0; however, only the two related meth-
ods by [J2] and Liu and Papanikolaou [79] show that R̄AW is largest in bow oblique waves,
as opposed to the DTU design tool and Lang and Mao [74]. Moreover, the DTU design
tool shows good qualitative agreement with other methods but generally non-conservative
estimates since it nearly coincides with the lower uncertainty bound of the [J2] method. In
contrast, both Kreitner [70] and Boom et al. methods exhibit relatively more conservative
predictions of R̄AW , but still fall into the prediction interval of [J2]. As a side note, a minor
increase in added resistance in the proximity of stern quartering waves has been reported in
several studies, e.g. Blok [12]. Valanto and Hong [128] assume that the increase of the yaw
and roll in these wave headings may be causal for this. However, based on the experimental
database in [J2], it is not possible to draw any firm conclusions in this regard, indicating
the need for more in-depth studies – also for possible extensions of semi-empirical methods.

Unlike most other studies and Fig. 5.1, the present chapter focuses on estimating the in-
situ added resistance using a data fusion approach of in-service ship monitoring and historical
wave data. In 1936, Kempf [67] conducted thorough experiments for correlating both full
and model scale results. The study considers one case ship with extensive measurement
equipment recording, e.g. ship motions, propeller revolutions, and the sea state (visually).
Overall, reasonable accuracy was found between model and full scale, and a speed loss of
40% in a Beaufort 8 sea state was reported. Approximately 80 years later, Vitali et al.
[130] present a study combining AIS (Automatic Identification System) and wave hindcast
data for determining the speed loss of a large fleet of container ships with respect their
original design speeds. Moreover, they compare their estimates to results obtained from the
formula of Kwon [73] and find that this approach is generally non-conservative. A possible
explanation could be the missing differentiation between involuntary and voluntary speed
loss the this study. Nielsen et al. [97] examine the added resistance in an indirect approach
using high-frequency data from a container vessel. The method builds on the measured
shaft power and empirical resistance decomposition for calculating the added resistance as
the surplus to the theoretical shaft power in calm weather. Generally, satisfactory results
have been obtained, but significant variance and presumably corrupt data in some cases in
following waves stood out.

The overarching goal of this chapter and [J4] is to apply the indirect approach of Nielsen
et al. [97] in parallel to the spectral formulation given in Eq. 2.6. For this purpose, a large-
scale fleet performance dataset from a major shipping company will be utilized, similar to
one used in Ikonomakis et al. [50]. Moreover, wave hindcast data from the ERA5 database
will be employed. In fact, the modeling of the prevailing wave environment receives a large
focus and surpasses current state-of-the-art publications. For instance, Lang and Mao [74]
consider only a unimodal directional wave spectrum and Liu et al. [80] consider only wind
waves as short-crested, but swell waves as unidirectional. Herein, both partitions will be
regarded as short-crested, and the peak enhancement factor (as part of the JONSWAP
spectrum) will be variable for a detailed representation of the wave environment in regions
with limited fetch, i.e. coastal areas. Moreover, the method developed in [J2] will be used
for calculating the transfer function, and the empirical Hollenbach [47] method is used for
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estimating the calm water resistance. By using in-service data, it is the goal to investigate
the mean added wave resistance in actual conditions without any simplifications. The scale
of this study in itself is, in fact, unprecedented and thus resembles the primary novelty of
[J4].

5.2 Discussion
Tsujimoto et al. [123] point out generally a poor agreement between theoretical/numerical
and experimental added resistance results for slender container vessels in short regular waves.
This is primarily owed to non-linear effects induced by the hull shape, such as wave breaking
due to pronounced bow flare or the impact of a protruding bulb. Nabergoj and Prpić-Oršić
[92] confirm these difficulties using five different approaches for determining theRAW transfer
function for a slender ferry and a standard design spectrum for the application in irregular
waves. In fact, they found a spread within the individual methods by a factor of 3.5 in
higher sea states, and the Jinkine and Ferdinande [60] approach gave the most conservative
estimates. When it comes to in-service analyses of R̄AW , the degree of variance and bias
can be of an even larger extent, e.g. Shigunov [111].

In the context of [J4], the considered fleet experienced only moderate sea states due
to good seamanship and weather routing. Still, there were indications for deviations in
higher sea states in the case of the spectral method in comparison to the indirect estimate.
Having said this, a considerable degree of uncertainty can be attributed to the sea state
data obtained via the ERA5 database, as seen in the previous chapter. Moreover, applying
the wave buoy analogy for deriving sea state parameters was unfeasible since the wave-
induced responses (e.g. motions and hull girder strain) had not been captured during the
observation period. Another possible reason for the deviations could be that the method by
Faltinsen et al. [32] (as part of the [J2] method) may be stretched towards its application
limits since it is derived for vertical walls, i.e. no existing flare, and lower forward speeds
(Fn < 0.2). Therefore, the implementation of the NMRI correction for bow wave reflection
could be a potential aspect for extending the method in [J2] since Tsujimoto et al. [123]
showed reasonable agreement for a container ship. However, there is generally a significant
knowledge gap and lower result quality in very short waves – regardless of the approach.
As mentioned in Ch. 2, Sprenger et al. [115] found only weak confirmation of the second-
order relationship between RAW and wave amplitude. In this light, Kuroda and Takagi
[72] conducted added resistance model tests in irregular waves and incorporated a 4th-order
term for considering the effect of the hull shape above the waterline. In the case of a VLCC,
good agreement was found during model tests using a higher-order expression; however,
more systematic studies are needed for confirmation.

For assessing the overall uncertainty of the employed transfer function, the calculation
according to Eq. 2.6 is carried out for all three estimates given by the method of [J2],
i.e. the mean and the two uncertainty bounds. It is noted that this reflects an inconsistent
approach as it only takes the uncertainty of the transfer function into account and disregards
the possible uncertainty pertaining to the sea state. The results are given in Fig. 5.2a for
the same case vessel class examined in Fig. 1.3, i.e. the 15,000 TEU class. Expectedly, the
uncertainty – expressed by the prediction interval – is dependent on the magnitude of R̄AW
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and, therefore, negligible in lower sea states. Given Fig. 5.2a, there is an indication that
the scatter for Hs > 3.0 m is closer to the lower uncertainty bound, but the general lack of
samples in higher sea states impedes drawing any conclusions. Overall, it can be seen that
the transfer function-related uncertainty is only of minor importance in view of the variance
of the relative empirical added resistance obtained through the indirect methodology.

(a) The relative empirical and theoretical added
resistance where the latter is approximated by
three second order polynomials.

(b) Determination of ηD following the method
of Kristensen and Lützen [71] assuming a
Wageningen-B series propeller.

Figure 5.2: Two individual studies on (a) uncertainty pertaining to the RAW transfer func-
tion and (b) estimating the propulsive efficiency ηD. Data from eight sister vessels of the
15,550 TEU vessel class is taken.

Regarding the indirect estimation of added resistance, several uncertainty sources have
already been pointed out in [J4], and a considerable contribution can be ascribed to using
an empirical formula for the dominant calm water resistance. Empirical approaches are
dedicated to estimating RT,calm for design speed and draft. Their extrapolation capability
may be, in fact, limited, and hence it seems worthwhile to estimate a quasi-calm water speed-
power baseline by a piece-wise regression methodology following Berthelsen and Nielsen [9].
Another contribution to the observed uncertainty of the empirical added resistance in Fig.
5.2a may result from disregarding hull fouling. However, considering the application of
special fouling-release paints, lower idling periods, higher forward speeds, and great efforts
towards hull/propeller cleaning by the shipping company, it is believed that the disregard
of fouling in [J4] is of little relevance.

The assumption of the propulsive efficiency as 70%, as suggested by ISO 19030, can be
considered a relatively crude simplification in [J4]. For this reason, the approach for deter-
mining the propulsive efficiency ηD by Kristensen and Lützen [71] is herein applied to the
15,000 TEU vessel class data. The method builds on the relationship between the thrust
loading coefficient and the open-water propeller efficiency of the Wageningen-B propeller se-
ries. In Fig. 5.2b, a histogram of the calculated ηD values is presented, and the distribution
arranges around 0.68. Considering that the optimized propeller will exhibit slightly higher
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efficiency than a standard Wageningen-B propeller, the used value of 0.7 can be regarded
as somewhat reasonable. However, applying this calculation procedure for ηD requires de-
tailed information, such as the propulsive coefficients, which are determined according to
Guldhammer and Harvald [42] as speed, draft, and seaway independent. Additionally, for
calculating the required propeller thrust, an estimate of R̄AW is required contradicting the
actual purpose of the indirect methodology by Nielsen et al. [97]. In fact, the relative resid-
uals of theoretical and empirical added resistance showed a reduced variance by 10% when
using the corresponding ηD values from Fig. 5.2b, but this is mostly for instances in higher
sea states, which is then owed to the inclusion of the spectral estimate when determining
the required propeller thrust. In fact, in the work of Nielsen et al. [97], the empirical resis-
tance and propulsion model was even more detailed, including the method by Fujiwara et
al. [34] for wind resistance and the actual open water propeller diagram for the respective
case ship. However, the result quality is relatively similar to that of [J4]. Moreover, it was
observed that the added wind resistance was generally higher in magnitude than the added
wave resistance due to the low sea states combined with large windage areas of container
ships. Apart from the measurement uncertainty of wind speed and direction, as shown in
[J4], the uncertainty regarding actual loading conditions and arrangement of containers on
deck can be considered a significant contribution to the variance of the indirect estimation
approach of added resistance. The random loading pattern induces local separation bubbles
and can, in fact, surpass the wind resistance for a fully loaded condition, Andersen [5].

It is concluded that the added resistance is of lower importance for the performance
monitoring of container vessels since it resembles only a minor fraction of the total ship
resistance. However, in the case of blunt-type ships and for routing optimization regarding
all vessel types, R̄AW has to be estimated with high accuracy. As concluded by Bertram [11],
the added power due to waves is of even greater practical relevance because it also includes
the propulsive and engine-related losses in waves. In addition, maneuvering aspects, such as
steering forces, have to be considered – especially in oblique waves with an increase in yaw
and sway. This motivates a unified approach combining both seakeeping and maneuvering,
as shown by Skejic and Faltinsen [114]. Ultimately, Lang et al. [75] compare the results
of an empirical framework to machine learning methods for the prediction of shaft power
in service conditions and found higher accuracy for the machine learning approach. Hence,
the next chapter will focus on predicting a ship’s propulsive power using neural networks
and eventually extracting the biofouling-related power increase.
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A B S T R A C T

A practical estimation methodology of the mean added resistance in irregular waves is shown, and the present
paper provides statistical analyses of estimates for ships in actual conditions. The study merges telemetry data
of more than 200 in-service container vessels with ocean re-analysis data from ERA5. Theoretical estimates
relying on spectral calculations of added resistance are made for both long- and short-crested waves and are
based on a combination of a parametric expression for the wave spectrum and a semi-empirical formula for
the added resistance transfer function. The theoretical estimates are compared to predictions from an indirect
calculation of added resistance relying on shaft power measurements and empirical estimates of the remaining
resistance components. Overall, the comparison reveals a bias in bow oblique waves and higher sea states of
the spectral estimates as well as the large variance of the empirically derived predictions — particularly in
beam-to-following waves. One of the study’s main findings, confirming previous studies but based on a much
larger dataset than in earlier similar studies, is that added resistance assessment based on in-service data is
complex due to significant associated uncertainties.

1. Introduction

Seaworthiness is considered the ultimate criterion in ship design.
However, standard practice is to optimize the hull shape for calm water
conditions with a service allowance of around 15% to account for
the added resistance in actual operating conditions, Shigunov (2017).
However, the added resistance is not only vital in ship design but even
more so in ship operation: The impact of added resistance on ship
safety, economy, and overall life cycle is unquestionable. Therefore,
vessel performance analysis and voyage optimization need reliable
and precise information about this second order force in actual ship
operations. In this line, Tsujimoto et al. (2008) conclude that estimates
of added resistance due to waves are essential for correctly evaluating
a vessel’s emissions and thus its carbon footprint. With tightening
rules for the efficient design and operation of ships, the relevance
of added resistance is amplified. Recently, IMO (2021) stipulated the
EEXI (Energy Efficiency eXisting ship Index) and CII (Carbon Intensity
Indicator) regulations, which, in fact, may lead to a new regime of
involuntary slow steaming due to Shaft Power Limitations (ShaPoLi)
in case of non-compliance. In parallel, rising fuel prices and port
congestion may be driving factors for voluntary slow steaming. Hence,
added resistance could be of increasing relevance in the years to come
due to reduced operating speeds. It is stressed that added resistance is

∗ Corresponding author.
E-mail address: mamit@dtu.dk (M. Mittendorf).

of higher relative magnitude under lower forward speeds. Over the long
term, it is thought that climate change will lead to a greater interest in
the influence of wind and waves on ship operations and, consequently,
the fidelity of weather routing methods due to the rising likelihood
of extreme weather events, as pointed out by Bitner-Gregersen et al.
(2014). Moreover, Bertram (2016) concludes that knowledge about the
prevailing sea state (or rather the lack of it) is an ‘‘Achilles heel’’ for the
determination of the added resistance in actual, in-service conditions.
Hence, modeling the wave environment is a key feature of the present
work, which relies on re-analysis data retrieved from ERA5 (Hersbach
et al., 2018).

1.1. Literature review

Tsujimoto et al. (2008) lay out a clear methodology for assessing
added resistance in short-crested waves and the associated speed loss
for a container vessel. For this reason, they propose the NMRI (National
Maritime Research Institute) formula for the determination of the
transfer function and the ITTC (International Towing Tank Conference)
spectrum combined with the cosine power-type spreading function is
used for wave modeling. Tsujimoto et al. (2008) also focus on the
accurate calculation of additional resistances due to wind and steering

https://doi.org/10.1016/j.oceaneng.2023.113892
Received 30 November 2022; Accepted 5 February 2023
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impacts. Shigunov (2017) estimates the added power on ships in a
seaway by utilizing a Rankine panel method to calculate the transfer
functions of wave drift forces/moments in 3 degrees of freedom. In
addition, the consideration of propulsive and engine-related character-
istics is a crucial aspect of his work. The calculation procedure for a
container carrier is verified using noon report data of two sister ves-
sels. Kim et al. (2017) present a study combining CFD (Computational
Fluid Dynamics) results of the added resistance transfer function for the
S175 container vessel and the estimation of the speed loss in irregular
waves. The latter has been accomplished by applying a unidirectional
Pierson Moskowitz spectrum. Unlike the already presented simulation-
based studies, the increasing availability of in-service vessel monitoring
data allows for more in-depth analyses of added resistance in actual
conditions. For instance, Lakshmynarayanana and Hudson (2017) de-
rive the calm water shaft power from high-frequency monitoring data
of three sister vessels by strictly filtering for environmental conditions.
Their analysis of the added power is then carried out using the initially
derived calm water power as a baseline and under the same draft
conditions. The results reveal considerable uncertainty in the derived
added power and a weak dependency on the sea state. Nielsen et al.
(2019) utilize auto-logged high-frequency data of a container vessel in
worldwide service and determine the added resistance in an indirect
approach. Similarly to the former study, the added resistance is con-
sidered the surplus to the empirically derived calm water shaft power
compared to the actual measured shaft power. In general, reasonable
results have been obtained; however, significant variance and possibly
erroneous data in following waves were observed. Furthermore, Dal-
heim and Steen (2020a) evaluate the in-situ added resistance of an
offshore supply vessel operating in the North Sea by considering model
test data in both calm water and irregular waves as references. The
analysis is based on one year of high-frequency data, and the added
resistance has been predicted as non-conservative according to simu-
lated data based on strip theory results. Lang and Mao (2020) propose
a semi-empirical method for the prediction of the added resistance
transfer function in head waves. In parallel, they apply this approach
to high-frequency monitoring data of two separate vessels and use
the JONSWAP spectrum together with hindcast data from ERA5 for
wave modeling. Similar to Dalheim and Steen (2020a), they found an
underestimation and subsequently derived a wave height correction
factor determined as 3.5

√
𝐻𝑠. Taskar and Andersen (2021) assess several

known procedures for predicting the added resistance transfer function
and verify the obtained results in irregular waves with noon reported
and high-frequency data of an oil and a gas tanker. The JONSWAP
spectrum was used for modeling the wave environment, and bimodal
seaways were considered by means of ERA5 sea state parameters. It
stood out that significant variance was visible in the residuals – in
higher sea states in particular – despite the detailed data pre-processing
methodology.

Overall, considerable uncertainty is a common and dominant issue
among all the above-mentioned publications. Both large variance and
bias are observed making the isolated analysis of in-service added
resistance challenging. Prpić-Oršić et al. (2018) report about several
possible sources of uncertainty ranging from erroneous/biased sensor
data to limited knowledge of the prevailing sea state. Nonetheless,
it is emphasized that with the deployment of continuous monitoring
infrastructure onboard vessels, the degree of measurement uncertainty
(including human error) reduces drastically compared to manually
recorded noon reports (Aldous et al., 2015; Christensen et al., 2018). In
addition, the quality of met-ocean data, particularly wind and waves,
has improved significantly compared to earlier analyses, often relying
on visual observations (de Hauteclocque et al., 2020). Despite improv-
ing data quality, the isolation of added resistance in in-service data is
still subject to substantial uncertainty.

1.2. Motivation and objective

Given the presented literature, it stands out that the majority of
studies is limited to one vessel class and, in some cases, even to only a
few voyages. Hence, a significant contribution of the present paper lies
in the paper’s consideration of more than two years of continuous high-
frequency monitoring data from 32 vessel classes with 228 container
vessels. However, no detailed hull shape or propeller information has
been made available, which may be seen as a drawback in terms of
accuracy, but this is considered the default case in general vessel per-
formance monitoring by the respective industry. The proposed practical
estimation methodology is based on a semi-empirical framework, and
only information on the main particulars of the vessels and sea state
parameters is required. The approach presented by Mittendorf et al.
(2022b) is chosen for the determination of the added resistance transfer
function, and the modeling of the ambient wave scenario follows from a
parametric directional wave spectrum shaped with parameters obtained
from re-analysis data for wind and swell using the public domain ERA5
service.

The paper consists of two parts: (1) Initially, the estimation of the
theoretical added resistance in short- and long-crested waves is per-
formed in parallel and compared. In general seakeeping calculations,
long-crested waves are typically assumed due to reduced complexity
and conservative results (Lloyd, 1989). Thus, it will be studied whether
the same holds for the higher order force of added resistance. (2) The
second part of the paper is about the comparison of spectral results to
empirical predictions, which are derived from in-service shaft power
measurements. This empirical added resistance is determined by an
indirect methodology, as presented in Nielsen et al. (2019), i.e. by
resistance decomposition using empirical methods. Due to the large
windage area of container vessels, the wind resistance is considered
through experimental data from Andersen (2013) according to ISO
15016 (ISO, 2015). In addition, the sea margins of the individual
vessel classes will be presented and analyzed to link ship operation to
design. In fact, the respective sea margins of theoretical and empirical
methods are shown and discussed. In a dedicated section, different
uncertainty sources will be pointed out and partly set into the context
of ISO 19030 (ISO, 2016). Ultimately, the present study aims to provide
a practical estimation methodology of the mean added resistance in
irregular waves based on publicly available wave climate data and
an established semi-empirical method for predicting the associated
quadratic transfer function.

1.3. Composition

In Section 2, both the fleet performance data and metocean hindcast
data will be introduced and analyzed. The data pre-processing and
filtering makes up the majority of this section. Section 3 has its focus
on the spectral estimation methodology and the in-direct empirical
calculation procedure. The results are presented and discussed in Sec-
tion 4, while Section 5 provides dedicated remarks about the inherent
uncertainty. Finally, Section 6 summarizes the paper and discusses
possibilities for extending work.

2. Data analysis and processing

2.1. General overview of data

The extensive database of fleet telemetry data includes 32 vessel
classes with 228 vessels in total and has been acquired over two years
between January 2019 and March 2021. As a side note, the time of the
measurement campaign is characterized by severe disruptions in the
global supply chains due to the COVID-19 pandemic. An overview of
the fleet’s two major characteristics, i.e. length between perpendiculars
𝐿𝑝𝑝 and TEU (Twenty-foot Equivalent Unit) capacity, can be seen in
Fig. 1. In view of the regression analyses taken from Kristensen (2015),
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Fig. 1. Relationship between ship length (𝐿𝑝𝑝) and capacity in terms of TEU consid-
ering the individual vessel classes. It is noted that the regression curves are taken
from Kristensen (2015) and that 𝐵 denotes the beam of the vessel.

it is observed that the considered vessels resemble the world’s fleet
satisfactorily for both Panamax and PostPanamax vessels. The main
particulars and other characteristics of the individual vessel classes
have been compiled from class information and in-house data sheets.
On a separate note, the present fleet shows varying geometric charac-
teristics, such as vertical stems, twin-screw arrangements, and mounted
cranes for cargo handling. All of this is useful in a potential discussion
about the relevance of the present study and the generalization of its
results with respect to ships of other fleets.

In view of Fig. 1, it is appreciated that the considered vessel classes
are mostly characterized by 𝐿𝑝𝑝 larger 200 m, which underlines the
importance of added resistance for smaller values of the relative wave
length 𝜆∕𝐿𝑝𝑝 with 𝜆 being the (absolute) wave length. Söding and
Shigunov (2015) report that moderate sea states, characterized by wave
lengths of 50 m to 150 m, are most commonly encountered by merchant
ships. Hence, the bulk of experienced relative wave lengths arranges
in the interval 𝜆∕𝐿𝑝𝑝 ∈ [0.125, 0.75], acknowledging that this regime
of wave lengths is of higher complexity for the calculation of added
resistance due to the dominant diffraction component.

The GPS position histories of all considered vessels are depicted
in Fig. 2 and show a broad spatial coverage. Moreover, the route
path projections of all vessels have been processed by the algorithm
presented in Ikonomakis et al. (2022) for correcting any erroneous
vessel positions. Still, minor inaccuracies are visible in the GPS data,
e.g. in the southern part of Africa or Spain. It is stressed that the
majority of the fleet operates the Europe-Far East trade via the Suez
canal.

2.2. Sensor readings and filtering

The individual sensor readings being part of the CAMS1 (Central
Alarming and Monitoring System) have a sample frequency of 1 Hz.
The data aggregated into 10-min samples is sent to shore whenever it
is possible to establish a satellite connection. The basic sensor readings
comprise GPS information, such as Longitude, Latitude, and Speed
Over Ground (𝑆𝑂𝐺). Additionally, engine-related data has been ac-
quired, such as shaft power 𝑃𝐵 and shaft revolutions rpm. Interquartile
range filtering has been applied to the distribution of 𝑃𝐵∕rpm3 for
the removal of potential outliers in the shaft power measurements.
Moreover, sea and air temperatures have been measured on a number

1 CAMS is the onboard data acquisition system of Mærsk Line.

of vessels, but for consistency, these two sensor readings were disre-
garded in this work entirely. Speed Through Water (𝑆𝑇𝑊 ) has been
obtained by the Doppler velocity log, and it is noted that different types
and manufacturers of this sensor have been used for different vessel
classes. Ikonomakis et al. (2021) review several known issues of 𝑆𝑇𝑊
measurements and establish a filtering threshold in use of 𝑆𝑂𝐺 as a
reference, basically given as |𝑆𝑇𝑊 −𝑆𝑂𝐺| < 2 kts, in order to account
for possible sea currents. The proposed threshold is also applied herein,
and samples with 𝑆𝑂𝐺 or 𝑆𝑇𝑊 below 5kts are filtered out, as this
speed regime is considered maneuvering. It is noted that sequences
with frozen sensor recordings or with an apparent offset have been
filtered out manually in the case of 𝑆𝑇𝑊 and 𝑃𝐵 . Moreover, the vessels
were equipped with anemometers in the bow to measure relative wind
speed 𝑉𝑤,𝑟𝑚 and direction 𝜓𝑟. The measured relative wind speed has
been adjusted to a reference height of 10 m, and the recommended
equations of ISO 19030 have been used for mapping the relative wind
speed 𝑉𝑤,𝑟 and direction 𝜓𝑟 to the absolute wind speed 𝑉𝑤 and direction
𝜓 . The loading condition, i.e. the draft at bow 𝑇𝑓 and stern 𝑇𝑎 position,
were also measured; however, high-frequency draft measurements are
known for their reduced data quality under forward speed, as shown
by Gunkel et al. (2018). Therefore, draft information from the loading
computer is utilized in this work exclusively for robustness. It is noted
that the draft data was linearly interpolated to match the 10-min
interval of the remaining dataset. Moreover, large trim angles were
removed, and a threshold of 𝛥𝑇 = 𝑇𝑎 − 𝑇𝑓 is defined so that only data
for which |𝛥𝑇 | < 2.5 m is kept. In Fig. 3, the distribution of the relative
mean draft is depicted for all time instances and considering the entire
fleet (228 vessels).

As can be inferred from Fig. 3, the actual experienced mean drafts
are highly skewed towards the scantling draft, as the relative draft
is normalized by the design draft of the vessels. The average Froude
number 𝐹𝑛 of the entire fleet was 0.16 in the observation period;
however, the average design Froude number is in the range of 0.22.
It becomes clear that some of the vessels operate far off their actual
design and contract conditions.

The richness of data allows for rigorous filtering thresholds, which
may subsequently enhance the quality of results. Crucially, the data is
filtered for consideration of steady conditions exclusively. Dalheim and
Steen (2020b) present a detailed methodology for detecting unsteady
sequences in high-frequency monitoring data based on the window-
wise slope of the considered samples. However, in the present case,
10-min samples are available; therefore, the relative variances of 𝑆𝑇𝑊 ,
𝑆𝑂𝐺, rpm, heading, and rudder angle are used to determine steady
sailing conditions. The individual thresholds are empirically derived,
and in Fig. 4, a sample result of the employed filtering techniques is
presented for one 15,550 TEU vessel. It stands out that only legs with
steady conditions are kept and that acceleration phases and port calls
are disregarded.

The additional resistance due to steering is neglected by filtering
out rudder angles |𝛿 − 𝛿| > 1.5 deg. It is stressed that 𝛿 denotes the
global mean because the rudder position sensor had a minor offset in
a few cases and was not precisely centered around 0 deg. To filter for
possible shallow water resistance, samples with a depth-based Froude
number 𝐹𝑛𝐻 = 𝑈√

𝑔𝐻
larger than 0.5 were excluded. It is noted that 𝐻

is the water depth below the keel, 𝑔 is the gravitational acceleration,
and 𝑈 is the ship’s advance speed. Even though water depth has been
part of the sensor readings on most vessels, bathymetry data from ERA5
has been used for the robust and consistent computation of 𝐹𝑛𝐻 . In
addition, several vessel classes were disregarded due to the lack of
essential sensor readings, such as GPS position or wind data. As a result
of the filtering procedure, the remaining part of the study considers 166
ships in 22 vessel classes.
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Fig. 2. GPS position projection of 228 vessels in the time between January 2019 and March 2021.

Fig. 3. Histogram of the relative draft according to the respective design drafts of the
vessel classes.

Fig. 4. Filtering methodology applied to one case ship (15,550 TEU) in October 2020.
It is noted that MCR refers to the maximum continuous rating of the main engine.

2.3. Sea state information

In the final preprocessing step, the filtered data has been merged
with wave data, based on ERA5, according to the corrected GPS data
and UTC timestamps. It is stressed that samples with unavailable wave
data were disregarded; thus, samples with erroneous GPS data (cf.
Fig. 2) are dropped. The ERA5 database is part of the Copernicus EU
program (Copernicus, 2020) and provides met-ocean data in hourly
intervals at a 0.5 deg spacing in both Longitude and Latitude. In
principle, the directional wave spectrum is available at every grid
point. However, because of the ample required storage space and
increased processing time due to the scale of the present dataset, it
has been decided to work exclusively with integral wave parameters.
Therefore, the directional spectrum 𝐸(𝜔, 𝛽) will be reconstructed using
a parametric expression for the wave spectrum (at run time). Herein, it
is of interest to model bimodal sea states and, thus, parameters of the
wind-wave and swell partitions, as well as of the total mean system,
were retrieved. Altogether, 10 parameters were downloaded per valid
sample: significant wave height 𝐻𝑠,𝑖 (total, wind and swell partition),
peak period 𝑇𝑝,𝑖 (total, wind and swell partition), mean zero up-crossing
period 𝑇𝑧 and wave direction 𝜈𝑖 (total, wind and swell partition). It
is noted that the wave direction 𝜈𝑖 is converted to the relative wave
direction, as seen from the ship, using the following equation: 𝛽𝑖 =
𝜈𝑖 − 𝛼, where 𝛼 denotes the ship’s heading, which a gyrocompass has
logged. It is noted that 𝛽0 = 180 deg. defines head waves and 0 deg.
represents following waves. For the spatiotemporal interpolation, a bi-
linear scheme has been used in the case of all 10 parameters. The
fundamentals of interpolating sea state parameters along ships’ routes
are presented in Nielsen (2021). In Fig. 5, the joint distribution of
the total 𝐻𝑠 and 𝑇𝑧 extracted from the present dataset is compared to
global wave climate statistics. It is noted that the plot in Fig. 5(a) is an
aggregated scatter, kernel density mapping, whereas Fig. 5(b) shows a
contour plot.

The comparison of Figs. 5(a) and 5(b) reveals that the observed sea
states are skewed towards lower values, notably for both 𝐻𝑠 and 𝑇𝑧,
in contrast to the long-term design probability distribution (DNV-GL,
2018). This finding is in line with the work of Nielsen and Ikonomakis
(2021), and Miratsu et al. (2022), in which they list the use of weather
routing and good seamanship as reasons for the lower experienced sea
states. It is also mentioned that both distributions are characterized by
different sources and degrees of epistemic (or systematic) uncertainty.
Based on the isolines in Fig. 5(a), it is stated that roughly 80% of the
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Fig. 5. Joint distribution of 𝐻𝑠 and 𝑇𝑧 (a) according to the present dataset and (b) to long-term statistics.

entire data has been acquired under conditions with 𝐻𝑠 < 4 m. With
that said, it is emphasized that ERA5 data is, indeed, assumed to be the
ground truth in this work, acknowledging the fact that re-analysis data
is generally an estimate of the encountered sea state. There are plenty
of studies in the literature investigating the agreement of ERA5 data
to wave buoy data or to other hindcast vendors, e.g. de Hauteclocque
et al. (2020), or Nielsen et al. (2022). Therefore the validation of ERA5
data and the discussion of accuracy is beyond the scope of this work.
Nonetheless, known related uncertainty sources will be presented in the
later discussion herein.

3. Applied methodologies

The longitudinal wave drift force – the added resistance 𝑅𝐴𝑊 – is
a second order quantity, i.e. 𝑅𝐴𝑊 ∝ 𝜁2, where 𝜁 denotes the wave
amplitude. In general, added resistance is considered a function of ship
speed 𝑈 , ship draft 𝑇 , mean relative wave heading 𝛽0, wave frequency
𝜔 and wave amplitude 𝜁 (Strøm-Tejsen et al., 1973). As Tsujimoto
et al. (2008) pointed out, the added resistance of slender-type ves-
sels, e.g. container vessels, is of high complexity and variance due to
pronounced flare angles, possibly leading to non-linear wave breaking
effects, the influence of a protruding bulb, and also due to higher for-
ward speeds. Several uncertainty sources in experiments and numerical
modeling are presented in Shigunov et al. (2018) and Park et al. (2015).
The wave correction in ISO 15016 suggests two calculation methods for
the assessment of the mean added resistance in irregular waves: (1) A
spectral calculation method is described, which relies on an estimate
of the added resistance transfer function and a representation of the
wave environment in terms of a wave energy density spectrum. (2) The
application of the empirical formula STAwave-1 (ITTC, 2014), which
expresses a dependency on 𝐻𝑠 and the ship’s main particulars, is also
mentioned in the respective standard. Overall, the formula has a major
resemblance to the Kreitner (1939) formula and reflects a similarly
narrow definition range in terms of 𝛽0, 𝑈 , 𝐻𝑠, and most importantly,
ship type. Herein, the more general spectral calculation procedure (1)
is chosen, and its intricacies are elaborated in the following subsection.

3.1. Spectral calculation of added resistance

In most publications about added resistance on ships in service
conditions, the prevalent sea state is represented by a unimodal wave
spectrum, assuming long-crested waves, when, in fact, real sea states
and their representing wave spectra contain several partitions resulting
from wind and swell. Moreover, the waves propagate from directions
statistically distributed around a mean vector, i.e. waves are short-
crested. That being said, average parameters as such – the relative
mean wave direction in particular – have a reduced physical meaning in

multimodal seaways. In fact, only 22% of all samples within the used
dataset, cf. Section 2, show a sea state that can be represented by a
unimodal wave spectrum2 highlighting the importance of considering
multimodal conditions. Therefore, calculating the mean added resis-
tance in short-crested waves, assuming a bimodal wave spectrum, is
carried out using Eq. (1). The expression is based on the assumption of
stationarity and superposition, i.e. linear wave theory in infinite water
depth.

𝑅̄𝐴𝑊 ,𝑠𝑐 = 2∫
2𝜋

0 ∫
∞

0

𝑅𝐴𝑊 (𝜔, 𝛽)
𝜁2

𝐸(𝜔, 𝛽)𝑑𝜔𝑑𝛽 (1)

Given Eq. (1), it is said that the mean added resistance in short-
crested waves 𝑅̄𝐴𝑊 ,𝑠𝑐 is computed by integrating the product of the
quadratic transfer function 𝑅𝐴𝑊 and the directional wave spectrum 𝐸
w.r.t. wave frequency 𝜔 and the (relative) wave direction 𝛽. In contrast,
the mean added resistance in long-crested waves 𝑅̄𝐴𝑊 ,𝑙𝑐 is calculated
with 𝐸 integrated for all 𝛽 and the transfer function 𝑅𝐴𝑊 is only
computed for the relative mean wave direction 𝛽0. Lloyd (1989) states
that considering short-crested waves, in general, smooths the extreme
variations of the responses. In addition, it leads to an increased roll
response in following waves and increased pitch in beam waves. Due
to the effect resulting from the consideration of short-crested waves on
the first order responses, it is thought that similar observations may
show in the case of the second order added resistance.

The semi-empirical formula proposed by Liu and Papanikolaou
(2020) has been developed mainly for practical purposes, for instance,
when the detailed hull geometry is unavailable, not to mention that the
formula requires low computational effort. Its distinct advantage over
other approaches, such as the STAwave-2 (ITTC, 2014), is the validity
for all wave heading angles and thus the applicability in short-crested
waves. Moreover, the underlying approach of Liu and Papanikolaou
(2020) underwent a rigorous validation study (Wang et al., 2021) and is
recommended by the ITTC Ship Operation at Sea (SOS) specialist com-
mittee for the wave correction during sea trials, ITTC (2021). The Liu
and Papanikolaou (2020) formulation applies a correction term for
wave reflection in short waves (𝑅𝐴𝑊𝑅) to the added resistance caused
by the motions of the vessel, i.e. radiation (𝑅𝐴𝑊𝑀 ). The necessary
predictors for the semi-empirical approach are the main particulars,
i.e. 𝐿𝑝𝑝, 𝐵, 𝑇𝑎, 𝑇𝑓 , the block coefficient 𝐶𝐵 and the length of run 𝐿𝑅
and length of entrance 𝐿𝐸 . Additionally, the operating conditions are
required, i.e. the longitudinal radius of gyration 𝑘𝑦𝑦 and the Froude
number 𝐹𝑛. Lastly, the wave length 𝜆 and wave direction 𝛽 have
to be specified as discrete vectors for computing 𝑅𝐴𝑊 (𝜔, 𝛽). In the

2 In this case, a sea state and its corresponding wave spectrum is considered
as unimodal, when either the significant wave height of the wind or the swell
partition is smaller than 0.1 m.
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Fig. 6. The non-dimensional 𝑅𝐴𝑊 transfer function for 𝐹𝑛 = 0.16 for one case vessel
class (15,550 TEU) according to the formulation of Mittendorf et al. (2022b).

present work, the adaptation by Mittendorf et al. (2022b) of the original
formula (Liu and Papanikolaou, 2020) is employed. The formula’s
parameter vector was calibrated for both slender and blunt-type vessels
based on particle swarm optimization as well as a database of exper-
imental data comprising 25 different ships and around 1100 samples.
The computed non-dimensional 𝑅𝐴𝑊 transfer function is presented in
Fig. 6 as a function of the relative wave length 𝜆∕𝐿𝑝𝑝 and relative wave
direction 𝛽. Note that the vessel class with a capacity of 15,550 TEU is
taken as a case study for visualization.

In view of Fig. 6, it is observed that the formula by Mittendorf et al.
(2022b) has a broad definition range and that the added resistance
is more pronounced in head-to-beam waves. As it has been stated in
Section 2, the added resistance in relatively short waves is of particular
interest in this work, and in the formulation of Liu and Papanikolaou
(2020), the reflection component is calculated by a modified version of
Faltinsen’s asymptotic formula. The theoretical details of this near-field
approach are provided in Faltinsen et al. (1980). Söding and Shigunov
(2015) state that Faltinsen’s formula provides reasonable agreement in
very short waves compared to other (semi-)empirical methods. From
the plot Fig. 6, a minor discontinuity in the vicinity of 𝛽 = 165 deg. is
observed, which may be caused by the piece-wise calculation of the
reflection component. It is noted that the spectral calculations were
performed with 36 discrete wave directions 𝛽 ∈ [−𝜋, 𝜋] rad and a
frequency discretization of 50 discrete frequencies 𝜔 ∈ [0.01, 2𝜋] rad∕s.
The upper cut-off frequency is justifiable by the low pass filtering effect
of ships, i.e. they are irresponsive to high-frequency waves. Following
the findings of Mittendorf et al. (2022b), there is an evident lack of
experimental data beyond the threshold of 𝜆∕𝐿𝑝𝑝 < 0.15. For this
reason, the transfer function is padded in this particular regime using
the value of 𝑅𝐴𝑊 (𝜆∕𝐿𝑝𝑝 = 0.15).

The directional wave spectrum is calculated using the exact same
frequency and direction discretization as the transfer function and
is defined as 𝐸(𝜔, 𝛽) = 𝑆(𝜔)𝐷(𝜔, 𝛽), i.e. a unidirectional parametric
wave spectrum 𝑆 is multiplied by a spreading function 𝐷. Herein, a
JONSWAP (Joint North Sea Wave Observation Project) type spectrum is
used for calculating 𝑆 to be able to capture the ambient wave spectrum
also in regions with limited fetch. Thereby it is understood that two
separate spectra for wind and swell sea are superimposed for modeling
bimodal sea states. In short, the present approach is inspired by the
ten-parameter spectrum of Hogben and Cobb (1986), and the used

expression is defined in Eq. (2).

𝐸(𝜔, 𝛽) =
2∑
𝑖=1

𝑆𝐽 ,𝑖(𝜔|𝐻𝑠,𝑖, 𝜔𝑝,𝑖) ×
22𝑠𝑖−1𝛤 2(𝑠𝑖 + 1)
𝜋𝛤 (2𝑠𝑖 + 1)

cos2𝑠𝑖
(
𝛽 − 𝛽𝑖
2

)
. (2)

As can be inferred from Eq. (2), a cosine-power type spreading
function is applied to the underlying JONSWAP type spectrum 𝑆𝐽 .
The spreading function acts as a weighting function for preserving the
energy of the spectrum and distributing it around a mean direction
according to the spreading parameter 𝑠𝑖. Moreover, it is noted that
𝜔𝑝,𝑖 = 2𝜋∕𝑇𝑝,𝑖 and that 𝛤 denotes the Gamma function. The directional
spreading parameter 𝑠𝑖 is defined in Eq. (3) and is a function of wave
frequency 𝜔 and 𝑠𝑚𝑎𝑥, which is 10 in wind and 25 in swell conditions,
as recommended by Goda (2000).

𝑠𝑖 =

{
ceil

[
(𝜔∕𝜔𝑝,𝑖)5 𝑠𝑚𝑎𝑥

]
for 𝜔 ≤ 𝜔𝑝,𝑖

ceil
[
(𝜔∕𝜔𝑝,𝑖)−2.5 𝑠𝑚𝑎𝑥

]
for 𝜔 > 𝜔𝑝,𝑖.

(3)

The unidirectional JONSWAP type spectrum 𝑆𝐽 is an adaptation of
the two parameter spectrum by Pierson and Moskowitz (1964), which
is defined for fully developed seas. However, Hasselmann et al. (1973)
found that sea states are never really fully developed, but continue
to grow due to non-linear wave–wave interaction. For this reason,
the peak enhancement factor 𝛾 has been introduced to the Pierson
Moskowitz spectrum for better agreement to measurement data. The
following expressions were adopted from the class guidelines as pro-
vided in DNV-GL (2018) and the JONSWAP type spectrum 𝑆𝐽 is defined
in Eq. (4).

𝑆𝐽 (𝜔) = 𝐴𝛾𝑆𝑃𝑀 (𝜔)𝛾
exp

(
−0.5

(
𝜔−𝜔𝑝
𝜎𝜔𝑝

)2)

with 𝐴𝛾 = 1 − 0.287 ln 𝛾. (4)

The normalizing factor 𝐴𝛾 is applied for conservation of energy. The
standard JONSWAP spectrum assumes 𝛾 = 3.3; and turns into the PM
spectrum when 𝛾 = 1. In addition, the spectral width parameter 𝜎 is
part of the exponent, and the underlying Pierson Moskowitz spectrum
𝑆𝑃𝑀 is defined in Eq. (5).

𝑆𝑃𝑀 (𝜔) = 5
16
𝐻2
𝑠𝜔

4
𝑝𝜔

−5 exp

(
−5
4

(
𝜔
𝜔𝑝

)−4
)
. (5)

As can be seen, the Pierson Moskowitz including the JONSWAP
spectrum adopt a 𝜔−5 decaying behavior in their tail part. The peak
enhancement factor 𝛾 is in most publications a discrete value, e.g. 𝛾 =
3.3. However, in the present work, an expression dependent on the
𝐻𝑠 and 𝑇𝑝 is used and defined in Eq. (6), which has been adopted
from DNV-GL (2018). It is noted that separate 𝛾 values are determined
for wind and swell partitions.

𝛾 =

⎧⎪⎪⎨⎪⎪⎩

5 for 𝑇𝑝∕
√
𝐻𝑠 ≤ 3.6

exp
(
5.75 − 1.15 𝑇𝑝√

𝐻𝑠

)
for 3.6 < 𝑇𝑝∕

√
𝐻𝑠 < 5

1 for 𝑇𝑝∕
√
𝐻𝑠 ≥ 5.

(6)

It stands out that Eq. (6) is a piecewise function and follows the
definition range of the JONSWAP spectrum, i.e. 3.6 < 𝑇𝑝∕

√
𝐻𝑠 < 5.

The spectral width parameter is defined in Eq. (7) separately for wind
and swell partition.

𝜎 =

{
0.07 for 𝜔 ≤ 𝜔𝑝,𝑖
0.09 for 𝜔 > 𝜔𝑝,𝑖.

(7)

For illustrative purposes, the reconstructed directional spectrum, as
obtained from Eq. (2), is compared to the directional spectrum from
ERA5 for a specific space–time point. In the given case, a test site a few
kilometers off the coast of the Faroe islands is used, and the result is
shown in Fig. 7. The data applies to the time 3rd April 2016 00:00:00 at
60 deg of Latitude and 350 deg of Longitude, both to the exact degree.
Hence, the presented spectra are unaffected by possible uncertainty due
to interpolation.
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Fig. 7. It is noted that both spectra correspond to the same time and position (𝐻𝑠 = 3.7 m). Also, it is stressed that 𝑓 = 𝜔
2𝜋

is displayed and that the spectral density is normalized.

In general, good agreement in terms of peak frequency and di-
rectional spreading is visible in Fig. 7, even though the directional
spectrum from ERA5 shows minor asymmetric directional spreading.
Modeling this is obviously not possible using the expression presented
in Eq. (2). In addition, the spectral spreading is slightly larger in
Fig. 7(b). However, it is concluded that the presented parametric
expressions are capable of approximating the actual ERA5 2D wave
spectrum sufficiently.

3.2. Indirect calculation of added resistance

The calculation framework adopted herein is taken partly from
Nielsen et al. (2019) and builds upon semi-empirical resistance decom-
position, i.e. superposition. The added resistance is calculated under
steady conditions and derived by subtracting the calm water resistance
from the actual measured in-service resistance. Thus, the determina-
tion of the empirical mean added resistance 𝑅̄𝐴𝑊 ,𝑒𝑚𝑝, i.e. based on
measurement data, is summarized in Eq. (8).

𝑅̄𝐴𝑊 ,𝑒𝑚𝑝 =
𝑃𝐵

𝑆𝑇𝑊
× 𝜂𝐷𝜂𝑀 − 𝑅𝑇 ,𝑐𝑎𝑙𝑚 − 𝑅𝑤𝑖𝑛𝑑 (8)

As can be seen, the actually experienced resistance force is obtained
by multiplying the propulsive force 𝑃𝐵

𝑆𝑇𝑊 with the propulsive and
transmission efficiencies. Following Kristensen and Lützen (2013), we
assume 𝜂𝑀 = 0.98 for the mechanical losses in, e.g. bearings. On
the other hand, the determination of 𝜂𝐷 = 𝜂0𝜂𝐻𝜂𝑅 is generally more
complex and depends on the sea state. The available data of propulsive
coefficients in waves (as a function of 𝐻𝑠, 𝑇𝑝, and 𝛽0) is very scarce
— for slender container vessels in particular. The experimental studies
of Saettone et al. (2021) for a container ship and Yu et al. (2021) for an
oil tanker are mentioned for the sake of completeness. The fundamental
work of Nakamura and Naito (1977) shows model test data of propul-
sive coefficients of the S175 container vessel in regular head waves
and indicates a quadratic decay of 𝜂𝐷 with increasing wave amplitude.
Additional contributors to the decrease in propulsive efficiency are cav-
itation and wake fluctuations in waves. In irregular waves, Taskar et al.
(2019) show that the propulsive efficiency may decrease under wave
impact using simulation data. Moreover, Shigunov (2017) assumes 𝜂𝐻
and 𝜂𝑅 to be constant, whereas 𝜂0 has a dependency on 𝐻𝑠 and 𝛽. It
is, however, it may be sufficient to assume 𝜂0 to be a constant as well
for the higher forward speed and relatively low sea states. Additional
driving factors for reduced propeller efficiency in waves are possible
ventilation and an asymmetric wake profile in quartering waves, as
shown by Prpić-Oršić and Faltinsen (2012) and Mikkelsen et al. (2022),
respectively. Lastly, the open water propeller curves were not available,

and for this reason, the ISO 19030 default recommendation of 𝜂𝐷 = 0.7
is adopted herein.

The studied fleet, cf. Section 2, shows a wide variety regarding
hull form and outfitting characteristics. For this reason, the Hollenbach
(1998) method has been used for the prediction of the calm water
resistance 𝑅𝑇 ,𝑐𝑎𝑙𝑚, which is mainly due to the applicability for twin-
screw vessels. Within the Hollenbach approach, 𝑅𝑇 ,𝑐𝑎𝑙𝑚 is calculated by
the sum of the frictional resistance 𝑅𝐹 , which is based on the ITTC’57
correlation line, and the residual resistance 𝑅𝑅, which is determined by
a set of empirical formulae. Their parameters were derived from data of
resistance and propulsion model tests of 433 displacement type vessels.
The experiments were conducted in the Vienna model basin, and the
formula was validated using experimental data from the Hamburg Ship
Model Basin (HSVA). In Hollenbach (1997), it is stated that the method
shows significantly less variance in contrast to other known methods,
which stands out, particularly for twin-screw designs. Additional key
advantages of the Hollenbach method include an uncertainty-aware
estimate and the relatively small number of required inputs. Moreover,
it is valid for different draft conditions and considers the entirety of
possible appendages, such as shaft bossings or bow thrusters. The code
implementation has been made according to Birk (2019).

Shigunov (2017) shows that the wind resistance may surpass the
added-wave resistance in lower sea states, which is due to the slender
hull shape and the large windage area of container vessels. Shielding
effects and large separation bubbles caused by accommodation and
container stacks amplify the wind resistance, Molland et al. (2011).
Herein, the wind resistance is calculated according to ISO 15016 in
Eq. (9).

𝑅𝑤𝑖𝑛𝑑 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐴𝐴(𝜓𝑟)𝑉 2

𝑤,𝑟𝐴𝑥 −
1
2
𝜌𝑎𝑖𝑟𝐶𝐴𝐴(0 deg.)𝑆𝑂𝐺2𝐴𝑥 (9)

It is stressed that 𝐴𝑥 denotes the frontal area, the density of air is
𝜌𝑎𝑖𝑟 = 1.2 kg/m3 and that 𝐶𝐴𝐴 is taken from Kristensen and Lützen
(2013). The wind resistance coefficients 𝐶𝑥(𝜓𝑟) are extracted from
model test results presented in Andersen (2013) for the fully loaded
vessel since this is the most conservative approach and also justified by
Fig. 3. Lastly, it is stated that the presented approach disregards added
resistance due to steering, nor is any effect of fouling of hull/propeller
considered. Nonetheless, for the purpose of comparing the spectral
approach, represented by Eq. (1) to the indirect, empirical prediction
in terms of Eq. (8), the above-described methodology appears as rea-
sonable, considering the general degree of uncertainty of in-service
analyses of ships.
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Fig. 8. Relative residuals of added resistance according to short- and long-crested waves.

4. Results

The following section is divided into three parts: (1) In Section 4.1,
results of comparisons of the theoretical long- and short-crested wave
computations for added resistance are presented. (2) In Section 4.2,
comparisons between the short-crested theoretical estimates and corre-
sponding predictions based on shaft power measurements and empiri-
cal resistance decomposition are shown. (3) Lastly, in Section 4.3, the
sea margins based on the theoretical and empirical added resistance
estimates are conveyed. Due to the different sizes of the individual
vessel classes, the results are presented in a non-dimensional form
throughout this section. As a definition, from this point, ‘mean added
resistance’ is referred to as just ‘added resistance’ if not otherwise
stated.

4.1. Comparison of added resistance estimates based on long- and short-
crested waves

In Fig. 8(a), the deviations between long- and short-crested wave
calculations of added resistance are shown in dimensionless form
by normalizing the values by the empirical calm water resistance
𝑅𝑇 ,𝑐𝑎𝑙𝑚 (Hollenbach, 1998). Specifically, the relative residuals are pre-
sented as a function of significant wave height 𝐻𝑠, and the samples
are colored according to the mean wave heading angle 𝛽0. It is stated
that only samples from the 15,550 TEU vessel class are shown, and a
corresponding plot for the whole fleet is located in Appendix A.1. In the
plot in Fig. 8(a), a heteroskedastic behavior of the residuals can be seen,
i.e. their variance increases with higher 𝐻𝑠 values, which underlines
the non-linear character of added resistance. Additionally, it becomes
clear that the magnitude of 𝑅̄𝐴𝑊 ,𝑠𝑐 is higher in head and following
waves relative to 𝑅̄𝐴𝑊 ,𝑙𝑐 , whereas it is vice versa in the regime of bow
oblique and beam waves. This particular structure of the residuals is
dependent on 𝛽0 and is a result of the directional smoothing in short-
crested wave calculations, i.e. ‘averaging’ over multiple wave headings.
Moreover, in a few cases, the residuals exceed 10% of 𝑅𝑇 ,𝑐𝑎𝑙𝑚, and
large scatter manifests in approximately 20% of the residuals, which
has been estimated from the isolines. In fact, the four isolines segregate
the kernel density estimate into five layers, which applies to all KDE
plots in this paper.

It is found that the variance increases not only with 𝐻𝑠 but it
is also dependent on the number of modes (peaks) in the assumed
wave spectrum representing the ambient sea state. This particular

observation is conveyed in Fig. 8(b) in a stacked histogram, which is
applicable to the entire dataset. As described earlier, in this study, wave
conditions are referred to as unimodal when either 𝐻𝑠 of wind or swell
waves are smaller than 0.1 m. Fig. 8(b) shows the relative residuals
based on a unimodal wave spectrum (green bars) and a bimodal wave
spectrum (orange bars), respectively. In view of Fig. 8(b), it is observed
that the residuals between short- and long-crested wave calculations are
characterized by more considerable variance in bimodal sea states. Two
possible reasons are: (1) In contrast to unimodal seas, the mean wave
direction, as a parameter, 𝛽0 is physically less meaningful in a bimodal
spectrum, as such a spectrum is composed of two partitions, most likely
with different directions of the respective wave systems. However, in
the case of 𝑅̄𝐴𝑊 ,𝑙𝑐 , the added resistance transfer function is calculated
for 𝛽0, i.e. the wave energy is concentrated on an ‘artificial’ mean wave
heading, which explains the significant variance in bimodal conditions
between long- and short-crested calculations (considering actual wave
directions). (2) Swell partitions usually show higher peak periods and,
thus, their energy distribution is – at least for the considered ship sizes –
closer to the resonance region, which in turn increases added resistance
and underlines that swell waves cannot be neglected when calculating
added resistance in actual conditions. An advantage of considering
short-crested waves is the reduced relevance of the discontinuity in
bow oblique waves within the utilized semi-empirical method, which
stood out in Fig. 6. Similar observations in short-crested waves have
been made in Liu et al. (2022) for the original method (Liu and
Papanikolaou, 2020).

In Fig. 9(a), the non-dimensional added resistance in short-crested
waves is depicted as a function of the mean relative wave direction, and
samples are colored according to 𝑆𝑇𝑊 . Whereas, in Fig. 9(b), the non-
dimensional added resistance is presented for 𝑇𝑧 and colored according
to the respective 𝛽0 value. It is noted that the 15,550 TEU vessel class
is used, and the sea state parameters are taken from the ERA5 hindcast
data, whereas 𝑆𝑇𝑊 is part of the monitoring data.

In view of Fig. 9(a), it is found that 𝑅̄𝐴𝑊 ,𝑠𝑐 exhibits clear dependen-
cies on 𝛽0 and 𝑆𝑇𝑊 . Qualitatively, a similar behavior in magnitude is
visible for 𝛽0 when compared to regular waves in Fig. 6, as expected. On
the other hand, in Fig. 9(b), it becomes clear that the ships encounter
relatively short to medium wave lengths exclusively, since 𝑇𝑧 = 10 s
corresponds to 𝜆∕𝐿𝑝𝑝 = 0.42 (considering infinite water depth). Even
though computations in long-crested waves require only 34% of CPU
time in direct comparison to the short-crested case, the latter calcula-
tion method is chosen for the remainder of this work. These particular
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Fig. 9. Dependency of the non-dimensional added resistance on forward speed (𝑆𝑇𝑊 ), mean relative wave heading 𝛽0 (a) and zero up-crossing period 𝑇𝑧 (b).

computations do not only include the directional smoothing effect but
they also distinguish wind and swell waves with their actual direction,
which, in principle, yields a more accurate physical representation of
prevailing wave conditions. For the sake of completeness, the residual
distributions resulting from short- and long-crested wave calculations
are presented in box plots for all vessel classes in Appendix A.1.

4.2. Comparison of spectral and empirical estimates of added resistance

In the following, data from the 15,550 TEU class with 8 ves-
sels and 12.3 × 104 samples in total is considered. In Fig. 10(a), the
relative empirical added resistance, resulting from the methodology
presented in Section 3.2, together with the theoretical estimate in
short-crested waves, are depicted as a function of the significant wave
height 𝐻𝑠. Moreover, the difference (𝛥𝑈) between 𝑆𝑇𝑊 and 𝑆𝑂𝐺
is shown in a colormap. It is appreciated that the empirical added
resistance is subject to pronounced variance or, rather, uncertainty.
It is striking that the corresponding values do take not only positive
values but also negative ones, which is seen as unphysical in head-
to-beam waves and underlines the large degree of uncertainty within
the empirical predictions. Conversely, the theoretical added resistance
shows roughly a quadratic dependency on wave height, as expected.
Additionally, an outlier cluster becomes evident in the proximity of
𝐻𝑠 = 0.8–0.9 m, possibly caused by frozen sensors. Furthermore, a
dependency of the empirical added resistance on 𝛥𝑈 = 𝑆𝑇𝑊 − 𝑆𝑂𝐺
is appreciated, which appears reasonable and may be caused by three
aspects: (1) The effect of sea currents, (2) reduced sensor accuracy,
and (3) insufficient filtering for steady conditions, i.e. some samples
influenced by acceleration are still included. In addition, a variance
decrease with increasing significant wave height (heteroskedasticity) is
visible in Fig. 10(a), which is caused by unbalanced data, i.e. epistemic
uncertainty. Multiple sources of uncertainty related to the estimation
methodologies and ship telemetry data, in general, will be discussed in
Section 5.

In Fig. 10(b), the relative residuals between the short-crested and
empirical predictions are assessed corresponding to Fig. 10(a). It is
stressed that a similar plot for the entire fleet is attached to this paper
in Appendix A.2. To show the actual distribution of the residuals,
a kernel density estimate is included. As an immediate observation,
major uncertainty stands out in 20% of the data (estimated by isolines).
Furthermore, a skewness appears within the residuals dependent on 𝛽0,
i.e. the residuals tend to be positive in head-to-bow oblique waves,
whereas it is vice versa in beam-to-following waves. In fact, a large
variance stands out in the following wave regime. The added resistance
in following waves is of high complexity and, for this reason, often

neglected both experimentally and numerically. Container ships have
a pronounced transom stern, which affects the prediction of added
resistance in following waves: Transom sterns may lead to flow sep-
aration and breaking waves, which are generally challenging to model,
especially by potential flow theory, e.g. Faltinsen’s asymptotic formula.
Additional challenges in following waves are not only the possible
non-linear effect of broaching, i.e. an induced yaw moment due to
surf-riding but also the ambiguity in wave loads due to the dispersion
of waves, i.e. long waves overtake the ship, whereas short waves are
overtaken by the ship. It is stated that conservative estimates of added
resistance are obtained in higher sea states via the spectral method, but
the large variance in the empirical added resistance and the reduced
data availability in the regime 𝐻𝑠 > 3 m impede drawing any firm
conclusions. However, Shigunov (2017) shows similar results for two
container vessels, i.e. with notable variance and possible overprediction
of theoretical estimates in higher sea states.

In Fig. 11, box plots present the basic quantities of the underlying
residual distributions of the added resistance calculations separately for
each vessel class. It is noted that box plots indicate the interquartile
range with its body, the median as well as the maximum and minimum
of the distribution, i.e. the 0th percentile and 100th percentile, respec-
tively. As in the previous section, the residuals are calculated relative
to 𝑅𝑇 ,𝑐𝑎𝑙𝑚 and for ensuring confidentiality, the individual vessel classes
are labeled by an ID number and ID14 corresponds to the 15,550 TEU
class.

As can be inferred from Fig. 11, the two present estimation method-
ologies of added resistance yield values of similar magnitude for the
majority of vessel classes, indicated by a residual distribution centered
around zero. On the other hand, some vessel classes have a notable
offset, i.e. the residuals are heavily biased. Several reasons for the bias
are plausible, such as a dependency on ship size, slenderness, additional
outfitting equipment (e.g. cranes), or propulsion arrangement (i.e. the
number of propellers). However, no common reason has been identified
among the outlier vessel classes. To add to the list of reasons, initially,
it was thought that the poor agreement in the case of the ID6 class
was due to relatively low data availability. However, the ID19 class
shows a larger share (2.73%) of the total dataset, and the agreement is
still considered relatively poor. Moreover, the variance is not constant
for all vessel classes, and significant variance in the estimates appears
for some ship types (e.g. ID5), but yet again, no common reason can
be connected to that. The conclusion of Tsujimoto et al. (2008) is
confirmed herein, i.e. obtaining reliable estimates in beam-to-following
waves is challenging — especially for fast and slender vessels. However,
in contrast, it is concluded that added resistance in stern quartering
waves is, in fact, not negligible due to its magnitude and effect on
ship safety. Ultimately, it is reported that the obtained results of the
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Fig. 10. Analysis of relative theoretical and empirical added resistance for the 15,550 TEU vessel class in direct comparison (a) and their residuals (b).

Fig. 11. Box plot of the relative residual distribution for all 22 considered vessel
classes. Note that the relative samplesize is shown on the left hand side in the plot
and that outliers are not depicted.

comparison show major variance but a minor bias, albeit of increasing
magnitude in more severe sea states. This is also concluded in studies
from the presented literature, e.g. Dalheim and Steen (2020a). The
most central and noteworthy point from the previous results and dis-
cussions is the large variance in comparing theoretical and empirical
added resistance. Generally, ship performance assessments, based on

in-service data, are typically associated with large uncertainties, and,
as mentioned earlier, in Section 5, multiple uncertainty categories will
be presented and discussed.

4.3. Calculation of the sea margin

The present study shows not only ramifications to vessel perfor-
mance analysis or sea trial corrections, but it is also believed that
analysis of in-service vessel data may impact the design of new vessels
for optimizing several characteristics, such as required engine power,
for their actual operational profile. Söding and Shigunov (2015) state
that the hull shapes of slender and fast ships (e.g. container ships) are
commonly not optimized for added resistance, but the calculation of
viable engine margins requires the consideration of added resistance(s).
Especially during the initial design phases, a sea margin is needed to
estimate the required main engine power correctly. As mentioned in
Section 1.1, constant values of approximately 15% are most frequently
employed for this purpose. Due to the richness of data, it is attempted
to postulate general hypotheses for container vessel design and their
requirements for engine power in actual conditions. However, seaman-
ship, maintenance scheduling, and the fidelity of the weather routing
software are company-specific, which introduces certain biases into the
present dataset. In the present case, a dependency of the empirical and
theoretical sea margins on the vessels’ slenderness ratio is shown in
Fig. 12 using the 10th percentile, 50th percentile, and 90th percentile
of the individual distributions of all 22 vessel classes. Herein, the
sea margin is calculated by dividing the sum of added resistance in
short-crested waves and wind resistance by the empirical calm water
resistance, i.e. 𝑅̄𝐴𝑊 +𝑅𝑤𝑖𝑛𝑑

𝑅𝑇 ,𝑐𝑎𝑙𝑚
. As a side note, the excess resistances due to

marine growth and shallow water are neglected in the present analysis.
As shown in Fig. 12, both the theoretical- and empirical-based

sea margins show dependencies on the slenderness ratio. In general,
linear relationships between sea margins and 𝐿𝑝𝑝∕∇1∕3 are visualized
using regression lines for all three quantiles 𝑞. Overall, it appears that
theoretically and empirically derived sea margins show an opposing
dependency on the slenderness ratio. In general, it is believed that the
added resistance, and thus the sea margin, will be reduced for more
slender vessels, which can be seen in Fig. 12(a). Moreover, the variance
is relatively large in relation to the slope of the regression lines in
Fig. 12(b). Hence, no defensible conclusions are possible in the case
of the empirically derived sea margin. Moreover, the distribution of the
sea margin appears to be asymmetric and skewed towards lower values
resulting from the exponential 𝐻𝑠 distribution. The 90th percentiles
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Fig. 12. Three quantiles 𝑞 of the sea margin distributions as a function of the slenderness ratio for all 22 considered vessel classes. It is noted that ∇ is the volume displacement
at design draft.

exhibit significant scatter and samples in both Figs. 12(a) and 12(b),
which are exceeding a 60% sea margin. Simply speaking, the lump
sum corrections recommended for the use in the first design iterations
appear reasonable given the average sea margin in Fig. 12 noting
that Kristensen and Lützen (2013) suggest sea margins of around 20%–
25% for the trade from Southeast Asia to Europe. It goes without
saying that in advanced design iterations, more detailed approaches,
as presented in Liu et al. (2022) or a simulation-driven design process,
as shown in Harries et al. (2019), are needed for viable ship designs. In
the end, the analysis of sea margins is of even greater importance in the
case of slower and blunt-type ships, such as bulk carriers and tankers,
due to the risk of losing maneuverability in severe sea states and thus
for the minimum propulsion power requirements.

5. Discussion of uncertainty sources

Shigunov (2017) states that a large set of influencing factors of
added resistance is associated with significant uncertainty or may even
be completely unknown. It has been stressed that it was not possible to
pinpoint one overall reason for the relatively large uncertainty in the
respective estimates of added resistance and their comparison. Hence,
several possible contributing reasons are discussed in the following,
and several potential sources of uncertainty are presented, with the
spectral calculation and the indirect empirical methodology addressed
separately. First, however, common influencing factors of uncertainty
are pointed out.

The empirical methodology is based on resistance decomposition,
and the spectral method relies on the superposition of several wave
components. Therefore, both adhere to linear theory and neglect inter-
action effects per definition. In reality, a ship’s behavior in a seaway is
non-linear, especially in higher sea states, and, therefore, superposition,
in general, is not strictly valid. As a matter of fact, non-linear phe-
nomena, such as propeller load fluctuations, propeller ventilation, and
slamming (resulting in whipping-induced vibrations), increase in likeli-
hood and magnitude in higher sea states. Moreover, the wave-induced
transverse drift force and the yaw moment have been disregarded in
the present work, but Shigunov (2017) reported a minor effect of an
unrestrained heading on the results of added power in waves. The
chosen physical parameters may also introduce uncertainty in both
methods. For instance, seawater properties for a temperature of 15 ◦C,
i.e. 𝜌𝑤𝑎𝑡𝑒𝑟 = 1025.9 kg/m3 and kinematic viscosity 𝜈 = 1.19298 ×
10−6 m2/s, were assumed to be constant, according to ISO 19030, when
in fact both are dependent on temperature and salinity. Therefore, it is

Fig. 13. Sensitivity of the relative residuals to the wave steepness irregular waves.

believed that the viscous resistance component is subject to scatter and
possibly overestimated in regions with higher temperatures. Further-
more, in this study, all ships are represented by only their basic ship
main particulars; since no details about hull or propeller shape or exact
loading conditions were accessible.

5.1. Uncertainty sources within the spectral method

Inherently, the spectral calculations of added resistance do not
capture the interaction effects and unsteady phenomena due to the un-
derlying assumptions of Eq. (1). Moreover, linear wave theory assumes
moderate wave steepness and it has been shown experimentally in
regular waves in Park et al. (2019) that wave steepness has a significant
effect on the added resistance transfer function in short wavelengths
and on the occurrence of wave breaking. Therefore, the effect of wave
steepness, 𝑆𝑆 = 2𝜋𝐻𝑠

𝑔𝑇 2
𝑧

, in irregular waves on the residuals has been
studied in Fig. 13.

In fact, Fig. 13 reveals no significant correlation between residuals
and steepness, but the variance of the relative residuals increases
notably with higher 𝑆𝑆 values. A clear error source within this analysis
is that a mean steepness aggregating both wind and swell partition is
used. Furthermore, the application of simplified expressions for both
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Fig. 14. Normalized variance and bias of 𝛥𝑈 = 𝑆𝑇𝑊 −𝑆𝑂𝐺. It is noted that the dots
are colored according to the bias of the residuals and their size corresponds to the
residuals’ variance, as presented in Fig. 11.

Fig. 15. Absolute wind speed 𝑉𝑤 as a function of significant wave height 𝐻𝑠 including
two regression analyses and the ISO 19030 filtering threshold (red).

the quadratic 𝑅𝐴𝑊 transfer function and the parametric wave spectrum
come with their own uncertainties. For instance, the present parametric
directional spectrum is limited to symmetric directional spreading,
while directional wave spectra of natural ocean waves rarely appear
symmetric in their energy density directional distribution (Barstow
et al., 2005). The retrieved sea state data and its interpolation introduce
additional variance, as discussed by Nielsen (2021). Moreover, de
Hauteclocque et al. (2020) compare several hindcast vendors (including
ERA5) to data from 9 wave buoys and show that ERA5 data tends
to underestimate the wave height by approximately 4%. In the same
light, the comparison of ERA5 to altimeter (satellite) data reveals
a reduced underestimation of only 1.6%; however, more significant
deviations have been identified in harsh conditions, i.e. 𝐻𝑠 > 8 m.
In the present context, such conditions are mostly circumvented by
weather routing; therefore, the associated discrepancies are not nec-
essarily influential. In Section 4.1, different behavior in the residual
variance has been observed in uni- and bimodal sea states, and, in fact,
similar findings as in Fig. 8(b), but with larger variance, have been
made in case of the comparison of theoretical and empirical added
resistance. The corresponding histograms are placed in Appendix A.2.
The employed semi-empirical method of Mittendorf et al. (2022b)

is already characterized by a reduced model parameter uncertainty
due to the conducted calibration procedure based on particle swarm
optimization and experimental data of slender and blunt-type ships.
Still, notable variance and underestimation were observed in Mitten-
dorf et al. (2022b) while validating the method for a fast and slender
ship. As reported by Tsujimoto et al. (2008), the estimation of added
resistance of slender vessels is problematic due to their pronounced
flare angles (possibly leading to wave breaking), their higher operating
speeds, and their distinct bulbous bow. Furthermore, the exact loading
conditions and, thus, the metacentric height and the longitudinal radius
of gyration 𝑘𝑦𝑦 are unknown. As shown by Holt and Nielsen (2021), the
latter has a sizable impact on the added resistance transfer function and
has been approximated with 𝑘𝑦𝑦 = 0.25𝐿𝑝𝑝 throughout this study. In
fact, Dalheim and Steen (2020a) conclude that both limited knowledge
of the actual 𝑘𝑦𝑦 and nonlinear effects, such as wave breaking, are
leading contributors to the deviations in their comparison of theoretical
and empirical added resistance.

5.2. Uncertainty sources within the empirical method

The indirect empirical predictions are based on superimposing sev-
eral resistance components, and the underlying calm water resistance
method relies on a similarity to the parent hulls of the Hollenbach
(1998) method. However, specific geometric characteristics, such as
vertical bow shapes, as in the case of the ID1 class, were not con-
sidered among these underlying ship models. In the future, it could
be interesting to study the sensitivity to several different empirical
calm water resistance methods, such as the approach by Guldhammer
and Harvald (1974). Furthermore, changes in engine characteristics
in waves were neglected throughout this study, even though transient
behavior, such as ventilation and propeller racing, may lead to engine
overload, as described in Prpić-Oršić and Faltinsen (2012). Clearly,
calculating the propulsive efficiency 𝜂𝐷 is essential for the empirical
calculation methodology. Even though Shigunov (2017) found that
the influence of 𝜂𝐷 on actual engine power in a seaway is one order
of magnitude less than the influence of a resistance increase due to
waves, which in turn justifies, to some extent, that the current focus is
merely attributed to the accurate modeling of the wave-induced added
resistance. Still, it has been shown by Nakamura and Naito (1977)
that 𝜂𝐷 decreases quadratically with increasing 𝐻𝑠, and consequently,
the ISO 19030 default value of 0.7 loses its validity in higher sea
states. Therefore, the found deviations in higher sea states in Fig. 10(b)
may be partly attributed to the application of the constant value of
𝜂𝐷. More accurate modeling of propulsive coefficients and propeller
characteristics is an essential area for future work. On a separate note,
it is thought that data quality of monitoring data is another significant
driving factor of the observed uncertainty — despite the rigorous
filtering procedure. When it comes to the measurement uncertainty of
ship performance data, Aldous et al. (2015) conclude that both speed
and power measurements are most affected by measurement error
and sensor drift when compared to other essential sensor readings.
From Eq. (8), it can be inferred that both are vital for the empirical
determination of added resistance. Hence, sensor maintenance and
quality are of great importance for obtaining sufficient information
on added resistance from in-situ data. In Fig. 10(a), we see that the
empirical added resistance depends on 𝛥𝑈 = 𝑆𝑇𝑊 − 𝑆𝑂𝐺. Thus, it
is herein attempted to analyze the variance and bias of the different
Doppler velocity logs with respect to 𝑆𝑂𝐺 as a reference. Obviously,
the analysis assumes both quantities to be time-invariant when, in fact,
both quantities of 𝑆𝑇𝑊 are subject to sensor drift and calibration.
However, an estimate of bias and variance may still be indicative of
deviations observed in Fig. 11. In Fig. 14, the normalized variance and
mean of 𝛥𝑈 are shown for each vessel class. In parallel, the variance
and mean (or bias) of the residuals are visualized by the size of the dots
and the colormap, respectively.
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From Fig. 14, it is appreciated that there is a minor coupling
between the variance and bias of 𝛥𝑈 and the residuals of theoretical
and empirical added resistance. For instance, the vessel classes of ID6
and ID19 are characterized by large biases in both cases. It is striking
that vessel classes with a large bias of the residuals show a negative bias
of 𝛥𝑈 . Conversely, vessels with a positive 𝛥𝑈 bias show a negligible
bias of the residuals. Broadly speaking, the sizes of the dots (i.e. the
residual variance) also increase with higher variance of 𝛥𝑈 . However,
ID11 is considered an outlier. All in all, the sensor quality, possible
sea currents, and the applied method for filtering for steady samples
may be responsible for these observations. It is believed that similar
observations can be made for the torsion meter, i.e. the sensor for the
brake power 𝑃𝐵 . However, in this case, there is no direct reference
value for a similar investigation like for 𝑆𝑇𝑊 . Data quality and sensor
maintenance are critical issues in the field of performance monitoring.
Therefore, it could be an interesting aspect to follow the approach
of Sogihara (2021) and study the effect of individual sensor readings as
well as wave parameters on the overall uncertainty within the added
resistance estimate using a Monte Carlo simulation methodology.

It has been stated in Shigunov (2017) that the wind resistance of
container ships can be of higher magnitude than added resistance due
to waves in lower sea states, which is due to the large frontal area of
container vessels. In fact, ISO 19030 imposes a filtering threshold based
on the absolute wind speed 𝑉𝑤 alone for disregarding any instances
with more severe environmental conditions, which may lead to higher
added resistance due to wind and waves. For fully developed wind seas
with unlimited fetch, the relationship 𝐻𝑠 ∝ 𝑉 2

𝑤 holds, and there are
well-known formulae from, e.g. Bretschneider 𝐻𝑠 = 0.0248𝑉 2

𝑤 (Michel,
1999) and 𝐻𝑠 = 0.115𝑉 1.41

𝑤 (Shigunov, 2017), which are visualized
in Fig. 15. In the following, the absolute wind speed 𝑉𝑤, as derived
from relative wind measurements on all of the considered vessels, and
corrected to the reference height of 10 m, is depicted for the significant
wave height 𝐻𝑠. The samples are colored according to the zero up-
crossing period 𝑇𝑧, and the wind threshold (i.e. 7.9 m/s) of ISO 19030
is included as a broken red line. It is noted that the two sea state
parameters are subject to potential inaccuracies due to spatiotemporal
interpolation and the inherent uncertainty of the ERA5 database.

Generally, it can be seen in Fig. 15 that the kernel density, i.e. the
bulk of the data, clusters around the two empirical formulae in the
lower sea states, i.e. 𝐻𝑠 < 4 m. Still, significant variance stands out,
and even possible erroneous samples are visible, e.g. samples with
𝑉𝑤 > 20 m∕s and 𝐻𝑠 < 1 m. In fact, wind measurements are subject
to major uncertainty, which is often a result of the placement of the
anemometer and the resulting wake from, e.g. container stacks or
the accommodation. Sogihara (2021) reports a measurement accuracy
of ±5% and ±5.0 deg. in case of relative wind speed and direction,
respectively. In fact, too high wind resistance values were also reported
by Schmode et al. (2018) and may be responsible for the negative bias
of the residuals seen in Fig. 10(b). In this light, it may also be argued
that the ISO 19030 wind threshold could be deemed inappropriate not
only because of the weaker relationship of 𝑉𝑤 and 𝐻𝑠 in higher sea
states but also due to the fact that swell waves are independent of the
prevailing wind speed but yet may be significant in terms of added
resistance (indicated by higher 𝑇𝑧 values).

ISO 19030 is heavily discussed in the practical and academic do-
main and Schmode et al. (2018) suggest several improvements for ISO
19030 and point out drawbacks of the standard procedure, such as the
speed and draft dependency of the ISO 19030 performance indicators.
Moreover, Schmode et al. (2018) state that the strict filtering mandated
by ISO 19030 may lead, in some cases, to the fact that a great chunk
of the data has to be disregarded, which directly impacts the reliability
of the obtained performance indicators. In view of Figs. 15 and 10(b),
it appears favorable to filter samples according to shaft power mea-
surements and a speed-power baseline, e.g. a sea trial curve. Bertram
(2016) suggests disregarding any samples with a relative added power
(dividing by the reference power from the baseline) that exceeds 100%.

In doing so, not only higher values of added wave and wind resistances
(and possibly non-linear behavior) are neglected, but also potential
measurement errors are filtered out. Another filtering technique could
be based on the estimate of hindcasted 𝐻𝑠 values and thus on the
Beaufort scale. In ISO 15016, it is recommended (for 𝐿𝑝𝑝 > 100 m)
to perform sea trials only if Bft< 6, i.e 𝐻𝑠 < 4 m and 𝑉𝑤 < 13.8 m∕s. A
similar threshold appears as reasonable in the case of ship performance
analysis, i.e. ISO 19030.

Wind forces as such and their exploitation received increased focus
in recent years, both due to the Suez canal blockage in 2021 and due
to the re-emergence of wind(-assisted) ship propulsion. Hence, it is
believed that dedicated studies for accurate modeling of the wind forces
on container (and other) vessels and their uncertainty quantification
could be of significant scientific and practical relevance. As pointed out,
wind speed and direction measurements may be subject to considerable
error due to the distorted airflow around the ship’s hull, accommoda-
tion, and container stacks. Moreover, major differences in data quality
of measurements obtained from different wind anemometers have been
found in, e.g., the study of Oh et al. (2018). Therefore, a similar
sensitivity study to that of Ikonomakis et al. (2021) for 𝑆𝑇𝑊 appears
to be highly relevant for ship-based wind measurements and could be
carried out using ERA5 wind data as a reference. Such studies may
enhance understanding and corresponding estimation procedures of
wind loads for both ship performance and sea trial assessment.

6. Conclusions and future work

This paper assesses theoretical and empirical estimates of added
resistance using in-service data from a fleet comprising more than 200
container vessels. The calculation of the theoretical added resistance
has been carried out in the spectral domain using an established semi-
empirical formula for arbitrary wave heading angles (Mittendorf et al.,
2022b). The sea state, on the other hand, has been modeled by a
parametric expression for a directional sea state based on a JONSWAP
type spectrum (Hasselmann et al., 1973), and the required parameters
for both wind and swell partitions have been retrieved from the ERA5
database (Hersbach et al., 2018). For comparison, an empirical added
resistance prediction was made using resistance decomposition and
ship telemetry data, including shaft power measurements. The ship
telemetry data underwent a rigorous filtering procedure beforehand to
disregard any instances with, e.g. shallow water or unsteady conditions.
Similar to other contributions from the literature, pronounced vari-
ance, and uncertainty in the comparison of theoretical and empirical
added resistance estimates have been found, and multiple uncertainty
sources have been discussed. It has been shown that data quality is
vital for reliable predictions of 𝑅𝐴𝑊 , and the fidelity of both sensors
and filtering techniques are essential. Ultimately, as the main finding
of the present study, the conclusion of Bertram (2016) is confirmed,
i.e. added resistance is generally difficult to predict in actual conditions
— particularly in short and oblique waves.

In conclusion, the assessment made in this study calls for an
uncertainty-aware estimation methodology of added resistance. In fact,
the method of Mittendorf et al. (2022b) for the added resistance
transfer function, and the approach by Hollenbach (1998) for the calm
water resistance are both capable of providing transparent uncertainty
bounds. However, for a consistent estimation procedure, reliable un-
certainty information of sea state data is necessary. Following the work
of Bos (2018), an ensemble of hindcast providers could form the basis
of uncertainty quantification of wave data. Moreover, information on
the prevailing wave environment in terms of a wave spectrum with
increased accuracy is an essential aspect for calculating the mean
added resistance in irregular waves. The application of the wave
buoy analogy (e.g., Nielsen, 2017) – as presented in Mittendorf et al.
(2022c) – for data acquisition (and for real-time decision support)
shows potential for enhancing the quality of sea state information and
thereby of in-situ added resistance estimates. On a separate note, it is
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Fig. 16. Box plot of the relative residual distribution for all 22 considered vessel
classes. Note that the relative samplesize is shown on the right hand side in the plot.
Note that outliers are disregarded.

Fig. 17. Residual plot of the relative residuals between long- and short-crested results
as function of 𝐻𝑠 for all vessels.

thought that numerical calculations combined with machine learning
for approximating results from computationally expensive methods by
regression algorithms will be vital in case of the prediction of added
resistance, as shown in Mittendorf et al. (2022a), which focused on
regular waves. The same holds for application to the mean added
resistance in irregular waves – as presented by Guo et al. (2021) – for

Fig. 18. Residual plot of the relative residuals between empirical and theoretical
method as function of 𝐻𝑠 for all vessels with 𝛽0 indicated by a colormap.

replacing the spectral calculation procedure. In their study, simulated
training data has been used to develop an efficient tool for ship
performance assessment. Hence, a similar method based on monitoring
data appears favorable for future work. In addition, the use of unsu-
pervised learning, i.e. clustering, appears to be promising for finding
patterns and structures within the data and displaying them on a lower-
dimensional manifold, as shown by Górski et al. (2021), appears as an
essential next step. On a final note, the entire analysis is based on linear
spectral analysis; however, as shown by Hasselmann (1966), the use of
higher order spectral methods appears to be interesting when focusing
on second order quantities, such as the added resistance. In a power
density spectrum, phase information (and interaction) is lost, but with
bi-spectral analysis and their generalizations, it is maintained (Iseki,
2010). Nevertheless, it is conceded that the use of higher order spectral
analysis is relatively immature in the field of ship seakeeping and added
resistance. It is, however, believed that the application of machine
learning and image recognition methods, i.e. convolutional neural
networks, may facilitate the use of bispectra for in-service ship analysis
— including the field of added resistance due to waves.

CRediT authorship contribution statement

Malte Mittendorf: Conceptualization, Methodology, Software, For-
mal analysis, Investigation, Data curation, Validation, Visualization,
Writing – original draft, Editing. Ulrik Dam Nielsen: Conceptualiza-
tion, Methodology, Writing – review & editing, Supervision, Project ad-
ministration, Resources, Funding acquisition. Harry B. Bingham: Con-
ceptualization, Methodology, Writing – review & editing, Supervision,
Resources, Project administration. Jesper Dietz: Conceptualization,
Methodology, Data curation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.



Ocean Engineering 272 (2023) 113892

15

M. Mittendorf et al.

Fig. 19. Note that the ordinate is in logarithmic scale and that bimodal (orange) and unimodal conditions (green) are depicted separately in stacked histograms.
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Appendix

A.1. Additional figures for the comparison of long- and short-crested wave
calculations

The residual distribution 𝑅̄𝐴𝑊 ,𝑠𝑐−𝑅̄𝐴𝑊 ,𝑙𝑐
𝑅𝑇 ,𝑐𝑎𝑙𝑚

for all vessel classes is shown

in box plots in Fig. 16 and a combined scatter plot as a function of 𝐻𝑠
is depicted in Fig. 17.

A.2. Additional figures for the comparison of spectral and empirical calcu-
lations

The residuals between short-crested wave and empirical calcula-
tions are presented as a function of 𝐻𝑠 in Fig. 18 for all 22 classes.

Also, the residual distributions in both short- and long-crested waves
in comparison to the empirical added resistance are depicted in Fig. 19.
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Chapter 6

Added Resistance in the Context of
Ship Performance Analysis

One everlasting problem plaguing the maritime industry is marine growth. The resulting
added frictional resistance caused by the attachment of microorganisms on the ship’s hull
and propeller leads to a substantial increase in required engine power and hence carbon
emissions. In contrast to R̄AW , biofouling contributes almost exclusively to the second term
in Eq. 2.2. Moreover, the accumulated biofouling layer allows for the spread of invasive
species. Thus, after IMO’s regulation on ballast water treatment, it was the next logical
step to initiate a joint project focusing on biofouling and its mitigation. For this reason, the
GloFouling initiative has been launched by a consortium of intergovernmental bodies, such
as IMO, GloFouling [38]. Stressing the significance of marine growth, a review from I-Tech
– a publicly-held Swedish biotechnology company – found that 44% of the entire world
fleet shows hard fouling of 10%, which in turn corresponds to a 36% increase in required
propulsion power, I-Tech [49]. Under the consideration of typical saving potentials of energy-
saving devices, it becomes clear that biofouling control and proactive hull cleaning will be
a cornerstone for reducing the carbon footprint of the maritime industry in the coming
years. Thus, the present chapter is dedicated to machine learning-driven vessel performance
monitoring. Fundamentals of in-service ship analyses can be found in Carlton [20].

6.1 Introduction
The de-facto industry standard for in-service ship analyses – ISO 19030 [58] – plays an
important role, primarily for paint manufacturers, for reproducibly and transparently as-
sessing the degree of biofouling on ships. In fact, the standard appends an additional term
to Eq. 2.3, namely, the added resistance due to fouling. ISO 19030 is known for a rigorous
filtering procedure and presupposes a speed-power baseline of some kind. However, both
availability and extrapolation capability of, e.g. sea trial results, appear questionable in
practice, Berthelsen and Nielsen [9]. Additional drawbacks of ISO 19030 include the speed
and draft dependency of the performance indicators as well as questionable applicability to
noon reports due to the draconian filter methodology.

Ship operations are in the midst of a transition from the reporting stages to monitoring
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and finally to predictive analysis, where the latter will be facilitated by data analysis and
machine learning techniques. In fact, the increasing acquisition of in-service vessel perfor-
mance data and higher availability of computational resources allow for machine learning-
based vessel performance monitoring. Pedersen and Larsen [101] determine the effect of
biofouling in parallel to a regression approach using a neural network for predicting shaft
power in the case of a tanker. In contrast, Coraddu et al. [23] estimate the ship speed as
well as the speed loss due to fouling using monitoring data from two tankers. The compar-
ison of the estimated speed loss to the result of the ISO 19030 procedure is a core novelty
of their work. However, the majority of studies in the contemporary literature regarding
digital representations of ships consider a finite dataset at once, i.e. as steady, when in fact,
the monitoring data is subject to concept drift and is recorded in a data stream. Concept
drift refers to a time-dependent change in the relationship between features and target,
which subsequently increases generalization error (model drift). For example, biofouling
leads to a different power value over time for given speed and draft conditions, but this
trend cannot be inferred from any feature. Given Eq. 3.2 and empirical risk minimization,
the data-generating joint distribution can be subject to change, which makes the regression
problem unsteady and violates the statistical IID (independent and identically distributed)
assumption. Concept drift can have incremental or sudden rates. The former corresponds
to biofouling accumulation and potential sensor drift in the context of hydrodynamic ship
performance. On the other hand, sudden concept drift results from hull or propeller cleaning
events or an extended idling period, leading to a considerable increase in marine growth.
From a practical perspective, certain silicone-based fouling-release coatings show a relatively
stable performance plateau for several years before a drop in performance, which can also
be seen as a sudden concept drift scenario. Hence, quantifying the degree of concept drift
as a proxy variable for biofouling is the overarching goal and novelty of the present chapter.

Figure 6.1: Speed loss caused by biofouling according the adaptive model on the primary
axis and according to ISO 19030 on the secondary axis, taken from [C2].

In-service sensor data is acquired in a datastream, which is an additional motivation
for an adaptive training methodology. Thus, the proposed method draws inspiration from
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a state-space approach presented in Antola et al. [6], where they merge noon reports and
high-frequency data for performance monitoring. Moreover, it is herein hypothesized that
there is, in fact, no sufficient feature combination that allows for capturing the performance
decay in an explicit regression approach, which is due to the high complexity of marine
growth patterns. Hence, [C2] and [J5] build on an implicit procedure for determining the
performance loss at consistent conditions for a range of speeds. The overall concept has
been partly developed during the author’s external research stay at Wärtsilä Voyage and in
collaboration with Hempel. In [C2], an initial proof-of-concept study was presented based
on five years of high-frequency data from an LNG carrier. A neural network was re-trained
incrementally in a scheduled rhythm for predicting STW. It turned out that the application
of incremental learning can result in catastrophic forgetting, i.e. the loss of information
obtained in previous training instances. For further details concerning catastrophic forget-
ting or interference, see Goodfellow et al. [40]. As a consequence, several hidden layers
were frozen to make the model less susceptible to catastrophic forgetting, i.e. more stable.
Overall, the performance estimate provided by the model found good qualitative agreement
with the ISO 19030 speed loss indicator, which can be seen in Fig. 6.1. The speed loss
according to the adaptive model is given on the primary axis, whereas the ISO 19030 esti-
mates are on the secondary axis. The observed consistent offset is due to the use of different
speed-power baselines. Another novelty of [C2] and [J5] is that the methodology derives an
initial speed-power baseline in the warm-up period for the performance analysis. The fouling
assessment is handled in a post-processing step and hence can also consider external data,
such as sea trial speed-power baselines underlining the modularity of the method. Interest-
ingly, in the second dry-docking interval in Fig. 6.1, a performance increase followed by a
stable plateau can be observed, which results likely from the application of a fouling-release
paint. Another aspect of both papers is the application of feature engineering methods, as
presented in [J1]. In fact, the analysis of collinearity in the field of machine learning-driven
performance monitoring is considered rare. In order to study both the effect of data qual-
ity (or uncertainty) and to evaluate the individual models more rigorously, it was decided
to pursue a simulation-based study in [J5] since, in this case, an actual ground truth of
the added power due to biofouling is available. Therefore, a simulation framework for the
KVLCC2 is set up, and the individual datasets are made publicly available for possible
benchmarking and enhancing transparency, Mittendorf et al. [88]. Lastly, three different
methods for incremental learning are compared to a default method, i.e. re-training without
any restrictions. The application and systematic comparison of the individual methods is
considered a core novelty of [J5].

6.2 Discussion
In [C2], an adaptive training methodology for a neural network has been proposed, which
was then rigorously analyzed and extended in [J5] under the consideration of simulation
data. Overall, it turns out that data quality – as already seen in [J4] – is paramount.
However, not only the degree of stochastic variance but also the inherent steadiness of the
dataset turned out to be vital when assessing vessel performance by machine learning. In
the initial study in [C2], the speed loss has been determined, in contrast to the study in
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[J5], where the power increase was estimated as a proxy variable of biofouling. Hence, it
will be part of future research to determine which performance indicator is better suited
in a machine learning-driven approach regarding robustness and accuracy. Moreover, the
interval for re-training the model can be optimized and is ideally subject to automatic
model drift detection. However, it becomes clear that not only the deteriorating model
performance should be considered but also the availability of new unseen data. Even though
the backshift (or lag) operator may be introduced into the data extraction procedure, it
may lead to a lagging behavior of the corresponding performance estimate. In addition,
it seems worthwhile to compare the derived speed-power baseline to an estimate by piece-
wise regression using sensor data, e.g. Berthelsen and Nielsen [9], or sea trial curves. As
pointed out in [J5], the overall methodology is also applicable for assessing the potential fuel
savings of energy-saving devices, such as propeller boss cap fins, in comparison to established
statistical methods by, e.g. Christensen [22].

Thus far, the present chapter had a dominant focus on the added power due to ma-
rine growth; however, the following paragraphs are directed towards applying the proposed
methodology to added power due to the seaway – including added wave and wind resistance.
A crucial advantage of a machine learning approach is that it imposes no assumptions on
the overall calculation in contrast to Eq. 2.6. On the other hand, it is conceded that even
though the prediction may show higher accuracy, the transparency and reproducibility are
reduced when using a machine learning framework. For estimating the added environmental
power, a dataset corresponding to scenario C (cf. [J5]) is set up, i.e. showing realistic param-
eter distributions and sensor noise. In the simulation process, a required engine power for
actual conditions and a corresponding value for calm water conditions is simulated, where
the latter acts as a reference value for determining the ground truth of the added power.

(a) Correlation plot for predictions on the train-
ing and validation set for predicting the required
engine power.

(b) Comparison of derived relative added power
by the model and simulated data (on the ab-
scissa).

Figure 6.2: Correlation plots for the prediction of the added power due to wind and waves
derived from simulated data for the KVLCC2, as shown in [J5].
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It is noted that this dataset is not subject to concept drift because the roughness of the
hull and propeller is kept constant at kS = 30µm. In general, satisfactory accuracy and good
generalization can be seen in Fig. 6.2a. It is noted that overhat indicates model predictions.
Moreover, the variance increases slightly with the magnitude of the target variable (PB),
and erroneous samples can be identified for very large PB values corresponding to instances
with severe sea state conditions. Moreover, it is appreciated that all samples are bounded
by the imposed engine limits (PB < 30, 000 kW); however, for a more realistic simulation
framework, an actual engine load diagram with its speed/torque limits should be considered.
As a side note the model underwent 30 epochs for training following the same training setup
described in [J5].

In contrast to the derived biofouling indicator, the added power due to the seaway is only
computed for each instance and not for consistent (simulated) conditions, as in [J5]. In Fig.
6.2b, the estimated added power normalized by the required engine power in calm weather
PB,calm is shown in a correlation plot. It can be seen that even under the consideration of
sea state parameter distributions biased towards lower values, the power increase due to
service in wind and waves can be more than twofold in contrast to PB,calm. This is likely
caused by high sea states in combinations with low advance speeds. Moreover, the model
exhibits somewhat biased results for lower magnitudes, despite a satisfactory correlation
with the ground truth. Possible reasons for that are that machine learning models generally
have a lower extrapolation capability, and the experience of precisely calm water conditions
is doubtful given the used parameter distributions. Another cause could be that the same
feature combination as in [J5] is used, i.e. no information about the relative wind/wave
direction and peak period. However, these parameters are highly relevant for estimating the
added wind and wave resistance, as discussed earlier. Hence, it is believed that including
these features may improve the obtained results. Still, when applying this approach to actual
sensor data, the accuracy is expected to be lower due to multiple uncertainty sources, which
are covered in [J4]. However, it could be worthwhile to combine shaft power prediction and
sea state identification in one monolithic model with multimodal input branches considering
lower-frequent performance data and higher-frequent ship response data. Noting that when
the ship sails mostly in diffraction-dominated seaways, it remains questionable whether the
inclusion of ship motion information (causing radiation) will be beneficial for estimating the
added power due to wind and waves.

Lastly, the possible application of curriculum learning, i.e. training a model in multiple
training instances with increasing complexity, may be beneficial in the case of shaft power
prediction for making the model more physics-informed. For example, the method could be
pre-conditioned on simulation data with uniform distributions (scenario A in [J5]) to explore
the entire parameter search space evenly and thereby minimize model uncertainty due to
low epistemic uncertainty within the training data. In the second step, actual in-service
monitoring data can be used for re-training. Bengio et al. [8] provides a theoretical back-
ground for curriculum learning. Another aspect for mitigating catastrophic interference is
the application of dilution (or dropout) in combination with other regularization techniques
or alone, as shown by Goodfellow et al. [40]. In fact, it turned out that dilution is a ro-
bust and well-working countermeasure against catastrophic interference during incremental
learning. Ultimately, we came full circle and found that in the end, it always comes down
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to Eq. 3.2 and the difference between the empirical data, on which the model is trained,
and the underlying data-generating process, which can be subject to change. The empirical
training data is just a (possibly insufficient) representation of the data-generating process,
leading to the statistical adage: Garbage in, garbage out.
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Abstract

Performance data from ships is subject to distributional shifts, sometimes referred to as concept

drift. In this study, synthetic monitoring data is simulated for the KVLCC2, considering publicly

available reference data and a semi-empirical simulation framework. Neural networks are trained

to predict the required shaft power and to overcome the deterioration in model accuracy due to

concept drift, three methods of incremental learning are applied and compared: (1) Layer freezing,

(2) L2 regularization, and (3) elastic weight consolidation. Furthermore, an implicit methodology

for quantifying the changing hull and propeller performance is presented. In addition, a generic

feature engineering framework is used for eliminating both collinear and insignificant features. In

two investigations, sudden and incremental concept drift scenarios are examined, and the effect of

different uncertainty categories on model performance is studied in parallel based on three different

datasets. As a main finding, it is confirmed that data quality is of great importance for accurate

machine learning-driven performance monitoring - even in simulated environments. Furthermore,

the study shows that freezing layers during incremental learning proves to be the most robust and

accurate, but it will be part of future work to examine this on actual sensor data.

Keywords: Hull biofouling, Concept drift, Incremental learning, Synthetic data, KVLCC2

1. Introduction1

Seaborne transport is considered the most efficient transport mode, but it still emits ap-2

proximately 3% of anthropogenic carbon emissions, as reported by IMO (2020). For reaching3

carbon-neutral shipping within this century, adopting a wide range of technologies and measures is4

indispensable - including energy-saving devices and alternative propulsion techniques. In the same5
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vein, biofouling mitigation and hull cleaning methods have received increased interest in recent6

years - not least through the GloFouling1 initiative, which aims at limiting the spread of invasive7

species and abating carbon emissions caused by the accumulation of marine growth resulting in8

increased hydrodynamic resistance. In fact, a 55% increase in CO2 emissions has been reported9

for a larger tanker with heavy calcareous fouling in a study presented in GloFouling (2022). This10

in turn underscores the importance of adequate hull and propeller maintenance for achieving fuel11

and corresponding emission savings, as also pointed out by Adland et al. (2018). For this reason,12

analysis of a ship’s performance deterioration due to biofouling has been an active research field13

ever since. However, the need for performance monitoring has been amplified due to the recently14

adopted regulation of the Carbon Intensity Indicator (CII) (IMO, 2021). The CII is controversial15

since it is aimed at minimizing carbon emissions relative to the potential transport work, which is16

determined by considering the maximum (or design) cargo capacity instead of the actual loading17

condition, Wang et al. (2021). In addition to increased carbon emissions, Liu et al. (2021) showed18

that the added frictional resistance due to fouling might - in extreme cases - contribute to the loss19

of maneuverability in adverse weather conditions, which may pose a safety concern and, thus, has20

to be considered when determining the minimum propulsion power for blunt-type vessels, such as21

bulk carriers and tankers, cf. IMO (2017).22

1.1. Literature review23

Driven by international regulations and digitalization, availability (and quality) of in-situ data24

from ships increased significantly during the last decade; thus, machine learning-based monitoring25

experienced growing interest and adoption. Traditionally, the in-service performance of vessels has26

been analyzed by superimposing the individual resistance components determined by, e.g. empirical27

or numerical methods, as shown by Andersen et al. (2005) and Hansen (2011). Significant experience28

has been acquired in this field, and transparency as well as reproducibility are key advantages of29

these methodologies. Moreover, associated approaches are even applicable in case of scarce data,30

e.g. for noon reported data. However, the traditional way of performance monitoring is limited31

by its inherent approximations, which may show a lack of accuracy - particularly in off-design32

conditions, as reported by Berthelsen and Nielsen (2021) in a study of data from a large group33

1GloFouling has been initiated by the International Maritime Organization (IMO), the United Nations Development
Programme (UNDP) and the Global Environment Facility (GEF).
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of tankers. In addition, Lang et al. (2022) conclude that a semi-empirical framework performs34

far worse for shaft power prediction than multiple machine learning methods in the case of two35

different vessels. Having said this, Aldous et al. (2015) showed that automatic data acquisition via a36

sensor framework onboard a ship and the resulting high-frequency data exhibit less uncertainty than37

manually collected data. Hence, the amount of sensor data from ships has been increasing in recent38

years, which enables establishing digital representations of vessels or in other words cyber-physical39

systems.40

Most machine learning (ML) studies on ship performance monitoring rely on a data fusion41

concept, i.e. data from several different sources and domains are combined into one dataset.42

Some specific studies are listed in the following: Pedersen and Larsen (2009) merge noon report,43

high-frequency monitoring, and metocean hindcast data for estimating shaft power and the effect44

of biofouling for a tanker using neural networks. Petersen et al. (2012) employ neural networks for45

estimating the main engine power of a RoPax vessel based on several months of publicly available,46

high-frequency monitoring data. Coraddu et al. (2019) use an extreme learning machine, i.e. a47

neural network trained by a matrix inversion technique, for determining the speed loss due to48

fouling of two Handymax tankers in direct comparison to the de facto industry standard for vessel49

performance monitoring ISO 19030 (ISO, 2016). Laurie et al. (2021) compare multiple machine50

learning models for predicting the propulsion power of several container vessels and deriving the51

power increase due to fouling by imposing a time dependency. A key aspect of their work is the52

evaluation of feature importance, i.e. the sensitivity of the individual sensor recordings to the53

prediction model. Tsompopoulou et al. (2022) use a synthetic ship performance dataset from a bulk54

carrier for an uncertainty-aware estimate of the speed-power-relationship under varying conditions55

using probabilistic deep learning. It is emphasized that generalization to unseen operational56

conditions is negatively affected by the model’s inductive bias, i.e. the model’s assumptions based57

on the training data. Mittendorf et al. (2022c) show that performance data is subject to concept58

drift mainly caused by marine growth and thus violates pivotal assumptions of ML. Consequently,59

a neural network is trained adaptively on high-frequency data of an LNG carrier, and a proxy60

variable for biofouling is derived implicitly. It is found that the proposed methodology can reflect61

the temporal decay in vessel performance satisfactorily since the estimates have trends similar to62

an ISO 19030 indicator.63
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1.2. Motivation and objective64

Following Tsompopoulou et al. (2022), synthetic ship performance data is simulated; thus, an65

actual ground truth of the fouling-related performance decrease is available. This is a decisive66

advantage compared to studies using in-service vessel data since it allows for a more rigorous model67

assessment. The KVLCC2 (KRISO Very Large Crude Oil Carrier 2) is taken as a case ship, and68

reference data, e.g. experimental propeller data, from the literature is adopted in a semi-empirical69

simulation framework. A key aspect is to consider a wide variety of different operating conditions –70

including environmental influences – and the effect of biofouling which is introduced to both hull and71

propeller through the 1978 ITTC (International Towing Tank Conference) method (ITTC, 2017),72

i.e. by an equivalent sand roughness, as proposed by Schultz (2007). However, this study is limited73

to lighter fouling conditions and disregards heavy barnacle or seaweed fouling entirely. In the study74

by Mittendorf et al. (2022c), several hidden layers of the neural network are frozen to preserve75

information from previous training instances. In the current study, more advanced incremental76

learning methods are applied and compared. The overarching goal of this paper is to determine77

the most accurate and practical framework among several methods. Hence, their sensitivity to78

data quality receives particular interest since in-service ship data is often characterized by larger79

variance, i.e. reduced data quality. In addition, the effect of different uncertainty sources on model80

behavior and estimated hull performance proxy variable are examined. This study investigates three81

scenarios, each characterized by a different type of uncertainty. Moreover, sudden and incremental,82

i.e. prolonged continuous, concept drift are examined in an isolated way. Similarly to Tsompopoulou83

et al. (2022) and Petersen et al. (2012), the individual datasets are made publicly available for84

reproducibility and transparency reasons; see Mittendorf et al. (2023).85

1.3. Organization of the paper86

The sections of the present paper are ordered in the following way: In the next Sec. 2, the87

calculation of synthetic monitoring data and the individual datasets will be presented. In Sec. 3,88

the applied incremental learning methods, as well as the implicit determination of the fouling proxy89

variable, will be described. Moreover, the obtained results are depicted and discussed in Sec. 4. In90

the final Sec. 5, the paper’s main findings will be reiterated, and opportunities for future work are91

outlined.92

4



2. Data generation93

In contrast to slender ships, the hydrodynamic performance of blunt-type vessels is generally94

more affected by marine growth, which is due to their lower forward speeds, i.e. a greater viscous95

resistance component, and their operational profile with longer idling periods. An extreme example96

of the latter was the COVID-19 pandemic, where a large number of tankers were utilized for97

temporary oil storage, which led to increased biofouling on the corresponding vessels (Liu et al.,98

2021).99

2.1. Case ship: KVLCC2100

Similar to Tsompopoulou et al. (2022), we define a simulation framework for the generation101

of performance data pertaining to the KVLCC2. This vessel has been the subject of multiple102

numerical and experimental benchmark studies, e.g. SIMMAN (2014). Hence, plenty of reference103

data is available from the literature, on which the present work will build. The KVLCC2 as104

well as its propeller are designed for an advance speed of U = 15.5kts, which corresponds to105

Fn = U√
gLpp

= 0.142. In addition, the ballast condition is taken from Park et al. (2016) with a106

draft in the aft position da = 11.9m and draft in the fore position df = 6.7m. The main particulars107

and the hull shape itself are presented in Tab. 1 and Fig. 1, respectively. It is noted that the open108

water propeller curves (in model scale) are appended to this paper in appendix A1.109

Table 1: Main particulars of hull and propeller of the KVLCC2 in design conditions for Fn = 0.142, cf. SIMMAN
(2014).

Definition Symbol Unit Magnitude

Length between perpendiculars Lpp [m] 320.0
Beam B [m] 58.0
Mean draft dm [m] 20.8
Block coefficient CB [-] 0.808

Propeller diameter D [m] 9.86
Blade number Z [-] 4
Expanded blade area ratio Ae/A0 [-] 0.431
Pitch–diameter ratio P/D [-] 0.721
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Figure 1: Body plan of the KVLCC2 with the design water line (blue line).

2.2. Shaft power calculation110

Initially, several assumptions are made, which include disregarding cavitation, propeller slip,111

currents and swell waves. Moreover, additional resistances due to shallow water and steering are112

neglected entirely, since these particular occurrences would typically be filtered in reality anyhow,113

as was shown in Mittendorf et al. (2022c). It is also assumed that biofouling is homogeneous114

and can be approximated by the equivalent sand roughness, as proposed by Schultz (2007). In115

addition, the degree of fouling is of similar extent on both ship hull and propeller, i.e. kS = kP . For116

the determination of the added resistance due to roughness, we make use of the ITTC’78 power117

prediction method (ITTC, 2017). Herein, the total hull resistance RT , which has to be overcome by118

the propeller and main engine, is decomposed into three main contributions, as can be seen in Eq.119

(1).120

RT = RT,calm + R̄AW +Rwind (1)

The total calm water resistance RT,calm is calculated by the Hollenbach (1998) method, which121

splits the resistance into frictional and residual resistance, i.e. RT,calm = RF +RR. The residual122

component is determined using a large set of empirical parameters and also includes the resistance of123

appendages, such as hull bossings. The frictional resistance is calculated by the ITTC’57 correlation124

line and the roughness allowance taken from ITTC (2017) adds the influence of kS . Both the125

kinematic viscosity ν and the density ρ of seawater are determined by its temperature ϑsea for a126

constant salinity of 35g/kg. Additionally, it is noted that S corresponds to the wetted surface area127

of the ship.128
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Figure 2: The non-dimensional (full-scale) calm water resistance in laden and ballast conditions as a function of the
Froude number following Hollenbach (1998).

In Fig. 2, good agreement between non-dimensional estimated and experimental calm water129

resistance can be seen in the proximity of design conditions, i.e. laden draft and Fn = 0.142.130

However, it is uncertain, whether the method can reflect RT,calm at ballast draft and below131

design speed as accurately, since no experimental data is available for these regimes. For keeping132

resemblance to Mittendorf et al. (2022c), conditions with U < 5kts (or Fn < 0.046) are not133

considered herein.134

The mean added resistance in short-crested waves R̄AW is determined from the spectral formula-135

tion presented in Eq. (2), i.e. the product of a quadratic transfer function, RAW , and a directional136

wave spectrum, E, is integrated over both wave frequency ω and wave direction β.137

R̄AW = 2

∫ 2π

0

∫ ∞

0

RAW (ω, β)

ζ2
E(ω, β)dωdβ (2)

It Eq. 2, ζ denotes the wave amplitude. The transfer function is determined using the method138

by Mittendorf et al. (2022d), which is an adaptation of Liu and Papanikolaou (2020). The agreement139

with experimental data can be seen in Fig. 3 and it stands out that the semi-empirical formulation140

is able to approximate the non-dimensional added resistance not only in laden conditions, but also141

in ballast conditions, which are characterized by a notable trim angle. In view of Fig. 3, it is said142

that the agreement in the resonance region is considered as satisfactory in both laden and ballast143

conditions, but larger deviations are notable in shorter relative wavelengths. Note that g is the144
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gravitational acceleration and λ denotes the wavelength.145

Figure 3: Non-dimensional added-wave resistance transfer function for Fn = 0.142 and β0 = 180deg. in laden (black)
and ballast (red) conditions as a function of the relative wave length, according to Mittendorf et al. (2022d).

The directional wave energy spectrum E(ω, β) is approximated by a unimodal Pierson and146

Moskowitz (1964) spectrum combined with a cos-squared spreading function. For this reason, 36147

discrete wave directions β ∈ [−π, π]rad and a frequency discretization of 50 discrete frequencies148

ω ∈ [0.01, 2π]rad/s are employed. The significant wave height Hs, peak period Tp, mean relative149

wave heading β0 and the spreading parameter (s = 10 for wind waves) are needed for the calculation150

of the directional wave spectrum. Additional mathematical details are described in DNV-GL (2018).151

It is emphasized that only wind waves are assumed and a direct relationship between the152

significant wave height and the absolute wind speed Vw is employed. Thus, the empirical formula153

Hs = 0.115V 1.41
w from Shigunov (2017) is used. Moreover, based on the assumption of wind waves,154

wave and wind directions coincide. However, it is stressed that the directions have opposing155

definitions. In fact, for the wave heading angle β0 = 180deg. corresponds to head and 0deg. to156

following directions, whereas it is vice versa for wind. The wind resistance is calculated following157

Eq. (3) after mapping wind speed Vw and direction ψ from the absolute into the relative domain158

(with subscript r). The required procedure is described in ISO 15016 ISO (2015). Moreover, a set159

of wind resistance coefficients (CAA = −CX) for a larger tanker are adopted from ISO 15016 and160

presented in appendix A1.161
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Rwind =
1

2
ρairCAA(ψr)V

2
w,rAx −

1

2
ρairCAA(0deg.)U

2Ax (3)

In Eq. (3), the air density is ρair = 1.22kg/m3 and the frontal area of the vessel Ax is calculated162

according to Kristensen and Lützen (2013). It is noted that different sets of wind resistance163

coefficients are available for laden and ballast conditions.164

For accurate modeling of hull and propeller interaction, both wake fraction and thrust deduction165

coefficients have been adopted from experimental data presented in Yu et al. (2021). In order166

to extrapolate propeller data from model to full scale, the Reynolds number correction in ITTC167

(2017) is used. In fact, the roughness due to fouling kS is introduced the same way. Trivially,168

increased roughness increases the frictional losses of the propeller and thus reduces its efficiency.169

The determination of required shaft speed n as well as corresponding shaft torque Q are determined170

under thrust identity and the applied procedure together with the required equations is laid out in171

greater detail in Liu et al. (2021). Lastly, the engine’s brake power PB is obtained using Eq. (4),172

where ηM is the transmission efficiency including the losses of, e.g. bearings, and KQ corresponds173

to the torque coefficient,174

PB =
2πnQ

ηM
with Q = KQρn

2D5 (4)

In the following, two different fouling scenarios are depicted in comparison to a clean hull175

(kS = 30µm) for the same reference conditions, i.e. Hs = 1.0m, Tp = 5.0s Vw = 4.6m/s in head176

winds and waves at design draft. Moreover, according to Schultz (2007) only lighter biofouling177

conditions are investigated with kS = 30µm as applied coating, kS = 150µm reflects lighter slime178

and k = 300µm shows the effect of heavy slime. As can be seen, extreme calcareous fouling179

conditions have been disregarded entirely herein.180
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Figure 4: Three speed-power-curves for the same set of conditions, but different degrees of biofouling indicated by kS .

Following the classification by Schultz (2007), it stands out in Fig. 4 that even lighter fouling181

(ks ≤ 300) conditions lead to a notable power increase. In addition, it is mentioned that fouling can182

be theoretically determined by kS , but the actual growth pattern is highly complex and subject183

to both known and unknown parameters. A number of them are discussed in Yebra et al. (2004).184

Lastly, the herein defined simulation framework requires the following quantities as inputs: U , da,185

df , Hs, Tp, β0, ϑsea, kS and the ship main particulars.186

2.3. Individual datasets187

Similar to Mittendorf et al. (2022b), a wave breaking constraint is incorporated in order to188

enforce moderate wave steepness. The maximum steepness in irregular wave ϵ = 2πHs
gT 2

z
is used as a189

threshold and presented in Eq. (5) (DNV-GL, 2018).190

ϵ =





1
10 for Tz ≤ 6s

1
15 for Tz ≥ 12s

(5)

It is noted that the relationship Tp = 1.41Tz holds due to the use of the Pierson Moskowitz191

spectrum. Also, Tz denotes the zero up-crossing period and linear interpolation is performed in192

between the two thresholds in Eq. (5). Furthermore, limitations of a potential main engine are193

imposed at 30,000kW and 82rpm as two additional constraints, following Taskar and Andersen194

(2019). As already mentioned, any speeds U < 5kts are dropped.195
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In the present work, random sampling has been applied, which completely disregards that ship196

performance data is temporally coherent. In both scenarios, 30,000 initial random samples are197

defined, but the imposed constraints (mainly the wave steepness constraint) had a significant effect198

and the final sample size is in the range of 15,000. Herein, two different concept drift scenarios199

will be investigated: (1) Sudden and (2) Incremental concept drift. The former is attributed to200

hull/propeller cleaning or sensor calibration, whereas the latter may result from the time-dependent201

accumulation of biofouling or from sensor drift. From a study presented in GloFouling (2022), it202

was found that in equatorial regions, an increase from newly applied paint (kS = 30µm) to heavy203

slime (kS = 300µm) is possible within one year. Hence, in case of sudden concept drift, three204

different cases of roughness were calculated for the same set of parameters using the kS values205

from Fig. 4, i.e. 30, 150 and 300µm. Conversely, for incremental concept drift, a linear increase206

of 0.009µm per sample was introduced. Thus, from a statistical point of view, the samples in the207

sudden concept drift scenario are, in fact, stationary considering instances with the same roughness208

in a step-wise approach. In contrast, this assumption does not hold for an incremental concept209

drift, since roughness is linearly increased. Due to this transient character, the entire dataset is210

binned into smaller windows, in which it is assumed that the samples are quasi-stationary.211

The synthetic data is free of any distributional shifts due to changes in the operational profile.212

In addition, any disturbing influences caused by acceleration (due to speed or course changes), wave213

drift or significant rudder angles are disregarded entirely. From the operational profile of a VLCC,214

it is determined that 50% of the samples are in laden and 50% in ballast conditions. In addition,215

the mean wave encounter angle is uniformly distributed in the range β0 ∈ [0, 360]deg. for the sake216

of simplicity. The simulation of the remaining parameters is described for each dataset individually.217

A crucial advantage of using synthetic data is isolating different uncertainty categories and218

studying their effect on the individual models. Initially, two uncertainty categories are defined: (1)219

Epistemic uncertainty results from limited data availability, i.e. unobserved conditions, and will220

eventually vanish with increasing the sample size. (2) Aleatoric uncertainty, on the other hand,221

results from the stochastic nature of the data and is unaffected by data availability. Herein, three222

different datasets per concept drift scenario will be simulated:223

1. Following Mittendorf et al. (2022b), dataset DA is characterized by uniform parameter224

distributions and thus exhibits no epistemic uncertainty. Moreover, the samples resemble225
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deterministic conditions due to the employed simulation framework and therefore show no226

aleatoric uncertainty either. In fact, the following definition ranges have been used for227

simulation: Hs ∈ [0.1, 7.4]m, Tp ∈ [2.1, 15.5]s and U ∈ [6, 16]kts. Besides, the sea water228

temperature was held constant at 15◦C. In relation to the other two datasets, DA shows an229

exaggerated likelihood of severe sea states (due to the uniform parameter distribution of Hs)230

and hence large variance due these sea states.231

2. Dataset DB is consists of realistic parameter distributions and an unobserved parameter (by232

the model), i.e. the sea water temperature, which has a minor impact on the total resistance233

due to the change in ν. In other words, this dataset is characterized by epistemic uncertainty.234

In addition, variance has been introduced to the draft (before simulation) caused by the235

change in sea water density or water ballast for, e.g. the possible avoidance of slamming236

in ballast conditions. For this reason, a normal distribution around the draft from ballast237

and laden conditions with a standard deviation of 0.4m is assumed. In fact, the realistic238

distributions of Hs, Tp, U and ϑsea are adopted from 5 years of data from a gas carrier in239

Mittendorf et al. (2022c) and are depicted in Fig. 5. The used Probability Density Functions240

(PDF) as well as the fitted parameters are included in the respective caption. As a side note,241

the scipy2 library has been used for fitting the parametric PDFs. In contrast to DA, it can be242

seen that the PDFs of Hs and Tp are heavily skewed towards lower values. Moreover, it has243

to be stressed that the distributional mean of U , as obtained from Mittendorf et al. (2022c),244

has been reduced to 12.3kts, in order to match the service speed of a typical VLCC.245

3. Dataset DC is characterized by epistemic and aleatoric uncertainty due to the injection of246

sensor noise according to Sogihara (2021) into the previous dataset DB. The sensor accuracy247

found in this survey is presented in Tab. 2. Since, no accuracy value for torque Q was248

available, the corresponding PB accuracy was taken. It is also mentioned that no noise was249

introduced to the draft measurements, which is a fair assumption when data from the loading250

computer is utilized, since draft measurements obtained from sensors usually show larger251

variance (in sailing conditions). From Tab. 2, it turns out that the last three environmental252

parameters (ψr, Hs, β0) show a homoscedastic behavior, in contrast to the other quantities,253

where the extent of variance depends on the parameter’s magnitude. In addition, it shows254

2https://scipy.org/
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(a) Gumbel (right) distribution of the significant wave height
with µ = 1.35 and σ = 0.785.

(b) Exponentiated Weibull distribution of the peak period with
a = 0.655, c = 2.895, µ = 2.106 and σ = 9.013.

(c) Gumbel (left) distribution of the ship advance speed with
µ = 12.3 and σ = 2.11.

(d) Gumbel (left) distribution of the sea temperature with
µ = 25.3 and σ = 4.75.

Figure 5: Probability density functions (PDF) of the individual quantities. It is noted that µ denotes the mean and σ
is the standard deviation.
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that the wind measurements are generally of lower quality. The shown accuracy of sea state255

data is considered as presumably unrealistic, considering the reported accuracy of an X-band256

wave radar in Mittendorf et al. (2022e).257

Table 2: Measurement accuracy of sensor equipment, taken from Sogihara (2021).

Sensor reading Equipment Accuracy

U Doppler log 1%
rpm Revolution counter 1%
PB Torsion meter 0.5%
Vw,r Anemometer 5%
ψr Anemometer 5deg.
Hs Hindcast, wave radar 0.1m
β0 Hindcast, wave radar 5deg.

3. Methodology258

In monitoring problems, the dataset is typically not fixed, but samples are acquired as a259

sequential data stream. Mathematically, a data stream is defined as a possibly infinite sequence260

Z = (z1, . . . , zt) of tuples zt = {xi, yi}, where t represents time, and yi is the target (herein PB)261

for a given feature vector xi (herein operational parameters). In IoT (Internet of Things) practice,262

data and, thus, the learning task is not time-invariant. Assuming so may eventually lead to a263

mismatch between training and application instances over time. This phenomenon is known as264

concept drift and can be expressed theoretically by a joint distribution p with a dependency on265

t, i.e. pt0(x, y) ̸= pt1(x, y). However, in ML applications, the assumption of IID (independently266

and identically distributed) and stationary samples is indispensable (sine qua non) and, therefore,267

generally implicitly assumed. Concept drift has different patterns usually associated with sudden,268

incremental, and/or reoccurring drift rates (Losing et al., 2018). In fact, all three types can be269

observed in ship performance analysis: (1) Hull and propeller fouling and sensor drift correspond to270

incremental concept drift, (2) hull/propeller cleaning, sensor calibration, or an extensive idle period271

may lead to sudden concept drift. (3) When considering several dry-docking intervals, a reoccurring272

pattern in ship performance will stand out. As a side note, it is stressed that hull deterioration273

can be both temporary and permanent, e.g. due to corrosion or mechanical damages. After all,274

continual learning is needed to alleviate the decay in model accuracy caused by concept drift.275
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3.1. Incremental learning276

Continual learning generally acts as an umbrella term for a wide range of different methods, and277

in the present context, an incremental learning paradigm is considered to correspond to repeated (and278

batch-wise) transfer learning on newly acquired data. For more detailed information about continual279

learning using neural networks, cf. Parisi et al. (2019). Broadly speaking, incremental learning280

resembles human intelligence and memory consolidation, i.e. the time-dependent transformation of281

sensory information into long-term memory (Kirkpatrick et al., 2017). Similar to human beings,282

the herein proposed model learns in a sequential manner, which is depicted in Fig. 6, where the283

cyclical methodology of incremental learning in the present context is visualized.284

Figure 6: Concept of incremental learning applied to ship performance monitoring.

In Fig. 6, it is illustrated that data is collected onboard the vessel in the initial stage, while285

the second stage contains data preprocessing, which includes outlier detection and filtering for,286

e.g. unsteadiness or shallow water influence. Moreover, the model - a neural network - is trained287

in a regression task for predicting the required engine power PB in this stage. In the final stage,288

the model is applied and used for, e.g. decision support both onboard and ashore. It is stressed289

that the initial and the final stages happen in parallel in actual practical applications. In fact, the290

presented methodology has a major resemblance to the procedure of MLOps, which is a coinage291
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made of ML and DevOps3, which refers back to the maintenance of software products. Ultimately,292

the practical relevance of the present work is emphasized since the digital representation of the293

ship is constantly updated, and the drop in model accuracy is mitigated. As such, the present294

study stands out compared to many other similar studies in the literature, most of which treat the295

gathered monitoring data as time-invariant by considering the entire dataset at once.296

Incremental learning is considered a sub-field of deep learning, but it is emphasized that there are297

similar methods in different domains, such as the incremental decision tree. Similar to traditional298

machine learning, deep learning techniques are optimized for application in stationary and self-299

contained environments. Artificial Neural Networks (ANN) have a resemblance to dendrites of300

human brains and are commonly used as universal function approximators. Mathematically, the301

stacking of affine functions (or layers) eventually leads to the universal approximation theorem (in302

theory). It is noted that the recent breakthrough in deep learning is not only attributed to deep303

architectures but even more so to special layer types, such as recurrent or convolutional layers.304

Theoretical details of deep learning can be found in Goodfellow et al. (2016). In Eq. (6), it can be305

seen that an ANN produces a mapping from feature vector x to dependent variable y or rather its306

approximation ŷ.307

ŷ = fL[ΘL, fL−1(ΘL−1, . . . , f1{Θ1,x})] (6)

As can be inferred from Eq. (6), neural networks act as composite functions, and each affine308

layer with index L consists of parameters Θ and a non-linear activation function f . It is noted that309

bias terms are omitted in Eq. (6). The optimal set of parameters is obtained by gradient-based310

optimization, which assumes samples to be IID, of an arbitrary loss function L. It is desired to find311

a global minimum of the loss function, but it has been shown that there is no unique parameter312

combination θ yielding this. It is noted that θ corresponds to a vector concatenating all ΘL. In actual313

fact, there is a region of optimal parameter combinations around the global optimum of the loss314

landscape. This multiplicity has been found by Sussmann (1992) and eventually allows for continual315

learning, i.e. optimizing for two different tasks at once without (or marginally) sacrificing accuracy.316

During training, the aim is to learn a parameterization θ1 that leads to optimal performance on317

the first task. Afterwards, the model consisting of the prior parametrization is retrained on task318

3DevOps is a term combining the fields of software development (Dev) and IT operations (Ops).

16



2, leading to a posterior parameter combination θ1,2, which yields the best performance on task 2319

without losing significant accuracy on task 1. Mathematically speaking, the process can be described320

by the posterior p(θ|D) = p(p(θ|D1)|D2), where Di refers to the dataset of the associated task. In321

fact, Kirkpatrick et al. (2017) utilizes Bayes’ theorem for deriving corresponding regularized loss322

functions for incremental learning. Crucially, methods for incremental learning suffer from the323

plasticity-stability dilemma. In other words, from training on task 1, the parameter vector θ1 lies324

on a manifold corresponding to optimal accuracy on task 1. However, an updated parameterization325

θ2 will detach from the initial manifold and change to a manifold tailored to task 2. Hence, the326

posterior parameter vector θ2 unlearned all information on task 1, which was encoded in the prior327

parameter combination θ1. Therefore, models are supposed to be flexible to acquire new information328

but rigid enough to avoid catastrophic interference (or forgetting). Ramasesh et al. (2021) provides329

a detailed study on catastrophic interference and its mitigation. In the present work, three methods330

for incremental learning are applied and compared to the Default method, which is considered331

retraining the entire model without any restrictions (or regularization) and thus corresponds to a332

highly flexible model. The three examined methods are presented in the following:333

1. Freezing has been presented in Jung et al. (2016) and is frequently applied in the field334

of transfer learning, i.e. the application of a pre-trained model in a similar domain. This335

procedure is considered as straightforward for implementation and efficient during training336

since only the parameters in the unfrozen layers are adaptable. In contrast to the default337

method, this method is considered as relatively rigid. Interestingly, Ramasesh et al. (2021)338

observed that the upper hidden layers contribute most to the associated decay in accuracy339

and hence the first two hidden layers are frozen when using this method. In Mittendorf et al.340

(2022c), layer freezing has been applied in a practical setting and showed good applicability,341

since it does not require a custom loss function, in contrast to the following two methods.342

2. L2 regularization is widely used during the training of neural networks (and other ML343

methods) and aims at minimizing complexity for mitigating overfitting. The conventional344

definition penalizes the actual magnitude of weights, but the implementation of Kirkpatrick345

et al. (2017) punishes large differences between θi and θi−1, i.e. the change from prior to346

posterior parametrization. By using the L2 norm, the posterior parameter vector stays in347

Euclidean proximity to the prior one.348
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LL2(θi) = L(θi) + λ
∑

j

(θi,j − θi−1,j)
2 (7)

In Eq. (7), i corresponds to the index of the task and j is the index of the parameter vector349

θ. The method relies on structural risk minimization, i.e. the actual loss function for the350

current task is extended by a penalty term, which is multiplied by the hyperparameter λ for351

weighting of the regularization term.352

3. Elastic Weight Consolidation (EWC) has been proposed by Kirkpatrick et al. (2017) and353

mimics an information-based regularization technique. In fact, each parameter has an assigned354

information-weight, which is calculated by the Fisher information matrix, or rather its diagonal.355

A theoretical derivation of EWC and the intricacies of the calculation of the Fisher information356

matrix are presented in Aich (2021). EWC follows also structural risk minimization, which357

can be seen in Eq. (8).358

LEWC(θi) = L(θi) +
Λ

2

∑

j

Fj(θj − θi−1,j)
2 (8)

In Eq. (8), Λ is a hyperparameter determining the strength of the regularization, Fj is the359

diagonal of the Fisher information matrix and θi−1 are the model parameters resulting from360

the previous training instance. In the present context, the hyperparamter α = Λ/2 is defined361

and eventually optimized. The diagonal of the Fisher information matrix is approximated by362

using the average of squared gradients of a subset of the training data. It is noted that the363

calculation of Fj leads to an increase in CPU time.364

In theory, Eqs. (7) and (8) could both be extended towards considering even a task before the365

prior. However, from a Bayesian perspective, it is assumed that the parameters, which are important366

to the prior, are subsequently also important to the prior of the prior. Lastly, the four investigated367

methods have a varying degree of plasticity and stability. The default method is considered the368

most plastic, whereas the freezing method is the most stable. The two regularization techniques369

are related, since the L2 method punishes large changes in magnitude of the parametrization and370

EWC punishes the same but, according to an importance estimate, obtained through the Fisher371

information matrix. In addition, both hyperparameters λ and α act as stiffness and higher values372

attribute more weight to the previous training instance, i.e. the prior.373
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3.2. Determination of the performance indicator374

In Fig. 4, it was observed that fouling leads to a shift in the relationship between opera-375

tional/environmental conditions and shaft power, i.e. a higher engine power is needed for the same376

conditions due to biofouling. In addition, when this shift remains unexplained, i.e. cannot be377

inferred from any feature, it is a clear indication of concept drift. In fact, some papers from the378

literature attempt to obtain the fouling-related added power in an explicit methodology by forcing379

a temporal relationship onto marine growth by, e.g. using ”days since last dry-docking” as a feature.380

This is presumably inspired by explicit methods from the field of predictive maintenance, such as381

the prediction of remaining useful life. However, time is only one of many predictors of biofouling,382

which include (among others) salinity, temperature, paint type, and sun exposure. For more detailed383

information on the driving factors of marine growth and its technical as well as economic ramifica-384

tion, cf. Yebra et al. (2004). Due to the high complexity of marine growth patterns, an implicit385

methodology for deriving a biofouling indicator is pursued in the present context. For reference,386

concept drift may be detected by a windowing approach via, e.g. the Kolmogorov-Smirnov test, in387

a univariate problem, but ship performance monitoring is a multivariate problem, i.e. propulsion388

power depends on a number of different features, such as speed and draft. Additionally, added389

power due to biofouling is a latent variable, i.e. not directly measurable; therefore, it has to be390

derived using similar reference conditions. In this work, the relative power increase ∆P̃B is used as391

a proxy variable for biofouling and defined in Eq. (9).392

∆P̃B =
PB,t − PB,t0

PB,t0

(9)

In Eq. (9), PB,t0 denotes the engine power from an underlying baseline with no (or minor)393

biofouling and PB,t is the instantaneous value under the current conditions at time t including the394

effect of fouling. In fact, the speed and draft dependency of ISO 19030 fouling indicators (and395

performance indicators in general) are some of the major drawbacks of the standard, as shown in396

Mittendorf et al. (2022c). The dependency of the relative added power ∆P̃B on non-dimensional397

advance speed Fn and sea state in terms of Hs is shown in Fig. 7 using synthetic data. It is noted398

that the dataset with uniformly distributed samples is employed, i.e. the plot shows an exaggerated399

likelihood of severe sea states for the sake of clarity.400
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Figure 7: The relative added power ∆P̃B caused by added roughness as a function of ship speed Fn and sea state Hs

using dataset DA for sudden concept drift. The reference conditions are for kS = 30µm and the fouled conditions
correspond to kS = 300µm, i.e. heavy slime. It is noted that the average power increase is 13.2%.

The total ship resistance RT is composed of a frictional RF and a pressure component RP , with401

an interaction term, i.e. the viscous pressure resistance RV P (Molland et al., 2011). It is stated that402

biofouling and thus ∆P̃B are mainly dependent on the RF fraction of the total resistance, and it is403

emphasized that Fig. 7 results from a simplified simulation framework disregarding possible effects404

of, e.g. propeller ventilation or cavitation. Initially, it stands out that ∆P̃B increases with speed,405

which is also reflected in Fig. 4. However, the increase saturates for Fn > 0.1, where (roughly)406

the wave-making resistance, i.e. the pressure resistance fraction, starts to increase. In addition,407

the added-wave resistance contributes significantly to RP , which is reflected by the decrease of the408

fouling related added power in higher sea states. Interestingly, for Fn < 0.1, a possible increase409

in ∆P̃B is visible due to a relative decrease of RP caused by a negative added-wave resistance in410

following waves, i.e. when R̄AW is a pushing force. This phenomenon is a function of the encounter411

frequency and is thus limited to lower Fn, cf. Liu and Papanikolaou (2020). In addition, the412

effect of the main engine constraints can be inferred in Fig. 7 since the occurrence of higher sea413

states reduces with higher forward speed. Lastly, Fig. 7 underlines the importance of evaluating414

hull performance under consistent reference conditions to avoid biases resulting from the vessel’s415

operational profile and encountered sea states.416

The present work follows a similar implicit approach, as shown by Schmode and Antola (2020),417
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i.e. the added power is evaluated under the same simulated reference conditions using an adaptive418

model. In other words, this model is used for approximating the temporary relationship between419

operational conditions and required shaft power PB. As has been proposed in Mittendorf et al.420

(2022c), the proxy for biofouling is determined using a baseline from an initial model, and an421

instantaneous estimate of that obtained from an adaptive model, and the power increase is then422

obtained from Eq. (9) in a post-processing step. The relative added power ∆P̃B is calculated for 8423

speeds U ∈ [7.0, 14.0]kts and eventually averaged to minimize its speed dependency and possible424

variance caused by modeling errors. The reference conditions correspond to the ones used in the425

case of Fig. 4, i.e. Hs = 1.0m, Tp = 5.0s Vw = 4.6m/s in head wind and waves at design draft. For426

mitigating biases due to limited data availability, a lower sea state has been chosen, cf. Fig. 5a. In427

a nutshell, the overall machine learning regression task is to predict the required shaft power in428

different training instances, and the actual fouling indicator is obtained using Eq. (9) for consistent429

reference conditions in a separate post-processing step.430

3.3. Training setup431

The used model is a multilayer perceptron with 3 hidden layers and 50 neurons per layer, i.e. is432

of lower complexity (5,401 trainable parameters) and without additional regularization techniques.433

In a preliminary sensitivity study, it appeared that the mean squared error and log-cosh error are434

too sensitive to the variance within the used datasets when using them as the loss function. Hence,435

the mean absolute error (MAE) is chosen as the loss function in the present case and defined in436

Eq. (10),437

MAE =
1

N

N∑

i=1

|ŷi − yi| (10)

Here N corresponds to the sample size, ŷ is the model prediction and y is the ground truth (in438

the present case PB). For optimizing the loss function, the Adam optimizer (Kingma and Ba, 2015)439

is used and the batch size has been set to 64. The used sample sizes, as well as the number of440

epochs, are mentioned separately for the two different scenarios in the following section. In order441

to mitigate the look-ahead bias, the data is normalized according to the extrema of the warm-up442

period. The employed deep learning library is TensorFlow 2.6, which was proposed by Abadi et al.443

(2015). Due to the smaller model complexity, the training procedures were performed on a single444
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Intel© Core i7-8565U CPU, 1.80 GHz with 16 GB physical memory (RAM). It is noted that a global445

seed was defined for the Python environment including each library, in order to obtain reproducible446

results throughout the conducted studies.447

4. Results and discussion448

This section presents the obtained results and their interpretation. We consider three major449

aspects: (1) Feature engineering in Subsection 4.1, (2) Analysis of two concept drift scenarios in450

Subsection 4.2 as well as (3) the critical assessment of the findings in Subsection 4.3. Throughout,451

the root mean squared error normalized by the mean of the PB values (indicated by overbar)452

R̃MSE is used as a metric, cf. Eq. 11.453

R̃MSE =
RMSE

P̄B
with RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)2 (11)

The individual models are evaluated on the R̃MSE of the holdout or validation set and the454

values for the training set are listed in appendix A2. In doing so, the generalization capability of455

the methods is assessed. Due to the application of incremental learning, there are multiple training456

instances and in each of them, the data is split into training and validation sets, where the latter457

corresponds to 20% of the entire set. Hence, the presented R̃MSE reflects a mean for all validation458

sets throughout the considered instances. In doing so, all training procedures and their local models459

receive equal weight regardless of the sample size.460

4.1. Feature engineering461

In several older studies pertaining to ML-based performance monitoring, no feature engineering462

has been carried out, which led at times to peculiar combinations of predictors including, e.g.463

the vessel’s GPS position or the absolute wave heading angle. In more recent studies, correlation464

analysis is conducted or the built-in feature importance method (mean decrease impurity) in case465

of tree-based ensemble methods is employed. However, it turns out that the elimination of collinear466

features is rarely addressed. It is emphasized that the model’s feature space is supposed to be467

as efficient as possible due to the negative consequences caused by the curse of dimensionality,468

i.e. the more dimensions, the sparser the data becomes (Hastie et al., 2009). In Mittendorf et al.469

(2022c), a feature vector was determined using domain knowledge, but herein, a similar framework470

22



Table 3: Variance inflation factor (VIF) analysis for the three different datasets showing one iteration per row.

Dataset U Hs Tp β0 Vw,r ψr Q rpm dm

DA

36.32 7.202 9.601 38.76 22.54 27.91 76.40 219.89 2.538
14.18 7.036 7.527 35.86 19.27 27.09 31.70 elim. 2.272
13.92 7.021 7.237 elim. 18.90 2.700 31.50 elim. 2.235
3.240 6.997 6.793 elim. 9.796 2.677 elim. elim. 1.783

DB

355.5 6.111 6.678 30.59 18.38 20.99 111.1 761.1 7.963
57.93 5.485 6.148 29.33 11.18 20.73 88.74 elim. 4.342
6.162 5.383 5.510 28.52 6.642 20.54 elim. elim. 2.146
5.942 5.363 5.387 elim. 6.597 2.491 elim. elim. 2.126

DC

355.5 6.111 6.678 30.59 18.38 20.99 111.1 761.1 7.963
57.93 5.485 6.148 29.33 11.18 20.73 88.74 elim. 4.342
6.162 5.383 5.510 28.52 6.642 20.54 elim. elim. 2.146
5.942 5.363 5.387 elim. 6.597 2.491 elim. elim. 2.126

as in Mittendorf et al. (2022a) will be applied, i.e. collinear features are eliminated in an initial471

iteration and the Mean Decrease Accuracy (MDA) method, as proposed by Breiman (2001), is used472

afterwards.473

The Variance Inflation Factor (VIF) is a measure for an increase in variance of parameter474

estimates in linear regression if an additional variable i is added to the model. Thus, the VIF acts475

as an indicator of collinearity, which refers to highly correlated predictors, i.e. those that do not476

add any unique or independent information. The VIF is defined in Eq. (12).477

V IF =
1

1−R2
i

with R2 = 1− Σ(yi − ŷi)
2

Σ(yi − ȳi)2
(12)

In view of Eq. (12), it is stated that R2 is the coefficient of determination and an overbar478

denotes the mean. In essence, the feature with the highest VIF is eliminated in every iteration479

and the procedure is repeated until all features have a V IF < 10. The results from this iterative480

procedure for the initial feature vector xi = {U,Hs, Tp, β0, Vw,r, ψr, Q, rpm, dm} are presented in481

Tab. 3 for all three datasets. It is noted that data from the sudden concept drift scenario is taken482

for kS = 30µm and that engine power PB is not included, as it is the target variable. As a side483

note, the statsmodels4 library is used for the calculation of the VIF.484

Initially, it stands out that both rpm and Q are eliminated in all three datasets, similarly to485

4https://www.statsmodels.org/
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Mittendorf et al. (2022c). Physically, both quantities are related (through Eq. (4)) to the shaft486

power, which is highly dependent on forward speed U . Hence, rpm and Q exhibit no additional487

information under the considered conditions. Additionally, the assumption of only wind waves488

and the simplified relationship between Hs and Vw has an effect on collinearity, which would not489

occur on actual in-service data. As can be seen in Tab. 3, the relative wave direction is considered490

collinear in all cases, since it can be easily determined from the relative wind speed and direction.491

It is noted that the absolute wind speed is given implicitly through Hs. Moreover, it is appreciated492

that both DB and DC show the exact same VIF values, which indicates that the procedure is493

unaffected by introducing stochastic noise. Eventually, rpm, Q and β0 are eliminated from all494

datasets after the VIF procedure and an updated feature vector is used during the MDA study.495

This model-agnostic algorithm is iterative and quantifies the importance of one particular feature496

on model accuracy by disregarding it during training. For the sake of clarity it is noted that the497

engine power PB is the target variable and that the sklearn5 function is used in the present work.498

Figure 8: Sensitivity study for permutation feature importance based on the datasets for sudden concept drift and
kS = 30µm, i.e. clean conditions.

The immediate observation from Fig. 8 is that advance speed U is by far the most important499

predictor of shaft power, which is due to the proportionality PB ∝ U3. Moreover, it can be seen500

that both U and dm increase slightly in importance when comparing DB and DC to DA. This may501

be attributed to the change in likelihood of severe sea states, since both Hs and especially Vw,r502

5https://scikit-learn.org/
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lose importance in case of DB and DC . Lastly, peak period Tp and relative wind direction Vw,r503

exhibit negligible feature importance and are therefore eliminated in this iteration. As possible504

explanations, Tp is related to Hs through the wave steepness constraint and ψr can be inferred,505

since all vector components for calculating the relative wind speed (and direction) are available, as506

noted above. As a side note, the transformations used in Mittendorf et al. (2022e) have been tested,507

i.e. using sine/cosine in case of directions and the logarithm for Hs, but no increase in accuracy or508

feature importance could be seen (considering all three datasets). The final shape of the feature509

vector and the target variable are visible in Eq. (13).510

xi = {U,Hs, Vw,r, Tm} with yi = PB (13)

Essentially, the composition of feature vector xi is greatly influenced by the simplified simulation511

procedure and therefore not applicable under real conditions. However, the proposed framework as512

such is universally applicable and it is emphasized that collinearity has to be considered during513

feature engineering in the field of ML-based ship performance monitoring.514

4.2. Comparison of different incremental learning strategies515

In this subsection, two concept drift scenarios will be investigated. In both cases, hyperparameter516

studies, model assessment and the model sensitivity to different uncertainty categories are addressed.517

4.2.1. Sudden concept drift518

In most Bayesian (or iterative) approaches, finding a starting point (or value) is a delicate519

matter. In the present context, an initial model is trained in a so-called warm-up period without520

considering any of the presented incremental learning procedures. In the succeeding training periods,521

the model is trained adaptively. In the warm-up period, the initial model is trained for 30 epochs,522

whereas it is adapted in 10 epochs in the following instances. Similarly, 5600 samples are used in523

the initial training period and 1750 in the two adaptive training periods.524

Both L2 and EWC methods require the optimization of a hyperparater, cf. Sec. 3.1. Hence, a525

sensitivity study of λ and α for L2 and EWC, respectively, is presented in Fig. 9. For this purpose,526

the results of the hyperparameters in the range of {0.1, 1, 2, 5, 10, 15} are presented for R̃MSE in527

Fig. 9.528
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Figure 9: Hyperparameter study for the L2 and EWC method using DA (sudden concept drift) and the R̃MSE of
the validation sets.

From Fig. 9, it can be seen that EWC shows a more robust performance compared to the L2529

method. In addition, moderate values of λ and α lead to higher out of sample accuracy. The same530

study was conducted for the remaining two datasets for sudden concept drift and it turns out that531

the hyperparameters vary in their optimal values. This in turn, indicates that hyperparameter532

studies are needed in any case and one can not rely on ”best practice” or default values, which533

complicates the use of the associated methods in a practical context.534

The corresponding loss curves for the models with optimized hyperparameters are visible in535

Fig. 10a for DA, where the R̃MSE of the validation set is depicted for the number of epochs. In536

the warm-up period, only the results for the Default method are shown, since all four models are537

based on one initial model. In the two succeeding adaptive training instances, it stands out that the538

Default method shows a volatile behavior in relation to the other methods. In addition, the Freezing539

and EWC methods yield relatively stable performance with lower R̃MSE values. The performance540

of the Default method on the validation set of the warm-up period (shown by +) is supposed to541

indicate the degree of concept drift, i.e. the difference in accuracy, and thereby the necessity for542

incremental learning. It is noted that Fig. 10a has a resemblance to a study in Kirkpatrick et al.543

(2017), but the discrepancy in performance of the individual methods was larger in their case, which544

could be due to the fact that the individual tasks are sequential and related in this context.545

Overall, relatively similar R̃MSE values have been obtained for all four methods, which are546
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(a) Training loss for DA including samples indicating the error
of the instantaneous model on the validation set of the warm-up
period (+).

(b) Training loss for DC including systematic biases resembling
shifts in operational profile with samples showing the error of
the instantaneous model on the validation set of the warm-up
period (+).

Figure 10: Loss curves for all three instances under sudden concept drift. It is noted that the ordinates are in
logarithmic scale.

also given for all three datasets in Tab. 4. Due to random sampling, the synthetic dataset shows547

large variation in conditions, i.e. the search space of parameters is well explored. This is in contrast548

to reality, where the ship may experience changes in its operational profile. Hence, in Fig. 10b549

systematic biases or distributional shifts are introduced following Tsompopoulou et al. (2022). In550

order to achieve greater a resemblance to real data, dataset DC is used (with aleatoric and epistemic551

uncertainty) and in the second training period all ballast conditions are filtered out, whereas speeds552

U > 10.5kts are disregarded in the third interval. In fact, it turns out that the Default method, i.e.553

the most adaptive method, shows large scatter in accuracy and even convergence issues, which may554

indicate the occurrence of catastrophic interference. For consistency reasons, the same number of555

epochs were used for all methods, but in future studies it will be important to define a termination556

criterion for ensuring sufficient model convergence. Moreover, the difference in accuracy of the557

remaining three methods turns out to be larger in comparison to the previous study. Similarly to558

Kirkpatrick et al. (2017), the L2 method shows minor scatter in its loss, and the Freezing as well as559

EWC methods yield stable and higher performance in case of the latter training instances. Overall,560

it is underscored that incremental learning methods are required in case of real data due to the561

possible change in operational conditions.562

The effects of epistemic and aleatoric uncertainty on model performance, assessed in terms563
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Table 4: R̃MSE of predictions using the validation sets in case of sudden concept drift.

Default Freezing L2 EWC

DA 0.0549 0.0520 0.0544 0.0525
DB 0.0271 0.0242 0.0217 0.0231
DC 0.0295 0.0252 0.0249 0.0260

of R̃MSE, are shown in Tab. 4 and Fig. 11. Initially, it is emphasized that the models do not564

perform better on DB than on DA, as could be inferred by the lower R̃MSE values, but DA shows565

a higher likelihood of severe states. This in turn leads to a higher (physical) variance, to which566

R̃MSE is very sensitive in case of modeling discrepancies.567

Figure 11: Performance on validation set of all three datasets with sudden concept drift using R̃MSE as a metric.

In the case of DA, it stands out that all methods perform equally well, but the Freezing method568

shows the lowest R̃MSE value. In view of DB, the Default method shows a lower accuracy than569

the other three methods, which can be attributed to the introduction of epistemic uncertainty, i.e.570

the skewed parameter distributions and the disturbance due to the unobserved change in ϑsea. It571

shows that the L2 method performs best, but the injection of white noise, i.e. aleatoric uncertainty,572

into the datasets in case of DC , leads to a relative drop in accuracy of the L2 method. Ultimately, it573

is indicated that all methods, but the L2 method in particular, are sensitive to aleatoric uncertainty,574

which has also been observed in Fig. 10b. Finally, both Freezing and EWC showed stable, but575

moderate performance on all three considered datasets.576
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4.2.2. Incremental concept drift577

In preliminary studies, it turned out that the considered models require more epochs for578

successful convergence on the transient dataset. Hence, the number of epochs of the warm-up period579

was increased to 40 and in the following instances, re-training was carried out for 20 epochs. The580

dataset is binned into 10 windows without any overlap, in contrast to Mittendorf et al. (2022c), as it581

introduced a lagging behavior of the performance indicator. This leads then to approximately 1500582

samples per window and the same sample size as before (5600) is used in the warm-up period, where583

the data is taken from the sudden concept drift scenario (with kS = 30µm). In a real application,584

binning of the data as well as the introduction of overlap is dependent on data quality as well as585

availability and should be carefully considered.586

Similarly to the previous subsection, the hyperparameter study is carried out using DA. In587

contrast to Fig. 9, a relatively clear trend becomes apparent in Fig. 12, i.e. the higher the588

hyperparameter, i.e. the weight on the prior, the higher the model performance of the L2 and EWC589

methods. In fact, exclusively values larger than 5 have been obtained for the other two datasets590

(DB and DC). In Fig. 12, it is also appreciated that the accuracy of L2 and EWC are consistently591

lower than the Default (and Freezing), which might indicate that the former two methods are more592

affected by unsteadiness.593

Figure 12: Hyperparameter study for the L2 and EWC method using DA (incremental concept drift) and R̃MSE of
the validation sets.

In Fig. 13, the estimated ∆P̃B indicator is depicted for the number of data instances, which594
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(a) Estimation of the indicator for DA with warm-up period
using the corresponding dataset from the sudden concept drift
scenario.

(b) Estimation of the indicator ∆P̃B for DC using the first bin
of the data as warm-up period.

Figure 13: Development of the ship performance proxy according to the individual methods.

is another measure for the development in time. The simulated ground truth is indicated in grey595

(transparent black) and a second order polynomial has been fitted to the relative power increase of596

DA. Once again, the scatter of the performance decay due to the environmental and operational597

conditions stands out, cf. Fig. 7. As a side note it is seen in Fig. 13 that a linear increase in598

roughness leads to a non-linear increase in added power, which is also confirmed by a study focused599

on CO2 emissions presented in GloFouling (2022).600

In view of Fig. 13a, it can be said that generally, all four models are able to identify an601

incremental concept drift, but the degree of robustness, i.e. the variance of the performance602

indicator varies significantly. Similarly to Fig. 11, it turns out that the estimate obtained from the603

L2 method is highly affected by variance. The same holds for the Default method, i.e. the least604

stable one. The Freezing and EWC methods emulate the performance decay sufficiently, but show605

minor outliers. In Fig. 13b, a more realistic case study is shown, where no initial model from a606

separate and steady warm-up period is available, i.e. the first bin of the transient dataset is taken as607

a warm-up period. In addition, DC , i.e. the dataset including both uncertainty categories, is used608

and ∆P̃B shows a lower variance, which is due to the parameter distributions, which are skewed609

towards lower sea states. Overall, the robustness of the provided performance indicators increased610

in contrast to Fig. 13a due to the lower inherent (physical) variance. In turn, this underlines the611

possible benefit of filtering instances in higher sea states, as demanded by ISO 19030. Moreover,612
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Table 5: R̃MSE of predictions using the validation sets in case of incremental concept drift.

Default Freezing L2 EWC

DA 0.0540 0.0514 0.0643 0.0590
DB 0.0248 0.0231 0.0404 0.0337
DC 0.0258 0.0230 0.0375 0.0318

similar observations as in the case of the previous case study can be made, i.e. both EWC and613

Freezing yield the most robust estimates of the relative power increase. Still minor variance is614

visible and underlines that the first order approximation by linear regression in Mittendorf et al.615

(2022c) appears as reasonable, even though the actual performance drop has a non-linear character.616

Moreover, it can be seen that all ∆P̃B estimates are slightly biased (non-conservative), in comparison617

to Fig. 13a. This is due to training on the first bin of transient data, which introduces a consistent618

offset. Lastly, it is unexpected that the models perform relatively well without a warm-up period619

on steady data and it will be important to confirm this on real data.620

Similarly to Fig. 13, the Freezing method shows superior accuracy on the validation sets in621

Tab.5. However, as seen in Fig. 12, both L2 and EWC exhibit a reduced performance in direct622

comparison to the Default method. As discussed, it might indicate that both methods are affected623

by the transient behavior of the data. As a side note, when taking the MCR (Maximum Continuous624

Rating) of the potential main engine as a reference, i.e. 30,000kW, then the original RMSE values625

on the validation sets arrange between 1-2% considering all methods. In Fig. 14, the values of Tab.626

5 are shown and it is noted that the larger R̃MSE values in case of DA are attributed to the higher627

variance, which results from the relatively higher likelihood of harsh sea states.628
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Figure 14: Performance on validation sets of all three datasets with incremental concept drift using R̃MSE as a
metric.

From Fig. 14, it stands out that both L2 and EWC perform relatively worse on transient629

data (quasi-IID), while both Default and Freezing methods show consistent out-of-sample accuracy.630

Moreover, it is striking that the performance of L2 and EWC decreases relatively to the other two631

methods in case of DB (epistemic uncertainty), but increases again for DC (compared to Default632

and Freezing), cf. Tab. 5. As shown by Bishop (1995), injecting noise into training data may633

act as additional regularization leading to increased model performance. This in turn indicates634

that the combination of conventional regularization methods, e.g. Dropout, and regularization635

aimed at incremental learning may enhance model accuracy in case of incremental concept drift.636

In order to study in this more rigorously, it will be an interesting aspect to use additional more637

sophisticated metrics dedicated for quantifying model uncertainty with higher accuracy, e.g. by638

using F1 retention curves, as shown in Tsompopoulou et al. (2022).639

4.3. General Remarks and discussion640

Following the principle of Occam’s razor: The simplest incremental learning model provides641

the most robust and accurate performance. In fact, layer freezing exhibits great versatility and642

stable estimates of the biofouling proxy variable in both concept drift scenarios. In addition, the643

particular method does not require a regularized loss function or any additional computational644

effort. In Mittendorf et al. (2022c), it has even been observed that layer freezing performs well on645
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in-service data. However, it will be part of future studies to evaluate and improve the performance646

of the L2 and EWC methods. The L2 norm, used in both regularization methods (i.e. L2 and647

EWC), tends to be volatile when applied to data with significant variance. Hence, in theory, it648

could be interesting to use the L1 norm since it is generally more robust. However, it can lead to649

parameter sparsity,i.e. forcing model parameters (or in this case, the parameter change) toward zero.650

In other words, L1 regularization might make the model overly stable and thus unable to adapt to651

newly acquired data. As indicated in the case of incremental concept drift, additional regularization652

techniques may be beneficial for the more advanced methods. For instance, it has been shown that653

Dropout, i.e. omitting several neurons at random during training, acts satisfactorily as a mitigation654

technique against catastrophic interference and thus for incremental learning (Mirzadeh et al., 2020).655

From a theoretical perspective, the application of progressive neural networks seems advantageous656

since adding neurons and lateral connections for each additional task without altering the original657

parameters shows overall good performance (Rusu et al., 2016). Nevertheless, this approach requires658

increased computational effort and becomes increasingly complex due to the additive architecture.659

In accordance with most other studies of ML-based performance monitoring, data quality is660

seen as the most influential factor for accurate ML-based performance monitoring. However, in661

contrast to other contributions, it is not the degree of variance but the IID condition that appears662

to be most critical, which is a finding from the incremental concept drift study. In fact, the degree663

of stochastic noise has an overall reduced effect on model accuracy and even turned out to be664

beneficial in the case of transient data. However, the performance indicator showed sensitivity665

to physical variance caused by higher sea states. It is thought that increasing training epochs666

and model complexity might not lead to more robust estimates, but filtering for harsh weather667

conditions, as proposed in ISO 19030, appears to be more promising. Another common data (or668

sensor) quality issue is sensor drift, which complicates differentiating between actual biofouling and669

the effect of a degrading sensor. Especially the Doppler velocity log for speed through water and670

the torsionmeter for measuring shaft power are known to be very susceptible to sensor drift, as671

shown by Ikonomakis et al. (2021) and Aldous et al. (2015). Sensor drift affects not only machine672

learning-based performance monitoring but the statistical adage ’Garbage in, garbage out’ holds for673

ship in-service analyses in general.674

In the present work, an aggregated proxy variable for both hull and propeller performance675
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is provided. However, their decomposition is desirable from a ship operator’s point of view but676

notoriously difficult to realize. Park et al. (2018) achieve this decomposition via a parallel ML677

approach predicting both speed and power simultaneously. Interestingly, the proposed approach678

not only facilitates decomposition but also increases overall transparency. Gupta et al. (2022) apply679

Monte-Carlo dropout as a regularization method in an ML-based ship performance monitoring680

application. Crucially, Monte-Carlo dropout is seen as a deep Gaussian process regression allowing681

for an uncertainty-aware estimate, i.e. accompanied by prediction intervals. When facing reduced682

data quality and distributional shifts, an assessment of model uncertainty is indispensable in683

a practical scenario. Hence, Tsompopoulou et al. (2022) applied probabilistic deep learning for684

quantifying uncertainty at prediction time. In fact, all three mentioned methods show great potential685

for extending the presented methodology but may also lead to an increased computational effort.686

5. Summary and future work687

With market conditions dominated by increasingly stringent regulations combined with fluctu-688

ating fuel prices and freight rates, vessel operators are forced to improve their ships’ fuel efficiency689

to reduce the associated cost and comply with stipulated legislation. In the present paper, it690

has been shown that digital representations of ships have to be continuously updated to avoid a691

drop in model accuracy and to capture the effect of biofouling. In the present context, synthetic692

data for a standard tanker (KVLCC2) was simulated for various operational and environmental693

conditions. Moreover, several methods for incremental learning were implemented and compared694

concerning accuracy as well as robustness. The investigated methods were applied in both sudden695

and incremental concept drift scenarios. Additionally, their sensitivity to aleatoric and epistemic696

uncertainty within the training data has been examined. Lastly, it appears that the layer freezing697

methodology, i.e. fixing the upper layers of a pre-trained model throughout re-training, is the most698

practical method. However, it will be essential to confirm this using actual in-service data from699

ships in future studies. Possible modifications of the original incremental learning methods and the700

combination of several regularization techniques will also be part of extended work.701

Ultimately, the presented adaptive methodology can lead to greater predictability of marine702

growth and, thus, allows for proactive hull maintenance. Nevertheless, digital representations of703

ships have not only adaptability as a critical characteristic but also multi-modality. Hence, the704
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inclusion of additional (high-frequency) sensor data, e.g. related to the motion or structural response705

of the ship in waves, as seen in Mittendorf et al. (2022e), may lead to an increase in accuracy as706

well as applicability in other domains, such as the assessment of a vessel’s structural fatigue. In fact,707

performance monitoring is just one of several application cases of digital representations of ships.708

It becomes clear that associated models for route or trim optimization have to be continuously709

updated via incremental learning, which is not only due to the accumulation of marine growth710

but also the possible change in the operational profile. The use of hybrid methods shows an711

enormous potential for further increasing model robustness. In the presented literature study,712

physical modeling (first principles) and machine learning were treated separately, but so-called713

greybox approaches combine both domains and are usually characterized by greater transparency, as714

shown by Haranen et al. (2016). Ultimately, the presented ML-based methodology for determining715

a change in vessel performance may also serve to determine fuel savings from the application of, e.g.716

wind-assisted propulsion or other energy-saving devices. In fact, Camilleri et al. (2022) compare717

an ML-based approach to ISO 19030 for the assessment of the achieved savings related to the718

implementation of an air lubrication device. It becomes clear that performance indicators are719

generally speed, draft, and seaway dependent. Therefore, it is crucial for transparency to evaluate720

the possible savings under consistent conditions, as shown in the present work.721
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(a) Open water diagram of the KVLCC2 propeller in model
scale with the advance ratio J , taken from SIMMAN (2014)

(b) Wind resistance coefficients CX in laden and ballast condi-
tions for the wind direction, taken from ISO (2015).

Figure 15: Additional reference data for the KVLCC2 from the public domain.

Table 6: R̃MSE of predictions using the training dataset in case of sudden concept drift.

Default Freezing L2 EWC

DA 0.0517 0.0494 0.0515 0.0514
DB 0.0263 0.0225 0.0225 0.0227
DC 0.0275 0.0239 0.0270 0.0273

Appendices873

A1 Additional reference data for the KVLCC2874

The open water propeller curves for the KVLCC2 are taken from SIMMAN (2014) and presented875

in Fig. 15a. In addition, the wind resistance coefficients are taken from ISO 15016 ISO (2015) and876

the non-dimensional data for a 280,000 tdw tanker (conventional bow) is depicted in Fig. 15b877

A2 Performance on training data878

The accuracy on the training sets for sudden and incremental concept drift are displayed in879

Tabs. 6 and 7, respectively.880

40



Table 7: R̃MSE of predictions using the training dataset in case of incremental concept drift.

Default Freezing L2 EWC

DA 0.0454 0.0454 0.0617 0.0572
DB 0.0228 0.0217 0.0378 0.0384
DC 0.0226 0.0215 0.0365 0.0354
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Chapter 7

Conclusion

Shipping is the backbone of the global economy and among the most important industries
in Denmark. In particular, during the last couple of years and the severe disruptions in
the worldwide supply chains, it became painfully evident how quintessential accessibility
and affordability of maritime transport are for economic growth and globalization. Hence,
decarbonizing shipping will be a balancing act and demands a wide range of innovative but
cost-effective approaches. The optimization of ship operations is undoubtedly among these
measures since it allows for sizable emission and cost savings with a low barrier to entry.
Digitalization is and will be an accelerating driving factor for enhancing fleet operations, as
demonstrated in the present thesis. Lastly, it is concluded that machine learning techniques
combined with physical insights allow for greater predictability of the behavior of ocean-
going ships, increasing safety and energy efficiency. Hence, it is firmly believed that the
present thesis contributed to some degree to the Sustainability Development Goals (SDG)
postulated by the United Nations. The work of the present thesis contributed in particular
to (8) Decent work and economic growth, (9) Industry, Innovation and Infrastructure, (12)
Responsible Consumption and Production, (13) Climate action, and (14) Life below water.

7.1 Summary
This thesis is founded on statistical analysis – including machine learning – and ship hy-
drodynamics in waves. The classical problem of added resistance on ships in seafaring
conditions was addressed and several different aspects were elucidated – following Eq. 2.6
as the central equation. For this purpose, the present work in divided into four parts:

1. Initially, the practical estimation of the added resistance transfer function in arbitrary
wave heading was examined in two separate studies. On the one hand, artificial neural
networks were compared to tree-based ensemble methods using numerical results to
predict RAW in regular waves. In doing so, the significance of data processing and the
optimization of hyperparameters stood out. Moreover, tree-based methods showed in-
ferior characteristics in terms of generalization in comparison to neural networks. On
the other hand, concepts from machine learning theory were applied for calibrating
and extending an established semi-empirical formula for estimating the quadratic RAW

165



166 7.1. Summary

transfer function. The methodology is considered a hybrid approach and led to in-
creased transparency due to implementing prediction intervals via quantile regression.
Considering both studies, it is concluded that the added wave resistance remains chal-
lenging – especially in short waves and beam-to-following waves demanding additional
experimental and numerical investigations.

2. Deep neural networks were trained for estimating the integral sea state parameters
{Hs, Tp, β0} based on in-situ wave and ship response data obtained on a container ship
operating in the Northern Atlantic. Two main findings were the superior properties of
employing frequency domain features as well as the application of multi-task learning
for an additional increase in accuracy and efficiency. Overall, deep learning turned
out to be accurate and versatile but computationally costly and greedy in terms of
reliable training data, which was herein provided by an X-band wave radar.

3. The findings from the previous two parts were utilized for calculating the mean added
resistance R̄AW in a seaway using in-service data from a container ship fleet. The-
oretical spectral estimates were compared to in-direct predictions derived from the
measured shaft power and empirical resistance decomposition. The latter procedure
is subject to large uncertainty and hampered by a scarcity of available reference data,
e.g. sea trial curves. Altogether, it was confirmed that the added resistance of slender
vessels – including container ships – is complex due to profound non-linear effects.
Moreover, the use of weather routing by the respective shipping company reduced the
likelihood of harsh weather conditions and thereby higher R̄AW values drastically.

4. The final part was devoted to machine learning-based monitoring of the hydrodynamic
performance of ships and resembles the industrial application case. In this respect,
an adaptive training methodology for a neural network predicting shaft power was
presented, and a proxy variable for biofouling accumulation was derived implicitly.
The developed procedure builds on incremental learning and has been applied in two
separate contributions. The use of simulation data in [J5] allowed for a more rigorous
assessment of model behavior and uncertainty influences. Generally, the procedure
yields satisfactory results and shows good potential for further extensions, e.g. assess-
ing the added power in a seaway.

In his landmark paper ”The two cultures”, Breiman [16] compares data and algorithmic
modeling. The former corresponds to traditional statistical methods, such as linear regres-
sion, and the latter refers to machine learning. Their benefits and shortcomings are outlined,
and Breiman [16] supposes that science progresses from simple to more complex models with
an increased gathering of knowledge and data. Another aspect is that model complexity
and prediction accuracy are (to a certain extent) correlated; however, this comes at the
cost of transparency, as transparency and model complexity are inversely proportional. It
is believed that this led to the ”black box” notion, which is thought (by the author) to
be a rather unscientific expression. In fact, it has been shown throughout this thesis via,
e.g. sensitivity studies, how predictive and inferential1 transparency can be improved. Even

1Prediction refers to providing an estimate for one sample and inference means deriving basic knowledge
about the data-generating process using the entire dataset.
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though it is conceded that such efforts are generally more tedious and can be subject to un-
certainties. Domain knowledge in both the field of application (ship hydrodynamics herein)
and statistical theory are of utmost importance for producing reliable and trustworthy re-
sults by machine learning. In general, machine learning is viewed as an interdisciplinary
field combining mathematics, computer science, and domain knowledge, where the latter is
seen as the major aspect.

Interestingly, Breiman [16] treats data and algorithmic modeling as separate when in
fact, both obey very similar assumptions and mathematics. For instance, in [J1], it was
shown that the feature engineering aspects originating from linear regression turned out to
be beneficial when using machine learning, such as using an exponential data transformation
or eliminating collinear features. In [J5], it has been shown that the assumption of steady,
i.e. independent and identically distributed, data is still relevant when using advanced deep
learning concepts. Another common ground is the sensitivity to the availability and qual-
ity of data. Following the principles of empirical risk minimization, the data has to be
considered a representation of the underlying data-generating process and therefore data-
driven methods in general inherit possible insufficiencies of the training data. This, in turn,
motivates approaches that are not solely data-driven but complemented by physics-guided
mechanisms. Overall, machine learning is a rapidly evolving field. In the realm of engineer-
ing and ship hydrodynamics specifically, the application of physics-informed modeling and
the use of explainable methods show great potential for mitigating issues caused by a lack
of or corrupted data. Ultimately, the author is convinced that machine learning combined
with physical procedures will enhance not only ship operations but also ship design.

7.2 Present Contributions
As previously mentioned, Breiman [16] states that science evolves from simple to more
complex theories by gathering more knowledge (and data). Hence, one can draw paral-
lels between numerical fluid dynamics and machine learning. In essence, the emergence of
machine learning and CFD methods in the last decades are comparable under particular as-
sumptions. It is believed that machine and deep learning concepts have to undergo a similar
maturation process to find adoption and trust in research and, eventually, in the industry. It
is believed that benchmark studies, such as the SHOPERA benchmark study (cf. Shigunov
et al. [112]) and the development of best practice guidelines regarding discretization and
used terminology led to increased acceptance. Additionally, the openness regarding mesh
resolution, such as y+ or grid dependency studies, made CFD more trustworthy. In the
end, both open-sourcing, e.g. OpenFOAM, and the experience in academia and practice
turned CFD (and RANS) into a tool suitable for industrial use. As a matter of fact, an
initial goal of this Ph.D. project was to contribute to the maturation process of machine
learning techniques in the academic and industrial maritime field. Therefore, all publica-
tions and most of the developed methods/data are publicly available. In the following, the
core novelties of the present thesis are listed with an emphasis on algorithmic transparency
and reproducibility.

– In [J1], the rigorous comparison of artificial neural networks to non-parametric en-
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semble methods is considered novel for the prediction of the RAW transfer function.
In addition, a comprehensive feature engineering and hyperparameter optimization
methodology was applied and presented.

– The main novelty in [J2] is a generic procedure for the calibration and uncertainty
quantification of existing empirical methods using a meta-heuristic optimizer and a
sufficient set of experimental (or numerical) results. In addition, the derived adapted
semi-empirical formula is publicly available2 and was implemented in an updated ver-
sion of the DTU in-house ship simulation workbench3.

– Both the use of multi-task learning and the comparison of frequency and time domain
features for machine learning-based sea state identification are original contributions
in [J3]. In addition, applying the wave buoy analogy using neural networks to in-situ
data is considered rare in the present literature.

– The sheer scale of the study shown in [J4] can be essentially seen as a novelty. Apart
from that, the detailed modeling of the wave environment as well as the comparison
of spectral and indirect estimation of the mean added resistance in irregular waves,
are other important aspects of this journal article.

– In both [C2] and [J5], an adaptive incremental learning strategy is proposed, and the
degree of biofouling is determined implicitly. The concept is, in fact, adopted from
state space modeling but novel in the field of machine learning. Additionally, an
alternative method for deriving the added power in a seaway using a similar approach
is mentioned in the present thesis. The synthetic performance dataset for the case
vessel is publicly available for benchmarking, and reproducibility, Mittendorf et al.
[88].

Gibney [37] warns that machine learning-based research is on the verge of a ”repro-
ducibility crisis”. Contributing factors are bad practices during data preprocessing or the
lacking ability to verify code snippets during peer review, according to Gibney [37]. In fact,
it is believed by the author that all of these aspects are just symptoms of a lack of ma-
turity of machine learning in applied research areas, such as naval architecture. By many,
the emergence (and increased adoption) of machine and deep learning is credited to the
development of convolutional and recurrent layers allowing for multidimensional inputs and
improved scalability. However, the presumably greatest breakthrough was that major tech
companies open-sourced their machine learning frameworks, which sparked a vast range of
applications in multiple domains. For instance, Google and Meta published TensorFlow
in 2015 and PyTorch in 2016, respectively. However, this ”gift” can be seen as a double-
edged sword since the barrier to entry has been lowered substantially, but the application
of machine learning demands a thorough understanding of the mathematical and statistical
fundamentals, which has been partially omitted in earlier papers leading to reproducibility
and subsequently credibility issues. Still, it is believed that open-sourcing of algorithms

2https://gitlab.gbar.dtu.dk/mamit/RAW_Formula
3https://www.ssw.mek.dtu.dk/

https://gitlab.gbar.dtu.dk/mamit/RAW_Formula
https://www.ssw.mek.dtu.dk/
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and knowledge – in the form of conference or journal articles – will eventually close these
knowledge and experience gaps.

7.3 Outlook and Future Work
Initially, it is hypothesized that machine learning can be seen just as another tool, which is
still in its infant stage – at least in the field of ship hydrodynamics. The previous chapters
of this thesis outlined multiple shortcomings of the presented work and, in parallel, several
aspects for extending work. In the present section, it is the aim to address how data-
and physics-driven models can be further developed and merged into hybrid approaches.
It is believed that machine learning methods used for digital representations of ships may
benefit significantly from being interwoven with physical models for enhanced transparency
and accuracy. Even in terms of sensitivity to data quality, a physical foundation might
increase overall robustness. For example, in the case of [J3], an input from a model-based
method could have led to improved results or, at least, to the observation that the wave radar
was not calibrated correctly. In this respect, applying physics-informed methods, as shown
by Karniadakis et al. [62], will presumably play a major role in the maturation process
of machine learning within the realm of naval architecture. Another aspect for increasing
acceptance and trust is the provision of uncertainty estimates and transparent metrics for
a rigorous (and straightforward) evaluation of the presented method. The use of quantile
regression in [J2] is believed to be a first step in this direction. Applying probabilistic
machine learning models is another aspect of future work, but the increased computational
cost may be a limiting factor in practical application. The field of explainable artificial
intelligence tries to enhance overall interpretability by providing importance estimates of
each feature for the current prediction.

According to LeCun et al. [76], progress in the field of deep unsupervised learning has
been overshadowed by the great success (and simplicity) of supervised learning. In fact,
humans mostly learn in an unsupervised manner, and in the present thesis, unsupervised
methods have not been investigated; hence, it will be a promising part of future work to
examine the suitability of un- or semi-supervised methodologies both in the context of sea
state monitoring and added resistance. This is mainly because the ground truth is, in
both cases, complex to measure or extract and most cases unavailable. However, applying
unsupervised methods is not straightforward, and the degree of information that can be
extracted may be limited (and uncertain). Meta-learning is another learning paradigm,
which is receiving increasing attention, and aims at building a model capable of performing
multiple tasks – comparable to [J3] – considering only minimal labeled training examples.
In fact, the GPT3 model builds on a large transformer architecture trained via few-shot
learning, which is a sub-field of meta-learning, Brown et al. [18]. Ultimately, these novel
learning frameworks will allow not only for data efficiency but also increased generalization.
In particular, the former is of great interest in the field of ship in-service analyses as reliable
reference data is typically scarce.

For so-called digital twins of vessels (and in general), it becomes clear that not only
adaptability, as shown in [J5], but also multi-modality regarding the output (as in [J3]) and
data sources (or input branches) bears sizable potential. For this reason, it could be inter-
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esting to merge performance data and ship response data into one monolithic architecture,
which not only estimates shaft power but also identifies the sea state. In essence, both tasks
are physically interrelated and hence lead in combination to greater accuracy. In parallel
to the hydrodynamic performance of the ship, it is a crucial aspect of ship safety also to
cover structural health monitoring and the accumulation of structural fatigue – especially
in the case of container vessels due to their large deck openings. Karvelis et al. [63] show
an initial study in this respect, feeding acoustic sensor data into deep learning models for
fatigue assessment. Moreover, the use of higher-order spectral analysis for the assessment of
added wave resistance could be facilitated by using deep learning techniques. For instance,
Hasselmann [43] examines non-linear aspects of added resistance in irregular waves using
bi-spectra, which preserve the phase information, but are not commonly used in practice.
Hence, this rather immature research niche could be addressed using convolutional neural
networks for extracting more and human-readable information. Finally, it is concluded that
ship hydrodynamics and machine learning are complementary and share that they build
upon a scientific foundation, are driven by experience in practice, and results occasionally
bear a resemblance to a form of art.
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