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Dependence of polaron migration barriers on the fraction of Fock exchange in hybrid
functionals: A systematic study of Vk centers in alkali halides
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Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

(Received 18 April 2023; revised 22 June 2023; accepted 23 June 2023; published 13 July 2023)

We conduct an exhaustive investigation on the dependence of polaron migrations barriers on the fraction of
Fock exchange, α, in hybrid functionals. We analyze different the dependence of different physical quantities
on α, such as the band gap of the host material, the fundamental frequency of the polarons, and the polaron
localization at the ground and transitions states. We demonstrate that for those systems in which polarons are
more (less) localized at their ground state than at their transition state, the migration barriers increase (decrease)
on increasing (decreasing) α. By choosing the Vk centers in alkali halides, a paradigmatic example of hole
polarons, we show that the α values that reproduce the experimental band gap of the host materials give rise
to migration barriers reasonably close to the experimental ones. Surprisingly, we observe that Vk centers’
localization behaves differently depending on halide ions. For alkali fluorides, polarons are more localized at
the transition state, while for larger halides (Cl, Br, and I) the localization is larger at the ground state.

DOI: 10.1103/PhysRevB.108.045120

I. INTRODUCTION

The mobility of small polarons has been widely studied
in the past decades as it plays a crucial role in explaining
the electronic transport properties of insulating materials used
in various technological applications. Examples of small po-
larons can be found in materials employed as multiferroics
[1], organic light-emitting diodes [2], solid oxide fuel cells
[3], and battery cathodes [4–7]. In the case of battery cathode
materials, ab initio calculations based on density functional
theory (DFT) have been carried out to determine small po-
laron diffusivities, which can serve to estimate the critical
thickness of materials for effectively transporting electrons
[4,6,8].

Very recently Giustino et al. have developed an ele-
gant first-principles method resembling the Bethe-Salpeter
equation formalism employed to study excitons in solids
[9–11]. Along the same lines, Bernardi et al. developed a
framework based on canonical transformations for a fast
evaluation of polaron formation energies [12]. The beauty
of these approaches lies in their ability to describe po-
laron localization without using supercells. However, these
formalisms cannot yet be utilized to study the mobility
of polarons. The conventional technique to study polarons
through DFT involves using a supercell in which one elec-
tron is removed (added) and introducing a compensating
homogeneous negative (positive) background charge. The
main challenge of this DFT approach is obtaining a solu-
tion in which the polaron stays localized in a small region
in the supercell rather than completely delocalizing over
the entire supercell. The latter tends to occur when DFT
exchange-correlation (xc) functionals with a significant self-
interaction error (SIE) are employed, such as local-density
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approximation (LDA) or generalized gradient approximation
(GGA). The localized polaron can be described in DFT
only if the SIE is sufficiently canceled. Perdew-Zunger self-
interaction correction (PZ-SIC) [13], Hubbard correction (i.e.,
DTU+U) [14], and hybrid functionals [15] can be used for
this purpose. The PZ-SIC functional in solids is not widely
available across various DFT software packages. For that rea-
son, most of the small polaron calculations in the literature use
either the DFT + U approach or hybrid functionals.

Although the Hubbard on-site correction can be obtained
through linear response theory [16] and constrained random
phase approximation [17], the DFT + U approach is usually
considered as semiempirical since many studies set the U
correction to match some experimentally observable quan-
tities (e.g., band gap, formation energy, magnetic moments,
or lattice parameters) [18]. The main drawback of the DFT
+ U technique when applied to model polaron mobility is
that it may lead to an overestimation of the transition barrier
for the polaron hopping [4,19,20]. The overestimation may
happen because the U correction stabilizes the energy only by
one-half at the transition state compared to the initial (or final)
state. This leads to a linear increase of the energy barrier on
the U correction [4,20].

In principle, hybrid functionals should not penalize the
transition state energy as the DFT + U approach does. Thus,
using hybrid functionals has become a standard approach
for studying polaron diffusion despite its high computa-
tional cost [6,8,19,21–23]. In the hybrid scheme, a fraction
of the exchange energy is from the exact-exchange energy
from Hartree-Fock (HF) theory, while the remainder comes
from the exchange energy from a DFT functional (typically
GGA, e.g., PBE [24] for PBE0 [25] and HSE06 [26] or
PBEsol [27] for HSEsol [28]). In other words, the hybrid
exchange energy, Ehyb

x , is expressed as Ehyb
x = αEHF

x + (1 −
α)EDFT

x , where EHF
x and EDFT

x , respectively, correspond to the
exact-exchange energy from the HF theory and exchange
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energy from a DFT functional. An additional sophistication
of hybrid functionals consists of using different α values at
short and long ranges. The range separation is set using the
μ parameter, which has inverse distance units. The value of
μ is set as 0.207 Å−1 for HSE06 and HSEsol, while μ is set
as 0.0 Å−1 for PBE0 as it is not a range-separated functional.
A default value used for a fraction of the exact exchange, α,
is 0.25 in standard PBE0, HSE06, and HSEsol functionals.
This default value of α = 0.25 was originally chosen based on
atomization energies of molecules. [25] However, it has been
shown that other α values can provide a better description of
atomization energies for solids [29]. In any case the choice of
α based on atomization energies is questionable for the study
of polarons [30,31].

It has been proven essential to first describe the band gap of
material correctly to reproduce the localization of holes [32].
The sensitivity of the appearance of polarons in a material
to its band gap is well known, and it has also been proven
experimentally. For example, AgCl and AgBr are both rock
salt materials with very similar elastic properties, i.e., bulk
moduli of AgCl and AgBr are 53.6 GPa and 50.6 GPa, re-
spectively. [33] These two materials have different band gap
values, 3.25 eV for AgCl [34] and 2.68 eV for AgBr [34].
Small hole polarons have been observed in AgCl, [35], while
the polarons have not been detected in AgBr even when it is
cooled down to 1.7 K. [36]

The band gap values increase with a α value in hybrid cal-
culations [31,37]. It has been shown that the optimal α value
to match the band gap of a material grows linearly with the
inverse of its static dielectric constant, ε [37]. Thus, α values
around 0.5 generate band gaps close to the experimentally
observed values for alkali halides, which have low ε values.
On the other hand, α values around 0.25 are more appropriate
for semiconductors with higher ε values [37]. Shimazaki and
Asai [38], Marques et al. [39], Eisenberg and Baer [40], and
Koller et al. [37] have proposed approaches in which α is
determined based on ε. A more practical approach used for
studying polarons consists of setting the α value that matches
the known band gap values, obtained either from experiments
or calculated with the GW method if there are no experimental
data [8,21,41].

So far we have outlined how the choice of the U correction
in the Hubbard-corrected functionals, and the α parameter
in the hybrid functionals affect the localization of polarons.
We also mentioned that the magnitude of the U correction
in DFT+U also has an impact on the calculated migration
barriers of polarons. There is still an open question that we
aim to answer in this work: Does α in hybrid functionals
influence not only the description of the polaron localization
but also its migration barriers? There are clear indications
pointing in this direction. One example is the hole polaron in
Li2O2, where the lowest diffusion barrier calculated with HSE
functional with α = 0.25 is between 0.038 [21] and 0.068 eV
[42], while it is 0.42 eV when α = 0.48 [21]. Determining
the strong dependence of the migration barrier on α is the
first objective of this work. A second question arises on the
confirmation of the strong correlation dependence of the mi-
gration barrier on α: Does the same α value that yields the
best match with the experimental band gap also best estimate

the experimentally observed migration barrier? We need to
compare our computed polaron migration barriers with the
experimental data, which are, unfortunately, scarce.

One of the few examples where systematic studies of po-
laron migration barriers have been carried out is Vk centers in
alkali halides. [43] A Vk center consists of a hole polaron in
a X2− dimer formed by two nearest-neighbor halide atoms in
a rock salt structure [see Fig. 1(a)]. Castner and Känzig were
the first to detect the existence of Vk centers [44]. Since then
numerous studies have looked at their mobility [43,45–50].
The diffusion of the Vk centers can occur in 60◦, 90◦, 120◦,
and 180◦ jumps, which correspond to the first, second, third,
and fourth nearest neighbors, respectively [46,47,50]. These
pathways are depicted in Fig. 1(b). Indeed, Sadigh et al. [30]
have calculated the diffusion barrier of the Vk center in NaI
using the nonscreened PBE0 hybrid functional [25] with the
α value that matches the GW calculated band gap, obtaining
a barrier in very good agreement with the experimental one.

In the present work, we perform a systematic study of the
mobility of Vk centers in 12 alkali halides (alkali: Li, Na,
and K; halide: F, Cl, Br, and I) using the PBE0 and HSEsol
xc functionals, varying the α mixing parameter. This strategy
allows us to disentangle the influence of both α and μ pa-
rameters on the polaron diffusion barrier. Experimentally, the
barriers can be estimated through different techniques, such as
nonisothermal electron paramagnetic resonance (EPR) relax-
ation [51,52] or thermal annealing of optical absorption [53],
which can yield slightly different results. We compare our
computational results against the experimental values reported
by Pung [54], which are obtained using the EPR measure-
ments. To the best of our knowledge, the data by Pung provide
the largest set of materials for which the polaron diffusion bar-
riers are measured under the same experimental conditions.
Therefore, we opted to compare our results against Pung’s
data set since using a single experimental source allows for
an easier assessment of any eventual systematic deviation
between our theoretical results and the experiments.

II. COMPUTATIONAL METHODS

The first step in this work was to determine the α values
that match the experimental band gap for both PBE0 and
HSEsol xc functionals. In the case of the PBE0 functional,
Miceli et al. [31] reported the band gap of all the Li and
Na halides studied in the present work using at least two
different α values for each compound. Thus, a simple linear
extrapolation based on their data allowed us to determine the
α value matching the experimental band gap. Regarding the
HSEsol functional and the potassium halides using the PBE0
functional, we could not find sufficient data in the literature to
perform such an extrapolation. Therefore, we performed cal-
culations using α = 0, 0.25, 0.48, 0.75 and interpolated the α

values that match the experimental band gap.
The diffusion of the Vk center was simulated in a 4 × 4 × 3

supercell of the primitive cell. This allowed a convenient
representation of the 60◦, 120◦, and 180◦ diffusions as these
paths are all contained within the xy plane of the cell. The
mirror symmetry of the pathway can be utilized to apply
the reflective nudged elastic band (R-NEB) method [55]. In
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FIG. 1. Illustration of the Vk center and possible diffusion pathways in a cubic rock salt lattice. Alkali ions are illustrated in yellow, and
halide ions in green. (a) Two halide ions are compressed by � due to a localized hole. (b) Considered diffusion pathways of the Vk center.

the R-NEB, only the first half of the pathway is calculated,
while the second half is generated based on symmetry. In
this work we applied the reflective middle image NEB (RMI-
NEB), an accelerated version of the R-NEB method; it uses
a single middle image, which is placed exactly in the mirror
plane of the path using linear interpolation. For the 90◦ jump,
it is not possible to construct a symmetrically equivalent initial
and final state due to the nonuniform shape of the supercell.
Therefore, the 90◦ pathway was sampled using a regular NEB
with three intermediate images.

DFT calculations in this work were performed in the
Vienna Ab initio Simulation Package (VASP) [56,57]. The
structures were generated using the Atomic Simulation En-
vironment (ASE) [58] software package, which has also
been used to perform all RMI-NEB and NEB calculations.
Structure relaxations and band gaps were calculated using a
k-point density of 3.5 per Å−1 in a �-centered Monkhorst-
Pack grid [59] in the primitive unit cell. RMI-NEB and NEB
calculations were carried out on the � point to limit the com-
putational costs. Plane-wave cutoffs were selected based on
the recommended VASP pseudopotential plane-wave cutoff
energies. The cutoff values are dependent on the elements
in the structure, and the values used in this study are listed
in Table I. A smearing of 0.01 eV was applied for the oc-
cupation of the electronic states, and all calculations were
performed as spin-polarized. The total energies were con-
verged to 10−5 eV or less in the self-consistent field (SCF)
cycle. The NEB calculations were run until the projected
forces were less than 0.05 eV Å−1. Introducing a Vk center ac-
companies the removal of an electron, which causes the cell to
have a net charge. The hole is compensated by a homogeneous

TABLE I. Plane-wave cutoff energies (in eV) for the considered
systems.

Li Na K

F 600 550 550
Cl 650 350 350
Br 650 350 350
I 650 350 350

background charge in order to avoid infinite charge due to the
periodic boundary conditions [60]. In addition, we also stud-
ied the X−

2 molecules in vacuo using a 6 Å × 6 Å × 20 Å unit
cell in which the molecules were oriented in the z direction.

As a validation test of the RMI-NEB method and the size
of the 4 × 4 × 3 primitive cell (96 atoms in the supercell)
used in the present work, we compared our results with those
computed by Sadigh et al. [30] for the 60◦, 120◦, and 180◦
polaron migration barriers in NaI. In order to obtain migration
barriers, Sadigh et al. applied the climbing image nudged
elastic band method [61] in a 3 × 3 × 3 conventional cell size
(216 atoms in the supercell), taking a = 6.407 Å as lattice pa-
rameter and a modified PBE0 functional with α = 0.31. Using
the same lattice parameter and α value, our approach yielded
energy barriers slightly larger (by 0.005 eV to 0.02 eV) than
those reported by Sadigh et al. (see Table II). Given the small
differences, we considered our approach validated.

In order to get a deeper insight into the nature of the
Vk centers and their configuration at the transition state,
we carried out a set of molecular calculations of X−

2 and
X2−

3 molecules, which represent the Vk center at the initial
state and at the transition state, respectively. These molecu-
lar calculations were carried out using the 2020 version of
Amsterdam Density Functional (ADF) software [62] using an
all-electron quadruple-ζ four-polarized (QZ4P) basis set and
a COnductor-like Screening MOdel (COSMO) [63].

TABLE II. Energy barriers calculated in this work for the polaron
diffusion along 60◦, 120◦, and 180◦ angles in NaI using the PBE0
functional with different α values and lattice parameters. Results
obtained by Sadigh et al. [30] for the same system are shown in the
last column.

Present work Sadigh et al.

α 0.35 0.31 0.35 0.31 0.31
a (Å) 6.456 6.456 6.407 6.407 6.407

60◦ barrier (eV) 0.291 0.261 0.266 0.234 0.23
120◦ barrier (eV) 0.305 0.275 0.284 0.251 0.23
180◦ barrier (eV) 0.291 0.261 0.266 0.230 0.22

045120-3



TYGESEN, CHANG, AND GARCÍA-LASTRA PHYSICAL REVIEW B 108, 045120 (2023)

TABLE III. Computed and experimental band gaps in eV. The α

values in HSEsol and PBE0 are varied from 0 to 0.75. The last col-
umn shows the interpolated αopt values that match the experimental
band gaps.

Band gap (eV) αopt

α = 0 α = 0.25 α = 0.48 α = 0.75 Exp.

LiF HSEsol 9.0 11.8 14.3 17.4 14.5 [65] 0.49
PBE0 – – – – 0.51a

LiCl HSEsol 6.4 7.9 9.3 11.0 9.4 [66] 0.49
PBE0 – – – – 0.37a

LiBr HSEsol 5.0 6.3 7.5 9.1 7.6 [66] 0.49
PBE0 – – – – 0.35a

LiI HSEsol 4.3 5.3 6.2 7.4 6.1 [67] 0.44
PBE0 – – – – 0.29a

NaF HSEsol 6.2 8.5 10.7 13.5 11.5 [66] 0.55
PBE0 – – – – 0.47a

NaCl HSEsol 5.0 6.5 7.8 9.5 9.0 [66] 0.67
PBE0 – – – – 0.49a

NaBr HSEsol 4.1 5.4 6.6 8.0 7.0 [68] 0.56
PBE0 – – – – 0.37a

NaI HSEsol 3.6 4.6 5.6 6.9 5.9 [66] 0.52
PBE0 – – – – 0.35a

KF HSEsol 6.1 8.2 10.3 12.8 10.9 [69] 0.54
PBE0 5.7 8.9 11.6 15.0 0.42

KCl HSEsol 5.1 6.4 7.7 9.3 8.7 [70] 0.65
PBE0 5.0 7.2 9.2 11.5 0.425

KBr HSEsol 4.3 5.5 6.7 8.0 7.3 [68] 0.60
PBE0 4.3 6.3 8.1 10.3 0.38

KI HSEsol 3.9 4.9 5.9 7.1 5.9 [71] 0.49
PBE0 3.8 5.6 7.2 9.2 0.30

aInterpolation from PBE0 band gaps in Miceli et al. [31].

III. RESULTS AND DISCUSSION

A. Band gaps of the perfect crystals

The dependence of the band gap of the studied alkali
halides on the α value for the HSEsol and PBE0 functionals is
shown in Table III. In good agreement with previous studies
[31,37,64], we observe a linear increase of the band gap with
α, which allows a straightforward interpolation to find the op-
timal α value matching the experimental band gap, αopt. Also
in accordance with the report by Miceli et al. [31], we observe
that the band gaps are larger for PBE0 than for HSEsol for
the same α value, as μ = 0 in the former and μ = 0.207 in
the latter. This systematic difference in band gaps leads to
αopt values considerably smaller for PBE0 than for HSEsol
(with the only exception of LiF, where αopt is similar for both
functionals).

B. Vk center structure

We now look at structures containing the Vk center ob-
tained by relaxing the positions of all atoms in the cell with
an added electronic hole. The bond length of the X−

2 species
is shown in Table IV for the corresponding PBE0 and HSEsol
αopt values. The bond lengths obtained at αopt with PBE0 are
systematically longer than those calculated with HSEsol by
3 to 5 pm, which is related to the fact that αopt is always
significantly larger for HSEsol than for PBE0. The only

TABLE IV. Computed bond lengths (in Å) of the X−
2 species

as Vk centers in alkali halides using PBE0 and HSEsol functionals
at their corresponding αopt . We also provide the HSEsol-calculated
bond lengths for α = 0.48 and α = 0.75 values for X−

2 species both
as Vk centers in alkali halides and in vacuo. For the calculations in
vacuo we also report in parentheses the calculated X−

2 vibrational
frequencies (in cm−1).

PBE0 HSEsol

αopt αopt α = 0.48 α = 0.75

F−
2 – – 1.920 (433.3) 1.879 (482.2)

LiF 1.929 1.922 1.922 1.885
NaF 1.954 1.918 1.928 1.888
KF 1.951 1.909 1.921 1.885
Cl−2 – – 2.562 (241.0) 2.537 (263.4)
LiCl 2.621 2.571 2.571 2.546
NaCl 2.605 2.568 2.580 2.556
KCl 2.604 2.560 2.576 2.557
Br−2 – – 2.805 (143.9) 2.782 (160.2)
LiBr 2.894 2.854 2.854 2.806
NaBr 2.883 2.843 2.840 2.839
KBr 2.865 2.815 2.824 2.802
I−2 – – 3.153 (103.1) 3.133 (117.0)
LiI 3.280 3.238 3.224 3.171
NaI 3.248 3.213 3.195 3.188
KI 3.252 3.195 3.195 3.166

exception for this trend is LiF, where both the bond lengths
and the αopt values are practically the same for PBE0 and
HSEsol. This dependency of the bond length on α is better
illustrated in Fig. 2, where a linear decrease in the X−

2 distance
in vacuo on increasing α is observed (see also Table IV, where
data for HSEsol calculations at α = 0.48 and α = 0.75 are
listed). The inversely proportional relationship between α and
X−

2 bond length is expected since the higher α values favor the
electron localization, leading to shorter bond lengths.

Unfortunately, experimentally measured bond lengths of
Vk centers are scarce, making it difficult to compare our com-
putational results with those from the literature. To the best
of our knowledge, the only experimentally measured bond
length of the X−

2 species in the gas phase is for I−2 , which was
determined to be 3.205 Å through femtosecond photoelectron
spectroscopy experiments [72]. On the other hand, there are
more experimentally measured data on the fundamental fre-
quencies of the X−

2 species. We remark that the fundamental
frequencies are directly connected with the energy required
to stretch the X−

2 bond, and, thus, they are a good starting
point for a correct description of the diffusion barriers. The
available fundamental frequencies of X−

2 from the literature
are consolidated in Table V.

It is well known that a reduction in the bond lengths due
to hydrostatic or chemical pressure leads to an increase in its
vibrational frequencies [77]. In the case of Cl−2 , the measured
fundamental frequency is the same within the experimental
error for NaCl, KCl, and RbCl, indicating that the host lattice
has a little influence on the bond length of Cl−2 . Both PBE0
and HSEsol calculations are able to capture this fact: The
variation of the Cl−2 bond length is less than 1 pm in the
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FIG. 2. Dependence of the bond length and the fundamental frequency on α for the X−
2 dimers in vacuo calculated with the HSEsol

functional.

alkali chloride series. In the case of Br−2 , the fundamental
frequency of KBr is slightly higher (7 cm−1) than that of
NaBr, indicating that the bond length of Br−2 may be a bit
longer in NaBr. Our calculations, with both PBE0 and HSEsol
functionals, agree with this observation, showing that the Br−2
bond length is between 1.5 and 3 pm longer in NaBr than in
KBr.

The fundamental frequency has a linear dependency on α

as shown in Fig. 2, which allows one to find the α value that
matches the experimental fundamental frequency and we. We
refer to such α value as αvib, and the procedure of determining
it using interpolation is the same as finding αopt described in
the subsection on band gaps. Table VI shows a comparison
between the αvib and αopt for the five alkali halides where

TABLE V. Experimentally measured fundamental frequencies
(in cm−1) of the X−

2 species as Vk centers in alkali halides or in
gas phase. Although Vk centers in Rb halides are not studied in
the present work, we have included experimental data on RbCl for
comparison purposes. In NaCl the Raman signal splits in two peaks
located at 258 cm−1 and 228 cm−1 [73], and the average value of the
two is 243 cm−1.

F Cl Br I

Li 437 [74] – – –
Na – 243 [73] 137 [75] –
K – 241 [74] 144 [76] –
Rb – 244 [74] – –
Gas phase – – – 110 [72]

experimental fundamental frequencies are available. It can
be observed that αvib is nearly independent of the functional
choice (i.e., HSEsol or PBE0). However, while αvib and αopt

are very close for PBE0 (the mean difference of 0.028), there
is a substantial deviation for HSEsol (the mean difference of
0.134). Although we should be cautious since we have exper-
imental data only for five out of the 12 systems studied here,
it seems reasonable to state that PBE0 outperforms HSEsol in
describing the diffusion barriers in alkali halides based on the
similarity between αvib and αopt.

C. Diffusion barriers

The transition state barriers of the Vk center are calculated
using the RMI-NEB and NEB methods for 60◦, 90◦, 120◦, and
180◦ jumps. The (RMI-)NEB sampling for KCl is illustrated
in Fig. 3. It can be seen that the transition barriers of KCl in
different directions are equivalent, and the observed trend is in

TABLE VI. Comparison between the αvib and αopt values for
five alkali halides where experimental fundamental frequencies are
available.

HSEsol PBE0
αvib αopt αvib αopt

LiF 0.52 0.49 0.53 0.51
NaCl 0.51 0.67 0.48 0.49
KCl 0.48 0.65 0.46 0.425
NaBr 0.37 0.56 0.37 0.37
KBr 0.48 0.60 0.45 0.38
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FIG. 3. Diffusion of Vk centers in KCl with α = 0.48. The 60◦,
120◦, and 180◦ jumps are sampled using a single image with RMI-
NEB, and the 90◦ jump is sampled with a regular NEB with three
intermediate images.

good agreement with what was already known from previous
experimental and theoretical studies [49,50].

The transition state barriers of the full spectrum of alkali
halides are shown in Table VII. We tackle the first question
posed in the Introduction about the influence of the α value on
the migration barrier. We attempted to compute the migration
barriers using HSEsol for α = 0, α = 0.25, α = 0.48, and
α = 0.75. The results reported in Table VII have transition
state barriers only for α = 0.48 and α = 0.75 due to the
computational difficulties for α = 0 and α = 0.25. The Vk

centers do not localize for any of the systems for α = 0 (plain
PBE). For the α = 0.25 case, Vk centers localize for all the
alkali halides except for LiBr and LiI, but the hole polaron
delocalized at the transition state for a substantial portion of
the cases (LiBr, LiI, NaF, NaCl, NaBr, NaI, and KF). In view
of these localization problems for low α values, we focused
our analysis on the results for α = 0.48 and α = 0.75.

The dependence of the migration barrier on α varies sig-
nificantly among the four halides. Fluorides exhibit a drastic
reduction of the barrier when α is increased from 0.48 to 0.75
(for the case of NaF, there is even no barrier at α = 0.75).
The barrier reduction is also found for chlorides but at a much
milder level. The barriers are, on average, practically the same
for bromides (i.e., a slight reduction of barriers for some,
while a slight increase for others). Finally, a small increase in
barriers is observed for the iodides. How can we rationalize
these trends? Why do the barriers in fluorides have such a
peculiar behavior? We remark that our initial hypothesis based
on HSE results of hole polarons in Li2O2 and DFT + U studies
in Li2O2 and transition metal phosphates was the opposite,
i.e., the migration barrier will increase as α becomes larger.

It is expected that the dependence of the migration barriers
on α is related to the relative degree of localization of the
unpaired electrons in the Vk center at the initial state vs the
transition state. Thus, to answer the questions above, we look
at the molecular orbitals of the Vk center and the transition
state for the 180◦ jumps. The ground state of a Vk center, X−

2 ,
is 2�+

u with the σ
g
2 πu

4 π
g
4σ u

1 occupation, while the transition
state of the X2−

3 species is 2�+
u with the σ u

2 πu
4 σ

g
2 π

g
4πu

4 σ u
1 occu-

pation. The pictorial representation of the relevant σ orbitals

TABLE VII. Computed transition state barriers (in eV) of 60◦,
90◦, 120◦, and 180◦ jumps for PBE0 and HSEsol αopt and for HSEsol
α ∈ {0.48, 0.75} in HSEsol. Experimental barriers are by Pung [54].
No experimental barrier was found for LiI. The boldface denotes the
minimum energy jump for each system.

System Exp. Angle (◦) PBE0 HSEsol

αopt αopt α = 0.48 α = 0.75

LiF 0.28 60 0.27 0.35 0.35 0.16
120 0.27 0.35 0.35 0.16
180 0.26 0.34 0.34 0.16

NaF 0.32 60 0.43 0.39 0.48 0.00
120 0.42 0.38 0.47 0.00
180 0.43 0.38 0.48 0.00

KF 0.34 60 0.59 0.47 0.56 0.06
90 – – 0.56 –
120 0.58 0.47 0.57 0.07
180 0.60 0.47 0.56 0.07

LiCl 0.29 60 0.33 0.33 0.33 0.28
120 0.32 0.30 0.30 0.29
180 0.28 0.26 0.26 0.25

NaCl 0.44 60 0.45 0.44 0.46 0.38
120 0.49 0.47 0.49 0.39
180 0.48 0.44 0.49 0.38

KCl 0.54 60 0.58 0.59 0.60 0.51
90 – – 0.72 –
120 0.67 0.61 0.70 0.52
180 0.65 0.60 0.69 0.51

LiBr 0.23 60 0.26 0.28 0.28 0.29
120 0.25 0.25 0.25 0.28
180 0.21 0.21 0.21 0.25

NaBr 0.25 60 0.35 0.41 0.37 0.36
120 0.38 0.44 0.40 0.37
180 0.37 0.43 0.39 0.35

KBr 0.43 60 0.48 0.55 0.49 0.50
90 – – 0.60 –
120 0.56 0.64 0.61 0.54
180 0.58 0.63 0.63 0.52

LiI – 60 0.17 0.22 0.24 0.29
120 0.17 0.21 0.22 0.27
180 0.13 0.16 0.16 0.21

NaI 0.18 60 0.29 0.35 0.33 0.37
120 0.31 0.34 0.33 0.38
180 0.29 0.34 0.32 0.36

KI 0.27 60 0.36 0.42 0.42 0.46
90 – 0.54 0.54 –
120 0.42 0.48 0.48 0.53
180 0.43 0.55 0.55 0.52

to understand the dependence of the barrier on α is shown in
Fig. 4.

For the Vk centers, we find a completely filled bond-
ing σg orbital and a partially filled antibonding σ ∗

u orbital.
The symmetry imposes that σg = 1√

2
(p1

z − p2
z ) and σ ∗

u =
1√
2
(p1

z + p2
z ), where i in pi

z refers to the atom index in

the dimer. For the case of the transition state of the X2−
3
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FIG. 4. Orbital occupations of (a) the Vk center X−
2 and (b) the

transition state for the 180◦ jumps (X2−
3 species) in their ground

state. For simplicity, the π orbitals are omitted, showing only the
σ orbitals.

species, the bonding σu orbital and the nonbonding σ non
g or-

bital are fully occupied, and the antibonding σ ∗
u orbital is

half occupied. In this case the symmetry imposes that σu =
γ√

2
(p1

z + p3
z ) −

√
1 − γ 2 p2

z , σ non
g = 1√

2
(p1

z − p3
z ), and σ ∗

u =√
1−γ 2

2 (p1
z + p3

z ) + γ p2
z , where the i = 1, 3 in pi

z refers to the
edge atoms in the trimer and i = 2 to the central atom. As
it can be seen, the only degree of freedom in these orbital
compositions is γ , i.e., the σ ∗

u wave-function weight in the
central atom of the trimer.

To rationalize the dependence of the migration barrier on
α and its relationship with the electron localization (i.e., the γ

parameter), we performed a set of calculations for the isolated
X−

2 dimers and X2−
3 trimers. As stated in the Methods section,

we used ADF code to facilitate the analysis of the localization.
We first optimized the structure of the dimers and trimers. The
D∞h symmetry is imposed for trimers, i.e., a linear geometry
with the middle atom exactly at the center of the trimer as in
Fig. 4. These calculations require the use of a solvent model
(e.g., COSMO) as the calculations do not converge otherwise.
The results of the optimized halide-halide distances using the
PBE0 functional in ADF are listed in Table VIII. The results
obtained using ADF for the X−

2 dimers are very similar to
those presented in Table IV for the isolated dimers calculated
with HSEsol in VASP, showing the consistency of the model.

An insightful parameter to obtain from the ADF molecular
calculations to obtain the trends in the energy barrier is the
dissociation energy, Ed , of a X2−

3 trimer into a X−
2 dimer and a

X− anion. With all due caution, the X2−
3 trimer resembles the

species at the transition state of the Vk center migration, while
the X−

2 dimer plus X− anion resembles the initial (or final)

TABLE VIII. Calculated halide-halide distances, d , of isolated
X−

2 dimers and X2−
3 trimers (in Å), dissociation energies, Ed , of

X2−
3 trimers into a X−

2 dimer and an isolated X− anion, γ 2, and �SI

[σ T S
u − σVK

g ] parameters (see the main text for their definitions).

α d (X−
2 ) d

(
X2−

3

)
Ed γ 2 �SI (eV)

F 0.48 1.882 2.201 0.377 0.925 3.180
0.75 1.837 2.354 0.077 0.972 4.142

Cl 0.48 2.550 2.848 0.266 0.703 −0.516
0.75 2.512 2.874 0.275 0.778 −0.319

Br 0.48 2.809 3.085 0.181 0.671 −0.558
0.75 2.772 3.084 0.207 0.720 −0.494

I 0.48 3.179 3.456 0.112 0.620 −0.573
0.75 3.140 3.443 0.142 0.657 −0.531

FIG. 5. Comparison of the diffusion barriers for the 180◦ jumps
in the Li halides shown in Table VII vs the dissociation energy of a
X2−

3 listed in Table VIII.

stage of the migration process. Therefore, Ed could be a good
first approximation for the migration energy barriers. Indeed,
there is a very good agreement between the calculated energy
barriers for the 180◦ jumps in the Li halides and the Ed (see
Fig. 5 for the comparison between the barriers in Table VII
and dissociation energies in Table VIII). The agreement is par-
ticularly good for Li halides compared to other alkali halides
because the COSMO makes a tight solvation of the halide
ions, which better resembles the lattices in which the cations
are very close to the anions (i.e., the case of the Li halides).
The dependence of Ed on α is the same as that of the migration
energy barriers: There is a negligible dependence of Ed on α

for Cl, Br, and I, while a drastic reduction of Ed is found when
α is increased from 0.48 to 0.75 for F. Such a trend is also
observed in the halide-halide distances in the X2−

3 trimers (see
Table VIII): α hardly influences d (X2−

3 ) for Cl, Br, and I while
increasing α leads to a significant elongation (>15 pm) of the
F-F distance in F2−

3 .
Turning back to the electron localization as the ultimate

reason to explain the observed trends in the migration barriers,
it is instructive to analyze the degree of electron localization
in the bonding orbitals of both the Vk center and the transition
state (i.e., σg and σu orbitals for the Vk center and the transition
state in Fig. 4, respectively). We choose the self-interaction
of the electron in σVk

g and σ T S
u orbitals as a measure of the

electron localization and calculate its dependence on γ (using
the Slater-type p orbitals with the exponential decay computed
by Roetti and Clementi [78] for each atom type). We then
calculated the difference between the self-interaction in the
Vk center and the transition state, �SI[σ T S

u − σVK
g ], which is

plotted in Fig. 6. The electron self-interaction is larger in
the transition state than in the Vk center when the γ value
is small, i.e., when there is almost no wave function weight
in the transition state central ion for its bonding orbital (al-
ternatively, when the induced hole mainly sits in the central
ion). When γ increases (beyond 0.2 or 0.3, depending on the
specific halide), the situation becomes the opposite, and the
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FIG. 6. Dependence of the self-interaction energy difference in
the bonding orbitals of X2−

3 trimers and X−
2 dimers, �SI[σ T S

u − σVK
g ],

on γ for the different halides. The filled circles represent the values
obtained from the molecular calculations, and the dotted lines are
obtained from the analytical calculations.

self-interaction is larger in the Vk center. Since increasing
the α in the hybrid functionals reduces the self-interaction
error, we can conclude that for small (large) γ values, larger
(smaller) α values will reduce (increase) the transition state
energies with respect to those of the Vk center.

The actual γ values obtained for the four halides using the
molecular calculations, which are shown in Fig. 6 as filled
circles for both α = 0.48 [Fig. 6(a)] and α = 0.75 [Fig. 6(b)].
As expected, there is a small reduction of γ for all the halides
when α is increased from 0.48 to 0.75. Since the variations
of γ are small, we select the results for α = 0.75 [Fig. 6(b)]
for further discussion. We observe that γ is very small for F,
and thus, �SI[σ T S

u − σVK
g ] is large and positive, which explains

the drastic reduction in the barriers when α is increased from
0.48 to 0.75. For the other three halides, �SI[σ T S

u − σVK
g ] is

small and negative, decreasing from Cl to Br and from Br
to I. This trend is qualitatively in good agreement with the
observed change in barriers when α is increased from 0.48 to
0.75 (i.e., a small decrease, barely any change, and a small
increase for Cl, Br, and I, respectively).

The correlation between �SI[σ T S
u − σVK

g ] and the average
change in the barriers when α is increased from 0.48 to

0.75, �Bα=0.48→0.75, is depicted in Fig. 7. Although a good
correlation is found, the results shown in Fig. 7 indicate that
�SI[σ T S

u − σVK
g ] is not the only factor that determines the

barrier change; if it was, �SI[σ T S
u − σVK

g ] would be slightly
positive for Cl, close to zero for Br, and slightly negative for
I. Regardless, we have obviated the effect of the Vk center
fundamental frequency change when α varies. We have shown
that higher α values lead to an increase in the fundamental
frequencies, which implies that more energy is required in
the first stage of the Vk migration (when the Vk bond starts
to stretch) if α increases. From the elastic point of view,
larger α values will produce larger barriers. If we combine
the “electron localization” and “elastic” effects, simply by
slightly shifting the �SI[σ T S

u − σVK
g ] in Fig. 7 towards more

positive values due to the “elastic effect” (we assume that this
elastic influence from α is similar for all the halides), we will
be able to rationalize the observed dependence of the barriers
on α for all the halide series.

We now look at the suitability of using αopt value for calcu-
lating the diffusion barriers by assessing their values against
the experimental ones. The computational and experimental
barrier data from Table VII are visualized in Fig. 8 for a direct
comparison. We observe that the overall experimental trends
are well captured by both functionals, although the mean
absolute error (MAE) is lower for PBE0 (MAE = 72 meV)
than for HSEsol (MAE = 85 meV). The difference becomes
more pronounced if we exclude the KF system, the only no-
torious outlier for PBE0, from the analysis; the MAE reduces
to 55 meV for PBE0 and 81 meV for HSEsol. One possible
cause for the lower MAE for PBE0 may be the fact that αopt

is closer to αvib for PBE0 than for HSEsol. Considering the
fact that (1) small variations in the lattice parameter can lead
to a significant change in the computed diffusion barrier (e.g.,
the reduction of 5 pm in the lattice parameter of NaI leads to
a reduction of the barriers of 20 meV to 30 meV as shown in
Table II) and (2) we used the computed lattice parameters in-
stead of experimental ones, the MAE obtained with the PBE0
is satisfactory. For PBE0, the diffusion barriers calculated
using αopt are in very good agreement with experiments for
Li halides, while the computed barriers always overestimate
their experimental counterparts for Na and K halides.

D. Nature of the transition state

We have addressed the main objective of this work on
rationalizing the dependence of the Vk centers’ diffusion bar-
riers on α for various alkali halides. With the collected data
and obtained insights, we are in a position to address two
secondary but relevant questions on the nature of the transition
state: (1) Is the transition state metastable? and (2) Is there any
preferential angle for the diffusion of the Vk centers?

In their study of Vk centers in KCl, Shluger et al. postulated
the existence of a so-called “dielectric” one-center polaron,
i.e., a metastable state in which the hole is almost completely
localized in a single anion [79]. Shluger et al. did not find the
one-center polaron to be metastable for KCl. In a subsequent
study, Prange et al. did not find a metastable solution for the
diffusion of Vk centers in NaI either [80]. In the previous
section, we remarked that the hole is mainly localized at the
central anion at the transition state, particularly for fluorine
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FIG. 7. Correlation between self-interaction energy difference between trimers and dimers and the average change in the barriers when α

is increased from 0.48 to 0.75, �Bα=0.48→0.75, for (a) all four halides and for (b) Cl, Br, and I, where the variation in �Bα=0.48→0.75 is small.

halides. The localization of the hole primarily in the central
anion indicates that the nature of the transition state is in-
deed the “dielectric” one-center polaron. However, are these
one-center polarons metastable? To answer this question, we
carried out NEB calculations on the potassium halides with
three images between the initial and transition states, i.e., the
first half of the path. The sampling of the first half of the
diffusion pathways for KF and KCl is shown in Fig. 9. It
can be seen that the minimum energy path has a bell shape
for KCl, indicating that the transition state is not metastable,
which agrees with the results reported by Shluger et al. [79].
While they are not shown, the same trend is found for KBr
and KI. In contrast, the original transition state of KF, the
rightmost point of the diffusion pathway in Fig. 9(b), is a
local minimum. The actual transition state is the state between
the hole being in a distorted Vk center, indicating that the
one-center polaron is indeed metastable in alkali fluorides.

The experimental information on the preferential angle of
the Vk center diffusion is scarce. Popp and Murray reported
that the most frequent jump in NaI is at 60◦ [50]. Modeling
results by Prange et al. using a cluster approach pointed out
that the barrier is the same (differences less than 0.01 eV) for
the 60◦ and 180◦ directions [80]. This result was confirmed
by Sadigh et al. using periodic supercell calculations [30].

Our results also show that 60◦ and 180◦ are the fastest jumps,
with practically the same barriers (the difference is less than
0.01 eV). Some experimental data are available for KCl and
KI. For KCl, Keller et al. reported the probability of a jump in
the 60◦ direction to be around 100 times more likely than in
the 90◦ direction at temperatures in the 150 K to 160 K range
[47]. They also concluded that the barrier for the jump along
60◦ direction is 0.54 eV, which coincides with the barrier
determined by Pung [54], which is used as a reference in
Table VII. This implies that the barrier for the jumps along
the 90◦ direction in KCl should be around 0.07 eV larger
than along the 60◦ direction. In this work we calculate that
difference to be 0.12 eV, which is in good agreement with
the experiment, especially when the large experimental uncer-
tainty is taken into account. For KI, Popp and Murray did not
report the ratio between the jumps in different directions but
noted that the probability of the jumps along the 60◦ direction
is much larger than along 90◦ direction [50], which again
agrees with our results shown in Table VII.

We observe further trends in our calculated barriers on
the various jump angles. For the fluorides, the barriers are
independent of the jump angle due to the extreme hole lo-
calization in the central anion at the transition state. For the
rest of the systems, we observe that the preferential jump

(a) (b)

FIG. 8. Comparison between experimental and calculated barriers using αopt for the (a) PBE0 and (b) HSESol functionals.
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FIG. 9. Increased NEB sampling of the first half of the diffusion pathway of (a) 60◦ jump for KCl and (b) 60◦, 120◦, and 180◦ jumps for KF.

angle barely depends on the halide ions but on the alkali ones,
which can be surprising since all the analyzed properties so far
have been mostly dependent on the halide ions. For potassium
halides, the barriers are always lowest for the 60◦ jumps. By
contrast, the preferred jumps are along the 180◦ direction for
lithium halides. For the sodium halides, the energy differences
between the 60◦ and 180◦ barriers are very small (0.01 eV) to
state anything conclusive. The overall observed trend is that
the larger the alkali ion the more preferred the 60◦ jumps
over the 180◦ jumps. We could not find a straightforward
explanation for this observation, and we leave it for future
investigations since it is out of the main scope of this work.

IV. CONCLUSIONS

In the Introduction, we posed a question on the dependence
of polaron migration barriers on the fraction of Fock ex-
change, α, in hybrid functionals. We also questioned whether
choosing the α value that reproduces the experimental band
gap of the host material was also an ideal choice for de-
termining the migration barriers. We decided to use the Vk

centers in alkali halides, one of the few cases of polarons
for which experimental data on migration barriers had been
systematically measured, to help us answer these questions.

Contrary to our expectations, we observed different depen-
dencies of the barriers on α for the various alkali halides.
While alkali fluorides suffer a drastic reduction of the barriers
on increasing α, the reduction was much weaker for alkali
chlorides, and the trend was the opposite for alkali iodides

(a slight increase of the barriers on increasing α). Finally,
the barriers barely changed for different α values for alkali
bromides. We were able to explain this behavior on the basis
of the relative hole localization of the ground state vs the tran-
sition state, �SI[σ T S

u − σVK
g ], by showing the clear correlation

between �SI[σ T S
u − σVK

g ] and the average change in barriers
when α is increased from 0.48 to 0.75. A secondary aspect
influencing the average change in barriers is the hardening of
the fundamental frequencies of the Vk centers on increasing α,
a common feature for all the systems studied here. Combin-
ing the two effects, i.e., the hole localization and the elastic
hardening, we are able to rationalize the barrier variations on
changing α.

We show a qualitatively good agreement between the
calculated and experimental barriers when using the α that
reproduces the band gap of the host material, particularly for
the PBE0 functional. Thus, we recommend this procedure,
which had already been used in the literature for the study
of polaron mobility in Li2O2.

To conclude, we were naively expecting that Vk centers
would have a similar nature for all the alkali halides before
conducting this study. However, we found a much reacher
casuistry. The hole is highly localized for fluorides at a single
fluorine ion in the transition state. As a salient feature, we
found this situation metastable, which had never been reported
for Vk centers in alkali halides. For other halides, the localiza-
tion at the transition state is less pronounced, not being this
state metastable.
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