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A B S T R AC T

Cancer is a global problem and causes many deaths every year. Treatment
with immunotherapy has, in the past decades, helped decrease cancer mortality.
High-throughput sequencing technologies have opened new research possibili-
ties, and the advantages of using omics data in cancer research have improved
immunotherapy strategies and, among others, contribute to novel findings re-
garding biomarker discovery and personalized cancer vaccines. Biomarkers can
ideally be used to predict the possibility of a patient obtaining clinical benefit
from immunotherapy; however, those currently known account poorly across all
patients. Hence, the optimal biomarker has yet to be found. CD8+ T cells are
key players in the immune system to combat cancer. They have the ability to
specifically recognize personalized mutation-derived epitopes (neoepitopes) on
the surface of cancer cells and directly kill cancerous cells. Multiple approaches
exist to efficiently predict possible neoepitope candidates that are presented at
the surface of cancer cells, but only a small fraction of these is truly immuno-
genic, meaning that they are, in fact, recognized by CD8+ T cells.

This thesis studies potential biomarkers to predict the outcome of treatment
with immunotherapy, either through the use of omics data and/or through the
characterization and identification of immunogenic neoepitopes. Four Manuscripts
are included to address this: Manuscript I investigates predictive biomarkers
across a diverse cohort and states that a combination of biomarker is more
suited to predict patient survival than observing single biomarkers. The sug-
gested combinations include T-cell signatures and cancer cell signatures. The
Manuscript propose a combination of either neoepitope load and programmed
cell death ligand 2 (PD-L2) or neoepitope, PD-L2, and cytolytic activity (CYT)
as a combined potential biomarker. Manuscript II and Manuscript III study
a large pool of neoeptiope candiadtes and validate their immunogenicity poten-
tial. Both Manuscripts suggest that the abundance and frequency of neoantigen
reactive CD88+ T cells (NARTs) can be used as a predictive biomarker in differ-
ent setups. The tumor microenvironment (TME) also results in diversity when
comparing patients with many detected NARTs to those with few. Further-
more, we observe differences in the characteristics of neoepitope candidates and
describe how they can be used to distinguish immunogenic neoepitopes from
non-immunogenic ones. The final Manuscript (Manuscript IV) investigates
even more broadly the characteristics of immunogenic neoepitopes. A feature-
based machine learning approach with random forest modeling using a dataset
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iv abstract

of above 19000 validated neoepitope candidates are used to predict the immuno-
genicity of neoepitopes. From this analysis, the physicochemical properties of
the neopeptides are found to be the most important features in predicting im-
munogenicity, and a high abundance of hydrophobic and aromatic residues are
the most essential properties. Additionally, patient-specific TME features are
implemented in the neoepitope prediction, resulting in a slight improvement.

Even though the statements in this thesis need further validation with more
data, the four Manuscripts of this thesis add novel insight into the field of
cancer immunotherapy through the discovery of potential biomarkers that can
be used to predict survival probability from immunotherapy treatment and by
improving the neoepitope prediction.



R E S U M É

Kræft er et globalt problem og forårsager mange dødsfald hvert år. Behan-
dling med immunterapi har i de seneste årtier været med til at mindske kræft-
dødeligheden. Sekventeringsteknologier har åbnet nye forskningsmuligheder, og
fordelene ved at bruge omics-data i kræftforskning har forbedret immunterapis-
trategier og bidrager blandt andet til nye viden omkring biomarkører og per-
sonaliserede cancervacciner. Biomarkører kan ideelt set bruges til at forudsige
muligheden for, at en patient opnår klinisk fordel ved immunterapi; dog er de
kendte i øjeblikket ikke gældende for alle patienter. Derfor er den optimale
biomarkør endnu ikke fundet. CD8+ T celler er nøglespillere i immunsystemet
til at bekæmpe kræft. De har evnen til specifikt at genkende personaliserede mu-
tations fremkommet epitoper (neoepitoper) på overfladen af kræftceller og kan
hermed direkte dræbe dem. Der findes flere muligheder til effektivt at forudsige
mulige neoepitop kandidater, der kan blive præsenteret på overfladen af cancer-
celler, men kun en lille del af disse er virkelig immunogene, hvilket betyder, at
de kan blive genkendt af CD8+ T-celler.

Denne afhandling undersøger mulige biomarkører som kan bruges til at forudsige
udfaldet af kræftbehandling for en kræftpatient, enten ved brug af omics-data
eller igennem identifikationen af immunogene neoepitoper. Fire manuskripter er
inkluderet for at for undersøge: Manuskript I undersøger prædiktive biomarkører
på tværs af en forskellige kræft typer og foreslog, at en kombination af biomarkører
er bedre til at forudsige patienters sandsynlighed for overlevelse end at observere
enkelte biomarkører. Den foreslåede kombination indeholder T celle signaturer
og cancer celle signaturer. Artiklen foreslog en kombination af enten mængden
af neoepitoper og programmed cell death ligand 2 (PD-L2 ) eller mængden af
neoepitoper, PD-L2 og cytolytisk aktivitet ( CYT ) som en kombineret poten-
tiel biomarkør. Manuskript II og Manuskript III studerer en stor pulje af
forudsete neoepitope kandidater og validerer deres immunogenicitets potentiale.
Begge artikler tyder på, at mængden og hyppigheden af neoantigen-reaktive
T celler (NART’er) kan bruges som en biomarkør til at forudse overlevelse på
forskellige måder. Tumormikromiljøet (TME) viser også diversitet, når man
sammenlignede patienter med mange påviste NART’er med dem med få. Desu-
den observerede vi forskellige neoepitop karakteristika og beskriver, hvordan de
kan bruges til at skelne mellem immunogene neoepitoper fra ikke - immunogene
. Det sidste manuskript (Manuskript IV ) undersøger endnu bredere karak-
teristika af immunogene neoepitoper. Der blev lavet en maskinlærings model
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vi resumé

indeholdende neoepitope karakteristika med en Random Forrest (RF) model
ved brug af et datasæt med over 19000 valideret neoepitop kandidater, som blev
brugt til at forudsige immunogeniciteten af neoepitoper. Ud fra denne analyse
blev de fysisk-kemiske egenskaber af peptiderne, fundet til at være de vigtigste
egenskaber til at forudsige immunogenicitet, og en høj andel af hydrofobe og
aromatiske aminosyre i peptiderne, var de vigtigste egenskaber. Derudover blev
patientspecifikke TME-karakteristika implementeret i neoepitop forudsigelsen,
hvilket resulterer i en forbedret model.

Selvom udsagnene i denne afhandling har brug for yderligere validering med
mere data, tilføjer de fire artikler i denne afhandling ny viden indenfor can-
cerimmunterapi på baggrund af opdagelsen af potentielle biomarkører, der kan
bruges til at forudsige overlevelsessandsynlighed fra immunterapibehandling og
ved at forbedre neoepitop forudsigelse.
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1 I N T R O D U C T I O N

1.1 cancer omics
Cancer development is a rising global health problem, with an estimated 28.4
million new cases projected to occur in 2040 alone (Sung et al., 2021). The
development of cancer is caused by genetic alterations, which can lead to ab-
normal and uncontrollable cell growth. Any cell in the body has the potential
to turn into a cancer cell, resulting in many different types of cancer that can
behave and grow differently (Cooper and Hausman, 2000). The immune system
has the capacity to eliminate cancer cells, (Gonzalez et al., 2018), resulting in
a great focus in using the immunesytem role in cancer elimination and devel-
oping novel immunotherapies (Huang and Chang, 2019). However, genetically,
all individuals are unique, and thus their immune systems differ, making new
uniform treatment strategies challenging to develop. Cancer heterogeneity, host
genetics, as well as environmental and other factors, make cancer extremely chal-
lenging to combat (McGranahan and Swanton, 2017). Researchers worldwide
took advantage of high-throughput sequencing to understand cancer heterogene-
ity which has also influenced the development of optimized treatment strategies
(Kuksin et al., 2021). Different sequencing technologies can be applied to pro-
duce different types of omics data, which can, be used to investigate cancer cells
and the tumor microenvironment (TME) from different angles. Whole genome
sequencing (WGS) and whole exome sequencing (WXS) produce genomics data
studying genes at the DNA level, whereas transcriptomics analyzes based on
RNA sequencing (RNAseq) data allows for analysis of etc., the gene expression
in cancer dynamics. Both strategies individually have been used to reveal a lot of
information regarding cancer diagnostic and prognostics and have been applied
to drive decisions on treatment options. Better information coverage can be
obtained by multi-omics approaches integrating combinations of different omics
strategies, which this thesis uses to explore cancer omics (Chakraborty et al.,
2018).
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2 introduction

1.2 tumor heterogeneity
The evolutionary nature of malignant tumors and their heterogeneity have been
known for centuries. From the moment that sequencing approaches became
accessible, a broader knowledge of tumor heterogeneity has been established, via
the identification of specific mutations in high-throughput studies (McGranahan
and Swanton, 2017).

1.2.1 Mutations types

Mutations in cancer cells can occur in various manners leading to different con-
sequences. For example, mutations that cause an amino acid change within the
protein sequence are non-synonymous mutations, whereas synonymous muta-
tions do not lead to an amino acid change (Chu and Wei, 2019). This thesis will
focus on the non-synonymous mutations, and the sum of all non-synonymous
mutations is defines as the tumor mutational burden (TMB). Non-synonymous
mutation can be caused by different errors resulting in different mutation conse-
quences. Missense mutations are single nucleotide replacements. Frameshift mu-
tations are caused either by short insertions or deletions, resulting in a changed
reading frame of the nucleotide sequence. If an insertion or deletion appears
within the reading frame, it is called in-frame insertion or in-frame deletion,
respectively (Bjerregaard et al., 2017; McLaren et al., 2016).

1.2.2 Clonal evolution

During cell division of cancer cells, they can pass along present mutations and
concurrently develop new mutations. The early-arrived and highly prevalent
mutations are classified as clonal mutations and the later-arrived and less preva-
lent mutations are classified as sub-clonal mutations (Figure 1). PyClone is a
computational program that can identify clonal and sub-clonal mutations by
grouping mutations into clusters and estimating the mutation prevalence (Roth
et al., 2014). Accurate estimations are highly dependent on knowing the pu-
rity of the tumor, which describes the fraction of tumor and non-tumor cells in
a sample. The purity can be obtained from other bioinformatic tools such as
allele-specific copy number analysis of tumours (ASCAT) and Sequenza (Favero
et al., 2015; Raine et al., 2016). Break-through research has been conducted
studying the clonal and sub-clonal mutations and will likely improve the preci-
sion of drug targets in personalized cancer vaccines (McGranahan et al., 2016;
McGranahan and Swanton, 2017).



1.3 tumor microenvironment 3

Figure 1: Clonal and sub-clonal mutations. During division of cancer cells, the
cell’s original and early arrived mutations are defined as clonal mutations. Clonal
mutations will be prevalent in many of the cancer cells. Contrary sub-clonal mutations
are the later-arrived mutations and are less prevalent. The red dot represents an
example of a clonal mutation, whereas the other colors represent an example of sub-
clonal mutations. Modified from McGranahan et al. (2016)

1.3 tumor microenvironment
Transcriptomics data are usually used to analyze tumor cells and the surround-
ing TME. The infiltration of immune cells in the TME is essential for tumor
regression. Besides immune and tumor cells, the TME consists of stromal cells,
blood vessels, and extracellular matrix. The TME can be divided into "hot"
and "cold" TMEs, defined by the environment’s concentration of essential im-
mune cells, chemokines, and cytokines. Many versions of how to characterize
a ”hot” and ”cold” TME have been suggested. In general, a "hot" has high
infiltration of effector cells, namely CD8+ T cells and natural killer (NK) cells,
which are able to directly kill cancer cells and secrete pro-inflammatory cytokines
and chemokines further contributing to the generation of a cytotoxic TME. In
addition, these "hot" tumors are generally characterise by a high TMB. Can-
cer patients with a "hot" TME are found to be favorable in obtaining clinical
benefit from treatment with immunotherapy. Contrary, a "cold" TME consists
of an immunosuppressive environment resulting in low tumor-infiltrating lym-
phocytes (TILs) with low chemokine, and cytokine production. Patients with
a “cold” TME are known to be unfavorable in responding to immunotherapy
(Gajewski et al., 2017; Nagarsheth et al., 2017). Recently Ren at al. introduced
an intermediate TME between "cold" and "hot", used to explain TME variance.
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For example, a tumor with a high TMB does not necessarily have many TILs
(Figure 2) (Ren et al., 2022).

Figure 2: Tumor microenvironment (TME) categories. A "cold" TME is defined
as a TME with no or few mutations and few or no infiltrating immune cells, such as NK
cells and CD8+ T cells. On the contrary, a "hot" TME has a high tumor mutational
burden and many infiltrating immune cells. The "intermediate" TME is defined as an
environment between the "cold" and "hot" TME. Modified from Ren et al. (2022)

Different sequencing strategies can be used to explore TME from transcriptomics
data. RNAseq can be conducted on a single-cell (sc) level where it is possible to
distinguish different cell types and study the effect of the TME on a cell-specific
level. Contrary to sc-RNAseq, bulk RNA sequencing data give a picture of the
mixed tumor sample, and the TME can be interpreted as one combined envi-
ronment. Bulk sequencing technology was invented before the sc-RNAseq tech-
nology and is cheaper and faster (Li and Wang, 2021). Therefore, many studies
are based on data from bulk RNAseq. However, bioinformatic tools have have
been developed, enabling cell type estimations also known as pseudo sc and es-
timates cell populations from expression data obtained from bulk RNAseq. As
an example, Microenvironment Cell Populations-counter (MCP-counter) esti-
mates the abundance of 10 populations, including; endothelial cells, fibroblasts,
myeloid dendritic cells, monocytic lineage cells, neutrophils, NK cells, B cell
lineage, cytotoxic lymphocytes, T cells, and CD8+ T cells (Becht et al., 2016).
Another approach to studying differences in TME between two groups is dif-
ferential expression analysis (DEA), typically followed by gene set enrichment
analysis (GSEA). DEA can calculate gene regulation between two groups and
find differentially expressed genes between the two groups (Love et al., 2014).
The GSEA can identify if a cluster of upregulated genes is within the same gene
set or gene pathway and calculate whether the given pathway is differentially
expressed in the patient group (Yu et al., 2012; Zito et al., 2021)
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1.4 t cells in cancer
One of the most important immune cells in cancer elimination are Cluster dif-
ferentiation (CD)8+ T cells (CD8+ T cells), as they can kill cancer cells directly
by recognizing cancer-antigens presented on major histocompatibility complex
(MHC) class I molecules. CD4+ T cells, also known as the helper T cells, recog-
nize peptides presented on MHC class II molecules and can stimulate CD8+ T
cells towards tumor cell killig (Ferris et al., 2020). CD8+ T cells and the MHC-I
restricted cancer-derived epitopes will be the main focus of this thesis.

1.4.1 Antigen presentation and human leucocyte antigen

T cells recognize cancer epitopes presented on the surface of antigen-presenting
cells (APCs) or cancer cells thanks to the MHC complex, referred to as human
leucocite antigen (HLA) molecules in humans. For the purpose of this thesis, I
will only focus on antigen processing and MHC-I presentation to CD8+ T cells,
which is a multiple-step pathway. First, proteasomes cleave the protein into pep-
tides in the cytosol. Next, the peptides will be transported to the endoplasmic
reticulum (ER) by the transporter associated with antigen processing (TAP) to
meet the MHC-I molecules. MHC-I is held stable in the ER by ER chaperone
proteins until the peptide binds into the binding cleft of the MHC-I complex.
Finally, the peptide-bound MHC-I complex (pMHC) is transported through the
golgi apparatus to the cell surface and presented to CD8+ T cells (Figure 3A)
(Neefjes et al., 2011). The HLA-encoding genes are placed on chromosome six,
one of the most polymorphic regions of the human genome. The HLA class I
exists as three classes of classical HLAs (HLA-A, HLA-B, and HLA-C) where
each individual express six HLA molecules (three from mom and three from
dad). There exists 5000 different alleles for each HLA class and this allelic dif-
ference results in most people being heterozygous in each HLA class (Robinson
et al., 2020). The different HLA properties also give diversity in peptide bind-
ing. The anchor residues are responsible for peptide binding and can vary for
each HLA molecule, although they are mainly located at positions 2 and 9 of
the peptide sequence. The remaining amino acids of the peptide are responsible
for T cell recognition (Figure 3B) (Fritsch et al., 2014). The knowledge of the
HLA composition of an individual plays an essential role in epitope discovery
in cancer. Bioinformatic tools have allowed the identification of a person’s HLA
alleles in a high-throughput manner from sequencing data. Precise HLA typing
is complicated as many HLAs share many similarities, but a bioinformatic tool
called Optitype, is able to can type HLA alleles from sequencing data with high
accuracy, and is the tool used in this thesis for HLA typingn(Kiyotani et al.,
2017; Szolek et al., 2014).
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Figure 3: Peptide processing and binding groove of MHC-I. A) Proteins in
the cytosol are cleaved into small peptides by the proteasome, and the peptides are
then transported to the endoplasmic reticulum (ER) by the transporter associated
with antigen presentation (TAP). The peptides can bind to the MHC molecule in the
ER and be transported through the Golgi apparatus to the cell surface. B) MHC-I
binding groove binds to the peptides with two anchor positions, mainly 2 and 9, where
the rest of the peptide is presented to the T cell receptor (TCR). A is Modified from
Neefjes et al. (2011) and B from Fritsch et al. (2014)

1.4.2 CD8+ T cell activation

Upon CD8+ T cell antigen recognition on the surface of APCs, CD8+ T cells
differentiate from an initial naive stage to an activated phenotype. Activation
of naïve T cells happens in the lymph node where the T cell receptor (TCR)
recognizes pMHC complexes on APCs. The activation rely on the costimulatory
interaction of the CD28 receptor on T cells to its ligand B7 on the APC, and the
secretion of cytokines by the APC determines which effector cell it becomes (Fig-
ure 4A). The effector CD8+ T cells can proliferate and travel to the tumor site
and kill cancer cells by secreting cytolytic molecules such as such as Granzyme
A (GZMA) and perforin 1 (PRF1) after recognizing the tumor antigen (Figure
4B) (Raskov et al., 2021; Rooney et al., 2015).
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Figure 4: T cells in cancer. A) T cell activation depends on three signals. Firstly the
T cell receptor (TCR) recognizes peptide-bound MHC (pMHC) on the cell surface of
antigen-presenting cells (APC). Then the binding of CD28 co-receptor on the T cells to
its ligand B7 on APC. Lastly, cytokine secretion which determines which effector cell
it becomes. B) An activated CD8+ T cell can kill the cancer cells only by recognizing
the pMHC molecule on the cancer cell and then secreting enzymes such as granzyme
A (GZMA) and perforin 1 (PRF1). Modified from Murphy and Weaver (2017).

1.5 neoepitopes
Neopeptides are tumor specific peptides carrying an amino acid alteration de-
rived from mutational changes in the cancer genome. When presented in the
context of MHC-I molecules to CD8+ T cells they are referred to as neoepi-
topes, and neoepitopes which can elicit CD8+ T cell reactivity are identified as
immunogenic neoepitopes. Owing to the neoepitopes mutation origin, they are
highly variable in between tumors and patients, conferring them a great poten-
tial for the development of personalized immunotherapies (e.g., cancer vaccines)
(Saxena et al., 2021).

1.5.1 Prediction of neoepitopes

Several tools have been developed in recent years to predict patient-specific
neoepitope candidates from sequencing data, such as Tumor Immunology miner
(TIminer), antigen.garnish, personalized Variant Antigens by Cancer Sequenc-
ing (PVACseq) and MUtant Peptide Extractor and Informer (MuPeXI) (Bjer-
regaard et al., 2017; Hundal et al., 2016; Richman et al., 2019; Tappeiner et al.,
2017). The overall strategy is to use WGS or WXS sequencing data of tumors
and compared to sequencing data from blood to detect tumor specific mutations.
Additionally, patient-specific HLA alleles can be used for selecting peptides that
bind to their particular HLA, and tumor RNAseq data can be used for filtering
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the subset of expressed mutations (Hackl et al., 2016; Schaap-Johansen et al.,
2021).

In this thesis, MuPeXI was used to predict patient-specific neoepitope candi-
dates. The best practice guidelines from the genome analysis tool kit (GATK)
(Van der Auwera et al., 2013) were used pre-process data and to detect tumor
specific mutations. An overview of the and the prediction pipeline used for this
thesis is illustrated in Figure 5.

Figure 5: Neoepitope prediction pipeline. WXS is trimmed, and quality checked
with TrimGalore. For HLA typing, the trimmed reads are aligned with Razers3,
and the HLA alleles are then typed with OptiType. For mutation identification, the
trimmed WXS reads are aligned with (BWA) and further pre-processed by GATKs
best practice with MarkDuplicate and base re-calibration. Mutect2 is applied to call
somatic mutations, which are further filtered with a contamination filter and a panel
of normal (PoN). RNAseq is also trimmed with TrimGalore, whereas the alignment
and estimation of transcript expression are conducted with Kallisto. The typed HLAs,
filtered mutations, and transcript expression are inputs to MuPeXI. MuPeXI has in-
corporated variant effect predictor (VEP) to find mutation consequences and extract
possible peptides from the relevant mutations. The transcript where the mutation
arrives from is found in the expression data, and the peptide-MHC binding is found
using netMHCpan. Modified from Bjerregaard et al. (2017) and Hackl et al. (2016)

Firstly, the reads were trimmed, quality-checked (Felix Krueger, 2021), and
aligned to a reference genome (Li and Durbin, 2009). GATK pre-processing
steps were used to further filter the reads that were then used as input to Mu-
Tect2, which identifies the somatic mutations (Benjamin et al., 2019). GATK
filters the identified mutations with a contamination filter and a panel of nor-
mal (PoN) to remove technical artifacts. MuPeXI has incorporated variant ef-
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fect predictor (VEP) to identify mutation consequences. Regarding neopeptide
selection, the NetMHCpan predicted binding affinity to HLA was used (Jurtz
et al., 2017), for which the typed patient specific HLA alleles were obtained
with OptiType (Szolek et al., 2014). Additionally, the expression of transcripts
was found using Kallisto (Bray et al., 2016) and used to filter out non-expressed
mutations.

1.5.2 Neoepitope screening

Currently, neoepitope prediction tools can successfully identify relevant neoepi-
tope candidates out of a tumor’s sequencing data. However, they still fail to
identify which of the neoepitope candidates can be recognized by CD8+ T cells.
The CD8+ T cells that recognize these immunogenic neoepitopes are referred
to as neoantigen-reactive CD8+ T cells (NARTs) (Schaap-Johansen et al., 2021;
Schumacher and Schreiber, 2015). To distinguish true immunogenic neoepi-
topes from the non-immunogenic ones, mapping neoepitopes experimentally
in samples from cancer patients is crucial. Bentzen and Hadrup et al. have
developed a technology to detect immunogenic neoepitopes from a large col-
lection of pMHC candidates (Bentzen et al., 2016), which has been used in
this thesis to validate NARTs. The overall procedure of this technique is il-
lustrated in Figure 6. First, predicted neoepitope candidates are folded with
their corresponding HLA molecule, and patient specific fluorescently-tagged
pMHC multimers are generated and labeled with a unique DNA barcode. These
barcode-labeled pMHC multimers are combined with patients’ samples, for ex-
ample peripheral blood mononuclear cell (PBMC) or TILs, and any CD8+ T
cells from these samples that bind to a pMHC complex are sorted for sequec-
ing of the pMHC associated barcodes. A computational tool, "Barracoda"
(https://services.healthtech.dtu.dk/service.php?Barracoda-1.8), can
process the sequencing data and with computational enrichment analysis iden-
tify which pMHC complexes give rise to NARTs.

Figure 6: Neoepitope screening technique. Peptides are combined with MHC,
and the pMHC multimers are constructed and labeled with a barcode. Then, the
multimers are combined with the patient’s samples, and CD8+ T cells bound pMHCs
are sorted and sent for sequencing. Modified from Kristensen et al. (2022).

https://services.healthtech.dtu.dk/service.php?Barracoda-1.8


10 introduction

Previous studies have been searching for NARTs from predicted neoepitopes,
but typically only 1% to 3 % of these will give rise to NARTs (Schumacher and
Schreiber, 2015). Therefore, there is a high need to identify the characteristics
of immunogenic neoepitopes to further improve neoepitope prediction tools.

1.5.3 Neoepitope immunogenicity

The characterization of neoepitope immunogenicity is poorly understood, which
can be caused by cancer heterogeneity and additionally by the limited amount
of validated neoepitopes. The limited amount of data available challenges re-
searchers’ possibilities to define characteristics of immunogenic neoepitopes and
hence the development of accurate neoepitope prediction tools. In that regard,
researchers have used both cancer-derived epitopes and pathogen-derived epi-
topes to discover the characteristics of immunogenicity. For example in 2017,
Luksza et al. created a fitness model representing the foreignness score of epi-
topes, by investigating both pathogenic epitopes and neoepitopes. They discov-
ered that the foreignness score could be used to distinguish immunogenic neoep-
tiopes from the non-immunogenic ones (Łuksza et al., 2017). This score has later
been validated by Richman et al. and they additionally found that hydropho-
bicity provides insight into neoepitope immunogenicity (Richman et al., 2019).
Another study investigated the physical properties of the peptide core, which
is the part of the peptide responsible for TCR recognition, and used machine
learning (ML) to predict antigen immunogenicity. They revealed that a high
fraction of hydrophobic and aromatic residues in the core gave rise to immuno-
genic epitopes (Schmidt et al., 2021). However, studies focusing on only cancer
epitopes are based on limited data. In 2016 a study revealed that mutation
clonality was important in eliciting a T cell response compared to neoepitopes
with sub-clonal mutations, but only based on a few neoepitopes (McGranahan
et al., 2016). Wells et al. studied the immunogenicity restricted to neoepitopes
derived from cancers by collecting data from different studies. They studied the
characteristics of 286 validated neoepitope candidates, where 29 were found to
be immunogenic. They discovered that binding affinity, binding stability, tumor
abundance, and hydrophobicity could be used to distinguish immunogenic from
non-immunogenic neoepitopes independently. They also studied the foreignness
score and the differential agretopicity index (DAI). DAI is the pMHC binding
affinity ratio between the mutated and corresponding normal peptides, which
has also been proposed by other studies to determine immunogenicity (Case
et al., 2019; Coelho et al., 2020; Ghorani et al., 2018). Finally, they proposed
a combination strategy to select immunogenic neoepitopes with high specificity,
representing the complexity to define immunogenicity owing to the many possi-
ble parameters involved (Wells et al., 2020).
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Altogether there is evidence that immunogenic neoepitopes share some char-
acteristics. However, the evidence is made across small datasets and requires
validation and improvement of the neoepitope prediction tools to predict neoepi-
topes with higher accuracy.

1.6 tumor escape mechanisms
All the characteristics mentioned in Chapter 1.5.3 can help to identify possible
immunogenic neoepitopes. However, even the best predicted candidate might
not raise a T cell response, because tumors can evolve to avoid immune recogni-
tion through different processes known as tumor escape mechanisms. One type
of escape mechanism is limited expression of HLA molecules (Figure 7A). As
described in Chapter 1.4.1, the pathway for presenting an antigen on the cell
surface is complex, and several mechanisms can cause this type of escape. The
down regulation of HLA can result in limited presentation of neoepitopes and
hereby hide for TCR mediated recognizing. However, in that scenario NK cells
will be activated because the inhibitory NK receptors (for example, killer cell
immunoglobulin-like receptor (KIR)), can not bind to their HLA ligand (Poggi
and Zocchi, 2006). McGranahan et al. discovered that the loss of heterozy-
gosity HLA (LOHHLA) happens in 40 % of non-small-cell lung cancer patients
(McGranahan et al., 2017). Additionally, a limited amount of NKs and lack
of immunological memory may also prevent NK cells from eliminating the tu-
mor cells (Lisiecka and Kostro, 2016). Another mechanism of tumor escape
is loss of immunogenicity (Figure 7B). As described in Chapter 1.5.3 only a
small fraction of predicted neoepitopes is immunogenic and can trigger NART
responses. Immunoselection mechanisms favour a selection of non-immunogenic
neoepitopes that prevent T cell recognition (Lisiecka and Kostro, 2016; Vesely
and Schreiber, 2013). As stated in Chapter 1.3 an inflamed TME is essential
for tumor regression, whereas a non-inflamed immunosuppressive environment
lacks tumor recognition. An immunosuppressive environment can also result
in immune escape. This type of escape mechanism can be caused by many
environmental factors, such as expression of immunosuppressive molecules by
cancer cells, e.g. programmed cell death ligand 1 (PD-L1) or programmed cell
death ligand 2 (PD-L2), which prevent T cell activation, or loss of costimulatory
molecules by APCs, essential for CD8+ T cell activation, such as B7-1 or B7-2
(Figure 7C) (Beatty and Gladney, 2015; Lisiecka and Kostro, 2016).



12 introduction

Figure 7: Tumor escape mechanisms. The tumor has the ability to escape from
T cell recognition. A) One way is to down-regulate the expression of HLA molecules.
B) Another escape mechanism is the loss of immunogenicity, whereas the presented
neoantigen is not immunogenic and unable to raise an immune response. C) An
immunosuppressive TME can also lead to tumor escape and prevent tumor recognition.
Modified from Beatty and Gladney (2015).

1.7 immunotherapy
Cancer treatment with immunotherapy has made a paradigm shift in treating
cancer patients with solid malignancies. Contrary to the classical treatment op-
tions, such as radiotherapy and chemotherapy, immunotherapy aims to boost the
immune system’s ability to recognize and kill cancer cells. Different immunother-
apy treatment strategies have shown to benefit different patient groups (Tong
et al., 2018), from which checkpoint inhibitors, adoptive cell transfer with TILs,
and therapeutic cancer vaccines are briefly revised in the following sections.

1.7.1 Checkpoint inhibitors

One type of immunotherapy treatment is checkpoint inhibitors (CPI). CPIs are
monoclonal antibodies that block inhibitory signaling pathways between APC
and/or cancer cells towards CD8+ T cells. In 2018 James P. Allison and Tasuku
Honjo got awarded the Nobel prize for their discovery of the immunosuppressive
molecules, Cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and pro-
grammed cell death 1 (PD-1), respectively (Huang and Chang, 2019). CTLA-4
is a co-receptor on CD8+ T cells that competes with CD28 for binding to B7-1
or B7-2. As described in chapter 1.4.2, CD8+ T cell activation is dependent on
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engagement of CD28 through binding of B7 expressed by APCs. However, acti-
vation of T cells will be inhibited if CTLA-4 binds B7 instead (Borghaei et al.,
2009; Buchbinder and Desai, 2016). The great success of CTLA-4 therapy has
led to the discovery of additional CPI molecules targeting other immunosup-
pressive interactions. For example, the interaction between PD-1 on T cells and
PD-L1/PD-L2 on cancer cells inhibits T cell proliferation and cytokines produc-
tion. To prevent this suppressive interaction, monoclonal antibodies have been
developed to block PD-1 or PD-L1 (Figure 8). CPI treatments blocking the PD-
1 to PD-L1 axis have been shown to be more efficient than anti-CTLA-4 (Fritz
and Lenardo, 2019; Oiseth and Aziz, 2017). Therefore, CPI treatments have
received great attention, and have demonstrated clinical benefit across multiple
cancer types (Chowell et al., 2022; Liang et al., 2020). Another ligand for PD-1,
which also suppresses T cell activation, is PD-L2. However, studies on PD-L2
are not as abundant as PD-L1 studies (Solinas et al., 2020).

Figure 8: Immunotherapy with checkpoint inhibitors (CPI). The interaction
between PD-1 and PD-L1 or PD-L2 suppresses the CD8+ T cells’ ability to kill cancer
cells. CPI with anti-PD-1 or anti-PD-L1 blocks this interaction so that CD8+ T cell
can be activated and kill cancer cells. Modified from Oiseth and Aziz (2017).

1.7.2 Adoptive cell transfer with TILs

Adoptive cell transfer (ACT) with TILs (TIL-ACT) is a personalized type of
immunotherapy, where TILs are expanded to great numbers from a patient
tumor lesion ex vivo and infused back into the patient. In 1988, Rosenberg
et al. were the first to show beneficial responses to TIL-ACT in patients with
metastatic melanoma (Rosenberg et al., 1988). Since then, a range of clinical
trials have proven the effectiveness of TIL-ACT, even in patients with poor
prognosis and failed efficacy of CPI treatment (Besser et al., 2013; Rosenberg
and Restifo, 2015; Rosenberg et al., 2011). Despite the clinical success of TIL-
ACT in melanoma patients, 40-50 % of patients do not respond. Both TMB
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and the amount of predicted neoepitopes (neoepitope load) have been suggested
as potential biomarkers to identify the patients that will benefit from ACT
treatment (Lauss et al., 2017).

1.7.3 Therapeutic cancer vaccines

Therapeutic cancer vaccines (TCVs) aim to expand patients´ endogenous T cells
to kill cancer cells. By choosing vaccine targets specific for a patient´s particular
tumor, TCVs can be a personalized immunotherapy strategy as ACT. However,
demonstrating the efficacy of TCVs has proven challenging (Saxena et al., 2021).
Multiple elements can be the reason behind the unsuccessful trials with TCVs,
such as a non-effective adjuvant, an immunosuppressive TME, or lack of T cell
infiltration (Shemesh et al., 2021). The availability of neoepitope prediction
tools, as mentioned in Chapter 1.5.1, has made neopeptide-based vaccines a
suitable immunotherapeutic option. These therapies have been proven safe and
feasible as a therapeutic strategy in various phase 1 and phase 2 clinical trials
(Saxena et al., 2021). However, the effectiveness of neopeptide-based vaccines is
highly dependent on choosing the right target. For this, neoepitope prediction
tools are needed to characterize immunogenic neoepitopes. Neopeptide-based
vaccines are still new in cancer therapies, and further studies are warranted to
improve the understanding of their efficacy (Blass and Ott, 2021).

1.8 biomarkers
Different types of biomarkers exist, which can be classified based on their usage.
Diagnostic biomarkers are used to detect diseases and provide a diagnosis. Prog-
nostic biomarkers describe patient survival probability independent of treatment,
whereas predictive biomarkers give an insight into patients’ outcomes from a spe-
cific treatment setting (Khomiak et al., 2020; Winter et al., 2013). This thesis
focuses on predictive biomarkers.

1.8.1 TMB and neoepitope load

Despite the successful survival improvement gained from CPI treatment, far
from all patients benefit from this treatment; accordingly, there is a need to
identify predictive biomarkers that can predict patients’ probability of benefiting
from this immunotherapy. TMB is one of the few approved predictive biomark-
ers and has been widely investigated across different cancer types (Chan et al.,
2019; Goodman et al., 2017). Predicted neoepitopes can give more insight into
which mutations are immunogenic, meaning that they are potentially shown to
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the immune system and CD8+ T cells. Therefore, the neoepitope load has also
been considered as a potential biomarker and it has shown promising results
across a diverse cohort of patients (Wells et al., 2020). However, other studies
have also demonstrated the non-predictive power of using TMB and neoepitope
load, as they do not work for all patients (Blank et al., 2018; Wood et al., 2020).

1.8.2 TME signatures

Besides the TMB and neoepitope load, different TME signatures have also been
explored as potential biomarkers. Among others, expression of the CPI target
PD-L1, have proven to work as predictive biomarkers for anti-PD-1 and anti-
PD-L1 therapy (Doroshow et al., 2021; Reck et al., 2016) Yet again, they are not
predictive for all patients (Burdett and Desai, 2020). As described in Chapter
1.7.1, another ligand to PD-1, although somewhat neglected, is PD-L2 and binds
to PD-1 with a higher affinity than PD-L1 (Solinas et al., 2020). Latchman et
al. observed PD-L2 as immunosuppressive, inhibits T cell profiliration, and
has been correlated with pure survival probability (Latchman et al., 2001). On
the contrary, Obeid et al. showed that high PD-L2 expression was correlated
with increased CD8+ T cell infiltration and was associated with better survival
(Obeid et al., 2016).

Another important TME factor is TILs as they are essential to recognize neoepi-
topes and kill cancer cells. Studies have suggested different signatures describing
TIL abundance estimated from bulk RNAseq as potential biomarkers. For exam-
ple, cytolytic activity (CYT) is the geometric mean of GZMA and PRF1, also
described in Chapter 1.4.2, and has been shown to predict patient outcomes
across different cancer types (Rooney et al., 2015). Another described signature
is T cell diversity, which can be utilized from the output obtained from a com-
putational tool that map reads from RNAseq to TCR sequences, (Bolotin et al.,
2015) and has previous been linked with positive response rate within anti-PD-1
CPI therapy (Zhao et al., 2019).

1.8.3 Combination strategies

Since many of the single biomarkers fail to predict patients’ outcome alone, the
better predictive capacity of combining several biomarkers have been demon-
strated. One way to combine biomarkers is to calculate an immune score of
some selected signatures (Cristescu et al., 2018). Another approach that allows
the combination of multiple biomarkers is to apply ML. For this, large-scale
data are needed to produce an ML model that can predict survival probability
with high specificity and sensitivity without overfitting (Acharjee et al., 2020;
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Chowell et al., 2022). Overall, the field of investigated biomarkers is enormous
and has many inconsistencies, making it clear that more research within the field
is required to clarify the question about which biomarkers should be considered
when deciding if patients should be treated with CPI.

1.9 machine learning
In the past two decades, ML has increasingly been applied in cancer research,
both for predicting the risk of developing cancer; and a patient’s specific sur-
vival probability or response to a particular treatment. ML models can interpret
multiple features and predict outcomes based on the data it is trained on. The
input for these predictions can include patient specific data such as genomic,
proteomic, and clinical data (Cruz and Wishart, 2006). Various ML algorithms
have been used to make predictions within cancer research. Among these are
the artificial neural network (ANN) which is constructed of multiple layers and
nodes (Jurtz et al., 2017). However, ANNs are black box models where it is al-
most impossible to extract information about the feature space, and this makes
it challenging to understand which features are important for the model perfor-
mance. Contrary to ANN, Random Forrest (RF) gives a better understanding
of the decisions made in the model and its feature space (Chen and Ishwaran,
2012; Dayhoff and DeLeo, 2001), and is the model used for this thesis.

1.9.1 Random forest model

RF models are based on a decision tree algorithm composed of sequential deci-
sions and can be used in resolving regression and classification problems. Figure
9A illustrates a simple procedure of how a decision for a classification problem
with two classes can be utilized. For each sequential decision within the algo-
rithm, the data is split by the variables that most efficiently separate the two
classes, here represented in red and blue (Somvanshi et al., 2017). The RF model
consists of multiple randomly constructed decision trees, and the final output
is an ensemble of all these trees using bagging (Figure 9B). The ensemble score
from a RF model can be represented as a binary value predicting the class, or
as a continuous value given by the probability (Ali et al., 2012).
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Figure 9: Decision tree and Random Forrest. A) An example of how the decision
tree splits the data during multiple decision rounds. B) A simple random forest model
with multiple trees predicting a binary outcome, where the final prediction from the
model is an assemble of the prediction from all trees. A) Modified from Somvanshi
et al. (2017) and B) Modified from Ali et al. (2012).

Features in RF models

All features applied in the RF model might not be of relevance for the predictive
outcome, and the relevant ones can have different grades of importance. One
of the strengths of the RF algorithm is that it can quantify the importance of
each implemented feature (Gregorutti et al., 2017). There are many ways to
calculate the feature importance, but the one used in this thesis is called Gini
importance. The Gini importance calculates the importance of each feature as
the number of times a feature is used to split a node (across all trees), weighted
by the number of samples it splits (Boulesteix et al., 2012). However, calculat-
ing feature importance for highly correlated parameters can draw inconsistency
according to the RF model’s feature selection as it is unable to choose between
correlated features and might choose differently when repeating the same model
(Gregorutti et al., 2017).

Imbalanced data

Imbalanced data is a common problem in ML although it reflects most of the
“real world” problems. In most cases, RF classification models can predict both
balanced and imbalanced data. However, the RF has a decreased ability to
predict accurately if more than 85 % of the data are belonging to one class
(either positive or negative). There are different ways to overcome this im-
balanced problem. One approach is to weigh the different classes differently.
Another technique is to downsample the overrepresented class or oversample
the underrepresented class (Perry and Bader-El-Den, 2015; Zhu et al., 2018).
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The downsampling procedure, which involves sub-sampling data and using an
ensemble score, has shown promising results in predicting disease risk across
eight different disease categories (Khalilia et al., 2011).

1.9.2 Overfitting and redundancy

Overfitting is a common problem in ML. Overfitting is when a model performs
well on the training data but fails to perform when the trained model is used to
make predictions on a new dataset. This can occur when the model is tested and
trained on the same or similar data. A way to overcome an overfitted model
is to use K-fold cross-validation. Here K is the number of data subsets, also
known as partitions. One of the most common K-fold cross-validation setups
is the 5-fold cross-validation (Figure 10) (Refaeilzadeh et al., 2009). In a 5-fold
cross-validation, the model is trained using data from four partitions and the
model performance is then tested using data from the last partition, which was
left out during training. This procedure is repeated five times, and the final
prediction is obtained from the five test-sets. However, this technique can still
result in an overfitted model due to data redundancy (Kohavi and Edu, 1993).

Figure 10: 5-fold cross-validation technique. Data is separated into 5 partitions,
where 4/5 are used to train and the last 1/5 is used to test. This procedure is repeated 5
times, and the final output is obtained from the 5 test-sets, which cover all data points.
Modified from Refaeilzadeh et al. (2009).

Redundancy occurs when data across different partitions share many similarities,
and constructing the partitioning with the proper technique can help remove
data redundancy. A common approach for making these partitions is using
clustering algorithms to cluster similar data within the same partition and, with
this, avoid overfitting (Hobohm et al., 1992; Jurtz et al., 2017). This could be,
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for example, clustering peptides with similar sequence identity within the same
partition to avoid overfitting.

Performance measurements

The performance of ML models can be evaluated with different measurements,
mainly based on four categories: true positive (TP) indicating the positive data
points which also are predicted to be positive. True negative (TN), given as
the negative data points and truly predicted as negative. False positive (FP)
is negative data points but predicted wrongly as positive. False negative (FN),
these are the positive data points but wrongly predicted as negative. These four
categories represent the content of a confusion matrix and can be used to calcu-
late various performance measurements where sensitivity and specificity are two
commonly used terms in ML. Both high sensitivity and specificity are essential
for model performance. However, it is difficult to achieve a good performance
in both. The calculation for sensitivity, also known as true positive rate (TPR)
(Equation 1), describes how well the model finds the positives, regardless of how
many FP are obtained.

Sensitivity (TPR) =
TP

TP + FN
(1)

Contrary to the sensitivity, the specificity, also known as the true negative rate
(TNR), calculates the number of TN out of all actual negatives in the dataset
regardless of the FN pool (Equation 2) (Dwivedi, 2018).

Specificity (TNR) =
TN

TN + FP
(2)

1-specificity is called the false positive rate (FPR), which, together with the
sensitivity, are the calculations needed to illustrate the receiver operating char-
acteristic (ROC) curves. The ROC curves represent, in general, how well the
model performed, and from the ROC curve, it’s possible to calculate the area
under receiver operating characteristic curve (AUC) (Figure 11). AUC can be
between 0 and 1, where 1 is a good-performing model, and 0.5 is a random
prediction. AUC below 0.5 is not meaningful as it then describes the opposite
of what’s expected for a given model, and for that case, the target value can be
inverted (Nahm, 2022). The performance at the beginning of the ROC curve fo-
cus on the high specificity. For that case, the partial AUC, AUC 10% (AUC01),
can be calculated using only the area under the curve until the FPR reaches 0.1
(10%) (Figure 11) (Walter, 2005).
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Figure 11: Area under the ROC curve. AUC is a performance measurement from
0 to 1, where 0.5 is random, and 1 describes a perfect performance. The AUC01 is
calculated when FPR reaches 10% and represents the beginning of the curve, which
focuses on high specificity. Modified from Walter (2005).
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Ground-breaking research in immunotherapy treatment has decreased the mor-
tality rate in cancer patients. However, mortality rates are still high. Treatment
options and guidance within the existing cancer treatment are still to be found.
The overall aim of this PhD thesis is to identify immune signatures that can
help optimize treatment strategies for cancer patients. The thesis uses bioinfor-
matic tools to analyze omics data to explore immunue signatures and targets
in human tumors driven by driven by the cytotoxic properties of CD8+ T cells
against cancer cells. The four included manuscripts cover novel understanding
in the field of cancer immunotherapy.

Manuscript I
Neoepitope load, T cell signatures and PD-L2 as combined biomarker strategy
for response to checkpoint inhibition
Immunotherapy with CPI only benefits a sub-group of patients, and it is, there-
fore, critical to discover biomarkers that can be used to predict patient’s ability
to obtain clinical benefit. This Manuscript explores potential biomarkers across
different cancer types and CPI treatments. Additionally, a combination strategy
of identified biomarkers is applied to discover the impact of using a combination
of biomarkers rather than single biomarkers.

Manuscript II
Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-
L1 blockade might predict therapy outcome in metastatic urothelial carcinoma
Anti-PD-L1 CPI therapy has shown great success in Metastatic urothelial carci-
noma (mUC) patients, but the outcome of these patients varies. This Manuscript
investigates neoepitopes’ potential to raise a CD8+ T cell response prior to and
during treatment with anti PD-L1. Furthermore, the Manuscript addresses the
availability to use the NARTs as a biomarker to predict patient outcomes. Ad-
ditionally, the TME was studied for differences in patients with high and low
detected NARTs. Lastly, the neoepitope characteristics were observed to define
distinctive features for immunogenic and non-immunogenic neoepitopes.

Manuscript III
Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy
with tumor-infiltrating lymphocytes in melanoma
TIL-ACT in melanoma patients has shown great potential also in patients that
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failed CPI treatment. This Manuscript aims to study NARTs in melanoma
patients prior to and during treatment. This includes the possibility of adopting
NART frequency as a predictor for patient outcomes and how the TME is related
to high NART frequency. Furthermore, the Manuscript observes features that
characterize of neoepitope immunogenicity.

Manuscript IV
IMPROVE, A feature model to predict neoepitope immunogenicity through broad-
scale validation of T cell recognition
Neoepitope prediction tools have enabled the ability to identify patient-specific
neoepitope candidates from high-throughput sequencing data. However, only a
few percent of these candidates give rise to NARTs, and the limited data avail-
ability of validated neoepitopes makes it challenging to characterize immuno-
genic neoepitopes and improve the prediction tools. This Manuscript studies
a large pool of validated neoepitopes and investigates which features can dis-
tinguish the immunogenic neoepitopes from the non-immunogenic ones. The
Manuscript uses a feature-based machine learning model to improve the predic-
tion of neoepitopes. Additionally, the Manuscript observed how patients’ specific
TME parameter affects the possibility of having NARTs and how implementing
such features can improve the prediction of neoepitopes.
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ABSTRACT  
Immune checkpoint inhibition for the treatment of cancer has provided a breakthrough in oncology, 
and several new checkpoint inhibition pathways are currently being investigated regarding their 
potential to provide additional clinical benefit. However, only a fraction of patients respond to such 
treatment modalities, and there is an urgent need to identify biomarkers to rationally select patients 
that will benefit from treatment. In this study, we explore different tumor associated characteristics 
for their association to favorable clinical outcome in a diverse cohort of cancer patients treated with 
checkpoint inhibitors. We studied 29 patients in a basket trial, comprising 12 different tumor types, 
treated with 10 different checkpoint inhibition regimens. Our analysis revealed that even across this 
diverse cohort, patients achieving clinical benefit had significantly higher neoepitope load, higher 
expression of T cell signatures and higher PD-L2 expression, which also correlated with improved 
progression-free and overall survival. Importantly, the combination of biomarkers serves as a better 
predictor than each of the biomarker alone. Basket trials are frequently used in modern 
immunotherapy trial design and here we identify a set of biomarkers of potential relevance across 
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multiple cancer types, allowing for selection patients that most likely will benefit from checkpoint 
inhibition therapy.  
 

INTRODUCTION  
Immune checkpoint inhibition (ICI) cancer immunotherapies are approved for treatment in several 
cancer types, and various novel combinations are being tested in a large number of clinical trials(Tang 
et al., 2018). Despite the success of this treatment modality, a substantial fraction of patients do not 
respond. Consequently, there is an urgent need to identify biomarkers that allow for the selection of 
patients that are most likely to benefit from ICI. Tumor mutational burden (TMB), defined as the 
number of non-synonymous mutations, has been demonstrated as a potential biomarker(Chan et al., 
2018) also across a diverse set of cancers(Goodman et al., 2017). However, it is evident that TMB as 
a single parameter does not apply to all patient groups(Blank et al., 2018; Holm et al., 2022). The 
TMB is believed to drive the antigen recognition of tumors, and hence the predicted neoepitope load 
might serve as an even better parameter to determine the tumor immunogenicity. Neoepitope load 
consists of the number of predicted neopeptides originating from non-synonymous mutations, 
potentially presented by the human leucocyte antigen (HLA) class I molecules. Studies show that the 
clinical benefit of immunotherapy is associated with high neoepitope load across multiple cancer 
types (Wells et al., 2020) underlining the possibility to use this parameter as a biomarker, but not all 
studies agree with this assertion (Wood et al., 2020). Programmed cell death protein 1 (PD-1), 
Programmed death ligand 1 (PD-L1), and 2 (PD-L2) have been discovered as single biomarkers for 
ICI treatments that block the PD-L1/PD-L2 to PD-1 interaction, but the predictiveness of these 
biomarkers are complex and do not work for all patients (Latchman et al., 2001; Yearley et al., 2017; 
Yang et al., 2019; Burdett and Desai, 2020).  
 
Evaluation of novel immunotherapeutic treatments for cancer is often initially pursued using a ‘basket 
trial’ design, as most of such therapies can potentially benefit patients with multiple different cancer 
diagnosis, and that features of responsiveness often appear to be similar across different cancer 
indications. This indeed holds true for both expression of PD-L1 (Herbst et al., 2014; Doroshow et 
al., 2021), T cell infiltration (Ros-Martínez et al., 2020), and TMB (Samstein et al., 2019; Sha et al., 
2020). In the present study we evaluate a diverse patient group for potential genetic signatures that 
can be relevant for response to ICI. We utilize whole exome sequencing (WXS), RNA sequencing 
(RNAseq), and expression arrays from patients treated with ICI to investigate the impact of high 
TMB, neoepitope load, and transcriptional signatures in the tumor microenvironment (TME) on 
patients’ overall survival (OS) and progression-free survival (PFS). On this basis, we have identified 
combinations of tumor characteristics and immune signatures, that can strengthen the identification 
of patients with a clinical benefit following ICI.  
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MATERIAL AND METHODS 
PATIENTS 
Thirty-two patients with metastatic solid tumors referred to treatment with checkpoint inhibitors from 
December 2014 to February 2018 were included in the study. Patients in this cohort were, by the time 
of the first medical appointment, offered inclusion into the Copenhagen Prospective Personalized 
Oncology (COPPO) study at the Phase 1 Unit - Rigshospitalet, Copenhagen, Denmark (Tuxen et al., 
2014, 2018), where prior to treatment initiation, patients are informed about the possibility of 
comprehensive genomic analysis, i.e. whole-exome sequencing and RNA sequencing of their tumors. 
This program is a feasibility study in phase I setting for patients with solid tumors and exhausted 
treatment options. 

Inclusion criteria for immune therapy were defined by the protocols with available slots 
(EUDRACT number:2013-002844-10, 2014-002835-32, 2014-002605-38, 2014-000948-14, 2015-
003771-30, and 2017-001147-13) and for two patients (pt no. 10 and 20) treatment off-label was 
given based on high mutational burden (> 1000 non-synonymous mutations). Response to treatment 
was assessed according to response evaluation criteria in solid tumors 1.1 (RECIST) criteria. The 
obtained best RECIST criteria (and lasting for at least 2 months) were used for this study's analysis.  

Fresh tumor biopsies were obtained before initiation of therapy. In one case, a biopsy was 
obtained after treatment with ICI and for another patient, the WXS from blood was not available.  
Therefore, these patients were excluded from analyses. Demographic data for the remaining 29 
patients can be seen in Supplementary Table S1. It should be noted that the RNAseq analysis for 
patient no. 19 did not succeed, but the patient is still included in the data analysis using the microarray 
data. 

 
MOLECULAR ANALYSIS OF TISSUE BIOPSIES 
Biopsies stored in RNAlater (Sigma-Aldrich) were used for comprehensive molecular profiling. 
Briefly, DNA and RNA were isolated using AllPrep DNA/RNA kit (Qiagen). Blood samples were 
collected in EDTA tubes, and genomic DNA was extracted using a Tecan automation workstation 
(Promega). Molecular profiling consists of whole-exome sequencing (Illumina platform) and mRNA 
expression arrays (Human U133 Plus2.0, Affymetrix). 

DNA libraries were prepared from 200 ng of DNA. Fragmentation was done on Covaris S2 
(Agilent) to approximately 300-bp fragments, and adaptor ligation was done using KAPA HTP 
Library Preparation Kit. Exomes were enriched with SureSelectXT Clinical Research Exome kit 
(Agilent). Sequencing was carried as paired-end sequencing, aiming at an average coverage of 50–
100x using the HiSeq2500 and NextSeq500 platforms from Illumina. RNAseq libraries were prepared 
from 100 ng of total RNA using the Total RNA-Seq library Prep Kit (Illumina). Sequencing was done 
on the HiSeq2500 and NextSeq500 platforms.  

Purified RNA was immediately analyzed on arrays. RNA was reverse transcribed and used 
for cRNA synthesis, labeling, and hybridization with GeneChip® Human Genome U133 Plus 2.0 
Array (Affymetrix) according to the manufacturer’s protocol. The arrays were washed and stained 
with phycoerythrin conjugated streptavidin using the Affymetrix Fluidics Station 450, and the arrays 
were scanned in the Affymetrix GeneArray 3000 7G scanner to generate fluorescent images.  
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NEXT GENERATION SEQUENCING DATA ANALYSIS 
WXS and RNAseq data were processed according to the Genome analysis tool kit best practice 
guidelines for somatic variant calling (Van der Auwera et al., 2013). Raw reads from both were 
quality trimmed using the wrapper tool Trim Galore 0.4.0 (Felix Krueger, 2021) combining Cutadapt 
(Martin, 2011) and FastQC(Andrews, 2010) trimming reads to an average phred score of 20 and a 
minimum length of 50 bp. Reads were aligned to the human genome (GRCh38) using the Burrows-
Wheeler Aligner (Li and Durbin, 2009) version 0.7.16a with default mem options and with a read-
group provided for each sample, thereby ensuring compatibility with the following steps. Reads were 
sorted using Samtools 1.6 (Li et al., 2009). Duplicated reads were marked using Picard-tools version 
2.9.1 MarkDuplicates. To reduce false positive variant calls, base recalibration was performed with 
GATK version 4.0.1.1. SNV and indel calls were made using GATKs build-inn version of 
MuTect2(Cibulskis et al., 2013) designed to call somatic variants for both single nucleotide variants 
(SNVs) and indels from matched tumor and normal samples. HLA alleles of each patient were 
inferred from the WXS data using OptiType 1.2(Szolek et al., 2014) with default settings after 
filtering the reads aligning to the HLA region with RazerS version 3.4.0(Weese et al., 2012) Kallisto 
0.42.1 (Bray et al., 2016) was used to determine the gene expression from RNAseq data.  
 
DIFFERENTIAL EXPRESSION ANALYSIS, AND GENE SET ENRICHMENT ANALYSIS  
Raw microarray data was imported into R and normalized by the Robust Multi-array Average (RMA) 
algorithm. The ‘hgu133plus2.db’ package version 4.1.0 was used to translate between probe set IDs 
and Human Gene Organization (HUGO) gene names. The ‘limma’ package (Smyth, 2005) (version 
3.5.3) was used to test for differential expression between groups. P values were adjusted using the 
method of Benjamini and Hochberg (BH). The package ‘ComplexHeatmap’ version 2.13.1 was used 
to create heat maps (Yu et al., 2012; Gu et al., 2016) of the differential expressed genes with adjusted 
p-value < 0.05 and log foldchange > 0.5 and log foldchange < -0.5. Gene Set Enrichment Analysis 
(GSEA) is made from the differential expression analysis results in R with cluserProfiler (Yu et al., 
2012) version 4.0.5 and enrichplot (Yu, 2021) version 1.13.2 with Gene Ontology pathway database.  
 
ASSESSMENT OF TMB AND NEOEPITOPE LOAD   
The total tumor mutational burden of all mutations acquired in each tumor was assessed by counting 
each entry passing the filtering criteria of GATK4’s MuTect2 output VCF file. This VCF file was 
given as input to the neoepitope predictor, mutant peptide extractor and informer (MuPeXI) 1.2.0 
(Bjerregaard et al., 2017) together with RNAseq expression values obtained from Kallisto in 
transcripts per million (TPM) and the HLA alleles detected by OptiType. The output neopeptides 
were selected for their potential to be neoepitopes by selecting peptides originating from genes with 
an expression above 0.1 TPM and a predicted binding eluted ligand percentile rank (EL %Rank) score 
< 2, evaluated by NetMCHpan 4.0 (Jurtz et al., 2017). The number of selected potential neoepitopes 
was used as the neoepitope load. Additionally, TMB of non-synonymous mutations were determined 
from the MuPeXI output logfile summarizing peptides originating from missense variant mutations, 
in-frame insertions, and deletions, together with frameshift mutations. Mutation types were 
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determined by Ensembl’s variant effect predictor (VEP) version 87(McLaren et al., 2016) as a 
dependency of MuPeXI.  
 
DETERMINATION OF T CELL DIVERSITY BY CDR3 SEQUENCE IDENTIFICATION FROM 

RNASEQ 
MiXCR(Bolotin et al., 2015) version 2.1.1 was used to determine complementarity-

determining region 3 (CDR3) sequences from bulk RNAseq data with the optimized setting for this 
specific purpose (Brown et al., 2016). The quality trimmed reads from RNAseq were used as input 
following MiXCR’s identification of specific clone identification from the IMGT database (Smyth, 
2005) reference of known CDR3 sequences, together with the clone count of each clone detected 
referring the reads aligning to this specific clone of the CDR3 reference library.  Shannon 
entropy(Shannon, 1948) was calculated as a T cell diversity measurement (Stewart et al., 1997). 
 
STATISTICAL ANALYSIS  
Since the data analyzed in this study is not normally distributed, an unpaired Mann-Whitney 
/Wilcoxon rank-sum test was used, with normal approximation using continuity correction of the 
calculated p-value to calculate and determine statistically significant differences between groups 
using R statistical software version 4.1.1.  
 
VALIDATION COHORT 
The validation cohort consists of 24 Metastatic Urothelial carcinoma (mUC) patients (Holm et al., 
2022). WXS and RNAseq are preprocessed in the same manner as the sequencing data from this study 
and a detailed description can be found in (Holm et al., 2020). Shortly, variants are called with GATK 
3.8, and TPM from each gene was found by Kallisto alignment.  
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RESULTS  
PATIENT COHORT AND CLINICAL OUTCOME  
We investigated different biomarkers for their potential to identify patients with a favorable clinical 
outcome in a diverse cohort of 29 cancer patients with 12 different tumor indications treated with 10 
different ICI combinations. All treatments included blocking of the PD-1 to PD-L1/PD-L2 interaction 
(Table 1).  
 
Table 1. Overview of diagnoses, given treatment and response pattern. 

ID Diagnosis  Treatment RECIST 
(best obtained) Biopsy site Number of prior 

treatments 

1 PAAD Atezolizumab + CEA-IL2 PD Liver 2 
2 BRCA Atezolizumab PD Liver 6 
3 COAD Atezolizumab + CEA-IL2 PD Lung 3 
4 READ Atezolizumab + CEA-IL2 PD Liver 3 
5 CESC Atezolizumab + CD40 PD Lymph node 6 
6 PAAD Atezolizumab + CEA-IL2 PD Lung 2 
7 CCA-IG Ipilimumab + Nivolumab PD Peritoneum 4 
8 SKCN Prembolizumab PD Liver 3 
9 BRCA Prembolizumab PD Lymph node 6 
10 COAD Nivolumab PD Primary tumor 2 
11 BLCA Prembolizumab PD Peritoneum 2 
12 BRCA Atezolizumab + CD40 PD Liver 6 
13 UC-U Prembolizumab SD Liver 2 
14 CESC Prembolizumab PR Lymph node 4 
15 CDC-K Nivolumab PR Kidney 1 
16 BRCA Atezolizumab SD Subcutaneous / Cutaneous      7 
17 BLCA Atezolizumab + CD40 SD Other 2 
18 BLCA Ipilimumab + Nivolumab PR Lymphnode 2 
19 BLCA Ipilimumab + Nivolumab CR Lymphnode 2 
20 COAD Prembolizumab PD Subcutaneous / Cutaneous                  3 
21 LIHC Nivolumab + LAG3 CR Liver 2 
22 BLCA Prembolizumab PR Lymph node 1 
23 READ Atezolizumab + CD3 (WP) PD Liver 3 
24 OV Atezolizumab + BET inhibitor PD Subcutaneous 6 
25 BRCA Chemo + Prembolizumab PR Lymph node 3 
26 BRCA Chemo + Prembolizumab PD Lymph node 1 
27 COAD Atezolizumab + CD3 (WP) PD Liver 2 
28 OV Atezolizumab + BET inhibitor SD Lymph node 3 
29 READ Atezolizumab + CD40  PD Liver 4 

BLCA; Bladder Urothelial Carcinoma, BRCA; Breast invasive carcinoma, CCA-IG; clear cell adenocarcinoma - intern 
genitalia, CDC-K; collecting duct carcinoma – kidney, CESC; Cervical squamous cell carcinoma and endocervical 
adenocarcinoma, COAD; Colon adenocarcinoma, LIHC; Liver hepatocellular carcinoma, OV; Ovarian serous 
cystadenocarcinoma, PAAD; Pancreatic adenocarcinoma, READ; Rectum adenocarcinoma, SKCN; Skin Cutaneous 
Melanoma, UC-U; Urothelial carcinoma – Urethra. 
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In total, 15 patients were treated with PD-1 ICI (Prembolizumab, Ipilimumab and/or Nivolumab) and 
14 patients with PD-L1 ICI (Atezolizumab), often in combination with other treatment modalities. 
Tumor biopsies were primarily taken from metastatic sites, including lymph node and liver. DNA 
was purified from blood (germline) and tumor to determine the tumor specific somatic mutations 
through WXS. RNA was sequenced from the tumor sample to determine the transcriptional 
landscape, including the expression of genes carrying neoepitopes and immune-relevant genes. 
Furthermore, targeted microarrays were performed on the tumor material and analyzed for a panel of 
known cancer related genes.  

Response to therapy was reported by the response evaluation criteria in solid tumors 
(RECIST) as best obtained response. The patient cohort included two complete responders (CR), five 
patients with partial response (PR), four with stable disease (SD), and 18 with progressive disease 
(PD). In this study, we investigate the differences between patients with PD and non-progressive 
disease (CR, PR, SD). The cohort included twenty deceased patients due to progressive disease, while 
ten patients were still under observation by end of the analysis (five of these with no signs of disease 
progression) (Figure 1A). All patients had previously been treated with at least one and up to seven 
prior treatment lines, none of which were immunotherapies (Supplementary Table 1). It is noteworthy 
that two patients obtain CR, and both received a combination of checkpoint inhibition treatments, 
nivolumab and ipilimumab, and nivolumab and LAG-3, respectively. When looking into the different 
checkpoint inhibition combinations used and the cancer type, no obvious difference in clinical 
response related to treatment regimen nor cancer type was observed (Figure 1B). It should be noted, 
however, that this study is not intended to identify the difference between tumor indications, since 
each tumor type is scarcely represented. 

 
NEOEPITOPE LOAD IS ASSOCIATED WITH NON-PROGRESSIVE DISEASE  
First, we investigated biomarkers known to influence overall survival in uniform cohorts of one 
cancer type i.e. TMB and neoepitope load (i.e. the number of tumor-specific peptides originating 
from somatic mutations and predicted to bind to patient-specific HLA, and where the gene of origin 
is expressed). Based on the analysis of the sequencing data from the 29 patients, when observing the 
predicted neoepitope load, extracted using the MuPeXI pipeline (Bjerregaard et al., 2017), sorted 
upon neoepitope load, patients do cluster based on progressive compared to non-progressive disease 
(Figure 1B). Interestingly, the two patients with a very high neoepitope load (both colon cancer with 
microsatellite instability (MSI) were found in the PD patient group (patient no. 10 and 20). No 
significant difference between patients with progressive disease vs. non-progressive disease was 
observed in the TMB for all mutations identified (Figure 1C), but we did observe a significant 
difference when evaluating TMB only for non-synonymous mutations (Figure 1D), provided a more 
significant difference between the two patient groups (Figure 1E).  
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Figure 1. Treatment trajectory, Tumor mutational bourdon and neoepitope load. A) The treatment trajectory for 
each patient is plotted according to response, with annotations of key dates, treatment period is highlighted in pink. B) 
Each patient is represented in a barplot of predicted neoepitope load with annotations according to best obtained RECIST 
criteria, cancer type, and immunotherapy treatment combination. Patients with high microsatellite instability are 
annotated with a triangle. BLCA; Bladder Urothelial Carcinoma, BRCA; Breast invasive carcinoma, CCA-IG; clear cell 
adenocarcinoma - intern genitalia, CDC-K; collecting duct carcinoma – kidney, CESC; Cervical squamous cell carcinoma 
and endocervical adenocarcinoma, COAD; Colon adenocarcinoma, LIHC; Liver hepatocellular carcinoma, OV; Ovarian 
serous cystadenocarcinoma, PAAD; Pancreatic adenocarcinoma, READ; Rectum adenocarcinoma, SKCN; Skin 
Cutaneous Melanoma, STAD; Stomach adenocarcinoma, UC-U; Urothelial carcinoma – Urethra. C-E) The mutation and 
neoepitope load are colored according to best obtained RECIST criteria and grouped by progressive vs non-progressive 
disease statistic test are med with Wilcox test. C) Total mutation burden (p-value = 0.069, Wilcoxon rank sum test). D) 
Non-synonymous mutations (p-value = 0.012, Wilcoxon rank sum test) and E) number of predicted neopeptides - referred 
to as neoepitope load (p-value = 0.0086).  
 

SELECTED T CELL SIGNATURES IDENTIFIES PATIENTS WITH TREATMENT BENEFIT 
To investigate whether distinct gene signatures differentiate the patients with progressive disease vs. 
non-progressive disease, we performed a differential expression analysis of a 770-pan-cancer-
immune-related-gene-panel from both the expression array data and the RNAseq data. Due to higher 
sensitivity, we display the analysis of the microarray data in the main figures. 
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The differential expression analysis revealed that 322 microarray probes, (Figure 2A) were 
differentially enriched between the two groups. Following double cluster analysis of the mean of 
these enriched probes, they condense into 188 genes. This gene signature tends to cluster according 
to disease outcome (RECIST), with a particular clustering of the patients with non-progressive 
disease vs. progressive disease (Figure 2B). We note that the two MSI colorectal cancer patients with 
the highest neoepitope load are clustered together with the other progressive disease patients 
according to the gene enrichment signature from the TME, indicating that an unfavorable tumor 
microenvironment, may override the role of the high TMB in promoting tumor foreignness (Figure 
2B). To identify biological pathways of interest, a gene set enrichment analysis (GSEA) was 
performed, revealing lymphocyte differentiation (Figure 2C) and more specifically, T cell 
differentiation pathways (Figure 2D) to be significantly enriched in the group of patients with non-
progressive disease.  

To investigate potential biomarkers from the tumor microenvironment (TME) that could be 
used to identify patients that would benefit from treatment, we investigated the intratumoral T cell 
presence and associated factors. Based on two different probe sets we find PD-L2 (gene synonym 
PDCD1L2), highlighted in Figure 2A, to be preferentially expressed in the TME from patients with 
non-progressive disease. When evaluating the expression level of PD-L2 in the individual patients, 
we observed a significantly higher expression in patients with non-progressive disease compared to 
progressive disease patients (Figure 2E) and confirmed in RNAseq (Supplemental Figure 1A). The 
ICI treatment with anti-PD-Ll blocks the interaction between PD-1 and PD-L1 but have no direct 
effect on the binding of PD-L2 to PD-1. Hence, we re-evaluated the PD-L2 expression data by 
splitting patients into two groups depending on the treatment received, anti-PD-1 or anti-PD-L1 
respectively. The number of subjects is low as a consequence of this split, and the PD-L1 treated 
cohort includes only SD patients in the ‘non-progressor’ group. Albeit the data suggest that the 
predictive effect of PD-L2 expression is stronger in the anti-PD-1 treated patients (Figure 2F).  

Cytolytic activity (CYT) of T cells, calculated as the geometric mean of the gene expression 
of granzyme A (GZMA) and perforin (PRF1) has previously been described as a biomarker for 
response to immunotherapy (Rooney et al., 2015). We investigated CYT as a biomarker in this cohort 
and found that CYT has a significantly higher expression in patients with non-progressive disease 
(Figure 2G) further confirmed in the RNAseq (Supplemental Figure 1B). Further, we examined the 
T cell infiltrate in the sense of detectable T cell receptor complementarity-determining region 3 
(CDR3) sequences from the bulk RNAseq data, and we find that the patients with non-progressive 
disease have a significantly higher T cell diversity compared to patients with progressive disease 
(Figure 2H). T cell diversity is defined as the Shannon Entropy, calculated based on the number of 
unique CDR3 sequences, or T cell clones, detected in the individual patient (Shannon, 1948; Stewart 
et al., 1997). The T cell diversity correlates with CYT (person correlation = 0.7) as both strategies 
quantify the T cell infiltrate (Supplementary Figure 1C). We found that both neoepitope load, PD-L2 
expression, CYT, and T cell diversity can be used as potential biomarkers to distinguish non-
progressive disease patients from progressive disease patients. By combining predicted neoepitopes 
with PD-L2 expression non-progressive disease patients are clustered in the high-high area split by 
the median of each value (Supplementary Figure 1D). The same pattern can be observed with CYT 



   
 

 10 

and PD-L2, as well as neoepitope load and CYT (Supplementary Figure 1E+F). Consequently, these 
may be interesting features for a combined biomarker. 
 

 
Figure 2. Immunological transcriptional profiling. Differential gene expression analysis between patients with 
progressive disease vs non-progressive disease displayed as a volcano plot. A) Shoving all probes extracted from the 770 
gene PanCancer Immune Profiling Panel colored according to log foldchange (LogFC) for probes with an adjusted p-
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value below 0.05 and LogFC above 0.5 and below minus 0.5. Probes with the highest variety in LogFC and lowest p-
values are highlighted together with probes for PRF1, GZMA, and PDCDLG2. B) The mean expression of the significant 
probes was gathered to reveal 188 significantly differentially expressed genes with z-scores displayed in a double 
clustered heatmap annotated with best-obtained RECIST criteria, neoepitope load, and T cell diversity (Shannon 
Entropy). C+D) Significantly gene ontology (GO) pathways enriched in the non-progressive group from the gene set 
enrichment analysis. C) Lymphocyte activation and lymphocyte differentiation. D) T cell activation and T cell 
differentiation. E-H) Comparing non-progressive with progressive disease patients and the statistic test are made with 
Wilcoxon rank sum test. E) Expression of PD-L2 was found to be significantly higher in patients with the non-progressive 
disease (p-value 0.00069). F) PD-L2 expression was separated into patients receiving PD-1 immune checkpoint inhibitors 
(ICI) and those who have received PD-L1 ICI where a significant difference in PD-L2 expression can be found for those 
patients treated with PD-1 ICI (p-value = 0.00031) and not for those who have been treated with PD-L1 ICI (p-value = 
0.46). G) The same was found for the cytolytic value (CYT), measured as the geometric mean of granzyme A and perforin 
(p-value = 0.0032). H) T cell infiltration analysis identifying CDR3 sequences from bulk tumor RNAseq data showed 
that the patients benefiting from treatment had a significantly higher T cell diversity measured by the Shannon Entropy 
(p-value = 0.0017). 
 

 
COMBINED BIOMARKERS IMPROVE SURVIVAL PROBABILITY 
To examine the probability of four different suggested biomarkers, Neoepitope load (NeoLoad), PD-
L2 expression (PDL2), CYT, and T cell diversity (Tdiv), and combinations hereof to identify patients 
with a favorable clinical outcome, we applied cox regression to analyze the association with OS and 
PFS. We analyzed all biomarkers individually and all possible combinations of the biomarkers. For 
the analysis, two groups (‘high’ and ‘low’) were established for each biomarker split by their median 
value. For a patient to be included in the “high” category that patient must have values above the 
median for all biomarkers within the combination while the remaining patients are then placed in the 
“low” category. Additionally, we included combinations of whether patients had “high” in three or 
more and two or more of any of the four investigated biomarkers compared to the remaining patients. 
Hazard ratios with corresponding confidence intervals were calculated for each biomarker and all 
combinations (Figure 3A). From this analysis, we found that the best combination of biomarkers 
according to the hazard ratio from PFS was obtained when CYT, NeoLoad and PDL2 were combined. 
The three best biomarker combinations were illustrated using Kaplan-Meier curves (Figure 3B). All 
three combinations can significantly separate favorable from unfavorable patient outcome, based on 
PFS and OS, respectively.  
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Figure 3. Survival analysis. A) Cox-regression analysis for four suggested biomarkers PD-L2 expression (PDL2), 
Cytolytic Activity (CYT), T cell diversity measured by the Shannon Entropy (Tdiv), and Neoepitope load (NeoLoad), 
and all combinations of these four biomarkers where “high” were defined by values above the median. On the x-axis, the 
square indicates the hazard ratio (HR) and the error bars indicate the confidence interval. Left; the analysis for Overall 
Survival (OS) and right; the analysis for progression-free survival (PFS). B) Kaplan-Meier curves for the top three 
combinations obtained from the analysis made from the cox-regression analysis. Left; a combination of high NeoLoad, 
high PD-L2 expression, and high CYT showed significantly improved survival probability for both PFS (p=0.0002) and 
OS (p=0.0034). Middel; patients with three or more high signatures also had increased survival probability both for PFS 
(p<0.0001) and OS (p=7 ∙ 10!"), right; patients with high NeoLoad, and PDL2, respectively, also had increased survival 
probability both for PFS (0.00021) and OS (p=0.0064). 
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VALIDATION COHORT  
WXS and RNAseq from a cohort of 24 Metastatic Urothelial carcinoma (mUC) patients all treated 
with anti-PD-L1 ICI (Holm et al., 2022) were used to validate the investigated biomarkers. The first 
combination with NeoLoad, CYT, and PDL2 was significant in identifying patients with longer PFS 
and OS (Figure 4A, left). The combination of any three or more biomarkers categorized as high also 
showed a significant difference in PFS and borderline non-significant separation in OS (Figure 4A, 
middle). But by combining only PDL2 and NeoLoad a most significant separation was obtained 
related to both OS and PFS (Figure 4A, right). Neoepitope load, CYT, T cell diversity, and PD-L2 
were also individually investigated for their predictive value in the validation cohort, but no 
significance was observed based on the single parameters (Supplementary Figure 2). Cox-regression 
analyses were conducted for the validation cohort, as in the primary cohort, using all suggested 
biomarkers and all combinations (Figure 4B). Again, this demonstrated that NeoLoad and PDL2 was 
the best combination to predict patient’s outcome, related to both PFS and OS. 

Overall, both the primary cohort and the validation cohort agree that a combination of 
biomarkers was better at predicting survival than a single biomarker alone.  Summarizing the two 
cohorts, patients with high neoepitope load and high PD-L2 expression and the same combination 
including high CYT resulted in a significantly improved survival probability.  
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Figure 4. Validation cohort. Cox-regression and survival analysis from the validation cohort. A) Kaplan-Meier curves 
for best three combinations found in the cohort from the basket trail with progression-free survival (PFS) in the top and 
overall survival at the bottom where high indicates values above median for the cohort. Left; comparing patients with 
high neoepitope load (NeoLoad), high cytolytic activity (CYT), and high PD-L2 expression (PDL2) to the remaining 
patients which showed that patients with high NeoLoad, CYT, and PDL2 had a higher PFS and OS probability (p-value 
= 0.035 and 0.046). Middle; three or more signatures as high compared to the remaining where PFS is significant in PFS 
(p=0.034) and borderline non-significant in OS (p=0.065). Right; patients with high NeoLoad and PDL2, respectively, 
compared to the remaining patients resulted in a significantly higher PFS probability for the patients in the “high” group 
(p= 0.0055) and a significantly higher OS probability (p-value = 0.011).  B) Cox-regression analysis of the four different 
suggested biomarkers including PD-L2 expression (PDL2), Cytolytic Activity (CYT), T cell diversity measured by the 
Shannon Entropy (Tdiv), and Neoepitope load (NeoLoad) and all their combinations illustrated for overall survival (OS) 
and Progression-free survival (PFS). Black squares indicate the hazard ratio whereas the error bars indicate the confidence 
interval. 
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DISCUSSION  
Despite the recent success of immunotherapy, the objective response rate rarely reaches >50% 
(Yarchoan et al., 2017; Chowell et al., 2022). Hence, there is a need to segregate patients likely to 
respond and understand the biological basis of treatment success and failure.  

In this study, we explore the impact of neoepitope load, PD-L2 expression, cytolytic 
transcriptional signature (CYT), and T cell diversity as biomarkers for predicting the outcome of ICI 
treatment. Our data suggest that individual parameters can serve as biomarkers to distinguish 
progressive from non-progressive patients, but a combination of biomarkers is substantially stronger 
in selecting patients with clinical benefit and can better bridge the heterogeneity observed within 
patient cohorts and across cohorts. As such, the combination of NeoLoad and PD-L2 expression could 
significantly identify patients with clinical benefit in both our primary and validation cohorts. 
Additionally, the selected biomarkers provided a significant separation of patients, measured by their 
progression free survival and overall survival, which may relate to both a predictive and prognostic 
value of such immune signatures.  

The study was conducted as so-called ‘basket’ trials, where patients with numerous different 
cancer types are subjected to the same clinical strategy and suggests that such markers can be used 
for patient stratification across different tumor types and ICI treatments. This practice relates to the 
increased understanding that the characteristics associated with clinical responses to immunotherapy, 
are often tumor-type agnostic, and is defined by the immune and inflammatory signature, and 
foreignness of both the tumor cells and the TME. Such favorable characteristics can be more or less 
prevalent in different tumor types, leading to different response rates to ICI, but the mechanism on 
interaction and influence on treatment is most often tumor agnostic (Taube et al., 2014; Chowell et 
al., 2022). 

Our data demonstrate that combining biomarkers is more robust than using a single biomarker 
and analysis from the validation cohort supports those findings. As an illustrative case, patient no. 
26, initially categorized as a partial responder progressed quickly after the first treatment (therefore 
not meeting the requirement of sustained a RECIST response for at least 2 months after treatment 
initiation). This patient turned out to have a gene expression profile corresponding to non-progressors 
(Figure 2B) but displayed the lowest detected neoepitope load of this cohort. This example suggests 
that not only is the right immunologic gene expression profile of the tumor tissue important but also 
a sufficient neoepitope load is needed, most likely for the tumor cells to be ‘visible’ to the immune 
system. On the other hand, a high neoepitope load alone is not sufficient, as seen for the non-
responding MSI patients no. 10 and 20, who, despite having the highest neoepitope load of the cohort 
(Figure 1D), displayed an immunological gene signature comparable to the progressive disease 
patients (Figure 2B). Interestingly, previous data has demonstrated high response rates to checkpoint 
inhibition therapy in patients with MSI tumors (Le et al., 2015), and based on such data checkpoint 
inhibition therapy is approved for the treatment of all MSI cancers, despite origin (Lemery et al., 
2017). The two MSI-high cases included in our cohort did not respond to therapy, and illustrate that 
additional biomarkers are needed to identify those patients where checkpoint inhibition is not 
sufficient even in this category of patients with a high TMB. 
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Taken together, our study demonstrates the need to combine different markers rather than 
relying on isolated markers when selecting patients likely to benefit from ICI. The interactions 
determining how T cells recognize and, ultimately, kill cancer cells are the result of myriad processes 
and modulating immune response by check-point inhibition is only a single trigger in a larger 
biological cascade.  Attempts to establish a multiparametric system comprising the mechanisms 
behind these interactions, such as the cancer immunogram (Blank et al., 2016) have been made, but 
the applicability in a clinical setting requires algorithms capable of managing not only large-scale 
data but also different types of data. The idea of combining neoantigen and immune signatures as a 
biomarker has been suggested in melanoma patients treated with adoptive cell transfer (ACT) (Lauss 
et al., 2017b). Machine learning strategies with multiple biomarkers have also been used to predict 
patient outcome for treatment with ICI but these machine learning algorithms needs large-scale data 
to make valuable predictions (Acharjee et al., 2020) and are therefore not used in this study, where 
the patient cohort is relatively small. The strategy applied here has the limitation that by separating 
patients into two groups with respect to high and low expression of certain gene signatures, some 
patients display borderline characteristics, and hence may be false categorized. The strength of 
machine learning approaches is their capacity to address a continuum of expression and a large 
number of parameters, thereby avoiding the need for strict and pre-defined cut-off values.  But as 
mentioned, this requires very large datasets to avoid overfitting results and to capture the variability 
that is observed within and across cancer patient cohorts. Access to biological and clinical data from 
such large cohorts, where sequencing data from different biological specimens are available at high 
quality is still a major limitation towards developing such algorithms.  

PD-L2 interaction with PD-1 inhibits T cell activation(Latchman et al., 2001). Furthermore, 
the function and importance of PD-L2 has recently been investigated and suggested as an important 
target for cancer (Solinas et al., 2020). We see a correlation between high expression of PD-L2 and 
better survival probability both for patients treated with anti-PD-1 and anti-PD-L1. This trend could 
be explained by high expression of PD-L2 in TME, being a signature of immune activity in the tumor 
site. This agrees with a study that showed a positive correlation between high PD-L2 expression and 
lymphocytic infiltration and improved overall survival (Obeid et al., 2016). Furthermore, for patients 
treated with anti-PD-1, the PD-L2 molecule is directly involved in the immunosuppressive axis that 
is being blocked by treatment.  

A challenge associated with most of the biomarkers currently identified as relevant for the 
prediction of response to immunotherapy, including those described here, is that they require the 
availability of tumor material. Future initiatives are heading towards an understating of how 
susceptibility to immunotherapy can be evaluated by studying circulating tumor cells (CTCs) and 
circulating tumor DNA (ctDNA) in peripheral blood. Such material might be useful to determine the 
neoepitope load if sufficiently representative of the tumor.  

In conclusion, this study adds to the potential impact of PD-L2, neoepitope load, CYT, and T 
cell diversity as potential biomarkers. Data from our study and the validation cohort, suggest that PD-
L2 and neoepitope load both with and without CYT significantly predict patient survival. Due to the 
small sample size, our results need further validation in larger cohorts.  
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Supplementary Table 1. Clinical characteristics of included patients. 

 
      N       N (%)   Mean 95% CI 

Lower  
95% CI 
Upper  

Gender 
Male 10 34.5    

Female 19 65.5    

Age   56.03 (28-
74) 51.3 60.8 

Number of treatment lines previous to immune therapy   3.2 (1-7) 2,5 3.9 

Death Alive 10 34.5    

Dead 19 65.5    

Subtype BLAC 5 17.2    

BRAC 6 20.7    

CCA-IG 1 3.4    

CDC-K 1 3.4    

CESC 2 6.9    

COAD 4 13.8    

LIHC 1 3.4    

OV 2 6.9    

PAAD 2 6.9    

READ 3 10.3    

SKCN 1 3.4    

 UC-U 1 3.4    

BLCA; Bladder Urothelial Carcinoma, BRCA; Breast invasive carcinoma, CCA-IG; clear cell adenocarcinoma - intern 
genitalia, CDC-K; collecting duct carcinoma – kidney, CESC; Cervical squamous cell carcinoma and endocervical 
adenocarcinoma, COAD; Colon adenocarcinoma, LIHC; Liver hepatocellular carcinoma, OV; Ovarian serous 
cystadenocarcinoma, PAAD; Pancreatic adenocarcinoma, READ; Rectum adenocarcinoma, SKCN; Skin Cutaneous 
Melanoma, UC-U; Urothelial carcinoma – Urethra. 
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Supplementary Figure 1. Biomarker from RNAseq, T cell signature correlation, and biomarker combinations. A-
C) the expression from CYT and PD-L2 were validated in RNAseq where the non-progressive group (CR/PR/SD) was 
compared to the progressive group (PD) group. A) PD-L2 expression from RNAseq (TPM) (p-value = 0.0032). B) 
Cytolytic activity (CYT) calculated from RNAseq data (p-value = 0.014). C) CYT from RNAseq and T cell diversity 
with correlation (Pearson correlation = 0.744), colored by RECIST. D) Neoepitope load vs PD-L2 expression showed 
that non-progressive disease patients were gathered in the upper right corner with above median expression in both. E) 
same observation by observing PD-L2 expression combined with CYT. F) Neoepitope load vs. CYT also showed 
clustering of non-progressive patients in the upper right corner.  
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Supplementary Figure 2. Analysis from validation cohort. The analysis made from the validation cohort compared 
the suggested biomarker with RECIST criteria all tests comparing are performed with the Wilcox rank sum test and 
besides the correlations which were performed with person correlation. A+B) comparing non-progressive and progressive 
from the RECIST group CR/PR/SD vs. SD. A) no significant differences were obtained by observing Tumor Mutational 
burden (TMB) (p-value = 0.21). B) Neither for the Neoepitope load (p-value = 0.15). C+D) Comparing RECIST group 
individually and statistical differences between CR and PD were observed. C) For the TMB no significant difference 



 4 

were obtained (p-value = 0.14). D) Observing the neoepitope load resulted in a better separation but non-significant (p-
value = 0.076). E-G) Comparing non-progressive and progressive patients. E) PD-L2 expression (TPM) (p-value = 0.15).  
F) Cytolytic activity (CYT) (p-value = 0.49). G) T cell diversity (p-value = 0.14). H) T cell diversity and CYT (person 
correlation = 0.568). I-K) Comparing RECIST criteria individually where statistic test comparing PD with CR. I)  PD-
L2 expression (p-value = 0.11). J) CYT (p-value = 0.076). K) T cell diversity (p-value = 0.081). L-N) Combination of 
some of the suggested biomarkers where the horizontal and vertical lines indicate the median. L) Predicted neoepitopes 
vs. PD-L2 expression. M) CYT vs. PD-L2 expression N) Neoepitope load vs. CYT.  
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Neoantigen-specific CD8 T cell responses in the
peripheral blood following PD-L1 blockade might
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CD8+ T cell reactivity towards tumor mutation-derived neoantigens is widely believed to

facilitate the antitumor immunity induced by immune checkpoint blockade (ICB). Here we

show that broadening in the number of neoantigen-reactive CD8+ T cell (NART) populations

between pre-treatment to 3-weeks post-treatment distinguishes patients with controlled

disease compared to patients with progressive disease in metastatic urothelial carcinoma

(mUC) treated with PD-L1-blockade. The longitudinal analysis of peripheral CD8+ T cell

recognition of patient-specific neopeptide libraries consisting of DNA barcode-labelled

pMHC multimers in a cohort of 24 patients from the clinical trial NCT02108652 also shows

that peripheral NARTs derived from patients with disease control are characterised by a PD1+

Ki67+ effector phenotype and increased CD39 levels compared to bystander bulk- and virus-

antigen reactive CD8+ T cells. The study provides insights into NART characteristics fol-

lowing ICB and suggests that early-stage NART expansion and activation are associated with

response to ICB in patients with mUC.
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The anti-tumor T cell response induced by ICB of the
programmed death 1 (PD-1) / programmed death-ligand 1
(PD-L1) axis can result in deep and durable responses in

patients with a variety of metastatic cancers1–5. In pre-treatment
tumors, a high mutational burden is correlated with a beneficial
response to immune checkpoint blockade (ICB) across multiple
indications, which is thought to be, at least in part, due to
increased presentation of exogenous neoantigens displayed by
major histocompatibility complex (MHC) class I to CD8+ T cells
reinvigorated by ICB6–9. Indeed, a growing body of evidence
suggests that CD8+ T cells not only infiltrate responding tumors
but also undergo rapid and robust proliferation in the peripheral
blood of patients following treatment with ICB10–17. With regard
to the specificity of this CD8+ T cell response, the interrogation
of neoantigen recognizing T cells (NARTs) has mostly been
limited to tumor tissue18. Importantly, since the relevant
neoantigens are unique for the individual patient, detailed NART
analysis requires the prediction of potential neoantigens and T
cell screening with a unique set of neoantigens for each patient.
This effort has been hindered by technological barriers limiting
the analytic range required to comprehensively characterize the
vast number of neoantigens potentially presented as well as the
diversity of potential human leukocyte antigen class I (HLA)
genotypes.

To address these issues, we focused on a previously reported
cohort of patients who were treated with the anti-PD-L1 antibody
atezolizumab for metastatic urothelial carcinoma (mUC)19.
Clinical outcome of mUC has significantly benefited from the
introduction of ICB treatment, with approximately 20% of
patients with previously fatal disease experiencing long-term
survival20,21. Additionally, long-term follow-up was obtained for
the patients under study (n= 24), with some remaining pro-
gression free 5+ years after treatment initiation. Peripheral blood
samples collected pre-, during-, and post-treatment were com-
prehensively screened using patient-specific neopeptide-MHC
(pMHC) multimer libraries, labeled with DNA barcodes22,
allowing for high-throughput detection of CD8+ T cell popula-
tions recognizing any such neopeptides in one parallel reaction.
We interrogated NART dynamics and phenotype using this novel
technique and evaluated for associations with clinical outcome.

Results
Neoepitope prediction and T cell screening. Neoepitopes were
predicted for each individual patient from Whole Exome
Sequencing (WES) and RNAseq by use of the MuPeXI
platform23. Potential neopeptide candidates were selected based
on their respective MHC-I binding affinity and expression level,
and the experimental availability of the recombinant MHC-I
molecules relevant for the given peptide. From the 24 patients, 56
different HLA ABC-haplotypes are represented, and at the time
of analysis 31 of these were available for pMHC multimer gen-
eration. On average, four HLA haplotypes were covered for each
patient. All HLA-feasible neopeptides with a predicted Eluted
Ligand (EL)%Rank score24 <0.5 and expression level >0.1 tran-
scripts per million (TPM) were selected, yielding between 14-587
HLA-binding neopeptides per patient (Fig. 1a). To allow com-
plete evaluation of potential neoepitopes in patients with low
mutational burden, additional neopeptides with higher EL%Rank
score, derived from genes with expression level >0.1 TPM were
included, based on lowest EL%Rank score, until a minimum of
200 neopeptides was reached for T cell recognition analyses per
patient. As a result, each patient was analyzed using pMHC
multimer libraries displaying between 200-587 patient-unique
neopeptides (Fig. 1b). In total, 6237 HLA-feasible neopeptides

across the 24 patients were predicted and included for T cell
analyses (Table 1).

In this patient cohort, neither the tumor mutational burden
(TMB) nor number of predicted neopeptides with EL%Rank <0.5
was predictive of ICB outcomes (Fig. 1c, d). Hence, we evaluated
for the presence of circulating NARTs to gain greater insights into
the nature of anti-tumor immunity following initiation of anti-
PD-L1 therapy.

Presence of NARTs in patient PBMC samples. Based on the
selected neopeptides, barcoded pMHC multimer libraries were
generated for each patient matching their HLA-type (Fig. 2a). In
addition to neopeptides, one to 17 HLA-matching virus-derived
peptides from cytomegalovirus (CMV), Epstein-Barr viral (EBV),
and influenza (FLU, together; CEF) were included in each patient’s
peptide library for internal assay validation and to compare NARTs
to virus-antigen reactive T cells (VARTs; Table 1). T cell recogni-
tion was examined by peripheral blood mononuclear cell (PBMC)
staining and sorting of a pMHC associated barcode in the
multimer-binding T cell population. Significant T cell recognition of
a given neopepitope (NART response) was defined as a Log2 fold
change (Log2FC) >2 and false-discovery rate (FDR) < 0.1, based on
previous investigations22.

PBMC samples, collected just prior to administration of
atezolizumab, were screened for the presence of NARTs
(n= 85 samples, median= 3 samples per patient) at the indicated
time points (Table 1+ Supplementary Table 1). Of note, PBMCs
were available from sampling up to >231 weeks after treatment
initiation for six long-term responders.

Representative outputs from patient screenings for NARTs is
depicted in Fig. 2b and Supplementary Fig. 2a, b. For patient
#2389 (ongoing complete response [CR] per best response
evaluation criteria in solid tumors [RECIST] version 1.1 criteria,
>280 weeks after treatment initiation), the T cell recognition
(Log2FC) is depicted for each of the pMHC multimers evaluated
in this patient (n= 203; Fig. 2b). The outcome is listed according
to the time points of blood sampling and grouped by the
evaluated HLA molecules. An emergence of new T cell
populations recognizing neoepitopes presented on HLA-
A*01:01 and HLA-B*40:01 is seen from pre-treatment to 3 weeks
post-treatment, while a T cell response towards a FLU epitope
presented on HLA-A*01:01 (VSDGGPNLY) is detected at the
majority of screened timepoints. Based on additional sample
availability, 65 NART responses detected at 3- or 9 weeks post-
treatment were interrogated using neo-pMHC tetramers (Fig. 2c).
50 NART responses were validated, whereas an additional nine
responses were borderline detectable (Supplementary Fig. 3).
These borderline detectable responses may represent low-affinity
NARTs, likely detected only by using DNA barcode-labelled
multimers due to enhanced sensitivity compared to conventional
tetramer-based detection for detection of such T cells22. In
parallel with the screening of patient samples, a selected set of
healthy donor (HD) PBMC samples were evaluated to validate all
pMHC multimer libraries based on the included CEF-peptides
(Supplementary Fig. 2c). A few pMHC multimer complexes
demonstrated unspecific binding in all samples and were
excluded from further analyses.

At the pre-treatment time point, T cells recognizing neoepi-
topes were detected in the 18 of 24 of patients (median 2; range 0
to 10 NART responses per patient). After 3 weeks of atezolizumab
treatment, T cells recognizing neoepitopes were detected in the 17
of 22 patients (median 3; range 0 to 13 NART responses per
patient; Table 1). 18 of 22 patients, including four with no
detectable pre-treatment NARTs, developed NARTs post-
treatment that were not originally present pre-treatment. 45 of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29342-0

2 NATURE COMMUNICATIONS |         (2022) 13:1935 | https://doi.org/10.1038/s41467-022-29342-0 | www.nature.com/naturecommunications



unique 148 NART responses were observed at multiple time-
points (Supplementary Table 1). There was no immediate
association between the number of unique NART responses
detected throughout treatment and the number of predicted and
evaluated neoepitopes (Fig. 2d). This indicates that other
parameters, beyond TMB, influences the capacity to drive such
T cell responses upon ICB initiation.

Enhancement of NART responses three weeks post-treatment
is associated with improved clinical outcome. At the pre-
treatment time point, no association between the number of
NART responses and best RECIST response was observed.
However, a difference in the kinetics of NART responses was
noted over the course of treatment, with NART populations
increasing three weeks post-treatment and then contracting in the
majority of patients with disease control (defined as patients with
SD, PR, and CR) but not in patients with progressive disease (PD;
Fig. 3a). Indeed, at the three week post-treatment time point,
patients with disease control tended to have a higher number of
NART responses compared to patients with PD (Fig. 3a,
p= 0.067), and also when comparing patients with a CR versus
PD (Fig. 3b, c). No significant differences between patient
response groups were observed at subsequent time points. The
change (delta) in number of detected NART responses between
pre-treatment and three weeks post-treatment was calculated to
better approximate patient-specific NART dynamics (Fig. 3d–e).
A significant increase in ΔNART responses was observed for

patients with disease control compared to those with PD (Fig. 3d,
p= 0.012), with CR patients experiencing the largest ΔNART
responses compared to PD patients (Fig. 3e, p= 0.022). Although
a substantial smaller library of CEF-derived epitopes was included
in the analyses compared to neoepitopes, no changes in the
VART response repertoire were observed during treatment
(Supplementary Fig. 5). The frequency of NART responses was
estimated based on pMHC multimer staining and the fraction of
barcode reads assigned to the given populations (see Materials
and Methods). The sum of estimated frequencies (SEFs) across all
patient samples ranged between 0.01% and 3.9% (n= 62, 0.55%
average) (Supplementary Fig. 4a). Individual response estimated
frequencies range from 0.01% up to ~2.83% (n= 221), with >98%
of response frequencies being below 1% (mean= 0.15 %, med-
ian= 0.048%). Hence, SEFs in patient samples are not skewed by
single, large NART response frequencies. Neither the absolute
SEF nor the change in SEF from baseline to 3-weeks post treat-
ment was associated to clinical outcome (Fig. 3f–i). Thus, based
on this evaluation, a substantial difference in the number of
NART responses was observed between patients with PD and
those with CR, and the breadth of the NART repertoire rather
than the combined estimated frequencies of such populations was
the key parameter associated to favorable clinical outcome in the
setting of ICB treatment. The increase delta in number of NART
responses from pre- to 3 week post-treatment for patients with
disease control indicate that these patients tended to rapidly raise
a broader T cell neoantigen recognition repertoire post-treatment.
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Fig. 1 Prediction of patient-specific neopeptides. a Overview of workflow for identification and prediction of mutation-derived neopeptides in mUC
patients. Created with BioRender.com. b Number of predicted and HLA-feasible neopeptides with EL%Rank <0.5, and TMB (diamond) in the patient cohort.
Patients grouped according to best RECIST 1.1 criteria, PD (n= 13 patients; median= 123, range= 16–700 neopeptides with EL%Rank <0.5 predicted) and
SD/PR/CR patients (n= 11 patients; median= 292, range= 26–898 neopeptides with EL%Rank <0.5 predicted). Dotted line represents minimum 200
neopeptides included in panel for each patient. c, d TMB and number of prediced neopeptides with EL%Rank <0.5 for patients with PD compared to SD/
PR/CR patients. For (c, d) groups were compared using non-parametric two-sided Mann–Whitney test and data is presented as median values ± largest/
smallest value within upper/lower quartile ± 1.5 IQR. NS. Not Significant. Source data are provided as a Source Data file.
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As described, predicted neoepitopes were originally included
based on an EL%Rank score <0.5 selection criteria, but for 15
patients the neoepitope library sizes were extended to reach a
minimum of 200 neoepitopes. We therefore evaluated if the
potential differences in neoepitope characteristics and library size
would influence our findings. Comparable analyses were
conducted including only neoepitopes with EL%Rank score
<0.5 and expression level >2 TPM or all library sizes were set
to 200. For both such analyses, we observed similar trends as
given for the total neopeptide libraries (Supplementary Fig. 4b±d).
Hence, no bias in our findings was introduced by the original
selection criteria.

Separating patients based according to Durable Clinical Benefit
(DCB; progression-free survival, PFS >6 months) did not yield a
significant difference in NART response numbers (Supplemen-
tary Fig. 4e). Furthermore, although not statistically significant, a
trend for improved PFS and overall survival (OS) was seen for the
patients with higher ΔNART response numbers from pre- to
3 weeks post-treatment (>median 0 ΔNART responses; Supple-
mentary Fig. 4f–h).

Peripheral blood TCR metrics display similar kinetics as
NARTs. TCR diversity and clonality for PBMCs and TILs have
been previously shown to be correlated with response to
ICB14,25,26. For this cohort, a higher fraction of the T cell clones
present in tumor were seen to expand in the blood 3 weeks post-
treatment for patients with DCB19. We observed a rapid spike in
bulk TCR clonality early post-treatment, similar to the observed
development in the number of NART responses (Supplementary
Fig. 4i), even though changes in bulk TCR clonality or diversity
did not differentiate patients with and without response to
therapy (data not shown). Although bulk TCR sequencing does
not identify the antigen specificity of individual clones, the par-
allel kinetics between the NART response development and TCR
clonality for patients with a favorable clinical outcome is note-
worthy. This further supports the contention that clonal expan-
sion and T cell reinvigoration occurs early post-treatment
following ICB.

Phenotypic characterization of NARTs indicate increased
proliferation of NARTs in patients with disease control. To
characterize the phenotypic profile of NARTs, a custom multi-
color flow cytometry antibody panel was designed to characterize
T cell differentiation, exhaustion, activation, and migration
(Supplementary Fig. 6a). Both phycoerythrin (PE)-neoepitope
multimers and viral pMHC multimers conjugated to allophyco-
cyanin (APC) were included in the panel to further differentiate
the phenotypic profiles of NARTs and VARTs. pMHC multimer-
binding T cells were sorted and barcodes sequenced for epitope
reactivity, whilst in parallel, the phenotypic profile of NARTs and
VARTs were characterized. Patient PBMC samples from pre-
treatment and at 3 weeks and 231+ weeks post-treatment were
selected based on the initial early NART-response, and patient
sample and multimer library availability (n= 34).

Data was visualized using Uniform Manifold Approximation
and Projection (UMAP) dimensionality reduction plugin. Varia-
tions in population distribution were observed when faceting
UMAPs by patient, either pre- to post-treatment or disease
control versus PD patients (Fig. 4a, b). Populations that were
enriched in density post-treatment were characterized by
expression of Ki67, PD-1, and in part CD39 (Fig. 4c). In
particular, Ki67 and PD-1-expressing NARTs appeared to be
enriched post-treatment in disease control patients compared to
PD patients. In contrast, NARTs expressing CD57 appeared more
frequent in PD patients post-treatment. Hence, guided by theT
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signatures from the UMAP, the frequency of the parameters that
appeared increased in disease control patients post-treatment, i.e.
KI67, CD39 and PD-1, were quantified for ‘bulk CD8 T cells’,
‘NARTs’, and ‘VARTs’ in the individual patients and the

evaluated time-points, based on the full dataset. We observed
an increase in the frequency of Ki67+ (bulk CD8 p= 0.00034,
NARTs p= 0.0054, VARTs p= 0.001) and PD-1+ (bulk CD8
p= 0.041, NARTs p= 0.043) CD8 T cells from baseline to three
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weeks post-treatment across all evaluated subpopulations
(Fig. 4d); indicating a general signature of T cell activation as a
consequence of ICB. Importantly, this increase was almost
exclusively observed for patients with disease control, with a
significance for both Ki67+ bulk CD8 T cells (p= 0.00088),
Ki67+ NARTs (p= 0.011), and Ki67+ VARTs (p= 0.0091). PD-
1+ bulk CD8 T cells were increased slightly from pre- to post-
treatment for PD patients (p= 0.03; Fig. 4e), but should be
reflected based on a complete absence of PD-1+ bulk CD8 T cells
prior to treatment initiation. In the VART population only, we

observed a marginal, non-significant increase in T cell activation
by Ki67+ and PD-1+ in the PD group (Fig. 4e). It is evident that
several patients in the disease control group have elevated levels
of PD-1+ CD8 T cells, especially within ‘bulk CD8’ and ‘NART’,
prior to therapy (bulk CD8 pre-treatment p= 0.0089; NARTs
pre- p= 0.02; Fig. 4f). A similar enhanced level of both Ki67+ and
PD-1+ ‘bulk CD8’ and CD39+, Ki67+ and PD-1+ NARTs is
observed at 3wks post-treatment, although only significant for
PD-1+ NARTs (p= 0.028; Fig. 4f). Interestingly, we observed that
triple-positive Ki67+ PD-1+ CD39+ CD8 T cells (Bulk, NARTs
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or VARTs) were completely absent in the PD group (Fig. 4g).
Lastly, at 3 weeks post-treatment, up to 60% of NARTs are
Ki67+CD45RA- cells and tend to constitute a larger subpopula-
tion for patients with disease control (Supplementary Fig. 6b),
with the majority of the cells being CD27+ rather than CD57+,

implying a state of activation rather than terminal differentiation
(Supplementary Fig. 6c). No difference in frequencies of terminally
differentiated, CD57+CD45RA+GzmB+ triple-positive cells were
seen between patient groups or during treatment (Supplementary
Fig. 6e, f). Detectable NARTs primarily comprise of TEm cells, with
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a smaller fraction of Naïve NARTs (Supplementary Fig. 6g). This
indicates that T cell recognition based on NARTs from the naïve
repertoire are also captured to some extent.

Importantly, CD39 seems to be the parameter that best
differentiates the PBMC NART population from the VART
population (pre- p= 0.007, post-treatment p= 0.018; Fig. 4h).
The CD39 expression is particularly evident for NARTs, both pre
and post-treatment, in the patients with disease control (pre-
p= 0.013, post-treatment p= 0.041; Fig. 4i), indicating recent
antigen exposure for this group of T cells. Previously, CD39 has
been seen to differentiate tumor specific CD8+ tumor infiltrating
lymphocytes (TILs) from bystander TILs27. Interestingly, PD
patient #7577 expresses higher frequencies of Ki67+ cells than the
remaining PD patients, but with few CD39+ NARTs detected
both pre- and post-treatment, suggesting lack of antigen
recognition for such NARTs, despite proliferation following
ICB (Supplementary Fig. 6c, d).

Examples of the above NART subpopulations at three weeks
post-treatment is shown in Fig. 4j–p (patient #2389, Best RECIST
1.1 CR). For patients with long-term clinical response, we further
evaluated PBMCs at a late time-point post-treatment (231+ weeks
post-treatment, n= 6). The majority of these patients experienced
an initial burst in the frequencies of Ki67+, PD-1+ and CD39+

subpopulations, which declined to pre-treatment levels at the late
time-point evaluated (Fig. 4q).

Taken together, a proliferative burst of NARTs is observed
following a single dose of PD-L1 blockade, which has been noted
previously for bulk CD8 T cells13. During this burst, NARTs in
patients with disease control tend to be in a Ki67+ state, and
mostly of a CD45RA−, PD-1+ phenotype, favoring CD27
expression over CD57. Furthermore, this NART subpopulation
can be identified in PBMCs based on CD39 expression.

Eluted ligand rank-score is a key correlate for neoepitope
recognition by CD8+ T cells. It is of key interest to precisely
predict which tumor neoepitopes are recognized by T cells. Hence,
we evaluated a number of features that may impact the likelihood
for T cell recognition. T cell recognized neoepitopes had lower
percentile rank both related to EL%Rank (p= 0.0016) and binding
affinity prediction (BA%Rank, p < 0.0001), whereas neopeptide-
related gene expression level did not differ between T cell recog-
nized and non-recognized neopeptides (p= 0.73; Fig. 5a–c). An
enrichment of T cell recognized neoepitopes was observed for
predicted neopeptides with EL%Rank < 0.5 and expression level
>2 TPM (p < 0.001; Fig. 5d), indicating that gene-expression level
in combination with EL is relevant in predicting immunogenic
neoepitopes in this cohort. Furthermore, there were no differences
in improved- or conserved HLA-binders, as both where equally
represented in the T cell recognized fraction (p= 0.19, Fig. 5e)28.
Interestingly, we did not observe improved T cell recognition of
neopeptides derived from certain classes of mutations (p=NS

Fig. 5f). However, a substantial pool of predicted neopeptides
derived from non-missense mutations elicited a T cell response,
which was also seen in patients with renal cell carcinoma (RCC)29.
Such non-missense mutations where unevenly distributed, but
present in the majority of evaluated patients (Fig. 5g)

Recently, clonality of predicted neopeptides has been asso-
ciated with T cell immune reactivity following ICB, with peptides
derived from clonal mutations dominating the elicited T cell
responses following PD-1- and CTLA-4 blockade30,31. To define
favorable characteristics of CD8+ T cell-reactive neopeptides, we
investigated their clonality, gene origin, expression level, and
HLA-binding affinity. Peptides derived from clonal mutations
make up the majority of neopeptides included in the libraries
(5,756 of 6,237; 92%), similar to what has previously been seen in
NSCLC30. Of 6,237 neopeptides screened in this cohort, 148
unique neopeptides were observed to elicit a T cell response. Of
these, 143 neopeptides were derived from clonal mutations, with
two originating from cancer driver genes (GPC3 and MAML2).
No difference in T cell recognition was observed towards clonal
or non-clonal neoepitopes (p= 0.4), but that may be due to the
large fraction of clonal mutations observed in this cohort. Also,
no preference for cancer driver genes amongst recognized
peptides was observed (p= 0.066) and NARTs recognized
peptides from a multitude of non-classical cancer driver genes
in this cohort (n= 120 genes; Fig. 5h). Together, these results
point to the importance of HLA-peptide binding affinity in
successfully predicting immunogenic neoepitopes as well as a
potential influence of neoantigen expression.

Pre-treatment TME mRNA gene signatures are associated with
post-treatment NART repertoire and phenotypic character-
istics. Having established the characteristics of NART responses,
we subsequently analyzed mRNA expression patterns in pre-
treatment tumors to evaluate the potential determinants in the
tumor microenvironment (TME) driving post-treatment NART
response. To better understand the composition of the TME, we
applied differential expression analysis (DEA) to determine overly
expressed genes and used Microenvironment Population Counter
(MCP) to estimate immune cell population abundancy in
the TME.

From the pre-treatment RNA-seq data, differentially expressed
genes were assessed based on the number of detected NART
responses at three weeks post-treatment (high >= median no. of
responses of three; Fig. 6a). Interestingly we observed a strong
clustering of patients based on the TME gene expression patterns
when evaluated based on the differentially expressed genes -
patients with high NART response numbers tended to have a
higher mRNA expression of genes such as CD3D, PPARG, and
TNFSF15, involved in T cell activation and differentiation32–36,
indicating a T cell stimulating pre-treatment TME in patients
with high number of post-treatment NART responses. In

Fig. 4 Phenotypic characterisation of bulk CD8 T cells, NARTs and VARTs. a–b UMAPs of bulk concatenated CD8+ T cells and NARTs at (a) pre-
treatment and (b) 3-week post-treatment for patients with SD/PR/CR (n= 8 patients) and PD (n= 4 patients). c Expression of phenotype markers on
UMAP. Cells expressing similar parameters are clustered based on expression patterns. d–f Parent population frequencies of selected and (g) for triple-
positive Ki67+ PD-1+ CD39+ bulk CD8, NART and VART subpopulations for each patient, either at pre- (n= 14 patients) and 3 weeks post-treatment
(n= 14 patients) and between patient with SD/PR/CR (n= 10 patients) and PD (n= 4 patients). h–i CD39+ frequencies for bulk CD8 T cells, NART, and
VART subpopulations at pre- and post-treatment for patients with SD/PR/CR (n= 10 patients) and PD (n= 4 patients). j–p Representative example of
flow contour plots (5%, outliers shown) of key parameters for the NART subpopulation at three-week post-treatment for patient #2389 (DCB; Best RECIST
1.1 CR). q Ki67+ , CD39+ , and PD-1+ subpopulation frequencies for bulk CD8 T cells, NARTs, and VARTs at pre-treatment (n= 14 patients) and at three
weeks (n= 14 patients) and 230+ weeks post-treatment (n= 6 patients). For (d–g) groups were compared using non-parametric two-sided
Mann–Whitney test and Kruskal–Wallis Dunn’s multiple comparison test for (h) + (i). For (d–i), data is presented as median values ± largest/smallest
value within upper/lower quartile ± 1.5 IQR. NS. Not Significant, *p < 0.05, **p < 0.01, ***p < 0.001. wk: week, Pre: Pre-treatment, Post: Post-treatment. In
(d), (e) and (g) Post: three weeks post-treatment. Source data are provided as a Source Data file.
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contrast, for patients with lower number of NART responses, we
observed high expression of FN1, ITGA5 and COL3A1, which is
correlated with poor survival for cancer patients37–39. Addition-
ally, CXCL5, involved in angiogenesis40,41, was increasingly
expressed both across patients with low number of NART
responses and PD patients. Furthermore, for patients with high
NART responses post-treatment, the gene ontology (GO)

enrichment analysis of the DEA results showed pre-treatment
enrichment of gene sets associated with the TCR complex and
antigen presentation, potentially facilitating an improved NART
response post-treatment (Fig. 6b, c).

Applying the MCP-counter method, patients with a high number
of detected NART responses post-treatment had a higher expression
of genes that together define various subtypes of immune cells,
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including bulk T cells (p= 0.042) and with a trend for CD8 T cells
(p= 0.066), while exhibiting lower levels of fibroblasts, indicating a
less inhibitory TME42 (p= 0.0005; Fig. 6d–h). Together, pre-
treatment TME patterns are associated with the post-treatment
NART response repertoire, with a pre-treatment T cell activating
mRNA signature in the tumor within patients that tended to raise a
broader NART response post-treatment.

Discussion
This study utilized a high-throughput screening approach to serially
interrogate CD8 T cell recognition of patient-specific neopeptides
predicted from the pre-treatment tumor mutagenome in the per-
ipheral blood of 24 patients with mUC treated with anti-PD-L1-
therapy. Several findings are important. First, we observed an
increase in NART responses from pre-treatment to three weeks
post-treatment in patients with disease control. At this time point,
the overall neoepitope recognition breadth, not the estimated fre-
quency of such CD8 T cell populations, was associated with clinical
radiographic response. This may reflect the finding that the majority
of NART responses are low frequent. Second, phenotypic char-
acterization of NARTs revealed an association between Ki-67+ PD-
1+ NARTs three weeks post-treatment and clinical outcome. Third,
CD39 was expressed on a higher fraction of the NARTs compared
with VARTs in the blood, suggesting this marker could be used to
identify anti-tumor T cells. The same difference was not observed in
bulk CD8+ T cells, which may include additional tumor-antigen
specific T cells not captured in our screening for neoepitope
recognition. Fourth, TME mRNA expression patterns pre-treatment
were associated with increased NART responses three weeks post-
treatment. Finally, in silico modelling of neoepitope prediction
partially recapitulated the T cell recognition of NARTs, demon-
strating peptide HLA-binding, and mutation gene-expression to
affect neoepitope T cell recognition.

The apparent kinetics of NART responses detected in our
study are consistent with a growing body of literature indicating
that ICB rapidly induces an immunological T cell response in the
peripheral blood, where multiple reports describe early peripheral
T cell turnover, expansion and activation after ICB initiation
within 7–21 days12–17,19,43. Both effector T cell expansion14 and
Ki67+ PD-1+ CD8 T cell increase13 in the periphery three weeks
post-treatment have been linked to clinical outcome to ICB. Our
findings provide novel insight, as they shed light on the specifi-
cities and temporal dynamics of neoepitope-recognizing CD8 T
cell responses through the detection and quantification of circu-
lating NARTs following ICB. Yet whether emerging NARTs are
truly de-novo primed or present pre-treatment at sub-detection
levels in periphery cannot be deduced, although recent studies
have suggested ICB-induced de-novo recruitment of naïve tumor-
specific T cells from the lymph nodes44.

It should also be noted that the median time to response for
patients included in this cohort is 2.1 months (95% CI 2.0–2.2)5

consistent with the time of the first radiographical disease
assessment, comparable to other ICB clinical trials in mUC

patients (median time to response 1.4–2.1 months)45–50. Conse-
quently, any earlier tumor reduction prior to first scan is not
measured, but the rapid time to response indicates that clinical
response to therapy occurs early. Hence, these observations are
consistent with our findings of early proliferation, as most
response to therapy are captured at 9 weeks post-treatment.

Furthermore, interrogating NARTs revealed kinetics that were
not visible from investigating bulk TCR-seq. These NART
responses were personal to each patient under study and per-
sisted, albeit at lower levels than the initial 3 weeks peak, for over
5 years post-treatment initiation in some long-term responders.
NART responses shared between patients were not identified in
this study.

The ability to in silico model the T cell neoantigen responses
induced in vivo, as well as the clinical relevance of in silico
modeling of antigenic diversity beyond association of TMB and
neopeptide prediction to clinical outcome, are areas of active
investigation. The importance of gene expression level for
neoantigen quality is previously described, yet thresholds remain
undefined51, in contrast to the established importance of HLA-I
binding affinity28. We observed that the majority of NART
populations recognized neopeptides with EL%Rank <0.5 and
expression level >2 TPM, and that analyses based on only these
responses also were associated with clinical outcome (Supple-
mentary Fig. 4b–d). However, a multitude of NART responses
towards neopeptides outside these specifications was detected,
and could likewise serve as important targets for anti-tumor
immunity. Although the combined EL%Rank scores and
expression level provide the best parameters for neopeptide T cell
reactivity here, these results also suggest that future neoepitope
prediction and selection should include additional parameters,
such as tumor immunogenicity, immune priming, and peptide
sequence similarity to known self- and infection-derived antigens,
as incorporated in recently described neoantigen fitness
models52–56. At the initiation of study, neopeptides were selected
only based on HLA-binding affinity and expression level >0.1
TPM, limiting potential bias in prediction and selection of
immunogenic neoepitopes. Recently, selection based on such key
characteristics were supported, but also revealed the persistent
challenge in fully defining the parameters critical for high accu-
racy neoepitope prediction57. Lastly, the results propose that
predicted neopeptides outside these current thresholds should be
included in future NART screenings.

Interestingly, we observed that mRNA-expression patterns in
pre-treatment tumors differ between patients mounting a wider
post-treatment NART response and those that do not. In parti-
cular, high T cell infiltration seems to be important for the gen-
eration of NARTs. Although needing validation, our results also
suggest that pre-treatment TME mRNA gene expression patterns
may also be useful when predicting NART responses. Also of
interest, clinical outcome may potentially be driven by a com-
bined favorable pre-treatment TME and induced post-treatment
NART repertoire, requiring further interrogation.

Fig. 5 Molecular characteristics of T cell neoepitopes. a–c EL%Rank score, BA%Rank score and expression level of predicted neopeptides, grouped
according to T cell recognition (Yes, n= 147 neopeptides/No, n= 6,090 neopeptides). Dotted lines indicate split for groups in z-test, applied in Fig. 5d.
d Expression levels of neopeptide-origin genes and predicted EL%Rank score of neopeptides. Colored according to T cell recognition of neopeptides.
e Peptide EL%Rank scores of wild type (normal) and mutant neopeptides, colored according to T cell recognition. f Proportions of neoepitopes eliciting T
cell recognition or not, grouped according to neopeptide-induced type of mutation. g Distribution of predicted neopeptides and neoepitope recognition,
grouped according the type of peptide-inducing mutation across patients (M = Missense, F = Frameshift, I = Inframe insertion, D = Inframe deletion).
h Venn-diagram of non- and T cell recognized predicted neopeptides and if they are derived from clonal mutations or cancer-driver genes. For (a–c) groups
were compared using non-paired t-test and data is presented as boxplot ranged by 25th and 75th quartiles with median values, and whiskers as ±largest/
smallest value within upper/lower quartile ± 1.5 IQR. NS. Not Significant, *p < 0.05, **p < 0.01, ***p < 0.001. Source data are provided as a Source Data file.
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Phenotypic characterization of NARTs allowed for important
observations in the peripheral blood that have heretofore been
made mostly in the tumor microenvironment. Recently, in
NSCLC patients, activated progenitor-like (TCF-1+ PD-1+)
T cells with proliferative capacities have been observed, high-
lighting the likely importance of this cell type to the anti-tumor

response58. Our analyses revealed that a similar PD-1+ Ki67+

NART population was detected post-treatment primarily in
patients who derived benefit from therapy. Although phenotypic
changes to some extent seemed to be antigen-independent, our
results still suggest that the reactivity and proliferative tendencies
of NARTs in the peripheral blood contribute to tumor clearance
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and that an activated T cell profile is associated to favorable
clinical outcome. Further, in lung and colorectal tumors, CD39
expression has been utilized to distinguish between bystander and
NARTs in the microenvironment27. We demonstrate here that
CD39 expression may also helpful identify NARTs from
bystander T cells in the blood without the need to procure and
immediately process fresh tumor tissue.

There are notable limitations to our study. First, the sample
size was small. However, the screening of the 24 patients under
study was unselected and comprehensive, with 200-587 neopep-
tides included per patient yielding a total of 6237 neopeptides.
Patient samples were also longitudinally collected and screened,
which allowed for detection of NART responses for up to 5+
years post-treatment in some long-term responders. Second, we
did not evaluate the contribution of MHC-II restricted peptides
and the role of CD4 T cells, which were recently shown to
mediate and drive anti-tumor cytotoxicity and immunogenicity
following ICB, also in UC59–61. Finally, we did not perform on-
treatment biopsies and were therefore unable to evaluate NART
trafficking and tumor immunoediting during treatment.

Of additional interest, the T cell neoepitope recognition profile
of two patients with partial response to therapy differed sig-
nificantly from the other patients with disease control. Patient
#5122 (PFS/OS= 1932, best RECIST 1.1 PR) differed from other
patients with long-term progression-free survival in that the
number of NART responses decreased from baseline and main-
tained no detectable NART responses throughout treatment.
However, the patient was observed to harbor a PDL1 gene
amplification, which has been associated with positive outcomes
following ICB treatment62. Patient #1233 displayed NART
dynamics and phenotype as well as a pre-treatment TME mRNA
expression pattern associated with PD in the larger cohort; thus,
no such characteristics explain the apparent clinical response.
These cases indicate the complexity of clinical response and
resistance to ICB.

Despite these limitations, our observations add to the current
understanding of anti-tumor immunity induced by ICB and
suggest that important insights into NART dynamics can be
made from pre-treatment archival tumors and post-treatment
peripheral blood interrogation alone; NARTs are indeed detect-
able in the periphery and to a higher degree among patients that
benefit from therapy. These findings warrant further investiga-
tion, to both improve ICB clinical outcome prediction and to
investigate the mechanistic underpinnings of ICB, whether pre-
existing NARTs rise to a detectable levels63 or if NARTs are
recruited and activated as a result of ICB44,64,65.

Methods and Materials
Study design and participant samples. Patients had mUC and
were treated with atezolizumab 1200mg intravenously (IV) every
21 days at Memorial Sloan Kettering Cancer Center as part of the
IMVigor210 trial5. Cross sectional imaging was performed every
9 weeks for the first 12 months following cycle 1 day followed by
every 12 weeks thereafter. Best overall response was determined
by radiologic assessment of response, using RECIST version 1.1.

In patients in whom clinical progression was determined based
on symptoms and decline and functional status, this determina-
tion superseded radiologic categorization. Patients that were only
screened at baseline were classified as with progressive disease. All
patients provided written informed consent to both the IMvigor
210 trial and an Institution Review Board-approved biospecimen
protocol permitting tissue and blood collection, sequencing, and
correlative studies.

Twenty-four patients included in a previously published multi-
omic analysis19 were the subject of this study (Supplementary
Fig. 1). PFS and OS were updated for this cohort. Patients with
PFS > 6 months (n= 9; PFS < 6 months n= 15) were stated as
having DCB from treatment, with other outcomes data in the
supplement (Supplementary Table 2). Patient formalin-fixed
paraffin-embedded (FFPE) tumor and PBMC samples were
obtained and prepared as previously described19 . Blood samples
were drawn from patients prior to IV infusion on the day of
treatment, pre-treatment and during treatment, and PBMCs were
isolated and cryopreserved at −150 °C in Human Serum Albumin
(HSA)/10% DMSO until analysis.

HD samples were collected by approval of the local Scientific
Ethics Committee, with donor written informed consent obtained
according to the Declaration of Helsinki. HD blood samples were
obtained from the blood bank at Rigshospitalet, Copenhagen,
Denmark. All samples were obtained anonymously. PBMCs from
HDs were obtained from whole blood by density centrifugation on
Lymphoprep (Axis-Shield PoC, cat# 1114544) in Leucosep tubes
(Greiner Bio-One, cat# 227288) and cryopreserved at −150 °C in
fetal calf serum (FCS, Gibco, cat#10500064) + 10% dimethyl
sulfoxide (DMSO, Sigma-Aldrich, cat#C6164).

WES, RNA- and TCR-seq, HLA typing and Next-Generation
Sequencing data processing. Patient WES and RNAseq data,
HLA typing and TCRβ CDR3 region amplification was acquired
as described as part of a previous study on the patient cohort19. In
total, 22 patients had tumor and PBMC material of sufficient
quality for both WES, RNA-seq, TCRβ-seq and minimum one
pretreatment PBMC sample, as tumor TCR analysis was not
performed on patient tumor samples from patients #522 and
#6800 due to failed sequencing quality control.

Novel for this study, raw FASTQ files from WES and RNAseq
were analyzed in the following manner. First, both data sets were
pre-processed for quality using Trim Galore version 0.4.066,
which combines the functions of Cutadapt67 and FastQC 0.11.2:68

trimming the reads below an average Phred score of 20 (default
value), cutting out standard adaptors such as those from Illumina,
and running FastQC to evaluate data quality. Variant calling was
performed following the Genome Analysis Toolkit (GATK) best
practice guidelines for somatic variant detection69. Reads were
aligned to the human genome (GRCh38) using the Burrows-
Wheeler Aligner70 version 0.7.15:q with default mem options and
with a reading group provided for each sample for compatibility
with the following steps. Duplicate reads were marked using
Picard-tools version 2.9.1 MarkDuplicates. Base recalibration was
performed with GATK version 3.7 to reduce false-positive variant

Fig. 6 Transcriptomic analysis of TME related to the level of NARTs post therapy. a Differentially expressed genes (n= 295) from DEA of all patient
genes, related to high versus low NART responses at three weeks post-treatment. b, c Two significant gene sets from the GO enrichment analysis, antigen
binding and T cell receptor complex, respectively. d Heatmap of immunological cell signatures across patients, grouped by high or low number of NART
responses at 3-week post-treatment, and (e–h) associations towards high (n= 11 patients) or low number (n= 11 patients) of NART responses at 3-week
post-treatment for (e) T cells, f CTLs, g CD8 T cells, and (h) Fibroblasts. No three weeks post-treatment PBMCs were available from patients #40 and
#9723, hence these patients were not included in the analyses or comparisons. For (a) and (d–h) NS1 denotes patients not screened at three weeks post-
treatment due to sample unavailability. For e)-h) groups were compared using non-parametric two-sided Mann–Whitney test and data is presented as
median values ± largest/smallest value within upper/lower quartile ± 1.5 IQR. NS. Not Significant, *p < 0.05, **p < 0.01, ***p < 0.001. Source data are
provided as a Source Data file.
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calls. SNV and indel calls were made using GATK version 3.8’s
build in a version of MuTect271 designed to call variants, both
SNVs and indels, from matched tumor and normal samples.
Kallisto 0.42.172 was used to determine the gene expression in
transcript per million (TPM) from RNAseq data.

Neopeptide prediction and selection. The VCF output files from
GATK’s MuTect2 was given as input to the neopeptide predictor
MuPeXI version 1.1.323 together with RNAseq expression values
obtained from Kallisto. HLA alleles of each patient were inferred
from the WES data using OptiType version 1.273 with default
settings after filtering the reads aligning to the HLA region with
RazerS version 3.4.074. Identified mutations were used to predict
9, 10, and 11 amino acid peptides, sorted according to the EL%
Rank score of the mutated neopeptides using NetMHCpan 4.024.
All HLA-I-feasible neopeptides with an EL%Rank score <0.5 with
expression level >0.1 TPM were selected for peptide synthesis. For
patients where the number of HLA-I-feasible predicted neopep-
tides did not exceed 200, the highest-ranking 200 peptides were
selected to constitute the patient neopeptide library.

Peptides. All selected mutation derived and virus control peptides
were ordered and purchased from Pepscan (Pepscan Presto BV,
Lelystad, Netherlands). Peptides were dissolved to 10 mM in
DMSO following arrival and stored at −18 °C prior to use.

MHC monomer production and generation of peptide-MHC
complexes. The production of MHC monomers was performed
as previously described75,76. In brief, MHC class I heavy chains
and human β2m were expressed in E.coli strain BL21(DE3) pLysS
(Novagen, cat#69451). Inclusion bodies containing expressed
proteins were harvested by washing in detergent buffer and wash
buffer and solubilized in 8M urea buffer (8 M Urea, 50 mM
K·HEPES pH 6.5, and 100 µM β-mercaptoethanol). Final purified
inclusion bodies were stored at −80 °C until used. MHC class I
molecules were obtained by in vitro folding of heavy chain and
β2m light chain with respective UV-sensitive ligand in folding
buffer (0.1 M Tris pH 8.0, 500 mM L-Arginine-HCl, 2 mM
EDTA, 0.5 mM oxidized glutathione and 5 mM reduced glu-
tathione) at 4 °C77,78 or by using disulfide-stabilized empty MHC
I complexes as previously reported79. After folding for 3–5 days,
folded protein was biotinylated using BirA biotin-protein ligase
standard reaction kit (Avidity, LLC- Aurora, Colorado). Finally,
biotinylated monomer complexes were purified with size-
exclusion column (Waters, BioSuite SEC Column, 125 Å, 13 µm
SEC, 21.5 mm × 300 mm) with HPLC (Waters Corporation,
USA)) and stored at −80 °C until further use. Specific pMHC
complexes were generated by UV-induced peptide exchange75,77.

Detection of peptide-MHC specific T cells by DNA barcode-
labelled multimers. Patient-specific libraries of predicted neo-
peptides and virus control peptides (size 201-589 peptides per
patient) were generated as DNA barcode-labelled pMHCmultimers
as previously described22. In short, patient specific neoepitope
MHC multimer libraries were generated by multimerizing
exchanged pMHC molecules on a PE-labeled polysaccharide-
backbone (for neopeptides), and APC-labeled polysaccharide-
backbone (for virus-derived epitopes) coupled to DNA barcoded-
labeled dextran backbone Thus, a specific peptide is linked to a
unique DNA barcode together with a fluorescent label, serving as a
tag for the given pMHC. Patient and HD PBMCs were stained with
an up-concentrated pool of multimers together with 50 nM dasa-
tinib. Samples screened only for T cell multimer recognition were
stained with an antibody mix consisting of CD8-BV480 (BD, cat.
#566121, clone RPA-T8, 2 µl), dump channel antibodies (CD4-

FITC (BD, cat. #345768, 1.25 µl), CD14-FITC (BD, cat. #345784,
3.125 µl), CD19-FITC (BD, cat. #345776, 6.25 µl), CD40-FITC
(Serotech, cat. #MCA1590F, 2.5 µl), and CD16-FITC (BD, cat.
#335035, 1.56 µl)) and a dead cell marker (LIVE/DEAD Fixable
Near-IR; Invitrogen, cat. #L10119, 0.1 µl). Multimer binding T cells
were sorted as lymphocytes, single, live, CD8+, FITC- and PE+.
Samples screened for T cell multimer recognition and phenotypic
characterization were stained with an antibody mix composed of T
cell lineage markers (CD3-BV786 (BD, cat. #563799, clone SK7,
5 µl), CD4-BV650 (BD, cat. #563876, 2.5 µl), and CD8-BV480 (BD,
cat. #566121, clone RPA-T8, 2 µl)), characterization markers (Ki67-
BUV395 (BD, cat. #564071, clone B56, 2.5 µl), 4-1BB-BUV737 (BD,
cat. #741867, clone 4B4-1, 2.5 µl), PD1-BV421 (BioLegend, cat.
#329920, clone EH12.2H7, 3 µl), CD27-BV605 (BioLegend, cat.
#302829, clone O323, 2.5 µl), CD45RA-BV711 (BD, cat. #563733,
clone HI100, 2.5 µl), CCR7-FITC (BioLegend, cat. #353215, clone
G043H7, 5 µl), Eomes-PerCP-eFlour710 (eBioscience, Thermo
Fisher Scientific cat. #46-4877-41, clone WD1928, 2.5 µl), CD39-
PE-CF594 (BD, cat. #563678, clone Tu66, 2.5 µl), CD57-PECy7
(BioLegend, cat. #393309, clone QA17A04, 2.5 µl), and GranzymeB-
AlexaFlour700 (BioLegend, cat. #372221, clone QA16A02, 1.25 µl)),
and a dead cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen,
cat. #L10119, 0.1 µl). Multimer binding CD8+ T cells were sorted
as lymphocytes, single, live, CD3+, CD8+, CD4− and either PE+ or
APC+ on either FACSAriaTM Fusion or FACSMelodyTM instru-
ments (BD Biosciences). All sorted T cells were pelleted by cen-
trifugation. From isolated cells and from a stored baseline aliquot of
multimer pool (diluted 10,000x in final PCR reaction), the specifi-
cities of multimer+ CD8+ T cells were decoded by amplification,
subsequent purification using QIAquick PCR Purification kit
(Qiagen, cat. #28104), and ultimate sequencing of DNA barcodes at
PrimBio Research Institute (PA, USA) using an Ion Torrent PGM
316 or 318 chip (Life Technologies). Sequencing data were pro-
cessed by the software package Barracoda, available online at
(https://services.healthtech.dtu.dk/service.php?Barracoda-1.8). The
tool identifies the DNA barcodes annotated for a given experiment,
assigns a sample ID and pMHC specificity to each DNA barcode,
and counts the total number of reads and clonally reduced reads for
each peptide-MHC-associated DNA barcode. Log2FC in read
counts mapped to a given sample relative to the mean read counts
mapped to triplicate baseline samples are estimated using normal-
ization factors determined by the trimmed mean of M-values
method. FDRs were estimated using the Benjamini–Hochberg
method. A minimum read count fraction of 0.1% for a given DNA
barcode of the total DNA barcode number in that given sample was
set as threshold to avoid false-positive detection of T cell responses
due to low number of reads in the baseline samples. DNA barcodes
with FDR <0.1% (corresponding to p < 0.001), read count frac-
tion > (total read count for full barcode library/barcode library size),
Log2FC >2 over the input values for the total pMHC library, and
CD8+ T cell estimated frequency of >0.01 % were considered to be
true T cell responses, based on previous studies22,29,80.

Detection of peptide-MHC specific T cells by fluorescently-
labelled tetramers. For selected neopeptides, pMHC tetramers were
generated for staining of neoepitope-specific T cells. Neopeptides
were selected based on the observed NART responses from the DNA
barcode-labelled multimer screening. Following the observed increase
in NART responses at 3 weeks post-treatment, NART responses in
3-week post-treatment PBMC samples were interrogated wherever
sufficient patient material remained, otherwise 9-week post-treatment
samples were analyzed. Single-fluorochrome pMHC specificity tet-
ramers using were generated as described in detail previously81,82,
using a library of streptavidin (SA)-conjugated flourochromes con-
sisting of PE-SA (BioLegend, cat. #405204), APC-SA (BioLegend,
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cat. #405207), BV421-SA (BD, cat. #563259), PE-Cy7-SA (BD, cat.
#557598), BV605-SA (BD, cat. #563260), PE-CF594-SA (BD,
cat. #562284), BV650-SA (BD, cat. #563855), BUV395-SA (BD, cat.
#564176). Up to eight patient-specific pMHC tetramers per sample
were investigated. PBMC samples were stained with respective
library of pMHC tetramers and with an antibody mix consisting of
CD8-BV480, dump channel antibodies and a dead cell marker, as
above. Tetramer-specific T cells analyzed as lymphocytes, single,
live, CD8+, FITC‒ and tetramer+ cells. Due to staining strategy,
tetramer+ cells were gated by being CD8+.

Analytical processing of detected T cell responses. For each
patient, patient PBMC samples at timepoints pre-, during- and
post-treatment were stained with the respective patient pMHC
multimer library and relevant fluorescent antibodies. Concurrent
with patient PBMC samples, PBMCs from HDs, HLA-matched
with the respective patient as best possible, were also stained with
the patient’s pMHC multimer library and CD8 T cell subset
identification antibodies (one to three HD samples per staining,
median= 2). Presence of NARTs was determined based on the
enrichment in barcode reads for a given neoepitope, visualized as
the Log2FC for each pMHC specificity in each patient sample,
longitudinally evaluated over the course of treatment (Fig. 2a).
For all patient and HD sample screenings, samples were stained
with the entire multimer library. Predicted for and included in the
screenings, the library of neopeptides presented on HLAs C0202
and C0501 (n= 515) were subsequently excluded from down-
stream analysis due to observations of substantial unspecific
binding of these HLAs to Killer-cell immunoglobulin-like
receptor (KIR). Furthermore, to avoid signals from potential
pMHC-elements with unspecific binding, all HLA-matching
patient-derived NART responses detected in HD samples were
excluded from the pool of patient T cell responses, if the given
neopeptide response was detected across all samples for a given
patient. Of 6237 screened neopeptides in all patient and HD
PBMC samples, 28 neopeptides generated background signals,
and thus was excluded from the final library of NART responses.

For any pMHC-coupled DNA barcode in a sample, an estimated
frequency of each pMHC-recognizing CD8+ T cell population was
estimated based on the read count fraction of the given DNA
barcode out of the total fraction of T cells binding the pMHC
multimer pool. Estimated frequencies for all NART responses were
summed-up for each patient and timepoint to determine the total
frequency of NARTs, i.e. sum of estimated frequencies.

Analytical processing of phenotyping data. Flow cytometry
results were analyzed using the FlowJo v10 software (TreeStar,
Inc.)83. For UMAP dimensionality reduction, 3000 representative
live, CD3+ , CD4−, bulk CD8+ T cells from patient samples pre-
and 3 weeks post-treatment were concatenated (n= 28) and pro-
jected using the UMAP plugin in FlowJo84. UMAP was run by
selecting the parameters for Eomes, GzmB, CD27, CD57, CD45RA,
CCR7, CD39, PD1, and Ki67. 41BB-BUV737 was excluded from
further analysis due to significant spectral overlap from CD45RA-
BV711. For the FlowSOM algorithm for unsupervised clustering85,
15 clusters were selected with otherwise default settings.

Differential expression analysis and microenvironment cell
populations-counter. Differential expression analysis is per-
formed with all genes where the output from Kallisto version
0.42.1 was used as input to DeSeq286 version 1.26.0 from Bioc-
Manger in R version 3.6.1 with default option. The median
number of detected NART responses at the given time point was
used to split the cohort in high versus low number of NART
responses. Log-fold change >1 and <−1 together with an adjusted

p-value < 0.05 was used as threshold for over- and under-
expressed genes for the analysis. The heatmap illustrations were
generated with ComplexHeatmap from Bioconductor87. The GO
enrichment analysis is developed using R version 4.1.1 with the
built in packages; enrichplot version 1.13.288, clusterProfier ver-
sion 4.0.589 with Benjamin Hochberg at p value adjustment. Cell
populations abundancy was estimated from bulk RNA sequen-
cing data using Microenvironment Cell Populations-counter
(MCP-counter)90. The expression matrix obtained from Kallisto
was fed as input to ebecht/MCPcounter from GitHub in R version
4.0.2 with Hugo-symbols as feature Type.

Neopeptide clonality. Allele copy number, purity and ploidity
were found using Sequenza version 3.091. As input, bam files
from normal and tumor were given to Sequenza-utils version 3.0
bam2seqz with CRCh38 as reference followed by Sequenza
seqz_binding. To run the Sequenza copynumber call with
CRCh38, the R packages copynumber92 with minor modifications
from Shixiang/copynumber93 was applied. Sequenza results were
generated with the Sequenza packages in R version (3.6.1) and
copynumber information from Sequenza were merged with
mutations file from Mutect2 and used as input to PyClone. To
locate clonal mutations, PyClone version (0.13.0)94 was applied
with the best estimated cellularity given from Sequenza, and max
cluster of 10 and minimum size of 0 to yield all possible muta-
tions. Afterwards, clonal mutations were filtered with a cluster
size of minimum 5 and cellularity of minimum 90.

Figures and statistical analysis. Figure 1a and 2a were created in
Biorender. Graphs in Fig. 1b–d, 2b, c, 3a–i, 4d–i+ q, 5a–h, 6d–h,
Supplementary Fig. 2a–c, 4a–e +m, 5a–e and 6j–p were generated
using the ggplot2 package in R v3.6.1 and v4.0.2. For Fig. 3f–g and
Supplementary Fig. 4a, to facilitate plotting on logarithmic scale, in
cases where SEF was 0 due to no detected T cell responses, 0.001%
was added to SEF. Groups in Fig. 1c–d, 3a, b, d, f, h, 4d–g, 5g and
6e–h, and Supplementary Fig. 4a–c+ e, 5a–c+e and 6b+e–g were
compared using non-parametric two-sided Mann–Whitney test, in
Fig. 3c, e, g, i and 4h–i, and Supplementary Fig. 4d and 5d using
Kruskal–Wallis Dunn’s multiple comparison test, and in Fig. 5a–c
using non-paired t-test. Mann–Whitney and t-test conducted
using the ggsignif package95 and Dunn’s test using the rstatix
package96. Proportion test (z-test)97 was applied for Fig. 4b and
5d–f+ h. The eulerr package98 was applied for Fig. 5h. Figure 6a
was generated from the ComplexHeatmap and Fig. 6b–c from
clusterProfiler and enrichplot packages in R. All survival plots
(Supplementary Fig. 4f-h) were made using Kaplan Meyer-curves
and hazard ratios with the survival and surviminer packages in R99.
Figure 4a–c+ j–p and Supplementary Fig. 3 and 6a were generated
from FlowJo v10. For all figures; NS. Not Significant, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All WES and RNAseq data is available upon application at dbGaP at https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001743.v1.p1.
GRCh38 reference genome is available at https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.39. The source data presented in figures are provided as Source Data
file. All other relevant data are available from the authors upon request. Source data are
provided with this paper.

Code availability
The applied codes are embedded into MuPeXI and Barracoda, both publicly available
tools, and can be reached and accessed at https://github.com/ambj/MuPeXI and https://
services.healthtech.dtu.dk/service.php?Barracoda-1.8, respectively. All other data and R
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scripts to reproduce figures can be obtained from the corresponding author upon
request.
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Supplementary Fig. 1 Consort diagram of patients in cohort included in previous study (Snyder et 

al., 2017) and inclusion criteria for patient samples analyzed here. Patients #0979, #7592, and #8214 

had no available pre-treatment archival tumor speciments, QC for WES of patient #4072 failed, and 

patient #9881 died of other causes. These patients were excluded from this study. 
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Supplementary Fig. 2 Detection of neoepitope-reactive T cell responses in mUC cancer 

patients. Additional representative output from patients (a) #2131 and (b) #5037, screening of 

detected NART responses. Log2FC of sequenced pMHC associated barcodes enriched by T cell 

sorting over the input library at stated timepoints. Labelled points; Log2 FC > 2, count fraction > 0.1 

% and p < 0.001, determined as T cell responses. Colored based on peptide-presenting HLA-type, 

text labelled with peptide sequence, and sized according the estimated frequency of the peptide-

recognizing T cell population. For virus-derived peptides the virus is stated in brackets. Grey points 

represent non-enriched barcodes. Horizontal line at Log2 fc = 2. Vertical line separating peptide-

presenting HLA-types. (c) Log2FC of viral CMV, EBV, and FLU-derived pMHC-associated barcodes 

(n = 72) from duplicate stainings of HD PBMC controls (n = 10). Source data are provided as a 

Source Data file. 

 



#6800 (84) A0301SLK (0.21 %)

0.01 %

#6800 (109) B3501YLA (0.11 %)

0.13 %

#6800 (118) B3501IPQ (0.16 %)

0.46 %

#6800 (123) B3501FQI (0.16 %)

0.23 %

#6800 (196) C0401YSL (0.02 %)

0.04 %

#6229 (18) A3001ASK (0.03 %)

< 0.01 %

#6229 (19) A3001GTR (0.04 %)

0.04 %

#6229 (20) A3001KVF (0.06 %)

0.02 %

#6229 (21) A3001KVF (0.04 %)

0.26 %

#6229 (41) A3001VFH (0.04 %)

0.05 %

#6229 (46) A3001KVS (0.05 %)

0.02 %

#6229 (74) A3201RLY (0.04 %)

0.02 %

#6229 (80) A3201SQW (0.09 %)

< 0.01 %

C
D

8
-B

V
4

8
0

Tetramer

#1233 (37) A2601VLI (0.07 %)

0.89 %

#1233 (58) B2705ART (0.09 %)

0.05 %

#1249 (45) A6801WAV (0.07 %)

0.12%

#1249 (60) A6801EAS (0.07 %)

0.96 %

#2131 (312) C0701MRH (0.05 %)

0.01 %

#2131 (323) C0701RRR (0.06 %)

0.04 %

#2131 (324) C0701RRR (0.10 %)

0.04 %

#2131 (336) C0701YRK (0.06 %)

0.28 %

#1849 (1) A0101QLE (0.02 %)

< 0.01 %

#1849 (17) A0101YTD (0.05 %)

0.07 %

#1849 (18) A0101ILE (0.02 %)

0.06 %

#1849 (53) A1101SSE (0.02 %)

0.14 %

#1849 (63) A1101VTS (0.02 %)

0.06 %

#1849 (132) C0602LRS (0.02 %)

0.08%

#1849 (154) C0602FSF (0.07 %)

0.73 %

#1849 (185) C0602FSK (0.02 %)

0.49 %

#2278 (75) A2402RFD (0.08 %)

0.16 %

#2278 (96) A2402GIF (0.08 %)

0.63 %

#2849 (289) B2705TRV (0.35 %)

0.02 %

#2849 (401) C0702VHA (1.80 %)

0.03 %

#3529 (66) C0602MRC (0.89 %)

17.7 %

#3529 (76) C0602YAR (0.02 %)

19.6 %

#3529 (78) C0602YAR (0.26 %)

0.11 %

#2937 (134) B1801TEK (0.02 %)

0.06 %

#2937 (219) B3503SAT (0.02 %)

0.09 %

#2937 (307) C0401LYD (0.86 %)

2.56 %

#2937 (308) C0401ILY (0.24 %)

4.28 %

#2937 (309) C0401LYD (0.69 %)

1.24 %

#5037 (267) B3801MYF (0.53 %)

0.02 %

#5037 (275) B3801SRW (0.02 %)

0.09 %

#5037 (289) B3801PRV (0.08 %)

0.25 %

#5037 (331) B3801IHA (0.08 %)

0.90 %

#5037 (332) B3801HIH (0.02 %)

0.20 %

#5037 (362) B4002SEV (0.02 %)

0.17 %

#522 (118) C0602RRV (0.03 %)

0.42 %

#522 (128) C0602FQR (0.07 %)

0.67 %

#522 (149) C0602FYS (0.04 %)

0.03 %

#7729 (149) C0602QTI (0.23 %)

4.09 %

#7729 (161) C0602LLP (0.09 %)

4.10 %

#7729 (162) C0602CSY (0.10 %)

0.57 %

#8728 (174) B5101VGI (0.04 %)

0.56 %

#8728 (176) B5101QSP (0.73 %)

0.34 %

#9517 (9) A0101LVT (0.01 %)

0.01 %

#9517 (21) A0101DAD (0.22 %)

0.17 %

#9517 (217) C0401YVD (0.03 %)

0.06 %

#9517 (218) C0401SFE (0.04 %)

0.40 %

#9517 (220) C0401QWP (0.02 %)

0.12 %

#9517 (229) C0401YLQ (0.04 %)

0.31 %

#9517 (242) C0401MFS (0.03 %)

0.23 %

Supplementary Figure 3



Supplementary Fig. 3 Tetramer pMHC stainings for NART response validations. CD8+ cells shown, 

gated for tetramer+ populations. Selected patient PBMC samples, either at 3- or 9-weeks post-

treatment depending on sample availabily at time of study, were stained with tetramers generated 

for recognized neoepitopes seen in multimer screening at given timepoint. Neoepitope number and 

sequence, presenting HLA-type, estimated frequency from multimer screening, and tetramer+ NART 

frequency listed for each pMHC. Green markings indicate positive validation of NART response, with 

yellow markings indicating NART responses at border of detection level using tetramer stainings. 

PBMCs from 3-weeks post-treatment; patients #1249, #2131, #2278, #2849, #2937, #3529, #5037, 

#522, #6229, #6800, #7729, #8728, and #9517. PBMCs from 9-week post-treatment; patients #1233 

and #1849. 
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Supplementary Fig. 4 Impact of NARTs in anti-PD-L1 treatment. (a) SEFs for NART populations 

over course of therapy. Points at respective time point indicate screening of the given sample. 

Patients clustered according to patients with SD, PR, and CR (n = 11 patients) and with PD (n = 13 

patients). (b) Number of NART responses for patients and (c-d) the change from pre- to 3-week 

post-treatment, between SD/PR/CR and PD patients, only for NART responses towards neopeptides 

with EL%Rank < 0.5 and expression level > 2 TPM. (e) Number of NART responses for patients with 

or without DCB. (f-h) Kaplan-Meier estimation curves for patient PFS and OS grouped according to 

High or Low number of NART responses at (f) pre-treatment (> median = 2 responses) or at (g) 3-

week post-treatment (≥ median = 3 responses), or (h) change in number of NART responses (> 

median = 0 response increase). (i) Bulk PBMC TCRb cloanlity at pre-treatment, 3 weeks- and 9 

weeks post-treatment. Points at respective time point indicate PBMC sample and TCRb sequencing 

data availability. For b)-e) groups were compared using non-parametric two-sided Mann-Whitney 

test and Kruskal-Wallis Dunn’s multiple comparison test for d). For a)-e), data is presented as median 

values +/- largest/smallest value within upper/lower quartile +/- 1.5 IQR. NS.: Not Significant, *: p < 

0.05. Source data are provided as a Source Data file. 
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Supplementary Fig. 5 VARTs in anti-PD-L1 treatment. Timeline of (a) number of VART responses 

and (b) SEF for VART populations over course of therapy. Points at respective time point indicate 

screening of the given sample. Patients clustered according to patients with SD, PR, and CR (n = 

11 patients) and with PD (n = 13 patients). (c) Number of VART responses for patients, clustered 

according to disease control and (d) according to RECIST criteria, at pre- and 3-week post-

treatment. (e) The change in number of VART responses for patients, clustered according to disease 

control. For c) + e) groups were compared using non-parametric two-sided Mann-Whitney test and 

Kruskal-Wallis Dunn’s multiple comparison test for d). For c)-e), data is presented as median values 

+/- largest/smallest value within upper/lower quartile +/- 1.5 IQR. NS.: Not Significant. Source data 

are provided as a Source Data file. 
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Supplementary Fig. 6 Phenotypic characterisation of bulk CD8 T cells, NARTs and VARTs. (a) 

Gating strategy for sorting and characterisation of PE-neo- and APC-viral pMHC multimer-binding 

singlet, Live (NIR-), CD3+, CD8+/CD4- lymphocytes. (b) Parent population frequencies of 

Ki67+CD45RA- bulk CD8 T cells, NARTs, and VARTs for SD/PR/CR (n = 10 patients) and PD 

patients (n = 4 patients) at pre- and 3 weeks post-treatment. (c-d) Parent population frequencies of 

bulk CD8 T cells and NARTs for all non-lineage parameters at pre- and 3 weeks post-treatment, 

and the change in frequency between time points. (e-f) Parent population frequencies of triple-

positive CD45RA+ CD57+ GzmB+ bulk CD8 T cells, NARTs, and VARTs for PD (n = 4 patients) 

and SD/PR/CR patients (n = 10 patients) at pre- and 3 weeks post-treatment. Mann-Whitney test 

for l)-p). (g) Parent population frequencies of Central- (CM) and Effector Memory (EM), Naive and 

TEMRA bulk CD8 T cells, NARTs, and VARTs for PD (n = 4 patients) and SD/PR/CR patients (n = 

10 patients) at 3 weeks post-treatment. For b) + e)-g) groups were compared using non-parametric 

two-sided Mann-Whitney test and data is presented as median values +/- largest/smallest value 

within upper/lower quartile +/- 1.5 IQR NS.: Not Significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. 

wk: week, Pre: Pre-treatment, Post: 3 weeks post-treatment. Source data are provided as a Source 

Data file. 

 



Pt #
T cell neoepitope responses, per time point

Pre-treatment
3 

weeks

9 

weeks

20-29 

weeks

49-73 

weeks

156-166 

weeks

231+ 

weeks

#40

#128 HSSEVTMTL (A3201)

#138 TLIFARLTI (A3201)

#388 SYDTALQARI (C0401)

#414 VFMEENSKL (C0401)

#463 IRLRPRHVL (C0701)

Subsequent samples

not available

#9723 #96 QQQQQAQTL (B0801)
Subsequent samples

not available

#1249
-

#60 EASVKVIHR (A6801)

#45 WAVFPSIVGR (A6801)

#60 EASVKVIHR (A6801)

Subsequent samples

not available

#2937

#42 ATIKVNGTI (A3201)

#60 SLLEHVEEY (A3201)

#91 MVEAGAGTSW (B1801)

#95 SEFDNLRTL (B1801)

-

#194 EPWVSIKKF (B3503)

-

#234 FPLPWWDLM (B3503)

#307 LYDQGYTSL (C0401)

#308 ILYDQGYTSL (C0401)

#309 LYDQGYTSLG (C0401)

-

-

-

-

#134 TEKPPYIEV (B1801)

-

#219 SATEAFGEL (B3503)

-

#307 LYDQGYTSL (C0401)

#308 ILYDQGYTSL (C0401)

#309 LYDQGYTSLG (C0401)

Subsequent samples

not available

#1994

-

-

#89 YTYAAMLRI (C0702)

-

#147 LLLAAVVSH (A0301)

-

#186 NSVPPPPPL (B0702)

-

#23 KPMTLFQIQF (B0702)

-

-

#147 LLLAAVVSH (A0301)

-

-

#21 RPRLLLLVL (B0702)

-

-

#115 FYILSSGLI (C0702)

-

#164 GLPNVFGLGR (A0301)

-

Subsequent samples

not available

#522

#19 SFLVHPYGF (A2402)

-

#128 FQRFHKLHYL (C0602)

-

-

#118 RRVAMRRWI (C0602)

#128 FQRFHKLHYL (C0602)

#149 FYSSRKRLL (C0602)

-

#118 RRVAMRRWI (C0602)

#128 FQRFHKLHYL (C0602)

-

Subsequent samples

not available

#6428 No responses No responses No responses
Subsequent samples

not available

#7577
-

#9 CMDFNSNGKY (A0101)

#1 ANDNSPFMLY (A0101)

#9 CMDFNSNGKY (A0101)
No responses

Subsequent samples

not available

#8728

#118 TEKPIQRNPG (B4403)

#141 SPLPQSPQV (B5101)

#144 LPLKLQSEV (B5101)

#153 HPQDFRDHPV (B5101)

#170 QLPLKLQSEV (B5101)

-

-

-

-

-

-

-

#174 VGIFILCTV (B5101)

#176 QSPQVLQQL (B5101)

No responses
Subsequent samples

not available

#471 No responses No responses No responses
Subsequent samples

not available

#3529

#66 MRCLVQHIL (C0602)

#76 YARFLQSNAY (C0602)

#78 YRAQVYVPV (C0602)

-

#149 KGYEGYYVL (C0602)

#177 YRSGHQLHC (C0602)

-

#66 MRCLVQHIL (C0602)

#76 YARFLQSNAY (C0602)

#78 YRAQVYVPV (C0602)

-

-

-

-

#66 MRCLVQHIL (C0602)

#76 YARFLQSNAY (C0602)

#78 YRAQVYVPV (C0602)

#130 RTFSMQVAL (A0205)

#149 KGYEGYYVL (C0602)

#177 YRSGHQLHC (C0602)

#179 AFQIAMKLL (A2402)

Subsequent samples

not available

#5338 #161 HPHPHPHAF (C0304) No responses No responses
Subsequent samples

not available

#2849

#249 LPEARRPRL (B0702)

-

#298 GRHILVAWK (B2705)

#371 YFSQEQWGL (C0702)

#385 YFKSDELQF (C0702)

#401 VHARVINFF (C0702)

-

-

-

-

-

#401 VHARVINFF (C0702)

-

#289 TRVKCVVSM (B2705)

-

-

-

#401 VHARVINFF (C0702)

Subsequent samples

not available

#7729

-

#149 QTIDKAKYI (C0602)

#150 SQRETTWTF (C0602)

#161 LLPPYKQSI (C0602)

#162 CSYSEPHYM (C0602)

#198 LLPPYKQSI (C0701)

-

#149 QTIDKAKYI (C0602)

-

#161 LLPPYKQSI (C0602)

#162 CSYSEPHYM (C0602)

-

#132 IRTDSVLIL (C0602)

#149 QTIDKAKYI (C0602)

#150 SQRETTWTF (C0602)

#161 LLPPYKQSI (C0602)

#162 CSYSEPHYM (C0602)

-

-

#149 QTIDKAKYI (C0602)

-

#161 LLPPYKQSI (C0602)

#162 CSYSEPHYM (C0602)

-

Subsequent samples

not available

#9517

-

-

#21 DADLLRPHAY (A0101)

#212 TRLFLFHLL (B3801)

-

-

-

-

-

-

#9 LVTEDTTICY (A0101)

#21 DADLLRPHAY (A0101)

-

#217 YVDYPIYDML (C0401)

#218 SFEEYLKLL (C0401)

#220 QWPPFVVTL (C0401)

#229 YLQTYGAEL (C0401)

#242 MFSGVAVYL (C0401)

-

#9 LVTEDTTICY (A0101)

-

-

-

-

-

-

-

#8 VTEDTTICY (A0101)

#9 LVTEDTTICY (A0101)

#21 DADLLRPHAY (A0101)

-

-

-

-

#229 YLQTYGAEL (C0401)

-

Subsequent samples

not available
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Pt #

T cell neoepitope responses, per time point

Pre-treatment
3 

weeks

9 

weeks

20-29 

weeks

49-73 

weeks

156-166 

weeks

231+ 

weeks

#1849

#1 QLEQLMQLY (A0101)
#17 YTDQISKYA (A0101)

-
-

#63 VTSEVSNLK (A1101)
#132 LRSRHSTRI (C0602)

-

#146 LRSSQRMVI (C0602)
-

#152 SRYGGGLAV (C0602)
#154 FSFSKSRRI (C0602)
#155 FNYKPLHTI (C0602)

#164 LRSVSPWTY (C0602)
-

#185 FSKSRRILL (C0602)

-
#17 YTDQISKYA (A0101)

-
-

-
#132 LRSRHSTRI (C0602)
#133 LRACTRSSM (C0602)

#146 LRSSQRMVI (C0602)
#150 FRNSANATSL (C0602)

#152 SRYGGGLAV (C0602)
#154 FSFSKSRRI (C0602)
#155 FNYKPLHTI (C0602)

-
-

#185 FSKSRRILL (C0602)

#1 QLEQLMQLY (A0101)
#17 YTDQISKYA (A0101)

#18 ILEYTDQISKY (A0101)
#53 SSEPPFGPK (A1101)

#63 VTSEVSNLK (A1101)
#132 LRSRHSTRI (C0602)

-

#146 LRSSQRMVI (C0602)
#150 FRNSANATSL (C0602)

#152 SRYGGGLAV (C0602)
#154 FSFSKSRRI (C0602)
#155 FNYKPLHTI (C0602)

#164 LRSVSPWTY (C0602)
#167 MSMPKGRVV (C0602)

#185 FSKSRRILL (C0602)

Subsequent samples
not available

#6800 No responses

#84 SLKRLRNTK (A0301)
#109 YLAKHTILY (B3501)

#118 IPQDSIAQIY (B3501)
#123 FQISSGISF (B3501)

-
#196 YSLELGMTL (C0401)

-
-

-
-

#190 KYMQMNYAL (C0401)
-

Subsequent samples
not available

#6229

#14 RMHYLPQLK (A3001)
-

-
-

-
#36 HQRPGHLLA (A3001)

-

-
-

-
-
-

#205 IYHQPTHLW (C0602)
-

-
-

#235 SRPLPVAAV (C0602)

#243 WRSERRSWV (C0602)
-

-
#18 ASKPIFMDR (A3001)

#19 GTRMPTSTY (A3001)
#20 KVFSHHAYI (A3001)

#21 KVFSHHAYF (A3001)
-

#41 VFHTPTVIK (A3001)

#46 KVSFSGCMVK (A3001)
#74 RLYTGKKPY (A3201)

#80 SQWRKAPGW (A3201)
-

#201 FQLDQITAL (C0602)

#205 IYHQPTHLW (C0602)
#226 RHRDPVPEL (C0602)

-
#234 SRWNMSRRL (C0602)

-

#243 WRSERRSWV (C0602)
-

-
-

-
-

-
-
-

-
-

-
#94 IYHQPTHLW (A3201)

-

-
-

-
-
-

#243 WRSERRSWV (C0602)
#250 SRRVREASL (C0602)

Sample
not available

-
-

-
-

-
-
-

-
-

-
-
-

-
-

#230 FRSRWKEQY (C0602)
-
-

#243 WRSERRSWV (C0602)
-

Subsequent samples
not available

#5037

#41 EVPKHLWVRF (A2601)
-

-
-

-
-
-

-
-

-
-
-

-
#437 QERQLLNML (B4002)

-
-

-
-

-
#267 MYFPVPNFW (B3801)
#275 SRWSVPVWL (B3801)

#289 PRVDVKVIL (B3801)
#331 IHANLSFAM (B3801)

#332 HIHANLSFAM (B3801)
#362 SEVLVRVLV (B4002)

-

-
-

-
-

#136 FYFSNMLEF (B3801)
#263 RHFEEALQTIF (B3801)

-
-
-

-
-

-
-

#419 SEWREAVDSAL (B4002)

#431 KEAKQRESV (B4002)
-

Sample 
not available

-
#73 NVMLVVHGL (A2601)

-
-

-
-

#275 SRWSVPVWL (B3801)

-
-

-
-
-

-
-

No responses No responses

#2389

#1 CIDFQPDIY (A0101)
-

-
-

#159 NEASLSFQAL (B4001)

#1 CIDFQPDIY (A0101)
#2 SCIDFQPDIY (A0101)

-
#141 TELGTAAKL (B4001)

#159 NEASLSFQAL (B4001)

#1 CIDFQPDIY (A0101)
#2 SCIDFQPDIY (A0101)

-
#141 TELGTAAKL (B4001)

-

Sample 
not available

No responses No responses

-
-

#26 KWPECEKVF (A2402)
-

-

#2131 No responses

-
-

-
-

-
#312 MRHPFPVSPCF (C0701)

#323 RRRPGFCKI (C0701)

#324 RRPGFCKIL (C0701)
-

#336 YRKFGFDII (C0701)
-

-
#23 FLIPDYNHEI (A0201)

-
-

-
-
-

-
-

-
-

Sample 
not available

-
-

-
-

#65 FVFNGNFLL (A0201)
#312 MRHPFPVSPCF (C0701)

#323 RRRPGFCKI (C0701)

#324 RRPGFCKIL (C0701)
-

#336 YRKFGFDII (C0701)
#383 FVFNGNFLL (C0701)

#15 FMIVALHLL (A0201)
-

#40 RLLSLVIWI (A0201)
-

#65 FVFNGNFLL (A0201)
-
-

#324 RRPGFCKIL (C0701)
-

#336 YRKFGFDII (C0701)
-

-
-

-
#63 GLPGSLPSSV (A0201)

-
-
-

-
#325 LHMSGSLAF (C0701)

#336 YRKFGFDII (C0701)
#383 FVFNGNFLL (C0701)

#2278

-
-

-
-

#75 RFDAFVLFL (A2402)
-
-

-
-

-
-

#75 RFDAFVLFL (A2402)
#96 GIFGLNLALF (A2402)

-

-
-

-
-

-
-

#118 FYRALMSNTY (A2402)

Sample 
not available

-
-

#71 RWYAICHPFMF (A2402)
#72 WYAICHPFMF (A2402)

#75 RFDAFVLFL (A2402)
-
-

#13 LLAKGLVLL (A0201)
-

-
-

-
-
-

-
#44 RFDAFVLFL (A0201)

-
-

-
-
-

#1233 No responses No responses

#37 VLIFAVVGM (A2601)
-

#58 ARTVRPVSL (B2705)

Samples not available

-
#56 EDFLLHINF (A2601)

-

No responses

#5122 #154 GRGEGPIWL (B3801) No responses No responses Samples not available No responses No responses

Supplementary Table 1 cont.



Supplementary Table 1 Detailed patient T cell neoepitope response data. The patient-specific 

peptide no., peptide sequence, and peptide-presenting HLA is stated for each T cell neoepitope 

response. ‘-’ or ‘No responses’ indicate no neoepitope T cell responses were detected towards the 

specific neoepitope or at all in the PBMC sample at the given timepoint. Source data are provided 

as a Source Data file. 

 



Clinical characteristics

Patient
DCB

(PFS > 6 months)

Outcome

(Best RECIST 1.1)

PFS 

(Days)

OS 

(Days)

Ultimate time point 

(Weeks)

#40 No DCB PD1 20 24 0

#9723 No DCB PD1 19 22 0

#1249 No DCB PD1 41 54 3

#2937 No DCB PD 37 44 3

#1994 No DCB SD 121 403 9

#522 No DCB PD 58 76 9

#6428 No DCB PD 61 163 9

#7577 No DCB PD 60 117 9

#8728 No DCB PD 61 546 9

#471 No DCB PD 61 329 9

#3529 No DCB PD 64 182 9.4

#5338 No DCB PD 67 266 9.7

#2849 No DCB PD 75 586 11

#7729 No DCB PD 60 354 20

#9517 No DCB SD 121 331 29

#1849 DCB SD 265 468 9

#6800 DCB SD 985 1445 9

#6229 DCB CR 252 812 49.3

#5037 DCB CR 1954 1954 231.1

#2389 DCB CR 1990 1990 237.1

#2131 DCB CR 1965 1965 240

#2278 DCB CR 2046 2046 244.3

#1233 DCB PR 1221 1977 247.4

#5122 DCB PR 1932 1932 256.3

Supplementary Table 2



Supplementary Table 2 Detailed patient clinical data. Durable Clinical Benefit (DCB) based on 

Progression-free survival (PFS) > 6 months and clinical outcome determined from Best RECIST 1.1 

criteria during therapy. 1Patient only scanned at baseline. PFS and OS data updated as per March 

10th 2020. Source data are provided as a Source Data file. 
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Introduction
Adoptive cell therapy with expanded tumor-infiltrating lympho-
cytes (TIL-ACT) can mediate durable tumor regression in patients 
with metastatic melanoma (1, 2). Furthermore, TIL-ACT has a 

high objective response rate even after the failure of checkpoint 
inhibitor therapy (1–4). TIL-ACT therefore represents an attrac-
tive treatment option for metastatic melanoma patients with high 
unmet medical needs. Current predictors of tumor regression and 
long-term survival after ACT include tumor-mutational burden 
(TMB) and neoantigen load (5), which have recently emerged 
as independent predictors of outcome across multiple immuno-
therapies (6, 7). Moreover, transcriptomic evidence implicates 
antigen presentation within the tumor microenvironment before 
TIL-ACT (5) as an important additional factor, suggesting that 
antigen presentation and immune recognition of mutation-de-
rived neoantigens contribute to therapeutic benefit in TIL-ACT. 
While immune recognition and tumor cell killing are general-
ly associated with a positive outcome (8, 9), evaluation of T cell 
recognition of mutation-derived neoantigens within TIL infusion 
(TIL Inf) products and peripheral blood after infusion have only 
been reported in case studies of complete responders (CRs) (10–
15). We aimed to systematically assess T cell recognition toward 

BACKGROUND. Neoantigen-driven recognition and T cell–mediated killing contribute to tumor clearance following adoptive 
cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs). Yet how diversity, frequency, and persistence of expanded 
neoepitope-specific CD8+ T cells derived from TIL infusion products affect patient outcome is not fully determined.

METHODS. Using barcoded pMHC multimers, we provide a comprehensive mapping of CD8+ T cells recognizing neoepitopes in 
TIL infusion products and blood samples from 26 metastatic melanoma patients who received ACT.

RESULTS. We identified 106 neoepitopes within TIL infusion products corresponding to 1.8% of all predicted neoepitopes. 
We observed neoepitope-specific recognition to be virtually devoid in TIL infusion products given to patients with 
progressive disease outcome. Moreover, we found that the frequency of neoepitope-specific CD8+ T cells in TIL infusion 
products correlated with increased survival and that neoepitope-specific CD8+ T cells shared with the infusion product in 
posttreatment blood samples were unique to responders of TIL-ACT. Finally, we found that a transcriptional signature for 
lymphocyte activity within the tumor microenvironment was associated with a higher frequency of neoepitope-specific CD8+ 
T cells in the infusion product.

CONCLUSIONS. These data support previous case studies of neoepitope-specific CD8+ T cells in melanoma and indicate that 
successful TIL-ACT is associated with an expansion of neoepitope-specific CD8+ T cells.
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cells in the TIL Inf product and also serve as positive controls for 
the technical process.

DNA barcode–labeled neopeptide libraries were constructed 
as described previously (19) using UV-mediated peptide-MHC 
exchange (23, 24) and fluorescent streptavidin-labeled dextrans 
(see Methods). PBMCs and TIL Inf products were stained with 
patient-specific multimer libraries followed by sorting of multi-
mer-binding CD8+ T cells. The coattached DNA barcodes were 
amplified from the sorted T cell population to reveal antigen spec-
ificity (ref. 19 and Figure 1A). We defined biologically relevant 
NARTs as NARTs with an estimated frequency of at least 0.01% 
and without presence in partially HLA-matching healthy donor 
PBMCs. To assess the reproducibility of our pMHC multimer 
library screens, we screened TIL samples of 9 patients twice with 
the same library, demonstrating a correlation between technical 
replicates (R = 0.55; P < 2.2 × 10–10; Supplemental Figure 1D).

An example of the analysis of enriched DNA barcodes and their 
corresponding pMHC in a TIL Inf product from patient M22 ( par-
tial responder [PR]) is depicted in Figure 1B and for patients M14 
(progressive disease [PD]) and M26 (CR) in Supplemental Figure 
2. In patient M22, NARTs were detected for 3 of 4 HLA molecules 
included, although most reactivity was seen against HLA-A*01:01–
restricted peptides. Of interest, 7 HLA-A*01:01–restricted neo-
epitopes recognized by the M22 TIL Inf product comprised the 
C-terminal amino acid sequence SILSY (AKAP9P1796L), and CD8+ T 
cells specific for each of these peptides were confirmed in TIL Inf 
products with single-tetramer staining (Supplemental Figure 3A).

From in silico structural models of the interaction between the 
different AKAP9P1796L peptide variants and the HLA-A*01:01 mol-
ecule, we observed that leucine (L), introduced by the mutation, 
protruded from the HLA-binding groove for potential interaction 
with a TCR. Furthermore, the four 8 to 10 mer epitope variants 
shared this conformation when bound to HLA-A*01:01 (Supple-
mental Figure 3B). This suggests that the AKAP9P1796L amino acid 
substitution has given rise to multiple neoepitopes that may be 
recognized by the same population of CD8+ T cells, but with differ-
ent affinities. The binding affinity hierarchy can be assessed both 
by the estimated frequency (Supplemental Figure 3C) and the MFI 
of the tetramer populations (Supplemental Figure 3D) and indi-
cates favorable interaction with the 9 mer and 10 mer neoepitopes 
holding the SILSY motif.

Screening of TIL Inf products from 26 melanoma patients 
with personalized multimer libraries resulted in the detection of 
106 different NART populations across the cohort. NARTs were 
detected in 18 out of 26 TIL Inf products, ranging from 0 to 13 
NART populations per sample. To avoid any potential bias based 
on differences in HLA coverage, the number and frequency of 
detected NARTs were normalized to the average HLA coverage of 
the cohort (4.4 HLAs per patient). Following HLA normalization, 
the median number of NARTs per TIL Inf product was 3.7 (range 
0–12.1, Figure 1C). Additionally, we detected the presence of 
virus-specific CD8+ T cells toward a selected list of virus-derived 
epitopes in half of the TIL Inf products (13 out of 26 patients, Fig-
ure 1C), which is in line with previous analyses of TIL Inf products 
(25, 26). Across all TIL Inf products, we observed an estimated 
NART frequency of 0%–38.6% (median = 0.63%) of total CD8+ 
T cells (Figure 1C).

neoantigens in TIL-ACT and the influence of such recognition on 
therapeutic outcome. Recent advances in T cell technologies have 
led to the possibility of comprehensive screening of T cell recog-
nition against large libraries of patient-derived neoepitopes (12, 
16–18). Here, we used DNA barcode–labeled pMHC multimers 
to screen for CD8+ T cell recognition, using 151 to 585 predicted 
neoepitopes per patient, presented in a multimeric form in the 
context of patient-matched HLA-I molecules (19, 20). Using this 
strategy, we determined the presence of CD8+ T cells recogniz-
ing mutation-derived neoepitopes, here denoted as neoantigen- 
reactive T cells (NARTs), in TIL Inf products from 26 patients with 
metastatic melanoma. Furthermore, we examined the persistence 
of such T cells in samples of peripheral blood collected at multi-
ple time points after therapy. This comprehensive mapping of 
NARTs demonstrates a substantial T cell reactivity level toward 
patient-derived neoepitopes and a positive influence on clinical 
outcome following TIL-ACT. This highlights the importance of 
detecting and enhancing the levels of such T cells in TIL-ACT.

Moreover, this study provides essential data to support efforts 
to identify the few immunogenic neoepitopes that give rise to T 
cell recognition out of the large number of predicted neopeptides. 
Recent efforts have been made to identify the parameters that 
determine the immunogenicity of a given neoepitope (21) and 
facilitate more accurate prediction of such sequences for thera-
peutic measures. In the current study, we evaluated a total of 5921 
predicted neopeptides and identified T cell recognition toward 
106 (1.8 %) of these in TIL Inf products. Using this large data set, 
we further assessed the influence of HLA binding, antigen expres-
sion level, clonality, TMB, and type of mutation on immunogenic-
ity (i.e., recognition of a given neopeptide).

Results
Identification of neoepitope-reactive CD8+ T cells. In a cohort of 
metastatic melanoma patients treated with TIL-ACT (Supple-
mental Table 1; supplemental material available online with this 
article; https://doi.org/10.1172/JCI150535DS1), prediction of 
patient-specific mutated HLA-I epitopes was performed using 
whole exome sequencing (WES) and RNA-Seq on tumor materi-
al and normal tissue PBMCs. The in silico neopeptide prediction 
platform MuPeXI (https://services.healthtech.dtu.dk/service.
php?MuPeXI-1.1) was employed to identify single nucleotide 
variants and indels/frameshifts from the sequencing data spe-
cific to the cancer material (5, 20). Mutation-derived peptides 
were subsequently ranked using netMHCpan (20, 22) and tran-
scription of the corresponding gene (transcripts per million 
[TPM]) (see Methods) with the aim of including at least 200 
neopeptides per patient.

We covered 30 different HLA alleles ranging from 2 to 6 HLA 
alleles per patient (average, 4.4 HLAs) (Supplemental Figure 1, A 
and C); however, HLA-C*02:02 and C*05:01 were excluded from 
data analyses due to technical concerns. Thus, the final neopep-
tide library ranged from 151 to 585 peptides per patient (Supple-
mental Figure 1B), with the most frequent alleles in our cohort 
being HLA-A*01:01 and C*03:04 (Supplemental Figure 1C). In 
addition to neopeptides, we also included a small set of known 
CD8+ T cell epitopes derived from common human viruses EBV, 
CMV, and influenza virus (FLU). These represent “bystander” T 
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Figure 1. Detection of neoepitope-specific CD8+ T cells in expanded TILs of melanoma. (A) Melanoma-specific mutation-derived peptides were predicted 
to bind patient’s HLA molecules using the prediction platform MuPeXI. DNA barcode–labeled MHC multimers with either neopeptides or virus-derived 
peptides were assembled on a PE-labeled streptavidin-conjugated dextran backbone. Multimer-binding NARTs were fluorescence sorted and T cell speci-
ficities decoded by barcode sequencing. (B) Examples of neoepitope- and virus-specific CD8+ T cells detected in expanded TILs of melanoma patient M22 
(PR) across available HLAs. Significant barcode enrichment is defined based on a log2 FC of the number of barcode reads compared with triplicate baseline 
samples. P ≤ 0.001 (egdeR) after correction for multiple hypothesis testing (see Methods). Blue, NARTs; red, virus-specific CD8+ T cells; black, multimers 
with nonenriched barcodes. V17 annotate EBV peptide RAKFKQLL. (C) Number and frequency of neoepitope- and virus-specific CD8+ T cells in TIL samples 
across cohort of 26 melanoma patients. Blue, NARTs; red, virus-specific CD8+ T cells. Number of and frequency of NARTs were normalized to absolute HLA 
coverage (see Methods). Sum est. frequency, sum of estimate frequency.
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cell populations both recognized autologous tumor cell lines with 
and without pretreatment with IFN-γ (Supplemental Figure 4C). 
This indicates that some multimer-detected NARTs are capable 
of further expansion and can specifically recognize autologous 
tumor cell lines.

The number and frequency of NARTs are associated with the clin-
ical outcome of TIL-ACT. Next, we investigated whether higher 
diversity (number of responses) and frequency of NARTs in TIL 
Inf products correlate with improved clinical efficacy of TIL-ACT. 
NARTs were detectable across all Response Evaluation Criteria 
in Solid Tumors (RECIST), version 1, groups (28), although they 
were severely depleted from TIL Inf products given to patients 
that developed PD (n = 6) (Figure 3A). Overall, NARTs tended to 
demonstrate greater diversity in products from responders com-
pared with nonresponders (Figure 3B).

The estimated NART frequency within TIL Inf products was 
significantly higher in responders compared with nonresponders 
(Figure 3, C and D, and Supplemental Figure 5, A and B), suggest-
ing that NART frequency affects clinical outcome. Tumor muta-
tional burden and number of predicted neoepitopes were uniform-
ly distributed across RECIST groups (Supplemental Figure 5, D 
and H), and no difference was observed between responders and 
nonresponders (Supplemental Figure 5, E and I). Tumor mutation-
al burden was, however, associated with longer progression-free 
survival (PFS) (Supplemental Figure 5F), as previously indicated 
(5), although we did not observe a strong influence of the number 
of predicted neoepitopes on PFS (Supplemental Figure 5J).

Next, we investigated whether the diversity and frequency of 
NARTs within TIL Inf products affected PFS and overall survival 
(OS). Patients in whom the number of NARTs was above the medi-

Recognition of melanoma tumor cells by NARTs in vitro. The TIL 
Inf product from most patients (16 of 26) was previously analyzed 
for tumor recognition properties in terms of cytokine secretion 
toward an autologous tumor cell line, generated from the same 
tumor biopsy as the TIL Inf product (4). The estimated frequency 
of NARTs identified in this study correlated with the capacity of 
the TIL Inf product to recognize the tumor, indicating that detect-
ed NARTs may indeed contribute to tumor cell recognition (Fig-
ure 2A). While a significant association was observed, the effect 
on cytokine secretion from other immune subsets, tumor antigen 
classes, or NARTs restricted to HLA alleles not included in our 
study cannot be excluded.

We additionally investigated the direct tumor-recognition 
capacity of sorted and expanded neoepitope-specific T cell 
populations. From the patient M22 TIL Inf product, we sorted 
USP34S1391F–derived NLFR-HLA-B*08:01–specific T cells using 
tetramers. The presence of such T cells was verified (3.2%, Figure 
2B), and postsort expansion resulted in purity of greater than 96% 
(Figure 2C). The expanded NLFR-HLA-B*08:01–specific T cells 
displayed tumor recognition determined by cytokine secretion 
upon coculture with an autologous tumor cell line with (60.1%) 
and without (2.87%) pretreatment with IFN-γ (Figure 2D). Thus, 
tumor recognition was specific and greatly enhanced by IFN-γ 
pretreatment of the autologous tumor cell line. It has previously 
been demonstrated that IFN-γ pretreatment enhances MHC-I 
expression and antigen presentation in both autologous (8) and 
established tumor cell lines (27). We also sorted CD8+ T cells spe-
cific to 2 AKAP9P1796L peptide variants followed by rapid expan-
sion (Supplemental Figure 4A), which recognized their respective 
AKAP9P1796L variants (Supplemental Figure 4B). These sorted T 

Figure 2. Autologous tumor recognition by enriched NARTs. (A) Correlation of TIL reactivity to autologous tumor (measured by intracellular cytokine 
staining) and sum of estimated NART frequency. TIL reactivity toward an autologous tumor cell line was defined as positive for 2 out of the 3 proteins 
TNF-α, IFN-γ, and CD107a. Sixteen patients with available tumor reactivity data were included from both responder (n = 6) and nonresponders (n = 10). 
R and P values from Spearman’s correlation with 95% CIs in gray. NART frequency was normalized to absolute HLA coverage (see Methods). (B and C) 
HLA-B*08:01–restricted, NLFR-specific CD8+ T cells from M22 TIL Inf product were sorted based on 2-color tetramer binding (B) and expanded in vitro 
followed by NLFR-tetramer staining (C). (D) Tumor reactivity as measured by TNF-α/IFN-γ release after coculture of expanded, NART-specific cell products 
with or without autologous tumor cell lines, with PMA/ionomycin or with autologous tumor cell line and IFN-γ. NLFR, NLFRRVWEL from USP34S1391F. TIL 
reactivity data shown in A originate from previous study (4), and the assay was performed as described previously (66).
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tiple individual NART populations. However, T cell recognition 
of multiple neopeptides could also arise from crossreactivity of a 
single NART population toward several similar epitopes. To avoid 
any bias in our data analyses based on such potential crossreac-
tive T cell populations, we reduced the number of detected NART 
responses to the number of unique immunogenic somatic muta-
tions recognized by NARTs (median = 2.6) and redid our survival 
analysis using the most frequent NART as a proxy for recognition 
of all overlapping epitopes from the same nonsynonymous muta-
tion. The result showed a similar association: both NART diver-
sity and frequency correlated with increased PFS, whereas only 
frequency correlated with increased OS (Supplemental Figure 6, 
E–H), ensuring that contribution from T cell recognition of over-
lapping epitopes did not bias our overall observation. In summary, 
these data suggest that high frequency of NARTs positively affects 
therapeutic outcome following TIL-ACT.

NARTs are detected in peripheral blood after TIL-ACT and 
decline over time. As indicated by others (10, 29), an essential fac-
tor for TIL-ACT efficacy is the capacity of transferred T cells to 
persist in patients following therapy. This can be measured based 
on their presence in peripheral blood over time after transfer. For 
19 patients, available blood samples were taken 8 days before 
TIL-ACT and at different time points after TIL Inf, i.e., less than 
1 month after TIL-ACT, less than 4 months after TIL-ACT, less 
than 12 months after TIL-ACT, less than 24 months after TIL-
ACT, and less than 48 months after TIL-ACT (Supplemental 

an of 3.7 (high, n = 13) had increased PFS (P = 0.025, HR 2.62; 95% 
CI = 1.05–6.50) compared with patients below the median (low,  
n = 13; Figure 3E). Likewise, patients with a high NART frequency 
within TIL Inf products (median = 0.7%) (high, n = 13) demon-
strated significantly improved PFS (P = 0.026, HR 2.60; 95% CI 
= 1.05–6.47) compared with patients with low NART frequen-
cy (low, n = 13; Figure 3F). High NART frequency also showed a 
positive effect on OS (Supplemental Figure 6B); however, no such 
correlation was found with NART diversity (Supplemental Figure 
6A). Note that OS might also be affected by subsequent treatment 
given after TIL-ACT.

Interestingly, the clinical impact of NART frequency was most 
prominent for patients above the 66th percentile. For NART fre-
quency, the high patient group (above the 66th percentile, n = 9) 
showed significantly longer PFS (P = 0.0016; Figure 3H) and OS  
(P = 0.021; Supplemental Figure 6D) compared with the intermedi-
ate patients (equal to or below the 66th percentile and greater than 
the 33rd percentile, n = 8) or low patients (equal to or below the 33rd 
percentile, n = 9). In contrast, NART diversity did not significantly 
affect survival (PFS and OS) when comparing groups split by the 
66th and 33rd percentiles (Figure 3G and Supplemental Figure 
6C). The 66th and 33rd percentiles corresponded to a frequency 
of 3.26% and 0.03%, respectively, while the same percentiles for 
NART diversity were 5.65 and 0.88 NARTs, respectively.

In our analysis, T cells that recognized different overlapping 
peptides originating from the same mutation were defined as mul-

Figure 3. Frequency of NARTs correlates with increased survival after TIL-ACT. (A and B) NART diversity represented as the number of NARTs detected 
in TIL Inf products for each patient according to RECIST (A) and clinical response (B). (C and D) NART frequency represented as the sum of estimated 
frequency of NARTs detected in TIL Inf products for each patient according to RECIST (C) and clinical response (D). (E and F) PFS for the cohort split by 
median NART diversity (median = 3.65 NARTs) (E) and median NART frequency (median = 0.63 %) (F). (G and H) PFS for the cohort splits by high (>66th 
percentile), intermediate (> 33rd percentile), and low groups (≤33rd percentile). (G) NART diversity. 66th percentile = 5.65 NARTs. 33rd percentile = 0.88 
NARTs. (H) NART frequency. 66th percentile = 3.26%. 33rd percentile = 0.03%. P values were calculated using Kruskal-Wallis test followed by Dunn’s mul-
tiple comparison test in A and C; only significant comparisons are shown. Nonparametric Mann-Whitney U test was used for B and D. Box plot whiskers 
represent IQR. P values and HRs were calculated using the Mantel-Cox test and log-rank approach, respectively (F). P values for G and H were calculated 
using log-rank test. Both number of and frequency of NARTs were normalized to absolute HLA coverage (see Methods). n = 26 for all plots. All values 
displayed on a logarithmic scales were increased by 0.01 to account for 0 values.
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Table 1). NARTs present in the first or later PBMC samples after 
ACT were defined as engrafted. Furthermore, if a given NART 
was detected in multiple later PBMC samples, that NART was 
regarded as persisting. Each sample was screened for T cell rec-
ognition toward neopeptides included in the full patient-specific 
neoepitope-MHC library, exemplified by patient M22 (PR) (Fig-
ure 4A). In M22, only virus-specific T cells could be detected in 
the pre-ACT PBMC sample, namely, B*08:01-restricted CD8+ 
cells capable of binding epitopes FLU-ELR (v1), EBV-RAK (v17), 
EBV-QAK (v30), and EBV-FLR (v31). These virus-specific CD8+ T 
cells were detectable throughout most time points, while NARTs 
engrafted (PBMC <1 month) and persisted in the following PBMC 
samples up to 1 year after treatment.

Similar NART kinetics were observed in patient M45 (PR), 
with NARTs recognizing overlapping neoepitope containing the 
mutated sequence SAGA (SORC2A1093S) (Supplemental Figure 7). 
SORC2A1093S was first recognized in the M45 TIL Inf product, and 
immune recognition persisted in PBMCs until the last recorded 
time point (<12 months). Furthermore, M45 showed immune rec-
ognition toward the same neoepitope DIHF (ZNF786M87I) bound 
to multiple HLA alleles (HLA-A*01:01, A*24:02, and B*13:02). 
Recognition of ZNF786M87I was initially discovered in the TIL Inf 
product, and while it persisted on HLA-A*24:02 until the last time 
point for M45, it appeared to incompletely persist on HLA-A*01:01 
and B*13:02. Overall, this suggests that ZNF786M87I produces a 
promiscuous neoepitope capable of binding multiple HLAs, with 
a preference for HLA-A*24:02. HLA promiscuity is otherwise 
known to occur for viral epitopes (30).

The median NART diversity and frequency across RECIST 
categories were followed to assess the overall kinetics of NARTs 
after ACT. Note that most nonresponders did not have PBMC 
samples for less than 12 months and thereafter (7 of 10). NART 
diversity increased markedly when comparing pre-ACT PBMCs 

and the TIL Inf product and declined over time after TIL-ACT in 
the CR, PR, and stable disease (SD) patient groups, displaying the 
expansion of NART populations in the TIL Inf product and their 
persistence after therapy (Figure 4B). NART frequency demon-
strated kinetics similar to those of NART diversity. However, only 
responders appeared to have substantial frequencies of NARTs 
within TIL Inf products (Figure 4C). Unlike those in the other 
groups, patients with PD did not display any NARTs within TIL Inf 
products (n = 3); however, they did appear to have ongoing NART 
recognition in peripheral blood before and after therapy, although 
at lower frequencies (Figure 4, B and C).

Finally, we compared responders and nonresponders in relation 
to NART diversity across all time points and found that responders 
had a higher level of NART diversity in PBMCs collected before TIL-
ACT (Figure 4D). Similarly, we found increased NART frequency in 
responders before TIL-ACT, within TIL Inf products, and at early 
time points following infusion (>1 month; Figure 4E).

In conclusion, we observed a broad repertoire of NARTs rec-
ognizing single neoepitopes, overlapping neoepitopes, and HLA 
promiscuous neoepitopes in TIL Inf products of metastatic mela-
noma patients treated with TIL-ACT. These NARTs showed signs 
of engraftment and could persist in peripheral blood after TIL-
ACT. Furthermore, we observed that responders had a higher esti-
mated NART frequency before and following TIL-ACT in periph-
eral blood, supporting prior prospective efforts (31).

Engrafted neoepitope-specific CD8+ T cells dominate immune 
recognition in responders of TIL-ACT. To better understand the 
dynamic relationship among preexisting, ongoing, and TIL- 
derived immune recognition, we annotated each detected NART 
according to its first appearance from 8 days prior to therapy (pre-
ACT PBMCs) to the last available time point. Thus, if a NART 
population appeared exclusively in pre-ACT samples, it was anno-
tated pre-ACT. If a given NART was detected in both pre-ACT 
PBMCs and in the given TIL Inf product, it was denoted pre/TIL, 
while if it first appeared in the infusion product, it was denoted 
TIL. Finally, if a NART population first appeared in a later PBMC 
sample it was regarded as novel, annotated with its first time of 
appearance and followed from there on out (see patient overview 
in Supplemental Figure 8).

Using this categorization, we observed that persisting NARTs 
derived from the TIL Inf product (Pre/TIL plus TIL) were present 
across responders and patients with SD at multiple time points 
after infusion, but absent in patients with PD (Figure 5, A and B, 
and Supplemental Figure 8). Additionally, we observed that 7 of 
8 responders and 5 of 10 nonresponders with available pre-ACT 
material had preexisting NARTs (pre-ACT plus pre/TIL). Preexist-
ing NARTs are likely clinically relevant, as TIL Inf products from 
responders were overall dominated by preexisting immune recog-
nition that was further expanded to high frequencies within the 
TIL Inf product (pre/TIL) (Figure 5B and Supplemental Figure 8). 
Note, however, that the presence of preexisting NARTs that were 
further expanded did not appear sufficient to generate a clinical 
response, as we also observed pre/TIL NARTs in 3 patients with 
SD (Supplemental Figure 8). The perceived therapeutic benefit 
of preexisting NARTs that were further expanded may therefore 
relate more to the high frequency and persistence after expansion 
in selected patients than to their presence alone.

Figure 4. NARTs appear in peripheral blood and decline in frequency 
following TIL-ACT. (A) Output example from screening paired PBMCs from 
19 patients. Virus- and neoepitope-specific CD8+ T cells in patient M22 (PR) 
in pre-ACT PBMCs, TIL Inf product, and PBMCs following TIL-ACT. Blue, 
NARTs; red, virus-specific CD8+ T cells; black, multimers associated with 
nonenriched barcodes. Significant barcode enrichment is defined based on 
a log2 FC of the number of barcode reads compared with triplicate baseline 
samples. P < 0.001 (egdeR) (see Methods). V1 annotate FLU peptide 
ELRSRYWAI, v17 annotate EBV peptide RAKFKQLL, v30 annotate EBV 
peptide QAKWRLQTL, and v31 annotated EBV peptide FLRGRAYGL. (B and 
C) Median number of NARTs. Error bars indicate IQR. Points were displaced 
for visual purposes. (B) Number of NART responses and sum of estimated 
NART frequency (C) over time in TIL Inf product and available PBMC sam-
ples. Patients were divided according to RECIST groups. (D and E) Box plots 
representing diversity (D) and frequency (E) of NARTs for each patient 
according to RECIST groups. P values were calculated using Mann-Whitney 
U test. Nineteen patients had both TIL Inf products and PBMCs available, 
but the number of samples at each time point varied according to sample 
and data availability (Supplemental Table 1 and Supplemental Figure 8). 
NART frequency could not be calculated for M40 PBMCs before ACT and 
for M40 PBMCs less than 1 month after treatment (see Methods) and are 
therefore excluded in C and E. Whiskers represent IQR. NART frequencies 
were normalized to HLA coverage of the given patient (see Methods). All 
values displayed on logarithmic scales were increased by 0.01 to account 
for 0 values.
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Figure 5. Responding patients have high-frequency engrafting NARTs in their TIL Inf product. (A and B) Each NART population was annotated and 
colored according to first appearance in pre-ACT PBMCs, TIL Inf products, and post-ACT PBMCs (<1 month to <48 months). Black numbers specify the total 
number of NARTs detected for the specific time and RECIST group. (A) Distribution of NARTs within RECIST groups according to first appearance. (B) Dis-
tribution of NART frequency within RECIST groups according to first appearance. *M01 (CR) did not have pre-ACT and <1 month PBMCs available and was 
excluded from analysis to avoid a biased distribution. **Frequency data could not be calculated for M40 pre-ACT and M40 post-ACT <1 month, which were 
excluded (see Methods). (C) Venn diagram showing the overlap of detected NARTs among pre-ACT PBMCs, TIL Inf products, and all post-ACT PBMC sam-
ples. n = 19. (D) The estimated frequency of each NART population detected less than 1 month after infusion. Responses were either regarded as engrafted 
(i.e., also detected in TIL Inf) or novel. n = 16. M01 and M40 were excluded as stated for A and B; M29 did not have detectable antigen-specific CD8+ T cells 
before the second time point after ACT. (E) The estimated frequency of each NART population observed in TIL Inf products. Nonengrafted versus engrafted 
(i.e., detected at least once at a later time points). n = 19. (F and G) Number and frequency of engrafted NARTs, defined by presence in both TIL Inf product 
and after TIL-ACT. n varied according to sample availability (Supplemental Table 1 and Supplemental Figure 8). M40 before ACT and <1 month PBMCs 
were excluded from G (see Methods). Sum of estimated frequency in G was increased by 0.01 to account for 0 values. P values from Mann-Whitney U test. 
Whiskers represent IQR.
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compared with the germline sequence, as defined in Bjerregaard 
et al. (ref. 35 and Figure 6B). Immunogenic neoepitopes were rep-
resented in both categories, and we did not observe a significantly 
different distribution of immunogenic versus nonimmunogen-
ic neopeptides among CBs versus IBs (3.4% CB versus. 3.5% IB,  
P = 0.99; Figure 6B). Furthermore, within the selected HLA affin-
ity range evaluated here, we did not observe any further impact of 
HLA percentage rank score on neopeptide immunogenicity, eval-
uated as the potential enrichment of immunogenic neoepitopes 
below a percentage rank score of 0.5 (P = 0.71, z test; Figure 6C). 
In line with previous findings (34), we observed an enrichment of 
genes with RNA expression greater than 2 TPM among immuno-
genic neopeptides (Figure 6D; P = 0.001, z test).

TMB and predicted neoepitope load have previously been 
demonstrated as predictive for TIL-ACT outcome (5). We found a 
strong correlation between TMB and number of predicted neoepi-
topes (Supplemental Figure 9A). However, we did not find a cor-
relation between TMB or the number of predicted neoepitopes and 
NART diversity and NART frequency (Supplemental Figure 9, B–E). 
This indicates that the presence of NARTs in TIL Inf products is an 
independent marker of therapeutic outcome in patients with met-
astatic melanoma. Since the interpatient variation in neopeptide 
library size may affect the correlation, we also correlated the num-
ber of NARTs detected and estimated frequency within the top 151 
predicted neoepitopes so that it showed an equal representation of 
all patients (Supplemental Figure 9G). Again, no strong correlation 
was evident (Supplemental Figure 9, H–K), as multiple patients with 
low TMB showed medium-sized populations of neoepitope-specific 
CD8+ T cells in their respective TIL Inf products (Supplemental Fig-
ure 9G). This emphasizes the need to improve our predictive capac-
ity for identification of those neoepitopes that give rise to functional 
T cell recognition and tumor cell killing and furthermore highlights 
that other parameters, beyond TMB, affect immune recognition.

The tumor microenvironment has a substantial influence 
on the capacity of the immune system to mount a T cell response 
toward the tumor and for such T cells to exert their function. 
Although the generation of TIL Inf products is conducted in vitro, 
the tumor microenvironment may still affect the capacity for T cell 
expansion and function. We used the available transcriptomic data 
from our neoepitope prediction pipeline as input for a differential 
gene expression analysis, grouping patients according to higher or 
lower than median sum of estimated NART frequency within TIL 
Inf products. From this, we observed 226 differentially expressed 
genes (Figure 6E), that were associated with 383 enriched Gene 
Ontology (GO) gene sets (36). The top 20 enriched GO gene sets 
were a collection of humoral and B cell–mediated mechanisms and 
several pathways pertaining to the immune cell signal transduc-
tion (Supplemental Figure 10). These gene sets are highly relevant 
in light of the recently revealed relationship among intratumoral 
lymphoid structures, antigen presentation, and therapeutic bene-
fit following immunotherapy (37). Of further interest, we observed 
enriched presence of GO terms relating to lymphocyte-mediated 
immunity (Figure 6F) and increased T cell proliferation (Figure 6G).

Discussion
Immune recognition and tumor killing by cytotoxic T cells are 
associated with a positive outcome across multiple immunother-

We observed that 62.5% (60 of 96) of NARTs observed in 
TIL Inf products were also detectable after ACT (Figure 5C). Fur-
thermore, 57% of NARTs detected after ACT were novel and did 
not originate from the TIL Inf product (80 of 140), whereas 43% 
originated from the TIL Inf product (60 of 140; Figure 5C). These 
novel NARTs were transiently appearing and could represent epi-
tope spreading. However, their appearances may not necessarily 
have therapeutic benefit, as they were observed across all RECIST 
groups (Figure 5, A and B) and present at lower frequency than 
newly engrafted NARTs (TIL NARTs present in post-ACT PBMCs) 
(Figure 5D). Finally, we observed that engrafted NARTs derived 
from the TIL Inf product (TIL plus pre/TIL) had a higher estimat-
ed frequency compared with their nonengrafted counterparts 
in the TIL Inf product (Figure 5E), suggesting engraftment to be 
associated with prior frequency.

To evaluate the impact of engrafted NART populations sepa-
rately from that of nonengrafted and novel NARTs, appearing only 
in TIL Inf products and post-ACT PBMCs, respectively, we com-
pared the diversity and frequency of engrafted NARTs (pre/TIL 
and TIL) in responders and nonresponders with available PBMCs 
throughout all time points (Figure 5, F and G). Interestingly, we 
observed that nonresponders had a markedly lower diversity (Fig-
ure 5F) and frequency (Figure 5G) of engrafted NARTs compared 
with responders in the first 2 sampling time points after ACT (<1 
month and <4 months). These data suggest that responders were 
treated with TIL Inf products characterized by high-frequency, 
engrafting NARTs, whereas nonresponders were treated with TIL 
Inf products containing a relatively lower frequency of NARTs that 
were unable to engraft and persist after ACT. This is in line with 
prior TCR-sequencing efforts (29).

The characteristics of immunogenic neoepitopes. Based on the 
large screen presented here, we evaluated T cell recognition 
against 5921 predicted neopeptides that were selected based on 
their HLA-binding characteristics and gene transcriptional levels 
in tumor next-generation sequencing (NGS) data. Of these pre-
dicted neopeptides, we detected specific CD8+ T cell recognition 
toward 204 neoepitopes in either TIL Inf products or PBMC sam-
ples from melanoma patients, while the remaining 5717 were not 
recognized by T cells in the evaluated patients (Figure 6A). The 
pool of immunogenic neoepitopes displayed characteristics relat-
ed to both clonality and C/T mutations similar to that of the total 
library of evaluated neopeptides (Figure 6A). Hence, we did not 
observe a specific enrichment of T cell recognition toward clon-
al mutations, as has previously been suggested for non–small cell 
lung cancer (NSCLC) (32). Interestingly, cancer-driver genes (33) 
are significantly overrepresented in the fraction of immunogenic 
neoepitopes compared with the fraction of nonimmunogenic neo-
peptides (Figure 6A; 6.5% versus 3.3%, P = 0.0043). However, we 
did not find any immunogenic neoepitopes to be shared among 
patients, as has previously been observed in TILs isolated from 
colorectal cancer (34).

Our neopeptide library was preselected for predicted HLA 
binding. Within this pool, neoepitopes can be classified as either 
conserved binders (CBs), i.e., neopeptides with HLA binding simi-
lar to that of the mutated peptide versus the germ-line sequence, or 
improved binders (IBs), where the mutation affects HLA-binding 
capabilities, resulting in a neopeptide with improved HLA affinity 
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could provide a noninvasive way to measure immune activity of 
the tumor. However, identification of NARTs is a laborious and 
patient-specific process, and for biomarker purposes, a simpler 
measurement of NART reactivity should be developed. Respond-
ers were furthermore predominantly treated with TIL Inf products 
of high NART frequency capable of engrafting and persisting after 
TIL-ACT at an estimated frequency higher than 0.01%. Addi-
tionally, we observed that engrafted NARTs initially appeared 
with an overall higher estimated frequency in the TIL Inf prod-
uct compared with nonengrafted NARTs, which indicates that 
successful NART expansion precedes successful engraftment. As 
mentioned, the persistence of tumor antigen–specific TCRs has 
been hypothesized to drive therapeutic benefit following TIL-ACT 
(29). Interestingly, this hypothesis has recently been supported in 
the metastatic melanoma setting (40), where the persistence of 
neoantigen-specific TCRs after TIL-ACT correlated with CD39–

CD69– stem-like T cells capable of self-renewal, differentiation, 
and further expansion upon stimulation. Future efforts to discov-
er and quantify the presence of NARTs may benefit from a simul-
taneous characterization of stem-like phenotypes to increase our 
understanding of why certain NARTs are superior in their capacity 
for expansion and persistence. Together with our current report, 
this identifies an unmet need to improve the manufacturing of TIL 
Inf products to increase the frequency of tumor-specific CD8+ T 
cells that are able to engraft and persist in patients after ACT.

Interestingly, we observed that 2 out of 3 patients with PD and 
multiple patients with SD appeared to have NARTs in peripheral 
blood despite the lack of persisting NART populations in the TIL 
Inf product. This suggests that selected nonresponders had ongoing 
tumor recognition that was not expanded by the TIL-manufactur-
ing process (i.e., failure to expand meaningful NARTs), perhaps due 
to poor tumor immune infiltration (i.e., immunologically “cold”). 
Thus, development of technologies to expand tumor-specific CD8+ 
T cells from peripheral blood may be beneficial for the future treat-
ment of patients that do not benefit from conventional TIL-ACT. 
Given information on the antigen recognized in peripheral blood, 
other strategies, such as therapeutic vaccination (41, 42), could 
furthermore be combined to increase the likelihood of generating 
long-lasting CD8+ and CD4+ memory T cells from TIL-ACT.

We additionally observed novel NARTs at multiple time 
points after infusion in both responders and nonresponders. This 
might illustrate epitope spreading as a result of tumor-cell killing 
in responders. However, these late-emerging NART populations 
were present at a lower frequency and appeared to be more tran-
sient than those transferred in the TIL Inf product. Thus, epitope 
spreading, with T cell recognition of preexisting mutations and 
their derived peptide products, does not appear to play a major 
role following TIL-ACT. However, this does not exclude a poten-
tial therapeutic role for epitope spreading based on T cell recogni-
tion toward novel mutations occurring after immunotherapy.

Finally, we observed that lymphocyte activity and prolifer-
ation within the tumor microenvironment were associated with 
higher NART frequency in TIL Inf products, suggesting that ongo-
ing immune activity within the tumor supports the manufacturing 
of TIL Inf products containing a high frequency of NARTs. Supe-
rior T cell proliferation and response to checkpoint inhibition is 
associated with intratumoral tertiary lymphoid structures, which 

apies (9, 32, 38); however, the presence of neoepitope-specific 
CD8+ T cells in TIL-ACT remains incompletely documented 
outside case responders (10–15). In the present study, we inves-
tigated the capacity of TIL Inf products to recognize predicted, 
HLA-binding neoepitopes originating from expressed, nonsyn-
onymous mutations from 26 patients with metastatic melano-
ma. To this end, we utilized DNA barcode–labeled pMHC mul-
timers from which we quantified NART diversity and frequency 
in TIL Inf products and patient PBMCs. We report recognition 
of a total of 106 neoepitopes within TIL Inf products from this 
cohort across all 4 RECIST groups. Supporting that the presence 
of NARTs affects the clinical response to TIL-ACT, we found 
that NART diversity and frequency were substantially lower in 
patients with PD when compared with patients with SD and PR 
and that NART frequency correlated with PFS and was higher in 
patients with clinical response to TIL-ACT (CR+PR).

We found that both NART diversity and frequency were high-
ly variable across RECIST groups, especially within responding 
patients: 3 out of 11 CR/PR patients had 0 detectable NART pop-
ulations. This variability could be due to limitations in neoepitope 
selection, contribution from other antigen types, insufficient HLA 
coverage, sampling bias, NART response frequencies below the 
threshold for detection (i.e., resulting in false-negative detection), 
or other NART-independent and/or HLA-I–independent pathways 
such as the MR1-dependent immune-recognition pathway (39).

Following each NART population from first appearance to 
last available PBMC time point further uncovered that responders 
were characterized by circulating NARTs of higher diversity and 
frequency in pretreatment PBMCs. This is interesting because 
pretreatment circulating NARTs could represent a biomarker for 
ongoing tumor recognition by CD8+ T cells, which, in extension, 

Figure 6. Characteristics of immunogenic neoepitopes. (A) Venn diagram 
of 5921 unique pMHC; 204 immunogenic and 5717 nonimmunogenic as 
determined by the presence of neoepitope-specific CD8+ T cells in patients 
at any time. The distribution and overlap of immunogenic versus nonim-
munogenic neoepitopes deriving from either cancer-driver genes (6.5% 
versus. 3.3%, P = 0.0048, z test), C/T mutations (3.4% versus. 3.5%,  
P = 0.78, z test), or clonal mutations (80.1% versus 86.0% P = 0.03,  
z test). Clonality could not be determined for 913 neopeptides, as WES was 
performed on autologous tumor cell lines (M22, M24, and a subset of M15). 
These were excluded from the z test, but included in the Venn diagram as 
subclonal mutations for visualization. (B) Eluted ligand (EL) percentage 
rank score of mutated peptide compared with percentage rank score of  
the corresponding germline peptide without mutation or nearest  
germline peptide. Red, immunogenic peptides. 3.4% CB versus 3.5 % IB,  
P = 0.99, z test. (C) Mutant EL percentage rank score comparing proportion 
of immunogenic neoepitopes above and below 0.5 percentage rank score 
(3.3 % versus 3.5, P = 0.71, z test). (D) RNA expression (TPM) comparing 
proportion of immunogenic peptides with expression above and below 2 
TPM (4.2 % versus. 2.6%, P = 0.001, z test). (E) Unsupervised clustering 
of the 226 differentially expressed gene according to high and low sum of 
estimated frequency within TIL Inf products split by the median frequency 
(0.63%). Denoted names were prioritized according to GO terms and known 
function. (F) Enriched GO gene set representing lymphocyte-mediated 
immunity. (G) Enriched GO gene set representing T cell proliferation. Sig-
nificance threshold or GSEA was set at FDR ≤ 0.01. M24 was excluded from 
D–G, as RNA-Seq data were obtained from an autologous tumor cell line.  
n = 25. M22 was included in D–G using data from the tumor biopsy used for 
manufacturing of the infusion product.
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previously, 4 patients received vemurafenib between surgical resec-
tion and TIL-ACT (M27, M29, M35, M36; ref. 4). Clinical response was 
assessed according to RECIST 1.0. Among the 26 patients, 5 were CRs, 
6 were PRs, 10 were SD, and 5 were PD patients (4), with a median PFS 
and OS of 3.85 and 23.25 months, respectively. Using DNA barcode–
labeled pMHC multimers, we analyzed the TIL Inf products from all 
26 patients for neoepitope-specific CD8+ T cells. From 19 of these 
patients, we additionally analyzed corresponding PBMC samples 
before and at multiple time points after TIL-ACT (Supplemental Table 
1). Tumor sequencing data (RNA and WES) were available from 26 of 
the 27 patients enrolled in the trial. PBMCs from healthy donors were 
obtained from whole blood by density centrifugation on Lymphoprep 
in Leucosep tubes and cryopreserved at −150°C in FCS (Gibco, Ther-
mo Fisher Scientific) plus 10% DMSO.

TIL sorting and expansion. Young TILs were thawed and cultured 
overnight at 37°C in complete medium (CM) (RPMI-1640 supple-
mented with 10% heat-inactivated human serum), 100 U/mL pen-
icillin, 100 μg/mL streptomycin, 1.25 μg/mL fungizone, and 6000 
IU/mL IL-2. Cells were washed twice in R0 (RPMI 1640, 100 U/mL 
penicillin, 100 μg/mL streptomycin) and stained with 0.2 μg of pMHC 
tetramers for 10 minutes at 37°C. Tetramers were assembled from 
fluorescent-streptavidin conjugates (PE, catalog 405204, BioLegend; 
APC, catalog 405243, BioLegend; BV421, catalog 563259, BD) and 
biotinylated, recombinant UV-cleavable pMHC-1 (23, 24). An empty 
disulfide-stabilized monomer was used for A*02:01-Y84C (49). Anti–
CD4-FITC (clone SK3, catalog 345768, BD) and anti–CD8-PerCP 
(clone SK1, catalog 345774, BD) antibodies were added for a further 
20 minutes at 37°C. Cells were washed with R0, resuspended in R0 
plus 10% heat-inactivated human serum, and sorted by flow cytome-
try using the BD FACSAria cell sorter (BD Biosciences) into a 96-well 
plate. Sorted CD8+ tetramer+ cells were expanded in 2 consecutive 
minirapid expansions 9 days apart, on day 0 and day 9. The second 
minirapid expansion was omitted in cases with abundant prolifera-
tion. In brief, 5 × 105 allogeneic feeder cells from healthy donors, 30 
ng/mL anti-CD3 antibody (clone OKT3, Janssen-Cilag), master mix 
made of 50% CM and 50% rapid expansion medium (RM) consisting 
of AIM-V medium (Gibco, Thermo Fisher Scientific), and 1.25 μg/mL 
fungizone supplemented with 6000 IU/mL IL-2 with 10% heat-inac-
tivated human serum (HS) were added to sorted cells and cultured at 
37°C; 50% of the media (without OKT-3) was replaced after 5 days and 
subsequently every 2 days.

Intracellular cytokine assay. Tumor cells were either pretreat-
ed with IFN-γ (100 IU/mL, Peprotech) or left untreated for 3 days. 
TILs were then added in a 1:1 ratio, with protein transport inhibi-
tors brefeldin A (1:1000 dilution, GolgiPlug, catalog 555029, BD), 
Monensin (1:1000 dilution, GolgiStop, catalog 554724, BD), and 
anti–CD107a-BV421 antibodies (clone H4A3, BD 562623). Tumor 
cells and TILs were cocultured for 5 hours, after which all cells were 
stained with Near-IR LIVE/DEAD (Life Technologies) and for sur-
face markers CD3-FITC (clone SK7, BD 345764), CD8-QDot605 
(clone 3B5, Thermo Fisher Q10009), and CD4-BV711 (clone SK3, 
BD, catalog 563028). Subsequently, the cells were fixed and per-
meabilized (eBioscience) overnight and stained for intracellular 
cytokines TNF-APC (clone MAb11, BD catalog, 554514) and IFN-γ–
PE-Cy7 (clone B27, BD, catalog 557643). Cells were analyzed on a 
Novocyte Quanteon (ACEA Biosciences). See details related to anti-
bodies used in Supplemental Table 2.

maintain a niche of professional antigen-presenting cells and 
proliferating T cells (37, 43). Tertiary lymphoid structures could, 
therefore, possibly support the successful expansion of TILs prior 
to successful TIL-ACT. However, the relationship among ongoing 
T cell proliferation, successful TIL expansion, and therapeutic 
response remains undetermined.

Both TIL expansion and posttransfer persistence of CD8+ 
NARTs may additionally be affected by supporting CD4+ T cells 
(44). So far, no differences have been observed between CD8- 
enriched TIL products and TIL products containing different lym-
phocytes (although the majority are CD8; ref. 45). Furthermore, 
epitope spreading as evaluated here for CD8+ T cells may likewise 
occur for CD4+ T cells, and further insight into the relationship 
between CD4+ and CD8+ tumor-reactive T cells and the relevance 
for shared antigen recognition are critical aspects for addressing 
future improvements in immunotherapy. However, technical lim-
itations still prohibit detailed epitope mapping of CD4+ NARTs, as 
conducted here for CD8+ NARTs (46).

In this study, we screened for recognition among 5921 predict-
ed neopeptides arising from nonsynonymous mutations, of which 
we found recognition of 1.8% (106 neoepitopes) in TIL Inf prod-
ucts and additionally 98 neoepitopes in peripheral blood before or 
after TIL Inf, making a T cell recognition percentage of 3.4%. This 
illustrates that neoepitope prediction is feasible, but it remains a 
cumbersome approach to identifying neoepitope-specific CD8+ 
T cells in metastatic melanoma. While recent efforts have led to 
significant improvements in the prediction of antigen processing 
and HLA binding (47), a gap remains in our ability to predict which 
of the presented neoepitopes are able to give rise to T cell recog-
nition (21). Among the neoepitopes recognized by T cells in this 
study, we observed an enrichment of neoepitopes derived from 
cancer-driver genes and genes expressed above 2 TPM. Howev-
er, despite these characteristics, the majority of the neoepitopes 
detected were derived from passenger mutations, and no strin-
gent criteria could be assigned to determine the neoepitopes driv-
ing T cell recognition.

In conclusion, our study describes the critical contribution of 
NARTs to the clinical outcome in TIL-ACT therapy and provides 
a thorough characterization of neoantigens recognized by T cells 
in this therapeutic context. To this end, our study highlights a crit-
ical need for improving TIL-ACT manufacturing and the capacity 
to predict immunogenic neoepitopes. Strategies to improve the 
expansion and engraftment of NARTs in TIL Inf products should 
further improve clinical outcome.

Methods
Patient material. To study the role of NARTs in TIL-ACT in melano-
ma, we evaluated 26 patients with unresectable or metastatic mela-
noma enrolled in a phase I/II clinical study of ACT (ClinicalTrials.gov  
NCT00937625). Demographic and clinical information for each 
patient ID are available in previous reports (4, 5, 26). TIL Inf prod-
ucts were generated by expanding TILs in vitro from tumor lesions 
following a rapid expansion protocol (REP) with high-dose IL-2, as 
described previously (48). All patients were included at the time of 
progression from previous treatment or treatments with either IL-2/
IFN-α and/or anti–CTLA-4 treatment and/or DC vaccination and/or 
temozolomide and/or vemurafenib (26). Furthermore, as specified 
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(one of each) were mixed with 5× Sequenase Reaction Buffer Mix (PN 
70702, Affymetrix) to final concentrations of 26 μM (oligo A) and 52 
μM (oligo B), respectively, heated to 65°C for 2 minutes, and allowed 
to anneal by cooling slowly to less than 35°C over 15 to 30 minutes. 
The annealed oligo As and Bs were elongated to create double-strand-
ed AxBy DNA barcodes by adding Sequenase polymerase (70775Y, 
Affymetrix), 20 μM DTT, and 800 μM or 72 μM dNTPs, followed by 
incubation for 5 to 10 minutes at room temperature. Elongated AxBy 
barcodes were diluted in nuclease-free water plus 0.1% Tween to 2.17 
μM (with respect to the A oligo) and stored at −20°C. Attachment of 5′ 
biotinylated AxBy DNA barcodes to PE- and streptavidin-conjugated 
dextran (Fina Biosolutions) was performed by mixing the 2 compo-
nents at final concentrations of 154 nM dextran backbone and 77 nM 
barcode in order to obtain 0.5 barcodes for each dextran backbone and 
subsequent incubation for 30 minutes at 4°C.

Refolded, biotinylated pMHC-I was subsequently added at a stoi-
chiometry of approximately 16.5 pMHC molecules per dextran; these 
were generated through UV-mediated exchange of cleavable ligands 
as described previously (23, 24). In brief, MHC monomers bound to 
UV-sensitive ligands were mixed with HLA-matching peptides at a 
final concentration of 50 μg/mL monomer and 100 mM peptide and 
exposed to UV light for 60 minutes (366 nm). Afterwards, pMHC 
monomers were centrifuged for 5 minutes at 3300g and then cou-
pled to DNA barcode– and PE-labeled dextran backbones to a final 
concentration of 35 μg/mL monomer and 4.2 × 10−8 M barcode- and 
PE-labeled dextran backbone and incubated for 20 minutes on ice. 
Then a freezing buffer was added to reach PBS plus 0.5% BSA plus 
100 μg/mL herring DNA plus 2 mM EDTA plus 5% glycerol and 909 
nM d-biotin, and after 20 minutes on ice, the pMHC multimers were 
stored at −20°C until use.

T cell staining with barcode-labeled pMHC multimers. Cryopre-
served cells were thawed, washed twice in RPMI plus 10% FCS, and 
then washed in barcode-cytometry buffer (PBS plus 0.5% BSA plus 
100 μg/mL herring DNA plus 2 mM EDTA). Before staining, MHC 
multimers were thawed on ice, centrifuged for 5 minutes at 3300g, 
and 1.5 μL (0.043 μg) of each distinct pMHC was taken from each well, 
avoiding potential aggregates in the bottom, and pooled. The volume 
of the reagent pool was reduced by ultrafiltration to obtain a final vol-
ume of approximately 80 μL of pooled MHC multimers per staining. 
Centrifugal concentrators (Vivaspin 6, 100,000 Da, Sartorius) were 
saturated with BSA before use. Following ultrafiltration, the pool of 
multimers was spun at 10,000g for 2 minutes to sediment potential 
aggregates. An aliquot of approximately 5 μL of the MHC multimer 
reagent pool was stored at −20°C for later baseline analysis. Up to 10 
million cells were stained in 80 μL with 50 nM dasatinib and multi-
mer pools in a 15-minute incubation at 37°C. Following incubation, 
the cells were stained with an antibody mix containing CD8-BV480 
(clone RPA-T8, BD, catalog 566121), dump channel antibodies (CD4-
FITC (clone SK3, BD, catalog 345768), CD14-FITC (clone MϕP9, BD, 
catalog 345784), CD19-FITC (clone 4G7, BD, catalog 345776), CD40-
FITC (clone LOB7/6, Serotech, catalog MCA1590F), and CD16-FITC 
(clone NLP15, BD, catalog 335035), and a dead cell marker (LIVE/
DEAD Fixable Near-IR; Invitrogen L10119) and incubated for 30 min-
utes at 4°C. Samples were stained with antibodies in a total volume of 
100 μL. See staining concentrations in Supplemental Table 2. Cells 
were washed 3 times in barcode cytometry buffer and fixed in 1% para-
formaldehyde (PFA) for 0.5 to 24 hours before they were washed twice 

Neoepitope prediction. WES and RNA-Seq data were obtained 
from digested tumor fragments, except for M22 and M24, for which 
autologous tumor cell lines were used. Two WES files from M15 were 
utilized and their results combined, one from an autologous tumor 
digest and another from an autologous tumor cell line. All WES data 
were obtained from tumor material from the same biopsy as was used 
for manufacturing of the corresponding TIL Inf products, expect for 
M22, for which the tumor cell line was derived from an earlier time 
point. FASTQ files from WES and RNA-Seq were preprocessed using 
Trim Galore (50), version 0.4.0. WES reads were aligned to the human 
genome (GRCh38) using Burrows-Wheeler Aligner (51), version 0.7.15, 
with default mem parameters, and duplicate reads were marked using 
MarkDuplicates from Picard Tools (52), version 2.9.1. Peptides were 
extracted and prioritized using MuPeXI (20), version 1.1.3, and net-
MHCpan, version 4.0, (22), providing as input the somatic variants 
obtained following GATK, version 3.8.0, best practices, the RNA-Seq 
expression values calculated using Kallisto, version 0.42.1 (53), and 
the HLA alleles inferred from normal WES samples using OptiType, 
version 1.2 (54). For patients with high neoantigen load, all predicted 
neoepitopes with a percentage rank score of 0.5 or less and TPM of 
0.1 or more were included. For patients with lower neoantigen load, 
we lowered the expression threshold to 0.01 TPM or more and select-
ed the top 200 predicted neopeptides according to percentage rank 
score. All predicted neopeptides and virus control peptides were syn-
thesized and purchased from Pepscan (Pepscan Presto) and dissolved 
to 10 mM in DMSO.

For each cancer-specific nonsynonymous mutation, the HLA-I–
binding potential of mutation-derived peptides was predicted using 
netMHCpan, version 4.0 (20, 22). For each patient, a minimum of 200 
top-ranking neopeptides were included. The ranking was based on the 
predicted HLA-I binding (percentage rank score) and the transcription 
of the corresponding gene as RNA TPM.

Clonality. Copy number, purity, and ploidity were found using 
Sequenza, version 3.0 (55). As input, printed reads from normal and 
tumor were used as input to Sequenza. Sequenza-utils, version 3.0, 
bam2seqz with GRCh38 was used as a reference. To run the Sequenza 
copy number call with GRCh38, the R packages Shixiang/copynum-
ber, version 1.26.0 (56), was applied. The created seqz files were used 
as input to sequenza-utils seqz_binding, and the outputs were used 
to Sequenza utils snp2seqz. To reduce the amount of false negatives 
according to the built-in mutations called from Sequenza, copy num-
ber files from the mutect2 output were merged with the copy number 
call from the bam files. Sequenza results and PyClone inputs were 
generated with the Sequenza packages in R, version 3.6.1. To find 
clonal mutations, PyClone, version 0.13.0 (57), was applied with the 
cellularity given from Sequenza and max cluster of 30 and minimum 
size of 0 to get all possible mutations given. Clonal mutations were fil-
tered with a cluster size of minimum 80 and cellularity of minimum 
90. Clonality could not be computed for M22, M24, and part of M15, 
as the underlying WES data came from autologous tumor cell lines.

Generation of DNA barcode–labeled pMHC multimers. Oligonu-
cleotides containing distinct 25 mer nucleotide sequences (58) were 
purchased from LGC Biosearch Technologies. All oligos carry a 6 nt 
unique molecular identifier (59). Oligonucleotides modified with a 5′ 
biotin tag (oligo A) were joined to unmodified, partially complemen-
tary oligonucleotides (oligo B) to generate more than 1000 unique 
double-stranded AxBy DNA barcodes. Combinations of A and B oligos 
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227 Multimers were excluded due to technical concerns regard-
ing HLA-C*05:01 (M22, 140 multimers; M27, 46 multimers) and 
HLA-C*02:02 (M43, 41 multimers). Peptide missannotations, which 
originated from pipetting errors discovered through cross referencing 
of ordering and annotation tables (M27, 1 multimer; M35, 40 multim-
ers; M46, 1 multimer), were also excluded. Frequency of a pMHC-spe-
cific CD8+ T cell population was estimated based on the percentage of 
read count of the associated barcode out of the total percentage of the 
multimer-positive CD8+ T cell population. Sum of estimated frequen-
cy represents the pooled frequencies of all T cell populations in a given 
sample. Due to differences in number of producible HLA molecules, 
the number and frequency of neoepitope-specific CD8+ T cells were 
normalized to the mean absolute HLA coverage in the cohort: (aver-
age HLA covered [across all panels]/HLA covered [patient panel]).

Structural analysis of overlapping mutated peptides and HLA binding. 
Structural pMHC models were generated using the method described 
in TCRpMHCmodels (60). All peptides were bound to HLA-A*01:01 
and the sequence for this MHC molecule was downloaded from the 
IMGT database (61). To get the electrostatic potential for each of the 
pMHC models, hydrogen atoms were added using the phenix.reduce 
protocol previously described (62), after which Delphi (63) was used 
to calculate the electrostatic potential with the following parameters: 
scale = 1.0, perfil = 70.0, indi = 4.0, exdi = 80.0, prbrad = 1.4, salt = 
0.15, ionrad = 2.0, bndcon = 2, linit = 800, maxc = 0.0001, sigma = 2.0, 
srfcut = 20.0 and gaussian = 1. The electrostatic potential from Delphi 
was finally virtualized using PyMOL (https://pymol.org/).

Differential expression analysis. RNA-Seq data for differential gene 
expression analysis exclusively came from tumor digests, i.e., no autol-
ogous tumor cell lines were used. Output files from Kallisto were used 
as input to DESeq2, version 1.26.0, from R/bioconductor with default 
options (64) to find differential expressed genes (adjusted P < 0.05, 
related to high and low sum of estimated frequency split by the median 
and PFS split by equal or below the median). GO enrichment analysis 
was performed using R, version 4.0.2, with the packages enrichplot, 
version 1.11.0.991 (65), and clusterProfiler, version 3.16.1, with Benja-
mini-Hochberg at P value adjustment (36).

Code availability. MuPeXi used for neoepitope prediction is 
available for all users at https://services.healthtech.dtu.dk/service.
php?MuPeXI-1.1 and has been published (20). Visualization of pMHCs 
was generated as described in Methods. Analysis of DNA barcodes 
was performed as described in Methods, and the bioinformatics 
pipeline is available (https://services.healthtech.dtu.dk/service.php? 
Barracoda-1.8). Code used for further analysis and visualization was 
written in R as performed as described in methods.

Statistics. Statistical analysis of DNA barcoding data was per-
formed using the software package Barracoda as described above. 
Survival analysis used percentiles and medians (number of NARTS 
or frequency) to define thresholds to split the cohort. Any values 
matching the threshold were treated as belonging to the lower group. 
Mantel-Cox test was used to evaluate the effect of NARTs on survival, 
and HRs were calculated using the log-rank approach with GraphPad 
Prism 8. Correlations were tested using nonparametric, 2-sided Spear-
man’s correlation test, except for Supplemental Figure 1D, where we 
used a 2-sided Pearson’s correlation. Two-sided z tests (prop.test) 
were applied where specified for Figure 6, A, C, and D. All 2-group 
comparisons were performed using nonparametric Mann-Whitney 
U test with a significance threshold of 0.05. Multigroup comparisons 

and resuspended in barcode-cytometry buffer. Cells were acquired 
within a week after multimer staining.

Sorting of pMHC multimer+ T cells. Multimer-binding CD8+ T cells 
were sorted on a FACSAria Fusion or FACSMelody Cell Sorter (BD) 
into BSA-saturated tubes containing 100 μl of barcode/cytometry buf-
fer. We gated on single, live, CD8+, and dump channel–negative (CD4, 
CD14, CD16, CD19, and CD40) lymphocytes and sorted all multim-
er-positive PE cells within this population. As tested and described 
in Bentzen et al. (19), inclusion of CD8+ multimer negative cells in 
the sorting gate does not have an impact on the final results because 
the fluorescence signal is used only for sorting out the relevant cells. 
Determination of antigen specificity is done solely based on the DNA 
barcode. The sorted cells were centrifuged for 10 minutes at 5000g, 
and the buffer was removed. The cell pellet was stored at −80°C. The 
percentage of multimer+ CD8+ T cells was used as input for estimation 
of epitope-specific CD8+ T cells (see Processing of sequencing data from 
DNA barcodes). Three samples were run without exported flow cytome-
try files, precluding adequate estimation of frequency after sequencing 
of DNA barcodes (M15, TIL Inf product; M40, pre-ACT PBMCs; and 
M40, PBMCs <1 month). TIL Inf product from M47 was stained again 
to estimated percentage of multimer+ CD8+ T cells. M15 had no signifi-
cant hits among barcoded multimers (i.e., sum of estimated frequency 
was set to 0%). See antibody assay details in Supplemental Table 2.

DNA barcode amplification. DNA barcode amplification was 
performed using Taq PCR Master Mix Kit (QIAGEN, 201443) and 3 
μM of forward and reverse primers (LGC Biosearch Technologies). 
PCR amplification was conducted on sorted multimer-binding T 
cells (in <19 μL of buffer) and on a triplicate of the stored aliquot of 
the MHC multimer reagent pool (diluted 10.000× in the final PCR) 
under the following conditions: 95°C for 10 minutes; 36 cycles: 95°C 
for 30 seconds, 60°C for 45 seconds, 72°C 30 for seconds, and 72°C 
for 4 minutes. The multimer reagent pool was used as the baseline to 
determine the number of DNA barcode reads within a nonprocessed 
MHC multimer reagent library. PCR products were purified with a 
QIAquick PCR Purification Kit (QIAGEN)m and the amplified DNA 
barcodes were sequenced at PrimBio using an Ion Torrent PGM 316 
or 318 chip (Life Technologies).

Processing of sequencing data from DNA barcodes. Sequencing data 
were processed by the software package Barracoda, available online 
(https://services.healthtech.dtu.dk/service.php?Barracoda-1.8). This 
tool identifies the barcodes used in a given experiment, assigns PCR 
used sample IDs and pMHC specificity to each barcode, and counts 
the total number (clonally reduced) of reads for each DNA barcode. 
Furthermore, it accounts for barcode enrichment based on methods 
designed for the analysis of RNA-Seq data, implemented in the R pack-
age edgeR; specifically, log2 fold changes (FCs) in read counts mapped 
to a given sample relative to the mean read counts mapped to triplicate 
baseline samples are estimated using normalization factors deter-
mined by the trimmed mean of M values method. Enriched barcodes 
were regarded as significant when the adjusted P value was below 
0.001, which equals an FDR< 0.1 (estimated using the Benjamini– 
Hochberg method). Barracoda outputs were further processed and 
annotated using R 4.0.2 — adding relevant clinical information and 
excluding signals arising from insufficient read depth (percentage of 
read count < 0.1). Furthermore, biologically relevant barcode enrich-
ment was defined as an estimated frequency of 0.01% or more and 
without presence in partially HLA-matching healthy donor PBMCs. 
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ed sequencing analysis and discussed data. MD provided patient 
material, cosupervised the study, and discussed data. IMS provid-
ed patient material, cosupervised the study, discussed data, and 
revised the manuscript. SRH conceived the concept, supervised 
the study, discussed data, and wrote the manuscript. NPK, CH, 
and SAT are listed as co–first authors. NPK led the effort through 
the revision phase and is therefore listed first. CH and SAT are list-
ed in alphabetical order.
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Patient ID PBMC pre-

ACT  

8 days prior 

TIL Inf Prod PBMC post-

ACT  

< 1 month 

PBMC post-

ACT 

 < 4 months 

PBMC post-

ACT 

< 12 months 

PBMC post-

ACT 

< 24 months 

PBMC post-

ACT 

< 48 months 

M01 
 

√ 
  

√   √ 

M14 √ √ √ √       

M17 √ √ √   √ √ √ 

M22 √ √ √ √ √ √ √ 

M24 √ √ √ √ √ √ √ 

M25 √ √ √ √       

M26 √ √ √ √ √ √ √ 

M27 √ √ √ √       

M29 √ √ √ √       

M31 √ √ √ √ √     

M34 √ √ √         

M35 √ √ √         

M36 √ √ √ √ √     

M40 √  √ √     √     

M42 √ √ √ √ √ √ √ 

M43 √ √ √ √ √     

M45 √ √ √ √ √     

M46 √ √ √ √ √     

M47 √ √ √ √       

 28 

Supplemental Table 1. Availability of peripheral blood samples pre- and post-ACT in melanoma 29 
patient cohort.  30 
 31 
 32 
 33 
 34 
 35 
 36 
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Marker Assay Fluorochrome Clone Supplier Cat. Number Staining conc. 

CD8 Multimer 

screening 

BV480 RPA-T8 BD 566121 2:100 

CD4 Multimer 

screening 

FITC SK3 BD 345768 1.25:100 

CD14 Multimer 

screening 

FITC 𝑀φP9, BD 345784 3.13:100 

CD16 Multimer 

screening 

FITC NLP15 BD 335035 1.56:100 

CD19 Multimer 

screening 

FITC 4G7 BD 345776 6.25:100 

CD40 Multimer 

screening 

FITC LOB7/6 Serotech MCA1590F 2.5:100 

CD4 TIL sorting  FITC SK3 BD 345768 240ng/ul 

CD8 TIL sorting  PerCP SK1 BD 345774 500ng/ul 

CD107a ICS BV421 H4A3 BD 562623 0.3:50 

CD3 ICS FITC SK7 BD 345764 5ng/ul 

CD8 ICS QDOT605 3B5 Thermo 

Fischer 

Q10009 0.2:50 

CD4 ICS BV711 SK3 BD 563028 1:50 

TNFα ICS APC Mab11 BD 554514 4ng/ul 

IFNγ ICS PE-Cy7 B27 BD 557643 1.5:50 

 37 
Supplemental Table 2: Data reporting for fluorochrome-conjugated antibodies used in flow cytometry. 38 
ICS, Intracellular Cytokine Staining.  39 
 40 
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Supplemental Figure 1. Supporting information to neopeptide multimer libraries. (A) HLA 43 

coverage per patient. Number of HLAs evaluated for each patient-specific multimer library. (B) 44 

Neopeptide library size. Closed circles represent the number of predicted neoepitopes that can bind 45 

producible HLAs with %rank < 0.5, and expression (TPM) > 0.1. Open circles represent the num-46 

ber of evaluated multimers (see methods). Note, that hollow circles are overlaid by filled circles 47 

for M43, M15, M26, M42, M03, and M22. (C) HLA alleles and their prevalence in assembled 48 

multimer libraries. Bold: excluded HLA-alleles due to technical issues. (D) Correlation of replicate 49 

multimer screens in TIL Inf samples of nine patients. Shown is the log2(fc) change of barcode read 50 

counts compared to triplicate panel baseline. Normality was tested using Shapiro-Wilk’s method 51 

followed by Pearson correlation. Grey shading represent the 95% confidence intervals.  52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 



   
 

6 
 

 62 

Supplemental Figure 2. Detection of NARTs in TIL Inf products from two melanoma pa-63 

tients. Example of a full screening using barcoded pMHC multimers for detection of both ne-64 

oepitope-and virus-epitopes specific CD8+ T cells in TIL Inf products for melanoma patient M14 65 

(PD) (A) and M26 (CR) (B). The data is separated according to the HLA alleles included in the 66 

screen. Blue: Virus-specific CD8 T cells. Red: NARTs. Black: Non-enriched barcodes. V10 an-67 

notate FLU peptide FLYALALLL, v17 annotate EBV peptide RAKFKQLL, and v31 annotate 68 

EBV virus peptide FLRGRAYGL.  69 

  70 

 71 

 72 

 73 

 74 
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Supplemental Figure 3. Detection of NARTs specific for AKAP9P1796L peptide variants 81 

(‘SILSY’ variants). (A) Dump channel negative (CD4-CD14-CD16-CD19-CD40-), neoepitope-82 

specific CD8+ T cells from M22 TIL Inf product. All 7 predicted AKAP9P1796L neopeptides tested 83 

with APC tetramers; all 7 were restricted to HLA-A*01:01. (B) Prediction of MHC binding con-84 

firmation to HLA-A*01:01 for all AKAP9P1796L peptide variants using TCRpMHCmodels as de-85 

scribed in the methods. (C) Summary table with peptide lengths and estimated frequencies of the 86 

NART population to each of the peptide variants. (D) MFI for the corresponding AKAP9P1796L 87 

tetramer+ CD8 T cell populations in (A). MFI, median fluorescence intensity. Tet, tetramer. FMO, 88 

fluorescence minus one.  89 

 90 
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 93 

Supplemental Figure 4. Tumor recognition by expanded, AKAP9P1796L-specifc NARTs. (A) 94 

HLA-A*01:01-restriced specific CD3+CD8+ T cells were sorted based on tetramer binding. (B) 95 

REP expanded cells were tested for neoepitope-recognition using tetramers. (C-D) IFNγ and TNFα 96 

release following co-cultures with autologous tumor cell lines and tetramer-specific clones recog-97 

nizing RVTDESILSY (C) and VTEDILSY (D). All plots represent gated CD3+CD8+ T cells. 98 

 99 
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Supplemental Figure 5. Tumor-mutational burden, estimated frequency and diversity of ne-109 

oepitope-specific CD8 T cells in TIL-ACT. (A) All evaluated multimers and TIL Inf products 110 

plotted according to clinical response and the log2(fc) enrichment of the given barcode. Estimated 111 

frequency is depicted as the dot size. (B) Estimated frequency of all 106 NARTs detected in TIL 112 

Inf products. (C-E) Tumor mutational burden in the cohort; (C) according to patient sorted by 113 

highest tumor mutational burden; (D) according to RECIST; (E) Responders (CR+PR) vs non-114 

responders (SD+PD). (F) Progression-free survival for the cohort split by tumor mutational bur-115 

den. The 66th percentile = 787 mutations, 33rd percentile = 228.67 mutations. (G-I) Number of 116 

predicted neoepitopes; (G) according to patient sorted by highest tumor mutational burden; (H) 117 

according to RECIST; (I) Responders (CR+PR) vs non-responders (SD+PD). (J) Progression-free 118 

survival for the cohort split by number of predicted neoepitopes. The 66th percentile = 153 pre-119 

dicted neoepitopes, and the 33rd percentile = 49 predicted neoepitopes. Whiskers represent IQR. 120 

p-values were calculated using nonparametric Mann-Whitney U test in B, E and I. Kolmogorov-121 

Smirnov was used in C and G to test equality of distributions. Kruskal-Wallis test was used for D 122 

and H.  Finally, Log-rank and Mantel-Cox was used to calculate p-values and hazard ratios (HR) 123 

respectively for F and J.  124 
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Supplemental Figure 6. Impact of NART diversity and frequency, as well as presence of im-128 

munogenic mutations on overall and progression-free survival. (A-B), Overall survival split 129 

by median number of NARTs (3.65, A) or by median NART frequency (median = 0.64%, B) 130 

within TIL Inf product. (C) Overall survival split by 66th and 33rd percentile of NART diversity; 131 

66th percentile = 5.65 NARTs. 33rd percentile = 0.88 NARTs. (D) Overall survival split by 66th 132 

and 33rd percentile of NART frequency; 66th percentile = 3.26%. 33rd percentile = 0.03%. (E-F), 133 

Overall (E) and Progression-free survival (F) split by median number of unique immunogenic 134 

mutations (3.22 uniquely recognized mutations). (G-H), Overall (E) and Progression-free survival 135 

(F) split by median NART frequency recognizing unique immunogenic mutations (0.63 %). The 136 

highest estimated frequency among a group of NARTs recognizing the same mutation was taken 137 

as a proxy for the overall NART frequency of the group. p-values and hazard ratios (HR) from 138 

Mantel-Cox test and log-rank approach, respectively. Number of NARTs and NART frequency 139 

were normalized to HLA coverage as described in materials and methods. OS, Overall survival. 140 

PFS, Progression-free survival. n = 26 for all plots.  141 
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 154 

Supplemental Figure 7. NARTs in TIL samples and peripheral blood over time. Example of 155 

a full screen for CD8+ T cell populations in patient M45 (PR), in PBMC before and after therapy, 156 

and in the TIL Inf product. Separated according to HLA. Blue: NARTs. Red: responses to virus 157 

peptides. Grey dots were considered non-enriched barcodes. V9 annotates CMV peptide 158 

YSEHPTFTSQY.  159 

 160 

 161 
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Supplemental Figure 8. Distribution and temporal appearance of NARTs in TIL-ACT 163 

treated patients. Pie charts represent the frequency distribution of CD8+T cells specific towards 164 

neo- and viral epitopes followed over time from pre-ACT to < 48 months after therapy. Individual 165 

colors represents the group of NARTs appearing at a given time point. Virus responses are colored 166 

in grey. The total number of NART and virus responses within each circle is given in upper left 167 

corner for each time point. Missing FCS files from flow cytometry precludes frequency estimation 168 

in M40 Pre-ACT and <1 month PBMC samples.  169 
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Supplemental Figure 9. NART diversity and frequency within TIL Inf products does not 188 

correlate with tumor mutational burden or number of predicted neoepitopes. (A) TMB vs. 189 

number of predicted neoepitopes. (B-E) All evaluated multimers (151-585 multimers per patient). 190 

(B) TMB vs NART diversity. (C) TMB vs NART frequency. (D) Number of predicted neoepitopes 191 

vs NART diversity. (E) Number of predicted neoepitopes vs NART frequency. (F) Alternative 192 

selection strategy used for G through K selecting top 151 neoepitopes with the highest binding 193 

potential according to predicted %rank score. (G) NART diversity and frequency following alter-194 

native selection. Patients were arranged according to TMB. (H) TMB vs NART diversity. (I) TMB 195 

vs NART frequency. (J) Number of predicted neoepitopes vs NART diversity. (K) Number of 196 

predicted neoepitopes vs NART frequency. Diversity and frequency values were normalized to 197 

HLA coverage (see materials and methods). R and p-values from Spearman correlation with 95% 198 

confidence intervals in grey. All patients were evaluated (n = 26). 199 
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 204 

Supplemental Figure 10. Exploratory analysis of differentially expressed genes. (A) Top 20 205 

enriched gene sets according to GO terms. (B) KEGG-pathway analysis showing the Antigen pro-206 

cessing and presentations pathway colered by enriched genes according to the GSEA for enriched 207 

GO terms. Significance threshold were set with an FDR < 0.01.  208 
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Abstract  
Mutation-derived neoantigens are critical targets for tumor rejection in immunotherapy, and 
consequently, the scientific community has been exploring new therapeutic approaches to 
increase the number of neoantigen-responsive T cells directly. Bioinformatic tools have 
enabled identifying patient-specific neopeptides from sequencing data. However, such 
strategies suffer from our limited capacity to precisely select those few neoepitopes that can 
give rise to T cell mediated recognition of cancer cells among that vast majority of 
immunologically irrelevant neopeptides.  We have extensively screened cancer patients 
undergoing immunotherapy for T cell recognition of neopeptides using MHC multimers. As 
such, we have analyzed more than 19,000 neoepitope candidates and identified 519 of these to 
give rise to T cell responses. Based on this large novel dataset, the characteristics of 
immunogenic neoantigens were explored to derive a feature set optimized to predict neoepitope 
immunogenicity. Through optimized feature selection, we can significantly improve the 
selection of immunogenic neopeptides from individual patients, which substantially enhances 
our capacity to target such neoantigens through targeted therapeutic approaches.  
 

Keywords 
Neoantigen; Neoepitope Prediction; Machine Learning; Immunotherapy; Immunoinformatics  



 2 

Introduction  
The development of effective antitumor immunotherapeutic strategies has valued the 
identification of tumor antigens. Among these antigens, there is a group called neoantigens, 
which are tumor-specific and private. To be immunogenic, neoantigens must be sufficiently 
expressed, cross-presented, and recognized by immune cells. Specifically, CD8+ T cells play 
an essential role by recognizing fragments of the neoantigens, called neoepitopes, and eliciting 
an immune response that may lead to tumor regression (1).  

In this sense, it has been demonstrated that a patient's neoantigen load is predictive of 
response to immunotherapies, such as checkpoint inhibition (CPI) (1–3). Besides, personalized 
immunotherapies based on vaccination with neoantigens are under clinical development and 
have demonstrated neoepitope-directed T cell responses and good tolerability (4). However, 
the development of therapeutic strategies targeting neoepitopes depends entirely on our 
capacity to predict which of the many mutational alterations accumulating in tumors that give 
rise to T cell recognition. With current tools, only 2-6% of predicted neopeptides are 
demonstrated to give rise to T cell recognition (5–7). This number needs to be significantly 
improved to facilitate successful clinical implementation for neoepitope targeting strategies.  

Various methods have been developed to predict patient-specific neoepitopes from 
DNA and RNA sequencing (RNAseq). These methods rely on detecting somatic mutations that 
generate neopeptides and predicting their binding to the patient's MHC to generate a list of 
neoepitope candidates (neopeptides that have chances to be immunogenic but need to be 
experimentally validated) (8–12)Even though these methods have been useful to make great 
advances in personalized cancer immunotherapy, the predicted candidates often contain a high 
proportion of false positives that will not elicit an immune response (5,6). To improve the 
specificity of neoepitope detection, multiple mutations and neoepitope characteristics have 
been investigated as predictors of neoantigen immunogenicity, and machine learning methods 
have also been developed to rank neoepitope candidates. However, their predictive 
performance is still limited (9). One of the main challenges for developing accurate neoepitope 
immunogenicity predictors is the limited available data that experimentally distinguish the 
immunogenic neoepitopes from the non-immunogenic neopeptides. In addition, experimental 
evaluation of neopeptide-specific T cell responses is laborious and expensive, requires a patient 
specific peptide selection, and the breadth of peptides that can be evaluated is limited by scarce 
patient samples  (13)).   

In this study, we explore the characteristics of immunogenic neoepitopes in order to 
improve their prediction. To this aim, we arranged a large dataset of more than 19000 
neoepitope candidates screened for neoantigen reactive CD8+ T cells (NARTs) that were 
derived from three studies covering in total 70 patients with different tumor types. All three 
studies used the same technology to determine T cell recognition of neoepitopes, based on 
barcoded MHC multimers (13), hence distinguishing the immunogenic neoepitopes from the 
non-immunogenic neopeptides.  

Another challenging aspect of neoantigen prediction is the particular characteristics of 
each patient's tumor and immune system. It is known that tumors evolve to be less 
immunogenic by the process of immunoediting (1,7,14). The downregulation of MHC 
transcription, the induction of T cell exhaustion, and the modulation of the immune infiltrate 
by the production of different suppressor cytokines are some of the mechanisms that favor 
cancer progression. The introduction of immunotherapies in immunocompetent patients may 
alter this natural course by shifting the tumor microenvironment (TME) profile, stimulating 
neoantigen cross-presentation, and enhancing the T cells activity to finally develop an effective 
antitumoral immune response (1). However, not all patients respond to immunotherapy, and 
even those that do, may not take full advantage of the immunogenic potential of the 
neoantigens.  
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As a consequence, when screening patients for T cell recognition toward neopeptides, such 
data will comprise a substantial number of false-negative data, i.e. neopeptides that have the 
potential to be immunogenic but are not recognized by T cells in the given cancer patients, due 
to intrinsic immune and tumor characteristics. Such event forms a false negative data sink that 
challenge our predictive capacity. To compensate for this potential bias and hence improve the 
predictive capacity, we took into account also the association between neoantigen 
immunogenicity and the characteristics of the TME (15,16).  

Based on the described data, we developed machine learning models that integrate i) 
the neopeptide sequence, ii) neopeptide-derived features such as their physicochemical 
properties, the source mutation qualities, the likelihood of antigen presentation and T cell 
propensity, and iii) patient-specific derived features including MHC expression in tumor cells, 
the cytolytic activity (CYT) and the different cell populations that constitute the TME. We 
found that the combination of these features increases the performance for the selection of 
immunogenic neoepitopes. This result suggests that the challenges in neoantigen prediction 
can be addressed by integrating multiple factors from the complex antitumor immune response. 
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Results  
 
Selection of neopeptides and experimental evaluation of their immunogenicity 
In this study, we assessed the features associated with the immunogenicity of predicted 
neoepitope candidates derived from the tumors of 70 cancer patients, each experimental 
evaluated for T cell recognition covering a range of 100 to 1360 neopeptides per patient. Here, 
immunogenicity is defined as the capacity of a given neopeptide to raise a detectable CD8 T 
cell response in the given patient. This study includes a total of 19541 neopeptides, among 
which 519 (2.6%) were recognized by a T cell population in a given patient. This data was 
generated through the screening of three patient cohorts, including different tumor entities. One 
being a cohort of metastatic melanoma patients receiving adoptive cell transfer (ACT) with 
tumor infiltrating lymphocyte (TIL) (TIL-ACT) (5), second, a cohort of metastatic urothelial 
carcinoma (mUC) patients who received PD-L1 checkpoint inhibition CPI) (7), and third a 
basket trial cohort with different cancer types and types of CPI treatment ((17), not published) 
(Figure 1A). The percentage of immunogenic neoepitopes in the different cohorts was 3.45%, 
2.35%, and 2.28%, respectively (Supplementary Figure 1A). 

All neopeptides included for T cell screening across the three studies were extracted 
based on the patient's individual tumor mutational landscape, derived from paired 
tumor/normal whole-exome sequencing (WES) and RNAseq from each patient. Genome 
analysis tool kit (GATK) best practices (18) were applied to obtain somatic variants, followed 
by peptide extraction with MuPeXI (9) (Figure 1B). From this pool of neopeptides, we 
evaluated, on average 279 (range 100-1360) for T cell recognition per patient. The majority of 
the neopeptides included for T cell screening were classified as binders (NetMHCpan 4.0, 
Eluted Ligand % Rank (RankEL) < 2) to the patient's HLA class I molecules. Peptides from 
patients with a high number of candidate mutations were selected using a strong binding 
(RankEL < 0.5) threshold, whereas the RankEL threshold was relaxed for patients with fewer 
neopeptide candidates to meet the inclusion of 100 neopeptides per patient. The selection 
criteria resulted in a binding score distribution with two peaks (of strong and weak binders), as 
seen in Supplementary Figure 1B. Only neopeptides from transcribed regions (transcripts per 
million (TPM) >0.1) were included. (Supplementary Figure 1C). In total, 31 different HLA 
class I molecules were included for T cell screening across all patients, and T cell responses 
were found restricted towards 27 of these. Some HLA molecules obtained a significantly higher 
proportion of immunogenic neopeptides, including HLA-A0101, A0301, B0702, B1501, 
B4001, B4402, C0202, C0602. (Supplementary Figure 1D).  In general, no strong association 
was observed between the number of neopeptides included for T cell screening and the number 
of immunogenic neoepitopes identified (Figure 1C). This is probably reflected by the large 
number of neopeptides evaluated for all patients and the fact that patient-specific features 
determine tumor immunogenicity.  
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Figure 1: Data overview. A) Data overview illustrating the number of validated peptides for each cohort and the 
number of patients screened together with a summary of the total amount validated with the number of 
immunogenic and non-immunogenic neopeptides. B) General workflow of the data generation, including the 
patient samples being sequenced and patients' specific libraries with neoepitope candidates being generated and 
screened with patients' samples to find immunogenic neoepitopes. C) Patient overview according to the number 
of neoepitopes screened (black dots) and immunogenic neoepitopes (grey dots) and fraction immunogenic (red 
dots). "MM" stands for the melanoma cohort, "mUC" for the mUC cohort, and "RH" for the Basket cohort.     
 
Identification of features associated to neoepitope immunogenicity 
Next, we interrogated which characteristics influence the immunogenicity of neoepitopes. To 
broadly elucidate how different neopeptide characteristics would impact the chance of raising 
a T cell response against such peptides, we investigated 27 features and their association with 
neoepitope immunogenicity (Supplementary Table 1).  First, we explored if the type of 
mutation influences its immunogenicity. The mutation types are categorized as missense, 
frameshift, in-frame insertion, and in-frame deletions. More immunogenic neopeptides were 
observed in the missense and frameshift category, but these also constituted a larger fraction 
of the evaluated neopeptides, hence no enrichment was observed (p = 0.1, proportion z-test) 
(Figure 2A). 

A previous study has observed the mutation position to be important for the 
immunogenicity of neoepitopes (19). To investigate neopeptides of different lengths, we 
applied the predicted 9mer binding core derived from NetMHCpan 4.1 of all the neopeptides 
with missense mutations (20).  Applying this, we could uniformly investigate the role of the 
mutation position despite their original length. In immunogenic neoepitopes, mutations were 
predominantly located around the anchor positions of MHC I motifs, while there is a depletion 
of mutations near position 4 in 8-,9-,10-mers and near position 5 in 11-mers (Figure 2B, top). 
This dynamic was not observed in the non-immunogenic neopeptides (Figure 2B, bottom). We 
also observed a significantly increased frequency of mutations in the gap position (outside the 
core) of 10-mer neoepitopes (p= 0.01, proportion test)  (Figure 2B) compared to the non-
immunogenic ones, suggesting that mutations in longer peptides, in general, are facing out 
toward the T cell in immunogenic peptides, as gap positions are generally characterized by 
protruding residues. To differentiate the neopeptides with improved binding compared to wild-
type (wt), i.e. neopeptides where the wt version is expected to be poorly presented in the given 
HLA; and conserved binding (CB), i.e. neopeptides where both the wt and the mutated version 
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is expected to be well presented on HLA, we calculated differences between mutant and wt 
RankEL as described in (21), revealing 291 conserved binders and 228 improved binders (IB) 
among the immunogenic neoepitopes. As expected, the IB mostly have mutations in anchor 
positions, affecting the HLA binding capacity of such peptides, whereas the CB has mutations 
in the 'T cell receptor (TCR)-binding' region, pos. 4-8 (Figure 2C).  

Considering that tumor neoepitopes derive from normal self-peptides, it is hypothesized 
that the mutations should generate drastic changes to break the immune tolerance. To determine 
this, we evaluated the self-similarity of the neopeptide either in the CB or IB category. By 
comparing CB with IB, we find lower self-similarity in the CB, both within the non-
immunogenic and immunogenic neoepitopes (Figure 2D). Comparing non-immunogenic 
neopepitdes with the immunogenic in each category, no significant difference was observed in 
self-similarity (Supplementary Figure 2A). These results indicate that the self-similarity on its 
own was unable to distinguish immunogenic neoepitopes from non-immunogenic neopeptides. 
Additionally, we compare wt to the mutant peptide with the foreignness score (Foreignness) 
and the Differential Agretopicity Index (DAI), as they both previously independently and 
combined have shown to be important in defining immunogenicity for pathogenic and cancer-
derived epitopes (22–27). However, we do not observe any significant difference in either of 
them (Supplementary Figure 2A).    

As mutation calling can give false-positive mutation assignments (28–30), we 
investigated the presence of the WES-called mutation in the transcriptome. We were able to 
validate whether the mutation was present in the RNA in 85% of the neopeptides. Among these, 
47% of neopeptides originated from mutations that could be detected in at least one transcript 
of the RNAseq, 47% were not found in RNAseq, and 6% had insufficient RNA coverage in 
the region of the mutation (see method). No significant difference was found with this 
validation in separating immunogenic neoepitopes from non-immunogenic ones (Figure 2E). 
Neither when observing the cohort independently (Supplementary Figure 2C). Additionally, 
the coefficient of the identified transcript (ValMutRNACoef) was not associated with 
neopeptide immunogenicity (Supplementary Figure 2A). Furthermore, we investigated if the 
level of expression of a mutated gene was associated with immunogenicity. RNAseq was used 
to calculate the abundance of the source transcripts. No significant difference was found in the 
RNA expression level of immunogenic and non-immunogenic neopeptides (Wilcoxon rank-
sum test;p = 0.56) (Figure 2F). Of note, in this dataset, finding detectable RNA transcripts for 
the given mutation was election criterion for all neopeptides evaluated for immunogenicity 
(shown in Figure 1D) and hence could affect the result. However, from this analysis, we found 
no further enrichment of immunogenicity associated with level of gene expression. Cellular 
prevalence (CelPrev) and the variant allele fraction (VarAlFrac) are mutation specific features 
that describe the prevalence of the mutated alleles. We find CelPrev to significantly influence 
the identification of immunogenic neoepitopes (Supplementary Figure 2B).  

Strong binding affinity of the neopeptide to MHC and high stability of the peptide-
MHC (pMHC) complex have been shown to characterize immunogenic neoepitopes in 
previous studies (5, 9, 18). We demonstrate that the predicted binding affinity % Rank 
(NetMHCpan 4.0, RankBA), RankEL, and the predicted pMHC stability significantly 
differentiate immunogenic and non-immunogenic neopeptides (Figure 2F, Supplementary 
Figure 2B).  Of note, in this study, the investigated neoepitopes were pre-selected according to 
RankEL, potentially generating a sampling bias, which may reflect why RankEL displays less 
separation within two groups compared to RankBA.  

Next, we characterize the physicochemical properties of the neopeptides by calculating 
the molecular weight, aromaticity, instability, isoelectric point, molar extinction coefficient, 
mean hydrophobicity, and proportion of hydrophobic and aromatic residues. Anchor residues 
interact with MHC molecules, and non-anchor residues are more exposed to encounter with a 
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TCR. Considering that the non-anchor region of the peptide may be more relevant for 
immunogenicity, we extracted this subsequence (from the 4th to the penultimate amino acid) 
and calculated the mean hydrophobicity and the proportion of small, aromatic, basic, and acidic 
amino acids. Mean hydrophobicity in non-anchor subsequence of the neopeptide (HydroCore) 
(Figure 2H) and 'PropHydroAro', a parameter that describes the proportion of hydrophobic and 
aromatic residues in the peptide (Figure 2I), both significantly differ in non-immunogenic and 
immunogenic neopeptides. This observation aligns with other findings demonstrating 
hydrophobicity as a hallmark of the immunogenicity of T cell epitopes in general (31) and 
specifically for neoepitopes (25). 

Finally, we included the prediction of T cell propensity with the PRIME model 
(PrimeScore). This model pondered the physicochemical properties in non-anchor residues and 
showed a significant difference in separating the immunogenic from the non-immunogenic 
neopeptides (Supplementary Figure 2B).  
 
In summary, more than half of the features (17/27) showed a significant difference between 
immunogenic and non-immunogenic neoepitopes. To assess the performance of these features 
to independently drive an improved identification of immunogenic neoepitopes, we calculated 
the area under the receiver operating characteristic curve (AUC) and the partial area under the 
receiver operating characteristic (ROC) curve at 0.1 (AUC 0.1). This latter metric was included 
as a mean to focus on the high specificity part of the ROC curve. Each feature independently 
reaches a max performance of AUC 0.1 = 0.013 and AUC = 0.612. (Figure 2J and 
Supplementary Figure 2D).  Indicating that even though a significant difference was obtained 
for a feature in differentiating immunogenic and non-immunogenic neoepeptide (Figure 2F-I, 
Supplementary Figure 2B) a poor performance was obtained when evaluating AUC. In 
addition, some features, that did not reveal significant differences between immunogenic and 
non-immunogenic neopeptides, may still play a role in a feature combination matrix. This is 
illustrated by the combination of RNA expression level > 2 TPM and RankEL < 0.5 selects a 
higher proportion of immunogenic peptides (proportion test, p = 0.0001) compared to each 
feature independently, where the expression level has a p = 0.073 and RankEL has p = 0.008 
(Figure 2K). Similar results are observed for HydroCore > 0.3	(p = 8.04 × 10!"#) and 
PropHydroAro > 0.4(p = 9.67 × 10!"$), where the combination has a p-value of 2.2 × 10!"# 
(Figure 2L). Together these findings encouraged us to use machine-learning strategies to build 
a multiparametric model for predicting the immunogenicity of neoepitopes. 
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Figure 2: Features and immunogenicity. A) Percent of immunogenic neoepitopes according to the mutation 
consequence. The p-values are according to the proportion test, testing if the number of immunogenic neoepitopes 
for each mutation type is present in a higher fraction compared to the non-immunogenic ones. B). Immunogenic 
neoepitope fraction for all missense according to peptide position and peptide length where the gap position is 
outside the core (OC) and is significantly enriched for neopeptides with a length of 10 within the immunogenic 
neoepitopes (p=0.01, prop.test). The peptide is separated into immunogenic and non-immunogenic neopeptides. 
C) Same as (B) but only according to the immunogenic peptide and then separated into the improved binder (IB) 
and conserved binders (CB). D) Self-similarity comparing the IB and CB for the neoeptiopes. E) Percent of 
immunogenic and non-immunogenic neopeptides where the mutation is validated in RNA. The statistic is 
performed from a proportion test testing if the proportion of found RNA has more immunogenic neoepitopes than 
those not found. F-I) boxplot comparing the non-immunogenic form immunogenic neopeptides for four selected 
features, statistic by Wilcox test. F) Expression p = 0.56. G) RankBA p = 4.2 ∙ 10!".	 H) HydroCore p = 5.8 ∙
10!#$.		I) PropHydroAro p = 2.2 ∙ 10!#%. J) AUC01 performance for each feature independently colored by 
feature type.  K+L) Dot-plot combining two features with the fraction of immunogenic vs. non-immunogenic for 
each quadrant according to the selected threshold. The percent of immunogenic neopeptide for each quadrant is 
noted.  J) Expression with a threshold of 2 vs. RankEL with a threshold of 0.5. K) PropHydroAro threshold of 0.3 
vs. HydroCore with a threshold of 0.4.  
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Improved prediction of immunogenicity by random forest modeling 
RF was applied to develop a model that predicts immunogenicity in our dataset, based on the 
features previously described. The overall workflow is illustrated in Figure 3A. Considering 
that previous studies demonstrate that highly correlated features reduce the trainability of RF 
models (32,33), the feature space was reduced to only include features with a Spearman's 
correlation coefficient lower than 0.7 (higher than -0.7 if negative). This resulted in discarding 
HydroAll (correlated with HydroCore) and VarAlFrac (correlated with PriorScore) 
(Supplementary Figure 3A). Furthermore, the binary one-hot-encoded features (i.e. yes/no 
features), including mutation consequence and mutation position, did not add predictive power 
(based on a backward feature selection) and therefore were not included in the model. Based 
on these selection criteria, 22 features were incorporated into the feature-based RF model.  

As an alternative strategy to the feature-driven model, we also developed a sequence-
based model using the NNAlign method (34)The type and frequency of amino acids in the 
neopeptide sequences may contain information related to their immunogenicity. This has 
previously been explored in sequence-based models for the detection of both pathogen-derived 
epitopes and cancer neoepitopes (35,36). A 5-fold cross-validation scheme was used to train 
and evaluate both models. To avoid data redundancy, a modified common motif clustering was 
applied (described in Materials and Methods). This ensures that all the data from the same 
patient is partitioned together to avoid overfitting on patient-level features. The result was a 
dataset split into 5 partitions, separated by neoepitope candidate, common motifs, and patients. 

The performance of the models was evaluated in terms of AUC and AUC01. Both the 
RF model and the sequence-based NNAlign model performed significantly better than the 
selection based on RankEL alone (as previously done, for the immunogenicity testing). The 
RF model display significantly better prediction (AUC=0.638 and AUC01=0.0147) than 
NNAlign (AUC=0.605 and AUC01= 0.0145), both outperforming RankEL (AUC=0.537 and 
AUC01=0.0082). Investigating the performance of an ensemble model, based on the average 
score of both methods, demonstrated no major improvement with respect to the RF model 
(Figure 3B). We analyzed the separation of immunogenic and non-immunogenic neopeptides 
based on the prediction scores. Looking at each cohort independently, a significant separation 
was found in all cohorts according to the RF model. The NNalign model obtained a significant 
separation in Basket and Melanoma but not in the mUC cohort (Figure 3C). When considering 
the performance of each patient, again, the RF model demonstrates a significant improvement 
both for AUC01 and AUC, compared to the RankEL, with the RF model displaying the best 
performance (Figure 3D, Supplementary Figure 3B). 

 Both RF and NNAlign allow interpretation of the rules learned by trained models. 
Investigating the sequence logos produced by NNAlign, immunogenic neopeptides were found 
to be enriched in hydrophobic and aromatic residues (Supplementary Figure 3C). Also, when 
analyzing the feature importance for the RF model, the mean hydrophobicity and PRIME score 
(36) were found to be the most relevant features (Figure 3E). 
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Figure 3: Random Forrest modeling. A) Strategy of the machine learning approach with feature selection, 
partitioning, and modeling. B) Roc curve with the random forest (RF) model in purple, which performs 
significantly better than the NNalign in green ( p = 0.001, roc.test) and RankEL (p= 7.7!&. C) Prediction score 
from the NNalign model in top and RF model in bottom according to the immunogenic and non-immunogenic 
peptide splitted by cohort. The RF model had significant separation in all three cohorts. The basket obtained p-
value at = 1.1!#', mUC p-value at 1!(, and Melanoma obtained p-value = 2.6!&, all with non-paired Wilcoxon 
test. The NNalign model obtained significant separation in Basket (p= 2.5!#', Wilcox test) and melanoma 
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(p= 6.9!'", Wilcox test), but non-significant for the mUC cohort (p=0.77). D) AUC01 per patient, RF model is 
significantly better than RankEL (p-value = 0.00015) but non-significant but slightly improved compared to 
NNalign (p=0.066). E) Mean feature importance for the RF model colored by the feature category.  F) RF 
prediction score and RankEL prediction score for non-immunogenic neopeptides comparing shared pMHC 
between patients to unique pMHC. F) Comparing unique and shared non-immunogenic neopeptides for the RF 
and RankEL prediction scores. The RF has a significantly lower prediction score for the shared compared to the 
unique ones (p-value = 3.2!%, wilcox test), and the RankEL shows the opposite; the shared have a significantly 
higher score compared to the unique ones (p = 6.9!'", wilcox	test).  
 
In general, the prediction scores of the RF model were able to separate the immunogenic 
neoepitopes and non-immunogenic neopeptides and performed slightly better than the 
NNAlign model, with both models significantly improving prediction compared to RankEL. 
Although neoepitopes most often are found as private antigens since most mutations are unique 
to the given patient's tumor.  However, given the size of the data set in this study, we have been 
able to detect several identical neopeptides present in the tumors of multiple patients. 4% of 
the dataset corresponds to neopeptides whose sequence is observed in more than one patient 
and 2% to pMHC present in more than one patient. Following T cell screening we found T cell 
recognition to 4 pMHC to be  'shared' neoepitopes. Interestingly, these neoepitopes were found 
to be immunogenic in only one patient and negative in the rest, indicating that patient-specific 
characteristics may influence the neoantigen-directed immune response. This observation leads 
us to question whether the negative neopeptides that have been tested in a single patient could 
be immunogenic in another patient or environment and therefore act as false negatives for the 
RF model. To investigate this aspect, we hypothesize that pMHCs that have been evaluated as 
negatives in multiple patients are true negatives with more confidence. We observed that the 
RF model assigns lower values to these negatives than to private neopeptides (p = 	3.2!#) 
(Figure 3F), suggesting that at least a proportion of the private negatives share features 
comparable to that of the positives, and hence could be false negatives.   
 
 
Encountering tumor microenvironment improves prediction but not on patient-level 
The TME comprises an essential factor in the antitumoral immune response. Earlier studies 
have suggested that a combination of tumor mutational burden (TMB) and TME can be used 
as a biomarker to predict the patient's response to immunotherapy (37–39). Also, it has been 
widely discussed that a hot TME is essential for having TILs recognizing neoantigen (5). The 
presence of immunogenic neoepitopes will only lead to tumor elimination if active NARTs are 
present. Cytolytic activity (CYT, geometric mean of GZMA, and PRF1 expression) can be 
used as an estimate for T cell cytolytic activity and has been found to correlate with the 
neoantigen load (40). HLA presentation is an essential factor for neoantigen-directed T cell 
mediated killing of cancer cells.  Downregulation of MHC molecules is a known escape 
mechanism of tumor cells (41,42), and the HLA expression in tumors correlates to higher 
immune cell infiltration and prolonged survival (1,43).  

Based on RNAseq data, we derived information regarding the proportion of the 
different cell populations that compose the TME, the CYT, and the HLA expression (HLAexp) 
of each tumor sample included in this study. CYT and HLAexp correlated with the number of 
immunogenic neoepitopes per patient (Figure 4A-B). Furthermore, HLA expression showed a 
significant separation between the immunogenic and non-immunogenic neoepitopes 
(Supplementary Figure 4A), and it was relevant for all HLA loci (Supplementary Figure 4B). 
Based on these results, we integrated the patient-specific immune-related features in an RF 
model (RF TME) in addition to the above-defined neopeptide-derived features. A correlation 
was found between the TME features (Supplementary Figure 4C), and due to the inability of 
the RF model to detect the importance of highly correlated features, a selection scheme was 
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therefore implemented. Features were defined by a forward selection based on the highest 
performance and excluding features with a high correlation with the before-selected features. 
The AUC was found for each feature and train set, and the mean of each feature was calculated 
(Supplementary Figure 4D). For example, CYT had the best mean performance, followed by 
CD8 T cells (TcellsCD8), but since both features were highly correlated (Spearman's 
correlation coefficient = 0.7, the TcellsCD8 was not included in the model. Using this 
approach, the final included TME features consist of: CYT, HLA-expression (HLAexp), and 
monocyte linage (monocyte). Similar to HLAexp and CYT, monocyte also showed a 
correlation with the number of immunogenic neoepitopes (Supplementary Figure 4E). To 
validate that this feature selection did not result in overfitting for the data, the feature selection 
was also made for each train set and used for training and testing. This procedure did not change 
the performance of the model. From this, we conclude that the potential overfitting imposed 
by feature selection prior to the model training is minimal, and therefore, for further analyses, 
we moved forward with the first simpler model using an equal feature space between the 
different folds in the cross-validation.    

When including these four TME features (CYT, HLAexp, and monocytes) with the 
previously described neopeptide features, the performance of neoepitope detection increases 
significantly (p = 0.002) with a global AUC of 0.66 (Figure 4C). However, when the 
performance of each patient was investigated, only a significant improvement was achieved in 
AUC (p = 0.025) and none in AUC01 (Figure 4D+E). To elaborate on this, we calculated the 
difference or delta between the prediction scores derived from the RF TME and RF models 
(RF TME - RF). It could be observed that peptides from patients with high CYT had a positive 
delta, while peptides from patients with low CYT had a negative delta (Spearman's correlation 
coefficient = 0.75 and 0.82) (Supplementary Figure 4F). In other words, the model with TME 
features favored peptides from patients with high CYT and decreased the prediction score of 
peptides from patients with low CYT; therefore, TME features themselves were unable to 
distinguish the immunogenicity of peptides within patients but favored the patients with a 
favorable TME. Hence, the improvement in AUC likely stems from enrichment of T cell 
responses in patients with favorable TME, which will also affect the immunogenicity 
classification in our dataset. Thus, to only determine peptide features associated with 
immunogenicity, the RF model can be used, but to include the likelihood of finding T cell 
reactivity towards such neopeptide in a given patient, the RF TME model should be applied. 

Finally, we assessed the relative feature importance based on the RF TME model 
learned rules. Also here, HydroCore was the feature that constituted the highest importance for 
the model. From the novel features, CYT represented the second relevant feature, whereas 
HLAexp was the third (Figure 4F).  In conclusion, TME and HLA expression are useful 
features to assess the proclivity of a patient to have a detectable T cell response against 
immunogenic neoepitopes. 



 13 

          
Figure 4, Random Forest with tumor microenvironment (TME) parameters. A) CYT correlation with the 
number of responses. B) Correlation of HLA expression compared to the number of responses. C) Roc curve 
illustrating the three models. NNalign in green, The RF model without TME features in dark purple, and RF with 
TME features in light purple. RF TME is significantly better than RF (p = 0.002, roc.test). D+E) AUC per patient 
for the two models and statistics made with paired Wilcox test D) AUC01 p= 0.85, and E) AUC p = 0.0025.   F) 
Mean feature importance for the RF with TME features colored by the feature type. 
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Capturing of true positive neoepitope and association with patent survival  
To develop therapeutic interventions targeting neoepitopes, its crucial to precisely determine 
immunogenic neoepitopes of relevance. Hence, based on the IMPROVE prediction model, we 
investigated our capacity to catch true positive immunogenic neoepitopes out of the total 
possible pool. Here, the proportion of observed immunogenic neoepitopes located in the top 
20 and 50 ranked neopeptides per patient was estimated according to the predicted value from 
both models (with and without TME) and compared with the fraction of immunogenic 
neoepitopes found in the top according to the RankEL and with random sampling. Both RF 
models showed a higher proportion of identified immunogenic neoepitopes compared to 
RankEL and random sampling. However, the implementation of the TME did not demonstrate 
any improvement compared to the model without TME (Figure 5A+B).  

We further evaluated the fraction of true-positive (i.e. T cell evaluated immunogenic 
neoepitopes that could be identified by the different methods. First, we defined a cut-off for 
selection of predicted 'true' neopeptides using our IMPROVE model. This cut-off was defined 
as the point where the sensitivity and specificity crosses. This was calculated for the model 
both with and without TME features included (Figure 5C+D). Next, the models were compared 
to RankEL with a cutoff at 0.5, defining the strong binders. When implementing the defined 
cutoffs, the RankEL identified 9737 positive neopeptides, of which 289 were TP with a 
Matthew correlation coefficient (MCC) at 0.02 and an accuracy of 0.50. The IMPROVE model 
without TME resulted in 7853 positive neopeptides, of which 308 were TP (MCC at 0.06 and 
accuracy of 0.60), and the IMPROVE model with TME resulted in 7684 positive neopeptides, 
of which 320 were TP (MCC at 0.08, and accuracy of 0.61) (Figure 5E). The latter corresponds 
to the identification of >60% of the TP immunogenic neoepitopes. 

Earlier studies have suggested neoantigens as a biomarker for patient outcome and 
survival to checkpoint inhibition (1). To investigate this in the context of our prediction model, 
we used the models to predict the immunogenicity score for all possible neoepitopes in the 
individual patients included in the studies addressed here. Using the previously defined cutoffs 
for the IMPROVE model (Figure 5C+D), a 0.5 cutoff for the RankEL model, patients were 
separated into four groups by the quantile related to the number of predicted neoepitopes using 
the 3 different models. When evaluating the patients' Overall Survival (OS) and Progression 
Free Survival (PFS), related to their level of neoepitopes, based on this quantile separation 
Focusing on the two ultimatums (high vs. low), a better overall survival probability was 
obtained based on the IMPROVE model compared to Rank EL. This was evident both without 
and with the TME factors included; focusing on the two ultimatums (high vs. low), we find 
HR: 0.45<0.36>0.35 related to OS and HR:  0.40<0.42>0.34 related to PFS (Figure 5F). The 
included cohorts were very heterogeneous, given different cancer types and treatments, and 
hence somewhat differently influenced by the level of neoepitopes when evaluated individually 
(Supplementary Figure 5). Although the prediction of patient outcome is not the key 
accomplishment of the IMPROVE prediction strategy, the influence observed on patients 
outcome suggests that those predicted immunogenic neoepitopes do influence treatment 
outcome, and survival, and supports that understanding that we select neoepitopes of relevance 
for active T cell recognition and tumor elimination. 
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Figure 5, Patient performance and survival. A+B) The fraction of immunogenic neoepitopes in the top 20 and 
top 50 neoepitope candidates of the random forest (RF) model (dark purple), the RF model with CYT and HLA 
expression (light purple), red according to Eluted Ligand %Rank, and grey is randomly sampled peptides. A) top 
20 neopeptides RF vs. RankEL (p=0.00047), RF vs. random (p=9.7!(), RF vs. RF TME (p=0.85). B) top 50 
neopeptides RF vs. RankEL (p=0.005), RF vs. random (p=4.7!)), RF vs. RF TME (p=0.76). C+D) Sensitivity 
and specificity calculated for a range of different cutoffs where the point the curve crosses define the set cutoff of 
what is predicted immunogenic and non-immunogenic. E) Confusion matrix (left) for RankEL with threshold < 
0.5 and according to the pre-selected neoepitopes with expression above 0.01. The (middle) shows the RF model 
without TME features with the defined threshold found in (C). The confusion matrix to the (right) is the RF model 
with TME features included, with the defined threshold found in (D). F) Kaplan-Meyer curves for observing all 
predicted neopeptides with a threshold of RankEL< 2 and Expression >  0.01, which included predicted 
neoepitopes that have not been screened, for example, HLA alleles that were not available and neopeptides for 
patients selected with a more restricted threshold. The survival analysis is made for the three categories described 
in the confusion matrix. The patients are separated into four groups according to the number of predicted 
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neoepitopes above the defined threshold. The four groups are determined according to the quantile where "high" 
is above the 3rd quantile, "medium high" in between the 2nd and 3rd quantile. "medium low" is between the 2nd 
and 1st quantile, and low is below the 1st quantile. The threshold for predicted neoepitopes for the RF model with 
and without TME (found in Figure 5B and C), whereas the threshold for RankEL is set to 0.5 and is also the 
threshold used in the confusion matrix.  
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Discussion 
Previous studies investigating neoepitope candidates are hampered by limited data, making it 
challenging to learn the rules of neoantigen immunogenicity. This study evaluates above 
19,000 neoepitope candidates with more than 500 immunogenic candidates verified through 
large-scale T cell interrogation using barcode-labelled peptide-MHC multimers. As such, this 
dataset is, by our knowledge, the largest experimentally verified pool of neoepitope candidates. 
This study uses random forest (RF) modeling to predict neoantigen immunogenicity, including 
22 features covering mutation-specific, peptide sequence-specific, and patient-specific 
parameters (1,25) 

To overcome the scarcity of validated neoepitopes, other studies have predicted 
neoepitope immunogenicity based on pathogen-derived epitopes (26,36). One study that 
investigates immunogenicity characteristics only included cancer neoepitopes and found 
significant differences in pMHC stability, affinity, and gene expression level (TPM) (25). The 
data set for this study has encountered the pMHC binding and expression level during the 
selection of peptides, as they were previously shown to be important parameters (25,26) and 
therefore focuses on features beyond these already pre-selected features. In this small dataset 
(25), including 30 immunogenic neoepitopes, low hydrophobicity was suggested as an 
important parameter for immunogenicity (25). However, this is in contrast to the findings 
presented here and by others (35,36), demonstrating that high hydrophobicity positively 
influences immunogenicity. This demonstrates the need for assessment of larger datasets, 
allowing data partitioning to avoid conclusions driven by few epitope sequences.   

Our feature-based RF model (IMPROVE) was able to improve neoepitope prediction 
over single feature-based models and NNalign. Our results provide insight into the most 
important characteristics of an immunogenic neoepitope. The feature with the highest 
importance to model performance is the hydrophobicity of non-anchor residues. 
PropHydroAro and PRIME were also found important, which all address the hydrophobicity 
and/or aromatic residues. Models with backward and forward feature selections were applied 
to ensure that the model with all included features gained the highest performance (data not 
shown). Nevertheless, considering a simple model, one of the following features might be 
enough for a proper prediction.  

Binary features, for example, one-hot-coding of the mutation type (missense, in-frame 
insertion, in-frame deletion, and frameshift mutations), did not show any importance within all 
the features explored and were not included in the final model. Likewise, the binary 
characteristics of the mutation, e.g. clonal or sub-clonal, which previously was shown to be 
important to raise a T cell response (44) did not show any importance to the IMPROVE model, 
likely due to the binary nature of such characteristic. Instead, the cellular prevalence given as 
a continuous variable was used to define clonal mutations and was included in the model 
instead. The cellular prevalence appeared to be the top four essential features of the model 
(Figure 3B), supporting that, indeed, mutational clonality does influence immunogenicity.  

A critical issue of neoepitope analysis and prediction is the high uncertainty of the 
annotated immunogenicity labels. As illustrated in Figure 3F, the same pMHC complex can 
be immunogenic in one patient but negative when tested in others (sharing the same mutation 
and HLA). As most neopeptides are patient specific and hence are only experimentally assessed 
in one single experiment, this likely underestimates the true number of positive peptides. 
Drawing a parallel to the investigation of epitopes from infectious diseases, several studies 
have demonstrated such variable behavior in, for instance, influenza(45) and SARS-CoV-2 
(46) infections, that can be explained by the phenomenon of immunodominance. And in this 
context, in the field of pathogen research, a peptide would not be labeled as certain negative, 
having only been tested in one individual. In the field of neopeptides, these are most often 
unique for each patient, and therefore, it is impossible to perform validation in multiple 
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patients. This place an upper bound to the reliability of the annotated immunogenicity target 
values of the neopeptide data and hence also a bound on the predicted accuracy of models 
developed for neoepitope prediction. The results and performance evaluations in the current 
(and earlier epitope immunogenicity assessment/prediction) work must be interpreted in the 
context of these limitations. In cancer patients, the TME is additionally critically influencing 
the ability to raise tumor-antigen specific T cell responses within a given patient (41). Our 
study addresses the importance of TME features in a combination of prioritizing neoantigen 
candidates and IMPROVE showed an increased performance by including these TME features 
in the prediction. Notably, the patient specific TME features add additional information about 
patients to the model and cannot be used alone, which also was shown by non-improved 
performance on the patient level from the original model to the model with the TME feature 
included. 

We observed that the predicted neoepitope load from IMPROVE showed a better 
correlation to patients' clinical outcome (overall survival) than RankEL. This was further 
improved by the TME model and supports the improved capacity to identify immunologically 
relevant neoeptipes through this selected strategy. Also, in previous studies (Kristensen et al. 
and Holm et al.), the level of T cell recognition of neoantigens was associated with improved 
clinical outcome and survival(5,6) The mUC cohort showed a difference in survival, comparing 
the increase in number of neoepitopes specific T cells responses after three weeks of treatment, 
and the melanoma cohort found improved survival of patients with frequency and breadth of 
recognition of neoepitopes among the T cells in the infusion product. The NARTs frequency 
could gain an interesting aspect in regard to neoepitope prediction by ranking the neoepitopes 
by the frequency of the NART.  However, due to the variability in samples used for screening 
(PBMC, TILs, and infusion product), this estimate was biased only due to the sample type. For 
example, the NARTS detected with either the infusion product or TILs was found with a higher 
frequency than the one from PBMCs. Therefore, we did not consider the frequency in the 
prediction strategy.  

This study presents an improved model for the prediction of neoepitope 
immunogenicity. Such improvements are highly needed to advance the field of therapeutic 
neoepitope targeting. The IMPROVE model is built on a large dataset of neoepitopes evaluated 
for T cell recognition in cancer patients. The model improves the prediction of immunogenic 
neoepitopes and is capable of catching true neoepitopes in more than 2/3 of the patients only 
by taking the top 20 neoepitope candidates. Furthermore, we improved the model performance 
by considering patients' specific TME features. Which can help overcome some of the 
enormous patient variability which challenges the accuracy of neoepitope prediction. Even 
though the findings were based on broad-scale validated neopeptides, we will need verification 
from more data, especially more immunogenic neoepitopes, in order to improve the 
performance of our models. Nevertheless, our proposed models improved the ranking of 
neoepitope candidates, which is a critical task for immunotherapeutic targeting of neoepitopes, 
in e.g. personalized cancer vaccines.  
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Materials and methods  
 
Patient selection 
The cancer patients included in this study were enrolled in 3 different studies: a melanoma 
cohort that received TIL-ACT (5), a cohort of metastatic urothelial carcinoma (mUC) patients 
who received PD-L1 checkpoint inhibition (6), and a basket trial cohort with different cancer 
types and CPI treatments. Only patients with assessable patient material were included, which 
resulted in 70 patients in total. 
 
Neoepitope prediction 
The neoepitope prediction was performed as described in Kristensen N et al. and Holm J et al. 
(5,6). Shortly, paired tumor and normal WES and tumor RNAseq raw fastq files were pre-
processed with trim-galore (47) version 0.4.0 to remove low-quality fragments and adapters. 
Burrows-Wheeler Aligner (48) version 0.7.15 was used to align the trimmed WES reads to the 
human reference genome (GRCh38) and MarkDuplicates from Picard-tools version 2.9.1  (49) 
were applied to tag duplicated reads due to technical artifacts. The quality scores were 
recalibrated with GATK, and the paired bam files were used as input to MuTect2 (50) from 
GATK (18)  to detect somatic mutations. The bladder and melanoma cohort were processed 
following guidelines from GATK 3.8.0. GATK version 4.0.1 was used for the Basket cohort. 
Tumoral transcript abundance was quantified using Kallisto version 0.42.1 (51) from RNAseq. 
Patient-specific HLA genotype was determined using OptiType (52) version 1.2 on WES 
derived from normal samples. HLA-types, RNA expression, and somatic mutation VCF files 
were used as input to MuPeXI (9) version 1.1.2 to extract and rank neoepitope candidates. 
Posterior filtering of candidates was performed considering RNA expression values > 0.01 and 
a predicted binding Rank < 2 using NetMHCpan version 4.0 (53), except when patients had 
few peptide candidates, where the threshold was extended to 0.1 and RankEL < 0.5. If the 
expression level was insufficient to be obtained, they were reported as "-" in the MuPeXI output 
and were included in the peptide selection for the basket cohort. This cover in total 78 peptides 
from four patients.   
 
Neopeptide experimental immunogenicity assessment 
In total, 19.541 neoepitope candidates were screened for their potential to activate a T cell 
immune response with MHC multimer barcoding as described in (5,6,13). Predicted 
neopeptides and viral control peptides were synthesized by Pepscan (Pepscan Presto, The 
Netherlands). Peptides were dissolved to 10 mM in DMSO. Neopeptides were folded with the 
corresponding HLA and labeled with DNA barcodes, identifying all unique peptide-MHC 
(pMHC) multimers. Each patient-specific multimer library was screened with patient-derived 
samples, including peripheral blood mononuclear cells (PBMC) and tumor-infiltrating 
lymphocytes (TILs), and the melanoma cohort was also screened with the infusion product 
used for the TIL-ACT.   
 
Feature calculation 
Neopeptide features 
The mutation consequence, as well as the sequences of mutant and wild-type peptides, were 
obtained with MuPeXI version 1.2 (9). The variant allele fraction (VarAlFrac) was obtained 
from mutect2, also given in the MuPeXI output as (Allele Frequency). The expression levels 
from the mutated transcript were calculated using Kallisto version 0.42.1 (51) was obtained 
from the MuPeXI output. No transcript was assessable for 78 neoepitopes belonging to 4 
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patients from the basket trial, and in these cases, the expression was obtained from Human 
Protein Atlas using NetMHCpanExp (54). The priority score (PrioScore) was also attained 
from the MuPeXI output. The likelihood of mutant and wild-type peptides binding to the 
patient's MHC was predicted with NetMHCpan 4.1 (53) 

Both the eluted ligand % rank (RankEL) and binding affinity % rank (RankBA) 
predictions were retrieved. The differential agretopicity index (DAI) was calculated as the 
differences between the mutant and normal RankEL (Normal rank – Mutant Rank (22,23). The 
stability of the pMHC complex was predicted with NetMHCstabpan 1.0 (55). Additionally, 
NetMHCpanExp-1.0 (NetMHCExp) was employed to jointly evaluate the expression of a 
peptide and its likelihood of binding to its cognate MHC and generating in this way a combined 
prediction that takes into account both features  (54). Since anchor residues are in contact with 
MHC, non-anchor residues are more exposed to interaction with TCRs. Therefore, the non-
anchor subsequence was defined as the fourth to the penultimate residue among the predicted 
binding core with NetMHCpan-4.1. 

The foreignness score (Foreignness) was measured as previously described in (27) and 
the function from antigen.garnish (26)  was used to calculate the score. The similarity between 
the mutant peptide and the corresponding wild-type peptide or self-similarity (SelfSim) was 
calculated using the Kernel distance (56). Cellular prevalence (CelPrev) was calculated as 
previously described in (5) using Sequenza (57) version 3.0, Shixiang/copy-number (58) 
version 1.26.0, and PyClone (59) version 0.13.1. Transcript abundance was derived from 
RNAseq data using Kallisto version 0.42.1 (51). To validate the expression of mutated alleles 
in RNA, we mapped the RNAseq to the reference genome using STAR v2.5.3 (60), and then 
we retrieved all the bases with samtools mpileup (61) at the variant positions reported by 
MuTect2. The proportion of mutated transcripts among the covered transcripts 
(ValMutRNACoef) was assessed using the formula 
𝑁𝑟𝑒𝑎𝑑𝑠𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 (𝑁𝑟𝑒𝑎𝑑𝑠𝑜𝑓𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 100)⁄ ,	We were not able to validate if 
the mutation was present in the RNA in 15% of the neoepiotpes due to inconsistency in 
mutation position in MuPeXI and mutect2.  

Physiochemical descriptors of the neopeptide sequences were calculated. Molecular 
weight (mw), molar extinction coefficient, the relative frequency of F, W, and Y amino acids 
or aromaticity (Aro), instability index (Inst), and the relative frequency of V, I, Y, F, W, and L 
amino acids or helix (PropHydroAro) are calculated with ProteinAnalysis module from 
BioPython (62). The isoelectric point with EMBOSS was calculated with the Peptides package 
(63) in R. The mean hydrophobicity scale (64) and the proportion of different physicochemical 
classes of amino acids (small, aromatic, acidic, basic) were calculated for the non-anchor 
subsequence. The propensity for TCR recognition was calculated with PRIME (36). 
 
Patient Features 
The expression of MHC molecules (HLAexp) in the tumor cells was derived from RNAseq 
data. The Cytolytic Activity (CYT) is calculated as the geometric mean of GZMA and PRF1, 
as previously described in(40), and the expression of these genes was also derived from 
RNAseq data. The abundance of tumor-infiltrating immune and stromal cells was estimated 
with MCP-counter (11), using the RNAseq expression values obtained with Kallisto (51). 
 
Models 
Dataset 
A dataset was assembled that contains the neopeptide sequences, the calculated features, and 
the immune response as the target value. For some neopeptides, it was not possible to obtain 
all the proposed features (there was no available RNAseq data for some patients, it was not 
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possible to calculate the cellular prevalence when tumor samples were derived as a cell lines, 
and MuPeXI does not report a normal peptide when a frameshift mutation has more than 4 
mismatches compared to the most similar normal peptide, impeding the calculation of self-
similarity). Therefore, we impute the missing values using the mean of the corresponding 
feature, except for the expression values in which we used NetMHCpanExp to retrieve 
expression values from the Human Protein Atlas (v. 20.0) database.  

To avoid data leakage and overfitting of the models, a partitioning scheme was defined. 
We implemented a clustering algorithm to group neoepitopes based on i) shared subsequences 
or motifs between immunogenic neoepitopes and ii) the patient. In this way, all neoepitopes 
from the same patient and all similar neoepitopes are grouped together in the same partition. 
First, the immunogenic neoepitopes are grouped by the mentioned criteria, and then the non-
immunogenic neopeptides are included in the defined partitions. If a peptide in the test-set 
existed in the training data, the peptide was deselected from the training. This only affects the 
negative peptides as the positive ones were separated by partition.  
 
Random Forest  
Random forest (RF) models were developed using the RandomForestClassifier module of 
scikit-learn (65)ackage in Python version 3.7.6. The hyperparameter max_depth was set to 6, 
n_estimator was set to 2000, min_sample_leaf was set to 6, and a nested cross-validation 
scheme was used. To avoid data imbalance, 500 negative data points (non-immunogenic 
peptide) were subsampled during training 50 times, and an ensemble score for the prediction 
was calculated.  
 
NNAlign 
The NNAlign version 2.1 (34)(34) method was used to train a neopeptide sequence-based 
model with a 5-fold with nested cross-validation, using the same partition as the RF model. 
The motif length for the alignment was set to 6, and the flanking region was not considered. 
Like the RF model, if a peptide from the test set, existed in training, the peptide was removed.  
 
Survival analysis  
To predict survival probability with the effect of immunotherapy, based upon the developed 
model from the study. The developed RF models were saved with "pickle dump" from pandas, 
and an ensemble score for each model was used as the immunogenicity score. The 
immunogenicity score was predicted for the remaining neopeptides with RankEL< 2 and 
expression > 0.01, which were not included in the study. This included, for example, peptides 
that have been deselected for patients with many predicted neopeptides and therefore have 
stricter criteria during the neopeptide selection.  Additionally, some HLA alleles were not 
assessable, and neopeptides with these alleles were also selected for immunogenicity 
screening.  Patient RH-08 was excluded as the sample was taken after treatment, and MM-24 
was excluded as the sample was from cell-line. The prediction score found for the remaining 
neopeptides was added on top of the peptides that were included in the study. This covers the 
dataset used for the survival analysis. 

The separation of the four groups is based on the quantile of the variable. Patients with 
predicted neoepitopes above or equal to the 3rd (75%) quantile were defined as "high". Patients 
with peptides between the 2nd (50%) and 3rd quantile were defined as "medium high", and 
patients with peptides between the 1st (25%) and 2nd were defined as "medium low". Lastly, 
patients below or equal to the 1st quantile were defined as "low". The hazard score and p-value 
were calculated based on the comparison of the high vs. low group.  
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Statistics 
All the statistics were calculated in R (66) version 4.1.1. The Wilcoxon rank-sum test was 
applied to analyze the features. Spearman's correlation coefficients were used to measure the 
correlation between variables. To assess the performance of the models, the AUC and AUC 
0.1 were calculated with the function in ROCR version 1.0.11 (67), and the difference between 
ROC curves was computed with roc.test with default options from pROC version 1.18.0 (68). 
Kaplan-Meyer curves were created with the survminer package version 0.4.9 (69), and the 
hazard ratios were calculated with Cox proportional hazards regression model using the 
survival package version 3.3.1 (70). 
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Supplementary Table 1: Neopeptides features. The abbreviation used in the paper and the figures, the full name 
of the feature, and a description of what the feature is and how it is obtained. 
 

  

Abbreviation Name  Description  
mw Molecular Weight  Molecular Weight of the neopeptide, from biopython (1) 
aro Aromaticity Aromaticity according to Lobry, 1994. from biopython (1) 
inst Instabillity  Instability according to Guruprasad et al 1990 from biopython (1) 
CysRed Cysteine residues  Molar extinction coefficient of Cysteine residues(1) 
RankEL Eluted Ligand %Rank  Eluted Ligand %Rank of mutated peptide as predicted by NetMHCpan 4 .1 (2) 
RankBA Binding Affinity %Rank  Binding Affinity of mutated peptide as predicted by NetMHCpan 4.1 (2) 
Expression Expression Level Expression level of transcript containing the mutation obtained from Kallisto (3) 
NetMHCExp NetMHCExppan Calculated using NetMHCexppan(4) 
PrioScore Priority Score from MuPeXI Neoepitope prioritization score as computed by MuPeXI (5) 
VarAlFreq Allele Frequency Frequency of the allele from mutect2 (6) 
CelPrev Cellular Prevalence The prevalence of the tumor cell from PyClone (7) 
SelfSim Self Similarity Self-similarity to the corresponding Normal peptide calculated using kernel 

distance (8)  
Prime Score PRIME Score from the tool PRIME (9) 
PropHydroAro Proportion of hydrophobic and 

aromatic residues 
The proportion of: V, I, Y, F, W, L. given as Helix in biopython packages. (1) 

HydroCore Mean Hydrophobicity in Core without 
Anchor residues 

Mean Hydrophobicity scale value of non anchor residues of binding core. Scale 
from Kyte and Doolittle, 1982.(10) 

HydroAll Mean hydrophobicity  The mean hydrophobicity of the entire peptides. Scale from Kyte and Doolittle, 
1982. (10) 

PropSmall Proportion of Small amino acids in non 
anchor positions of binding core 

 

PropAro Proportion of Small amino acids in non 
anchor positions of binding core 

The proportion the following residues in the non anchor positions of the binding 
core: F, H, W, Y 

PropBasic Proportion of Small amino acids in non 
anchor positions of binding core 

The proportion the following residues in the non anchor positions of the binding 
core: H, K, R 

PropAcidic Proportion of Small amino acids in non 
anchor positions of binding core 

The proportion the following residues in the non anchor positions of the binding 
core: D, E 

pI Isoelectric point  Isoelectric Point computed with EMBOSS(11) 
DAI Differential Agretopicity Index  Diffrence between Normal EL rank and Mutant EL rank. Calculated by, DAI = 

Normal EL rank  - Mutant EL rank. (12,13) 
Stability Stability score  MHC-peptide stability score, as predicted by NetMHCStabPan-1.0 (14) 
Foreignness Foreignness Score Function from antigen garnish original from Luksza M, et al.(12,13,15,16) 
ValMutRNACoef RNA coefficient  Aligned using STAR aligner (17) 
HLAexp HLA expression Expression from the corresponding HLA in RNA sequencing obtained from kallisto 

(3) 
CYT Cytolytic activity Geometric mean of PRF1 and GZMA as presented in Rooney 2015 (18) 
T cells T cells MCP-counter score for T cells (19) 
TcellsCD8 CD8 T cells MCP-counter score for CD8 T cells (19) 
CytoxLympho Cytotoxic lymphocytes MCP-counter score for Cytotoxic lymphocytes (19) 
Blinage B lineage MCP-counter score for B lineage (19) 
NKcells NK cells MCP-counter score for NK cells (19) 
Monocytes Monocytic lineage MCP-counter score for Monocytic lineage (19) 
MyeloidDC Myeloid dendritic cells MCP-counter score for Myeloid dendritic cells (19) 
Neutrophils Neutrophils MCP-counter score for Neutrophils (19) 
Endothelial Endothelial cells MCP-counter score for Endothelial cells (19) 
Fibroblast Fibroblasts MCP-counter score for Fibroblasts (19) 
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Supplementary Figure 1: Data overview. A) The percent of immunogenic and non-immunogenic neoepitopes 
within the three cohorts. B) Density of Eluted Ligand % Rank (RankEL) for all neoepitope candidates. C) Density 
of Expression level (Expression) from the corresponding genes for neoepitope candidates. D) The percent of 
immunogenic neoepitopes for each HLA allele colored by the HLA class test made by proportion z-test. p values 
< 0.001 =  ***, p values < 0.01 = ** p values < 0.05 = * p-values > 0.5 = NS.  
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Supplementary Figure 2: Feature independently and immunogenicity. A+B) Comparison of immunogenic 
and non-immunogenic neoepitopes according to the values of each feature. Statistic made with Wilcox test with 
p-value adjustment by Bonferroni. A) Non-significant features, B) Significant features.  C) Validation of 
mutations in RNAseq for each cohort no significant difference according to a proportion test. D) AUC for all 
features individually colored by feature type.  
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Supplementary Figure 3: RF modeling. A) Spearman correlation comparing all features. B) AUC per patient 
where RF obtained a significant improvement compared to RankEL (p-val = 0.00028), and no significant 
difference in Rf compared to NNalign (p = 0.89). C) NNalign logo plot from 5-fold cross-validation. b-C-E) 
Comparison of the prediction score from the random forest model with the immunogenic and non-immunogenic 
neoepitopes for each patient in each cohort. p values calculated with the non-paired Wilcoxon test. D) Basket 
cohort, E) Melanoma cohort, F) mUC cohort. 
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Supplementary Figure 4, random Forrest with Tumor Microenvironment (TME) features. A) HLA 
expression comparing immunogenic and non-immunogenic neoepitopes (p = 2.4!"#, Wilcox test). B) HLA 
expression per HLA class comparing immunogenic and non-immunogenic neoepitopes. HLA-A p= 0.02, HLA-
B p= 3.9!$, HLA-C p= 4.6!$	(all with Wilcox test) C) Spearman correlation of TME feature. D) Performance for 
each feature for each partitioning and the mean across all partitions. E-G) Spearman correlation figure of the 
number of responses compared to three TME features. E) Monocyte linage (Monocytes). F) Cytolytic Activity 
(CYT) on the y-axis and the delta prediction score calculated by the RF TME minus the RF score separated into 
immunogenic and non-immunogenic neopeptides. Correlation performed with spearman correlation.  
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Supplementary figure 5, Survival curves per cohort. A-C) Kaplan-Meyer curves for the three categories (left) 
RankEL, middle RF model without TME features, and (right) the RF model including the TME features. Where 
patients are separated into four groups according to the number of predicted neoepitopes above a defined 
threshold, the four groups are defined according to the quantile where “high” are above the 3rd quantile, “medium 
high” is between the 2nd and 3rd quantile. “medium low” is between the 2nd and 1st quantile, and low is below the 
1st quantile. A) Basket cohort, B) melanoma cohort, C) mUC cohort. 
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7 E P I L O G U E

The Manuscripts in this PhD contribute to novel findings in the field of immune
signatures and target discovery in human tumors. All Manuscripts address top-
ics within the field of immunotherapy and potential targets for CD8+ T cells.
Manuscript I contributes to findings regarding predictive biomarkers to CPI
treatment and show the importance of using a combination of biomarkers rather
than a single biomarker. Manuscript II and III validate a large pool of predicted
neoepitopes to find the ones that could raise reactivity from NARTs and hence be
classified as immunogenic neoepitopes. We also studied the correlation of TME
signatures in patients with a high frequency of detected NARTs and addressed
the ability of using NARTs as a biomarker to predict survival outcomes. Addi-
tionally, we looked at neoepitope features to distinguish the immunogenic neoepi-
topes from the non-immunogenic ones. The final Manuscript (Manuscript VI)
introduces an excellent bridge between the three first Manuscripts (Manuscript
I, II, and III) and uses the knowledge gained from these Manuscripts to charac-
terize neoepitope immunogenicity. In this Manuscript, we investigated, as far as
we know, the largest pool of validated neoepitope candidates and examined fea-
tures that can be used to identify the immunogenic neoepitopes using machine
learning. The Manuscript also introduces how the TME, which also has been
considered in Manuscript I,II, and III can affect neoepitope recognition. The
following section will discuss concerns and perspectives drawn from the four
Manuscripts and their interconnection.

7.1 predictive biomarker
When evaluating cancer patients and their treatment options, it is critical to
know whether a treatment can actually benefit the patient. Through the re-
cent years of success with CPI therapy, it has become a first-line treatment for
some patient groups (Jamy and Sonpavde, 2017; Peters et al., 2022). However,
the response rate of CPI treatment reaches 50 % and leaves the remaining half
of the patients non-responding (Chowell et al., 2022; Yarchoan et al., 2017).
Manuscript I evaluates different biomarkers individually and in various com-
binations to achieve the best possible biomarker describing benefit from CPI
treatment for a diverse cohort. These biomarkers are also validated in the mUC
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cohort from Manuscript II. This study suggests biomarkers which have already
shown great predictive effects in previous studies, including; neoepitope load,
CYT, T cell diversity. Additionally, we observed that PD-L2 expression had a
positive correlation with better survival probability. PD-L2 can, in the same
way as PD-L1, bind to PD-1 and inhibit T cell profiliration and cytokine pro-
duction (Solinas et al., 2020) A study also suggested PD-L2 as a biomarker for
patients treated with anti-PD-1 CPI (Takamori et al., 2018). Interestingly, we
observed the correlation between PD-L2 expression and better survival indepen-
dent of treatment, also within the anti-PD-L1 treated patients. Besides that,
PD-L2 can also be an indicator of immune activity and an inflamed TME (Wang
et al., 2022). Obeid et al. showed an association between PD-L2 expression and
higher frequency of tumor-infiltrating T cells (Obeid et al., 2016). Similar to our
findings, they and Yearley et al. showed a positive correlation between PD-L2
expression and better survival probability. They also observed that some tumor
types with the absence of PD-L1 expression expressed PD-L2 and by observ-
ing both PD-L1 and PD-L2 added more predictive power in predicting survival
probability than observing PD-L1 expression alone (Yearley et al., 2017). All
these studies and our results suggest that we should draw more attention to
PD-L2 and its importance in the interaction of immune cells with cancerous
cells. In addition, PD-L2 can be considered as a target for immunotherapy and
the possible addition to other CPI therapies.

The number of suggested biomarkers is enormous (Bai et al., 2020; Filipovic
et al., 2020; Rooney et al., 2015). Recently, the clonal TMB and LOHHLA have
been suggested to be more predictive than TMB alone across various cohorts
(Litchfield et al., 2021). These parameters have not been considered in this
Manuscript and would be interesting to be implemented in the future.

An important keynote from Manuscript I is that a combination of biomarkers
is a better predictor than examining a single biomarker. In summary, first, we
observed biomarker signatures on a continuous scale and observed patient out-
comes on a binary scale by comparing progressive patients with non-progressive
patients. Secondly, we implemented cox regression analysis to study the sug-
gested biomarkers from the first analysis and investigated different combinations
to find the most predictive biomarkers for the survival of the patients. For this,
the survival of the patients is kept on a continuous scale, but the biomarkers are
transformed to a binary scale of high vs. low. The Manuscript illustrates that
some borderline patients could be wrongly predicted due to the strict cut-off in
the binary scale. Machine learning survival model approaches have been devel-
oped to overcome this problem and keep the survival probability and biomarkers
on a continuous scale and can combine multiple of biomarkers (Acharjee et al.,
2020; Pickett et al., 2021; Toth et al., 2019). We have only studied 29 patients
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in this Manuscript, which might not be enough to produce a machine-learning
model without a high probability of overfitting the data.

7.1.1 Predict best possible treatment option

The prediction of whether a patient can obtain benefits from different immunother-
apy treatments is critical. Many studies embrace the effect of specific therapy
in a cohort in aid of predicting if the treatment works or not. However, it is op-
timal to predict the efficacy of various treatment options and the best and most
efficient treatment for patients. Studies have found that patients might fail to
effectively respond in one kind of immunotherapy treatment, while succeeding
another one (Rosenberg et al., 2011; Weber et al., 2013). Finding the correct
first-line treatment would help to regress tumors early, resulting in increased
survival probability. However, suppose treatment is received without any bene-
ficial effect, the cancer might have progressed and develop metastasis to other
regions of the body, and at that point challenging to treat (Shih et al., 2022).
Predicting the best treatment candidate requires a model that has learned the
associations of TME and outcome from multiple trials and searches for patterns
between an environment type and survival probability.

7.2 cancer type and treatment variabil-
ity

Manuscript II and III investigate NARTs as a possible biomarker. Manuscript
II showed great potential for using the number of detected NARTs three weeks
after treatment as a biomarker for predicting clinical benefit. The TME be-
fore treatment also showed diversity, comparing the number of responses after
treatment. This led to the possibility of using RNAseq before treatment to
predict the ability to detect NART after treatment. Manuscript III focused on
the frequency of the NARTs and how NART frequency can be used as a predic-
tive biomarker for patients benefitting of immunotherapy with TIL-ACT. Both
studies also showed TME diversity by comparing patients with high and low fre-
quency of NARTs. These two Manuscripts show different views of how NARTs
can predict patient outcomes concordantly; these two comparisons are not the
same. Manuscript II observed the number of detected NARTs three weeks af-
ter treatment and Manuscript III showed best predictive effect by comparing
the NARTs frequency given as the sum of estimated frequency pr. patients, de-
tected in the TIL infusion product. That bias between cohorts can be due to the
disease, as in Manuscript II, we investigated mUC patients, and in Manuscript
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III, melanoma patients. However, another parameter that might explain the
differences in the treatment. The mUC patients were treated with anti-PD-L1,
which might remove the immuno-suppression on many different T cells resulting
in many NARTs but with lower frequency. Whereas the melanoma cohort was
treated with TIL-ACT, and the expanded infusing product might be dominated
by few T cell clones, resulting in a high frequency of a few clones.

Differences were also obtained in the evaluation of neoepitope immunogenicity
characteristics. In Manuscript III, we saw a difference in expression level but
no difference in MHC binding capacity with eluted ligand % rank (RankEL) .
Opposite in Manuscript II, no differences in expression level were found, but
differences in RankEL and binding affinity % Rank (RankBA). Furthermore,
mutation clonality has previously been shown to be important (McGranahan
et al., 2016), but neither of the two Manuscripts could confirm that proposition.
This leads us to the search of defining what characteristics are aquired by an
immunogenic neoepitope.

7.3 neoepitope immunogenecity
The prediction of immunogenic neoepitopes is difficult because of the limited
amount of validated data available. Even though Manuscript IV studied above
19000 validated neoepitope candidates predicted with the same prediction tech-
nique and following the same validation approach, no remarkable performance
was obtained in aid of prediction immunogenicity with the use of RF mod-
elling. However, the created model, IMPROVE, predict immunogenicty beyond
the already known important feature (RankEL and gene expression) as the
neoepitopes were already pre-selected for these parameters. IMPROVE, can be
used on top of these pre-selection to rank neoepitope candidate and the rank-
ing was better than ranking the pre-selected neoeptiope candidates additionally
with RankEL. Furthermore, we observed that physiochemical properties of the
neopeptides such as hydrophobicity and the abundance or aromatic residues
contributed the most to the model. This model was comparable to the NNAlign
model (Nielsen and Andreatta, 2017), which only takes the peptide sequence
into account because the NNAlign model learned some of the same important
characteristics as the RF model, concordantly the hydrophobic and aromatic
residues were important for an immunogenic neoepitope. This finding was also
supported by PRIME (Schmidt et al., 2021), which observed similar properties
and was also one of the features included in the model with high importance.
Nevertheless, the feature-based RF model still out-competes the RankEL and
NNAlign model, which can draw comparable conclusions as in Manuscript I.
Namely, not only one parameter is enough to predict the immune system’s com-
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plexity, therefore the feature-based model performs better. Nevertheless, even
if it was possible to predict the immunogenicity of a neoepitope from peptide-
specific features with high accuracy, it needs a TIL to recognize it and hence be
classified as “immunogenic”. We observed from the data that identical pMHC
complexes from different patients can be immunogenic in one and not in the
others. This could be explained by the patient-to-patient variability and the
absence of TILs, hence missing recognition of the neoepitope. Both Manuscript
II and III showed the patients concentration of NARTs were associated with the
TME. Furthermore, the cancer cells can escape the T cell recognition in various
manners, as mentioned in Chapter 1.6, such as a down regulation of HLA allele
expression (Gajewski et al., 2017; Nagarsheth et al., 2017). These observations
challenge an ML-based model in performing accurate prediction as it learns from
past experiences, and in these cases, the past experiences are not valid for all
patients because the duplicates can give different outcomes in different patients.
This reflects the next point of the Manuscript, namely, implementing some of
the complexity of the immune system, the TME. We observed some features de-
scribing the TME, including CYT, which also have been reported in Manuscript
I, and cell populations from MCP-counter (also reported in Manuscript II). By
adding these TME features on top of the existing peptide-specific features in the
RF model, it resulted in increased performance in predicting the neoepitope im-
munogenicity. Noteworthy, these TME features cannot be used as stand-alone
features to predict neoepitope immunogenicity but adds information about the
capability of discovering NARTs in the patient. The Manuscript only considers
a few TME features to include, which showed promising results in improving the
neoepitope prediction. However, various other TME features could have been
considered for the analysis and are of interest for further work.

Conclusively, these four Manuscripts add novel insight into biomarker discovery
and neoepitope prediction. However, there is still room for a lot of clarification
and further analysis with more data to predict patient survival and neoepitope
immunogenicity with high specificity and sensitivity.
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