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Summary

The transport sector is experiencing a rapid transformation, opening novel lines
of research and creating new optimization problems to solve. This thesis aims
to tackle optimization problems arising from integration and collaboration in
transport and logistics. The main application area covers seaside maritime
logistics, but we also consider case studies in urban transportation.

Maritime transport plays a crucial role in the global supply chain. The demand
for containerized cargo is increasing, pressuring terminals and carriers to explore
collaborative responses. In the first part of the thesis, we apply a collaborative
approach to seaside maritime logistics, where we define a problem that jointly
optimizes the scheduling of vessels and their berth allocation in terminals. The
first three articles address variants of this problem and extend and improve
previous studies’ modeling features and performance contributions. The results
contribute to quantifying the benefits of integrated and collaborative optimiza-
tion and aim at supporting the transition toward collaborative and sustainable
logistics.

In the second part of the thesis, we address integrated optimization in passenger
transportation. The fourth article addresses on-demand microtransit, an emerg-
ing transport system that combines public transit efficiencies with the flexibility
of on-demand services. While ride-sharing systems are proliferating, contribut-
ing to congestion and socio-economic inequalities, public transportation is failing
to adapt to new mobility patterns. Microtransit aims to tackle these challenges
by promoting efficient, sustainable, and accessible mobility. We present a uni-
fied model to design the network and optimize its operations. We demonstrate
the strength of a novel modeling approach in a real-world setup, and the re-
sults validate microtransit as a sustainable and efficient mobility system. The
last article focuses on railway transportation, where we study the integrated
optimization of train timetabling with passenger routing. We present modeling
and methodological contributions, and the results highlight the positive value
of integration for passengers and operators.





Resumé (Danish)

Transportsektoren oplever en hastig forandring, hvilket åbner nye forskningsmu-
ligheder og skaber nye optimeringsproblemer at løse. Denne afhandling har til
formål at takle nye optimeringsproblemer, der opstår ved integration og samar-
bejde i transport og logistik. Det primære anvendelsesområde dækker maritim
logistik, men afhandlingen dækker også casestudier indenfor offentlig transport.

Maritim transport spiller en vigtig rolle i den globale forsyningskæde. Efter-
spørgslen for containergods er stigende, hvilket presser terminaler og transpor-
tører til at udforske samarbejdsmuligheder. I den første del af afhandlingen,
anvender vi en kollaborativ tilgang til maritim logistik, hvor vi definerer et pro-
blem, der optimerer tidsplanlægning af skibe og deres kajtildeling i terminaler.
De første tre artikler omhandler varianter af dette problem og udvider og for-
bedrer tidligere studiers modeller og løsningsmetoder. Resultaterne sigter efter
at støtte overgangen til en kollaborativ og bæredygtig logistik og bidrage til at
kvantificere fordelene af integreret og kollaborativ optimering.

I anden del af afhandlingen adresserer vi passagertransport i byer. Den fjerde
artikel omhandler on-demand mikrotransit, et transportsystem, der kombinerer
effektiviteten af offentlig transport med fleksibiliteten af on-demand tjenester.
Mens ride sharing-systemer er hurtigt voksende, hvilket bidrager til trængsel og
socioøkonomiske ulighed, har den offentlige transport problemer med at tilpasse
sig nye mobilitetsmønstre. Mikrotransit sigter mod at takle disse udfordringer
ved at fremme effektive, bæredygtige og tilgængelig mobilitet. Vi præsenterer
en forenet model til at designe netværket og optimere dets funktioner. Vi de-
monstrerer styrken af en ny modelleringstilgang i et virkelighedsnære case, og
resultaterne validerer mikrotransit som et bæredygtigt og effektivt mobilitets-
system. Den sidste artikel fokuserer på jernbanetransport, hvor vi undersøger
integreret optimering af køreplaner sammen med passagerruter. Vi præsente-
rer modellerings- og metodiske bidrag, og resultaterne fremhæver værdien af
integration for passagerer og operatører.
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Chapter 1

Introduction and thesis outline

Operations research (OR) is the discipline of applying advanced analytical meth-
ods to help make better decisions (INFORMS, 2012). OR is strongly tied to
other scientific fields such as statistics, mathematical modeling and optimization,
computer science, and engineering, and provides a wide range of problem-solving
methods and techniques. These methods aim at improving the decision-making
process for businesses, industry and society, and are present in almost every
field, from marketing and finance to transportation and logistics.

The field of transportation and logistics is one of the principal fields where OR
methods have been applied. The transportation of both freight and passengers
is a core part of the proper functioning of the society. According to International
Transport Forum (2021), passenger and freight transport demand is expected
to more than double by 2050, which means that CO2 emissions would triple
the carbon budget to limit global warming at 1.5◦C. This trend requires highly
ambitious policies to reduce emissions, and optimization techniques could have
a major impact on them. The use of OR methods is present at all levels of
transportation planning (Bektaş et al., 2019), from strategic planning, such as
the design of transportation networks (Dukkanci et al., 2018), to tactical and
operational vehicle routing and scheduling operations (Laporte, 2009). Advances
in OR methods have provided significant benefits for the transport sector, and
in combination with the digital evolution and new trends, they open exciting
research opportunities.

Advances in the latest years in computational power and the development of
novel and more efficient solution methods, have facilitated the study of more
integrated operations and planning logistics. On the one hand, integrated opti-
mization can provide economic benefits to planners. On the other hand, joint
optimization of multiple logistics systems may require additional organizational
changes or to engage in collaborative mechanisms (Expósito-Izquierdo et al.,
2022). Therefore, it is relevant to study more in-depth and quantify the ben-
efits of such integrated problems (Archetti and Speranza, 2016; Schiewe and
Schöbel, 2022).

In this PhD thesis, we study transport optimization problems that arise from
integrated operations and collaborative schemes. The main area of applica-
tion is maritime seaside operations but we also study problems in urban road
and railway transportation. We develop operations research methods to tackle
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large-scale scenarios and that allows us to measure the potential benefits of
collaborative and integrated problems in real-life settings that planners may
encounter.

The remaining of this chapter is organized as follows. Section 1.1 provides a
brief introduction to maritime logistics and urban transportation, the main two
topics of this thesis. In Section 1.2, we introduce the context and objectives of
this PhD project. Section 1.3 summarizes the scientific contributions of each
chapter and how they have been disseminated. The conclusions are drawn in
Section 1.4 and Section 1.5 discusses directions for further research.

1.1 Background and motivation

The main topic of this thesis is maritime transportation. However, the thesis
also covers applications in urban (road and rail) transportation. This section
aims at giving the reader some context about these two transportation areas
and how they link to the research work of the thesis.

1.1.1 Maritime transportation

The introduction of containerization and the global adoption of standardized
containers in the second half of the twentieth century had an enormous impact
on the economies of freight transportation and became a key element of glob-
alization (Hoovestal, 2013; Levinson, 2016) As Marc Levinson mentions in his
book The Box, "the container made shipping cheap, and by doing so changed
the shape of the world economy" (Levinson, 2016). Since then, maritime trans-
portation has been growing steadily. More than 80 percent of global trade is
carried by maritime transportation. In 2022, maritime trade accounted for more
than 11 billion tons (UNCTAD, 2022), and it is expected to grow at an annual
2 percent in the upcoming 5 years.

Despite being one of the most efficient modes of freight transportation (In-
ternational Chamber of Shipping, 2020), maritime transportation represents 3
percent of the total global greenhouse-gas emissions (IMO, 2020), and total ship-
ping emissions have increased by 4.7 percent between 2020 and 2021 (UNCTAD,
2022). Although this growth is partly motivated by the recovery in maritime
transport work after the COVID-19 pandemic, emissions have been steadily
increasing during the last decade (see Figure 1.1). This trend conflicts with
the ambitious strategy that the International Maritime Organization (IMO)
adopted in 2018 for reducing greenhouse gas emissions from shipping by 50% in
2050 (IMO, 2018).
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Figure 1.1: Total CO2 emissions of world’s merchant fleet. Source: UNCTAD
(2022).

With the demand and fleet expected to continue increasing in the upcoming
years (UNCTAD, 2022), shipping companies and port operators must find in-
novative ways of improving the efficiency of their operations. UNCTAD (2022)
emphasizes the need to strengthen coordination across stakeholders by shar-
ing information and developing solutions that lead to the overall best results.
We believe that collaborative logistics involving shipping liner companies and
terminal operators opens opportunities to improve operations and provide the
industry with stronger planning tools.

Freight maritime transport is divided mainly into three modes of transport
(Lawrence, 1972): (i) industrial shipping, (ii) tramp shipping, and (iii) liner
shipping. In industrial shipping, the owners of the cargo also own the vessel
fleet, and it is mostly used for the transportation of specific goods in large
quantities to minimize costs. In tramp and liner shipping, the fleet owners offer
transportation services to customers. In liner shipping, vessels sail on a fixed
route following a published schedule. In tramp shipping, however, vessels do
not follow a predefined route or schedule and operate as contract carriers where
the cargo origin and destination are established upon agreement. This thesis
deals with liner shipping operations, and next, we introduce liner shipping, and
container terminals more in detail, focusing on their main logistical operations
and how they interact.
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Liner shipping

In terms of containerized cargo, 165 million 20-foot equivalent units (TEUs)
were transported in 2021 by liner shipping companies (i.e., carriers). Most of
these containers are transported using liner shipping networks. These networks
are formed of multiple services or round trips. Each service visits a sequence of
ports with a given frequency (e.g., weekly or biweekly), which defines a schedule.
Each of the port visits is known as a port call, and is used by vessels to load
and unload cargo. Figure 1.2 shows a global shipping network highlighting

TEU (2016)
Less than 2 million

2 to 4 million

4 to 8 million

8 to 16 million

More than 16 million
Main transshipment market

Circum equatorial route

North-south connector

Transoceanic connector

Emerging Global Maritime Transport System

Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University

Figure 1.2: Global liner shipping network. Source: Notteboom et al. (2022).

the main corridors used by global services and the major ports in terms of
container volumes, in TEUs. The total cost of operating a service for a carrier
can be divided into multiple components. Fuel consumption constitutes the
main source component, accounting for more than half of the total costs in
some cases (Fagerholt and Psaraftis, 2015). Other costs include cargo handling
costs, delay and port call fees, and canal passages.

Planning problems in liner shipping have been widely studied in the OR lit-
erature (see Christiansen et al., 2007, for a detailed overview of models and
methods in maritime transportation). One of the main planning problems at
the strategic level is the design of liner shipping networks, where the primary
goal is to decide which liner routes to operate and at which frequency (Karsten
et al., 2017; Christiansen et al., 2020). Tactical problems include, among oth-
ers, the routing and scheduling of ships, where the decisions to be made involve
defining the sequencing and exact visit times of the port visits in a route (Kjeld-
sen, 2011; Dulebenets et al., 2019), optimizing the sailing speed between ports
(Psaraftis and Kontovas, 2015), and the allocation and routing of cargo, that
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plans how to transport containers through the liner shipping network (Koza,
2019; Meng et al., 2014). Last, at the operational level, we find problems re-
lated to disruption management, where the goal is to find strategies to handle
them, for example, deciding how to recover best the vessel’s schedule (Brouer
et al., 2013).

One of the most important tactical operations is the design of vessel schedules.
This planning problem is known as the vessel scheduling problem (VSP), where
the aim is to define the vessels’ sailing speed between ports in a route to ensure
an agreed service frequency. There are multiple objectives in designing a vessel
schedule, and some of them are conflicting in essence. For instance, liner ship-
ping companies want to minimize fuel consumption by sailing at low speeds,
but they also want to minimize the number of vessels required to service a route
at a given frequency. Liner shipping companies need to abide by additional re-
strictions such as arrival time windows at ports or maximum turnaround time.
Efficient and reliable schedules are important not only for liner shipping com-
panies but also for shippers and port operators, as they can help them make
better planning of their operations. The VSP has been well studied in the liter-
ature (Meng et al., 2014; Lee and Song, 2017; Dulebenets et al., 2019). Most of
the studies consider a cost-based objective where they minimize vessel fuel con-
sumption, port handling, and late arrival costs (Fagerholt, 2001), or maximize
the carriers’ total profit based on the cargo delivered (Giovannini and Psaraftis,
2019). Fagerholt (2001) presented a mathematical model for the VSP, where
vessels could arrive outside the agreed time window at the cost of a penalty.
This is motivated by the fact that arriving outside the time window can result
in significant cost savings. (Wang et al., 2014b) considered cargo allocation
in the VSP and included costs of waiting at the port, and Dulebenets (2018)
showed that negotiating port time windows and rates can lead to economical
benefits.

The VSP is mostly optimized from the carrier’s perspective. Moreover, many
VSP studies consider a rather simple characterization of the handling times at
port. These times are highly resource-dependent and can vary greatly if, for
example, there is no space or equipment to serve the vessel. Integrating the
VSP with container terminal operations can help characterize the operations
more accurately. Chapters 2, 3, and 4 in this thesis address a hybrid problem
that combines vessel scheduling with the allocation of ships to berthing positions
in the quay. The chapters also include a more comprehensive literature review
of the VSP.

Container terminals

Container vessels need to berth at dedicated container terminals where they
can load and unload their containers. These terminals represent inter-modal
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transport hubs where containers can be transferred between different ships but
also to land transport modes such as trains or trucks.

Chapter 2. Container Stowage Planning
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Figure 2.1: Container terminal layout

are stored in long rows of container stacks accessible by gantry-cranes. Some stacks are
reserved for containers with special requirements, such as containers requiring electri-
cal power or containers carrying dangerous goods. Figure 2.1 shows an example of a
terminal layout.

Berths, in the quayside, are equipped with quay cranes that can lift containers to
and from a container vessel. Most of today’s quay cranes can twin-lift, meaning that
they can lift two 20’ containers or one 40’ container in one single lift. Quay cranes
have an average operational performance of 30-37 lifts per hour. Notice, however, that
a twin-lift takes a little longer (about 25 lifts per hour), than a single lift of a 40’
container, (about 32 lifts per hour). The lifting operation for hatch-covers (metallic
structures dividing the ship into on and below-deck parts), takes a longer time than
that of a container since the spreader (the hooking equipment of a crane), is harder
to align on a hatch than it is on a container. Most quay cranes run on rails that are
parallel to the vessel, and thus their movements are restricted by the adjacent cranes.
Some cranes have wheels and can move independently from each other. Quay cranes
must also respect security distances, and, depending on the operation to be performed,
they must be separated by 40, 60 or even 80 feet. A crane set is the operation of moving
a crane from its current position to another. It can take up to 2 minutes to move a
crane to an adjacent storage area along the vessel. Should a crane be moved across the
pilot house, it would be necessary to lift the crane arm. Such an operation can take up
to 25 minutes.

Given a vessel with a distribution of moves on its storage areas, a crane split is a
partitioning of the work areas to each of the cranes assigned to the vessel such that
the workload of each partition is close to equal. A good crane split will minimize the
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Figure 1.3: Container terminal layout. Source: Pacino and Jensen (2012).

As shown in Figure 1.3, each terminal is characterized by three main areas:
(i) the quayside, (ii) the yard, and (iii) the landside. Both the quayside and
landside can be seen as loading and unloading points, where the quayside or
seaside is where ships are handled, and the landside defines the transfer point to
land transport modes (i.e., trucks and trains). The yard is used as a temporary
storage area for containers waiting to be loaded.

Container terminals involve many complex logistical operations (Carlo et al.,
2014). Depending on the planning horizon, we can categorize the operations
within the strategic (long-term), tactical (medium-term), and operational (short-
term) levels. Figure 1.4 depicts an overview of the planning problems in con-
tainer terminals, where problems are categorized into strategic, tactical, and
operational levels depending on their planning horizon, and different operations
are connected with arrows to indicate dependent planning components.

At the strategic levels, the planning problems mostly address the design of ele-
ments in the terminal such as designing the berthing (Vis and van Anholt, 2010)
and yard area (Decastilho and Daganzo, 1993), or selecting which equipment
and machinery to invest in (Vis, 2006).

Tactical problems address operations with a planning horizon of multiple weeks.
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Fig. 3.1 Planning problems in container terminals

problems as Terminal Logistic. Figure 3.1 provides an overview of the correspond-
ing planning problems at the seaside, the yard, and the landside together with the
basic problem interdependencies.

In the following the operational planning problems of a CT are described.
Those problems dealing with berth planning, QC assignment, and QC scheduling
are described in higher detail because they are in the focus of this thesis. Lit-
erature surveys follow for these problems in the next chapter. Other operational
planning problems shown in Figure3.1 are only described briefly. For a comprehen-
sive overview of CT planning problems and related literature surveys the reader is
referred to Meersmans and Dekker (2001), Vis and de Koster (2003), Steenken et al.
(2004), Vacca et al. (2007), and Stahlbock and Voß (2008).

3.2 Seaside Operations Planning

3.2.1 Berth Allocation

In the Berth Allocation Problem (BAP) we are given the berth layout of a CT
together with a set of vessels that have to be served within the planning horizon.
For each vessel additional data like the vessel’s length including clearance, its draft,
the expected time of arrival, and the projected handling time, i.e., the duration of
the vessel’s service, can be given. All vessels must be moored within the boundaries
of the quay. They are not allowed to occupy the same quay space at a time. The
problem is to assign a berthing position and a berthing time to each vessel, such
that a given objective function is optimized. Berth planning has been shown to be
an N P -hard problem by relating it to the set partitioning problem (Lim, 1998), the

Figure 1.4: Planning problems in container terminals. Source: Meisel (2009).

Problems in this category include planning the fleet of the transport equipment
within the terminal (Vis et al., 2005), and organizing the yard distribution
(Cordeau et al., 2007) and berthing area (Fernández and Munoz-Marquez, 2022)
based on the expected vessel services.

At the operational level, we find the majority of planning problems, generally
aimed at maximizing resource utilization. On the quayside, the main decision
problems involve planning the ships’ berthing, assigning quay cranes to ves-
sels and scheduling them (Daganzo, 1989; Meisel, 2009; Bierwirth and Meisel,
2015), or planning the storage configuration (i.e., stowage) of the ships (Monaco
and Sammarra, 2008; Pacino and Jensen, 2012). Similarly, operations on the
landside address scheduling of cranes and planning the loading and unloading
of trucks and trains (Chen et al., 2013; Ambrosino et al., 2013). In the yard,
the main operations involve the storage and stacking of containers (Stahlbock
and Voß, 2008a) and transporting them between the yard and the quayside or
landside (Stahlbock and Voß, 2008b).

One of the most critical seaside operations is planning berth allocations. This
decision problem is known as the Berth Allocation Problem (BAP). The goal
of the BAP is to assign arriving ships to berthing positions in the quay so that
they can be serviced efficiently. The quay space is limited, which may lead to
cases when ships may need to wait for a position to become available. Each ship
has a desired time window to be serviced. Similarly, segments of the quay may
have different operational time windows. There are two main variants of the
BAP depending on the characterization of the quay. The discrete BAP divides
the quay into a set of positions where each of them can be occupied by one ship
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at a time. The continuous BAP, on the other hand, allows ships to berth at any
point in the quay as long as they keep a safe distance from other ships. The
BAP can also be categorized as static or dynamic. The static BAP assumes
that the ships are already at the port, whereas the dynamic BAP considers an
arrival time for each of the ships, which is defined a priori. Figure 1.5 depicts an

Figure 1.5: Example representation of the BAP with four ships.

example of the continuous and dynamic berth allocation in a two-dimensional
diagram. The vertical axis illustrates the quay, and the horizontal axis, the
planning horizon. Ships are represented as rectangles, with the handling time
and ship length as their dimensions. The ships are subject to starting and finish
times and need to be placed within the operating space without overlapping.

The BAP has received great attention in the literature during the last two
decades (see Carlo et al., 2014; Bierwirth and Meisel, 2015, for surveys on the
BAP). Lim (1998) introduced one of the first studies on the BAP and Imai et al.
(2005) conducted one of the first studies considering a continuous BAP. Cordeau
et al. (2005) studied both the discrete and continuous variants. There have been
other studies considering other types of berths such as a hybrid version where
each ship can berth in a subset of positions (Kordić et al., 2016), or indented
berths where ships can be serviced from both sides (Beens and Ursavas, 2016).
The BAP allows terminal operators to improve their operations by maximizing
the utilization of the quay. Objectives of the BAP aim mainly at minimizing
operational costs as a sum of the service time as well as waiting time at port
and delays.
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Container terminals do not have much interaction with other terminals and gen-
erally plan their operations independently. Due to multiple reasons, congestion
in terminals does occur, impacting the schedules of the vessels involved. Vessels
can easily propagate these delays to the next port calls they have scheduled,
forcing terminals to modify their plans. We believe that more synchronized op-
erations where the berth allocation of multiple ports is planned simultaneously
can help improve the quality of the service at ports without negatively impacting
the vessel services. In Chapter 2, 3, and 4 we study a multi-port BAP where the
berth allocation is planned in multiple terminals simultaneously. Furthermore,
Chapters 2 and 4 include a more comprehensive literature review on the BAP.

All of the terminal operations are interesting from an optimization perspective
and have been addressed as decision problems using OR methods (Steenken
et al., 2004). Container terminal planning problems are complex to solve and
they are normally solved in a sequential approach, where the output of one
problem is used as input for the next one. This approach significantly restricts
the potential benefits of optimization. Nevertheless, as shown in Figure 1.4,
some of the operations are tightly connected and are more amenable to inte-
gration. Studies that address integrated optimization of multiple operations,
highlight the benefits of joint optimization. Some integrated problems consider
operations involving different stakeholders, and may fall under the umbrella of
collaborative logistics. In this thesis, we study collaborative problems arising
from integrated maritime operations.

Collaborative and integrated maritime logistics

Considering all operations simultaneously quickly becomes intractable, and most
of the shipping and terminal operations mentioned are solved in a sequential
fashion. Some operations, however, are tightly related and if the integrated
problem is not significantly complex, they can be optimized together. The main
motivations for addressing integrated planning are the economic benefits and
higher utilization of resources. Moreover, some of these operations share similar
resources, which facilitates integration.

In the literature, we can find integrated studies both in liner shipping and termi-
nal operations. Some studies integrating the liner shipping operations we men-
tioned include integrating network design and scheduling (Koza et al., 2020),
service scheduling and cargo allocation (Wang et al., 2014a; Koza, 2019), ship
routing and scheduling (Kjeldsen, 2011; Christiansen et al., 2013), or cargo
allocation with speed optimization (Koza et al., 2020). Integrated container
terminal problems are present in all three areas of the terminal. Examples of
integrated optimization in seaside operations include combining the berth al-
location and quay crane assignment (Meisel, 2009; Iris et al., 2015, 2017) to
reduce the ship handling time. Some studies, also extended it to include crane
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scheduling (Park and Kim, 2003; Rodrigues and Agra, 2022). Ultimately, there
are some attempts to extend the berth allocation and quay crane assignment
also to consider the yard assignment (Wang et al., 2018). Between the seaside
and the yard, the scheduling of quay cranes is combined either with vehicle dis-
patch and scheduling operations (Tang et al., 2014), or with the management
of the yard (He et al., 2015). The loading time highly depends on where in the
yard the containers are. To address this, a common integration in the yard is
to jointly optimize the yard allocation strategies with vehicle scheduling (Lee
et al., 2009). Last, the scheduling of yard cranes can be optimized together with
container storage policies (Jin et al., 2016).

The container fleet has constantly been increasing since 1990, and container-
ized trade is expected to grow at an annual 2.7 percent, faster than any other
maritime trade segment (UNCTAD, 2022). Ports are struggling to absorb the
increased demand, which is causing longer delays and more congestion in gen-
eral. To mitigate this, companies need to look beyond short-term solutions for
new and innovative strategies. Effective collaborative responses have the power
to spread risks and adapt faster to disruptions. Initiatives such as the Clydebank
Declaration (Gov.uk, 2021), an international pledge to foster partnership with
all stakeholders to establish green shipping corridors, help support the transition
towards a more sustainable and collaborative future in maritime logistics.

Despite the competitive environment, collaborative schemes exist in the mar-
itime industry. The growth in vessel size and the need to utilize the capacity
more efficiently led to some of the largest carriers seeking strategic alliances
(Notteboom et al., 2022). These alliances can be seen as collaborative agree-
ments between carriers that aim at consolidating operational synergies while
also strengthening their market position. Currently, the three main alliances
include the largest nine carriers and account for more than 80 percent of the
global container shipping market (UNCTAD, 2022). Examples of other collab-
orative mechanisms in this context are sharing vessel space to meet the demand
on given routes (i.e., vessel-sharing agreement), making capacity available for
collaborating partners (i.e., slot-sharing), or sharing terminal capacity.

The container shipping industry has also been undergoing an important vertical
consolidation process, resulting in carriers investing in container terminals. As
a result, currently, the four largest carriers are among the top ten terminal
operators (UNCTAD, 2022). These investments lead to carriers having more
negotiation power and flexibility to plan their own operations. Carriers and
terminal operators under the same ownership can facilitate the integration of
liner shipping and terminal operations and enhance collaboration among carriers
and terminal operators.

Studies based on collaborative problems are emerging significantly, motivated
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by the benefits of joint optimization and the need for more resource-efficient
logistics. In such problems, different stakeholders with different interests may
be involved. The goal is to satisfy and provide gains to all of them to encourage
participation and engagement in collaboration.

Figure 1.6: Example representation of the MBAP with four ships visiting two
terminals. The timeline of operations for ship 1 is defined at the
top, where EST,EFT and LFT denote the earliest start time, the
expected finish time, and the latest finish time of the ship at the
port.

Most collaborative problems between shipping companies and terminal opera-
tors arise in seaside operations. Problems such as the berth allocation or berth
template design can be solved considering shipping liners’ priorities (Wang et al.,
2015; Ursavas, 2022). Furthermore, the berth allocation can be integrated with
ship routing (Pang and Liu, 2014), and vessel scheduling (Venturini et al., 2017).
The latter is known as the Multi-port Berth Allocation Problem (MBAP). The
MBAP aims at simultaneously planning the berth allocation for a set of ships
at multiple ports. The set of ships is characterized by sharing a subset of their
port calls as part of their service. The problem extends the BAP to multiple
ports, including vessel scheduling. For each ship, the arrival time at the port
is conditioned by the departure time from the previous port and the selected
sailing speed. The objective in general is to minimize the operating costs for
both the ship owners and terminal operators, which includes waiting and han-
dling costs, delay, and fuel consumption. Figure 1.6 shows an example of the
MBAP considering two ports and four vessels. This problem enhances vessel
scheduling by including accurate berth allocation planning, and it improves the
BAP by including information from other terminals and optimizing accordingly.
Chapters 2, 3, and 4 address the MBAP in detail both considering a continuous
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and a discrete quay and measure the economic and environmental benefits of
solving this collaborative problem.

1.1.2 Public and on-demand transportation

Public transportation is a passenger transport system aimed to provide mobility
access to the general public. It is characterized by using high-capacity vehicles
and operating along designated routes. The main goal of public transportation
is to provide a viable and more sustainable alternative to private modes of trans-
port, as it can help reduce congestion, travel times, and, thus, pollution. The
socio-economical benefits are numerous. Having access to transportation grants
people access to employment, medical assistance, and social opportunities. Its
comparatively low price extends mobility access to people with scarce resources.

Public transportation does not only have an impact on users, investments in its
development have proven to improve the system and impact surrounding busi-
nesses and communities (APTA, 2020). On the contrary, investments in road
networks focused on private transport modes may not reduce traffic congestion
and can actually make congestion worse if the improvements do not impact pub-
lic transport positively. This is known as the Downs-Thomson paradox (Downs,
2005) and stems from Braess’s paradox (Braess et al., 2005) that states that
adding capacity to a road network can, in some cases, lead to a worse travel
performance. As Lewis Mumford said: "Adding highway lanes to deal with traf-
fic congestion is like loosening your belt to cure obesity" (Mumford, 1955). This
strengthens the aim that future growth in the transport sector should primarily
focus on public transport.

Despite the great benefits, public transport systems still face some major chal-
lenges and have failed to adapt to urban growth (Hazan et al., 2019). The
advances in new technologies and poor reactions to changing commuting pat-
terns have boosted the growth of alternative modes of transport. On-demand
mobility or ride-sharing systems have been one of the most notable ones, oper-
ated by Transportation Network Companies (TNCs).

TNCs have been growing significantly. According to McKinsey & Co. (2021), the
ride-sharing market has tripled in the period 2016-2019, reaching 40 million daily
trips. This irruption, together with the global COVID-19 pandemic, has changed
commuting patterns and has inevitably impacted public transportation, where
ridership has decreased in many cities (The Economist, 2018). Ride-sharing
systems provide a great customer experience, but their growth can have negative
aspects. Diao et al. (2021) shows that ride-sharing systems contributed to a
reduced public transport ridership, but an insignificant reduction in private car
use. In fact, ride-sharing has contributed to congestion rather than alleviating
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it (Erhardt et al., 2019). Lastly, ride-sharing systems have a higher fare than
public transport services in general, which makes them inaccessible for some
population segments.

A new transport system model that aims to tackle these challenges is on-demand
microtransit.

Microtransit

Microtransit systems are defined as shared transportation systems that can offer
both fixed-route schedules and flexible on-demand routing and scheduling (US
Department of Transportation, 2016). This system aims to bring the digital
advantages of ride-sharing into a public transportation context to expand ac-
cess to affordable transportation. Microtransit leverages the benefits of public
transport (e.g., high-capacity vehicles and advanced planning) and ride-sharing
(e.g., on-demand service and planning flexibility) to provide a high-level service
with low operational costs. Vehicles operate lines following a published schedule
available for passengers. Trips need to be requested in advance, in general, sim-
ilar to ride-sharing services. These requests are processed and optimized by the
transport planner, resulting in the final route adjustments. Drivers receive the
route updates, and passengers receive their trip details such as pick-up location
and time, and estimated arrival time to destination. Pilot projects have been
deployed across multiple cities with positive results (Eno Center for Transporta-
tion, 2018; Haglund et al., 2019). From the planning perspective, microtransit
systems can be modeled by combining network design planning (i.e., deciding
which lines to operate and their schedule) with vehicle routing operations (i.e.,
how to adjust the route deviations to the demand). The literature has mostly
studied microtransit services from the operational point of view and at relatively
small scales. Quadrifoglio et al. (2008) and Galarza Montenegro et al. (2022)
study the routing deviations of individual lines by optimizing their pickup and
dropoff locations. In Chapter 5, we address both the design and operation of
microtransit systems by integrating the network design and on-demand routing
operations in a single optimization problem.

1.2 Context

The goal of this PhD project is to explore optimization problems arising in trans-
portation and logistics that leverage synergies and information-sharing between
different stakeholders. This PhD thesis aims at developing advanced analytical
tools to support collaborative maritime logistics and integrated optimization in
other transportation areas, and demonstrate the benefits that integration and
information sharing could report to stakeholders.
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The research conducted in this PhD thesis contributes toward the Sustainable
Development Goals (SDGs) (United Nations, 2015). All the scientific contribu-
tions have as one of the main targets to achieve more sustainable operations,
either by reducing ship fuel consumption by sailing slowly between ports or
by reducing vehicle distance in on-demand microtransit systems. This effort is
categorized under SDG number 13: Climate action. One of the objectives of
designing an on-demand microtransit system is to increase access to transport
at affordable prices. This means also providing transportation services to a
larger population segment and therefore, reducing inequalities. This objective
is aligned with both SDG number 10: Reduced inequalities and SDG number
11: Sustainable cities and communities.

The thesis centers on the intersection between methodology and application,
where we develop advanced solution methods envisioned to be applied in prac-
tice, and quantify the potential value for the decision-maker. The objectives of
this thesis are the following:

• To study and formulate optimization problems based on logistical integra-
tion and collaboration. We study a collaborative problem that combines
vessel scheduling and berth allocation planning. Two critical operations
for ship-owners and terminals respectively.

• To develop algorithms to support the ongoing transition toward collabo-
rative maritime logistics and integrated planning. We design large-scale
optimization methods based on exact and heuristic methods to solve real-
life instances. Exact methods exploit the structure of the problem using
decomposition, and heuristic methods leverage problem knowledge to find
high-quality solutions in short time.

• To analyze and quantify the value and benefits of collaborative and inte-
grated problems in transportation. We conduct analyses to quantify the
benefits of collaboration for the different stakeholders and present mecha-
nisms to apply the problems in practice.

• To explore the applicability of integrated optimization in other transporta-
tion areas. We study the integration of train timetabling with passenger
routing, and we address a rising mode of transport that integrates stan-
dard public transport and ride-sharing services.

This thesis is divided into four main parts. Part I contains the current chap-
ter, and introduces the content of the thesis and outlines the remaining parts.
Parts II, III, and IV are the core of the thesis and contain the research work
conducted during the PhD project. Part II addresses the integration of vessel
scheduling and berth allocation, two critical operations in maritime shipping.
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This collaborative problem is based on information sharing between the stake-
holders involved in the operations, shipping carriers and terminal operators.
Part III studies a novel but rising mode of traffic, microtransit, which explores
the integration of fixed public transport systems with on-demand ride-sharing
systems. Last, Part IV studies the train timetabling operations both from the
operator and passengers’ perspective by integrating train timetable scheduling
with passenger routing.

1.3 Scientific contributions

Part II consists of three chapters. Chapters 2 and 4 refer to academic journal
papers while Chapter 3 is based on an international conference paper. Parts III
and IV each consist of a single chapter based on academic journal papers. Two
of the five chapters are published in international peer-reviewed journals, one
chapter is published as a conference paper, one chapter is currently submitted
to an international journal, and one chapter will be submitted to a journal in
the next months.

In Chapter 2, The multi-port berth allocation problem with speed
optimization: Exact methods and a cooperative game analysis, we ad-
dress an emerging problem in collaborative maritime logistics, the multi-port
berth allocation problem with speed optimization. This problem integrates
vessel scheduling and berth planning operations, and therefore, requires ter-
minal operators and shipping carriers to collaborate. The goals of this chapter
are, (i) to present effective models based on problem reformulations that can
solve large instances to optimality, and (ii) to study the potential benefits of
the collaboration. We approach the problem by formulating the MBAP as a
network-flow formulation. By applying decomposition techniques, we present a
set partitioning formulation that is suitable for column generation techniques.
Combining column generation with effective branching strategies, a novel set
of valid inequalities, and additional enhancements, we present a branch-and-
cut-and-price solution method. The method is tested in a set of benchmark
instances from the literature and in an additional set of larger instances that we
propose. The method proves to perform effectively and outperforms commer-
cial solvers. Thanks to the tighter bounds of the reformulation, the algorithm
converges in short computational times in most cases and achieves near-optimal
solutions in the hardest cases.

We employ collaborative game theory to analyze and quantify the cost savings
arising from the MBAP for carriers and terminal operators. By comparing the
problem’s collaborative setup to a non-collaborative scenario, we observe that
all solutions maintain individual and group rationality. This means that from
the carriers’ or terminal operators’ perspective, being part of the collabora-
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tive scheme is the most attractive option. This encourages participation and
strengthens the viability of such agreements. Finally, we describe alternative
scenarios in which this type of problem could be applied. In the case of the
participation of different companies, we envision third-party software compa-
nies acting as intermediaries. Many shipping and terminal operating companies
already outsource their planning processes to these companies, which simplifies
the process and does not require disclosing information between companies.

The work of Chapter 2 has been disseminated as follows:

• A journal paper co-authored with Dario Pacino, and Stefan Røpke
published in Transportation Science (Martin-Iradi et al., 2022b).

• A presentation by Bernardo Martín-Iradi at the following virtual
conferences:

AIRO Young workshop 2021

IFORS 2021

ICCL 2021

INFORMS Annual meeting 2021

• A presentation by Bernardo Martín-Iradi at EURO 2021, the 31st
European Conference in Operational Research in Athens, Greece.

• A seminar presentation by Bernardo Martín-Iradi held in 2020 at
the Technical University of Denmark in Kgs. Lyngby, Denmark.

The berth allocation planning can be mathematically formulated in two ways
depending on the spatial consideration of the quay. Either we define a finite set
of positions that can host one ship each at a time, or we consider the entire quay
and allow ships to occupy a part of it. In practice, the ships may vary greatly
in length, and considering an independent set of positions may prove to be an
ineffective use of the resources. In Chapter 3, The multi-port continuous
berth allocation problem with speed optimization, we continue investi-
gating the multi-port berth allocation problem with speed optimization, but in
this case, the focus is on studying the impact of considering a continuous quay.
Inspired by the model presented in Chapter 2, we present a network-flow formu-
lation for the problem with a continuous quay. We exploit the same properties of
the problem and apply decomposition techniques to define a set partitioning for-
mulation. We combine column generation with a balanced branching strategy
to develop a branch-and-price method. One of the consequences of modeling
a continuous quay using a graph representation is that the size of the graph
grows significantly. In our case, we define a segment length that establishes
the minimum distance between two possible anchorage points. Based on the
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ship’s length, each ship occupies a different number of segments. This study
also represents the first one addressing this problem, and therefore, we present
an initial set of benchmark instances of moderate size, considering between 4
and 15 ships visiting 3 ports in the north of Europe. We compare the proposed
branch-and-price method with commercial solvers solving the network-flow for-
mulation. The computational results of the presented method outperform com-
mercial solvers and provide tight near-optimal solutions. The practical insights
indicate that considering a short segment length can provide planners with sig-
nificant savings in operational costs, aligning with the premise that considering
a continuous quay allows making more efficient use of the resources.

The work of Chapter 3 has been disseminated as follows:

• A peer-reviewed conference paper co-authored with Dario Pacino,
and Stefan Røpke published in Lecture Notes in Computer Science
(Martin-Iradi et al., 2022a).

• Presentation by Bernardo Martín-Iradi at ICCL 2022, the 13th
International Conference on Computational Logistics in Barcelona,
Spain.

• A peer-review extended abstract and a presentation by Bernardo
Martín-Iradi at TRISTAN 2022, the 11th Triennial Symposium on
Transportation Analysis in Mauritius.

Considering a continuous quay allows for better planning of the berthing op-
erations, but the problems become computationally harder. We envision that
the multi-port continuous berth allocation problem with speed optimization
can be applied across large terminals and involve various carriers. This im-
plies that the number of ships to optimize can be large. In Chapter 4, An
adaptive large neighborhood search heuristic for the multi-port con-
tinuous berth allocation problem, we aim at solving large instances for the
multi-port continuous berth allocation problem. For that, we present an adap-
tive large neighborhood search metaheuristic. The method iteratively generates
new solutions by removing part of the solution and inserting the missing com-
ponents in a different way. The method rewards the operators leading to better
solutions, guiding the solution search process. We also present a mixed-integer
problem formulation that can be solved by commercial solvers more efficiently
than the network-flow formulation presented in Chapter 3. Based on real port
data, we develop an instance generator and present a set of instances of large
size. The heuristic method shows a robust and consistent performance achieving
better solutions than commercial solvers in most cases. The method provides
great scalability and can be further developed into a decision-support tool for
planners.
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The work of Chapter 4 has been disseminated as follows:

• A journal paper co-authored with Dario Pacino, and Stefan
Røpke under review at European Journal of Operational Research
(Martin-Iradi et al., 2023b).

• Presentation by Bernardo Martín-Iradi at EURO 2022, the 32nd
European Conference in Operational Research in Espoo, Finland.
Initial version of the work with title: An adaptive large neighbor-
hood search for the multi-port continuous berth allocation problem
with speed optimization.

In Chapter 5, Design and operation of on-demand microtransit sys-
tems, we study an emerging urban transportation method, known as micro-
transit, that leverages the efficiencies of public transport and the flexibility of
on-demand ride-sharing. We address the design and operation of this system by
formulating it as a two-stage stochastic optimization problem, in which the first
stage addresses strategic network design, and the second stage optimizes on-
demand routing deviations to provide a better service to passengers. We model
the second stage as a network flow problem using a subpath-based representation
that scales better than equivalent segment-based or path-based representations.
We present a solution method that combines Benders decomposition, to exploit
the two-stage nature of the problem, and column generation, to effectively gener-
ate subpaths in the second stage. We demonstrate the scalability of the method
by testing a case study in Manhattan. The method can solve instances with up
to dozens of lines, hundreds of stops, and hundreds of requests. Last, we an-
alyze the impact of microtransit by comparing it to standard ride-sharing and
fixed-route transit. The results show that microtransit can increase coverage
and level of service while maintaining low operational costs, which underscores
the potential of microtransit toward sustainable mobility.

The work of Chapter 5 has been disseminated as follows:

• A working paper co-authored with Alexandre Jacquillat, and Kayla
Cummings to be submitted as a journal paper to an international
peer-reviewed journal (Martin-Iradi et al., 2023a).

• Presentation by Bernardo Martín-Iradi at INFORMS 2022, the
2022 INFORMS Annual meeting in Indianapolis, United States.

• Presentation by Alexandre Jacquillat at the Workshop on Transit
Oriented Innovations in Emerging Mobility Service Designs, Al-
gorithms, and Societal Implications during the 2022 INFORMS
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Annual meeting in Indianapolis, United States.

• Seminar presentation by Bernardo Martín-Iradi held in 2022 at
Technical University of Denmark in Kgs. Lyngby, Denmark.

In Chapter 6, A column-generation-based matheuristic for periodic
and symmetric train timetabling with integrated passenger routing,
we study railway operations for passenger transportation. To a large extent, the
timetable planning process is still done manually by transit operators. Timeta-
bles are subject to a list of operational requirements, but they also need to
comply with regulations and provide and adequate level of service to passen-
gers. Passengers and transit planners have objectives that often are conflicting
with each other. Operators want robust and cost-effective timetables, whereas
passengers prefer high-frequency direct services to their destination. This cre-
ates a natural trade-off and highlights the importance of considering passenger
travel information to design a good timetable. We address this by integrating
passenger routing into the train timetable generation process. The timetable
has multiple characteristics. In this case, we study the periodic and symmetric
timetabling problem. Regional train systems usually operate using a periodic
timetable and a symmetric one has the advantage of providing the same trans-
fers between lines in both directions, which is a valued aspect by passengers. A
graph representation of the problem enables to compute the schedule of a line in
both directions by computing a single path in the graph. We solve the problem
by combining column generation with separation techniques. To achieve feasible
timetables we embed the method with a dive heuristic. The resulting matheuris-
tic is denoted as a dive-and-cut-and-price method. To compute the passenger
travel time, we route the passengers by solving a multi-commodity flow problem
on a given feasible timetable. We use the passenger routing solution to derive
a Benders optimality cut that is added to the original problem. The proposed
algorithm is a large neighborhood search heuristic that iteratively solves the
timetable generation and passenger routing procedures. We test the method
in a regional and InterCity network in Denmark. The results indicate that the
large neighborhood search achieves near-optimal solutions. These solutions are
of high quality in line duration (i.e., reduced dwell time) and passenger travel
time. The Benders’ cut integration does not perform best when combined with
the dive heuristic but experiments at the root node show that the cuts help
tighten the optimality gap.

This study highlights the value of integrating operations where different stake-
holders are involved, in this case, the transit operator and the passengers, and
present efficient methods to automatize large parts of the timetable generation
process and serve as a decision support tool for planners.
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The work of Chapter 6 started as an MSc thesis project (Martin-Iradi, 2018)
and, has been partly conducted before the start of the PhD project. The work
has been disseminated as follows:

• A journal paper co-authored with Stefan Røpke published in Eu-
ropean Journal of Operational Research (Martin-Iradi and Ropke,
2022).

1.4 Conclusions

The importance of applying optimization methods in transportation and logis-
tics remains active. Recent advances in technology and digitalization enable
new opportunities for OR applications. A growing research direction is to study
the value of integrated optimization of multiple operations. These operations
often involve stakeholders with different and sometimes opposing interests. In
this thesis, we address this type of problem in three different transport sectors:
(i) maritime logistics, (ii) on-demand road transit, and (iii) railway systems.

Part II focuses on collaborative logistics in maritime transportation. Although
the container shipping industry is known to be a highly competitive one, collab-
oration agreements between different companies are becoming more frequent.
We address seaside operations at the container terminals and study the MBAP
that jointly optimizes vessel schedules and berthing plans. In Chapter 2, we
present new formulations for the MBAP and design exact methods based on
decomposition techniques. Results in large instances highlight the quality of
the method and cooperative game theory shows that the MBAP can result in
win-win scenarios, cost savings for carriers and terminal operators, and sustain-
able operations due to low sailing speeds. In Chapter 3 we extend the MBAP
to consider a continuous quay. Results in real-port data indicate that a con-
tinuous quay can have a significant impact on operational costs. In Chapter 4,
we address the same problem at a larger scale. We present a more amenable
formulation for commercial solvers and develop a heuristic method. Results in
large instances show the scalability and quality of the heuristic method.

Chapter 5 addresses an integrated approach between regular public transporta-
tion and on-demand mobility systems, denoted as microtransit. Microtransit
aims to provide a high level of service to passengers at an affordable price point
by combining the planning benefits of public transport with the flexibility of
on-demand routing. The results indicate that microtransit systems can increase
demand coverage while reducing operational costs and emissions. This type
of system can help solve some of the challenges in urban transportation by
strengthening the use of public transport and reducing congestion in cities.
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Lastly, Chapter 6 looks at the integration of railway timetabling and passenger
routing. We look at optimizing the timetable generation process, including the
interests of passengers and the operator. The results show that timetabling and
passenger routing can be jointly optimized, leading to better results than solving
the two problems separately.

All in all, this thesis contributes toward more collaborative and integrated trans-
portation. We have formulated optimization problems in maritime logistics
based on collaboration and extended integrated optimization to other trans-
portation areas. These problems exploit synergies between stakeholders and
leverage information sharing to achieve improved and efficient planning deci-
sions. Furthermore, all problems combine two or more complex optimization
problems that require powerful algorithmic frameworks to solve them. We have
developed advanced solution methods based on decomposition and heuristic
techniques that, combined with novel modeling contributions, are capable of
solving large instances in real-world setups for the first time. Moreover, these
methods could be further developed to serve as decision-support tools for trans-
port planners and practitioners. We have analyzed the practical implications of
collaboration and logistical integration and measured the operational impact of
the problems. The results show that collaborative and integrated optimization
results in significant benefits for all the stakeholders. In the case of maritime
logistics, these results are strengthened, showing that the most profitable sce-
nario for each stakeholder happens when everyone collaborates. We believe
these findings can encourage new carriers and transport operators to engage
in collaboration. To conclude, we believe this thesis scientifically highlights
the positive value of collaborative and integrated strategies and promotes them
toward efficient and sustainable transportation.

1.5 Future work

During the PhD project, there have been multiple research directions that re-
mained unexplored, but that may be worth considering in the future. We present
four main ideas that we are currently researching or that we envision as future
work.

1.5.1 Stochastic optimization in collaborative maritime lo-
gistics

Recent disruptions such as the COVID-19 pandemic or the war in Ukraine have
impacted supply chains and increased costs worldwide. This highlights the need
to protect and strengthen the shipping industry and has led shipping companies
and ports to seek better ways to manage disruptions.
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Inspired by the methodology and modeling perspective of the work in Chap-
ter 5, we believe it can also be applied to optimize disruption management in
maritime logistics. In Chapter 5, we use stochastic programming to account for
uncertainty in passenger demand. This is done by defining a set of scenarios,
each comprising a demand realization (e.g., a weekday morning rush-hour). We
envision that a similar approach can be extended to collaborative problems in
maritime logistics to manage disruptions. For the case of the multi-port berth
allocation problem, the model can be reformulated as a two-stage stochastic
problem. In the first stage, decisions about the vessel schedules are made. This
involves determining the sailing speed between ports, but we could also include
routing decisions such as skipping a port visit or altering the order of port visits
(Brouer et al., 2013). The uncertainty is characterized by the nature of the
disruptions where each realization (i.e., scenario) corresponds to a different dis-
ruption setting. Disruptions can be represented by a delayed ship, a congested
or closed port, or an unexpected berth prioritization. The second-stage deci-
sions would then involve adjusting the berth allocation plan in response to the
disruption. Potentially, one could try to model the entire second stage as a BAP
with uncertainty (Rodrigues and Agra, 2022) Last, the planning decisions could
potentially be extended to consider transhipments.

1.5.2 Cargo routing and transhipments in collaborative
maritime logistics

The liner shipping network is characterized by two main levels of distribution.
On one level, we have the big container vessels that cover global routes and visit
the largest ports, and on another level, we have the feeder vessels (i.e., smaller
vessels) that transport the containers between the large ports and the smaller
ones that are within a shorter distance. This means that a large number of
containers need to be transhipped between ships at the terminal. In the case of
the multi-port berth allocation problem, transhipments are not explicitly consid-
ered. Some examples of how to incorporate them are discussed in the conclusions
of Chapter 2, but depending on the level of accuracy, it may require modeling
changes. We differentiate two main approaches to model transhipments.

In the first approach, we define a set of predefined transhipments at each port.
Each transhipment is characterized by a pair of ships, in which the first ship
needs to unload the containers to be transhipped, and the second ship needs
to load them. The requirement, in this case, is that the first ship must arrive
before the second ship departs. In fact, the difference between the first ship’s
arrival and the second ship’s departure must be larger than the handling time
required to tranship the containers. To incorporate this approach in the multi-
port berth allocation problem, we have two options. One one hand, we could
restrict the port call duration of both ships and ensure that the latest finish time
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of the incoming ship is strictly before the earliest starting time of the outgoing
ship. On the other hand, we could add additional constraints in the problem
formulation to guarantee the relative arrival of the incoming ship with respect to
the departure of the outgoing ship. The first option is easier to implement and
can be preprocessed, but it may be too restrictive. The second option provides
more flexibility and potentially better solutions, but the problem becomes harder
to solve.

In the second approach, we consider each container or group of containers as a
commodity with an origin and destination port. Moreover, each commodity has
a time window, with the earliest time to be loaded at the origin port and the
latest time to be unloaded at the destination port. This can be formulated as a
multi-commodity flow problem. This approach is more complex to embed in the
multi-port berth allocation problem as it adds the cargo routing component to
it. Inspired by Karsten et al. (2018), we could apply decomposition techniques
to both the ship schedules and routes of the cargo. The authors combine Ben-
ders decomposition with column generation in a similar way as the algorithm
we present in Chapter 5. In our case, we also need to consider the berth alloca-
tion at the terminals, which makes the overall problem an integration of three
complex logistical operations. One could address this problem with a two-step
approach like the one presented in Chapter 6 where the second stage solves a
linear problem that allows generating efficient cuts to add to the main formu-
lation. In our case, the first step would solve the multi-port berth allocation
problem, and the second step would consider the routing problem as a linear
programming problem following a similar procedure to Karsten et al. (2018).

1.5.3 Integration of quay crane assignment and scheduling

As mentioned in Section 1.1.1, the BAP can be naturally integrated with the
quay crane assignment problem (QCAP). Integrating these two problems allows
us to make more efficient use of the equipment and reduce handling time for
ships. So far, the MBAP defines a fixed handling time for ships depending on
the berthing position which may not be accurate. We believe that integrat-
ing the QCAP in the MBAP can help terminal operators to reduce their costs
by improving their plan quality. Chapters 2 and 3 use a set partitioning for-
mulation to solve the problem where the variables refer to entire schedules for
ships including their berthing assignments. A similar formulation is used by
Iris et al. (2015) to solve the integrated BAP and QCAP. where each variable
represents a feasible assignment of a ship to a berth (i.e., position and time). In
their case, they handle the crane assignment decision with a different variable
which complicates the entire problem. A possible alternative is to embed the
crane assignment in the variable itself. This makes the original problem less
constrained, but the number of variables can grow significantly.
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1.5.4 Dial-a-ride systems in on-demand microtransit sys-
tems

The work presented in chapter 5, addresses a version of the problem where all
passengers have a common destination. This simplifies the logistics, but the
problem remains complex, as decisions about where and when to pick up pas-
sengers need to be made. We believe it is important to address the transit
operations more accurately and we are currently studying an extension of the
problem that accommodates passenger drop-offs at different locations. We en-
vision this can be integrated into the current structure of the problem while
retaining tractability.

Another important aspect to further study is the composition of the fleet and
how this can affect operations. We assume a homogeneous fleet of vehicles with
the same capacity. In a practical setup, we do not expect all lines and frequencies
to have a balanced demand. Therefore, it will be interesting to consider vehicle
capacity when designing the network. Similarly, some lines may visit areas
with more stable and localized demand and may not require the vehicle to do
additional deviations. The opposite case, where demand is sparse and unlikely
to be near the reference route, may require the vehicle to operate with more
routing flexibility. Therefore, it is interesting to study if the network design
could combine fixed-route bus lines with fully on-demand vehicles.
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Abstract: We consider a variant of the berth allocation problem —i.e.,
the multi-port berth allocation problem—aimed at assigning berthing
times and positions to vessels in container terminals. This variant in-
volves optimizing vessel travel speeds between multiple ports, thereby
exploiting the potentials of a collaboration between carriers (shipping
lines) and terminal operators. Using a graph representation of the prob-
lem, we reformulate an existing mixed-integer problem into a generalized
set partitioning problem, in which each variable refers to a sequence of
feasible berths in the ports that the vessel visits. By integrating column
generation and cut separation in a branch-and-cut-and-price procedure,
our proposed method is able to outperform commercial solvers in a set
of benchmark instances and adapt better to larger instances. In addi-
tion, we apply cooperative game theory methods to efficiently distribute
the savings resulting from a potential collaboration and show that both
carriers and terminal operators would benefit from collaborating.

Keywords: Transportation, Exact methods, Container terminal, Berth
allocation problem, Speed optimization, Cooperative game theory

2.1 Introduction

The International Maritime Organization (IMO), in its fourth climate report
(IMO, 2020), reflects on the increase in shipping’s CO2 emissions in the recent
years. In the period 2012-2018 the shipping’s total emissions have increased by
9.6%. This alarming trend highlights the need for pursuing the strategies that
the IMO adopted in 2018 for reducing greenhouse gas (GHG) emissions from
ships (IMO, 2018). The aim is to reduce total emissions from shipping by 50%
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in 2050, and to reduce the average carbon intensity by 40% in 2030 and 70% in
2050, compared to 2008. Yet world maritime trade keeps growing at an annual
average of 3% reaching a record high of 11 billion tons of total volume in 2018
—a number that translates into almost 800 million twenty-foot equivalent units
(TEUs) handled in container ports worldwide (UNCTAD, 2019). Given that
trade volume has steadily increased since then, the need for more efficient and
sustainable operations in maritime transport logistics is essential (Bektaş et al.,
2019).

From the terminal viewpoint, the growth in container trade involves more or
larger vessels arriving at ports, in need of berthing. One solution to satisfying
the increasing demand is to extend the existing quay. The problem is that
doing so usually requires an expensive investment and sometimes may not even
be physically feasible. An alternative strategy is to improve the efficiency of
existing resources through optimization techniques that do not entail costly
investment.

The berth planning of a terminal can be modelled mathematically as the Berth
Allocation Problem (BAP). In the BAP, the aim is to assign incoming ships
to berthing positions along the terminal. Steenken et al. (2004) define this
problem as highly critical within container terminal planning logistics, due to
the scarcity of berthing space. Figure 2.1 illustrates the problem in a two-

Figure 2.1: Example solution of the BAP for a port terminal with four vessels.

dimensional diagram where one dimension is space (quay length), and the other
one is time (the planning horizon). We depict each ship as a rectangle whose
dimensions are the ship length and handling time, the time the ship spends
at the berth (i.e., during unloading and loading) Each ship usually has a fixed
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time window defined by its expected start and finish time. Although ships can
arrive before their berthing time, they will need to wait at the port. Similarly,
ships can be allowed to exceed the expected finish time incurring in a delay. We
denote the entire time that the ship spends at the port (i.e waiting time plus
berthing period) as the "service time." Any non-overlapping positioning of the
ship rectangles within the decision space defines a feasible solution for the BAP.

We can classify the BAP variants according to how the berths are distributed
along the quay. In the discrete BAP, we divide the quay into a discrete set
of berths, with only one ship allowed to one berth at a time, whereas in the
continuous BAP, the ships can berth anywhere along the quay as long as they
maintain a safe distance from the other ships. Moreover, the BAP can be either
static or dynamic. In the static variant, we assume that all ships are at the port
when the berth planning is done, whereas in the dynamic version, we assume
that ships can arrive while the planning is in process.

The efficient planning of a terminal requires the vessels to abide by their sched-
ules. Thus, efficient vessel scheduling is also a critical aspect, not only for the
carriers, but also for the terminal operators. The design of vessel schedules
can be modeled mathematically as the Vessel Scheduling Problem (VSP). The
VSP aims at determining the sailing speeds between consecutive ports in the
route (i.e., voyage legs) in order to optimize the vessels’ fuel consumption and
turnaround time at port and the number of vessels required to operate the route
with a given frequency.

Both the increasing volume of container trade and the up-sizing of the vessels
have led to increased competition among container terminals. each vying to
become the port of call for more vessels (Notteboom et al., 2017). As a re-
sult, most terminals are reticent to share information with other terminals and
prefer to plan their operations independently. Terminals commonly plan berth
allocation based on ship schedules. Nevertheless, these schedules are subject to
a level of uncertainty, because different types of disruptions—such as weather
conditions or technical problems at the terminal—can alter the schedules and
result in delays. When each terminal does its planning independently, a delay
in one terminal can potentially be propagated through the shipping service to
other ports (Notteboom and Vernimmen, 2009) or incur higher fuel costs for the
carriers (shipping lines) if they need to increase the vessel’s speed to make up
for lost time. For example, a vessel stopping in ports A and B may encounter
a congested terminal when arriving at port A and become delayed. The carrier
can then order the vessel to either speed up to arrive at port B on time, entailing
higher fuel consumption, or arrive late at port B, forcing the terminal to modify
its berthing plan.

A potential solution to avoid this type of scenario is to establish some form of
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collaboration between players in the maritime industry. Collaboration can be
established not only between same type of stakeholders (i.e., between multiple
carriers) but also between more players (i.e., carriers and terminal operators).
The World Shipping Council (2015) encourages terminals to establish collabora-
tive agreements with carriers as one of the main ways of reducing port congestion
and improving planning efficiency.

A certain degree of collaboration is assumed in the VSP, however, the problem
does not explicitly consider the berth allocation at the terminal and this can lead
to a significant increase in service time. Therefore, integrating the BAP together
with the scheduling of the vessels becomes relevant. Sharing information allows
planners to simultaneously plan the berthing at the terminals and be able to
minimize disruptions and reduce costs and emissions. Recent studies show that
collaboration between carriers and terminals can lead to significant benefits
for both (Dulebenets et al., 2019). This is the goal of the Multi-Port Berth
Allocation Problem (MPBAP), first introduced by Venturini et al. (2017), which
simultaneously plans the berth allocation of multiple ports taking into account
the vessels’ speed.

The MPBAP can be applied either when one company controls both vessels and
terminals, or by a third-party service provider which works as an orchestrator.
An example of the former is Maersk, owning both the carrier Maersk Line
(Maersk, 2021) and the terminal operator APM Terminals (APM Terminals,
2021).

At present, there are companies in the market that offer optimization-based
planning software separately to carriers and terminal operators (Portchain, 2021;
Navis, 2021; Sealytix, 2021; TGI, 2021; RBS, 2021). Such companies already
have access to all the necessary data for the MPBAP, which makes them ex-
cellent candidates to orchestrate the collaboration. Since both carriers and
terminals are already sharing data with those companies, trust issues should be
minimal, but customers should of course be free to decline that their data is
used in a joint optimization problem. The amount of flexibility that terminals
and carriers are willing to commit to the collaboration, can easily be modeled
with the time windows, making the MPBAP if not an operational tool, at least
a tool to identify the potential savings.

To make the service attractive to customers, the software company needs to show
that the collaboration is beneficial for all involved parties. Therefore, we apply
cooperative game theory to demonstrate that the total costs in the MPBAP
solution can be shared in a favorable way. Using this service only requires that
participating carriers and terminal operators allow the third party to jointly
use their data but does not entail sharing additional data or the disclosure of
the customer’s data to other customers. Once the operations conclude, the
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third party would be in charge of returning the savings according to the initial
calculations.

Similar collaboration mechanisms have also been studied in the road transporta-
tion sector. Ergun et al. (2007) study collaborative logistics in truck transporta-
tion where part of the carriers’ savings are returned to the shippers. Özener et al.
(2011) also propose collaborative models where players receive more favorable
rates in return. In fact, they indicate that a centralized decision-maker with
complete information about all participants would be ideal for collaborative
models to work. However, in their study, Özener et al. (2011) suggest that, due
to lack of trust, players may not be willing to share additional information and
therefore, they explore different mechanisms. Fortunately, this lack of trust is
minimized in our case as the players already share the required information with
the third party.

In studying the MPBAP, this paper makes four contributions. First, we present
two new formulations for the MPBAP, based on a graph representation. Second,
we propose exact methods based on column generation, together with branch-
ing, cutting, and symmetry-breaking enhancements. Third, we demonstrate the
quality of our method by comparing it to a commercial solver and testing it
through both a set of benchmark instances from a previous study and a new
set of harder instances. Fourth, to demonstrate the benefits for both carriers
and terminal operators in a scenario of a joint grand coalition, we apply cost
allocation methods from cooperative game theory.

The structure of this paper is as follows. Section 2.2 reviews the state-of-the-
art studies on berth allocation, speed optimization and collaboration on the
shipping industry. Section 2.3 describes the MPBAP by presenting two mathe-
matical formulations, together with the one from Venturini et al. (2017). Section
2.4 gives our solution method, and Section 2.5 introduces and discusses the co-
operative game methods used for effectively distributing the costs of a coalition.
Section 2.6 compares the models’ performance through extensive computational
experiments and analyzes the cooperative game theory results. Section 2.7 con-
cludes by briefly discussing both the findings and possible future research direc-
tions.

2.2 Literature review

This section has been divided into three. First, we describe the main studies
related to the BAP. Secondly, we cover the literature concerning speed optimiza-
tion, and the last part focuses on collaboration studies within the container ship-
ping industry and literature where cooperative game theory has been applied to
it.
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2.2.1 BAP literature

The berth allocation problem is known to be NP-hard (Lim, 1998; Hansen and
Oguz, 2003) and has received significant attention in the last two decades. Carlo
et al. (2014) and Bierwirth and Meisel (2015) presented detailed literature sur-
veys on the seaside operations of container terminals such as the BAP where
they emphasized the raising interest on this particular problem in the last years.
Imai et al. (2005) conducted the first study considering a continuous BAP and
Cordeau et al. (2005) studied both the discrete and continuous version of the
problem and solved them through heuristic methods. Guan and Cheung (2005)
presented a tree search exact method that performed better than commercial
solvers and an efficient composite heuristic method. Du et al. (2015) extended
the problem to also include the effect of tides and adopted the virtual arrival
policy that is currently used in many terminals worldwide. Cheong et al. (2010)
considered priorities for each of the vessels. The BAP is optimized using an
evolutionary algorithm that minimizes the make-span, the waiting time and the
deviation from a reference schedule. Buhrkal et al. (2011) compared three differ-
ent methods for the discrete BAP and showed that a generalized set-partitioning
model outperforms the rest. Saadaoui et al. (2015) reformulated the problem
into a set packing problem where variables refer to assignments of ships to
berthing positions and solved it using delayed column generation. In our paper,
we combine the applicability of column generation procedures using a general-
ized set partitioning problem formulation. Regarding the discretization of the
quay, Kordić et al. (2016) presented a hybrid variant of the BAP where ships
can only berth in a given set of positions. Lalla-Ruiz et al. (2016a) studied
how the tides can limit the time available for ships to berth given their draft
and the water depth and solved this variant of the BAP using a generalized set
partitioning problem formulation. The multi-port version of the BAP studied
in this paper was first defined by Venturini et al. (2017). The mixed integer
problem formulation they presented is used as a reference for the ones consid-
ered in this paper. Kramer et al. (2019) proposed two new formulations for
the discrete BAP: a time-indexed formulation and an arc-flow formulation that
seem to perform better than the methods from Buhrkal et al. (2011). Corry and
Bierwirth (2019) proposed a mixed integer problem formulation for the BAP
with channel-constrained ports where the sequencing of channel movements is
also optimized.

2.2.2 Speed optimization literature

The relation between vessel speed and fuel consumption is non-linear. Since
fuel emissions are directly proportional to the fuel burnt, optimizing sailing
speed becomes relevant from the carrier and environmental perspective. The
policies of the IMO in the last years have raised debate on which measures to
implement regarding speed optimization, speed reduction or slow steaming. In
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that aspect, multiple studies have been done analyzing the aspects and impacts
of the different measures. Based on the scenario of slow steaming, Kontovas and
Psaraftis (2011) investigated a berthing policy that aims at reducing the waiting
time at port. Psaraftis and Kontovas (2013), Wang et al. (2013a), Psaraftis and
Kontovas (2015a) and Psaraftis and Kontovas (2015b) presented taxonomies
and surveys on speed models in the maritime transportation sector where the
impacts and main trade-offs of slow steaming are analyzed and decision models
proposed.

The VSP has speed optimization as its core concept and the interest in this
problem has continued increasing in the last decade (Dulebenets et al., 2019).
Fagerholt (2001) presented a mathematical model for the VSP and solved it
using a method based on the set partitioning formulation. Wang et al. (2014)
extended the VSP to also consider cargo allocation and indicated that carriers
should consider the cargo costs arising from additional waiting time at port.
Dulebenets (2018) proposed a multi-objective model considering the route ser-
vice costs. The results indicated that negotiating the port calls and handling
rates with the terminal operator could lead to significant savings. To some ex-
tent, the VSP can be seen as a collaborative problem, however, most of the
studies focus on the interests of the carrier. A variant of the VSP where ship-
ping line companies and terminal operators collaborate has also been studied
recently. This variant assumes that the terminal operator can offer multiple time
windows or handling rates to the carrier, instead of the fixed ones considered in
the generic VSP. For instance, the MPBAP presented in Venturini et al. (2017)
can be included in this problem category where the berth allocation planning
is also considered. Dulebenets (2019) presented a mathematical model for the
collaborative VSP where terminals offer both multiple port service time win-
dows and handling rates. The results showed the benefits of the collaborative
agreement on the liner shipping operations.

Environmental aspects have also been addressed in this type of problems. Fager-
holt et al. (2010) minimized the fuel consumption by optimizing speeds along a
shipping route. By discretizing the arrival times at each port, the cubic function
relating speed and fuel emissions can be linearized and the problem solved as a
shortest path problem. Fagerholt et al. (2015) and Zhen et al. (2020) extended
the route and speed optimization study by also considering emission control ar-
eas (ECAs). Fagerholt et al. (2015) aimed at minimizing the fuel consumption
whereas Zhen et al. (2020) also considered SO2 emissions. Both studies showed
that carriers tend to use slow steaming within ECAs or directly avoid sailing
through these areas. Reinhardt et al. (2016) optimized a liner shipping network
by adjusting berthing times with the objective of minimizing fuel consumption.
The speed and routing of multiple vessels is optimized in Wen et al. (2017) under
a unified objective that minimizes transit times, total costs and fuel emissions.
They implemented a branch-and-price heuristic and a constraint programming
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model which is tested in a subset of the Mediterranean ports. Du et al. (2011),
Du et al. (2015) and Sun et al. (2018) integrated speed optimization with the
BAP by considering that ships still need to sail a certain distance to arrive at
port. The second-order cone programming transformation used by Du et al.
(2011) to approximate the relation between sailing speed and fuel consumption
is improved by quadratic outer approximations in Wang et al. (2013b).

2.2.3 Collaboration in the shipping industry

The MPBAP introduced by Venturini et al. (2017) can be seen as a problem with
a high degree of collaboration and the study of different collaborative forms in
the container shipping industry has gained interest in recent years. Song (2003)
studied competition and co-operation in ports and coined the term co-opetition.
Wang et al. (2015) presented two collaborative methods between shipping line
companies and port operators where the aim is to create a win-win situation by
balancing the priorities of both parties and encouraging them to share true infor-
mation. Lalla-Ruiz et al. (2016b) proposed a cooperative search for the discrete
BAP based on a grouping strategy. Individuals are organized into groups where
they can only share information with other individuals from the same group.
Notteboom et al. (2017) investigated alliance formations in container shipping
by studying their strategies when choosing ports. Dulebenets et al. (2018) pre-
sented the collaborative berth allocation problem (CBAP), which is a variation
of the BAP that also allows to divert vessels to another terminal when there is
a peak demand, and solved it using a memetic algorithm. Collaboration is also
studied by integrating berth allocation with other scheduling problems such as
ship routing. Pang and Liu (2014) studied such integration for a feeder com-
pany operating both vessels and container terminals. This study also considered
transhipments of containers but did not cover speed optimization.

Game theory has also been widely applied in the container shipping industry
(Pujats et al., 2020). In our paper, the focus is on cooperative game theory
where the target is on distributing the profits or savings among players. The
studies vary depending on which are the players considered (carriers, termi-
nal operators or both) in the cooperation. Song and Panayides (2002) applied
cooperative game theory to depict a conceptual framework for liner shipping al-
liances showing that the core theory is applicable to the liner shipping market.
Saeed and Larsen (2010) presented a two-stage cooperative game for container
terminals within the Karachi Port in Pakistan. The results indicated that a
grand coalition among all players gives the best payoff for all terminals. The
work by Krajewska et al. (2008) showed, by means of cooperative game theory,
that collaboration among road freight carriers is practical and cost-effective for
all players. Wen et al. (2019) studied the benefits of horizontal cooperation in
a shipping pool by not only maximizing the pool profit but also allocating the
profits fairly among participants. The profit sharing framework from Krajewska
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et al. (2008) and some of the profit allocation methods presented in Wen et al.
(2019) have been used in this study and, to the best of our knowledge, it is the
first time cooperative game theory is applied to the MPBAP.

2.2.4 Research gap

While the BAP and VSP have been extensively studied in the literature, with
an increasing interest in the last decade, very few papers address the potentials
of integrating the two problems and only one paper has been found to address
the MPBAP. Only an MIP formulation for the problem has been proposed,
which shows good performance for small instances but struggles when the size
of the instances increases. Therefore, there is a need for a more efficient solution
method that scales better to larger instances. Furthermore, the MPBAP implies
collaboration between different parties in the shipping industry and an analysis
of the model’s applicability in real life is lacking in the literature. Thus, we be-
lieve that assessing the stakeholders’ incentives to enter into such collaboration
is relevant.

2.3 Problem description

The MPBAP can be seen as a partial integration between the BAP and the
VSP. Particularly, this study is based on the discrete and dynamic BAP and
it is extended to cover multiple ports where the sailing speed between ports is
optimized. This can be seen as a collaborative approach where information is
shared among shipping line and terminal companies. The main addition of the
MPBAP compared to the BAP is the optimization of the sailing speed between
ports and the simultaneous planning of multiple ports. Figure 2.2 shows a
solution example to a problem with four ships and two ports, each having three
berthing positions. As shown for ship 1, the travel time, which depends on the
chosen sailing speed, determines the arrival time to the next port and this can
constrain the available berthing time window further. The MPBAP aims at
minimizing the total costs for both the carriers and terminal operators.

2.3.1 Fuel consumption model

One of the main costs for a carrier is the fuel. The fuel consumption is directly
linked to the sailing speed but not in a linear way. Thus, we need an accurate
model that links the sailing speed with the fuel consumption realistically.

Many studies approximate the fuel consumption as a cubic function of the speed
(e.g., Meng and Wang (2011), Wang and Meng (2012), Reinhardt et al. (2016)),

F (i, δ) =

(
δ

δi

)3

Γi (2.1)
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Figure 2.2: Example solution of the MPBAP for four vessels, two port terminals
and three berths per port. The traveling timeline for ship 1 (in gray)
is defined at the top, where EFT denotes the expected finish time
at port 1.

where equation (2.1) measures the fuel consumption F (i, δ) in tons/hour for
a given ship i. δi is the design speed of vessel i and δ is the sailing speed,
both measured in knots (i.e., nautical miles per hour). Finally, Γi is the fuel
consumption in tons/hour for vessel i at the design speed. This approximation
is fairly accurate for container ships of limited size and for a range of sailing
speeds that are not significantly slow. In our study, we optimize the sailing
speed between ports, where we expect speeds similar to the design speed (δi) of
the vessel and we do not consider the fuel consumption derived from entering or
leaving a port where near-zero speeds are used. In order to avoid non-linearity
in the mathematical formulation of the problem, we apply a discretization of
the cubic approximation based on the one proposed by Venturini et al. (2017).
A set of different speeds S is defined that can be used by ships to travel between
ports. The set of speeds correspond to reasonable and realistic speeds in a range
around the design speed. Then, for each of the selected speeds δ ∈ S and ship i,
a fuel consumption value (γi,δ) measured in tons/nautical mile can be calculated
based on the cubic approximation using the following equation (2.2).

γi,δ =
F (i, δ)

δ
=

(
δ
δi

)3
Γi

δ
(2.2)



2.3 Problem description 47

2.3.2 Cost structure

The MPBAP aims at optimizing the operational costs for both carriers and
terminal operators. This Section defines the main costs involved in the problem
context and describes to which stakeholder the costs are related. An overview

Figure 2.3: General overview of main costs and revenue for the shipping carriers
and terminal operators.

of the main sources of cost and revenue for both carriers and terminal operators
is shown in Figure 2.3.

As mentioned in Section 2.3.1, the main cost driver for a shipping line company
is the fuel consumption which usually accounts for more than 50% of the carrier’s
total costs (Fagerholt and Psaraftis, 2015). Another carrier related cost is the
waiting time at anchorage (i.e., waiting to berth at port). As described by Chang
et al. (2012), the waiting cost is not only the direct cost of being for longer time
at a port, but also the resulting loss of potential income (i.e., opportunity cost).
Regarding the service time at port, this is usually pre-established by a contract
or when booking the port call. The cost may differ based on multiple factors
such as the number for containers to be loaded and unloaded (i.e., quay crane
moves) or the size of the ship and number of cranes required. In this case, the
cost can be considered constant for the carrier regardless of the resulting quality
of the terminal’s planning. Finally, there are also delay costs associated to the
carrier. Ending the service after the expected finish time at a port may result
in additional payments to the shippers for the delay on the delivery of their
cargo. In addition there may be other costs arising from delays. On one hand,
if the delay at the terminal is caused by the ship arriving late, the carrier may
be subject to a fine or delay penalty to the terminal. On the other hand, if the
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planned service time for a ship gets extended due to, for example, a breakdown
of a quay crane or a poor berth allocation plan, the carrier affected by the delay
may be entitled to a compensation from the terminal operator. It can be noticed,
that these delay costs are paid from the carrier to the terminal operator or vice
versa. This means that a cost for one party becomes a revenue for the other
one. The main premise of this problem is that carriers and terminal operators
jointly plan their operations and, therefore, the internal delay costs do not exist
and can be excluded from the objective of the problem.

The main costs impacting the planning of the terminal in this problem are both
the handling and delay costs. We identify the use of resources to be directly
proportional to the number of workforce and quay crane usage hours. The
fewer shifts needed to serve the vessel, the greater the profit is for the terminal.
Therefore, both an increasing handling time by the vessels or an increased delay
will require additional workforce. As mentioned before in this section, one of
the premises of the MPBAP is that the planning decisions are agreed between
the carrier and the terminal operator based on the overall best solution for
all. This collaborative optimization removes the concept of delay between the
participating players. However, we do consider a delay cost for the terminal
operators in the objective of the problem. We study the problem from a tactical
point of view but assume that, for instance, workforce planning at the terminal is
performed beforehand. In this scenario, the suggested optimal berth allocation
plan for a given terminal may require more workforce than initially planned.
This will directly translate in the use of additional resources to cover for the
additional handling operations that can be computed as delay costs.

All in all, the MPBAP covers the costs depicted with a continuous line in Fig-
ure 2.3. Thus, the objective of the problem focuses on minimizing the fuel
consumption and the costs related to waiting, handling and delay time.

2.3.3 Mixed-integer problem formulation. The Venturini
et al. (2017) model

The solution method presented in this paper is based on a mixed integer problem
(MIP) formulation from Venturini et al. (2017), which we now briefly present.
We first list the notation used in the model:

Sets and parameters
N Set of ships
P Set of ports
Pi Set of ports to be visited by ship i ∈ N sorted in visiting order
Bp Set of berths at port p ∈ P



2.3 Problem description 49

V p,b Set of vertices, V p,b = N ∪ {o(p, b), d(p, b)}, with o(p, b) = origin
node for arcs and d(p, b) = destination node for arcs, both defined
for every port p ∈ P and berth b ∈ Bp

Ap,b Set of arcs (i, j) with i, j ∈ V p,b, i ̸= j

S Set of speeds
Startpi Minimum starting time of activities for ship i ∈ N at port p ∈ Pi

EFT p
i Expected finishing time of activities for ship i ∈ N at port p ∈ Pi

sp,b Starting time of activities for berth b ∈ Bp at port p ∈ P
ep,b Ending time of activities for berth b ∈ Bp at port p ∈ P
hp,bi Handling time of ship i ∈ N at berth b ∈ Bp at port p ∈ P
dp,p

′
Distance between pair of ports p, p′ ∈ P

PiL The last port to be visited by ship i ∈ N in the route
γi,δ Fuel consumption per unit of distance for ship i ∈ N at speed

δ ∈ S
∆δ Travelling time per unit of distance when travelling at speed δ ∈ S
M1p,b Big-M value, M1p,b = ep,b

M2p,bi Big-M value, M2p,bi = ep,b − hp,bi

Fc Fuel consumption cost in $ per ton
Hc Handling activities cost in $ per hour
Ic Idleness cost in $ per hour
Dc Delay cost in $ per hour

Decision variables
yp,bi,j ∈ B 1 if ship j immediately succeeds ship i at berth b ∈ Bp at

port p ∈ P where (i, j) ∈ V p,b; 0 otherwise
vpi,δ ∈ B 1 if ship i ∈ N sails from port p to some other port p′(p, p′ ∈

Pi := p ≺ p′) at speed δ ∈ S; 0 otherwise
T p,b
i ∈ Z+ Time at which ship i ∈ N berths at berth b ∈ Bp at port

p ∈ Pi (berthing time)
T p,b
o(p,b) ∈ Z+ Time at which berth b ∈ Bp at port p ∈ Pi starts berthing

ships (i.e., arrival time of the first ship to the berth)
T p,b
d(p,b) ∈ Z+ Time at which berth b ∈ Bp at port p ∈ Pi finishes berthing

ships (i.e., departure time of the last ship from the berth)
T p
i ∈ Z+ Time at which port p ∈ Pi opens activities for ship i ∈ N

∆EFT p
i ∈ Z+ Difference between effective finishing time and EFT p

i for
ship i ∈ N at port p ∈ Pi

The mathematical model is presented below:

min
∑
i∈N

∑
p,p′∈Pi\{PiL}:{p≺p′}

Ic

 ∑
b∈Bp′

T p′,b
i −

∑
b∈Bp

T p,b
i +

∑
b∈Bp

hp,bi (
∑

j∈N∪{d(p,b)}

yp,bi,j )−
∑
δ∈S

∆δd
p,p′

vpi,δ


+
∑
i∈N

∑
p∈Pi

∑
b∈Bp

Hc(h
p,b
i

∑
j∈N∪{d(p,b)}

yp,bi,j ) +
∑
i∈N

∑
p∈Pi

Dc∆EFT
p
i +

∑
i∈N

∑
p,p′∈Pi\{PiL}:{p≺p′}

∑
δ∈S

Fc(γi,δd
p,p′

vpi,δ)

(2.3)
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subject to:∑
b∈Bp

∑
j∈N∪{d(p,b)}

yp,bi,j = 1 ∀i ∈ N, p ∈ Pi (2.4)

∑
j∈N∪{d(p,b)}

yp,bo(p,b),j = 1 ∀p ∈ P, b ∈ Bp (2.5)

∑
j∈N∪{o(p,b)}

yp,bj,d(p,b) = 1 ∀p ∈ P, b ∈ Bp (2.6)

∑
j∈N∪{d(p,b)}

yp,bi,j −
∑

j∈N∪{o(p,b)}

yp,bj,i = 0 ∀i ∈ N, p ∈ Pi, b ∈ Bp (2.7)

T p,b
i + hp,bi −

(
1− yp,bi,j

)
M1p,b⩽ T p,b

j ∀(i, j) ∈ Ap,b, p ∈ {Pi ∩ Pj} , b ∈ Bp (2.8)∑
b∈Bp

T p,b
i +

∑
b∈Bp

hp,bi (
∑

j∈N∪{d(p,b)}

yp,bi,j ) +
∑
δ∈S

∆δd
p,p′

vpi,δ ⩽ T p′

i

∀i ∈ N, p, p′ ∈ Pi\ {PiL} : {p ≺ p′}
(2.9)

T p
i ⩾ Startpi ∀i ∈ N, p ∈ Pi (2.10)∑

b∈Bp

T p,b
i +

∑
b∈Bp

hp,bi (
∑

j∈N∪{d(p,b)}

yp,bi,j )− EFT
p
i ⩽ ∆EFT p

i ∀i ∈ N, p ∈ Pi (2.11)

∑
b∈Bp

T p,b
i ⩾ T p

i ∀i ∈ N, p ∈ Pi (2.12)

(
∑

j∈N∪{d(p,b)}

yp,bi,j +
∑

j∈N∪(o(p,b))

yp,bj,i )M2p,bi ⩾ T p,b
i ∀i ∈ N, p ∈ Pi, b ∈ Bp (2.13)

T p,b
o(p,b) ⩾ sp,b ∀p ∈ P, b ∈ Bp (2.14)

T p,b
d(p,b) ⩽ ep,b ∀p ∈ P, b ∈ Bp (2.15)∑

δ∈S

vpi,δ = 1 ∀i ∈ N, p ∈ Pi\ {PiL} (2.16)

yp,bi,j ∈ {0, 1} ∀(i, j) ∈ A
p,b, p ∈ P, b ∈ Bp (2.17)

vpi,δ ∈ {0, 1} ∀i ∈ N, p ∈ Pi, δ ∈ S (2.18)

∆EFT p
i , T

p
i ∈ Z+ ∀i ∈ N, p ∈ Pi (2.19)

T p,b
o(p,b), T

p,b
d(p,b)∈ Z+ ∀p ∈ P, b ∈ Bp (2.20)

T p,b
i ∈ Z+ ∀i ∈ N, p ∈ Pi, b ∈ Bp (2.21)

The objective function (2.3) minimizes the cost, both for the terminal operators
and the liner shipping company. It consists of the four cost elements described in
Section 2.3.2, namely, the cost of waiting at the port, the vessels’ handling cost,
the cost of delays, and the total cost of the fuel consumed when sailing between
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ports. The waiting time is computed as the positive difference between the
berthing time and the arrival time whereas the delay is computed as the positive
difference between the actual and expected berthing finish time. Constraints
(2.4) ensure that each ship berths at only one berth at each port in its route.
Constraints (2.5) and (2.6) denote that at each berth and each port, only one
arc leaves the origin and one arrives at the destination respectively. The flow
conservation for all arcs at each berth and each port is ensured by constraint
(2.7). Constraints (2.8) guarantee that if ship j is berthing right after ship i, it
waits until the handling is completed. The big-M values for these constraints can
be tightened to the time when the berth closes (ep,b). Constraints (2.9) ensure
for each ship that the activities at the next port in the route do not commence
before the ship arrives to the port. The left-hand side of the constraint computes
the arrival time to the next port travelling at a chosen speed. The start of
activities for each ship at each port must also start after the minimum allowed
time (Startpi ) as indicated in constraints (2.10). This also ensures that a ship
cannot start berthing if it arrives too early. Both constraints (2.9) and (2.10)
set a lower bound (LB) for the variable T p

i . Constraints (2.11) compute and
set the delay (∆EFT p

i ) for each ship at each port. Constraints (2.12) ensure
that the berthing time of each ship at each port starts after the activities for
that ship are open at the port. The values of the berthing time variables for
the not chosen berths are set to 0 by constraints (2.13). Constraints (2.14) and
(2.15) ensure that all berthing periods occur within the time window of each
berth. Constraints (2.16) ensure that exactly one speed is selected to travel
between each pair of consecutive ports (leg) in the route. The domains for all
the decision variables are defined in (2.17)-(2.21). We notice that a formulation
where the time-based variables are defined as non-negative real numbers (i.e.,
R+) is also valid. However, we maintain the integer property of the variables for
a fair comparison with the presented methods and the formulation presented in
Venturini et al. (2017).

This formulation contains a few modifications to the original model presented
in Venturini et al. (2017) (referred to as original model). In the original model
a set of additional variables for the arrival of a ship to a port is stated. These
variables have been omitted in this formulation since the arrival time of a ship
to the next port in the route is directly dependent on the departure time from
the previous port and the sailing speed between ports. This calculation is given
by the left-hand side of constraints (2.9), which then can be used to replace
arrival time variables (e.g., in the objective function). The delay calculation
constraints (2.11) use the berthing time (T p,b

i ) instead of the port opening time
for the ship (T p

i ). The big-M value of constraints (2.8) is set to the closing time
of the berth (ep,b) instead of ep,b −minc∈(i,j){Startpc}.

Venturini et al. (2017) enhance the original formulation by adding multiple sets
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of valid inequalities. These enhancements have also been implemented for the
computational comparison. The reader is referred to the original publication for
additional details.

2.3.4 Network flow formulation

The MPBAP can also be modeled as a network flow problem using a graph
representation where each node represents a feasible berthing time at each port
and berth and arcs enable the different combinations of berthing times along
the route. This setup allows us to obtain a feasible voyage for a given ship by
choosing a path along the ports in the graph. Figure 2.4 shows an illustrative
example of such a path. It consists of three ports with either one or two berthing
positions in each of them.

Figure 2.4: Example voyage for ship k and corresponding timeline. The number
in the nodes indicate the berthing time and the number on the
arcs denotes the speed level chosen. Alternative sailing options are
denoted with dashed arcs. The rest of arcs in the graph are not
displayed for simplicity.

Let G = (O,A) be a directed and acyclic graph formed by the sets of nodes O
and arcs A. Additionaly, we define the subset of arcs Ak ⊆ A which denote the
arcs available for a given ship k ∈ N . Within the node set, we denote o, d ∈ O
as artificial source and sink nodes respectively. Let δ+k (u) be the set of nodes
that can be reached by following a single outgoing arc a ∈ Ak from node u ∈ O
for ship k ∈ N . Likewise, let δ−k (u) be the set of nodes that can be reached
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by following a single incoming arc a ∈ Ak from node u ∈ O for ship k ∈ N .
Additionally, θ(u) denote the berthing time related to node u ∈ O\{o, d} and let
V (p, b) ⊆ O be the set of nodes corresponding to port p ∈ P and berth b ∈ Bp.
We use the notation [x; y] to define an interval between x and y where y is
included and [x; y) where y is not. For each ship n ∈ N port p ∈ P berth b ∈ Bp

and operating time instant t ∈ [sp,b; ep,b), we define the set C(n, p, b, t) ⊆ V (p, b)
that denote the graph nodes for ship n whose berthing periods cover time t
(i.e., nodes that are in conflict with any ship berthing at time t). This basically
corresponds to the nodes of the previous hp,bn −1 time instants and including the
node related to time t. An example is depicted in Figure 2.5 and the expression
can be stated as follows:

C(n, p, b, t) :=

{
v ∈ V (p, b)

∣∣∣θ(v) ∈ [max
(
t− hp,bn + 1, sp,b

)
; min

(
t, ep,b

)]}

Figure 2.5: An example of the set C(n, p, b, t) where the nodes depicted belong
to V (p, b) and refer to the time instant directly above. hp,bn denotes
the handling time for ship n.

Finally, let xki,j be a binary variable deciding if arc (i, j) ∈ Ak is selected for
ship k ∈ N and let ci,j be the weight associated to the same arc.

min
∑
k∈N

∑
(i,j)∈Ak

ci,jx
k
i,j (2.22)

∑
j∈δ+k (o)

xko,j = 1 ∀k ∈ N (2.23)

∑
i∈δ−k (d)

xki,d = 1 ∀k ∈ N (2.24)

∑
i∈δ−k (j)

xki,j −
∑

i∈δ+k (j)

xkj,i = 0 ∀j ∈ O\{o, d}, k ∈ N (2.25)

∑
k∈N

∑
i∈C(k,p,b,t)

∑
j∈δ+k (i)

xki,j ≤ 1 ∀p ∈ P, b ∈ Bp, t ∈ [sp,b; ep,b) (2.26)

xki,j ∈ {0, 1} ∀(i, j) ∈ A, k ∈ N (2.27)
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The objective remains the same, and in this case the objective function (2.22)
minimizes the cost of the selected arcs. Constraints (2.23) and (2.24) ensure
that, for each ship, only one arc leaves from the source node and arrives to the
sink node respectively. Constraints (2.25) enforce flow conservation ensuring
that for each node, except the source and sink ones, there are as many incoming
as outgoing arcs. Constraints (2.26) avoid overlapping of berthing periods in the
same position by at most allowing one ship to be berthing at each time instant.
Finally, constraints (2.27) define the binary property of the variable.

2.3.5 Generalized set partitioning problem formulation

It is noted that all constraints of the network flow formulation (2.22)-(2.27)
except constraint (2.26) are independent between ships. Exploiting the struc-
ture of the formulation, we can apply Dantzig-Wolfe decomposition (Dantzig
and Wolfe, 1960) and transform it into a generalized set partitioning problem
(GSPP) formulation where constraint (2.26) is handled in the master problem
and each variable (i.e., column) refers to a whole feasible schedule of a ship
along its route. According to Jans (2010), the pure binary nature of the vari-
ables of the network flow formulation allows us to impose binary conditions on
the variables of the new master problem.

The set of all columns is comprised in Ω and the decision variable λj is set to 1 if
column j ∈ Ω is chosen as part of the solution and 0 otherwise. We denote cj as
the cost related to column j ∈ Ω. In order to replicate the objective of the MIP
formulation, this cost consists of the idleness, handling cost, delay and bunker
consumption cost of the ship denoted by the column. Let Ai

j be a parameter
that is equal to 1 if column j ∈ Ω corresponds to ship i ∈ N and 0 otherwise.
Likewise, let Qp,b,t

j be a parameter that is equal to 1 if the ship of column j ∈ Ω

is occupying berth b ∈ Bp at time instant t ∈ [sp,b; ep,b) at port p ∈ P and 0
otherwise.

min
∑
j∈Ω

cjλj (2.28)

∑
j∈Ω

Ai
jλj = 1 ∀i ∈ N (2.29)

∑
j∈Ω

Qp,b,t
j λj ⩽ 1 ∀p ∈ P, b ∈ Bp, t ∈ [sp,b; ep,b) (2.30)

λj ∈ {0, 1} ∀j ∈ Ω (2.31)

The objective function (2.28) minimizes the cost cj of the columns. Constraints
(2.29) ensure that one column is selected for each ship. Constraints (2.30)
guarantee that, at each time instant, there is at most one ship berthing at each
berth of a port. Finally, constraints (2.31) set the binary property of the decision
variables.
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2.4 Solution method

To solve (2.28)-(2.31), we propose a solution method based on a column genera-
tion procedure that, combined with branching, additional valid inequalities and
symmetry breaking methods, results in a branch-and-cut-and-price algorithm.

2.4.1 Delayed column generation

A common way of solving the GSPP formulation is by adding all the columns
in advance. A successful example of this approach for the BAP can be found in
Buhrkal et al. (2011). For the BAP instances presented, the amount of columns
is manageable and can be easily pre-processed. However, in the MPBAP, the
amount of columns increase exponentially with the multiple sailing speeds and
ports for a ship. This makes the pre-processing intractable even for a few ports.
Therefore, more dynamic strategies for handling the columns need to be ex-
plored. One efficient procedure is the so-called delayed column generation. This
procedure relies on the premise that most of the variables will not be part of the
optimal solution and, therefore, have a value of zero. Then, the focus is only
on generating columns that have the potential to improve the objective value.
This is done by relaxing and splitting the main problem into two, the master and
subproblem. The restricted master problem (RMP) is the linear relaxation of
the original formulation containing only a subset of the variables. The subprob-
lem (or pricing problem) is used to identify the new variables. In our case, the
relaxed version of the GSPP becomes the RMP and we define N independent
subproblems, one per ship. The subproblem is defined as a shortest path prob-
lem in the network defined in Section 2.3.4 which can be solved in polynomial
time. Since the graph is directed and acyclic (DAG), it can be solved by a DAG
shortest path algorithm (see Cormen et al. (1996) or Magnanti et al. (1993)).
The pricing problem aims at minimizing the reduced cost of a given path. At
each iteration, after solving the RMP, the dual values of the RMP constraints
are used to solve the pricing problems. We denote αk to the dual variable for
ship k ∈ N associated to constraint (2.29). Likewise, we denote µp,b,t to the
dual variable for port p ∈ P , berth b ∈ Bp and time t ∈ [sp,b; ep,b) associated to
constraint (2.30). Let ᾱk, µ̄p,b,t be the dual solution values for the RMP and let
Λj be a sequence of (port,berth,time) elements. Each of these elements refers to
the port, berth and time of a graph node visited by column j ∈ Ω. The reduced
cost ĉj for a specific path j for ship k ∈ N is computed as follows:

ĉj = cj − (
∑

(p,b,t)∈Λj

∑
t′∈[t;t+hp,b

k )

µ̄p,b,t′)− ᾱk

Finally, for each pricing problem, we add the path with the lowest reduced cost
to the RMP only if ĉj is negative (i.e, ĉj < 0).
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In fact, when the pricing problem is a pure shortest path problem, the LP
bound arising from solving the GSPP with column generation and solving the
LP relaxation of the network flow problem is the same. This indicates that the
Dantzig-Wolfe decomposition does not provide any gain bound-wise. On the
other hand, in cases of very dense networks with significantly more arcs than
nodes as in our case, solving the GSPP with column generation is expected to
be faster (e.g., see Brouer et al. (2011)).

2.4.2 Branching

Since the decision variables of the RMP are linear, the solution at the root
node is often fractional and branching methods are required in order to achieve
integrality. A major aspect of the branching procedure is selecting a branching
candidate, whose branch children improve the lower bound the most. The most
common branching methods consider branching on a specific node or arc from
the graph. These strategies can be effective in some cases but do not necessarily
apply to our problem. For instance, when branching on a graph node, one child
will enforce the graph node to be used in the subsequent branch-and-bound
(B&B) tree while the other child will forbid it. Considering the large amount of
nodes for most instances in this problem, we can clearly see that the effect can
be significant for the first child but rather minimal for the second. This often
results in a highly unbalanced B&B tree to explore. In this study, we present
a different branching strategy for the problem at hand that aims to be more
effective than branching on a single graph node.

The proposed branching strategy states that, given a fractional solution, we
compute, for each ship n and port p, the average berthing time t and the variance
of these times among all solution columns. As an example, consider a fractional
solution containing two columns for ship 1. At port 1, these columns correspond
to ship 1 berthing at time 4 and 6 respectively. Then, for ship 1 and port 1, the
average berthing time is 5 whereas the sample standard deviation is

√
2. We

define this average berthing time and variance as a candidate which results in
a total of |N | · |P | candidates. We then select the candidate whose variance of
berthing times is higher. The procedure is described in Algorithm 2.1. Each of
the child branches will enforce ship n to berth before or after time t respectively
at port p. It should be noticed that a fractional solution where ships berth at
the same time but at different berthing positions can exist. In this case, we can
obtain candidates with no variance resulting in an impractical branching. If that
happens, the criterion is changed to branching on berthing positions instead of
on berthing times, following the same procedure. In practice, this scenario is
highly unlikely to happen and we have not experienced it in any experiments
hitherto. As a result, the proposed strategy opts for branching on a set of graph
nodes instead of on a single one.
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Finally, the B&B tree is explored following a best first policy. This policy
prioritizes the queue of unexplored nodes according to their bound. Thus, the
next node to be explored is always the one with the best (i.e., lowest) lower
bound.

Algorithm 2.1 Branching candidate selection

1: procedure selectCandidate(sol)(current solution)
2: [λ]← sol ▷ classify solution columns (λ) by ship
3: Cand∗ = ∅ ▷ initialize best candidate
4: σ∗ = 0 ▷ initialize standard deviation of candidate’s berthing times
5: for all ships and ports do
6: [times]← λ(ship, port) ▷ set of solution berthing times at port for ship
7: time← avg([times]) ▷ get average berth time
8: if σ([times]) > σ∗ then ▷ compare the standard deviation

with the current best
9: σ∗ ← σ([times])

10: Cand∗ ← time, port, ship ▷ update best candidate so far
11: end if
12: end for
13: return Cand∗

14: end procedure

2.4.3 Valid inequalities

In order to improve the lower bound, we propose a set of valid inequalities that
can be added to the problem by separation.

Figure 2.6 shows a small LP solution to a trivial problem with two ships (i.e.,
continuous and dashed lines), one port and one berth where an example of a
violated valid inequality can be found. We define u, v as the two nodes corre-
sponding to ship A (berthing at times 1 and 3) and let w be the node of ship
B berthing at time 2. We observe that the arc from node w is in conflict with
the arcs from both nodes u and v due to overlapping berthing periods. In other
words, the berthing period of ship B at node w covers, at least partially, both
berthing periods of ship A at nodes u and v. The arcs from u, v are also in con-
flict with each other as they belong to the same ship. As a result, we notice that,
at most, one outgoing arc can be chosen out of the ones from these three nodes.
Since the solution values of the outgoing arcs sum to 1.5, this valid inequality
would cut the example LP solution. We aim at generalizing the definition of
such a valid inequality and introduce the following proposition:

Proposition 2.1 Given two time instants t1, t2 ∈ [sp,b; ep,b) where t1 < t2
and a port p ∈ P , berth b ∈ Bp and ship n ∈ N , the following is a valid
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Figure 2.6: Example LP solution of a problem with two ships, one port and one
berth. The nodes represent berthing times and the numbers on the
arcs denote the solution value of the arc variable xki,j .

inequality:∑
u∈

⋃
t∈[t1;t2] C(n,p,b,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

xmu,w ⩽ 1

Proof.The set C(m, p, b, t) used in constraint (2.26) defines the set of nodes
for ship m that are in conflict with time t (see Section 2.3.4). Based on this
definition, the intersection set C(m, p, b, t1) ∩ C(m, p, b, t2) directly defines the
set of nodes for ship m that are in conflict with both time instants t1 and t2.
Constraint (2.26) indicates that at most one arc can be chosen out of the nodes
from the sets C(m, p, b, t) of all ships m ∈ N and, therefore, the same applies to
the intersection set C(m, p, b, t1)∩C(m, p, b, t2). By considering the intersection
set C(m, p, b, t1)∩C(m, p, b, t2) for all ships except one m ∈ N\{n}, the berthing
period for ship n is only required to be in conflict with either t1 or t2 and can
be defined as the union of C(n, p, b, t1) ∪ C(n, p, b, t2). Considering these node
sets, we can define the following valid inequality:∑
u∈C(n,p,b,t1)∪C(n,p,b,t2)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

xmu,w ⩽ 1

∀p ∈ P, b ∈ Bp, n ∈ N, t1, t2 ∈ [sp,b; ep,b), t1 < t2

Based on the assumption that a berthing period cannot be discontinued, the
intersection set C(m, p, b, t1) ∩ C(m, p, b, t2) for any ship is not only in conflict
with times t1 and t2 but with all the time instants in the period [t1; t2]. Therefore
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Figure 2.7: In a valid inequality for ship n, port p, berth b and time instants
t1, t2, the filled nodes indicate the interval for ship n with handling
time hp,bn . The rectangles indicate the berthing period of ship n at
the earliest and latest possible berthing times in the interval.

the interval for ship n can be expanded to the union of C(n, p, b, t) sets for all
time instants t ∈ [t1; t2]. An example of this set is shown in Figure 2.7 and the
resulting valid inequality can be formulated as follows:

∑
u∈

⋃
t∈[t1;t2] C(n,p,b,t)

∑
w∈δ+n (u)

xn
u,w+

∑
m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

xm
u,w ⩽ 1

∀p ∈ P, b ∈ Bp, n ∈ N, t1, t2 ∈ [sp,b; ep,b), t1 < t2 (2.32)

2

Returning to the example in Figure 2.6, the mentioned cut would be included in
the proposed valid inequality (2.32) for n = A, t1 = 2 and t2 = 4 where node w
would correspond to a node from the intersection sets C(B, p, b, 2)∩C(B, p, b, 4)
and nodes u, v for ship A would correspond to berthing times covering t1 and
t2 respectively and therefore belonging to the set

⋃
t∈[2;4] C(A, p, b, t).

We note that the inequality only is interesting when C(m, p, b, t1)∩C(m, p, b, t2) ̸=
∅. The size of the intersection set is dependent on the time instants t1, t2 used
and we observe that this size increases when the t1, t2 are closer together in
time.

These valid inequalities (2.32) are added by separation after the column gener-
ation procedure concludes. Exploring the entire set of valid inequalities can be
computationally intensive. Therefore, only valid inequalities based on berthing
times from the LP solution are checked since the arcs from the related nodes
are guaranteed to contain non-zero values and the resulting inequalities have a
higher probability of being violated by the LP solution. Given an LP solution,
let t∗1 and t∗2 be two berthing times for ship n at berth b of port p where t∗1 ≤ t∗2.
Let t∗3 be a berthing time for another ship m at the same berth b of port p whose
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Figure 2.8: Example of times t1, t2 definition based on solution times t∗1, t∗2 for
ship n and t∗3 for ship m. The bottom last two rows of filled nodes
define the node interval for ship n and m respectively.

berthing period is both in conflict with t∗1 and t∗2 for ship n. The conditions that
t∗3 needs to satisfy to be in conflict with t∗1 and t∗2 are given by the following
inequalities:

t∗1 + hp,bn > t∗3
t∗2 < t∗3 + hp,bm

Based on these times, we can calculate time instants t1, t2 for a valid inequality
that includes t∗1, t∗2 for ship n and t∗3 for ship m as follows:

t1 = t∗1 + hp,bn − 1, t2 = t∗2

An example of this calculation is shown in Figure 2.8. It can be noticed that
the interval for ship n starts at time t∗1 and ends at time t∗2. If we add such
a violated cut to the RMP, we risk finding a very similar solution in the next
iteration where columns are shifted, for example, one time instant before t∗1
or after t∗2. In order to avoid that, we aim at defining time instants t1, t2, so
that the resulting intervals do not only cover solution nodes but also a number
of neighboring nodes related to time instants immediately before and after the
solution time. We aim at expanding the interval between t∗1 and t∗2 as well as the
one around t∗3. Based on the inequalities aforementioned to ensure that t∗1, t∗2
and t∗3 relate to conflicting periods, we introduce the slack variables ∆X and
∆Y that would indicate how much we can modify the node intervals.

t∗1 + hp,bn > t∗3 +∆X

t∗2 +∆Y < t∗3 + hp,bm

Both slack values are distributed equally between both intervals, which leads us
to the following calculation of t1 and t2:

t1 = t∗1 −
∆X

2
+ hp,bn − 1, t2 = t∗2 +

∆Y

2

Due to the discretization of the time horizon, if ∆X

2 or ∆Y

2 is fractional, they are
rounded-up in the calculation of t1 and t2. Also, in the case that there is limited
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Figure 2.9: Example of times t1, t2 selection based on solution times t∗1, t∗2 for
ship n and t∗3 for ship m. The upper illustration depicts the LP
solution for the three berthing times selected and the available slack
and direction of expansion for the desired node intervals. The lower
illustration depicts the resulting times t1, t2 for the valid inequality
and the respective node intervals for ships n and m.

room for expansion in one of the intervals (e.g., operational time windows), the
remaining slack is added to the other interval.

Figure 2.9 shows an example of the calculation of times t1 and t2 based on
solution times t∗1, t∗2 and t∗3 and slack variables ∆X ,∆Y .

In order to ensure t1 < t2, by substituting the above expressions, the criterion
that t∗1, t∗2, t∗3 need to fulfill in order to result in a valid inequality can be defined
as follows:

t∗1 −
∆X

2
+ hp,bn − 1 < t∗2 +

∆Y

2
Not satisfying this inequality leads to a cut that, at best, is equal to constraint
(2.30) which is already present in the RMP.

The entire cut separation process is summarized in Algorithm 2.2. The proce-
dure requires the RMP model and an LP solution as input. From the solution,
both the λ∗ solution values and the berthing times of the solution columns
are extracted and classified by ship, port and berthing position. The cuts are
checked by enumerating combinations of solution times t∗1, t∗2 and t∗3. Only solu-
tion times whose berthing periods are in conflict are considered. This is the case
if the berthing period of ship m at time t∗3 overlaps both berthing periods of ship
n at times t∗1 and t∗2 (inConflict(t∗1, t∗2, t∗3) in Algorithm 2.2). Then, the solution
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times are used to compute time instants t1, t2 distributing the slack available
as aforementioned in this Section (t1, t2 ← calcInterval(t∗1, t

∗
2, t

∗
3) in Algorithm

2.2). To check and add the violated cuts to the RMP, equation (2.32) needs to
be translated to the problem variables. The xki,j variables can be defined using
λp variables as follows:

xki,j =
∑
p∈Ω

qki,j,pλp

where parameter qki,j,p is 1 if graph arc (i, j) ∈ Ak for ship k is used by column
p ∈ Ω and 0 otherwise. Applying this equality to equation (2.32), we obtain the
following version of the equation:∑
u∈

⋃
t∈[t1;t2] C(n,p,b,t)

∑
w∈δ+n (u)

∑
j∈Ω

qnu,w,jλj +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

∑
j∈Ω

qmu,w,jλj ≤ 1

(2.33)

For each cut inspected, the left-hand side of constraint (2.33) is computed and
the valid inequality is added to the RMP if it is violated.

These valid inequalities are relatively easy to handle in the reduced cost com-
putation. For each valid inequality, its corresponding dual value needs to be
subtracted in each of the nodes considered for each ship in the constraint. As
an example, given a valid inequality for times t1, t2 where t1 < t2, port p, berth
b and ship n, its dual value needs to be subtracted in nodes

⋃
t∈[t1;t2]

C(n, p, b, t)

for ship n and in nodes C(m, p, b, t1)∩C(m, p, b, t2) for ship m where m ̸= n. A
more mathematical definition of the updated reduced cost computation is given
in Appendix 2.A.1.

2.4.4 Symmetry breaking

In some instances, at each port, some of the berthing positions are identical
in terms of their availability time window and the handling times for all ships.
Identical berths may lead to many equivalent solutions, which may increase the
solving time of the model. Therefore, we propose adapting the model so it deals
with berth types instead of individual berths in a similar procedure as the one
stated in Buhrkal et al. (2011). Let Kp be the set of berth types for port p ∈ P
and βk be the number of berthing positions of type k ∈ K in the problem. For
each berth type k ∈ Kp at port p ∈ P , sp,k and ep,k denote its opening and
closing time respectively and the parameter Qp,k,t

j is 1 if the ship from column
j ∈ Ω occupies berth type k at time instant t ∈ [sp,k; ep,k) at port p and 0
otherwise. We can therefore update the set of constraints (2.30) as follows:∑

j∈Ω

Qp,k,t
j λj ⩽ βk ∀p ∈ P, k ∈ Kp, t ∈ [sp,k; ep,k) (2.34)
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Algorithm 2.2 Cut separation

1: procedure cutSeparation(sol, RMP )(current solution and model)
2: times[p, b, n]← sol ▷ divide solution times by port p, berth b and ship n
3: [λ∗]← sol ▷ obtain solution values for columns
4: for all p ∈ P, b ∈ Bp, n ∈ N do ▷ cuts are based on a specific

berth, port and ship
5: for all t∗1, t∗2 ∈ times[p, b, n] do ▷ loop over pairs of solution

times for ship n
6: for all m ∈ N,m ̸= n do
7: for all t∗3 ∈ times[p, b,m] do ▷ select a third time from

a different ship
8: if inConflict(t∗1, t∗2, t∗3) then ▷ check if berthing periods

are in conflict
9: t1, t2 ← calcInterval(t∗1, t∗2, t∗3) ▷ compute t1, t2 for the

valid inequality
10: violatedCut← checkCut(t1, t2, n, p, b, [λ∗]) ▷ compute

constraint (2.33)
11: if violatedCut ̸= ∅ then
12: RMP ← violatedCut ▷ add violated cut

to the RMP
13: end if
14: end if
15: end for
16: end for
17: end for
18: end for
19: return RMP ▷ return the updated problem
20: end procedure

This adaptation has an equivalent impact in constraints (2.26) from the network
formulation where the right-hand side is also replaced by βk. The valid inequal-
ity (2.33) from Proposition 2.1 can be updated similarly and the proposition
and corresponding proof can be found in Appendix 2.A.2. The resulting valid
inequality is formulated as follows:∑
u∈

⋃
t∈[t1;t2] C(n,p,k,t)

∑
w∈δ+n (u)

∑
j∈Ω

qnu,w,jλj +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

∑
j∈Ω

qmu,w,jλj ≤ βk

∀p ∈ P, k ∈ Kp, n ∈ N, t1, t2 ∈ [sp,k; ep,k), t1 < t2

(2.35)

The reduced cost computation is also slightly modified where the dual variable
µp,k,t of the modified constraint now is based on berth type k ∈ Kp instead of
berth b ∈ Bp.
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We expect to see an improvement in the computational time as soon as there
are two identical berths at a port. Likewise, we expect to see larger symmetry
for the instances containing more berthing positions per port.

2.5 Cooperative game theory

The MPBAP is based on a strong collaboration between carriers and port oper-
ators and some of them, especially carriers, may be reticent to take part in such
a collaboration scheme. In order to convince them that this form of collabora-
tion is beneficial for all of them, we define a cooperative game. The aim is to
show that all stakeholders (i.e., carriers and terminals) can potentially benefit
from a collaboration by distributing the overall costs efficiently. Our cooperative
game is formed by a set of players P = {1, ..., p}, which in this case corresponds
to both the carriers owning the ships and the terminal operators of the ports
visited by the ships. The characteristic function ϑ(S) measures the impact of
a coalition of players S ⊆ P, which in this case is measured by the operational
costs. The coalition formed by all players is known as the grand coalition. It is
normally assumed that the characteristic function satisfies:

ϑ(∅) = 0 (2.36)
ϑ(S ∪ T ) ≤ ϑ(S) + ϑ(T ) ∀S, T ⊆ P, S ∩ T = ∅ (2.37)

Equation (2.36) states that an empty coalition has a cost of zero, while equa-
tion (2.37), known as subadditivity , indicates that the costs of two separate
coalitions S, T ⊆ P cannot be lower than when acting together. A solution to
a cooperative game (i.e., imputation) can be defined as f = {f1, ..., fp} where
fi corresponds to the cost allocation of player i in coalition P. An imputation
should satisfy the following conditions:

fi ≤ ϑ({i}) ∀i ∈ P (2.38)∑
i∈P

fi = ϑ(P) (2.39)

The first condition is based on individual rationality and defines that the cost
allocation for a player when being part of the grand coalition cannot be worse
than the player’s standalone cost. The second condition is based on group
rationality and states that all the savings arising from a grand coalition are
shared. This is the equivalent of saying that the sum of cost allocations needs
to be equal to the total cost of the grand coalition and a solution fulfilling this
condition is said to be efficient. Furthermore, we consider a solution to be
stable, if, for every coalition S ⊆ P, the sum of allocated cost of the players of
the coalition is not higher than the cost of the coalition

∑
k∈S fk ≤ ϑ(S). We

define the core as the set of solutions that are both efficient and stable. We see
the core solutions as the most attractive and fair for all players. Note, however,
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that the core may be empty in some cases. This means that a cost allocation
that satisfies both the efficiency and stability properties does not exist. In other
words, it means that a subset of the players in the grand coalition could do
better by themselves (i.e., by forming a sub-coalition). If the core is empty, the
grand coalition is unstable and there is a risk that it breaks apart. In practice,
the grand coalition may stay together despite a non-core solution. For instance,
it may be that a subset of players are not aware of the higher benefits of a specific
sub-coalition or that players choose to stay in the coalition to reap more long-
term benefits given future expectations. Next, we describe the two allocation
methods we have used in this study.

2.5.1 Shapley value

The Shapley value (Shapley, 1953), refers to the weighted average of each
player’s marginal contribution to each of the potential coalitions. Let Θi(S)
be the marginal contribution of player i to coalition S, which is seen as the
difference between the cost of the coalition including player i and the coalition
without the player:

Θi(S) = ϑ(S ∪ {i})− ϑ(S) (2.40)

Then, the cost allocated to participant i is computed by the following expression:

fi =
∑

S⊆P\{i}

|S|!|P\(S ∪ {i})|!
|P|!

Θi(S) (2.41)

where | · | refers to the number of players in the given coalition. Once the
characteristic function ϑ(S) is calculated for all possible coalitions S, it is a
simple method to compute as it only requires applying a formula. The Shapley
value does not only provide efficient solutions, it also contains other valuable
properties. The solutions are symmetric meaning that if two players contribute
equally to the coalitions, they achieve the same savings. Anonimity is also
ensured, which states that the order or labelling of players does not have an
impact on the assignment of savings. This property ensures a unique solution
which avoids players to regret their choices and prevents additional negotiation
processes. On the other hand, the Shapley value does not ensure the stability
property, meaning that the solution is not guaranteed to be part of the core.

2.5.2 Equal profit method (EPM)

The goal of the equal profit method (Frisk et al., 2010) is to find the solution
in the core that minimizes the maximal difference in relative savings between
pairs of players. The relative saving of player i is computed as ϑ({i})−fi

ϑ({i}) . The
method is formulated as the following linear programming model:
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min z (2.42)

z ≥ fi
ϑ({i})

− fj
ϑ({j})

∀i, j ∈ P (2.43)∑
i∈P

fi = ϑ(P) (2.44)∑
i∈S

fi ≤ ϑ(S) ∀S ⊆ P (2.45)

fi ≥ 0 ∀i ∈ P (2.46)

Constraints (2.43) calculate the difference in relative savings between each pair
of players and restricts z to the largest of those differences. Note that constraints
(2.44) and (2.45) are the ones denoting the stability and efficiency properties
which means that the EPM method only allows solutions lying in the core.

2.6 Computational results

This section is divided in two. First, the performance of the proposed method
is compared to a commercial solver on the set of instances from Venturini et al.
(2017) and an additional generated set of harder instances. The second part
covers the results of the cost allocation methods for the cooperative game.

2.6.1 Instance results

Different versions of the algorithm have been tested varying the size of the B&B
tree where valid inequalities can be added. We consider (i) a pure branch-
and-price where cut separation is not performed at all, (ii) a partial branch-
and-cut-and-price where we only allow valid inequalities to be added in the
root node, and (iii) a pure branch-and-cut-and-price where cuts can be added
in all the explored nodes. The RMP model solved is comprised by equations
(2.28),(2.29),(2.34), the linear relaxation of (2.31) and valid inequalities (2.35)
that are added by separation. The algorithm includes a running time-limit
and, if it is reached and a gap between the lower and upper bounds still exists,
the GSPP formulation problem is solved with all the generated columns in the
B&B tree. This helps tightening the upper bound but requires the integer
problem to be solvable in reasonable time. The running time for solving the
GSPP is set to 10% of the algorithm running time. Two algorithm time limits
of 5 minutes and 3 hours have been tested with an additional (if required)
30 seconds and 18 minutes respectively for solving the GSPP. The model has
been entirely written in Julia language (Bezanson et al., 2017), modelled using
JuMP (Dunning et al., 2017) and using CPLEX v. 12.9 as the solver, allowing
4 threads. It has been tested in an 2.20 GHz Intel Xeon Processor 2650v4 using
4 cores with 32 GB of memory per core. The MIP formulation from Venturini
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et al. (2017) has been run in the same machine and solved with the same solver
for a fair comparison. The results are summarized in Tables 2.1, 2.2, 2.3 and
2.4, that contain the performance comparison on the benchmark instances from
Venturini et al. (2017) and the generated set of harder instances with both
algorithm time limits. An instance is represented indicating the number of
ships N , the number of berthing positions per port B, the number of ports P
and if the time windows TW are tight T or loose L. As indicated in Venturini
et al. (2017) a loose time window is approximately 3 times longer than a tight
one. In each instance, all ports have the same amount of berthing positions and
all the ships follow the same route and have the same speed profiles but both
the MIP and GSPP formulations can account for different amount of berthing
positions per port, different ship routes and different ship types. The set S is
discretized in 11 speed levels, covering the range 14-19 knots. A very low sulphur
fuel oil (VLSFO) is used by the ships which is in accordance with the increasing
need of ships to reduce their sulphur emissions. Its price (Fc) is computed as
the average global price during the first quarter of 2021 corresponding to 500
$/ton (Ship & Bunker, 2021). Regarding the cost of the different operational
aspects at port, the current literature does not provide a consensus on the costs
of waiting, handling and delay time. Moreover, this may fluctuate significantly
between ports and in many cases they are not made available to the public due
to contractual agreements. Meisel and Bierwirth (2009) proposes a delay cost of
1000-3000 $/hour depending on the ship size and a service cost per quay crane
hour of 100 $. They also consider a speeding-up cost to berth at an earlier
time of 1000-3000 $/hour which can resemble the waiting time cost considered
in this study. Venturini et al. (2017) set the terminal handling cost weight to
200 $/hour and charge an additional 300 $/hour when there is a delay. They set
the cost of waiting one hour at anchorage to 200 $/hour. For the sake of a fair
comparison, we use the same costs as Venturini et al. (2017) which correspond
to Hc = 200, Dc = 300 and Ic = 200. LB denotes the best lower bound
found whereas Z indicates the best integer solution (i.e., upper bound). The
optimality gap is stated under the column Gap and it is calculated using the
optimal solution, or in the case that this is unknown, the best known solution.
The computational time in seconds is given under column T .
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Table 2.1: Computational results on instances from Venturini et al. (2017) with a total time limit of 5 minutes and 30

seconds. The MIP formulation is compared to the variants of the presented branch-and-cut-and-price method.
"-" means that no integer solution has been found within the time limit. "*" means the time limit has been
reached. The best running time is highlighted in bold for instances solved to optimality and the best optimality
gap for the rest of instances.

Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)

4-3-3-L 296,600 296,600 0.00 0.1 296,600 296,600 0.00 0.5 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2
5-3-3-L 394,300 394,300 0.00 0.4 394,300 394,300 0.00 3.2 394,300 394,300 0.00 7.2 394,300 394,300 0.00 7.2
6-3-3-L 421,720 421,720 0.00 2.3 421,720 421,720 0.00 0.8 421,720 421,720 0.00 0.5 421,720 421,720 0.00 0.5
6-3-4-L 647,480 647,480 0.00 89.2 647,480 647,480 0.00 39.0 647,480 647,480 0.00 111.7 647,480 647,480 0.00 103.7
10-4-4-L 1,014,437 1,060,900 3.80 * 1,053,030 1,054,700 0.14 * 1,053,092 1,055,300 0.13 * 1,053,295 1,055,000 0.11 *
10-4-3-L 689,858 700,000 1.18 * 698,100 698,100 0.00 193.6 698,100 698,100 0.00 72.7 698,100 698,100 0.00 115.6
4-4-4-L 405,120 405,120 0.00 0.3 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6
5-4-4-L 500,600 500,600 0.00 0.4 500,600 500,600 0.00 0.9 500,600 500,600 0.00 0.8 500,600 500,600 0.00 0.8
6-4-4-L 599,980 599,980 0.00 1.2 599,980 599,980 0.00 7.6 599,980 599,980 0.00 5.1 599,980 599,980 0.00 5.3
12-5-3-L 811,139 840,640 2.32 * 830,440 830,440 0.00 136.0 830,440 830,440 0.00 112.1 830,440 830,440 0.00 120.4
10-6-3-L 680,600 680,600 0.00 219.4 680,600 680,600 0.00 9.7 680,600 680,600 0.00 5.1 680,600 680,600 0.00 5.8
11-6-3-L 740,430 749,620 0.78 * 746,220 746,220 0.00 22.5 746,220 746,220 0.00 12.7 746,220 746,220 0.00 14.3
12-6-3-L 805,930 810,740 0.48 * 809,840 809,840 0.00 112.6 809,840 809,840 0.00 79.0 809,840 809,840 0.00 72.5
10-5-4-L 1,006,635 1,031,100 2.11 * 1,027,592 1,028,320 0.07 * 1,028,194 1,028,320 0.01 * 1,027,233 1,028,320 0.11 *
15-10-3-L 1,006,000 1,006,200 0.02 * 1,006,200 1,006,200 0.00 46.4 1,006,200 1,006,200 0.00 27.8 1,006,200 1,006,200 0.00 25.0
15-12-3-L 1,001,200 1,002,800 0.16 * 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5
15-10-4-L 1,459,400 1,459,600 0.01 * 1,459,600 1,459,600 0.00 23.8 1,459,600 1,459,600 0.00 40.2 1,459,600 1,459,600 0.00 13.5
20-10-3-L 1,341,640 - 0.23 * 1,344,446 1,344,800 0.03 * 1,344,450 1,344,800 0.03 * 1,344,467 1,344,800 0.02 *
20-12-3-L 1,331,640 1,343,000 0.36 * 1,336,400 1,336,400 0.00 2.1 1,336,400 1,336,400 0.00 2.2 1,336,400 1,336,400 0.00 2.2
4-3-3-T 318,440 318,440 0.00 0.3 318,440 318,440 0.00 0.7 318,440 318,440 0.00 0.2 318,440 318,440 0.00 0.2
5-3-3-T 405,240 405,240 0.00 0.6 405,240 405,240 0.00 1.5 405,240 405,240 0.00 1.3 405,240 405,240 0.00 1.1
6-3-3-T 510,920 510,920 0.00 4.0 510,920 510,920 0.00 1.9 510,920 510,920 0.00 0.9 510,920 510,920 0.00 0.8
6-3-4-T 993,460 993,460 0.00 3.5 993,460 993,460 0.00 1.2 993,460 993,460 0.00 1.3 993,460 993,460 0.00 1.2
10-4-4-T 1,574,771 1,676,990 5.17 * 1,660,640 1,660,640 0.00 101.3 1,660,640 1,660,640 0.00 63.9 1,660,640 1,660,640 0.00 61.0
10-4-3-T 973,445 1,023,890 4.77 * 1,022,200 1,022,200 0.00 12.3 1,022,200 1,022,200 0.00 6.6 1,022,200 1,022,200 0.00 7.9
4-4-4-T 442,600 442,600 0.00 0.9 442,600 442,600 0.00 1.1 442,600 442,600 0.00 0.7 442,600 442,600 0.00 0.6
5-4-4-T 576,010 576,010 0.00 4.1 576,010 576,010 0.00 10.3 576,010 576,010 0.00 6.0 576,010 576,010 0.00 6.6
6-4-4-T 653,560 653,560 0.00 11.5 653,560 653,560 0.00 23.5 653,560 653,560 0.00 8.8 653,560 653,560 0.00 10.4
12-5-3-T 811,240 835,740 2.31 * 830,440 830,440 0.00 128.0 830,440 830,440 0.00 68.3 830,440 830,440 0.00 96.1
12-6-3-T 805,180 823,240 1.67 * 818,840 818,840 0.00 173.6 818,840 818,840 0.00 163.7 818,840 818,840 0.00 158.6
10-5-4-T 1,117,723 1,147,530 2.31 * 1,144,160 1,144,160 0.00 141.4 1,144,160 1,144,160 0.00 68.6 1,144,160 1,144,160 0.00 72.6
15-10-4-T 1,575,640 1,605,460 1.34 * 1,597,100 1,597,100 0.00 9.3 1,597,100 1,597,100 0.00 11.5 1,597,100 1,597,100 0.00 13.7
20-10-3-T 1,551,597 - 4.78 * 1,629,000 1,629,500 0.03 * 1,629,000 1,629,500 0.03 * 1,629,000 1,629,500 0.03 *
20-12-3-T 1,541,949 1,628,900 4.02 * 1,606,500 1,606,500 0.00 46.3 1,606,500 1,606,500 0.00 45.4 1,606,500 1,606,500 0.00 42.5
Average 1.113 0.0079 0.0060 0.0081
Optimal solutions 15/34 30/34 30/34 30/34
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Table 2.2: Computational results on instances from Venturini et al. (2017) with a total time limit of 3 hours and 18
minutes. The MIP formulation is compared to the variants of the presented branch-and-cut-and-price method.
"*" means the time limit has been reached. The best running time is highlighted in bold for instances solved
to optimality and the best optimality gap for the rest of instances.

Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)

4-3-3-L 296,600 296,600 0.00 0.1 296,600 296,600 0.00 0.5 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2
5-3-3-L 394,300 394,300 0.00 0.4 394,300 394,300 0.00 3.2 394,300 394,300 0.00 7.2 394,300 394,300 0.00 7.2
6-3-3-L 421,679 421,720 0.01 2.3 421,720 421,720 0.00 0.8 421,720 421,720 0.00 0.5 421,720 421,720 0.00 0.5
6-3-4-L 647,423 647,480 0.01 89.2 647,480 647,480 0.00 39.0 647,480 647,480 0.00 111.7 647,480 647,480 0.00 103.7
10-4-4-L 1,020,581 1,055,800 3.22 * 1,054,500 1,054,500 0.00 5563.8 1,054,500 1,054,500 0.00 6068.2 1,054,300 1,054,500 0.02 *
10-4-3-L 694,451 699,000 0.52 * 698,100 698,100 0.00 193.6 698,100 698,100 0.00 72.7 698,100 698,100 0.00 115.6
4-4-4-L 405,120 405,120 0.00 0.3 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6
5-4-4-L 500,600 500,600 0.00 0.4 500,600 500,600 0.00 0.9 500,600 500,600 0.00 0.8 500,600 500,600 0.00 0.8
6-4-4-L 599,980 599,980 0.00 1.2 599,980 599,980 0.00 7.6 599,980 599,980 0.00 5.1 599,980 599,980 0.00 5.3
12-5-3-L 813,713 834,740 2.01 * 830,440 830,440 0.00 136.0 830,440 830,440 0.00 112.1 830,440 830,440 0.00 120.4
10-6-3-L 680,600 680,600 0.00 219.4 680,600 680,600 0.00 9.7 680,600 680,600 0.00 5.1 680,600 680,600 0.00 5.8
11-6-3-L 746,220 746,220 0.00 8705.8 746,220 746,220 0.00 22.5 746,220 746,220 0.00 12.7 746,220 746,220 0.00 14.3
12-6-3-L 809,840 809,840 0.00 5032.0 809,840 809,840 0.00 112.6 809,840 809,840 0.00 79.0 809,840 809,840 0.00 72.5
10-5-4-L 1,013,114 1,029,300 1.48 * 1,028,320 1,028,320 0.00 589.0 1,028,320 1,028,320 0.00 366.1 1,028,320 1,028,320 0.00 1135.1
15-10-3-L 1,006,200 1,006,200 0.00 3259.5 1,006,200 1,006,200 0.00 46.4 1,006,200 1,006,200 0.00 27.8 1,006,200 1,006,200 0.00 25.0
15-12-3-L 1,002,240 1,002,800 0.06 * 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5
15-10-4-L 1,459,600 1,459,600 0.00 1703.1 1,459,600 1,459,600 0.00 23.8 1,459,600 1,459,600 0.00 40.2 1,459,600 1,459,600 0.00 13.5
20-10-3-L 1,341,640 1,346,000 0.23 * 1,344,520 1,344,800 0.02 * 1,344,525 1,344,800 0.02 * 1,344,600 1,344,800 0.01 *
20-12-3-L 1,331,680 1,337,400 0.35 * 1,336,400 1,336,400 0.00 2.1 1,336,400 1,336,400 0.00 2.2 1,336,400 1,336,400 0.00 2.2
4-3-3-T 318,440 318,440 0.00 0.3 318,440 318,440 0.00 0.7 318,440 318,440 0.00 0.2 318,440 318,440 0.00 0.2
5-3-3-T 405,240 405,240 0.00 0.6 405,240 405,240 0.00 1.5 405,240 405,240 0.00 1.3 405,240 405,240 0.00 1.1
6-3-3-T 510,920 510,920 0.00 4.0 510,920 510,920 0.00 1.9 510,920 510,920 0.00 0.9 510,920 510,920 0.00 0.8
6-3-4-T 993,460 993,460 0.00 3.5 993,460 993,460 0.00 1.2 993,460 993,460 0.00 1.3 993,460 993,460 0.00 1.2
10-4-4-T 1,660,640 1,660,640 0.00 1660.0 1,660,640 1,660,640 0.00 101.3 1,660,640 1,660,640 0.00 63.9 1,660,640 1,660,640 0.00 61.0
10-4-3-T 1,022,200 1,022,200 0.00 562.5 1,022,200 1,022,200 0.00 12.3 1,022,200 1,022,200 0.00 6.6 1,022,200 1,022,200 0.00 7.9
4-4-4-T 442,600 442,600 0.00 0.9 442,600 442,600 0.00 1.1 442,600 442,600 0.00 0.7 442,600 442,600 0.00 0.6
5-4-4-T 576,010 576,010 0.00 4.1 576,010 576,010 0.00 10.3 576,010 576,010 0.00 6.0 576,010 576,010 0.00 6.6
6-4-4-T 653,560 653,560 0.00 11.5 653,560 653,560 0.00 23.5 653,560 653,560 0.00 8.8 653,560 653,560 0.00 10.4
12-5-3-T 817,533 830,440 1.55 * 830,440 830,440 0.00 128.0 830,440 830,440 0.00 68.3 830,440 830,440 0.00 96.1
12-6-3-T 810,476 821,540 1.02 * 818,840 818,840 0.00 173.6 818,840 818,840 0.00 163.7 818,840 818,840 0.00 158.6
10-5-4-T 1,144,160 1,144,160 0.00 3649.8 1,144,160 1,144,160 0.00 141.4 1,144,160 1,144,160 0.00 68.6 1,144,160 1,144,160 0.00 72.6
15-10-4-T 1,584,071 1,597,620 0.82 * 1,597,100 1,597,100 0.00 9.3 1,597,100 1,597,100 0.00 11.5 1,597,100 1,597,100 0.00 13.7
20-10-3-T 1,552,283 1,634,900 4.74 * 1,629,380 1,629,500 0.01 * 1,629,300 1,629,500 0.01 * 1,629,380 1,629,500 0.01 *
20-12-3-T 1,545,006 1,609,100 3.83 * 1,606,500 1,606,500 0.00 46.3 1,606,500 1,606,500 0.00 45.4 1,606,500 1,606,500 0.00 42.5
Average 0.584 0.0008 0.0010 0.0012
Optimal solutions 24/34 32/34 32/34 31/34
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Table 2.3: Computational results on the set of harder instances with a total time limit of 5 minutes and 30 seconds. The
MIP formulation is compared to the variants of the presented branch-and-cut-and-price method. "-" means
that no integer solution has been found within the time limit. "*" means the time limit has been reached. The
best running time is highlighted in bold for instances solved to optimality and the best optimality gap for the
rest of instances.

Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)

25-12-3-L 1,668,080 - 0.56 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 *
25-12-3-T 1,923,560 - 6.03 * 2,046,930 2,047,100 0.00 * 2,046,933 2,047,200 0.00 * 2,046,933 2,047,200 0.00 *
12-5-4-L 1,201,546 1,253,160 3.50 * 1,239,277 1,245,360 0.47 * 1,240,826 1,247,760 0.35 * 1,240,862 1,247,060 0.35 *
12-5-4-T 1,324,428 - 5.69 * 1,398,848 1,410,270 0.39 * 1,399,631 1,408,070 0.33 * 1,398,580 1,408,220 0.41 *
30-12-3-L 1,997,400 - 0.95 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 *
30-12-3-T 2,304,432 - 7.55 * 2,491,406 2,496,900 0.04 * 2,491,406 2,495,300 0.04 * 2,491,406 2,495,600 0.04 *
20-12-4-L 1,934,640 - 0.47 * 1,943,486 1,943,800 0.02 * 1,943,500 1,943,800 0.02 * 1,943,800 1,943,800 0.00 243.7
20-12-4-T 3,050,995 - 2.00 * 3,113,170 3,113,170 0.00 42.5 3,113,170 3,113,170 0.00 15.8 3,113,170 3,113,170 0.00 14.9
15-8-4-L 1,471,903 1,508,500 1.68 * 1,495,225 1,497,100 0.12 * 1,496,131 1,497,300 0.06 * 1,496,118 1,497,100 0.06 *
15-8-4-T 1,599,496 - 3.41 * 1,654,848 1,656,260 0.07 * 1,655,376 1,656,260 0.04 * 1,655,416 1,656,260 0.04 *
25-12-4-L 2,419,800 - 0.85 * 2,439,377 2,440,700 0.05 * 2,439,531 2,440,600 0.04 * 2,439,380 2,441,500 0.05 *
25-12-4-T 3,560,100 - 3.97 * 3,706,995 3,707,390 0.01 * 3,707,182 3,707,390 0.01 * 3,707,390 3,707,390 0.00 *
30-15-4-L 2,905,000 - 0.47 * 2,918,400 2,918,800 0.01 * 2,918,420 2,918,800 0.01 * 2,918,436 2,918,800 0.01 *
30-15-4-T 3,109,816 - 5.14 * 3,274,118 3,278,880 0.13 * 3,274,390 3,283,550 0.12 * 3,274,441 3,280,400 0.12 *
40-15-3-L 2,658,400 - 1.15 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 *
40-15-3-T 3,067,200 - 7.89 * 3,329,567 3,330,900 0.02 * 3,329,567 3,330,900 0.02 * 3,329,567 3,331,300 0.02 *
Average 3.206 0.0849 0.0665 0.0698
Optimal solutions 0/16 1/16 1/16 3/16
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Table 2.4: Computational results on the set of harder instances with a total time limit of 3 hours and 18 minutes. The
MIP formulation is compared to the variants of the presented branch-and-cut-and-price method. "-" means
that no integer solution has been found within the time limit. "*" means the time limit has been reached. The
best running time is highlighted in bold for instances solved to optimality and the best optimality gap for the
rest of instances.

Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)

25-12-3-L 1,668,080 1,679,400 0.56 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 *
25-12-3-T 1,932,150 - 5.61 * 2,046,930 2,047,100 0.00 * 2,046,933 2,047,100 0.00 * 2,046,933 2,047,000 0.00 *
12-5-4-L 1,205,096 1,253,160 3.22 * 1,244,427 1,245,660 0.06 * 1,245,110 1,245,160 0.00 * 1,244,080 1,245,160 0.09 *
12-5-4-T 1,348,176 1,407,980 4.00 * 1,404,280 1,404,280 0.00 5126.1 1,404,280 1,404,280 0.00 9530.6 1,403,243 1,405,760 0.07 *
30-12-3-L 1,998,483 - 0.90 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 *
30-12-3-T 2,311,705 - 7.25 * 2,491,406 2,492,500 0.04 * 2,491,406 2,492,500 0.04 * 2,491,406 2,492,500 0.04 *
20-12-4-L 1,934,640 - 0.47 * 1,943,800 1,943,800 0.00 2544.5 1,943,800 1,943,800 0.00 1202.7 1,943,800 1,943,800 0.00 243.7
20-12-4-T 3,055,040 - 1.87 * 3,113,170 3,113,170 0.00 42.5 3,113,170 3,113,170 0.00 15.8 3,113,170 3,113,170 0.00 14.9
15-8-4-L 1,475,646 1,497,000 1.43 * 1,497,000 1,497,000 0.00 2870.3 1,497,000 1,497,000 0.00 968.3 1,497,000 1,497,000 0.00 1831.1
15-8-4-T 1,608,977 1,671,220 2.84 * 1,656,040 1,656,040 0.00 746.7.3 1,656,040 1,656,040 0.00 1365.a 1,656,040 1,656,040 0.00 1534.0
25-12-4-L 2,420,034 - 0.84 * 2,439,594 2,440,500 0.04 * 2,439,796 2,440,500 0.03 * 2,439,881 2,440,500 0.03 *
25-12-4-T 3,572,971 - 3.63 * 3,707,390 3,707,390 0.00 604.3 3,707,390 3,707,390 0.00 501.1 3,707,390 3,707,390 0.00 440.8
30-15-4-L 2,905,000 - 0.47 * 2,918,400 2,918,800 0.01 * 2,918,425 2,918,800 0.01 * 2,918,441 2,918,600 0.01 *
30-15-4-T 3,123,445 - 4.72 * 3,274,905 3,278,280 0.10 * 3,275,095 3,278,280 0.10 * 3,275,112 3,278,940 0.10 *
40-15-3-L 2,658,440 - 1.14 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 *
40-15-3-T 3,071,346 - 7.77 * 3,329,567 3,330,300 0.02 * 3,329,567 3,330,200 0.02 * 3,329,567 3,330,100 0.02 *
Average 2.919 0.0192 0.0148 0.0243
Optimal solutions 0/16 6/16 6/16 5/16



72 The multi-port berth allocation problem with speed optimization

Table 2.5: Performance of presented methods on a subset of five instances.

Instance Branch & Price

N-B-P-TW
Gap
(%)

T
(s)

T RMP
(%)

T PP
(%)

T Sep
(%)

T Branch
(%)

T GSPP
(%)

Nodes CG Its Cols Cuts

12-6-3-T 0.00 174 75.8 19.6 0.0 1.5 0.0 219 3,820 16,928 0
10-4-4-L 0.00 5,564 89.2 10.3 0.0 0.1 0.0 233 14,745 91,489 0
20-10-3-L 0.02 11,031 28.7 28.8 0.0 18.7 0.0 13,907 45,145 112,557 0
15-8-4-L 0.00 2,870 48.3 49.8 0.0 0.6 0.0 327 7,553 48,756 0
40-15-3-T 0.02 11,097 74.3 10.5 0.0 2.6 2.1 899 6,678 99,529 0
Instance Branch & Cut (root node) & Price

N-B-P-TW
Gap
(%)

T
(s)

T RMP
(%)

T PP
(%)

T Sep
(%)

T Branch
(%)

T GSPP
(%)

Nodes CG Its Cols Cuts

12-6-3-T 0.00 164 88.3 9.1 0.4 0.9 0.0 45 1,356 7,215 567
10-4-4-L 0.00 6,068 95.3 4.4 0.1 0.1 0.0 81 5,667 35,916 382
20-10-3-L 0.02 11,089 28.5 26.8 4.1 17.8 0.0 15,421 49,256 131,616 24
15-8-4-L 0.00 968 69.8 27.8 0.4 1.1 0.0 49 1,417 10,629 861
40-15-3-T 0.02 11,022 68.9 12.2 1.4 3.3 1.3 903 6,390 94,066 20
Instance Branch & Cut & Price

N-B-P-TW
Gap
(%)

T
(s)

T RMP
(%)

T PP
(%)

T Sep
(%)

T Branch
(%)

T GSPP
(%)

Nodes CG Its Cols Cuts

12-6-3-T 0.00 159 85.2 10.9 1.6 1.0 0.0 43 1,426 7,071 1,382
10-4-4-L 0.02 11,120 93.6 3.3 0.2 0.0 2.7 61 6,755 38,497 3,716
20-10-3-L 0.01 11,062 28.0 28.7 11.6 12.9 0.0 12,681 49,949 118,332 32,198
15-8-4-L 0.00 1,831 81.1 17.5 0.6 0.5 0.0 31 1,660 11,727 2,236
40-15-3-T 0.02 11,180 73.1 9.6 6.5 1.2 3.1 515 5,547 79,677 7,124

The results show a better performance of the solution methods based on the
GSPP formulation. All variants of the branch-and-cut-and-price method are
able to find optimal or near-optimal solutions in less than 6 minutes. Among
the new proposed methods, the one where cutting is performed at the root
node shows a better performance. All the solution method variants outperform
CPLEX in all instances that require more than 4 seconds to solve and show
similar running times for the faster ones. The difference in performance is more
notable on the set of harder instances where CPLEX is not able to find a feasible
integer solution in 11 out of the 16 instances within 3 hours and 18 minutes and
the average optimality gap is above 2.9 %. Within 5 minutes and 30 seconds, the
proposed new methods not only find feasible solutions to all instances but also
achieve an optimality gap of 0.03 %. This gap is further reduced to less than
0.01 % with a time limit of 3 hours and 18 minutes. The good quality of the
solutions in such a short computational time is attractive from an operational
point of view where suboptimal solutions usually are not a problem and possible
disruptions require rapid computations for new plans. Regarding the impact of
solving the GSPP at the end, it is higher when the time limits are low. The
GSPP is only solved if the method still has not proven optimality and, from
those cases, it is found that the GSPP improves the upper bound in 84-100%
of the cases with the 5 minutes and 30 seconds time limit and in 50-57% of the
cases with the 3 hours and 18 minutes, depending on the method. In the vast
majority of these cases, an integer solution is not found in the B&B tree.
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Table 2.6: Optimality gap to optimal or best known solution at the root node.

Instance MIP formulation Without cuts With sol-based cuts With all cuts
N-B-P-TW Gap (%) T (s) Gap (%) T (s) Gap (%) T (s) Gap (%) T (s)

12-6-3-T 2.03 0.3 0.36 2 0.22 5 0.22 87
10-4-4-L 4.69 0.1 0.22 15 0.15 102 0.15 1,137
20-10-3-L 0.36 0.2 0.03 2 0.03 2 0.03 143
15-8-4-L 2.11 0.2 0.25 19 0.12 43 0.12 499
40-15-3-T 7.89 1.2 0.02 280 0.02 285 0.02 685

Average 50 instances 3.97 0.3 0.23 18 0.0865 25 0.0863 315

Table 2.5 provides a more detailed comparison of the proposed method variants
for 5 instances that aim to be representative of the entire set of 50 instances.
The first column indicates the instance, the second and third column recap the
optimality gap and computational time spent given the time-limit of 3 hours
and 18 minutes. The fourth to eighth columns indicate the percentage amount
of time spent by the algorithm in the RMP, pricing problems (PPs), cut sepa-
ration process (Sep), branching procedure (Branch), and the final GSPP model
respectively. The pricing problems are solved in parallel on the four cores used.
It should also be noticed that the branching time not only includes the selection
of the branching candidate but also, the child nodes creation, which in the case
of our algorithm, requires intensive data structure manipulation. The number
of nodes explored in the B&B tree is displayed in the ninth column. The last
three columns indicate the number of column generation iterations, generated
columns and added cuts respectively.

The RMP takes most of the time for most of the instances, and the cut separation
has an insignificant impact except when it is applied in every B&B node. The
time spent in branching procedures grows in accordance to both the size of
the RMP and B&B tree. The short RMP solving times and large amount of
columns generated for instance 20−10−3−L suggest that the RMP is easy to
solve and the existence of many equivalent or similar solutions. This increases
the impact of other internal operations in the algorithm. The number of B&B
nodes explored grows inversely to the amount of nodes where cutting is allowed.
It can be observed that the full branch-and-cut-price performs more column
generation iterations than the one with only cutting in the root node but it also
requires longer computational times. As it can be observed, the time percentages
do not sum exactly to 100%. The remaining time accounts to diverse internal
operations in the implementation which are not strictly linked to any of the main
parts of the algorithm. This also suggests that there is room for improvement
in the implementation of the algorithm.

The effectiveness of the aforementioned cut separation process is displayed in
Table 2.6. The optimality gap of the LP solution at the root node is shown for
the subset of five instances studied in detail together with the average across
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Table 2.7: Solving time comparison between the network flow problem and the
branch-and-price method.

Instance Graph size Network flow problem Branch & Price
N-B-P-TW Nodes Arcs T(s) T(s)
4-3-3-L 1,621 44,989 5.4 0.5
5-3-3-L 2,711 1,669,872 383 3.2
6-3-3-L 2,711 2,353,886 517 0.8
6-3-4-L 5,414 8,659,488 2,504 39.0

all 50 instances. The second column denotes the LP solution at the root node
for the MIP formulation. The third column refers to the presented method
without adding any cuts whereas the fourth column considers the proposed cut
separation procedure (Algorithm 2.2) based on solution values (i.e., sol-based).
This procedure only checks a subset of the valid inequalities which we believe
that contains most, if not all, of the violated ones. In any case, we can find all
violated inequalities by simple enumeration. This case, where all violated valid
inequalities (i.e., all cuts) are added, has also been tested and the results are
shown in the last column. The improvement in the lower bound is significant
for the proposed methods where the cut separation is able to further improve
it achieving an average gap of 0.09 %. Adding all possible cuts only leads to an
average improvement of 0.0002 % in the bound. However, the algorithm requires
12 times more computational time to solve the root node. It is therefore decided
to discard this variant of the separation procedure given the slow performance
and the insignificant gain.

As mentioned in section 2.4.1, when having a pure shortest path as a pricing
problem, solving the LP relaxation of the network flow problem gives the same
bound as column generation on the GSPP but the network flow problem is
expected to require more time and memory resources on instances with dense
graphs. In order to verify that, the network flow problem has been solved for the
first four instances which are considered among the easiest ones from the entire
set. The solving times of the network flow problem and the branch-and-price
method are compared in Table 2.7. The complexity of the graph is shown by the
high solving times for the network flow problem where the proposed model is
between 10 and more than 500 times faster. The rest of instances have not been
further analyzed as most of them were reaching the memory limit. The number
of nodes and arcs for all the instances are documented in Appendix 2.A.3.

Apart from the presented methods, slight variations have been tested which
helped to select the best algorithm procedure. For instance, we have tried to
generate all columns a priori without success. The complexity of the problem
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Table 2.8: Average performance of different branching strategies across all 50
instances using the branch-and-cut-and-price method with only cut-
ting allowed in the root node.

Branching strategy
Best first on
single node

Strong branching
on berthing time

Best first on
berthing position

Best first on
berthing time

Average gap (%) 0.058 0.011 0.009 0.005
Optimal solutions 16/50 37/50 39/50 38/50

and the exponentially large numbers of columns make it intractable. Regarding
branching procedures, an alternative method of exploring the B&B tree known
as strong branching has been tested. This strategy requires to select a number of
candidates (between 5 and 10 in our case) and compute, or at least estimate, the
lower bounds at the child nodes. For each candidate, a weighted sum of the child
bounds is computed and the candidate with the best weighted sum is selected. In
this case, a weight of 0.75 is set for the child with the lowest bound and a weight
of 0.25 for the other child. This method has proven to create better branches
and, for example, is able to find an optimal solution to instance 20-10-3-T in less
than 20 minutes. Nevertheless, the overall worse optimality gap and additional
time consumed exploring more nodes has lead us to discard it. A different
branching strategy has been tested where the branching is done on berthing
positions instead of on berthing times at a port. This strategy is able to solve all
the instances from Venturini et al. (2017) to optimality and one more instance in
overall than the presented method. However, the overall worse optimality gap
indicates a poorer performance on the set of harder instances (see Appendix
2.A.3). In addition, a trivial branching on a single node has also been tested
to compare the effectiveness of the proposed branching strategy. The solution
values of the columns are added on the graph nodes of the respective paths,
computing in this way the "usage" of each graph node. Then, the graph node
whose value is closer to 0.5 (i.e., most fractional) is the one selected to branch
on. A summary of the performance of these alternative branching strategies is
displayed in Table 2.8 and the results for all instances can be found in Appendix
2.A.3.

2.6.2 Cooperative game theory results

The two methods for allocating the costs have been tested in the same set of
instances. Three carriers A,B and C have been defined for all instances each
of them with an assigned priority and a number of ships (see Table 2.9). This
priority is often given in accordance to the handling volume (Imai et al., 2003).
For instance, carrier A can be seen as a large carrier and often this translates in
more power of decision and a higher priority at the port. The terminal operator
at each visited port is also a player in the game. In this study, all ships visit
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Table 2.9: Carrier ship share and priority for the instances.

Carrier A B C
% of ships 50 25 25
Priority 1 2 3

Table 2.10: Terminal denomination.

Terminal D E F G
Visit position 1 2 3 4

the ports in the same order as shown in Figure 2.10, but the game can equally
be applied to instances with different visit orders. Thus, depending on the
instance’s number of ports, the game is formed by either 6 or 7 players. The
number of possible coalitions is given by 2|P| where |P| denotes the number of
players, and in this case, corresponds to 64 or 128 coalitions respectively.

The overall cooperative game is based on what we denote as the standalone
solution. This solution reflects the scenario where a single carrier negotiates
with a single terminal at a time in order to decide the schedule for the carriers’
vessels. We apply a greedy heuristic to compute this solution where we optimize
and fix the schedule of a carrier’s ships one port at a time. The sequence of
carriers and ports used by the heuristic is given by the carrier’s priority at
port (see Table 2.9) and the position of the port visited (see Table 2.10). For
example, assume ship 1 is carrier A’s only ship and visits first port D and then
port E where it has the highest priority. We then optimize the schedule of ship
1 for port D, fix the decisions and then optimize the schedule of ship 1 for port
E. Once the port visits of a carrier’s ships are scheduled, the ships of the next
carrier with the highest priority are scheduled within the remaining available
berthing positions and time windows.

This sequential planning approach resembles the actual procedure in some ports
when the carriers book the port calls and they are assigned based on different
priority schemes. Due to the heuristic nature of the process, some of the carriers
may not find a feasible schedule. In order to avoid this and still ensure a fair
comparison, the operational time windows of all berthing positions have been
increased by 20% in the tests performed in this section.

The different coalitions S ⊆ P can be classified into three groups, depending on
the type of players forming it:

• Coalitions formed by carriers only. For the problem at hand this form
of collaboration does not provide any planning advantage as the carriers
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require collaboration with the terminal operators to improve their plan-
ning. Therefore, the solution of this type of coalition corresponds to the
standalone solution.

• Coalitions formed by terminal operators only. For the problem at hand
this form of collaboration does not provide any planning advantage as the
terminal operators require collaboration with the carriers to improve their
planning. Therefore, the solution of this type of coalition corresponds to
the standalone solution.

• Coalitions formed by both carriers and terminal operators. This type of
coalition is the basis for the MPBAP. In order to compute a solution to
a given coalition, we assume that the planning of all players that are not
part of the coalition are kept fixed as in the standalone solution. Then,
the MPBAP is solved for the coalition given the available berthing space
and time at the terminals. Note that when more players are part of the
coalition, fewer port calls of the standalone solution need to be fixed. In
addition, it can be noticed that optimal solutions to coalitions formed
by a single carrier and a single operator are equivalent to the standalone
solution. We believe this minimal collaboration resembles the real-life port
call booking process for carriers.

The premise of fixing the port calls of non-collaborators, ensures that, in the
worst case, the standalone solution is feasible for any coalition S ⊆ P. As indi-
cated in Section 2.3.2, carriers and terminal operators have different operational
costs. This is also reflected in the characteristic function, where the costs of each
player are measured differently. On one side, the carrier’s cost comprise the fuel
consumption costs, waiting time costs and half of the delay costs. On the other
side, the terminal operator’s cost comprise the handling costs and the remaining
half of the delay costs. The process of quantifying the delay costs in this type
of problems is complex and it has been decided to equally split the delay costs
between carriers and terminal operators.

As shown in Section 2.6.1, the grand coalition scenario for some instances are
not solved to optimality, but the proposed methods are able to find solutions
within a very small gap in less than 6 minutes (see Tables 2.1 and 2.3). It is
assumed, that all the subcoalition scenarios are at most, as hard to solve as the
grand coalition one and, therefore, a time limit of 5 minutes, and an additional
30 seconds to solve the GSPP, is set to solve each coalition scenario of the game.

All instances have a non-empty core, meaning that both efficient and stable
solutions can be found in all scenarios. Tables 2.11 and 2.12 show the average
cost allocations to each of the carriers and terminal operators across instances
with 3 and 4 ports respectively (24 out of the 50 instances have 4 ports). For
each allocation method we display three columns, (i) the first column indicates
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Table 2.11: Comparison of the two cost allocation methods across instances with
three ports.

Player Cost Shapley value Equal profit method (EPM)

S ϑ(S) fi
Relative

savings (%)

% of total

costs
fi

Relative

savings (%)

% of total

costs

C
ar

ri
er A 485,261 478,464 1.5 39.1 471,601 3.3 38.4

B 247,053 242,800 2.2 20.0 240,685 3.1 19.8
C 251,485 246,914 2.4 20.9 245,092 3.1 20.7

T
er

m
in

al D 88,635 79,042 10.7 7.0 86,058 3.4 7.5
E 75,221 70,789 6.9 6.4 73,059 3.3 6.7
F 75,296 71,546 5.8 6.6 73,060 3.2 6.8

Grand
coalition

1,189,555

Table 2.12: Comparison of the two cost allocation methods across instances with
four ports.

Player Cost Shapley value Equal profit method (EPM)

S ϑ(S) fi
Relative

savings (%)

% of total

costs
fi

Relative

savings (%)

% of total

costs

C
ar

ri
er A 352,695 347,232 1.7 37.7 339,450 4.0 36.8

B 187,320 181,789 3.1 20.5 179,622 4.3 20.2
C 192,634 187,148 3.1 20.9 184,727 4.4 20.6

T
er

m
in

al

D 46,264 40,908 11.7 4.6 44,464 4.0 5.0
E 44,079 38,207 14.1 4.1 42,215 4.4 4.6
F 66,496 60,718 8.5 6.3 63,629 3.9 6.6
G 60,346 55,765 7.6 5.9 57,659 3.9 6.1

Grand
coalition

911,766

the cost allocation to the carrier when being part of the grand coalition, (ii)
the second column computes the percentual savings compared with the player’s
standalone cost and (iii) the third column shows the percentage of the overall
costs allocated to each player. Both allocation methods show that significant
savings can be achieved by all of the players involved. In fact, player A, which
in theory may be the least interested in engaging in such grand coalitions due
to its high priority at all ports, achieves significant savings. The same applies
to terminal D, which is the first one visited by the ships, and can benefit sub-
stantially by the overall better planning of the rest of terminals. The differences
in the allocation strategy used by the two methods are noticeable. The EPM
tends to equalize the relative savings of all players whereas the Shapley value is
prone to balance the absolute savings.

As mentioned in Section 2.1, we conceive that the solution to the MPBAP
and the cost allocation methods could be provided as a service by third party
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software companies. To establish the side payments in practice, players would
need to commit to the service for a pre-established period and agree with the
potential savings estimated by the third party. This is required in order to
define the number of participants in the collaboration. Moreover, to measure
the savings of the MPBAP solution, we need an estimate of the standalone costs
of each player in a non-collaborative scenario. The third party could estimate
this cost for each player using the current planning software and we assume
that the player would agree to that estimate. Once the agreement is in place,
the third party could be used as a proxy for the side payments, which could
be performed on a regular basis. Based on the actual costs, each player would
need to make or receive a payment to align with the projected savings that the
player has agreed to.

Similar collaboration is already taking place in real-life in tramp shipping where
it is common that a number of ship owners place their ships in a shipping
pool under the control of a pool administrator (the analog to the third party
coordinator) that takes over most of the business decisions regarding the ships
and is responsible for distributing earnings to ship owners (Packard, 1995; Wen
et al., 2019).

2.7 Conclusions and future work

A novel solution method based on a GSPP formulation has been presented for
the MPBAP. The method exploits a graph formulation for defining the berthing
plan of a ship along its route. This, combined together with delayed column
generation, additional valid inequalities and symmetry breaking constraints re-
sults in an efficient algorithm able to find optimal or near-optimal solutions to
wide range of instances outperforming the capacity of commercial solvers.

In addition, the graph formulation adds flexibility as many additional constraints
can be easily integrated with simple alterations in the graph. For instance, a
finer discretization of the berthing positions would allow to approximate the
continuous version of the MPBAP better. Considering a continuous berth is a
more realistic approach and allows to increase the usage of the quay. Tranship-
ments are also an important aspect of the operations at port and the fulfillment
of them are crucial in some cases (e.g., when transporting perishable food). Our
model could eventually account for that by limiting the time window of the ships
involved in the transhipment and penalizing late arrivals of the incoming ship
or too early departures of the outgoing ship. Nevertheless, this could be better
modelled if the relative arrival and departure times are considered. That case
is harder to incorporate in the presented model and it would require additional
constraints for each transhipment in the RMP. The transit times between ports
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could be further improved by considering the time needed to enter and leave
the port which is usually performed at a slower speed (Reinhardt et al., 2016).

The instances solved reflect the size of real-life scenarios to a large extent. How-
ever, some of the instance parameters could be further improved. This comprises
improving the size of the vessel time windows, having different routes for the
ships, different amount of berthing positions per port and different ship types.

Alternative branching methods have also shown great potential, especially branch-
ing on berthing positions as opposed to branching on berthing times. A natural
next step would be to explore a branching method that combines both of them.
For instance, one could test both methods simultaneously when branching and
select the one with better bounds at the children nodes.

A natural extension of the problem could be to integrate the berth allocation
with the quay crane assignment problem (QAP). Studies such as Iris et al.
(2015) and Iris et al. (2017) have already shown the effectiveness of heuristic
and exact methods based on a GSPP formulation for the integrated problem in
one terminal.

Last but not least, the benefits for both ship carriers and terminal operators
are verified defining a cooperative game and using cost allocation methods to
distribute the costs of such collaboration fairly. The results of the cooperative
game strengthen the viability of such a decision tool and can encourage carriers
and port operators to participate in collaborative schemes.
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2.A Appendix

2.A.1 Reduced cost computation including valid inequal-
ities (2.33)

We denote βn,p,b
t1,t2 to the dual variable of constraint (2.33) for ship n ∈ N , port

p ∈ P , berth b ∈ Bp and times t1, t2 ∈ [sp,b; ep,b], t1 < t2 and let β̄n,p,b
t1,t2 be

its value for the RMP solution. Let w(p, b, t) ∈ O be the graph node related
to berthing at port p ∈ P at position b ∈ Bp at time t ∈ [sp,b; ep,b] and let
Φ = {(n, p, b, t1, t2)} be the set of constraints (33) added to the RMP denoted by
(n, p, b, t1, t2) elements where n ∈ N , p ∈ P , b ∈ Bp and t1, t2 ∈ [sp,b; ep,b], t1 <
t2. Additionally, let Φ(k, p, b, t) ⊆ Φ be the set of valid inequalities that include
arcs from the graph node w(p, b, t) for a given ship k. By definition the range of
nodes for each ship within a valid inequality differ if k = n or k ̸= n. Therefore
we denote Φk=n(k, p, b, t),Φk ̸=n(k, p, b, t) ⊆ Φ(k, p, b, t) to the subset of cuts
(n, p, b, t1, t2) where k = n and k ̸= n respectively, that together form the entire
set Φ(k, p, b, t) = Φk=n(k, p, b, t)∪Φk ̸=n(k, p, b, t) and are defined mathematically
as follows:

Φk=n(k, p, b, t) =
{
(n, p, b, t1, t2)|k = n,w(p, b, t) ∈

⋃
t∈[t1;t2]

C(k, p, b, t)
}

Φk ̸=n(k, p, b, t) =
{
(n, p, b, t1, t2)|k ̸= n,w(p, b, t) ∈ C(k, p, b, t1) ∩ C(k, p, b, t2)

}
The computation of the reduced cost ĉj for column j of ship k ∈ N is updated
as follows:

ĉj = cj −
( ∑

(p,b,t)∈Λj

(
∑

t′∈[t;t+hp,b
k )

µ̄p,b,t′)− (
∑

(n,p,b,t1,t2)∈Φ(k,p,b,t)

β̄n,p,b
t1,t2 )

)
− ᾱk

2.A.2 Adaption of the proposed valid inequality consider-
ing berth types

Proposition 2.2 Given two time instants t1, t2 ∈ [sp,k, ep,k) where t1 < t2
and a port p ∈ P , berth type k ∈ Kp and ship n ∈ N , the following is a valid
inequality:∑
u∈

⋃
t∈[t1;t2] C(n,p,k,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

xmu,w ⩽ βk

Proof.Constraint (34) has been adapted from constraint (30) which is a direct
translation from constraint (26) from the network-flow formulation. Therefore,
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constraint (34) can be formulated as a network-flow problem constraint as fol-
lows: ∑

m∈N

∑
i∈C(m,p,k,t)

∑
j∈δ+m(i)

xmi,j ≤ βk ∀p ∈ P, k ∈ Kp, t ∈ [sp,k; ep,k)

where the C(m, p, k, t) defines the set of nodes for ship m ∈ N that are in
conflict with time t ∈ [sp,k; ep,k) in berth type k ∈ Kp of port p ∈ P . Based on
this definition, the intersection set C(m, p, k, t1) ∩C(m, p, k, t2) directly defines
the set of nodes for ship m that are in conflict with both time instants t1
and t2. Constraint (34) indicates that at most βk (i.e., number of berths of
type k ∈ Bk) arcs can be chosen out of the nodes from the sets C(m, p, k, t)
of all ships m ∈ N and, therefore, the same applies to the intersection sets
C(m, p, k, t1) ∩ C(m, p, k, t2). Based on the premise that each ship can only
berth in one position, we can relax the requirement of being in conflict with
both t1 and t2 for a single ship n and only require it to be in conflict with t1
or t2. In practice, this means, on one hand, that if ship n berths at a period
covering t1 or t2, then, at most βk − 1 ships m ∈ N\{n} can berth in a period
covering both t1 and t2. On the other hand, if βk ships m ∈ N\{n} are berthing
at times whose periods cover t1 and t2, then ship n is not able to berth at a
period covering t1 or t2. The relaxed node interval for ship n can be defined as
the union of C(n, p, k, t1) ∪ C(n, p, k, t2). Considering these node sets, we can
define the following valid inequality:∑
u∈C(n,p,k,t1)∪C(n,p,k,t2)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

xmu,w ⩽ βk

∀p ∈ P, k ∈ Kp, n ∈ N, t1, t2 ∈ [sp,k, ep,k), t1 < t2

Based on the assumption that a berthing period cannot be discontinued, the
intersection set C(m, p, k, t1) ∩ C(m, p, k, t2) for any ship is not only in conflict
with times t1 and t2 but with all the time instants in the period [t1; t2]. Therefore
the interval for ship n can be expanded to the union of C(n, p, k, t) sets for all
time instants t ∈ [t1; t2] and the resulting valid inequality can be formulated as
follows:

∑
u∈

⋃
t∈[t1;t2] C(n,p,k,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

xmu,w ⩽ βk

∀p ∈ P, k ∈ Kp, n ∈ N, t1, t2 ∈ [sp,k, ep,k), t1 < t2

2
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2.A.3 Additional computational results

Table 2.13: Number of nodes and arcs in graph G for each of the instances. An
horizontal line is used to indicate the separation between the set
of benchmark instances by Venturini et al. (2017) and the newly
generated set of harder instances.

Instance Graph size Instance Graph size
N-B-P-TW Nodes Arcs N-B-P-TW Nodes Arcs
4-3-3-L 1,621 44,989 4-4-4-T 3,948 1,239,853
5-3-3-L 2,711 1,669,872 5-4-4-T 3,948 1,498,010
6-3-3-L 2,711 2,353,886 6-4-4-T 3,948 1,318,353
6-3-4-L 5,414 8,659,488 12-5-3-T 3,217 2,572,191
10-4-4-L 7,218 25,069,050 12-6-3-T 3,860 3,586,436
10-4-3-L 3,614 6,583,065 10-5-4-T 5,722 8,069,850
4-4-4-L 6,418 5,631,290 15-10-4-T 8,870 25,003,591
5-4-4-L 6,418 8,436,182 20-10-3-T 5,120 11,456,682
6-4-4-L 6,418 10,062,500 20-12-3-T 6,826 21,299,213
12-5-3-L 4,517 12,072,289 25-12-3-L 7,226 65,709,632
10-6-3-L 5,420 15,698,842 25-12-3-T 6,826 26,586,128
11-6-3-L 5,420 15,640,325 12-5-4-L 9,022 45,812,954
12-6-3-L 5,420 17,117,528 12-5-4-T 5,722 9,550,769
10-5-4-L 9,022 38,507,345 30-12-3-L 7,226 78,917,800
15-10-3-L 5,420 21,596,125 30-12-3-T 6,826 31,947,951
15-12-3-L 7,226 37,072,022 20-12-4-L 15,638 171,445,244
15-10-4-L 12,430 76,196,427 20-12-4-T 11,158 56,721,679
20-10-3-L 5,420 28,790,640 15-8-4-L 14,434 144,240,102
20-12-3-L 7,226 52,608,061 15-8-4-T 9,154 29,624,264
4-3-3-T 1,621 229,372 25-12-4-L 15,638 214,550,093
5-3-3-T 2,711 2,696,410 25-12-4-T 11,158 70,841,345
6-3-3-T 2,711 2,538,662 30-15-4-L 16,541 300,541,288
6-3-4-T 3,464 2,307,063 30-15-4-T 11,801 98,992,726
10-4-4-T 4,618 6,633,974 40-15-3-L 8,129 133,728,684
10-4-3-T 2,614 1,825,953 40-15-3-T 7,679 54,138,993
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Table 2.14: Results of solution methods with alternative branching strategies.
The underlying algorithm is a branch-and-cut-and-price where cut-
ting is only allowed at the root node. "*" means the time limit of 3
hours and 18 minutes has been reached.

Instance Best first on single graph node Strong branching on berthing time Best first on berthing position
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)
4-3-3-L 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2
5-3-3-L 394,300 394,300 0.00 8.9 394,300 394,300 0.00 9.2 394,300 394,300 0.00 8.1
6-3-3-L 421,720 421,720 0.00 0.5 421,720 421,720 0.00 0.6 421,720 421,720 0.00 0.5
6-3-4-L 647,149 647,480 0.05 * 647,480 647,480 0.00 1,024.4 647,480 647,480 0.00 93.7
10-4-4-L 1,053,050 1,054,500 0.14 * 1,054,250 1,054,500 0.02 * 1,054,500 1,054,500 0.00 9,628.2
10-4-3-L 697,057 698,100 0.15 * 698,100 698,100 0.00 443.5 698,100 698,100 0.00 173.0
4-4-4-L 405,120 405,120 0.00 0.9 405,120 405,120 0.00 0.7 405,120 405,120 0.00 0.6
5-4-4-L 500,600 500,600 0.00 1.2 500,600 500,600 0.00 0.9 500,600 500,600 0.00 0.9
6-4-4-L 599,780 599,980 0.03 * 599,980 599,980 0.00 26.9 599,980 599,980 0.00 7.4
12-5-3-L 829,897 830,440 0.07 * 830,440 830,440 0.00 646.1 830,440 830,440 0.00 143.3
10-6-3-L 680,550 680,600 0.01 * 680,600 680,600 0.00 34.4 680,600 680,600 0.00 15.1
11-6-3-L 745,960 746,220 0.03 * 746,220 746,220 0.00 52.4 746,220 746,220 0.00 16.9
12-6-3-L 809,093 810,040 0.09 * 809,840 809,840 0.00 301.7 809,840 809,840 0.00 54.3
10-5-4-L 1,026,521 1,028,320 0.17 * 1,028,320 1,028,320 0.00 2,472.5 1,028,320 1,028,320 0.00 5,991.3
15-10-3-L 1,006,000 1,006,200 0.02 * 1,006,200 1,006,200 0.00 59.8 1,006,200 1,006,200 0.00 4.8
15-12-3-L 1,002,800 1,002,800 0.00 2.0 1,002,800 1,002,800 0.00 1.8 1,002,800 1,002,800 0.00 2.3
15-10-4-L 1,459,600 1,459,600 0.00 339.9 1,459,600 1,459,600 0.00 62.6 1,459,600 1,459,600 0.00 14.3
20-10-3-L 1,344,437 1,344,800 0.03 * 1,344,583 1,344,800 0.02 * 1,344,800 1,344,800 0.00 163.3
20-12-3-L 1,336,400 1,336,400 0.00 3.4 1,336,400 1,336,400 0.00 2.9 1,336,400 1,336,400 0.00 2.2
4-3-3-T 318,440 318,440 0.00 0.5 318,440 318,440 0.00 0.3 318,440 318,440 0.00 0.3
5-3-3-T 405,240 405,240 0.00 2.5 405,240 405,240 0.00 3.6 405,240 405,240 0.00 7.4
6-3-3-T 510,920 510,920 0.00 1.5 510,920 510,920 0.00 1.1 510,920 510,920 0.00 0.8
6-3-4-T 993,460 993,460 0.00 2.5 993,460 993,460 0.00 1.8 993,460 993,460 0.00 1.2
10-4-4-T 1,660,640 1,660,640 0.00 1,193.6 1,660,640 1,660,640 0.00 329.9 1,660,640 1,660,640 0.00 132.9
10-4-3-T 1,022,200 1,022,200 0.00 49.1 1,022,200 1,022,200 0.00 56.8 1,022,200 1,022,200 0.00 9.1
4-4-4-T 442,600 442,600 0.00 1.3 442,600 442,600 0.00 1.0 442,600 442,600 0.00 0.8
5-4-4-T 575,350 576,010 0.11 * 576,010 576,010 0.00 26.7 576,010 576,010 0.00 9.6
6-4-4-T 651,480 654,040 0.32 * 653,560 653,560 0.00 39.0 653,560 653,560 0.00 10.6
12-5-3-T 830,067 830,440 0.04 * 830,440 830,440 0.00 355.7 830,440 830,440 0.00 100.0
12-6-3-T 817,602 819,040 0.15 * 818,840 818,840 0.00 369.4 818,840 818,840 0.00 141.1
10-5-4-T 1,143,431 1,144,160 0.06 * 1,144,160 1,144,160 0.00 218.5 1,144,160 1,144,160 0.00 53.0
15-10-4-T 1,596,310 1,597,100 0.05 * 1,597,100 1,597,100 0.00 66.0 1,597,100 1,597,100 0.00 21.1
20-10-3-T 1,629,000 1,629,500 0.03 * 1,629,500 1,629,500 0.00 1,138.7 1,629,500 1,629,500 0.00 408.7
20-12-3-T 1,606,500 1,606,500 0.00 50.5 1,606,500 1,606,500 0.00 80.1 1,606,500 1,606,500 0.00 38.3
Average 0.0461 0.0012 0.0000
25-12-3-L 1,677,200 1,677,400 0.01 * 1,677,234 1,677,400 0.01 * 1,677,233 1,677,400 0.01 *
25-12-3-T 2,046,933 2,047,000 0.00 * 2,046,933 2,047,000 0.00 * 2,046,933 2,047,000 0.00 *
12-5-4-L 1,240,248 1,245,160 0.39 * 1,243,262 1,245,160 0.15 * 1,243,019 1,245,160 0.17 *
12-5-4-T 1,398,454 1,404,640 0.41 * 1,402,329 1,404,520 0.14 * 1,403,550 1,405,580 0.05 *
30-12-3-L 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 * 2,016,245 2,016,600 0.02 *
30-12-3-T 2,491,406 2,492,500 0.04 * 2,491,490 2,492,600 0.04 * 2,491,437 2,492,600 0.04 *
20-12-4-L 1,943,545 1,943,800 0.01 * 1,943,800 1,943,800 0.00 778.0 1,943,800 1,943,800 0.00 635.2
20-12-4-T 3,113,085 3,113,170 0.00 * 3,113,170 3,113,170 0.00 75.1 3,113,170 3,113,170 0.00 40.8
15-8-4-L 1,495,243 1,497,100 0.12 * 1,497,000 1,497,000 0.00 3,228.6 1,497,000 1,497,000 0.00 4,309.9
15-8-4-T 1,655,075 1,656,040 0.06 * 1,656,040 1,656,040 0.00 4,356.3 1,656,040 1,656,040 0.00 792.3
25-12-4-L 2,439,300 2,440,500 0.05 * 2,439,810 2,440,500 0.03 * 2,439,585 2,440,800 0.04 *
25-12-4-T 3,705,997 3,707,790 0.04 * 3,707,390 3,707,390 0.00 578.0 3,707,390 3,707,390 0.00 6,483.4
30-15-4-L 2,918,409 2,918,800 0.01 * 2,918,510 2,918,600 0.00 * 2,918,464 2,918,800 0.00 *
30-15-4-T 3,274,228 3,278,860 0.12 * 3,275,538 3,278,480 0.08 * 3,275,004 3,278,280 0.10 *
40-15-3-L 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 *
40-15-3-T 3,329,567 3,330,500 0.02 * 3,329,567 3,330,500 0.02 * 3,329,567 3,330,300 0.02 *
Average 0.0824 0.0314 0.0288
Optimal solutions 16/50 37/50 39/50
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Abstract: We study the multi-port continuous berth allocation prob-
lem with speed optimization. This problem integrates vessel scheduling
with berth allocation at multiple terminals in a collaborative setting.
We propose a graph-based formulation and a branch-and-price method
to solve the problem. The results show that the branch-and-price pro-
cedure outperforms the baseline solver. In our computational study, we
highlight the trade-off between solution quality and computational com-
plexity, as a function of the segment length used to model a continuous
quay.
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3.1 Introduction

The liner shipping industry is one of the major forms of international freight
transportation. Seaborne trade and container throughput has continued growing
steadily until 2019 and, despite the COVID-19 disruption in 2020, maritime
trade recovered and is projected to expand by 4.3 % in 2021. The world fleet is
also growing, not only in number of ships (more than 3 % in 2021), but also in
size (the carrying capacity of mega-vessels rose from 6 to almost 40 per cent in
the last 10 years) (UNCTAD, 2021). To accommodate the growing trade volume,
ports and their container terminals need to either expand their capacity or
improve the efficiency of their operations. Whereas the former usually requires
a costly investment and in some cases it is not physically possible, the latter
can be explored by means of operations research.
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One of the key logistical operations in a container terminal is the berth allocation
(Steenken et al., 2004). This operation is mathematically modeled as the berth
allocation problem (BAP), where the aim is to assign berthing positions to
incoming ships. The BAP is NP-hard (Lim, 1998) and has been extensively
studied in the literature (Bierwirth and Meisel, 2015).

Most BAP studies consider either a discrete or a continuous quay. In the dis-
crete variant, the quay is discretized into a set of berthing positions which can
only serve one ship at a time. In the continuous version, ships can berth at any
point within the quay as long as they respect a safety distance from other ships.
The literature studies on the continuous BAP have approached the modeling
part in different ways. Some studies use a continuous variable to define the
berthing position of the ship (Kim and Moon, 2003; Lyu et al., 2022), whereas
other studies divide the quay into segments of short length (e.g., 10 meters)
and allow ships to occupy multiple consecutive segments based on their length
(Imai et al., 2005; Meisel and Bierwirth, 2009). In practice, the position of the
quayside bollards can restrict the berthing positions for the ships, strengthening
the latter modeling approach. We observe that a solution to the discrete BAP
is feasible for the continuous BAP but it is not guaranteed that a solution to
the continuous BAP is feasible for the discrete version of the problem. As a
result, the continuous BAP provides a better or equal solution than the con-
tinuous one, but it is normally harder to solve. Our study follows the second
modeling approach and investigates this trade-off between solution quality and
computational complexity.

The main cost driver for a liner shipping company (i.e., carrier) is fuel con-
sumption. The relation between fuel consumption and the vessel’s sailing speed
is non-linear, which translates in the fuel consumption growing significantly at
higher speeds. Therefore, optimizing the sailing speed is one of the main pri-
orities for carriers. The mathematical problem that studies this operation is
known as the vessel scheduling problem (VSP) and has been actively researched
in the last two decades (Dulebenets et al., 2019). The VSP aims at defining
the sailing speeds between consecutive ports (i.e., voyage leg) to optimize fuel
consumption while guaranteeing a service frequency on the route.

The optimization of the BAP and VSP have helped significantly improve the
efficiency of operations for terminal operators and carriers, but can potentially
lead to logistics issues in practice. On one hand, berth allocation is myopic as
most container terminals plan their berth independently from other terminals.
This is motivated by the competitive environment and reticence to share infor-
mation. As a result, if one of the terminals faces a congestion, delayed vessels
can propagate the delay to the next ports in their routes, leading to higher
operational costs for both carriers and terminals (Notteboom and Vernimmen,
2009). On the other hand, the VSP is mainly studied from the carriers’ perspec-
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tive, and does not explicitly account for the berth allocation at the terminals.
Overseeing the berth assignments can potentially result in longer turnaround
times for vessels.

Recently, efforts have been made to address these issues by exploring collabo-
rative schemes that take advantage of information sharing. In Venturini et al.
(2017) we see the first effort to integrate the BAP and VSP into the multi-
port berth allocation problem with speed optimization (MBAP), which aims at
planning the berth allocation of multiple terminals simultaneously while also
optimizing the sailing speed of the ships. The MBAP relies in a high level of
collaboration, and recent studies show that these types of collaborative prob-
lems can be mutually beneficial to both the carriers and terminal operations
(Dulebenets, 2019; Martin-Iradi et al., 2022).

To the best of our knowledge, the MBAP has only been studied considering
a strictly discrete quay. The contributions of this paper are three-fold: (i) we
present two mathematical formulations for the MBAP with a continuous quay
based on a graph representation of the problem, (ii) we define a new set of
benchmark instances based on real port data, and (iii) we propose an efficient
exact method for the problem and demonstrate its performance over state-of-
the-art commercial solvers.

3.2 Problem formulation

In this section, we present two graph-based formulations for the MBAP with
a continuous quay. We follow the modeling approach of diving the quay into
segments of small size as in Meisel and Bierwirth (2009), where ships can occupy
multiple segments simultaneously based on their length. Table 3.1 summarizes
the notation of the problem.

It is general practice, especially on the discrete version of the BAP, to define
a different handling time depending on the berthing position. For the study
of a continuous quay, we follow the method presented in Meisel and Bierwirth
(2009) where deviations from a preferred berthing position are penalized using
a deviation factor β ≥ 0 (relative increase in handling time per unit of distance,
i.e., meters). Given the minimum handling time hi,c0 at the preferred berthing
position, and the actual deviation from the chosen position ∆b (measured in
meters). The handling time at a given position b is computed as follows:

hci (b) = (1 + β∆b)hi,c0 (3.1)

where ∆b = |b− xi,c0 |.
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Table 3.1: Notation for the MIP formulation of the continuous MBAP

Sets and parameters:
N Set of ships.
P Set of ports.
Tp Set of operational time instants at port p ∈ P .
S Set of speeds.
Lp Length of quay in port p ∈ P .
Pi ⊆ P Set of ports planned to be visited by ship i ∈ N sorted in

visiting order.
Ci. = {1, ..., c} Number of port calls for ship i ∈ N , one for each port visit.
ρ(c) The port p ∈ P corresponding to port visit number c ∈ Ci

for ship i ∈ N .
σ(p) The port visit c ∈ Ci corresponding to port p ∈ Pi for ship

i ∈ N .
xi,c0 The ideal berthing position for ship i ∈ N at port visit c ∈ Ci

measured at the leftmost position of the ship.
hi,c0 Handling time at the ideal berthing position for ship i ∈ N

at port visit c ∈ Ci.
EST c

i The expected start time of berthing for ship i ∈ N at port
visit c ∈ Ci.

EFT c
i The expected finish time of berthing for ship i ∈ N at port

visit c ∈ Ci.
LFT c

i The latest finish time of berthing for ship i ∈ N at port visit
c ∈ Ci.

β The relative increase in handling time per unit of distance.
∆p,p′

Distance between ports p, p′ ∈ P .
Θs Travel time per unit of distance at speed s ∈ S.
Γi
s Fuel consumption per unit of distance at speed s ∈ S fro

ship i ∈ N .
li Length of ship i ∈ N .
F Fuel cost in USD per tonne.
H Cost of handling time in USD per hour.
Di Cost of delay time in USD per hour for ship i ∈ N .
Ii Cost of waiting time in USD per hour for ship i ∈ N .
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3.2.1 Network-flow formulation

Let G = (O,A) be a directed graph formed by the sets of nodes O and arcs
A. Additionally, we define the subset of arcs Ak ⊆ A which denote the arcs
available for a given ship k ∈ N .

We denote Bp to the set of quay segments of Φ meters for port p ∈ P . We
define a node n for each port p ∈ P , berthing position b ∈ Bp, and time instant
t ∈ Tp Therefore, visiting a node can be interpreted as berthing at position b

(left-most position) of port p at time instant t. Let hc,bi be the handling time of
ship i at port visit c and berthing position b ∈ Bp and let bi,c0 be the berthing
segment including position xi,c0 .

hc,bi = (1 + βΦ|b− bi,c0 |)h
i,c
0 (3.2)

Equation 3.2 defines the computation of hc,bi and it is adapted from Equation 3.1.
Since each node refers to a single position b, we can pre-compute the handling
time related to each node. The cost of a node cip,b,t for ship i is defined in
Equation 3.3

cip,b,t = H(hc,bi ) +Di(d
c
i ) (3.3)

where the delay dci of ship i at port visit c is given as dci = max(0, t+hc,bi −EFT c
i ).

Given the sequence of ports to visit by each ship, arcs are added to connect
nodes of consecutive ports that correspond to feasible berths given the range of
feasible sailing speeds. We add an arc between (p, b, t) and (p′, b′, t′) for ship
i if the ports are consecutive in the ships route (p, p′ ∈ Pi, p ≺ p′), and if the
time difference allows to sail at a feasible speed (t+ h

σ(p),b
i +∆p,p′

ΘMAX ≤ t′)
where ΘMAX is the fastest feasible speed. Note that there is, at most, one arc
between any pair of nodes. This arc corresponds to the speed level providing
the lowest waiting time at the next port while still arriving on time. We do
not allow the possibility of sailing faster to arrive to the same berthing time, as
it does not provide any benefit and it only incurs in both higher waiting and
fuel costs. Additionally, the time instants of the nodes need to satisfy the time
windows EST c

i ≥ t and t′+hσp
′,b′

i ≤ LFT c
i , and the left-most berthing position

should consider the length of the ship b + lΦi ≤ Bp where lΦi is the number of
berthing segments that ship i ∈ N occupies given a segment of length Φ. The
cost cia of an arc a = ((p, b, t), (p′, b′, t′)) for ship i is defined in Equation 3.4

cia = Ii(t
′ − (t+ h

σ(p),b
i +∆p,p′

Θs)) + F (∆p,p′
Γi
s) (3.4)

where s ∈ S is the speed level associated with the arc.

Within the node set, we include o, d ∈ O as artificial source and sink nodes
respectively. Artificial source arcs are added for each ship connecting the source
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Figure 3.1: An example of the set C(n, p, b, t).

node with all the nodes of the first port in the route. In the same way, we add
artificial sink nodes for each ship connecting the nodes from the last port in the
route with the sink node. Let δ+k (u) be the set of nodes that can be reached
by following a single outgoing arc a ∈ Ak from node u ∈ O for ship k ∈ N .
Likewise, let δ−k (u) be the set of nodes that can be reached by following a single
incoming arc a ∈ Ak from node u ∈ O for ship k ∈ N . We use the notation
[x; y] to define an interval between x and y where y is included and [x; y) where
y is not.

For each ship n ∈ N , port p ∈ P , berthing position b ∈ Bp and operating time
instant t ∈ Tp, we define the set C(n, p, b, t) ⊆ O that denote the graph nodes for
ship n whose berthing period covers time t and whose berthing position covers
segment b (i.e. nodes that are in conflict with any ship berthing at time t and
position b).

An example is depicted in Figure 3.1 and the expression can be stated as follows:

C(n, p, b, t) :=

{
v = (p, b′, t′) ∈ O

∣∣∣b′ ∈ (max(b− lΦn , 0); b
]
, t′ ∈

(
max(t− hσ(p),b

′

n , 0); t
]}

Finally, let xki,j be a binary variable deciding if arc (i, j) ∈ Ak is selected for
ship k ∈ N and let cki,j be the weight associated to the same arc. For simplicity,
we add the cost of node i in the cost of the arc (i, j) to merge the node and arc
costs cki,j = cki + cki,j .

min
∑
k∈N

∑
(i,j)∈Ak

cki,jx
k
i,j (3.5)
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∑
j∈δ+k (o)

xko,j = 1 ∀k ∈ N (3.6)

∑
i∈δ−k (d)

xki,d = 1 ∀k ∈ N (3.7)

∑
i∈δ−k (j)

xki,j −
∑

i∈δ+k (j)

xkj,i = 0 ∀j ∈ O\{o, d}, k ∈ N (3.8)

∑
k∈N

∑
i∈C(k,p,b,t)

∑
j∈δ+k (i)

xki,j ≤ 1 ∀p ∈ P, b ∈ Bp, t ∈ Tp (3.9)

xki,j ∈ {0, 1} ∀(i, j) ∈ A, k ∈ N (3.10)

The objective function (3.5) minimizes the cost of the selected arcs as in Martin-
Iradi et al. (2022) which is the weighted sum of operational costs, namely, wait-
ing time cost, handling time cost, delay time cost and fuel consumption cost.
Constraints (3.6) and (3.7) ensure that, for each ship, only one arc leaves from
the source node and arrives to the sink node respectively. Constraints (3.8)
enforce flow conservation ensuring that for each node, except the source and
sink ones, there are as many incoming as outgoing arcs. Constraints (3.9) avoid
overlapping of ships in time and space by ensuring that each berthing position
is occupied by at most one ship at each time instant. Finally, constraints (3.10)
define the binary property of the variable.

3.2.2 Set partitioning formulation

Only the set of constraints (3.9) is not independent between ships. We, therefore,
exploit the structure of the formulation and apply Dantzig-Wolfe decomposition
(Dantzig and Wolfe, 1960) and transform the network-flow formulation into a
set partitioning problem (SPP) formulation where constraint (3.9) is handled in
the master problem and each variable (i.e., column) refers to a whole feasible
schedule of a ship along its route. According to Jans (2010), the pure binary
nature of the variables of the network flow formulation allows us to impose
binary conditions on the variables of the new master problem.

min
∑
j∈Ω

cjλj (3.11)

∑
j∈Ω

Ai
jλj = 1 ∀i ∈ N (3.12)

∑
j∈Ω

Bp,b,t
j λj ⩽ 1 ∀p ∈ P, b ∈ Bp, t ∈ Tp (3.13)

λj ∈ {0, 1} ∀j ∈ Ω (3.14)
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The set of all columns is comprised in Ω and the decision variable λj is set to
1 if column j ∈ Ω is chosen as part of the solution and 0 otherwise. We denote
cj as the cost related to column j ∈ Ω. In order to replicate the objective
of the MIP formulation, this cost consists of the idleness, handling cost, delay
and bunker consumption cost of the ship denoted by the column. Let Ai

j be a
parameter that is equal to 1 if column j ∈ Ω corresponds to ship i ∈ N and 0
otherwise. Likewise, let Qp,b,t

j be a parameter that is equal to 1 if the ship of
column j ∈ Ω is occupying position b ∈ Bp at time instant t ∈ Tp at port p ∈ P
and 0 otherwise.

The objective function (3.11) minimizes the cost cj of the columns which corre-
sponds to the same weighted sum as the objective function of the network-flow
formulation. Constraints (3.12) ensure that one column is selected for each ship.
Constraints (3.13) guarantee that each berthing segment of each port is covered
by at most one ship at any time instant. Finally, constraints (3.14) set the
binary property of the decision variables.

3.3 Solution method

To solve (3.11)-(3.14), we present a branch-and-price method. We notice that
the number of possible paths for each ship in the network is prohibitively large
even for small size instances. Therefore, we opt for exploring delayed column
generation methods. Notice that, by decoupling the pricing problem into N in-
dependent sub-problems, each of them results in a single shortest path problem.
Given the directed and acyclic nature of the network, the problem can be solved
using efficient label setting algorithms.

At each iteration, we solve the master problem with a restricted set of columns
and obtain the dual solution. With that solution, we solve each of the pricing
problems, and if a solution with a negative reduced cost is found, we add the
corresponding new column to the master problem. We keep iterating until no
more negative reduced costs are found.

3.3.1 Branching

Completing the column generation procedure gives us the optimal solution for
the linear relaxation of the problem, which does not guarantee the solution to
be integer. To achieve integer optimality, we need to embed column generation
in a branch-and-bound procedure. This whole process is also known as branch-
and-price, where column generation is performed at each node in the branch-
and-bound tree.
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A poor branching strategy can lead to exploring an excessively large or unbal-
anced tree and therefore, slow convergence. This is the case when branching on
the path variables of the set partitioning formulation or arc variables from the
network-flow formulation. Moreover, branching in these variables can impose
additional restrictions in the pricing problem.

We propose branching on a set of nodes that aims to create a balanced parti-
tion. Given a fractional solution, we start by grouping the berthing times and
positions per ship and port visit. For each ship and port visit, we compute the
average and variance of their solution berthing times and positions. This results
in 2 · |N | · |Ci| candidates, and we select the case with the highest variance to
branch on. As an example, we assume that the case with the highest variance
is the berthing position of ship A at visit B, with an average berthing position
X. Then, our branching strategy enforces ship A to berth to the left or right of
position X at visit B. This branching strategy guarantees at least one candidate
and aims to provide a balanced branch-and-bound tree.

3.3.2 Computing bounds

For some of the largest instances, even solving the root node with column gen-
eration can be computationally expensive. If the time limit is reached and the
column generation procedure has not converged, we can derive a valid lower
bound. In our case, given the convexity constraints of the master problem that
ensure the solution to contain one column per ship, our valid lower bound can
be computed as indicated in Equation 3.15. Let z∗ be the solution to the mas-
ter problem at the last iteration and c̄j the minimum reduced cost of pricing
problem of ship j ∈ N , if negative, otherwise zero.

zLB = z∗ +
∑
j∈N

c̄j (3.15)

Once a percentage of the total time limit has reached and if the branch-and
price procedure has not converged, we solve the original integer version of the
problem with all the column generated in the branch-and-bound tree. This
allows to obtain an initial upper bound or tighten the current one.

3.4 Results

In this section we perform a computational comparison between the proposed
method applied to the set partitioning formulation, and a baseline commercial
solver applied to the network-flow formulation.
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Table 3.2: Parameter values used to generate the instance set.

Number of ships
to optimize

Number of external
ships per port

Segment
length (m)

4-15 3-5 10, 20, 50, 100

3.4.1 Instance generation

The benchmark instances provided by Venturini et al. (2017); Martin-Iradi et al.
(2022) are defined for the discrete case of the MBAP and are not rich enough
to capture the aspects of the new variant of the problem. For this reason, we
propose a new set of instances for the continuous MBAP.

We consider three different ship types: (i) feeder or small (ln :≤ 200 meters),
(ii) medium (ln : 201 − 300 meters), and large (ln :> 300 meters). Larger
vessels have a larger dead-weight and load capacity which implies a higher fuel
consumption in general. Therefore, we define a different speed-fuel consumption
relation Γi

s for each ship type, as well a different minimum handling time hi,c0
at each of the port visits.

All instances consider 3 terminals located in 3 of the main ports in northern
Europe: (i) Rotterdam APMT (L1 = 1600 meters), (ii) Bremerhaven NTB
(L2 = 1800 meters), and (iii) Hamburg EGH (L3 = 2100 meters).

The duration of the ships’ time windows (i.e., EST c
i , EFT

c
i , LFT

c
i ) is based on

historical port call data.

We define six different ship patterns based on real port data, each having a
given type of ship and visiting either 2 or 3 ports in different orders. The set N
of ships for a given instance is sampled from the ship patterns.

Parameters such as the ideal berthing position for the ships or the position
and duration of external ships N̄ are selected at random. We assume that the
entire quay is available for berthing, unless an external ship is occupying it.
The distance between ports is computed based on the actual sea distance of the
maritime routes. Finally, we consider a set of 10 different speed levels, ranging
uniformly between 17-21.5 knots.

To generate the entire set of instances, we use 3 parameter values: (i) number of
ships to optimize, (ii) number of external ships per port, and (iii) the length of
the quay segments. Table 3.2 indicates the values used for each parameter. For
each combination of number of ships to optimize and number of external ships,
we generate three instances, each with a different randomized seed. Then, for
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each instance, we divide the quay into segments of different length, resulting in
a final set comprising 432 instances.

3.4.2 Comparison of exact methods

We set an algorithm time limit of 1 hour. In the case of the branch-and-price
method, we allocate 90 % of the time limit for the standard branch-and-price
procedure and 10 % to solve the integer problem with all the columns generated.
The model is entirely written in Julia (Bezanson et al., 2017) and using CPLEX
v. 12.10 as the solver on a single thread. It has been tested in a Xeon Gold
6226R with 64 GB of memory.

The results are summarized in Table 3.3, where we compare the branch-and-price
method with the network-flow formulation solved by CPLEX. The instances
have been grouped per number of ships to optimize, and the segment size. Each
row comprises 9 instances. We compute the number of instances solved to
optimality, the average computational time, and the optimality gap. We also
compute the improvement in objective value with regards to the instances with
a coarser segment length.

From the results in Table 3.3, we observe that the proposed branch-and-price
method performs better than commercial solvers on the network-flow formu-
lation. In the case of CPLEX, it is able to solve a few instances faster than
the branch-and-price method, but we noticed that for instances with highly
dense graphs (see Table 3.4), CPLEX runs out of memory when building the
model. The average computational time in these cases corresponds to the runs
of instances where CPLEX was not interrupted due to memory issues. On the
contrary, branch-and-price finds a feasible upper bound for all instances within
the time limit. We can observe that the impact in the solution quality of having
a shorter segment length is significant. The operational costs can be reduced in
more than 7 % in some cases with a segment of 10 meters instead of 100 meters.
However, this improvement comes at the expense of higher computational needs.
From a practical perspective, solving the problem with a more coarse segment
length could be useful when quick solutions are needed, for instance, when facing
a disruption and needing to re-plan or when testing multiple scenarios.

Table 3.5 shows the average results grouped by segment length. Dividing the
quay in segments of 100 meters allows the method to solve all the instances, while
for segments of 10 meters, we can solve 74 % of the instances maintaining a tight
optimality gap. Moreover, halving the segment length from 100 to 50 meters
helps saving more than 2 % in operational costs with an average run time of less
than 5 minutes. Regarding individual operational costs, we observe that using
shorter segments allows to achieve significant savings in waiting time and delay.
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Table 3.3: Computational results for the set of instances grouped by number of
ships to optimize and the length of the quay segments. ”*” indicates
that all instances reached the memory limit.

Instance Branch-and-price CPLEX

Number
of ships

Segment
length (m)

Optimal
instances
(out of 9)

Optimality
gap (%)

Time (s)
Objective

improvement
(%)

Optimal
instances
(out of 9)

Optimality
gap (%)

Time (s)

4 10 9 0.00 114.0 -1.94 0 * *
4 20 9 0.00 30.4 -1.63 6 0.00 512.5
4 50 9 0.00 19.7 -1.10 9 0.00 74.5
4 100 9 0.00 17.0 - 9 0.00 7.9
5 10 9 0.00 43.9 -1.98 0 * *
5 20 9 0.00 24.1 -1.82 2 0.00 336.3
5 50 9 0.00 15.2 -0.93 9 0.00 119.3
5 100 9 0.00 13.8 - 9 0.00 13.2
6 10 9 0.00 76.3 -1.33 0 * *
6 20 9 0.00 25.8 -1.13 4 0.00 1447.4
6 50 9 0.00 18.2 -0.83 9 0.00 128.7
6 100 9 0.00 16.3 - 9 0.00 13.1
7 10 9 0.00 282.4 -1.44 0 * *
7 20 9 0.00 233.3 -1.29 0 * *
7 50 9 0.00 80.9 -0.78 9 0.00 289.3
7 100 9 0.00 25.6 - 9 0.00 30.1
8 10 9 0.00 63.3 -2.06 0 * *
8 20 9 0.00 20.6 -1.72 0 * *
8 50 9 0.00 28.6 -0.57 9 0.00 311.4
8 100 9 0.00 17.7 - 9 0.00 32.8
9 10 7 0.21 994.0 -7.89 0 * *
9 20 7 0.10 886.0 -7.46 0 * *
9 50 8 0.00 571.2 -6.74 8 0.00 495.3
9 100 9 0.00 217.7 - 8 0.00 48.6

10 10 6 0.21 1160.8 -6.31 0 * *
10 20 7 0.07 860.9 -5.94 0 * *
10 50 9 0.00 137.6 -1.73 9 0.00 585.1
10 100 9 0.00 38.2 - 9 0.00 58.0
11 10 7 0.12 1225.3 -6.70 0 * *
11 20 9 0.00 787.9 -6.26 0 * *
11 50 9 0.00 186.1 -1.29 9 0.00 919.2
11 100 9 0.00 42.8 - 9 0.00 84.4
12 10 6 0.15 1480.8 -5.68 0 * *
12 20 6 0.30 1189.8 -4.88 0 * *
12 50 9 0.00 278.8 -4.13 8 0.04 1328.5
12 100 9 0.00 123.1 - 8 0.00 117.8
13 10 7 0.14 1131.9 -2.78 0 * *
13 20 7 0.04 1150.2 -2.27 0 * *
13 50 9 0.00 373.6 -1.41 6 0.18 1268.3
13 100 9 0.00 75.9 - 8 0.00 105.5
14 10 2 1.17 2974.9 -2.05 0 * *
14 20 2 0.27 2595.2 -1.84 0 * *
14 50 9 0.00 428.6 -1.22 6 0.00 1501.7
14 100 9 0.00 155.0 - 6 0.00 172.2
15 10 0 1.69 3365.4 -2.41 0 * *
15 20 2 0.82 2606.4 -2.26 0 * *
15 50 9 0.08 1115.1 -2.17 6 0.62 2064.8
15 100 9 0.00 534.9 - 6 0.13 583.9
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Table 3.4: Average network sizes across instances with different quay segment
lengths.

Segment
length (m)

Average number
of nodes

Average number
of arcs

100 13,483 327,392
50 26,963 1,240,023
20 67,227 7,336,565
10 134,808 25,981,650

Table 3.5: Average operational cost savings compared to a segment length of
100 meters.

Segment

length (m)

Optimal

instances (%)

Optimality

gap (%)

Time

(s)

Waiting

cost (%)

Delay

cost (%)

Handling

cost (%)

Fuel

cost (%)

Total

(%)

10 74.1 0.46 1076.1 -9.12 -12.46 -0.87 0.45 -3.84
20 78.7 0.19 867.6 -6.81 -10.29 -0.70 0.51 -3.48
50 99.1 0.01 271.1 -5.13 -8.93 -0.62 0.19 -2.08
100 100.0 - 106.5 - - - - -

The savings in handling time are lower but still positive. However, we notice that
the fuel consumption costs increase marginally with shorter segments, suggesting
that for most instances ships already sail at the slowest speed. Therefore, we can
argue that, although using shorter segments does not necessarily translate into
fuel savings, it helps to save in overall operational costs, by using the resources
at the terminal more efficiently. As suggested in Martin-Iradi et al. (2022),
the total savings arising from this collaborative problem could be distributed
efficiently among the participating carriers and terminal operators, resulting in
cost savings for all players and incentivizing further collaboration.

3.5 Conclusion

In this paper, we have studied a logistical problem that aims at simultaneously
optimize the vessel scheduling and their berthing assignment in their port visits.
We have modeled the continuous quay version of the problem as a network-flow
formulation which we have re-formulated into a a set partitioning formulation.
Decoupling the pricing problems per ship, allows to compute new columns by
solving a shortest path problem. The results highlight the better performance of
the proposed branch-and-price method compared to baseline solvers. Moreover,
we show that using shorter quay segments can lead to a better use of the terminal
resources and provide savings for carriers and terminal operators.
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A natural next step for future work would be to study a different modeling
approach for the continuous MBAP using a continuous variable to define the
berthing position. Another aspect that deserves attention is the scalability of the
method where exploring approaches to reduce the size of the graphs can help
solving larger instances. Also, further research on possible valid inequalities
could help fasten the algorithm. Moreover, we could explore ways to embed
exact methods, such as the one presented, with heuristic procedures. This type
of matheuristic could provide high quality solutions in shorter computational
times.
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Abstract: In this paper, we study a problem that integrates the ves-
sel scheduling problem with the berth allocation into a collaborative
problem denoted as the multi-port continuous berth allocation prob-
lem (MCBAP). This problem optimizes the berth allocation of a set of
ships simultaneously in multiple ports while also considering the sailing
speed of ships between ports. Due to the highly combinatorial char-
acter of the problem, exact methods struggle to scale to large-size in-
stances, which points to exploring heuristic methods. We present a
mixed-integer problem formulation for the MCBAP and introduce an
adaptive large neighborhood search (ALNS) algorithm enhanced with a
local search procedure to solve it. The computational results highlight
the method’s suitability for larger instances by providing high-quality
solutions in short computational times. Practical insights indicate that
the carriers’ and terminal operators’ operational costs are impacted in
different ways by fuel prices, external ships at port, and the modeling of
a continuous quay.

Keywords: OR in maritime industry, Container terminal, Berth allo-
cation problem, Speed Optimization, Heuristics

4.1 Introduction

The liner shipping industry is one of the major forms of international freight
transportation. According to the report by (UNCTAD, 2020), seaborne trade
and container throughput continued growing steadily until 2019. Despite the
Covid disruption during 2020, maritime trade is projected to recover and expand
by 4.3 % in 2021. The report also highlights that the world fleet is increasing,
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not only in the number of ships (more than 3 % in 2021) but also in size. The
share of the total capacity carried by mega-vessels increased from 6 % to 40 %
in the last ten years.

This increase in demand, together with IMO’s goal of reducing shipping emis-
sions by 50 % by 2050 (IMO, 2018), requires container terminals to increase
capacity and improve the efficiency and sustainability of their operations. The
current growth of the vessel fleet and size directly impacts one of the most criti-
cal container terminal operations, namely the berth allocation (Steenken et al.,
2004). Mathematically, this problem is denoted as the Berth Allocation Prob-
lem (BAP), which aims to assign incoming ships to berthing positions. The
BAP can assume the quay to be discrete or continuous. In the discrete version,
the quay is divided into positions where each can be occupied by one ship at a
time. In the continuous BAP, ships can berth at any point in the quay while
respecting a safe distance from other ships. Furthermore, the BAP can be dy-
namic or static. The static BAP assumes all the ships to be already at the port
when the planning is done, whereas, in the dynamic version, ships can arrive at
the port at different times during the planning period. It should be noted that
the dynamic BAP is still a deterministic problem. The term dynamic refers to
the different arrival times of each ship and not to the nature of the problem
(Cordeau et al., 2005) like in, for example, vehicle routing problems. Figure 4.1
shows an example solution of the continuous and dynamic BAP.

Figure 4.1: Example solution of the continuous and dynamic BAP for a port
terminal with four vessels.
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Terminals optimize their berth allocation to minimize their operational costs
and the time ships need to spend at the port, including waiting time, handling
time, and any delays. Due to the fierce competition between container terminals,
they do not tend to share more information than is strictly required and do the
planning independently from other terminals. One potential problem is that if
congestion arises in a port, the affected ships can easily propagate delays to the
following ports in their routes. One way to reduce the delay is for vessels to
speed up when sailing between ports. However, sailing faster results in higher
fuel consumption. This type of decision-making can be addressed by shipping
line companies (i.e., carriers) in the Vessel Scheduling Problem (VSP). The goal
of the VSP is to optimize the sailing speeds between consecutive ports in the
vessel’s route (i.e., voyage legs). Most VSP studies aim to minimize the vessels’
fuel consumption, turnaround time at the port, and the number of vessels needed
to ensure a given route frequency. However, the VSP has its limitations. One
of them is the simplistic way of modeling the berthing times of ships at port.
Whereas some studies model a simplified version of berth allocation, most do not
include it. Not integrating the BAP into the VSP can lead to an unrealistic or
even infeasible berth allocation and, as a result, delays that ships can propagate.

A problem that integrates the berth allocation with the vessels’ speed optimiza-
tion was first introduced by Venturini et al. (2017) as the Multi-port Berth
Allocation Problem (MBAP). This problem selects a set of ships and a set of
ports that are part of their routes and simultaneously optimizes the berth allo-
cation at all the ports, together with the sailing time between ports. Venturini
et al. (2017) studied the version of the problem with a discrete set of berthing
positions. The problem involves the joint optimization of carrier and terminal
operations and relies on the a priori agreement of the vessels and ports involved.
Martin-Iradi et al. (2022b) showed that this type of collaboration could gener-
ate cost savings for the players involved (i.e., shipping carriers and terminal
operators) but also benefit the environment as fuel emissions can be reduced
significantly.

As mentioned earlier in this section, the main difference between the continuous
and the discrete BAP is the flexibility in the berthing positions. The set of
berthing positions in the discrete BAP corresponds to a subset of those from
the continuous BAP. Therefore, one can argue that modeling the quay as con-
tinuous can lead to a more resource-efficient plan, as the optimal solution of
the continuous BAP is equal to or better than that of the discrete BAP. How-
ever, this potential increase in solution quality comes at the expense of higher
complexity, as the solution space becomes considerably larger.

Martin-Iradi et al. (2022a) studied the MBAP with a continuous quay (MCBAP)
and highlighted the additional complexity, as the method proposed cannot scale
to large instances. This scalability issue is addressed in our study, where we
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employ heuristic methods that can tackle large real-world instances.

This paper makes the following four contributions:

1. We define a new mixed-integer problem (MIP) formulation for the MCBAP.

2. We present an instance generator for the MCBAP based on real-world port
data, and define a set of benchmark instances that are made publically
available.

3. We implement an Adaptive Large Neighborhood Search (ALNS) method
tailored to the MCBAP and enhance it with a Local Search (LS) procedure
based on ejection chains.

4. We show the viability of the ALNS method on real-size instances where
it is able to find high-quality solutions faster than baseline commercial
solvers.

The remainder of this paper is structured as follows. Section 4.2 comprises
an extensive literature review of the MBAP together with other collaborative
problems that include berth allocation or vessel scheduling. Section 4.3 describes
the MCBAP in detail and presents the MIP formulation. The solution method is
described in Section 4.4. Section 4.5 includes the instance generator’s details and
the computational study. The conclusions and further research is summarized
in Section 4.6.

4.2 Literature review

One of the most important problems in a container terminal is the BAP, which
has been studied extensively for over two decades. A survey of most of these
studies is compiled in surveys by Carlo et al. (2014) and Bierwirth and Meisel
(2015). Lim (1998) presented one of the first formulations of the problem and
showed that it is NP-hard. Due to the additional hardness involving the BAP
variant with a continuous quay, the use of heuristic methods has been predom-
inant in the literature. The first studies of the continuous BAP were by Kim
and Moon (2003) and Imai et al. (2005), where they presented MIP formula-
tions to the problem and solved it using heuristic and meta-heuristic algorithms
such as simulated annealing. Cordeau et al. (2005) covered both the discrete
and continuous BAP and solved them using a taboo search. Guan and Cheung
(2005) presented both a composite heuristic and a tree search exact method and
showed that both outperformed commercial solvers. A hybrid variant between
the continuous and discrete BAP was studied in Kordić et al. (2016), where
ships can only berth in a subset of positions. Heuristic methods have been
widely used when integrating the BAP with other terminal operations. One of
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the main problems studied is the berth allocation and quay crane assignment
problem (Iris and Lam, 2018). Iris et al. (2017) present a mixed integer problem
formulation with additional enhancements and implement an ALNS heuristic to
solve it, whereas Cheimanoff et al. (2022) uses a variable neighborhood search
heuristic.

The VSP has also attracted significant attention in the literature. Dulebenets
et al. (2019) present a comprehensive survey about the problem and highlight
the potential of collaboration and information sharing as one of the future re-
search directions. To the best of our knowledge, Fagerholt (2001) presented
the first formulation of the VSP. Negotiating the port calls with the terminal
operator Dulebenets (2018) indicates that carriers and terminal operators can
achieve significant savings. A collaborative version of the VSP is presented by
Dulebenets (2019), where terminal operators offer different port call durations
and handling rates, leading to win-win situations. Fagerholt et al. (2010) aim
at minimizing fuel consumption by optimizing the speed in a shipping route
and modeling it as a shortest path problem. The authors discretize the possible
arrival times at each port to approximate the non-linear relation between fuel
consumption and sailing speed. Du et al. (2011) and Sun et al. (2018) integrate
vessel speed optimization and berth allocation by considering ships within a
certain sailing distance from the port.

In the last decade, together with the increased access to data, the study of
problems that require collaboration between different stakeholders (e.g., car-
riers and terminal operators) has become more relevant. Wang et al. (2015)
present two collaborative mechanisms that encourage sharing accurate informa-
tion between carriers and terminal operators. Lalla-Ruiz et al. (2016) study
the discrete BAP and present a cooperative search based on a grouping strat-
egy where group members can only share information within the group. The
collaborative berth allocation problem (CBAP) was introduced by Dulebenets
et al. (2018) where a terminal planning its berth allocation can divert excessive
demand to other terminals. Hellsten et al. (2020) present an ALNS heuristic
for the port scheduling problem (PSP), where the aim is to schedule feeder ves-
sels in multi-terminal ports. Collaboration has also been studied in disruption
management. Lyu et al. (2022) present a formulation for re-planning the berth
allocation and quay crane assignment and propose a heuristic method to solve
it. Guo et al. (2022) study the berth assignment and allocation problem, which
integrates the BAP with the berth assignment and line clustering problem. The
first formulation of the MBAP was first introduced by Venturini et al. (2017).
It solved a dynamic and discrete BAP in multiple ports while optimizing ships’
sailing speed between ports. Martin-Iradi et al. (2022b) presented a branch-and-
price method for the same problem and conducted a study of the collaboration
mechanism using cooperative game theory. Martin-Iradi et al. (2022a) extended
the branch-and-price method to the MBAP with a continuous quay, the same
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problem of this study, and showed that exact methods are competitive for small
and medium size instances but struggle to scale for larger instances. Recently,
Yu et al. (2022) presented a genetic algorithm to solve a problem that integrates
the BAP with speed optimization and vessel service differentiation to address
both vertical and horizontal collaborations.

4.3 Problem description

The MCBAP integrates operational aspects concerning terminal operators and
shipping carriers. We consider a set of ships and a set of terminals, each of them
in a different port, to optimize their operations. Each ship visits all or a subset
of the ports as a part of its route. The ships may visit the ports in different
orders. The aim of the problem is to determine the berthing position and time of
the ships at each of the terminals visited. Each terminal has a limited berthing
space, given by the length of the quay. The service time required to load and
unload the vessel is denoted as handling time and depends on the berthing
position. We assume that it increases linearly with the deviation from an ideal
position. Similar to most BAP studies, the berthing time and positions of ships
are subject to a set of restrictions. Ships have a time window to be serviced
also known as a port call, this is planned in advance and helps the operator to
allocate berthing capacity and avoid excessive congestion. To allow for delays,
the end of the time window is not strict but delays are penalized as they require
the use of unexpected resources such as more worker hours.

It is well known that the relation between sailing speed and fuel consumption
is non-linear. In fact, this relation is often approximated with a cubic function
as in Equation (4.1) (Venturini et al., 2017; Martin-Iradi et al., 2022b)

F (s) = (
s

sd
)3Fd (4.1)

where s is the sailing speed, sd is the design speed of the ship, and Fd is the fuel
consumption at the design speed. For our formulation, we discretize the set of
possible sailing speeds and assume ships will sail the distance between ports at
one of those speeds. Given the set of feasible sailing speeds, we can compute the
corresponding set of fuel consumption rates. This assumption ensures a linear
formulation of the problem.

Figure 4.2 shows an example graphical representation of the problem, highlight-
ing the main operational aspects of a ship (i.e., ship 1). The ship berths strictly
after its earliest start time but, due to the long handling time associated with
the berthing position, the service time concludes after the expected finish time.
The service time after the expected finish time is computed as a delay. After
the ship is serviced, it can depart towards the next port. At the time of arrival,
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the quay is occupied, and the ship needs to wait until ship number 3 finishes its
berthing period. The time window this time is long enough to account for the
waiting time, and the ship is able to finish without a delay.

Figure 4.2: Example representation of a solution for the MCBAP with four ships
visiting two terminals. The timeline of operations for ship 1 is de-
fined in the top, where EST,EFT and LFT denote the earliest
start time, the expected finish time, and the latest finish time of the
ship at the port.

4.3.1 MIP formulation

We present a new MIP formulation for the MCBAP. This formulation is based
on the one for the continuous BAP from Kim and Moon (2003) and the one for
the discrete MBAP from Venturini et al. (2017):

Sets and parameters
N Set of all ships berthing at any of the ports.
N∗ ⊆ N Set of ships that we are optimizing.
N̄ ⊆ N Set of external ships which are considered fixed.
P Set of ports.
S Set of speeds.
Lp Length of quay in port p ∈ P .
Pi ⊆ P Set of ports planned to be visited by ship i ∈ N∗ sorted in

visiting order.
Ci =
{1, ..., ci}

Set of port calls for ship i ∈ N , one for each port visit. ci is the
last port visit, and the value is equal to the number of port calls.
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ρci The port p ∈ P corresponding to port visit c ∈ Ci for ship i ∈ N .
Np ⊆ N Set of ships that visit port p ∈ P .
Cp

i ⊆ Ci Port call positions of ship i ∈ N visiting port p ∈ P .
xi,c0 The ideal berthing position for ship i ∈ N∗ at port visit c ∈ Ci

measured at the leftmost position of the ship.
EST c

i The earliest start time of berthing for ship i ∈ N∗ at port visit
c ∈ Ci.

EFT c
i The expected finish time of berthing for ship i ∈ N∗ at port visit

c ∈ Ci.
LFT c

i The latest finish time of berthing for ship i ∈ N∗ at port visit
c ∈ Ci.

β The relative increase in handling time per unit of distance from
the ideal berthing position.

∆p,p′
Distance between ports p, p′ ∈ P .

Θs Travel time per unit of distance at speed s ∈ S.
Γi
s Fuel consumption per unit of distance at speed s ∈ S for ship

i ∈ N∗.
li Length of ship i ∈ N .
F Fuel cost in USD per tonne.
H Cost handling time in USD per hour.
D Cost of delay time in USD per hour.
I Cost of waiting time in USD per hour.
U Cost penalty of exceeding the latest finish time in USD.

Decision variables
xci ∈ R+ the leftmost position of ship i ∈ N at the quay for port visit

c ∈ Ci.
yci ∈ R+ the start time of berthing of ship i ∈ N at port visit c ∈ Ci.
vci,s ∈ B 1 if speed s ∈ S is chosen by ship i ∈ N∗ to sail between port

visits c and c+ 1; c ∈ Ci\{ci}.
dci ∈ R+ delay over EFT c

i for ship i ∈ N∗ at port visit c ∈ Ci.
uci ∈ R+ delay over LFT c

i for ship i ∈ N∗ at port visit c ∈ Ci.
Auxiliary variables

σc,c′

i,j ∈ B 1 if ship i is positioned left of vessel j in the quay space at port
visit c ∈ Cp

i and port visit c′ ∈ Cp
j at port p ∈ P , 0 otherwise;

i, j ∈ Np, i ̸= j.
δc,c

′

i,j ∈ B 1 if ship i finishes berthing before vessel j starts berthing at port
visit c ∈ Cp

i and port visit c′ ∈ Cp
j at port p ∈ P , 0 otherwise;

i, j ∈ Np, i ̸= j.
ri,c ∈ R+ distance between ideal and actual berthing position of ship i ∈

N∗ at port visit c ∈ Ci.
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Dependent variables
aci ∈ R+ arrival time of ship i ∈ N∗ at port visit c ∈ Ci.
hci ∈ R+ handling time of ship i ∈ N∗ at port visit c ∈ Ci.

min
∑
i∈N∗

( ∑
c∈Ci

I(yci − aci ) +H(hci ) +D(dci ) + U(uci ) +
∑

c∈Ci\{ci}

F (vciΓ
i
s∆

ρc
i ,ρ

c+1
i )

)
(4.2)

xci + li ≤ Lp, ∀i ∈ Np, c ∈ Cp
i , p ∈ P (4.3)

xci + li ≤ xc
′

j + Lp
(
1− σc,c′

i,j

)
∀p ∈ P, i, j ∈ Np, i ̸= j, c ∈ Cp

i , c
′ ∈ Cp

j

(4.4)

yci + hci ≤ yc
′

j +M
(
1− δc,c

′

i,j

)
∀p ∈ P, i, j ∈ Np, i ̸= j, c ∈ Cp

i , c
′ ∈ Cp

j

(4.5)

σc,c′

i,j + σc′,c
i,j + δc,c

′

i,j + δc
′,c

i,j ≥ 1

∀i, j ∈Np, i < j, c ∈ Cp
i , c

′ ∈ Cp
j , c < c′, p ∈ P

(4.6)

yci + hci +
∑
s∈S

vci,sΘs∆
ρc
i ,ρ

c+1
i = ac+1

i ∀i ∈ N∗, c ∈ Ci\{ci} (4.7)

aci ≤ yci ∀i ∈ N∗, c ∈ Ci (4.8)
EST c

i ≤ yci , ∀i ∈ N∗, c ∈ Ci (4.9)
yci + hci − EFT c

i ≤ dci ∀i ∈ N∗, c ∈ Ci (4.10)
yci + hci − LFT c

i ≤ uci ∀i ∈ N∗, c ∈ Ci (4.11)(
1 + βri,c

)
hi,c0 = hci , ∀i ∈ N∗, c ∈ Ci (4.12)

xci − x
i,c
0 ≤ ri,c ∀i ∈ N∗, c ∈ Ci (4.13)

xi,c0 − xci ≤ ri,c ∀i ∈ N∗, c ∈ Ci (4.14)∑
s∈S

vci,s = 1 ∀i ∈ N∗, c ∈ Ci\{ci} (4.15)

yci , x
c
i ≥ 0 ∀i ∈ N, c ∈ Ci (4.16)

aci , h
c
i , d

c
i , u

c
i , r

i,c ≥ 0 ∀i ∈ N∗, c ∈ Ci (4.17)
vci,s ∈ {0, 1} ∀i ∈ N∗, c ∈ Ci\{ci} (4.18)

σc,c′

i,j , δ
c,c′

i,j ∈ {0, 1}
∀i, j ∈ Np, i ̸= j, c ∈ Cp

i , c
′ ∈ Cp

j , p ∈ P
(4.19)
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The set of external ships N̄ is considered fixed. Therefore, the corresponding
set of decision variables xci , yci , hci , ri,c for ships i ∈ N̄ are constant and given as
input to the problem.

The objective function (4.2) minimizes the operational costs of the carriers and
terminal operators. This is measured as a weighted sum of the waiting time
cost, handling time cost, delay cost, and fuel consumption cost. Constraints
(4.3) ensure that each ship berths within the available space. Constraints (4.4)
and (4.5) define the relative position of each pair of ships in each dimension
by enabling the auxiliary variables σc,c′ and δc,c

′
. The M value can be limited

to the latest finish time of the pair of ships. Constraints (4.6) ensure that
berthing periods do not overlap in time and space. Constraints (4.7) compute
the arrival time to a port based on the sailing speed chosen to travel from
the previous port. Constraints (4.8) and (4.9) enforce that the berthing starts
strictly after arrival at port and after the time window starts, respectively.
Constraints (4.10) compute the delay if the expected finish time is exceeded
and constraints (4.11) define if the last finish time is respected. Constraints
(4.12) compute the handling time for each ship and port visit while constraints
(4.13) and (4.14) compute the deviation from the preferred berthing position.
Finally. constraints (4.15) ensure that only one speed is chosen to sail between
ports, and constraints (4.16) - (4.19) define the domain of the decision variables.

4.4 Solution method

To solve (4.2)-(4.19) we present an Adaptive Large Neighborhood Search (ALNS)
algorithm. The ALNS algorithm, introduced by Ropke and Pisinger (2006), ex-
tends the large neighborhood search method by Shaw (1998). At each iteration,
the method partially destroys and reconstructs a solution to generate a new
solution. In our case, to destroy part of a solution, we remove the berthing time
and locations of a subset of ships at a subset of ports. The combination of a
scheduled berthing time and position for a ship at one of the ports in its route is
denoted as a port visit, and we will refer to this term frequently in the remainder
of the paper. Additionally, in some cases, we will refer to the scheduled port
visit as a rectangle, in reference to how we can depict berthing position and time
in a time-space diagram (e.g., see Figure 4.2).

4.4.1 Construction heuristic

The ALNS requires an initial solution to start with. We present a construction
heuristic process for this step that aims at finding a good initial solution. Note
that the BAP can be seen as a two-dimensional packing problem. However,
in the continuous berth setting, the BAP has the increased complexity that



4.4 Solution method 117

the length of the rectangles (i.e., port visits) vary depending on the berthing
location in the quay. In the case of the MCBAP, we are solving multiple contin-
uous BAP problems with the additional constraint that some of those berthing
times depend on a sailing time. Moreover, the fact that ships follow different
routes complicates the problem as greedy approaches become harder to apply.
Our construction method prioritizes reducing the delay of ships at ports. We
approach this by (i) trying to place port visits early in time and close to their
ideal space, therefore reducing the handling time, and (ii) by reducing "use-
less" space, or, in other words, placing port visits efficiently not to create empty
spots in the decision space that cannot be filled by remaining port visit. Notice
that any possible solution is mathematically feasible since we allow it to exceed
the latest finish time, and the time horizon is not limited. However, we aim
to construct solutions where none of the ships exceed the LFT as those can
be perceived as infeasible by the port operators and are also heavily penalized.
The method acts as a greedy heuristic, where we schedule one port visit at a
time. The port visit to schedule is selected as the most constrained one. To
find it, we compute the set of feasible berthing positions and times for each ship
and port visit. We consider a finite set of positions and times by dividing the
quay into segments of a given length (e.g., 10 meters) and the planning horizon
into intervals of 1 hour. For each time instant and segment, we compute if the
ship can berth starting at that time and with its left-most side starting at the
segment. We do not count berthing times exceeding the latest finish time to
measure how constrained a ship’s port visit is. From all unscheduled port visits,
we define the one with the fewest possible positions as the most constrained
one. We then schedule the port visit in one of the feasible positions. In fact, we
do not consider the entire set but only the subset of feasible positions, where
the port visit rectangle is directly adjacent to another scheduled port visit or
to the limits of the decision space (i.e., the limit of the quay or planning hori-
zon). From this subset of positions, we select the one resulting in the minimal
change to the objective function. Besides the handling and delay cost directly
computed when scheduling the port visit, we need to compute fuel consumption
and waiting time costs. We consider these only if the previous port visit of the
ship is scheduled.

Once a port visit is scheduled, we repeat the computation and selection of
the most constrained unscheduled port visit and schedule it at the least costly
efficient position. The procedure is described in Algorithm 4.1.

4.4.2 Removal and insertion operators

The goal of a removal operator is to select a set of scheduled port visits to be
removed from the current solution. All the operators presented in this paper
select K number of assignments to be removed, computed as a percentage ρ
of the total number of port visits to be scheduled. It should be noted that
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Algorithm 4.1 Construction heuristic

1: procedure constructionHeuristic(inst)(problem instance)
2: unsch← inst ▷ initialize entire set of port visits to schedule
3: sol← ∅
4: while unsch ̸= ∅ do
5: unsch← sort(unsch) ▷ sort unplanned port visits by increasing

number of feasible positions
6: toSchedule← popfirst(unsch) ▷ get first port visit from the list
7: planned← false
8: pos← bestStartingPosition(toSchedule) ▷ position at the earliest

start time and closest to the ideal position
9: while not planned do

10: if feasible(pos, sol) then
11: planned← true
12: sol← plan(toSchedule, pos) ▷ schedule the port visit
13: else
14: pos← updatePosition(pos, sol) ▷ update to next feasible

position with lowest cost
15: end if
16: end while
17: end while
18: return sol
19: end procedure

removing port visits that are totally unrelated does not provide any potential
gain. Therefore, a removal operator should aim at removing assignments that
are related.

After applying a removal operator, the partial solution has K missing port visits
that need to be scheduled. They need to be assigned efficiently while respecting
the other assignments and ensuring that the solution remains feasible. This is
the goal of the insertion operators.

4.4.2.1 Shaw removal

This operator, first introduced by Shaw (1998), selects the most related pairs of
assignments. To select them, we define a measure of relatedness Mi,j between
assignments i and j in equation 4.20, similar to the one presented in Iris et al.
(2017).

Mi,j = A|xi − xj |+B|yi − yj |+ C|(yi + hi)− (yj + hj)|, (4.20)

where xi, yi and yi + hi are the berthing positions, berthing start time, and
berthing end time of assignment i, respectively. A,B, and C are custom param-
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eters that define the importance of each of the aspects. Observe that a lower
value of Mi,j translates into a higher level of relatedness. To select a total of K
assignments, we select them following a greedy randomized criterion. To intro-
duce randomness in the selection of the assignments, we define a parameter α.
We sort all the port visit pairs in increasing order of Mi,j and store them in the
list Ω. We then select the i-th element of the list applying Equation (4.21):

i = ⌈|Ω| · pα⌉, (4.21)

where p is a random number [0, 1). Note that if α = 1, the selection is com-
pletely random, but as the value of α increases, the resulting value has a more
deterministic behavior. The element selected will consist of two port visits to
be removed. The selection process continues until K port visits are removed.
Note that this method differs from the original method from Shaw (1998) in
that the subsequent pairs do not necessarily need to be related with the first
pair selected.

4.4.2.2 Time and space-relatedness removal

This removal uses a different relatedness measure. We first sort all port visits
by cost. The cost Bc

i of port visit c ∈ Ci for ship i ∈ N∗ is defined in Equation
(4.22). It is measured by the ship’s waiting, handling, and delay time at the
port visit, plus half of the fueling costs from sailing from the previous port (if
any) and to the next port (if any).

Bc
i = Hhci +Ddci + I(yci − aci ) +

F c
i

2
(4.22)

F c
i is the fuel costs associated with the previous and next port visits if any.

For example, if the ship sails from a previous port visit cp to port visit c, and
then continues to the next port visit cn, then the fuel costs are computed as in
Equation (4.23).

F c
i = F (v

cp,c
i Γi

s∆
ρ(cp),ρ(c)) + F (vc,cni Γi

s∆
ρ(c),ρ(cn)) (4.23)

In the case that port visit c is the first or last port visit in the route for the ship,
the corresponding missing sailing leg is removed from the fuel cost computation.

We then select the ith most expensive assignment applying Equation (4.21) and
remove all neighbor assignments. We define as neighbors all the assignments
that are within a distance of the assignment. We consider the distance in both
time and space. If an assignment is depicted as a rectangle in a time-space
diagram of the port, the neighbor area represents the one that overlaps in time
or space with it. All other assignments that overlap partially or completely with
the neighbor area are considered neighbors and removed. We then select the
most expensive assignment and remove all neighbor assignments. We repeat the
process until K assignments are removed.
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(a) Time-related port visits (b) Space-related port visits

Figure 4.3: Neighbor port visits in time and space for a given port visit in dark
grey.

Figure 4.3 shows an example of neighbor port visits in time and space. De-
pending on the dimension considered we define the two removal operators as
cost-time removal and cost-space removal.

4.4.2.3 Random removal

We also consider a fully randomized destroy operator. It randomly selects K
assignments to be removed. The goal of this operator is not to select relevant
port visits to remove but rather to help diversify the search.

4.4.2.4 Randomized greedy insertion

This method follows the same procedure as the construction heuristic with the
addition of a randomized component when selecting the port visit to schedule
at each step.

All unplanned port visits are sorted based on the number of available insertion
positions. An available insertion position is one that maintains a feasible solu-
tion. For instance, the port visit needs to ensure that the previous, or following
port visits, are connected through a feasible sailing speed if any of these are
already scheduled. We select the port visit using a randomization parameter γ
in the same way that α is used in Equation 4.21. This prioritizes the port visits
with fewer available insertion positions. The selected port visit is scheduled in
the position that increases the objective function the least (i.e., lowest cost).
The process iterates by recalculating the new number of insertion positions for
the remaining port visits.



4.4 Solution method 121

4.4.2.5 κ-regret insertion

This insertion method is based on the regret-k heuristic presented in Potvin
and Rousseau (1993). This method has an additional look-ahead component
compared to a basic greedy heuristic. For each of the port visits, we compute
the κ best scheduling positions, and we then measure the regret cost for each of
them as the difference between the best and κ-best positions. The one with the
highest regret cost becomes the next port visit to plan. The process is described
in Algorithm 4.2.

Algorithm 4.2 κ-regret insertion

1: procedure κregretInsertion(sol, unsch, κ)(partially destroyed solu-
tion, set of port visits to schedule, and the parameter κ)

2: while unsch ̸= ∅ do
3: order ← ∅ ▷ initialize empty list
4: for all portV isit ∈ unsch do
5: [pos]← findBestPositions(κ) ▷ compute κ best insert positions
6: regretCost← c(pos[κ]− pos[1]) ▷ compute regret cost
7: order ← sortList(portV isit, regretCost) ▷ sort list by regret cost
8: end for
9: sol← plan(order[1]) ▷ plan selected port visit

10: unsch← pop(order[1]) ▷ update set of unplanned port visits
11: end while
12: return sol
13: end procedure

4.4.2.6 Packing greedy insertion

This insertion method is similar to the randomized greedy insertion described
in Section 4.4.2.4. The main difference is the position where the port visits
are planned. Scheduling the port visits in a position with lower objective value
can lead to the creation of empty spaces and, therefore, to inefficient use of the
decision space. This method restricts the set of possible insertion positions to
the ones strictly adjacent to other scheduled ships, or to the limits of the quay or
planning horizon. By strictly adjacent, we mean that the port visit to schedule
needs to berth strictly next to another ship during at least one interval of time
(e.g., one hour) or berth strictly before (or after) another ship with at least one
quay segment in common. Also, we consider berthing positions where one of
the sides is at one end of the quay, or if the berthing period starts or ends at the
earliest and latest possible berthing time, respectively. Figure 4.4 shows some
example positions considered.
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Figure 4.4: Graphical representation of example positions (continuous line)
strictly adjacent to the grey ship or the quay space. The position
represented with a dashed line is not part of the set of positions as
it is not adjacent to another planned ship or the boundaries of the
decision space.

4.4.2.7 Arrival greedy insertion

This method is identical to the one presented in Section 4.4.2.4 with the only
difference that instead of sorting the unplanned port visits by increasing the
number of feasible insertion positions, we sort the unplanned port visits by
the earliest possible arrival time. One of the main goals of this method is to
schedule port visits earlier, at the expense of a potentially higher cost, in order to
increase the number of possible insertion positions for the remaining unplanned
port visits.

4.4.3 Acceptance criterion

Once a new solution is reconstructed, we either accept it as the new current
solution or reject it and reuse the previous one. We use a simulated annealing
(SA) based criterion to take this decision. Such an acceptance criterion has
been widely used for ALNS studies (see e.g. Ropke and Pisinger, 2006; Iris
et al., 2017). We accept the new solution x′ over the current one x if it is better
(f(x′) < f(x)), or if it is worse with a probability e

−(f(x′)−f(x))
T , where T is the

current temperature at a particular iteration, and f(x) is the objective function.
We define an starting an ending temperature, Tstart and Tend respectively, and
the cooling time tcool that defines the duration of going from Tstart to Tend.
Based on these parameters, we can define the cooling factor τ (0 < τ < 1),
by isolating it from the formula Tend = Tstartτ

tcool . This cooling factor allows
us to compute the temperature at any given instant. Given temperature T at
iteration i, we find the temperature T ′ to be used at iteration i+1 by computing
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T ′ = Tτ tit , where tit is the duration of the iteration i. Following the strategy
used in Iris et al. (2017), we compute Tstart and Tend based on the cost of
the initial solution f(x0) described in Section 4.4.1, where ξ and ϕ define the
percentage of the cost used to compute Tstart = ξf(x0) and Tend = ϕf(x0).

4.4.4 Adaptive weight adjustment

One of the main differences between the ALNS method and the standard Large
Neighborhood Search (LNS) is the adaptive component of the former. The per-
formance of the employed removal and insertion operators is measured at each
iteration. These measures are then used to update the weight and, therefore,
the probability of choosing the respective methods. The most common way of
measuring the performance of a method is to give it a different score depending
on the quality of the solution. In our case, we define four reward categories as
shown in Table 4.1.

Category Parameter
Current best solution ψ1

Better than current solution ψ2

Not better but accepted solution ψ3

Rejected solution ψ4

Table 4.1: Method reward categories

Let R and D denote the set of insertion and removal operators. Each removal
and insertion method has a probability πR

i , π
D
i respectively of being selected

at each iteration. Throughout the algorithm run, the probability of selecting
these methods gets updated depending on their performance. In our study, we
update the probabilities after a ∆update time interval. During these iterations
we accumulate the sum of ψR

i , ψ
D
i rewards for each method, and update the

weight ωR
i , ω

D
i of each method as indicated in Equation 4.24
ωR
i = (1− λ)ωR

i + λψR
i , ωD

i = (1− λ)ωD
i + λψD

i (4.24)
where λ is a parameter between 0 and 1 that denotes the degree of adaptability
of the method. If λ = 0, the weight remains equal to the previous one. This
means that each method would have the same probability throughout the entire
algorithm run, behaving like an LNS with multiple neighborhoods. If λ = 1, the
new operator’s probability solely depends on the score achieved during the last
∆update and not on previous scores. It is common to use an intermediate value
for λ strictly between 0 and 1. Once the weights are updated, the probability of
each repair method πR

i and destroy method πD
i can be computed as indicated

in Equation (4.25).

πR
i =

ωi∑
i∈R ωi

, πD
i =

ωi∑
i∈D ωi

(4.25)
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4.4.5 Local search

An extension of the method is implemented where we perform a local search
procedure after reconstructing a new solution. This step aims to incremen-
tally improve the solution by testing small adjustments to the port visits. The
procedure is based on the ejection chains strategy used in many routing and
network-based problems (see Glover (1992); Rego (1998); Bräysy (2003)). The
idea, in our case, is to perturbate the solution by re-planning a port visit to
a better position (i.e., lower operational cost) and iteratively re-plan any port
visits that conflict with the change. The chain of perturbations is limited to a
maximum number of port visits to re-plan Kchain, and it terminates if this limit
is reached or if a conflict-free solution is achieved. Figure 4.5 shows an example
of this move. Note that the handling time (i.e., the vertical dimension of the
port visitsships) is reduced or increased for the ships as their position changes
with respect to their ideal position. A pseudo-code of the procedure is described
in Algorithm 4.3. The function movePortV isit(p, n) performs the perturbation
for a given port visit (i.e., ship n at port p). It should be noted that the direc-
tion is given by the first perturbation made. To find the direction of the first
perturbation, we compute the cost variation of moving the port visit in three
directions: (i) one segment length towards the ideal position along the spatial
axis, and (ii) one time instant earlier and (iii) one time instant later along the
temporal axis. The direction in the spatial axis is checked if the port visit is
not scheduled already at its ideal position. Once the perturbation is performed
in the chosen direction, the following port visits in conflict are perturbed in the
same direction.

A high value of Kchain increases the probability of finding a better solution and
the number of operations to compute. The parameter Kchain should leverage
both solution quality and low computational complexity. Therefore, we define
the value of Kchain to depend on the number of instances ships and equal to
Kchain = 2 · |N |. The reason for Kchain > |N | is that for some movements, a
conflicting port visit may require multiple perturbations to achieve a feasible
new position, and selecting a lower Kchain value may be too restrictive.

4.4.6 Algorithm overview

The overview of the solution method is summarized in Algorithm 4.4. Due to
the additional computational effort of the local search procedure, we do not
execute it at each iteration. Instead, we only perform it if the reconstructed
solution is better than the current one. This reduces the number of times that
the local search is performed, allowing the algorithm to perform more iterations
while at the same time filtering the times the local search is performed to those
where we already have promising solutions.
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(a) The direction of move for ship 1 is
defined.

(b) The move generates conflicts with
ships 2 and 3.

(c) Moving ships 2 and 3 in the same
direction generates a new conflict
with ship 4.

(d) Moving ship 4 in the same direction
ends the ejection chain by finding
a new feasible solution.

Figure 4.5: Example representation of a local search step. The chain of moves
originates from ship 1 being moved one step x towards its ideal
berthing position. The port visit in grey depicts the first ship to
move, and the dark grey indicates an overlapping area. The dashed
rectangles represent the original position of the ship before the move.
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Algorithm 4.3 Local search procedure

1: procedure localSearch(sol,Kchain)(current solution, and the length of
the ejection chain (i.e., the maximum number of port visit moves))

2: done← false ▷ initialize termination criterion
3: while not done do
4: nextSol← sol ▷ initialize current best solution
5: ∆← 0 ▷ initialize delta cost variation
6: for all p ∈P do
7: for all n ∈ Np do
8: toMove = [(p, n)] ▷ track the port visits to re-plan
9: sol′ ← sol ▷ initialize copy of current solution

10: while k ≤ Kchain and toMove ̸= ∅ do
11: (p, n)← pop(toMove) ▷ get port visit to re-plan
12: sol′ ← movePortV isit(p, n, sol′) ▷ move port visit
13: toMove← computeConflicts(sol′) ▷ check for conflicts
14: k ← k + |toMove| ▷ update the ejection chain length
15: end while
16: if toMove = ∅ then
17: δ ← computeDeltaCost(sol, sol′) ▷ cost variation
18: if δ < ∆ then
19: ∆← δ ▷ update best delta cost
20: nextSol← sol′ ▷ update current best solution
21: end if
22: end if
23: end for
24: end for
25: if ∆ < 0 then
26: sol← nextSol ▷ update solution to return
27: else
28: done← true ▷ no improving neighbor solution
29: end if
30: end while
31: return sol
32: end procedure

4.5 Computational results

In this section, we first describe the generation process for the set of benchmark
instances, and we then perform a computational study where we cover both the
performance of the method and practical insights of the problem.
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Algorithm 4.4 Adaptive large neighborhood search procedure

1: procedure ALNS(inst, param)(a problem instance and a parameter set-
ting for the algorithm)

2: ψ, π ← initialize(inst) ▷ initialize operator selection parameters
3: sol← constructHeuristic(inst) ▷ construct initial solution
4: bestSol← sol
5: while timelimit not reached do
6: currSol← sol
7: removal, insertion← selectOperator(π) ▷ select operators
8: sol← insertion(removal(currSol)) ▷ get new solution
9: if c(sol) < c(currSol) then

10: sol← localSearch(sol)
11: end if
12: if isAccepted(sol) then
13: if c(sol) < c(bestSol) then
14: bestSol← sol
15: end if
16: currSol← sol
17: end if
18: π ← updateOperatorParams(ψ)
19: end while
20: return bestSol
21: end procedure

4.5.1 Instance generation

To the best of our knowledge, Martin-Iradi et al. (2022a) is the only study on
the MCBAP. The instances presented in the study are rather small and limited.
Therefore, we develop a more comprehensive set of benchmark instances. In
the absence of real-life data, one could extend current benchmarks instances of
the continuous BAP to multiple ports. Instead, we decided to use the public
access to port data (Marine Traffic, 2023), and we validated it with additional
data from an industrial research partner to create an instance generator for the
MBAP with a continuous quay.

We consider three different ship types: (i) feeders or small vessels with a length
of up to 200 meters, (ii) medium-size vessels with a length between 200 and
300 meters, and (iii) large vessels longer than 300 meters. Each ship type has a
different speed-fuel consumption relation. Moreover, we consider three terminals
at the three main ports in the north sea: (i) Rotterdam APMT (NLRTM),
with a quay length of 1600 meters (APM Terminals, 2022b), (ii) Bremerhaven
NTB (DEBRV), with a quay length of 1800 meters (APM Terminals, 2022a),
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and Hamburg EGH (DEHAM), with a quay measuring 2100 meters (Eurogate,
2022). These three ports are relatively close to each other, and large, medium,
and small vessels visit them in different sequences as part of their routes.

The duration of the vessel time window is based on the planned port call du-
ration. The planned duration of a vessel’s port call can often be updated the
days previous to the arrival time. Therefore, we establish a fixed point in time
for each ship two weeks before the actual arrival time and retrieve the planned
port call duration as the time difference between the estimated time of arrival
(ETA) and the estimated time of departure (ETD). We compute this by aver-
aging the planned port call duration for each port and ship type berthing in a
period of three months (January-March 2021). This value is also used to define
the minimum handling time h0 (see Table 4.2). Port service times that exceed
48, 72, and 96 hours for small, medium, and large ship types, respectively, are
categorized as outliers and removed from the dataset. The reason for this is
that such long service times usually involve maintenance or fueling operations
that are not usually performed on a regular basis. Thus, they are not part of
the problem.

Table 4.2: Minimum handling type in hours per ship type and terminal. These
values define hi,c0 .

Ship type \Terminal DEHAM DEBRV NLRTM
Feeder 10.1 12.1 10.4

Medium 18.0 21.8 18.4
Large 41.0 33.7 26.7

We define six different ship patterns, each with a given route, type of ship, and
length. All ships visit two or three ports in different orders. The N ships of an
instance are sampled from the six patterns.

For each ship, we randomize the (i) desired berthing position at each port visited
and (ii) the earliest start time EST c

i , following parameters ensuring that feasible
sailing times between ports exist. The estimated finish time EFT c

i is computed
by adding the corresponding value from Table 4.2 to EST c

i (EFT c
i = EST c

i +

hi,c0 ). In addition, we compute the latest finish time LFT c
i by adding half of the

difference between the minimum hi,c0 and maximum hi,cmax handling time that
the ship can take at the port to EFT c

i (LFT c
i = EFT c

i +
hi,c
max−hi,c

0

2 ).

As input to the instance generator, we define the number of external ships at
each port Nout that are considered fixed. For each external ship, we randomly
define: (i) the berthing position and time, (ii) the length (comprised between
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180 and 330 meters), and (iii) the handling time, adapted to be proportional to
the length of the vessel.

We assume the entire quay is available for berthing unless an external ship is
occupying it. We also consider 10 different speed levels, ranging uniformly be-
tween 17-21.5 knots. The ALNS heuristic we present can handle any continuous
value of the speed but not the MIP formulation we present. To ensure a fair
comparison of the methods we employ a discretized set of speed levels in both
the formulation and the solution method. Furthermore, the distance between
ports is computed based on the actual sea distance of the routes.

4.5.1.1 Handling time

It is a general practice, especially on the discrete version of the BAP, to define
a different handling time depending on the berthing position. For the contin-
uous version implemented in this paper, we follow the handling time definition
presented in Meisel and Bierwirth (2009) where deviations from a preferred
berthing position are penalized using a deviation factor β ≥ 0 (relative increase
in handling time per unit of distance, i.e., meters). Given the minimum han-
dling time hi,c0 at the preferred berthing position and the actual deviation from
the chosen position ∆b (measured in meters), the handling time is computed as
follows:

hci = (1 + β∆b)hi,c0 (4.26)

As a reference, the handling time ranges between 20 and 60 hours for medium
vessels and between 30 and 110 hours for large ones. This is given by berthing
at the best and worst places, respectively.

4.5.1.2 Time windows

In the MCBAP, there are two types of time windows:

• The time window for each ship at each visited port. This is given by the
port call duration. The time window start must be respected, but the end
can be exceeded. The berthing period can, therefore, exceed the end of
the time window counting the additional time as a delay. We also consider
a time window end that defines the latest finish time (LFT). Ideally, this
time window must be respected. However, we allow violating this time
window by adding a very high penalty cost.

• The time window of the berthing positions. This time window can be seen
as the operational hours of a given berthing position or segment of the
quay. We assume that all berthing positions are available at any time. It
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Table 4.3: Parameter settings of the benchmark instance set.

Parameter Seed Number
of ships

Number of external
ships per port

Distance between
positions

Values 1-10 30, 50, 70 5, 10 10, 20, 40, 80

should be noted that potential maintenance windows or partial closures of
the quay can be modeled in the same way as an external ship occupying
the given positions and time period.

4.5.1.3 Benchmark instances

Using the instance generator described in this section, we create a set of bench-
mark instances. The entire set comprises 240 instances. Each instance is a
combination of the parameter values listed in Table 4.3: (i) a randomized seed,
(ii) the number of ships to optimize, (iii) and the number of external fixed port
visits per port, and (iv) the length of the quay segment used to define possible
berthing positions.

4.5.2 Parameter tuning

The ALNS algorithm has a total of 18 algorithm parameters. These include
parameters used to calibrate the operators, the selection and acceptance criteria,
and the weight of the scores for new solutions (see Table 4.4). To select the best
value setting for the algorithm parameters we conducted a parameter tuning.
We selected a subset of 12 instances that are representative of the entire set.
For the tuning, we run the automatic algorithm configurator Pydgga (Ansótegui
et al., 2021) for the 30 generations with a time limit of 5 minutes for each
ALNS run. The configurator allows to parallelize the process, and the entire
parameter tuning lasted 8 hours. In Table 4.4, we define the domain of each
algorithm parameter used for tuning and the found setting. The models and
solution methods are written in Julia and run in a 2.90 GHz Intel Xeon Gold
6226R using one thread and 16 GB of RAM.

4.5.3 Method performance

To measure the quality of the method, we compare the presented method with
its variants and with a baseline commercial solvers; CPLEX v12.10.

Table 4.5 compares the results between CPLEX and the ALNS method. We
compute the objective gap for each instance run as zobj−zbest

zbest
where zobj is the

objective value of the best solution of the run, and zbest is the best-known solu-
tion across all experiments. We have grouped all instances per number of ships,
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Table 4.4: Studied range and chosen setting of algorithm parameters after the
parameter tuning.

Symbol Description Min val Max val Tuned setting
ϵ value used to compute the cooling ratio 0.005 0.2 0.157

φ
pct of initial solution obj used to
define start temperature (when reheated)

0.01 0.05 0.0246

ξ
pct of initial solution obj used to
define end temperature (to be reheated)

0.00005 0.001 0.000269

ρ
degree of destruction, pct of total port
visits to be removed by the removal methods

0.3 0.6 0.326

A weight for position deviation in shaw removal 0.5 2 0.55

B
weight for berthing start time deviation
in shaw removal

0.5 2 1.36

C
weight for berthing end time deviation in
shaw removal

0.5 2 0.89

α
randomness parameter for shaw removal
method

1 3 2.66

γ
randomness parameter for random greedy
repair method

1 3 2.85

µ
randomness parameter for arrival greedy
repair method

1 3 2.6

κ k-regret parameter 2 4 2

∆
number of iterations between updating the
weights of each method

0.01 0.05 0.017

η
parameter to adjust the importance of
recent scores vs. previous weight

0.3 0.7 0.456

ψ1 score when finding a current best solution 10 20 11

ψ2
score when finding a solution better than
the current solution

4 8 4

ψ3 score when the solution is accepted 1 3 2
ψ4 score when the solution is rejected - - 0

β
parameter that defines the position
bounds for ship (times the length)

2 5 4.02

external ships, and distance between berthing positions. Each group contains
10 instances and is named X-Y-Z according to their common characteristics.
X is the number of ships, Y is the number of external ships per port, and
Z is the distance between consecutive positions considered in meters (i.e., seg-
ment length). Therefore, each row in the table corresponds to the average value
across instances with different seed values. The ALNS is tested by running each
instance 10 times and computing the average, best and worst run.

We observe that CPLEX scales poorly, especially in instances with more than 30
ships. The gap is better for the smallest instances but quickly worsens. On aver-
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Table 4.5: Gap for the MIP formulation solved by CPLEX and the ALNS
method with a time limit of 5 minutes and 1 hour. We also re-
port the average gap between the best and worst runs of the ALNS.
Each row corresponds to an instance group (i.e., the average results
across 10 instances of the same size).

5 minutes 1 hour
Instance

group

MIP

gap (%)

ALNS

gap (%)

Best ALNS

gap (%)

Worst ALNS

gap (%)

MIP

gap (%)

ALNS

gap (%)

Best ALNS

gap (%)

Worst ALNS

gap (%)

30_5_10 10.1 11.9 7.3 17.4 1.5 4.8 1.8 8.4
30_5_20 7.4 9.4 4.6 14.9 1.7 3.3 0.9 6.0
30_5_40 10.2 6.9 3.6 10.2 1.2 3.4 1.2 5.5
30_5_80 15.3 7.5 4.3 10.5 2.1 3.4 0.9 5.5
30_10_10 15.1 10.0 6.1 14.5 2.7 3.6 0.8 6.8
30_10_20 16.5 8.1 4.7 11.9 5.8 2.9 0.5 5.2
30_10_40 13.3 5.9 3.3 8.4 3.5 2.3 0.2 4.3
30_10_80 16.9 5.2 3.3 7.6 5.7 2.3 0.5 4.5
50_5_10 22.5 14.4 8.6 19.3 2.2 4.3 0.7 9.6
50_5_20 45.7 11.4 6.1 18.2 6.4 3.6 0.8 6.9
50_5_40 59.1 8.8 4.3 13.1 11.1 2.9 0.0 6.2
50_5_80 82.7 7.2 4.3 10.6 14.3 2.9 0.5 5.3
50_10_10 66.5 10.3 5.2 14.6 8.1 2.9 0.6 5.9
50_10_20 61.4 8.3 4.4 13.0 9.2 2.2 0.0 4.6
50_10_40 74.6 7.0 3.9 11.3 13.4 2.7 0.0 5.5
50_10_80 92.3 6.2 3.5 9.3 16.7 2.2 0.0 4.3
70_5_10 139.5 13.8 7.2 18.9 8.7 3.9 0.8 8.2
70_5_20 103.4 10.9 5.6 16.3 9.3 2.4 0.0 5.9
70_5_40 141.3 7.8 4.2 13.4 14.7 2.4 0.0 4.8
70_5_80 136.5 5.8 2.9 9.0 17.9 2.3 0.0 4.5
70_10_10 95.2 11.7 7.6 16.0 15.5 2.7 0.0 5.5
70_10_20 90.8 8.8 4.2 13.0 16.8 2.3 0.0 5.1
70_10_40 122.0 7.3 3.9 11.1 29.5 2.3 0.0 4.7
70_10_80 141.0 5.5 3.3 8.4 28.2 2.1 0.0 3.9
Average 65.8 8.7 4.8 13.0 10.3 2.9 0.4 5.7

age, the ALNS method outperforms the commercial solver by achieving tighter
gaps in most instances. The gap is an indicator of the method performance
relative to each other but does not provide an optimality guarantee. The lower
bounds obtained with CPLEX indicate a high optimality gap. This could be
due to a low-quality solution or a poor lower bound. Martin-Iradi et al. (2022b)
indicated that the relaxation of the MIP formulation for the MBAP with a dis-
crete quay could be poor and showed that a network-flow reformulation could
tighten the relaxation significantly. As indicated in Martin-Iradi et al. (2022a),
network-flow formulations for the MCBAP can suffer from scalability but show
that the relaxation is stronger. We compare the results from the branch-and-
price method presented in Martin-Iradi et al. (2022a) with the ALNS method.
The formulation presented in Martin-Iradi et al. (2022a) is slightly different
from the one addressed in this paper. The formulation from Martin-Iradi et al.
(2022a) defines the latest finish time for each ship berthing at a port that must
be satisfied. We have adapted the method from Martin-Iradi et al. (2022a) to
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the formulation of this study. The branch-and-price method is based on a graph
representation, and therefore, we need to establish the latest possible berthing
time. This is set to 50 % more than the latest finish time. This allows the
method to exceed the latest finish time while maintaining the graph at a rea-
sonable size. This is a generous bound, and our empirical studies show that
this bound does not affect the optimal solution. For that, we have also gener-
ated a new set of instances of similar size to the ones presented in Martin-Iradi
et al. (2022a) using the instance generator defined in Section 4.5.1. The input
parameters for the instance set are defined in Table 4.6.

Table 4.6: Parameter settings of the instance set based on the ones from Martin-
Iradi et al. (2022a).

Parameter Seed Number
of ships

Number of external
ships per port

Distance between
positions (m)

Values 1-5 4-15 3-5 10, 20, 40, 80

The entire set comprises 720 instances, one for each combination of input param-
eters. The results are shown in Table 4.7, where we have grouped the instances
in batches of 60 according to the number of ships. We compare the branch-
and-price method with the ALNS and MIP formulation presented in this study.
For both the branch-and-price and CPLEX we compute their optimality gap,
where we observe that the branch-and-price method achieves a better gap due
to the tighter lower bound in most cases. We also compute the gap to the best-
known solution for all three methods. In this case, we observe that CPLEX
provides the best performance, showing that despite its poorer relaxation, the
upper bounds found are near-optimal. The branch-and-price method still shows
a robust performance but for short computational times and larger instances,
the ALNS method is able to provide better solutions.

The ALNS method has two main components that differentiate it from other
heuristics: (i) the adaptive procedure that guides the operator selection and
(ii) the local search procedure that is performed when promising solutions are
found. To quantify the impact of these two procedures, we compare the pro-
posed method to its variants with and without each of the components. One
variant is the method without its adaptive component (i.e., large neighborhood
search (LNS)), meaning that each removal and insertion operator has an equal
probability of being selected throughout the algorithm run. Another variant
is the ALNS method without the local search (LS). The objective gap across
the methods is compared in Table 4.8, with a time limit of 5 minutes, and 1
hour. For the short time limit, we see that the ALNS without the local search
performs the best in most instances. Once the time limit is increased, the value
of the local search is more apparent, and it provides the best results in most
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Table 4.7: Performance comparison across 720 instances between the MIP for-
mulation solved by CPLEX, the adapted branch-and-price method
from Martin-Iradi et al. (2022a), and the ALNS method, with a time
limit of 5 minutes and 1 hour. Each row shows the average gap values
across all instances with same number of ships.

Number
of ships

CPLEX
Opt. gap (%)

Branch-and-price
Opt. gap (%)

CPLEX
Gap (%)

Branch-and-price
Gap (%)

ALNS+LS
Gap (%)

5 min. 1 hour 5 min. 1 hour 5 min. 1 hour 5 min. 1 hour 5 min. 1 hour
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1
7 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.2
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2
9 0.0 0.0 0.3 0.1 0.0 0.0 0.2 0.0 0.3 0.2

10 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.5 0.3
11 1.0 0.2 0.3 0.1 0.1 0.0 0.1 0.0 0.3 0.2
12 1.1 0.6 0.8 0.2 0.1 0.0 0.4 0.0 0.2 0.1
13 4.0 2.7 1.1 0.6 0.1 0.1 0.4 0.2 0.4 0.2
14 3.5 2.0 1.2 0.4 0.1 0.1 0.6 0.1 0.7 0.4
15 7.3 4.8 1.7 1.0 0.3 0.1 0.7 0.2 0.5 0.3

Average 1.41 0.86 0.49 0.20 0.06 0.02 0.20 0.05 0.30 0.19

instances.

To measure the impact of the local search procedure, we compare different
strategies that differ in the frequency of execution of the local search procedure.
We test three other variants of the algorithm in which the local search is called
every 1, 2, and 4 iterations. The results are summarized in Table 4.9 where we
can observe the increased computational complexity that the local search can
add to each iteration. Performing the local search procedure very frequently
can lead to good solutions in fewer iterations, but it also results in longer com-
putational times. The proposed strategy performs the local search at iterations
where the reconstructed solution is better than the incumbent one, and we show
that this strategy performs the best. This method allows us to perform the local
search in a fewer number of iterations, but at the same time, has the potential
to result in promising and better solutions.

Tables 4.10 and 4.11 summarized the performance of the different removal and
insertion operators used within the ALNS method. For each removal operator,
we compute three metrics: (i) the percentage of iterations in which the oper-
ator was selected IT, (ii) the percentage of current best solutions found using
the operator NB, and (iii) the percentage of times that the resulting solution
was better than the current one using the operator NC. For the insertion meth-
ods, we also display a fourth column T, which indicates the percentage of time
each operator has consumed from the total time spent repairing solutions. The
time spent in removal methods is significantly lower than in insertion operators;
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Table 4.8: Performance comparison between variants of the proposed ALNS
method.

5 minutes 1 hour
Instance

group

ALNS + LS

gap (%)

ALNS (no LS)

gap (%)

LNS + LS

gap (%)

LNS (no LS)

gap (%)

ALNS + LS

gap (%)

ALNS (no LS)

gap (%)

LNS + LS

gap (%)

LNS (no LS)

gap (%)

30_5_10 11.9 11.8 12.0 13.6 4.8 4.9 5.5 5.9
30_5_20 9.4 9.6 8.8 10.6 3.3 3.6 3.4 4.0
30_5_40 6.9 7.3 7.3 7.8 3.4 3.3 2.1 2.5
30_5_80 7.5 7.5 6.4 7.0 3.4 3.7 2.1 2.3
30_10_10 10.0 10.9 10.6 11.8 3.6 3.7 4.2 4.7
30_10_20 8.1 8.2 8.6 9.6 2.9 2.8 3.1 3.3
30_10_40 5.9 6.3 5.6 6.3 2.3 2.4 1.4 1.7
30_10_80 5.2 5.4 4.5 5.3 2.3 2.3 0.8 1.0
50_5_10 14.4 15.5 15.1 18.2 4.3 5.1 7.1 9.4
50_5_20 11.4 12.2 12.8 16.3 3.6 4.4 5.1 7.7
50_5_40 8.8 10.2 11.0 13.2 2.9 3.9 3.8 6.2
50_5_80 7.2 8.3 8.2 10.6 2.9 3.0 3.4 4.6
50_10_10 10.3 11.4 12.0 14.4 2.9 3.9 5.1 7.1
50_10_20 8.3 9.2 9.9 12.5 2.2 3.3 3.6 5.7
50_10_40 7.0 8.1 8.1 10.9 2.7 3.5 3.1 4.9
50_10_80 6.2 6.6 6.6 8.7 2.2 2.6 2.6 3.1
70_5_10 13.8 14.7 14.6 17.4 3.9 5.4 6.7 10.9
70_5_20 10.9 11.4 11.4 14.4 2.4 4.6 5.1 8.5
70_5_40 7.8 10.1 9.4 13.1 2.4 3.9 3.9 7.1
70_5_80 5.8 7.8 7.6 11.0 2.3 3.5 3.2 5.5
70_10_10 11.7 12.6 11.8 14.8 2.7 4.3 5.2 8.3
70_10_20 8.8 10.3 9.6 13.3 2.3 4.2 4.6 7.6
70_10_40 7.3 9.2 8.4 11.9 2.3 3.8 3.9 6.2
70_10_80 5.5 6.8 6.6 9.4 2.1 3.0 3.0 4.5
Average 8.7 9.7 9.4 11.8 2.9 3.7 3.8 5.5

therefore, we do not compute this metric for the removal operators. We ob-
serve that the random removal is the better-performing removal method when
the number of ships is 30. However, for larger instances, the cost-time removal
performs better. This suggests that when the number of port visits increases,
the probability of removing port visits that are not related at all also increases,
making pure random methods less efficient. Furthermore, removing port vis-
its that overlap in time is more effective than removing the ones that overlap
in berthing space. While ships can berth at multiple positions along the quay
without major delays and disruptions in their schedule, berthing earlier or later
can negatively impact the sailing in the rest of the voyage legs. Therefore, their
flexibility comes at a larger cost. We also notice that the Shaw removal becomes
less useful in larger instances. This operator removes pairs of port visits at a
time. These pairs can be highly unrelated between them, worsening the effects
of the overall operator. Similarly to the random removal, this inter-relatedness
issue increases with the number of port visits.

Regarding the repair methods, the κ-regret insertion method shows the best and
more robust performance. Even if, in some cases, it is not the most frequently
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Table 4.9: Algorithm comparison with different frequencies for the local search
procedure with a time limit of one hour.

LS every
iteration

LS every
2 iterations

LS every
4 iterations

LS when the solution is
better than the incumbent

Instance
group

Gap
(%)

Iter.
x1000

Gap
(%)

Iter.
x1000

Gap
(%)

Iter.
x1000

Gap
(%)

Iter.
x1000

% of iter.
with LS

30_5_10 5.3 5.2 5.3 7.3 5.3 7.8 4.8 12.7 1.3
30_5_20 4.2 8.0 4.1 11.1 4.2 12.8 3.3 18.6 1.5
30_5_40 3.8 11.0 3.4 16.5 3.6 21.1 3.4 27.4 2.5
30_5_80 4.3 15.7 3.9 25.7 3.8 36.0 3.4 60.4 2.7
30_10_10 3.9 5.6 4.0 7.1 4.0 7.8 3.6 10.9 1.6
30_10_20 3.1 8.8 3.1 12.3 3.5 13.3 2.9 20.0 1.7
30_10_40 2.5 12.4 2.3 18.2 2.2 23.9 2.3 30.4 2.9
30_10_80 2.7 17.6 2.5 28.9 2.5 39.4 2.3 63.4 3.0
50_5_10 3.9 2.0 4.4 3.2 4.9 3.8 4.3 8.5 0.4
50_5_20 4.2 2.6 4.5 4.3 4.6 6.2 3.6 16.2 0.4
50_5_40 3.4 3.4 2.9 5.3 3.4 7.8 2.9 13.8 0.8
50_5_80 4.1 4.5 3.9 7.6 3.7 11.6 2.9 24.8 1.1
50_10_10 2.9 2.3 2.9 3.5 3.7 4.6 2.9 8.8 0.7
50_10_20 2.6 3.1 2.8 5.1 2.9 6.3 2.2 15.4 0.6
50_10_40 3.1 4.2 3.1 6.4 3.1 9.1 2.7 14.3 1.2
50_10_80 2.9 5.5 2.8 9.2 3.0 13.4 2.2 26.8 1.6
70_5_10 3.4 1.2 3.7 1.9 4.6 2.5 3.9 5.0 0.5
70_5_20 2.9 1.5 3.4 2.5 4.0 3.3 2.4 10.0 0.5
70_5_40 3.4 1.7 3.5 2.9 3.6 4.6 2.4 11.4 0.5
70_5_80 3.7 2.0 3.5 3.7 3.5 6.0 2.3 17.7 0.7
70_10_10 2.8 1.3 3.1 2.1 3.6 2.6 2.7 5.0 0.8
70_10_20 2.5 1.8 2.7 2.8 3.1 4.0 2.3 9.2 0.7
70_10_40 3.3 2.1 3.2 3.5 3.5 5.2 2.3 10.0 0.8
70_10_80 3.5 2.3 3.5 4.1 3.1 6.9 2.1 18.9 0.9
Average 3.4 5.2 3.4 8.1 3.6 10.8 2.9 19.1 1.2

Table 4.10: Performance summary of the four removal operators. The instances
are grouped per number of ships.

Number
of ships

Cost-berth removal Cost-time removal Shaw removal Random removal
IT NB NC IT NB NC IT NB NC IT NB NC

30 6 4 2 17 21 13 28 20 24 50 55 62
50 6 4 1 47 50 38 12 8 8 35 38 52
70 6 4 2 69 81 84 6 2 1 19 12 13

used operator, it is clearly computationally intensive, and more than half of the
time is spent computing the insertions related to this method. The randomized
greedy insertion is also relevant and becomes more effective in larger instances.
The remaining two insertion operators, packing and arrival greedy, show a mod-
est performance. Still, they also proved to help achieve some of the best-found
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Table 4.11: Performance summary of the four insertion operators. The instances
are grouped per number of ships.

Number
of ships

Efficient packing
insertion

Random greedy
insertion

Arrival greedy
insertion

κ-regret
insertion

I T NB NC I T NB NC I T NB NC I T NB NC
30 5 2 4 1 17 10 24 7 10 5 13 3 68 83 60 89
50 5 3 3 1 37 33 34 22 8 6 6 2 49 58 57 75
70 6 3 3 1 47 39 51 46 9 6 6 3 38 52 39 50

Figure 4.6: Usage of each removal operator during an algorithm run of 1 hour
for an instance from group 30_10_10.

solutions during the algorithm run.

To better understand the algorithm’s behavior and when the operators are used,
we tracked the use of each operator during the algorithm run. Figures 4.6 and
4.7 show an example run of one hour for an instance with 30 ships, 10 external
ships per port, and a quay segment length of 10 meters. We observe that the
cost-berth removal is only used at the beginning of the run when each operator
has a more balanced probability of being chosen. The packing greedy heuristic
shows a similar behavior and correlates with the low usage of these two operators
as shown in Table 4.10 and 4.11. Nonetheless, the rest of the operators are used
for most algorithm runs. Some operators show an oscillating behavior, such as
the cost-time removal operator. This behavior correlates with the temperature
of the acceptance criterion, which is reheated periodically and suggests that
the operator has a higher probability of being selected when the temperature is
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Figure 4.7: Usage of each insertion operator during an algorithm run of 1 hour
for an instance from group 30_10_10.

higher.

Additionally, for both removal and insertion operators, we tested the algorithm
removing the worst performing operators, one at a time, but the performance
of the method worsened in all cases, indicating that all operators are to some
extent useful and combine well together.

4.5.4 Practical impact

This problem involves two main stakeholders, namely, the terminal operators
and the shipping carriers. The objective function covers the operational costs of
both of them. This section disaggregates and analyzes the different operational
costs by performing various sensitivity analyses.

In Table 4.12, we group the instances per quay segment length. We observe a
natural trade-off here. A shorter segment length allows a more granular set of
berthing positions and, therefore, a potentially better solution quality. However,
this increases the complexity of the problem, and in the case of our method, it
results in fewer iterations per hour. Despite performing less than a quarter of
the iterations of the instances with 80 meters segments, the method finds better
solutions for the shorter-segment instances. The improvement in objective value
mainly translates into shorter delays and increased waiting time. The handling
and fuel costs remain similar. The vessel time windows or port calls are already
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Table 4.12: Average operational costs and cost variation across instances with
different quay segment lengths. All instances are run for one hour.
The costs are in thousands of USD.

Segment
length (m)

Waiting Handling Delay Fuel Total Penalty
Iterations

x1000
10 390 537 3210 1274 5411 0.04 8
20 368 537 3246 1275 5426 0.05 15
40 242 541 3449 1276 5509 0.09 18
80 241 542 3910 1275 5968 0.14 35

pre-planned, considering a low sailing speed. This, together with the fact that
fuel costs account for a large part of the total costs, results in that ships already
sailing at the slowest speed in most of the solutions (see Table 4.14).

Table 4.13: Operational costs for instances grouped by different amounts of ex-
ternal ships per port.

External ships
per port

Waiting Handling Delay Fuel Total Penalty

0 451 538 2365 1278 4632 0.06
5 287 538 3022 1275 5122 0.04
10 301 538 3227 1275 5341 0.05
20 461 538 2718 1278 8300 0.11

Another operational aspect we inspect is the impact of the external ships in the
planning process. We solve the problem for instances with a different number
of external ships per port, from none to twenty ships per port. The results are
summarized in Table 4.13. The results support the rationale that an increased
number of external ships per port results in a more congested berth allocation
and, as a result, higher operational costs. In this case, the port congestion is re-
flected in the Penalty column, which indicates the average number of port visits
per instance exceeding the latest finish time. Since this type of delay is heavily
penalized, improvements in this aspect significantly impact the objective value.
These results also indicate that the level of impact of this type of collaborative
problem can increase significantly when more ships are involved. When more
ships collaborate, their potential joint savings increase and the terminal has
more planning flexibility.

As mentioned previously, fuel consumption is the main cost driver for carriers.
Fuel prices have fluctuated significantly in the last two years due to the global
socio-economical and political situation. We consider that ships use a very low
sulfur fuel oil (VLSFO) with an estimated price of 500 USD per metric ton.
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However, the prices of this fuel have ranged between 200 and 1100 USD per
metric ton in the last two years. Therefore, we have also tested our method
using a fuel price of 200 and 1100 USD per metric ton (Ship & Bunker, 2022)

Table 4.14: Average fuel consumption per ship and sailing speed based on dif-
ferent fuel prices

Number
of ships

Fuel price (USD/metric tonne)
200 500 1100

Fuel Speed Fuel Speed Fuel Speed

30 51.04 17.12 50.53 17.04 50.37 17.01
50 51.50 17.10 51.11 17.04 50.99 17.02
70 52.14 17.19 51.35 17.08 51.07 17.03

Average 51.56 17.14 51.00 17.05 50.81 17.02

Table 4.14 shows the average fuel consumption (Fuel) in metric tonne per ship
and sailing speed (Speed) in knots, grouped by instances with the same number
of ships. We observe that the average consumption can increase by more than
half a metric tonne when the fuel price decreases from 500 USD per tonne to
200 USD per tonne. This difference is more prominent in instances with a large
number of ships, where more ships sail marginally faster to arrive earlier at the
next port to get a better service. However, when the fuel price increases above
500 USD per metric tonne, the reductions in fuel consumption are relatively
small. The main explanation for this is due to the low sailing speeds in general.
The fuel costs already account for a large part of the operational costs, and
the solutions indicate that ships sail close to the slowest speed of 17 knots in
most cases. We observe a slight increase in average sailing speed when the fuel
price is low, but the size of the instance does not have an impact on the speed.
A similar sensitivity analysis performed by Venturini et al. (2017) indicated a
similar behavior.

4.6 Conclusions

In this work, we address an emerging problem in maritime collaborative logistics
that integrates the operations of both shipping carriers and terminal operators.
We present both a new MIP formulation for the multi-port continuous berth al-
location problem with speed optimization, and an ALNS algorithm to solve it.
The ALNS algorithm takes advantage of a diverse set of tailored insertion and
removal methods. It guides the algorithm by prioritizing the better-performing
methods. The modular characteristic of the algorithm could be exploited to
develop a decision support tool for terminal operators, where the operators’
experience can lead to new tailored operators. Furthermore, in terms of com-
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putational performance, the heuristic method is able to find high-quality solu-
tions to larger instances than the ones studied in the literature and outperforms
commercial solvers such as CPLEX. We also study the practical impact of the
problem in terms of operational costs for the carriers and terminal operators and
analyze the resulting quality of the berth plans and sailing speeds. We conclude
that engaging in this type of collaboration can result in overall cost reductions
for the stakeholders and also benefits to the environment due to the potential
lower fuel consumption.

Some aspects of this study remain as future work or research direction. Regard-
ing the solution method, the insertion operators are the main bottleneck in terms
of computational complexity. One could explore simpler insertion operators or
other heuristic variants. Studying the scalability of the method in more detail
could be relevant. There is no doubt that the heuristic method scales better
than CPLEX, and results in small instances indicate that the ALNS achieves
near-optimal solutions. For larger instances, the optimality gap of CPLEX
increases significantly, and the lower bound becomes impractical. Finally, in-
corporating practical aspects such as transhipments or disruptions management
is an attractive research direction. We envision the use of frameworks such as
stochastic programming to tackle this type of problem. All in all, this type of
study highlights the potential impact of collaborative logistics and the value of
integration in the transportation sector.

Acknowledgements: The authors thank the Danish Maritime Fund for sup-
porting this work.
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Abstract: Demand-responsive microtransit offers opportunities to en-
hance urban mobility by combining the reliability of public transit and
the flexibility of ride-sharing. This paper optimizes the design and
operations of a microtransit system that relies on reference lines and
that performs on-demand deviations in response to passenger requests.
We formulate a Microtransit Network Design model for Vehicle Routing
(MiND-VRP) via two-stage stochastic optimization with a tight second-
stage structure. This formulation leverages a novel subpath-based repre-
sentation of microtransit in a load-expanded network, which optimizes
on-demand deviations between reference stops while keeping track of
vehicle occupancy in between. We develop a solution algorithm com-
bining Benders decomposition, column generation and a tailored label
setting algorithm. Using real-world data from Manhattan, our method
scales to very large instances arising in practice, with dozens of lines and
hundreds of reference stops. Comparisons with transit and ride-sharing
offerings suggest that demand-responsive microtransit can provide win-
win outcomes toward efficient and sustainable mobility: higher demand
coverage, better level of service, and smaller environmental footprint.

Keywords: Public transit, microtransit, stochastic optimization

5.1 Introduction

Major cities are facing critical challenges to meet mobility needs and environ-
mental impact targets. As population grows and urbanization accelerates, so
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do travel demand and e-commerce deliveries. INRIX (2022) estimated the an-
nual impact of traffic congestion in the United States is around a hundred hours
per driver and hundreds of billions of dollars in total. Urban transportation
also remains a major contributor to greenhouse gas emissions (US Environ-
mental Protection Agency, 2018) and to socio-economic inequalities (Wellman,
2014). Transit systems play a pivotal role in addressing these challenges. Yet,
their static infrastructure offers limited service flexibility, leading to a decline
in transit ridership and the emergence of transit deserts (The Economist, 2018;
Allen, 2017). The COVID-19 pandemic reinforced the need to adapt to chang-
ing mobility needs. Thus, new technologies and policies are needed to promote
effective, sustainable, and equitable mobility.

Shared mobility systems introduce the most important disruption to urban mo-
bility. McKinsey & Co. (2021) estimates that the ride-sharing market tripled
between 2016 and 2019, with 40 million combined trips booked every day on
Uber and Lyft. These staggering numbers suggest that flexible, on-demand
services meet a critical need of urban travelers and partially displace transit
demand as a result (Gehrke and Reardon, 2018). However, ride-sharing remains
insufficient to fundamentally alter the commuting landscape by itself due to
high fares and their contributions to urban congestion (Mangrum and Molnar,
2017; Agarwal et al., 2023).

This context creates opportunities to design hybrid microtransit services, de-
fined by the US Department of Transportation (2016) as “privately owned and
operated shared transportation system(s) that can offer fixed routes and sched-
ules, as well as flexible routes and on-demand scheduling.” In general terms,
microtransit brings the digital capabilities of ride-sharing into the realm of pub-
lic transit to embed flexibility into existing transit offerings or to serve transit
deserts, i.e. areas where transit is unavailable. Microtransit has already been
piloted in several cities (OECD, 2017; Eno Center for Transportation, 2018;
Hernandez, 2018; Boston Consulting Group, 2019). These systems experiment
with new ways to combine the reliability of public transit and the flexibility
of ride-sharing, by merging advance planning with on-demand operations for
high-capacity vehicle fleets. As a result, microtransit has the potential to in-
crease the responsiveness of urban mobility at affordable price points. Yet, to
be successful, microtransit systems require dedicated analytics and thoughtful
design to achieve low costs and high levels of service (McKinsey & Co., 2018).

This paper develops models and algorithms to support the ongoing transition to-
ward demand-responsive microtransit and to evaluate its potential for enhancing
urban mobility systems. To balance predictability and flexibility, we conceptu-
alize microtransit as a system that operates in two steps. At the strategic level,
the microtransit provider advertises reference lines, each defined as an ordered
set of stops that a vehicle will visit at designated times. At the operational
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level, the microtransit provider may deviate from the reference lines to better
serve on-demand passenger requests. This paper addresses the problems of net-
work design (which reference lines to operate), service scheduling (with which
frequency and timetable to operate on each reference line), and vehicle routing
(how to operate vehicles in response to on-demand passenger requests).

From a technical standpoint, the design of microtransit systems combines diffi-
culties of public transit and on-demand transportation. Public transit involves
challenging planning problems to provide high service coverage under budget
restrictions. At the other extreme, on-demand transportation involves challeng-
ing operating problems to devise vehicle routes in response to real-time rider
demand. In-between, microtransit systems combines strategic planning ques-
tions and real-time operating questions, thus requiring customized modeling
and algorithmic frameworks.

Our first contribution is to formulate a Microtransit Network Design model
for the Vehicle Routing Problem (MiND-VRP) to support the design and on-
demand operations of microtransit systems. The model exhibits a two-stage
stochastic optimization structure under demand uncertainty. The first stage se-
lects reference lines and corresponding frequencies. The second stage captures
on-demand routing deviations to serve passenger requests over a discrete set of
scenarios characterizing passenger demand. The model features a bi-objective
structure to maximize both ridership and level of service, comprising passen-
gers’ wait times, walking distances, and arrival delays. This problem combines
two challenging discrete optimization problems: a first-stage network design
structure and a second-stage capacitated routing structure with time windows.

To retain a tight second-stage formulation, we propose a subpath-based for-
mulation of microtransit operations in a novel load-expanded network. Each
node identifies the reference stop and the vehicle load, and each subpath-based
arc represents an on-demand deviation between reference stops. We show that
our subpath-based variables enable a more effective decomposition than direct
segment-based variables (between pickup locations) and path-based variables
(connecting the origin to the destination of each transit line). As compared to
the direct segment-based formulation, our subpath-based formulation integrates
time window requirements in the definition of the subpaths so the problem can
be formulated in a load-expanded network rather than a time-load-expanded
network. As compared to the path-based formulation, our subpath-based for-
mulation drastically quells the rate of exponential growth in the number of
variables.

The second contribution of this paper is to design a decomposition algorithm
that combines column generation and Benders decomposition to solve large-scale
instances of the MiND-VRP arising in practice. The Benders decomposition
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module exploits the block-diagonal structure of the two-stage stochastic opti-
mization formulation, iterating between the first-stage network design model and
the second-stage routing problems. The column generation module solves each
Benders subproblem by iteratively adding subpaths between reference stops. We
develop a label-setting algorithm to generate subpaths of minimal reduced cost
while keeping track of vehicle load and level of service. We also propose exact
and heuristic acceleration strategies. Ultimately, our approach is amenable to ef-
fective decomposition by leveraging a subpath-based structure in load-expanded
networks and a corresponding subpath-generation solution procedure.

Our third contribution is to demonstrate the scalability of our modeling and
algorithmic approach via extensive computational experiments. We develop a
real-world experimental setup in Manhattan using data from the Metropolitan
Transportation Authority (2022) to define candidate transit lines and data from
the NYC Taxi & Limousine Commission (2021) to generate demand scenarios.
Our subpath-based formulation scales much better than the direct segment-
based baseline and than the path-based baseline: it terminates much faster in
medium-scale instances, and it can solve large-scale instances when the two
benchmarks fail to even return feasible solutions. We also show the combined
benefits of our Benders decomposition structure, our column generation scheme
and our label-setting algorithm toward solving large-scale instances of the prob-
lem. As a result, our algorithm yields high-quality solutions in large-scale in-
stances in the full Manhattan network with dozens of lines and hundreds of
reference stops. These results provide high-quality solutions in a setting of
comparable size to recent single-stage network design models in the fixed-route
transit literature, while capturing demand uncertainty and second-stage micro-
transit operations; moreover, our paper considers a much larger setting than
single-stage vehicle routing formulations in the microtransit literature, while
capturing demand uncertainty and first-stage network design. In summary, our
method provides results at highly competitive scale in both branches of lit-
erature, but also integrates the tactical on-demand operations into strategic
network design.

The fourth contribution is to show that microtransit can provide win-win out-
comes toward efficient and sustainable urban mobility. We perform a compre-
hensive assessment of the microtransit system against existing urban mobility
solutions. As compared to ride-sharing, microtransit can consolidate demand
into high-capacity vehicles under high demand or low capacity, resulting in fewer
vehicle miles traveled than single-occupancy ride-sharing and a comparable level
of service to high-capacity ride-sharing. As compared to fixed-route transit, mi-
crotransit can serve 25-30% more passengers with the same budget of lines, by
leveraging operating flexibility to deviate from the reference line up to 30% of
the time. Ultimately, the microtransit system under consideration can achieve
Pareto improvements as compared to fixed-route transit: higher demand cover-
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age, lower operating costs, and smaller distance traveled along with concomitant
environmental benefits.

5.2 Literature review

The demand-responsive microtransit system considered in this paper is related
to the literature on transit planning, ride-sharing, and on-demand transit.

Transit network design

Transit has received extensive attention from the operations research commu-
nity (see, e.g., Magnanti and Wong, 1984; Desaulniers and Hickman, 2007).
Canonical problems include frequency planning, timetabling, and disruption re-
covery (see, e.g., Nourbakhsh and Ouyang, 2012; Barrena et al., 2014; Ortega
et al., 2018; Sun et al., 2022, for recent contributions). Our paper relates to
the upstream problem of designing transit lines to maximize demand coverage,
maximize connectivity, and adhere to budget restrictions. Due to its complexity,
the problem has often been solved with heuristics (see, e.g., Ceder and Wilson,
1986; Baaj and Mahmassani, 1995; Cipriani et al., 2012; Walteros et al., 2015).
Among exact methods, Wan and Lo (2003) used mixed-integer optimization,
Barra et al. (2007) used constraint programming, and Marín and Jaramillo
(2009) used Benders decomposition. However, these formulations could only
scale to small instances comprising 10-25 stops. Borndörfer et al. (2007) and
Borndörfer and Karbstein (2012) proposed a column generation algorithm to
solve an incremental network design problem. Bertsimas et al. (2021) addressed
a comprehensive network design problem, also using column generation; they
generated solutions in large-scale networks with hundreds of stops and thou-
sands of edges.

Demand-responsive microtransit combines reference transit lines and on-demand
routing deviations. Our first-stage model therefore relates to transit network
design, but our formulation differs via the second-stage model. Technically,
our framework exhibits a column-dependent row structure due to linking rela-
tionships between first-stage design decisions and second-stage operating deci-
sions, which severely complicates the use of column generation (as in Borndörfer
et al., 2007; Bertsimas et al., 2021). Instead, we design a pre-processing proce-
dure to candidate lines, and select reference lines among those in our first-stage
problem—we still employ column generation in the second stage to generate
subpaths characterizing on-demand deviations. This pre-processing approach
has been widely used in the literature (see, e.g., Ceder and Wilson, 1986); it
is also common in practice to define a set of candidate lines based on domain
knowledge and practical requirements.
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Ride-sharing

An extensive line of work has characterized optimal or asymptotically optimal
policies in ride-sharing to support vehicle-customer matching, pricing, vehicle
rebalancing, etc. (see, e.g., Braverman et al., 2019; Özkan and Ward, 2020;
Balseiro et al., 2021). Our second-stage problem optimizes vehicle routes to
serve discrete passenger requests, which relates to the vehicle routing prob-
lem with time windows and capacitated vehicles—a highly challenging integer
optimization problem (Baldacci et al., 2011). We model it with a network rep-
resentation of routing operations to retain a tight second-stage formulation.
This relates to the ride-shareability network from Santi et al. (2014), to the
vehicle-shareability network from Vazifeh et al. (2018) and to the request-trip-
vehicle graph network from Alonso-Mora et al. (2017). Similarly, Bertsimas
et al. (2019) optimized ride-sharing operations via a network flow formulation
on a vehicle-sharing network. Zhang et al. (2022) optimized ride-pooling opera-
tions with vehicle-customer coordination in a network where arcs refer to vehicle
trips between two points where the vehicle is empty. Our paper contributes a
tailored load-expanded subpath-based network representation of microtransit
operations by leveraging the reliance on reference stops, which we use to opti-
mize on-demand deviations.

On-demand transit

Ride-sharing has motivated digital on-demand transit solutions. Salazar et al.
(2018); Ma et al. (2019) and Stiglic et al. (2018) optimized inter-modal oper-
ations for ride-sharing and public transit to provide complementary mobility
options, for instance by using ride-sharing for first- and last-mile transportation
and public transit for increasing accessibility. Cummings et al. (2023) designed
a pricing alliance between transit agencies and ride-sharing providers to enhance
service coverage and decrease the reliance on single-occupancy vehicles. Shen
et al. (2018) used agent-based simulation and Wei et al. (2022) used mixed-
integer non-linear optimization to re-purpose transit resources from areas that
are served well by ride-sharing toward areas where transit is more competitive.
Steiner and Irnich (2020) developed an exact branch-and-price algorithm and
Banerjee et al. (2021) proposed an approximate randomized rounding scheme to
design integrated systems combining fixed-line transit and on-demand mobility.

In contrast, our paper designs a hybrid demand-responsive microtransit system
that features some static components akin to public transit and some dynamic
components akin to ride-sharing. One concept operates high-capacity transit ve-
hicles on demand (as in Alonso-Mora et al., 2017). Daganzo and Ouyang (2019)
proposed a queuing-theoretic framework to compare transit, ride-sharing, dial-
a-ride and ride-pooling. Silva et al. (2022) developed a Markovian model of
on-demand transit operations, using continuous routing approximations. Ex-
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tensions include horizontal collaboration between demand-responsive transit
providers (Angelelli et al., 2022) and hybrid systems combining fixed-line and
demand-responsive services (Azadeh et al., 2022), both solved with heuristics.

More closely related to our paper, mobility allowance shuttle transit (MAST)
systems rely on a fixed route, but vehicles can perform on-demand deviations
within a predetermined region. Quadrifoglio et al. (2007, 2008) optimized these
deviations for a single vehicle via a pickup-and-delivery problem, solved with
an insertion heuristic and column generation. Quadrifoglio et al. (2006) and
Zhao and Dessouky (2008) quantified the trade-offs between frequency, devi-
ation magnitude, and service levels. Galarza Montenegro et al. (2021, 2022)
proposed a related concept in which transit vehicles can visit or skip stops
based on on-demand requests, and also optimized operations using heuristics
and column generation. These systems offer some predictability through a fixed
route, a predetermined schedule, and mandatory stops, as well as some flexibil-
ity through on-demand adjustments to vehicle routing, service timetabling and
service frequency. Yet, demand-responsive operations remain complex: existing
methods scale up to 1-5 vehicles and 10-50 stops.

Our paper contributes to this literature in four ways. For the first time, we
tackle the strategic problem of network design in demand-responsive microtran-
sit, by jointly optimizing reference lines and on-demand deviations. Also for
the first time, we capture uncertainty and variability in microtransit demand
via a two-stage stochastic optimization formulation. We also develop a solution
algorithm combining Benders decomposition, column generation, and a tailored
label-setting algorithm. Our modeling and algorithmic approach scales to the
full system of Manhattan with over 100 vehicles, hundreds of reference stops,
over 1,000 actual stops for on-demand deviations, thousands of passenger re-
quests, and 50 scenarios. Finally, we report practical results to evaluate the
potential of demand-responsive microtransit toward efficient, flexible, and sus-
tainable transit.

5.3 Microtransit network design for vehicle rout-
ing

The MiND-VRP model optimizes the design and operations of demand-responsive
microtransit systems. We assume a homogeneous fleet of vehicles, each with ca-
pacity C. We consider a setting in which all passengers share the same destina-
tion. We can therefore view the problem as a microtransit vehicle routing prob-
lem, as opposed to microtransit-oriented dial-a-ride in which passengers would
request transportation from an origin to a destination. The design phase defines
reference lines, each comprising a list of reference stops. As in public transit,
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the reference lines enable passengers to plan their travels and service providers
to consolidate passenger demand into high-capacity vehicles. The operations
phase involves on-demand deviations within allowable margins to increase de-
mand coverage and to provide convenient mobility options. This microtransit
system therefore combines network design and frequency planning elements of
public transit as well as vehicle routing elements of on-demand transportation.

We formulate the MiND-VRP as a two-stage stochastic optimization model.
The first stage designs reference lines and sets corresponding frequencies (Sec-
tion 5.3.1) The second stage leverages subpath-based optimization in a load-
expanded network to capture on-demand deviations in response to passenger
demand (Section 5.3.2). We provide the full MiND-VRP formulation in Sec-
tion 5.3.3, and we compare it to segment-based and path-based benchmarks in
Section 5.3.4.

5.3.1 First-stage problem: network design and frequency
planning

The first-stage problem defines a microtransit schedule, consisting of reference
lines and corresponding service frequencies. We refer to a reference line and
departure time pair as a reference trip. Each reference trip defines the scheduled
arrival time at each reference stop. Vehicles will be required to visit some
reference stops at the scheduled times, but they will also be allowed to visit other
pickup locations to better serve on-demand passenger requests (Section 5.3.2).
Operations unfold in a roadway network. We denote by N the set of possible
stopping location for the vehicle, including all candidate reference stops and all
possible pickup locations for passengers.

We pre-process candidate reference lines in a set L. Let hℓ denote the cost to
operate one trip of line ℓ ∈ L. Let Tℓ denote the times when a vehicle can
depart from the first stop in line ℓ ∈ L. Each tuple (ℓ, t) consequently defines a
reference trip. We define the following variables:

xℓt =

{
1 reference trip (ℓ, t) is selected, for ℓ ∈ L and t ∈ Tℓ,
0 otherwise.

(5.1)

Let Iℓ index reference stops in line ℓ, of cardinality Iℓ = |Iℓ|; let I(i)ℓ refer to
the ith reference stop in the line. For a given reference trip (ℓ, t) ∈ L× Tℓ, each
reference stop i ∈ Iℓ is scheduled to be visited by a vehicle at time Tℓt(i). All
reference lines share the same final stop I(Iℓ)ℓ .

First-stage decisions also assign passengers to reference trips. Let P define
passenger requests, each with an origin o(p) ∈ N and a request time treqp . Each
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passenger request p ∈ P can be served by a subset of reference tripsMp ⊆ L×Tℓ.
We define the following variables:

zpℓt =

{
1 if passenger type p ∈ P is assigned to trip (ℓ, t) ∈Mp,
0 otherwise.

(5.2)

Due to demand uncertainty, first-stage passenger assignment decisions are mod-
eled separately from second-stage passenger pickup decisions. The z decisions
simply provide passengers with a frame of reference before they request a ride.
Technically, they also guide the first-stage problem toward covering passenger
demand without exclusively relying on second-stage recourse.

5.3.2 Second-stage problem: on-demand deviations

In the second stage, the microtransit operator optimizes routing deviations from
reference trips in response to on-demand passenger requests. To capture demand
uncertainty, we define a set of demand scenarios S. Let Dps denote the number
of passengers in request p ∈ P in scenario s ∈ S.

We restrict on-demand deviations to a spatial-temporal neighborhood of the
reference line for the microtransit system to retain predictability based on the
reference schedule. Specifically, vehicles may skip up to K reference stops in a
row. The parameterK captures the trade-off between adherence to the reference
schedule versus on-demand deviations. As in Galarza Montenegro et al. (2021,
2022), vehicles must stay within a maximum distance from the reference line
between reference stops, and they must respect the scheduled arrival times at the
visited reference stops. The reference schedules include slack between reference
stops to allow for such deviations.

The second-stage problem involves capacitated vehicle routing with time win-
dows for each reference trip in each scenario. We formulate it using a subpath-
based load-expanded network, where load refers to the number of passengers in
the vehicle.

Subpaths

Subpath variables characterize deviations between reference stops. These sub-
paths are longer than road segments between pickup locations, but they are
shorter than paths that encapsulate full trips from the start of the line to the
end (see Section 5.3.4). This model follows recent dial-a-ride formulations from
Alyasiry et al. (2019); Zhang et al. (2022), which define subpaths from a point
where the vehicle is empty to another. Our subpath variables introduce a new
decomposition tailored to the microtransit system by leveraging the reliance on
the reference stops.
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Let Rℓst denote the set of subpaths for a given trip (ℓ, t) ∈ L× Tℓ and demand
scenario s ∈ S. A subpath r ∈ Rℓst is uniquely identified by its starting point
ur ∈ Iℓ, ending point vr ∈ Iℓ, and the passenger requests Pr ⊆ P that it serves.
Any subpath r ∈ Rℓst must satisfy load limits

∑
p∈Pr

Dps ≤ C; the travel time
on subpath r must not exceed Tℓt(vr)−Tℓt(ur); and each subpath can skip up to
K reference stops. For each reference trip and each scenario, the second-stage
problem selects a sequence of subpaths that define a valid trip that (i) starts
at the origin of the reference line, ends at its destination, and maintains flow
balance in between; (ii) does not pick up more than C passengers overall; and
(iii) only picks up passengers that have been assigned to the trip.

Load-expanded subpath network

We represent routing operations in a load-expanded network. Each node tracks
the reference stop and the vehicle load, and each arc encapsulates a subpath
between reference stops along with the number of onboarding passengers. In
this network, flow balance constraints capture both physical flow balance and
vehicle capacity constraints (requirements (i) and (ii) above). It would also be
possible to formulate the problem in a flat network, with nodes solely tracking
reference stops and arcs solely capturing physical subpaths. In this alternative
representation, flow balance constraints would merely capture physical flow bal-
ance, so we would have to enforce vehicle capacity via big-M constraints. In
other words, our load-expanded network formulation involves more variables,
but the second-stage formulation is tighter as a result. Figure 5.1 illustrates the
construction of our load-expanded subpath network.

Mathematically, let C = {0, 1, · · · , C} store all valid vehicle loads. For each
reference trip (ℓ, t) ∈ L × Tℓ and scenario s ∈ S, we denote the load-expanded
network by (Vℓst,Aℓst). Each node n ∈ Vℓst corresponds to a tuple (kn, cn),
where kn ∈ Iℓ tracks the reference stop and cn ∈ C tracks the load. We include
a dummy sink node vℓst representing the end of a trip. The source node of
the trip is uℓst = (I(1)ℓ , 0). Each arc a ∈ Aℓst connects node start(a) ∈ Vℓst
and node end(a) ∈ Vℓst in the load-expanded network. We separate the arc set
Aℓst =

⋃
r∈Rℓst

Ar ∪ Av
ℓst into two types of arcs: traveling arcs and idling arcs.

Each arc a ∈ Ar defines the corresponding subpath r ∈ Rℓst by tracking its
starting point ur, its ending point vr, and its incremental load

∑
p∈Pr

Dps:

Ar =

(n,m) ∈ Vℓst × Vℓst : kn = ur, km = vr, cm − cn =
∑
p∈Pr

Dps

 , ∀r ∈ Rℓst.

(5.3)

For a given arc a ∈
⋃

r∈Rℓst
Ar, we denote its corresponding physical subpath

by r(a) ∈ Rℓst.
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Figure 5.1: Representation of deviations on the load-expanded subpath network.
Top left: Physical network with reference stops A, B, C, and D, and
3 reference line deviations. Top right: Subpath representation of the
deviations. Bottom: Load-expanded network representation.

Next, each terminating arc a ∈ Av
ℓst connects the line’s destination to the

dummy sink node:

Av
ℓst = {(n,m) ∈ Vℓst × Vℓst : kn = I(Iℓ)ℓ ,m = vℓst}. (5.4)

Once constructed, the load-expanded network can be pruned to exclude inter-
mediate nodes in Vℓst with no incoming or outgoing arcs, and to exclude all
corresponding arcs in Aℓst.

Finally, our second-stage decisions select subpaths in the load-expanded net-
works, which each define on-demand deviations and passenger pickups for each
vehicle trip in each demand scenario:

ya =

{
1 if arc a is selected, for (ℓ, t) ∈ L × Tℓ, s ∈ S, a ∈ Aℓst,
0 otherwise.

(5.5)
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Passenger service

The microtransit system performs on-demand deviations to improve passenger
experience, which includes picking up passengers closer to their requested loca-
tion or their requested times. This is formalized in the MiND-VRP by restricting
the amount of waiting and walking that any passenger is willing to accept, and
then by maximizing level of service.

Accordingly, passengers can only be picked up if they have enough time to walk
from their origins to the pickup location and if the wait time does not exceed
a maximum allowable limit. In other words, each load-expanded subpath arc
must satisfy two conditions for its passenger pickup set:

– The distance from the passengers’ origins to the pickup locations must
lie below a maximum allowable distance Ω. Let ωo,d denote the walking
distance from o to d. Pickup location i ∈ N is only acceptable to passenger
p ∈ P if ωo(p),i ≤ Ω.

– Passengers’ wait times at the pickup locations must lie below a maximum
allowable wait time Ψ. Let ψo,d be the walking time from o to d. Passen-
gers can only be picked up in location i ∈ N if the passenger can walk to
their pickup location in time and if their wait time does not exceed the wait
time limit, i.e., treqp + ψo(p),i ≤ t (pickup time) and t ≤ treqp + ψo(p),i +Ψ.

Next, we propose a multi-objective formulation of the second-stage problem.
Two primary objectives involve maximizing demand coverage and level of ser-
vice. The latter level-of-service objective is formalized as a three-dimensional
objective to reflect the generalized cost of travel (Ceder and Wilson, 1986; De-
saulniers and Hickman, 2007). Specifically, we model passenger dis-utility via:

1. τwalk
rp : walking time from passenger p’s origin to the pickup location via

subpath r ∈ Rℓst;

2. τwait
rp : waiting time of passenger p at the pickup location via subpath
r ∈ Rℓst; and

3.
τdelay
ℓtp

τdirect
p

: relative delay of passenger p at the destination via trip (ℓ, t) ∈Mp.
This metric is normalized with respect to the direct trip time (e.g., a taxi
trip). Note that the reference line guarantees that the vehicle reaches the
destination at the pre-determined time, so this cost can be expressed at
the reference line level as opposed to the subpath level.

We define non-negative hyperparameters λ and µ to weigh the three cost com-
ponents. Thus, the arc costs in the load-expanded network are formulated as
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follows, for all (ℓ, t) ∈ L × Tℓ, s ∈ S:

ga =


∑

p∈Pr(a)
Dps

(
λτwalk

r(a)p + µτwait
r(a)p +

τdelay
ℓtp

τdirect
p

)
∀a ∈

⋃
r∈Rℓst

Ar,

0 ∀a ∈ Av
ℓst.

(5.6)

5.3.3 Two-stage stochastic optimization formulation

The MiND-VRP notation is summarized in Table 5.1. The MiND-VRP max-
imizes expected ridership and expected level of service. Hyperparameter M
tunes the relative weight of these two objectives. The objective function is then
given as follows:

min
∑
s∈S

πs

(
M
∑
p∈P

Dps

(
1−

∑
(ℓ,t)∈Mp

∑
a∈Aℓst : p∈Pa

ya

)
+

∑
(ℓ,t)∈L×Tℓ

∑
a∈Aℓst

gaya

)
After omitting the constant termM

∑
s∈S πs

∑
p∈P Dps, we formulate the MiND-

VRP as follows.

min
∑
s∈S

πs
∑

(ℓ,t)∈L×Tℓ

 ∑
a∈Aℓst

gaya −M
∑

p∈P : (ℓ,t)∈Mp

Dps

∑
a∈Aℓts : p∈Pr(a)

ya


(5.7)

s.t.
∑

ℓ∈L : t∈Tℓ

hℓxℓt ≤ Bt ∀t ∈
⋃
ℓ∈L

Tℓ (5.8)

∑
(ℓ,t)∈Mp

zpℓt = 1 ∀p ∈ P (5.9)

∑
m:(n,m)∈Aℓst

y(n,m) −
∑

m:(m,n)∈Aℓst

y(m,n) =


xℓt if n = uℓst,

−xℓt if n = vℓst,

0 otherwise,

∀(ℓ, t) ∈ L × Tℓ, s ∈ S, n ∈ Vℓst

(5.10)

∑
a∈Aℓst : p∈Pr(a)

ya ≤ zpℓt ∀s ∈ S, p ∈ P, (ℓ, t) ∈Mp (5.11)

x,y, z binary (5.12)

Equation (5.7) maximizes demand coverage and level of service. First-stage con-
straints apply a budget Bt (Constraint (5.8)) and ensure that each passenger
type is covered by a reference line (Constraint (5.9)). Second-stage constraints
enforce flow balance over each load-expanded network (Constraint (5.10)) and
ensure consistency between first-stage assignment variables and second-stage
passenger service variables (Constraint (5.11)). Equation (5.12) defines the do-
main of the variables.
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Table 5.1: Inputs of the MiND-VRP model.

Type Description
L Set Candidate reference lines
P Set Passenger types
S Set Demand scenarios
C Set Vehicle loads
Iℓ Set Reference stops for line ℓ ∈ L, of cardinality Iℓ
I(i)
ℓ Set ith stop in reference line ℓ ∈ L for i = 1, · · · , Iℓ

Tℓ Set Allowable departure times of a vehicle from the beginning of
line ℓ ∈ L

Mp Set Compatible trips in L × Tℓ for passenger type p ∈ P
Rℓst Set Subpaths corresponding to reference trip (ℓ, t) ∈ L × Tℓ in

scenario s ∈ S.
Each subpath r ∈ Rℓst starts in ur ∈ Iℓ and ends in vr ∈ Iℓ.

(Vℓst,Aℓst) Graph Load-expanded network of trip (ℓ, t) ∈ L × Tℓ in scenario
s ∈ S.
Every trip starts at uℓst ∈ Vℓst and ends at vℓst ∈ Vℓst

Ar Set Arcs in Aℓst corresponding to subpath r ∈ Rℓst for (ℓ, t) ∈
L × Tℓ, s ∈ S

Av
ℓst Set Arcs in Aℓst connecting line destination to sink node for

(ℓ, t) ∈ L × Tℓ, s ∈ S
Pr Set Passenger types in P picked up by subpath r ∈ Rℓst for

(ℓ, t) ∈ L × Tℓ, s ∈ S
K Parameter Number of reference stops a subpath deviation can skip in a

row
C Parameter Vehicle capacity
Bt Parameter Line budget during time unit t ∈

⋃
l∈L Tℓ

hl Parameter Cost to operate one trip via line ℓ ∈ L
Dps Parameter Number of passengers of type p ∈ P in scenario s ∈ S
Tℓt(n) Parameter Time at which trip (ℓ, t) ∈ L × Tℓ must visit stop n ∈ Iℓ
πs Parameter Probability of scenario s ∈ S
ga Parameter Cost of arc a ∈ Aℓst for trip (ℓ, t) ∈ L × Tℓ, scenario s ∈ S
Ω Parameter Maximum walking distance for passengers
Ψ Parameter Maximum waiting time for passengers
ωo,d Parameter Walking distance between locations o and d
ψo,d Parameter Walking time between locations o and d
τwalk
rp Parameter Walk time of passenger p ∈ Pr via subpath r ∈ Rℓst, for

(ℓ, t) ∈ L × Tℓ, s ∈ S
τwait
rp Parameter Wait time of passenger p ∈ Pr via subpath r ∈ Rℓst, for

(ℓ, t) ∈ L × Tℓ, s ∈ S
τdelayℓtp Parameter Delay of passenger type p ∈ P when taking trip (ℓ, t) ∈ L×Tℓ
τdirectp Parameter Direct travel time for passenger type p ∈ P
M HyperparameterNon-negative penalty of unmet demand
λ HyperparameterNon-negative penalty on passenger walk time
µ HyperparameterNon-negative penalty on passenger wait time

5.3.4 Comparison to segment and path-based benchmarks

Recall that the MiND-VRP optimizes subpaths between reference stops in a
load-expanded network while ensuring spatial-temporal continuity with flow bal-
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ance constraints (Figure 5.1). We compare this formulation to a direct segment-
based benchmark and to a path-based benchmark. All formulations are equiv-
alent, but our subpath-based formulation involves fewer variables by implicitly
capturing time window constraints without relying on a time-load-expanded net-
work and without involving a full path-based decomposition. Both benchmark
models are formulated in Appendix 5.A.

Direct segment-based formulation

This formulation optimizes operations between pickup locations. Each arc cor-
responds to a road segment connecting stopping locations, as opposed to a
subpath that only connects reference stops. A subpath is defined as a sequence
of segments that starts at a reference stop at the scheduled time, ends at a sub-
sequent reference stop by the scheduled time, satisfies flow balance in between,
and does not skip more than K reference stops.

A vehicle’s route impacts the vehicle load as well as the arrival time at the
reference stop. To enforce capacity and time window constraints, we could in
principle link vehicle routing decisions with load and timing decisions using
big-M constraints. To retain a tight second-stage formulation, we instead de-
fine a time-load-expanded network, where each node tracks the pickup location,
the vehicle load, and the arrival time. The formulation (in Appendix 5.A.1)
minimizes the cost function subject to flow balance and passenger assignments
(analogous to Equations (5.7)–(5.11)). An extra constraint ensures that the ve-
hicle does not skip more than K stops in a row, which was previously enforced
in the definition of subpaths. In summary, the subpath formulation implicitly
enforced time window constraints and captured vehicle capacity constraints in
a load-expanded network, whereas the segment-based formulation needs to cap-
ture both time window and vehicle capacity constraints in a time-load-expanded
network.

Path-based formulation

This formulation (in Appendix 5.A.2) optimizes entire paths from the beginning
to the end of the reference line. This formulation relates to the subpath-based
formulation in that a path is defined as a sequence of subpaths that starts at
the beginning of the line, ends at the destination, picks up at most C passen-
gers overall. By construction, a path satisfies the time window constraints at
the reference stops and does not skip more than K reference stops in a row.
As a result, a path implicitly satisfies the vehicle capacity constraints and all
time window constraints. Accordingly, the subpath-based formulation merely
minimizes the cost function subject to flow balance and passenger assignments
(analogous to Equations (5.7) and (5.11)). An extra constraint ensures that
exactly one path is defined for each selected reference line.
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Formulation comparison

Proposition 5.1 shows that the three formulations are equivalent.

Proposition 5.1 The path-based, subpath-based and segment-based formula-
tions achieve the same optimal solution. Moreover, the linear relaxation of the
path-based formulation is at least as strong as the one of the subpath-based for-
mulation; and the linear relaxation of the subpath-based formulation is at least
as strong as the one of the segment-based formulation.

5.4 Solution algorithm

The subpath-based formulation of the the MiND-VRP exhibits a two-stage op-
timization structure with a tight second-stage model. The challenge lies in the
size of the model. Accordingly, we propose a solution algorithm that combines
Benders decomposition and column generation.

Combinations of column generation and Benders decomposition fall into three
categories. One is a simultaneous use of the two methods toward column-and-
row generation for problems with column-dependent rows (Muter et al., 2013,
2018). A second one is the use of column generation to solve the Benders master
problem (see, e.g., Restrepo et al., 2018; Zeighami and Soumis, 2019). A third
one is the use of column generation to solve the Benders subproblem (see, e.g.,
Mercier et al., 2005; Papadakos, 2009; Karsten et al., 2018). Our approach
falls into this third category: Benders decomposition exploits our two-stage
stochastic optimization structure (Section 5.4.1), and column generation adds
subpaths iteratively in the Benders subproblem (Section 5.4.2). This algorithm
relies on a tailored label-setting algorithm to generate subpaths (Section 5.4.2),
as well as acceleration strategies (Section 5.4.3). We provide an overview of the
algorithm in Section 5.4.4.

Throughout this section, we consider the partial relaxation of the MiND-VRP
with first-stage binary variables and second-stage continuous variables, referred
to as MiND-VRP. This partial relaxation is required because the second-stage
problem of the MiND-VRP is not an ideal formulation. Although it primarily
relies on flow balance constraints, its constraint matrix is not totally unimodular
due to Equation (5.11). Nonetheless, this partial relaxation is close to the full
integer optimization problem due to the tight second-stage formulation thanks
to the load-expanded network representation. Upon convergence of the Benders
decomposition algorithm, we solve a final second-stage model by fixing first-stage
solutions and obtaining a feasible MiND-VRP solution after restoring integrality.
Throughout the section, we fix a first-stage solution (x, z).
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5.4.1 Benders reformulation

We propose a multi-cut Benders reformulation of the MiND-VRP, which we
decompose into a Benders master problem (BMP) and Benders subproblems
(BSP). This structure enables a decomposition of the second-stage problem for
each reference trip and each demand scenario.

The Benders reformulation of the MiND-VRP includes the first-stage network
design and passenger assignment decisions along with a piece-wise linear ex-
pression of the recourse function. Note that the subproblem is always feasible:
a feasible solution can be constructed by following the reference trip without
on-demand deviations, regardless of how many passengers can be served and
the consequentially poor level of service. Therefore, the MiND-VRP has rela-
tively complete recourse, and the dual second-stage polyhedron is bounded and
nonempty. By the Minkowski-Weyl theorem, we can express the dual second-
stage polyhedron as a function of its extreme points.

The second-stage problem can be decomposed into independent subproblems
corresponding to each reference trip (ℓ, t) ∈ L× Tℓ and scenario s ∈ S. Let θℓst
denote the corresponding objective:

(BSP) θℓst = min
∑

a∈Aℓst

gaya −M
∑

p∈P : (ℓ,t)∈Mp

Dps

∑
a∈Aℓst : p∈Pa

ya (5.13)

s.t. Equations (5.10)-(5.11) (5.14)
y ≥ 0 (5.15)

Let φi and γp respectively denote the dual variables corresponding to Equa-
tions (5.10) and (5.11). The dual Benders subproblem is then formulated as
follows:

max xℓt · (φūℓst
− φv̄ℓst)−

∑
p∈P : (ℓ,t)∈Mp

zpℓt · γp (5.16)

s.t. φn − φm −
∑
p∈Pa

γp ≤ ga −M
∑
p∈Pa

Dps ∀a = (n,m) ∈ Aℓst (5.17)

φi ∈ R ∀i ∈ Vℓst (5.18)
γp ≥ 0 ∀p ∈ P : (ℓ, t) ∈Mp

(5.19)

Let Λℓst denote the set of extreme points of the dual second-stage polyhedron,
each corresponding to an optimal second-stage solution (φ,γ) for a given refer-
ence trip (ℓ, t) ∈ L×Tℓ and scenario s ∈ S. Let Λ = (Λℓst)(ℓ,t)∈L×Tℓ,s∈S denote
the full set of extreme points across reference trips and across scenarios. The
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multi-cut Benders reformulation of the MiND-VRP is then given as:

BMP(Λ) min
∑
s∈S

πs

(
M

∑
p∈P

Dps +
∑
ℓ∈L

∑
t∈Tℓ

θℓst
)

(5.20)

s.t. Equations (5.8)–(5.9) (5.21)

θℓst ≥ xℓt · (φūℓst − φv̄ℓst)−
∑

p∈P : (ℓ,t)∈Mp

zpℓt · γp,

∀(ℓ, t) ∈ L × Tℓ, s ∈ S, (φ,γ) ∈ Λℓst

(5.22)

x,z binary (5.23)

To circumvent the exponential number of extreme points, Benders decomposi-
tion proceeds via row generation. The Benders master problem solves a relax-
ation containing a subset of constraints Λ ⊆ Λ, amounting to a lower-bounding
approximation of the recourse function. It is given by solving BMP(Λ) instead
of BMP(Λ).

By design, the BMP yields a lower bound of the MiND-VRP and the combi-
nation of the BMP and BSP yield an upper bound of the MiND-VRP. If the
optimality gap lies within a given tolerance, the algorithm stops with a provably
optimal solution of the MiND-VRP. Otherwise, we retrieve the optimal dual
solution of the BSP (φ,γ), and add the following optimality cut to the BMP.

θℓst ≥ xℓt · (φ̄ūℓst
− φ̄v̄ℓst)−

∑
p∈P : (ℓ,t)∈Mp

zpℓt · γ̄p (5.24)

By iterating between the BMP and BSP, the Benders decomposition algorithm
converges to an optimal solution of the MiND-VRP. However, the subproblem
involves a large number of subpath-based variables, which can slow down the
Benders decomposition scheme. In response, we leverage column generation to
add subpaths iteratively in the Benders subproblem.

5.4.2 Column generation procedure for Benders subprob-
lem

We focus in this section on the BSP (Equations (5.13)–(5.15)) for a given ref-
erence trip (ℓ, t) ∈ L × Tℓ and scenario s ∈ S. The set of arcs Aℓst grows
exponentially with the number of possible pickup locations between reference
stops, especially as microtransit vehicles are allowed to skip reference stops via
longer subpaths (K > 0). Thus, we propose a column generation procedure
that dynamically generates subpaths. We decompose the BSP into a restricted
master problem (RMP) based on a subset of subpaths and a pricing problem
(PP) that iteratively generates subpaths. The main feature of our microtran-
sit problem is that it iteratively generates subpaths between reference stops as
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opposed to full paths from start to finish, as in traditional path-based column
generation. We present our subpath-based column generation approach below,
with a particular focus on the structure of subpaths and the implications for
the pricing problem.

Restricted master problem

The RMP simply solves the Benders subproblem with a subset of subpath-based
arcs by A′

ℓst ⊆ Aℓst. The RMP is then formulated as follows:

RMP(A′
ℓst) min

∑
a∈A′

ℓst

gaya −M
∑

p∈P : (ℓ,t)∈Mp

Dps

∑
a∈A′

ℓst : p∈Pa

ya (5.25)

s.t.

∑
m:(n,m)∈A′

ℓst

y(n,m) −
∑

m:(m,n)∈A′
ℓst

y(m,n) =


xℓt if n = ūℓst,

−xℓt if n = v̄ℓst,

0 otherwise,

∀n ∈ Vℓst

(5.26)

∑
a∈A′

ℓst : p∈Pr(a)

ya ≤ zpℓt ∀p ∈ P : (ℓ, t) ∈Mp (5.27)

y ≥ 0 (5.28)

Subpath characterization

Toward a column generation pricing problem, we optimize the intermediate
stopping locations of a candidate subpath r ∈ Rℓst. For expositional clarity, we
denote the source and sink stops as u = ur and v = vr. Let Nℓuv denote the
set of all pickup locations between u and v; and let Eℓuv ⊆ Nℓuv ×Nℓuv denote
the set of road segments connecting those stopping locations. Each subpath
will be characterized by a sequence of segments in Eℓuv satisfying the capacity,
time window, and stop-skipping requirements outlined in Section 5.3.2. Note
that the Benders subproblem, hence the column generation restricted master
problem, combine subpaths from the beginning to the end of a reference line,
whereas the column generation pricing problem creates subpaths by combining
road segments between reference stops.

To efficiently capture time window constraints in the pricing problem, we char-
acterize subpaths in a time-expanded network, denoted by (Uuv

ℓst,Huv
ℓst). Let T uv

ℓt

be the set of discretized time intervals between the scheduled departure time
from reference stop u and the scheduled arrival time at reference stop v, i.e., be-
tween Tℓt(u) and Tℓt(v). Each node m ∈ Uuv

ℓst is represented by a tuple (km, tm)
where km ∈ Nℓuv is a stopping location between reference stops u and v, and
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tm ∈ T uv
ℓt is the time at which the vehicle arrives at stop km. The subpath’s

source is (u, Tℓt(u)) ∈ Uuv
ℓst, and its sink is (v, Tℓt(v)) ∈ Uuv

ℓst. The arc set Huv
ℓst

comprises traveling arcs and idling arcs. Traveling arcs connect any node pair
(i, t)→ (j, t+ttij) where (i, j) ∈ Eℓuv defines a road segment and ttij defines the
corresponding travel time, with t ∈ T uv

ℓt and t+ ttij ∈ T uv
ℓt . Idling arcs connect

any node pair (i, t)→ (i, t+ 1) where i ∈ Nℓuv defines a stopping location and
t ∈ T uv

ℓt defines the stopping time. Idling arcs are required to capture instances
where the vehicle waits for a passenger at a pickup location or waits at the
reference stop to adhere to the reference schedule.

Each node also tracks the passengers that can be served and their correspond-
ing waiting time, walking time, and arrival delay. We let Pm denote the set of
passengers that can be picked up at node m ∈ Uuv

ℓst, i.e. the set of passenger
requests with Dps > 0, where node m satisfies the walking and waiting restric-
tions defined in Section 5.3.2. The notation is summarized in Table 5.2 and the
level of service is given by:

Dps

(
τdelayℓtp

τdirectp

+ λτwalk
mp + µτwait

mp

)
(5.29)

Table 5.2: Time-expanded network components.

Type Description
Nℓuv Set Nodes of possible stopping locations between reference

stops u and v
Eℓuv Set Directed arcs in Nℓuv × Nℓuv, corresponding to road

segments
(Uuv

ℓst,Huv
ℓst) Graph Time-expanded network from (u, Tℓt(u)) to (v, Tℓt(v)).

Node m ∈ Uuv
ℓst is characterized by a location-time tuple

(km, tm)
T uv
ℓt Set Time intervals between the scheduled times Tℓt(u) and

Tℓt(v)
Pm Set Passengers in P that can be picked up in node m ∈ Uuv

ℓst

tte Parameter Travel time corresponding to road segment e ∈ Eℓuv

τwalk
mp Parameter Walk time of passenger p ∈ Pm when picked up at node

m ∈ Uuv
ℓst

τwait
mp Parameter Wait time of passenger p ∈ Pm when picked up at node

m ∈ Uuv
ℓst

Pricing problem

We define the following decision variables to build a subpath:

fmq =

{
1 if arc (m, q) ∈ Huv

ℓst is traversed,
0 otherwise.
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wmp =

{
1 if passenger p ∈ Pm is picked up at node m ∈ Uuv

ℓst,
0 otherwise.

Recall that the BSP optimizes over arc variables in the load-expanded network.
Therefore, each generated column must correspond to a sequence of road seg-
ments as well as a passenger pickup set. Specifically, let us consider a BSP vari-
able a = (start(a), end(a)) ∈ Aℓst. This variable corresponds to subpath r(a) ∈
Rℓst from reference stop ur(a) to reference stop vr(a). In addition, the subpath
must satisfy the incremental load constraint

∑
p∈Pr(a)

Dps = cend(a) − cstart(a).
From Equations (5.17) and (5.29), the reduced cost ĝa consists of a subpath
component and a load component:

ĝa =
∑

m∈Uuv
ℓst

∑
p∈Pm

dmpwmp︸ ︷︷ ︸
subpath component

−φstart(a) + φend(a)︸ ︷︷ ︸
load component

∀a ∈ Aℓst, with u = ur(a), v = vr(a), (5.30)

and dmp = Dps

(
τdelayℓtp

τdirectp

+ λτwalk
mp + µτwait

mp

)
− (γp +MDps),

∀m ∈ Uuv
ℓst, p ∈ Pm. (5.31)

This reduced cost can be interpreted as the combination of: (i) the level-of-
service penalty for passengers receiving a service; (ii) the value of serving a
passenger, captured by the actual value M and the dual price γp; and (iii)
the cost of increasing the vehicle load, reflected in the dual prices φstart(a)

and φend(a). We now formulate the following pricing problem, which seeks the
variable with the most negative reduced cost connecting nodes start(a) ∈ Vℓst
and end(a) ∈ Vℓst corresponding to reference stops kstart(a) = u ∈ N and
kend(a) = v ∈ N and loads cend(a) ≥ cstart(a), for reference trip (ℓ, t) ∈ L × Tℓ
and scenario s ∈ S. We denote by Za

ℓst its optimal objective value.

(PP) min
∑

m∈Uuv
ℓst

∑
p∈Pm

dmpwmp − φstart(a) + φend(a) (5.32)

s.t.
∑

p∈Pm

wmp ≤
∑

q:(m,q)∈Huv
ℓst

fmq ∀m ∈ Uuv
ℓst (5.33)

∑
u∈Uuv

ℓst

∑
p∈Pm

Dpswmp = cend(a) − cstart(a) (5.34)

∑
m∈Uuv

ℓst : p∈Pu

wmp ≤ 1 ∀p ∈ P (5.35)
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∑
q:(m,q)∈Huv

ℓst

fmq −
∑

q:(q,m)∈Huv
ℓst

fqm =


1 if m = (u, Tℓt(u)),

−1 if m = (v, Tℓt(v)),

0 otherwise.

∀m ∈ Uuv
ℓst

(5.36)

fmq ∈ {0, 1} ∀(m, q) ∈ Huv
ℓst (5.37)

wmp ∈ {0, 1} ∀m ∈ Uuv
ℓst, p ∈ Pm (5.38)

This formulation minimizes the reduced cost of a subpath-based variable in
the load-expanded network corresponding to arc a ∈ Sℓst (Equation (5.32)).
Constraints (5.33) enforce the consistency between variables, by stating that
a passenger can only be picked up if the corresponding node is visited. Con-
straints (5.34) define the load difference between node n and m as the number
of passengers served. Constraints (5.35) guarantee that a passenger is picked
up at most once. Constraints (5.36) apply flow balance. Equations (5.37) and
(5.38) define the domain of the variables.

Note that depending on the passenger set P, an arc (start(a), end(a)) may not
exist if the load deviation is higher than the number of passengers that can be
served between the reference stops within a feasible deviation. To prevent in-
feasibility, one can precompute the maximum number of passengers that can be
picked up between reference stops, and only consider nodes (start(a), end(a))
that at most serve that number of passengers. Despite that, the number of pric-
ing problems can be significantly large. We can reduce the number of pricing
problems, while still guaranteeing column generation to converge, by comput-
ing φmax

cuv , for each load differential ∆c ∈ C, defined as the maximum value of
φstart(a) − φend(a) where cend(a) − cstart(a) = ∆c. Then we can solve a PP that
seeks a subpath of c passengers, and with only the subpath-based component
in the objective. Let Zcuv

ℓst be the optimal solution of this problem. The value
Zcuv
ℓst −φmax

cuv corresponds to the arc variable of minimum reduced cost for a sub-
path with load differential ∆c. This procedure reduces the number of pricing
problem, while retaining the exactness of the column generation approach.

Proposition 5.2 At most one pricing problem for each load differential ∆c ∈
C is sufficient to find the arc variable with the minimum reduced cost.

Column generation iterates between the restricted master problem and the pric-
ing problem. If all reduced costs are non-negative, then the column generation
algorithm terminates and the Benders decomposition algorithm proceeds. Oth-
erwise, the pricing problem identifies a subpath-based arc a ∈ Aℓst with neg-
ative reduced cost and adds it to the load-expanded network, by augmenting
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A′
ℓst ← A′

ℓst ∪ {a}, and defining ga as the following level of service:

ga =
∑

m∈Uuv
ℓst

∑
p∈Pm

Dps

(
τdelayℓtp

τdirectp

+ λτwalk
mp + µτwait

mp

)
wmp (5.39)

Label setting algorithm

Due the structure of the subpaths and the decomposability of the reduced cost,
the pricing problem exhibits a resource-constrained shortest path structure. We
design a label-setting algorithm by exploiting the directed and acyclic structure
of (Uuv

ℓst,Huv
ℓst) (Ahuja et al., 1993). The label stores the set of served passengers

and the corresponding service level. By keeping track of all non-dominated
labels, the algorithm identifies all subpath-based variables with negative reduced
cost.

State definition. Let (mσ,Pσ) denote a state, where mσ tracks the “current”
node, and Pσ tracks the set of served passengers p ∈ P with pickup node ρp.
We keep track of the reduced cost G(mσ,Pσ).

Initial state: (m0 = m : km = u, tm = Tℓt(u),P0 = ∅), with G(m0, P 0) = 0.

State transitions. For each arc (m, q) ∈ Huv
ℓst traversed, and all passenger combi-

nations Pm ⊆ Pm, the state is updated to (q,Pσ ∪Pm). For each new passenger
p ∈ Pm \ {Pσ}, the pickup point is set to ρp = m. For existing passengers
p ∈ Pm ∩ Pσ, we update the pickup node to be ρp = m if m provides a better
service level—that is, if dmp < dρp,p. This transition is admissible if the vehicle
has sufficient capacity, i.e., if

∑
p∈Pσ Dps +

∑
p∈Pm\{Pσ}Dps ≤ C.

Reward function. G(mσ,Pσ) =
∑

p∈Pσ dρp,p tracks the reduced cost of a subpath
up to state σ.

Dominance rule. State σ1 dominates state σ2 if (i) mσ1

= mσ2

, (ii) Pσ1

= Pσ2

,
and (iii) G(mσ1

,Pσ1

) ≤ G(mσ2

,Pσ2

). Upon termination, we extract all non-
dominated states l such that mσ = m : km = v and tm = Tℓt(v), and we define
a subpath r ∈ Rℓst where Pr = Pσ.

Note that the dominance rule is rather weak, leading to the enumeration of
different subpaths with different passenger combinations. Still, this dominance
rule is required for the label-setting algorithm to find the subpath with the lowest
reduced cost for any load differential, thus providing a certificate of optimality
in the column generation algorithm.

Upon termination, the label-setting algorithm yields a subpath r ∈ Rℓst. We
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then identify all arcs a ∈ Aℓst \ {A′
ℓst} such that we can add to the RMP, that

is, all arcs such that kstart(a) = u, kend(a) = v, cend(a) − cstart(a) =
∑

p∈Pσ Dps.
We compute their reduced cost as follows:

ĝa = G(mσ,Pσ)− φstart(a) + φend(a) (5.40)

The main advantage of the label-setting algorithm over directly solving the pric-
ing problem is that we only need to apply it once between pair of reference stops
u and v instead of O(C) times (one for each load differential). The dominance
rule ensures that all subpaths with different passenger combinations are com-
puted, therefore including the minimum reduced cost subpath for each possible
load differential. This also allows us to identify not only the most negative re-
duced cost but to add multiple columns with negative reduced cost in the same
iteration.

5.4.3 Acceleration strategies

We have implemented several acceleration strategies to speed up the algorithm.
Two techniques were particularly effective and resulted in significant improve-
ment in model scalability—one relating to the Benders decomposition procedure
and one relating to the column generation procedure.

Managing the search tree

We design a two-phase procedure to add Benders cuts at the root node of the
search tree. In the first phase, we apply Benders decomposition to the full relax-
ation of the MiND-VRP, with continuous first-stage and second-stage decisions.
At the end of the first phase, we retain all the Benders cuts and restore inte-
grality in the BMP. In the second phase, we then proceed to applying Benders
decomposition to the partial relaxation MiND-VRP.

This strategy can significantly improve the algorithm’s performance (Rahmani-
ani et al., 2018). It relies on a more efficient Benders master problem in initial
iterations, which accelerates the generation of Benders cuts and warm starts the
second phase with a stronger recourse function approximation. Moreover, the
second phase starts with a tighter problem formulation, which can help reduce
the branch-and-bound tree search in the BMP at each iteration of the algorithm.

Column filtering

The label-setting algorithm keeps track of two components: which passengers
to pick up and at which node they should be picked up. By design, the micro-
transit system brings flexibility regarding where to pick up a passenger. From
a practical standpoint, such flexibility can enhance the efficiency of on-demand
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operations. From a technical standpoint however, it weakens the dominance
criteria in the label-setting algorithm, which can lead to extensive enumeration.

To circumvent this challenge, we present a heuristic acceleration to discard more
labels at each step. Specifically, when visiting a node m ∈ U ij

ℓst, we always serve
a candidate passenger p ∈ Pm as long as the vehicle does not operate at capacity
and as long as the corresponding reduced cost is negative (i.e., dmp < 0). In
practice, this approach is motivated by the fact that subpaths are relatively
short, hence it is unlikely that the pricing problem would deliberately decide to
not serve a passenger in order to free up capacity for a subsequent passenger.
Moreover, it allevates the undesirable situation of a vehicle visiting a stop to
pick up some passengers and rejecting others. On the negative side, this strategy
can be less effective in the presence of high-demand points concentrated in time
and space, in which case it can exclude promising variables.

We note that this heuristic corresponds to an upper-bounding approximation of
the pricing problem. Therefore, any solution generated via this heuristic does
define a valid subpath with negative reduced cost. However, the heuristic could
potentially find no subpath with negative reduced cost even though the column
generation algorithm has not converged to an optimal solution. In that case, we
can switch back to the full label-setting algorithm in final iterations in order to
derive a certificate of optimality. In our experiments, we have found that this
heuristic results is significant speedups in the subproblem without compromising
solution quality.

5.4.4 Summary of solution algorithm

Our solution algorithm, summarized in Figure 5.2, involves two interconnected
decomposition structures to solve the partial relaxation MiND-VRP. An outer
loop solves the problem via Benders decomposition, by iterating between the
BMP, which generates a feasible first-stage solution and a valid lower bound,
and the BSP, which yields a valid upper bound. At each outer iteration, the
algorithm provides a certificate of optimality, or otherwise generates an opti-
mality cuts for the BMP to guide the algorithm toward convergence. Then, an
inner loop solves the BSP using column generation. Starting with a subset of
subpath-based variables, the procedure iterates between the RMP, which gen-
erates a feasible solution to the BSP, and the PP, which provides a certificate
of optimality or otherwise identifies new subpath-based variables with negative
reduced cost. These columns are added to the RMP and the process continues
until inner convergence. This approach relies on a tailored two-label dynamic
programming algorithm to solve the PP effectively.

Upon convergence, the algorithm provides a feasible solution to the partial relax-
ation MiND-VRP; however, the second-stage variables may still be fractional.
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Figure 5.2: Algorithm overview.

Therefore, we solve the second-stage problem one last time in order to retrieve
a feasible integer solution to the MiND-VRP. The optimal linear solution is still
a valid lower bound to the problem, which generates a valid optimality gap. As
we shall see experimentally, the optimality gap is very small due to the tight
second-stage formulation in the MiND-VRP.

Proposition 5.3 The solution algorithm returns an optimal solution to the
partial relaxation MiND-VRP in a finite number of iterations.

Note, finally, that our label-setting algorithm can also be used offline to enumer-
ate the entire set Aℓst for each reference trip (ℓ, t) ∈ L × Tℓ and each scenario
s ∈ S, upon excluding the dual values from the cost function. Therefore, our al-
gorithmic tools also enable to solve the full MiND-VRP via integer optimization
or its partial relaxation MiND-VRP with Benders decomposition alone.

5.5 Computational results

We evaluate our modeling and algorithmic approach using the taxi data from
the (NYC Taxi & Limousine Commission, 2021). Since the MiND-VRP for-
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mulation assumes all passengers have a common destination, we define a case
study corresponding to an airport shuttle service. We filter the trips during the
morning rush (6-9am) traveling from Manhattan to LaGuardia airport.

We divide Manhattan into a set of 1570 potential pickup locations with even
coverage. We use data from the Metropolitan Transportation Authority (2022)
to define 38 candidate lines, as detailed in Appendix 5.B.2. There are an average
of 11.2 reference stops per line, ranging from 3 to 21 reference stops. Figure 5.3
illustrates this experimental setup.

Figure 5.3: Network setup. Left: Set of pickup locations. Right: Set of candi-
date reference lines.

The size of the MiND-VRP is governed by the number of candidate reference
lines (ranging from 5 to 38 in out experiments), the planning horizon (rang-
ing from 30 minutes to three hours), the parameter K defining the number of
reference stops that subpaths can skip (set to 0 or 1), and the number of de-
mand scenarios (ranging from 5 to 50). On average, our problem takes 1,118
passenger requests as inputs with the full three-hour planning horizon, with a
range from 762 requests to 1,659 requests across the 50 scenarios. We consider
a homogeneous fleet of vehicles, with a capacity of 10 passengers. We assume
that transit vehicles can be scheduled every 15 minutes; we aggregate demand
across three-minute intervals in the Benders master problem, and discretize time
in 30-second increments in the pricing problem. Given these specifications, the
largest instances contain over 2.5 million first-stage variables, 25,000 Benders
sub-problems and 500,000 pricing problems.

All models are solved with Gurobi v8.1, using the optimization package JuMP
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in Julia (Dunning et al., 2017). We impose a three-hour time limit for the
algorithms and a ten-hour total limit with pre-processing. We list all additional
parameters in Appendix 5.B.1. The remainder of this section evaluates the
benefits of our methodology toward solving large-scale instances of the MiND-
VRP arising in practice, and the impact of demand-responsive microtransit on
urban mobility.

5.5.1 Benefits of subpath-based model formulation

Table 5.3 compares our subpath-based formulationto the path-based and segment-
based benchmarks described in Section 5.3.4. All models are solved using off-
the-shelf mixed-integer optimization solvers. We consider a value of K = 0 here,
meaning that microtransit vehicles must visit all reference stops.

Note, first, that the segment-based formulation does not scale to even small
instances, due to the extended formulation in a time-load-expanded network
that is required to handle the capacity and time window constraints in the
second stage. As an indication, a model with two lines, 15 minutes of demand
horizon, and a single scenario contains more than 16 million variables in the
segment-based formulation. In the path-based formulation, the total number
of paths can grow exceedingly large. To ensure a fair comparison, we limit the
number of paths to one million for each sub-problem. The results highlight the
value of subpath-based modeling: the subpath-based model scales significantly
better than the path-based models, both in terms of problem size and solution
time. In small-scale instances, the subpath-based model terminates up to 20
times faster than the path-based formulation. Moreover, the subpath-based
model is solved to optimality in larger instances where the path-based model
runs out of memory.

Yet, all models fail to scale to the largest instances, for instances with a three-
hour horizon and 50 scenarios. In addition, none of the instances with K = 1
could be solved, due to the intractable size of the second-stage variable set. This
motivates the need for decomposition algorithms.

5.5.2 Benefits of decomposition algorithm

Table 5.4 compares Benders decomposition alone, our exact algorithm combining
Benders decomposition and column generation, and our accelerated algorithm
with the heuristic column generation procedure. For each method, we report
the optimality gap Gap, the solution time CPU, and the number of subpaths
generated |Aℓst|.
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Table 5.3: Performance comparison between path-based, subpath-based and
segment-based formulations.“—” indicates that the memory limit was
reached. |Qℓst| and |Aℓst| in thousands, computational times in sec-
onds.

Path Subpath Segment

|L| Horizon |S| Pre-proc. Solve Total |Qℓst| Pre-proc. Solve Total |Aℓst|
5 30 min. 5 99 1 100 232 50 1 51 41 —

10 296 2 298 767 57 2 59 82 —
25 1,473 8 1,481 3,156 164 3 167 211 —
50 1,804 13 1,817 4,889 498 5 503 426 —

90 min. 5 1,585 18 1,603 5,567 380 5 385 94 —
10 2,597 29 2,626 9,611 457 7 464 188 —
25 13,566 108 13,674 31,251 2,306 12 2,318 512 —
50 — — — — 4,058 20 4,078 1,078 —

180 min. 5 2,946 36 2,982 9,386 549 16 565 170 —
10 4,931 81 5,012 16,323 964 23 987 341 —
25 — — — — 4,546 29 4,575 890 —
50 — — — — 9,516 44 9,560 1,896 —

10 30 min. 5 159 3 162 251 100 3 103 81 —
10 517 4 521 804 154 4 158 163 —
25 2,518 16 2,534 5,389 516 7 523 424 —
50 5,477 41 5,518 10,538 1,522 14 1,536 879 —

90 min. 5 2,990 38 3,028 8,396 556 13 569 186 —
10 5,082 65 5,147 17,612 835 15 850 399 —
25 — — — — 3,773 31 3,804 1,078 —
50 — — — — 7,224 160 7,384 2,294 —

180 min. 5 5,374 87 5,461 15,007 1,119 38 1,157 344 —
10 — — — — 2,324 43 2,367 715 —
25 — — — — 8,754 75 8,829 1,873 —
50 — — — — — — — —

20 30 min. 5 882 6 888 288 773 7 780 150 —
10 1,595 10 1,605 1,707 1,053 9 1,062 315 —
25 — — — — — — — — —
50 — — — — — — — — —

38 30 min. 5 1,791 14 1,805 503 1,704 15 1,719 263 —
10 3,513 24 3,537 3,797 2,359 18 2,377 559 —
25 — — — — — — — — —
50 — — — — — — — — —
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Table 5.4: Comparison of Benders + column enumeration (BCE), Benders + column generation (BCG), and Benders
+ heuristic column generation (BHCG). “*”: time limit exceeded. “—”: memory limit exceeded. “NA”: gap
unavailable for BHCG because BCG ran out of memory. |Aℓst| in thousands.

K = 0 K = 1

BCE BCG BHCG BCE BCG BHCG
|L| Horizon |S| Gap CPU(s) |Aℓst| Gap CPU(s) |Aℓst| Gap CPU(s) |Aℓst| Gap CPU(s) |Aℓst| Gap CPU(s) |Aℓst| Gap CPU(s) |Aℓst|
5 30 5 0.0 46 41 0.0 92 32 0.0 80 31 — — — 0.0 689 78 1.0 335 67

10 0.0 37 82 0.0 138 63 0.1 105 63 — — — 0.0 1,854 158 0.7 476 136
25 0.0 72 211 0.0 368 160 0.1 280 158 — — — 1.3 * 471 1.3 1,606 350
50 0.0 118 426 0.0 697 323 0.1 460 320 — — — — — — NA 3,764 712

90 5 0.0 188 94 0.0 315 68 0.0 238 67 — — — 0.0 3,649 189 0.6 1,074 151
10 0.0 187 188 0.0 397 137 0.0 386 135 — — — 0.0 * 409 0.3 1,966 311
25 0.0 326 512 0.0 1,024 350 0.0 809 342 — — — — — — NA 4,988 804
50 0.0 510 1,078 0.0 2,240 711 0.1 1,697 696 — — — — — — — — —

180 5 0.0 539 170 0.0 747 120 0.0 661 118 — — — 0.0 8,097 330 0.5 2,514 270
10 0.0 629 341 0.0 1,010 242 0.1 913 238 — — — 20.2 * 760 17.3 5,034 551
25 0.0 903 890 0.0 2,681 614 0.1 1,928 601 — — — — — — NA * 1,410
50 — — — 0.0 5,895 1,251 0.1 5,773 1,224 — — — — — — — — —

10 30 5 0.0 114 81 0.0 305 66 0.0 201 65 — — — 0.0 2,152 153 1.5 822 139
10 0.0 146 163 0.0 332 132 0.0 378 131 — — — 0.0 5,341 309 1.2 1,817 281
25 0.0 231 424 0.0 741 334 0.2 838 331 — — — 28.4 * 874 16.0 5,985 723
50 0.0 419 879 0.0 1,870 676 0.2 1,513 669 — — — — — — NA * 1,466

90 5 0.0 526 186 0.0 621 140 0.1 636 139 — — — 0.4 * 356 1.1 3,745 309
10 0.0 644 399 0.0 1,174 283 0.1 1,054 281 — — — 8.1 * 761 4.0 9,960 636
25 0.0 996 1,078 0.0 3,018 724 0.2 3,087 712 — — — — — — — — —
50 0.0 2,011 2,294 0.0 7,545 1,472 0.2 16,695 1,447 — — — — — — — — —

180 5 0.0 1,358 344 0.0 1,819 248 0.0 2,754 246 — — — 5.4 * 631 2.7 10,147 551
10 0.0 1,652 715 0.0 2,814 502 0.1 5,596 496 — — — — — — — — —
25 0.0 3,143 1,873 0.0 8,402 1,274 0.1 14,631 1,254 — — — — — — — — —
50 — — — — — — — — — — — — — — — — — —

20 30 5 0.0 401 150 0.0 773 116 0.0 619 115 — — — 0.0 4,852 263 1.5 1,896 242
10 0.0 473 316 0.0 876 235 0.0 917 232 — — — 32.9 * 612 8.5 5,107 492
25 — — — 3.7 * 653 1.2 2,258 588 — — — — — — NA * 1,273
50 — — — 8.8 * 1,267 3.0 5,225 1,185 — — — — — — — — —

90 5 — — — 0.0 2,367 253 0.1 2,029 245 — — — 13.0 * 635 4.4 * 543
10 — — — 0.0 3,600 518 0.2 2,532 500 — — — — — — — — —
25 — — — 111.1 * 1,383 9.4 8,806 1,270 — — — — — — — — —
50 — — — — — — — — — — — — — — — — — —

180 5 — — — 0.0 6,237 448 0.2 5,709 436 — — — — — — — — —
10 — — — 0.0 10,744 927 0.2 8,998 886 — — — — — — — — —
25 — — — — — — — — — — — — — — — — — —
50 — — — — — — — — — — — — — — — — — —

38 30 5 0.0 757 263 0.0 1,260 202 0.0 1,100 201 — — — 5.3 * 477 2.2 5,713 422
10 0.0 907 559 0.0 2,118 410 0.1 2,420 405 — — — 804.6 * 1,050 34.3 10,246 858
25 — — — 13.3 * 1,098 2.0 5,179 1,027 — — — — — — — — —
50 — — — 182.3 * 2,163 7.4 * 2,069 — — — — — — — — —

90 5 — — — 0.0 7,722 445 0.5 6,855 432 — — — — — — — — —
10 — — — 0.0 10,533 914 0.6 10,289 881 — — — — — — — — —
25 — — — — — — * 2,233 — — — — — — — — —
50 — — — — — — — — — — — — — — — — — —
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As compared to our previous results, the Benders decomposition structure en-
hances scalability. For instance, the Benders decomposition structure can now
solve problems with 10 candidate lines, a 90-minute horizon and 50 scenarios,
whereas the direct solution method ran out of memory. In large instances,
however full column variable enumeration remains intractable.

In comparison, the column generation-based methods scale better and can solve
larger instances to optimality. For instance, our exact algorithm terminates
with the full set of 38 lines and a horizon of 30 to 90 minutes. The benefits
are more significant when K = 1. In these instances, the vehicles can skip one
reference stop, which translates into longer subpaths and hence exponentially
more subpaths. In those instances, the combination of Benders decomposition
and column generation can solve instances with up to 38 lines and a 30-minute
horizon or 20 lines and a 90-minute horizon. These convergence improvements
are driven by the fact that column generation requires 30 % fewer columns than
the entire set to converge to the optimal solution.

Still, the scalability of column generation is hindered by the large number pricing
problems per Benders sub-problem, which motivates our heuristic acceleration.
In fact, our heuristic finds solutions for six more instances; in instances that are
solved by both methods, the heuristic improves the solution by 4.5 % in average,
while requiring 30 % less time and almost half of the Benders cuts. These
benefits are, again, stronger when K = 1: as expected, the dominance criterion
used in the heuristic label-setting algorithm becomes more impactful when the
subpaths are longer. Note, moreover, that the heuristic does not significantly
reduce the number of columns as compared to the full exact column generation
algorithm. This suggests that the heuristic procedure can generate most of the
relevant columns, thus enhancing scalability at limited costs in terms of solution
quality.

In addition to the results reported in Table 5.4, we observed in our experiments
that, for the methods using column generation, most of the time is spent in the
pricing problem. Due to the large number of subproblems, an easy acceleration
opportunity lies in computing parallelization, both across Benders sub-problems
and across pricing problems. Viewed through this lens, the heuristic label-
setting algorithm balances the time spent between (BMP) and (BSP), reducing
the ratio of computational times from 85 to 24 on average. In addition, the
Benders acceleration strategy that involves adding Benders cuts at the root
node considerably speeds up the relaxation. Since the resulting gap is actually
small, this strategy significnantly reduces the tree search.
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5.5.3 Benefits of stochastic optimization

Finally, we estimate our stochastic optimization approach by reporting in Ta-
ble 5.5 the Value of the Stochastic Solution (VSS) and the Expected Value of
Perfect Information (EVPI) (Birge and Louveaux, 1997). The EVPI measures
the cost of demand uncertainty as the difference between our solution and the
Wait-and-See (WS) cost obtained by optimizing the reference lines in each sce-
nario separately. The VSS measures the benefits of our stochastic optimization
problem against the Expected Value (EV) solution that optimizes reference lines
in a single representative scenario.

Table 5.5: Value of the stochastic solution, and expected value of perfect infor-
mation.

VSS EVPI

|L| Horizon |S| z∗ EEV VSS |VSS
z∗ | WS EVPI |EVPI

z∗ | VSS
(VSS+EVPI)

5 30 5 -3,034 -3,030 4 0.1% -3,152 119 3.9% 3%
10 -3,218 -3,125 93 2.9% -3,338 120 3.7% 44%
25 -3,580 -3,416 164 4.6% -3,722 142 4.0% 54%
50 -3,810 -3,464 346 9.1% -3,970 161 4.2% 68%

90 5 -9,859 -9,505 353 3.6% -10,031 173 1.8% 67%
10 -10,494 -9,916 579 5.5% -10,674 180 1.7% 76%
25 -11,051 -10,882 169 1.5% -11,335 284 2.6% 37%
50 -11,839 -11,460 379 3.2% -12,129 290 2.4% 57%

180 5 -18,492 -17,414 1,079 5.8% -18,986 494 2.7% 69%
10 -19,310 -18,722 587 3.0% -19,858 548 2.8% 52%
25 -19,941 -19,608 333 1.7% -20,555 613 3.1% 35%

10 30 5 -5,405 -5,395 10 0.2% -5,639 234 4.3% 4%
10 -5,668 -5,380 288 5.1% -5,899 232 4.1% 55%
25 -6,329 -5,986 342 5.4% -6,647 318 5.0% 52%
50 -6,687 -6,419 268 4.0% -7,062 375 5.6% 42%

90 5 -17,181 -16,749 432 2.5% -17,880 699 4.1% 38%
10 -18,103 -17,240 863 4.8% -18,908 804 4.4% 52%

180 5 -32,153 -30,326 1,827 5.7% -33,419 1,267 3.9% 59%
10 -33,865 -31,694 2,171 6.4% -35,181 1,316 3.9% 62%

20 30 5 -7,971 -7,475 496 6.2% -8,191 220 2.8% 69%
20 30 10 -8,546 -8,180 367 4.3% -8,776 229 2.7% 62%
20 90 5 -25,430 -24,351 1079 4.2% -26,262 831 3.3% 56%
38 30 5 -10,671 -9,655 1016 9.5% -10,726 56 0.5% 95%
38 30 10 -11,376 -10,326 1051 9.2% -11,500 124 1.1% 89%

Note that the VSS can be significant—up to 9.5%. The expected value of per-
fect information ranges between 0.5% and 5.6%. In most cases, our stochastic
optimization approach bridges most of the gap between the deterministic opti-
mization baseline and the ideal case with perfect information, reflected through
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the ratio V SS
(V SS+EV PI) often exceeding 50%. These results highlight the benefits

of our two-stage stochastic optimization formulation, reflecting the impact of
demand uncertainty and variability in on-demand microtransit operations and
its implications for system planning.

5.5.4 Practical assessment of demand-responsive micro-
transit

We compare our MiND-VRP solution to two practical benchmarks, reflecting
fixed-route transit and ride-sharing. We define a fixed-route transit system as
a single-stage variation of the MiND-VRP, where vehicles operate according
to the reference schedule and second-stage deviations are not allowed. At the
other extreme, ride-sharing is defined as a fully on-demand system without any
reference schedule. We define ride-sharing benchmarks with vehicle capacities
of 1, 2, and 4; we use the procedure from Bertsimas and Yan (2021) except
that, instead of requiring all requests to be served, we maximize the number
of served requests subject to fleet size constraints, and then minimize travel
distance. To perform an apples-to-apples comparison, we consider out-of-sample
data corresponding to five new weekdays; and we define microtransit, transit,
and ride-sharing systems with the same total number of seats. For example,
for a fleet of 10 microtransit vehicles each with a capacity of 10 passengers, the
corresponding ride-sharing system will use 100 vehicles with a capacity of one,
50 vehicles with a capacity of two, and 25 vehicles with a capacity of four.

Figure 5.4 shows an overview of the performance of each system (demand cover-
age, level of service, and driving distance) as a function of capacity. Note, first,
that microtransit achieves a high level of service overall, maintaining a waiting
time under four minutes and a walking time under 30 seconds on average—
corresponding to a walking distance of 40 meters. Level of service is further
enhanced when the microtransit system exhibits higher flexibility (K = 1). On
the negative side, microtransit services result in longer trip times due to the
reliance on the reference line. Nonetheless, an average delay of 20 to 30 minutes
for a transit service compared to a direct taxi is reasonable.

As expected, ride-sharing achieves a higher demand coverage with lower waiting
times and lower delays. When the system operates with high capacity, ride-
sharing benefits from the flexibility of matching passengers to nearby vehicles—
as opposed to relying on pre-determined reference lines. On the other hand,
when demand exceeds capacity, microtransit can result in fewer miles traveled.
This is illustrated in Figure 5.5. In fact, microtransit can reduce the distance
per passenger by over 50% as compared to single-occupancy ride-sharing, and
by 25% as compared to higher-capacity ride-sharing. Another observation is
that microtransit can actually reduce wait times as compared to high-capacity
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Figure 5.4: Comparison between fixed-route transit, microtransit, and ride-
sharing. Top: Demand coverage. Middle: Average level of service.
Bottom: Vehicle distance traveled. The dashed vertical line indi-
cates the average number of requests in demand horizon.
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ride-sharing, thus indicating potential benefits of consolidating demand around
reference lines via the microtransit system. In other words, microtransit can
achieve a significant reduction in vehicle miles traveled as compared to single-
occupancy ride-sharing, while providing a comparable level of service to high-
capacity ride-sharing.

Figure 5.5: Comparison of distance traveled with ride-sharing versus microtran-
sit, as a function of capacity-to-demand ratio.

As compared to fixed-route transit, microtransit increases demand coverage
while maintaining short walking times and reducing wait times. The average
arrival delay and walking time are both slightly higher under the microtransit
system, because microtransit prioritizes serving more passengers (reflected in
the hyperparameter M being larger than λ and µ), so the system covers re-
quests that reduce the level of service on average. Nonetheless, these results
underscore the benefits of microtransit systems in the public transit ecosystem.
For example, with a total capacity of 1,500, the microtransit system can in-
crease demand coverage by 25-30% over the full three-hour planning horizon,
while maintaining a comparable level of service for the passengers that receive
a service (higher delay by around 5 minutes, a few seconds of extra walk, lower
wait time by 1 minute).

These benefits of microtransit stem from operational flexibility by means of on-
demand deviations. The microtransit vehicles deviate from the reference line
3–7% of the time when K = 0; when K = 1, these deviations increase to 11%
to 31% of segments. These numbers are, in fact, quite significant. Given the
vehicle capacity of ten passengers, the number of deviations is bounded by ten
segments, out of more than twenty segments per reference line in some cases—
and multiple pickups can occur within each segment. The results indicate that
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part of the demand can be covered without deviating, as in fixed-route transit,
but that on-demand deviations are still leveraged to increase demand coverage
and, to a smaller extent, enhance passenger service.

Figure 5.6: Comparison between fixed-route transit and microtransit systems.

Finally, Figure 5.6 reports demand coverage and driving distance with different
budgets, measured as the proportion of the lines that can be operated. Note
that microtransit serves 22% extra passengers even when vehicles need to visit
each reference stop (K = 0), and 90% extra passengers when vehicles can skip
one stop at a time (K = 1). These on-demand deviations barely increase vehi-
cle miles traveled, especially with small line budgets. On average, microtransit
distance is 3% higher when K = 0, and 8% when K = 1. Bringing these com-
ponents together, note that a five-line microtransit system can serve a similar
number of passengers as a twenty-line transit system, while reducing total dis-
tance by 68%. In other words, microtransit can provide Pareto improvements
over existing transit solutions—higher demand coverage, lower operating costs,
and less vehicle miles traveled with concomitant environmental benefits.

5.6 Conclusions

This paper studies the Microtransit Network Design model for the Vehicle Rout-
ing Problem (MiND-VRP), which jointly optimizes network design and on-
demand routing operations in hybrid microtransit systems featuring fixed-line
components akin to public transit and flexible demand-responsive operations
akin to ride-sharing. The model is formulated as a two-stage stochastic opti-
mization problem with a bi-objective structure that maximizes demand coverage
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and level of service, including walking and waiting time, and arrival delay. The
model features a novel network representation of routing operations on a load-
expanded network to maintain a tight second-stage formulation, by optimizing
over subpath-based variables between reference stops as opposed to optimizing
over arc-based variables. We have developed a solution algorithm that involves
Benders decomposition to exploit the two-stage structure of the problem as well
as column generation to generate subpaths iteratively. We also developed a tai-
lored label-setting algorithm combined with a heuristic acceleration in order to
generate subpath-based variables efficiently.

We applied the MiND-VRP using real-world data from New York City to model
a shuttle service between Manhattan and LaGuardia airport. The system in-
cludes dozens of lines, hundreds of reference stops, and hundreds to thousands
of passengers, resulting in up to 2.5 million first-stage variables and half a mil-
lion pricing problems. Results demonstrate the scalability of the subpath-based
formulation in the load-expanded network as well as the algorithmic approach
combining Benders decomposition, column generation and our label-setting al-
gorithm. From a practical standpoint, results suggest that microtransit can
consolidate demand as compared to ride-sharing—resulting in fewer miles trav-
eled and a competitive level of service under high demand—and achieve Pareto
improvements as compared to fixed-route public transit—resulting in a higher
demand coverage, lower operating costs, and environmental benefits.

This paper comes at a time when multiple hybrid solutions are emerging to
enhance urban mobility, by combining the strengths of public transit and those
of ride-sharing systems. This work can therefore be extended to reflect oper-
ating models where passengers have different origins and different destinations.
From a technical standpoint, the modeling and algorithmic approach developed
in this paper can be augmented with additional acceleration techniques in or-
der to capture higher-dimensional problems—such as, for instance, larger line
pools in the first stage. Finally, the potential benefits of microtransit systems
outlined in this paper motivate the design of urban systems that would combine
fixed-route transit options, hybrid microtransit systems, and ride-sharing vehi-
cles. By proposing an integrated optimization framework, this paper provides
methodological foundations and initial results to address this emerging class of
problems.

References

Agarwal, S., Mani, D., and Telang, R. (2023). The impact of ride-hailing ser-
vices on congestion: Evidence from indian cities. Manufacturing & Service
Operations Management, (Articles in advance):1–22.



186 Design and operation of on-demand microtransit systems

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows : theory,
algorithms, and applications. Prentice-Hall.

Allen, D. J. (2017). Lost in the transit desert: Race, transit access, and suburban
form. Routledge.

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., and Rus, D. (2017).
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.
Proceedings of the National Academy of Sciences, 114(3):462–467.

Alyasiry, A. M., Forbes, M., and Bulmer, M. (2019). An exact algorithm for the
pickup and delivery problem with time windows and last-in-first-out loading.
Transportation Science, 53(6):1695–1705.

Angelelli, E., Morandi, V., and Speranza, M. G. (2022). Optimization models
for fair horizontal collaboration in demand-responsive transportation. Trans-
portation Research Part C: Emerging Technologies, 140:103725.

Azadeh, S. S., van der Zee, J., and Wagenvoort, M. (2022). Choice-driven service
network design for an integrated fixed line and demand responsive mobility
system. Transportation Research Part A: Policy and Practice, 166:557–574.

Baaj, M. H. and Mahmassani, H. S. (1995). Hybrid route generation heuristic
algorithm for the design of transit networks. Transportation Research Part
C: Emerging Technologies, 3(1):31–50.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation
and pricing strategies for the vehicle routing problem. Operations research,
59(5):1269–1283.

Balseiro, S. R., Brown, D. B., and Chen, C. (2021). Dynamic pricing of relo-
cating resources in large networks. Management Science, 67(7):4075–4094.

Banerjee, S., Hssaine, C., Périvier, N., and Samaranayake, S. (2021). Real-
time approximate routing for smart transit systems. arXiv preprint
arXiv:2103.06212.

Barra, A., Carvalho, L., Teypaz, N., Cung, V.-D., and Balassiano, R. (2007).
Solving the transit network design problem with constraint programming. In
11th World Conference in Transport Research-WCTR 2007.

Barrena, E., Canca, D., Coelho, L. C., and Laporte, G. (2014). Single-line rail
rapid transit timetabling under dynamic passenger demand. Transportation
Research Part B: Methodological, 70:134–150.

Bertsimas, D., Jaillet, P., and Martin, S. (2019). Online vehicle routing:
The edge of optimization in large-scale applications. Operations Research,
67(1):143–162.



References 187

Bertsimas, D., Ng, Y. S., and Yan, J. (2021). Data-driven transit network design
at scale. Operations Research, 69(4):1118–1133.

Bertsimas, D. and Yan, J. (2021). The edge of optimization in large-scale vehicle
routing for paratransit. Preprint.

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming.
Springer-Verlag New York, Inc.

Borndörfer, R., Grötschel, M., and Pfetsch, M. E. (2007). A column-generation
approach to line planning in public transport. Transportation Science,
41(1):123–132.

Borndörfer, R. and Karbstein, M. (2012). A direct connection approach to inte-
grated line planning and passenger routing. In 12th Workshop on algorithmic
approaches for transportation modelling, optimization, and systems. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Boston Consulting Group (2019). On-demand transit can un-
lock urban mobility. https://www.bcg.com/publications/2019/
on-demand-transit-can-unlock-urban-mobility.

Braverman, A., Dai, J. G., Liu, X., and Ying, L. (2019). Empty-car routing in
ridesharing systems. Operations Research, 67(5):1437–1452.

Ceder, A. and Wilson, N. H. (1986). Bus network design. Transportation Re-
search Part B: Methodological, 20(4):331–344.

Cipriani, E., Gori, S., and Petrelli, M. (2012). Transit network design: A proce-
dure and an application to a large urban area. Transportation Research Part
C: Emerging Technologies, 20(1):3–14.

Cummings, K., Vaze, V., Ergun, Ö., and Barnhart, C. (2023). Multimodal trans-
portation alliance design with endogenous demand: Large-scale optimization
for rapid gains. arXiv preprint arXiv:2301.03414.

Daganzo, C. F. and Ouyang, Y. (2019). A general model of demand-responsive
transportation services: From taxi to ridesharing to dial-a-ride. Transporta-
tion Research Part B: Methodological, 126:213–224.

Desaulniers, G. and Hickman, M. D. (2007). Public transit. Handbooks in
operations research and management science, 14:69–127.

Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language
for mathematical optimization. SIAM review, 59(2):295–320.

Eno Center for Transportation (2018). Uprouted: Exploring microtransit in the
united states.

https://www.bcg.com/publications/2019/on-demand-transit-can-unlock-urban-mobility
https://www.bcg.com/publications/2019/on-demand-transit-can-unlock-urban-mobility


188 Design and operation of on-demand microtransit systems

Galarza Montenegro, B. D., Sörensen, K., and Vansteenwegen, P. (2021). A
large neighborhood search algorithm to optimize a demand-responsive feeder
service. Transportation Research Part C: Emerging Technologies, 127:103102.

Galarza Montenegro, B. D., Sörensen, K., and Vansteenwegen, P. (2022). A
column generation algorithm for the demand-responsive feeder service with
mandatory and optional, clustered bus-stops. Networks.

Gehrke, S. R. and Reardon, T. (2018). Share of choices: Further evidence of
the ride-hailing effect in metro boston and massachusetts. Technical report,
Metropolitan Area Planning Council.

Hernandez, V. (2018). Metro’s microtransit pilot program: Policy recommen-
dations for equitable impact amongst low-income populations in los angeles.
Occidental College.

INRIX (2022). Global traffic scorecard.

Karsten, C. V., Røpke, S., and Pisinger, D. (2018). Simultaneous optimiza-
tion of container ship sailing speed and container routing with transit time
restrictions. Transportation Science, 52(4):739–1034.

Ma, T.-Y., Rasulkhani, S., Chow, J. Y., and Klein, S. (2019). A dynamic
ridesharing dispatch and idle vehicle repositioning strategy with integrated
transit transfers. Transportation Research Part E: Logistics and Transporta-
tion Review, 128:417–442.

Magnanti, T. L. and Wong, R. T. (1984). Network design and transportation
planning: Models and algorithms. Transportation science, 18(1):1–55.

Mangrum, D. and Molnar, A. (2017). The marginal congestion of a taxi in new
york city. Processed, Vamderbilt University.

Marín, Á. G. and Jaramillo, P. (2009). Urban rapid transit network design: ac-
celerated benders decomposition. Annals of Operations Research, 169(1):35–
53.

McKinsey & Co. (2018). Travel and logistics: data drives the
race for customers. https://www.mckinsey.com/industries/
travel-logistics-and-infrastructure/our-insights/
travel-and-logistics-data-drives-the-race-for-customers.

McKinsey & Co. (2021). Shared mobility: Where it stands, where it’s headed.
https://www.mckinsey.com/industries/automotive-and-assembly/
our-insights/shared-mobility-where-it-stands-where-its-headed.

Mercier, A., Cordeau, J. F., and Soumis, F. (2005). A computational study of
benders decomposition for the integrated aircraft routing and crew scheduling
problem. Computers and Operations Research, 32(6):1451–1476.

https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/travel-and-logistics-data-drives-the-race-for-customers
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/travel-and-logistics-data-drives-the-race-for-customers
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/travel-and-logistics-data-drives-the-race-for-customers
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/shared-mobility-where-it-stands-where-its-headed
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/shared-mobility-where-it-stands-where-its-headed


References 189

Metropolitan Transportation Authority (2022). Static data feeds: New york
city transit bus - manhattan. Acc. May 2022 at http://web.mta.info/
developers/developer-data-terms.html#data.

Muter, I., Birbil, I., and Bülbül, K. (2018). Benders decomposition and column-
and-row generation for solving large-scale linear programs with column-
dependent-rows. European Journal of Operational Research, 264(1):29–45.

Muter, I., Birbil, S. I., and Bülbül, K. (2013). Simultaneous column-and-row
generation for large-scale linear programs with column-dependent-rows. Math-
ematical Programming, 142(1-2):47–82.

Nourbakhsh, S. M. and Ouyang, Y. (2012). A structured flexible transit sys-
tem for low demand areas. Transportation Research Part B: Methodological,
46(1):204–216.

NYC Taxi & Limousine Commission (2021). TLC Trip Record Data. Available
at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

OECD (2017). Transition to shared mobility: How large cities can deliver inclu-
sive transport services. In International Transport Forum, Corporate Part-
nership Board Report, Paris, France, Tech. Rep.

Ortega, F. A., Pozo, M. A., and Puerto, J. (2018). On-line timetable reschedul-
ing in a transit line. Transportation Science, 52(5):1106–1121.

Özkan, E. and Ward, A. R. (2020). Dynamic matching for real-time ride sharing.
Stochastic Systems, 10(1):29–70.

Papadakos, N. (2009). Integrated airline scheduling. Computers and Operations
Research, 36(1):176–195.

Quadrifoglio, L., Dessouky, M. M., and Ordóñez, F. (2008). Mobility allowance
shuttle transit (mast) services: Mip formulation and strengthening with logic
constraints. European Journal of Operational Research, 185(2):481–494.

Quadrifoglio, L., Dessouky, M. M., and Palmer, K. (2007). An insertion heuristic
for scheduling mobility allowance shuttle transit (mast) services. Journal of
Scheduling, 10(1):25–40.

Quadrifoglio, L., Hall, R. W., and Dessouky, M. M. (2006). Performance and
design of mobility allowance shuttle transit services: bounds on the maximum
longitudinal velocity. Transportation science, 40(3):351–363.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2018). Accelerating
the benders decomposition method: Application to stochastic network design
problems. Siam Journal on Optimization, 28(1):875–903.

http://web.mta.info/developers/developer-data-terms.html#data
http://web.mta.info/developers/developer-data-terms.html#data


190 Design and operation of on-demand microtransit systems

Restrepo, M. I., Gendron, B., and Rousseau, L. M. (2018). Combining ben-
ders decomposition and column generation for multi-activity tour scheduling.
Computers and Operations Research, 93:151–165.

Salazar, M., Rossi, F., Schiffer, M., Onder, C. H., and Pavone, M. (2018). On the
interaction between autonomous mobility-on-demand and public transporta-
tion systems. In 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), pages 2262–2269. IEEE.

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., and Ratti, C.
(2014). Quantifying the benefits of vehicle pooling with shareability networks.
Proceedings of the National Academy of Sciences, 111(37):13290–13294.

Shen, Y., Zhang, H., and Zhao, J. (2018). Integrating shared autonomous vehicle
in public transportation system: A supply-side simulation of the first-mile
service in singapore. Transportation Research Part A: Policy and Practice,
113:125–136.

Silva, D. F., Vinel, A., and Kirkici, B. (2022). On-demand public tran-
sit: A markovian continuous approximation model. Transportation Science,
56(3):704–724.

Steiner, K. and Irnich, S. (2020). Strategic planning for integrated mobility-on-
demand and urban public bus networks. Transportation Science, 54(6):1616–
1639.

Stiglic, M., Agatz, N., Savelsbergh, M., and Gradisar, M. (2018). Enhancing
urban mobility: Integrating ride-sharing and public transit. Computers &
Operations Research, 90:12–21.

Sun, L., Xie, W., and Witten, T. (2022). Distributionally robust fair transit
resource allocation during a pandemic. Transportation science.

Szufel, P. (2022). Openstreetmapx julia package. Acc. Jan. 2022 at https:
//github.com/pszufe/OpenStreetMapX.jl.

The Economist (2018). Public transport is in decline in many
wealthy cities. www.economist.com/international/2018/06/21/
public-transport-is-in-decline-in-many-wealthy-cities.

Uber Movement (2020). New york city: Quarterly speed statistics by hour of
day (q1 2020). Acc. Nov 2022 at https://movement.uber.com/cities/new_
york/downloads/speeds?lang=en-US&tp[y]=2020&tp[q]=1.

US Department of Transportation (2016). Shared mobility current practices and
guiding principles. Technical report.

https://github.com/pszufe/OpenStreetMapX.jl
https://github.com/pszufe/OpenStreetMapX.jl
www.economist.com/international/2018/06/21/public-transport-is-in-decline-in-many-wealthy-cities
www.economist.com/international/2018/06/21/public-transport-is-in-decline-in-many-wealthy-cities
https://movement.uber.com/cities/new_york/downloads/speeds?lang=en-US&tp[y]=2020&tp[q]=1
https://movement.uber.com/cities/new_york/downloads/speeds?lang=en-US&tp[y]=2020&tp[q]=1


Appendix 191

US Environmental Protection Agency (2018). Sources of green-
house gas emissions. https://www.epa.gov/ghgemissions/
sources-greenhouse-gas-emissions.

Vazifeh, M. M., Santi, P., Resta, G., Strogatz, S. H., and Ratti, C. (2018).
Addressing the minimum fleet problem in on-demand urban mobility. Nature,
557(7706):534–538.

Walteros, J. L., Medaglia, A. L., and Riaño, G. (2015). Hybrid algorithm for
route design on bus rapid transit systems. Transportation Science, 49(1):66–
84.

Wan, Q. K. and Lo, H. K. (2003). A mixed integer formulation for multiple-route
transit network design. Journal of Mathematical Modelling and Algorithms,
2(4):299–308.

Wei, K., Vaze, V., and Jacquillat, A. (2022). Transit planning optimization
under ride-hailing competition and traffic congestion. Transportation Science,
56(3):725–749.

Wellman, G. C. (2014). Transportation apartheid: the role of transportation
policy in societal inequality. Public Works Management & Policy, 19(4):334–
339.

Zeighami, V. and Soumis, F. (2019). Combining benders’ decomposition and
column generation for integrated crew pairing and personalized crew assign-
ment problems. Transportation Science, 53(5):1479–1499.

Zhang, W., Jacquillat, A., Wang, K., and Wang, S. (2022). Routing optimization
with vehicle-customer coordination. Available at SSRN 4208397.

Zhao, J. and Dessouky, M. (2008). Service capacity design problems for mobility
allowance shuttle transit systems. Transportation Research Part B: Method-
ological, 42(2):135–146.

5.A Details on model formulation

5.A.1 Segment-based formulation

Throughout the section, we fix first-stage decisions x and z, as well as scenario
s ∈ S.

We consider a road network over a set of nodes N that contains all stopping
locations, i.e. all reference stops and passenger pickup locations. Each segment
e in the set Eℓst comprises a physical roadway road(e), a travel time tt(e), and a
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Table 5.6: Additional inputs of the segment-based formulation.

Type Description
N Set Nodes of roadway network: reference stops and pickup

locations
Eℓst Set Time-load-augmented road segments corresponding to

(ℓ, t) ∈ L× Tℓ, s ∈ S, where e ∈ Eℓst is associated with
a physical road(e) and a travel time tt(e)

T Set Set of time periods during the planning horizon
Pe Set Passengers picked up on segment e ∈ Eℓst

(Vℓst, Āℓst) Graph Time-load-expanded road network of trip (ℓ, t) ∈ L×Tℓ

in scenario s ∈ S
Āe Set Arcs in Āℓst corresponding to segment e ∈ Eℓst for

(ℓ, t) ∈ L × Tℓ, s ∈ S
Āidle

ℓst Set Arcs in Āℓst representing an idling vehicle, i.e. arcs
that connect nodes corresponding to the same physical
stop in N at consecutive time intervals

Āv
ℓst Set Arcs in Āℓst connecting the line’s destination to the

dummy sink node
Bκ

ℓst Set Incoming arcs in the time-load-expanded network for
reference trip (ℓ, t) ∈ L × Tℓ in scenario s ∈ S, across
reference stops κ through κ+K for κ ∈ {2, · · · , Iℓ−K},
at scheduled times Tℓt(κ) · · · , Tℓt(κ+K)

τwalk
ep Parameter Walk time of passenger p ∈ Pe via segment e ∈ Eℓst,

(ℓ, t) ∈ L × Tℓ, s ∈ S
τwait
ep Parameter Wait time of passenger p ∈ Pe via segment e ∈ Eℓst,

(ℓ, t) ∈ L × Tℓ, s ∈ S
ga Parameter Cost of arc a ∈ Āℓst on trip (ℓ, t) ∈ L × Tℓ in scenario

s ∈ S

set of passengers Pe who are picked up. The time horizon is discretized into T
intervals in the set T = {0, 1, · · · , T}. The planning horizon spans the interval
from the departure of the first trip from its origin (t = 0) to the arrival of the
last trip at its destination (t = T ).

To capture vehicle capacity constraints and time window constraints without
relying on big-M constraints—thus retaining a tight second-stage formulation—
we define a time-load-expanded network (Vℓst, Āℓst) for each reference trip
(ℓ, t) ∈ L × Tℓ and each scenario s ∈ S. The set Vℓst includes time-load-
expanded nodes: each node n ∈ Vℓst is associated with a tuple (kn, cn, tn),
where kn ∈ NS denotes the corresponding location, cn ∈ C tracks the pas-
senger load, and tn ∈ T is the the arrival time. The set Vℓst also includes
a dummy sink node v̄ℓst corresponding to the end of a trip, and source node
ūℓst = (I(1)ℓ , 0, Tℓt(I(1)ℓ )) corresponding to the beginning of the trip. We de-
compose the arc set Āℓst ⊂ Vℓst × Vℓst into traveling arcs, idling arcs, and
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terminating arcs, by writing Āℓst =
⋃

e∈Eℓst
Āe ∪ Āidle

ℓst ∪ Āv
ℓst. Each traveling

arc a ∈ Āe corresponds to road segment road(e) and tracks the incremental load∑
p∈Pe

Dps and the incremental time tt(e):

Āe =

(n,m) ∈ V lst × V lst : (kn, km) = road(e), cm − cn =
∑
p∈Pe

Dps, tm − tn = ⌈tt(e)⌉

 , ∀e ∈ Eℓst.

(5.41)

Next, each idling arc in Āidle
ℓst connects nodes corresponding to two consecutive

time intervals at the same physical stop:

Āidle
ℓst = {(n,m) ∈ Vℓst × Vℓst : kn = km, cn = cm, tm − tn = 1}. (5.42)

Finally, each terminating arc in Āv
ℓst connects the line’s destination to the

dummy sink node:

Āv
ℓst = {(n,m) ∈ Vℓst × Vℓst : kn = I(Iℓ)ℓ ,m = v̄Sℓst}. (5.43)

Again, we can prune the time-load-expanded network by excluding intermediate
nodes with no incoming or outgoing arcs, as well as the incident arcs. We define
a segment-based cost ga analogously to Equation (5.6) to capture passenger
walking times, waiting times, and relative arrival delays:

ga =


∑

p∈Pe
Dps

(
λτwalk

ep + µτwait
ep +

τdelay
ℓtp

τdirect
p

)
if e ∈ Eℓst, a ∈ Āe

0 if a ∈ Āidle
ℓst ∪ Āv

ℓst.
(5.44)

To ensure that the vehicle does not skip more thanK reference stops in a row, we
enforce that any subset of nodes corresponding to K + 1 consecutive reference
stops has at least one incoming arc. Let Bκℓst be the set of incoming arcs in
the time-load-expanded network across the reference stops k through k+K, at
scheduled times Tℓt(k) through Tℓt(k +K).

Bκℓst =
κ+K⋃
ι=κ

{
(n,m) ∈ Āℓst : km = I(ι)ℓ , tm = Tℓt(km)

}
,

∀(ℓ, t) ∈ L × Tℓ, s ∈ S, κ ∈ {2, · · · , Iℓ −K}. (5.45)

We define the segment-selection decision variables:

ξa =

{
1 if arc a is selected, for (ℓ, t) ∈ L × Tℓ, s ∈ S, a ∈ Āℓst,
0 otherwise.

(5.46)

The notation is summarized in Table 5.6. The second-stage segment-based
formulation is given as follows for scenario s ∈ S. Equations (5.47)–(5.49)
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Table 5.7: Additional inputs of the path-based formulation.

Component Type Description
Qℓst Set Valid paths for reference trip (ℓ, t) ∈ L× Tℓ and sce-

nario s ∈ S
Pq Set Passenger pickup set corresponding to each path q ∈

Qℓst

τwalk
qp Parameter Walk time of passenger p ∈ Pr via path q ∈ Qℓst, for

(ℓ, t) ∈ L × Tℓ, s ∈ S
τwait
qp Parameter Wait time of passenger p ∈ Pr via path q ∈ Qℓst, for

(ℓ, t) ∈ L × Tℓ, s ∈ S
gQq Parameter Cost of path q ∈ Qℓst on trip (ℓ, t) ∈ L×Tℓ in scenario

s ∈ S

are analogous to Equations (5.7), (5.10) and (5.11). Constraints (5.50) ensures
that the vehicle does not skip more than K stops in a row.

min
∑

(ℓ,t)∈L×Tℓ

 ∑
a∈Āℓst

gaξa −M
∑

p∈P : (ℓ,t)∈Mp

Dps

∑
a∈Āe : p∈Pe

ξa

 (5.47)

s.t.

∑
m:(n,m)∈Āℓst

ξ(n,m) −
∑

m:(m,n)∈Āℓst

ξ(m,n) =


xlt if n = ūℓst,

−xlt if m = v̄ℓst,

0 otherwise,

∀(ℓ, t) ∈ L × Tℓ, i ∈ Vℓst

(5.48)

∑
e∈Eℓst

∑
a∈Āe : p∈Pe

ξa ≤ zplt ∀p ∈ P, (ℓ, t) ∈Mp (5.49)

∑
a∈Bκ

ℓst

ξa ≥ xlt ∀κ ∈ {2, · · · , Iℓ −K} (5.50)

ξa ∈ {0, 1} ∀(ℓ, t) ∈ L × Tℓ, a ∈ Āℓst (5.51)

5.A.2 Path-based formulation.

Throughout the section, we fix first-stage decisions x and z, as well as scenario
s ∈ S.

Let Qℓst denote the set of all valid paths to reference trip (ℓ, t) ∈ L × Tℓ and
each scenario s ∈ S. Each path q ∈ Qℓst corresponds to a sequence of road
segments that starts at the beginning of the line, end at its destination, satisfies
flow balance in between, skips at most K reference stops in a row, does not pick
up more than C passengers, and satisfies the time window constraints at the
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reference stops. For each q ∈ Qℓst, we store the passenger pickups in Pq ⊂ P.
By definition,

∑
p∈Pq

Dps ≤ C. The cost gQq of each path is:

gQq =
∑
p∈Pq

Dps

(
λτwalk

qp + µτwait
qp +

τdelayℓtp

τdirectp

)
, ∀(ℓ, t) ∈ L × Tℓ, s ∈ S, q ∈ Qℓst.

(5.52)

We define the following decision variables:

ζq =

{
1 if path q is selected, for (ℓ, t) ∈ L × Tℓ, s ∈ S, q ∈ Qℓst,
0 otherwise.

(5.53)

The notation is summarized in Table 5.7. The path-based formulation is given
as follows. Equations (5.54) is analogous to Equation (5.7). Constraints (5.55)
ensure that exactly one path is selected for each selected reference trip. Con-
straints (5.56) ensure that selected paths only serve passengers that have been
assigned to that trip, analogously to Equation (5.11).

min
∑

(ℓ,t)∈L×Tℓ

 ∑
q∈Qℓst

gQq ζq −M
∑

p∈P : (ℓ,t)∈Mp

Dps

∑
q∈Qℓst : p∈Pq

ζq

 (5.54)

s.t.
∑

q∈Qℓst

ζq = xlt ∀(ℓ, t) ∈ L × Tℓ (5.55)

∑
q∈Qℓst : p∈Pq

ζq ≤ zplt ∀p ∈ P, (ℓ, t) ∈Mp (5.56)

ζq ∈ {0, 1} ∀(ℓ, t) ∈ L × Tℓ, q ∈ Qℓst (5.57)

5.B Preprocessing

5.B.1 Case study and algorithm parameters

The parameters used to define the case study and the algorithm characterization
are shown in Table 5.8.

Exiting Manhattan for LaGuardia. First, we identified GPS locations for
the set of four “exit points” from Manhattan toward LaGuardia Airport: the
Queensboro Bridge, the Williamsburg Bridge, the Kennedy Bridge, and the
Midtown Tunnel. Every reference line must leave Manhattan via one of these
four exit points. From each, the driver heads directly to LaGuardia. We used
Google Maps point estimates for travel times from each midpoint to LaGuardia
during the morning rush to characterize the length of each terminating edge.
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Travel times. We established all travel times across models and benchmarks
using the fastest_route functionality provided by the OpenStreetMapX pack-
age in Julia (Szufel, P., 2022). To factor heavy Manhattan traffic into our travel
time estimates, we designed a specially tuned speeds dictionary using speed
data from Uber Movement (2020), rather than using the default speeds dictio-
nary provided by OpenStreetMapX. We computed average speeds during the
morning rush for each roadway type present in our Manhattan map (primary,
secondary, tertiary, unclassified) and used these average speeds as input to the
travel time estimation function.

Table 5.8: Parameter settings in case study.

Metric Description Value
Max walking distance Computed between the passenger’s origin and the

station in an undirected version of the OSM graph
150 meters

Max waiting time Computed as the difference between the arrival of
the passenger to the stop and the pickup time

10 minutes

Max vehicle deviation Defines the set of potential stops as the ones within
X meters from the reference route

500 meters

Vehicle capacity (C) Number of passengers that a vehicle can pick up 10
1st-stage time discretization Interval between first-stage time intervals. Defines

the grouping of demand
3 minutes

2nd-stage time discretization Interval between second-stage time intervals. Used
to do the routing adjustments (travel time between
potential stops)

30 seconds

Walking time penalty (µ) Penalty on one unit of walking time for each passen-
ger

1

Waiting time penalty (λ) Penalty on one unit of waiting time for each passen-
ger

1

Failure to serve penalty (M) 100
Line budget (Bt) Percentage of total line costs per time slot 60 %
Reference schedule buffer Additional time added between reference stops, mea-

sured as +X% of the time at the nominal speed
20 %

Time interval duration Time between time intervals in Tl, defining the max-
imum frequency for a line

15 minutes

5.B.2 Reference line generation

We describe the process of generating the candidate line set L. A high-quality set
of candidate reference lines should span the service area. New York City public
transit provides a natural set of transportation options satisfying this criterion.
We began by obtaining the General Transit Specification Feed (GTFS) dataset
for the Manhattan bus network from the MTA, i.e. the Metropolitan Trans-
portation Authority (2022). The GTFS consists of several datasets describing
the stops, trips, and timing of each bus line. We selected the subset of route
shapes corresponding to trips departing during the weekday morning rush.

We aimed to avoid excessively long reference lines that duplicated the MTA net-
work, and we wished to allow for more geographic diversity among the candidate
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reference line set. To this end, we first broke each route shape in half for a total
of 328 directed MTA route segments. After obtaining distances between each
MTA route segment, we filtered connections that exceeded 1 kilometer. After
building this directed graph, we conducted four breadth-first searches (BFS),
each starting from one of the four LaGuardia exit points. Each leaf in the BFS
tree corresponded to the starting segment of a candidate reference line, all ter-
minating at the BFS root node. The final stop at LaGuardia was appended to
each candidate line. This procedure resulted in 311 candidate lines.

After executing BFS, we post-processed the lines. We developed a new metric
to measure the degree to which each reference line looped back in on itself, with
the goal of automating the process of filtering out inefficient and meandering
lines. Let dij be the distance between stops i and j and let δ be the average
distance between consecutive stops in each reference line, with the n stops be
ordered consecutively.

1

n

∑
i+M<j

1(dij ≤ mδ) · (j − i)

Two stops that are supposed to be farther from each other—i.e., stop pairs with
large values of (j−i)—incur higher penalties when they are geographically close
to each other. The parameter M determines the radius of stop pairs to consider,
and the factorm determines the level of “unacceptable” closeness, wherem ≤M.
We selected m = 5 and M = 3 for our purposes. After sorting the candidate
reference lines on this metric, we selected the top 100 for further post-processing.

As a final post-processing step, we conducted a manual inspection of the 100
lines, discarding largely similar or impractical lines, to reach the final set of 38
candidate lines.





Part IV

Additional work





Chapter 6

A column-generation-based matheuristic
for periodic and symmetric train
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Abstract: In this study, the periodic train timetabling problem is for-
mulated using a time-space graph formulation that exploits the prop-
erties of a symmetric timetable. Three solution methods are proposed
and compared where solutions are built by what we define as a dive-and-
cut-and-price procedure. An LP relaxed version of the problem with a
subset of constraints is solved using column generation where each col-
umn corresponds to the train paths of a line. Violated constraints are
added by separation and a heuristic process is applied to help to find
integer solutions. The passenger travel time is computed based on a
solution timetable and Benders’ optimality cuts are generated allowing
the method to integrate the routing of the passengers. We propose two
large neighborhood search methods where the solution is iteratively de-
stroyed and repaired into a new one and one random iterative method.
The problem is tested on the morning rush hour period of the Regional
and InterCity train network of Zealand, Denmark. The solution ap-
proaches show robust performance in a variety of scenarios, being able
to find good quality solutions in terms of travel time and path length
relatively fast. The inclusion of the proposed Benders’ cuts provide
stronger relaxations to the problem. In addition, the graph formulation
covers different real-life constraints and has the potential to easily be
extended to accommodate more constraints.

Keywords: Transportation, Periodic train timetabling, Matheuristics,
Column generation, Passenger routing
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6.1 Introduction

The planning process of railway companies is complex and is usually categorized
into three main levels: strategic, tactical and operational (Bussieck et al., 1997).
These levels form a hierarchical process used as a decision-making tool where
each of the levels includes different problems whose solution is used as an input
for the problems at the subsequent level as depicted in Figure 6.1.

Figure 6.1: Railway planning process diagram adapted from Lusby et al. (2011)

In this study, the focus is mainly on the generation of timetables which is at the
tactical level of the planning process. For that, the network and lines running on
it, decided at the strategical level, are assumed fixed. The process of generating
a timetable is formulated as the Train Timetabling Problem (TTP) and its main
goal is to determine the arrival and departure times at the stations for each of
the train lines.

The departure and arrival times are subjected to multiple track capacity con-
straints and specific requirements from the railway operating company. An
obvious example of track capacity constraints is that two trains cannot be in
the same track segment at the same time. In order to avoid having two trains at
the same track segment at the same time, a headway is defined. The headway
refers to the minimum time interval between two consecutive train movements
and it is defined by the signaling system along the track. Likewise, a headway
is defined for both departures and arrivals of consecutive trains along the same
track segment. Moreover, a minimum dwell time is necessary to allow passen-
gers to get on and off the train as well as changing drivers at specific stations.
In the same way, minimum running times between two stations are limited by
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the train speed, acceleration, breaking capabilities and an additional buffer time
also known as timetable margin.

In general, the objectives are related to three main groups: customer satisfac-
tion, robustness and cost-efficiency. These objectives may be conflicting in most
cases. For instance, a timetable where all passengers have direct connections to
their destinations at a high frequency would incur in an enormous operational
cost for the train operating company (TOC). Therefore, a compromise between
conflicting objectives should be found.

6.1.1 Focus of the paper

In this study, we focus on the generation of timetables from the passengers’
point of view while also analyzing the robustness of the solution. The model
presented relies in two main assumptions: (1) the running times between stations
are considered fixed and (2) the timetable should be symmetrical or close to
symmetrical (we elaborate on this in Section 6.3.3). The main contributions of
the paper are two-fold: We present (1) a new graph formulation that allows us
to directly generate non-conflicting schedules for all the trains of a line and also
to include additional operational constraints with minor adaptations and, (2)
a Benders’ decomposition formulation that enables the integration of passenger
routing in the timetabling generation process.

6.1.2 Paper structure

Section 6.2 lists several methods to solve the TTP through an extensive litera-
ture review. In Section 6.3 the model used and its characteristics are described.
The solution methods used to solve the problem are described in Section 6.4,
where each of the steps in the algorithms and how they interact together are
carefully explained. Section 6.5 introduces the case studied, summarizes the
computational results obtained from different tests and conducts an analysis of
them. The paper concludes in Section 6.6 with a generic overview of the whole
study and further study proposals.

6.2 Literature review

The literature about train scheduling is extensive. The different publications
apply a wide range of methods to different cases. Some of them consider just
a corridor or a junction whereas others study a whole network. Moreover, the
nature of the resulting timetable (i.e., periodic or non-periodic) also affects the
algorithm proposed. Several extensive surveys have been published (see Cordeau



204A matheuristic for periodic-symmetric train timetabling with passenger routing

et al. (1998), Caprara et al. (2007), Hansen (2009), Lusby et al. (2011), Cacchiani
and Toth (2012) or Harrod (2012)).

Most of the studies that model a network assuming the periodicity of the
timetable (periodic timetable) are based on the Periodic Event Scheduling Prob-
lem (PESP) first introduced by Serafini and Ukovich (1989). Odijk (1996) pro-
posed a cutting plane algorithm to solve the PESP. Integer variables are used to
ensure the travel intervals are respected and continuous variables to determine
the arrival and departure times modulo the period. Later, Nachtigall (1998),
Liebchen and Möhring (2002) and Peeters (2003) studied the Cycle Periodicity
Formulation (CPF) that leads to a significant speed up in the solution times
compared to earlier models. Given the effectiveness of the PESP, these models
have been used to solve many network cases, whereas non-periodic approaches
are used more often to model single-line corridors or congested networks where
it may not be possible to schedule all trains in an efficient way.

Szpigel (1973) presented one of the first Integer Linear Program (ILP) formu-
lations for the non-periodic TTP. The formulation is regarded as a job-shop
scheduling problem where jobs (trains) need to be assigned to machines (track
segments). Szpigel (1973) solved it using branch-and-bound applied to a Brazil-
ian single-track line. Jovanovic and Harker (1991) proposed a Mixed Integer
Linear program (MILP) formulation where the arrival/departure times are de-
fined with continuous variables and the order of trains with binary variables
and tries to find a reliable timetable. Carey and Lockwood (1995) proposed a
mix of heuristic and branching procedure to solve a similar MILP as the one
presented by Jovanovic and Harker (1991) in a one-way corridor, and Carey
(1994) extended it to a two-way corridor showing that no additional constraints
are needed. In general, most of the models proposed for solving non-periodic
timetables are used for scheduling multiple competing timetables from different
operators.

Furthermore, Brannlund et al. (1998) introduced a pure ILP formulation where
the time was discretized and therefore, the formulation could be represented as
a graph where the nodes represent the arrival and departure time instants to
each station. This new formulation is referred to as time-space graph formula-
tion but cannot be directly applied to large instances due to the large number
of binary variables. As a result, further studying the LP relaxation of the model
becomes more attractive and different methods have been developed based on
it. The ILP formulation proposed by Caprara et al. (2002) defines a variable
for each arc in the graph and it is solved using Lagrangian relaxation combined
with sub-gradient optimization. Cacchiani et al. (2008) proposed a formulation
where the variables refer to whole paths instead, and solved it applying col-
umn generation together with separation techniques. Cacchiani et al. (2010b)
extended the formulation presented by Caprara et al. (2002) to be applied in
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a network considering both passenger and freight trains and solved it using a
similar procedure. Min et al. (2011) proposed a method for solving the train-
conflict resolution problem with a column-generation based algorithm that takes
advantage of the separability of the problem. Using a heuristic for the pricing
problem (PP), the method is able to get near optimal conflict-free solutions in
a few seconds. Cacchiani et al. (2013) applied dynamic programming to solve
the clique constraints that arise in the graph formulations and developed an
exact method whose performance is compared with various heuristics in Cac-
chiani et al. (2010a). Fischer (2015) formulates the TTP using a time-indexed
graph and presents a method based on Lagrangian relaxation that improves the
quality of the relaxation. Fischer and Schlechte (2017) extends the approach to
also allow overtaking possibilities. Zhou et al. (2017) and Zhang et al. (2019)
also take advantage of a graph formulation and effectively solve it using dual
decomposition techniques. The methods are applied to the Beijing-Shanghai
high speed corridor and show a better performance than the PESP model.

Last but not least, combining train timetabling and passenger routing has also
been studied. Kinder (2008) extended the PESP model to a time-space graph
and implemented an iterative approach where the timetable is re-planned af-
ter doing passenger routing. Gattermann et al. (2016) present an integrated
model that finds timetables and passenger routes in which passengers are dis-
tributed temporally using time-slices. Borndörfer et al. (2017) also integrates
timetabling and passenger routing in one model. The model tests and analyzes
different passenger routing models on timetable optimization yielding signifi-
cant improvements in travel time. Farina (2019) proposes a two-phase large
neighborhood search heuristic for the combined train timetabling and passenger
routing problem. The heuristic has similarities with the work presented in this
paper, but employs different destroy and repair methods. Polinder et al. (2020)
also implement a two-phase heuristic that aims at minimizing the passenger
travel time. The method also accounts for the waiting time of the passengers
at the stations and shows promising results in real-life instances. Several stud-
ies also refer to the problem at hand as the demand-oriented train timetabling
problem. Li et al. (2017) implements a mixed integer quadratic model for the
dynamic version of the problem and shows that it can effectively reduce the
total passenger travel time. Zhou et al. (2019) studies passengers’ booking de-
cisions instead of the classic queue principle and uses a two-level method which
combines a bi-level programming model with a priority-based heuristic which
also shows benefits in terms of travel time for passengers.

6.2.1 Contribution and comparison to existing models

The modeling approach used in this paper is based on the time-space graph
proposed in Caprara et al. (2002). As discussed in the literature review, this
modeling approach has also been used in several later papers (e.g. Cacchiani
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et al. (2008) and Cacchiani et al. (2010b)). In Caprara et al. (2002), the in-
teger programming model was solved using a Lagrangian relaxation heuristic.
The Lagrangian subproblem solves a longest path problem through an acyclic
network. In Cacchiani et al. (2008), the problem was solved using column gen-
eration where the pricing problem also searches for longest paths through an
acyclic network. We also solve the problem using column generation but use a
pricing problem that can determine 1, 2 or 4 paths in one go. The pricing prob-
lem is solved as a standard shortest path problem (further details in Sections
6.3 and 6.4). This is possible due to tight frequency and symmetry constraints.
There are several benefits of this approach: 1) The symmetry and frequency
constraints are entirely handled in the pricing problem and fewer constraints
are necessary in the master problem. 2) The LP relaxation produced by the
master problem is potentially stronger compared to an approach that handles
symmetry and frequency constraints in the master problem. 3) Fewer pricing
problems must be solved. We believe that this is a major contribution of our
paper.

Caprara et al. (2002) already constructed a cyclic timetable. We use this as a
basis to generate cyclic timetables with a one hour period, useful for modeling
the passenger train timetabling problem that a train operator faces. Normally,
this problem is solved using a PESP model and, to the best of our knowledge, it
is the first time that the time-space graph approach is used for this application.

The solution approach presented in this study constructs the timetable while
considering the routing of the passengers. A routing sub-problem is used to
generate Benders’ cuts that guide the model to optimize the passenger travel
time. As the literature review shows, this is an emerging topic in passenger
train timetabling and we believe that the paper at hand proposes a simple but
useful approach for integrating the passenger routing with the train timetabling
problem.

The method proposed in the paper at hand is based on work done in the master’s
thesis of Bernardo Martin-Iradi (Martin-Iradi, 2018).

6.3 Problem formulation

The notation is based on the one from Cacchiani et al. (2010b). Let S = {1, ..., s}
denote the set of stations in the network. The network can be represented as a
mixed multi-graph N = (S,E ∪A) where each vertex i ∈ S represents a station
in the network and each edge e = (h, i) ∈ E represents a single-track segment
between two stations with no intermediate stations in between that is used by
trains traveling in both directions (i.e. from h to i and from i to h). Finally,
each arc a = (h, i) ∈ A represents a double-track segment between stations h
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and i with no intermediate stations that can be used only by trains traveling
in one direction (i.e. from h to i). The graph can contain multiple arc/edges
connecting the same two stations. For instance, in the network here studied
there are segments with four tracks between two same stations (two in each
direction). Therefore, the adjacent stations in between can be connected with
four arcs (two in each direction) in the multi-graph. For convenience, for each
station i ∈ S, let denote δ+N (i) ⊆ E ∪ A the set of edges incident to i and arcs
leaving i, and δ−N (i) ⊆ E ∪A the set of edges incident to i and arcs entering i.
Furthermore, for both mono and bi-directional tracks, minimum time inter-
vals between departures/arrivals (i.e., headway) on the same track are required.
Therefore, for each e ∈ E ∪A and station i of e, let denote:

• d(i, e): minimum time interval between consecutive departures of trains
traveling in the same direction from i on the track segment e.

• a(i, e): minimum time interval between consecutive arrivals of trains trav-
eling in the same direction at i on the track segment e.

Moreover, in the case of single-tracks, additional time interval requirements
need to be set for trains traveling in opposite directions. Therefore, for each
edge e ∈ E and station i of e where i ∈ Ŝ and Ŝ is the set of stations connected
by single-track segments, we denote:

• f(i, e): minimum time interval between an arrival at i on e and a departure
from i on e of trains traveling in opposite directions.

• g(i, e): minimum time interval between a departure from i on e and an
arrival to i on e of trains traveling in opposite directions.

Furthermore, let S∗ ⊆ Ŝ be the stations only connected by single-track segments
(i.e. a station that is adjacent to at least one single track segment and at least
one double-track segment is placed in Ŝ but not in S∗, while a station that is
adjacent to at least one single track segment and adjacent to zero double-track
segments is placed in both Ŝ and S∗). Therefore, for station i ∈ S∗ we define:

• h(i): minimum time interval between arrivals to i of trains arriving from
any incident track segment.

In this case study, due to safety requirements, a minimum value of d(i, e), a(i, e)
and h(i) is defined, whereas f(i, e) = 0 and g(i, e) is implicitly given by:

g(i,e) = minimum travel time from i to h on e + minimum travel time from h to i on e,

where h is the other endpoint of e. The reason for f(i, e) = 0 is based on the rail
infrastructure. At station i, each of the platforms has its own track and usually



208A matheuristic for periodic-symmetric train timetabling with passenger routing

the length of the tracks until their merging point allows a train to depart on e
as soon as the other train has arrived from e.

6.3.1 Lines and timetables notation

The different lines link two major stations with a number of intermediate sta-
tions in between. Let L = {1, ..., l} denote the number of operating lines in the
network space and D = {1, 2} the direction of the line, D = 1 for direction out
of Copenhagen and D = 2 for direction towards Copenhagen. Let Υ be the
set of trains that cover the L lines and D directions. For each train j ∈ Υ,
we denote lj and dj to its line and direction. Moreover, let fj and ej be the
starting and ending station respectively and let Sj := {fj , ..., ej} ⊆ S be the
ordered set of stations visited by train j (stopping or not). Some segments
between stations are formed by quadruple-track segments, meaning that each
train can choose between two tracks to travel along that track segment. In this
study, the quadruple-track segments connect various consecutive stations and it
has been assumed that the train runs along the same track and cannot switch
to the other track during the whole quadruple segment (see Figure 6.2). Let
N j = (Sj , Aj) be the auxiliary network for each train j ∈ Υ where each arc in
Aj is either an arc in A or an edge in E with an orientation, corresponding to the
unique travel direction of j along the single-track. A timetable for each train is
given by the departure time at fj and the arrival time at ej , and the arrival and
departure times for the intermediate stations Sj\{fj , ej}. Let ϕj(a) denote the
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Figure 6.2: Illustration of the quadruple-track segment modelling in one direc-
tion.

running time along arc a ∈ Aj of train j ∈ Υ. Let ωmin
j (i) denote the minimum

dwell time at station i for train j ∈ Υ where i ∈ Sj \ {fj , ej}. In the same
way, there is an upper bound in the dwell time (i.e. ωmax

j (i)) in the form of an
additional percentage of the minimum dwell time (ωmax

j (i) ∝ ωmin
j (i)). Note

that, for a line containing N stations, there are N-1 minimum running times and
N-2 minimum dwell times defined in one direction. The mentioned parameters
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above are defined for each train meaning that the running and dwell time sets
are defined independently for trains in different directions for the same line, as
they may differ. Finally, the time horizon is defined as T = {1, ..., t} referring
to a whole hour discretized into time instants of half a minute (|T | = 120 time
instants) and each line has an associated running frequency F l indicating how
many trains per hour cover each direction of that line.

6.3.2 A graph representation

Figure 6.3: Graph representation of a train path with a time period of |T | = 10.
The nodes at t = 0 correspond to a duplicate of the nodes of t = |T |.

The problem can be defined using graphs to represent the possible timetables
(from now on referred to as train paths). Let G = (V,R) be a directed and
acyclic space-time graph. A sub-graph Gj = (V j , Rj) can be defined for each
train j ∈ Υ (from now on referred to as Train graph) in which the nodes represent
the arrivals or departures at a station at a given time instant. Figure 6.3 shows
an example of a train path represented using a time-space graph.

The node set has the form

V j = {σj , τ j} ∪
⋃

a={h,i}∈Aj

(Ua
i ∪W a

h )

where σj and τ j are the artificial source node and artificial sink node respec-
tively and the sets W a

h for h ∈ Sj \ {ej} and Ua
i for i ∈ Sj \ {fj} repre-

sent the set of time instants where a train can depart from station h or ar-
rive to station i on the track represented by arc a ∈ Aj respectively (also
called departure and arrival nodes). Let u,w ∈ V j be nodes of the node set
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and let θ(u) be the time instant associated with node u. Furthermore, let
∆(u,w) := θ(w) − θ(u) denote the time interval between nodes u and w if
θ(w) ≥ θ(u) and ∆(u,w) := θ(w) − θ(u) + T otherwise. Due to the periodic
nature of the time horizon T , it is said that node u precedes or coincides with
node w (i.e. u ⪯ w) if ∆(w, u) ≥ ∆(u,w) as it is assumed that all the travel
times used in this study case are far from the time horizon of one hour. Table
6.1 illustrates the time interval calculation with one example.

Table 6.1: Example of the time interval calculation between two nodes with a
cycle time |T | = 60

θ(u) θ(w) ∆(u,w)
10 15 5
15 10 55

For convenience, for each station i ∈ Sj , let denote δ+Nj (i) ⊆ Aj the set of arcs
leaving i, and δ−Nj (i) ⊆ Aj the set of arcs entering i. The arc set Rj for each
graph can be defined by four main types of arcs.

Starting arc set: These arcs connect the artificial source node with the set of
nodes for the departure of the first station in the line. These arcs have a null
cost (free arcs).

Segment arc set: These arcs connect the nodes related to the departure time
from one station to the nodes related to arrival time to the next station in the
line. Furthermore, the arc needs to satisfy that ∆(w, u) = ϕj(a) where ϕj(a)
denote the travel time for arc a ∈ Aj . The cost of the arc corresponds to the
travel time between the departure and arrival instants in the respective sets.

Dwell arc set: These arcs connect the nodes related to the arrival time to one
station with the nodes related to departure time from the same station in the
line. Furthermore, the arc needs to satisfy that ∆(u,w) ∈ [ωmin

j (i), ..., ωmax
j (i)]

for i ∈ Sj \ {fj , ej}. The cost of the arc corresponds to the dwell time between
the arrival and departure instants in the respective sets.

Ending arc set: These arcs connect the set of nodes of the arrival to the last
station in the line with the artificial sink node. These arcs have a null cost (free
arcs).

As a result, the timetable for train j ∈ Υ is defined by any path from the
artificial source node σj to the artificial sink node τ j .
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6.3.2.1 Main assumptions

The final graph formulation presented in this study is based on the assumption
that the travel time of each train along each track segment joining two stations
is fixed. In other words, it is not possible to slow down the train along the
track segment and, therefore, the departure time from one station uniquely de-
termines the arrival time at the next station. Even if slowing down is something
that has to be done at the operational level, this assumption is supported by
the fact that, in practice, slowing down a train between two stations in most
cases is equivalent to forcing the train to stop in an endpoint station of the
track segment for a longer time and then to travel at the regular speed along
the track. This statement is not true in general but it holds for realistic cases.
In particular, experimental results performed by Caprara et al. (2006) show that
the solution values found by heuristic procedures are marginally affected by this
additional constraint, whereas the corresponding running time per iteration is
widely reduced, since the graph G turns out to be much smaller (for each train,
the number of segment arcs between two stations is equal to the number of
departure nodes). Furthermore, the above assumption simplifies the mathemat-
ical representation of the problem, yielding simpler and stronger overtaking and
crossing constraints (see sections 6.3.4.3 and 6.3.4.4).

Another characteristic of the model assumed is the need for a symmetric timetable.
When the train services are identical in both running directions it is easier to
plan the timetable since the train path in one direction uniquely defines the
path of the train in the opposite direction. Therefore, symmetric timetables are
easier to plan and are more attractive to passengers as same transfer times are
provided between pairs of trains in both directions (Liebchen, 2007). Never-
theless, this type of timetable reduces the degrees of freedom in the planning
process and it is more suitable when the passenger demands are similar in both
directions.

As a result, these two main assumptions can lead to a new, more efficient, graph
formulation. On one side, keeping the running times fixed reduces the number
of nodes to half since the arrival of a train is directly defined by the previous
departure. On the other side, assuming symmetric paths for each line requires
just creating one train path for a line, as the remaining line train paths are
automatically defined.

6.3.3 Symmetric Line graph

The Symmetric Line graph formulation is defined, as the name states, per each
line instead of per train, meaning that fewer graphs are needed. Ideally, each
of the Symmetric Line graphs would include half of the nodes of one Train
graph due to the fixed running times and symmetric paths. Nevertheless, in
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Figure 6.4: Representation of a path in the Symmetric Line graph as the combi-
nation of two paths in the respective Train graphs. In this example
the symmetry gap is set to κ = ±1. The time axis on the left for the
Symmetric Line graph denotes the departure time instants for the
left train and the time axis on the right denotes the arrival times of
the right train. The nodes corresponding to t = 0 are a duplicate of
the nodes corresponding to t = |T | and are added to help visualizing
the symmetry of the paths in relation to the symmetry axis at t = 5.

practice, due to the nature of the infrastructure, the running times in opposite
directions for a given track segment are sometimes slightly different, meaning
that two exactly symmetrical paths cannot be achieved. Therefore, a maximum
symmetry gap κ is considered. A line is considered symmetrical, if, for each
station, the departure time of the train in one direction and the arrival time of
the train in the opposite direction sum to the period time T . The symmetry gap
adds flexibility to this and allows to also consider the line to be symmetrical if the
sums of departure and arrival times are within the interval (i.e. |T |±κ). Figure
6.4 shows an example of two trains of a line that are considered symmetrical and
their corresponding path in the new proposed graph. In this figure, the exactly
symmetrical times at a station are depicted by larger nodes in the Symmetric
Line graph and the symmetric instants that are within the gap considered (κ)
are depicted with smaller nodes. The primary time axis indicates the departures
times of the left-to-right train and the secondary one indicates the arrival times
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of the right-to-left train. Starting with station A, the departure time of the
left-to-right train is at time instant 1 and the arrival of the right-to-left train
is at time instant 10. The sum of both times is 11 which is not equal to the
planning horizon (10 in this case). Since the value is within the symmetry gap
(10±1) it is symbolized with a small node. For station B, the departure time of
the left-to-right train is at time instant 5 and the arrival time of the right-to-left
train is at time instant 5. The sum of both times is equal to 10 which is equal
to the planning horizon meaning the departure and arrival of the trains are in
perfect symmetry which is symbolized with the larger node. Last, in station C,
the arrival of the left-to-right train is at time 7 whereas the departure of the
right-to-left train is at 2. The sum of both times sums to 9, which is not perfectly
symmetrical but again lies within the symmetry gap (10± 1) and therefore it is
depicted as a small node.

Figure 6.5: Representation of the Train graph nodes associated with one node
(circled in red) of the Symmetric Line graph formulation. Notice
that by assuming fixed running times the departure time from A
directly defines the arrival time at B and vice versa. This example
also shows that the train paths are perfectly symmetrical with re-
spect to the symmetry axis. The nodes corresponding to t = 0 are
a duplicate of the nodes corresponding to t = |T | and are added to
help visualizing the symmetry of the paths in relation to the sym-
metry axis at t = 5.

Each node in the graph represents the departure and arrival times of two sym-
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metrical train paths of the same line along a track segment. In other words,
one node from the Symmetric Line graph notation is equivalent to four nodes
of the Train graph notation (see Figure 6.5). As we increase the symmetry gap,
the amount of symmetrical departure and arrival time combinations increases
in accordance. Since each of those combinations can be seen as a node in the
graph, the growth is translated in (1+2|κ|) nodes per time instant and station.

Regarding the arc set, the fact of assuming fixed running times allows us to
merge the segment and dwell arc in a single segment+dwell arc. The weight of
these arcs is given by the sum of running and dwell time for both trains. In
order to avoid crossings or headway conflicts at a single-track segment, all arcs
that result in incompatible departures, arrivals or crossings are not included in
the graph. This ensures that all paths in the new graph correspond to feasible
and compatible train paths for the line.

Regarding lines using the quadruple track segments (see Figure 2), it is assumed
that trains make the same choice of track in both directions.

The output of the Symmetric Line graph corresponds to a set of compatible
train paths covering the line. Depending on the nature and frequency of the
line, the amount may vary between one, two or four train paths, as explained
below:

If the line runs only during rush hour, trains only operate in one direction. This
means that no symmetry is needed and a simple Train graph with fixed running
times can be used. The output of it is just one train path, except if the frequency
of the line is two trains per hour, then the output is two identical train paths
exactly separated half an hour.

For regular lines, the output of the Symmetric Line Graph will be two symmetric
train paths in opposite directions. If the frequency of the line is two trains per
hour and direction, the output of the graph will correspond to two identical
pairs of symmetric train paths separated by half an hour.

6.3.4 ILP formulation

In this section, the model is formulated as an ILP. In order to illustrate the
different parts of the formulation, the notation of the Train graph is used. As it
is explained in Section 6.3.3, the set of nodes of the Symmetric Line graph are
formed by combinations of node sets from the Train graph formulation.
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6.3.4.1 Formulation without track capacity constraints

The problem can be formulated as a version of the Set Packing Problem (SPP)
that aims to minimize the sum of total path lengths. The binary variable λq ∈
{0, 1}, q ∈ Q defines if the group of line paths q is included in the optimal
solution where Q is the set of possible line group paths. The parameter cq
denotes the cost of choosing the group of line paths q ∈ Q that is the sum of
path lengths. The formulation without the track capacity constraints is stated
as follows:

min
∑
q∈Q

cq · λq (6.1)

s.t. ∑
q∈Ql

λq = 1 ∀l ∈ L (6.2)

λq ∈ {0, 1} ∀q ∈ Q (6.3)

The objective function minimizes the cost (path lengths) of the solution train
paths. Constraints (6.2) ensure that train paths are chosen to cover each line
where Ql is the set of possible line group paths for line l ∈ L and constraints
(6.3) state the binary property of the decision variable.

6.3.4.2 Headway constraints

Headway constraints are one of the track capacity constraints and ensure the
minimum headway times between consecutive arrivals and departures at stations
in the network. ∑

v ∈ Ua
i : v ⪯ u

∆(v, u) < a(i, a)

∑
q ∈ Qv

λq ≤ 1, i ∈ S, a ∈ δ−N (i), u ∈ Ua
i , (6.4)

∑
v ∈W a

i : v ⪯ w
∆(v, w) < d(i, a)

∑
q ∈ Qv

λq ≤ 1, i ∈ S, a ∈ δ+N (i), w ∈W a
i , (6.5)

∑
a ∈ δ−N (i) ∩ E

∑
v, u ∈ Ua

i : v ⪯ u
∆(v, u) < h(i)

θ(u) = t

∑
q ∈ Qv

λq ≤ 1, i ∈ S∗, t ∈ T, (6.6)
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Let Qv be the set of line group paths that use node v. Constraints (6.4) and
(6.5) enforce that the minimum headway distance between consecutive arrivals
and departures at each station respectively, of trains in the same direction, is
respected. Moreover, constraints (6.6) ensure that in stations connected by
single-track segments, the minimum headway between trains arriving to it is
respected.

6.3.4.3 Overtaking constraints

Figure 6.6: Illustration of an overtaking where a(h, a) = 2 and d(i, a) = 2. The
left one is the simple version of the constraint while the right one is
the stronger version implemented in this study.

It is not allowed that two trains traveling in the same direction on the same
track overtake each other.

A basic example of an overtaking is shown on the left side of Figure 6.6 where
both train departures are incompatible. The basic overtaking constraint would
enforce that, at most, one slow train will depart from t = 0 or one fast train
will depart from t = 2. In this study, a stronger version of this basic constraint
is formulated based on the ones from Cacchiani et al. (2010b).

The following constraints (6.7) are defined for every pair of trains j, k along
a = (i, h) that is an arc in both auxiliary networks N j and Nk. Moreover,
j is considered the "slow" train and k is the train that can actually overtake
it. Therefore, the travel time of train j should be greater than the one from
train k (i.e. ϕj(a) > ϕk(a)). For a constraint, we define an earliest possible
departure from i for trains j and k. These departure nodes are denoted v1 and v2
respectively. Node v1 ∈W a

i ∩V j and node v2 ∈W a
i ∩V k correspond to departure
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nodes that are incompatible with each other (i.e. if train j departs at θ(v1), then
train k cannot depart at θ(v2) and vice versa). The two trains j, k are considered
incompatible when either min{∆(v1, v2),∆(v2, v1)} < d(i, a), meaning that their
departures are too close in time or min{∆(u1, u2),∆(u2, u1)} < a(i, a) where
u1, u2 are the respective arrival nodes for j, k corresponding to v1, v2, meaning
that their arrivals to the next station are too close in time or v1 ≺ v2 ≺ u2 ≺ u1
meaning that train k overtakes train j along the track.
Then, v3 ∈ W a

i ∩ V j can be defined as the earliest possible departure of train
j that is compatible with θ(v2) such that v1 ≺ v3. Analogously, v4 ∈ W a

i ∩ V k

can be defined as the earliest possible departure of train k that is compatible
with θ(v1) such that v2 ≺ v4. It can be seen that any departure of train j from
[v1, v3) is incompatible with any departure of train k from [v2, v4).

This stronger version of the constraint is illustrated in the right side of Figure
6.6. Let Qlj

w be the set of line group paths that use node w and belong to train
j of line l. Nodes v1 and v3 are depicted as the first and second slow train nodes
in time respectively and nodes v2 and v4 are depicted as the first and second
fast train nodes in time respectively. Note that in the illustration the minimum
departure and arrival headway (a(i, e) and d(i, e)) are respected for the trains
but they overtake each other along the track.

∑
w ∈W a

i ∩ V j :
v1 ⪯ w ≺ v3

∑
q ∈ Qlj

w

λq +
∑

w ∈W a
i ∩ V k :

v2 ⪯ w ≺ v4

∑
q ∈ Qlk

w

λq ≤ 1,∀j, k ∈ Υ, v1, v2 ∈W a
i ,

(where lj ̸= lk, dj = dk, i, h ∈ Sj ∩ Sk, a = (i, h) ∈ (Aj ∩Ak))

(6.7)

6.3.4.4 Crossing constraints

It is not allowed that two trains traveling in opposite directions are on the same
single-track segment at the same time.

A basic example of a crossing is shown on the left side of Figure 6.7 where both
departures are incompatible. The basic constraint corresponding to this crossing
would enforce that, at most, one slow or fast train will depart from t = 0. In
this study, a stronger version of this basic constraint is formulated based on the
ones from Cacchiani et al. (2010b).

The following constraints (6.8) are defined in a similar way to constraints (6.7).
They are defined for every pair of trains j, k traveling in opposite directions such
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Figure 6.7: Illustration of a crossing where f(h, e) = 2. The left one is the
simple version of the constraint while the right one is the stronger
version implemented in this study.

that a = (i, h) and (h, i) are arcs in the auxiliary networks N j and Nk respec-
tively and correspond to the set of edges E in the network. For a constraint, we
define an earliest possible departure from i and h for trains j and k respectively.
These departure nodes are denoted v1 and v2 respectively. Node v1 ∈W a

i ∩ V j

and node v2 ∈ W a
h ∩ V k correspond to departure nodes that are incompatible

with each other (e.g. if train j departs at θ(v1), then train k cannot depart
at θ(v2) and vice versa). The two trains j, k are considered incompatible when
either u2 ⪯ v1 and ∆(u2, v1) < f(i, e) or u1 ⪯ v2 and ∆(u1, v2) < f(i, e), mean-
ing that arrival to and departure from the same station are too close in time or
v1 ≺ u2 and ≺ v2 ≺ u1 meaning that train j and train k cross each other along
the track.
Then, v3 ∈ W a

i ∩ V j can be defined as the earliest possible departure of train
j that is compatible with θ(v2) such that v1 ≺ v3. Analogously, v4 ∈ W a

h ∩ V k

can be defined as the earliest possible departure of train k that is compatible
with θ(v1) such that v2 ≺ v4. It can be seen that any departure of train j from
[v1, v3) is incompatible with any departure of train k from [v2, v4).

This stronger version of the constraint is illustrated in the right side of Figure
6.7. Nodes v1 and v3 are depicted as the first and second slow train nodes in
time respectively and nodes v2 and v4 are depicted as the first and second fast
train nodes in time respectively. Note that even if the minimum arrival headway
(f(h, e)) is respected by the trains departing, they cross each other along the
track.
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∑
w ∈W a

i ∩ V j :
v1 ⪯ w ≺ v3

∑
q ∈ Qlj

w

λq +
∑

w ∈W a
h ∩ V k :

v2 ⪯ w ≺ v4

∑
q ∈ Qlk

w

λq ≤ 1,∀j, k ∈ Υ, v1 ∈W a
i , v2 ∈W a

h

(where lj ̸= lk, dj ̸= dk, i, h ∈ Sj ∩ Sk, a = (i, h) ∈ Aj ∩ E, (h, i) ∈ Ak ∩ E)

(6.8)

6.3.4.5 Sibling constraints

There are specific pairs of lines that share identical or similar first and last
stations but have slightly different stopping patterns. These pairs of lines (from
now on referred to as sibling lines) should be spread along the cycle time as
much as possible. In order to do so, the sibling constraints behave in the same
way as the departure headway constraints (6.5). Let Ts denote the minimum
time interval between consecutive departures of sibling lines in one direction at
each station. Finally let Ξ := {(m1, n1), ..., (mk,mk)} denote the set of sibling
line pairs along the network where mk, nk ∈ L.∑

v ∈W a
i : v ⪯ w

∆(v, w) < Ts

∑
q ∈ {Qlj

v ∪Qlk

v }

λq ≤ 1, ∀(lj , lk) ∈ Ξ, d ∈ D,w ∈W a
i ,

(where j, k ∈ Υ, i ∈ Sj ∩ Sk, a ∈ δ+N (i) ∩ (Aj ∩Ak)) (6.9)

Constraints (6.9) ensure that all the departures of sibling lines from any common
station are spread at least a time interval of Ts in each direction.

6.3.5 Passenger routing model formulation

In order to route the passengers between stations, we introduce a multi-commodity
flow problem (MCFP) formulation which is integrated with the ILP formulation
by using a timetable solution as input information. Let Ḡ = (V̄ , Ā) be a graph
formed by the set of nodes V̄ and set of arcs Ā. There is a node for each line
l ∈ L, station s ∈ S and time t ∈ T . We note that each node is used for both
directions of a line. Let K be the set of commodities. We define each pair of
origin-destination stations as a commodity k ∈ K and the demand travelling
between the corresponding origin and destination stations is given by an origin-
destination (ODk) matrix. Additionally, there is an artificial source and sink
node ok, dk per commodity k ∈ K. The set Ā of passenger flow arcs is formed
by different subsets:
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• Ār ⊆ Ā: Timetabling arcs. Set of arcs corresponding to riding a timetabled
train between consecutive stations. Due to the fixed running times, there
are T arcs between consecutive stations per line and direction.

• Ād ⊆ Ā: Dwell arcs. Set of arcs corresponding to waiting time at a station,
either dwelling on the train or waiting for the train to transfer to. There
is one arc connecting two consecutive time instants in each station.

• Ās ⊆ Ā: Source and sink arcs. Set of arcs leaving one of the artificial
source nodes ok or entering one of the artificial sink nodes dk. For any
origin station i, the artificial source nodes of commodities having station i
as origin, are connected with the departures of trains stopping at station
i. Likewise, all the arrivals of trains stopping at station i are connected
with the sink node of commodities that have station i as destination.

• Āt ⊆ Ā: Transfer arcs. Set of arcs to transfer between pairs of lines at a
common station. For each node at a station with transfer options, there
is one transfer arc to each train belonging to different lines, that also visit
the station.

A small example of the different elements in the graph are shown in Figure 6.8.
We identify a possible routing path for passengers travelling from station 1 and
4 (i.e. from ok to sk). This path consists of (1) boarding a train from line 1 that
departs at time 1 from station 1, (2) getting off at station 3 and transferring
to a train of line 2 that departs at time 4 and, (3) getting off at station 4 at
time 5. Notice that, in this example, we consider a minimum transfer time of 2,
meaning that the transfer arc will allow us to board a train at time 5 at earliest.

Let fka be a variable that states if arc a ∈ Ā is used for commodity k ∈ K and
let ta be the time to traverse arc a ∈ Ā. To ease the problem formulation, we
denote δ+(v) ⊆ Ā to the set of arcs leaving from node v ∈ V̄ and δ−(v) ⊆ Ā
to the set of arcs entering to node v ∈ V̄ . Finally, let xa be a variable that
defines if timetabling arc a ∈ Ār can be used. These variables refer to the
timetable solution given and are kept constant in this problem. Notice that
the formulation could be easily integrated with (6.1)-(6.9) by using a constraint
that maps the λq variables to xa. In order to avoid additional mathematical
notation, this step has not been included.

The problem is formulated as follows:

min
∑
k∈K

ODk

∑
a∈Ā

taf
k
a (6.10)

∑
a∈δ+(ok)

fka = 1 ∀k ∈ K (6.11)
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Figure 6.8: Passenger routing graph example with a cycle period of |T | = 5. In
this case a subset of nodes and arcs is represented for trains of two
different lines covering a subset of stations. The number in the node
indicates a time instant. Only the artifical source and sink nodes
for one commodity k ∈ K are shown, which in this case, is the pair
of stations (1, 4).

∑
a∈δ−(dk)

−fka = −1 ∀k ∈ K (6.12)

∑
a∈δ+(v)

fka −
∑

a∈δ−(v)

fka = 0 ∀k ∈ K, v ∈ V̄ \{ok, dk} (6.13)

fka − xa ≤ 0 ∀k ∈ K, a ∈ Ār (6.14)

fka ≥ 0 ∀k ∈ K, a ∈ Ā (6.15)

The objective function (6.10) minimizes the travel time of all passengers. Con-
straints (6.11) and (6.12) ensure that one arc is leaving from the source node
and arriving to the sink node respectively for each commodity. Constraints
(6.13) ensure the flow conservation and constraints (6.14) only allow to use arcs
enabled by a timetable solution. Finally, constraints (6.15) define the variables
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as linear positive. Notice that the capacity of the arcs is not limited, meaning
that all passengers can board the same train. According to DSB (the train
operator of the network studied), this is a fair assumption for this case. This
method is based on studies such as the ones proposed by Schöbel and Scholl
(2006) and Rezanova (2015). The problem can be decomposed into K different
sub-problems, one per commodity and the totally unimodular structure of the
problem formulation allows us to obtain an integer optimal solution by solving
the LP model.

6.4 Solution method

Three solution methods are presented are based on what we call, a dive-and-
cut-and-price procedure that heuristically solves the ILP formulation presented
in Section 6.3.4. A Restricted Master Problem (RMP) is initialized with a
subset of rows. Promising columns and violated cuts are added to it by column
generation and separation procedure respectively in order to find an optimal LP
solution. Then, branching is enforced through a dive heuristic in order to achieve
integrality. Finally, the passengers are routed using the solution timetable and
the travel time computed by solving (6.10)-(6.15).

Two of the methods are based on a large neighborhood search that iteratively
transforms the solution by partially destroying and re-building it again. One of
them uses the MCFP as a sub-problem to generate Benders’ cuts for the RMP,
helping to further integrate the passenger routing. The third method is a simple
iterative process where a solution is fully constructed at every iteration.

Each of the steps in the methods is explained in detail in the following sections.

6.4.1 Column generation procedure

Taking into account the cycle time, the size of the network and the symmetry
gap allowed, the number of possible line train paths to be considered is extremely
large. In order to handle that amount of variables efficiently, column generation
techniques are necessary.

A reduced version of the Master Problem (MP) is initially considered known
as the Restricted Master Problem (RMP) that includes only a subset of the
variables. These initial variables can just be a set of "dummy" artificial variables
that satisfy the constraints of the RMP. For each line l ∈ L a pricing problem
is created (i.e. PP l) that is in charge of providing line paths objects (q ∈ Ql)
that can potentially improve the current solution.
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The formulation of the RMP is identical to the one of the original problem (see
constraints (6.1)-(6.9)) except for the relaxed version of the decision variable
(constraint (6.16)).

λq ≥ 0 ∀q ∈ Q (6.16)

6.4.1.1 Pricing Problem

The goal of the PP is to find new promising train paths for the RMP. There is
one PP per line and their function is to create a group of line train paths (referred
to as a column) with the potential to improve the objective function. Here is
where the Symmetric Line graph formulation described in section 6.3.3 becomes
relevant. The use of a single graph for all the train paths of a line reduces the
PP to a single shortest path problem. It can be noticed that the dual value
of constraints (i.e. (6.4) - (6.9)) can be subtracted on the edge weights. Since,
they are non-positive, we guarantee that the graph has always non-negative edge
weights. Therefore, and knowing that the graph is directed acyclic (see Section
6.3.3), this problem can be solved using a dynamic programming algorithm.

Finally, to compute the reduced cost of a given path we need to subtract the
dual value of constraint (6.2) for the given line, which is a real number and can
lead to a final negative reduced cost. Every time the PP finds a column q ∈ Ql

with a negative reduced cost, it is added as a new variable to the RMP and it
is included in all the constraints where it has a non-zero coefficient.

6.4.2 Separation procedure

It is decided to add Constraints (6.7)-(6.9) by separation as the total amount
is too large and only a reduced amount of them may be binding. The headway
constraints are considered from the beginning in order to provide guidance to
the column generation process.

Once the column generation procedure stops providing columns with negative
reduced cost the separation procedure is applied. The separation of constraints
(6.7)-(6.9) is done by enumeration and are checked in the same iteration. Every
constraint that is violated by the current solution is added to the RMP.

Once the violated constraints are added to the model, the column generation
procedure should be restarted. Adding more constraints to the model modifies
the solution space and new columns with negative reduced cost can be found.
The overall procedure of column generation and separation is summarized in
Algorithm 6.1.
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Algorithm 6.1 Column generation and Separation pseudo-code

1: procedure colGenAndSep(fixedNodes)
2: x = {} ▷ start with empty solution
3: PP ← fixedNodes ▷ fix nodes in graphs
4: repeat
5: repeat
6: x← solve(RMP )
7: for all lines do
8: λ← solve(PP (line)) ▷ generate a new column
9: if ĉ(λ) < 0 then

10: RMP ← λ ▷ add column with negative reduced cost
11: end if
12: end for
13: until no more columns with negative reduced cost
14: RMP ← violatedConstraints(x)
15: until no more violated constraints
16: return x
17: end procedure

λ = 0.25 

λ = 0.75 

λ = 0.5 
λ = 1 

Figure 6.9: Fragment of a graph containing paths from a fractional solution
where the nodes in the red circles are fractionally used.

6.4.3 Dive heuristic

The optimal solution for the MP can be fractional. In order to find an integer
solution, a dive heuristic method is applied. The solution λq values are added
to each of the graph nodes affected by that column. This measures the "usage"
of each node and, if the solution is fractional, this means that some of the
graph nodes are fractionally used (see Figure 6.9). The dive heuristic selects
one of the fractionally used nodes and enforces to be part of the final solution,
meaning that the final integer solution must contain that node. In order to
do that, the shortest path problem is divided into two smaller and simpler
ones where the chosen node works as the destination vertex in one of them
and as the origin vertex in the other one. Apart from fixing the node, all the
previously generated columns from the same graph that do not include the node
need to be removed from the RMP. Once the heuristic step is concluded, the
column generation should be started again as new promising columns may be
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generated. One advantage of the dive heuristic is that it can lead faster to an
integer feasible solution. A disadvantage of this method is that some branches of
the tree are left unexplored and forcing the integrality of specific nodes that were
fractional can lead to an infeasible final solution. This method only considers
valid the solutions where all the trains of each line are scheduled. Therefore,
in this study, if any column of the initial dummy set is part of a solution, the
solution is considered infeasible. However, the initial set of dummy columns
could potentially be used to allow solutions with fewer scheduled trains.

Most of the times, there are multiple fractionally used nodes in the solution and
a criterion to select one is needed. In this study, we have opted for choosing any
fractional node at random.

The procedure is summarized in Algorithm 6.2.

Algorithm 6.2 Dive heuristic pseudo-code

1: procedure diveHeuristic()
2: [fixedNodes] = {} ▷ initialize empty list
3: repeat
4: x← colGenAndSep(fixedNodes) ▷ generate LP solution
5: if x is fractional then
6: [fixedNodes]← newNode ▷ fix a new node
7: end if
8: until x is integer or infeasible
9: return x

10: end procedure

6.4.4 Passenger routing

The main objective of the model is to improve the passenger travel time (PTT).
So far, the method minimizes the length of the train paths. This avoids extra
additional dwelling of the trains at the stations and allows passengers traveling in
the train to reach their destination fast. However, many passengers are required
to transfer between trains to reach their destinations. Therefore, minimizing
these transfer times becomes part of the overall objective of optimizing the
passenger travel time.

Given a timetable solution to the RMP, the total passenger travel time is com-
puted by solving (6.10)-(6.15).
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6.4.5 Benders’ cuts

After solving (6.10)-(6.15) for computing the total passenger travel time, we can
generate a Benders’ optimality cut for the RMP based on the dual values of the
solution. A solution to the original RMP, fractional or not, always allows to
route all the passengers and therefore, feasibility cuts are not generated. We
define variable zk ≥ 0 for each commodity k ∈ K. Let π1

k, π
2
k ∈ R be the dual

variables related to constraints (6.11) and (6.12) respectively. Additionally, we
denote π3

kv ∈ R to the dual variable of constraint (6.13) and π4
ka ≤ 0 to the dual

variable of constraint (6.14). The arising optimality cut for each commodity k
can be formulated as follows:

zk ≥ π1
k − π2

k +
∑
a∈Ār

π4
kaxa (6.17)

These cuts are added to the RMP and the objective function is updated to
account for the zk variables as follows:

min
∑
q∈Q

cqλq + α
∑
k∈K

ODkzk (6.18)

where α ∈ R+ is a parameter that defines the weight of the passenger travel
time in the objective function. The reader may wonder why we do not just
minimize

∑
k∈K ODkzk since this is the true objective considered in this paper

(minimizing passenger travel time). The reason is that adding Benders’ cuts
slows the processing of each node in the dive-tree significantly, and therefore
it is not possible to add all the Benders’ cuts that actually are violated if we
want the overall algorithm to finish within reasonable time (we use a one hour
time limit in the computational results). Therefore, we only add a subset of the
violated Benders cuts and the zk variables are only an approximation of the true
passenger travel time. This implies that it is beneficial to keep the path length
component of the objective function as it guides the search towards solutions
that also are attractive from a passenger travel time point of view. The cuts
can be added by separation in the same way as the constraints mentioned in
Section 6.4.2.

As a timetable solution is given as input, most of the arcs of the routing graph
are not enabled, meaning that xa = 0 in constraint (6.14). Looking at the
objective function of the dual problem, which corresponds to the right-hand
side of equation (6.17), the dual values of these arcs can fluctuate unrealistically
as their value does not longer have an effect on the objective value of the dual
problem. This can have a potential negative effect on the quality of the generated
cuts. In order to avoid this, for all arcs where no flow should be allowed, we
enable an infinitesimally small capacity ϵ. If xa is not strictly zero for any arc
in the graph anymore, the dual variables π4

ka are expected to be more realistic
while still obtaining a near-optimal flow. This ϵ-capacity method is based on
the Kelley+ approach suggested by Fischetti et al. (2017).
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6.4.6 Large neighborhood search

The main objective of the algorithm is to minimize the PTT. Therefore, every
time a solution is computed, its PTT is compared with the best one found so
far and updated if the new one is better. The process is framed in a Large
Neighborhood Search (LNS) proposed by Shaw (1998) where the current solu-
tion is iteratively transformed into a different one. The transformation occurs
by partially destroying the current solution and repairing it again. Our LNS
is inspired by the work of Ropke and Pisinger (2006) and the whole process is
summarized in Algorithm 6.3.

Algorithm 6.3 Large neighborhood search pseudo-code

1: procedure LNS()
2: repeat
3: x← diveHeuristic() ▷ generate an initial solution
4: until x is feasible
5: xb = x
6: repeat
7: xt ← repair(destroy(x)) ▷ generate a new solution
8: if xt is feasible then
9: c(xt)← routing(xt) ▷ compute PTT based on the routing of

passengers
10: if c(xt) < c(xb) then ▷ compare passenger travel time
11: xb = xt

12: x = xt ▷ only accept improving solutions
13: end if
14: end if
15: until time limit
16: return xb

17: end procedure

The repair method is the already mentioned dive-and-cut-and-price whereas
the the destroy method selects randomly ρ graph paths from the solution and
removes them. This method is inspired by the ones implemented by Barrena
et al. (2014). Furthermore, only solutions improving the PTT are accepted,
adding relevance to the passengers’ routes.

Two versions of the LNS method are implemented: (1) An LNS method without
Benders’ cuts and, (2) an LNS method with Beders cuts. In the latter, these cuts
are added in the separation procedure, meaning that in line 14 of Algorithm 6.1,
we compute equation (6.17) together with (6.7)-(6.9). The potential number of
violated Benders’ can be very large. This can result in not being able to solve
the root node within the algorithm time limit. In order to avoid this, a internal
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time limit is set to stop generating Benders’ cuts.

Finally, in order to analyze the quality of the solution, this is compared with a
lower bound solution. The lower bound (LB) value for the total path lengths is
computed as the LP solution value at the root node in the initial dive heuristic
(line 3 in Algorithm 6.3). The lower bound for the PTT is computed given a
solution where all the trains operate at the minimum running and dwell times
(i.e. shortest train paths) and passengers are able to transfer between any pair
of lines at the minimum transfer time.

6.4.7 Random iterative method

An additional method to the LNS is proposed for comparison. The dive-and-cut-
and-price procedure is repeated iteratively where each iteration is independent
from the previous one. Since the randomness is introduced in the branching
process, the root node is solved once and used as the re-start point at a new
iteration. The entire method is summarized in Algorithm 6.4.

Algorithm 6.4 Random iterative method

1: procedure RandomIterative()
2: x = {} ▷ Initialize empty solution
3: xb = {} ▷ Initialize best solution
4: xr ← solveRootNode(x) ▷ solve root node
5: repeat
6: xt ← diveHeuristic(xr) ▷ apply dive heuristic
7: if xt is feasible then
8: c(xt)←MCFP (xt) ▷ compute PTT based on the routing of

passengers
9: if c(xt) < c(xb) then ▷ compare passenger travel time

10: xb = xt

11: end if
12: end if
13: until time limit
14: return xb

15: end procedure

6.5 Case study

The case studied here covers the Regional, Intercity and IntercityLyn (high-
speed) network of Zealand, Denmark as seen in Figure 6.10. More specifically,
the scope covers a one hour period during morning rush hour. This means
that more lines run towards Copenhagen. Once, a timetable for this period is
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obtained, it can be rolled out for the rest of the day by removing or adding rush
hour lines.

Figure 6.10: Network considered in the case study. Each line represents a fre-
quency of one train per hour and direction and the dashed lines
represent trains only running during rush hours (DSB, 2018)

The network is formed by 15 lines, covering 43 passenger stations. 3 of the lines
only run during rush hour, which makes a total of 27 trains per hour to schedule.
This translates in 12 Symmetric Line graphs, as two identical lines are handled
as one line with a frequency of two trains per hour.

The number of tracks and the direction of trains running along them vary along
each corridor. Three different types of track segments between stations are
present in this network. A single-track segment, where trains can circulate in
both directions but there can only be one train on the segment at a time. A
double-track segment, where two tracks connect two stations allowing trains to
travel in both directions (one track per direction) and a quadruple-track segment,
formed by four tracks between two consecutive stations and trains can travel in
both directions (two tracks per direction). The quadruple-track segments allow
two trains going in the same direction to overtake each other along the segment.

In the network considered, there are two main single-track segments: the seg-
ment between Holbæk and Kalundborg and the segment connecting Køge Nord
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and Næstved along the southern corridor. The rest of the network is connected
by double-track segments with the exception of the segments between Høje
Taastrup and Roskilde that are formed by quadruple-tracks.

The following input data has been provided by DSB, a danish TOC:

Minimum running time: This parameter states the minimum required time
for a train to travel between two specific stations. This time interval is usually
depending on the rolling stock type and the speed limits on the track segment.
A value is given for every track segment connecting two consecutive stations in
each line and direction.

Minimum dwelling time: This parameter states the minimum required time
for a train to dwell at a specific station. This time is usually the time required
by the passengers to board and leave the train. A value is given for every station
visited by each line and each direction (i.e., between 30 seconds and 2 minutes).

Sibling lines: As mentioned in Section 6.3.4.5, there are specific pairs of lines
that have similar or identical routes which are required by DSB to be as sepa-
rated as possible in the timeline. There are three pairs of these lines considered
in this case study. For example, the two lines reaching Kalundborg.

Minimum headway between trains: In this case study, three minimum
headway values are given: 1) Minimum headway between two consecutive de-
parting trains in the same track segment and direction, 2) minimum headway
between two consecutive arriving trains in the same track and direction and 3)
minimum headway between two consecutive trains arriving from single-tracks
in opposite directions.

Single-platform stations: Some stations along the single-track segments have
only one platform meaning that the station can only host one train at a time
and a crossing between two trains is not allowed. It is assumed that, for the rest
of stations in the network, any train arriving from an adjacent track segment
has an available arriving platform.

Origin-Destination matrix: This matrix defines the number of passengers
per hour traveling between each pair of stations. It does not consider passen-
gers from stations outside the network (i.e., people entering the network from
Germany or cities in Jutland). There is a total of 1806 pairs.

Station Clusters: A reduced version of the origin-destination pairs is proposed
by defining a set of representative stations in the network, and clustering the
neighboring ones. As shown in Figure 6.11, these stations correspond to the
end-of line stations and stations where the track segments branch in different
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directions (i.e., Roskilde and Køge Nord). The purpose of this network setup
is only to reduce the number of commodities K considered when generating
Bender’s cuts while still capturing the routing decisions of most passengers.
The evaluation of the total passenger travel time in the rest of the solution
method is done using the entire network.

Figure 6.11: Network considered in the case study where the stations are di-
vided into clusters, and the one marked in red is the representative
station. Based on (DSB, 2018).

Minimum transfer time: In order for passengers to transfer between trains at
a station, a minimum transfer time of 5 minutes is defined as a rule of thumb,
meaning that if the time difference between the arrival of one train and the
departure of another is lower, the transfer time corresponds to the time interval
plus |T |.

The authors refer to Martin-Iradi (2018) for further details on the case study.

6.5.1 Instances

A number of instances are created based on the data from DSB. By changing
the following four parameters, a total of 21 instances are obtained.

HWk: Minimum headway between consecutive arrivals and departures at Køben-
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havn H. This station is seen as one of the most congested stations in the net-
work where all lines stop at and, therefore, the headway at this station becomes
interesting to analyze individually. This parameter measures in minutes the
minimum interval between consecutive arrivals or departures at København H
in the same track segment.

HWn: Minimum headway between consecutive arrivals and departures at any
station in the network. This parameter measures in minutes the minimum
interval between consecutive train arrivals or departures at each track segment
and station in the network.

HWs: Minimum headway between consecutive departures of sibling trains in
the same direction from common stations. The pair of sibling lines may have
slightly different stopping patterns or running and dwell times. This makes
impossible to separate both train paths exactly half an hour during their entire
trip. Therefore, a lower bound is needed that should be respected in any station.
In this case, a minimum headway is defined for the consecutive departures from
each station.

κ: maximum symmetry gap in ± minutes between departure and arrival of
trains in opposite direction belonging to the same line.

6.5.2 Computational results

The model has been entirely written in Julia language (Bezanson et al., 2017),
modelled using JuMP (Lubin and Dunning, 2015) and using CPLEX v. 12.9
as the solver. It has been tested in an Intel Xeon Processor X5550 (quad-
core, 2.66 GHz) using one thread. Due to the large amount of parameter setting
combinations, a base case is defined with the minimum values of each parameter
(except for κ). Then, each parameter is tested independently keeping the others
fixed. The parameter values for the base case are shown in Table 6.2. All
instances are tested with a maximum dwell time of 3 minutes at each station.
A parameter tuning has been conducted to determine the degree of destruction
(ρ) of the destroy method which has been set to 5.

Table 6.2: Base case parameter setting

HWk

(min)
HWn

(min)
HWs

(min)
κ

(±min)
3 3 15 1.5
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6.5.2.1 Impact of the pricing problem

In order to measure the benefits of the new graph formulation. A variant of
the method (from now on referred as Train-graph model) is tested where the
graphs only generate the train paths of a line in one direction and the symmetry
is ensured by adding the respective constraints in the RMP. Due to the poor
performance of the Train-graph model, only a comparison of the root node cal-
culation is shown in Table 6.3. For the given network, the Symmetric Line graph
is able to provide a stronger lower bound in significantly less time and fewer it-
erations. Actually, the lower bound of the Train-graph model corresponds to
the sum of minimum running and dwell times of the trains to be scheduled (i.e.
constant term).

Table 6.3: Root node results of the Symmetric Line graph model and the Train
graph one.

Model Obj. value (min) CG Iters Time (s)
Train graph 1981 39 27

Symmetric Line graph 1998.5 7 3

In addition, the dive heuristic based on the Train graph model is not able to
find a feasible solution within the 1 hour limit. We believe that these results
show that the graph formulation is an important part of the proposed solution
method.

6.5.2.2 Instance results

The three solution methods presented are run 10 times for each scenario and
the average values calculated. The time limit for each algorithm run is set to 1
hour and the internal time limit to stop adding Benders’ cuts is set to 10 % of
the algorithm time limit (i.e. 6 minutes). The value of α is set to the inverse of
the number of passengers travelling within the time period.

Tables 6.4-6.7 show the results for each of the scenarios created by parameters
HWk, HWn, HWs and κ respectively. The first column indicates the solution
method and the second one the parameter value of the scenario. The third and
fourth columns display the best and average solution values of PTT respectively
found across the 10 runs which are compared to the lower bound defined at the
end of Section 6.4.6. The fifth and sixth columns indicate the average sum
of path lengths (PL) relative to the best integer solutions with and without
considering the fixed term compared to the lower bound defined at the end of
Section 6.4.6. The seventh column displays the number of algorithm iterations
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or equivalent repetitions of lines 7-14 in Algorithm 6.3 done per 1h run. The next
three columns indicate the internal average iterations per algorithm iteration.
First, the number of dive heuristic iterations which can be interpreted as the
number of branches performed (i.e. nodes fixed). Next, the number of times the
current LP solution is checked for violated constraints and, finally, the number
of column generation iterations. The eleventh and twelfth columns shows the
average number of columns and additional rows (6.7)-(6.9) added per algorithm
iteration respectively. The thirteenth column indicates the number of Benders’
cuts added in total. The next three columns indicate the proportional amount
of time spent solving the RMP, PP and in the separation procedure respectively
in relation to the total amount of time spent finding a solution. Last, the
feasibility rate is stated that displays the proportion of algorithm iterations that
result in a feasible integer solution. The average solution values are displayed
in Figures 6.12-6.15 which also include results of a variant of the LNS method
without Benders’ cuts that only accepts solutions that improve the paths’ length.
More detailed results about this method variant can be found in Table 6.10 in
Appendix 6.A.

The LNS-based methods that include passenger travel time in the acceptance
criterion show a better performance in all instances. A main reason lies on the
amount of iterations each method is able to perform. This suggests that par-
tially destroying the solution is effective and enables exploring multiple neigh-
borhoods. Table 6.8 shows the average solution quality, over all instances con-
sidered, in terms of passenger travel time and paths’ length for the 4 variants of
the solution method. The table shows that the addition of Benders’ cuts results
in a similar but marginally worse overall solution quality than the LNS method
that did not use the Benders cuts. Adding these cuts increases the complexity of
the RMP leading to fewer algorithm iterations and this causes the two methods
to end with a similar solution quality.

All the methods find near optimal results both in PTT and path lengths in a
reasonable amount of time for most of the scenarios. From Figures 6.12-6.15 a
correlation between the length of the paths and the passenger travel time can
be inferred. This is a realistic assumption since 95.8 % of all passengers in the
network can reach their destination boarding a single train. However, optimizing
the length of the train paths does not necessarily result in a shorter passenger
travel time. This is deduced from the results of the LNS method with paths’
length as acceptance criterion. In general, the solutions have indeed shorter
train paths but the total passenger travel time is worse than for other methods.
This shows that the simple integration of passenger travel time objective into
the LNS method, through the acceptance criterion, is important in order to
reach high quality solutions.

Intuitively, the parameter with the highest impact in PTT variation is the head-
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way at the entire network, followed by the one at Copenhagen’s central station.
The similar performance for most of the values of HWs indicates that this head-
way parameter has a very low impact in the solution space. The variability in
the solution given by the randomness of the method allows, in cases like this
where the instances are very similar, to have slightly better results even if the pa-
rameter value is more restrictive. Ideally this should not happen and we believe
that a longer running time or more algorithm runs per instance would smooth
the trend. Moreover, little variation in PTT is shown for the different values of
maximum symmetry gap. This indicates a trade-off between the maximum gap
allowed and the iterations the algorithm is able to perform within the time limit.
A higher value of κ, expands the solution space but fewer algorithm iterations
hinder the exploration of the neighborhood efficiently. On the other hand, if κ
is too tight, the solution space becomes highly restricted and, regardless of the
number of iterations, the solution quality decreases. It should be noted that
the instances with the lowest values of the headway parameters correspond to
the same instance. Different randomized seeds have been used in all cases and
therefore, the results are not identical.

In terms of speed, it can be seen that the problem becomes harder to solve
when increasing the parameter values. In particular, for high HWn values,
the LP becomes very hard to solve. Likewise, a higher value of κ, increases
the complexity of the graph formulation and that is reflected in the time spent
solving the pricing problems. Nevertheless, all methods are able to find solutions
for HWk = 6 minutes which is the maximum possible as 10 trains arrive per
hour in København H through the same corridor. Also, solutions are found for
values up to HWn = 5 minutes and higher values were not further tested as
they do not seem realistic for the network studied. Moreover, the algorithm
finds solutions for HWs = 27 minutes which seems to be the maximum allowed
due to the differences in running times of the pairs of sibling lines. To put the
solution values into perspective, we can compare them to the manual timetable
planned by DSB (PTT = 33.21, PL = 2049.5). It can be noticed the presented
methods produce better results for all instances. However, the manual timetable
considers additional operational aspects such as rolling stock assignment and
track crossings and therefore, we cannot see it as a fair comparison.



236
A

m
atheuristic

for
periodic-sym

m
etric

train
tim

etabling
w

ith
passenger

routing
Table 6.4: Average performance of the algorithms for different values of HWk.

Method
HWk

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

3 2.54 2.75 0.35 40.0 80.6 2.4 6.0 125.0 299.5 1.41 124 38 34 13 91
4 2.61 2.85 0.51 58.0 77.4 2.2 5.6 126.5 345.3 1.04 156 40 31 15 90
5 2.72 2.94 0.86 98.0 83.3 2.0 5.0 107.6 315.8 0.79 182 39 32 14 90
6 2.71 3.04 1.03 117.1 85.3 1.7 4.1 94.5 313.5 0.56 177 42 29 13 89

LNS
(without
Benders’

cuts)

3 2.26 2.61 0.24 27.7 143.6 0.6 3.9 98.7 238.4 1.03 0 40 28 4 94
4 2.37 2.83 0.55 62.9 134.1 0.7 3.8 115.2 294.7 1.08 0 43 30 4 88
5 2.56 2.82 0.34 38.3 169.3 0.5 3.1 74.1 218.1 0.59 0 37 27 4 93
6 2.71 3.00 0.79 90.0 164.2 0.6 2.9 79.2 245.8 0.44 0 40 27 3 92

Random
Iterative

3 2.64 2.90 0.29 32.9 27.6 6.8 22.5 227.3 773.0 11.85 0 62 31 5 44
4 2.82 3.11 0.54 62.0 19.0 7.0 23.2 272.3 999.1 9.82 0 72 24 3 45
5 2.83 3.13 0.73 83.1 16.7 7.1 23.1 316.7 1251.6 8.97 0 85 13 1 41
6 2.82 3.63 1.26 144.3 8.7 6.1 18.1 351.7 1688.6 4.93 0 87 12 1 36

Table 6.5: Average performance of the algorithms for different values of HWn.

Method
HWn

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

3 2.54 2.78 0.40 45.7 74.9 2.2 5.9 125.5 304.5 1.44 119 38 35 14 90
3.5 2.51 2.86 0.69 78.6 72.3 2.1 5.6 120.8 320.0 1.29 118 39 34 14 92

4 2.69 2.99 0.94 107.7 55.8 2.2 6.1 147.2 464.5 1.85 156 46 31 14 88
4.5 2.96 3.27 1.32 151.1 48.5 2.3 7.5 220.3 851.8 3.51 131 66 21 11 76

5 2.84 3.59 1.06 121.4 25.3 3.1 10.6 393.3 1620.5 7.13 137 84 7 8 78

LNS
(without
Benders’

cuts)

3 2.36 2.61 0.28 32.0 139.4 0.6 3.8 100.7 242.4 1.04 0 41 28 4 95
3.5 2.43 2.68 0.47 53.1 128.5 0.5 3.5 104.5 276.5 1.03 0 52 25 3 93

4 2.46 2.89 0.89 101.1 123.3 0.5 3.2 107.7 311.3 1.01 0 45 30 4 91
4.5 2.76 3.12 0.75 85.7 96.7 1.0 5.7 149.7 513.5 3.73 0 70 22 2 83

5 2.82 3.43 1.09 124.0 66.9 1.7 9.6 323.4 1273.7 6.91 0 93 6 0 88

Random
Iterative

3 2.64 2.90 0.29 32.9 28.0 6.9 22.6 227.9 776.3 11.86 0 61 32 5 43
3.5 2.73 3.19 0.78 89.4 15.9 6.5 22.6 290.4 1084.8 14.10 0 87 11 1 41

4 2.83 3.44 1.06 120.6 7.5 6.1 23.9 388.8 1576.7 16.64 0 92 7 1 41
4.5 3.13 3.54 1.44 164.3 5.1 5.4 22.1 484.0 1975.8 18.91 0 94 5 0 35

5 3.47 3.78 1.21 138.3 3.8 4.8 18.8 492.7 2247.1 17.78 0 97 3 0 35
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Table 6.6: Average performance of the algorithms for different values of HWs.

Method
HWs

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

15 2.60 2.81 0.47 54.0 81.9 2.2 5.8 130.0 312.2 1.38 129 40 32 13 92
17 2.51 2.68 0.44 49.7 75.6 2.4 6.1 133.9 329.3 1.62 142 39 33 14 89
19 2.39 2.72 0.33 38.0 84.0 2.4 5.8 119.7 298.2 1.64 123 37 33 14 92
21 2.37 2.80 0.37 42.0 75.2 2.1 5.5 131.2 352.8 1.66 135 42 31 13 91
23 2.50 2.69 0.29 33.4 81.3 2.4 5.7 113.2 295.1 1.90 150 37 32 15 91
25 2.77 3.00 0.51 58.3 86.5 1.9 5.5 113.2 281.1 2.12 115 36 34 15 89
27 2.53 2.98 0.45 51.7 69.9 1.9 6.0 131.6 361.4 3.30 112 37 36 16 78

LNS
(without
Benders’

cuts)

15 2.26 2.61 0.24 27.7 142.2 0.6 3.9 98.7 238.3 1.03 0 41 28 4 94
17 2.45 2.65 0.28 32.3 139.3 0.7 3.9 102.6 245.4 1.22 0 41 29 5 92
19 2.49 2.72 0.37 42.6 136.9 0.6 3.7 104.9 246.2 1.27 0 41 29 5 90
21 2.49 2.89 0.39 44.3 126.1 0.8 4.5 110.5 278.3 2.00 0 41 32 6 88
23 2.37 2.68 0.21 24.3 155.3 0.4 3.3 85.2 210.5 1.38 0 37 27 7 92
25 2.62 2.88 0.44 50.3 132.3 0.5 3.9 106.8 251.3 1.99 0 39 29 8 91
27 2.71 2.96 0.57 65.1 133.3 0.5 3.6 94.8 236.2 2.29 0 38 29 9 88

Random
Iterative

15 2.64 2.87 0.39 44.6 28.0 6.9 22.5 222.6 763.0 11.92 0 61 31 5 43
17 2.86 3.04 0.55 62.5 24.3 7.0 23.4 229.5 835.1 13.01 0 84 13 2 53
19 2.86 3.15 0.47 53.2 24.6 6.7 21.4 215.9 777.6 12.76 0 79 18 3 31
21 2.94 3.21 0.50 56.8 19.3 7.1 23.6 288.3 989.1 14.52 0 87 11 1 35
23 2.75 3.01 0.48 54.3 23.1 6.1 19.8 202.9 798.0 13.80 0 84 13 2 49
25 2.95 3.22 0.67 76.4 16.3 6.3 20.7 278.7 1090.8 15.49 0 91 8 1 48
27 2.79 3.19 0.57 65.0 36.3 4.2 13.2 143.3 662.3 14.10 0 80 16 3 13
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Table 6.7: Average performance of the algorithms for different values of κ.

Method
κ

(± min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

1 2.43 2.71 0.39 39.0 93.6 2.2 5.7 116.3 283.1 1.33 162 41 26 16 90
1.5 2.52 2.79 0.42 48.3 76.9 2.3 5.9 127.5 315.3 1.36 129 38 34 13 92

2 2.30 2.73 0.30 36.1 72.6 2.1 5.4 121.5 311.5 1.17 117 34 39 13 92
2.5 2.40 2.77 0.47 56.7 57.6 2.6 6.3 148.5 359.3 1.47 127 34 43 13 90

3 2.53 2.80 0.30 36.4 50.3 2.9 7.0 154.0 402.7 1.55 124 36 44 12 92

LNS
(without
Benders’

cuts)

1 2.57 2.84 0.46 46.3 162.1 0.6 3.9 99.4 237.3 1.15 0 44 22 5 93
1.5 2.26 2.60 0.24 27.7 146.4 0.6 3.9 98.8 238.4 1.03 0 41 28 4 94

2 2.42 2.69 0.24 29.1 129.6 0.7 3.7 102.3 248.6 1.07 0 38 34 4 92
2.5 2.46 2.73 0.35 42.1 100.7 0.8 4.6 124.5 299.0 1.43 0 36 42 4 91

3 2.30 2.68 0.29 34.5 100.9 0.6 3.9 109.9 268.3 1.14 0 33 45 4 93

Random
Iterative

1 2.93 3.07 0.52 52.2 34.4 7.0 23.2 207.4 746.1 11.57 0 66 25 6 49
1.5 2.64 2.90 0.29 32.9 27.5 6.9 22.6 229.9 779.7 11.87 0 62 31 4 43

2 2.79 2.97 0.30 36.1 19.2 7.0 23.8 256.8 908.0 11.97 0 73 23 2 53
2.5 2.71 2.94 0.27 33.0 18.7 7.2 25.2 298.1 993.2 10.37 0 77 20 2 66

3 2.76 3.05 0.34 41.5 14.5 6.8 23.3 289.4 1000.9 13.70 0 70 27 2 50
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Table 6.8: Average solution quality over all instances

LNS (with
Benders’ cuts)

LNS (without
Benders’ cuts)

Random
iterative

LNS (with paths’ length
as acceptance criterion)

Passenger travel time 2.88 % 2.81 % 3.15 % 3.24 %
Paths’ length 0.57 % 0.45 % 0.62 % 0.33 %

Figure 6.12: Average solution values instances with different values of HWk in
minutes.

Figure 6.13: Average solution values instances with different values of HWn in
minutes.

6.5.2.3 Effect of Benders’ cuts

The addition of a limited amount of Benders’ cuts within the presented method
does not have a significant impact. Additional tests were carried out where the
time limit is extended so that more Benders’ cuts can be generated. Neverthe-
less, the solution method does not provide better solutions. In fact, the quality
decreases. It is observed that both generating more cuts or using a larger value
of α, increases the fractionality of the solutions and the complexity of the RMP.
Furthermore, solutions with a high number of columns with small coefficients
hinder the dive heuristic procedure.
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Figure 6.14: Average solution values instances with different values of HWs in
minutes.

Figure 6.15: Average solution values instances with different values of κ in ±
minutes.

Alternatively, in order to assess the potential impact of the Bender cuts, we solve
the root node adding all violated Benders’ cuts and compare the solution value
with the manual lower bound mentioned at the end of Section 6.4.6. For this
experiment, the objective function is modified such that only passenger travel
time is considered. This is tested on the instance with base parameter values
considering the network with station clusters. The results are summarized in
Table 6.9 where the first column shows the optimality gap from the precomputed
manual lower bound to the best known integer solution. The second column
shows the optimality gap from the root node solution solved. The number of
cuts and computational time is shown in the last two columns respectively.
The results indicate that the Benders’ cuts are able to provide a stronger lower
bound. It should be noted that solving the entire branch-and-bound tree adding
all the necessary violated Benders’ cuts guarantees converging to the optimal
solution. This suggest that addition of Benders’ cuts may be more interesting
in an exact method for the integrated model compared to in a heuristic as
proposed here. It is clear, however, that such an exact method only could solve
much smaller instances compared to those considered in this paper.
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Table 6.9: Lower bound (LB) comparison for the base case instance with cluster
stations.

Manual lower bound LB with Benders’ cuts Benders’ cuts Time (s)
0.72 % 0.61 % 926 5885

6.6 Conclusion

As future work, it would be interesting to study how to decrease the time for
solving the LP relaxation of the master problem as this can become quite ex-
cessive for the more constrained instances. One may attempt to 1) leave the
headway constraints out of the initial formulation and add the violated ones by
separation or 2) attempt to stabilize the dual variables in the column generation
algorithm (see e.g., Du Merle et al. (1999) or Oukil et al. (2007)).

Computational results showed that the addition of Benders’ cuts in the LNS
did not improve the performance of the heuristic even though the cuts allow
us to fully integrate the passenger travel time objective in the mathematical
model that is the foundation of the LNS heuristic. It is possible that further
work could change this conclusion. If the time for solving the passenger flow
sub-problem could be reduced and convergence of the Benders’ algorithm could
be improved, such that fewer Benders’ cuts are needed then the approach may
be more competitive. Improved convergence of the Benders’ algorithm could
perhaps be achieved using generic speed-up techniques as those suggested in
Magnanti and Wong (1981), Papadakos (2008) and Fischetti et al. (2017).

When looking at the number of columns needed per iteration, it is also inter-
esting to look from which lines the columns mainly come from. In average, 93%
of all the columns generated belong to lines using the quadruple-track segment.
Allowing two routes for the trains doubles the number of possible columns that
can be generated. It should also be noted that 32 % of the total amount of
columns belong to the two lines running until Kalundborg. This is related to
the fact that at the single-track segment of this corridor, is the only place where
a crossing between trains of different lines can occur. In order to cross, one of
the trains needs to dwell for three minutes in one of the stations resulting in
a poor path length. As the crossing constraints are added by separation, this
results in a larger amount of columns generated.

The model is able to route the passengers realistically. This is analyzed using
graphical tools such as the one shown in Figure 6.17 which shows the passenger
flow between trains at København H for an example solution. Nevertheless, a
more realistic routing of the passengers in the most congested areas can help to
have a complete perspective of the trips of the passengers and the occupancy
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of the trains. This can be further improved by taking train capacity into ac-
count (Rezanova, 2015) or achieving a more accurate estimation of the passenger
demand.

Although the fixed running times between stations simulate realistic cases to
a large extent, considering variable running times at the track segments can
increase significantly the solution space. However, the complexity of the model
would increase accordingly. Also, considering different types of headway along
the network allows a better utilization of the track capacity as more trains can
be scheduled per corridor (Liu and Han, 2017).

Different graphical tools have been used to analyze the potential additional
conflicts of a timetable such as the one in Figure 6.16 which shows an exam-
ple graphic timetable for the north-western corridor between København H and
Kalundborg. Routing the trains at a more detailed level at some stations can
allow having completely conflict-free solutions in the network. Currently, fea-
sibility issues may arise from the model due to track-crossing conflicts at some
stations where corridors join. This can be solved by adding additional graph
nodes to model the track junctions. Likewise, turnaround times for trains at the
end of stations can be enforced by removing the conflicting arcs in the graph.
This can potentially lead to a better utilization of the rolling stock.

In conclusion, this paper aims at optimizing the railway timetable generation
process from a passenger perspective. Solution methods have been implemented
to solve the network for Regional and InterCity trains in Zealand. The meth-
ods are based on a graph formulation that takes advantage of the symmetric
timetabling strategy and the assumed fixed train running times between sta-
tions. As a result, all the required train paths for a line in a cycle time of one
hour can be computed by a single shortest path. Furthermore, the algorithms
rely mainly on both column generation and constraint separation techniques.
This, combined with Benders’ cuts that guide the routing of the passengers
results in an algorithm for railway timetabling that optimizes passenger travel
time. The methods have been shown to find good solutions to the network in a
relatively fast time. The minimum headway can be easily increased along the
network, achieving more robust timetables, without a significant detriment in
time or solution quality.

Last but not least, the graph representation of the problem has the potential to
easily model parts of the network in more detail such as track-crossing conflicts
or platform assignment. The methods can potentially be improved and imple-
mented as a useful tool in the planning process of a train operating company.
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6.A Appendix

Figure 6.16: Timetable example for the lines running through the North-West
corridor
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Table 6.10: Average performance of LNS method with paths’ length as acceptance criterion.

HWk

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

3 2.59 3.10 0.17 18.86 143.7 0.6 3.7 97.7 242.7 1.01 0 40 29 4 93
4 2.87 3.21 0.29 32.57 146.5 0.6 3.5 96.8 251.1 0.83 0 40 29 4 92
5 2.84 3.28 0.35 40.00 166.5 0.5 3.1 76.4 225.8 0.60 0 37 28 4 93
6 3.08 3.43 0.59 67.14 167.0 0.5 2.9 75.5 236.2 0.48 0 39 27 4 91

HWn

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

3 2.59 3.10 0.17 18.9 144.1 0.6 3.7 98.0 243.5 1.01 0 40 29 4 93
3.5 2.71 3.13 0.23 26.3 148.3 0.5 3.2 92.9 248.8 0.93 0 40 29 4 92

4 2.72 3.18 0.32 36.9 143.5 0.4 2.9 87.3 253.9 0.80 0 40 29 4 94
4.5 3.04 3.61 0.75 86.0 89.1 0.7 4.3 124.7 417.6 2.35 0 58 28 3 87

5 3.05 3.62 1.08 123.5 51.0 1.9 9.8 311.7 1240.4 7.70 0 91 7 1 71
HWs

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

15 2.59 3.10 0.17 18.9 140.8 0.6 3.7 97.7 242.8 1.01 0 40 29 4 93
17 2.57 3.06 0.19 22.0 141.2 0.6 3.9 95.9 228.9 1.20 0 39 29 5 92
19 2.89 3.24 0.20 22.3 137.3 0.5 3.5 100.6 247.5 1.37 0 40 29 5 92
21 2.98 3.34 0.33 38.0 127.8 0.8 4.5 106.9 268.4 2.01 0 40 32 6 87
23 2.75 3.22 0.17 19.1 147.8 0.5 3.3 89.1 221.3 1.44 0 37 28 7 93
25 3.09 3.28 0.35 39.4 128.6 0.5 3.7 106.5 260.0 2.06 0 39 30 8 90
27 2.79 3.44 0.52 59.4 124.6 0.6 3.8 101.1 251.1 2.49 0 38 30 9 88

κ

(± min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

1 2.68 3.31 0.26 26.2 158.7 0.6 3.8 96.8 230.4 1.11 0 43 22 5 92
1.5 2.59 3.10 0.17 18.9 140.0 0.6 3.7 98.2 243.6 1.01 0 40 29 4 93

2 2.85 3.19 0.23 27.3 128.4 0.6 3.6 98.8 241.8 0.99 0 37 35 4 93
2.5 2.75 3.08 0.20 23.6 107.4 0.8 4.3 107.5 263.5 1.30 0 34 41 4 93

3 2.34 3.00 0.14 17.3 107.0 0.6 3.7 98.9 255.0 1.01 0 31 44 4 93
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Figure 6.17: Example diagram of amount of passengers transferring between
trains at København H during a rush hour
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