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Abstract (English)

Deep neural networks have revolutionized many different areas, including speech
enhancement, speech recognition, and speech separation that are relevant for
hearing instrument users and professionals. At the same time, the state-of-the-art
neural networks are huge models that require megabytes of storage and millions
of operations for every input, which makes them extremely energy-intensive
and thus difficult to deploy to resource-constrained devices such as hearing
instruments. For these reasons, neural networks were previously only executed
in a high-performance computing environment (cloud), and the results were
afterwards sent back to IoT (edge) devices. However, real-time applications such
as hearing instruments require low-latency connections and processing to not
compromise sound quality. Moreover, in order to communicate with the cloud,
an edge device must be connected constantly, which is unfeasible and quickly
drains the battery of the device. Last but not least, sharing data with the cloud
is not desirable due to security issues. Therefore, the focus in recent years has
been on enabling the execution of neural networks directly in low-power devices.

To successfully accomplish this goal, it is imperative to develop computationally
efficient hardware-aware deep learning algorithms that in turn should be exe-
cuted on custom hardware accelerators optimized for neural network processing.
Exploring the ways to achieve such algorithm-hardware co-optimization is the
objective of this PhD thesis.

Therefore, this work firstly proposes two novel dynamic pruning algorithms, called
PeakRNN and StatsRNN, for reducing the number of multiply-accumulates and
memory accesses during inference. Since our focus is on audio (speech enhance-
ment and speech recognition), we primarily explore Recurrent Neural Networks
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(RNNs) and Transformer Neural Networks (TNNs) due to their capabilities
to process temporal information. All our experiments demonstrate substantial
reductions in computations while maintaining high performance in the evaluation
metrics. PeakRNN is chosen for the next stage of the project as it prunes a layer
by selecting a constant number of top elements every timestep, which offers,
among others, determinism and worst-case execution time guarantees for the
subsequent network operations.

The second part of the project focuses on efficient hardware support for neural
networks. In total, three custom ASIC accelerators are presented. Firstly, a small-
footprint low-power configurable accelerator for speech recognition is proposed.
It implements a novel deterministic two-step scaling method for reducing the
number of activation memory accesses at runtime. The accelerator is compared
against a typical digital signal processor, and it considerably outperforms the
processor in all aspects, including lower power consumption, a smaller area, and
fewer memory accesses. Therefore, the accelerator can be easily used in hearing
instruments. Secondly, an energy-efficient min-heap accelerator is designed to
realize the selection of the top elements for PeakRNN. It is also a part of the third
and final accelerator, called PeakEngine, that is capable of executing inference
for both dense and pruned layers. PeakEngine is configurable, and it represents
the first RNN ASIC accelerator for hearing-instrument-relevant use cases that
applies dynamic pruning by selecting a constant number of elements to guarantee
deterministic inference. The co-optimization between PeakRNN and PeakEngine
results in a significant reduction of energy and latency of the original dense
network, making the execution of big RNNs viable in hearing instruments within
the imposed time and energy budget.



Resumé (Dansk)

Dybe neurale netværk har revolutioneret mange forskellige omr̊ader, herun-
der tale forbedring talegenkendelse og tale separation, som alle er relevante
for høreapparat brugere og professionelle. Samtidig er state-of-the-art neurale
netværk meget store modeller, der kræver mange MBytes lagerplads og millioner
af operationer for hvert input. Dette gør dem ekstremt energi krævende og
derfor svært tilgængelige for apparater med begrænsede resurser, som f.eks.
høreapparater. Derfor har neurale netværk indtil videre udelukkende været an-
vendt i high-performance computer sammenhænge (Cloud computing). Eventuelle
lokale klienter har sendt data til beregning i skyen, hvorefter resultaterne er
sendt til klinten (f.eks. en IoT/Edge enhed). Realtids applikationer, som f.eks.
høreapparater har behov for forbindelser og processering med lav latenstid for
ikke at kompromittere lydkvaliteten. Derudover vil en konstant forbindelse til
skyen medføre dræn af batteriet i IoT/Edge enheder. Endelig vil deling af data
i skyen være et sikkerhedsproblem. Derfor har fokus de senere år været p̊a at
sikre udførsel af neurale netværk direkte i low-power enheder.

For at n̊a dette m̊al er det essentielt at udvikle beregnings effektive dybe lærings
algoritmer, der kan eksekveres i tilpassede hardware acceleratorer, som er opti-
meret for neurale netværks beregninger. Udforskningen af omr̊adet for algoritmer
og hardware acceleratorer, samt optimeringen af begge, er formålet for denne
Ph.D. afhandling.

Første del af dette arbejde foresl̊ar to nye dynamiske reduktions algoritmer kaldet
PeakRNN og StatsRNN, for at reducere antallet af henholdsvis multiplikationer-
additioner og memory transaktioner under inference . Eftersom vores fokus er
omkring audio (tale forbedring og talegenkendelse), s̊a vil vi primært udforske
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Recurrent Neural Networks (RNNs) and Transformer Neural Networks (TNNs)
p̊a grund af deres egenskaber med at behandle tidsrelateret information. Alle
vores eksperimenter viser væsentlige reduktioner i beregninger samtidig med
høj præcision i evalueringsmetrikkerne. PeakRNN er udvalgt til næste fase af
projektet fordi den reducerer et lag ved at udvælge et konstant antal af elementer
for hvert tidselement, hvilket blandt andet, betyder determinisme og worst-case
eksekveringstidsgaranti for de efterfølgende netværks operationer.

Anden del af projektet har fokus p̊a effektiv hardware understøttelse af neurale
netværk. Der bliver præsenteret i alt tre ASIC acceleratorer. Først bliver en lille
low-power konfigurerbar accelerator for talegenkendelse præsenteret. Den imple-
menterer en ny deterministisk to-step skaleringsmetode for at reducere antallet af
memory transaktioner under kørsel. Denne accelerator bliver sammenlignet med
en typisk digital signal processor. Acceleratoren viser overlegne resultater i alle
aspekter, herunder lavere effekt forbrug, lavere areal og væsentligt færre memory
transaktioner. Denne accelerator vil derfor kunne anvendes i høreapparater.
Dernæst bliver en energi effektiv min-heap accelerator designet til at udvælge
top elementerne i en PeakRNN algoritme. Den er ogs̊a del af den tredje og sidste
accelerator, kaldet PeakEngine, som er i stand til at udføre inference for b̊ade
tætte og reducere lag. PeakEngine er konfigurerbar og repræsenterer den første
RNN ASIC accelerator til høreapparat brugs scenarier, som tilfører dynamisk
reduktion ved at udvælge et konstant antal elementer for at garantere determin-
istisk inference. Den samtidige optimering mellem PeakRNN and PeakEngine
resulterer i en signifikant reduktion af energi og latens i forhold til det oprindelige
netværk. Dette gør det muligt at udføre store RNNs i høreapparater med deres
begrænsede tids og energi budget.
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Chapter 1

Introduction

More than 1.5 billion people (nearly 20% of the world’s population) live with
hearing loss, out of which approximately 5% (430 millions) have disabling hearing
loss. Disabling hearing loss refers to hearing loss greater than 35 decibels (dB)
in the better hearing ear. Moreover, it is estimated that by 2050 one in every
ten people (700 millions) will have disabling hearing loss [232]. However, the
majority of adults who would benefit from a hearing instrument, do not use
them, and many people given a hearing instrument do not wear it [65] saying
“It does not work for me”.

The primary complaint of hearing-impaired people and hearing instrument users
is that they cannot understand speech-in-noise [152]. Simple amplification does
not help to solve this issue as it only makes sounds louder and not clearer.
Understanding speech-in-noise is a well-known phenomenon, sometimes loosely
referred to as a ”cocktail party problem” [3], which describes one’s ability to focus
their auditory attention on a specific stimulus while filtering out other stimuli.
This is a natural and subconscious process for people with normal hearing, but
very challenging for those with hearing loss. A typical example of such a scenario
is a dinner party, where many people talk at the same time. While it might
require a bit of effort for a person with normal hearing to concentrate on the
voice of a target speaker, selecting a single voice in a crowded room will be
extremely difficult and exhausting for a hearing-impaired person. In fact, the
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cocktail party problem is one of the biggest challenges in audio signal processing
[64, 63, 15].

One of the areas that deals with addressing the cocktail party problem is Speech
Enhancement (SE). SE focuses on suppressing the noise in the noisy speech, and
thus improving quality and/or intelligibility of the speech. Numerous advanced
signal processing methods have been proposed throughout the years to achieve
this goal. However, they still struggle in complex acoustic environments with low
Signal-to-Noise Ratios (SNRs) and competing talkers. As a result, the ability to
clearly understand speech-in-noise still remains very challenging, even with the
latest modern hearing instruments.

Machine Learning (ML), and specifically Deep Neural Networks (DNNs), intro-
duce a completely new way of sound processing. DNNs have already demonstrated
their powerful capabilities in many different areas such as natural language pro-
cessing [49, 81, 74], image and video processing [132, 54, 98, 80], gaming [121,
66], robotics [140, 100], medicine [94, 77], and SE as well [112, 91, 99], surpassing
even human performance in most fields. DNNs have also enabled demonstrations
of other features that are relevant for hearing instrument users and professionals.
These include wake-up word detection and Keyword Spotting (KWS) [255, 95,
70, 97, 169, 147, 216]. Such functionalities may allow hearing-impaired people
to initiate actions on their hearing instrument using just their voice, e.g, ”Hey
Demant, volume up/volume down”. Moreover, with SE the noisy speech features
would be cleaned before being passed to the KWS acoustic model.

Nonetheless, the success of DNNs comes at the cost of considerable computational
and hardware resources. DNNs are generally large models that require millions
of parameters, translating to tens of megabytes of storage, and hundreds of
millions of computations per input [197]. They are, hence, usually executed on
high performance devices (cloud), and the results are then wirelessly deployed
to IoT (edge) devices. In fact, there already exist cloud-based DNN systems
in hearing instruments [262, 264]. However, this setup has several drawbacks,
including latency, connectivity, and security issues. All these problems would
be eliminated with on-the-chip DNN technology that would also offer real-time
sound processing. The first such an attempt is represented with Oticon More
[225]. Nevertheless, the size of the models and the number of computations
impose a challenge for deployment of DNNs directly to resource-constrained
and battery powered wearable devices. For instance, hearing instruments are
extremely limited in terms of area, available memory, throughput, and power
budget that is in the few milliwatt (mW) range. Yet they need to operate reliably
and efficiently and last around 16-18 hours every day [44].

Therefore, a considerable amount of effort has been invested into bringing the
execution of DNNs into the edge devices over the past few years. This is
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referred to as tiny Machine Learning (tinyML) [206], a fast growing field of
ML technologies and applications including hardware, algorithms, and software
capable of performing on-device sensor data analytics at extremely low power,
typically in the mW range and below, and hence enabling a variety of always-on
use-cases and targeting battery operated devices [265]. Therefore, in order to
achieve low-power execution of DNNs, it is necessary to create computationally
efficient deep learning algorithms that in turn will run on custom hardware
optimized specifically for DNNs. An example of such hardware are Application-
Specific Integrated Circuit (ASIC) designs that can heavily exploit the parallel
nature of DNN computations.

This thesis focuses on the above challenges and targets the co-optimization of
deep learning algorithms and hardware for SE and KWS use cases. The research
is therefore twofold:

1. The first half of the project aims at developing deep learning algorithms
that decrease the number of computations and hence energy to enable
deployment of DNNs to resource-constrained hearing instruments. Our
interest is in event-driven/data-driven architectures that reduce compu-
tations dynamically during inference based on input data. We propose a
technique for skipping computations in a deterministic manner, demon-
strated on the KWS and SE tasks with a wide variety of speakers and
environments reflecting the most relevant acoustic situations that people
are exposed to daily. Such adaptive inference is an attractive solution
as it results in significant savings of multiplications and memory fetches
while preserving the parameter space and representation power of DNNs.
Since our target application is a hearing instrument, we primarily focus
on Recurrent Neural Networks (RNNs) that are suited for processing data
with temporal structures such as audio, and Transformer Neural Networks
(TNNs) that combine the benefits of RNNs and Convolutional Neural
Networks (CNNs). Our proposed algorithms were successfully patented
[O2].

2. The second half of the project targets efficient designs and ASIC imple-
mentations of neural network accelerators that can support the execution
of the DNN algorithms locally in a low-power hearing instrument. Three
hardware accelerators that implement a number of optimization techniques
are proposed and evaluated: i) a neural network accelerator for Fully
Connected (FC) DNNs developed for KWS, ii) a min-heap-based accel-
erator for the selection of elements to be processed/skipped to support
the algorithm from 1., demonstrated on SE, and iii) a neural network
accelerator capable of executing a full neural network that supports the
dynamic pruning algorithm proposed in part 1. The selection of elements to
be processed/skipped is performed by utilizing the built-in min-heap-based
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accelerator. The accelerator can run both FC and recurrent layers, and it
is demonstrated on the SE use case.

All the algorithms and hardware designs are presented in the five attached papers
that constitute the core of this PhD research. Chapter 2 therefore provides
the necessary background for the topics of the papers and describes previous
relevant research in the field. First, it gives an introduction to the SE and
KWS problems and traditional approaches for solving them. Subsequently, an
overview of the deep learning field, including a description of the fundamental
types of DNNs as well as a training process, is provided. Thereafter, DNNs and
their hardware challenges are described. This is followed by presenting various
techniques for alleviating the challenges, which enables efficient deployment of
DNNs into low-power embedded devices.

The remaining part of this thesis is structured as follows. Chapter 3 lists the
contributions of the thesis, divided into algorithmic and hardware sections.
Chapters 4-8 are the journal and four conference papers that form the core of
the thesis, ordered according to the date of publication/submission. Last but
not least, the conclusion can be found in Chapter 9. It summarizes the thesis
contributions and addresses possible future work, including other methods that
were tested and could be a promising direction to pursue.



Chapter 2

Background

This chapter provides the necessary background to cover the topics discussed
in the five papers that can be found in Chapters 4-8. Firstly, the SE and KWS
use cases are introduced (Sections 2.1-2.2). This also includes an overview of
traditional methods for solving these tasks and evaluation criteria to assess
the performance of the SE and KWS systems. Thereafter, deep learning is
presented (Section 2.3), which consists of describing the fundamental types of
DNNs, the training procedure, and specific details for deep learning-based SE
and KWS. The next section, embedded neural networks (Section 2.4), serves as
a transition to the hardware part. It discusses challenges of deploying DNNs into
resource-constrained devices as well as multiple hardware techniques to alleviate
these challenges and minimize energy dissipation.

2.1 Speech Enhancement

One of the major research areas that addresses the cocktail party problem is SE.
The objective of SE is to attenuate noise in a noisy speech, and thus improve
overall perceptual quality and/or intelligibility of a degraded speech signal. Noisy
speech can be expressed with a linear model:

y(i) = s(i) + n(i), (2.1)
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where y(i), s(i), and n(i) are the ith samples of a noisy speech signal, a clean
speech signal, and additive noise, respectively. The goal of SE is thus to obtain
an estimate ŝ(i) of s(i) by observing only y(i). Noise n(i) can be represented with
both speech, e.g., competing speakers, and non-speech sounds, e.g., background
noise experienced in a car cabin.

Numerous techniques exist for estimating s(i) and many of them use the gain-
based approach [63, 64] as shown in Figure 2.1. Firstly, the noisy time-domain
signal y(i) is divided into a time-frequency representation y′(k, m) for time-frame
m and frequency index k, using, e.g., the Short-Time Fourier Transform. A
Gain Estimator then estimates a scalar gain factor g(k, m) that is applied to
the magnitude spectrum of the noisy time-frequency tile y′(k, m) to obtain an
estimate of the clean speech magnitude spectrum. Finally, a synthesis stage
reconstructs the time-domain signal ŝ(i) by applying an inverse transform to the
enhanced signal.

Gain 
Estimator 

^

y'(k, m)

Xy(i)

g(k, m)

T-F
Synthesis

T-F
Analysis

s(i)

Figure 2.1: Typical gain-based SE system.

2.1.1 Traditional Speech Enhancement Algorithms

The gain value g(k, m) is typically estimated using either statistical methods or
machine learning methods. Statistical methods such as the Wiener filter [64], and
Short-Time Spectral Amplitude Minimum Mean Square Error [10, 63] are based
on an assumption that speech and noise are uncorrelated. Moreover, they require
domain knowledge that is unknown in advance and hence must be estimated,
such as a priori SNR, i.e., the ratio of the power of the clean signal and noise
power. However, the only signal that can be observed in reality is the noisy
signal. Furthermore, these methods are often based on assumptions that the noise
statistics change more slowly across time than the speech statistics. However, this
is not the case for many natural sources [166]. As a result, modern SE algorithms
still struggle in complex acoustic environments with low signal-to-noise ratios or
competing talkers.
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Traditional ML methods used for SE such as Hidden Markov Models [11, 19],
Support Vector Machines [18, 27, 55], and Gaussian Mixture Models [13, 42]
make predictions and identify patterns based on their ability to learn from data.
However, they often require a complex process of extracting features, where data
analysis must be firstly performed, followed by a manual selection of the best
features [240]. Moreover, classical ML algorithms can learn from relatively small
datasets but perform poorly on a large amount of data.

On the other hand, deep learning, a subset of ML, uses artificial neural networks
to mimic the learning process of the human brain. It tackles the SE task as a
supervised learning problem [40], where an adaptive mathematical model, i.e.,
a neural network, is used instead of parametric statistical models or digital
signal processing to design a gain estimator. In case of SE, during an initial
training phase, i.e., before employment, a neural network is trained to enhance
the noisy speech by observing a large number of examples of the clean speech
along with their corresponding noisy speech. The parameters of the neural
network are gradually tuned during the training process depending on how
far its output (denoised speech) is from the desired output (clean speech).
Compared to traditional ML methods, deep learning algorithms can automatically
determine the important features that distinguish different categories of data,
which significantly eliminates human intervention [261]. Hence, they scale
effectively with a growing amount of data. Deep learning has demonstrated
its superior performance over traditional ML methods in a huge variety of
applications, including SE [62, 91, 42, 69]. Deep learning is presented in detail
in Section 2.3.

Furthermore, SE algorithms can process sound signals captured by a single
microphone or a microphone array. These are referred to as single-microphone
systems and multi-microphone systems, respectively. The algorithms for single-
microphone noise reduction do not rely on and cannot exploit the directional
information of target and interference signals. They are useful in applications
where microphone arrays cannot be used, e.g., for in-the-ear hearing aids that have
space as well as power and hardware constraints. Moreover, single-microphone
algorithms complement multi-microphone algorithms and can be used in a post-
processing step after a beamforming stage [163]. The focus of this thesis is on
single-microphone SE.

2.1.2 Evaluation Criteria

The best way to assess the quality and intelligibility of the enhanced speech is
by performing listening tests with end users. However, such tests can become
very expensive and time consuming, since they require careful planning and
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execution, as well as numerous test subjects. Moreover, the results of listening
tests might often be inconsistent due to various factors such as listener fatigue,
or varying hearing ability among test subjects [163]. Therefore, much effort
has been invested in designing objective measures that correlate highly with
subjective rating scores [50]. Such measures are faster, cheaper, and produce the
same result for the same testing condition. Although they cannot completely
replace listening tests, they often provide a good estimate of listening-test results,
see, e.g., [237] and [64]. Two of the most popular techniques to evaluate speech
intelligibility and speech quality are Short-Time Objective Intelligibility (STOI)
and Perceptual Evaluation of Speech Quality (PESQ), respectively. These two
techniques reflect different aspects of speech and are, thus, not equivalent. SNR
is also included among the evaluation metrics.

2.1.2.1 Short-Time Objective Intelligibility

Speech intelligibility describes what a speaker says, i.e., the content of the spoken
words. It is measured by presenting speech to a group of listeners and asking them
to identify the words. Therefore, intelligibility can be quantified as a number
between 0 and 1 that represents the percentage of words correctly understood [64,
41, 50]. STOI [47, 51] is the most widely used objective measure for estimating
speech intelligibility. STOI is designed to produce a single scalar output in a
similar range, with an output of 1 indicating fully intelligible speech [163]. STOI
requires both the clean signal and the noise signal to estimate the intelligibility.
It has proven to quite accurately predict the intelligibility of noisy speech in a
wide range of acoustic scenarios [51, 93, 75].

2.1.2.2 Perceptual Evaluation of Speech Quality

Speech quality describes how a speaker produces an utterance. It is highly
subjective and therefore very difficult to evaluate reliably, since people have
different standards of what constitutes good or poor quality [41, 50]. The PESQ
[26] is one of the most widely used objective measures for estimating speech
quality [64], and it is used as the International Telecommunications Union
recommendation P.862 [25]. It was originally designed for evaluating speech
coding algorithms. PESQ results are designed to approximate Mean Opinion
Score. Mean Opinion Score is a procedure where the test subjects listen to the
test signal and rate the quality of the signal on a scale from 1 to 5 as shown in
Table 2.1. The output of this method is the total quality (a single scalar) that is
calculated as the average of the individual scores obtained from all test subjects
- hence the name Mean Opinion Score. Nonetheless, the PESQ algorithm itself
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is rather complex as it consists of multiple steps such as preprocessing, time
alignment, accounting for masking effects, etc. [163]. It requires both the clean
speech signal and the noisy signal to estimate the perceived quality of the noisy
signal. Research has shown that PESQ is highly correlated with listening-test
experiments based on Mean Opinion Score [26, 28].

Table 2.1: Mean Opinion Score rating scale that uses five discrete steps.

Rating Speech Quality Level of Distortion
5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying, but not objectionable
1 Bad Very annoying and objectionable

2.1.2.3 Signal-to-Noise Ratio

The SNR is the most popular metric to compare the level of a desired signal to
the level of background noise. The SNR is defined as the ratio of signal power to
noise power, often expressed in dBs. Although SNR does not directly correlate
with the speech intelligibility or quality [64], it is also an important metric for
evaluating the efficiency of SE algorithms. For instance, a low SNR will decrease
how accurately a system can recognize speech. Robust estimation of SNR can
help guide the design of SE systems.

2.2 Keyword Spotting

The objective of KWS is to identify keywords in audio streams. Subsequently,
different actions might be performed depending on the detected keyword (e.g.,
”lights on”, ”turn off the TV”). KWS has already become a ubiquitous and
popular feature that is used in countless devices. A typical example are voice as-
sistants such as Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, and Google’s
Assistant [159]. However, running KWS constantly would use a lot of computa-
tional resources and hence power. Therefore, KWS is firstly activated only when
a wake-up word is detected, such as ”Ok Google”. Additionally, voice activity
detection is often used to reduce power consumption even further, by recognizing
whether speech is present in the signal or not. If speech is not present, all
activities are in a sleep mode. Although the wake-up word and KWS tasks have
different objectives, their underlying technology is very similar.



10 Background

2.2.1 Traditional Keyword Spotting Algorithms

One of the first KWS attempts is based on large-vocabulary continuous speech
recognition [17, 36]. In this method, the speech signal is decoded and the keyword
is searched in the generated sequences of phonetic units [255]. Another approach
is to use Hidden Markov Models with Viterbi decoding, where a keyword Hidden
Markov Model and a filler Hidden Markov Model are trained to model keyword
and non-keyword audio segments. When the likelihood ratio of the keyword
model versus filler model is larger than a predefined threshold, the KWS system
is triggered. As in the case of SE, DNNs outperform these techniques and are
thus the preferred solution for KWS.

2.2.2 Evaluation Criteria

The best evaluation of a KWS system would, again, be performed with end users.
Instead, objective metrics are used to substitute such costly and tedious tests.
The following subsections present the most common metrics used for analyzing
the predictive power of a KWS classifier. In this project, the focus is on accuracy.
However, other commonly used metrics are stated for completeness.

2.2.2.1 Accuracy

Accuracy is the simplest metric that describes the ratio between the number
of correctly classified keywords and the total number of words used in the test.
Therefore, the resulting number is in the [0, 1] range. Although simple, it is very
important to use datasets with balanced class distributions, such as Google Speech
Commands Dataset (GSCD) [178], to avoid biased evaluations [255]. Moreover,
a confusion matrix is often used to summarize the performance of a classifier,
where the rows of the matrix represent the instances of actual classes, while the
columns represent the instances of predicted classes.

2.2.2.2 Receiver Operating Characteristic and Detection Error Trade-
off Curves

The Receiver Operating Characteristic (ROC) curve [34] illustrates a plot of
pairs of True Positive Rate (TPR) on the y-axis and False Positive Rate (FPR)
on the x-axis, by varying the discrimination threshold (see Figure 2.2a). TPR,
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Figure 2.2: The receiver operating characteristic and detection error trade-off
curves outlining space for a ”better” and ”worse” classifier. The
purple dots correspond to a perfect classifier.

also called recall or sensitivity, is the fraction of correctly identified keywords. It
is expressed as:

TPR = True Positive

True Positive + False Negative
(2.2)

FPR is the fraction of keywords that triggered a false alarm. It is expressed as:

FPR = False Positive

False Positive + True Negative
(2.3)

As it can be observed in the equations above, TPR and FPR are derived
independently, which ensures that the class distribution in the dataset does not
affect the ROC curve, unlike in the case of accuracy. A ROC curve of a good
classifier is as close to the top left corner of the graph as possible (i.e., the green
curve). A perfect classifier would correspond to FPR = 0 and TPR = 1, as
shown with a purple circle in Figure 2.2a. If a system performs on the ROC
space identity line, it randomly guesses the outputs.

The detection error trade-off [22] curve (see Figure 2.2), uses False Negative
Rate (FNR) on the y-axis instead, and it is expressed as:

FNR = False Negative

False Negative + True Positive
(2.4)

Therefore, a perfect classifier is represented with FPR = 0 and FNR = 0. The
equal error rate can thus be easily obtained as the intersection point between
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FNR and FPR. The lower the equal error rate, the better the performance of
the system. In real-world KWS applications, the cost of a false alarm is often
significantly greater than a missed detection [68]. Therefore, FPR in the ROC
and detection error trade-off curves is usually replaced with the number of false
alarms per hour [176, 174, 230].

2.2.2.3 Precision-recall and F1-score Curves

Similarly, precision-recall curve plots pairs of TPR (recall) and precision values
that are obtained by varying the discrimination threshold [33]. A perfect classifier
has recall = 1 and precision = 1. Precision is defined as:

Precision = True Positive

True Positive + False Positive
(2.5)

The precision-recall curve hence enables to focus on the minority positive class
of interest.

The F-score metric, F1, is the harmonic mean of the precision and recall [7]:

F1 = 2
Recall−1 + Precision−1 = 2 True Positive

2 True Positive + False Positive + False Negative
(2.6)

The value of F1 is again in range [0, 1]. The larger the F1, the better the
performance.
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Figure 2.3: The precision-recall and F-score curves outlining space for a ”better”
and ”worse” classifier. The purple dot and line for the precision-
recall and F-score, respectively, corresponds to a perfect classifier.
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2.3 Deep Learning

Deep Learning is a subset of ML, and it uses a hierarchy of data representations,
where each of the levels transforms the input representation non-linearly into a
higher, more abstract format. This hierarchical model is referred to as a neural
network [2].

2.3.1 Neural Network Basics

Thanks to the hierarchical structure, neural networks are capable of capturing
non-linear and complex relationships by learning from a vast amount of data.
Each of the levels in a hierarchy corresponds to a layer, and each layer consists of
a set of neurons. A neuron is connected to other neurons in the previous and/or
subsequent layers using weights. The structure of neural networks shows crude
similarities to a human brain that is composed of networks of billions of neurons.

Neural networks can solve a wide variety of tasks that can be broadly placed
into two main categories. Either we need to predict i) discrete class labels
(e.g., recognizing objects in pictures, spoken keywords), or ii) continuous values
(e.g., stock prices, postfilter gain values). These are referred to as classification
and regression, respectively. Moreover, different types of neural networks are
suited for different problems and applications. The three most fundamental
architectures are presented in Sections 2.3.2-2.3.4. Based on these, many other
architectures have emerged, such as TNNs [146], diffusion networks [102], etc.
TNNs are introduced in Section 2.3.5 as they are used in paper [C3].

2.3.2 Feed-Forward Neural Networks

Feed-forward neural networks, also known as dense or Fully Connected Neural
Networks (FCNNs), with K layers can be represented as a chain of non-linear
functions:

f = fK(fK−1(...f1)), (2.7)

where f1 and fK correspond to the first (input) layer and and the last (output)
layer, respectively. All the layers in between (f2 to fK−1) are called hidden
layers. This flow from the input to the output layer is also called a forward pass.
The number of layers, K, is referred to as the depth of the network, while the
number of neurons per layer, N , is called the width. As shown in Figure 2.4,
FCNNs have no internal feedback connections.
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The most fundamental operation for all neural networks is a dot product. In
case of a FCNNs, each neuron in a layer performs a dot product on an input
feature (activation) vector X and its corresponding weights W , generating a
single output feature (activation). Every multiplication of a single input and its
respective weight, followed by an addition with the intermediate result, is known
as a Multiply-Accumulate (MAC) operation. A bias value, b, which applies an
affine transformation, is then added to the weighted sum. Finally, an activation

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ⁴

Figure 2.4: An example of a simple FCNNs with the depth K = 3 and the
width N = {8, 8, 4}.

function, a, is used to model non-linearity. Various types and variations of
activation functions exists. The most popular ones are illustrated in Figure 2.5
and described below:

• Rectified Linear Unit (ReLU) - outputs zero if the input is negative, other-
wise, it outputs the input directly: ReLU(x) = max(0, x). It has become
the default activation function for many types of neural networks due to
its simplicity and performance.

• Sigmoid (σ) - maps inputs into a range between 0 and 1: σ = 1
1+e−x . It is

especially useful when a real number needs to be converted to a probability.

• Hyperbolic Tangent (tanh) - similarly to sigmoid, tanh maps inputs to a
range between -1 and 1: tanh = ex−e−x

ex+e−x
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Figure 2.5: ReLU, sigmoid and tanh activation functions.

The functionality of a single neuron can thus be summarized with the following
equation:

O = a(
N∑

i=1
WiXi + b) (2.8)

The output O, called activation, will serve as an input for a subsequent layer.
The simplest form of neural network consists of just three layers: input, hidden,
and output layer, as visualized in Figure 2.4.

2.3.3 Convolutional Neural Networks

CNNs are a specialized type of a FCNN architecture that utilize weight-sharing
[109]. Weight-sharing means that the model weights are shared for multiple
inputs, which corresponds to the convolution between the input to the layer and
a set of weights called kernels or filters. Such an approach differs from FCNNs
where each input has its own fixed set of weights. Therefore, CNNs can be
more parameter-efficient [109], especially for high-dimensional input data such as
images. While CNNs can utilize small kernels, e.g., 3x3, in the image to extract
different information like edges, a FCNN would require orders of magnitude
more parameters to perform the same operation. CNNs are hence powerful for
capturing spatial dependencies. However, as shown below, CNNs are at the same
time computationally intensive.
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The following description summarizes how a convolutional layer works. A
convolutional layer receives an input image of dimensions W × H × C and
produces an output of activation maps W ′ × H′ × C′, known as feature maps.
W , H, and C are the width, height, and the number of channels in an input
feature map, and W ′, H′, and C′ in an output feature map. For instance, in
a polychromatic image such as RGB, three channels are needed in order to
represent the red, green, and blue channel. The filter for a convolution is hence
a tensor of dimensions K × K × C × C ′, where K is the kernel size. In order to
reduce the memory complexity, a step size (i.e., a stride) greater than one pixel
is used when shifting the kernel across the image. As in case of a FCNN, a bias,
b, can be added to the weighted sum, and the result will be passed through an
activation function a. All these steps are illustrated in Figure 2.6 and described
by the following equation:

O[c′][x][y] = a(
C∑

c=0

K∑
i=0

K∑
j=0

I[c][Sx + i][Sy + j] × W [c′][c][i][j] + B[c′]), (2.9)

where I and S represent an input feature map and a stride, respectively, and x,
y are bounded by x ∈ [0, ..., W ] and y ∈ [0, ..., H]. As visualized in Figure 2.6, a
CNN typically utilizes a FC layer in the end for classification.

Figure 2.6: An example of a CNN with two convolutional and max-pooling
layers, followed by a FC layer for classification.

Another layers used in CNNs are pooling layers, which i) by downsampling reduce
the dimension of the feature map and thus memory requirements, and ii) add
translational invariance to small shifts and distortions in the inputs. One of the
typical pooling layers is max-pooling, which outputs only the maximum of a local
patch in a feature map.
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2.3.4 Recurrent Neural Networks

Traditional FCNNs struggle with modeling long-term time dependencies. RNNs,
on the other hand, excel in this task. RNNs are feed-forward neural networks with
a feedback connection that is shared between timesteps. This connection enables
RNNs to retain information, which makes them powerful for processing data
with temporal structures. They are, therefore, useful in a variety of applications
such as, natural language processing, translations, speech recognition, and video
processing. The simplest form of an RNN is illustrated in Figure 2.7, where a
unit accepts input xt and outputs ht. The feedback loop allows information to
be passed from one timestep to the next one. The loop can be unrolled in time,
i.e., across different timesteps, and thus seen as several copies of the same unit.
However, these vanilla RNNs suffer from short-term memory. If a sequence is

RNN

xt

ht

= RNN

x0

RNN

x1

RNN

xt...

h0 h1 ht
ht-1

Figure 2.7: An unrolled RNN in time, where x and h correspond to inputs and
outputs, respectively.

too long, they will have difficulties with forwarding information from previous
timesteps to the later ones due to the vanishing gradient problem [109]. Gradients
are used during training to update parameters of a neural network (see Section
2.3.6). If they become too small, the parameter updates will become insignificant
and, as a consequence, no learning will take place. A Long Short-Term Memory
(LSTM) [20] and a Gated Recurrent Unit (GRU) [71] were created as the solution
to the short-term memory problem. They have internal mechanisms called gates
that can learn which part of a sequence is important to keep, thus regulating
the flow of information.

The key idea behind LSTMs is the cell state ct, and three gates: forget ft, input
it, and output gate ot, as illustrated in Figure 2.8. The cell state, ct, runs through
the entire chain, with minor linear interactions. Since it has neither an activation
function nor weights, its value will remain constant during gradient updates,
hence avoiding the vanishing gradient problem. Information can be added to or
removed from the cell via gates, where each of the gates is a separate FCNN. The
gates can therefore learn what information is relevant to keep or forget during
training. All gates have a sigmoid function that maps values to the [0, 1] interval.
The closer the values are to 0, the less of the information will be propagated.
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Similarly, the closer the values are to 1, the more of the information will be
retained and passed to the next timestep. The following equations describe how
an LSTM works:

ft = σ(Wf [ht−1, xt] + bf ) (2.10)

it = σ(Wi[ht−1, xt] + bi) (2.11)

c̃t = tanh(Wc[ht−1, xt] + bc) (2.12)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.13)

ot = σ(Wo[ht−1, xt] + bo) (2.14)

ht = ot ⊙ tanh(ct) (2.15)

c̃t represents new candidate values that are used to update old cell state, ct−1,
into the new cell state ct. The GRU is a variation of the LSTM. The biggest
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Figure 2.8: An LSTM unit unrolled in time across three timesteps.

differences between the two gated-RNNs is that the GRU i) uses two gates
instead of three, called update and reset gate, and ii) merges the cell state and
hidden state into a single hidden state ht. This is illustrated in Figure 2.9. The
GRU is hence less complex and contains fewer parameters than the LSTM. The
GRU can be expressed as:

rt = σ(Wr[ht−1, xt] + br) (2.16)

ut = σ(Wu[ht−1, xt] + bu) (2.17)

ct = tanh(Wxcxt + rt ⊙ (Whcht−1) + bc) (2.18)

ht = ut ⊙ ht−1 + (1 − ut) ⊙ ct (2.19)
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Figure 2.9: A GRU unrolled in time across three timesteps.

2.3.5 Transformer Neural Networks

As shown in Section 2.3.4, RNNs generate a sequence of hidden states h(t) based
on the previous hidden state h(t − 1) and input x(t). This sequence dependence
limits the amount of parallelism that can be exploited during computation.
TNNs, firstly introduced in [146], eliminate this dependency by relying on a
self-attention mechanism that enables them to attend to different parts of the
inputs in parallel. Self-attention therefore combines the best of CNNs and RNNs,
i.e., parallel computations and handling of long dependencies. Moreover, the
significance of each input within a sequence is weighed differentially, as described
below.

The attention mechanism (see Figure 2.10) is a function of three main components,
namely queries Q, keys K, and values V , where the goal is to find a mapping
between a query and a set of key-value pairs to an output. Q, K, and V are
obtained by multiplying the input x with corresponding projection matrices:

Q = xWQ K = xWK V = xWV (2.20)

Typically, Multi-Head Self-Attention (MHSA) is applied afterwards, where the
matrices are divided into k heads (i = 1, .., k) to execute the self-attention in
parallel. Firstly, each query vector Q is mapped against a set of keys K to
produce an attention score s. The

√
d, where d is the dimension of Q and K

divided by k, is a scaling factor that normalizes the average dot-product to
ensure more stable gradients on the softmax function introduced in the next
step:

si = QiK
T
i√

d
(2.21)
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Figure 2.10: A Multi-Head Self-Attention principle based on the original [146].

Subsequently, a softmax function is applied on the scaled scores to generate
the attention weights in a range of [0, 1]. The weights are then applied to V to
compute the output:

headi = attention(Qi, Ki, Vi) = softmax

(
QiK

T
i√

d

)
Vi (2.22)

The attention heads are in the end concatenated together and multiplied with a
projection matrix WP , producing the final MHSA output:

MHSA(Q, K, V ) = concat(head1, ..., head1)WP (2.23)

TNNs are an emerging type of neural networks that have already demonstrated
their powerful capabilities in many different areas, especially natural language
processing [210, 186]. Natural language processing was also the objective of
the first transformer [146], which defined the baseline TNN architecture as an
encoder-decoder block. Both modules in the block consist of stacked self-attention
and FC layers with a residual connection applied around each of the two layers,
followed by a layer normalization. The decoder adds additional third layer,
another MHSA, that implements masking to make the output dependent only
on the preceding, i.e., known outputs. Our transformer in paper [C3] targets
keyword spotting and hence utilizes only the encoder part.
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2.3.6 Training Deep Neural Networks

The key factor that gives neural networks their power is the ability to learn
from data, which is achieved through an iterative process called training. The
core of training is a backpropagation algorithm. Backpropagation fine-tunes the
parameters, i.e., weights and biases, of a neural network based on the error
rate. The error rate is expressed with a loss function, which measures how
much the predicted output ŷ deviates from the ground truth y. Some of the
commonly used loss functions are cross-entropy and Mean Squared Error (MSE).
Cross-entropy is used to optimize classification models. The cross-entropy loss
function and its derivation are defined as:

LCE = −
N∑

i=1
tilog(pi) (2.24)

∂LCE

∂pi
= −ti

pi
(2.25)

N , ti, and pi are the number of output neurons (classes), the truth label, and
the softmax probability for the ith class, respectively.

The MSE is a popular loss function for regression models. It is calculated as
the average of the squared differences between predicted and expected target
values. The closer a regression line is to a set of points, the lower the MSE
and, consequently, the better the performance. The MSE loss function and its
derivation are defined as:

LMSE = 1
N

N∑
i=1

(ti − t̂i)2 (2.26)

∂LMSE

∂t̂i

= 1
N

(ti − t̂i) (2.27)

Minimizing a loss function requires to find a local minimum of a given differ-
entiable function. This is achieved via a different variations of an optimisation
algorithm called gradient descent. Gradient is a collection of all partial deriva-
tives of the function with respect to its variables. It simply measures the change
in all parameters with regard to the change in error. The partial derivatives
of a loss function are obtained through the chain rule of differentiation, which
corresponds to propagating the error from the output layer to the input layer.
The chain rule is defined as:

∂z

∂x
= ∂z

∂y

∂y

∂x
(2.28)



22 Background

As it can be observed, a variable z depends on the variable y, which depends on
the variable x. Hence, y and z are dependent variables, and z also depends on x
via y. The chain rule is also visualized in Figure 2.11, with respect to the loss
function L. Therefore, the partial derivatives of the loss function to any weight
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Figure 2.11: An illustration of the chain rule, where output z is calculated as
a function of local inputs x and y, f(x, y). The black and red
arrows denote forward and backward pass, respectively.

wij can be expressed as:

∂L

∂wij
=
∑

p

[ ∂L

∂t̂p

(
∑

k

∂t̂p

∂zk

∂zk

∂wij
)], (2.29)

where
∑

p is the summation over all output units and
∑

k is the summation over
all inputs contributing to tp. The derivatives are then used to repeatedly adjust
the network weights and biases to minimize the loss.

The whole process described above is performed iteratively on a large amount of
data, where the data is usually represented in a 32-bit floating-point format. If
the dataset is too small and/or not diverse enough, the network will not learn to
generalize and it will start to overfit instead. Overfitting means that the model
will learn the details and noise in the training dataset but will perform poorly
on new, unseen data.

Once a good dataset has been collected, the data is typically divided into three
main subsets: training, validation, and test, often in a 80:10:10 ratio. The training
and validation subsets are used during training, while the test subset during
inference. The train subset is split into groups of samples, referred to as batches,
that will be propagated through the network. The network parameters are
updated after every batch. When a forward and backward passes are completed
for the entire dataset, called an epoch, the performance of the model is verified
on the validation subset. The validation subset can be used to determine when
to stop training (early stopping) in order to prevent the network from overfitting.
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In the simplest case, training is stopped as soon as the performance (e.g., loss) on
the validation subset in the current epoch is worse compared to the performance
during the previous epoch.

Once training is completed, i.e., a specified number of epochs has been executed,
the trained model with its fixed parameters can be evaluated on the test set
during inference. Ideally, the test set is completely independent from the training
set and validation set, i.e., the same data samples are not shared across any of
the sets. This is necessary since the test set verifies how the model generalizes
to unseen samples.

2.3.7 Deep Learning for Speech Enhancement

Recently, deep learning-based SE systems that operate directly on the noisy
time-domain signal and output an enhanced time-domain signal, e.g., [249, 212],
have been proposed. However, in this thesis we focus on methods that operate
in a time-frequency domain, such as the Short-Time Fourier Transform domain,
to comply with the hearing-instrument application.

In order to train a neural network for SE in the Short-Time Fourier Transform
domain, it is necessary to define a suitable target. Training targets can be divided
into two types: signal approximation and mask approximation. The goal of signal
approximation is to train an estimator that minimizes the difference between the
spectral magnitude of the clean speech and that of the estimated speech [82, 78,
99]. However, this thesis focuses on mask approximation, which describes the
time-frequency relationships between the target speech and background noise
[194]. The mask approximation computes a target mask and measures the error
between the estimated mask and the target mask. The neural network will thus
learn to estimate time-frequency masks from noisy acoustic features, guided by
the MSE loss function of the estimated and target masks [194]. The most popular
masks are Ideal Binary Mask (IBM) [43] and the Ideal Ratio Mask (IRM) [67].
IBM treats SE as a binary classification problem, as it classifies time-frequency
units into speech-dominant and noise-dominant units. It is defined as:

IBM =
{

1 if |s(f,t)|
|n(f,t)| > TSNR(f)

0 otherwise,
(2.30)

where the s(f, t) and n(f, t) represent the clean speech and noise, respectively,
with frequency channel f and time frame t. TSNR(f) denotes a frequency-
dependent tuning parameter [163]. However, IBM has difficulties capturing mask
regions with low speech energy. This is due to the fact that time-frequency
segmentation based on either speech or noise dominating is too coarse, since



24 Background

speech and noise are likely to be present at the same time in the same time-
frequency unit [153]. This problem is resolved by a continuous IRM that outputs
a gain between zero and one. It is defined as:

IRM =
(

|s(f, t)|
|s(f, t)| + |n(f, t)|

)
(2.31)

It has been shown that IRM outperforms IBM in SE tasks as well as in objective
evaluation metrics [163].

2.3.8 Deep Learning for Keyword Spotting

The typical deep learning pipeline of a KWS task [255] is illustrated in Figure
2.12. It consists of i) a feature extractor, and ii) a neural network classifier. The
speech feature extractor firstly converts the time-domain input speech signal of
length L into overlapping frames of length l with a stride s, producing a total
number of frames T equal to [147]:

T = L − l

s
+ 1 (2.32)

Thereafter, F frequency-domain speech features are extracted from each frame,
resulting in T × F features for the entire input speech signal. These features
are then fed into a DNN acoustic model that outputs the likelihood of each
keyword/filler class. In a real-world case, where keywords are recognized from a
continuous audio stream, a posterior handling module would be used to average
the output probabilities of each output class over a period of time, which would
improve the overall confidence of the prediction [147].

Mel-Frequency Cepstral Coefficients (MFCCs) [8] are the most widely used speech
features in KWS [183, 174, 230, 223, 147]. Another popular method [176, 170, 70,
97, 181] are log-Mel filterbank energies that are based on the Mel-scale filterbank,
which tries to mimic the non-linear human ear perception of sound, by being more
discriminative at lower frequencies and less discriminative at higher frequencies
[1]. Both of these human-engineered types of speech features are commonly used
in the state-of-the-art KWS systems. MFCC features are also used in some of
our studies.

2.4 Embedded Neural Networks

As shown in the previous sections, DNNs are very powerful and capable of
solving a vast variety of tasks. The state-of-the-art DNNs usually consist of
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0.01 "UP"
0.95 "DOWN"
0.01 "LEFT"
...

Speech signal Feature Extraction Neural Network

Figure 2.12: An example of a typical flow for KWS using DNNs. An input
speech signal (here the word ”down” from the GSCD [178]) is
transformed into features (e.g., MFCC) that are subsequently
passed to a DNN that produces posterior probabilities for each
output class.

multiple hidden layers, each having hundreds to thousands of neurons. DNNs
for SE and KWS achieve outstanding results. The existing systems are based on
different network architectures, training and testing methods, speech corpora,
noise databases and types, feature and target representations, the SNR, etc.
What most of them, however, have in common is i) a large memory footprint in
terms of network weights that must be stored, and ii) millions of computations
per every input.

2.4.1 Computational and Memory Challenges

The current DNNs for SE and KWS require significant resources that hinder
their execution in edge devices like hearing instruments. For instance, FCNNs
for SE in [78, 99, 82, 91, 104] have an input dimension ranging from 1,230 to
1,845, one to five hidden layers of 1,024 - 2,048 neurons, and an output dimension
of 64-320 neurons. The storage requirements are thus from 2 - 20.5 million
weights. Assuming reduced 8-bit precision (see Section 2.4.3), ∼ 2 - 20 MB would
be necessary to support these sizes. CNN models for SE in [165], [212], and [139]
have 10 million, 33.5 million, and even 97.47 million parameters, respectively,
requiring 10 - 91 MB of storage. Recent SE methods have utilized the power of
RNNs [228, 179, 88]. In [228], a novel type of recurrent unit called Equilibrated
RNN [190] is used. It has fewer parameters, yet, the biggest model still requires
1.05 million weights. LSTM networks in [88] and [179] result in 1 million to 65
million parameters (1 - 62 MB). Moreover, a combination of CNNs and RNNs has
been proposed in several works such as [173] that uses a convolutional encoder-
decoder structure. Similarly, TNNs are gaining more and more popularity [249].
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However, these architectures still result in millions of parameters and even more
computations.

The same issue can be observed in the existing KWS systems. Although many
small-footprint neural networks have been designed [223, 230, 174, 183], the
bigger and more powerful ones still require a significant amount of computations
and storage. For instance, the model in [167] has ”only” 251,000 parameters, but
at the same time it performs 25.1 million MAC operations. Similarly, Residual
CNN res15 [174] has a relatively small number of parameters (238,000), yet it
requires 894 million MACs. Plenty of other networks for KWS can be named,
such as Keyword Transformer KWT-3 [233] with 5.3 million parameters, CENet-
40 [185] with 61,000 parameters and 16.18 million MACs, or Residual DS-CNN
[230] with 72,000 parameters and 285 million MACs.

Naturally, all of the presented models have different capabilities that have an
impact on the objective measures. What can though be observed is that the
model sizes in all of the proposed systems for either SE or KWS require from
thousands to millions of both parameters and multiplications. Models with
large enough capacity can capture the necessary relationships in order to work
in real-life scenarios with, e.g., unseen environments, voices, and accents. For
instance, it has been shown that small networks have difficulties learning the
relationship between the noisy features and the target SNRs [31]. On the other
hand, it is not currently possible to keep all the weights of such models in a
small on-chip memory. Significant portion of the weights thus has to be stored
in an expensive off-chip DRAM - if the amount of weights can be fitted.

The problem with the model size for battery-powered devices is, however, not
only the memory requirements but also the number of memory fetches and
computations as shown above. Executing a MAC operation requires fetching
weights from the memory, which is yet another source of considerable power
consumption. Both types of operations, particularly memory accesses, belong
to the most costly ones [73]. Due to all these reasons, neural networks are
typically realized on high-performance server devices, and the results are then
deployed wirelessly to IoT devices. However, real-time applications require low
latency connections. Moreover, sharing data with the cloud is not desirable
due to security and privacy issues. Last but not least, wireless connections
would quickly drain a battery of an edge device. Therefore, huge effort is being
invested into moving the computations, especially inference, towards the edge
[197]. TinyML pursues the goal of enabling ML applications on resource- and
power-constrained devices. This effort is extraordinarily multidisciplinary, and
requires optimizations on different levels, including hardware, software, data
science, and ML. Therefore, in order to achieve this goal, it is crucial to look
at deep learning algorithms and the hardware that runs them conjointly, and
create innovations on both levels, i.e.:
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1. Develop deep learning algorithms that help to reduce computations and
power.

2. Design custom hardware that can support execution of these algorithms
locally in a low-power device.

The following sections describe crucial aspects of the algorithm-hardware co-
optimization based on the key intrinsic characteristics of neural networks.

2.4.2 Energy-Efficient Dataflow

Neural networks have a very particular dataflow that offers a large amount of
potential parallelism and data reuse [197]. This can be heavily exploited by
developing customized hardware accelerators that are designed specifically for
the target algorithms. Such accelerators can maximize the parallel execution
of the algorithm while minimizing the data movement, which will improve
energy-efficiency and throughput, especially compared to using general purpose
processors.

In neural networks, every input is multiplied with a set of weights. Each MAC
thus requires three memory reads; one for an input, a weight, and a partial sum,
and one memory write for the updated partial sum (see Figure 2.13). Therefore,
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tmp 
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Figure 2.13: A visualization of the MAC operation and the necessary memory
accesses that are denoted with arrows.

the bottleneck of the DNN execution lies in the memory access - one of the
most expensive operations [73]. Hence, once the data is fetched, it should be
reused as much as possible to reduce the number of subsequent memory accesses.
Moreover, in the worst case data has to be fetched from a large off-chip memory,
such as DRAM, as it is not always possible to fit the entire network model into
an on-chip memory, as discussed in Section 2.4.1. As a result, data has to be
moved constantly between the different memory levels. Such data movement is a
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substantial issue since, e.g., DRAM consumes orders of magnitude higher energy
per access than a small on-chip memory [73]. This problem again emphasizes
the importance of reusing the data once it is fetched to reduce the number
of expensive memory accesses. The characteristic operations in DNNs offer
several opportunities for data reuse [143, 197], where the same data is reused
across multiple parallel execution units in the same clock cycle (data parallelism),
also visualized in Figure 2.14. Separate weight and input/output memories are
assumed:

• Input reuse - many partial results are computed with one loaded input in
one cycle. This approach is especially beneficial for FCNNs and RNNs.

• Weight reuse - many partial results are computed with one loaded weight
in one cycle. This approach improves the weight memory bandwidth and
is specifically suitable for CNNs.

• Output reuse - many partial results of one output are computed in one
cycle.
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Figure 2.14: Three different data reuse techniques based on [197].

Data can be also reused across multiple clock cycles on the same execution unit,
referred to as data stationarity. Similarly to the data reuse, three main options
can be identified (visualized in Figure 2.15):

• Input-stationary - once the input data is fetched, it is stored in a register
file and multiplied with the weights of neurons in a layer (multiple weight
and output loads and stores).

• Weight-stationary - once the weight is fetched, it is stored in a register
file and multiplied with layer inputs (multiple input and output loads and
stores).
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• Output-stationary - a very common approach that minimizes the energy
consumption of reading and writing the partial sums. The partial sum of
the same output activation is kept locally in a register file, and intermediate
results are accumulated across different clock cycles (multiple input and
weight loads). As shown with a blue arrow in Figure 2.15, the outputs are
firstly stored in a memory once the final results are obtained.
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Figure 2.15: Three different data stationary techniques based on [197]. While
the red arrows illustrate that new data is loaded in every cycle
(parallelism), the blue arrows indicate the data that remains
stationary across cycles.

The data parallel and stationary techniques are orthogonal and often combined
in accelerators to implement a hybrid form, i.e., multi-dimensional parallelism
and single-dimensional stationarity [142, 117, 137]. In our hardware accelerators
[J1, C1], we utilize output-stationary and input-parallel (reuse) techniques.

Another emerging technique for removing the memory bottleneck is analog
in-memory computing, where the MAC operation is executed directly in a
memory array. This is done by using either volatile memories (SRAMs) or
non-volatile memories (e.g., flash memories or resistive memory technologies
[120]) as programmable resistive elements, called memristors [6]. This approach
is the ultimate form of a weight stationary dataflow, as the weights are always
held in place [143]. In-memory computing minimizes weight movement, which
consequently reduces the energy used for transferring the data. Some of the
disadvantages are reduced precision, ADC/DAC overhead, and wire energy
dominating for large arrays [107].

2.4.3 Reduced Precision

Neural networks are, to a certain extent, robust to approximations or fault
introductions [144]. Such a characteristic can be exploited by performing the
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computations at reduced precision, i.e., with fewer bits, while still maintaining
sufficient performance. Reducing the precision of the neural network parameters
and activations is achieved by applying quantization, which maps typically 32-bit
floating-point data to their quantized format. If this procedure is done after
training, it is referred to as a post-training quantization. The performance of
quantized neural network model can be further improved when the quantiza-
tion process is introduced already during training [136, 131], referred to as
quantization-aware training.

The energy and area of the memory scale approximately linearly with the
number of bits [143]. Research has shown that for most applications, 8-bit or
even lower fixed-point precision is sufficient and does not impact the performance
significantly [238, 116]. Using an 8-bit fixed-point has the following impact on
energy and area, as stated in [73, 143]:

• An 8-bit fixed-point addition consumes 3.3× less energy and 3.8× less area
than a 32-bit fixed-point addition, and 30× less energy and 116× less area
than a 32-bit floating-point addition. The energy and area of a fixed-point
addition scale approximately linearly with the number of bits.

• An 8-bit fixed point multiplication consumes 15.5× less energy and 12.4×
less area than a 32-bit fixed-point multiplication, and 18.5× less energy
(27.5× less area) than a 32-bit floating point multiplication. The energy
and area of a fixed-point multiplication scales approximately quadratically
with the number of bits.

The benefits of quantization are smaller memory requirements, a reduced number
of computations as well as costs for fetching network weights and intermedi-
ate results. These are crucial optimizations since memory accesses and data
movement dominate energy dissipation, as mentioned previously.

Optimal bit precision and wordlength can vary across layers, weights, and
activations within the same DNN [116]. Dynamic fixed-point representation
enables to rescale, e.g., weights for each layer independently based on the layer’s
dynamic range, while variable worldlength supports computations with different
wordlengths.

The most extreme case of quantization is represented with binary nets, which
are neural networks trained to work with only 1-bit weights (i.e., -1 and 1) [119,
87] and activations [105]. In the first case, the MAC is reduced to additions
only, and in the latter to an XNOR. The main disadvantage is a significant
degradation in accuracy due to the limited wordlength. Ternary nets [114, 148]
can be considered as a sparse version of binary nets as they allow weights to be
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zero. This can subsequently be exploited to reduce computations and memory
storage, thus compensating for the additional bit. Another category where
extremely reduced precision is used are Spiking Neural Networks (SNNs). In
SNNs, neurons communicate using binary spike events. An example of such
a network is TrueNorth chip [79] that utilizes binary activations and ternary
weights. Other popular approaches that belong to a non-linear quantization group
include logarithmic quantization [115] and weight sharing [85]. In logarithmic
quantization, the quantization steps grow exponentially and are smaller in regions
closer to the origin. If weights are quantized with base-2, the multiplication can
be replaced with a bit shift [115, 257]. Weight sharing reduces the number of
weights by forcing multiple weights to share the same value.

2.4.4 Reduced Computation and Model Size

Neural networks are typically highly sparse [188], i.e., after training many weights
end up being zero or having a negligible value that does not contribute much to
the final result. Moreover, after quantization to a reduced precision, numerous of
these small, non-zero weights will be also set to zero. Likewise, lots of activations
will become sparse during inference. A good example is the ReLU activation
function that sets all negative values to zero. In hardware, all this knowledge
can be exploited to reduce i) model size by compressing the weights, and ii)
operations and memory accesses by skipping MACs with zero inputs, as well as
fetches of the corresponding weights. The following sub-sections provide a brief
overview of the typical methods for reducing the model size and computational
complexity of neural networks, with a focus on dynamic pruning.

2.4.4.1 Techniques

The methods for reducing the model size and the number of computations may
be roughly categorized into three main groups:

1. Network Architecture Search [187] - a procedure that programmatically dis-
covers the best DNN architecture for a given task within a large predefined
search space.

2. Knowledge distillation [32] - a process of transferring the knowledge from
a large DNN (teacher) to a smaller DNN (student), where a student DNN
is trained to imitate a teacher DNN.

3. Network pruning [209] - a technique that removes/skips unimportant
connections and/or neurons in a network either statically or at runtime. It
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offers a trade-off between efficiency and performance of the model, i.e., the
higher the pruning ratio, the worse the performance.

Since our focus is on event-driven/data-driven architectures, i.e., conditioning
computations based on inputs during inference while preserving the parameter
space of a DNN, we concentrate on a specific subset of pruning that offers such
possibilities.

The existing pruning techniques can be grouped based on different criteria [243]
such as 1) unstructured and structured pruning (pruning individual elements vs
larger blocks of elements) [256], 2) neuron and connection pruning [209], and 3)
static and dynamic pruning [243, 253]. Our interest is in the last category, i.e.,
i) static pruning, which targets reduction of the model size, and, especially, ii)
dynamic pruning that is data-driven. These approaches are further described
below.

2.4.4.2 Static Pruning

The objective of static pruning is to produce a smaller network with performance
comparable to the large, unpruned network. A trained neural network model is
compressed by removing weights that contribute very little to the final model
performance. This process is performed offline before inference and results in a
smaller model size, bandwidth reduction, and faster inference due to the reduced
computational complexity. Moreover, retraining may improve the performance of
the pruned network, making it achieve comparable performance to the unpruned
network. However, this may require significant offline computation time and
energy [243]. Many methods produce pruned models that even outperform
retraining from scratch with the same sparsity pattern and when holding the
number of fine-tuning iterations constant [209]. The lottery ticket hypothesis [188]
shows that it is important to preserve weight initialization as in the unpruned
model.

Static pruning has been extensively researched throughout the years. Early
approaches include magnitude-based pruning [12], and methods using the Hessian
matrix of the loss function [14, 16]. Since then a multitude of techniques has been
proposed, especially for CNNs. The deep compression method [110] identifies
the important CNN weights that are subsequently quantized to enforce weight
sharing, and encoded with Huffman encoding. A modified version called soft
weight-sharing [145] performs both quantization and pruning in one (re-)training
procedure, achieving comparable compression rates. Similarly, networks in
[90] learn important connections that are pruned based on a threshold, and
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retrained afterwards. Structured intra-kernel level pruning using strided sparsity
is explored in [124]. Other methods that aim for achieving structural sparsity are,
e.g., [113] that uses group sparsity constraints on the convolutional filters, [123]
that applies both group sparsity and tensor low rank constraints [57] to remove
neurons, and [122] that proposes structured sparsity learning to regularize different
structures such as filters, channels, and layer depth. Structured pruning produces
a full matrix with reduced dimensions, as opposed to unstructured pruning that
outputs irregular sparse weight matrices that consequently require indices for
locating weights stored in a compressed format. Such irregularity patterns cause
workload imbalance in the system and reduce throughput. Structured pruning is
therefore more suitable for hardware as it is compatible with the data-parallel
architectures such as single instruction, multiple data. Sparse connectivity
patterns are completely avoided in [133] by discarding whole filters together
with their connecting feature maps instead of weights. Another example of a
compression are HashedNets [85] that use a low-cost hash function to randomly
group connection weights into hash buckets that share a single value. They are
demonstrated on FCNNs but can be applied to CNNs as well.

However, most of the presented pruning methods cannot be directly applied
to RNNs due to fundamental differences between RNN and CNN architectures.
Moreover, static pruning of RNNs is more challenging as a recurrent unit is
shared across all the timestep, which impacts all the steps in the sequence.
Relaxed pruning is supported by an LSTM accelerator in [191] where a don’t-care
regions are allowed, i.e., connections can be either kept or discarded. LSTM
weights in [177] are grouped and pruned based on their magnitude, leaving at
most K non-zero values in a group. Similarly, a top-K technique for LSTMs
called compressed and balanced sparse row is proposed in [168]. VectorSparse
[208] partitions a weight matrix into several vectors and prunes each vector to the
same sparsity, which results in a better workload balance and higher parallelism
compared to the top-K pruned weight matrices. Likewise, [184] proposes a
bank-balanced sparsity for sparse LSTM networks that divides rows of a weight
matrix into banks for parallel computing, where each row has an equal number
of non-zero values. Load-balance-aware pruning [129] assigns the same sparsity
constraints to sub-matrices to achieve similar sparsity ratio for all the processing
elements. It obtains the best performance with 90% sparsity in LSTM weight
matrices for speech recognition.

Regardless of the type of the network, an assumption behind static pruning is
that a compressed model can solve a given task equally well compared to the
original, unpruned model. However, this might not always be the case for realistic
DNNs that need to have the capacity to capture the necessary relationships
in data to be useful in real-life scenarios. For instance, a trained DNN for SE
should be able to apply optimal gain values to unseen environments and voices
in order to benefit the hearing-impaired users in their daily lives. Static pruning
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permanently destroys the original network structure which may lead to a decrease
in model capability, representation power, and efficiency [243, 253]. Once the
model is pruned and re-trained, the information is irreversibly gone.

Also, the number of weights alone does not always scale proportionally with
the energy dissipation. For instance, FC layers in AlexNet [132] dominate the
model size compared to the convolutional layers. However, the energy spent
on convolutional layers is much higher than on FC layers [103]. Furthermore,
research shows that the relative importance of neurons is heavily input-dependent
[189].

2.4.4.3 Dynamic Pruning

Dynamic pruning is a data-driven approach, where a neural network structure is
conditioned on the input during inference. It is commonly believed that different
neurons represent different features, and thus do not need to be activated
for every sample [253]. Therefore, dynamic architectures save computations
for canonical (”easy”) samples and also preserve their representation power
when recognizing non-canonical (”hard”) samples [253]. Such behavior provides
remarkable advantages in efficiency compared to the acceleration techniques for
static models [161, 111, 135], which handle both types of samples with identical
computation, and fail to reduce intrinsic computational redundancy [253].

Dynamic pruning determines at runtime which, e.g., layers, channels, or neurons
will be dropped from computations. For instance, pruning of activations can be
exploited by skipping both memory fetches of the weights and the execution of
MACs. Furthermore, the throughput could be increased by skipping the ”idle”
cycle. The activations can be made even more sparse by pruning low values
[157], resulting in additional speedup and power reduction. Last but not least,
the sparsity of activations can be exploited for energy and area savings using
compression [103].

Moreover, dynamic pruning can also be applied on statically pruned models
to further reduce computations and bandwidth requirements [243, 253]. A
drawback of dynamic pruning is that it does not reduce the model size. Also,
the criteria to determine which elements to prune must be computed at runtime.
This introduces overhead in terms of additional computations, bandwidth, and
power [243]. However, these downsides are counterbalanced with several other
advantages that are absent in static models. These are presented below, as
described in [253]:



2.4 Embedded Neural Networks 35

1. Efficiency - computations are allocated on demand at runtime, by selectively
activating model components (e.g. layers [160], channels [134] or sub-
networks [141]) based on the input. Consequently, less computation is
spent on samples that are relatively easy to recognize, or on less informative
spatial/temporal locations of an input.

2. Representation power - due to data-dependency, these networks have
significantly enlarged parameter space and improved representation power.

3. Adaptiveness - a desired trade-off between accuracy and efficiency for differ-
ent computational budgets can be achieved on-the-fly. Therefore, dynamic
networks are more adaptable to different hardware platforms and changing
environments, compared to static models with a fixed computational cost.

4. Compatibility - the efficiency of dynamic networks can be further improved
by other acceleration methods such as knowledge distillation [92].

5. Generality - many dynamic models can be applied seamlessly to a wide
range of applications. For instance, the techniques developed for computer
vision tasks are proven to transfer well to language models in natural
language processing tasks [155, 213], and vice versa.

6. Interpretability - the research on dynamic networks may bridge the gap
between the underlying mechanism of deep models and brains, as it is
believed that the brains process information in a dynamic way [4, 24]. It
is possible to analyze which components of a dynamic model are activated
[231] when processing an input sample, and to observe which parts of the
input are accountable for certain predictions [229].

A typical example of dynamic networks are hierarchical or staged networks [130],
called cascade networks. Cascade networks have multiple intermediate classifiers
to provide the ability of an early exit [243]. Only a few layers of the network
are executed at each stage, and additional layers and classifiers are run only if
the model does not have sufficiently distinct probabilities to make a decision.
Another, finer-grained approach is conditional computing that only activates an
optimal part of a network. For instance, in the case of skipping neurons [59],
the non-activated neurons are perceived as pruned since they are not involved
in computations. Conditional computing can be applied during both training
and inference [72]. In [239], video streams are represented as a series of changes
across frames and network activations, where computations only for the regions
with significant changes are performed. A special category are SNNs [21, 29] that
attempt to mimic the operation mechanism of the human brain more accurately
than conventional DNNs. SNN neurons communicate by propagating pulses that
are generated only if a specific threshold has been crossed, which gives them a
potential to be extremely low-power. A notable RNN implementation of dynamic
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pruning is presented in [138]. It exploits temporal sparsity, where a delta change
between two adjacent time steps is computed for both input and hidden state
vectors and compared against a threshold. To our best knowledge, such temporal
sparsity of activations has been exploited in only two RNN accelerators from
the same authors [157, 252], and a few CNN accelerators [239, 150, 211]. Our
methods presented in the upcoming chapters build on the top of this [138] work.

2.5 Summary

This chapter provided a condensed overview of the deep learning field, starting
with the most fundamental DNN algorithms, training procedure, and methods
for building efficient deep learning-based SE and KWS systems relevant for our
hearing-instrument application. It then continued by describing the hardware
challenges, specifically for low-power devices, imposed by the size and compu-
tational complexity of DNNs. Several different optimizations were described
to mitigate the challenges. These optimizations are adopted in most of the
state-of-the-art hardware accelerators.

As the overview has shown, the field of DNNs is vast, and the focus has shifted
from high-performance computers to portable and edge devices. While executing
DNNs directly in the resource-constrained edge devices opens up a vast spectrum
of options, it also demands innovations on both the hardware and algorithmic
level to enable efficient and low-power inference. The next chapter describes the
specific contributions of this thesis, which are represented with five publications
that together focus on algorithm-hardware co-optimization to make a step closer
towards inference in resource-limited hearing instruments while still delivering
high-quality results.



Chapter 3

Thesis Contributions

The core of this thesis is composed of a collection of one journal and four
conference papers (Chapters 4-8) that have contributed scientifically within the
deep learning field. The relationship between these publications is illustrated in
Figure 3.1. Each of the publications explores one of the two main areas and is
demonstrated on either the SE or KWS task:

1. Algorithms development - developing novel hardware-aware deep learning
algorithms that dynamically reduce, i.e., prune, the amount of computations
and memory accesses by exploiting the temporal stability in data. Such
algorithms may ease the deployment of otherwise computationally and
memory-demanding neural networks directly into resource-constrained
devices like hearing instruments. Papers [C2] and [C3] belong to this
category, where the algorithms in [C2] were successfully patented [O2].

2. Hardware design and implementation - building efficient hardware acceler-
ators that are optimized for neural network processing. These accelerators
exploit the typical dataflow in DNNs by parallelizing operations and ap-
plying data reuse techniques while performing computations with reduced
precision. Papers [C4], [J1], and [C1] belong to this category, where the
first two support a dynamic pruning method from 1. All of these custom
accelerators are more efficient in terms of power, area, and throughput
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compared to general purpose processors and, specifically in this context,
to a typical Digital Signal Processor (DSP).

[C2]   [O2]

Deep learning-based  
single-microphone  

speech enhancement

Deep learning-based  
keyword spotting

[C3]

[C4], [J1] [C1]

Algorithm  
development

Hardware
design and

implementation

"PeakRNN and StatsRNN:
Dynamic Pruning in Recurrent
Neural Networks"

[C2] 

"A Min-Heap-based Accelerator
for Deterministic On-the-fly
Pruning in Neural Networks"

[C4]

"Delta Keyword Transformer:
Bringing Transformers to the Edge
through Dynamically Pruned Multi-
Head Self-Attention"

[C3]

"PeakEngine: A Neural Network
Accelerator for Deterministic On-
the-fly Pruning"

[J1] 

"Neural Network Engine for
Resource Constrained Embedded
Systems"

[C1] 

"Hearing Device Comprising a
Recurrent Neural Network and a
Method of Processing an Audio
Signal" (Patent application granted)

[O2] 

Figure 3.1: A block diagram illustrating the relationship between publications
that constitute the core of this thesis. Paper [C2] targets the
development of two novel deep learning algorithms for skipping
operations. The algorithms were successfully patented [O2]. Pa-
pers [C4] and [J1] focus on efficient implementation of hardware
accelerators to support the deep learning algorithms. All thee three
works are demonstrated on SE. Similarly, paper [C3] targets the
development of a deep learning algorithm for skipping operations,
while paper [C1] presents an efficient neural network hardware
accelerator. Both works are demonstrated on KWS.
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3.1 Algorithmic Level

The focus of the first part of the research is on investigating efficient deep
learning algorithms for reducing computations and hence the consumed power.
The individual contributions of [C2] and [C3] are summarized in the paper
excerpts below.

3.1.1 [C2] PeakRNN and StatsRNN: Dynamic Pruning in
Recurrent Neural Networks

In this paper, we propose two novel pruning algorithms, PeakRNN and StatsRNN
(later referred to as PeakGRU and StatsGRU ), that save computations and
power by dynamically transforming dense matrix-vector multiplications into
highly-sparse matrix-vector multiplications in gated-RNNs during inference. We
are motivated by i) the challenges of embedded neural networks presented in
Section 2.4.1 that hinder the deployment to low-power edge devices, and ii) the
potential of dynamic pruning stated in Section 2.4.4.3.

PeakRNN selects a fixed number of top K elements every timestep. Therefore, it
offers robustness to the variations of input data (not threshold-based), determin-
ism and bounded execution time for the subsequent neural network operations.
StatsRNN tries to mimic this behavior by selecting the elements based on a
priori and statistically derived thresholds. We evaluate both methods on the
SE task (noise reduction) in a simulated hearing instrument setup, where we
replace a typical noise reduction module with a DNN. The DNN contains a GRU
hidden layer that is substituted with PeakGRU and StatsGRU layers during
the experiments. We show that the two new pruning techniques can reduce
the number of MACs and memory accesses by 70% compared to the baseline
without compromising the SNR and PESQ objective measures. Moreover, sav-
ings of up to 88% can be achieved while maintaining sufficient quality in SNR
and PESQ and outperforming the state-of-the-art DeltaGRU [138] method. In
general, such savings open up the possibility for a significant reduction of energy
dissipation and latency that might enable the execution of DNNs directly in
hearing instruments when exploited by a custom hardware accelerator.

We also successfully patented the PeakRNN and StatsRNN algorithms
[O2].
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3.1.2 [C3] Delta Keyword Transformer: Bringing Trans-
formers to the Edge through Dynamically Pruned
Multi-Head Self-Attention

In this paper, we propose a simplified version of the DeltaRNN algorithm
[138] and apply it in a TNN to address the challenge of quadratically growing
complexity of the MHSA with respect to the input sequence length. Whilst the
MHSA is the key component of TNNs, as described previously in Section 2.3.5,
at the same time, it can easily become their bottleneck. Therefore, decreasing
the computational complexity of TNNs is a step towards enabling their execution
on low-power devices.

We first analyze the existing pre-trained Keyword Transformer model developed
for the KWS task. We find significant correlation across data within each keyword,
which motivates us to apply the delta pruning method to avoid computations
and memory fetches and enable data compression. This objective is achieved by
transforming dense matrix-vector multiplications into highly-sparse matrix-vector
multiplications using a threshold. We demonstrate that the hardware overhead
required for the simplified delta approach is negligible since no intermediate
states and activations have to be stored for the FC-based attention layers,
unlike in RNNs and CNNs. We also provide a breakdown of the maximum
possible computational savings for each part of the attention layer where we
apply our method. The results show that ∼ 80% and 87-94% of MAC operations
in the MHSA can be skipped with no or only a 1-4% decrease in the original
accuracy, respectively. These reductions correspond to a theoretical speedup
factor of 4.2 × - 15.7 ×. Our proposed method thus helps to considerably decrease
the computational complexity and enable significant data compression. Such
potential could be exploited in an ultra-low power wake-up word detection
front-end that triggers a more powerful detector once a keyword is recognized.

3.2 Hardware Level

The second part of the research targets development of efficient hardware acceler-
ators optimized for neural network processing. An accelerator for small-footprint
KWS [C1] is summarized in Section 3.2.1. The contributions of the two accelera-
tors [C4, J1] supporting PeakRNN are listed in Sections 3.2.2 and 3.2.3.
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3.2.1 [C1] A Neural Network Engine for Resource Con-
strained Embedded Systems

In this paper, we introduce a dedicated neural network engine for power-constrained
embedded devices, such as hearing instruments, which is demonstrated on the
KWS task. Enabling the KWS functionality directly in hearing instruments
would make a hearing-impaired user able to interact with the device via speech
commands. Therefore, our motivation is to create a small-footprint accelerator to
enable such a feature in the current hearing instrument platform. Moreover, this
process could be the second step in the KWS pipeline, triggered by a wake-up
word detection mentioned in the algorithmic contribution in Section 3.1.2.

In order to achieve the goal of low power and area, we apply various orthogonal
optimizations including data reuse techniques, parallelization of MAC operations,
and data quantization. The introduction and motivation for these methods is
provided in Sections 2.4.2 and 2.4.3. Furthermore, we develop a novel dynamic
two-step scaling technique for quantizing the activations during inference without
requiring a pre-computed scaling factor or expensive hardware. Moreover, two-
step scaling does not increase the total latency and it makes the accelerator
execute in a deterministic number of clock cycles. We evaluate our dedicated
neural network accelerator against a DSP found in Demant’s hearing instruments.
We find that the accelerator clearly outperforms the DSP and results in significant
reduction of power (5×), memory accesses (5.5×), memory requirements (3×),
clock cycles (6×), and area (3.7×), while sacrificing only 1% of the original
accuracy. Therefore, the accelerator could be used as a co-processor to Demant’s
DSP and take off the neural processing workload. In general, the accelerator
offers a small area and low power, and it is suitable for resource-constrained
embedded devices such as hearing instruments.

3.2.2 [C4] A Min-Heap-based Accelerator for Deterministic
On-the-fly Pruning in Neural Networks

In this paper, we introduce a min-heap-based accelerator developed to support the
selection of the top K elements for the previously described PeakRNN algorithm
in Section 3.1.1. The focus is on efficiently realizing the pruning technique in
hardware and hence bridging the algorithmic and hardware levels.

We firstly identify a min-heap data structure as an efficient solution for the top
K selection due to its low computational complexity and memory requirements.
As a result, we subsequently build a min-heap-based accelerator that uses small
standard cell-based memories for storing the top K elements for both input
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and hidden state sequences. We evaluate the performance of the accelerator
on various number of K and compare the consequent savings of MACs and
memory accesses against a dense network performing all the computations. In
order to relate the post-synthesis results to our previous algorithmic study
[C2], we use the same network and data for evaluation. The results show
that the overhead of the accelerator to support the selection of 35 to 111 K
elements (maximum acceptable degradation and no degradation of improvement
in objective measures, respectively) out of N=512 is negligible compared to
the estimated 78-93% savings of dynamic energy. The min-heap accelerator
only dissipates ∼ 0.5% of the total energy and requires 4.2 - 33 kgates (without
memories) and 14.8 - 37.2 kgates in total. We therefore demonstrate that the
impact of our accelerator on the overall complexity is insignificant. Furthermore,
the accelerator design is not limited to GRU layers or neural networks only. Its
application is versatile and can be used in many other different areas.

3.2.3 [J1] PeakEngine: A Deterministic On-the-fly Pruning
Neural Network Accelerator for Hearing Instruments

In this paper, we present the first RNN ASIC accelerator, called PeakEngine,
for deterministic on-the-fly pruning targeting battery-powered wearable devices
such as hearing instruments. We are motivated by the fact that the existing
RNN accelerators for low-power devices i) mostly focus on small, statically
pruned models with reduced representational power, and ii) do not consider the
relative importance of neurons that is heavily input-dependent. We therefore
build on the knowledge gained from our two previous works on the PeakRNN
pruning algorithm [C2] and the Min-heap engine [C4] to design an optimized,
energy-efficient custom hardware accelerator that supports inference of both
dense and dynamically pruned GRU layers.

We build a configurable accelerator that can be used as a co-processor for typical
digital signal processors found in hearing instruments. We perform a thorough
evaluation of PeakEngine for different K values in terms of energy and latency.
The experiments show that PeakEngine dissipates only 4.14-5.04 µJ per inference
when running the dynamically pruned layers compared to 11.83 µJ for the baseline
(unpruned) model that executes all computations. This yields energy savings of
2.35-2.86× with no to maximum acceptable degradation in improvement in audio
quality and intelligibility for SE. The reduction of computational complexity also
speeds up the inference 2.2-2.97×. All of these results make the execution of even
bigger RNNs feasible in a hearing instrument within the imposed time and energy
budget. The accelerator is synthesized in a 22 nm CMOS process and occupies
0.053 mm2 without the big weight memory and 2.95 mm2 in total. Moreover,
we also build a software framework for parameter space exploration of different
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Q formats, wordlengths, and K values for GRU-based and FC DNNs executed
on PeakEngine. The framework consists of identical modules as PeakEngine
to mimic it bit-accurately during inference and hence also verify accelerator
outputs. With this work, we complete our algorithm-hardware co-design effort
and demonstrate the importance of developing deep learning algorithms and
hardware platforms hand-in-hand.
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Chapter 4
A Neural Network Engine for

Resource Constrained
Embedded Systems

By Zuzana Jelčicová, Adrian Mardari, Oskar Andersson,
Evangelia Kasapaki, and Jens Sparsø [C1]

Abstract
This paper introduces a dedicated neural network engine developed
for resource constrained embedded devices such as hearing aids. It
implements a novel dynamic two-step scaling technique for quantizing
the activations in order to minimize word size and thereby memory
traffic. This technique requires neither computing a scaling factor
during training nor expensive hardware for on-the-fly quantization.
Memory traffic is further reduced by using a 12-element vectorized
multiply-accumulate datapath that supports data-reuse. Using a
keyword spotting neural network as benchmark, performance of
the neural network engine is compared with an implementation on
a typical audio digital signal processor used by Demant in some
of its hearing instruments. In general, the neural network engine
offers small area as well as low power. It outperforms the digital
signal processor and results in significant reduction of, among others,
power (5×), memory accesses (5.5×), and memory requirements (3×).
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Furthermore, the two-step scaling ensures that the engine always
executes in a deterministic number of clock cycles for a given neural
network.

4.1 Introduction

Deep neural networks (DNNs) are ubiquitous, finding their application in various
areas such as image and video processing [96], robotics [100], medicine [126],
games [121] as well as audiology [60]. They are typically executed in the
cloud due to their computational complexity and size. The results are then
deployed wirelessly to power-constrained edge devices such as hearing instruments.
However, sharing data with the cloud is not desirable due to issues such as security,
privacy, latency, and connectivity [197]. On the other hand, embedding NNs
directly in always-on devices that are extremely limited in area, memory, power
budget, and throughput, is a challenging task.

To minimize power consumption, hearing instruments are typically implemented
using heterogeneous platforms that include specialized accelerators and DSPs.
These DSPs often contain vector datapaths that support 16 or 24-bit fixed-point
vector elements matching the accuracy of the audio samples. [56, 38, 203].

Vector operations are also attractive for NNs, especially for performing multiply-
accumulate (MAC) operations. Many works have demonstrated that a wordlength
of 8 bits is sufficient for inference, having no or insignificant impact on accuracy
[52, 151, 162]. The benefits are again reduced computational complexity, reduced
memory requirements, and – if a vectorized datapath is used – processing of
more vector elements per instruction. On the other hand, it increases the risk of
overflows when the final MAC product in a wide accumulator needs to be stored
back to memory in a reduced format.

A common approach to handle this issue is quantization. One of the most widely
used quantization techniques is a static-precision quantization, where the scale
factor is determined for the entire NN [84, 86, 89]. Opposed to it, a dynamic-
precision quantization firstly proposed by [118] enables varying multi-precision
fixed-point for every layer.

Although DSPs support MAC operations, they are generally not able to exploit
input sharing, a fundamental data reuse optimization for NNs. This can be solved
by moving away from DSPs and developing customized hardware accelerators
specifically for NNs. Such accelerators exploit characteristic dataflows found in
NNs to enhance parallelism and reduce data movement [197].
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This paper targets the issues discussed above and introduces the following
contributions:

1. A dedicated NN engine (NNE) used as a co-processor to Demant’s DSP
(xDSP). The NNE is optimized by applying a set of mutually dependent
techniques with a novel dynamic two-step scaling.

2. A dynamic two-step scaling mechanism capable of fitting MAC products
into the required wordlength at runtime without analysing the data ranges
during training and adding expensive hardware for quantization on-the-fly.
This method ensures that the NNE always executes in a deterministic
number of clock cycles for any arbitrary NN.

The NNE and two-step scaling technique further incorporate the following
methods: i) wordlength reduction from 24 to 8 bits for all NN parameters ii) 12
optimized MACs in parallel, and iii) input and output stationary techniques [143]
to significantly reduce memory accesses. A keyword spotting (KWS) NN [147]
with a Google Speech Command Dataset (GSCD) [178] is used as benchmark and
implemented on both the NNE and the xDSP. The NNE outperforms the xDSP
in all aspects (significantly smaller power consumption, memory requirements,
and number of memory accesses) thanks to the set of the proposed techniques.

The rest of the paper is structured as follows: Section 4.2 presents related work.
Section 4.3 provides background on the xDSP and the KWS NN. Section 4.4
describes the proposed optimization techniques along with the NNE design.
Section 4.5 discusses the results, and finally Section 4.6 concludes the paper.

4.2 Related Work

Lower precision introduces higher risk of overflows when the activations need
to be stored back to memory in a reduced wordlength. This issue is usually
solved by dynamically quantizing activations during inference, or defining a
quantization factor during training that is fixed once the model is deployed.
Since weights and biases are fixed once training is completed, quantizing them
can be done statically.

Authors in [154] propose an overflow management scheme which accumulates
partial INT32 results (INT16 inputs) into FP32, along with trading off input
precision with length of accumulate chain to gain performance.
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In [162], MAC products in INT32 accumulator are firstly downscaled using a
multiplier, then cast down to uint8 (with saturation), and finally run through
an activation function to produce the final 8-bit output.

The authors of [89] convert the final accumulated value by either clipping it to the
predefined limits set by integer and fractional length (wordlength) or rounding
to fractional length bits using a specific rounding mode. The wordlength for the
fixed-point representation is set to 16 bits.

Using the static approaches in the works above might result in encountering
values outside the observed ranges at runtime that must be clipped, likely causing
additional loss of accuracy.

A dynamic, multi-precision per-layer data quantization flow is introduced in
[118] and adopted in [147]. The weight quantization phase analyses the dynamic
ranges of weights in each layer to find the optimal fractional length per layer.
Fractional length is then initialized to avoid data overflow. The intermediate data
of the fixed-point CNN model and the floating-point CNN model are compared
layer by layer using a greedy algorithm to reduce the accuracy loss.

All the above techniques require very deep and detailed analysis of the used
NN during training or additional computation resources that are usually not an
option for resource-limited devices such as hearing instruments.

Our dynamic two-step scaling method that handles overflows on-the-fly does
not require to compute a scaling-factor in advance, and it does not introduce
any instruction overhead. Furthermore, it works on a per-layer basis, the HW
implementation is cheap (implemented as an arithmetic shift operation), and it
makes the NNE execute in a deterministic number of cycles.

4.3 Background

4.3.1 Keyword Spotting (KWS) Neural Network

KWS systems in edge devices have limited power budget since they must be
always-on and operate real-time, while still delivering high accuracy [147]. These
requirements are even more strict for extremely resource-constrained devices like
hearing instruments. The pretrained KWS model [147] used as a benchmark
in this paper is a fully-connected feed-forward NN with a 250x144x144x144x12
configuration trained for 32-bit floating-point (FP32). The input to the network



4.3 Background 49

is a flattened feature matrix where a one-second audio recording is divided into
40ms frames with a stride of 40ms, producing 25 frames analysed in 10 frequency
bins (250 inputs). Each hidden layer consists of 144 neurons. The output layer
has 12 neurons, each representing one category. The first two neurons correspond
to ”silence” (no speech present in the recording) and ”unknown” (NN is unable to
classify the word). The remaining ten neurons represent the following keywords:
”yes”, ”no”,”up”, ”down”, ”left”, ”right”, ”on”, ”off”, ”stop”, ”go”. The dataset
[178] has more than 65,000 one-second recordings of 30 short words. The final
test set consists of 4,890 audio files.

Both inputs and all parameters (weights and biases) were statically quantized to
an 8-bit integer representation without any re-training (post-training quantiza-
tion) before running the inference. Two quantization modes were tested, namely
asymmetric and symmetric, where the latter one proved to work better for our
use case. This technique resulted in a small accuracy loss when going from
FP32 to 8-bits. Further fine-tuning could improve the accuracy even more. The
activations are quantized dynamically to an 8-bit fixed-point using a dynamic
two-step scaling technique.

4.3.2 Digital Signal Processor (xDSP)

The xDSP is a processor optimized for DSP applications with multiple datapaths,
register files, and custom functional units. It has a 96-bit vector datapath that
supports 4× 24-bit fixed-point elements in a Q5.19 format. This format is used
for all NN parameters (weights, biases) and activations. The MAC unit can
multiply four elements at a time and store the intermediate results in a single
accumulator. This design has limitations since neurons can only be calculated
sequentially.

Weights and inputs/activations are fetched from memory as vectors while biases
as 24-bit scalars since only one neuron is processed at a time. The 24-bit datapath
is also important for overflow management. Scaling out-of-range values involves
a global decision across a layer of neurons to keep the same ratio among the
outputs. Scaling and storing outputs of a layer individually requires fetching the
previously computed outputs whenever a new largest overflow occurs. If, e.g.
the first result in a layer needs one shift, but the second one requires two shifts
to fit into 8 bits, the first neuron has to be re-fetched from memory and shifted
by the missing number of positions.
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4.4 The NNE Accelerator

Significant improvements can be gained by using the dedicated NNE instead of
DSPs, to improve resource utilization during inference by exploiting a set of the
proposed optimization techniques.

4.4.1 Reduced Wordlength

The wordlength and representation of the NN model parameters has a big impact
on the inference performance. Reduced parameter wordlength enables reading
more elements through the same memory interface in a single cycle, and lower
precision multipliers require less silicon area and power.

The original accuracy using FP32 on the KWS task is 81.77%. Using 24, 12, 8,
and 6-bit representation for all NN parameters results in 81.24%, 80.36%, 80.28%,
and 76.13% accuracy, respectively. The FP32 and 24-bit xDSP implementations
achieve comparable accuracy, and a negligible drop is also observed using 12 and
8 bits. Further reduction to 6 bits results in a significant drop, and 8 bits are
therefore selected as a convenient trade-off between wordlength and accuracy,
decreasing memory requirements up to 3×.

4.4.2 Parallel MACs

The MAC unit in the xDSP can only process one neuron at a time. Considering
a 96-bit memory interface and an 8-bit wordlength, the MAC is designed such
that it can compute 12 intermediate results in parallel (see Figure 4.1). The
intermediate values are accumulated in accumulators with larger precision to
avoid overflows and loss of precision. Additionally, a feature for preloading the
biases in the accumulators is included. This step saves one addition for each
neuron, and serves as reset for the accumulators. The theoretical minimum
number of MAC operations required for the inference of an arbitrary network
using our NNE is given by:

MACop =
(

N∑
i=1

Ai × Oi

)
/V, (4.1)

where MACop is the number of vectorized MAC operations, A is the number of
activations/inputs to a given layer, O is the number of outputs in the layer, N
is the number of layers (excluding input layer), and V is the number of elements
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Figure 4.1: xDSP (left) vs NNE (right) MAC unit. The xDSP is able to process
one neuron at a time using four 24-bit inputs. The NNE processes
vectors of twelve 8-bit neurons in parallel (vectors of four are shown
for simplicity). The two-step scaling firstly identifies scale factors
for vectors in L2, and then performs additional shifts when these
vectors are loaded as inputs for L3.

in a vector. The minimum number of MAC operations required for the KWS
application is therefore 6600 per inference in the NNE.

4.4.3 Data Reuse Techniques

Input stationary and output stationary dataflows [143] are used in our design
to minimize the data movement between the NNE and memory. An Input
stationary dataflow reduces the power by multiplying the input with weights
of 12 different neurons in a layer, and an output stationary dataflow does so
by accumulating 12 intermediate results. The final results are transferred to
memory as a 12× 8-bit vector. By combining all the optimization techniques
introduced previously, memory accesses are reduced by at least 5.5× as shown
in Table 4.1.

In the xDSP, only four elements are fetched in a vector. We thus need 63 vectors
to represent 250 inputs, and 36 vectors to represent 144 inputs. All these vectors
are loaded for each neuron in a corresponding layer since parallel processing is
not possible in the xDSP.

In contrast, the NNE efficiently handles 12 elements at a time (both inputs and
outputs), resulting in 21 vectors for the layer with 250 neurons, and 12 input
vectors for the layers with 144 neurons. These are then multiplied with vectors
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Table 4.1: Number of input and weight vectors to load in the xDSP vs NNE.

xDSP NNE

Layer 1 (144)
Inputs 63 x 144 21 x 12
Weights 63 x 144 21 x 144

Layer 2 (144)
Inputs 36 x 144 12 x 12
Weights 36 x 144 12 x 144

Layer 3 (144)
Inputs 36 x 144 12 x 12
Weights 36 x 144 12 x 144

Layer 4 (12)
Inputs 36 x 12 12 x 1
Weights 36 x 12 12 x 12

Total 39,744 7,176

of 12 neurons instead of a single one. This gives further reduction from 144 to
12 vectors, and 12 to one vector. The number of memory reads (inputs and
weights) is, thus, considerably reduced from 39,744 to only 7,176. The number
of loads for biases is negligible, and is therefore omitted from the calculations.
Moreover, the total number of memory accesses might grow even more for the
xDSP, depending on how often the overflows occur.

4.4.4 Two-Step Scaling

As mentioned in section 4.3.2 and 4.4.3, additional memory accesses are necessary
in the xDSP to reload and scale already computed outputs in a layer if an overflow
occurs. This increases the power consumption, and makes the cycle count non-
deterministic which may compromise real-time processing. These issues are
handled in the NNE by introducing a dynamic two-step scaling method. It is
divided in the following parts:

1. Within a vector (when writing results to the memory) - this step
handles overflows when writing accumulator values back to memory. The
MAC products that are stored in accumulator registers are scaled down.
This is done in vectors of 12 neurons (see Figure 4.1) that are computed
simultaneously.
Once the computations per vector are finished, the biggest positive number
among the 12 results is found. Negative numbers are excluded from the
calculations since the ReLU activation function zeros them out afterwards.
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Table 4.2: Two-step scaling, part 1 - finding the biggest scale factor per vector
of 12 neurons as well as per layer (red number).

Group
Number of shifts

per vector
Additional shifts

Green 2 ?*
Blue 1 ?*

Orange 3 ?*
* Additional shifts are not known at this point

Table 4.3: Two-step scaling, part 2 - calculating the missing number of shifts
for each input vector.

Group
Number of shifts

per vector
Additional shifts

Green 2 3 - 2 = 1
Blue 1 3 - 1 = 2

Orange 3 3 - 3 = 0

The biggest positive value determines the scale factor per vector, i.e. the
number of shifts necessary to fit the result into 8 bits. This is shown
in Table 4.2. The scaled vector elements are stored in memory and the
corresponding per-vector scaling factors (green 2, blue 1, orange 3) in a
special register in the register file.

When all the vectors of neurons have been calculated (the layer has been
completed), the biggest number of shifts among all the vectors is determined
(3 in this example).

2. Across layer (when reading results from the memory in a sub-
sequent layer) - this step maintains the ratio across the entire layer. In
the previous step, a scaling factor for each vector of 12 neurons and the
biggest scaling factor across a layer were found. When computing a new
layer L3 as shown in Figure 4.1, the previously scaled outputs are retrieved
as inputs.

The biggest number of shifts determined in the previous step is used to
specify missing shifts for each vector in order to scale the inputs correctly.
Therefore, the biggest number of shifts per vector needs to be subtracted
from the biggest number of shifts in the previous layer (see Table 4.3). The
additional scaling is performed when the vector is read from memory in
the next layer.
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Using this dynamic two-step scaling never requires to retrieve and process already
computed results to perform additional scaling as is the case when using the
xDSP. Moreover, the number of memory accesses to execute is always calculable
using the dynamic two-step scaling. It also makes the NNE always execute in a
deterministic number of cycles without adding any additional overhead cycles
related to activation scaling. Furthermore, quantizing the fixed-point by powers
of two is considerably cheaper than other presented approaches, since it only
requires arithmetic shift operations. Finally, the following equation yields the
total number of cycles needed for inference of an arbitrary network:

2N +
N∑

i=1

⌈
Oi

12

⌉
×
(

3 + 13
⌈

Ai

12

⌉)
+
⌈

Oi

12

⌉
, (4.2)

where N is the number of layers excluding the input layer; O is the number of
output neurons in the current layer; and A is the number of inputs/activations
to the layer.

4.4.5 The NNE Design

Figure 4.2 illustrates the NNE datapath which implements the optimizations
explained above. The control path that consists of address generation modules
(reading/writing data from/to memory), a configuration module (registers storing
parameters such as the number of layers, starting read/write address etc.), and
a finite state machine (handling the entire NNE flow) is not shown for clarity.

The NNE MEMORY consists of seven memory instances. Smaller memories are
preferred over a single, big memory to decrease dynamic power for a read
operation that dominates the inference. The increased leakage is solved by
switching on/off the individual memory blocks when necessary. The memory
instances (see Figure 4.2) are split into three address blocks: block 0, block 1,
and read weights, where the first two blocks switch the read inputs/write results
role after every layer. The memory block used for reading the inputs in one layer
will become a block for storing the results in the next layer and vice versa. The
weight memory block (read weights) does not change, and the weight address is
incremented after each retrieved weight vector. Biases are stored in the same
memory block. The first address in the read weights block contains biases for
the vector of neurons to be processed. The following addresses represent their
weights. Summing all the required vectors together for the KWS task results in
6,694 96-bit vectors (∼78.45kB) that can be represented with a 13-bit address
range (addr).
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Figure 4.2: A high-level overview of the NNE datapath that implements the
four optimization techniques.
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The NNE performs the computations on a per-layer basis. When the NN inference
begins, the bias values are preloaded in the accumulator registers (bias align/MAC
and accu 0-accu 11 in the MAC unit). This step saves one addition and also resets
the accumulators.

The first 96-bit vector of 12 inputs is then loaded into the inp fifo in the
Load inp unit, along with a 3-bit value (inp shift) for additional realignment
(two-step scaling, 2nd part).

The next step are 12 parallel MAC operations (bias align/MAC in the MAC unit).
A 96-bit input vector consisting of 12 weights for 12 different output neurons is
loaded. Intermediate results are stored in twelve 25-bit accumulator registers to
avoid overflows and any loss of precision.

When all input vectors have been loaded, and all MACs have been performed
for the current vector of 12 neurons, a local scaling factor is found (two-step
scaling, 1st part). The Scaling logic applies ReLU on 12 accumulated values,
and outputs both twelve 8-bit results as a 96-bit vector, and a 5-bit output
representing a scaling factor per vector.

The scaling factor is found among positive inputs by counting leading zeros. Once
it is determined, the number of shifts for each input is obtained by subtracting
the computed minimum leading zero count and final result word length (8 bits)
from the accumulator word length (25 bits). If the incoming 25-bit input is
negative, the 8-bit result is directly set to zero (ReLU). Else the input is shifted
by the calculated value. The 96-bit result will be stored in the memory in the
next clock cycle. The 5-bit shift value is mapped as an input for the shift buffs
in the Shift res unit.

The shift buff keeps track of the arithmetic shift count performed for each vector
of activations, such that each vector is appropriately aligned when loaded into
the inp fifo. Two shift buffs are necessary (shift buff 0 and shift buff 1).
One shift buff is used for storing 5-bit unsigned shift values for the vectors
in the layer currently being computed. The second shift buff contains 5-bit
unsigned shift values from the previous layer that will be used to calculate the
scaling factors for the current inputs (two-step scaling, 2nd part, extra shift).
The Shift res unit decides which shift buff is for reading and writing the shift
values. The roles of the shift buffs are swapped at the end of every layer. The
accu val logic populates the accu shift register with the accumulated number of
shifts from previous layers in order to correctly align biases in the accumulator.
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Table 4.4: 24-bit DSP vs 8-bit NNE. Both designs were synthesized with 28nm
CMOS technology at 0.7V and 2MHz.

xDSP (24-bit) NNE (8-bit)
Memory accesses (SIMD4, 96 bits) 39,744 7,250
Memory accesses (scalar, 24 bits) 888* -
Bits transferred (kB) 468.35 84.97
Memory occupied (kB) 235.37 78.45
Power (µW) 43.3 9
Clock cycles ∼45,000 7,332
Area (mm2) 0.71 0.19
Accuracy (%) 81.24 80.28
* This number can grow depending on how often overflows occur

4.5 Results and Discussion

The performance of the NNE and the xDSP is compared in terms of memory
traffic, memory capacity, power, area, and accuracy. Similar comparisons with
other works are provided as well.

Both the xDSP and the NNE design were synthesized with 28nm CMOS tech-
nology. Power simulations for the KWS application were run at 0.7V and 2MHz.
The results per inference, i.e. processing of a one-second audio file, are shown in
Table 4.4. Accuracy is given as an average over 4,890 audio recordings.

The total memory capacity required for storing all parameters along with results
and inputs is 235.37kB and 78.45kB for the xDSP and NNE, respectively. The
decrease in memory capacity requirements of more than 3× for the NNE is
mostly thanks to the reduced wordlength from 24 to 8-bit for all parameters.
The second contributing factor is an optimized approach of reusing the memory
space as described in Section 4.4.5. The xDSP memory has limited capacity.
Therefore, a KWS NN with 4× fewer neurons in each layer (63x36x36x36x3) was
executed instead, and the memory leakage was scaled as well as the execution
time such that it corresponds to the processing time of one frame in order to
match the NNE.

The full xDSP implementation of the KWS application requires ∼5.5x more
vector memory fetches than the NNE. Moreover, it also needs a baseline of 888
scalar memory accesses to retrieve biases (444) and store the results (444), while
the NNE only works with vector operations. The number of scalar memory
fetches can grow depending on how often overflows occur. Whenever an overflow
is encountered, previously computed results in the same layer must be reloaded
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Table 4.5: Comparison of the NNE with other works.

ISSCC
2017[125]

VLSI
2018[180]

JSSC
2019[216]

ESSCIRC
2018[158]

ISSCC
2020[226]

This
work*

Tech (nm) 40 28 65 65 28 28
Algorithm DNN CNN LSTM LSTM DSCNN DNN

Voltage (V) 0.65 0.57 0.6 0.575 0.41 0.7
Memory (kB) 270 52 65 32 2 79
Area (mm2) 7.1 1.29 2.56 1.04 0.23 0.19
Freq (MHz) 3.9 2.5 0.250 0.250 0.040 2.0

Latency (ms) 7 0.5-25 16 16 64 40
Keywords 10 11 10 4 1∼2 10

Power (µW) 288 141 10.6 5 0.51 9
Dataset NA TIDIGITS GSCD TIMIT GSCD GSCD

Accuracy (%) NA 96.11 90.87 91.8
98@1 word

94.6@2 words
80.28

* Synthesis results.

from the memory. All these additional accesses significantly contribute to the
total of ∼45k clock cycles for the xDSP, while the NNE reduces the clock cycles
down to 7,332 (6×), which is very close to the theoretical MAC-based minimum.

Reducing wordlength and the number of memory operations had therefore a
significant impact on memory traffic. Only ∼85kB are transferred in the NNE
instead of original ∼469kB in the xDSP, resulting in reduction of 5.5×. This
assumes the best-case scenario for the xDSP, i.e. excluding additional operations
due to overflows.

Average power consumption during inference for the xDSP and the NNE is
43.3µW and 9µW, respectively, making the accelerator ∼5× more power efficient.
As expected, most of the NNE power is used on the memory accesses that
dominate the inference. The NN memory is accessed in 98.88% of the clock
cycles with 7,213 vector load operations and 37 vector store operations. Memory
operations consume almost 91% of the total power, while for the xDSP it is
approximately 80%. Moreover, the NNE area (0.19mm2) is 3.7× smaller than
the xDSP area (0.71mm2).

All the above improvements compensate for a negligible 1% loss of accuracy from
81.24% (xDSP) to 80.28% (NNE).

Table 4.5 is included for completeness and shows comparisons with prior works.
As observed in the table, comparing all the works on equal terms is a difficult
task since each varies from the rest in many different perspectives. The NNE
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accuracy is lowest from all the referred works. However, this is mainly due to the
selected network topology, which has an accuracy of 81.77% in FP32 precision.
The 8-bit implementation results in an almost negligible drop of 1.5% unit using
post-training quantization. Retraining the network could bring the accuracy
closer to the FP32 result. However, a different algorithm or topology would be
required for a more significant improvement. Therefore, the main takeaway is
that the NNE offers small area and low power consumption with decent accuracy
for a given NN. It outperforms the xDSP significantly and can efficiently execute
NN inference in low-power embedded devices such as hearing instruments.

4.6 Conclusion

This paper presented a dedicated NNE for hearing instruments that implements
a cheap, novel dynamic two-step scaling technique for fitting the extended
MAC products back to memory in a reduced format. It is implemented as a
shift operation that scales the fixed-point by powers of two within i) vectors
of neurons, and ii) across all neurons in a layer. The two-step scaling makes
the NNE always execute in a deterministic number of cycles. This number of
cycles is close to the number of vectorized parameters that need to be retrieved
from memory. The NNE also implements other complementary methods to
further improve its performance. These are: reducing wordlength from 24 to
8 bits, executing 12 MAC units in parallel, and exploiting input and output
stationary techniques. The combination of all of these approaches makes the
NNE outperform a typical audio DSP in all aspects. The two implementations
were tested using a benchmark KWS NN. In comparison to the xDSP, the NNE
reduced power 5×, memory accesses 5.5×, clock cycles 6×, memory requirements
3×, and area 3.7×, while the accuracy dropped only by less than 1%. In general,
the NNE offers small area and low power, and it can be easily used in resource
constrained embedded devices such as hearing instruments.
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Chapter 5

PeakRNN and StatsRNN:
Dynamic Pruning in Recurrent

Neural Networks

By Zuzana Jelčicová, Rasmus Jones, David Thorn Blix,
Marian Verhelst, and Jens Sparsø [C2]

Abstract

This paper introduces two dynamic real-time pruning techniques
PeakRNN and StatsRNN for reducing costly multiplications and
memory accesses in recurrent neural networks. The methods are
demonstrated on a gated recurrent unit in a multi-layer network,
solving a single-channel speech enhancement task with a wide vari-
ety of real-world acoustic environments and speakers. The perfor-
mance is compared against the baseline gated recurrent unit and
the DeltaRNN method. Compared to the unprocessed speech, the
SNR and Perceptual Evaluation of Speech Quality were on average
improved by 8.11 dB and 0.43 MOS-LQO, respectively. Addition-
ally, the two proposed methods outperformed DeltaRNN by 0.7 dB
and 0.11 MOS-LQO in the two objective measures, while using the
same computational budget per timestep and reducing the original
operations by 88%. Furthermore, PeakRNN is fully deterministic,
i.e. it is always known in advance how many computations will
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be executed. Such worst-case guarantees are crucial for real-time
acoustics applications.

Index Terms— RNN, determinism, statistics, peaks, threshold, single-channel
speech enhancement, hearing instruments

5.1 Introduction

Speech enhancement (SE) is a classical problem in signal processing that focuses
on attenuating background noise from a speech signal. Traditionally, statistical
methods such as the Wiener filter [64], non-Negative Matrix Factorization [82],
and Short-Time Spectral Amplitude [10] have been used to solve the single-
channel SE task. Applications such as hearing instruments (HIs), (wireless)
headsets, and mobile communications require algorithms that are able to handle
a wide range of noise environments and speakers to be useful in real-life situations.
However, such signals do not follow normal distributions and are often non-
stationary [166], i.e. the statistical structure of the signal changes over time,
which imposes a challenge for the traditional methods [53]. Deep neural networks
(DNNs) are able to capture non-linear and complex relationships, and have
proved successful in SE applications [82, 99], outperforming classical signal
processing methods.

SE is a challenging problem that is usually solved by complex DNN models using
several hidden layers consisting of hundreds to thousands of neurons, resulting
in a model with millions of parameters. Often such models can, however, be
pruned, leading to computational savings that are crucial for low-power edge
devices such as HIs. Static pruning [214] results in a smaller dense model where,
however, the capabilities of the pruned neurons and weights are irreversibly gone.
Moreover, static pruning cannot capture the importance of neurons and weights
that are highly input-dependent. Dynamic approaches [134], on the other hand,
enable to use parts of the NN relevant for the current input. Yet these methods
are often complex, and the deployment hence still remains challenging.

In this work, we propose two dynamic pruning techniques, called PeakRNN
and StatsRNN, which during inference reduce the number of memory accesses
(MAs) and multiply-accumulates (MACs) dynamically in a data-driven way. The
reduction is demonstrated on a SE task using a gated recurrent unit (GRU) hidden
layer in a three-layer network. The evaluations are based on the computational
costs and objective measures such as SNR and Perceptual Evaluation of Speech
Quality (PESQ). While PeakRNN offers determinism and robustness without any
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prior data analysis, StatsRNN approaches pruning by exploring the underlying
statistical properties of the data. These two pruning techniques can be used to
find an optimal model and they outperform the current state-of-the-art DeltaRNN
[138] technique.

5.2 Related Work

Recurrent neural networks (RNNs) and their variants, such as long short-term
memory (LSTM) units [20] and GRU [71], are suited for time-series tasks since
they are able to model complex temporal structures. GRUs are computationally
more efficient and thus preferred over LSTMs in real-time SE tasks [175]. However,
they still require many matrix-vector multiplications and memory accesses.
Works targeting single-channel SE primarily focus on a high-level exploration,
i.e. comparing different objective measures for speech quality and intelligibility
without considering the complexity of the proposed algorithms.

In [164] the authors introduce FastGRNNs that use a scalar weighted residual
connection for each coordinate of the hidden state h. They have lower training
times and prediction costs, as well as 2-4x fewer parameters than LSTMs and
GRUs, while matching the state-of-the-art prediction accuracies. However, this
static method does not consider temporal dependencies in data. DeltaRNN [138]
addresses the computational issues by exploiting the temporal stability of inputs
and activations, i.e. by caching neuron activations, operations can be skipped
where no significant changes occur from the previous update. This data-driven
approach saves fetches of entire columns of weight matrices, leading to substantial
speedups of 5.7-100x for a RNN on classification tasks with negligible accuracy
loss.

Our work builds on and outperforms the idea of DeltaRNNs with novel PeakRNN
and StatsRNN techniques. The algorithms are demonstrated on the single-
channel SE regression task.

5.3 Peak RNN Algorithm

Similar to DeltaRNN, the objective of PeakRNN is to transform a dense matrix-
vector multiplication into a highly-sparse matrix-vector multiplication to save
both MAC operations and, above all, MAs. These two methods therefore share
the underlying computations targeting GRU, equations (5.1)-(5.12), that are
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detailed in [138]. The actual difference arises in selecting the elements for
computations (5.1)-(5.4). DeltaRNN applies a single threshold θ on both the
input vector x and the activation vector h, resulting in a variable number of
required computations. In contrast, PeakRNN selects a desired number of peak
elements Np from both vectors individually in every timestep. Hence, unlike
DeltaRNN where the number of computations is non-deterministic, PeakRNN
saves computations in a deterministic manner as it is always known in advance
how many operations will be executed. Therefore, it provides worst-case execution
guarantees, which is a crucial aspect in real-time low-power devices, and not
ensured by DeltaRNN.

x̂(t) =
{

x(t) if |x(t) − x̂(t − 1)| among Np

x̂(t − 1) otherwise
(5.1)

ĥ(t − 1) =
{

h(t − 1) if |h(t − 1) − ĥ(t − 2)| among Np

ĥ(t − 2) otherwise
(5.2)

∆x(t) =
{

x(t) − x̂(t − 1) if |x(t) − x̂(t − 1)| among Np

0 otherwise
(5.3)

∆h(t − 1) =
{

h(t − 1) − ĥ(t − 2) if |h(t − 1) − ĥ(t − 2)| among Np

0 otherwise
(5.4)

Mr(t) = Wxr∆x(t) + Whr∆h(t − 1) + Mr(t − 1) (5.5)

Mu(t) = Wxu∆x(t) + Whu∆h(t − 1) + Mu(t − 1) (5.6)

Mxc(t) = Wxc∆x(t) + Mxc(t − 1) (5.7)

Mhc(t) = Whc∆h(t − 1) + Mhc(t − 1) (5.8)

r(t) = σ[Mr(t)] (5.9)

u(t) = σ[Mu(t)] (5.10)

c(t) = tanh[Mxc(t) + r(t) ⊙ Mhc(t)] (5.11)

h(t) = u(t) ⊙ h(t − 1) + (1 − u(t)) ⊙ c(t) (5.12)

Moreover, PeakRNN is robust to the variations of the input data as the algorithm
selects the top elements regardless of the threshold. Additionally, the number of
peaks for the x and h vectors can either be equal or different. In our experiments,
we used the same number of peaks for both vectors, but this combination
can be optimized depending on a given task. The top Np elements might be
selected using sorting, but an alternative solution is to approximate Np elements
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Table 5.1: Theoretical cost calculations of MACs and MAs.

GRU DeltaRNN/PeakRNN Equations

MACs (x + h) 3(NxNh) +
3(NhNh)

ox[3(NxNh)] +
oh[3(NhNh)] (5) - (8)

MACs (pointwise) 3Nh 3Nh (11) - (12)
MAs

(x+h weights)
3(NxNh) +
3(NhNh)

ox[3(NxNh)] +
oh[3(NhNh)] (5) - (8)

MAs (x+h read) Nx + Nh 2Nx + 2Nh (1) - (4)
MAs (h write) Nh Nh (12)

MAs (M states read) - 4Nh (5) - (8)
MAs (M states write) - 4Nh (5) - (8)

MAs (x̂ + ĥ write) - oxNx +ohNh (1) - (2)

by exploring the underlying statistical properties of the data as introduced in
Section 5.4.

Table 5.1 provides an overview of the theoretical estimations of MACs and MAs
required for a GRU every timestep as these, particularly MAs, are among the
most costly operations [73]. These estimations enable us to compare DeltaRNN
and PeakRNN on equal terms. The calculations are derived from equations
(5.1) - (5.12). Nx and Nh refer to the dimensionality of an input vector x and
activation vector h, respectively. ox and oh, called occupancy [138], correspond
to the fraction of non-zero values of an input vector x and activation vector h,
respectively. These fractions define how many operations will be executed. As it
can be seen in Table 5.1, there is MA overhead compared to GRU due to keeping
track of additional states. However, these excess operations are negligible for
huge RNNs as the MAs for weights scale approximately quadratically. Therefore,
significant savings and increased speedup can be achieved with a sparse occupancy.
This is pronounced even more for MACs, and the results are presented in Section
5.6.

5.4 Statistical RNN Algorithm

StatsRNN finds the top Np elements by exploiting the statistical properties of
the |x(t)− x̂(t−1)| and |h(t−1)− ĥ(t−2)| computations that determine whether
the elements should be zeroed out. We hypothesized that our training dataset
is representative of our SE application. Consequently, we can assume that the
underlying statistical distributions within the network are a good approximation
of distributions in the application. We created an average histogram with 256
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Figure 5.1: A zoomed view on a part of the histogram with logarithmic bins
for the delta calculation |x(t) − x̂(t − 1)| from the training dataset.
The x-axis represents bin boundaries that are used to determine
x and h thresholds. The thin black vertical line to the very left
corresponds to the first bin that contains ∼31% of zeros.

logarithmic bins for the x and h computations separately, based on the entire
training dataset. Figure 5.1 shows a histogram example for |x(t) − x̂(t − 1)|
(|h(t − 1) − ĥ(t − 2)| has a similar distribution) where it can be observed that the
data is correlated. Also, due to ReLU in the first fully connected (FC) layer, a
lot of values are zero, ∼31% and 21% for x and h, respectively, which enables to
exploit sparsity to a high degree. After training, the threshold can be statistically
determined for x and h separately using the bin boundaries, i.e. selecting a
boundary where all the bins to its right (greater values) represent the percentage
of elements (ox and oh) equivalent to the number of peak elements (PeakRNN)
that should be processed. This approach preserves the idea of PeakRNN and
eliminates sorting. In the presented experiments, the same percentage of top
elements to extract was set for x and h.

The StatsRNN approach was applied to the entire test dataset, trying to obtain
various percentages of x and h elements individually, varying from 50% down to
1%. Due to a big variety of scenes, some environments naturally deviate from
the required percentage more while others less. The smallest difference between
the expected and the actual obtained percentage was only 0.05% (Quiet Street),
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Figure 5.2: Full system overview representing simplified internals of a HI.
The highlighted parts (black) are used for the single-channel SE
experiments.

where, on average, 40.05% of the h elements were processed instead of 40%. The
biggest outliers were Pink and, in particular, White noise, where ∼31.65% of
the h vector elements was processed instead of 50%. All the details about the
datasets are described in Section 5.5.3. StatsRNN analytically defines a threshold
for x and h individually. This is a very important property since the vectors
have different sparsity as also shown in [138], and their individual handling
might contribute to additional improvements. Therefore, exploiting a priori
statistical knowledge about the data will lead to a better and more deterministic
algorithm with consistent performance compared to DeltaRNN. Furthermore,
the estimations provided in Table 5.1 can be directly used for StatsRNN as well.
Instead of Np in equations (5.1)-(5.4), two statistically derived thresholds Θx

and Θh will be applied for StatsRNN (a single threshold Θ in original DeltaRNN
[138]).

5.5 Experimental Setup

This section describes the entire system setup used for performing the experi-
ments.

5.5.1 Hearing-Instrument Application

Figure 5.2 illustrates a simplified system extracted from a real HI setup where
the DNN replaces a typical noise reduction module for obtaining postfilter
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gain. Firstly, the Analysis Filter Bank applies a 1024-point FFT and a square-
root Hanning window on the 20 kHz microphone signal (mic), resulting in 512
frequency sub-bands and downsampling to 40 Hz (a new frame every 25 ms,
no overlapping). The output is then passed to the DNN that will learn to
estimate a postfilter gain (pfGain) to be applied on the original signal. Finally,
the Synthesis Filter Bank reconstructs a wideband signal and passes it to the
speaker. The proposed techniques are demonstrated on a single microphone
but they can be also applied in a setup with a microphone array (e.g. HIs
with two microphones). In such case, the Minimum Variance Distortionless
Response (MVDR) Beamformer could be used for multi-channel processing where
interferences from undesired directions would be attenuated.

5.5.2 DNN Architecture

The DNN architecture used in the experiments consists of three layers: FC-GRU-
FC, each having 512 output neurons, with 512 inputs to the first FC layer. The
first FC layer is followed by ReLU activation function, while the GRU layer uses
tanh and sigmoid activation functions. The final output of the network are 512
pfGain values that are applied on the original signal. The GRU component is
replaced with DeltaRNN, PeakRNN, and StatsRNN during the experiments.

5.5.3 Dataset

The DNN input is a mixed signal y, i.e. clean speech corrupted with noise,
constructed by adding 30-second segments of noise n and clean speech s together
(y = s + n). The 30-second segments contain one to three speakers with a
maximum gap of 300 ms and up to 30% overlap, creating seemingly natural
flow and tempo of a conversation. The speech was obtained from the VCTK
Corpus [204] and Akustiske Database for Dansk [48]. Fifteen different types
of audio environments (referred to as background noise) were used, reflecting
the most relevant acoustic situations that people are exposed to in the real
world in order to obtain the required variations in SNR estimates. Eight scenes
(Beach, Busy Street, Park, Pedestrian Zone, Quiet Street, Shopping Centre,
Train Station, Woodland) were obtained from [128], five scenes are a part of the
internal database of the Demant company (Bar, Cafe, Canteen, Car, Office), and
Pink and White stationary noises were simulated. The entire dataset contains
∼25 hours (left and right channels together) of mixed signal, divided into training
(∼19.5 h), test, and validation (each ∼2.7 h) subsets. Each of the three subsets
is unique, i.e. the speakers and the background noise sections are not shared
across the subsets.
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The unprocessed speech has SNR and PESQ of 4.39 dB and 1.85 MOS-LQO
(Mean Opinion Score - Listening Quality Objective) [25], respectively. The
starting SNRs for the scenes in the test dataset vary between -12.7 dB (e.g.
White noise) to 14.4 dB (e.g. Park), with most acoustic scenes having SNR up
to 8 dB (80%). The high SNRs are present in only a few cases to cover the
necessary variations as mentioned before.

5.5.4 Training

The DNN is trained on a linear ideal ratio mask (IRM) where the mask value is
a continuous gain between zero and one. The IRM is defined as follows:

IRM =
(

|s(t, f)|
|s(t, f)| + |n(t, f)|

)
(5.13)

The s(t, f) and n(t, f) represent the clean speech and noise, respectively, with
time frame t and frequency channel f . The mean squared error between the
target IRM and the denoised speech is used as the loss function. The final DNN
was trained using a batch size of 128 and a sequence length of 100 samples,
which corresponds to 2.5 seconds. The DNN with a GRU layer was trained in
Tensorflow using 32-bit floating-point, and the weights and biases were transferred
to DeltaRNN, PeakRNN, and StatsRNN (further referred to as DeltaGRU,
PeakGRU, and StatsGRU) for inference. The results are presented in Section
5.6. Transferring the learned parameters replaces computationally expensive
and time demanding training from scratch for each configuration, and enables
to compare all the methods in a fair manner. The DeltaGRU, PeakGRU, and
StatsGRU networks were finally also retrained using transfer learning, where the
transferred GRU model served as a starting point. This approach is discussed at
the end of Section 5.6.

5.6 Results and Discussion

Figure 5.3 shows the improvement of the different GRU implementations to
unprocessed speech in SNR and PESQ for decreasing percentage of MAC opera-
tions per timestep. It also provides a zoomed view on a part of the plot discussed
in this section. The annotations on the PeakGRU, DeltaGRU, and StatsGRU
curves describe the tested number of processed peaks (512-11), thresholds (0.0-
0.04) and the desired percentages of elements to extract (50-1), respectively. The
GRU performance of 8.11 dB and 0.43 MOS-LQO in (a) and (b), respectively, is
shown as baseline with 100% MAC operations, corresponding to 1.5744 MOps.
The same number of operations is also required for MAs. Only a plot for MAC
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(a) SNR improvement vs MACs (unprocessed speech = 4.39 dB).
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(b) PESQ improvement vs MACs (unprocessed speech = 1.85 MOS-LQO).

Figure 5.3: Plots (a) and (b) show the percentage of executed MACs with
respect to improvement in SNR/PESQ (including a zoomed part
of the plot). 100% of MACs corresponds to the baseline GRU
illustrated as a constant horizontal line, i.e. the x-axis does not
apply to it. The data labels annotated on the lines represent
the number of processed peaks, thresholds, and the desired %
of elements to extract for PeakGRU, DeltaGRU, and StatsGRU,
respectively. The dashed lines show the benefit of retraining that
further optimizes the performance.
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results is presented since MA reduction is done in the same linear manner and
its diagram would, therefore, look almost the same (max ∼0.4% more MAs from
the original number of operations). Due to the MA overhead estimated in Table
5.1, all the three modified GRU algorithms have a total of ∼1.581 MOps when
processing all features. The computations are based on an overall scene, i.e.
an average across all the acoustic environments and x and h subsets. However,
a similar trend can be also observed for the individual scenes, i.e. PeakGRU
and StatsGRU outperforming DeltaGRU. The only scene where DeltaGRU has
subtly better performance is White noise, and it is on par with PeakGRU for
Pink noise and Busy Street scenes. The performance of StatsGRU is very similar
to PeakGRU as it approximates the number of top elements to be processed.
The largest SNR improvement on average was obtained for the White noise
environment (∼15.72 dB), while the smallest one for the Office scene (∼4.26 dB).

As it can be observed in Figure 5.3(a), all the methods have equal and no loss in
performance down to ∼30%, corresponding to ∼0.4723 MOps and thus reducing
the computations by 70%. DeltaGRU, and likewise StatsGRU, already saves
25% of computations with Θ=0.0 without any SNR/PESQ degradation due
to the ReLU in the first FC layer that produces a sparse input to the GRU.
However, with decreasing % of computations, the objective metrics start to
noticeably degrade especially for DeltaGRU, while PeakGRU and StatsGRU
have a less steep decrease. StatsGRU and PeakGRU are aligned regarding SNR,
and StatsGRU has slightly better PESQ. This behavior can be explained by the
fact that StatsGRU selects a specific percentage of x and h separately across
the entire dataset, while PeakGRU does so every timestep, and thus sometimes
chooses less significant values, which is subtly reflected in speech quality. At
∼7.8 dB SNR improvement, the two new methods reduce the computations
down to ∼12%, which is a reduction by almost a factor of 2 compared to
∼21% for DeltaGRU. Even at 7 dB, which represents an acceptable loss of 1 dB,
PeakGRU and StatsGRU execute on average 7% of operations while DeltaGRU
11%. Similarly, a better PESQ performance of the two proposed techniques can
be seen in Figure 5.3(b). On the other hand, if the number of operations is fixed
at 12%, PeakGRU and StatsGRU outperform DeltaGRU by 0.7 dB on average.
Figure 5.4 further presents the results per scene, where the SNR improvements
for each of the methods are plotted as overlapping bars.

Retraining the models further optimizes the performance, especially for the
configurations with high thresholds/many peaks skipped. This is illustrated with
dashed lines in Figure 5.3, where all the three methods benefit comparably from
transfer learning. Therefore, the same relative gains for DeltaRNN, PeakRNN,
and StatsRNN remain valid.

Future work further explores the most optimal ratio between x and h sparsities,
since the best model might not necessarily use the same threshold/number of
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Figure 5.4: SNR improvement per scene under the fixed number of operations
per timestep (12%) plotted as overlapping bars, with PeakGRU and
StatsGRU outperforming DeltaGRU by 0.7 dB on average. The
configurations use 61 peaks, Θ=0.016, and top 10% of elements
for PeakGRU, DeltaGRU, and StatsGRU, respectively. The x-
axis denotes each tested scene along with its initial average SNR.
PeakGRU is on par with GRU, and StatsGRU with DeltaGRU for
the Car and Office scene, respectively.

peaks for both. This could be done by making the sparsity ratio parameter
differentiable, such that it can be trained together with the network itself.

5.7 Conclusion

This paper introduced two new pruning techniques demonstrated on a single-
channel SE task using complex environments and big variety of speakers. The
results proved that computations in a RNN can be efficiently reduced nearly 2x
compared to the state-of-the-art DeltaRNN while maintaining sufficient quality
of objective measures. In addition, reducing the SNR quality by only ∼0.3 dB
saves 88% of operations in PeakRNN and StatsRNN, while the same reduction
in DeltaRNN is achieved by degrading SNR by 1 dB. Furthermore, PeakRNN
is deterministic and thus provides worst-case execution guarantees required by
real-time applications. If the deterministic aspect can be slightly relaxed, further
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savings can be achieved by StatsRNN using a statistical approximation. Overall,
both algorithms are hence suitable for resource-constrained embedded devices
such as HIs.
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Chapter 6
Delta Keyword Transformer:

Bringing Transformers to the
Edge through Dynamically

Pruned Multi-Head
Self-Attention

By Zuzana Jelčicová and Marian Verhelst [C3]

Abstract
Multi-head self-attention forms the core of Transformer networks.
However, their quadratically growing complexity with respect to
the input sequence length impedes their deployment on resource-
constrained edge devices. We address this challenge by proposing
a dynamic pruning method, which exploits the temporal stability
of data across tokens to reduce inference cost. The threshold-based
method only retains significant differences between the subsequent
tokens, effectively reducing the number of multiply-accumulates, as
well as the internal tensor data sizes. The approach is evaluated on
the Google Speech Commands Dataset for keyword spotting, and the
performance is compared against the baseline Keyword Transformer.
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Dynamically Pruned Multi-Head Self-Attention

Our experiments show that we can reduce ∼ 80% of operations while
maintaining the original 98.4% accuracy. Moreover, a reduction of
∼ 87 − 94% operations can be achieved when only degrading the
accuracy by 1-4%, speeding up the multi-head self-attention inference
by a factor of ∼ 7.5 − 16.

Index Terms— Transformers, delta computations, pruning, compression, key-
word spotting, edge devices

6.1 Introduction

The Transformer architecture [146] is an emerging type of neural networks that
has already proven to be successful in many different areas such as natural
language processing [186, 193, 210, 198], computer vision [236, 247, 250, 246],
and speech recognition [219, 235, 234, 244]. Its success lies in the multi-head
self-attention (MHSA), which is a collection of attention mechanisms executed
in parallel. Although Transformers achieve state-of-the-art results, deployment
to resource-constrained devices is challenging due to their large size and compu-
tational complexity that grows quadratically with respect to the sequence length.
Hence, self-attention, despite being extremely efficient and powerful, can easily
become a bottleneck in these models. A widely used compression technique to
reduce the size and computations of DNNs is pruning, that has been extensively
researched throughout the years [90, 110, 188, 124]. An increasing number
of works focusing on MHSA pruning recently emerge. These mainly aim for
reducing the number of attention heads in each Transformer layer [196, 205, 195],
and token pruning [254, 218, 241, 248]. Eliminating attention heads completely
to speed up the processing might significantly impact accuracy. Therefore, token
(a vector in the sequence) pruning represents a more suitable approach, where
attention heads are preserved and only unnecessary tokens within the individual
heads are removed. However, most of the methods above i) require demanding
training procedures that hinder utilizing a single method across various models
and applications without unnecessary overhead, and ii) focus on coarse-grained
pruning.

In this work, we further push pruning to finer granularity, where individual
features within tokens are discarded at runtime using a threshold in the MHSA
pipeline. The reduction is based on the comparison of similarities between
corresponding features of subsequent tokens, where only the above-threshold
delta differences are stored and used for performing the multiplications (MACs).
This technique significantly reduces computational complexity during inference
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and offers intermediate data compression opportunities. Our method does not
require any training and can, therefore, be used directly in the existing pre-
trained Transformer models. Moreover, no special and expensive hardware has
to be developed as only comparisons are used in the algorithm. The evaluation
is done on a pretrained Keyword Transformer model (KWT) [233] using the
Google Speech Commands Dataset (GSCD) [178] with the focus on the accuracy-
complexity trade-off. The results show that the number of computations can
be reduced by 4.2x without losing any accuracy, and 7.5x while sacrificing 1%
of the baseline accuracy. Furthermore, the processing of the original MHSA
block can be sped up by a factor of ∼ 16 while still achieving high accuracy of
∼ 95%. Therefore, this work represents the next step to enable efficient inference
of Transformers in low-power edge devices with the tinyML constraints.

6.2 Related Work

Different approaches have been used to reduce the computational complexity
of the MHSA, such as cross-layer parameter sharing [222], trimming individual
weights [217] or removing encoders by distillation [199, 200, 192, 227, 201].
Recent research [196, 242, 205, 195] demonstrates that some attention heads
can be eliminated without degrading the performance significantly. However, in
order to obtain substantial computational savings and thus inference time gains,
a considerable portion of heads would have to be discarded, inevitably leading
to noticeable accuracy drops.

Other works focus on token pruning instead of removing redundant parameters.
In [218], redundant word-vectors are eliminated, outperforming previous distilla-
tion [199, 200] and head-pruning methods [196]. However, it requires training of
a separate model for each efficiency constraint. This issue is resolved in [241]
by adopting one-shot training that can be used for various inference scenarios,
but the training process is complicated and involves multiple steps. Cascade
pruning on both the tokens and heads is applied in [248], i.e., once a token and/or
head is pruned, it is removed in all following layers. Nonetheless, this approach
requires sorting of tokens and heads depending on their importance dynamically
to select the top-k candidates, which needs specialized hardware. Similar to our
work, recently published [254] also adopts a threshold-based pruning approach,
which removes unimportant tokens as the input passes through the Transformer
layers. However, this method requires a three-step training procedure to obtain a
per-layer learned threshold, which again prevents to easily deploy the technique
across a wide range of pre-trained networks. Most of the previous methods, more-
over, only focus on optimizing Transformers for the natural language processing
task.
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The idea of threshold-based pruning using delta values for performing compu-
tations has already been explored for other types of DNNs, such as recurrent
[138] and convolutional [239] neural networks. However, incorporating a delta
threshold in these networks results in significant memory overhead, as it requires
storing intermediate states and activations. This issue is eliminated in our Delta
Transformer, where almost no additional resources are required.

6.3 The Keyword Transformer

The typical Transformer encoder [146] adopted in KWT consists of a stack
of several identical Transformer blocks. Each Transformer block comprises
of Multi-Head Self-Attention (MHSA), Multi-Layer Perceptron (MLP), layer
normalizations, and residual connections as illustrated in Figure 6.1. The key
component in Transformers is the MHSA containing several attention mechanisms
(heads) that can attend to different parts of the inputs in parallel. We base
our explanation on the KWT, proposed in [233]. This model takes as an input
the MFCC spectrogram of T non-overlapping patches XMF CC ∈ RT x F , with
t = 1, ..., T and f = 1, ..., F corresponding to time windows and frequencies,
respectively. This input is first mapped to a higher dimension d using a linear
projection matrix W0 ∈ RF x d along the frequency dimension, resulting in T
tokens of dimension d. These are then concatenated with a learnable class
embedding token XCE ∈ R1 x d representing a global feature for the spectrogram.
Subsequently, a learnable positional embedding XP E ∈ R(T +1) x d is added to
form a final input to the Transformer encoder:

X = [XCE ; XMF CCW0] + XP E (6.1)

The Transformer encoder multiplies the input X with the projection matrices
WQ, WK , WV ∈ Rd x d, producing Query (Q), Key (K), and Value (V ) input
embedding matrices:

Q = XWQ; K = XWK ; V = XWV (6.2)

The matrices are then divided into k attention heads to perform the self-attention
computations in parallel, where each of the heads i = 1, 2, .., k is given by:

headi = attention(Qi, Ki, Vi) = softmax

(
Qi(Ki)T

√
dh

)
Vi (6.3)

The MHSA is defined as a concatenation of the attention heads, weighted by a
projection matrix WP ∈ Rkdh x d, where dh = d/k:

XMHSA(Q, K, V ) = [head1, head2, ..., headk]WP (6.4)
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Figure 6.1: A high-level overview of the KWT model along with its dimensions.
Red lines denote the residual connections.

The MHSA output is then added to the input X with a residual connection
and passed though the first layer normalization and the MLP block, followed by
another addition of a residual input and second normalization:

XLN1 = LN(XMHSA + X); XLN2 = LN(XMLP + XLN1) (6.5)

This structure is repeated L times, denoting layers, to create an architecture of
stacked Transformer layers.
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Table 6.1: Configuration of the KWT-3 architecture

Model dim d dim dMLP heads k layers L #params
KWT-3 192 768 3 12 5,361k

Figure 6.2: Input data to the 7th Transformer layer at the top along with its
delta version at the bottom for keyword right.

In the KWT model, the MLP block is a two-layer feed-forward neural network
using a GELU activation function after the first layer. The class embedding
vector is extracted from the output of the last Transformer block to perform
classification.

Three KWT models are proposed in the original work: KWT-1 (607k parameters,
97.72% ± 0.01 accuracy), KWT-2 (2,394k parameters, 98.21% ± 0.06 accuracy),
and KWT-3 (5,361k parameters, 98.54% ± 0.17 accuracy). We selected KWT-
3 for our experiments, as it poses the biggest challenge as well as potential
for compressing and reducing the computational complexity. The KWT-3
configuration is listed in Table 6.1.

6.4 KWT Model Analysis

The attention mechanism involves MACs of two matrices, resulting in O(n2)
time and space complexity. However, as all tokens attend to each other, a certain
level of redundancy is expected to be found in the system due to diffusion of
information. Therefore, we analyze the KWT model on the GSCD to observe
the degree of change across the tokens as they pass though the MHSA. We feed
multiple different keywords through the 12-layer KWT and inspect the MHSA
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Figure 6.3: Softmax output of the 7th Transformer layer at the top along with
its delta version at the bottom for the keyword right. The figure
illustrates three attention heads.

Figure 6.4: Input data to the 7th Transformer layer for silence .

inputs as well as intermediate results within the block. While considerable
correlation across the tokens is expected for the initial input and intermediate
results in the first layer, it is noteworthy to observe such behavior also in the
MHSA of deeper layers, which is in line with cosine similarity measurements on
word-vectors performed in [218]. Correlation is illustrated in Figure 6.2 showing
the input X (top) together with the difference between subsequent rows of this
tensor (bottom), for the 7th layer of a keyword right. Figure 6.3 repeats the same
analysis for the softmax output of layer 7. It is clear that there is a significant
amount of correlation between consecutive tokens, which opens up opportunities
for data compression and/or computational data reuse. For example, ∼ 84% of
the differences between corresponding features of subsequent tokens in X are
smaller than 1% of the dynamic range of X (7th layer). Such a tendency was
observed for all voice-containing input sequences.

Moreover, when analyzing intermediate tensors from inputs of the silence class,
even larger data redundancy can be observed (Figure 6.4). It is clear that fully
computing every single token would be a waste of computational and memory
resources.
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Figure 6.5: Delta algorithm example across three tokens with threshold θ = 1.0.
The top row corresponds to the first input vector that is always
left untouched (no threshold).

All these observations demonstrate that the amount of a significant change across
the tokens constitutes only a small portion of the whole. Hence, introducing
a threshold for recomputing could drastically decrease the computational load
and inference time. Furthermore, exploiting sparsity across the tokens can also
offer data compression. Therefore, we propose a delta algorithm that utilizes a
threshold to discard insignificant values, further described in Section 6.5.

6.5 Delta Algorithm

The objective of the delta algorithm is to transform a dense matrix-vector
multiplication into a highly-sparse matrix-vector multiplication to reduce com-
putational complexity and enable data compression, where only non-zero deltas
are stored and used for computations.

The input X always starts with the class embedding vector, followed by the
first input vector. These two vectors (rows of the tensors) will always be left
untouched throughout the complete MHSA pipeline. Every subsequent token
after these will be represented by its delta value. This delta change ∆X(t) is
calculated as the difference between the current input X(t) and reference vector
X̂(t − 1). Only delta differences larger than a threshold θ are retained and used
to update the reference vector X̂(t):

∆X(t) =
{

X(t) − X̂(t − 1) if |X(t) − X̂(t − 1)| > θ

0 otherwise
(6.6)

X̂(t) =
{

X(t) if |X(t) − X̂(t − 1)| > θ

X̂(t − 1) otherwise
(6.7)
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Figure 6.6: Baseline delta algorithm.

Where the X̂ vector is initialized to 0s and updated once the first token arrives.
Figure 6.5 visualizes this encoding over three tokens with θ = 1.0. The top
row represents the first input vector that is left untouched (no delta algorithm
applied). The orange and green colors in X̂ show which values from the current
input X are propagated for the next token. White ∆X positions denote values
of which magnitude equals to/is below θ and thus are skipped.

We apply the delta encoding of data at six different places in the MHSA: layer
input X, matrices K and Q, scaled QKT , softmax output, and the attention
head output. While the computations of delta values are the same everywhere,
the subsequent operations with these deltas differ depending on whether i) a
delta-encoded matrix is multiplied with a regular matrix, ii) two delta-encoded
matrices are multiplied together, or iii) a non-linear softmax function is applied.
These three versions are described in the next subsections.

6.5.1 Delta-Regular Matrix Multiplication

Thanks to the delta representation, only non-zero ∆X are stored and used for
multiplications as visualized in Figure 6.6. A weight matrix is denoted as W ,
and indices for ∆xw in the result matrix R are excluded for clarity.

The output R(t) of the tensor operation can hence be computed by accumulating
the result of the previous reference token R(t − 1) with the multiplication results
of the weights with the delta values only. The updated R(t) will then be the
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Figure 6.7: Delta algorithm for QKT represented with matrices A and B.

new baseline for the upcoming token:

R(t) = ∆X(t)W + R(t − 1) (6.8)

With R(0) initialized to 0. These delta multiplications are used in XWQ, XWK ,
XWV , softmaxV and [head1, head2, head3]WP .

6.5.2 Delta-Delta Matrix Multiplication

As a result of the delta encoding, both Q and K will be expressed in their delta
versions, and the multiplications will thus be slightly modified. This is described
below and illustrated in Figure 6.7 in a general form, with matrices A and B
representing Q and KT , respectively.

The multiplication of the first A row with the first B column is done as usually
without using deltas:

r00 = a00b00 + a01b10 + a02b20 (6.9)

Then, the multiplication of the first A row and second B column exploits the delta
approach in horizontal direction, where the a00b00 + a01b10 + a02b20 expression
can be replaced with r00 from eq. 6.9 (marked with red):

r01 = a00(b00 + ∆b01) + a01(b10 + ∆b11) + a02(b20 + ∆b21) (6.10)
= a00b00 + a00∆b01 + a01b10 + a01∆b11 + a02b20 + a02∆b21

= r00 + a00∆b01 + a01∆b11 + a02∆b21
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Similarly, calculating results in the vertical direction for the rows of A and first
column of B is given by:

r10 = b00(a00 + ∆a10) + b10(a01 + ∆a11) + b20(a02 + ∆a12) (6.11)
= b00a00 + b00∆a10 + b10a01 + b10∆a11 + b20a02 + b20∆a12

= r00 + ∆a10b00 + ∆a11b10 + ∆a12b20

An approach for multiplications for all the other positions is demonstrated on
the second A row and second B column:

r11 = (a00 + ∆a10)(b00 + ∆b01) + (a01 + ∆a11)(b10 + ∆b11) (6.12)
+ (a02 + ∆a12)(b20 + ∆b21)
= a00b00 + a00∆b01 + ∆a10b00 + ∆a10∆b01

+ a01b10 + a01∆b11 + ∆a11b10 + ∆a11∆b11

+ a02b20 + a02∆b21 + ∆a12b20 + ∆a12∆b21

= r01 + r10 − r00 + ∆a10∆b01 + ∆a11∆b11 + ∆a12∆b21

Where different colors mark each of the three multiplications. Simplifying
parenthesis shows that the expressions not involving any deltas can be substituted
with r00. Next, the terms with ∆b are replaced with r01, while those containing
∆a with r10. Since r00, r01, and r10 have already been computed in previous
timesteps, we only need to do the (sparse) delta multiplications themselves and
subtract the r00 result as it is present in both r01 and r10. These steps are then
applied to all the other slots as shown in Figure 6.7.

6.5.3 Delta for Softmax

Delta algorithm cannot be directly applied for softmax as this function introduces
a non-linearity to the system:

softmax(r)i = exp(ri)∑
j exp(rj) (6.13)

We will have to introduce a scaling factor to correct the softmax computations.
As done earlier, we will again start by performing unaltered processing of the
initial row r0 = [r00 r01 r02] (class embedding excluded for clarity) with a regular
softmax function:

softmax(r)0 = [exp(r00) exp(r01) exp(r02)]∑
[exp(r00) exp(r01) exp(r02)] (6.14)
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The next row of the scaled input QKT is already expressed with deltas:

r1 = [∆r10 ∆r11 ∆r12] (6.15)

The r1 nominator NOMr1 for softmax is thus given by:

NOMr1 = [exp(∆r10) exp(∆r11) exp(∆r12)] (6.16)

While the denominator DENOMr1 as:

DENOMr1 =
∑

[exp(r00 + ∆r10) exp(r01 + ∆r11) exp(r02 + ∆r12)]∑
[exp(r00) exp(r01) exp(r02)] (6.17)

Finally, a scaling factor for each of the values to correct the softmax result is:

SFr1 = softmax(r)1
NOMr1

DENOMr1

(6.18)

6.5.4 Computational Savings

To assess the potential computational savings for the Delta KWT, we differ-
entiate between the two main sublayers: i) MHSA, and ii) MLP. The MLP
block consists of two fully connected layers with weight matrices of dimensions
(192,768) and (768,192), respectively. Without any delta modification, ∼39% of
the multiplication of the original KWT can be found in the MHSA and ∼61% in
the MLP. Although MLP is the prevailing module in this specific scenario, its
complexity does not grow quadratically with the input sequence length. More-
over, there are many well-established compression techniques available, some
of them presented in Section 6.2. Hence, pruning of the MLP is out of the
scope of our work, and it is only stated for completeness. The MHSA multiplica-
tion operations can be further split into XWK , XWQ, XWV (∼59.63%), QKT

(∼10.25%), softmax(QKT )V (∼10.25%), and final projection with attention
heads [head1, head2, head3]WP (∼19.88%). The KWT model offers an optimiza-
tion in the last layer. As shown in Figure 6.1, only the class embedding token is
used for the final prediction, making the rest of the tokens within the sequence
unused. This dependency can be tracked up to QKT . The MAC savings in last
layer are thus worth 59.64%, always making the total savings at least 4.97% for
the whole KWT without losing any accuracy.

Maximum possible computational savings, i.e., cases when only the class embed-
ding and first vector are computed since all deltas are 0, are stated below for
each of the MHSA parts. For simplicity, all the terms use matrices A and B,
and row and col for dimensions.
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Savings for XWK , XWQ, and XWV for each of the first 11 layers are:

l0−10 = 1 − (colA x 2) x colB x 3
(colA x colB x rowA) x 3 =∼ 97.98% (6.19)

Where A = (99, 192) and B = (192, 192). Computations for XWQ in the last
layer are expressed as:

l11 = 1 − (colA x 2) x colB x 2 + colA x colB

(colA x colB x rowA) x 3 =∼ 98.32% (6.20)

Savings for QKT :

l0−10 = 1 − (colA x 2 x 2) x heads

(colA x colB x rowA) x heads
=∼ 99.96% (6.21)

l11 = 1 − (colA x 2) x heads

(colA x colB x rowA) x heads
=∼ 99.98% (6.22)

Where A = (99, 64) and B = (64, 99). Savings for softmax(QKT )V :

l0−10 = 1 − (colA x 2 x colB) x heads

(colA x colB x rowA) x heads
=∼ 97.98% (6.23)

l11 = 1 − (colA x colB) x heads

(colA x colB x rowA) x heads
=∼ 98.99% (6.24)

Where A = (99, 99) and B = (99, 64). Finally, the projection with attention
heads:

l0−10 = 1 − (colA x 2) x colB

colA x colB x rowA
=∼ 97.98% (6.25)

l11 = 1 − colA x colB

colA x colB x rowA
=∼ 98.99% (6.26)

Where A = (99, 192) and B = (192, 192).

Of course, the savings estimated above only hold for the extreme case, which
means that either a) all tokens are perfectly correlated, or b) very large thresholds
are used, resulting in significant accuracy degradation. Section 6.7 will therefore
analyze the complete accuracy-complexity trade-off for real data sequences.

6.5.5 Resources

The proposed delta approach neither requires expensive hardware nor comes with
a large memory overhead. Only a single token has to be stored as a reference
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whenever the delta method is used. The softmax delta version additionally needs
to keep the sum of exp from one timestep to another. In terms of computations,
an additional division is needed when calculating scaling factors, along with
multiplications with scaling factors for features within a token.

The downside of our method is compute and data irregularity due to the algo-
rithm’s unstructured pruning. However, there are many techniques proposed in
literature such as [207] on how to handle this challenge.

6.6 Experimental Setup

The GSCD v2 [178] is used to evaluate our method as well as the original
KWT performance. The dataset contains 105,000 1-second audio snippets of 35
different words sampled at 16 kHz. The model classifies 4,800 keywords from a
test set into one of the 12 categories: ”up”, ”down”, ”left”, ”right”, ”yes”, ”no”,
”on”, ”off”, ”go”, and ”stop”, ” silence ” and ” unknown ”.

To assess the impact of the thresholds for the different parts of the MHSA on
accuracy and model complexity, we executed threshold sweeps on a subset of
100 keywords (6-12 words from each category). While the thresholds might be
different for each delta encoding within the MHSA block, they are the same
across every Transformer layer. This means that MHSA in the first layer uses the
same thresholds as MHSAs in other layers. From these sweeps, the thresholds
leading to a Pareto-optimal accuracy-computations trade-off are used in a full
run with all 4,800 keywords. We focused on those configurations that yielded
at least 94% accuracy. Since the thresholds are first determined on a subset of
the complete dataset, it was expected to obtain variations in the results when
performing the test on the full dataset. Additional finetuning, i.e., threshold
adjusting, was done and the results are presented and discussed in Section 6.7.

6.7 Results and Discussion

The Pareto-optimal results evaluated on all 4,800 audio files are shown in Figure
6.8, where the delta configurations are provided in the legend. The x- and the
left y-axis show a percentage of executed MACs averaged across the layers and
achieved accuracy, respectively. The second y-axis represents a speedup factor
derived from the amount of MACs. The blue circle corresponds to the original
KWT-3 model that achieves ∼ 98.4% accuracy with 100% MACs.
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Figure 6.8: The results of running the original and the delta version of the
KWT model. X-axis represents MACs, while the left and right y-
axis correspond to the accuracy and speedup, respectively. Each of
the red-shaded triangles (and a square) in the legend is annotated
with thresholds used during the experiment in order: θX, θQ, θK,
θQKT , θsoftmax, and θhead1..k

The red and green triangles represent our delta KWT-3 model with regard to
accuracy and speedup, respectively. The inference time gains for the MHSA
range from ∼ 1.05x to ∼ 16x, and there is no accuracy degradation down to
∼ 23.7% MACs (4.2x speedup). Moreover, some of the configurations even slightly
outperform the original KWT-3 (98.46%, 98.48%, and 98.42%). Decreasing the
accuracy by only 0.1% results in further speedup of 5x. Moreover, if the accuracy
requirements can be relaxed by 1-4%, the MHSA inference becomes faster by
7.5 − 15.7x, which translates to 86.73-93.65% of skipped MACs. Table 6.2 shows
the % of executed MHSA operations for one instance of each keyword category,
averaged across the layers. The configuration (0.2 0.2 0.2 0.05 0.001 0.05) used
to obtain the results is represented with a square in Figure 6.8. Although the
MAC percentage naturally fluctuates for keywords within the same group, the
objective of the table is to provide a general overview of how much operations are
approximately performed in each of the parts. We can observe that ∼ 60 − 70%
of XWQ,K,V , 90 − 95% of QKT , 73 − 79% of softmaxV , and 83 − 87% of
head1..kWP are discarded, which sums up to 70 − 77% of skipped operations for
the entire model. To visualize the savings, Figure 6.9 shows the delta values of
the input data X and the softmax output of the 7th layer of a keyword right
(same instance as used in Table 6.2). One special case are the instances from the
silence class, that have the amount of discarded computations very close to the

theoretical maximum defined in Section 6.5.4. Figure 6.10 shows the silence
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Table 6.2: Percentage of executed MACs averaged across the layers for
one instance of each keyword category. The configuration is:
θX = 0.2, θQ = 0.2, θK = 0.2, θQKT = 0.05, θsoftmax = 0.001,
and θhead1..k = 0.05.

Keyword XWQ,K,V QKT softmaxV head1..kWP Total
silence 3.02 0.08 2.4 2.02 2.46

unknown 35.97 7.68 26.95 16.93 28.36
yes 31.82 6.26 24.06 16.31 25.32
no 36.98 8.93 25.42 14.27 28.41
up 33.48 6.28 23.64 13.32 25.68

down 29.88 5.08 22.38 14.24 23.46
left 38.73 10.09 26.95 16.97 30.26

right 33.52 6.68 25.65 16.55 26.59
on 31.13 5.64 21.21 13.02 23.9
off 39.5 10.17 26.68 15.11 30.33

stop 32.39 6.15 23.36 13.72 25.06
go 33.37 6.57 23.26 14.65 25.87

(a) Delta inputs

(b) Delta softmax outputs (three attention heads)

Figure 6.9: Deltas for a) inputs and b) softmax outputs for the 7th Transformer
layer of the keyword right. Black color marks 0s.

input, for which only a small fraction of the deltas are non-zero, resulting in
97 − 99.9% of skipped operations.
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Figure 6.10: Deltas for inputs to the 7th Transformer layer for silence . Black
color marks 0s.

A potential future improvement involves applying deltas on the input embedding
matrix V . Although these cannot be exploited in multiplications with the softmax
output due to the direction of computations (softmax output compensates for it),
it would still contribute to V ’s data compression. Future work also explores the
most optimal thresholds for each of the layers individually. This might further
optimize the point where the accuracy starts dropping since a varying number
of MACs is executed within each of the 12 layers.

6.8 Conclusion

This paper introduced a dynamic threshold-based pruning technique that dras-
tically reduces MAC operations during inference. It was demonstrated on a
keyword spotting task on the GSCD, where ∼ 80% of operations in the MHSA
can be discarded without degrading the accuracy. If the accuracy requirements
can be slightly relaxed, a speedup factor of ∼ 5 − 16x is achieved. Our method
thus helps to considerably decrease the computational complexity and enable
significant data compression. The proposed technique can be exploited to enable
an ultra-low power wake-up word detection front-end, that triggers a more pow-
erful detector once a keyword is recognized. More generally, this work represents
a stepping stone towards enabling the execution of Transformers on low-power
devices.
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Chapter 7
A Min-Heap-based Accelerator

for Deterministic On-the-fly
Pruning in Neural Networks

By Zuzana Jelčicová, Evangelia Kasapaki, Oskar Andersson,
and Jens Sparsø [C4]

Abstract
This paper addresses the design of an area and energy efficient hard-
ware accelerator that supports on-the-fly pruning in neural networks.
In a layer of N neurons, the accelerator selects the top K neurons in
every timestep. As K is fixed, the runtime of the pruned network is
deterministic, which is an important property in real-time systems
such as hearing aids. As a first contribution, we propose to use a
min-heap for the top K selection due to its efficient data structure
and low time complexity. As a second contribution, we design and
implement a hardware accelerator for dynamic pruning that is based
on the min-heap algorithm. The heap memory storing the top K
neurons and their index is realized as a 3-port standard cell-based
memory implemented with latches. As a third contribution, we
evaluate the energy savings from pruning of a gated recurrent unit
used in a neural network for speech enhancement. Our experiments
demonstrate energy savings of ∼ 78% without degrading the SNR
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improvement, and up to ∼ 93% while reducing the SNR improvement
by 0.1 - 1.11 dB. Moreover, the overhead of the hardware accelerator
constitutes negligible ∼ 0.5% of the total energy. The accelerator is
implemented in a 22 nm CMOS process.

Index Terms— Min-heap, top K elements, determinism, neural networks,
pruning, hearing aids

7.1 Introduction

Neural networks are powerful in solving various tasks, but they are also computa-
tionally expensive, requiring millions of operations per input. This is particularly
challenging for always-on real-time embedded devices such as hearing aids that
have tight constraints on area, memory, and power (a few mW). However, in
deep neural networks a considerable portion of data processing might be omitted
without degrading the overall performance [188]. Therefore, pruning can substan-
tially reduce the amount of computations as well as memory accesses, and thus
enable inference at the edge. Moreover, dynamic pruning enables networks to
use parameters relevant for the current inputs, and to allocate a computational
budget at runtime, as opposed to a static approach. Nonetheless, it often results
in a varying number of computations from one timestep to another, making the
execution time unpredictable. This challenge is addressed in [C2] that proposes
a pruning algorithm based on a selection of the top K elements (neurons) out of
N , which ensures determinism and worst-case execution time guarantees that
are essential for real-time system. The work reports theoretical savings of up
to ∼ 70% of computations and memory accesses for a pruned gated recurrent
unit (GRU) [71] layer, without degrading the quality of the objective measures.
Such savings also lead to a substantial speedup of the inference. However, the
study is purely algorithmic and does not consider a hardware implementation
including how the top K elements are identified, and hence no assessment of
energy savings. These aspects are the topics addressed in this paper.

A straightforward solution to extract the top K elements is to sort the N elements
first and select a K subset afterwards. Nevertheless, sorting performs more work
than necessary and thus results in computational overhead as the top K elements
do not have to be in an order. Instead, an efficient data structure commonly
used to obtain a subset of the top K unordered elements is a binary heap [5]
that can be implemented with minimal storage requirements, O(K), using an
array (Figure 7.1), with the worst-case time complexity of O(N log K).
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Figure 7.1: An example of a min-heap with size K=7 and a corresponding
array representation.

In this work, we present an efficient low power implementation of a min-heap-
based hardware accelerator to support data-driven deterministic pruning of
neural networks on-the-fly. Our contributions are:

1) Applying a min-heap algorithm to select the top K neurons in every timestep.
Several other works use a heap such as [220, 149], but to our knowledge, none of
them for dynamic pruning of neurons during inference.

2) Designing and implementing a min-heap-based hardware accelerator, tested
on heap sizes ranging from K=35 to K=111, with N=512. The heap memory
is implemented as a 3-port (2R1W) standard cell-based memory (SCM) using
latches.

3) Evaluating the energy savings of the pruning on a GRU layer in a three-layer
network trained for speech enhancement (noise reduction). In order to relate our
post-synthesis results to the algorithmic study, we use the same network and
data and estimate the saved energy for a varying number of the top K elements
linked to different SNR improvements in [C2].

The experiments demonstrate that the impact of the min-heap-based accelerator
on the overall complexity is insignificant compared to the savings that can
be achieved. Furthermore, our heap implementation for obtaining the top K
elements can be used in any type of neural networks, such as convolutional
networks and Transformers [146].

7.2 PeakGRU Pruning Algorithm

PeakGRU turns dense matrix-vector multiplications into highly-sparse matrix-
vector multiplications, hence saving both multiply-accumulates (MACs) and
memory accesses [C2]. This is accomplished by selecting the top K elements
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out of N from the input vectors in every timestep. The current input vector
x(t), h(t − 1) and a vector of previously cached input values x̂(t − 1), ĥ(t − 2)
are subtracted, see (7.1) - (7.4), producing delta changes. The hat states, i.e.,
x̂(t − 1), ĥ(t − 2), are initially 0. The magnitude of the delta change must be
among the top K to be included in MACs, and the hat states are updated only
for the top K elements. The MACs are then executed with the top K delta
values, see (7.5) - (7.8), followed by generating the hidden state h(t) as in the
original GRU. One difference is a need for extra delta memory vectors M to keep
track of the delta changes. Therefore, the hat and memory states along with the
heap impose additional memory and computational overhead. However, this is
counterbalanced with significant savings of MACs and memory fetches in bigger
networks as shown in Section 7.6.

x̂(t) =
{

x(t) if |x(t) − x̂(t − 1)| among K

x̂(t − 1) otherwise
(7.1)

ĥ(t − 1) =
{

h(t − 1) if |h(t − 1) − ĥ(t − 2)| among K

ĥ(t − 2) otherwise
(7.2)

∆x(t) =
{

x(t) − x̂(t − 1) if |x(t) − x̂(t − 1)| among K

0 otherwise
(7.3)

∆h(t − 1) =
{

h(t − 1) − ĥ(t − 2) if |h(t − 1) − ĥ(t − 2)| among K

0 otherwise
(7.4)

Mr(t) = Wxr∆x(t) + Whr∆h(t − 1) + Mr(t − 1) (7.5)

Mu(t) = Wxu∆x(t) + Whu∆h(t − 1) + Mu(t − 1) (7.6)

Mxc(t) = Wxc∆x(t) + Mxc(t − 1) (7.7)

Mhc(t) = Whc∆h(t − 1) + Mhc(t − 1) (7.8)

r(t) = σ[Mr(t)] (7.9)

eu(t) = σ[Mu(t)] (7.10)

c(t) = tanh[Mxc(t) + r(t) ⊙ Mhc(t)] (7.11)

h(t) = u(t) ⊙ h(t − 1) + (1 − u(t)) ⊙ c(t) (7.12)
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Figure 7.2: A high-level system overview. The min-heap accelerator is marked
with a dashed rectangle, and only these modules are synthesized.

7.3 Binary Heap

A binary heap [5] is a binary tree structure where every level, except possibly the
lowest one, is completely filled (Figure 7.1). The insertion of elements is done
from left to right and level by level, ensuring a height-balanced tree. We employ
a min-heap where each node is numerically smaller than or equal to its child
nodes. If not, the elements must be swapped. The parent, left child, and right
child nodes in an array implementation are always stored at indices ⌊(i − 1)/2⌋,
(2 ∗ i) + 1, and (2 ∗ i) + 2, respectively, where i corresponds to the index of the
current node under processing. The leaf elements, i.e., nodes without children,
have indices starting from and including ⌊K/2⌋. A heap with K nodes has
⌈log2(K + 1)⌉ levels and O(log K) complexity of the insert operation as there
is at most one swap per level. There are two main heap functions that we will
refer to as i) heapify up when a heap is being built and hence is not filled yet
(bottom-up traversal), and ii) heapify down when a heap is already full (top-down
traversal). Heapify up swaps elements until i) new element’s parent is smaller
than or equal to the element, or ii) the element reaches the root. The starting
position of a new element is always at the next available leaf node. Once the
min-heap is filled, heapify down is used to insert new elements from the top. Each
new element is compared against the root that represents the smallest element
in a heap. If the new element is smaller than or equal to the root, it is dropped,
and no more action is required. If the new element is greater, it replaces the
root and begins its traversal down the heap until i) its child is bigger than or
equal to the element, or ii) it reaches the bottom and becomes a leaf node.

7.4 System Overview

A simplified overview of the whole system can be seen in Figure 7.2. The
min-heap accelerator performs pruning only; the computations are performed
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Figure 7.3: An overview of the control FSM and datapath of the heap logic
interacting with the heap memory and the rest of the system. The
control path is simplified for clarity.

by an existing digital signal processor (DSP) that contains a memory with a
96-bit vector interface [C1]. Further description of each logic block and the
heap memory is provided in the subsections below.

7.4.1 Input Logic

A more detailed view of the system is shown in Figure 7.3. The execution of the
system is triggered with a start signal coming from the DSP. The input logic has
two main functions: 1) Working as a 12:1 serializer. The input logic reads 96-bit
vectors consisting of twelve 8-bit keyword elements from the input memory. 2)
Creating element-index pairs. Each element from the serialized input vector is
concatenated with an index. The index is generated by a local counter and it
represents the element’s position among all N inputs ([0, N − 1]). The index
is needed for fetching corresponding weights during MAC operations. Once
the first element-index pair is ready for processing, the input logic triggers the
heap logic with another start signal.

The input logic has a local counter to keep track of the number of inserted
elements. When all N elements have been processed, a done signal is set high to
notify the DSP that the selection of the top K elements has been completed.
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7.4.2 Heap Logic

The communication between the input logic and heap logic is via an AXI-style
ready/valid streaming interface, where a high valid signal indicates that an
element-index pair is available for processing, and a high ready signal informs
about the ability to accept a next pair. Once a new element-index pair is received,
it is passed to the comparison (COMP) logic where the element is compared
against other elements already stored in the heap.

When the heap logic executes the heapify up function for the first element, the
element is directly inserted into the heap as the root. The subsequent elements
are then always compared against their parent node. Once the heap is filled,
the execution switches to the heapify down function. The first comparison is
always done against the root element. We use an extra register for storing the
root locally in order to avoid memory fetches, as the root is the most accessed
element in the heap. If the new element is smaller than the root, the element
will be immediately dropped and no more processing will be performed with the
element. The addresses (RA1, RA2, WA), i.e., heap locations, for reading and
writing data are generated based on the equations for parent and child indices
described in Section 7.3. Moreover, in our implementation a new element is
stored in a memory only when its correct location is found in order to reduce
memory accesses.

7.4.3 Heap Memory

A binary heap can be implemented with two major options for on-chip memories:
1) an addressable register array of flip-flops or latches (referred to as SCMs), and
2) an SRAM macro. SRAM macros usually require a full-custom implementation,
and the macros have to be developed for each technology using a dedicated
memory compiler [46]. The SRAM peripheral circuitry causes overhead for
smaller memories (< 8 kb) [127, 58] that are used in this work (< 2 kb). Moreover,
using SCMs enables operation at supply voltages in the near/sub-threshold
region where a standard 6T-SRAM does not operate reliably [58]. In addition,
SCMs can be easily ported to other technologies and merged with logic blocks,
realized with any number of read/write ports, read/write-logic style, word count,
and wordlength based on requirements. SCMs are therefore selected for our
accelerator. Our 3-port SCM design is based on [101]. It is realized with latches
as a storage element since latches use less area and power compared to flip-flops.
Read and write in our design have delay of one clock cycle.
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7.5 Experimental Setup

The three-layer neural network model used in our evaluations is the same as in
[C2], where it is a part of a setup that simulates internals of a hearing aid. The
network comprises of FC-GRU-FC layers, each having 512 output neurons. The
first FC layer uses a ReLU activation function on its output. The 512 outputs of
the last FC layer correspond to postfilter gains that are in the end applied on
the original signal. During pruning, a GRU layer is substituted with PeakGRU.

The input data is obtained by applying a 1024-point FFT on a 20 kHz noisy
speech y, i.e., clean speech and noise added together (y = s + n). The 512
resulting frequency sub-bands then serve as an input to the network, with a
new frame being provided every 25 ms. In this paper, the speech was obtained
from the VCTK Corpus [204] and Akustiske Database for Dansk [48], and the
noise from [128] (BusyStreet background). A frame from approximately the
middle of a 30-second long noisy speech was used for the experiments. The data
is statically quantized to 8 bits using a symmetric mode, i.e., the quantization
range is set as an absolute value between min/max. Since N=512 inputs and
outputs are used for a GRU, 9 bits are needed for indexing, making the final
element-index wordlength 17 bits.

The heap memory is implemented as a latch-based SCM with three ports to
reduce the number of cycles spent on the heapify down process since both child
nodes can be fetched simultaneously. The min-heap accelerator is synthesized
in 22 nm CMOS technology using four different heap sizes (K): 111, 83, 65,
and 35, corresponding to 21.68%, 16.21%, 12.7%, and 6.84% of the original
N=512 elements. The sizes were determined based on the acceptable SNR
degradation due to pruning [C2] that are further described in Section 7.6.2. It is
also important to emphasize that our focus is not high performance but very
low-power inference at edge devices instead. Therefore, power simulations were
run at 2 MHz and 0.6 V.

7.6 Results and Discussion

Two types of results are presented in this section: i) heap results in terms of
total area (kgates), latency (clock cycles), and dissipated energy (nJ), and ii) a
comparison of dissipated energy between the full and the pruned GRU hidden
layer.
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Table 7.1: Results of synthesis and power simulations. The area is the same
for both heaps as Kx==Kh.

Area
(kgates)

Energy X
(nJ)

Energy H
(nJ)

Cycle
count X

Cycle
count H

Heap
size
K

35 Logic 2.1 0.16 0.17 1,007 982Memory 5.3 0.18 0.15
65 Logic 2.1 0.20 0.20 1,257 1,261Memory 9.8 0.45 0.44
83 Logic 2.1 0.25 0.23 1,400 1,365Memory 12.4 0.56 0.53

111 Logic 2.1 0.29 0.28 1,556 1,573Memory 16.5 0.82 0.79

7.6.1 Heap Results

Table 7.1 shows the results of synthesis and power simulations for the x and
the h heaps, where Logic stands for heap logic and Memory for heap memory.
While the area of the heap logic is 2.1 kgates, the storage requirements range
from 5.3 - 16.5 kgates, making the area of the heap logic negligible for all the
configurations explored. The total energy per run is obtained by multiplying
power and latency. Both energy and cycle count are almost the same for both
heaps.

7.6.2 Energy Savings in a GRU Layer

The unprocessed speech has an SNR of 4.39 dB. The original network with a full
GRU layer results in an SNR improvement of 8.11 dB relative to unprocessed
speech. When applying the top K selection (where Kx==Kh), the same perfor-
mance is maintained down to K=111 elements. Processing fewer elements, e.g.,
83, 65, 35, reduces SNR improvement to 8.0 dB, 7.8 dB, and 7.0 dB, respectively
[C2]. These SNR improvement values become our energy evaluation points (see
Figure 7.4).

To put the results in perspective, we relate the cost of the accelerator to the
savings of MACs and memory accesses, executed by the DSP. The savings are
obtained by only processing the top K elements. To evaluate the benefit of using
the min-heap accelerator, we therefore need to determine the energy dissipation
of the DSP and memory during execution. To err on the safe side and obtain
results that are not biased from the use of a specific DSP, we consider only the
energy for performing MAC operations and memory accesses. All data is based
on the same 22 nm CMOS technology.



102
A Min-Heap-based Accelerator for Deterministic On-the-fly Pruning in

Neural Networks

512 
 (8.11dB)

111 
 (8.11dB)

83 
 (8.0dB)

65 
 (7.8dB)

35 
 (7.0dB)

Heap size (K) and SNR improvement (dB)

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l e
ne

rg
y 

(n
J)

Full GRU layer (MACs + memory accesses)
Pruned GRU layer (MACs + memory accesses)
Pruned GRU layer (additional overhead)
2x Heap (3-port latch-based SCM)

Figure 7.4: A comparison of dissipated energy for the full and pruned GRU
layer with different heap sizes using a 3-port latch-based SCM.

Memory accesses cover fetching 8-bit weights (SRAM), 8-bit inputs for the
GRU layer (SRAM), 17-bit inputs (8-bit elements, 9-bit indices) for the pruned
layer (SCM), and storing 512 8-bit results (SRAM). The overhead introduced by
fetching/storing the x̂, ĥ, and M states (SRAM) necessary for pruning is also
considered (light blue bars in Figure 7.4). The wordlength of the intermediate
(x̂, ĥ) and memory states (M) is assumed to be 8 and 24 bits, respectively. The
overhead also contains initial fetching of 512 8-bit x and h elements to perform
the top K selection for both inputs and hidden states.

The total energy (excluding biases) required for executing a single GRU timestep
is thus ∼ 2 µJ , as shown with a yellow bar in Figure 7.4. There is no degradation
for the pruned network down to 111 elements, translating to ∼ 436.94 nJ , which
is only ∼ 21.87 % of the original GRU energy. For 83, 65, and 35 elements, only
330.25 nJ , 261.77 nJ , and 147.48 nJ are required, respectively. This corresponds
to an energy reduction of 6.05-13.55×. The energy dissipated on the two
heap setups together is 2.17 nJ , 1.57 nJ , 1.29 nJ , and 0.66 nJ (red bars), while
∼ 14.19 nJ , 14.08 nJ , 14.01 nJ , and 13.9 nJ on the PeakGRU algorithm overhead
(light blue bars). These energy numbers are very small and thus practically
invisible in Figure 7.4. Therefore, the accelerator overhead is negligible, and the
energy savings are thus proportional to the amount of the skipped computations.
Such savings can enable a standard DSP to perform neural network inference,
which might otherwise not be an option due to the computational load. Moreover,
if the DSP has the necessary capacity, the energy dissipation reduced to 22%,
corresponding to no SNR degradation, offers a possibility to execute either i)
more complex networks, or ii) four equally complex networks. Our technique
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could also be used in systems where big hardware accelerators for dedicated
neural network processing are not an affordable solution.

7.7 Related Work

A hybrid heap priority queue architecture [76] developed for an FPGA stores
elements of each level of the heap in a separate on-chip BRAM. This method
enables parallel access to the elements, resulting in an insert operation in O(1)
time. Nevertheless, the heap needs to precalculate a path from the leaf node
to the root and fetch all the elements in the path from corresponding BRAMs.
This approach increases the number of memory accesses that are among the
most costly operations [73]. In [35] the authors propose heap management
algorithms that can be pipelined to achieve high throughput. The downside of
this approach is increased hardware complexity. A bitonic sort-based algorithm
called bitonic-top-k is introduced in [171]. However, this massively parallel
algorithm targets GPUs (and GPU-based frameworks like TensorFlow) where
its complexity O(N log2 K) can be hidden. The closest to our use case is [248]
that prunes data in Transformer neural networks on-the-fly based on importance
scores. It consists of two parallel top-K engines with a quick-select module that
randomly selects a pivot to partition the input array, running iteratively until
the Kth largest element is found. Although the average time complexity of
quick-select is O(N), it has considerably higher memory requirements O(N) than
a heap O(K), with a worst-case time complexity of O(N2) compared to heap’s
O(N log K). All the presented designs offer a solution for the top K selection,
however, their algorithmic/hardware overhead is too high for our budget and
application.

7.8 Conclusion

The paper presented a hardware accelerator for on-the-fly pruning in neural
networks. The accelerator selects the top K neurons within a layer of N neurons.
A constant K value results in a deterministic and bounded execution time,
an important property in real-time systems such as hearing aids. Firstly, we
identified a min-heap-based algorithm as an attractive solution for this task due to
its efficient space and time complexity. Secondly, we designed an accelerator using
a 3-port latch-based SCM to store the K elements. Finally, we demonstrated
that the energy dissipated by the accelerator is negligible (∼ 0.5% of the total
energy) in comparison to the energy saved by pruning (up to 93%), while the
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corresponding degradation of the SNR improvement ranges from 0 - 1.11 dB. We
evaluated the min-heap accelerator on a GRU, but it can be applied in other
types of neural networks. The accelerator is implemented in a 22 nm CMOS
process.
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Abstract
Recurrent neural networks are well-suited for sequential tasks such
as speech enhancement. However, their performance comes with
high computational complexity and latency. This impedes their
deployment to battery-powered and resource-constrained hearing
instruments that need to operate for 16-18 hours daily at only a few
milliwatts. In this paper, we introduce PeakEngine, a configurable
ASIC accelerator that decreases the amount of computations and
memory accesses, and thus latency, in a gated recurrent unit by
means of adaptive inference. The reduction is achieved by on-the-fly
pruning that selects the top K elements based on magnitudes of
delta changes across timesteps from both input and hidden state
sequences. Since K is constant, it results in a deterministic execution
time. The experiments show that PeakEngine dissipates 11.83 µJ per
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inference for the baseline (unpruned) network and only 4.14-5.04 µJ
for the pruned networks, with maximum acceptable degradation
to no degradation in the improvement in audio quality and intelli-
gibility. Moreover, the inference is on average sped up 2.2-2.97×,
hence meeting the real-time requirements imposed by a hearing in-
strument application. To the best of our knowledge, PeakEngine is
the first ASIC accelerator for deterministic and dynamic pruning in
recurrent neural networks targeting hearing instruments and speech
enhancement.

Index Terms— PeakEngine, speech enhancement, hearing instruments, RNNs,
min-heap, top K, dynamic pruning, determinism.

8.1 Introduction

Understanding speech-in-noise is critically important yet one of the biggest prob-
lems for hearing instrument (HI) users [152, 23, 83]. Speech enhancement (SE)
addresses this issue by attenuating the background noise, thus improving speech
quality and/or intelligibility. Traditional methods for SE are very advanced but
most of them heavily rely on domain knowledge [163], such as requiring unknown
a priori Signal-to-Noise Ratio (SNR), or assuming that speech and noise are
uncorrelated. This is not the case for deep neural networks (DNNs) that learn
directly from the data and have already demonstrated their superior performance
for SE over the traditional methods [9, 64, 63, 42].

Recurrent neural networks (RNNs) are an attractive solution for SE due to their
powerful capabilities of processing sequential data. This is possible thanks to their
feedback connection that is shared between timesteps. The feedback connection
enables RNNs to retain information, making them superior for applications
that use data with temporal structures, such as video processing [108], natural
language processing [81], translations [106], and speech recognition [61]. The
two most typical variants of RNNs are a Long Short-Term Memory (LSTM) [20]
and a Gated Recurrent Unit (GRU) [71].

At the same time, RNNs suffer from high computational complexity and latency.
Since the sequences are dependent on each other, they cannot be processed
simultaneously, which prevents exploiting parallelism. Moreover, the dominant
operation in RNNs is a matrix-vector multiplication that grows quadratically
with the number of hidden units, which consequently increases the amount of
memory accesses, latency, and power consumption. As shown in [73], memory
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accesses dominate over arithmetic operations in terms of energy dissipation,
and thus become the biggest bottleneck in RNNs. All these issues impede the
deployment and execution of RNNs in low-power and resource-constrained HIs
that operate with a few milliwatts (mW) and require audio latency below 30 ms
[30, 259] to ensure optimal sound quality and comfort. Moreover, they need to
last around 16-18 hours every day [44] on a miniature-sized battery. Therefore, in
order to enable RNN inference in HIs, it is crucial to reduce multiply-accumulates
(MACs) and corresponding memory accesses that are the main sources of power
consumption and latency.

A typical approach to decrease the number of memory accesses (and consequently
MACs) is static pruning. Static pruning compresses the size of the original model
by permanently removing weights that contribute very little to the final outcome.
A myriad of pruning methods have been proposed throughout the years, as
surveyed in [209, 243]. Some of the RNN approaches include magnitude-based
and load-balance-aware pruning of weights using an empirical threshold [129],
structured pruning with a learnable threshold [214], and iterative compression
of randomly selected weight blocks [221]. Static pruning of RNNs is generally
challenging as a recurrent unit is shared across all the timesteps. Compressing
the unit thus impacts all the steps in the sequence. Permanently discarding
weights destroys the original network structure which may lead to decreased
capability, representation power, and efficiency of a model [243, 253]. It has
also been shown that small SE networks have difficulties learning the necessary
relationship between the noisy features and the target SNRs [31].

Dynamic pruning, on the other hand, is a data-driven approach, where computa-
tions are conditioned on the input at runtime. Dynamic pruning on its own does
not reduce the model size. However, it counterbalances this issue with several
other advantages [253] that are missing in static models such as 1) Efficiency
- allocating computations on demand at runtime, 2) Representation power -
identifying ”easy” and ”hard” samples and hence computational redundancy, 3)
Adaptiveness - achieving a desired trade-off between accuracy and efficiency at
runtime, and 4) Generality - seamlessly adapting to a wide range of applications.

An example of dynamic pruning includes an accelerator in [248] that prunes atten-
tion layers in transformer neural networks using the top cumulative importance
scores. Furthermore, temporal sparsity based on a threshold is exploited in several
works. These include [202] that skips state updates using also a skip-criterion,
[182] that prunes hidden state vectors in LSTMs, and [138] implemented as GRU
[215] and LSTM [252] accelerators, where dense state vectors are substituted with
their sparse delta versions obtained as a temporal difference across two adjacent
timesteps. However, the actual computation time in all of these state-of-the-art
threshold-based dynamic pruning approaches is unpredictable, which is an issue
for real-time systems like HIs.
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To the best of our knowledge, none of the existing accelerators supports dynamic
pruning of RNNs that results in deterministic inference, targeting HIs and
relevant use cases such as SE. Our accelerator fills this gap and offers adaptive
yet computationally predictable inference that is absent in the state-of-the-art
RNN accelerators. The main contributions of this work are:

1. Min-heap engine, a low-area and energy hardware unit that selects the top
K elements in a stream of N elements, where N > K. The engine is used
to support our deterministic PeakRNN [C2] pruning algorithm. Moreover,
its application is versatile and not limited to neural networks only.

2. PeakEngine, the first ASIC accelerator for HIs that enables deterministic
on-the-fly pruning of RNNs. PeakEngine is configurable and portable thanks
to its standard interfaces, and it encompasses the Min-heap engine.

3. A thorough investigation of PeakEngine for different K values with regard
to saved energy and reduced latency.

4. A bit-accurate software framework for parameter space exploration of
different Q formats, wordlengths, and K values for GRU-based and fully
connected neural networks.

The rest of the paper is structured as follows. Section 8.2 provides the necessary
background for the PeakRNN algorithm, while Section 8.3 describes the algorithm
itself. Section 8.4 introduces an emulated HI setup used for experiments with
SE. Information about the DNN architecture, datasets, and training is stated
in Section 8.5. Section 8.6 details the PeakEngine design and Section 8.7 talks
about the software framework. The experimental setup is described in Section
8.8. Section 8.9 presents and discusses the results as well as comparisons to
state-of-the-art works. Finally, Section 8.10 concludes the paper.

8.2 Background

This section presents the original GRU [71] and DeltaGRU [138] algorithms on
top of which our modified version called PeakGRU [C2] is built.

8.2.1 GRU Algorithm

A GRU (see Figure 8.1) has a feedback connection called a hidden state h(t)
that maintains both short- and long-term dependencies. It is controlled by two
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Figure 8.1: An illustration of a GRU. The multiplications with weight matrices
and summations of the partial dot products are excluded for clarity.

internal gate mechanisms, reset r(t) and update u(t) gate, that regulate the flow
of information in the unit using sigmoid (σ) activation function, see (8.1)-(8.2).
A GRU processes two types of inputs: i) an input sequence x(t) for the current
timestep, and ii) a sequence of previous hidden states h(t − 1). The sequences
are multiplied with their respective weight matrices W and summed with bias
values b. The reset gate then determines how much of the past information
should be forgotten. The relevant past information, on the other hand, is
stored in a candidate state c(t) that applies hyperbolic tangent (tanh) activation
function, see (8.3). The update gate decides on the importance of both the past
information, h(t − 1), and the new information, c(t), as shown in (8.4). Finally,
a new hidden state h(t) that also serves as an output for the current timestep is
generated.

r(t) = σ(Wxrx(t) + Whrh(t − 1) + br) (8.1)

u(t) = σ(Wxux(t) + Whuh(t − 1) + bu) (8.2)

c(t) = tanh(Wxcx(t) + r(t) ⊙ (Whch(t − 1)) + bc) (8.3)

h(t) = u(t) ⊙ h(t − 1) + (1 − u(t)) ⊙ c(t) (8.4)

Based on (8.1)-(8.3), the number of matrix-vector multiplications (and corre-
sponding memory fetches) in a GRU can be expressed as

3 × (XH + H2), (8.5)

where X and H correspond to the dimensions of input sequences x(t) and h(t−1),
respectively. The computational complexity grows quadratically with respect
to the h(t − 1) that consequently increases the number of memory accesses and
hence power.
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8.2.2 DeltaGRU Algorithm

DeltaGRU, also called Delta Networks [138], dynamically reduces the number
of MAC operations and memory fetches by transforming a dense matrix-vector
multiplication into a highly-sparse matrix-vector multiplication in every timestep,
as shown in (8.6)-(8.17).

x̂(t) =
{

x(t) if |x(t) − x̂(t − 1)| > Θ
x̂(t − 1) otherwise

(8.6)

ĥ(t − 1) =
{

h(t − 1) if |h(t − 1) − ĥ(t − 2)| > Θ
ĥ(t − 2) otherwise

(8.7)

∆x(t) =
{

x(t) − x̂(t − 1) if |x(t) − x̂(t − 1)| > Θ
0 otherwise

(8.8)

∆h(t − 1) =
{

h(t − 1) − ĥ(t − 2) if |h(t − 1) − ĥ(t − 2)| > Θ
0 otherwise

(8.9)

Mr(t) = Wxr∆x(t) + Whr∆h(t − 1) + Mr(t − 1) (8.10)

Mu(t) = Wxu∆x(t) + Whu∆h(t − 1) + Mu(t − 1) (8.11)

Mxc(t) = Wxc∆x(t) + Mxc(t − 1) (8.12)

Mhc(t) = Whc∆h(t − 1) + Mhc(t − 1) (8.13)

r(t) = σ[Mr(t)] (8.14)

u(t) = σ[Mu(t)] (8.15)

c(t) = tanh[Mxc(t) + r(t) ⊙ Mhc(t)] (8.16)

h(t) = u(t) ⊙ h(t − 1) + (1 − u(t)) ⊙ c(t) (8.17)

The dense-to-sparse transformation is achieved by applying a threshold Θ on
the magnitude of input change across adjacent timesteps, see (8.6)-(8.9). The
magnitude of change, i.e., the absolute value of the delta change, is calculated
by subtracting previously cached inputs, x̂(t − 1) and ĥ(t − 2), from the current
inputs, x(t) and h(t − 1). The initial value of hat states x̂(t − 1) and ĥ(t − 2)
is 0. The magnitudes above Θ are then selected, and their actual subtraction
results are used in MACs as ∆x(t) and ∆h(t − 1), as shown in (8.10)-(8.13). The
hat state updates are subsequently only performed for the magnitudes above Θ.
DeltaGRU needs additional delta memory states M to track the delta changes
across timesteps. Finally, a new hidden state h(t), see (8.17), for the current
timestep is generated the same way as shown in (8.4) in Section 8.2.1.
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The hat and memory states inflict memory and computational overhead. However,
this is compensated with substantial reduction of MACs and memory fetches as
demonstrated with PeakGRU in Section 8.9.

8.3 PeakGRU Algorithm

Our PeakGRU algorithm builds on the top of DeltaGRU. This section describes
the differences between the two approaches, and explains how PeakGRU is
efficiently realized in hardware.

8.3.1 Top-K Magnitudes

PeakGRU and DeltaGRU share the underlying computations in (8.6)-(8.17). The
difference between the two algorithms is in the method of how the ∆ elements
are obtained in (8.8)-(8.9). While DeltaGRU uses a threshold-based approach,
PeakGRU selects the top Kx and the top Kh subsets of elements from x(t) and
h(t − 1) sequences, respectively, as shown in (8.18)-(8.21).

x̂(t) =
{

x(t) if |x(t) − x̂(t − 1)| among Kx

x̂(t − 1) otherwise
(8.18)

ĥ(t − 1) =
{

h(t − 1) if |h(t − 1) − ĥ(t − 2)| among Kh

ĥ(t − 2) otherwise
(8.19)

∆x(t) =
{

x(t) − x̂(t − 1) if |x(t) − x̂(t − 1)| among Kx

0 otherwise
(8.20)

∆h(t − 1) =
{

h(t − 1) − ĥ(t − 2) if |h(t − 1) − ĥ(t − 2)| among Kh

0 otherwise
(8.21)

This modification is illustrated in Figure 8.2, where ∆x(t) is calculated across
three timesteps, along with the propagation of x̂(t − 1). The matching colors
in x(t) and x̂(t) vectors denote the updates of x̂(t − 1) with x(t). The same
visualization applies to ∆h(t − 1) and ĥ(t − 2).

Since the number of elements to process is known in advance, the actual compu-
tation time in PeakGRU is deterministic. This is an important characteristic for
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Figure 8.2: An example of calculating a sparse delta vector along with the
hat states across three timesteps (t1-t3) for x(t) using PeakGRU.
X=4, Kx=2, and the black vertical lines around the subtraction
represent absolute value.

real-time and resource-constrained embedded devices, where the worst-case exe-
cution guarantees are imperative. Moreover, since the algorithm selects elements
based on the range of inputs and not a threshold, it is robust to the variations
in data compared to the threshold-based approaches such as DeltaGRU [138].

8.3.2 Top-K Selection

Processing only the top K elements offers numerous advantages but it also
imposes a challenge of how the elements should be selected. For instance,
sorting the N elements first and selecting a top K subset afterwards would cause
unnecessary computational and memory overhead since the order of elements is
irrelevant. Instead, a binary heap [5] can be used for efficient selection, imposing
i) minimal storage requirements O(K) when implemented as a simple array, and
ii) low worst-time computational complexity O(N log K).

A binary heap is a complete binary tree, where all the levels (⌈log2(K + 1)⌉)
are fully filled, except possibly the deepest one, as shown in Figure 8.3. The
elements are inserted into the heap from left to right and level by level, with the
worst-time complexity of O(log K) per element, which corresponds to a swap
across all the heap levels. The nodes in the deepest level (leaves) start at index
⌊K/2⌋. To support PeakGRU, we employ a min-heap binary tree, where all
the nodes within a level are numerically greater than or equal to their parent
nodes in the level above. The parent, left, and right child nodes in an array
implementation have indices ⌊(i − 1)/2⌋, (2 ∗ i) + 1, and (2 ∗ i) + 2, respectively,
where i is the index of the current node.

In our design, the very first data is directly inserted into the min-heap. Subsequent
data becomes a leaf and is compared against its parent node. It is traversed up
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Figure 8.3: An example of a min-heap with K=7 and its memory implementa-
tion as a simple array, where the last level is not fully filled (index
6).

the tree (swapped) until numerically smaller than the parent, or the root - the
smallest element in the min-heap - is reached. Once the min-heap is full, the
data is inserted from the top. The first comparison is hence always done against
the root. If the new data is smaller than/equal to the root, it is immediately
skipped, and no more comparisons are needed. Otherwise, it replaces the root
and is swapped with one of its child nodes until it is greater or becomes a leaf
node.

All these operations are executed by the proposed Min-heap engine that is used
to support the PeakGRU algorithm. However, the engine design is not tied to
the algorithm or neural networks, and it could be applied in many other contexts
such as priority queues [76] and data compression [37].

8.3.3 Top-K Storage

An on-chip implementation of the min-heap memories can be realized with either
1) a standard-cell based memory (SCM), i.e., an addressable array of flip-flops
or latches, or 2) an SRAM macro. Since the memory requirements for our
min-heaps are small (3.25 kb each) and below the break-even point with SRAMs
[127, 58], SCMs (with latches) are selected for storing the top Kx and Kh values.
Furthermore, we use 3-port (2R1W) SCMs to parallelize min-heap computations
(fetching of the child elements). Our SCM design is based on [101].
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Figure 8.4: The overview of the gain-based SE system in a HI used for the
experiments, where the DNN generates postfilter gains g(f, t).

8.4 Hearing Instrument Application

Deterministic on-the-fly pruning supported in PeakEngine is demonstrated in
a SE task. The subsections below present details about the emulated HI setup
and objective metrics used for evaluating the performance of the system. The
setup is based on our previous work on the PeakGRU [C2] algorithm.

8.4.1 Speech Enhancement System

A DNN architecture described in Section 8.5.1 is used in a gain-based single-
microphone SE system that simulates the inner parts of a HI. The system is
illustrated in Figure 8.4, where a DNN substitutes a traditional signal processing-
based module for generating postfilter gain values g(f, t), with f and t corre-
sponding to a frequency bin and time-frame, respectively. The input for a DNN
is generated by preprocessing samples (i) of a noisy 20 kHz single-microphone
signal y(i) in an Analysis Filter Bank (AFB), where the noisy signal is clean
speech s(i) corrupted with noise n(i). The AFB applies a 1024-point FFT and a
square-root Hanning window, downsampling the time-domain microphone signal
to 40 Hz and producing a time-frequency representation y′(f, t). In our specific
scenario, the result is a new frame of 512 frequency bin values every 25 ms
without overlapping. The y′(f, t) values are passed to a DNN that generates
512 postfilter gain values g(f, t). The gain values are applied on the noisy signal
y(i) to obtain an estimate ŝ(i) of the clean speech magnitude spectrum s(i).
Finally, the Synthesis Filter Bank (SFB) reconstructs the time-domain signal
and forwards the result to the speaker.
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8.4.2 Objective Measures

To evaluate the performance of a DNN under a varying number of the top K
elements and full- and reduced-precision, the HI system in Figure 8.4 is extended
with postprocessing. The postprocessing phase saves the enhanced signals from
the SFB along with their corresponding clean speech and noise that are used for
calculating three objective metrics:

• Perceptual Evaluation of Speech Quality (PESQ) - evaluates the quality of
noisy speech by estimating Mean Opinion Score (MOS). MOS is judged
using a discrete scale of 1 (bad) to 5 (excellent). The result is an average
of these ratings. Mean Opinion Score - Listening Quality Objective (MOS-
LQO) [25] is used as a unit.

• Speech Test of Objective Intelligibility (STOI) - evaluates the intelligibility
of noisy speech (ability to recognize word, syllables, etc.), and it thus
produces a scalar value in a range of 0 to 1, where 1 corresponds to fully
intelligible speech.

• Signal-to-Noise Ratio (SNR) - compares the level of a desired signal to the
level of background noise, expressed in dBs.

PESQ and STOI approximate human ranking and thus replace time-consuming
and expensive listening tests [50].

8.5 DNN for Speech Enhancement

After introducing the HI and SE setup, we can now focus on the DNN itself, the
selected architecture, datasets, as well as training procedure. The architecture
and datasets were also used in our original algorithmic study [C2].

8.5.1 DNN Architecture

The neural network used in the experiments consists of three layers. The first
and the last layer are fully connected (FC), and the hidden layer is a GRU. Each
of the layers has 512 output neurons. A non-linearity is introduced after the first
FC layer with the ReLU activation function. The GRU layer is swapped with a
PeakGRU layer to evaluate and compare the performance and computational
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savings of the two methods against each other. A GRU accounts for a significant
part (75%) of the vectorized operations, i.e., MACs and memory accesses, while
the remaining 25% accounts for both of the two FC layers.

8.5.2 Dataset

A noisy DNN input, y, is created by combining 30-second segments of clean
speech, s, with noise, n, i.e., y = s+n. The resulting noisy speech has up to three
speakers with a silence gap of approximately 300 ms and up to 30% overlap to
mimic a regular conversation. The speech dataset is composed of VCTK Corpus
[204] and Akustiske Database for Dansk [48]. Thirteen noise environments
were selected to represent a wide variety of the typical daily situations. These
were obtained from EigenScape [128] (Beach, Busy Street, Park, Pedestrian
Zone, Quiet Street, Shopping Centre, Train Station, Woodland), and Demant’s
database (Bar, Cafe, Canteen, Car, Office). Additionally, two stationary types
of noise, pink and white, were simulated. The 25-hour noisy speech consisting of
both left and right channel data is divided into training (19.5 h), validation (2.7
h), and test (2.7 h) subsets.

8.5.3 Training Target and Hardware-Aware Training

The DNN learns to match its output against a linear Ideal Ratio Mask (IRM)
target. IRM represents an ideal scenario, i.e., when speech and noise are
perfectly separated. The IRM outputs a continuous gain value between [0, 1]
that is computed as a ratio between the magnitude of a clean speech signal and
a sum of the magnitudes of the clean and noise signal:

IRM =
(

|s(f, t)|
|s(f, t)| + |n(f, t)|

)
, (8.22)

where s(f, t) and n(f, t) are the time-frequency representations of the clean
speech and noise, respectively. The error between the IRM and the postfilter
gain values estimated by the DNN is obtained with the mean squared error loss
function. The baseline DNN with a GRU layer, i.e., when all computations
are performed, was trained in TensorFlow using 32-bit floating-point with a
batch size of 128, where each input sequence was 2.5 seconds long (100 samples).
The trained parameters were then transferred to the PeakGRU network for
inference to i) replace computationally demanding and tedious training from
scratch, ii) enable a fair comparison of both methods, and last but not least to
iii) simulate a real-world scenario, where new weights would not be transferred
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to a HI whenever a different number of K values should be processed. Instead, a
single, robust DNN model capable of executing both a full and a pruned model
should be used while still delivering sufficient performance in terms of objective
measures. Naturally, retraining the model for a specific number of K values
further improves its performance, as also demonstrated in our previous work
[C2].

In order to prepare a DNN for inference in a hardware environment with limited
precision and computational resources, several hardware-aware constraints were
incorporated into the training. Firstly, the weights are limited to the [-1, 1] range.
Secondly, a challenge is represented by the activation functions. For instance, the
output of ReLU can theoretically be within a range of [0, +∞]. While a 32-bit
floating point is sufficient to handle large numbers, a fixed-point representation
needs too many bits on the integer part. Therefore, we use Capped ReLU that
applies a maximum upper bound (in our case 6). Furthermore, computing sigmoid
(σ) and hyperbolic tangent (tanh) activation functions would be expensive due
to their exponential terms:

σ(x) = 1
1 + e−x

(8.23)

tanh(x) = ex − e−x

ex + e−x
(8.24)

Typical methods for computing these functions are based on piecewise linear/non-
linear approximations [39], lookup tables (LUTs) [158], and hybrid techniques
[45]. Although LUTs outperform the other methods in terms of speed as they
require the fewest computations, they require additional area, which, depending
on the necessary precision, might grow into a significant overhead. Therefore,
we train the DNN and run inference with approximated versions called hard
sigmoid and hard tanh that are expressed as:

σ(x) =


0, if x <= −2.5
1, if x >= 2.5
0.2 × x + 0.5, otherwise

(8.25)

tanh(x) =


−1, if x <= −1.25
1, if x >= 1.25
0.75 × x, otherwise

(8.26)

In terms of hardware, each of these approximations requires only one multiplier
and two comparators (and an adder for σ(x)). Moreover, whenever the input
value exceeds the upper and lower bounds, the output values are immediately
saturated without performing any further computations.
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Figure 8.5: Potential concurrency that can be exploited in (a) PeakGRU and
(b) GRU, where blue, red, and green correspond to operations in
the Peak Unit, the Mac Unit, and the Activation Unit, respectively.

8.6 PeakEngine Design

This section presents architectural design choices (Section 8.6.1) and describes
the design of PeakEngine (Section 8.6.2) along with implementation details
(Section 8.6.3).

8.6.1 Architectural Design Choices

PeakEngine is designed to support both dense and dynamically pruned GRU
layers with a focus on low energy, resource sharing, and configurability to make
DNN inference viable in HIs. Each of these points is further described below.

Opportunities for parallelism

The architecture of PeakEngine is tailored for the needs of GRU and PeakGRU.
It is derived from (8.10)-(8.17) and (8.18)-(8.21) that can be grouped based
on functionality, suggesting three core units in the system: 1) Peak Unit -
selecting the top K elements (8.18)-(8.21), 2) Mac Unit - computing dot products
(8.10)-(8.13), and 3) Activation Unit - producing M states and output activations
(8.14)-(8.17). Further analysis of the equations shows intrinsic parallelism and
dependencies between these units, also illustrated in Figure 8.5(a).
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PeakGRU computation begins with finding the Kh subset (Step 1). Thereafter,
a dot product with ∆h(t − 1) (and weights) is obtained, while the selection of
the top Kx is executed in parallel (Step 2). Once dot products with all ∆h(t − 1)
for the first neuron are produced, the operations for an output activation start
(loading previous memory states Mhc(t − 1)). Computations of dot products
with ∆x(t) commence as well - assuming that the Kx subset is available (Step
3). Completing a dot product with all ∆x(t) enables computation of Mr(t),
Mu(t), and Mxc(t) memory states, and consequently r(t), u(t), and c(t) terms,
along with the first output activation h(t). Concurrently, ∆h(t − 1) dot product
computations for the next neuron begin (Step 4). Steps 4-5 are repeated until all
output activations have been computed (Step 6). This means that the current
timestep for PeakGRU is completed, and the system will start again from Step
1 in the next timestep. The steps are almost identical for the baseline GRU
in Figure 8.5(b). The main difference is the absence of the K subsets, which
reduces the flow by one step. Also, no M states are produced.

The computations in the Peak Unit and the Mac Unit can be further refined.
While the insertion into the min-heap is carried out, delta changes for the
subsequent neurons are calculated. Such optimization minimizes idle time and
maximizes hardware utilization. Similarly, when the K subset stored in the
min-heap is used in the Mac Unit, the fetched data (specifically an index of each
K, i.e., a neuron index) is simultaneously used to update x̂(t) and ĥ(t − 1) in
(8.18)-(8.19). This avoids expensive re-fetching of the same data. The hat update
operations can thus be coupled with the Mac Unit, producing an UpdateMac
Unit in PeakEngine.

This analysis leads to a design of five hierarchically interacting units (FSMDs).
Such a co-operation results in optimized execution of GRU-based layers and
reduced processing time at negligible hardware costs. The FSMDs are orches-
trated by the Main FSM that handles a coarse-grain top control, as shown in
Figure 8.6(a). The final PeakEngine architecture can be seen in Figure 8.6(b).

Minimizing energy

High-speed processing is not a driving factor in low-power devices such as HIs.
Instead, some HIs may operate at lower clock frequencies and need to finish
computations just ”in time”. When the units complete the execution before
the timestep is over, they idle and still consume a certain amount of dynamic
and static (leakage) power. Moreover, memories - that DNNs heavily rely on
- are often the major source of leakage. Such factors have a significant impact
on battery-powered wearables like HIs. Therefore, we employ clock-gating and
memory retention techniques to prevent additional leakage and energy dissipation
when PeakEngine idles.
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Resource-sharing and reuse

To accomplish the objective of minimizing hardware resources yet completing the
execution of DNNs in time, it is necessary to perform additional optimizations
on multiple levels. Firstly, we only use single-port SRAMs to minimize area.
Secondly, we employ multiple smaller memories instead of a single shared one,
which enables the proposed units to operate concurrently. Most of the memories
are shared among multiple units. The scheduling of memory accesses in the
five co-operating FSMDs minimizes memory access conflicts and stalling. The
memory accesses are time-multiplexed via memory management units (MMUs)
to guarantee that only one unit accesses any memory at any given point in time.
Finally, our small Mac unit represents a trade-off between area and computations
with a focus on minimum hardware resources, while still delivering parallelized
dot product computations.

Configurability

It is essential to enable the execution of different DNN configurations (type of
layers/activation functions, number of neurons, etc.) to provide the necessary
flexibility. Therefore, PeakEngine is configurable (see Section 8.6.3.1) and sup-
ports, among others, three layer types (FC, GRU, PeakGRU) and four activation
functions (ReLU, Capped ReLU, hard sigmoid, and hard tanh).

8.6.2 Top-Level Architecture

Figure 8.6(b) shows a high-level architecture of PeakEngine with the arrows
representing a simplified dataflow. Besides the previously mentioned MMUs,
SRAMs, and the three main units (Peak, UpdateMac, Activation), the top level
consists of a configuration module (Config), a clock management unit (CMU ) for
coarse-level clock-gating, and a power management unit (PMU) for the retention
of SRAMs. Model parameters are stored in a big SRAM WB outside PeakEngine.
All these modules are further described in Section 8.6.3.

The accelerator communicates with the Master Processor via a 24-bit advanced
peripheral bus (APB) interface that is used for writing and reading configuration
registers in the Config module. This includes writing the start nne register
to trigger the execution of PeakEngine and reading the nne done register to
check whether the accelerator has completed inference for the current timestep.
PeakEngine has two other interfaces i) a 32-bit memory interface (MEM ) for
writing inputs and reading the final results for the current timestep stored in
SRAM X and SRAM H, and reading weights and biases from SRAM WB, and ii)
a clock and reset interface (CLK/RST ). Thanks to these three generic interfaces,
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PeakEngine is easily configurable and can be ported to any system that supports
such communication.

8.6.3 Implementation

This subsection describes details about the main modules and submodules in
the system.

8.6.3.1 Config

PeakEngine is configurable, i.e., all network parameters can be specified at runtime
by writing configuration registers via the APB interface. These parameters are:
the number of inputs, layers, and neurons per each layer, layer and activation
type, starting weight address for each layer, K values to process in a PeakGRU
layer, input and result locations (SRAM X, SRAM H ), and a fixed-point format
per layer, along with the previously mentioned start nne and nne done registers.

8.6.3.2 SRAMs and MMUs

SRAM X and SRAM H are 1,536-word memories that store 16-bit inputs,
outputs, and hat states in separate memory blocks. Corresponding MMU X and
MMU H track which of the blocks should be used for reading and writing in
different layers. If neural network inference is not needed, the memories can be
reused to store other data for a HI.

SRAM WB stores up to ∼ 2.07 MB of 96-bit vectors composed of 12×8-bit model
parameters (see Table 8.1). When smaller networks are executed, the unused part
of the memory can be utilized for another purpose. SRAM WB is implemented
as eleven memory banks of 16,384 words each. Unused memory banks are put
into a retention mode during inference. For GRU and PeakGRU, each bias and
weight vector is a concatenation of four r, u, and c terms, which enables four
new h(t) states to be calculated simultaneously.

SRAMs are supplied by the foundry and operated on two supply voltages: 0.6 V
(logic) and 0.8 V (bit cells). All memories in the system (including SCMs) have
a delay of one clock cycle for both read and write.
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Figure 8.7: A simplified overview of the Delta and MinHeap submodules.

8.6.3.3 Peak Unit

The Peak Unit consists of two main submodules, Delta and MinHeap (see Figure
8.7), MMU Heap, and two SCMs for storing the top Kx and Kh elements. If a
PeakGRU layer is not used in a neural network, the entire module is clock-gated
by CMU.

PeakEngine executes inference on a per-layer basis and performs the top K
selection in parallel with computations in other layers. For instance, while
the first FC layer in the demonstrated DNN performs MACs, the Peak Unit
meanwhile selects the top Kh values for ∆h(t − 1). Similarly, when MAC
operations with ∆h(t − 1) values are performed in the PeakGRU layer, the
selection of Kx for ∆x(t) begins. Hence, the latency of selecting the top K
elements in both cases is hidden. We also optimize the algorithm by skipping the
selection of Kh in the first timestep since both the hidden and hat states are 0.

Delta

This unit performs the subtraction, absolute value, and comparison operations
in (8.18)-(8.19). It reads x(t), x̂(t − 1), h(t − 1) and ĥ(t − 2) from SRAM X and
SRAM H. The unit has registers for storing a tuple composed of sign-magnitude-
index data, where the sign of the subtraction is necessary for decoding the
magnitudes later during the MAC operations. Furthermore, only non-zero data
is passed to MinHeap. We optimize the delta algorithm by skipping subtractions
in the first timesteps when x̂(t − 1) and ĥ(t − 2) are still 0.
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MinHeap

MinHeap selects the top K elements by utilizing a min-heap data structure (see
Section 8.3.2). The K elements are stored as 26-bit tuples (sign-magnitude-index)
in the 3-port latch-based SCM X and SCM H that consist of 128 words each.
Since the root is the most accessed element in the min-heap, we store it locally
to avoid unnecessary memory fetches. To further reduce memory accesses, we
write a new element to a memory only when its correct position in the heap is
found.

Mac and MinHeap alternate their access between the two SCMs. While the Mac
module reads data from SCM X, MinHeap uses SCM H for the top Kh selection,
and vice versa. Hence, both SCMs are fully utilized. To optimize subsequent
multiplications, the amount of inserted non-zero Kx and Kh elements is stored
locally as they can be fewer than K specified in the Config.

8.6.3.4 UpdateMac Unit

It receives input data from either i) SRAM X or SRAM H for GRU and FC
layers, or ii) SCM X or SCM H for a PeakGRU layer. In the latter case, it
checks the sign of the sign-magnitude-index input tuple to extract the original
value stored as a magnitude. This value is needed for the multiplications in the
Mac unit.

Mac

The Mac submodule loads biases and performs vectorized multiplications between
inputs and weights. It utilizes i) output stationary technique, where the twelve
intermediate dot products are kept in local registers until the final result has been
computed, which is then passed to the Activation Unit, and ii) input parallelism,
where the input is used for twelve multiplications at a time.

For GRU and PeakGRU layers, the accumulators store four r, u, and c dot
products. While the accumulators for r and u hold the final weighted sum,
the accumulators for c always keep the results of multiplications with either
the input or hidden state vector at a time since these are not directly summed
together, as shown in (8.3) and (8.16). The four partial c weighted sum are
passed to the Activation Unit. The weights for PeakGRU are fetched based on
the extracted tuple index.
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for the GRU and PeakGRU layers.

HatUpdate

This small submodule updates x̂(t) and ĥ(t − 1), see (8.18)-(8.19). It is triggered
only when a new K input, for which a hat update has not been performed yet,
has been fetched. If a PeakGRU layer is not used, HatUpdate is clock-gated.

When a new element is fetched from one of the SCMs for a MAC operation,
its index is stored in a small local buffer. The hat update process requires two
cycles to update a single hat value. Firstly, it fetches x(t) or h(t − 1) based on
the stored index. Then a write is initiated in the next clock cycle to update x̂(t)
or ĥ(t − 1) with the previously fetched value, where the address is generated
using the same index.

8.6.3.5 Activation Unit

It consists of Activation (see Figure 8.8), MMU M, and SRAM M. When a DNN
does not contain a PeakGRU layer, SRAM M is powered down.
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Activation

This unit uses 16 registers for storing the MAC results; twelve primary for all
the layers, and four secondary specifically for the GRU and PeakGRU layers to
temporarily store the c dot products as described in the Mac submodule.

When a FC layer is processed, the MAC results are extracted and stored in the
primary registers. The twelve output activations are calculated and written one
by one to a memory (SRAM X or SRAM H ) defined in the Config module. If
no activation function is specified, the final result will be extracted directly from
the weighted sum.

For GRU and PeakGRU, output activations are computed in a 6-stage pipeline
illustrated in Figure 8.8. As shown in (8.13) and in Figure 8.5(a) for PeakGRU,
previous 24-bit Mhc delta memory values are fetched from 2,048-word SRAM M
and added to the dot product with ∆h(t − 1). Once the multiplications with
∆x(t) are completed, the results are written to the primary registers. Thereafter,
previous Mr, Mu, and Mxc states are fetched from SRAM M, updated, and
stored back while the pipeline runs. We optimize the memory accesses and
computations by skipping zero M states in the first timesteps.

8.7 Parameter Space Exploration Framework

A bit-accurate in-house software framework supporting FC, GRU, and PeakGRU
layers was developed to find the most optimal wordlengths, Q formats, and
K values for DNNs executed on PeakEngine. It was also used to verify the
accelerator outputs. The framework contains identical modules as PeakEngine
to mimic it bit-accurately during inference. It supports both floating-point
and custom fixed-point formats, where the latter is based on the library in
[263]. The framework contains a configuration file where wordlengths and Q
formats can be defined independently for the network inputs, weights (and
biases), outputs, accumulators, and M states. The formats of the remaining
intermediate terms are derived automatically based on the other wordlengths
specified. The framework supports the creation of a neural network with any
number of layers, where each layer is defined as: layer type, number of outputs,
activation function, and K value for a PeakGRU layer. The framework performs
quantization of network inputs and model parameters, and stores the DNN
outputs for the subsequent postprocessing phase. During inference, it exploits
multiprocessing to run several noisy speech recordings concurrently and hence
speeds up the fixed-point execution.
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Table 8.1: Final wordlength and Q format values used in the presented experi-
ments.

Wordlength Q format
DNN inputs 16 Q1.15

PeakGRU magnitudes 16 Q3.13
Hat states 16 Q2.14

Input/Output Activations 16 Q2.14
Weights/biases 8 Q2.6
Accumulators 26 flexible

M states 24 Q8.16

Table 8.1 shows the selected configuration where almost no drop in the objective
measures (SNR, PESQ, and STOI) compared to its hardware-aware model (see
Section 8.5.3) was observed. The framework was validated against TensorFlow
with a maximum error of 10−6 (floating-point).

8.8 Experimental Setup

The PeakEngine accelerator is evaluated by executing two main DNN architec-
tures:

1. The baseline model with a GRU layer that performs all computations every
timestep.

2. The PeakGRU-based model that performs a subset of computations every
timestep based on the top K values. Various K values were tested.

The objective of the PeakGRU is, besides reducing computations and power
consumption, to decrease latency and hence make real-time inference of big DNNs
possible. At the same time, it is important to ensure that the impact of the
reduced computations on the objective measures is within acceptable boundaries.
Therefore, the selection of the top K values was guided by both i) the need to
fit within a specified time window, and ii) the amount of degradation in the
improvement of the objective measures. The following four top K configurations
were selected for the final hardware tests: {128, 96, 64, 48}. K=128 represents a
setup with no performance degradation compared to the baseline GRU, while
K=48 corresponds to improvements in SNR and PESQ, but no improvement in
STOI compared to the unprocessed speech. Lower top K values than 48 result
in worse STOI than the unprocessed speech. The same number of K values is
used for both input and hidden state sequences, i.e., Kx==Kh.
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Table 8.2: Required memory and obtained improvements (∆) in objective
measures compared to the unprocessed speech for: 1) 32-bit floating-
point model (FP) [C2], and 2) fixed-point model (FX) running on
PeakEngine. The (*) denotes approximated values based on [C2].

GRU
512

Peak
K=128

Peak
K=96

Peak
K=64

Peak
K=48

Representation FP FX FP* FX FP* FX FP* FX FP* FX
#Params 2,099,712

Memory (MB) 8.01 2 8.01 2 8.01 2 8.01 2 8.01 2
∆SNR (dB) 8.11 7.81 8.14 7.89 8.07 7.78 7.8 7.46 7.48 7.09

∆PESQ (MOS-LQO) 0.43 0.42 0.41 0.41 0.39 0.39 0.36 0.36 0.32 0.32
∆STOI 0.039 0.037 0.032 0.031 0.026 0.024 0.013 0.007 0.003 0.000

When PeakEngine completes inference, it idles until the 25 ms have elapsed and
the Master Processor writes new data to SRAM X or SRAM H. Our objective is
low-power inference and completing computations ”in time” instead of achieving
extremely low latency and idling for the remainder of the timestep. Therefore,
the design operates at a low clock frequency to utilize the majority of the
25 ms window. Several timesteps of a 30-second noisy speech with Busy Street
background noise are used for the demonstration of PeakEngine for all the setups.
The results are presented in Section 8.9.

8.9 Results and Discussion

The PeakEngine design (including SRAM WB) was synthesized in a 22 nm ultra
low leakage CMOS process for a 4 MHz clock frequency. The entire system uses
ultra high density and ultra low leakage SRAMs that are supplied by the foundry
and operated on two supply voltages: 0.6 V (logic) and 0.8 V (bit cells).

This section presents results in terms of area, energy, latency, memory require-
ments, and objective measures for the tested configurations. They are divided
into three main subsections: A. comparison between the algorithmic study [C2]
and the hardware implementation of GRU and PeakGRU, B. comparison when
PeakEngine executes GRU- and PeakGRU-based DNNs, and C. comparison of
PeakEngine against previous works.

8.9.1 Algorithmic vs Hardware Implementation

Table 8.2 compares 32-bit floating-point DNN models (FP) from the algorithmic
study [C2] and our fixed-point DNN models (FX) executed by PeakEngine
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PeakEngine (1.8%)
245 kgates

SRAM WB (98.2%)
13481 kgates(a)

Delta (0.8%)
2 kgates

SCMs (21.6%)
53 kgates

MinHeap (1.2%)
3 kgates

Mac (7.8%)
19 kgates

HatUpdate (0.4%)
1 kgates

Activation (11.8%)
29 kgates

SRAM M (22.0%)
54 kgates

SRAM X and SRAM H (27.8%)
68 kgates

Miscellaneous (6.5%)
16 kgates

(b)

Figure 8.9: Area breakdown of (a) the entire system and (b) PeakEngine only.

in terms of memory requirements and relative improvements in the objective
measures to the unprocessed speech. The FX models use wordlengths from
Table 8.1. The objective measures for most FP models are derived from the plots
in [C2] (marked with *), since those experiments were executed for a different
number of K than our final experiments. The unprocessed speech has starting
values of 4.39 dB (SNR), 1.85 MOS-LQO (PESQ), and 0.83 (STOI).

As shown in Table 8.2, the FX models have almost the same performance as
the FP DNNs, while being better suited for hardware inference due to their
fixed-point nature. The differences between the two corresponding models cannot
be perceived in audio recordings. The knee point in [C2], i.e., when the PeakGRU
configurations show the first decrease in performance, is around K=111 for SNR.
Until then the measures are unchanged. Considering the reported PESQ, the
actual knee point is already around K=128, matching the FX model. The FP
and FX results are therefore comparable, where 4× less memory is needed for
8-bit FX models, corresponding to 6 MB saved.

8.9.2 PeakGRU vs GRU

Area

Figure 8.9 shows the area breakdown of PeakEngine (a) with SRAM WB and
(b) without SRAM WB in kgates. As expected, the majority, i.e, 98.22% of
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Figure 8.10: Comparison of total energy for GRU and four PeakGRU configu-
rations per inference, further divided into static and dynamic.

the whole area (13,726 kgates, 2.95 mm2) is dominated by the large SRAM
WB (13,481 kgates, 2.9 mm2), while the accelerator itself only represents the
remaining 1.78% (245 kgates, 0.053 mm2). Almost 30% of the PeakEngine area
(Figure 8.9(b)) is used by SRAM X and SRAM H for storing inputs, results,
and hat states. The Activation and Mac modules used for all layer types
occupy ∼ 20%. The PeakGRU-related modules, i.e., the Peak Unit (Delta, SCMs,
MinHeap), HatUpdate, and SRAM M, comprise 46.1% of the area, where the
SCMs and SRAMs clearly dominate. The total PeakGRU overhead area is in
general insignificant (113 kgates), especially when compared to the obtained
energy savings described next. Small modules such as MMUs, Config, and CMU
along with the logic in the top level are summed together and represented as
Miscellaneous. They account for only 6.5% of the area.

Energy

Our energy evaluations are divided into two parts: i) comparing the total savings
in terms of static and dynamic energy to see the overall affect of pruning (Figure
8.10), and ii) comparing the savings of dynamic energy for all the configurations
(Figure 8.11).

Figure 8.10 shows the total energy dissipation (y-axis) of PeakEngine together
with SRAM WB for different configurations (x-axis) as stacked bars. In total,
the baseline GRU DNN dissipates 11.83 µJ per inference compared to only
5.04-4.14 µJ for the PeakGRU configurations. The energy is further divided
into static and dynamic, where the static energy clearly dominates for all five
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Figure 8.11: Comparison of dynamic energy for GRU and four PeakGRU
configurations per inference.

configurations (66.7%, 71.1%, 72.1%, 73.5%, and 74.4%, left to right). Almost
all the static energy comes from SRAM WB. Although the PeakGRU algorithm
targets dynamic pruning, it also assists in decreasing the total leakage by 54.6-
61%, i.e., from 7.89 µJ (GRU) to only 3.58-3.08 µJ per inference. These savings
are a result of completing the inference faster and consequently putting SRAM
WB into retention along with clock-gating the PeakEngine modules. Without
the leakage of SRAM WB, PeakEngine in total dissipates 4.08 µJ for GRU and
only 1.56-1.16 µJ for the PeakGRU configurations per inference.

Figure 8.11 shows the total dissipated dynamic energy per inference, where our
objective was minimizing energy spent on weight memory accesses and MACs
that dominate the computations. GRU dissipates 3.94 µJ per inference. MACs
account for 0.78 µJ and weight memory accesses for 2.66 µJ, which corresponds to
19.8% and 67.5% of the total dynamic energy. All the PeakGRU-related modules
are clock-gated in the GRU setup, namely the Peak Unit (Delta, SCMs, MinHeap)
and HatUpdate, while the unused SRAM M is powered down. A noticeable
portion of dynamic energy (0.34 µJ, 8.5%) is spent on SRAM X and SRAM H
memory accesses. The Activation and the rest of the system (Miscellaneous)
constitute only 1.5% (0.057 µJ) and 2.2% (0.09 µJ) of the total, respectively.

PeakGRU DNNs dissipate only 1.46-1.06 µJ per inference. Although the PeakGRU-
related modules (light blue bar) are clock-gated in the GRU DNN, at the same
time, they dissipate less than 0.028 µJ per timestep for each of the four K
configurations, while saving 2.26-2.6 µJ of the original dynamic energy spent on
MACs and memory fetches. Moreover, as it can be noticed in Figure 8.11, the
PeakGRU configurations also decrease ∼ 55.2-67.1% of dynamic energy spent on
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SRAM X and SRAM H (yellow bar). This reduction corresponds to fewer x(t)
and h(t − 1) reads since their delta versions for the MAC operations are fetched
from smaller and cheaper SCMs instead. Activation and Miscellaneous dissipate
only ∼ 0.03 µJ and ∼ 0.07 µJ, respectively.

Latency

The baseline GRU model performs 2,097,152 MACs and 175,104 96-bit vector
memory fetches of weights to compute 512 gain values every timestep. Approxi-
mately 75% of both MACs (1,572,864) and vector memory fetches (131,072) are
needed for the GRU layer itself. Executing this amount of computations and
memory fetches is not only energy-intensive, but it also exceeds the real-time
budget of 30 ms when running at a low clock frequency necessary for HIs. The
baseline GRU DNN executes inference in 44.04 ms, where the GRU layer needs
∼ 33 ms and each FC layer ∼ 5.52 ms. Pruning considerably reduces the total
inference latency down to ∼ 20-14.83 ms (2.2-2.97×), i.e., below both the limit
and the 25 ms input data rate defined in Section 8.4.1. PeakGRU layers require
only ∼ 8.8-3.7 ms, which is comparable with or even below the latency of a FC
layer. The latency of the first FC layer in the PeakGRU DNN slightly increases
to ∼ 5.68 ms. This is a result of configuring the inputs and outputs of the first
FC layer to be stored in the same memory (SRAM X). Hence the Mac unit is
stalled for few cycles every time Activation writes the final outputs. This setup
enables a fast selection of the top Kh elements since the other memory (SRAM
H ) is only accessed by the Peak Unit.

Overall, the achieved reductions enable DNN inference to be completed within
the real-time and energy budget of a HI.

8.9.3 PeakEngine vs State-of-the-Art

Table 8.3 shows a comparison of PeakEngine to the state-of-the-art accelerators.
These span a wide variety of pruning (model compression, skipping updates/-
computations) and non-pruning techniques, target different platforms (FPGAs,
microcontrollers, ASICs), network architectures, use cases, and requirements
in terms of latency, power consumption, and model size. All the stated ASIC
accelerators report synthesis results.

The EdgeDRNN [215] accelerator is most similar to our work in terms of pruning
approach, network type, and the number of MAC operations. It utilizes threshold-
based Delta Networks [138], a GRU layer, and performs eight multiplications per
cycle. The weights are stored in an off-chip memory. However, the accelerator
is developed for FPGA platforms, consumes 2.3 W, and targets extremely low
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latency in the range of µs. Additionally, the computation time is unbounded due
to using a threshold-based pruning.

SpAtten is [248] an ASIC accelerator that focuses on dynamic pruning in huge
transformer neural networks [146] for natural language processing tasks. It also
applies the top K selection, however by using a quick-select algorithm instead.
Nonetheless, the average and worst-case time complexity of quick-select is O(N)
and O(N2), compared to the min-heap’s O(1) and O(N log K), respectively.
Moreover, quick-select requires significant memory space O(N), while the min-
heap only O(K). Furthermore, SpAtten runs at 1-2 GHz and comprises of two
parallel top-K engines that together perform 1,024 MACs. This considerably
higher parallelism results in area of 18.71 mm2, excluding huge memories for
storing 345 million weights, and it has a total power consumption of 8.3 W.

TinyLSTM [214] also focuses on supporting RNNs for SE in HIs. The authors
reduce computations and memory accesses via static pruning and additionally
introduce a scheme for skipping LSTM state updates, which can be seen as a
form of dynamic temporal pruning. While the application and use case match
perfectly with ours, this work does not propose an actual hardware accelerator.
Instead, the STM32 microcontroller with ARM Cortex-M7 is used to run the
inference, consuming 0.54 W.

The E-PUR ASIC accelerator [172] targets the execution of large LSTM networks
(1-272 MB) in low-power mobile devices for various use cases such as video
classification, speech recognition, and neural machine translation. Table 8.3
states the biggest supported model (272 MB) that is used for machine translation.
The smallest model demonstrated for speech recognition (LibriSpeech dataset)
uses 4× Bi-directional LSTMs and requires 42 MB of weight memory. The
accelerator does not apply pruning. Instead, it exploits a novel technique, called
Maximizing Weight Locality (MWL), that improves the temporal locality of the
synaptic weights. E-PUR provides 14 MB of on-chip memory - 8 MB for weights
to store one layer at a time (MWL applied) and 6 MB as intermediate storage.
The area and average power consumption of the accelerator itself, excluding the
large off-chip memory, are 64.6 mm2 and ∼1 W (averaged across applications),
which is amenable for mobile devices, however, not for HIs.

Another ASIC accelerator called SHARP is presented in [258]. Like E-PUR [172],
it is demonstrated on the same models (smallest 40 MB) and use cases, and does
not apply any pruning method. The accelerator is benchmarked for different
LSTM dimensions as well. SHARP also emphasizes the importance of adaptive
computations, however, via a tiled-based dispatching mechanism to handle the
data dependencies, and not via dynamic pruning. Table 8.3 again shows the
biggest supported network. SHARP provides 26 MB of on-chip weight memory to
store one LSTM layer at a time and 2.3 MB of buffers. The smallest configuration
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has 1,000 MACs, an area of 101.1 mm2, and consumes 8.1 W (averaged across
applications) - all infeasible for HIs.

Last but not least, the Skip [182] ASIC accelerator for edge devices performs
dynamic pruning of hidden state vectors in an LSTM unit. The proposed method,
however, requires training and cannot be applied directly during inference like
PeakGRU. Additionally, it focuses on language modeling task, i.e., predicting
a next word in the sequence. The authors do not report total power or energy,
only the area of 1.1 mm2, energy efficiency and peak performance compared to
previous works.

Our proposed PeakEngine serves as a first ASIC accelerator for dynamic and
deterministic pruning of RNNs that targets HI applications and the SE use case.
The example configuration with K=128 (Peak128, Table 8.3) consumes 29 µW
without the big weight memory and 202 µW in total. PeakEngine has a small
total area of 2.95 mm2 while supporting big DNNs within the given time and
energy constraints. The weight memory occupies 2.9 mm2 and the accelerator
itself only 0.053 mm2. PeakEngine is configurable and easily portable, and it can
be used as a co-processor to a typical digital signal processor in HIs to take off
the neural processing workload from the system. Overall, PeakEngine is suitable
for low-power and resource-constrained embedded devices such as HIs.

8.10 Conclusion

This paper presented PeakEngine, a configurable ASIC accelerator for low-power
edge devices, such as HIs, that supports dynamic and deterministic pruning
of input and hidden state sequences in a GRU layer. This is accomplished
via the top K element selection by utilizing the small and efficient Min-heap
engine. The algorithm-hardware co-design of the PeakGRU algorithm and
PeakEngine significantly reduces total energy and latency up to 2.86 × and
2.97 ×, respectively, making the energy-efficient and real-time execution of even
bigger RNNs viable within the constraints imposed by HIs. The accelerator
was demonstrated in the SE task, and it could be used as a co-processor to a
typical digital processor found in HIs. Additionally, we developed a framework
for parameter space exploration to identify the most suitable data wordlength,
Q formats, and K values for DNNs executed by PeakEngine. The accelerator
is synthesized in a 22 nm CMOS technology and evaluated at a 4 MHz clock
frequency while operating at two supply voltages: 0.6 V (logic) and 0.8 V (bit
cells). It occupies 0.053 mm2 without the weight memory and 2.95 mm2 in total.
To the best of our knowledge, PeakEngine is the first ASIC accelerator for
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low-power dynamic and deterministic pruning of RNNs that targets support of
HI-relevant use cases such as SE.



Chapter 9

Conclusion

This thesis was written as a collection of five papers presented in Chapters 4-8.
The following sections summarize the contributions of the papers (Section 9.1),
outline several ideas for future research (Section 9.2), and state a couple of final
remarks on the topic of the explored algorithms as well as neural networks for
hearing instruments in general (Section 9.3).

9.1 Summary

The presented papers can be thematically divided into two main areas:

1. Algorithms - Development of computationally-efficient deep learning algo-
rithms

2. Hardware - Design and implementation of custom hardware accelerators
for deep learning algorithms

Therefore, together, the papers form an algorithm-hardware co-optimization
approach for embedded deep learning, where the proposed algorithms significantly
reduce the amount of computations and the custom hardware accelerators
efficiently support the optimized algorithms.
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9.1.1 Deep Learning Algorithms

Chapters 5 and 6 proposed deep learning algorithms for pruning that reduced the
amount of computations dynamically during inference in recurrent and attention
layers, respectively. While the PeakRNN and StatsRNN algorithms in Chapter 5
were demonstrated on the SE task using GRU-based DNNs, the Delta algorithm
in Chapter 6 pruned FC-based MHSA layers in a TNN trained for KWS. Both
works showed that using the proposed pruning techniques resulted in significant
savings of up to 70% for SE and 80% for KWS in terms of MACs and memory
accesses without degrading the original evaluation metrics. Such computational
savings make execution of DNNs viable in low-energy and battery-powered
devices such as hearing instruments. Moreover, PeakRNN offers determinism,
worst-case execution guarantees, and robustness to the variations in input data
since it selects a constant number of top elements every timestep. Last but
not least, the patent application for PeakRNN and StatsRNN algorithms was
successfully granted [O2].

9.1.2 Custom Hardware Accelerators

The hardware implementation of deep learning algorithms was explored in
Chapters 4, 7, and 8. A dedicated and configurable neural network accelerator
for FCNNs was introduced in Chapter 4. It implemented a novel two-step scaling
technique for efficient quantization of output activations on-the-fly. The method
ensures deterministic execution for any arbitrary FCNN without impacting
latency. The accelerator was demonstrated on the KWS task, and it outperformed
a typical digital signal processor in all aspect, including power consumption,
memory accesses, and area (5×, 5.5×, and 3.7× less). Chapters 7 and 8 focused
on the PeakRNN algorithm. While Chapter 7 presented a Min-heap-based engine
for the efficient selection of the top K elements, Chapter 8 introduced PeakEngine,
a configurable accelerator that encompasses the Min-heap engine and supports
inference of both dense and pruned DNNs. The experiments on the SE task
showed that the area and energy overhead of the Min-heap engine and other
PeakRNN -related modules together is insignificant compared to the achieved
energy savings of 57.4-65% when running the pruned DNNs. Additionally, the
original latency was decreased 2.2-2.97×, making a real-time execution of big
DNNs feasible within the time constraints imposed by a hearing instrument.
The most area- and energy-dominating factor was a big SRAM that stored the
weights for a DNN.
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9.2 Future Work

This section discusses possible extensions and improvements of the current work.
A few preliminary studies for some of the suggestions have been conducted, as
described in Subsection 9.2.4 and 9.2.5.

9.2.1 Memory Leakage

As shown in Chapter 8, dynamic energy can be significantly reduced with our
algorithm-hardware co-optimization. However, the (weight) memory leakage is a
dominating factor of the total energy. Putting unused memories into a retention
mode saved a substantial amount of energy. The PeakRNN (also referred to as
PeakGRU ) algorithm considerably contributes to these savings since as soon as
the inference is done, the system idles, including the weight memories.

To alleviate this issue further, the weights could be reorganized and the efficient
heap sort algorithm could be applied to sort the top K elements based on
indices, allowing even more memory banks to be put into retention - and
for a longer period of time. Another solution that also reduces area is to
combine dynamic pruning with weight compression, while still preserving large
enough representation power of a DNN. The compression could be achieved via
several well-established techniques such as network architecture search, knowledge
distillation, or the previously mentioned static pruning.

9.2.2 Pruning of FC layers

The main goal of our study was to prune a computationally intensive GRU layer
that has a quadratically growing complexity with respect to the hidden state
h(t). In the case of our tested networks (Chapters 5, 7, and 8), 75% of the total
number of MAC operations and vector memory fetches are needed by a GRU,
while the remaining 25% by the two FC layers together. We reduced the number
of processed values (top K) by 4-10.7×, which resulted in comparable or even
lower latency (∼ 8.8-3.7 ms) than for a FC layer (∼ 5.52 ms), thus making the
FC layers a bottleneck in the system.

Therefore, we could adapt the PeakGRU algorithm to the needs of an FC layer,
which would actually correspond to simplifying the equations (5.1)-(5.8) to
computing only x̂(t) and ∆x since FC layers do not have a feedback connection,
and hence do not need any delta memory M . The only overhead would therefore
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be x̂(t). We already demonstrated the power of the Delta algorithm (Chapter 6)
on the FC-based attention layers in a TNN. Furthermore, PeakGRU could be
easily adjusted to LSTMs as they are very similar to GRUs.

9.2.3 Smaller DNNs

The results in Chapter 8 (and Chapter 7) proved that the area and energy
overhead of the PeakGRU -related modules and memories is negligible. Therefore,
the method and the PeakEngine will be also tested on smaller networks to study
the trade-off between the reduced number of computations (and latency) and
the algorithm overhead. This study will also help us to observe the performance
knee point for different DNNs and use cases.

9.2.4 Additional DNNs, Datasets, and Use Cases

The PeakGRU algorithm and the PeakEngine were demonstrated on GRU-based
DNNs and the SE task. They can, however, be both applied to other use cases
as well as network architectures.

The future work therefore involves experimenting with PeakGRU on different
DNN architectures, use cases, and datasets. Some of our preliminary studies on,
e.g., KWS using GRU-based DNN topologies from [147] and GSCD [178] indicate
that 50% (Kh=77) of computations and memory accesses from even the smallest
setup with 154 hidden states can be skipped without any accuracy degradation,
and 74% (Kh=40) while decreasing the accuracy by only ∼1.74% (the starting
accuracy is ∼91.1%) when reusing weights from the baseline GRU. Similarly for a
bigger network with 400 hidden states [147], only 75% of computations (Kh=100)
are necessary to achieve 90.4% accuracy. When the networks are trained for
a specific number of K elements, the reductions can be pushed even further.
For instance, reducing 91% of operations (Kh=14) in the smallest network still
produces high 88% accuracy.

9.2.5 Adaptive Thresholding

Chapter 5 explored a threshold-based pruning technique, StatsRNN, that tries
to mimic the behavior of PeakRNN, i.e., selecting the top K elements every
timesteps. The thresholds for input and hidden state sequences in StatsRNN
are derived based on a dataset analysis that is performed prior to inference.
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Ideally, the thresholds should not be static as the environment around us changes
constantly, which impacts the fluctuations between the desired and the actual
selected number of K elements every timestep. Hence, the thresholds should
adapt to these changes as well.

We have studied this behavior and performed preliminary experiments with
adaptive thresholding. The baseline idea of adaptive thresholding is simple. If
the number of processed elements deviates from the desired K elements within
tolerable boundaries, the threshold is preserved. However, if the number of
processed elements is too high or too low, the thresholds are increased and
decreased for the next timestep, respectively. Additionally, in our experiments,
the amount of threshold tweaking was proportional to the deviation from the
ideal K number of elements - the bigger the deviation, the higher/lower the
threshold. The experiments showed promising results, especially for a low number
of K values (e.g., ∼5% and 10% of the total operations), where the performance
was on par with PeakRNN. However, the fluctuations from one timestep to
another were still significant, which became prominent in regions with a higher
K value. Therefore, further analysis and simulations are required to find the
right feedback-loop control mechanism and amount of tweaking to achieve a
relatively stable number of processed elements every timestep.

9.3 Final Remarks

Although the PeakGRU algorithm was developed to reduce the amount of
computations in DNNs and hence save energy, it could find its application in
other scenarios and areas.

For instance, a hearing instrument runs on a miniature battery that needs to last
for almost an entire day. If the battery is low, the number of the processed top
K values could adapt accordingly so that less energy is spent on running a DNN
- while accepting a certain degradation of audio quality/overall performance.
Therefore, the top K selection would be guided by the needs of the battery
instead of the most optimal number of K elements for different environments.

Another example is signal processing and a use case of identifying the most likely
direction of the sound, as shown in Figure 9.1). All the arrows in the figure mark
possible sound targets, while the red arrows indicate the actual sound direction.
In order to find the most likely target, we need to calculate a likelihood function
for all the directions, i.e., the elements of a dictionary. However, the number
of elements in a dictionary might sometimes exceed the number of likelihood
functions that can be computed. Therefore, it could be beneficial to apply a
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scheme such as PeakGRU to select and only evaluate K likelihood functions out
of N dictionary elements.

Figure 9.1: An illustration of the possible target sound directions, with the
red arrows denoting the actual sound target.

In general, the potential of DNNs is vast. If we look into the future, we could
envision a hearing instrument trained to specific voices, which would improve a
speech-in-noise listening experience even further. Moreover, other sensors such as
Electrooculography (EOG) and Electroencephalography (EEG) could be embedded
into a hearing instrument to steer the directionality of the device in situations
with multiple sound sources. For instance, in a face-to-face communication,
human speech perception depends on both auditory and visual information [255].
With EOG, the eye movement of the hearing instrument user could be used to
amplify the voice of the person that the user is looking at [156]. Lip-reading
information [245, 224] can be also retrieved via a video/images. Since visual
information is not affected by acoustic distortions, both approaches would be
particularly beneficial in difficult listening situations. Furthermore, recent studies
have shown that brain signals might also be extracted via EEG electrodes placed
in the ear canal [251], referred to as Ear-EEG.

Yet, in order to exploit the power of DNNs directly in devices such as hearing
instruments, it is of prime importance to co-design efficient hardware architectures
and deep learning algorithms. This is the challenge we have tried to tackle in our
research. We believe that with this project, we have made a step closer towards
the future with intelligent, DNN-based, and energy-efficient hearing instruments
capable of providing seamless adaptation in daily life and, as a result, a highly
personalized and user-friendly experience for the hearing instrument users.
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