

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

Pareto-Optimal Trace Generation from Declarative Process Models

Diaz, Juan F.; López-Acosta, Hugo-Andrés; Quesada, Luis; Rosero, Juan C.

Published in:
Proceedings of the 11

th
 International Workshop on DEClarative, DECision and Hybrid approaches to processes

(DEC2H 2023)

Link to article, DOI:
10.1007/978-3-031-50974-2_24

Publication date:
2024

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Diaz, J. F., López-Acosta, H-A., Quesada, L., & Rosero, J. C. (2024). Pareto-Optimal Trace Generation from
Declarative Process Models. In Proceedings of the 11

th
 International Workshop on DEClarative, DECision and

Hybrid approaches to processes (DEC2H 2023) (pp. 314-325). Springer. https://doi.org/10.1007/978-3-031-
50974-2_24

https://doi.org/10.1007/978-3-031-50974-2_24
https://orbit.dtu.dk/en/publications/8d930c0d-e916-4b9f-9760-6923cd5eac04
https://doi.org/10.1007/978-3-031-50974-2_24
https://doi.org/10.1007/978-3-031-50974-2_24

Pareto-Optimal Trace Generation from Declarative
Process Models

Juan F. Diaz1, Hugo A. López2, Luis Quesada3, and Juan C. Rosero1⋆⋆

1 Universidad del Valle, Cali, Colombia
{juanfco.diaz,juan.camilo.rosero}@correounivalle.edu.co

2 Technical University of Denmark
Kongens Lyngby, Denmark

hulo@dtu.dk
3 Insight Centre for Data Analytics, Cork, Ireland
luis.quesada@insight-centre.org

Abstract. Declarative process models (DPMs) enable the description of busi-
ness process models with a high level of flexibility by being able to describe
the constraints that compliant traces must abide by. In this way, a well-formed
declarative specification generates a family of compliant traces. However, little is
known about the difference between different compliant traces, as the only cri-
terion used for comparison is satisfiability. In particular, we believe that not all
compliant traces are alike: some might be sub-optimal in their resource usage. In
this work, we would like to support users of DPMs in the selection of compliant
and optimal traces. In particular, we use Dynamic Condition Response (DCR)
graphs as our language to represent DPMs, extending it with a parametric defi-
nition of costs linked to events. Multiple types of cost imply that different traces
might be optimal, each according to a different cost dimension. We encode cost-
effective finite trace generation as a Constraint Optimisation Problem (COP) and
showcase the feasibility of the implementation via an implementation in MiniZ-
inc. Our initial benchmarks suggest that the implementation is capable of provid-
ing answers efficiently for processes of varying size, number of constraints, and
trace length.

Key words: Declarative Process Models, DCR graphs, Constraint Optimization
Problems, Multi-Objective Optimization

1 Introduction

Starting from the seminal works of Pesic [1], declarative process models have been de-
scribed as an alternative to provide flexibility in the orchestration of business processes.
By describing a process in terms of its constraints, all non-compliant executions can be
filtered (see Fig. 1, left-hand side). This flexibility allows knowledge workers to take
discretionary decisions based on the nature of the case, knowing that any path they take
will be compliant with the requirements of the process, for instance, laws or medical
guidelines.
⋆⋆ Alphabetical order, equal author contribution

2 Rosero et al.

Fig. 1. Optimization of DPMs: constraints define the frame where valid executions live (left
graphic), but even within the conforming space, some executions are more desirable than others
(where optimality is denoted by color range in the right-most graphic).

In our previous work [2], we showcased different application cases where discern-
ing between compliant executions is necessary. Our inspiration comes from helping
consultants and case workers plan executions using declarative process models. Con-
sider a patient-handling process as an example. A dentist needs to decide whether to
apply preventive, interception, or corrective treatments depending on the impact on the
patient, as well as other criteria (for instance, the associated cost). Not all the compliant
treatments will be the same: some will be more cost-effective than others (depicted as
the green regions in Fig. 1). Moreover, there will be cases in which different notions
of costs play against each other. Consider a green-transition legislation process, where
users are recommended to change to low-polluting technologies. Shifting from a gaso-
line car to an electric car will reduce the CO2 expenses in the commuting process, but
it will increase the economic cost for a family that already has a gasoline car.

Our contribution We introduce a method to identify the best traces in a declarative
process model according to Pareto optimality. Our method is summarized in Figure 2.
In this case, we take a declarative process model (using the DCR graphs [3] modeling
notation), extended with multiple cost annotations for each event in the model, and a
maximum trace length. The algorithms presented in this paper encode the generation of
cost-effective traces as a constraint optimization problem, so, in case the model has a
solution within the maximum trace length that dominates one of the cost dimensions, it
will be part of the output. For our optimization problem, we only consider finite traces.
This means that even if the DCR models considered in the input can generate omega-
regular executions, only finite traces will be considered. This restriction obeys practical
user needs. In our interactions with industry users of DCR graphs in the public and
private sectors, they are less interested in a universe of traces. Instead, they are inter-
ested in value-driven traces, those that finish a case eventually. Similar considerations
have been considered for other declarative process languages [4]. Similarly, finite ex-
ecutions (finished cases) are an assumption commonly used when working in process
discovery and conformance checking. To showcase the feasibility of our approach, we
have implemented the COP in MiniZinc [5]. Our initial benchmarks suggest that the
implementation can provide answers efficiently for processes of varying size, number
of constraints, and trace length.

Pareto-Optimal Trace Generation from Declarative Process Models 3

Fig. 2. Visual abstract of our approach. Our inputs (left-hand side) include a DCR graph, the
maximum trace length, and a resource assignment. For our outputs (right-hand side) we generate
a set of traces that are optimal in at least one cost dimension.

Paper structure We finish Section 1 presenting related work. In Section 2 we provide
background to DCR graphs and multi-objective optimization. An extension of DCR
graphs with multi-dimensional costs is introduced in Section 3. We solve the discovery
of optimal traces according to costs as a combination of a Constraint Satisfaction Prob-
lem (CSP) and a Constraint Optimization Problem (COP) in Section 4. The benchmark
of our solution is presented in Section 5, and we conclude in Section 6.

1.1 Related Work

Several approaches have been used to model multiobjective optimization in business
processes. An evolutionary algorithm-based optimization framework is proposed in
[6], employing the well-known Non-Dominated Sorting Genetic Algorithm II (NS-
GAII) [7], to generate optimized business processes by considering search space, fit-
ness function, and optimization constraints. Evolutionary algorithms are also used in
[8] to generate optimized business processes, based on predefined requirements, a task
library, and input/output resources. The work in [9] enhances the approach in [8] with
preprocessing phases. Djedovic et al. [10] use genetic algorithms to optimize BPMN
2.0 processes. Si et al. use genetic algorithms for the optimization of Colored Petri
Nets, considering specifications for possible processes, resource types, selection, and
elimination criteria [11]. Jiménez et al. introduces a framework for the automatic gen-
eration of business processes using the process modeling language SDeclare to produce
optimal enactment plans by removing Pareto-dominated plans [12]. Burattin et al. pro-
pose a method to check trace conformance and compliance in business processes [13].
Additionally, López-Pintado et al. introduces an approach involving Pareto efficiency to
optimize resource allocation [14]. Compared to these works, our contribution is novel
in several key aspects. First, our primary focus lies in discovering optimal executions
(traces) for activities that have fixed resource costs rather than allocating resources to
activities for optimization purposes, as observed in [8, 9, 10, 11, 14]. Second, we adopt
a declarative approach using DCR graphs, whereas most works excepting [12, 13] work

4 Rosero et al.

on imperative process models. Our work also diverges from [12] in the approach taken:
while [12] involves assigning roles to activities and considering resource availability
based on roles, our work focuses on assigning resource consumption to activities and
optimizing the overall resource utilization of a process. Another aspect is that we are us-
ing a constraint-based model to generate traces and to specify the requirements needed
for a trace to be valid and compliant with a given DCR graph, which differs from the
conformance checking approach used in [13], which essentially looks at the compliance
and informativeness of traces against a model. Finally, our pruning method to accelerate
reaching the Pareto frontier is different than the ranking method used by [14].

2 Background

We will recall the definitions of DCR graphs and multi-objective process optimization.
Our work is framed on the classical definitions by Hildebrandt and Mukkamala [3].

2.1 DCR Graphs

Definition 1 (DCR graphs [3]). A Dynamic Condition Response Graph (DCR Graph) is a tuple
G = ⟨E,M,Act,→•, •→,±, l⟩, where 1. E is the set of events. 2. M ∈ M(G) = P(E)×P(E)
×P(E) is a marking and M(G) is the set of all markings. 3. Act is the set of actions.
4. → • ⊆ E × E is the condition relation. 5. • →⊆ E × E is the response relation.
5. ± : E × E ⇀ {+,%} defines the dynamic inclusion/exclusion relations by e → +e′ if
±(e, e′) = + and e →%e′ if ±(e, e′) = %. 6. l : E → Act is a labelling function.

In DCR graphs, the condition and response relations allow for cyclic interactions. The mark-
ing M = (Ex,Re, In) ∈ M(G) comprises three sets of events: executed events (Ex), pending
responses (Re) that are yet to be executed or excluded, and currently included events (In). The
dynamic exclusion and inclusion relations, denoted as →+ and →%, are represented in the par-
tial map ± : E × E ⇀ {+,%}. These relations enable events to be dynamically included or
excluded from the graph. An event e is enabled in a marking M = (Ex,Re, In) if 1) e ∈ In
and 2) if ∃f.(f, e) ∈→• =⇒ f ∈ Ex ∨ f /∈ In. When evaluating constraints, only the events
currently included are considered. For instance, if an event a has a response event b, but b is ex-
cluded, the occurrence of b is not necessary for the graph to be acceptable. Intuitively, the relation
e →+e′ indicates that when event e occurs, event e′ is included in the graph. On the other hand,
e →%e′ signifies that when event e occurs, event e′ is excluded from the graph. Moreover, we
will simplify our development by assuming l to be a bijective function [15], thus allowing us to
compute its inverse.

The execution semantics of DCR graphs is defined in terms of a labelled transition system,
where states are defined by markings, and transitions are fired events.

Definition 2 (Transitions [3]). For a DCR graph G = ⟨E,M,Act,→•, •→,±, l⟩, the corre-
sponding labelled transition system T (G) to be the tuple ⟨M(G),M,→⊆ M(G) × Act ×
M(G)⟩ where M(G) is the set of markings G, M ∈ M(G) is the initial marking, and

→⊆ M(G) × (E × Act) × M(G) is the transition relation given M ′ (e,a)−→ M ′′ where:
1. M ′ = (Ex′, Re′, In′) is the marking before the transition. 2. M ′′ = (Ex′ ∪ {e}, Re′′, In′′)
is the marking after the transition. 3. e ∈ In′ and l(e) = a 4. {e′ ∈ In′ | e′ →•e} ⊆ Ex′

5. In′′ = (In′ ∪ {e′ | e →+e′})\{e′ | e →%e′} 6. Re′′ = (Re′\{e}) ∪ {e′ | e•→ e′}

Pareto-Optimal Trace Generation from Declarative Process Models 5

We define a trace t = (e0, a0), (e1, a1), ... as a (possibly infinite) sequence of transitions

Mi
(ei,ai)−→ Mi+1 where Mi = (Exi, Rei, Ini) and M0 = M . A trace is accepting if ∀i ≥ 0,

e ∈ Rei, ∃j ≤ i : (e = ej ∨ e /∈ Inj). This means that there is no event that is both included
and pending at the same time, without having been executed first. Given an accepting trace t =
(e0, a0), (e1, a1), . . ., we also define Actions(t) = ⟨a0, a1, ...⟩.

The definition includes the following key points: (i) Markings before and after transitions,
(ii) Execution requirement for an event e to be included and the condition that all currently in-
cluded condition events for e must have been executed, (iii) Updates to the set of included events
and pending responses during a transition.

Fig. 3. A simple DCR graph showing the inclusion, exclusion, condition, and response relation

Figure 3 showcases a simple DCR graph representing the process of going to work. The
graph consists of 5 events, each event has a label, e.g., Activity0 labeled as LeaveHome.
The markings indicate the status of each event, where some are included (solid borders), ex-
cluded (dashed borders), pending (decorated with a ! symbol), or executed (decorated with a ✓).
The graph illustrates in the hovering label the event (Activity0) and the action (Leave Home)
associated. The graph shows four types of relations: inclusions, exclusions, conditions, and re-
sponses. Executing certain events triggers changes, such as including or excluding other events.
For example, executing UseBicycle includes Use Train while executing UseCar excludes
it. Condition relations specify prerequisites: both UseCar and Use Train must be executed or
excluded before ArriveAtWork can occur. The response relation highlights the requirement
of executing or excluding ArriveAtWork when LeaveHome is executed. So for a trace to
be valid, we must first start by leaving home (LeaveHome), then we would either use the car
(UseCar) and reach work (ArriveAtWork) or use the bicycle (UseBicycle) and then take
a train (Use Train) to work (ArriveAtWork).

6 Rosero et al.

2.2 Pareto Optimization

A multi-objective optimization problem requires the task of maximizing a series of k > 1 objec-
tive functions, usually in a conflict between them. Let S be a set of decision vectors s⃗1, . . . , s⃗n.
An objective vector is the projection of a decision vector consisting of the values of the objective
functions z = (f1(s⃗), . . . , fn(s⃗)). The optimization problem is defined as:

Maximize{f1(s⃗), . . . , fn(s⃗)}, such that s⃗ ∈ S, fi : S → R, S ̸= ∅. According to [16],
Pareto optimization searches for dominant decision vectors. For s⃗, s⃗′ ∈ S we say that s⃗ ∈ S
dominates s⃗′ if:

∀i ∈ 1, . . . , k : fi(s⃗) ≥ fi(s⃗′) ∧ ∃j ∈ 1, . . . , k : fj(s⃗) > fj(s⃗′)

Finally, we say that s⃗ ∈ S is a Pareto optimal vector if it does not exist s⃗′ ∈ S such that
s⃗′ dominates s⃗. Pareto solutions can be understood as those balance points where it is impossi-
ble to better optimize one of the components of the decision vector without compromising the
optimization of any other components.

3 DCR graphs with Multi-dimensional Costs

In this section, we extend DCR graphs with notions of multi-dimensional costs and introduce the
generation of cost-optimal traces as an optimization problem based on Pareto optimization.

Definition 3. An Extended Dynamic Condition and Response Graph (EDCR graph) is a tuple
EG = ⟨G,Φ, $,⊕⟩, where:

1. G is a DCR graph,
2. Φ = {ϕ1, . . . , ϕn} is a finite set of features,
3. $: Φ×Act → R. is the cost of the action associated with a feature, and
4. ⊕ : Φ× (R× R) → R is the aggregation function according to a feature.

We assume that ⊕ is commutative, associative, and has an identity element, thus ⊕(ϕ, (r1, r2)) =
⊕(ϕ, (r2, r1)) and ⊕(ϕ, (r3,⊕(ϕ, (r2, r1)))) = ⊕(ϕ, (⊕(ϕ, (r3, r2), r1))). Then we write
⊕(ϕ, (r1, r2, . . . , rj)) to denote the aggregation of j results for feature ϕ. A parametric definition
of aggregation allows us to have multiple ways of treating resources. For instance, some features
will be aggregated with a simple sum, while others can be aggregated with a minimum/maximum
among the resources.

Let EG be a EDCR graph and a ∈ Act. Then we define α(·) : Act → R|Φ| to denote the
multi-dimensional cost of executing an activity. For representing the cost of an action a in EG,
we define α(a) as: α(a) = ($(ϕ1, a), . . . , $(ϕn, a)).

Let t = ⟨(e0, a1), . . . , (em, am)⟩ be a trace in EG. The cost of feature ϕ on t is denoted
$(ϕ, t) and it is defined as: $(ϕ, t) = ⊕(ϕ, $(ϕ, a1), . . . , $(ϕ, am)) and the total cost of t is
defined as the tuple: α(t) = ($(ϕ1, t) , . . . , $(ϕn, t)).

We can now define our optimization problem related to EDCR graphs.

Definition 4. Given a EDCR graph EG = (G,Φ, $,⊕), and a maximum trace length k, the
problem of finding optimal traces of a EDCR graph (EDCR-OPT for short), is defined as fol-
lows:

Input: EG, k ∈ N, (optϕ)ϕ∈Φ

Output: T = {⟨(e0, a0), . . . , (ej , aj)⟩ | j ≤ k} such that α(t) is Pareto optimal for each
t ∈ T according to the optimization criteria (optϕ)ϕ∈Φ (optϕ ∈ {min,max}).

Pareto-Optimal Trace Generation from Declarative Process Models 7

4 Implementing EDCR-OPT as a Constraint Optimization Problem

In this section, we present our solution to the problem specified in Definition 4. We first introduce
a constraint-based model to generate a valid trace given a DCR graph. We then focus on the
optimization by first presenting a Branch and Bound approach to compute an approximation of
the Pareto optimal frontier and then describing a filtering process to filter out dominated solutions
in the approximation.

The solution was implemented using: (i) Python version 3.9.5, (ii) MiniZinc version 2.6.2,
(iii) Gecode Solver version 6.3.0, and (iv) Python-minzinc library version 0.9.0. Our implemen-
tation is available online3.

4.1 Generating a valid trace

In this section we present a constraint-based model for generating a valid trace of an EDCR graph
EG = ⟨G,Φ, $,⊕⟩, where G = ⟨E,M,Act,→•, •→,±, l⟩, with a maximum trace length k
and T (G) is the transition system for G.

We formally introduce the model in terms of its inputs, outputs, and constraint as follows:
Inputs: EDCR graph EG = ⟨G,Φ, $,⊕⟩, and a maximum length k ∈ N.
Outputs: t = ⟨(e0, a0), . . . , (ej , aj)⟩ such that j ≤ k.
Constraints: 0 ≤ i < j − 1 :

Mi
(e,a)−→ Mi+1 =⇒ Exi+1 = Exi ∪ {e} (1)

Mi
(e,a)−→ Mi+1 =⇒ Rei+1 = (Rei\{e}) ∪ {f | (e, f) ∈ •→} (2)

Mi
(e,a)−→ Mi+1 ∧ (e, f) /∈ •→ =⇒ Rei+1 = Rei (3)

∀(e, f) ∈→% : Mi
(e,a)−→ Mi+1 ∧ (e, f) /∈→+ =⇒ (Ini+1 = Ini \ {f}) (4)

∀(e, f) ∈→+ : Mi
(e,a)−→ Mi+1 =⇒ Ini+1 = Ini ∪ {f} (5)

Mi
(e,a)−→ Mi+1 ∧ (e, f) /∈→+ ∧ (e, f) /∈→% =⇒ Ini+1 = Ini (6)

Mi
(e,a)−→ Mi+1 ∧ ∃(f, e) ∈→• =⇒ (e ∈ Ini ∧ f ∈ Exi ∨ f /∈ Ini) (7)

Inj ∩Rej ∩ Exj = ∅ (8)

Our constraint system is modelled based on the criteria for the LTS of DCR graphs (c.f.
Def. 2). The intuition behind the equations of our constraint system is the following: Equation 1
describes the effects imposed in the set of executed markings after a transition. Equations 2 and
3 define the pending markings after an event transition. The effects of transitions in the set of
included events are described by Equations 4, 5, and 6. Equation 4 excludes the target event of
an exclusion relation if the event is not included at the same time. Equation 5 handles the effects
of executing an event source of an inclusion relation. Equation 6 preserve the included sets if no
exclusions or inclusions have been affected. Equation 7 ensures that an executed event must be
allowed, meaning it must be included at that moment, and all events that are conditions for its
execution must have been executed previously or be excluded. Finally, Equation 8 models the
accepting state of the graph, indicating that for a trace to be accepted, there should not be any
pending and included event that has not been executed.

3 https://github.com/JuanK120/dcrGraph

8 Rosero et al.

Fig. 4. An adaptation of Branch and Bound to compute a set containing the Pareto optimal frontier

4.2 Computing the Pareto optimal frontier

There are two phases in the computation of the frontier. We first compute a superset of traces that
contains the frontier. In the second phase, we filter out the dominant solutions in the superset.

Computation of the superset. Features, costs, and aggregations for an Extended DCR graph
implementation are added to the model of Section 4.1 following the definitions in Section 3.

The process followed for the computation of the superset is presented in Figure 4. We extend
a basic constraint-based Branch and Bound approach [17] to save the solutions that are found
during the execution of the process. During the iterative process, we add a constraint at each
iteration to ensure that each new solution found is different, and better in at least one feature
compared to the previously found solutions.

In the context of DCR graphs, we apply the Branch and Bound algorithm as follows: initially,
we execute the DCR model to find a single solution. Once a possible trace, denoted as t, is found,
we store this solution. Subsequently, a new CSP is created. In this CSP, we introduce an additional
constraint to ensure that any subsequent solution, denoted as t′, must be superior in at least one
objective. This constraint is formulated as follows: ∃(ϕ ∈ Φ)(α(t′)ϕ < α(t)ϕ). We repeat this
process until it becomes infeasible to find better solutions. This approach effectively controls the
size of the generated solution set by discarding solutions that are known to be sub-optimal and
guarantees that Pareto optimal solutions are not overlooked.

Filtering the superset. After applying the Branch and Bound algorithm and obtaining a set
of potential solutions, the next step is to filter this set using the Pareto optimality concept. The
Pareto optimal solutions represent the optimal trade-off solutions in a multi-objective optimiza-
tion problem, where improving one objective comes at the expense of worsening another. By us-
ing a quadratic algorithm, we can efficiently evaluate and filter the potential solutions to identify
the Pareto optimal solutions, which provide the best overall solutions considering all objectives
simultaneously.

5 Scalability of the Solution

To evaluate the performance of our solutions, we developed a DCR graph generator that allowed
us to vary multiple features of the graph. These features included trace length (k), the number of
events, features, conditions, responses, inclusions, and exclusions. To assess the impact of each
dimension on the tool’s performance, we conducted separate tests for each dimension, fixing
the other dimensions at a reasonable magnitude, and then gradually increasing the size of the
dimension under examination. for example, for analyzing the number of events, we fixed all
other dimensions at 10, as it would provide a variety of options for the model to choose from, and
then we started at 15 events, then 17, then 19 and so on until reaching 45. Additionally, for each
step of the analysis, we generated multiple graphs with the same dimensions, the total number

Pareto-Optimal Trace Generation from Declarative Process Models 9

of graphs generated was 3082. For each DCR graph, we collected three performance metrics:
nodes, which is the number of explored nodes of the search tree of the constraint model done by
the solver during the search for solutions, solveTime, which is the time spent by the MiniZinc
motor running the constraint model provided by the python-minizinc tool, and totalTime, the
overall solving time of the tool calculated by the python algorithm, in which we start the count
at the beginning of the implemented tool until the moment just before the end of the process.
We created box plots for each dimension to analyze the data, representing the measures obtained
from all graphs with that specific dimension. These box plots visually represent the performance
measures across different sizes. For instance, in Figure 5, the plot compares one of the features of
the graph (X-axis) to the time it took the algorithm to run (Y-axis). For example, in the first plot,
with conditions, each boxplot displays the interquartile range (IQR) with a median line within
the box. Whiskers extend from the box, indicating the range within a certain distance from the
quartiles. Any data points beyond the whiskers are considered potential outliers, represented as
diamonds in this case.

All DCR graphs, data files, and plots generated can be accessed in the code repository4.
Figure 5 illustrates the impact of different variables on the performance measures. Conditions
and responses exhibit the most significant influence, as evidenced by their larger values. This is
expected since conditions and responses control the graph flow and complexity of solutions.

Regarding the variables k (trace length) and feats (features), their impact is less pronounced
compared to conditions, responses, and events. The growth in k expands the search space, albeit
not as significantly as the increase in the number of events, this is because even though k allows
for longer traces it does not necessarily affects, the general behavior of a DCR graph, nor does it
guarantees that there are traces of a length k, as depending of the specific DCR graph there could
be the case where there are no traces beyond a lesser length than k. Feats contribute to the prob-
lem’s complexity, but their effect is not as prominent as the other variables. This is because trace
generation plays a larger role in the complexity of the problem, and it is logical, given that this is
the combinatorial part of our Optimization problem, as trace generation involves choosing which
events form a trace. Inclusions and exclusions have a minimal impact on performance measures.
Although they may increase graph complexity, overall the performance depends more on spe-
cific constraints, restrictions, and requirements within the graph. Thus, compared to conditions
and responses, inclusions and exclusions have a lesser effect on performance. This is because
inclusions and exclusions do not significantly influence the flow of the DCR graph, inclusions
depending on if there are any excluded events at any point might even not have any impact at all
in the graph, as if an event being included is already included in the graph, then it is irrelevant.
a similar case happens with exclusions, in general work to avoid certain combinations of events
from happening, generally speaking, it doesn’t go beyond that, as opposed to conditions and re-
sponses, which have a bigger impact, as they control, the requisites for events to be executed in
the case of conditions, and also the requirements to reach an accepting state in case of responses.

Also, potential outliers can be noted due to the conformation of specific graphs, especially
in variables that greatly impact the flow of a DCR graph, like conditions and responses, this is
because depending on how a DCR graph is composed, a large number of events in a trace might be
necessary to reach an accepting state, for example, if there are chains of relations in the generated
graphs, for example, if a pending event has 2 other events as conditions, and those events have
other events as conditions, these would make it so that any possible trace would take longer to
execute, as the execution of multiple previous events would be required to reach an accepting
state.
4 https://github.com/JuanK120/dcrGraph/tree/master/Tests/
Detailed

10 Rosero et al.

6 Conclusions

In this work, we explored process optimization based on the model based on the proposed exten-
sion for DCR graphs. We introduced DCR graphs as a modeling technique and extended them to
incorporate multi-objective optimization in business processes. To evaluate our implementation
we conducted a performance analysis to assess the efficiency and effectiveness of our approach.
By considering various factors such as trace length, events, conditions, responses, inclusions, and
exclusions, we gained insights into the impact of these variables on time and complexity. This
research contributes to the field of business process optimization by offering a novel application
of Extended DCR graphs. Our findings highlight the importance of considering multi-objective
optimization and provide a foundation for future research. Understanding how variables affect
optimization solutions enables organizations to make informed decisions and enhance their com-
petitiveness in dynamic markets.

Future work involves considering how to integrate this approach with partially executed
traces, paving the way to the integration with streaming and predictive process mining ap-
proaches. Moreover, we would like to conduct a more complex empirical study to evaluate the
simultaneous variation of multiple variables and explore real-world applications with diverse
events, resources, and features. Additionally, our solution should be refined and integrated into
a user-friendly tool capable of handling partial traces, providing businesses with tailored recom-
mendations for process improvement.

References

1. M. Pesic, “Constraint-based workflow management systems : shifting control to users,”
Ph.D. dissertation, Industrial Engineering and Innovation Sciences, 2008.

2. A. Burattin, A. Gianola, H. A. López, and M. Montali, “Exploring the conformance
space (extended abstract),” in ITBPM@BPM, ser. CEUR Workshop Proceedings, vol. 2952.
CEUR-WS.org, 2021, pp. 62–67.

3. T. T. Hildebrandt and R. R. Mukkamala, “Declarative event-based workflow as distributed
dynamic condition response graphs,” arXiv preprint arXiv:1110.4161, 2011.

4. G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on ltl on finite traces: Insen-
sitivity to infiniteness,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28, no. 1, 2014.

5. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack, “Minizinc: To-
wards a standard CP modelling language,” in Principles and Practice of Constraint Pro-
gramming - CP, vol. 4741. Springer, 2007, pp. 529–543.

6. N. Mahammed, S. M. Benslimane, A. Ouldkradda, and M. Fahsi, “Evolutionary Business
Process Optimization using a Multiple-Criteria Decision Analysis method,” in Intl. Conf. on
Computer, Information and Telecommunication Systems (CITS). Alsace, Colmar, France:
IEEE, Jul. 2018, pp. 1–5.

7. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–
197, 2002.

8. K. Vergidis, D. Saxena, and A. Tiwari, “An evolutionary multi-objective framework for busi-
ness process optimisation,” Applied Soft Computing, vol. 12, no. 8, pp. 2638–2653, Aug.
2012.

9. K. Georgoulakos, K. Vergidis, G. Tsakalidis, and N. Samaras, “Evolutionary Multi-Objective
Optimization of business process designs with pre-processing,” in IEEE Congress on Evolu-
tionary Computation (CEC). Spain: IEEE, Jun. 2017, pp. 897–904.

Pareto-Optimal Trace Generation from Declarative Process Models 11

10. A. Djedovic, E. Zunic, Z. Avdagic, and A. Karabegovic, “Optimization of business processes
by automatic reallocation of resources using the genetic algorithm,” in XI International Sym-
posium on Telecommunications (BIHTEL). Sarajevo, Bosnia and Herzegovina: IEEE, Oct.
2016, pp. 1–7.

11. Y.-W. Si, V.-I. Chan, M. Dumas, and D. Zhang, “A Petri Nets based Generic Genetic Al-
gorithm framework for resource optimization in business processes,” Simulation Modelling
Practice and Theory, vol. 86, pp. 72–101, Aug. 2018.

12. A. Jiménez-Ramı́rez, B. Weber, I. Barba, and C. Del Valle, “Generating optimized config-
urable business process models in scenarios subject to uncertainty,” Information and Soft-
ware Technology, vol. 57, pp. 571–594, Jan. 2015.

13. A. Burattin, G. Guizzardi, F. M. Maggi, and M. Montali, “Fifty shades of green: How in-
formative is a compliant process trace?” in Advanced Information Systems Engineering,
P. Giorgini and B. Weber, Eds. Cham: Springer International Publishing, 2019, pp. 611–626.

14. O. López-Pintado, M. Dumas, M. Yerokhin, and F. M. Maggi, “Silhouetting the cost-time
front: Multi-objective resource optimization in business processes,” in Business Process
Management Forum, A. Polyvyanyy, M. T. Wynn, A. Van Looy, and M. Reichert, Eds.
Cham: Springer International Publishing, 2021, pp. 92–108.

15. H. A. López, S. Debois, T. Slaats, and T. T. Hildebrandt, “Business process compliance
using reference models of law,” in International Conference on Fundamental Approaches to
Software Engineering, 2020, pp. 378–399.

16. W. Jakob and C. Blume, “Pareto optimization or cascaded weighted sum: A comparison of
concepts,” Algorithms, vol. 7, no. 1, pp. 166–185, 2014.

17. P. van Beek, “Backtracking search algorithms,” in Handbook of Constraint Programming,
ser. Foundations of Artificial Intelligence, F. Rossi, P. van Beek, and T. Walsh,
Eds. Elsevier, 2006, vol. 2, pp. 85–134. [Online]. Available: https://doi.org/10.1016/
S1574-6526(06)80008-8

12 Rosero et al.

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = conditions

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = responses

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = events

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = k

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = feats

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = inclusions

15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Number of actions

10
1

10
2

10
3

10
4

to
ta

lT
im

e
(S

ec
)

conffeat = exclusions

Fig. 5. Performance of the solution measuring the total time measure

